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Abstract. Graph partitioning plays a very fundamental and important
role in a distributed graph computing (DGC) framework, because it
determines the communication cost and workload balance among com-
puting nodes. Existing solutions are mainly heuristic-based but unfor-
tunately cannot achieve partitioning quality, load balance, and speed at
the same time. In this paper, we propose Sliding-Window Reordering
(SWR), a streaming vertex-cut graph partitioning algorithm, that intro-
duces a pre-partitioning window to re-order incoming edges, making it
much easier for a greedy strategy to maintain balance while optimizing
edge assignment at a minimal computational cost. We analytically and
experimentally evaluate SWR on several real-world and synthetic graphs
and show that it achieves the best overall performance. Compared with
HDRF, the state-of-the-art at present, the partitioning speed is increased
by 3–20 times, and the partitioning quality is increased by 15% to 30%
on average when achieving balanced load among all nodes.

Keywords: Graph partitioning · Streaming algorithms · Vertex-cut ·
Distributed graph-computing frameworks · Load balancing

1 Introduction

In recent years we have seen a fast growth in large-scale graph-structured data
in various real-world applications. In order to process these large scale datasets,
distributed graph-computing (DGC) frameworks become favorable which par-
tition the graph across multiple machines that can compute in parallel using
graph processing systems such as Pergel [16] or GraphLab [15]. Different graph
partitioning (GP) strategies can greatly affect the overall performance of the
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Fig. 1. Vertex-cut vs. edge-cut graph partitioning

DGC framework, because they determine the communication cost and workload
balance among these machines.

Graph partitioning strategies can be categorized into either vertex-cut or
edge-cut approaches. They both replicate some vertices into different partitions.
Figure 1 shows how they work with a simple example. The number of edges in
each partition determines the workload of each machine, and the total number
of replicas determines the total communication cost to synchronize them.

Graph partitioning can be generally regarded as typical balanced k-way par-
titioning problem, while both vertex-cut and edge-cut variants are known to be
NP-hard [2,7,13]. Although many algorithms have been proposed to solve the
problem, most of them have high cost and cannot process large-scale real world
graphs. Streaming graph partitioning has been proposed by Stanton and Kliot
[19] to partition large scale graphs fast and efficiently. Since the quality of GP is
crucial to the overall performance of DGC frameworks, adequate GP algorithms
should be developed, taking three important aspects into consideration. The first
is quality, mostly referring to the communication cost for synchronizing repli-
cated items across different partitions during the computation phase. The second
is balance. Large workload skews in a cluster of machines can greatly deteriorate
the efficiency of the system. The third is speed. Although some existing GP algo-
rithms can achieve quality partitions, if the GP phase itself takes too much time,
the overall performance is still affected, for example off-line algorithms such as
JA-BE-JA-VC [18], METIS [12], Ginger [3] and NE [21].

In this paper we focus on the edge distribution of the graph dataset since real
world graphs are known to have skewed power-law degree distribution [8], and the
order of incoming edges in the stream also show some common patterns. Several
studies [1,14] have shown that edge-cut methods do not work well with power-
law graphs, while vertex-cut is proven to be the better choice in theory [6] and
in practice [8,9]. We will first analyze in depth two representative vertex-cut GP
algorithms, greedy and HDRF, and then propose our sliding-window reordering
(SWR) mechanism that introduces sliding-window based pre-reorder to the input
edges as well as enhanced greedy rules, so the degree and neighboring information
are better utilized to achieve better partitioning performance in terms of speed,
quality and balance. The contributions are as follows:

1. A clustering model is provided to describe the characteristics of the input
edges, and in-depth analysis on standard greedy and HDRF is provided to
show how they are affected by the order of the edges.
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2. A new streaming vertex-cut GP algorithm called SWR is proposed, which
achieves better partition quality, speed and balance at the same time.

3. A new concept of dispersion factor is proposed and used to analyze theoreti-
cally the size of the window on the effectiveness of the SWR algorithm.

