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Preface

NetSci-X, the Network Science Society’s signature winter conference, extends the
popular NetSci conference series to provide an additional forum for a growing
community of academics and practitioners working on networks. The series started
in 2015. Its sixth edition, NetSci-X 2020, held in Tokyo from January 20 to January
23, 2020, is the first NetSci conference held in Japan, and the third one in Asia after
Seoul (NetSci 2016) and Hangzhou (NetSci-X 2018). The conference was hosted
by the Waseda Innovation Lab at Waseda University, and took place in its Waseda
Campus located in the heart of Tokyo. The conference fostered interdisciplinary
communication and collaboration in network science research across computer and
information sciences, physics, mathematics, statistics, life sciences, neuroscience,
engineering, social sciences, finance, business, and others.

We received 279 submissions and the authors submitted their contributions to
either the Proceedings Track or the Abstract Track. Each paper in both tracks
was peer-reviewed by at least two (typically three) independent reviewers from
an international program committee. The present volume is the collection of
Proceedings Track papers that were accepted for publication in this proceedings
book and were presented in an oral or poster session.

The great success of NetSci-X 2020 owes to these and other authors, who have
come to Tokyo and presented their work. Needless to say, the success also owes to
the keynote and invited speakers, who have delivered impressive talks. Our keynote
speakers are: Albert-László Barabási, Alain Barrat, Katy Börner, and Meeyoung
Cha; our invited speakers are Manlio De Domenico, Shlomo Havlin, Petter Holme,
Byungnam Kahng, Joe Labianca, Linyuan Lü, and Misako Takayasu.

In addition to the presenters, NetSci-X 2020 would have been impossible without
devoted support by many parties. We first thank Waseda University and the Waseda
Innovation Lab, which have fully supported the conference by providing the venue
in the center of Tokyo and necessary staff support. We also greatly thank our
generous sponsors, including Tateisi Science and Technology Foundation, Sansan,
Habitech, Think Lab, Dropbox Paper, Journal of Physics: Complexity, CyberAgent,
ZUVA, Springer Nature, and Bureau Van Dijk. We also thank the Network Science
Society for their encouragement and support, and Springer Nature for editorial
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support for this Proceedings volume. Last but not the least, our sincere thanks go to
the Program Committee members, each of who has provided quality review reports
to roughly seven submissions despite a short deadline, and also to all the Organizing
Committee members, who have dedicated themselves to their respective role to
realize this conference. We hope that readers of this volume enjoy the papers as
well as the participants have enjoyed the main conference.

Program Committee

Laura Maria Alessandretti Ying Fan
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Latent Space Generative Model for
Bipartite Networks

Demival Vasques Filho and Dion R. J. O’Neale

Abstract Generative network models are useful for understanding the mechanisms
that operate in network formation and are used across several areas of knowledge.
However, when it comes to bipartite networks—a class of network frequently
encountered in social systems, among others—generative models are practically
non-existent. Here, we propose a latent space generative model for bipartite
networks growing in a hyperbolic plane. It is an extension of a model previously
proposed for one-mode networks, based on a maximum entropy approach. We show
that, by reproducing bipartite structural properties, such as degree distributions and
small cycles, bipartite networks can be better modelled and properties of one-mode
projected network can be naturally assessed.

1 Introduction

Generative models are a powerful approach to describe and understand the processes
at work during network formation and the mechanisms producing specific network
features. They provide the opportunity to simulate real, growing networks, subject to
various assumptions about the importance of controlled parameters [1, 2]. Properties
like heterogeneous degree distributions, clustering and community formation in
real-world systems can be assessed using such models.
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Generative models have been developed in many flavours, associated with the
different research communities using them [3, 4]. However, the same is not true for
generative models for bipartite networks. Studies on statistical models for networks
with bipartite structure are rare and even scarcer on generative models. Furthermore,
the few studies addressing models of bipartite networks mostly focus on mimicking
the properties of their projections only. Structural properties of bipartite networks
are relatively neglected, in comparison to the existing body of work on generative
models for one-mode networks. For a brief review of network models, see [5].

We propose a latent space model in a hyperbolic plane, based on a maximum
entropy approach, as an extension of work done for one-mode networks [6–8].
We focus on recreating structural properties of bipartite networks, namely degree
distribution and small cycles. The latter, especially cycles of length four and six—
that we will refer to as four-cycles and six-cycles, have a significant effect on the
resulting structure of the projected network. Four-cycles are indicative of recurring
interactions, affecting the link weight distribution. Six-cycles, in turn, represent
triadic closure and have an impact on the projected clustering [9, 10]. We show that,
by reproducing such properties, the generative model produces bipartite networks
whose one-mode projections naturally display the structures of interest.

The remainder of this paper is organised as follows. In Sect. 2, we examine the
adaptation of null models for one-mode networks to generative models of bipartite
networks. We discuss the characteristics of such models and how they fail to
reproduce the main structural properties we are looking for in bipartite graphs. In
Sect. 3, we discuss the popularity vs. similarity model [8] for one-mode networks
growing in a hyperbolic plane, based on a maximum entropy approach. In Sect. 4,
we introduce our bipartite model and show how it recreates the features of real-
world bipartite networks. Finally, we present the main results and the conclusion of
the paper in Sect. 5.

2 Null Models

2.1 Erdős–Rényi

The original Erdős–Rényi model (ER) [11, 12] considers an ensemble of graphs G,
in which every graph G ∈ G has a set of nodes U , and |L| links that connect pairs
of nodes at random in the network. In a dynamic version of the model, we add a
node to the network at every time step t , until |U | nodes are present. The number of
links |L|, in turn, is controlled by adding m new links to the network for every t , i.e.
|L| = tm. Each graph has m nodes at t = 0 and at each time step a new node with m

links is added to the network, being randomly connected to m existing nodes, until
t = |U | −m.

Based on this reasoning, we create a dynamic bipartite version of the ER model,
BER(|U |, |V |, |E|), where |U | and |V | are the size of the bottom set of nodes (U )
and the top set of nodes (V ), respectively, and |E| is the number of bipartite links,
as follows:
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1. At time t = 0, the network has m bottom nodes and m top nodes, without links
connecting them.

2. At each time step, a new bottom node and a new top node are added to the
network. The new top node chooses, at random, m existing bottom nodes and
connects to them. Then, for simplicity, this same process applies to the new
bottom node which, in turn, connects to m existing top nodes.

3. Step 2 is repeated until the network has |U | bottom node and |V | top nodes.

We implemented the above algorithm and used it to generate synthetic bipartite
networks built with 200,000 time steps and m = 2, such that the average degree 〈d〉
of V and the average degree 〈k〉 of U are the same. That is 〈d〉 = 〈k〉 = 4. Due
to the generative mechanism, the degree distribution of bottom and top nodes are
similar (Fig. 1), and should be the same in the thermodynamic limit. Moreover, the
shape of the degree distribution of the projected network follows that of the bottom
distribution, just shifted to the right, as shown in [13].

The evolution of the number of small cycles (Fig. 2a) is roughly constant and
at low levels, if compared to real-world networks [5, 9]. The same is true for the
link weight distribution (Fig. 2b) and the distribution of the clustering coefficient
(Fig. 2c) of the projected network. For the former, the absence of heavily weighted
links is due to the low number of four-cycles, while for the latter, the low level of
clustering is explained by the small number of six-cycles and by the absence of high-
degree top nodes in the bipartite network. As expected, the generative version of the
Erdős–Rényi model still does not reproduce structural properties of real networks.
Let us explore next a preferential attachment bipartite generative model.

Fig. 1 Degree distributions for the BER(|U |, |V |, |E|) model. Degree distribution of (a) top and
(b) bottom nodes are peaked and similar, due to the mechanism of link attachment for both sets of
nodes. (c) Projected networks follow the same degree distribution shape as the bottom node degree
distribution, shifted to the right, as shown in [13].
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Fig. 2 Evolution of (a) cycles in the bipartite network. (b) Link weight distribution and (c)
distribution of the clustering coefficient of the projected network. All for the BER(|U |, |V |, |E|)
model. As the network grows larger, the number of small cycles stays roughly constant. It shows
that random bipartite graphs tend to create uniform distributions of cycles size, as shown in [9].
This results in few weighted links in the projected networks, and clustering created mostly by
top node degrees instead of six-cycles. CCDF stands for complementary cumulative distribution
function. CDF—ratio of nodes is the cumulative distribution for the ratio of nodes with clustering
coefficient values lower that the corresponding coefficient in the horizontal axis

2.2 Preferential Attachment

Growing networks with preferential attachment has been extensively studied for
both one-mode [14–16] and bipartite networks [17–21]. For the latter, to the best of
our knowledge, none of these models have addressed bipartite structural properties
other than degree distributions. Furthermore, they have not investigated the effects
of degree distributions on the one-mode projections.

Our generative model with a preferential attachment mechanism for bipartite
networks is a bipartite version of the Barábasi–Albert (BA) model [16]. It follows
the same reasoning as the BER generative model. The only difference is that new
nodes now choose to connect to existing nodes from the opposite set with a weighted
probability, where the weights are proportional to the degrees of the node in the
target set. That is,

pu = ku
∑

u′ ku′
, pv = dv

∑
v′ dv′

, (1)
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where ku is the degree of bottom node u and dv is the degree of top node v.
The model goes as follows:

1. At time t = 0, the network has no links with only m bottom and m top nodes.
2. At each time step, a new bottom node and a new top node enter the network.

Now, the new top node chooses and connects to m existing bottom nodes, with
weighted probability according to Eq. (1). Then, the new bottom node connects
to m existing top nodes, using the same formula for calculating the connection
probability.

3. Step 2 is repeated until the network reaches |U | bottom and |V | top nodes.

Again, we generate synthetic networks with |U | = |V | = 200,000, with m = 2,
and 〈d〉 = 〈k〉 = 4. In Fig. 3 we can see that, because of the simple preferential
attachment mechanism of our model for both sets of nodes, the degree distributions
for the top set of nodes, Pt(d), and for the bottom nodes, Pb(k), are the same.
The degree distribution of the projected network, P(q), is also heavy-tailed, but is
shifted to the right, and shows a flattening similar to that shown in [13], due to the
formation of large cliques, a consequence of the high-degree top nodes in B.

The presence of high-degree nodes in the bipartite network increases, albeit only
a little, the number of small cycles in the network (Fig. 4a). This is a result of
a higher probability of high-degree top and bottom nodes being connected more
frequently [9]. However, the observed level of four-cycles is still relatively low
compared to that seen in empirical networks [5, 9] and does not create a significant
number of weighted links in the projected network Gw, as shown in Fig. 4b.
Another consequence of the presence of high-degree top nodes in B can be seen

Fig. 3 Degree distributions for the bipartite generative model of the Erdős–Rényi model. Again,
the degree distribution of (a) top and (b) bottom nodes are similar due to the mechanism of network
growth. However the BA model creates heavy-tail degree distributions in this case. The behaviour
of the (c) projected distribution deviates, especially for high-degree nodes, due to the cliques
created in the projection
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Fig. 4 Evolution of (a) cycles in the bipartite network. (b) Link weight distribution and (c)
distribution of the clustering coefficient of the projected network. All for the bipartite BA model.
Although the latter creates more small cycles than the BER model, the presence of such cycles in
the network is still very low compared to real-world networks [5, 9]. Still, it produces a few links
with some weight and low levels of clustering in the projected networks

in Fig. 4c, where the level of clustering of the projection has increased relatively to
the generative BER(|U |, |V |, |E|) model.

We have seen in [9] that traditional null models as the BER model and the con-
figuration model—both static—cannot capture the structural properties of bipartite
networks of our interest. Here, we have created synthetic networks with generative
bipartite versions of the ER model and of the BA model. Although these dynamic
models function well as null models, they do not reproduce the structure of real-
world networks either. Hence, more sophisticated models are needed and we move
in that direction in the next sections.

3 Hyperbolic Geometry

In a series of three papers [6–8], it was demonstrated that some structural properties
found in real-world networks, namely degree heterogeneity (heavy-tail degree
distributions) and clustering, can emerge naturally when the network grows in a
hyperbolic plane. The authors of [8] used node coordinates in the hyperbolic plane
as hidden variables [22–25], characterizing their proposed popularity vs. similarity
model as a latent space model.



Bipartite Generative Model 9

However, that is not the only important characteristic of this model. The edge
probability function chosen by the authors in [7] is the Fermi–Dirac distribution.
The reason for that is threefold: firstly, the model incorporates the concepts of the
exponential random graph models, through the maximum entropy approach [26].
Secondly, the model is designed for simple graph one-mode networks where links
are fermions—for multigraphs, or even weighted networks, the family of connection
probabilities chosen would be the Bose–Einstein distribution, where more than
one particle (link) could occupy the same energy state (pair of nodes) [26, 27].
Thirdly, using the F-D distribution allows one to make use of existing methods from
statistical mechanics in order to understand the hyperbolic plane model, as we shall
see next.

In this model, the probability of two nodes being connected is given by Krioukov
et al. [7]

P(u, u′) = 1

e
β
(

ζ
2

)
(xu,u′−R) + 1

, (2)

where we have

ω = E − μ

kT
= β

(
ζ

2

)

(x − R). (3)

We can now interpret the set of auxiliary fields ω. The hyperbolic distance x between
a pair of nodes in the network is the energy level occupied by the fermionic network
links; ζ represents the curvature of the hyperbolic plane and plays the role of
the Boltzmann constant; and the hyperbolic radius R is the chemical potential.
The inverse of temperature, β, acts as a input parameter, which can be used to
control node coordinates and influence the strength of preferential attachment in
the network, as we will see shortly.

The authors of [8] proposed the one-mode generative model using the hyperbolic
space with curvature K = −ζ 2 = −4 (so ζ = 2). In the simplest (micro-canonical)
version of the model, each new node connects to the m closest existing nodes,
without the use of any connection probability function. However, we are interested
in the grand canonical version of the model, where we have an expected number of
links, instead of the exact number |L| = mt .

The model generates networks according to the following steps [8]:

1. At time t = 0, the network is empty.
2. For every time step t ≥ 1, a new node enters the network with radial coordinate

ru = ln tu and angular coordinate θu picked from a uniform random distribution
on (0, 2π ].

3. Existing nodes u′, with tu′ < tu, have their radial coordinates updated as

ru′(t) = αru′ + (1− α) ln t. (4)
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The parameter α tunes the tail of the degree distribution. More specifically, the
power-law exponent of the degree distribution is given by

γ = 1+ 1

α
. (5)

That is, when α = 1 the radial coordinates are not being updated at all and we
have a strong preferential attachment. On the other hand, when α → 0, all nodes
move outwards from the center at the same speed, hence, we create a random
network.

4. The new node tries to connect to every existing node with probability given by
Eq. (2). The hyperbolic distance between a pair of nodes u, u′ is given by

xu,u′ = 1

2
arccosh(cosh 2ru′ cosh 2ru − sinh 2ru′ sinh 2ru cos θu,u′), (6)

where θu,u′ = π − |π − |θu′ − θu||.
Let us take a closer look at the parameters of the model m, T . While T appears
in Eq. (2), that is not the case for m. However, just like in the other models, m is a
parameter that controls the number of links in the network; it controls the hyperbolic
radius R, of Eq. (2), at time t , according to [8]

Rt = ln t − ln

[
2T

sin T π

(1− e−(1−α) ln t )

m(1− α)

]

, (7)

in such a way that the average degree of the one-mode network still follows 〈q〉 =
2m.

Finally, as T increases, higher energy levels can be occupied by our particles, and
more disorder is observed in the system. For our model, this translates to having the
probability of connection between distant nodes increasing with T (Eq. (2)). Thus,
temperature controls the level of clustering of the network. As T → 0, we reach the
strongest levels of clustering, as only nodes positioned closest to each other have
high connection probabilities, creating triadic closure in the one-mode network and
consequently creating densely connected clusters of nodes. T takes values in the
interval (0, 1], which is called the cold regime [7]. At values T ≥ 1 (hot regime)
clustering levels are close to 0, similar to those for the BA model.

In summary, the radial coordinate r and the parameter α determine the amount
of preferential attachment in the network, while the angular coordinate θ and the
parameter T determine the strength of the clustering. Papadopoulos et al. provide
elegant analytical solutions for the model, in [8], along with empirical validation for
fitting the model to the Internet, the E. coli metabolic network, and the PGP web
of trust. However, they note that the model does not reproduce well the actor-movie
network because of the over-inflation of connections—the complete subgraphs—
created by the co-occurrence network they are considering. In other words, their
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proposed model fails to replicate a one-node projection of a bipartite social network.
That is why we propose a bipartite version of the model in the next section.

4 Bipartite Generative Model

We consider a bipartite generative model with two sets of nodes, U and V , growing
in the same plane, with the constraint that nodes of the same set cannot be connected
in the bipartite network. We take the artifacts (top nodes) to be the nodes creating
new links in the network, while the bottom nodes attract such links. In this way,
artifacts only connect to agents in the time step when they enter the network. This
process that we choose mimics, for instance, the processes of the scientific network,
where papers do not gain links to additional authors after appearing in the network,
but authors can continue to produce new publications (with potential co-authors)
throughout their careers.

The model goes as follows:

1. At time t = 0, the network in empty.
2. For every time step t ≥ 1, a new top node v and a new bottom node u enter

the network with radial coordinates rv = ln tv and ru = ln tu; and angular
coordinates θv and θu, drawn at random from a uniform distribution on (0, 2π ].

3. Existing bottom nodes update their radial coordinates according to Eq. (4) (top
nodes have fixed radial coordinates).

4. The new top node v connects to bottom nodes with a probability given by

p(u,v) = 1

e
(xu,v−Ru)

T + 1
. (8)

As before, the parameters of the model are m, α and T . Because top nodes are
not attracting links, their degree distribution will always be roughly the same for
every α and T . Moreover, the degree distribution of top nodes will always keep the
same shape, but will be right-shifted as m increases.

There is, however, a way to relax the constraint of top nodes always having a
similar degree distribution. This can be done simply by drawing a value for m, in
each time step, from a probability distribution. As m changes, it affects the chemical
potential of the system, given by Eq. (7). Bigger values of m result in higher R

which, in turn, increases the connection probability in the network. Hence, the shape
of the tail of the degree distribution of top nodes can be easily tuned, while keeping
the same 〈d〉.

The degree distribution of bottom nodes does not need any additional mechanism
as the tail of the distribution is controlled by the parameter α (Fig. 5a, b). Preferential
attachment is guaranteed based on the time when nodes appear in the network. This
is explained by the radial coordinate, since early nodes are positioned closer to the
origin of the hyperbolic plane, and therefore have a higher probability of being
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Fig. 5 Bottom and projected degree distributions for synthetic networks built with variations of
parameter α. (a) m = 4, α = 0.50 and T = 0.50 for bottom and projected distributions,
respectively; (b) change of parameter α = 0.90. (c) and (d): The same as (a) and (b), however
for projected networks, respectively. We can clearly see the effect of the parameter α controlling
the radial coordinates of the bottom nodes and, therefore, the level of preferential attachment in
the network. Best fit for the degree distribution of bottom nodes gives us (a) γ = 2.87 and (b)
γ = 2.09, compared to the predicted values γ = 3 and γ = 2.10 according to the analytical
solution given by Eq. (5). Moreover, the degree distributions of the projected networks are similar
to the degree distribution of bottom nodes. This is due to the fact that bottom distributions are more
right-skewed than top distributions [13]

closer to more nodes in the network, according to Eq. (6). From Eq. (4), we see
that when α → 1 we have strong preferential attachment. As α decreases, so does
the weight in the tail of the probability distribution, following Eq. (5). On the other
hand, for α → 0, the positions of every bottom node are updated, at each time
step, moving to the edge of the hyperbolic disc (Figure 1c of [8]). Hence, all nodes
have the same connection probability as given by Eq. (8), which characterises a
random network regime for the bottom nodes. The analytical solution for the degree
distributions of bottom nodes follows that of [8].

The shape of the projected degree distributions (Fig. 5c, d) is in agreement
with results shown in [13], following the degree distribution of bottom nodes. In
[13], we present analytical solutions for the expected projected degree distributions,
according to the degree distribution of top and bottom nodes. Also, we discuss in
[13] the difficulties of finding closed-form expressions for projections of bipartite
networks with heterogeneous degree distributions.
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In order to control the number of small cycles present in the network, we use
the last parameter of the model, T , the temperature of the system. Similarly to the
case of one-mode networks, where T tunes clustering (the number of triangles), for
the bipartite version, T primarily controls the presence of four-cycles, but also the
presence of six-, eight- and 10-cycles. At lower temperatures, nodes that are closer
in the plane have higher probabilities of being connected, favouring the presence of
small cycles. We can see a substantial increase in the number of four-cycles in the
network, widening the gap between them and the other small cycles, as shown in
Fig. 6a, b.

Fig. 6 (a) and (b) Evolution of small fundamental cycles; (c) and (d) Link weight distributions;
(e) and (f) Distributions of the clustering coefficient. Left column for network with temperature
T = 0.50 and right column with T = 0.10. At higher temperatures the presence of four-cycles is
smaller, and the gap between their frequency and the frequency of other cycles reduces. We can
clearly see how more four-cycles in the network shift the link weight distribution. Note that the
number of fundamental six-cycles decreases, yet the clustering coefficient increases. This is the
effect of the substantial rise in the number of four-cycles, at low temperature, which hides larger
cycles (Fig. 7), hence widening the gap between four-cycles and larger cycles
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 4

Fig. 7 Schematic of how connections creating new four-cycles change the cycle basis of the graph
and hide cycles of higher order. The initial cycle basis of the toy graph has one six-cycle only,
C = {(1B3C2A)}. With node 4 connected to A, B, D and E; and node 5 connected to C, D and E,
the new cycle basis is the set C = {(2D4A), (4D5E), (2C5D), (1B4A), (3C5D4B)}. Although we
have two six-cycles in the network, (1B3C2A) and (3C5D4B), just the latter appears in the cycle
basis

The effect of the increase of four-cycles in the network is twofold. First, a larger
number of four-cycles means an increase in recurrent interactions between pairs
of nodes, shifting the link weight distribution to the right (Fig. 6c, d). Second,
clustering in the projected network is stronger, even though the number of six-cycles
in the cycle basis is smaller than in the case with higher temperature. That is, the
change in temperature drastically changes the cycle basis of the network and the
wider gap between the cycles, as mentioned above, hides the increase in the actual
number of six-cycles in the network. The cycle basis is the set of cycles from which
combinations can be made to create all other cycles in the graph. An example of
how four-cycles can hide six-cycles in the network is shown in Fig. 7. We do not
count the exact number of cycles of each size because counting cycles in a graph is
a NP-complete problem [28], i.e. it cannot be solved in polynomial time, and it is
computationally too expensive to do so in large networks like ours.

Our proposed model does present a limitation that has yet to be overcome: none
of the parameters of the model (α, T , and m) seem to control degree-assortativity of
the projected networks. Every bipartite network we built resulted in neutral degree-
assortative projections. This is true even when we chose a heavy-tailed probability
distribution to pick values of m (not shown here), which turns the degree distribution
of top nodes more right-skewed. The random characteristic of the model cannot
capture the social factors driving assortativity in real-world projected networks.

However, the popularity vs. similarity model still represents well one-mode
networks that are projections of a bipartite structure, otherwise as stated by its own
creators in Section III C of [8]. The bipartite version of the model can replicate
the original bipartite network structures, such as the degree distribution of top and
bottom nodes and small cycles, as observed in real-world networks [5, 9]. As a
result, the expected structural properties of projected networks (degree, clustering
coefficient, and link weight distributions) naturally arise as part of the projection. We
also notice that to model only the projection can be a misleading process. Instead,
one should take a step back and consider modelling the bipartite network first, and
only then, create its projection.
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5 Conclusion

In this work, we have introduced a generative model for bipartite networks, in
order to better understand their structural properties. It is imperative that projections
created using bipartite networks assessed with such a model can display features
such as heavy-tailed degree and link weight distributions, and the high level of
clustering, that are present in real one-mode networks.

By extending and adapting the popularity vs. similarity model proposed in [8] to
bipartite networks, we can control degree distribution of top nodes with a simple
choice of a probability distribution. On the other hand, the tail of the degree
distribution of bottom nodes is tuned by the parameter α of the model, ranging
from peaked Poisson-like distributions to heavy-tailed power-law distributions.
The frequency of the presence of small cycles can be tuned by controlling the
temperature T of the system. Therefore, we can recover degree distributions and
the frequency of small cycles found in empirical bipartite networks.

Then, the structural properties of projected networks are straightforwardly
inferred by building the projection out of the modelled bipartite network, except
degree-assortativity. With both degree distributions of the bipartite network and the
frequency of four-cycles, we naturally assess the resulting degree and link weight
distributions of projections as found in real one-mode networks. The same is true for
the clustering coefficients. Due to the high frequency of six-cycles in the network,
the level of clustering in the projected one-mode network is not only the minimum
level due to high-degree top nodes, as we discussed above.

Finally, in contrast to the claim by the creators of the popularity vs. similarity
model for one-mode networks [8] that the model does not represent certain types of
collaboration networks well, we have shown otherwise. The type of networks they
referred to are actually one-mode projections of bipartite networks. We strengthened
our claim, first presented in [5] and [9] and in agreement with other works [29,
30], that such projections should not be modeled directly, without taking in account
the underlying bipartite structure. One should always consider the original bipartite
network to assess the properties of networks in such cases.
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BiMLPA: Community Detection in
Bipartite Networks by Multi-Label
Propagation

Hibiki Taguchi, Tsuyoshi Murata, and Xin Liu

Abstract Community detection in networks, namely the identification of groups of
densely connected nodes, has received wide attention recently. A bipartite network
is a special class of networks, where there are two types of nodes, and edges exist
between different types of nodes only. In bipartite networks, there are two ways to
define communities, i.e., the one-to-one correspondence communities and the many-
to-many correspondence communities. The latter naturally represents the cluster
structures in the bipartite networks. However, few methods aim at detecting the
many-to-many correspondence communities. In this paper, we propose a multi-label
propagation algorithm BiMLPA for this purpose. Our new algorithm overcomes
the limitations of previous approaches and has several desired properties, such as
speed and stability. Experimental results on both synthetic networks and real-world
networks demonstrate that BiMLPA outperforms previous approaches. We provide
source code at https://github.com/hbkt/BiMLPA.

