
Efficient Pattern Matching on CPU-GPU
Heterogeneous Systems

Victoria Sanz1,2(B), Adrián Pousa1, Marcelo Naiouf1,
and Armando De Giusti1,3

1 III-LIDI, School of Computer Sciences, National University of La Plata,
La Plata, Argentina

{vsanz,apousa,mnaiouf,degiusti}@lidi.info.unlp.edu.ar
2 CIC, Buenos Aires, Argentina

3 CONICET, Buenos Aires, Argentina

Abstract. Pattern matching algorithms are used in several areas such
as network security, bioinformatics and text mining, where the volume of
data is growing rapidly. In order to provide real-time response for large
inputs, high-performance computing should be considered. In this paper,
we present a novel hybrid pattern matching algorithm that efficiently
exploits the computing power of a heterogeneous system composed of
multicore processors and multiple graphics processing units (GPUs). We
evaluate the performance of our algorithm on a machine with 36 CPU
cores and 2 GPUs and study its behaviour as the data size and the
number of processing resources increase. Finally, we compare the perfor-
mance of our proposal with that of two other algorithms that use only
the CPU cores and only the GPUs of the system respectively. The results
reveal that our proposal outperforms the other approaches for data sets
of considerable size.

Keywords: Pattern matching · CPU-GPU computing · CPU-GPU
heterogeneous systems · Hybrid programming · Aho-Corasick

1 Introduction

Pattern matching algorithms locate some or all occurrences of a finite number of
patterns (pattern set or dictionary) in a text (data set). These algorithms are key
components of DNA analysis applications [1], antivirus [2], intrusion detection
systems [3,4], among others. In this context, the Aho-Corasick (AC) algorithm
[5] is widely used because it efficiently processes the text in linear time.

The ever-increasing amount of data to be processed, sometimes in real time,
led several authors to investigate the acceleration of AC on emerging parallel
architectures. In particular, researchers have proposed different approaches to
parallelize AC on shared-memory architectures, distributed-memory architec-
tures (clusters), GPUs and multiple GPUs [6–10].

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11944, pp. 391–403, 2020.
https://doi.org/10.1007/978-3-030-38991-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38991-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-38991-8_26

392 V. Sanz et al.

Although modern computers include multiple CPU cores and at least one
GPU, little work has been done to accelerate pattern matching on such sys-
tems. In [11] the authors present a hybrid parallelization of AC on CPU-GPU
heterogeneous systems. Briefly, the algorithm consists of generating the data
structures needed for pattern matching on the CPU cores and performing the
matching process on the GPU. Similarly, in [12] the authors propose a hybrid
CPU-GPU pattern-matching algorithm that uses the CPU to filter incoming
data and the GPU to complete the matching process. The filter phase detects
blocks of data suspected of containing patterns, thus it reduces the GPU work-
load and data transfers. In summary, previous work has focused on using only
one type of processing unit (PU) for the matching process, i.e. CPUs or GPUs,
leading to underutilization of system resources. To our best knowledge, no work
has focused on using both PUs in a collaborative way to accelerate the matching
process of pattern matching algorithms.

In this paper, we present a novel hybrid pattern matching algorithm that
efficiently exploits the computing power of a heterogeneous system composed of
multicore processors and multiple GPUs. Also we address the problem of load
balancing among the processing resources of the system. We evaluate the per-
formance of our algorithm on a machine with 36 CPU cores and 2 GPUs and
study its behaviour as the data size and the number of processing resources
increase. Finally, we compare the performance of our proposal with that of two
other algorithms that use only the CPU cores and only the GPUs of the sys-
tem respectively. The results reveal that our proposal outperforms the other
approaches for data sets of considerable size.

This paper extends the work in [13] by presenting (1) a generalization of
our algorithm to a wider range of heterogeneous systems, (2) an analysis of its
behaviour as the problem size and the number of processing resources increase,
and (3) a detailed comparison with previous approaches.