2 Problem Definition and Background

2.1 Balanced k-Way Vertex-Cut GP Problem

Consider a graph G = (V,E) consisted of vertices V = (v1, v2, · · · , vn) and edges
E ⊆ V ×V . Vertex-cut GP will assign the edges into a series of pairwise disjoint
sets P = (p1, p2, · · · , pn), where for any i �= j, pi, pj ⊆ E and pi ∩ pj = ∅.

Since in vertex-cut, cut vertices will have replicas in multiple partitions, we
define A(v) as the set of partitions where vertex v is replicated. During com-
putation these replicas need to be synchronized which generates communication
cost, therefore the main target of vertex-cut is to minimize replications while
keeping partitions of each machine approximately the same size, so the balanced
|P |-way vertex-cut GP problem can be formally defined as to solve:

minimize
1

|V |
∑

v∈V

|A(v)| s.t. max
p∈P

|p| < δ
|E|
|P | (1)

where δ ≥ 1 is a small constant that defines the tolerance to partition imbalance.
The object function in Eq. 1 is called Vertex Replication Factor (VRF)
representing the average number of replicas per vertex.

2.2 Rule-Based and Score-Based Approaches

The core of a GP algorithm is the strategy to assign which edge to which parti-
tion. Most existing GP algorithms can be generally divided into two categories:
rule-based and score-based. In a rule-based strategy, new edge is assigned to the
partition that satisfies a number of simple rules, so the whole assignment pro-
cess can be carried out with a series of if-else questions. For score-based strategy,
matching scores need to be calculated between the new edge and all existing par-
titions, and the one with the highest score will be chosen, therefore much more
calculation is involved in assigning each single edge. Rule-based approaches are
generally faster than score-based ones but less optimal in partitioning quality.
However they are not completely opposite to each other: rule-based strategy
can be transformed to score-based, one example is the formal transformation
of greedy in [17], but score-based algorithms are not always transformable to
rule-based because score computation can be rather complicated.

2.3 Streaming Vertex-Cut Partitioning Algorithms

In streaming partitioning, a GP algorithm will process over the edge stream,
which means that it needs to partition all the edges in a single pass. Streaming
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partitioning is fast and easy to be integrated to DGC frameworks because of its
simplicity. However, good partitioning quality is more difficult to achieve because
partitioning decisions are made on limited information, and minimizing vertex
replication can easily end up in severe partition imbalance. If you want both
quality and balance it will be too slow. To the best knowledge of the authors,
there is not yet a solution that performs well in all the three important aspects.

Hashing Partitioning Algorithms: Hashing GP algorithms are rule-based.
It can achieve fast and balanced partitioning but has no quality guarantee. The
most known hashing GP are hashing in GraphX and DBH [20]. Because no parti-
tioning history is considered in hashing, it results in very high VRF, especially
on power-law graphs. DBH improves over pure hashing by taking vertex degree
into consideration and cut higher degree vertices first, so the VRF is reduced.

Constrained Partitioning Algorithms: This category of GP algorithms are
also rule-based. The core idea is to limit the candidate partitions a vertex can
go within a constrained set, so as to restrain the VRF with a theoretical upper
bound. The more constrained the rules are the better the quality could be but
at higher risk of severe imbalance. Typical constrained GP algorithms are grid
and PDS from GraphBuilder [11]. In grid, the partitions are represented in a
matrix P = M ×N . Hash function h(v) maps vertex v onto this matrix, and the
constrained set S(v) is the subset of partitions in P that are at the same row and
column as v. The candidate partitions for the edge would be the two intersect
partitions of S(vi) and S(vj) from its two vertices. PDS generates constrained
sets using Perfect Difference Sets [10] which is more constrained.