1 Introduction

Cluster structures or communities, where the edges within communities are dense
and between communities are sparse, are commonly observed in many networks.
For example, a collection of papers discussing the same topic arise in paper citation
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networks; circles of friends appear in social networks. Community detection [8]
provides insight into how the networks are internally organized and is a key step
for analyzing network data. Therefore, community detection is one of the important
and hot topics for network analysis in these days [8].

Raghavan et al. proposed the Label Propagation Algorithm (LPA) [27] for detect-
ing communities in unipartite networks. LPA is simple and fast. The computational
complexity is near-linear with the number of edges. However, there are some
drawbacks such as instability. To overcome these issues, researchers proposed some
variant algorithms. For example, LPAm [1] is a label propagation algorithm for
maximizing the modularity [26], which is the most popular function to evaluate
community partitions. LPAm+ [18] prevents LPAm from stuck in local maxima by
combining LPAm and multi-step greedy agglomerative algorithm (MSG) [28]. LPA
is also extended to detect overlapping communities. COPRA [10] is an extension
of LPA by allowing nodes to have more than one label. SLPA [32], BMLPA [31],
MLPA [5] are some of the variants of COPRA.

It is not uncommon to find real-world networks with two types of nodes and
edges connecting only pairs of nodes of different types. An example is a network of
authors and papers, where edges connect authors and the papers they have authored.
There is no edge between any pair of authors or papers, and such a network is called
bipartite.

Community detection in bipartite networks has received wide attention recently.
There are two ways to define communities in bipartite networks, one-to-one
correspondence communities and many-to-many correspondence communities,
respectively [20]. One-to-one correspondence communities are the groups of nodes
that are densely connected. This is the same as the definition of community in
unipartite networks. Figure 1a shows an example. The two types of nodes are located
on the top and bottom, respectively. A community, as surrounded by the dotted line,
is composed of both types of nodes.

On the one hand, many-to-many correspondence communities are the groups of
nodes that are of the same type and have similar link patterns [24]. As shown in
Fig. 1b, there are two communities for the top nodes and three communities for
the bottom nodes. The nodes in each community have a similar link pattern. For
example, the nodes in the second bottom community (in the middle) all have dense
connections with the two top communities.

The many-to-many correspondence community structure is a natural description
of the heterogeneity in the real world because humans or objects always have
multi-faceted properties. Take the user-book network of an online book store as an
example. An edge exists if a user bought a book. Note that the users have multiple
reading interests. As a result, the college student community majoring in computer
science will correspond to both programming-related and mathematics-related
book communities, while the college student community majoring in physics will
correspond to both mathematics-related and physics-related book communities. As
shown in Fig. 2, this creates a many-to-many correspondence community structure.

There are two main approaches to detecting communities in bipartite networks.
The first one is to compress a bipartite network into a one-mode projection network
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(a) (b)

Fig. 1 The examples of the two definitions of community in bipartite networks. (a) The one-to-one
correspondence community. (b) The many-to-many correspondence community

Textbooks

Students

Programming Mathematics Physics

Computer
Science

Physics

Fig. 2 An example of many-to-many correspondence community structure in the user-book
network

and apply a standard community detection algorithm [30, 33]. This approach is
usually not as good as handling the original network because the projected network
is less informative than the original one. The second one, which overcomes this
issue, is to extend unipartite algorithms such as the Louvain method [3], the
stochastic block model [11] for the bipartite structure [14, 34].

LPA [27] has also been extended to deal with bipartite networks. Improved
LPA [17] updates the labels of the two types of nodes iteratively to avoid the
oscillation problem. LP&BRIM [16] combines LPA and BRIM algorithm. LPAb
[1] is an algorithm to optimize Barber’s bipartite modularity. LPAb+ [19] further
extended LPAb to escape stuck in local maxima. Moreover, Li et al. [15] proposed
a quantitative function for evaluating partition density in bipartite networks and
designed a heuristic algorithm called BiLPA. LPA is also used to optimize quan-
titative functions other than Barber’s modularity [2, 15]. However, none of them
aims at detecting the many-to-many correspondence communities.
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Inspired by the multi-label propagation for detecting overlapping communities
[31], we propose BiMLPA to detect the many-to-many correspondence commu-
nities in bipartite networks. Based on the idea of multi-labels, we design a label
propagation procedure that is specific for bipartite networks. BiMLPA overcomes
the limitations of existing approaches and has the following advantages: (1)
BiMLPA can detect communities with many-to-many correspondence, (2) BiMLPA
is fast and has near-linear time complexity, (3) BiMLPA can automatically detect
communities without any a priori knowledge such as the number of communities,
and (4) BiMLPA is a stable algorithm. Experiments in synthetic and real-world
networks demonstrate that BiMLPA outperforms the previous algorithms.

2 Related Work

In this section, we introduce the label propagation algorithm and its variants.

2.1 LPA

Raghavan et al. proposed LPA [27] for detecting communities in unipartite net-
works. A unipartite network can be represented as G = (V ,E), where V and E are
the set of nodes and edges, respectively. The idea of LPA is simple: initially, each
node in the network is assigned with a unique label, indicating the community it
belongs to. At every label propagation step, each node sequentially updates its label
to a new one which is the most frequent label among its neighbors. Formally, the
label updating rule for a node v is

l′v = argmax
l

∑

u∈N(v)

δ(lu, l) (1)

where lu is the label of node u, l′v is the new label of node v, N(v) is the set of nodes
that are neighbors of v, and δ is the Kronecker’s delta. If there are multiple labels
satisfy Eq. (1), one is chosen randomly from them. The label updating continues
until convergence. Finally, the nodes with the same label are grouped and identified
as communities. LPA is fast, effective, and conceptually simple.

2.2 Variants of LPA

Many researchers modified LPA to improve the performance or apply it to other
types of networks.
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Modularity-Specialized LPA One weakness of LPA is that the algorithm is not
stable and is sensitive to the order in which node labels are updated in each step.
Sometimes LPA may even end up with a trivial solution where all nodes are
identified in the same community. To overcome this problem, Barber et al. [1] and
Liu et al. [18] extended LPA by modifying the label updating rule so that modularity
[26] can be maximized during the label updating process.

LPA for Bipartite Networks Directly applying LPA to bipartite networks will
cause the oscillation problem, where the algorithm cannot converge. Liu et al.
proposed improved LPA [17] and LP&BRIM [16] which avoid the oscillation
problem. However, these algorithms are for detecting one-to-one communities.

LPA for Overlapping Communities LPA is also extended for detecting overlap-
ping communities. BMLPA [31] is a multi-label propagation algorithm to detect
overlapping communities in unipartite networks. In BMLPA, each node can have
multiple labels with weights.

3 BiMLPA

In this section, we introduce BiMLPA, community detection in bipartite networks
using a multi-label propagation algorithm. A bipartite network can be represented
as G = (U, V,E), where U and V are disjoint sets of nodes, and E is the set of
edges. Each edge connects u ∈ U and v ∈ V . N(v) is the set of neighbor nodes of
v, i.e., N(v) = {u|(u, v) ∈ E}.

3.1 Extension to Multi-Labels

We extend the label propagation algorithm from single-label to multi-labels. In other
words, each node v is accompanied by a label set:

Lv ={(lv1, wv1), · · · , (lvt , wvt )} (2)
∑

i

wvi = 1 (3)

where t is the number of labels that v has, lvi is the i-th label of v, and wvi is
the weight of label lvi . For simplicity, labels are sorted in descending order of the
weights, i.e., wv1 ≥ wv2 ≥ · · · ≥ wvt .
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3.2 Label Propagation Procedure

We introduce the procedure for propagating the multi-labels. Suppose each node is
assigned with a label set. Figure 3 is an example of how we update the labels for a
node v. It is composed of three steps.

Step 1 We process the label set Lu for each u ∈ N(v). Specifically, we first reduce
the number of labels in Lu to λ.

L′u =
{
{(lu1, wu1), · · · , (luλ, wuλ)} if the number of labels > λ

Lu otherwise
(4)

Note that labels are sorted in descending order of weights, so we preserve the top
λ labels that have the largest weights in Lu. Then, we adjust the weight for each
label in Lu. To reduce the influence from hub nodes, we discount the weight by the
coefficient based on the node degree,

L′u ←
{(

l,
w√
du

)
|(l, w) ∈ L′u

}
(5)

where du is the degree of u.

Single

Multi

1 2

3

Fig. 3 An example of propagating labels from the top yellow nodes to the bottom purple node.
The parameters are λ = 2 and θ = 0.5. Step 1: we reduce the number of labels in each label set
of the top nodes. In this case, the max number of labels is λ = 2. So we eliminate (c, 0.1). Step 2:
we propagate labels from the top nodes to the bottom node. The bottom node’s label weight is the
sum of the weights of the corresponding top nodes. Step 3: in Single-Label propagation, we choose
one label which has the largest weight. In this case, label a is chosen, and the new label set Lv is
(a, 1). In Multi-Label propagation, we divide all weights by the maximum weight 2.0 and choose
labels that satisfy the condition Eq. (8). In this case, the label a and c are kept, and the weights are
normalized
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Step 2 We propagate the labels to v from its neighbors, with the weights being the
sum of the weights that v’s neighbors have. Specifically,

L′v = {(l′v1, w
′
v1), · · · , (l′vt ′, w

′
vt ′)} (6)

w′
vi =

∑

(l,w)∈L′u
u∈N(v)

w · δ(l, l′vi) (7)

where t ′ is the number of labels in L′v and δ is the Kronecker’s delta.

Step 3 We trim the labels in Lv . Note that at the end of step 2, all the labels of v′s
neighbors are propagated to v, resulting in an excessive number of labels. To trim
labels, we introduce the following two strategies.

Multi-Label Propagation We keep labels whose weights are above some thresh-
old. Let wmax be the maximum value of the weight in L′vf , we keep the pair (l, w)

if its weight w satisfies the following condition:

w

wmax
≥ θ (8)

where θ ∈ [0, 1) is a threshold parameter. Finally, the weights of remaining labels
are normalized and the label set is updated.

Lnew
v = {(lnew

v1 , wnew
v1 ), · · · , (lnew

vt , wnew
vt )} (9)

wnew
vi = wvi

∑
j wvj

(10)

Single-Label Propagation We only keep one label which has the largest weight.

(lmax, wmax) = argmax
(l,w)∈L′v

w (11)

Then we update the label set:

Lnew
v = {(lmax, 1)} (12)

3.3 Algorithm

Now we present our algorithm BiMLPA. It contains the following four steps.

1. Initialization
For each node u ∈ U , we assign a unique label with weight set to 1. For each
node v ∈ V , we assign an empty label set. In other words,
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Lu = {(u, 1)}, Lv = {} (13)

2. Multi-Multi LP
We propagate labels in the Multi-Label propagation manner. We first propagate
labels from U to V , and then from V to U . This process is repeated until
convergence. The convergence is reached when there is no change in terms of
labels in any label set (not in terms of weights).

3. Multi-Single LP
We propagate labels from U to V in the Multi-Label propagation manner, then
from V to U in the Single-Label propagation manner. As a result, nodes in U

have only one label whereas nodes in V have more than one label. This process
is repeated until convergence (in the same sense as the Multi-Multi LP).

4. Post-Processing
We identify a community as a group of nodes whose label sets are the same in
terms of labels (the label weights do not need to be matched).

3.4 Complexity Analysis

We analyze the time complexity of Multi-Multi LP and Multi-Single LP described
in Sect. 3.3. Suppose n is the number of nodes, m is the number of edges, and
λ is the parameter. Since the number of neighbor nodes is O(m/n), we assume
the maximum number of labels is O(λm/n). Therefore, sorting and choosing λ

labels takes O((λm/n) log(λm/n)) (Eq. (4)). Multiplying the coefficient (Eq. (5))
and summing the weight for each label of all neighbors (Eqs. (6) and (7)) take linear
time, i.e., O(λm/n).

– Multi-Label Propagation
Choosing the label which has the largest weight and checking whether a label
satisfies an inequality (Eq. (8)) takes O(λm/n). Updating the label set takes less
than O(λm/n) (Eqs. (9) and (10)).

– Single-Label Propagation
Choosing one label which has the largest weight (Eq. (11)) takes O(λm/n).
Updating the label set takes O(1) (Eq. (12)).

Therefore, the time complexity of updating a label set in both Multi-Label and
Single-Label Propagation is O((λm/n) log(λm/n)). Since there are n nodes in the
network, the time complexity per iteration of both Multi-Multi LP and Multi-Single
LP is O(λm log(λm/n)), which is near-linear to the number of edges.
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4 Experiments

In this section, we present experiments for testing the performance of BiMLPA.
The basic scheme is as follows. (1) We collected four networks including real-
world and synthetic networks, with known communities (true communities) for
each one. (2) We apply BiMLPA and baseline algorithms to these networks
to detect the communities. (3) We evaluate the performance by the normalized
mutual information (NMI) [6] that quantifies the similarity between the detected
communities and the true ones. Specifically, suppose L1 is the detected community
partition and L2 the true partition. If L1 and L2 match completely, we have the
maximum NMI value of 1, whereas if L1 and L2 are entirely independent of one
another, we have the minimum value of 0. Such kind of testing is widely used by
other researchers dealing with the community detection problem.

4.1 Datasets

We use two real-world networks and two synthetic networks in our experiments.
The properties of the networks are shown in Table 1. Visualization of the networks
with different colors for distinguishing the true communities is shown in Fig. 4. We
can find that all of them have many-to-many correspondence communities.

The first real-world network is the Southern Women network [7], which consists
of 18 women and 14 social events as nodes. Each edge represents that a woman
participated in an event. This network is commonly used as the benchmark for
community detection in bipartite networks. The second one is the Malaria network
[13], which consists of 297 genes and 806 amino acid substrings. Each edge
represents that a gene contains a substring.

Besides, we generated two synthetic networks according to Larremore’s proce-
dure [14]. The network can be represented by ω = αωplanted+(1−α)ωrandom, where
ω is the adjacency matrix, ωplanted is the adjacency matrix generated according to the
true community structure, ωrandom is the adjacency matrix of the random bipartite
network, and α is the mixing parameter, which adjusts the level of noise in the
network. In our experiments, α is set to 0.9.

Table 1 The properties of the networks

Network |U | |V | |E| |CU | |CV |
Real-World Southern women 18 14 89 2 3

Malaria 297 806 2965 3 3

Synthetic Network 1 70 30 1094 2 3

Network 2 60 60 1680 3 4

|U | and |V | are the number of nodes in U and V , respectively. |E| is the number of edges in the
network. |CU | and |CV | are the number of communities in U and V , respectively
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Fig. 4 Visualization of the
networks used in our
experiments. The nodes in the
same community are painted
with the same color. (a)
Southern Women network.
(b) Malaria network. (c)
Synthetic network 1. (d)
Synthetic network 2

(a)

(b)

(c)

(d)

4.2 Baselines

We compare BiMLPA with the following three baselines.

– LPAb+ [19] : This method optimizes Barber’s modularity using a single-label
propagation algorithm.
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– biSBM [14] : This method formulates a bipartite stochastic block model and
detects communities.

– ComSim [30] : This approach generates projection networks, whose edges are
weighted and the weights represent the similarity of the same type of nodes, then
applies a standard community detection technique.

LPAb+ is designed for detecting one-to-one correspondence communities. In
contrast, biSBM and ComSim are designed for detecting many-to-many corre-
spondence communities. The implementations of biSBM1 and ComSim2 written
in C++ are available.

4.3 Settings

We set the parameters of each algorithm as follows. LPAb+ is parameter-free.
In biSBM, there are two parameters Ka and Kb, which represent the number of
communities to be detected in node sets U and V , respectively. We directly set them
as the numbers of true communities. In ComSim, we use common neighbors as the
similarity for projection. BiMLPA has two parameters, θ and λ. θ is searched from
0.0 to 0.9 with an increment of 0.1 and λ is searched from 3 to 10.

4.4 Results

We apply each algorithm 100 times in each network. Table 2 shows the results of
the average and the standard deviation of NMI.

Table 2 The average and the standard deviation of the NMI scores

BiMLPA LPAb+ biSBM ComSim

Southern U 1.0 ± 0.0 0.5430 ± 0.0559 1.0 ± 0.0 0.6794 ± 0.0953

V 1.0 ± 0.0 0.7447 ± 0.0681 1.0 ± 0.0 0.1489 ± 0.3090

Malaria U 0.6605 ± 0.0 0.5106 ± 0.0195 0.1491 ± 0.1098 0.4549 ± 0.0064

V 0.6330 ± 0.0 0.4508 ± 0.0160 0.1419 ± 0.0989 0.4043 ± 0.0046

SynNet 1 U 0.9061 ± 0.0 0.6961 ± 0.1199 0.8128 ± 0.0 0.7771 ± 0.1321

V 1.0 ± 0.0 0.7562 ± 0.1337 1.0 ± 0.0 0.0 ± 0.0

SynNet 2 U 1.0 ± 0.0 0.9394 ± 0.0 1.0 ± 0.0 0.8915 ± 0.0297

V 0.9066 ± 0.0 0.6700 ± 0.0 0.9112 ± 0.0 0.5178 ± 0.0307

U and V represent the types of nodes
Bold values indicates the best accuracy for each dataset

1http://danlarremore.com/bipartiteSBM/.
2https://github.com/rtackx/ComSim.

http://danlarremore.com/bipartiteSBM/
https://github.com/rtackx/ComSim
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Fig. 5 Visualization of the
communities detected by
different algorithms in the
Southern Women network.
Woman nodes are located at
the top and event nodes are
located at the bottom. (a)
BiMLPA and biSBM. (b)
LPAb+. (c) ComSim

(a)

(b)

(c)

We can find that BiMLPA outperforms the others in the Southern Women
network, the Malaria network, and synthetic Network 1. In synthetic Network 2,
BiMLPA is also comparable to biSBM.

As an example, Fig. 5 illustrates the communities detected by different algo-
rithms in the Southern Women network. In the true partition, there are two
communities for the woman nodes (woman community 1: nodes 1–9; woman
community 2: nodes 10–18) and three communities for the event nodes (event
community 1: nodes 19–24; event community 2: nodes 25–27; event community
3: nodes 28–32). Both BiMLPA and biSBM successfully detected the true com-
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munities with NMI = 1, as shown in Fig. 5a. We can find that the communities
have many-to-many correspondence. LPAb+ detected four woman communities
and four event communities. The communities have a one-to-one correspondence, as
shown in Fig. 5b. Although ComSim is designed for many-to-many correspondence
communities, it fails to detect the true communities. As shown in Fig. 5c, the
algorithm mixed the event community 1 and 2 and put nodes 19–27 into one
community.

It is worth mentioning that BiMLPA is a stable algorithm. One notorious
drawback of the label propagation algorithm is that it introduces some random
factors and the result can be quite different in different runs. Indeed, the standard
deviation of NMI indicates that the baselines including LPAb+ are unstable. In
contrast, the standard deviation of BiMLPA is always 0, indicating a fixed result.
This is because that the randomness of the label updating is suppressed due to the
extension from single-label to multi-labels.

5 Conclusion

In this paper, we proposed BiMLPA, a novel multi-label propagation algorithm
for detecting communities in bipartite networks. BiMLPA can handle communities
with many-to-many correspondence. The algorithm consists of two types of label
propagation: Multi-Multi LP and Multi-Single LP. BiMLPA is fixed and overcomes
the unstable issue of LPA. Moreover, BiMLPA is fast and has near-linear time
complexity. Experiments on real-world and synthetic networks demonstrate that
BiMLPA outperforms previous algorithms such as LPAb+, biSBM, and ComSim.

As future work, there are two problems. One is the appropriate measure for
evaluating communities with many-to-many correspondence in bipartite networks.
Although researchers have presented measures such as link-pattern based com-
munities [20–22] and bipartite modularity [25, 29], they have limitations such as
not scalable to large networks. Another issue is the relation between multi-label
propagation algorithms and algorithms based on graph neural networks [12] for
graph embedding [4, 9, 23]. Both of them are based on aggregating information from
neighbors. The difference is that a multi-label propagation algorithm uses discrete
vectors as labels while graph neural networks use continuous vectors. How to unify
them is an interesting and challenging problem. These will be left for our future
work.
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Connected Graphs with a Given Degree
Sequence: Efficient Sampling,
Correlations, Community Detection and
Robustness

John H. Ring IV, Jean-Gabriel Young, and Laurent Hébert-Dufresne

Abstract Random graph models can help us assess the significance of the structural
properties of real complex systems. Given the value of a graph property and its value
in a randomized ensemble, we can determine whether the property is explained by
chance by comparing its real value to its value in the ensemble. The conclusions
drawn with this approach obviously depend on the choice of randomization. We
argue that keeping graphs in one connected piece, or component, is key for many
applications where complex graphs are assumed to be connected either by definition
(e.g. the Internet) or by construction (e.g. a crawled subset of the World-Wide
Web obtained only by following hyperlinks). Using an heuristic to quickly sample
the ensemble of small connected simple graphs with a fixed degree sequence,
we investigate the significance of the structural patterns found in real connected
graphs. We find that, in sparse networks, the connectedness constraint changes
degree correlations, the outcome of community detection with modularity, and the
predictions of percolation on the ensemble.

Putting measurements into context is a crucial part of any network analysis. Suppose
that we have some real network at our disposal and that we know the value of
some of its properties—say its level of transitivity or its homophily with respect
to some property [1]. It is clear that these values do not make much sense in and of
themselves. Knowing that a network G1 “has transitivity C,” tells us far less than
knowing that “network G1 is more transitive than network G2.” In the first instance,
we merely have an arbitrary number; it only begins to make sense once compared
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to other measurements, either implicitly (e.g., via a normalization) or explicitly, as
in the second instance.

Null modeling is a technique whereby we create an ensemble of graphs that
preserves some of the properties of the original network data, while randomizing the
others. Computing the expected value of a property for the graphs of this ensemble
gives a baseline against which to compare an original measurement. The baseline
can be used to formulate a statistical test telling us which properties of an input G

are “surprising” with respect to the model, and which are not. For example, if the
transitivity C(G) of a network takes roughly the same value under a null model that
preserves the degree sequence d(G) of the input G, then it is, as far as transitivity
is concerned, typical of graphs with this degree sequence. Conversely, if the value
of C(G) greatly differs in the randomized ensemble, then G is atypical: The degree
sequence d(G) does not explain C(G).

Similar inference can be made for any choice of null models and properties.
Hence the more models we have, the more we can control for various features of
real networks. Fixing only the number of vertices and edges leads to the classical
random graph model of Erdős–Rényi [2, 3]. Further constraining the ensemble to
graphs with a fixed degree distribution corresponds to generating graphs from the
well-known Configuration Model (CM) [4–6]. Notwithstanding sampling problems
[7], exponential random graphs [8] can be used to limit the ensemble to graphs with
precise patterns and correlation structure. A wealth of other models allow to control
for, e.g., arbitrary mesoscale patterns [9], degree correlations [10], or a centrality
structure [11, 12].

All the models above are defined in terms of simple local connection rules.
The main reason for this choice is that simple local rules usually lead to simple
sampling algorithms and make the models analytically tractable [7]. A less desirable
consequence of mathematical convenience, however, is that it dictates the models
we have. Relying only on convenient models can leave important blind spots in
our analyses, because unwieldy connection rules can—and do—lead to critically
different null models [13].

An important example of unwieldy constraint, which will be the focus of the
present paper, is connectedness. A few recent studies have shown that the connected
subsets of random graphs can have a significantly different structure than the entire
random graph itself [14–16]. Connectedness is, without a doubt, an important aspect
to control for in null models, since it is so frequently found in real systems. It
can arise for at least three different reasons. One, it may be a simple matter of
perspective: If a food web (or a power grid) is split into independent components,
then we are likely to consider them as separate food webs (or power grids) since
what occurs in one component does not affect the other. Two, global connectivity
may stem from the definition of the network: Such is the case of the Internet, which
is a unique, global, connected network of computers. Three, some networks can
never split into disconnected pieces because of the way they are sampled [17],
including, for example: subsets of the World Wide Web obtained by crawlers that do
not teleport [18], or social networks sampled by recursive nomination [19, 20]. If we
do not use an appropriate random graph ensemble as a null model in our analysis,
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we are likely to overestimate the significance of some results or miss other important
structural features.

The focus of our paper is twofold. First, we propose a simple heuristic to
generate samples from the connected Configuration Model (connected CM), the
natural null model for connected graphs with a fixed degree sequence. There are
already algorithms that solve related problems—see Sect. 1 for an overview—but
they are either inefficient or not adapted to the version of the problem we aim
to tackle. Our algorithm is described in Sect. 2 and made available online in a
reference implementation.1 Second, we use this algorithm to quantify the impact
of connectedness on applications that rely on comparison with random graphs, in
Sect. 3. We show that using the connected version of the CM can change degree
correlations, the outcome of community detection, and lead to qualitatively different
predictions of percolation on graphs.

1 Connected Configuration Model and Related Work

It is somewhat imprecise to speak of the connected configuration model (CM)
because there are, in fact, many versions of the classic configuration model [21].
In this paper, we will consider the so-called microcanonical variant, that assigns
an identical probability to all graphs that contain a single component and whose
nodes 1, . . . , N have degrees d = (d1, d2, . . . , dN), and zero probability to all other
graphs. Formally, if we denote by ΩN(d) the ensemble of connected graphs with
degree sequence d, the probability of observing any given graph G with degree
sequence d ′ is, under this model,

P(G) =
{

1
|ΩN(d ′)| if d(G) = d ′,
0 otherwise

(1)

where | · | denotes the cardinality of the ensemble. This definition of the connected
CM is known as microcanonical by opposition to the canonical definition where the
degree of nodes are fixed only on average, instead of exactly.

It turns out sampling that from this ensemble is much more challenging than
sampling from the equivalent ensemble without the connectedness constraint [21].
There are a few approaches that solve the problem in different ways.

A sampling algorithm for generic connected models was recently proposed by
Gray et al. [16]. Their idea is to first generate a (typically unconnected) initial
graph from the model without connectedness constraints. They then add arbitrary
links until the graph becomes connected, and they finally run a simple Monte-
Carlo Markov chain (MCMC) algorithm with a target distribution that is now the

1Available at https://gitlab.com/jhring/connected_cm.

https://gitlab.com/jhring/connected_cm
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connected version of the model. This method unfortunately does not work when
the target model is the microcanonical connected CM. The input degree sequence
is modified when edges are added, and the resulting graphs therefore have zero
probability under the connected model, and the MCMC can never leave the initial
state, let alone approach a region of high probability.