The rest of the paper is organized as follows. Section 2 introduces the AC
algorithm. Section 3 summarizes two approaches to parallelize AC. Section 4
introduces a hybrid OpenMP-CUDA programming model and a workload dis-
tribution strategy, which are specific to CPU–GPU heterogeneous computing.
Section 5 describes our parallel algorithm for pattern matching on CPU-GPU
heterogeneous systems. Section 6 shows our experimental results. Finally, Sect. 7
presents the main conclusions and some ideas for future research.

2 The Aho-Corasick Algorithm

The AC algorithm [5] has been widely used since it is able to locate all occur-
rences of user-specified patterns in a single pass of the text. The algorithm
consists of two steps: the first is to construct a finite state pattern matching
machine; the second is to process the text using the state machine constructed
in the previous step. The pattern matching machine has valid and failure tran-
sitions. The former are used to detect all user-specified patterns. The latter are
used to backtrack the state machine, specifically to the state that represents the

Efficient Pattern Matching on CPU-GPU Heterogeneous Systems 393

longest proper suffix, in order to recognize patterns starting at any location of
the text. Certain states are designated as “output states” which indicate that
a set of patterns has been found. The AC machine works as follows: given a
current state and an input character, it tries to follow a valid transition; if such
a transition does not exist, it jumps to the state pointed by the failure tran-
sition and processes the same character until it causes a valid transition. The
machine emits the corresponding patterns whenever an output state is found.
Figure 1 shows the state machine for the pattern set {he, she, his, hers}. Solid
lines represent valid transitions and dotted lines represent failure transitions.

Fig. 1. Aho-Corasick state machine for the pattern set {he, she, his, hers}

3 Previous Approaches to Parallelize Aho-Corasick

The most straightforward way to parallelize AC [6] is based on dividing the
input text into segments and making each processor responsible for a particular
segment (i.e., each processor performs AC on its segment). All processors use
the same state machine. The disadvantage of this strategy is that patterns can
cross the boundary of two adjacent segments. This problem is known as the
“boundary detection” problem. In order to detect these patterns, each processor
has to compute an additional chunk known as “overlapping area”, whose size is
equal to the length of the longest pattern in the dictionary minus 1. However,
this additional computation is an overhead that increases as the text is divided
into more segments of smaller size. Figure 2 illustrates this strategy.

Another approach is the Parallel Failureless Aho-Corasick algorithm (PFAC)
[7] that efficiently exploits the parallelism of AC and therefore is suitable for
GPUs. PFAC assigns each character of the text to a particular thread. Each
thread is responsible for identifying the pattern beginning at its assigned position
and terminates immediately when it detects that such a pattern does not exist
(i.e., when it cannot follow a valid transition). Note that PFAC does not use

394 V. Sanz et al.

Fig. 2. Parallel AC

failure transitions and therefore they can be removed from the state machine.
Figures 3 and 4 give an example of the PFAC state machine and the PFAC
algorithm, respectively. Algorithm 1.1 shows the pseudocode of PFAC (code
executed by each thread).

Fig. 3. PFAC state machine for the pattern set {he, she, his, hers}

Algorithm 1.1. Pseudocode of PFAC

pos = start

state = initial state

while (pos < text size){

if (there is no transition for the current state and input character)

break

state = next state for the current state and input character

if (state is an output state)

register the pattern located at the position "start"

pos = pos + 1

}

Efficient Pattern Matching on CPU-GPU Heterogeneous Systems 395

Fig. 4. Example of PFAC

4 A General CPU-GPU Computing Model

One of the reasons that motivate CPU-GPU heterogeneous computing is to
improve the utilization of the processing units (PUs). The use of both types of
PUs in a collaborative way may improve the performance of the application. In
this section we introduce a hybrid OpenMP-CUDA programming model and a
workload distribution strategy, which are specific to CPU-GPU heterogeneous
computing.