Greedy Partitioning Algorithms: Greedy algorithms maintain some state
information of the partitioning history to help later assignment. Simply put,
vertex v is preferred to be assigned to a partition that it has been assigned before
with earlier edges, and the smallest one is chosen when multiple partitions are
qualified to improve balance. The greedy algorithm from PowerGraph [8] is rule-
based and also the basis for many other more advanced greedy GP algorithms.
HDRF is the state-of-the-art greedy algorithm which is score-based and can not
be transformed to fast rule-based form. It follows the same greedy strategy but
also take the vertex degree into consideration by calculating a matching score
between the incoming edge and all existing partitions. A balance parameter λ is
used to control the imbalance degree in the score calculation. ADWISE goes one
step further by evaluating scores of a window of edges in the stream at the same
time and assign the edge with the best score to the corresponding partition.
Although score-based greedy algorithms may get improved partitioning quality,
they are much slower, especially when existing partitions are big and plenty.

3 Edge Stream Model and Its Impacts on GP Algorithms

Natural graphs from the real-world are commonly found to be highly skewed with
power-law degree distribution. Furthermore, the edge order very often resembles
some specific patterns when loaded as edge stream, for example clustered in
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groups by the source vertex, or in the order of a BFS, etc., all tracing back to
how the graph data were collected or stored in the first place. We found that
these patterns in the edge order have strong impact on the partitioning results.

3.1 Clustering Model of Edge Stream

First we propose a clustering model on the ordering pattern of an edge stream to
discuss its impacts on GP algorithms. A dispersion factor is defined to measure
how strong consecutive edges are related to each other to resemble a pattern.
The larger the dispersion factor the less clustering effect the edges have and the
weaker the order pattern.

As a building block to the clustering model we define a self-contained
edge stream, which can be represented by an ordered set of edges Estd =
{e1, e2, · · · , en}, where for any j > 1 exists i < j satisfying ei ∩ ej �= ∅, meaning
a later edge ej always shares a common vertex with some earlier edge ei. A
self-constrained edge stream can be for example a sequence of edges collected
by a single-thread breadth-first search from a connected graph. In this spe-
cific example of BFS, we further have: for any ej = (uj , vj), j > 1 there exists
ei = (ui, vi), i < j and i ≥ 1, such that vi = uj . A self-contained edge stream
shows very strong clustering effect since all the edges are related to some of the
earlier edges in the stream, as if they are “dragged in” by their neighbors.

Considering that real-world graphs are most collected by multiple crawlers,
combined from various sources or read from a distributed storage, although
edges are more mixed, we still observe apparent clustering effect. To describe
these more-general graphs, we can regard their edge stream as constructed from
m intertwined self-constrained edge sub-streams. Essentially, edge stream from
any graph dataset can be regarded this way, the only difference is how big m
should be to describe it. Therefore, we choose m to define the dispersion factor
(DF) of an edge stream. Formally put, any edge stream E can be defined as:

E = E1 ∪ E2 ∪ · · · ∪ Em (2)

where Ei, i ∈ {1, · · · ,m} are self-contained edge streams.
Furthermore, if E and Ei, Ej are defined as

Ei = {ei1 , ei2 , · · · , eim}, Ej = {ej1 , ej2 , · · · , ejk} ⊂ E = {e1, e2, · · · , en} (3)

then when eim ∈ Ei = et ∈ E, there exists ik < im, r < t satisfying eik ∈ Ei =
er ∈ E, which means that the edges of Ei maintain their relative order in E.
For edges from two different self-contained sub-streams Ei and Ej , we may have
ei ∈ Ei ∩ ej ∈ Ej = ∅ or not, since Ei and Ej may come from disconnected
subgraphs, or different parts of a connected subgraph but only get to each other
later on in the stream. They can not be merged according to the definition.

3.2 Impacts on Rule-Based Greedy

The rule-based greedy is fast and provides rather good partitioning quality, but
for datasets with intrinsic small DF it may have very severe imbalance problem.
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(a) A sample connected graph
Partition 1 Partition 2 Partition 3Assign BFS edge stream

(b) greedy partitions all edges of a BFS
stream into a single partition

Fig. 2. A partitioning example with greedy. (Color figure online)

Let Pk be the k-th partition, V (Pk) be its vertex set and E(Pk) be its edge set.
ei = (ui, vi) is the i-th edge of the edge stream.