Another recent algorithm proposed by Tishby et al. also makes use of the
unconnected version of the CM as its starting point [15]. This approach differs
from the previous one in what it does next. The idea, in this case, is to discard
the disconnected components of the initial graph and to keep the largest one,
which then constitutes a sample from the connected model. Tishby et al. show
that by engineering the parameters of the generating (unconnected) ensemble, one
can obtain the desired size and degree distribution for the large component, in
expectation. However, this approach does not control the degree sequence exactly,
and it is therefore again not applicable to the microcanonical CM.

The only method that specifically addresses the problem of sampling from
the microcanonical CM is an algorithm by Viger and Latapy [22, 23] and its
predecessor, proposed by Gkantsidis et al. [24]. Starting from an initial connected
configuration generated (for example an input graph or constructed with a graphical
test [25]), their algorithm proposes local randomizations that preserve connectivity
and the degree sequence (double edge-swaps [21]). Since certifying connectivity is
expensive, they only verify that the graph has remained connected every so often,
and backtrack when necessary. They show that a good choice of monitoring interval
can speed the computation up by a large constant factor [24].

2 Efficient Heuristic

Our algorithm is most closely related to the methods of Gkantsidist et al. [24] and
Viger and Latapy [23]. In fact, it makes use of the same set of basic operations, but
we swap their order to obtain a significant speed-up on smaller graphs such that we
can quickly sample millions of instances.

To generate a graph with sequence d, we proceed as follows. (see Algorithm 1).
We first use the Havel-Hakimi algorithm to create a graph with the appropriate
degree sequence [25, 26]. We then shuffle its edges by applying T double edge
swaps on random pairs of edges, where T is a tunable parameter. By construction,
these swaps preserve the degree sequence and can be shown to generate ergodic
and uniform chains over the set of graphs with a fixed degree sequence (with no
connectedness constraints) [21]. Note that we disallow self-loops parallel edges—
we are interested in the simple graph ensemble where these do not occur.

The innovation of our method lies in a final step where we connect our newly-
shuffled graph with double edge swaps that connect components. These edge
swaps are carried out with edges drawn uniformly at random within two different
components. The components are themselves selected at random, with probability
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proportional to the number of nodes they contain. The algorithm terminates as soon
as the graph becomes connected.

Algorithm 1 Connected configuration model
1: procedure CONNECTED_CM(DEG_SEQ)
2: G ← havelhakimi(DEGSEQ)

3: while swaps < T do
4: swaps += randomedgeswap(G)

5: while numberofcomponents(G) > 1 do
6: c1 ← randomcomponent(G)

7: c2 ← randomcomponent(G)

8: e1 ← randomedge(c1)

9: e2 ← randomedge(c2)

10: G.swapedges(e1, e2)

All the steps of this algorithm are efficient. Constructing the initial graph and
ran- domizing it with double edge swaps takes linear time in the number of edges,
i.e., the sum of degrees

∑
i ki [21]. The connection step, step 3, also admits an

efficient implementation: We precompute a list of components (say with union-
find), and we then update the list every time an edge swap successfully merges
two components. Verifying that a swap connects two components is not too costly,
because we only need to verify that the swap did not disconnect the nodes from their
original components. Altogether, exact sampling of small connected graphs (less
than 200 nodes) with method of Viger and Latapy takes at best 50 times longer than
with our approximate sampling. On larger graphs (e.g. over a couple of thousand
nodes), our sampling heuristic currently requires similar or slightly larger amount
of time as exact sampling, because we have yet to optimize our implementation.
That said both approaches were found to scale linearly with graph size on perfect
trees; we thus expect the reduction in overhead to be worth it in all regimes once
optimized for larger graphs.

The price to pay for this speedup is exact uniformity over ΩN(d). The proofs
of Ref. [23], for example, do not generalize to our method. This is due to the fact
that the swaps we make in step 3 are “unidirectional,” in the sense that they move
us from a space of disconnected graphs towards a space of connected ones, with no
possibility of ever backtracking; classical proof techniques, in contrast, demonstrate
the ergodicity of reversible chains over an ensemble. That said, our heuristic at least
guarantees that (a) the degree sequence is preserved and (b) the graph is connected,
and it finds these graphs rapidly in most cases. Furthermore, as we now show, a
uniformity test and a comparison with the slower (but provably exact) algorithm of
Viger and Latapy suggest that our algorithm samples from the target distribution to
a close approximation.

As a first verification that our heuristic approximately generates graphs from
the correct ensemble, we carry out a simple uniformity test. We consider the short
degree sequence k = (1, 1, 1, 2, 2, 2, 3), and enumerate all the labeled connected
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Fig. 1 Expected correlation matrix e for a real network (Norwegian board of directors [27]),
as calculated empirically using 1000 draws from: (a) the simple CM, (b) the exact connected
microcanonical CM [22], (c) the canonical connected CM [15], and our heuristics. Some features
of the exact connected microcanonical sampling are recovered by our heuristics but not by the
approach of Ref. [15]. Most relevant to our case studies is the weak diagonal, a signature of the
disassortativity (negative degree correlations) of the true connected CM ensemble

Table 1 Frequencies of the isomorphism classes of connected graphs sharing the degree sequence
k = (1, 1, 1, 2, 2, 2, 3), compared against their empirical frequencies computed from a 106 graph
samples

Isomorphism class  Uniform  Viger & Latapy Our heuristic

0.3 0.304 0.321

0.6 0.599 0.609

0.1 0.098 0.070

The calculation takes about 90 s with our non-uniform heuristic, versus hours with the exact sampler

graphs that are compatible with it—60 in this case. We then identify all the
isomorphism classes up to a relabeling—there are three, see Fig. 1—and count
the number of graphs in each class. The frequencies of the isomorphism classes
are reported in Table 1. Since the microcanonical connected CM is a uniform
distribution over the 60 labeled graphs (and not the isomorphism classes), a useful
sampling algorithm should generate graphs with isomorphism classes that closely
follow the true frequencies calculated in Table 1. And indeed, we find empirical
frequencies that are not exactly equal to the true ones, but the deviations are small.

To further validate our heuristic, we carry out a second test where we randomize
the connections of the giant component of a large connected graph. When the
graph is large, there are far too many isomorphism classes to calculate their true
frequencies, let alone evaluate their empirical frequencies to a reasonable degree of
accuracy. Hence, we turn to a different test and analyze the correlations between the
neighborhood of nodes, conditioned on their degrees. As we will see later in Sect. 3,
this correlation structure intervenes in many of the applications of the connected
CM as a null model—it is therefore essential to get it right.
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We show the results in Fig. 1, with matrices e(k, k′) whose entries e(k, k′)
are the expected number of edges between nodes of degree k and k′. We use as
input the degree sequence of a real network of Norwegian directors sitting on
at least one corporate board together [27]. This graph is large, comprising 4475
nodes and 4652 edges, and its degree sequence is non-trivial, with degrees ranging
from 1 to 552. We calculate the matrices using four sampling algorithms: The
classical double-edge swap algorithm that samples from the simple CM (for the
sake of comparison); the algorithm of Viger and Latapy (exact); the algorithm of
Tishby et al. (canonical connected CM); and our heuristic. The results confirm that
the connected constraints change the correlation structure significantly (compare
Fig. 1a, d). They also show that hard constraints on the degree lead to a markedly
different correlation matrix (compare Fig. 1b, c). And finally, they demonstrate that
our heuristic finds correlations close to the exact ones (compare Fig. 1b, d).

3 On the Impact of Being Connected

3.1 Assortativity in Connected Graphs

Degree correlations aim to capture mixing patterns in a network [28]. Generally,
these degree correlations can be captured by “joint-degree measures” such as the
probability e(k, k′) that a random edge joins nodes of degree k′ and k′, a measure of
correlation we have used in Fig. 1. For any random graph with degree distribution
pk , we can expect the degree of a node at the end of a random edge to be distributed
according to qk = kpk/〈k〉 since a node of degree k participates to k times more
edges than a node of degree 1. In a fully random graph with a given degree sequence,
i.e., one drawn from the unconnected canonical CM, we could therefore expect
eCM(k, k′) ∝ qjqk′ , but that would assume that the degrees of neighboring nodes
are uncorrelated. To correct for possible deviations from the CM one can therefore
measure e(k, k′) from real datasets.

Edge matrices like e(k, k′) can be used to parametrize random graph ensembles,
as done in some degree-correlated version of the Configuration Model [10]. In
practice, it is more parsimonious to coarse-grain this information and only specify
a measure of correlation, the assortativity coefficient [28]. For a graph G, we write

rCM(G) = 1

σ 2
q

∑

k,k′
kk′
[
e(k, k′)− qkqk′

]
, (2)

where σ 2
q =

∑
k2qk −

(∑
kqk

)2 is the variance of the distribution qk . Importantly,
the negative term in Eq. (2) corresponds to correlations we would expect in the CM,
meaning that we control for correlations that would emerge naturally given only the
degree sequence of the graph. In other words, we control for our expectations from
the CM.
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In real graphs we typically do not expect r = 0 which would correspond to
a typical graph drawn from the CM. Instead, as a general rule of thumb [28, 29],
it is typically accepted that social graphs tend to display assortative mixing, or
positive degree correlations r > 0, where high degree nodes tend to more connected
than you would expect at random Conversely, technological graphs tend to display
diassortative mixing, or negative degree correlations r < 0, where high degree nodes
connect to low degree nodes more often than expected at random.

Technological and social datasets are also typically collected in very different
ways. As mentioned in our introduction, some data on technological graphs, such
as the structure of the Internet or power grids, tend to be connected per definition.
For example, a power grid with two disconnected components would typically be
considered as two distinct graphs. In other cases, like subsets of the World-Wide
Web, data tends to produce connected graphs because they are often collected by
crawling edges.

Given conventional wisdom on assortative mixing in complex graphs and on their
different expected connectedness across domains, we ask: How does connectedness
affect assortativity? In Fig. 2 we illustrate how connectivity might matter, using two
trees as a simple example. Controlling for the wrong expectation means we might
find a signal where there is none.

To study the interplay between assortativity and connectedness in real graphs, we
calculate a new assortativity coefficient based on the connected CM rather than the
typical CM null model. Because of the linearity of Eq. (2) we can write

rCCM(G) = rCM(G)− 〈rCM(GCCM)〉 (3)

where we are controlling for our expectations using the connected CM (right-hand
side), by measuring the classic assortativity coefficient (first term of left-hand side)
and subtracting deviations between the new and old null models (second term of
right-hand side). The final term is therefore the classic assortativity coefficients
averaged over many graphs drawn from our sampling algorithm for the connected
CM.

Fig. 2 Two simple examples of connected trees with the same degree sequence. The most
assortative this degree sequence be, while remaining connected, is as a stretched star (left graph)
with assortativity coefficient of r = −0.23. The most disassortative this degree sequence can be
is as a star combined with a single chain (right graph), leading to r = −0.50. Without looking
at the graph or degree sequence in detail, one might naturally conclude that both of these graphs
are strongly diassortative. The disassortativity of trees stems from their high number of leaves that
cannot be connected without disconnecting the graph
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Fig. 3 Distribution of the degree correlation, for random graphs drawn from the connected CM,
with degree sequences taken from three real graphs of increasing densities. (a) Phylogenetic tree
of the Measles [30], of mean degree 〈k〉 = 1.99, with 175 nodes and 174 edges. (b) Graphs of
Norwegian directors sitting on at least one board together [27], of mean degree 〈k〉 = 2.08, with
4475 nodes and 4652 edges. (c) Power grid of Poland during the winter [31], of mean degree
〈k〉 = 2.42, with 2383 nodes and 2886 edges. The classic assortativity coefficients are shown as
vertical lines at (a) −0.249, (b) −0.185, and (c) −0.0827; and become, under the connected CM,
(a) −0.013, (b) −0.023 and (c) −0.056

We calculate the distribution of this corrected coefficient for a few real connected
graphs in Fig. 3. As expected, on real trees such as the phylogenetic tree of
the measles virus (Fig. 2a), we find strong disassortativity based on the classic
assortativity coefficient rCM(G) (shown as a vertical line). This disassortativity,
however, is not surprising when we compare it to the distribution of assortativity
found for graphs generated from the correct, connected, null model (histogram). In
sparse social systems with few loops (Fig. 2b), such as a corporate graph of board
directors used in our example of Fig. 1, we similarly remove most of the signal when
using the connected null model even if that graph can still be rejected as not being a
typical instance of the connected CM. Finally, in denser cases such as power grids
(Fig. 2c), we would conclude that the graph structure is disassortative by using either
the CM or connected CM, because the null distribution is centered around r = 0 for
the connected CM (and because the classical assortativity effectively compares the
assortativity of real graphs to a distribution centered on r = 0).

3.2 Community Detection in Connected Graphs

Community detection [32]—and more generally mesoscopic pattern extraction
[33]—refers to a wide variety of methods whose goal is to find structurally similar
groups of nodes in a network, given only the structure of the network as input.
Formally, these methods find assignments of the nodes of G to K communities of
similar nodes, assigning precisely one community σi to each node i = 1, . . . , N .
They are among the most useful methods of network science, because communities
can help us understand networks at the exploratory data analysis stage, act as
the input of other network analysis methods [34], or even help us identify the
fundamental building blocks of networks [35].
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Modularity maximization methods were among the first proposed community
detec- tion algorithms, and have since gained prominence among practitioners
because of their clarity and ease-of-use [32, 36, 37]. These methods use a specific
form of objective functions—modularities Q(σ)—to quantify the quality of parti-
tions. The most general modularity function can be written as [38]

QP (σ) = 1

m

∑

i<j

(
aij − 〈aij 〉P

)
δσiσj

, (4)

where m is the number of edges, where the sum runs over all pairs of nodes, and
where δσiσj

is the Kronecker delta, equal to 1 if σi = σj (i.e., node i and j are
in the same community) and to zero otherwise. The two terms of Eq. (4) denote,
respectively: Whether there is an edge between nodes i and j and the expected
number of edges between the node i and j under the null model P , noted as
〈aij 〉P . According to this equation, a partition is deemed good if there are many
more edges connecting nodes that are inside the same community than what we
would expect to observe by chance, given a null model P for the graph. A specific
modularity maximization algorithm consists of a particular choice of null model P

and of maximizer2 [33]—a search strategy for the space of possible partitions that
converges to the partition with maximal modularity.

The canonical (unconnected) CM is almost always used as the null model P

[36, 37], in part because the expectation 〈aij 〉 is then given by the simple formula

〈aij 〉CM = ki kj

2m
, (5)

where ki is the degree of node i and m = 1
2

∑
i ki is the total number of edges. But,

as we have already argued, this null model is not always the most natural choice
[21]. In fact, it is known that different choices of model will tend to resolve different
types of communities [33, 41], with no obvious optimal choice on all inputs [42].
Futhermore, there are known applications where switching to a model P tailored
to the class of graphs at hand leads more accurate and relevant inference results
[21, 43]. So we ask: How do modularity-based algorithms behave when we choose
the connected ensemble of graphs with fixed degree sequence as our null model?

To answer this question, we need to evaluate the average 〈aij 〉CCM appearing in
Eq. (4), with the connected CM as the null model. Just as in Sect. 3.1, we opt for
a numerical average, computed with the efficient heuristic introduced in Sect. 2. If
there are on average e(k, k′) edges connecting nodes of degrees k and k′, then the
expected number of edges between two nodes i and j of degree ki and kj is given
by

2Many standard optimization methods are capable of fulfilling the role of optimizer: Spectral
embedding [37, 39] and greedy maximization [40] are well-known examples.
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〈aij 〉CCM =
⎧
⎨

⎩

e(ki, kj )/nki
nkj

if i �= j and ki �= kj

e(ki, kj )/nki
(nki

− 1) if i �= j and ki = kj

0 otherwise,
(6)

where nk is the number of nodes of degree k in the graph, and where the second
expression accounts for the fact that there are no self-loops in the ensemble.

With Eq. (6) for 〈aij 〉CCM, we can readily evaluate the connected modularity of
the different partitions of a network, and run optimization algorithms to find the
best one. The number of communities K is not known a priori, so we run a double
optimization3 where we first find the best partition σ ∗(K) for many choices of K ,
and then find the K∗ for which this optimal partition has the largest modularity. The
results of one such experiment are shown in Fig. 4, where we find the communities
of the network of directors (see also Figs. 1 and 3), using the standard modularity
QCM (see Eq. (5)) and the connected modularity QCCM (see Eq. (6)).

We find a few differences between the analysis ran with the unconstrained
and constrained CM as null model. Perhaps most noticeable is the fact that the
optimal connected modularity stays close to its maximum for a much larger range
of K than the standard modularity (Fig. 4a). This suggests that the number of
communities is not as clearly defined once we account for connectivity. Furthermore
the optimal partition σ ∗(K∗) under the connected CM occurs at a slightly larger
number of communities K , which allows the algorithm to (correctly) resolve a few
more communities (see Fig 4b, c). When we actually inspect these best partitions,
however, we find that communities essentially consists of one node of high degree
and its degree one neighbors—regardless of the choice of null model. This is a
consequence of the fact that placing a node of degree one and its neighbor in
the same communities is always good when the networks are near-trees. The two
models do not put the exact same penalty on these connections, but the difference is
not large enough to alter the optimal clustering choice significantly. And as a result,
the communities are qualitatively unchanged when we switch the null model from
the CM to the connected CM (the normalized reduced mutual information (nRMI)
[46] of the optimal partitions is 0.93, while comparing the best partitions of size K∗
yield nRMI = 0.95 (K∗ = 80) and nRMI = 0.98 (K∗ = 106), on a scale of 0–1).

3.3 Robustness of Connected Graphs

Percolation is a simple stochastic process in which edges or nodes are randomly
removed from an existing network. It is an obvious model for the robustness of

3This strategy works thanks to the regularization properties of the modularity: The partition in a
single community (K = 1) has zero modularity due to the negative contributions of the null model,
and so does the partition in K = n communities of 1 node since no two nodes share a community.
It follows that there is an optimum K∗ somewhere in between these two extremes.
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Fig. 4 Outcome of modularity maximization on the network of directors. (a) Modularity of the
best partition in K communities found by using the CM and the connected CM as null models.
We add a moving window average to guide the eye. The optima are identified with vertical lines.
(b–c) Visualization [44] of the optimal partitions when we use as null model (b) the CM, and (c)
the connected CM. The community of a node is indicated by a non-unique combination of node
color and shape (but no two adjacent communities are shown with the same combination). These
partitions are found as follows. For a fixed K , we first embed the nodes of G in R

K , using the
K largest eigenvectors of the modularity matrix B = A − 〈A〉P [39], defined as the difference
between the adjacency matrix A and the average adjacency matrix 〈A〉P under null model P .
We then create many candidate partitions by running agglomerative clustering on the embedded
nodes [45], for various choices of affinity (2 norm and cosine similarity) and linkage strategy. We
finally select the candidate partition that maximizes the modularity as the optimum for that K . The
partitions shown in (b–c) are the ones that maximize the modularity over all K

graphs to random failures, but also useful to study dynamical processes such as
epidemics [47]. While one can certainly simulate percolation on a specific real graph
to study its robustness or its ability to sustain an epidemics, it is often instructive
to also study the percolation process on a series of random graph ensembles,
because this lets us evaluate the impact of different structural properties on the
outcome. Hence for example, an epidemic on a real graph could be first compared
to the outcome of the percolation on Erdős–Rényi graphs with the same density, to
evaluate the impact of density alone; then compared to the outcome of percolation
on graphs drawn from the CM, to evaluate the impact of the contact distribution;
and so on for higher order models.

Enforcing connectedness can, again, make a big difference on the outcome of
percolation. To show this, we consider bond percolation where a fraction p ∈ [0, 1]
of edges are randomly removed from a network instance. We compute the size of
the largest connected component (LCC) after this removal has taken place, and
investigate its dependency on p. The original connectedness of a real system is
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Fig. 5 Percolation on the CM and connected CM ensembles with degree sequences taken from
real systems, compared with percolation on these systems. The size of the largest connected
component (LLC) is shown as a function of the fraction of removed edges p

critical to account for, since the size of the LCC after some edges are removed is
obviously bounded by the size of the LCC before this removal processes.

In Fig. 5, we show the outcome of bond percolation for two graphs studied in
previous case studies: The social network of board directors sitting on common
boards of Norwegian public limited companies, and the structure of a Polish power
grid. In the first, a percolation model can be used to study pathways for information
flows; and in the second, a naive model of robustness to failing power lines. We find
that the connected CM delays the onset of the connected phase (i.e. the LCC starts
growing at higher occupation probabilities) and forces fixation to full connectivity
as the occupation probability goes to one. The delayed onset of the connected
phase is most likely a consequence of the disassortativity of connected treelike
graphs. The full connectivity at high occupation probability is a trivial consequence
of the ensembles containing only connected graphs. Perhaps more interestingly,
the connected CM also captures the convex relationship between the size of the
LCC and the occupation probability at the onset of connectedness. This convex
relationship is often a consequence of core–peri- phery structure, both in dense
and sparse graphs, as shown in Refs. [11, 12]. Our results here show that the
degree sequence and the connectedness can also explain this feature, and more
parsimoniously so.

4 Discussion

In this paper, we have proposed an efficient heuristic that can generate samples from
the connected configuration model with hard degree constraints. We have shown
that this heuristic is fast on small graphs, and that it always returns a graph as long
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as the input degree sequence is graphical. By way of three case studies, we have
then demonstrated how this algorithm can be used to analyze real systems where
connectedness is key. In doing so, we have found, for example, that while graphs
with a low density can seem disassortative at first glance, their disassortativity can
be explained by the fact that they have to be connected in the first place. In the same
manner, we have also found that connectivity can alter the communities found by
modularity maximization algorithms or the interpretation of a percolation process.

Throughout the second part of this paper, we have found time and time again that
connectedness constraints matter the most when the density of the modeled system
is low. And this was, in a sense, expected. After all, two classical results from graph
theory show that a high average degree automatically implies connectedness for a
large portion of the nodes of a completely random graph [2] as well as for random
graphs with fixed degree sequence [5]. Or in other words: Dense random graphs
are already connected, whether we ask them to be or not. It follows that imposing
connectedness is most important in the regime of sparse graphs. When modeling a
sparse system, therefore, we should take special care and ask ourselves: Was this
graph expected to be connected? Is there a sampling or construction mechanism
that forces us to observe this graph in one piece? These questions help guide our
choice of null model. And as we have shown, this choice can certainly change our
conclusions—so beware.
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An Allometric Scaling for the Number of
Representative Nodes in Social Networks

Liang Zhao and Tianyi Peng

Abstract This paper studies the scale of the size of a representative node set in
social networks. First, a simple distance-based representative model is proposed.
Then, with two small-world like assumptions which are widely observed in large-
scale online social networks, it is shown that the size R of such a representative
set satisfies an allometric scaling R ∝ nγ , where n is the size of the network and
γ is a constant such that 0 ≤ γ < 1. In particular, a theoretical analysis using
Dunbar’s Number as the average degree of nodes suggests 1/3 ≤ γ ≤ 5/9 for
large-scale real social networks. This is the first theoretical model that can explain
the phenomenon that the number of congressional representatives scales to the 2

5 -th
power (i.e., γ = 2/5) of the population in real world. It also suggests that, in order
to represent (or to influence) a majority in a social network, a surprisingly small
(sublinear) number of representatives is enough. For instance, the number is a few
thousands for Facebook which has more than two billions users. This demonstrates
how easy to spread information in social networks.

1 Introduction

In real world, we often want to know the size of an appropriate representative
node set for a network. For example, assuming Facebook wants to have a global
users’ meeting, it must be first decided how many representatives should be invited.
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In general there is a trade-off on this number: more representatives means more
democratic but less efficient. The question then asks, assuming there is no physical
limitations, what is an appropriate number of representatives?

This question arises naturally in social networks. Another, more important exam-
ple is the number of congressional representatives, which has attracted numerous
studies for many centuries. For instance, James Madison, father of the Constitution,
stated the question (the trade-off) as the following:

However small the Republic may be, the Representatives must be raised to a certain number,
in order to guard against the cabals of a few; and however large it may be, they must be
divided to certain number, in order to guard against the confusion of a multitude.

— The Federalist, No. 10 (1788)

Notice that the social network in the congressional representatives case is
hidden—we know the existence of a social network connecting us and it plays
an important role in election but we do not know its topology, except for some
structures like small-world and scale-free. In fact, the same is true for Facebook and
other social networks—usually their topology data is not available or closed.

The missing of exact topology data drives us to non-algorithmic studies. Let us
first review traditional studies for the congressional case, then consider the general
case. Let n denote the population and R be the size of congressional representatives.
There exist two types of theories in the literature of politics:

1. Cube Root theory: R = n1/3. This scale of 1/3 was statistically derived from
real congressional data and population (see [4, 11, 21, 22]).

2. Square Root theory: R ∝ n1/2. This 1/2 scale was obtained by using
models from game theory ([18], well-known as the Penrose’s law), or from the
perspective of both economics and game theory (see [1, 8]).

Unfortunately, these theories do not work well. Cube Root matches real data
better than Square Root but it has no guarantee—in fact, latest study shows that 2/5
is a better scale [1]. On the other hand, Square Root has guarantee in theory, but it
does not match real congressional data [1].

The reason why they do not work well is simple: they have no consideration
on the structure of the hidden social network. In other words, if we could utilize
the structure of the social network, we may find a better theory on the number
of congressional representatives, appropriate representatives (or influencers) for
Facebook, etc. This was the motivation of this study.

In this paper, we introduce a simple, distance-based representing model and
provide a non-algorithmic study1 to reveal a better scale on the size of representative
set from the network aspect. Speaking precisely, we show R ∝ nγ for some constant
γ (0 ≤ γ < 1) independent of n, under some small-world like assumptions
which are widely observed in large-scale online social networks, For large-scale

1We remark that it is possible to calculate a representative node set with respect to our model for
given networks. Detail on the algorithm is omitted due to page limit.
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real social networks, we show a better estimation 1/3 ≤ γ ≤ 5/9 by using the
Dunbar’s Number [6, 7] as the average degree of nodes. This is the first theoretical
model that explains the phenomenon R ∝ n2/5 on the scale of the congressional
representatives ([1], see also Sect. 4). It also suggests that, in order to represent (or
influence) a majority in a social network, a surprisingly small (sublinear) number
of representatives is enough. For instance, it is a few thousands for Facebook which
has more than 2 billions users. This demonstrates how easy to spread information in
social networks.