4.1 Hybrid OpenMP-CUDA Programming Model

Assuming that the system is composed of N CPU cores and M GPUs, the pro-
posed model creates two sets of threads. The first set has M threads, each one
runs on a dedicated CPU core and controls one GPU, which involves the fol-
lowing steps: allocating memory on the GPU to store input and output data,
transferring the data from CPU to GPU, calling the kernel function, transferring
the results from GPU to CPU and freeing memory on the GPU. On the other
hand, the second set has N −M threads, which concurrently perform the corre-
sponding calculations on the remaining CPU cores. Figure 5 depicts this hybrid
programming model.

Fig. 5. Hybrid OpenMP-CUDA programming model

396 V. Sanz et al.

4.2 Workload Distribution Strategy

A workload distribution is optimal when the PUs complete their respective work
within the same amount of time. In order to distribute the work among the
PUs, we use a simple static workload distribution (i.e., the amount of work to
be assigned to each PU is determined before program execution) based on the
relative performance of PUs [14].

Specifically, we estimate the CPU and GPU(s) execution time in the collab-
orative implementation as T ′

cpu = Tcpu ·R and T ′
gpu = Tgpu ·(1−R), respectively,

where R is the proportion of work assigned to the CPU cores, Tcpu represents the
execution time of the OpenMP algorithm on the available CPU cores and Tgpu

is the execution time of the single-GPU or multi-GPU algorithm using CUDA,
as appropriate. Clearly, the execution time of the collaborative implementation
reaches its minimum when T ′

cpu = T ′
gpu, i.e. Tcpu ·R = Tgpu · (1 −R). From this

equation we obtain R = Tgpu

Tcpu+Tgpu
.

In our scenario, R has to be recalculated when the input data vary or the
configuration of the system changes. According to R, the workload assigned to
the CPU cores is Dcpu = R ·Dsize and the workload assigned to the GPU(s) is
Dgpu = Dsize −Dcpu, where Dsize is the length of the text string.

Although it is impractical to run both OpenMP and CUDA applications in
order to obtain R, we plan to use this first approach as a baseline to derive an
estimation model for R.

5 Pattern Matching on CPU-GPU Heterogeneous
Systems

Our implementation is based on the PFAC algorithm and uses the hybrid pro-
gramming model proposed in Sect. 4.1.

Our algorithm generates the state machine on the CPU sequentially. The
state machine is represented by a State Transition Table (STT) that has a row
for each state and a column for each ASCII character (256). Each entry of the
STT contains the next state information. Once generated, the STT is copied to
the texture memory of the GPU(s) since this table is accessed in an irregular
manner and, in this way, the access latency is reduced.

The algorithm distributes the workload (input text) between the CPU and
the GPU(s) according to the strategy proposed in Sect. 4.2. Thus, the text is
divided into two segments and the “boundary detection” problem appears. The
first segment is assigned to the CPU and the second one to the GPU(s) (Fig. 6).
In this way, the CPU has to compute an additional chunk (overlapping area)
already residing in main memory and thus we reduce the amount of data to be
transferred to the GPU(s).

When the heterogeneous system has several identical GPUs, the workload
(segment) is distributed equally among them, taking into account the overlap-
ping area. Each thread in charge of managing one GPU copies its segment into
the global memory. Note that large segments may exceed the global memory

Efficient Pattern Matching on CPU-GPU Heterogeneous Systems 397

Fig. 6. Workload distribution between the CPU and the GPU(s)

capacity. In that case, the thread subdivides the segment into smaller segments
and then it transfers and processes them one by one. It should be noted that each
sub-segment must be transferred with the corresponding overlapping area. The
implementation details of the PFAC algorithm on GPU (PFAC kernel) can be
found in [7]. In summary, the kernel is launched with 256 threads per block. Each
thread block handles 1024 positions of the input segment (i.e., each thread pro-
cesses 4 positions). Each thread block loads the corresponding data into shared
memory. Then, threads read input bytes from the shared memory in order to
perform their work.

The threads that operate on the CPU cores distribute the workload (segment)
equally among them via the OpenMP ‘for’ work-sharing directive.