We first analyze greedy on a self-contained edge stream Estd with DF of 1.
For the first edge e1 ∈ Estd, we can assign it to any of the empty partitions, let
us say P1, so we have e1 → P1. For any later edge ej ∈ Estd and j > 1, according
to the greedy rules, we need to see if any partition Pk already has uj or vj ∈
Pk, k ∈ {1, · · · ,m}. For the self-contained edge stream, there must exist i < j
satisfying ei ∩ ej �= ∅. Since the earlier edge ei has already been assigned to a
partition Pi, ej will be assigned to that same partition, so we have ej ⇒ ei → Pi.
For the same reason, when ei was assigned, there must have existed h < i, so that
ei ⇒ eh → Ph. In the end we can only have ej ⇒ ei ⇒ eh ⇒ · · · ⇒ e1 → P1,
and all edges of Estd are assigned to the same partition P1. A demonstrative
example is shown in Fig. 2(b), where the self-contained edge stream comes from
a BFS starting from the red vertex in Fig. 2(a). The situation is less severe but
similar for an edge stream with a larger DF of m. Since E = E1 ∪E2 ∪ · · · ∪Em,
if for any i �= j, all eir ∈ Ei and ejt ∈ Ej satisfy eir ∩ ejt = ∅, then every
Ek, k ∈ {1, · · · ,m} will have all its edges assigned to a separate partition of its
own in the way described above, so the graph will be naturally partitioned into
m partitions. If m is smaller than the target number of partitions n, we will end
up with (n − m) empty partitions; even when m is larger than n but not much,
keeping the n partitions in balance is still difficult if possible.

Of course in reality, it is likely that some Ek’s will have common vertices later
on down the stream. Such situation will not change the DF m of the edge stream,
but it may help to get more evenly distributed partitions, for some edges now
have more choices during the assignment, greedy can use that to fill up smaller
partitions when appropriate. That is why in practice greedy can still achieve
acceptable balance on most natural graphs with moderate clustering effect.

3.3 Impacts on Score-Based Greedy

HDRF is the state-of-the-art GP algorithm that can achieve both low VRF and
good balance. However, it handles the imbalance problem by introducing a bal-
ance parameter λ which enforces a brutal regulation to penalize edge assignment
choices that may exceed the imbalance tolerance. Such methodology works but
also brings new problems. First, a self-contained sub-stream may be brutally split
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Assign BFS edge stream Partition 1 Partition 2 Partition 3

(a) HDRF has sub-optimal edge assign-
ment.

Assign random edge stream Partition 1 Partition 2 Partition 3

(b) Re-ordering edges results in better
partitioning.

Fig. 3. A partitioning example with HDRF and Re-ordering.

into multiple partitions so that its edges are sub-optimally assigned because of
the balance enforcement. Second, the introduction of λ means that HDRF can only
be score-based, and the involved score computation with all existing partitions
to assign each new edge affects its speed a lot.

A simple example can demonstrate why sub-optimal edge assignment may
happen. The same BFS edge stream from Fig. 2(a) is reused here, whose imbal-
ance tolerance is set to 2. From Fig. 3(a) we can see much more balanced parti-
tions, which is to be expected; however, the price paid is an increase in vertex
replication, because now some edges with common vertices have to be assigned
to different partitions to satisfy the balance requirement. As an indication, VRF
also goes to 1.6 from 1 as in Fig. 2(b).

4 Design of SWR Algorithm

In this section we will introduce our SWR algorithm, which is designed for real-
world big graph datasets that generally always possess a certain level of clustering
effect. The discussion will be carried out from the aspects of load balance, quality
and speed, respectively, and the pseudo code is shown in Algorithm1.

The main idea is to introduce a moving-window mechanism on the edge
stream, and by changing the order of the edges inside the window, we can atten-
uate the clustering effect and increase the DF, which makes a rule-based greedy
heuristic to easily achieve partitioning balance while assigning edges optimally,
taking the vertex degree and neighboring information into consideration.