The rest of the paper is organized as follows. We first discuss some related works
in the rest of this section, then provide a preliminary in Sect. 2. The model including
a pyramid structure of social networks and a theoretical analysis on the scale are
provided in Sect. 3 with an empirical study in Sect. 4. Finally we conclude and show
future works in Sect. 5.

Related Works
As a related work, Kempe et al. [12] considered an Influence Maximization (IM)
problem which, given an integer K , asks to find a seed set S of K nodes that
maximizes the influence of S with respect to some diffusion model. For example,
Independent Cascade (IC) is a classic diffusion model in which a node v is activated
(i.e., influenced) by its incoming neighbors w independently by given probabilities
pw,v . Another Linear Threshold (LT) model, on the other hand, activates a node if
sufficient number of its incoming neighbors are active. See [12, 14, 23] for more
detail on the IM approach.

Unfortunately, this IM approach does not work for our problem because it is
algorithmic, hence cannot provide us a scale on the size of the seed set and the
size of its influence domain (it provides nothing until the algorithm terminates).
Other difficulties in applying the IM approach to representatives include designing
of fixed probabilities pw,v , the time complexity (see [14, Table 1]) and, above all,
hidden network topology.

Other related topics include the dominating set problem (see [9]) and the so-
called hierarchical structure of networks [5, 15, 16, 19]. In particular, our pyramid
structure (see Sect. 3) is a growing hierarchical structure. Nevertheless, existing
studies could not provide an answer to our question.

2 Preliminary

Let G = (V ,E) be a network with a set V of n nodes and a set E of m edges. We
use dist (u, v) to denote the distance between two nodes u and v, i.e., the minimum
number of edges required to connect u and v (called the geodesic distance in [17]).
For a set W of nodes and an integer k ≥ 0, let

Nk(W) = {v ∈ V | ∃w ∈ W, dist (w, v) ≤ k} (1)
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denote the set of nodes that can be reached from some node in W via at most k edges.
Thus N0(W) = W , and Nk(W) \Nk−1(W) is the neighbor nodes of Nk−1(W) for
k ≥ 1. If W consists of only one node v, we may write Nk(v) instead of Nk({v})
for simplicity. Let | · | denote the size of a set. We first define a democratic index κ

for G by the following equation:

κ = max {k ≥ 0 | ∀v ∈ V, |Nk(v)| < n/2} . (2)

Index κ measures the difficulty to represent (or influence) a majority of a network by
a single node. Clearly it is also the smallest k such that |Nk+1(v)| ≥ n/2 for some v.
For instance, κ = 0 for cliques and stars showing it is easy to represent (influence)
a majority in cliques and stars. On the other hand, κ = n/4 for a path network
showing it is difficult for some single node to represent (influence) a majority in a
path network. See an illustration in Fig. 1.

Next, let us define the democratic number λ—which will be the proposed
appropriate number of representative nodes—by

λ = min {|W | : |Nκ(W)| ≥ n/2} , (3)

i.e., the minimum size of a node set that can dominate a majority of nodes with
distance κ (notice λ ≥ 2 by the definition of κ). The definitions Equations (2) and
(3) were first proposed by the first author in [24] who also did empirical studies on a
number of real networks in the SNAP datasets [13]. The result showed a surprising
phenomenon κ = 2 for many large-scale social networks (Table 1), implying that in
real world, it is much easier to represent (influence) a majority than we thought.2

κ = 0 κ = 0 κ = 1

...

κ = n/4

Fig. 1 Illustration of the democratic index κ which measures the difficulty to represent (influence,
control, spread information to, etc.) a majority of nodes by a single node

2We remark that κ can be found in polynomial time. In fact, running breadth-first searches (see
[17], Section 10.3.5) for all nodes can find the answer in O(mn + n2) time [24]. The study [24]
used a faster subroutine in [25]. On the other hand, similar to the IM problem, finding λ for a given
network and κ ≥ 1 is NP-hard [25].
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3 Model

With the definitions of κ and λ, let us make some assumptions on the structure of
social networks then consider the size of a representative set.

3.1 Conjecture 1 (Small-World Phenomenon on κ): κ ∝ log n

We first conjecture κ ∝ log n for social networks (or more generally, for small-
world networks). This is reasonable as social networks are usually small-world and
κ must not be a constant yet cannot be larger than the diameter (i.e., the average
distance between two nodes) D ∝ log n.

For exact values for real networks, the first author calculated κ for some social
networks in SNAP datasets (Table 1). Notice the estimated diameters D and 90-
percentile effective diameter D90 are quite different from instances, whereas κ =
2 holds for all large-scale networks studied. For even more larger networks, we
have no data so we cannot provide an exact result but since the average distance of
Facebook was estimated to be 4.57 in 2016 ([3], with 1.59 billion active users), it is
highly possible that κ = 2 also holds for Facebook.

3.2 Conjecture 2: Existence of Pyramid Structure of
Representing

We next conjecture that there exists a constant c > 1, independent of W and n,
such that it is highly possible for a set W ⊆ V of small (sublinear) size, |Nk(W)| ∝
|W |ck holds for k = 0, 1, . . . , κ .

This assumption is natural for efficient representing, since each node in W ,
on average, contributes to an exponential growing of the influence (estimated by
|Nk(W)|) with respect to k, i.e., |Nk(W)|/|W | ∝ ck . It is equivalent to the existence
of a pyramid (i.e., a growing hierarchy) structure based on distances from W . See

Table 1 Index κ for some social networks in the SNAP datasets [13], where D is the estimated
diameter and D90 is the estimated 90-percentile effective diameter

Network n m D D90 κ

ego-Facebook 4039 88,234 8 4.7 1

loc-Gowalla 196,591 950,327 14 5.7 2

com-Youtube 1,134,890 2,987,624 20 6.5 2

com-Orkut 3,072,441 117,185,083 9 4.8 2

com-Friendster 65,608,366 1,806,067,135 32 5.8 2

Values κ are from [24]. Notice that Index κ is much more stable that D and D90
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N0(W ) = W

N1(W ) \ N0(W )

Nκ(W ) \ Nκ−1(W )

...
distance

Fig. 2 An illustration of pyramid structure of nodes based on distances from a seed set W . From
the upper layer, the i-th layer consists of nodes of distance i − 1 from W (therefore, while omitted
in the illustration, edges are available between two adjacent layers or inside the same layer). It is
called pyramid since |Nk(W)| ∝ |W |ck for some constant c > 1, which is equivalent to |Nk(W) \
Nk−1(W)| ≈ c|Nk−1(W) \Nk−2(W)|

an illustration in Fig. 2. We remark that similar assumption has been widely used
so far, e.g., in Barabasi [2, (Section 3.8)] and Newman [17, (Chapter 12.5)] where
|W | = 1 and c is the average degree. Our assumption is somewhat stronger than
them (as |W | > 1). For that purpose, we will provide an empirical study in Sect. 4.

3.3 An Allometry on the Size of Representative Nodes

Now we consider the (scale of the) size of representative nodes using the above two
conjectures. We claim that λ, which we use as the appropriate size of a representative
set, satisfies λ ∝ nγ for some γ independent of n, 0 ≤ γ < 1.

This can be roughly observed as follows. Firstly, Conjecture 1 κ ∝ log n implies
the existence of a constant α > 0 such that κ = α log n. Then, let λ = |W ∗|. Hence
|Nκ(W ∗)| ≥ n/2. By Conjecture 2 |Nκ(W ∗)| ∝ |W ∗|cκ , we have

λ = |W ∗| ∝ |Nκ(W ∗)|
cκ

∝ n

cκ
= n

cα log n
= n

(clog n)α

= n

(nlog c)α
= n1−α log c.

Let γ = max{0, 1 − α log c}. Since α > 0 and c > 1, it is clear that 0 ≤ γ < 1,
showing the claimed argument.

The above analysis is not strict. In the following we give a strict analysis. We
suppose κ = Θ(log n), i.e., there exist constants α1, α2, 0 < α1 ≤ α2, such that
α1 log n ≤ κ ≤ α2 log n. This is a strict statement for Conjecture 1. We also suppose
|Nk(W

∗)| = Θ(|W ∗|ck), i.e., there exist constants β1, β2, 0 < β1 ≤ β2, such that
β1 ≤ |Nκ(W ∗)|/(|W ∗|cκ) ≤ β2. This is a strict statement for Conjecture 2 (notice
that we are only interested in W ∗ and k = κ). Then we can have the next theorem.

Theorem 1 ∃c1 > 0, c2 > 0, 0 ≤ γ1 ≤ γ2 < 1, s.t. c1n
γ1 ≤ λ = |W ∗| ≤ c2n

γ2 .
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Proof Let α = κ/ log n. By the above assumption, 0 < α1 ≤ α ≤ α2. Let β =
|Nκ(W ∗)|/(|W ∗|cκ). We have 0 < β1 ≤ β ≤ β2. By the definition of W ∗,

n

2βcκ
≤ λ = |W ∗| ≤ cn

2βcκ
.

Since cκ = cα log n = nα log c, we have

1

2β
n1−α log c ≤ λ ≤ c

2β
n1−α log c.

Let c1 = 1/(2β2), c2 = c/(2β1), γ1 = max{0, 1 − α2 log c}, γ2 = max{0, 1 −
α1 log c}. The theorem is proved. �

Now let us give a rough estimation on γ for real social networks. Firstly,
observing κ = 2 for n from 106 to 109 (see Table 1), we have α = κ/ log n

(for 10-based logarithm but any base has the same result) ranges from α1 = 2/9
to α2 = 2/6 = 1/3. Next let us assume c = 100 from the Dunbar’s number
[6, 7]3 Then, since log c = log10 100 = 2, we see γ = 1 − α log c ranges from
γ1 = 1− 2/3 = 1/3 to γ2 = 1− 4/9 = 5/9, i.e.,

1/3 ≤ γ ≤ 5/9. (4)

We note that the γ = 2/5 was first observed from real congressional data by [1].

Fig. 3 An illustration of the
estimation of c: It should be
less than Dunbar’s number
because some of the edges
from nodes v in Nk−1(W)

connects to nodes in
Nk−1(W) \Nk(W), thus
c = |Nk(W)|/|Nk−1(W)|
should be less than the
Dunbar’s number (i.e., the
total number of edges connect
to a node). In this study, we
estimated c by 100 comparing
to the Dunbar’s number 150.
An empirical study will be
given in Sect. 4

W
v

Nk−1(W )

Nk(W )

3Here we assume c = 100 which is less than Dunbar’s number 150. This is because not all edges
can be used to expand the influence—some of them may connect nodes already counted. See Fig. 3,
also Chapter 12.5 of [17] for discussion.
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4 Empirical Study

4.1 On the Pyramid Structure of Social Networks

We first study the pyramid structure in Conjecture 2, i.e., values of c and β. For
that purpose we used a Facebook network B-anon [20] consisting of 3,097,165
nodes and 23,667,394 edges, which was retrieved from http://networkrepository.
com/socfb-B-anon.php. For this network, we found κ = 2 and an upper-bound 231
on λ using the algorithm in [25]. We then randomly selected 9× 5 = 45 sets W of
nodes of sizes 2p for p = 0, 1, . . ., 8, each 5 samples (notice 28 = 256 is larger
than the upper-bound of λ we found). For the representing (influence) distance, we
studied k = 1, 2, 3 around κ = 2.

Assuming β = |Nκ(W)|/(|W |cκ), we calculated Nκ(W) for all sampled W

and k using breadth-first search. The regression result is shown in Fig. 4, in which
we have c = e3.7160 = 41.1 and β = e−0.8461 = 0.43 (the minimum value
of |Nκ(W)|/|W | was 2). Therefore we confirmed the existence of the pyramid
structure in the studied social network.

Fig. 4 Regression result for the pyramid structure, where k denotes the distance and y denotes
ln(|Nκ (W)|/|W |). The red line shows the regression result y = −0.8461+ 3.7160k with p-value
less than 2e−16

http://networkrepository.com/socfb-B-anon.php
http://networkrepository.com/socfb-B-anon.php
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4.2 On the Congressional Representatives

Now let us study the congressional representatives. We have special interest in this
case because it is a typical situation requiring appropriate representatives in a hidden
social network (exists in each country). Our approach is to use statistics to find
the relationship between the number R of congressional representatives and the
population n, then compare it with the result derived by our model.

We studied 192 countries using data from [10]. The regression estimates the
number of congressional representatives R = 0.3323 × n0.3922 (Fig. 5) for the
population n. This matches a previous study [1]. For a simple, easy-to-remember
expression, we propose

R = 1

3
n2/5. (5)

Notice that 1/3 < 2/5 < 5/9. Therefore we may say our model well explains the
number of congressional representatives.
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Fig. 5 The relationship between population and the number of congressional representatives for
the 192 countries (from right to left, China, India, USA, . . . , Nauru, Tuvalu). The regression
estimates the number of congressional representatives by 0.3323× population 0.3922 (blue line)
with a p-value < 2e−16. The red line shows y = 1

3 x2/5
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It is interesting to apply this scaling to other networks. An example is a Japanese
government published report on the number of data analysts required (http://www.
mext.go.jp/b_menu/shingi/gijyutu/gijyutu23/002/shiryo/_icsFiles/afieldfile/2015/
11/19/1364662_002.pdf, in Japanese), which shows a pyramid structure (page 7)
saying the supposed total number is 555555 and the number of representatives is
55. If we apply Eq. (5), we can have

R = 1

3
× 5555552/5 ≈ 66.

This is a much preciser than the estimation 5555551/3 = 82 by the cube root law (on
the other hand, there is no exact expression for the square root law thus we cannot
compare with it). Therefore we can say our estimation Equation (5) provides good
estimations for real cases.

Return back to the first question on the number of representative users of
Facebook. Since it has about 2.13 billion active users (see https://newsroom.fb.com/
company-info/), we can have a rough estimation:

1

3
× 21300000002/5 ≈ 1976.

5 Conclusion and Future Work

In this paper, we provided a novel, distance-based representing model for social
networks and cases studies show the number of representatives scales to a γ -th
power of the size of nodes, where 0 ≤ γ < 1 is a constant. This model is much
simpler than existing studies and explains the real data very well comparing to
the conventional cube root theory and square root theory. In fact, empirical studies
suggest 1/3 ≤ γ ≤ 5/9, and γ = 2/5 (Equation: R = 1

3n2/5) works well for the
numbers of congressional representatives and some other applications.

As future works, we are working on more detailed analysis of the model and
are applying it to study more networks. Since finding an exact λ and set W ∗ for a
given network is NP-hard, and this paper only considered the scale of representative
set, developing a fast and accurate approximate algorithm or heuristic to calculate
the number and the set of representatives for a given network is a challenging
task. For that purpose and for further generalization, combining with the Influence
Maximization approach such as the Sketch-based algorithms (see [14] for more
detail) and [23] to provide a more detailed calculation is interesting.
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NeXLink: Node Embedding Framework
for Cross-Network Linkages Across
Social Networks

Rishabh Kaushal, Shubham Singh, and Ponnurangam Kumaraguru

Abstract Users create accounts on multiple social networks to get connected to
their friends across these networks. We refer to these user accounts as user identities.
Since users join multiple social networks, therefore, there will be cases where
a pair of user identities across two different social networks belong to the same
individual. We refer to such pairs as Cross-Network Linkages (CNLs). In this work,
we model the social network as a graph to explore the question, whether we can
obtain effective social network graph representation such that node embeddings of
users belonging to CNLs are closer in embedding space than other nodes, using
only the network information. To this end, we propose a modular and flexible node
embedding framework, referred to as NeXLink, which comprises of three steps.
First, we obtain local node embeddings by preserving the local structure of nodes
within the same social network. Second, we learn the global node embeddings by
preserving the global structure, which is present in the form of common friendship
exhibited by nodes involved in CNLs across social networks. Third, we combine
the local and global node embeddings, which preserve local and global structures to
facilitate the detection of CNLs across social networks. We evaluate our proposed
framework on an augmented (synthetically generated) dataset of 63,713 nodes &
817,090 edges and real-world dataset of 3338 Twitter-Foursquare node pairs. Our
approach achieves an average Hit@1 rate of 98% for detecting CNLs across social
networks and significantly outperforms previous state-of-the-art methods.
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1 Introduction

Online Social Networks (OSNs) are popular platforms on the Internet, helping
users to connect with their friends, enabling them to view and share information.
OSNs offer different types of content to its users. For instance, YouTube offers
videos, Instagram offers images, while Facebook and Twitter offers a mix of text,
images, and videos. OSNs also offer different types of friend network to its users.
LinkedIn provides access to the professional network while others like Facebook,
help in connecting to personal friends. With the presence of these multiple social
networks, it is evident that users join more than one social network to avail these
several benefits offered by OSNs. In this scenario, it is of great interest to find user
identities across multiple social networks belonging to the same individual, which
we refer to as cross-network linkage and refer these identities as linked identities.
User behaviors exhibited through these linked identities across multiple OSNs help
in building a collective digital footprint [12]. Users’ popularity and friendships
trends [23] and influence [3] across OSNs can be better understood using such digit
footprints. For an adversary to launch social engineering attacks [1], this helps in
harvesting information about users based on their activities in multiple OSNs. In
digital marketing, it helps to know and identify your customer [11] for the targeted
advertisement.

Given the immense importance of finding linked identities, we propose a solution
based on the construction of effective graph representations. The goal is to learn
node embeddings in a social graph such that nodes with similar characteristics are
represented by similar node embedding vectors. In the context of our problem,
we ask the question whether we can obtain effective social network graph rep-
resentation such that node embeddings of users belonging to CNLs are closer in
embedding space than other nodes. In other words, as depicted in Fig. 1, the goal is
to propose an embedding framework that transforms nodes into embedding vectors
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Fig. 1 Our proposed NeXLink framework learns node embeddings from two social networks
(represented as graphs, on the left side) with few cross-network linkages. On the right side,
we depict embedding space in which nodes corresponding to user identities belonging to same
individual are closer than other nodes
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such that nodes present in linked identities are closer in embedding space than other
nodes. To this end, we propose a three-step NeXLink framework that learns node
representations to detect CNLs across social networks. In the first step, the local
structure of nodes within the same network is preserved. In social networks, these
local structures would comprise of friendship relation or follow-followee relation
maintained by user identities. In particular, we learn node embeddings of nodes
within the same network using the normalized edge weights so that nodes that are
structurally near to each other, their corresponding embeddings are also close in
embedding space. In the second step, the global structure of nodes connected across
multiple networks is preserved. In social networks, these global structures would
comprise of cross-platform linkages which represent user identities across social
networks belonging to the same individual. These linked identities are expected to
exhibit a number of common friends across social networks. In particular, we learn
the node embeddings of nodes that are part of Cross-Network Linkages (CNLs)
by biasing the random walk in proportion to the common friendship. As a result,
node embeddings of nodes that are part of CNLs with more common friends
are closer in embedding space. In the third step, we directly leverage the node
embeddings to evaluate their efficacy in the detection of cross-network linkages
across social networks. The code and data of our work are available at the GitHub
repository.1 We evaluate our proposed approach of the NeXLink framework on two
datasets. The first dataset is an augmented dataset synthetically generated using
the Facebook social network [18] comprising of 63,713 nodes (users) and 817,090
edges. Our approach works well in all possible augmentations of the Facebook
dataset achieving an average Hit@1 rate of 98%, which means that the probability
of hitting on the correct cross-network linkage across social networks is 98%.
Further, our approach outperforms the state-of-the-art prior approaches of node
representations namely LINE [17] and DeepWalk [15] on synthetically generated
graphs, which we refer to as augmented dataset. The second dataset comprises of a
real-world dataset of Twitter-Foursquare social networks [24] comprising of 3338
nodes (user) pairs. We find that except for Hit@1 rate, our approach better than
the state-of-the-art prior approaches of user identity linkages namely IONE [9] and
REGAL [6] in Hit@5 rates and above. The key contributions of our work are as
below.

– We propose a modular and flexible NeXLink framework as a two-step optimiza-
tion process that preserves local structure within the same network and preserves
global structure manifested in the form of cross-network linkages.

– We extensively evaluate our framework on two datasets, one augmented dataset
obtained from Facebook and other real-world dataset comprising of Twitter-
Foursquare node pairs. Our framework works well on the synthetically generated
dataset and outperforms prior node representation approaches (LINE and Deep-
Walk) and identity linkage approaches (IONE and REGAL).

1Code and dataset of our work can be found at: https://github.com/precog-iiitd/nexlink-netscix-
2020.

https://github.com/precog-iiitd/nexlink-netscix-2020
https://github.com/precog-iiitd/nexlink-netscix-2020
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2 Related Work

Recently, there are a few prior works that have addressed the problem of user
identity linkage using the network embedding approach whose aim is to learn a low
dimensional representation for a given node in a graph. We categorize these prior
methods in the field of network embedding into two main categories, as explained
below.

Problem Independent Approaches These works only aim to learn generic low-
dimensional representations without focusing on user linkage problems. The objec-
tive is to learn effective node representations in low dimensions. Tang et al. [17]
propose a framework for network embedding in large graphs to preserve node
structures of nodes which are directly connected (first-order node proximity) and
connected at a distance of two hops (second-order node proximity). Perozzi et al.
[15] leverage the notion of the skip-gram model in language modeling to perform
truncated random walks in order to learn latent representations of nodes in a graph.
Wang et al. [19] preserve the first and second-order node proximity using a semi-
supervised deep learning model. Grover et al. [2] extend the notion of a random walk
by introducing biased walks in node neighborhood to learn feature representations
of the node in a network. Xu et al. [22] propose two embeddings for each node that
capture the structural proximity of nodes as well as the semantic similarity, which
they express in terms of common interests. Liang et al. [8] propose a dynamic user
and word embedding model (DUWE) that monitors over some time, the relationship
between user and words to model their embeddings. Liu et al. [10] present a self-
translation network embedding (STNE) framework that is a sequence-to-sequence
framework taking into consideration both content and network features of the node.

Problem Dependent Approaches These learn low-dimensional embedding focus-
ing on specific problem, which in our case is to detect cross-network linkages
representing user identities across social networks. Liu et al. [9] propose an input-
output node embedding (IONE) framework to align user identities across social
networks belonging to the same person by learning node representations that
preserve follower-followee relationships. Man et al. [13] introduce a framework
referred to as PALE, which predicts anchor links via embeddings. First, it converts
a social network into a low dimensional node representation. They follow it up by
learning a matching function that is supervised by known anchor links. Heimann et
al. [6] explain the REGAL framework, which stands for representation learning-
based graph alignment based on the cross-network matrix factorization method.
Wang et al. [20] propose LHNE mode referred to as linked heterogeneous network
embedding which creates an unified framework to leverage structure and content
posted by users for learning node representations. Xie et al. [21] use the concept
of factoid embedding, which is an unsupervised approach to perform user identity
linkage. Our proposed approach outperforms some of these existing approaches, as
explained later in this paper.
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3 Proposed Approach

In this section, we discuss our proposed NeXLink framework for effective rep-
resentation and detection of cross-network linkages across social networks. We
consider two social networks X and Y as two undirected graphs GX(VX,EX) and
GY (VY ,EY ), where VX & VY represent the nodes (users) of graphs and EX &
EY represent the edges. An edge between nodes ui and uj indicates friendship
relation between users ui and uj . We divide the set of node pairs (uX

i , uY
j ) across

social networks X and Y into two types, namely, cross-network linkages, denoted
by CNL(VX, VY ) and other pairs are denoted by NCNL(VX, VY ). Nodes uX

i and
uY

j belonging to social networks X and Y are referred to as cross-network linkage

if uX
i and uY

j belong to the same individual and the pair (uX
i , uY

j ) ∈ CNL(VX, VY )

else (uX
i , uY

j ) ∈ NCNL(VX, VY ). Further, it may be observed in Fig. 2, that the two

users represented as two nodes uX
i and uY

j have aX, bX and cX as friends in social

network X and same friends aY , bY and cY in social network Y . We refer to such
familiar friends as common friendship and leverage this behavior in learning node
representations in our NeXLink framework. Besides familiar friends, each node also
has some friends which are specific to one social network only. In Fig. 2, nodes
dX and eX are friends of uX

i in only social network X whereas nodes f Y and gY

are friends of uY
j in only social network Y . We note that above formulations for

undirected graphs are also applicable in case of directed graphs, in which case the
friendship relation would get replaced by follow-followee relation using directed
edges.

3.1 Problem Statement

Given two graphs GX(VX,EX) and GY (VY ,EY ) as input, we define cross-network
linkage CNL(GX,GY ) as the set of user identity pairs across these two networks
X and Y , which belong to the same person. Similarly, we denote all other user pairs
which do not belong to the same person by NCNL(GX,GY . The goal of network

Fig. 2 Illustration of
common neighbors of user
identities uX

i and uY
j

belonging to networks GX

and GY . Since all neighbors
are common, it is highly
likely that uX

i and uY
j belong

to same individual than uX
k

and uY
j

GX GYaX

bX

dX

cX

eX

uX
i

uX
k

aY

bY

fY

cY

uY
j

gY



66 R. Kaushal et al.

embedding function (denoted by femb) is to transform each user identity uX
i ∈ VX

and uY
j ∈ VY into low d-dimensional vectors zX

i and zY
j such that if user identities

uX
i and uY

j belong to the same individual (i.e. they represent cross-network linkage),

then their corresponding node embeddings zX
i and zY

j are closer in embedding space
else they are far apart.

zX
i = femb(u

X
i ),∀uX

i ∈ VX.

zY
j = femb(u

Y
j ),∀uY

j ∈ VY .

such that

sim(zX
i , zY

j ) � sim(zX
k , zY

j ) and

∃ (uX
i , uY

j ) ∈ CNL(VX, VY ) ∧ (uX
k , uY

j ) ∈ NCNL(VX, VY ).