6 Experimental Results

Our experimental platform is a machine composed of two Intel Xeon E5-2695 v4
processors and 128 GB RAM. Each processor has eighteen 2.10 GHz cores, thus
the machine has thirty-six cores in total. Hyper-Threading and Turbo Boost
were disabled. The machine is equipped with two Nvidia GeForce GTX 960;
each one is composed of 1024 cores and 2 GB GDDR5 memory. Each CUDA
core operates at 1127 MHz.

Test scenarios were generated by combining three English texts of different
sizes with four English dictionaries with different number of patterns. All the
texts were extracted from the British National Corpus [15]: text 1 is a 4-million-
word sample (21 MB); text 2 is a 50-million-word sample (268 MB); text 3 is
a 100-million-word sample (544 MB). The dictionaries include frequently used
words: dictionary 1 with 3000 words; dictionary 2 with 100000 words; dictionary
3 with 178690 words; dictionary 4 with 263533 words.

To evaluate the effectiveness of our proposal, we compared the sequential
version of PFAC (PFAC SEQ) with the following parallel implementations:

– PFAC CPU: implementation of PFAC on a multicore CPU using OpenMP.
– PFAC GPU: implementation of PFAC on GPU using CUDA and executed

with 256 threads per block.
– PFAC MultiGPU: implementation of PFAC on multiple GPUs using CUDA

and OpenMP, which is used only for managing the GPUs.
– PFAC CPU-GPU: hybrid OpenMP-CUDA implementation of PFAC for het-

erogeneous systems composed of multicore processors and 1 GPU.
– PFAC CPU-MultiGPU: hybrid OpenMP-CUDA implementation of PFAC for

heterogeneous systems composed of multicore processors and multiple GPUs.

398 V. Sanz et al.

It should be noted that PFAC SEQ, PFAC CPU and PFAC GPU are the
original implementations provided by Lin et al. [7]. We developed the remain-
ing versions described above, which are based on the aforementioned original
implementations.

Our experiments focus on the matching step since it is the most significant
part of pattern matching algorithms. For each test scenario, we ran each imple-
mentation 100 times and averaged the execution time. PFAC CPU, PFAC CPU-
GPU and PFAC CPU-MultiGPU were executed with the following system con-
figurations: 6, 12, 18, 24, 30 and 36 threads/CPU cores. We considered the data
transfer time (host-to-device and device-to-host, aka H2D and D2H) when eval-
uating the algorithms that use GPU(s), since it represents a significant portion
of the total execution time [13] (i.e. it is not negligible).

First, we calculated the load balance of each run for the algorithms that
use several processing resources (PFAC CPU, PFAC MultiGPU, PFAC CPU-
GPU and PFAC CPU-MultiGPU). Load balance [16] can be defined as the ratio
between the average time to finish all of the parallel tasks and the maximum
time to finish any of the parallel tasks (Tavg

Tmax
). A load balance value near 1 means

a better distribution of load.
In PFAC CPU, each OpenMP thread represents a parallel task. On the other

hand, in PFAC MultiGPU, the work done by each GPU is a parallel task. Con-
sidering all tests for each algorithm, both achieve an average load balance of
0.99.

Table 1. Values of R used by PFAC CPU-GPU and PFAC CPU-MultiGPU

No. of CPU cores

6 12 18 24 30 36

PFAC CPU-GPU Text 1 0.30 0.38 0.43 0.40 0.38 0.37

Text 2 0.36 0.49 0.58 0.61 0.62 0.62

Text 3 0.37 0.51 0.59 0.64 0.67 0.68

PFAC CPU-MultiGPU Text 1 0.21 0.28 0.33 0.30 0.28 0.28

Text 2 0.24 0.35 0.43 0.47 0.48 0.48

Text 3 0.24 0.36 0.44 0.49 0.52 0.54

PFAC CPU-GPU and PFAC CPU-MultiGPU consist of two parallel tasks:
one is performed by the CPU cores and the other by the GPU(s). We distributed
the input text among the PUs according to the strategy proposed in Sect. 4.2.
Table 1 shows the value of R used by both algorithms, for each text and system
configuration. Similarly, Table 2 presents the load balance achieved. The results
reveal that our workload distribution strategy provides a good load-balance,
which ranges between 0.75 and 0.96 for PFAC CPU-GPU, and between 0.77 and
0.93 for PFAC CPU-MultiGPU. Additionally, both algorithms follow a similar
trend: the load balance improves as the size of the text increases.