4.1 Using Randomization to Keep Balance

Randomization can help to keep balance. To demonstrate the idea we refer back
to the same graph in Fig. 2(a) but now pick the edges one by one at random to
form a new edge stream, and use the same greedy algorithm to process them.
The result is a set of balanced partitions as shown in Fig. 3(b) with a VRF of
1.2. Intuitively, a randomized edge stream has a smaller clustering effect and
larger DF. We will analyze it theoretically.

To see that let us start with a completely random edge stream containing
|V | vertices and |E| edges, and the average probability of vertex appearing in
a new edge is 2

|V | . During a streaming GP process, if none of the vertices of a
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new edge has been seen before, a new self-contained sub-stream will be created.
When m edges have been processed, the probability that a new self-contained
sub-stream is created is P = (1 − 2

|V | )
2m.

Let c = |E|/|V |, then for the whole stream, the expectation of DF will be

E′ =
|E|−1∑

m=0

(1 − 2
|V | )

2m =
|V |2

4|V | − 4
[
1 − (1 − 2

|V | )
2(|E|−1)

] ≈ |V |
4

(
1 − e−4c

)
(4)

Algorithm 1. SWR sliding window randomization
1: Initalize NumOfPartitions, AssignProportion, WinSize, WinMaxSize ...
2: while |E| > 0 do
3: Fill W with edges from E.
4: Sort edges in W by using the lower degree from two vertices in edge.
5: Random.shuffe(W , 0, |W |/2) and Random.shuffe(W , |W |/2, |W |).
6: for i = 0 → |W | ∗ AssignProportion do � Start assigning edges
7: targetP ← SWRHeuristicRules(W [i])
8: PtargetP ← PtargetP ∪ {W [i]}
9: end for

10: if
maxi∈n{|Pi|} − mini∈n{|Pi|}
maxi∈n{|Pi|} + mini∈n{|Pi|} > THRESHOLDUP then

11: WinSize ← min(MaxSize, WinSize ∗ (1 + WindowSizeUpRate))
12: end if

13: if
maxi∈n{|Pi|} − mini∈n{|Pi|}
maxi∈n{|Pi|} + mini∈n{|Pi|} < THRESHOLDDOWN then

14: WinSize ← WinSize/(1 + WindowSizeDownRate))
15: end if
16: end while

Generally |E| > |V |, therefore approximately we have E′ ≈ |V |
4 . We have

observed from various experiments that when the DF is order of magnitude
higher than the target number of partitions, good balanced partitioning can be
easily achieved with simple rule-based greedy algorithm. We don’t single out
the experimental result here due to space limit. And if a light-weight rule-based
greedy algorithm can achieve good balance, then the heavier score calculat-
ing and additional imbalance adjustment will not be necessary any more. Our
solution is a moving-window mechanism before the partitioning to reorder the
incoming edges, so as to increase the observable DF. The basic idea is to keep a
suitable window size allowed by the resource limit as long as the reordering (ran-
domization) is sufficient to achieve good balance. For every round of assignment,
the size of window will be adjusted according the balanced state of partitions.

Such mechanism can increase the DF effectively. Let us assume that the
probability of a vertex with an earlier edge having same vertex is β. β = 2

|V |
for a completely random edge stream. When |E| is sufficiently large, the DF of
the whole stream is E′ ≈ 1

2β . When a window is used, assuming m edges have
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been processed, the probability that a vertex has appeared before is β ∗ m
|E| , so

at the n-th window, the probability that a vertex has appeared in front windows
is β ∗ (n−1)∗|W |

|E| , and the expectation of the number of distinct vertices in the

window is |V |′ = min( |W |
c , 2 + 2

β ) so the expectation of the DF so far will be

E′ =

� |E|
|W | �∑

n=1

[ m=|W |−1∑

m=0

(
1 − β ∗ (n − 1) ∗ |W |

|E| − 2
|V |′

)2m]
(5)