(1)

3.2 NeXLink Framework

The goal of our proposed NeXLink node embedding framework is to obtain
representations of nodes in two networks X and Y such that node pairs participating
in cross-network linkages have similar node embeddings than other node pairs. To
achieve this goal, we follow a two-step approach, as depicted in Fig. 3. In the first
step, structural similarities of nodes within or local in their respective networks are
preserved independently of the other network. In the second step, similarities of
nodes across (or global) the two networks are preserved using a common friendship

a1

b1

e1

c1

d1

GX (VX, EX)

a2

b2

e2

c2

d2

GY (VY, EY)

e2
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e1 e2
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True Identity MatchCross-network connections

Local node embeddings

Local node embeddings

Global node embeddings

Measure similarity in 
embedding space

Fig. 3 NeXLink Framework. Architecture diagram of our proposed framework that learns node
embeddings from two social networks (represented as graphs) to represent the cross-network
linkages across social networks. Local node embeddings are concatenated with global node
embeddings to generate final node embeddings
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relationship. Given the two-step process, the embedding function femb can be
broken down into two embedding functions, as shown below.

zX
i = fglobal(u

X
i )⊕ flocal(u

X
i ),∀uX

i ∈ VX.

zY
j = fglobal(u

Y
j )⊕ flocal(u

Y
j ),∀uY

j ∈ VY .
(2)

There can be different ways of combining the global and local node embeddings,
however, it turned out that concatenation is the best operation ⊕ to combine local
and global node embeddings, which we finally used in our proposed NeXLink
framework. Further, we note that our proposed approach makes use of only the
network structure in the two social networks. However, it can be easily extended to
include other sources of information from content and profile information of users,
which we leave for future work.

Step 1—Preserving Local Structure Within Social Networks We perform the
first step on the intuition that directly connected user nodes within their respective
social networks are likely to exhibit similar characteristics, based on the well
established social behavioral principle of homophily [14]. Given two nodes uX

i and
uX

k in same social network X, the goal is to define an encoding function flocal

that takes these nodes as input and learns their d-dimensional embedding vectors
zX
i ∈ Rd and zX

k ∈ Rd . To learn zX
i and zX

k for all nodes in VX, we rely upon the
probabilistic approach. The empirical probability of the relationship between two
nodes uX

i and uX
k within the same social network X can be defined as the normalized

weight of edge (wX
i,k) between the nodes. Since we consider only the structural

information of the network, therefore, for this work, we consider weights to have
binary values 1 or 0, depending upon whether there is an edge or not, respectively.
In general, the weight of the edge between nodes is intuitively proportional to
the similarity between two nodes. Similarity, we can measure other criteria like
content similarity. However, we consider only the network structure similarity in
this work. We employ a well-established network embedding algorithm, LINE [17],
to preserve the local structure.

Step 2—Preserving Global Structure Across Social Networks We propose the
second step based on the intuition that user nodes with common friends (CF ) across
the social networks are likely to belong to the same person. The degree to which
two nodes (users) uX

i and uY
j on two social networks X and Y , respectively, having

common friendship, is expressed as below.

CF(uX
i , uY

j ) = N(uX
i ) ∩N(uY

j )

N(uX
i ) ∪N(uY

j )
(3)

where N(uX
i ) and N(uY

j ) represent the set of friends of ith user in network X and

j th user in network Y , respectively. Higher is the value of common friendship (CF ),
more likely the users uX

i and uY
j would belong to the same person. Therefore, the
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goal of second encoding function fglobal is to take uX
i and uY

j as inputs and generate

d-dimensional node embeddings vectors zX
G,i ∈ Rd and zY

G,j ∈ Rd , respectively

by using supervisory information of common friendship between uX
i and uY

j in

networks X and Y , respectively, along with structural information. If uX
i and uY

j

have more common friends, their embedding vectors zX
G,i and zY

G,j are expected to
be closer in embedding space. We employ a well-established network embedding
DeepWalk [15] algorithm to preserve the local structure.

4 Data

We evaluate our approach on two network datasets, one augmented, and another a
real-world dataset.

4.1 Augmented Dataset

We use the Facebook friendship network dataset,2 provided by Viswanath et al.
[18], comprising 63,713 users and 817,090 edges. We create an undirected graph
from the dataset and filter out the nodes that have a degree less than 5, reducing
the graph to 40,711 nodes and 766,579 edges. We use this graph to create two
subgraphs using a sampling algorithm proposed by Man et al. [13]. Given a graph
G(V,E), the algorithm takes two parameters, αs, αc and produces two subgraphs
GX(VX,EX),GY (VY ,EY ). The parameter αs represents how likely are the two
subgraphs to retain the edges from the original graph, or the sparsity level. Similarly,
the parameter αc indicates the expected fraction of edges shared among the two
subgraphs, or the overlap level. Table 1 shows the number of edges and nodes in the
generated subgraphs for different values of αs and αc. Once we have the subgraphs,
we need to generate node pairs which represent CNLs and NCNLSs across the two
subgraphs, which we call as X-node pairs. To do so, we consider all the common
nodes in both the graphs, VCNL = VX ∩VY , and call them as our CNL nodes, while
we term others as NCNL nodes. Now, we take a CNL node and initiate a random
walk of a variable length t in GX, and later in GY . The random walks generate 2× t

nodes from GX and GY collectively, and these nodes are then paired with the CNL
node to form node pairs.

2http://socialnetworks.mpi-sws.org/data-wosn2009.html.

http://socialnetworks.mpi-sws.org/data-wosn2009.html
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Table 1 Statistics for the
two datasets used for the
evaluation

Graph #Nodes #Edges #CNLs

Augmented dataset

GX(αs = 0.5, αc = 0.5) 40,558 383,463 39,061

GY (αs = 0.5, αc = 0.5) 40,563 382,380

GX(αs = 0.5, αc = 0.9) 40,562 383,360 40,458

GY (αs = 0.5, αc = 0.9) 40,547 383,528

GX(αs = 0.9, αc = 0.5) 40,602 422,295 40,418

GY (αs = 0.9, αc = 0.5) 40,708 689,481

GX(αs = 0.9, αc = 0.9) 40,709 689,856 40,705

GY (αs = 0.9, αc = 0.9) 40,709 690,103

Real-world dataset

Twitter 5120 130,575 1288

Foursquare 5313 54,233

4.2 Real-World Dataset

Kong et al. [7] introduced a network dataset collected from Twitter and Foursquare
social networks. The data collection process is described in [7, 25] and used in
multiple social link prediction problems [9, 24, 26]. Since the dataset comprises two
graphs on its own, we do not need to employ any sampling algorithm to generate
subgraphs, and we present the statistical details about the dataset in Table 1. The
cross-network linkages represent the users that have profiles on both the social
networks. It is evident that such users are less in number in this real-world dataset,
compared to the number of CNLs in our augmented dataset.

5 Experiments

We design our experiments to answer the following research questions:

RQ1 How do the values αs and αc affect the retrieval of a cross-network node
match?

RQ2 How does the choice of second node embedding function fglobal affect the
cross-network node retrieval?

RQ3 How does our proposed NeXLink framework compare with other baselines
on a real-world dataset?

We implement all our experiments using NetworkX [4] for graph functions
and use OpenNE3 to run network embedding implementations. To generate the
NCNL node pairs, we keep the depth of random walk, t = 20 throughout
the experiments. When generating the embeddings for cross-network linkages, all

3https://github.com/thunlp/OpenNE.

https://github.com/thunlp/OpenNE.
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embeddings functions treat node pairs as the edges of the cross-network graph,
with CF values as the weights for cross-network edges. Given that our proposed
NeXLink framework has two steps for the preservation of structure at the local
and global level, we employ prior state-of-the-art node embedding methods at these
steps. We typically employ LINE [17] to preserve local structure and consider only
first-order proximity calculated over first-order nodes and run over 50 epochs, with
early stopping. We do not use second-order proximity since that is taken care of in
the second step of our NeXLink framework. We employ various node embedding
methods (LINE [17] and DeepWalk[15]) to preserve the global structure in the
second step of our NeXLink framework. However, as we explain in this section,
it turns out that node2vec [2] when employing common friendship across social
networks gives the best results. In node2vec, we set the parameters as p = 1 and q =
2 which, as mentioned by the authors, are more suited towards preserving structural
equivalence. All embedding functions yield 128D embeddings. We evaluate our
approach to measure how effectively can node embeddings preserve the CNLs in
lower dimensional space, and how closely do network embeddings for CNL lie in
that space. In order to compute closeness, we measure the cosine similarity over the
node embeddings. When querying for a node uX

i from the CNL pair (uX
i , uY

j ), we

count a hit if the matching node embedding zY
j for node uY

j is present in a set of
k node embeddings, ordered on their similarity. To measure accuracy, we calculate
a ratio of hits over number of queries and term it as Hit-Rate@k. Hit-Rate@k is
defined as:

Hit (uX
i ) =

{
1, if zY

j ∈ {zY
1 , zY

1 , ..., zY
k }

0, otherwise

Hit − Rate@k =
∑NCNL

i=0 Hit (uX
i )

NCNL

(4)

We choose k = [1, 5, 10, 20, 50] for all the experiments to evaluate our approach.

5.1 Effect of Sparsity and Overlap levels

The αs and αc values affect the Common Friendship (CF) values for the CNL
nodes, and since the second embedding function is trained to preserve the CF
property across networks, we see significant differences in the performances with
respect to the difference in αs and αc values. We start by employing LINE [17] to
learn the local as well as cross-network similarity structure over the four subgraph
configurations, as mentioned in Sect. 4, and present our results in Fig. 4a. We
observe that the X-node pairs with αs = 0.5 and αc = 0.9 values achieve the
highest Hit-Rate@k for all values of k, starting from 0.75 at k = 1, and up to 0.96
at k = 50. The X-node pairs with αs = 0.9 and αc = 0.5 values achieve the
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(a) (b)

(c)

Fig. 4 Results of the three experiments for our research questions (RQ1-RQ3). (a) Comparison
of Hit-Rate@k values for different sparsity (αs ) and overlap (αc) levels. (b) Comparison of Hit-
Rate@k values for different cross-network node embeddings. (c) Comparison of Hit-Rate@k
values for the baselines and NeXLink (LINE-node2vec) over the real-world dataset

lowest Hit-Rate@k values with 0.57 at k = 1 and 0.89 at k = 50. We attribute this
behavior to the fact that less number of edges and more the overlap between the two
subgraphs help the embeddings to capture structural similarities with less noise.

5.2 Effect of Cross-Network Node Embedding

We study the role of different network embedding techniques in our proposed
NetXLink framework help to preserve CNLs and their impact on the performance
of the detection of CNLs across social networks. LINE [17] is suitable for a
majority of the number of graphs which preserve local network structure through
first-order proximity, which makes it an ideal choice of node embedding method
for our within-network embeddings. Along with LINE, we use DeepWalk [15]
over X-node pairs to get cross-network embeddings, as it uses the structural
information about inter-connected nodes by performing truncated random walks to
learn latent representations of nodes in a graph, which in our case would be CNLs
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across networks. Similarly, we employ node2vec [2] which proposes a flexible
notion of node neighborhood by designing a biased random walk to learn feature
representations of graph nodes. Figure 4b shows the results of our experiments
with different node embeddings. The LINE-DeepWalk performs relatively low at
k = 1, but reaches closer to the Hit-Rate@k of LINE-LINE at higher values of
k. It can be explained as the DeepWalk algorithm uses a random walk to sample
neighbors of a node to gather the structural information, however, it doesn’t take
into the account the weights of the edges, because of which it can not leverage
the CF values for cross-network links. LINE-LINE performs relatively well as it
preserves the first-order proximity proportional to the CF values and achieves a Hit-
Rate@1 of about 0.75. However, using the bias parameters from node2vec to better
represent structural equivalence, we gain a significant advantage over LINE-LINE
and LINE-DeepWalk to get a Hit-Rate@k of around 0.99 for most of the k values.
By biasing the walk towards detecting cross-linkages and weighting the transition
probabilities towards the CF values, LINE-node2vec gives an optimal representation
of cross-linkages that are placed closer to each other in the embedding space.

5.3 Comparison with the Baselines

Finally, we evaluate our best performing combination of LINE-node2vec in the
NeXLink framework with competing baselines. Along with the structural informa-
tion, REGAL [6] allows using attribute information for node similarity. However,
when comparing with our approach, we only use the structural information from the
real-world dataset, described in Sect. 4.2. We also compare our approach with IONE
[9] that takes two network graphs as input and produces node embeddings based
on the follower and followee relationship among the nodes. We employ our best
performing LINE-node2vec technique and elaborate on its performance on the real-
world dataset. Figure 4c illustrates the performance of the baselines, as compared
to our approach. Given the evaluation of IONE uses the same dataset, we were
to successfully reproduce their results, as mentioned in their work [9]. However,
it still underperforms when compared to the other approaches. REGAL achieves
the highest Hit-Rate@1 as it uses node degrees to capture structural similarities,
and node degrees partially contribute to the CF values. However, it still fails to
leverage the essential CF values completely, as one of its limitations is not being
able to take the edge weights into account. Therefore, its performance stagnates at
higher k values. In contrast, LINE-node2vec starts below REGAL at k = 1, but
achieves higher Hit-Rate@k values with the increase in k. LINE-node2vec learns
both within-graph and cross-graph structural features from the real-world dataset
and effectively represents the similarities in low-embedding space.
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6 Limitations, Discussions and Future Work

While developing NeXLink, we identify some of the limitations of our approach.
Firstly, we only include structural information indicating standard connections in
the two networks, to learn node representations. We can utilize more rich features
to gain more comprehensive node representations. Secondly, an essential step in
our approach is to create cross-network pairs, which we accomplish using random
walks. We can evaluate more efficient ways to sample the cross-network pairs.
And last, the two significant limitations of node embeddings are (a) the need to
define an objective function, based on which we learn the embeddings, and (b) node
embedding models are transductive, which means that it is not possible to generate
the embeddings for the nodes that we do not see during the training. To this end, we
can consider the use of graph neural networks [5, 16].

In this work, we propose our NeXLink framework for effective representation of
cross-network linkages across social networks. Our framework works by preserving
the local structure of nodes within the same social network and global structure
manifested in the form of common friends exhibited by nodes participating in
cross-network linkages. We perform an extensive evaluation of our approach on
two datasets, one of which we augment from Facebook social network, and the
other comprises of Twitter-Foursquare node pairs. Given that NeXLink framework
is flexible, we explored numerous state-of-the-art node embedding algorithms and
found that LINE-node2vec performs the best when provided with supervisory infor-
mation of common friendship. It performs with average Hit@1 rate of 98% across
all configurations of the augmented dataset. Further our approach outperforms state-
of-the-art node representation algorithms LINE and DeepWalk for representing
cross-network linkages across the social networks. This can be primarily attributed
to the fact that our approach preserves local and global cross-network links more
effectively than these previous approaches which are specifically targeted to perform
well on single networks. Our framework works better than other state-of-the-art
node embedding approaches like IONE and REGAL for identity linkage on a real-
world dataset. This is because our framework performs biased walks in accordance
with the common friendship metric for cross-network links.

As future work, we can include node attributes derived from user profile
configuration and user content in the NeXLink framework and their impact on
performance measured. At the algorithmic level, deep learning-based approaches
for node embedding would also be a right direction to explore.
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Improved Algorithm for Neuronal
Ensemble Inference by Monte Carlo
Method

Shun Kimura and Koujin Takeda

Abstract Neuronal ensemble inference is one of the significant problems in the
study of biological neural networks. Various methods have been proposed for
ensemble inference from their activity data taken experimentally. Here we focus
on Bayesian inference approach for ensembles with generative model, which was
proposed in recent work. However, this method requires large computational cost,
and the result sometimes gets stuck in bad local maximum solution of Bayesian
inference. In this work, we give improved Bayesian inference algorithm for these
problems. We modify ensemble generation rule in Markov chain Monte Carlo
method, and introduce the idea of simulated annealing for hyperparameter control.
We also compare the performance of ensemble inference between our algorithm and
the original one.

1 Introduction

In recent study of biological neural network, advanced recording technologies such
as calcium imaging or functional magnetic resonance imaging enable us to obtain
neuronal activity data from thousands of neurons simultaneously. Such activity data
will reveal features of neural network. For instance, neurons in the same neuronal
ensemble tend to fire synchronously [1, 2], therefore identification of ensembles
is significant for understanding whole neural network structure and its dynamical
behavior. In fact, there are some studies on neural network structure using ensemble
information [3, 4].

Several statistical methods are known for ensemble identification in activity data.
For instance, principal component analysis or singular value decomposition can
identify ensembles [5]. Their advantage is that they can effectively reduce dimension
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and volume of activity data, which are very large in general. On the other hand,
these methods require prior knowledge such as the number of ensembles. There
is an alternative approach using graph theory, where neuronal activity is expressed
as nodes in graph. From such graph, ensemble activity can be extracted by graph
clustering method such as spectral clustering [6], while this method is basically
applied to static data and neglects dynamical behavior.

One of the strategies to overcome above-mentioned problems is Bayesian
modeling for neuronal activity. In recent work, generative model of ensemble
activity was proposed by Bayesian inference framework [7]. Using Markov chain
Monte Carlo (MCMC) method, this enables us to infer neuronal ensembles and their
dynamical behavior. However, this requires large computational cost in MCMC,
and the result sometimes gets stuck in bad local maximum solution of Bayesian
inference.

In this work, for reduction of computational cost and bad local maximum
problem, we propose an improved algorithm for neuronal ensemble identification.
First, we change the update rule in MCMC for controlling the number of ensembles.
Second, we introduce the idea of simulated annealing for hyperparameter control.
We also compare our algorithm and the original one in terms of ensemble identifi-
cation using synthetic data, and discuss the advantage of our method.

2 Theory

2.1 Bayesian Inference Model

Here we outline the framework of Bayesian inference. We basically follow the
notation in the original paper [7]. See it for the detail. Each neuron has the label i ∈
{1, 2, . . . N}, and N is the total number of neurons. The variable k ∈ {1, 2, . . . M} is
the time step, and M is the size of time frame. The variable μ ∈ {1, 2, . . . A} is the
label of neuronal ensemble, and A is the total number of ensembles. The ith neuron
has neuronal membership label to an ensemble, ti ∈ {1, 2, . . . , A}, and activity
variable sik ∈ {0, 1} at time k. The μth ensemble has ensemble activity variable
ωkμ ∈ {0, 1} at time k. The state 1 for binary variable means active (firing) neuron
or neuronal ensemble, and the state 0 is inactive.

With these variables, we give generative model for neuronal activity as the
conditional joint probability,

P(t,ω, s|n,p,λ) ∝
(

N∏

i=1

nti

)

·
⎛

⎝
A∏

μ=1

M∏

k=1

p
ωkμ
μ (1− pμ)1−ωkμ

⎞

⎠

·
(

N∏

i=1

M∏

k=1

[λti (ωkti )]sik [1− λti (ωkti )](1−sik)

)

, (1)
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where boldface letter represents the set of variables (e.g. t = {t1, t2, . . . tN }). The
μth ensemble has activity rate pμ, which means activity of ensemble. It also has
assign probability nμ, which describes how many neurons belong to this ensemble.
Conditional activity rate λti of the ith neuron for given ensemble activity ωkti is
defined as

λti (ωkti ) = P(sik = 1 | ωkti ) for ωkti ∈ {0, 1}. (2)

Accordingly, inactivity rate is expressed as 1 − λti (ωkti ) = P(sik = 0 | ωkti ). The
parameter λ describes coherence or incoherence (=noise) between neuronal activity
and ensemble activity. We assume that the priors of ensemble activity rate p and
conditional activity rate λ are beta distribution (denoted by Beta), while the prior of
assign probability n is Dirichlet distribution (by Dir), namely

P(pμ) = Beta
(
α(p)

μ , β(p)
μ

)
, (3)

P(λμ(z)) = Beta
(
α(λ)

z,μ, β(λ)
z,μ

)
, (4)

P(n1, · · · , nA) = Dir
(
α

(n)
1 , · · · , α

(n)
A

)
, (5)

where α
(p)
μ , β

(p)
μ , α

(λ)
z,μ, β

(λ)
z,μ, α

(n)
μ (z ∈ {0, 1}, μ ∈ {1, 2, . . . , A}) are hyperpa-

rameters. The relation among variables/parameters in this generative model is
represented graphically in Fig. 1a.

For improvement of inference accuracy, we analytically integrate out the set of
model parameters {n,p,λ}. Integration over these parameters leads to the joint
probability as

P(t,ω, s) =
∫

dndpdλ P(t,ω, s|n,p,λ)P (n,p,λ)

∝
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Fig. 1 Graphical representation of the relation among variables/parameters in Bayesian inference
model: (a) the full model and (b) the model after integrating out of n,p,λ
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Note that B(·, ·) is beta function, and B is defined by gamma functions as

B(x1, · · · , xA) ≡
∏A

k=1 Γ (xk)

Γ (
∑A

k=1 xk)
. (7)

In addition, we introduce several variables,
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where δij is Kronecker delta function, boldface μ is the set of neurons in the μth
ensemble, and z ∈ {0, 1}. All variables are defined for the μth ensemble, and their
meanings are as follows: Gμ counts the number of neurons in the ensemble. Hμ

and H̄μ indicate frequencies of active and inactive states, respectively. T z1
μ and

T z0
μ measure coherence between ensemble activity and neuronal activity under the

same superscript numbers, and incoherence (=noise) under different superscript
numbers. The relation among variables/parameters in the model after integrating
out of parameters {n,p,λ} is represented in Fig. 1b.

The posterior P(t,ω|s) can be constructed from this model. With this posterior,
we can infer membership t and ensemble activity ω from neuronal activity variable
s, which is obtained experimentally.

2.2 Improvement of Inference Algorithm for the Number of
Neuronal Ensembles

With the scheme mentioned above, we can obtain neuronal ensembles and ensem-
bles activity by Bayesian inference. However, the number of possible neuronal states
in all neurons is huge, therefore direct Bayesian inference is infeasible.

For computational cost problem, we employ MCMC to evaluate maximum of
posterior distribution. In the previous work [7] collapsed Gibbs sampling is used,
where the number of ensembles A is unknown and we also need to evaluate it. For
inference of A, Dirichlet process (DP) [8] is introduced, and we can vary A till
convergence of DP. However, we need to start with large A as initial condition in
DP. If we start with small A, we will get stuck at the solution of very few ensembles
or without ensemble structure, which is supposed to be bad local maximum solution
of Bayesian inference. Hence, this method still requires large computational cost at
early stage of MCMC for successful inference, because the cost is proportional to
A at a given MCMC stage. (See Algorithm 1.)

To cope with this problem, we propose a novel method. The differences from the
previous work are summarized as follows:

– In our method, when new ensemble is created for increasing A in DP, multiple
neurons can move to new ensemble simultaneously, while single neuron can
move to new ensemble in the original. Introduction of such simultaneous move
will make new ensemble hard to vanish.

– We apply the idea of simulated annealing to transient probability to new
ensemble in DP.

As shown later, our method enables us to infer appropriate ensemble structure
without starting large A.

We give the detail of our algorithm in the following. In our MCMC, we first
update ensemble activity ω, then update ensemble membership label t by collapsed
Gibbs sampling. This process is the same as the original. Next, we employ DP
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in order to increase/decrease the number of ensembles. Suppose that we have A

ensembles in the intermediate stage of MCMC. Destination ensemble of the ith
neuron after MCMC update, denoted by t∗i , is drawn from the probability,

qi(t
∗
i ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G
(\i)
t∗i

q
[γ ]
α +N − 1

for t∗i = 1, . . . , A,

q
[γ ]
α

q
[γ ]
α +N − 1

for t∗i = A+ 1.

(9)

The backslash \ denotes the removal of a specific element, and G
(\i)
t∗i

means the

number of neurons in the t∗i th ensemble, where the ith neuron is not counted. Note

that
∑A

μ=1 G
(\i)
μ = N−1 and qi(t

∗
i ) satisfies

∑A+1
μ=1 qi(t

∗
i ) = 1. The parameter q

[γ ]
α

is proportional to transient probability to the new (A+1)th ensemble. As mentioned
before, we apply the idea of simulated annealing to DP. In our method, the transient
parameter at the γ th MCMC stage q

[γ ]
α decays exponentially as

q[γ ]α = q[0]α e−
γ
τ , (10)

where τ is decay constant. The idea of Eq. (10) is that the number of ensembles A

is changed frequently at early MCMC stage for exploring appropriate A, while the
change is suppressed at late stage for convergence. If new ensemble is accepted
in DP, we must generate new ensemble activity ω and hyperparameters of new
ensemble. We give hyperparameters of the new (A + 1)th ensemble as arithmetic
average of already-existing hyperparameters, because new hyperparameter should
have the same scale as others for appropriate convergence of MCMC.

α
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1
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μ=1

α(n)
μ . (11)

In addition, if some already-existing ensembles become empty (=no neuron) after
update, we delete these ensembles and their hyperparameters.

Now we consider the case that the membership label t0 = {t0
1 , t0

2 , . . . , t0
N } may

be updated to new one t∗ = {t∗1 , t∗2 , . . . , t∗N } in MCMC. In this update, the ratio
of conditional probabilities between t0 and t∗ is calculated from Eq. (6), which is
necessary for acceptance rule of MCMC update,
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P(t∗,ω, s)

P (t0,ω, s)
=
∏A

μ=1

{
Γ (Gμ + αμ)

∏
z={0,1} B(Tz1

μ , Tz0
μ )
}
|t=t∗

∏A
μ=1

{
Γ (Gμ + αμ)

∏
z={0,1} B(Tz1

μ , Tz0
μ )
}
|t=t0

·
[

Γ (
∑A+1

μ=1 α
(n)
μ )

Γ (
∑A

μ=1 α
(n)
μ )

· Γ (GA+1 + α
(n)
A+1)

Γ (α
(n)
A+1)

· B(HA+1, H̄A+1) ·∏z={0,1} B(T z1
A+1, T

z0
A+1)

B(α
(p)

A+1, β
(p)

A+1) ·
∏

z={0,1} B(α
(λ)
z,A+1, β

(λ)
z,A+1)

]

. (12)

The factor in the square bracket is the contribution from transient neurons to the
new (A+ 1)th ensemble. If there is no neuron to the new ensemble, the factor in the
square bracket vanishes because the denominator and the numerator cancel out.