Efficient Pattern Matching on CPU-GPU Heterogeneous Systems 399

Table 2. Load balance achieved by PFAC CPU-GPU and PFAC CPU-MultiGPU

No. of CPU cores

6 12 18 24 30 36

PFAC CPU-GPU Text 1 0.82 0.86 0.84 0.80 0.77 0.75

Text 2 0.89 0.92 0.95 0.91 0.91 0.92

Text 3 0.90 0.94 0.96 0.95 0.94 0.94

PFAC CPU-MultiGPU Text 1 0.77 0.86 0.88 0.84 0.80 0.79

Text 2 0.79 0.88 0.91 0.91 0.89 0.89

Text 3 0.81 0.89 0.93 0.93 0.92 0.91

Next, we evaluated the performance (Speedup1) of the mentioned algorithms.
For each algorithm and system configuration, the average speedup for each text
is shown. This is because the speedup does not vary significantly with the dic-
tionary.

Figure 7 illustrates the average speedup of PFAC GPU and PFAC MultiGPU,
for different texts. In both cases, the speedup increases when going from Text
1 to Text 2, but then it plateaus. This is mainly due to the fact that the data
transfer time (H2D and D2H) increases with the size of the text. In particular,
for large texts, this overhead has a greater impact on performance. Note that the
performance of PFAC MultiGPU is less affected by data transfers, compared to
PFAC GPU. This is because PFAC MultiGPU distributes the load equally among
the GPUs of the system. Thus, independent small data transfers occur in parallel.
Also, it can be observed that PFAC MultiGPU achieves higher performance than
PFAC GPU.

Figure 8 shows the average speedup of PFAC CPU, PFAC CPU-GPU and
PFAC CPU-MultiGPU, for different texts and system configurations (the num-
ber of threads/CPU cores is indicated between parentheses). In each case, it
can be seen that the system configuration that provides the best performance
depends on the text. Moreover, in some cases different system configurations give
the same performance for a given text. For this reason, fewer resources should be
used to achieve an acceptable speedup with a low energy consumption. The anal-
ysis of energy consumption is out of the scope of this paper and is the subject of
future work. Additionally, note that, for a fixed number of processing resources,
the speedup of PFAC CPU, PFAC CPU-GPU and PFAC CPU-MultiGPU tends
to increase with the size of the text. Therefore, we conclude that these algorithms
behave well as the workload increases.

Figure 9 compares the performance of the algorithms. In the case of
PFAC CPU, PFAC CPU-GPU and PFAC CPU-MultiGPU, we selected the sys-
tem configuration that provides the best performance for each text. For example:

1 Speedup is defined as Ts
Tp

, where Ts is the execution time of the sequential algorithm

and Tp is the execution time of the parallel algorithm.

400 V. Sanz et al.

0

5

10

15

20

25

30

Text1 Text2 Text3

Av
g.

 S
pe

ed
up

PFAC_GPU PFAC_Mul GPU

Fig. 7. Average speedup of PFAC GPU and PFAC MultiGPU

for PFAC CPU and Text 1, we show the average speedup achieved with 18 CPU
cores, whereas for Texts 2 and 3 we show the average speedup achieved with 36
CPU cores.

As it can be observed, PFAC MultiGPU achieves the best performance
for Text 1, followed by PFAC CPU-MultiGPU (18 CPU cores + 2 GPUs),
PFAC CPU-GPU (18 CPU cores + 1 GPU), PFAC GPU and PFAC CPU (18
CPU cores). For this text, the algorithms achieve an average speedup of 11.69,
11.48, 8.14, 7.51, and 5.69 respectively.

Furthermore, PFAC CPU-MultiGPU (24 CPU cores + 2 GPUs) achieves
the best result for Text 2, with an average speedup of 20.85, followed by
PFAC CPU-GPU (18 CPU cores + 1 GPU) with 16.37, PFAC MultiGPU with
14.70, PFAC CPU (36 CPU cores) with 13.69 and PFAC GPU with 8.31.