For the natural graph datasets that resemble certain ordering patterns, the value
of β is generally large, so the DF of the whole edge stream is largely dependent
on the first several windows, especially the first one. Therefore, we advise to use
bigger windows to achieve higher DF. If the buffer size provided to the moving
window is limited, we propose to use the technique of partial dispatch, which
only assigns a fraction of edges in the window and leave the rest to mix with
new edges, so as to effectively increase the range of randomization. Furthermore,
changing the edge order to distribute the edges related to the same vertex more
evenly over time, the partial degree of a vertex observed so far will be a much
more reliable indicator when used for relative comparison among vertices during
the partitioning, while in a stream of heavy clustering effect the relative partial
degree may fluctuate a lot as edges of different vertices will come in waves.

4.2 Getting Better Quality

In this subsection we will discuss the reordering mechanism inside the window
and the heuristic rules to further improve the partitioning quality.

It has been shown that for graphs with power-law degree distribution, pre-
ferring to cut high-degree vertices during a graph partitioning is a good strategy
to lower VRF [4,5]. So the cost of cutting a low-degree vertex is more expensive
than a high-degree one and avoid cut low-degree vertex will be helpful. And
streaming greedy GP means later partitioning decisions are greatly affected by
the existing edge assignment. Therefore in the window we want to move edges
with low-degree vertices upfront so they are less likely to be cut into different
partitions. We divide edges into two equal parts for getting most randomization.

We start from the rules of greedy and extend them with windowed random-
ization and degree considerations to design the heuristic rules. DBH and HDRF
have applied “preferring to cut high-degree vertices” into hashing and score-
based greedy GP, and integrating it into a rule-based greedy GP should also
be beneficial. Another useful observation is regarding to the large scale graphs
from the social network. The principle of triadic closure tells us that the more
common neighbors two separate vertices have the more likely a new edge will
form between them. When processing graphs in stream, the arrival of edges
can be seen as analog to the formation of a social network, so if a vertex has
more neighbors in one partition, it is more likely that a new edge connecting
its neighbors in that partition will exist down the stream, so we’d better assign
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a new neighbor to the partition with most neighbors. Similar edge clustering
effect were observed also in graph datasets of other origins, so the principle is
also applicable.

From the discussions above we define four assignment rules in our heuristics
as below. More specifically, with partition set P and A(v) as defined before and
the partial degree record δ, for a new edge e = (u, v), the rules are:

1. If none of u and v has been assigned before, put e to the smallest partition
in P .

2. If one of u and v has been assigned before, let it be t, among the smallest M
partitions in A(t), put e to the one with the most neighbors.

3. If both u and v have been assigned before, and B = A(u) ∩ A(v) �= ∅, among
the smallest M partitions in B, put e to the one with the most neighbors of
both u and v.

4. Otherwise, let t = (δ(u) < δ(v) ? u | v), among the smallest M partitions in
A(t), put e to the one with the most neighbors. A new vertex replica is created
accordingly.

4.3 Complexity Discussion and Summary

The complexity of rule-based algorithms is generally O(|E|). SWR is a rule-based
approach and the added pay is the reorder cost R which is unrelated to the
number of target partitions, so the complexity is O(|E|+R). For the score-based
HDRF, for each edge assignment |P | scores need to be calculated so the complexity
is O(|E| ∗ |P |). ADWISE also uses a sliding-window but only to extend the score
calculation to multiple edges in order to increase the range of local optima in the
edge assigning process. While the clustering effect behind the imbalance problem
is actually not specifically handled, being a score-based algorithm the complexity
of ADWISE is further increased to O(|E| ∗ |P | ∗ |W |).

The algorithm of SWR can be easily extend from single-machine to work in
parallel across multiple machines to accelerate graph partitioning. Just like the
case of greedy and HDRF, only some shared status information will be needed.
Since we have proven that windowed randomization can increase the DF and a
large DF makes balanced partitioning easy to achieve for simple greedy approach,
with revised assigning rules, our SWR algorithm can achieve stable partitioning
results that are good in all three aspects of quality, balance and speed.