For Metropolis-Hastings update rule, we also need to define proposal distribution
from the t0

i th ensemble to the t∗i th, Qi(t
∗
i |t0

i ), and its reverse process Qi(t
0
i |t∗i )

for the ith neuron. These probabilities are calculated to satisfy detailed balance
condition as

Qi(t
∗
i |t0

i ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G
(\i)
t∗i

q
[γ ]
α +N − 1

for t∗i = 1, . . . , A,

q
[γ ]
α

q
[γ ]
α +N − 1

for t∗i = A+ 1,

(13)

Qi(t
0
i |t∗i ) =

G
(\i)
t0
i

N − 1
, (14)

for the γ th MCMC stage, where Eq. (13) is the same as (9). If multiple neurons
move simultaneously, we must consider the product of the probabilities above for
all transient neurons. As a result, acceptance rate from the membership label t0 to
t∗ is written as

a(t∗, t0) = min

{

1,
P (t∗,ω, s)

P (t0,ω, s)

Q(t0|t∗)
Q(t∗|t0)

}

, (15)

where Q(t0|t∗) =
N∏

i=1

Qi(t
0
i |t∗i ), Q(t∗|t0) =

N∏

i=1

Qi(t
∗
i |t0

i ). (16)

Finally, we update hyperparameters of {p,λ,n} for remaining ensembles. For
hyperparameter update, we introduce learning rate ε[γ ], where γ is the stage of
MCMC update as in (10), to control the effect of simulated annealing. Here we use
sigmoid function for ε[γ ] because it is bounded and smooth,
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ε[γ ] = 1

1+ e−
γ
τ

. (17)

The decay constant τ is the same as in (10). Note that we do not need to introduce
additional hyperparameter for the learning rate. Following the update rule in the
original [7], hyperparameters should be updated with learning rate ε[γ ] as

α̃(p)
μ = α(p)

μ + ε[γ ]
(

M∑

k=1

ωkμ

)

, β̃(p)
μ = β(p)

μ + ε[γ ]
(

M∑

k=1

(1− ωkμ)

)

,

α̃(λ)
z,μ = α(λ)

z,μ + ε[γ ]
⎛

⎝
M∑

k=1

⎛

⎝
∑

i∈μ

δz,ωkμ
δ1,sik

⎞

⎠

⎞

⎠,

β̃(λ)
z,μ = β(λ)

z,μ + ε[γ ]
⎛

⎝
M∑

k=1

⎛

⎝
∑

i∈μ

δz,ωkμ
δ0,sik

⎞

⎠

⎞

⎠,

α̃(n)
μ = α(n)

μ + ε[γ ]Gμ, (18)

where tilde means updated hyperparameter. By introducing learning rate, hyper-
parameter update is suppressed at early stage of MCMC, when the number of
ensembles A is frequently changed instead.

To conclude, we summarize our MCMC process as the pseudo code in Algo-
rithm 1. The symbol ω\kμ means the set of parameters ω excepting ωkμ for
describing collapsed Gibbs sampling.

3 Experiment

3.1 Generative Model for Synthetic Data

Before discussion on utility of our algorithm, we summarize how to generate
synthetic neuronal activity data for our numerical experiment. In our generative
model, neuronal activities are closely related to ensemble activities as in Eq. (2), and
the relation between neuronal/ensemble activities is characterized by conditional
activity rate λ. Hence, to generate synthetic data, we first divide all neurons into
ensembles. Next we generate ensemble activity data ω based on ensemble activity
parameter p. In the last we determine activity of each neuron s by conditional
activity rate λ.

The algorithm of synthetic data generation is summarized as the pseudo code in
Algorithm 2. Detail can be found in the original work as well [7].
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Algorithm 1 Inference of ensembles activity and the number of ensembles
initialize ω and t

while the number of ensembles A converges do
for each ensemble μ ∈ [1, A], k ∈ [1,M] do

draw ωkμ ∼ P(ωkμ = 1|t,ω\kμ, s)

end for
for each neuron i ∈ [1, N ] do

draw destination ensemble t∗i ∼ q(t∗i ) in Eq. (9)
if t∗i = A+ 1 then

A → A+ 1
give new hyperparameters as Eq. (11)

end if
end for
for each neuron i ∈ [1, N ] do

draw t ∼ a(t∗, t0) in Eq. (16)
end for
for each ensemble μ ∈ [1, A] do

if Gμ = 0 then
delete the μth ensemble and its hyperparameters

end if
end for
update hyperparameters as Eq. (18)

end while

Algorithm 2 Generation of synthetic neuronal activity data
set all ω and s to be 0
for each ensemble μ ∈ [1, A], k ∈ [1,M] do

draw ωkμ ∼ P(ωkμ)

end for
for each neuron i ∈ [1, N ] do

deal the ith neuron to an ensemble
end for
for each neuron i ∈ [1, N ], k ∈ [1,M] do

if ωkti = 1 then
draw sik ∼ P(sik |ωkti = 1)

else
draw sik ∼ P(sik |ωkti = 0)

end if
end for

3.2 Numerical Validation

To validate our method, we conduct numerical experiment for neuronal ensemble
inference. In the experiment, we first generate synthetic data by Algorithm 2, then
we extract the information of ensembles by Algorithm 1. We illustrate a sample of
activity matrix s in Fig. 2a, which is obtained by Algorithm 2. In this sample we
have 10 ensembles and 100 neurons, where each ensemble has equally 10 neurons.
The vertical axis shows the neuron label, which is sorted by neuronal membership
label t . We can easily see the structure of 10 ensembles, however we should note
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Table 1 The condition of
synthetic data generation

Parameter Value

The number of neurons N = 100

The number of ensembles A = 10

Ensemble activity rate pμ = 0.1 (∀μ)

Conditional activity rate λμ(0) = 0.01, λμ(1) = 0.6 (∀μ)

that it cannot be seen if neuron labels are randomly permuted. The parameters for
synthetic data generation are summarized in Table 1. All ensembles/neurons are
generated with the same ensemble activity rate p and conditional activity rate λ.

For ensemble inference, we use the data in Fig. 2a as input activity s. As shown
in Algorithm 1, we repeatedly update ensemble activity ω, ensemble membership
label t , and hyperparameters till the number of transient neurons in DP becomes
sufficiently small. In this experiment, we set initial number of ensembles A = 3,
decay constant τ = 10, initial transient parameter q

[0]
α = 100 and hyperparameters

α
(p)
μ = 100, β

(p)
μ = 100, α

(λ)
z,μ = 100, β

(λ)
z,μ = 100, α

(n)
μ = 100 for all μ, z. At

initialization step, we randomly assign initial membership label to each neuron
uniformly between 1 to A.

In Fig. 2b, we show a typical example of dynamical membership label behavior
in MCMC by the heat map, where the horizontal axis indicates the stage of MCMC
update. The colors in the heat map distinguish ensemble numbers {1, 2, . . . , A}.
The original ensemble structure is clearly obtained at most after 40 MCMC stages.

In Fig. 2c, we show the behavior of the number of ensembles A and transient rate
in MCMC, which is calculated from the result in Fig. 2b. Transient rate is defined
by

transient rate = 1

N

N∑

i=1

(
1− δ

t
[γ ]
i ,t

[γ−1]
i

)
(19)

at the γ th MCMC stage, namely the fraction of transient neurons between the (γ −
1)th and the γ th MCMC stages. The broken line represents the number of ensembles
and the solid line represents transient rate. From Fig. 2c, we find that the number of
ensembles and ensemble membership label converge after 40 MCMC stages.

We should note that the number of final ensembles is 5, which is smaller than
the ground-truth value 10. This is because some ensembles are merged in the final
result. To manage this problem, we use our algorithm repeatedly with another initial
membership label, which leads to different ensemble structure. Even in this case,
we will obtain blockwise ensemble structure again like in Fig. 2b, while the number
of ensemble is still smaller than 10. However, we should note that other ensembles
are merged under different initial membership label. Therefore, we can obtain the
original 10-ensemble structure exactly by combining several MCMC results with
different initial membership label.

When we change conditional activity rate λ, which controls coherence or noise,
the ensemble inference becomes easy/hard. Even under hard condition or noisy case,
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we can still obtain nearly correct ensemble structure, and noise can be removed as
much as possible. In addition, even if the sizes of ground-truth ensembles are not
equal unlike Fig. 2a, we can infer correct ensemble structure.

3.3 Comparison with the Original Algorithm

We compare our algorithm and the original one in Ref. [7]. For comparison, we
use the same synthetic data in Fig. 2a. In the original algorithm, we do not use
simultaneous update rule for multiple neurons to new ensemble, nor simulated
annealing idea for hyperparameters (or take the limit of τ →+∞).

A typical example of dynamics is shown in Fig. 3. In Fig. 3a, we start with
small number of ensembles (A = 3) like our algorithm in Sect. 3.2. However, we
cannot obtain blockwise structure. All ensembles are merged into one at late MCMC
stage. In Fig. 3b, we show the number of ensembles and transient rate in the result
of Fig. 3a, which exhibits slow convergence of transient rate. We verify that this
result does not depend on the initial condition such as ensemble membership label.
From these results, we conclude that the original algorithm will get stuck in bad
local maximum of Bayesian inference, when we start with small initial number of
ensembles.

4 Discussion and Perspective

In this work, we proposed Bayesian inference algorithm with faster convergence. In
our method, we introduced the update rule to new ensemble for multiple neurons and
the idea of simulated annealing, to avoid bad local maximum solution of Bayesian
inference. For simulated annealing, we introduced decay constant τ to control
annealing schedules of transient probability and learning rate. As a consequence,
we find that our method can successfully obtain blockwise neuronal ensemble
structure by numerical experiment for synthetic data, even with small initial number
of ensembles. We also compare our algorithm with the original one, and the result
indicates our algorithm has advantage for finding correct ensemble solution.

Note that our method in this work focuses on neuronal ensemble identification,
not for the detail of neural network structure like connection. However, we believe
that our idea for ensemble identification will be helpful for understanding whole
structure of biological neural network. Moreover, by further improvement of our
method, we think that we can construct Bayesian inference framework for the detail
of neural network structure.

Several issues are remained as future works. First, the additional hyperparameter
τ may also be useful for finding hierarchical ensemble structure. If τ is set to be
large or annealing schedule is slow, we can obtain finer ensemble structure, while
it requires many MCMC stages till convergence. On the other hand, if τ is small
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we can obtain ensemble structure more faster. However, only large scale structure
will be found and fine structure will be neglected. Even in this case, we can obtain
fine structure if we use this method repeatedly, as mentioned in Sect. 3.2. We should
investigate the role of the hyperparameter τ in more detail.

Second, we should apply our algorithm to real neuronal activity data, which we
are planning at present. One of the problems for application is that real experimental
data of neuronal activity is often continuous, not binary like our formulation. The
natural idea for application to continuous data is to binarize real activity data,
however this may neglect significant information in neuronal activity. Another idea
is to generalize our formalism to continuous activity data, and for this idea we must
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modify generative model for continuous data. We should consider which strategy is
more appropriate for application to real activity data.
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Testing for Network and Spatial
Autocorrelation

Youjin Lee and Elizabeth L. Ogburn

Abstract Testing for dependence has been a well-established component of spatial
statistical analyses for decades. In particular, several popular test statistics have
desirable properties for testing for the presence of spatial autocorrelation in contin-
uous variables. In this paper we propose two contributions to the literature on tests
for autocorrelation. First, we propose a new test for autocorrelation in categorical
variables. While some methods currently exist for assessing spatial autocorrelation
in categorical variables, the most popular method is unwieldy, somewhat ad hoc, and
fails to provide grounds for a single omnibus test. Second, we discuss the importance
of testing for autocorrelation in data sampled from the nodes of a network, motivated
by social network applications. We demonstrate that our proposed statistic for
categorical variables can both be used in the spatial and network setting.

1 Introduction

In studies using spatial data, researchers routinely test for spatial dependence
before proceeding with statistical analysis [8, 17, 20]. Spatial dependence is
usually assumed to have an autocorrelation structure, whereby pairwise correlations
between data points are a function of the geographic distance between the two
observations [6, 26]. Because autocorrelation is a violation of the assumption of
independent and identically distributed (i.i.d.) observations or residuals required by
most standard statistical models and hypothesis tests [1, 17, 18], testing for spatial
autocorrelation is a necessary step for valid statistical inference using spatial data.
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Taking temporal dependence into account is also widely practiced in time series
settings. But other kinds of statistical dependence are routinely ignored. In many
public health and social science studies, observations are collected from individuals
who are members of one or a small number of social networks within the target
population, often for reasons of convenience or expense. For example, individuals
may be sampled from one or a small number of schools, institutions, or online
communities, where they may be connected by ties such as being related to one
another; being friends, neighbors, acquaintances, or coworkers; or sharing the same
teacher or medical provider. If individuals in a sample are related to one another in
these ways, they may not furnish independent observations, and yet most statistical
analyses in the literature use i.i.d. data methods [16]. This failure to account for
dependence can result in anticonservative inference: inflated false positive rates and
artificially small p-values.

In the literature on spatial and temporal dependence, dependence is often implic-
itly assumed to be the result of latent traits that are more similar for observations
that are close than for distant observations. This latent variable dependence [24] is
likely to be present in many network contexts as well. In networks, ties often present
opportunities to transmit traits or information from one node to another, and such
direct transmission will result in dependence due to direct transmission [24] that is
informed by the underlying network structure. In general, both of these sources of
dependence result in positive pairwise correlations that tend to be larger for pairs of
observations from nodes that are close in the network and smaller for observations
from nodes that are distant in the network. Network distance is usually measured by
geodesic distance, which is a count of the number of edges along the shortest path
between two nodes. This is analogous to spatial and temporal dependence, which
are generally thought to be inversely related to (Euclidean) distance.

Despite increasing interest in and availability of social network data, there is a
dearth of valid statistical methods to account for network dependence. Although
many statistical methods exist for dealing with dependent data, almost all of
these methods are intended for spatial or temporal data—or, more broadly, for
observations with positions in R

k and dependence that is related to Euclidean
distance between pairs of points. The topology of a network is very different from
that of Euclidean space, and many of the methods that have been developed to
accommodate Euclidean dependence are not appropriate for network dependence.
The most important difference is the distribution of pairwise distances which, in
Euclidean settings, is usually assumed to skew towards larger distances as the
sample grows, with the maximum distance tending to infinity with sample size n.
In social networks, on the other hand, pairwise distances tend to be concentrated
on shorter distances and may be bounded from above. However, as we elaborate in
Sect. 2, methods that have been used to test for spatial dependence can be adapted
and applied to network data.

The most popular tests for spatial autocorrelation use Moran’s I statistic [23]
and Geary’s C statistic [13] for continuous random variables. In a companion
paper, we show that Moran’s I provides valid tests of network dependence
whenever the dependence is inversely related to a measure of network distance [16].
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For categorical random variables, however, available tests based on join count
analysis [5] are unwieldy and fail to provide a single omnibus test of dependence.
Categorical random variables are especially important in social network settings,
where group affiliations are often of interest [15, 19, 35]. Join count analysis has
been recently used for testing autocorrelation in categorical outcomes sampled from
social network nodes (e.g. [21]). Farber et al. [9] proposed a more elegant test for
categorical network data and explored its performance in data generated from linear
spatial autoregression (SAR) models [14, 20], which are parametric models for
network data [9, 12]. As far as we are aware, all of the previous work on testing for
network dependence in categorical variables assumes that the data were generated
from SAR models, and none of this previous work has considered the performance
of autocorrelation tests for more general network settings. Although SAR models
are often used to model network dependent data, there is very little evidence that
most social network data truly conform to these models. In particular, these models
cannot capture general forms of latent variable dependence or of dependence due to
direct transmission.

In this paper we propose a new test statistic that generalizes Moran’s I for
categorical random variables. We demonstrate that both Moran’s I and our new
test for categorical data can be used to test for dependence among observations
sampled from a single social network (or a small number of networks). We assume
that any dependence is monotonically inversely related to the pairwise distance
between nodes, but otherwise we make no assumptions about the structure of the
dependence, and we do not require any parametric assumptions. These tests allow
researchers to assess the validity of i.i.d statistical methods, and are therefore the
first step towards correcting the practice of defaulting to i.i.d. methods even when
data may exhibit network dependence.

2 Methods

2.1 Moran’s I

Moran’s I takes as input an n-vector of continuous random variables and an n × n

weighted distance matrix W, where entry wij is a non-negative, non-increasing
function of the Euclidean distance between observations i and j . Moran’s I is
expected to be large when pairs of observations with greater w values (i.e. closer in
space) have larger correlations than observations with smaller w values (i.e. farther
in space). The choice of non-increasing function used to construct W is informed by
background knowledge about how dependence decays with distance; it affects the
power but not the validity of tests of independence based on Moran’s I .

Let Y be a continuous variable of interest and yi be its realized observation for
each of n units (i = 1, 2, . . . , n). Each observation is associated with a location,
traditionally in space but we will extend this to networks. Let W be a weight matrix
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signifying closeness between the units, e.g. a matrix of pairwise Euclidean distances
for spatial data or an adjacency matrix for network data. (The entries Aij in the
adjacency matrix A for a network are indicators of whether nodes i and j share a
tie.) Then Moran’s I is defined as follows:

I =

n∑

i=1

n∑

j=1
wij

(
yi − ȳ

)(
yj − ȳ

)

S0

n∑

i=1

(
yi − ȳ

)2
/n

, (1)

where S0 =
n∑

i=1
(wij +wji)/2 and ȳ =

n∑

i=1
yi/n. Under independence, the pairwise

products (yi − ȳ)(yj − ȳ) are each expected to be close to zero. On the other hand,
under network dependence adjacent pairs are more likely to have similar values
than non-adjacent pairs, and (yi − ȳ)(yj − ȳ) will tend to be relatively large for
the upweighted adjacent pairs; therefore, Moran’s I is expected to be larger in the
presence of network dependence than under the null hypothesis of independence.

2.2 New Methods for Categorical Random Variables

For a K-level categorical random variable, join count statistics compare the number
of adjacent pairs falling into the same category to the expected number of such
pairs under independence, essentially performing K separate hypothesis tests. As
the number of categories increases, join count analyses become quite cumbersome.
Furthermore, they only consider adjacent observations, thereby throwing away
potentially informative pairs of observations that are non-adjacent but may still
exhibit dependence. Finally, the K separate hypothesis tests required for a join count
analysis are non-independent and it is not entirely clear how to correct for multiple
testing. To overcome this last limitation, Farber et al. [10] proposed a single test
statistic that combines the K separate join count statistics.

Instead of extending join count analysis, we propose a new statistic for cate-
gorical observations using the logic of Moran’s I . This has two advantages over
the proposal of [10]: it incorporates information from discordant, in addition to
concordant, pairs, and it weights pairs according to their probability under the null,
allowing more “surprising” pairs to contribute more information to the test. To
illustrate, under network dependence adjacent nodes are more likely to have con-
cordant outcomes—and less likely to have discordant outcomes—than they would
be under independence. We operationalize independence as random distribution of
the outcome across the network, holding fixed the marginal probabilities of each
category. The less likely a concordant pair (under independence), the more evidence
it provides for network dependence, and the less likely a discordant pair (under
independence), the more evidence it provides against network dependence. Using
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this rationale, a test statistic should put higher weight on more unlikely observations.
The following is our proposed test statistic:

Φ = {
n∑

i=1

n∑

j=1

wij

{
2I(yi = yj )− 1

}
/pyi

pyj
}/S0, (2)

where pyi
= P(Y = yi), pyj

= P(Y = yj ), and S0 =
n∑

i=1
(wij + wji)/2. The

term (2I(yi = yj ) − 1) ∈ {−1, 1} allows concordant pairs to provide evidence
for dependence and discordant pairs to provide evidence against dependence. The
product of the proportions pyi

and pyj
in the denominator ensures that more unlikely

pairs contribute more to the statistic. As the true population proportion is generally
unknown, {pk : k = 1, . . . , K} should be estimated by sample proportions for each
category.

The first and second moment of Φ are derived in Appendix 1. Asymptotic
normality of the statistic Φ under the null can also be proven based on the
asymptotic behavior of statistics defined as weighted sums under some constraints.
For more details see Appendix 2. For binary observations, which can be viewed as
categorical or continuous, our proposed statistic has the desirable property that the
standardized version of Φ is equivalent to the standardized Moran’s I . Tests can be
derived based on the asymptotic normal distribution of Φ under the null, but tests
based on the permutation distribution of Φ when node labels are permuted but the
adjacency matrix is held fixed may have better performance in finite sample sizes.

2.3 Choosing the Weight Matrix W

Tests for spatial dependence take Euclidean distances (usually in R
2 or R3) as inputs

into the weight matrix W. In networks, the entries in W can be comprised of any
non-increasing function of geodesic (or other) distance, but for robustness we use
the adjacency matrix A for W, where Aij is an indicator of nodes i and j sharing
a tie. The choice of W = A puts weight 1 on pairs of observations at a distance
of 1 and weight 0 otherwise. In many spatial settings, subject matter expertise can
facilitate informed choices of weights for W (e.g. [27, 33]), and if researchers have
concrete information about how dependence decays with geodesic network distance
then a more informed choice of W can improve the power of the test.

3 Simulations

In Sect. 3.1, we demonstrate the validity and performance of our new statistic, Φ, for
testing spatial autocorrelation in categorical variables. In Sect. 3.2, we demonstrate
the performance of Φ for testing for network dependence.
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3.1 Testing for Spatial Autocorrelation in Categorical Variables

We replicated one of the data generating settings used by Farber et al. [10] and
implemented permutation tests of spatial dependence using Φ. First, we generated a
binary weight matrix W with entries wij indicating whether regions i and j are
adjacent. The number of neighbors (qi) for each site i was randomly generated
through qi = 1 + Binomial(2(d − 1), 0.5) for a fixed parameter d that controls
the expected number of neighbors. We simulated 500 independent replicates of n =
100 observations under each of four different settings, varying the values of d =
3, 5, 7, 10. We then used W to generate a continuous, autocorrelated variable:

Y ∗ = (In − ρW)−1ε, ε = {εi
i.i.d.∼ N(0, 1) : i = 1, . . . , n},

where In is a n × n identity matrix and ρ controls the amount of dependence.
When ρ = 0, Y ∗’s are i.i.d. while positive ρ induces some dependence among
Y ∗’s informed by W. Since Y ∗ is continuous, we applied cutoffs based on the
(0.25, 0.5, 0.75) quantiles of each simulated dataset to convert Y ∗ into categorical
observations Y = (Y1, Y2, . . . , Yn) having K = 4 categories.

Figure 1 presents the simulation results. It shows that under the null (ρ = 0),
the rejection rate is close to the nominal level of α = 0.05 and that the power to
detect dependence increases with ρ. Moreover, as the expected number of adjacent
neighbors, d, increases, power tends to increase at fixed ρ when ρ is relatively small
(ρ < 0.6). This relationship is reversed when ρ ≥ 0.6. This can be explained by
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Fig. 1 Permutation tests based on Φ. Dependence increases as ρ increases, and the y-axis is
the proportion of 500 independent simulations in which the test rejected the null hypothesis of
independence
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the fact that, when ρ and d are large relative to n, all of the data points tend to look
similar to one another, leading to smaller contrasts between pairs of data points that
are close and pairs that are distant, i.e. to weaker evidence for dependence. This
is an inevitable feature of any test of dependence that does not rely heavily on a
parametric data-generating model.

3.2 Testing for Network Dependence

To illustrate the performance of Φ, we simulated categorical outcomes Y associ-
ated with nodes in a single interconnected network and with dependence struc-
ture informed by the network ties. Y had five levels and marginal probabilities
(p1, p2, p3, p4, p5) = (0.1, 0.2, 0.3, 0.25, 0.15); we seeded each node with
independent outcomes and then induced dependence due to direct transmission by
running a contagious process across the nodes over several time steps; details are
provided in the Appendix 2. The number of time steps, t , indexes the amount of
dependence induces, with t = 0 indexing i.i.d. observations. To demonstrate the
consequences of using i.i.d. inference in the presence of dependence, as is currently
standard practice for network data, we calculated simultaneous 95% confidence
intervals for estimates of p1 through p5 (using the method proposed in [32]). We
tested for network dependence using permutation tests based on Φ and report power
as the percentage of 500 simulations in which the test rejected the null.

Table 1 summarizes the simulation results. As dependence increases, coverage
rates of the 95% confidence intervals that were estimated under the i.i.d. assumption
decrease, representing anticonservative inference. The power of Φ to reject the null
simultaneously increases. These results indicate (a) that the common practice of
using i.i.d. data for network data may be invalid, and (b) that tests based on Φ can
operate as a good screening process for settings in which i.i.d. models are especially
problematic.

The netdep R package for testing network dependence and generating network
dependent observations is available through Github (https://github.com/youjin1207/
netdep).

Table 1 Coverage rate of simultaneous 95% CIs, empirical power of tests of independence using
asymptotic normality of Φ, and empirical power of permutation tests of independence based on Φ,
under direct transmission for t = 0, 1, 2, 3

95% CI coverage rate % of p-values(z) ≤ 0.05 % of p-values (permutation) ≤ 0.05

t = 0 0.94 5.40 4.80

t = 1 0.81 39.40 36.20

t = 2 0.63 67.80 65.00

t = 3 0.43 85.40 83.40

The size of the tests is α = 0.05

https://github.com/youjin1207/netdep
https://github.com/youjin1207/netdep
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4 Applications

4.1 Spatial Data

In this section we apply Φ to spatial data on a categorical variable describing the
race/ethnicity of populations immediately surrounding 473 U.S. power generating
facilities [28]. We compare the results to standard analyses using join count
statistics.