Finally, for Text 3, PFAC CPU-MultiGPU achieves the best average speedup
(25.41) by using all available resources, followed by PFAC CPU-GPU (36
CPU cores + 1 GPU) with 21.23, PFAC CPU (36 CPU cores) with 17.71,
PFAC MultiGPU with 15.31 and PFAC GPU with 8.33.

Note that for Texts 2 and 3, the algorithms that use the CPU cores out-
perform those that use only 1 or 2 GPUs. In general, this is due to the impact
of H2D/D2H transfers on PFAC GPU and PFAC MultiGPU. The former algo-
rithm transfers the entire data between CPU and GPU, whereas the latter trans-
fers an equal amount of data to each GPU in parallel. On the other hand, both
PFAC CPU-GPU and PFAC CPU-MultiGPU are less affected by data transfers
since they transfer a smaller portion of data, according to R.

Efficient Pattern Matching on CPU-GPU Heterogeneous Systems 401

0

5

10

15

20

25

30

Text1 Text2 Text3

Av
g.

 S
pe

ed
up

PFAC_CPU(6) PFAC_CPU(12) PFAC_CPU(18)

PFAC_CPU(24) PFAC_CPU(30) PFAC_CPU(36)

(a)

0

5

10

15

20

25

30

Text1 Text2 Text3

Av
g.

 S
pe

ed
up

PFAC_CPU(6)-GPU PFAC_CPU(12)-GPU PFAC_CPU(18)-GPU

PFAC_CPU(24)-GPU PFAC_CPU(30)-GPU PFAC_CPU(36)-GPU

(b)

0

5

10

15

20

25

30

Text1 Text2 Text3

Av
g.

 S
pe

ed
up

PFAC_CPU(6)-Mul GPU PFAC_CPU(12)-Mul GPU PFAC_CPU(18)-Mul GPU
PFAC_CPU(24)-Mul GPU PFAC_CPU(30)-Mul GPU PFAC_CPU(36)-Mul GPU

(c)

Fig. 8. Average speedup of (a) PFAC CPU, (b) PFAC CPU-GPU and (c) PFAC CPU-
MultiGPU

402 V. Sanz et al.

0

5

10

15

20

25

30

Text1 Text2 Text3

Av
g.

 S
pe

ed
up

PFAC_CPU PFAC_GPU PFAC_CPU-GPU PFAC_Mul GPU PFAC_CPU-Mul GPU

Fig. 9. Performance comparison of parallel matching algorithms

7 Conclusions and Future Work

In this paper we presented a novel pattern matching algorithm that efficiently
exploits the computing power of a heterogeneous system composed of multicore
processors and multiple GPUs. Our proposal is based on the Parallel Failureless
Aho-Corasick algorithm for GPU (PFAC GPU).

We evaluated the performance of our algorithm (PFAC CPU-MultiGPU) on
a machine with 36 CPU cores and 2 GPUs, and compared it with that of:
PFAC GPU; PFAC MultiGPU, a version of PFAC that runs on multiple GPUs;
PFAC CPU, a version of PFAC for multicore CPUs; PFAC CPU-GPU, a hybrid
version of PFAC that uses multiple CPU cores and a single GPU.

The results showed that PFAC CPU-MultiGPU outperforms the other algo-
rithms, for texts of considerable size. In particular, it reaches an average speedup
of 25.41 for the largest problem considered. However, PFAC MultiGPU achieves
the best performance for small texts. Furthermore, for a fixed number of pro-
cessing resources, the speedup of PFAC CPU-MultiGPU tends to increase with
the size of the text. Therefore, we conclude that it behaves well as the workload
increases.

As for future work, we plan to extend the experimental work to evaluate the
PFAC algorithm on other parallel architectures such as Xeon Phi and CPU-GPU
clusters. Also we plan to construct a model based load-balancing strategy.