5 Performance Evaluation

In this section we will present the experimental results about the performance of
SWR in comparison with other representative GP algorithms: hashing, DBH, grid,
HDRF and ADWISE. Comparisons will be carried out on multiple real-world and
synthetic graph datasets with regard to VRF, balance and speed, respectively.
In the end, we will also analyze how window size affects the balance and VRF
performance in SWR with respect to different DF datasets.
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Table 1. Datasets used in the experiments

Dataset |V | |E| Intrinsic DF

BA-BFS 500000 12663357 1

BA-DFS 500000 12663357 1

BA-RANDOM 500000 12663357 �10000

as-skitter 1696415 11095298 1

soc-pokec-relationships 1632803 30622564 2

soc-LiveJournal 4847571 68993773 1042

higgs-twitter 456626 14855842 1408

Tecent Weibo 1944589 50635143 �10000

Wiki-Topcats 1791489 28511807 �10000

5.1 Experimental Settings and Datasets

In our evaluations, three synthetic graph and six large real-world graph datasets
were used to represent graphs with different DF corresponding to clustering effect
from very strong, more general and rather weak as shown in Table 1 including
the Tecent Weibo from KDD-Cup 2012. The others are from SNAP1. All the GP
algorithms are implemented in Python except ADWISE, we use the source codes
and parameters that are publicly available from the authors. For HDRF, we set
the balancing factor λ = 1.1 as recommended by the authors and for ADWISE,
the init window size is set to 100 and the same for SWR. The AssignProportion
is set to 0.1 and the Neighbors is 3, meaning choosing from 3 smallest partitions
with the most neighbors. Each experiment was repeated 10 times and the average
was used as the result. The hardware platform is a workstation equipped with
12-core Intel Xeon CPUs and 64 GB physical memory.

5.2 Experimental Results and Discussions

Performance on Partitioning Quality, Balance and Speed

VRF: NumOfPartitions is set from 4 to 256, and the results are shown in
Fig. 4(a)–(f). SWR is always the best performer. In particular, DBH always per-
forms better than hashing with the only additional strategy on cutting high
degree vertex first, showing the universal effectiveness of such strategy, which
is especially strong on the Tencent Weibo dataset. However, ADWISE performs
bad on this dataset although it is as good as HDRF on other datasets, which
means that by considering more edges during the score calculation, the power-
law degree distribution is not well handled. The performance of other algorithms
is more consistent among different datasets. SWR makes better use on both the
degree information as well as the neighboring information, so it achieves the
overall best performance on all the tested datasets, which is 15% to 30% on
1 http://snap.stanford.edu.

http://snap.stanford.edu
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(a) soc-LiveJournal (b) soc-pokec-relationships (c) Tecent Weibo

(d) Wiki-Topcats (e) as-skitter (f) higgs-twitter

(g) RSD (h) MAX/Average (i) (Max-Min)/Average

(j) BA-BFS (k) BA-DFS (l) BA-RANDOM

Fig. 4. VRF/Balance against given number of partitions.

Fig. 5. Partitioning time against number of partitions. Time cost represents the times
compared to hashing. For ADWISE-X, X represents the init window size.
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(a) RSD (b) VRF

Fig. 6. Balance/VRF against different window sizes.

average better than HDRF or ADWISE. Figure 4(j)–(l) show the VRF of different
algorithms on the same synthetic graph generated by BA model but collected by
BFS, DFS and Random. HDRF performs the best on random graph, confirming
the previous discussion of edge correlation influencing its performance. SWR out-
performs HDRF even on random graph, because it not only solves the problem of
edge correlation, but also takes better use of the vertex degree and neighboring
information.

Balance: The experiments are carried out on Tecent Weibo dataset. Three mea-
sures were used to show how the algorithms perform from different angles. RSD
represents the deviation of the partition size. Max, Min and Average represent
the maximal, minimal and average size of all the partitions. The results are shown
in Fig. 4(g)–(i). We can see that SWR and HDRF provide the best performance. The
balance of hashing is a bit worse for purely depending on probability. DBH and
ADWISE can only provide rather moderate balance. The balance performance of
ADWISE is special: when the target number of partitions increases, RSD decreases
but MAX/Average and (MAX-MIN)/Average keep constant. grid performs bad
as the number of partitions grows, the imbalance increases fast until the parti-
tioning result becomes unacceptable.