Figure 2a depicts the composition of the population living within a 100 km
radius of each power generating facility, with the shade of each dot represent-
ing the proportion of the population falling into each race/ethnicity category
(White/Hispanic/African American). We can apply Moran’s I separately to data
on each of the three categories, but Moran’s I cannot provide a single aggregate test
statistic. Figure 2b depicts the distributions of two alternative categorical summaries
of the information from Fig. 2a: a 3-level variable indicating the most populous
group in the area surrounding each facility, and a 4-level variable indicating
whether more than 10% of the population is Hispanic and African American,
respectively. Using each of these categorial variables, we can perform an omnibus
test for dependence using Φ. We observe greater evidence of dependence in the
second categorization (Φ:22.72) than the first categorization (Φ:9.17). This direct

Moran's I: 30.99
P value (permutation) < 0.01

White

Moran's I: 93.36
P value (permutation)  < 0.01

Hispanic

Moran's I: 20.63
P value (permutation) < 0.01

African American
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Fig. 2 Panel (a): Proportion of race/ethnicity groups around 473 power-producing facilities across
the U.S. Applying Moran’s I separately to each proportion, all of the tests reject the null hypothesis
of independence at the α = 0.05 level. Panel (b): Most populous group (left) and categories
defined by having ≤10% or >10% Hispanic or African American residents (right). Omnibus tests
of dependence based on Φ reject the null hypothesis of independence at the α = 0.05 level for
both variables
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Table 2 Permutation tests of dependence based on join count statistics applied to the most
populous group

Most populous group White Hispanic African–American

n 446 13 14

Join count statistic 212.63 0.97 0.77

p-value (permutation) <0.01 <0.01 <0.01

Table 3 Permutation tests of dependence based on join count statistics applied to four different
population categories, defined by having ≤10 or >10% Hispanic or African American residents

AA > 10%, AA > 10%, AA ≤ 10%, AA ≤ 10%,

HP > 10% HP ≤ 10% HP > 10% HP ≤ 10%

n 52 106 98 217

Join-count statistic 7.07 26.63 30.30 69.20

p-value (permutation) <0.01 <0.01 <0.01 <0.01

comparison is possible using Φ but would not be possible using join count statistics.
The join count statistics for these two categorical variables are given in Tables 2
and 3. The statistics themselves count the frequency of concordant neighboring pairs
for each category and standardize it; the p-values are derived from a permutation test
that permutes the location of each observation while holding the values fixed. Join
count analysis requires a notion of adjacency; we specified a neighborhood size of
15, meaning that observation j is considered to be adjacent to i if j is one of i’s
closet 15 neighbors in Euclidean distance.

4.2 Network Data

The Framingham Heart Study, initiated in 1948, is an ongoing cohort study of
participants from the town of Framingham, Massachusetts that was originally
designed to identify risk factors for cardiovascular disease. The study has grown
over the years to include five cohorts. For decades, FHS has been one of the most
successful and influential epidemiologic cohort studies in existence. It is arguably
the most important source of data on cardiovascular epidemiology. It has been
analyzed using i.i.d. statistical models (as is standard practice for cohort studies)
in over 3400 peer-reviewed publications since 1950: to study cardiovascular disease
etiology (e.g. [2, 7]), risks for developing obesity (e.g. [34]), factors affecting mental
health (e.g. [29, 30]), and many other outcomes.

In addition to being a very prominent cohort study, more recently FHS has played
a uniquely influential role in the study of social networks and social contagion.
Researchers reconstructed the (partial) social network underlying the cohort and
used this network to study social contagion and peer influence for a variety of
outcomes in a series of highly influential papers [3, 4, 11]. However, even these
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Fig. 3 Network dependence test for categorical variables with three levels (left) and four levels
(right) using Φ

analyses use methods that assume independence across subjects [16, 22]. In a
companion paper we test for dependence in continuous and binary variables in
the FHS data, and discuss the implications of network dependence for the body of
research that relies on i.i.d. analyses these data. Here we illustrate that dependence
in these data may extend beyond continuous and binary variables to categorical
variables, which previous methods would not have been able to ascertain. We
analyzed n =1033 subjects with 690 undirected social network ties from the
Offspring Cohort at Exam 5, which was conducted between 1991 and 1995.

We tested for dependence in two different categorical random variables using
Φ: employment status and preferred method of making coffee. Figure 3 shows
the distribution of these two variables over the largest connected component of the
network. We found significant evidence of network dependence for both variables,
resulting p-value of <0.01 in both variables.

5 Concluding Remarks

In this paper, we proposed a simple test for dependence among categorical
observations sampled from geographic space or from a network. We demonstrated
the performance of our proposed test in simulations under both spatial and network
dependence, and applied it to spatial data on U.S. power producing facilities and to
social network data from the Framingham Heart Study.

Under network dependence, adjacent pairs are expected to exhibit the greatest
correlations, and for robustness we used the adjacency matrix as the weight matrix
for calculating the test statistic, thereby restricting our analysis to adjacent pairs;
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if researchers have substantive knowledge of the dependence mechanism other
weights may increase power and efficiency.

Researchers should be aware of the possibility of dependence in their obser-
vations, both when studying social networks explicitly and when observations
are sampled from a single community for reasons of convenience. As we have
seen in the classic Framingham Heart Study example, such observations can be
dependence, potentially rendering i.i.d. statistical methods invalid. In a companion
paper [16], we delve deeper into the consequences of assuming that observations are
independent when they may in fact exhibit network dependence. That paper focuses
on continuous and binary variables, but similar conclusions hold for the categorical
variables that we addressed in this paper.
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Appendix 1

Moments of Φ

Here we derive μΦ := E[Φ] and E[Φ2], the first and second moments of Φ. Based
on these moments, we can derive the variance of Φ, σ 2

Φ := E[Φ2] − μ2
Φ. When

K is the number of categories and pj is the proportion of Y in category j (j =
1, 2, . . . , K),

μΦ = 1

n(n− 1)
{n2K(2− k)− nQ1},

E[Φ2] = 1

S2
0

[
S1

n(n− 1)
(n2Q22 − nQ3)

+ S2−2S1

n(n−1)(n−2)
((K−4)K + 4)n3Q1 + n(n((2K−4)Q2−Q22)+ 2Q3)

+ S2
0 − S2 + S1

n(n− 1)(n− 2)(n− 3)

{
n(−4Q3 + 2nQ22 − 6KnQ2 + 12nQ2

− 3K2n2Q1 + 14Kn2Q1 − 16n2Q1 +K4n3 − 4K3n3 + 4K2n3)

− ((2K − 4)n2Q2 + n2(Kn(2Q1 −KQ1)−Q22)+ 2nQ3)
}]

,

(3)
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where Qm :=
K∑

l=1
1/pm

l , (m = 1, 2, 3); Q22 :=
K∑

l=1

K∑

u=1
1/plpu; S0 =

n∑

i=1

n∑

j=1
(wij +

wji)/2; S1 =
n∑

i=1

n∑

j=1
(wij + wji)

2/2; S2 =
n∑

i=1
(wi· + w·i )2.

Asymptotic Distribution of Φ Under the Null

Shapiro and Hubert [31] proved the asymptotic normality of permutation statistics
of the form Hn for i.i.d. random variables Y1, Y2, . . . , Yn under some conditions:

Hn =
n∑

i=1

n∑

j=1,j �=i

dij h(Yi, Yj ), (4)

where h(·, ·) is a symmetric real valued function with E[h2(Yi, Yj )] < ∞ and D :=
{dij ; i, j = 1, . . . , n} is a n × n symmetric, nonzero matrix of which all diagonal
terms must be zero. In the context of Φ, h(Yi, Yj ) =

(
2I (Yi = Yj ) − 1

)
/(pYi

pYj
)

and D = W. Requirements for asymptotic normality include
n∑

i,j=1,j �=i

d2
ij /

n∑

i=1
d2
i· →

0 and max
1≤i≤n

d2
i·/

n∑

k=1
d2
k· → 0 as n → 0 for di· =

n∑

j=1
dij . If we use the adjacency

matrix for W, this implies
n∑

i,j=1,i �=j

Aij /
n∑

i=1
A2

i· → 0 and max
1≤i≤n

Ai·/
n∑

i=1
A2

i· → 0

where Ai· is the degree of node i. More details can be found in [31]; see also [25].

Appendix 2: Simulation of Categorical Observations Over
Network

Direct Transmission Simulations

We specify the starting probability that each observation falls into one of K

categories, {(p1, p2, . . . , pK) :
K∑

j=1
pk = 1}. We then simulate initial outcomes

from a multinomial distribution, and generate outcomes at subsequent time points
iteratively:

Y 0
1 , Y 0

2 , . . . , Y 0
n

i.i.d∼ Multinomial
(
(p1, p2, . . . , pK)

)

Y t
i =

{
Zt

i ∼ Multinomial
(
(p̂t−1

i1 , p̂t−1
i2 , . . . , p̂t−1

iK )
)

with probability q

Y t−1
i with probability 1− q

(5)
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where p̂t−1
im :=

n∑

j=1
wij I (yt−1

j = m)/
n∑

j=1
wij ; m = 1, .., K; 0 < q ≤ 1. At each

time point, with probability q, a node’s outcome is updated as a draw from a new
multinomial with probabilities influenced by the proportion of adjacent nodes falling
into each category at the previous time. The amount of influence from adjacent
peers can be controlled by pre-specified maximum susceptibility probability qm(0 ≤
qm ≤ 1), where q ∈ [0, qm], and we set qm = 0.4.
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Approximate Identification of the
Optimal Epidemic Source in Complex
Networks

S. Jalil Kazemitabar and Arash A. Amini

Abstract We consider the problem of identifying the source of a network epidemic
from a complete snapshot of the infected nodes. We take a fully statistical approach
and derive novel recursions to compute the Bayes optimal solution, under a
heterogeneous susceptible-infected (SI) epidemic model. Our analysis is time and
rate independent, and holds for general network topologies. We then provide two
highly scalable algorithms for solving these recursions, a mean-field approximation
and a greedy approach, and evaluate their performance on real and synthetic
networks. Previous work on the problem has mostly focused on tree-like network
topologies. Real networks are far from tree-like and an emphasis will be given to
networks with high transitivity, such as social networks and those with communities.
We show that on such networks, our approaches significantly outperform popular
geometric and spectral centrality measures, most of which perform no better than
random guessing.

1 Introduction

Modern transportation networks have had profound effects on geographical spread
of infectious diseases [1, 2] giving rise to complicated epidemic evolutions [3].
These evolutions can be modeled as dynamic processes on transportation net-
works. The epidemic spread on networks can take other forms, such as outbreaks
of foodborne diseases [4], intercontinental cascade of failures among financial
institutions [5, 6], computer malware propagation on the internet and mobile
networks [7, 8] spread of targeted fake news [9, 10] and rumors [11] on social media,
especially during presidential elections [12–14]. In response to an adverse diffusion
on a network, it is critical to trace back sources to enable appropriate prevention and
containment of the spread [15]. Inferential methods have been developed to locate
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the source of foodborne diseases [16, 17] and influenza pandemics [18, 19]. In the
context of online social networks, the spread of misinformation can be limited by
the identification of influential users [20, 21]. Source recovery can also be used to
assess the power of diffusions in generating anonymity in network protocols [22].

The epidemic source identification problem has received considerable attention
in the past decade. Given a snapshot of the infected nodes in a network, the task
is to discover who has originated the epidemic. Since the seminal work of Shah
and Zaman [23], numerous attempts have been made to address the question and
its extensions [24–29]. By now, there are multiple methods that show satisfactory
results in limited experimental setups or have proven guarantees in restricted
network topologies [30]. However, identifying the source under general conditions
still remains a difficult task. The problem of optimal recovery appears to be NP-
hard in infection size [28, 31]. The theoretical guarantees for optimal and consistent
recovery are restricted to regular infinite trees [23, 26], and as we show in this
paper, the popular and well-cited methods are quite unreliable in a wide range of
real networks.

Source identification has remained largely unsolved and poorly understood for
real complex networks [30]. As we will show through experiments in Sect. 5, in
real networks, even the optimal Bayes estimator applied to small infected sets has
difficulty narrowing down to the true source. It is thus important to recover as much
information from the likelihood of the model as possible. We develop techniques
for computing the full likelihood of the infection, as opposed to identifying the
most likely sample-path [26]. Moreover, we fully exploit the information from
the boundary of the infection set, in addition to the structure inside the infected
subgraph. We develop all these ideas without restricting the structure of the network
to trees. Our framework also easily extends to the case where there are multiple
infecting sources (Appendix 1).

In this paper, we develop statistical algorithms that outperform the state-of-the-
art in a wide range of network topologies. Our contributions are distinct in several
ways:

1. Our methods are parameter-free, meaning that they do not require knowing the
duration of the epidemic or how fast it grows [25, 32].

2. We show that the exact maximum likelihood estimator (MLE) of the source—or
equivalently the Bayes optimal solution under uniform prior—can be written as
a dynamic programming (DP), with easily computable coefficients based on the
adjacency matrix of the network.

3. We develop two schemes to approximate the DP: an efficient greedy elimination
(GE), and a novel mean-field approximation (MFA) of the likelihood, computed
by solving a linear system. MFA and GE both perform well in naturally
occurring networks, extend directly to heterogeneous infection probabilities, and
are scalable, while competing methods fail to succeed in general topology.

4. Our approximations are more disciplined than existing approaches. They do not
impose restrictions on the topology of the network. Nor do they appeal to the
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partial likelihood of the candidate infecting sets. This is in contrast to the use
of spanning trees to deal with general topologies [23, 33] or the path-based
approaches that rely on the likelihood of individual paths from potential sources
to the infected set [26].

We will show that when applied to real networks, both approximation schemes
(MFA and GE) outperform various geometric and spectral approaches, most of
which perform no better than random guessing. We also show that even for basic
models of real networks, e.g., models with community structure, most existing
methods dramatically fail. The improvement in performance is most significant
for the networks with many cycles, including social networks that are known
to have high transitivity. In terms of computational efficiency, both the greedy
and mean-field approximations are superior to the state-of-the-art likelihood-based
and spectral approaches and comparable to centrality-based methods. In addition,
the mean-field algorithm is easily parallelizable through standard linear algebraic
routines and can be used to tackle very large-scale epidemics on real networks.

Related Work Most of the existing literature on the source identification problem
are based on a SIR dynamic where the infection spreads with an exponential rate
proportional to the number of infected neighbors. All nodes are susceptible to
the infection and once infected may recover with a fixed exponential rate [34].
Moreover, the spread of infection through edges are mutually independent. Different
variations of SIR may assume that no recovery is possible (SI) or the recovered is
not immune to iterated infections (SIS).

Shah and Zaman [23] considered the SI dynamics and proposed the Rumor
Centrality (RC), which counts the permitted permutations, a.k.a. infection paths,
inside the infected subgraph. Their linear time algorithm is an optimal estimator in
regular trees and enjoys strong theoretical properties in such idealized settings [35].
Zhou and Ying [26] consider SIR dynamics on a tree and show that the most likely
infection path is rooted at a Jordan center (JC) of the infected set O, that is, a node
with minimal eccentricity (i.e., minimal maximum distance to other nodes). It has
been shown [26, 35] that in regular trees, eccentricity ranking generates, with high
probability, a confidence set containing the true source, whose size does not grow
with the infection size.

The Dynamic Message Passing (DMP) was proposed in [25] as an approximation
of the maximum likelihood estimator in discrete SIR epidemics, by approximating
the probability of an infected set, as the product of the marginal probabilities of
infection for each node (i.e., a form of pseudo-likelihood). Despite compelling
performance, DMP is computationally intensive and impractical for large networks
with moderately dense structures, even for small infection sets. A spectral algorithm,
called Dynamical Age (DA) was introduced in [24], based on how sensitive the
maximum eigenvalue of the Laplacian matrix is to the elimination of each node in
the infection set. The algorithm was mainly developed to discover the initial node in
a growing preferential attachment model. Another spectral method for the discrete
SI model is proposed in [29].
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2 Source Detection in SI Epidemics

We consider a continuous-time heterogeneous susceptible-infected (SI) epi-
demic [34] with rate of infection β, on a static weighted (directed) network G(V,E)

with known edge set E and V = [n]. At time zero, all nodes but the source are in
the susceptible state. Infection is a terminal state and susceptible nodes are exposed
to the infection at an exponential rate proportional to the number of their infected
neighbors. More precisely, given that nodes I are infected at some time t , we run
exponential clocks Tj ∼ Exp(β vol(I, j)) for all j ∈ I c and the first to expire
determines the next infected node: If j∗ = argminj Tj , then the dynamics move to
the infected set I ∪{j∗} at time t +Tj∗. It is clear that the contagion will eventually
spread through the entire graph.

The infection source or patient zero, denoted as i∗, is unknown. What we observe
is a snapshot of the contagion at some time t , meaning the entire set of infected
nodes at that time, which we denote by O. The objective is to find i∗ ∈ O or form a
confidence set for i∗ with desired false exclusion probability. Our focus here will be
on the single source setting, but the analysis is extensible to the multi-source setting
(cf. Sect. 5).

Notation We write A ∈ [0, 1]n×n for the weighted (asymmetric) adjacency matrix
of the network and vol(I, J ) :=∑i∈I,j∈J Aij for the volume of a cut in the network
between subsets I, J ⊂ [n] of nodes. For singleton subsets, we often drop the
braces, e.g., vol(I, j) := vol(I, {j}) and O \ j = O \ {j}.

2.1 Time and Rate Invariant Analysis

We start by examining the probability of observing a particular set of infected nodes
given a starting source. Let us introduce a parameter-free formulation of the problem
(i.e. not dependent on rate β and time t) that will be the foundation for our analysis
of the continuous SI dynamics.

Suppose that, at some point in time, the infection reaches I ⊂ [n]. Let O ⊂ [n]
be some superset of I . We are interested in computing ρI→O , the chance that all the
nodes in O are infected before any node outside. More precisely, let

ρI→O := P
(
O is infected before Oc | I is infected

)
. (1)

We refer to ρI→O as the transition probabilities. Note that these transition prob-
abilities are independent of the infection source. Given that in a snapshot of the
contagion, nodes I are infected, ρI→O determines how likely it is that in some future
snapshot, O is the set of infected nodes. The Markov property of (continuous-time)
SI dynamics allows us to define ρI→O without reference to the source, or the time
of the first snapshot. We will also show that these probabilities do not require the
knowledge of the infection rate or the time of the second snapshot.
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2.2 Statistical Inference

Given the observed (random) infected set O, the function I �→ ρI→O is the
likelihood of the model. Writing LO(I) := ρI→O for this likelihood, we observe
that LO(I) = 0 for all I not contained in O. So, we can restrict L(·) to all
subsets of O. When dealing with the single-source setup, we restrict the parameter
space to I = {i} and with some abuse of notation write ρi→O for ρ{i}→O , and
LO(i) = ρi→O, i ∈ [n] for the likelihood.

We can further consider a Bayesian setup by putting a uniform prior on the source
(i.e., uniform over [n]). The Bayesian setup allows us to consider various notions of
optimality by changing the loss function. Letting i∗ be the random initial source, we
have a joint distribution on (i∗,O). Then the posterior probability that the source is
i, given that we observed infected nodes O is

pi := P(i∗ = i | O) = ρi→O
∑

j∈O ρj→O

1{i ∈ O}.

Therefore, the maximum a posteriori (MAP) estimate of the source is i∗MAP =
argmaxi ρi→O which minimizes the probability of error. That is, i∗MAP minimizes

P(î �= i∗) for any estimator î = î(O). In some applications, the graph geodesic
distance (dG) to the source determines the error of estimation. In that case, the
Bayes optimal estimator is i∗dist = argmini

∑
j∈O distG(i, j) ρj→O. It is not hard

to see that i∗dist minimizes E[dG(î, i∗)] among all possible estimators î.
A third choice is to output a ranking instead of a single source. In this case, an

estimator is formally a permutation σ̂ = σ̂O on [n], suppressing the dependence
on O for simplicity. We can then consider the rank loss (σ̂ , i∗) = σ̂ (i∗), and we
call the associated risk the expected (source) rank = Eσ̂ (i∗). The corresponding
optimal Bayes estimator is obtained by minimizing the posterior risk:

σ̂
∗ := argmin

σ :[n]→[n]
E[σ(i∗) | O].

Noting that E[σ(i∗) | O] = ∑
i σ (i) pi , the optimal estimator in this case is the

ranking that sorts pi into descending order, i.e., σ̂
∗
(ji) = i where pj1 ≥ pj2 ≥

· · · ≥ pjn .

Remark 1 The distance loss might be suitable in some applications, but in general it
is a poor measure if the goal is to reveal the actual source. This is especially true in
small world networks, including most social networks, where the expected distance
between any pair of nodes is small. On the other extreme, in terms of the precision
in recovering the source, is the zero-one loss which is too stringent. The rank loss
can be considered a more robust version of the zero-one loss, and it will be our main
evaluation measure.
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3 Exact Likelihood Computation

The Bayesian estimators introduced in Sect. 2.2 require us to evaluate the posterior
probabilities (pi), or equivalently the likelihood values ρj→O for all j ∈ O. The
main difficulty of the source identification problem is that computing the likelihood
is itself challenging. We now develop exact equations that allow us to recursively
compute the likelihood values LO(I) for all subsets I ⊂ O.

Dynamic Programming To begin, note that ρO→O = 1 for any O ⊂ [n]. In
addition, ρI→O = 1 whenever O corresponds to a connected component of G.
We develop two dynamic programming expressions for ρI→O for general I ⊂ O:

Proposition 1 For I ⊂ O ⊂ [n], the probabilities ρI→J defined in (1) satisfy the
forward program

ρI→O =
∑

j∈O\I

vol(I, j)

vol(I, I c)
ρI∪j→O (2)

and the backward program

ρI→O =
∑

j∈O\I
ρI→O\j

vol(O \ j, j)

vol(O \ j, (O \ j)c)
. (3)

In the forward programming (2), j effectively iterates over the boundary of I in
O, as vol(I, j) = 0 if j is outside that boundary. Therefore, the running time of the
forward programming benefits from the sparsity of the network. Unlike the forward
programming, the iteration over j in (3) cannot be restricted to a smaller set. A
corollary of Proposition 1 is that the transition probabilities ρI→J are not affected
by the rate and the duration of the infection.

Let us now observe some connection with the path-based analysis. A permitted
permutation or an infection path starting at a node i∗, refers to a permutation σ

of nodes with σ1 = i∗, and such that σk+1 is connected to at least one node in
{σ1, . . . , σk}, for all k ∈ [|σ | − 1]. Notice that the probability of observing a given
infection path is

P
(
path σ observed | σ1 = i∗

) =
|σ |−1∏

k=1

vol(σ[k], σk+1)

vol(σ[k], σ
c
[k])

(4)

where σI := (σi | i ∈ I ). One can obtain the transition probability ρ{i∗}→O by
summing (4) over all infection paths σ such that σ1 = i∗ and {σ1, . . . , σk} = O.
Our recursive representation is novel, avoids these explicit summations, and will be
key in deriving approximation schemes for ρI→O in Sect. 4.

Path-based approaches such as Jordan center [26] forgo computing the complete
likelihood (i.e., avoid summing the odds of all infection paths) and instead find the
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most probable path, that is, one that maximizes (4) in a spanning tree. In contrast,
Eqs. (2) and (3) compute the complete likelihood of the infection set, which has the
following advantages over the path-based likelihood: It fully exploits the structure of
the graph inside the infection set, not just a spanning tree or a permitted permutation
of nodes in the infected subgraph. Moreover, it takes into account the boundary of
the infected subgraph via vol(I, I c).

Remark 2 Some previous papers, such as [25, 32], considered the discrete-time
susceptible-infected dynamic. In that setup, the rate and time parameters are
intertwined with the transition probabilities in a way that it is hard or infeasible
to disentangle them. Therefore, the authors proposed to take β and t as inputs
or estimate the probabilities for multiple candidates for the infection time. In this
sense, our approach studies a more realistic model with less adverse consequences
for estimation.

4 Approximations

We now provide two approximations to the likelihood function LO(I) based on the
exact dynamic programming developed in Proposition 1.

Greedy Elimination (GE) We can obtain a singleton source set I = {i} that
maximizes ρI→O with greedy elimination of elements in O. The algorithm we
propose is based on the backward recursion (3) and is detailed in Algorithm 1. We
start with O0 := O and consider all maximal proper subsets of O0 that induce
a connected subgraph of G. Among those, we choose the one that maximizes the
transition probability to O0, i.e. ρO0\j→O0 = vol(O0 \ j, j)/ vol(O0 \ j, (O0 \ j)c).
Suppose that O1 := O0 \ j∗ is the maximizer. Next, we iterate the same procedure
for O1 and so forth, until we reach a singleton set I := O|O|−1. The procedure has
an O(k2m) runtime where k = |O|and m is the number of edges in the infected
subgraph, GO .

GE has a Bayesian justification. Let Õk be the random infected set after k steps.
Suppose that we want to find the MAP for Õk−1 given Õk . The Bayesian posterior
probability is

P(Õk−1 = O\j | Õk = O) ∝ ρO\j→O · P(Õk−1 = O\j).

Whenever GO\j is connected, the prior is positive. GE finds a proxy for MAP
through maximizing the evidence and ensuring the prior is positive.

Algorithm 1 has similarities with finding the most likely path from a source to
the observed snapshot. Chang et al. [36] propose a similar path-based search called
GSBA. They start from each node in O and approximate the most likely path and
use it as a proxy to the most likely source. Algorithm 1, however, does this greedy
search in a backward fashion.
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Algorithm 1 Greedy elimination
Input: Graph G([n], E) and O ⊂ [n].
Output: i∗GE ∈ O.
1: O0 := O

2: for i := 0 to |O| − 2 do
3: O ′

i := {j ∈ Oi : GOi\j remains connected}
4: j∗ := argmaxj∈O ′

i

vol(Oi \ j, j)

vol(Oi \ j, (Oi \ j)c)
.

5: Oi+1 := Oi \ j∗.
6: end for
7: i∗GE := the single element in O|O|−1.

Algorithm 2 Mean-field approximation
Input: Graph G([n], E) and O ⊂ [n].
Output: i∗MFA ∈ O.
1: Compute S, z as defined in (7).
2: b̂ := S−1z.
3: i∗MFA := argmaxj∈O b̂j .

Mean-Field Approximation (MFA) We now approximate ρI→O by the mean-field
technique. The idea is to treat the set function I �→ ρI→O as if it was a distribution
(or measure) on O and approximate it by the product of its marginals. Fix a subset
O ⊂ [n]. For any I ⊂ O, let xI = (xI

j )j∈O be the binary representation of I , i.e.

xI
j = 1{j ∈ I } for any j ∈ O. We find α0 and (bj )j∈O such that

ρ̂I→O = α0

∏

j∈O

b
xI
j−1

j (5)

is a good approximation to ρI→O for all I ⊂ O, in the sense of minimizing the
quadratic deviation from the solution of the recursion (2). First note that α0 = 1
since ρO→O = 1. Next, we plug-in ρ̂I→O into the forward recursion, to get

vol(I, I c) ρ̂I→O −
∑

j∈O\I
vol(I, j) ρ̂I∪{j}→O = 0.