Efficient Pattern Matching on CPU-GPU Heterogeneous Systems 403

References

1. Tumeo, A., Villa, O.: Accelerating DNA analysis applications on GPU clusters.
In: IEEE 8th Symposium on Application Specific Processors (SASP), pp. 71–76.
IEEE Computer Society, Washington D.C. (2010)

2. Clamav. http://www.clamav.net
3. Norton, M.: Optimizing pattern matching for intrusion detection. Sourcefire

Inc., White Paper. https://www.snort.org/documents/optimization-of-pattern-
matches-for-ids

4. Tumeo, A., et al.: Efficient pattern matching on GPUs for intrusion detection
systems. In: Proceedings of the 7th ACM International Conference on Computing
Frontiers, pp. 87–88. ACM, New York (2010)

5. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

6. Tumeo, A., et al.: Aho-Corasick string matching on shared and distributed-memory
parallel architectures. IEEE Trans. Parallel Distrib. Syst. 23(3), 436–443 (2012)

7. Lin, C.H., et al.: Accelerating pattern matching using a novel parallel algorithm
on GPUs. IEEE Trans. Comput. 62(10), 1906–1916 (2013)

8. Arudchutha, S., et al.: String matching with multicore CPUs: performing better
with the Aho-Corasick algorithm. In: Proceedings of the IEEE 8th International
Conference on Industrial and Information Systems, pp. 231–236. IEEE Computer
Society, Washington D.C. (2013)

9. Herath, D., et al.: Accelerating string matching for bio-computing applications
on multi-core CPUs. In: Proceedings of the IEEE 7th International Conference
on Industrial and Information Systems (ICIIS), pp. 1–6. IEEE Computer Society,
Washington D.C. (2012)

10. Lin, C.H., et al.: A novel hierarchical parallelism for accelerating NIDS using GPUs.
In: Proceedings of the 2018 IEEE International Conference on Applied System
Invention (ICASI), pp. 578–581. IEEE (2018)

11. Soroushnia, S., et al.: Heterogeneous parallelization of Aho-Corasick algorithm. In:
Proceedings of the IEEE 7th International Conference on Industrial and Informa-
tion Systems (ICIIS), pp. 1–6. IEEE Computer Society, Washington D.C. (2012)

12. Lee, C.L., et al.: A hybrid CPU/GPU pattern-matching algorithm for deep packet
inspection. PLoS One 10(10), 1–22 (2015)

13. Sanz, V., Pousa, A., Naiouf, M., De Giusti, A.: Accelerating pattern matching
with CPU-GPU collaborative computing. In: Vaidya, J., Li, J. (eds.) ICA3PP
2018. LNCS, vol. 11334, pp. 310–322. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-05051-1 22

14. Wan, L., et al.: Efficient CPU-GPU cooperative computing for solving the subset-
sum problem. Concurr. Comput. Pract. Exp. 28(2), 185–186 (2016)

15. The British National Corpus, version 3 (BNC XML Edition). Distributed by
Bodleian Libraries, University of Oxford, on behalf of the BNC Consortium (2007).
http://www.natcorp.ox.ac.uk/

16. Rahman, R.: Intel Xeon Phi Coprocessor Architecture and Tools: The Guide for
Application Developers. Apress, Berkeley (2013)

http://www.clamav.net
https://www.snort.org/documents/optimization-of-pattern-matches-for-ids
https://www.snort.org/documents/optimization-of-pattern-matches-for-ids
https://doi.org/10.1007/978-3-030-05051-1_22
https://doi.org/10.1007/978-3-030-05051-1_22
http://www.natcorp.ox.ac.uk/

	Efficient Pattern Matching on CPU-GPU Heterogeneous Systems
	1 Introduction
	2 The Aho-Corasick Algorithm
	3 Previous Approaches to Parallelize Aho-Corasick
	4 A General CPU-GPU Computing Model
	4.1 Hybrid OpenMP-CUDA Programming Model
	4.2 Workload Distribution Strategy

	5 Pattern Matching on CPU-GPU Heterogeneous Systems
	6 Experimental Results
	7 Conclusions and Future Work
	References