Speed: We compare the partitioning time of all the algorithms on Tecent Weibo
datasets with 64, 144 and 256 partitions and the result is shown in Fig. 5. Since
ADWISE was tested with the original source code implemented in Java while all
the others were implemented in Python, we can not comparing them directly.
Thankfully hashing and HDRF are implemented in both environment, so we use
hashing as the reference to normalize the time to rule out the differences of
environment. HDRF is used as the anchor when we compare ADWISE with the
other algorithms we implemented. We can find SWR has the good feature as grid
and DBH, whose time does not grow with the number of partitions, while HDRF
and ADWISE need much more time which also grows linearly with the number
of partitions. The differences of HDRF between Fig. 5(a) and (b) is due to the
different implementation. ADWISE with different init window size behave similar
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as the window size will always adjust to 1000 as configured in the system. To our
surprise, ADWISE is not too much slower than HDRF, for it uses a Lazy Window
Traversal strategy, but they are still slower than all the rule-based algorithms.

Performance Sensitivity to Window Size

Finally we analyze how much the window size affects SWR performance on dif-
ferent DF datasets. In order to make the results reliable, we give a different
window size for each experiment and don’t allow it to adjust automatically. The
AssignProportion is set to 1, Neighbors to 0, and NumOfPartitions to 100 and
just randomizing all edges in the window. As the RSD of hashing is stable
on different datasets we use it as reference. Since the DF of as-skitter dataset
is 1, it’s more difficult to achieve good balanced partitioning on it. As we can
see in Fig. 6(a), when the window size is less than 1000, the windowed mecha-
nism has no effect. This can be confirmed by the VRF of 1 in Fig. 6(b), which
means that all the edges are assigned to the same partition. When the window
size reaches 1000 and beyond, the windowed mechanism starts to help break
the self-constrained edge stream to several sub-streams, there will be more but
unbalanced partitions, so the VRF grows. When the window size reaches 10000,
a sharp change happens and the RSD is in the level of 0.01 which is as good as
hashing. All partitions get an acceptable balance and VRF become stable. This
indicates that a window size of 10000 is generally sufficient for balanced parti-
tioning and it is practically easy to release. As the window size keeps growing,
both RSD and VRF declines, though smaller and smaller. This is because with
larger window, randomization covers a larger range to break the clustering effect,
and the degree and neighboring information also become more reliable. As the
window size becomes very big, RSD and VRF converge to values that depend
on the dataset itself. For soc-pokec-relationships dataset, a much small window
size can make it balanced, it just needs a window of 100 to reach the balance
level of hashing, although its DF is 2. A very small window can initialize a
good balanced partitioning with SWR on it. The same phenomenon is observed
on higgs-twitter dataset as well, it has a DF of 1408 and a window of 3 is enough
for it to keep balance in many cases. As for wiki-topcats dataset, it has a very
large DF, so it is balanced naturally with RSD below hashing. This indicates
SWR can get better balance than hashing. Although maybe a small window can
help to keep balance, we suggest a big init window size for lower VRF and RSD
despite the window will change itself.

6 Conclusions

We found that the intrinsic edge order of natural graphs makes it difficult for
existing graph partitioning algorithms to achieve balanced partitioning results.
The reason is the clustering effect embedded in the intrinsic order. We propose
a sliding window mechanism to reorder the edges, making it much easier for fast
rule-based greedy approach to achieve balance. Considerations on vertex degree
and neighboring information further improves the partitioning quality. Experi-
mental results show that the proposed SWR algorithm achieves good performance
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in all aspects of quality, balance and speed, and outperforms all competing algo-
rithms. Comparing to the state-of-the-art HDRF, partitioning speed is increased
by 3–20 times, and quality is improved by 15% to 30% on average.
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