Dividing both sides by
∏

j∈O\I bj gives vol(I, I c) − ∑j∈O\I vol(I, j) bj = 0.

These equations in general cannot be satisfied exactly for all I ⊂ O. Instead, letting
b = (bj )j∈O , we solve the following least-squares problem:

b̂ ∈ argmin
b

∑

I : I⊂O

(
vol(I, I c)−

∑

j∈O\I
vol(I, j) bj

)2 = argmin
b

‖Qb − r‖2
2

(6)
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where Q ∈ R
(2|O|−1)×|O| and r ∈ R

(2|O|−1)×1 are defined as follows:

QI,j = 1{j �∈ I } vol(I, j), ∀ I ⊂ O, j ∈ O, rI = vol(I, I c), ∀ I ⊂ O.

The solution of (6) satisfies the normal equations QT Qb̂ = QT r . The following
proposition shows that QT Q and QT r can be computed efficiently. Let A be the
adjacency matrix of the network.

Proposition 2 The solution b̂ of (6) satisfies the linear system Sb̂ = z with S and
z given by

S = Ξ
(
AOO � AT

OO + AT
OOAOO − AOO � (u1T )

− AT
OO � (1uT )+ uuT

) ∈ R
|O|×|O|,

z = (1T u+ 21T v)u− 2v � u+ 2AOO v + (u− uout )� u

+ ((AOO + AT
OO)� AT

OO

)
1+ AT

OO(uout − u) (7)

where u := AT
OO1, uout := AOO1, and v = AOOc 1. Here � is the element-wise

matrix product, Ξ(·) is a matrix operator that returns the same matrix with double
the diagonal entries, and 1 is the vector of all ones.

See Appendix 2 for the proof. Proposition 2 shows that the mean-field approach
reduces to solving a linear system of equations in |O| variables, a task with much
better computational complexity than solving the original recursion. Both S and z

can be computed in at most O(k2) time, where k = |O|. In the cases where A is
sparse (which often the case for real networks), S will be a rank-one perturbation
of a sparse matrix (both AOO and AT

OOAOO will be sparse), hence solving the
resulting system is often much faster than the worst-case, i.e., faster than O(k3).

Remark 3 MFA and GE utilize the forward and backward programs ((2), (3)),
respectively. We have tried to apply linearization to the backward program and
greedy inclusion to the forward program. However, the former does not go through
as smoothly and the latter leads to a sub-par method. Whether one can utilize both
recursions simultaneously to achieve a better performance is open.

5 Simulations

The methods proposed in this paper, the Greedy Elimination (GE) and the Mean
Field Approximation (MFA), show superior performance in source identification,
compared to popular procedures, while having comparable runtimes. In this section,
we make a comparison based on these two measures (source identification ability
and runtime) on real and synthetic networks. As discussed in Sect. 2.2, we consider
ranking estimators (i.e., those that output a permutation of the nodes according
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Table 1 Network statistics

Network Internet Power Wiki vote UCSC68 UC64 DC-SBM

n 10670 4941 7066 8979 6810 1962

Mean degree 4 3 29 50 46 66

Max. degree 2312 19 1065 454 660 897

Clust. coeff. 0.01 0.10 0.13 0.17 0.19 0.30

to their likelihood of being the source) and focus on the rank loss. If the method
does not return a ranking, we tweak it to do so. We evaluate the methods based on
the expected rank, E[R], where R is the rank of the true source among the list of
candidates (cf. Sect. 2.2). The expectation is taken with respect to the variation in
choosing the true source, which is drawn at random from the entire network. We
normalize the expected rank to get a number in [0, 1], with zero corresponding to
perfect recovery, i.e., we use (E[R] − 1)/n.

We consider a variety of real and simulated networks. Our selection includes
an Internet Autonomous System [37, 38], US west-coast power grid [39], two
Facebook-100 networks [40, 41], called UC64 and UCSC68, and a Wikipedia voting
network [42]. In addition, we present our results on a number of synthetic networks
that are well studied in the literature, including regular trees, random trees, and
degree-corrected stochastic block models (DC-SBM) [43].

Table 1 summarizes the statistics on the largest connected component of these
networks. The regular tree is of degree 3 and depth 10. The random tree has 500
nodes. For the DC-SBM network, we generate from a 3-community planted partition
version, i.e., E[Aij ] = θiθjPij where Pij = 0.5 if nodes i and j are in the
same community and Pij = 0.02 if they are in different communities. The degree
parameters θi are generated from a rescaled Pareto distribution with α = 2 and
threshold = 1.

The results are illustrated in Figs. 1 and 2. The methods we consider besides the
optimal Bayes solution (BO), the MFA, and the GE are the Rumor Centrality (RC),
the Degree Centrality (DC), the Jordan Center (JC) and the Dynamical Age (DA).
Our selection of the methods loosely follows the methods surveyed in [30]. Each
curve shows the performance of one method for different values of the infection
size, 2 ≤ |O| ≤ 300. Each point is an average over 500 infection paths rooted at
random sources. To avoid an unreasonable computation time, we skip the BO for
the infected sets of size greater than 10. The BO curve serves as the benchmark for
the best achievable performance. Note that even the optimal solution needs to output
a large set to catch the source, signifying the inherent difficulty of the problem.

Rumor and Jordan centralities perform optimally on regular trees in Fig. 1a, as
predicted by the theory [23, 26], although the network here is not exactly an infinite
tree. Notice that RC, JC, and BO overlap for infection sizes not exceeding the depth
of the tree. Degree centrality also turns out to be a close competitor in this figure.
Moving to other networks, however, these popular methods do not perform better
than random guessing. For all the three, the expected relative rank is close to 0.5,
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Fig. 1 Plots of the expected relative rank versus the infection size for low-transitivity networks.
(a) Regular tree. (b) Random tree. (c) Internet AS. (d) US west power grid

even in a random tree. The plots in this section show that, despite their popularity,
the RC and JC are quite unreliable for source recovery.

DA tends to perform well only when the infection size is sufficiently large. In
some of the networks, i.e., in Fig. 2b–d, it is a close competitor to GE and MFA,
while still behind them with a margin. DA also performs close to GE in the “Internet
AS” network (Fig. 1c).

Among our proposed methods, MFA outperforms RC, JC, DC, and DA in
Fig. 2a–d. MFA ranks the true source, on average, in the top 30%. The networks
with superior MFA performance have the highest transitivity (a.k.a. clustering
coefficient) in Table 1, that is, many triangles among triples of nodes. Transitivity
has been studied extensively and distinguishes human social networks from random
trees and less cyclical networks, such as the water distribution systems and traffic
networks. In this sense, MFA is suitable for rumor source detection in social
networks.

GE is the global winner, except in regular trees (Fig. 1a). We were surprised that
a greedy algorithm had such a widespread success. GE not only performs well in
highly transitive networks, but also outperforms RC, JC, DC, and DA on random
trees (Fig. 1b) and less transitive networks (Fig. 1c, d).

Figure 3 illustrates the runtimes (on the log scale) for a single run on the UC64
network. Degree centrality is the fastest, followed by RC, MFA, GE, JC, and DA.
The first three have comparable speed and scale quite well. In contrast, although the
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Fig. 2 Plots of the expected relative rank versus the infection size for high-transitivity networks.
(a) UCSC68. (b) UC64. (c) Wiki vote. (d) DC-SBM

Fig. 3 Runtime in seconds

runtime for JC starts as low as that of RC, it accelerates past GE as the infection size
grows. DA and JC do not scale well and GE follows them by a margin. It is worth
noting that [44] gives a linear-time implementation of JC on trees that we have not
tested here. BO is removed from this plot since its runtime grows exponentially with
the infection size.

Based on these results, we advocate for the use of GE as the main tool for
identifying sources of epidemics, regardless of the network topology or the nature of
the epidemics (rumor propagation, disease contagion, etc.). MFA should be applied
with caution. It is superior in social (transitive) networks, and attractive for its
simplicity, scalability, and the potential for parallelism.
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Appendix 1: Multi-Source Extension

The inference problem discussed in Sect. 2.2 immediately extends to the multi-
source situations. Consider the case were more than one independent source,
denoted by I ∗, initiate the infection dynamics. Due to the Markovian nature of the
dynamics, the infection path that leads to some set I does not influence the value of
ρI→O . Hence, Proposition 1 also describes the likelihood of the transition from the
source set I ∗ to a snapshot O.

If we know that there are s original sources, e.g. |I ∗| = s, with a uniform prior on
the patient zeros, the Bayesian solution would be characterized by the optimization

I ∗MAP = argmax
I⊂O, |I |=s

ρI→O (8)

To compute this MAP estimate, we can still use the DP solution in Proposition 1,
but we do not need to compute ρI→O for |I | < s. Thus, the multi-source problem is
in a sense “easier”, especially when s ≈ |O|, since one can terminate the recursion
earlier (i.e., the case s = 1 is the hardest).

Appendix 2: Proofs

Proof of Proposition 1

Let us first recall a known fact about the exponential distribution:

Lemma 1 Let Ti ∼ Exp(βi) be a collection of independent exponential variables.
Then,

P

(
Ti < min

j �=i
Tj

)
= βi
∑

j βj

.

For a proof of Lemma 1, see [45]. The forward programming (2) is an application
of the law of total probability in the following sense: The event that nodes in O \ I

are infected before any other node in I c splits into sub-events that each node in O \I
is infected before those in Oc and we have

ρI→O =
∑

j∈O\I
ρI→I∪j · ρI∪j→O
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where we have also used the Markov property of SI dynamics to split the
probabilities on the RHS into the products. The ratio in (2) corresponds to the
transition probability from I to I∪j , that is ρI→I∪j . Indeed, given that I is infected,
we run exponential clocks Tj ∼ Exp(β vol(I, j)) and the first to expire determines
the next infected node. By Fact 1, this happens for any node j ∈ I c with probability
∝j β vol(I, j). Thus,

ρI→I∪j = β vol(I, j)
∑

j ′ β vol(I, j ′)
= vol(I, j)

vol(I, I c)
.

This proves the forward programming. The backward programming, on the other
hand, connects ρI→O to ρI→O\j and is proved similarly. Basically, the event of
visiting O can be divided into sub-events based on the last node in O that is infected.

Proof of Proposition 2

We prove the following alternative expressions for S = (Sjj ′)|O|×|O| and z =
(zj )

|O|,

Sjj ′ :=
{

din
O\j ′(j)din

O\j (j ′)+
∑

i∈O AijAij ′ j �= j ′

2
[
din
O (j)2 +∑i∈O A2

ij

]
j = j ′

zj :=
[

vol(O\j )+ 2 vol(O\ j, (O\ j)c)
]
din
O (j)

+
∑

i∈O

(dout
O\j (i)− din

O\j (i))Aij + 2
∑

i∈O

dout
(O\ j)c (i) Aij .

Here, dout
O (i) := ∑j∈O Aij is the out-degree of node i in O, din

O (i) := ∑j∈O Aji

is the in-degree of node i in O, and vol(2)(i, j) := ∑r∈O AirArj is the number of
paths of length 2 between nodes i and j that pass through O. It is not hard to verify
that these expressions are equivalent to the matrix form presented in (2).

Recall that vol(I, I c) = ∑
i,k Aik1{i ∈ I, k /∈ I } and similarity vol(I, j) =∑

r Arj 1{r ∈ I }. Here, the indices, i, k and r run over all nodes in the network, i.e.
i, k, r ∈ [n]. We have

(QT r)j =
∑

I⊂O

1{j �∈ I } vol(I, j) · vol(I, I c)

=
∑

I⊂O\{j}
vol(I, I c) · vol(I, j)
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=
∑

I⊂O\{j}

∑

i,k,r

AikArj 1{i ∈ I, k /∈ I, r ∈ I }

=
∑

i,k,r

AikArj γikr

where the last equality follows by interchanging the order of summations and
defining

γikr :=
∑

I⊂O\{j}
1{i ∈ I, k /∈ I, r ∈ I }

If i or r do not belong to O \ {j}, or k ∈ {i, r}, then γikr = 0. Thus, it what follows
assume that i, r ∈ O\ j := O \ {j} and k /∈ {i, r}. Then,

γikr = 0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2|O|−4 i �= r, k ∈ O\ j

2|O|−3 i = r, k ∈ O\ j

2|O|−3 i �= r, k /∈ O\ j

2|O|−2 i = r, k /∈ O\ j

To see the second equality, note that we are counting subsets of the set O \ {j}
(of cardinality |O|−1) that contain or exclude certain elements. For example, when
k, i, r are pairwise distinct, and k ∈ O \ {j}, looking at the binary representation of
I , we have two ones in the positions i and r and a zero in position k, and the rest of
|O| − 1− 3 positions are free to be zero or one.

In what follows, i and r range over O \ {j} (otherwise γikr = 0). Also, condition
k /∈ {i, r} can be replaced with k �= r , since the k �= i is implicitly enforced by
Aik = 0 if k = i (no self-loops). We have

(QT r)j =
∑

i,r

∑

k �=r

AikArj

[
2|O|−4(1+ 1{i = r})1{k ∈ O\ j }

+ 2|O|−3(1+ 1{i = r})1{k /∈ O\ j }
]

= 2|O|−4
∑

i,r

dout
O\{j,r}(i)Arj (1+ 1{i = r})

+ 2|O|−3
∑

i,r

dout
(O\ j)c (i)Arj (1+ 1{i = r})

where in the second term, we used the fact that if k /∈ O\ j then we automatically
have k �= r since r ranges over O\ j . We have
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∑

r

dout
O\{j,r}(i)Arj =

∑

r

(dout
O\j (i)− Air)Arj

= dout
O\j (i)d

in
O\j (j)− vol(2)

O\j (i, j)

where vol(2)
O\j (i, j) :=∑r∈O\j AirArj is the number of paths of length two between

i and j in O\j . Note that vol(2)
O\j (i, j) = vol(2)

O (i, j) and similarly dO\j (j) = dO(j)

since Ajj = 0. Thus,

∑

i,r

dout
O\{j,r}(i) Arj

(
1+ 1{i = r}) =

∑

i

[
dout
O\j (i)d

in
O (j)− vol(2)

O (i, j)+ dout
O\j (i)Aij

]

=
∑

i

dout
O\j (i)d

in
O (j)+ (dout

O\j (i)− din
O\j (i))Aij

= vol(O\j )din
O (j)+

∑

i

(dout
O\j (i)− din

O\j (i))Aij

where vol(O\j ) = vol(O\j ,O\j ) and the third equality follows since we have

∑

i∈A

vol(2)
A (i, j) =

∑

i∈A

∑

r∈A

AirArj =
∑

r∈A

din
A (r)Arj

which was used with A = O\j . Similarly, we have

∑

i,r

dout
(O\ j)c (i)Arj (1+ 1{i = r}) =

∑

i

dout
(O\ j)c (i)

(
din
O\j (j)+ Aij

)

= vol(O\ j, (O\ j)c) din
O (j)

+
∑

i

dout
(O\ j)c (i) Aij

It follows that

(QT r)j = 2|O|−4
[

vol(O\j )din
O (j)+

∑

i

(dout
O\j (i)− din

O\j (i))Aij

+ 2 vol(O\ j, (O\ j)c) din
O (j)+ 2

∑

i

dout
(O\ j)c (i) Aij

]
.

Calculating QT Q Let us first take j �= j ′. Then, similar to the previous argument,

(QT Q)jj ′ =
∑

I⊂O\{j,j ′}
vol(I, j) vol(I, j ′)
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=
∑

I⊂O\{j,j ′}

∑

i,r

Aij Arj ′1{i ∈ I, r ∈ I }

=
∑

i,r

Aij Arj ′βir

where we have defined

βir :=
∑

I⊂O\{j,j ′}
1{i ∈ I, r ∈ I }

= 2|O|−41{i �= r} + 2|O|−31{i = r}
= 2|O|−4(1+ 1{i = r})

assuming i, r ∈ O \ {j, j ′}, otherwise βir = 0. Thus, restricting summations over
indices i, r ∈ O \ {j, j ′}

(QT Q)jj ′ = 2|O|−4
[∑

i,r

Aij Arj ′ +
∑

i

AijAij ′
]

= 2|O|−4
[
din
O\j ′(j)din

O\j (j
′)+

∑

i

AijAij ′
]
.

Now consider the case j = j ′. Then,

(QT Q)jj =
∑

I⊂O\{j}
vol(I, j)2

=
∑

I⊂O\{j}

∑

i,r

Aij Arj 1{i ∈ I, r ∈ I }

=
∑

i,r

Aij Arj 2|O|−3(1+ 1{i = r}),

assuming i, r ∈ O \ j . It follows that

(QT Q)jj = 2|O|−3
[∑

i,r

Aij Arj +
∑

i

A2
ij

]

= 2|O|−3[din
O (j)2 +

∑

i

A2
ij

]
.
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33. Paluch, R., Lu, X., Suchecki, K., Szymański, B.K., Hołyst, J.A.: Fast and accurate detection of
spread source in large complex networks. Sci. Rep. 8(1), 2508 (2018)

34. Kiss, I.Z., Miller, J.C., Simon, P.L., et al.: Mathematics of Epidemics on Networks. Springer,
Cham (2017)

35. Khim, J., Loh, P.L.: Confidence sets for the source of a diffusion in regular trees. IEEE Trans.
Netw. Sci. Eng. 4(1), 27–40 (2017)

36. Chang, B., Zhu, F., Chen, E., Liu, Q.: Information source detection via maximum a posteriori
estimation. In: 2015 IEEE International Conference on Data Mining (ICDM), pp. 21–30. IEEE,
Piscataway (2015)

37. University of Oregon Route Views Project: Online data and reports. http://www.routeviews.org
38. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diam-

eters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM, New York (2005)

39. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684),
440 (1998)

40. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Comparing community structure to
characteristics in online collegiate social networks. SIAM Rev. 53(3), 526–543 (2011)

41. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of Facebook networks. Physica A
391(16), 4165–4180 (2012)

42. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM,
New York (2010)

43. Karrer, B., Newman, M.E.: Stochastic blockmodels and community structure in networks.
Phys. Rev. E 83(1), 016107 (2011)

44. Luo, W., Tay, W.P., Leng, M.: How to identify an infection source with limited observations.
IEEE J. Sel. Top. Sign. Proces. 8(4), 586–597 (2014)

45. Ross, S.M.: Introduction to Probability Models. Academic, Cambridge (2014)

http://www.routeviews.org


Maxwell’s Demon: Controlling Entropy
via Discrete Ricci Flow over Networks

Romeil Sandhu and Ji Liu

Abstract In this work, we propose to utilize discrete graph Ricci flow to alter
network entropy through feedback control. Given such feedback input can “reverse”
entropic changes, we adapt the moniker of Maxwell’s Demon to motivate our
approach. In particular, it has been recently shown that Ricci curvature from
geometry is intrinsically connected to Boltzmann entropy as well as functional
robustness of networks or the ability to maintain functionality in the presence of
random fluctuations. From this, the discrete Ricci flow provides a natural avenue
to “rewire” a particular network’s underlying geometry to improve throughout and
resilience. Due to the real-world setting for which one may be interested in imposing
nonlinear constraints amongst particular agents to understand the network dynamic
evolution, controlling discrete Ricci flow may be necessary (e.g., we may seek to
understand the entropic dynamics and curvature “flow” between two networks as
opposed to solely curvature shrinkage). In turn, this can be formulated as a natural
control problem for which we employ feedback control towards discrete Ricci-based
flow and show that under certain discretization, namely Ollivier-Ricci curvature, one
can show stability via Lyapunov analysis. We conclude with preliminary results with
remarks on potential applications that will be a subject of future work.

1 Introduction

In the current technological world, we increasingly depend upon the reliability,
robustness, quality of service and timeliness of exceedingly large interconnected
dynamical systems including those of power distribution, biological, transportation,
and communication [1]. Over the past 20 years, we have witnessed a dramatic
rise of information in which the analysis of such systems invariably present
challenging “big data” complexity issues. For example, in transferring resources and
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information, a key requirement is the ability to adapt and reconfigure in response
to structural and dynamic changes while avoiding disruption of service. In turn,
exploiting functional properties such as robustness and heterogeneity (redundancy)
are key to maintaining control and avoiding shotgun-based solutions during “black
swan” events in which the continuous failing of interacting agents may result in
catastrophic system failure.

As such, we have previously developed fundamental relationships between
network functionality [2, 3] and certain topological and geometric properties of
the corresponding graph [4, 5] to show that the geometric notion of curvature (a
measure of “flatness”) is positively correlated with network entropy and system’s
robustness or its ability to adapt to dynamic changes [6, 7]. This can be seen in
Fig. 1. In this regard, network curvature may relate to anomaly detection, congestion
in communication, to drug resistance [6, 8]. On the other hand, network entropy has
often been chosen as a measure of network functional robustness [2, 9]. From this,
if one is able to define such statistical properties over the graph that are proxies for
functionality, then a natural progression would be to define corresponding theoretics
in order to alter the networks behavior through such properties and for which in this
note, we consider curvature and entropy. To this end, we focus on developing the
necessary conditions to control network (curvature) entropy through the discrete
Ricci flow. This flow in the graph setting has been proposed for congestion
management, managing systemic risk [7], simulating biological resistance [6], as
well as a generalized tool for network comparison [8, 10]. This said, the discrete
Ricci flow for networks presents notable issues in that it not only reduces regions
of negative curvature, but also reduces areas of highly positive curved regions. In
the context of inducing network fragility (or vice versa), this may not be suitable
as increases in negatively curved regions curvature relates to increases in entropy
and subsequently network robustness. Further, in understanding network dynamics,
one may want to “drive” the discrete flow between two networks [8, 10] as well as
in augmented fashion for which one “pins down” the flow on regions considered
“undruggable.” The remainder of this note is outlined as follows: the next section
provides preliminaries in motivating the theoretical need of understanding geometry

Fig. 1 Motivated by Maxwells “Demon”, this work focuses on altering network entropy via
Ollivier-Ricci flow whereby the “intelligent being” is a feedback operator. (a) Interplay of
curvature and entropy on varied domains. (b) Example of discrete Ricci flow on a graph
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as it pertains to functionality. From this, Sect. 3 lays the foundation of our framework
for which we present the corresponding control laws and prove stability in the
sense of Lypanuv. Then, Sect. 4 presents preliminary results on synthetic networks
for illustration of theory. We conclude with a summary and future work towards
applications in Sect. 5.

2 Preliminaries: Entropy and Curvature

To illustrate how geometry elucidates the functional behavior of a dynamical
system, let us revisit optimal mass transport (OMT) [11]. The first notion of
OMT was proposed by Gaspar Monge in 1781 with the concern of finding the
minimal transportation cost for moving a pile of soil from one site to another. The
modern formulation, given by Kantorovich, has been ubiquitously used in fields of
econometrics, fluid dynamics, to shape analysis [11, 12] and recently, has received
a renewed mathematical interest. More formally, let (X,μ0) and (Y, μ1) be two
probability spaces and let π(μ0, μ1) denote the set of all couplings on X × Y

whose marginals are μ0 and μ1. As such, the Kantorovich costs seeks to minimize∫
c(x, y)dπ(x, y) ∀π ∈ π(μ0, μ1) where c(x, y) is the cost for transporting one

unit of mass from x to y. The cost originally defined in a distance form on a metric
space leads to the Lp Wasserstein distance as follows:

Wp(μ0, μ1) :=
(

inf
μ∈π(μ0,μ1)

∫ ∫

d(x, y)pdμ(x, y))

) 1
p

. (1)

From this, let us begin considering M to be a Riemannian manifold such that

P := {μ ≥ 0 :
∫

μ dvol(M) = 1
}

TμP := {η :
∫

η dvol(M) = 0
}

(2)

as the space of probability densities and the tangent space at a given point μ,
respectively. Due to the work of Benamou and Brenier [12], one can naturally
compute the geodesic (in the Wasserstein sense) between two densities μ0, μ1 ∈ P
as the below optimal control problem:

inf
μ,g

{∫ ∫ 1

0
μ(t, x)‖∇g(t, x)‖dtdvol(M)

subject to
∂u

∂t
+ div(μ∇g) = 0

μ(0, .) = μ0, μ(1, .) = μ1

}

, (3)
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which leads us to give P a Riemannian structure due to the work of Jordan et al.
[13]. From this, we can now consider Boltzmann entropy as

H(μt ) :=
∫

M

log μtdvol(M), (4)

where the dependency on x has been dropped for convenience and we consider a
family of densities evolving over time. Taking the second variation with respect to
time t in the Wasserstein sense (i.e., rather than the Euclidean norm) and noting that,
by construction, η := ∂μ

∂t
|t = 0, we have

d2

dt2 H(μt)|t=0 = 〈Hess(H)(η), η〉W

= −
∫

M

〈∇gη,∇Δgη〉 + 1

2
Δ
(‖∇gη‖2)μ0dvol(M), (5)

where μ0 and gη satisfy (3). Using the Bochner formula [14], which relates
harmonic functions on a Riemannian manifold to Ricci curvature (herein denoted
as “Ric”), we can further assume Ric ≥ kI as quadratic forms where k is a constant
and I is the identity matrix. Then, due to Sturm [15] as well as Lott and Villani
[11, 22], one can show that the Hess(H) is k-convex:

H(μt)≤ tH(μ0)+(1− t)H(μ1)− φ(k, t, μ0, μ1)∀t ∈ [0, 1] (6)

where the right hand portion φ(.) can be shown to be φ(k, t, μ0, μ1) = k
2 t (1 −

t)W2(μ0, μ1)
2 allowing for k-convexity. That is, changes in entropy and curvature

are positively correlated, i.e., ΔH × ΔRic ≥ 0. Furthermore, through the
Fluctuation Theorem [2], one may relate network robustness R to entropy; i.e.,
ΔH × ΔR ≥ 0 as well as Ricci curvature ΔRic × ΔR ≥ 0—see [2, 6, 7] for
details.

3 Proposed Framework

In this section, we propose a feedback based approach to control discrete Ricci flow
over graphs due to a discretization by Ollivier [4, 5] which is discussed next.

3.1 Open-Loop View: Discrete Ollivier-Ricci Flow

While Ricci curvature relates to functionality, we require a discrete definition for
networks. Here, we focus on the Ollivier formulation [4] given its relationship to the
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Wasserstein distance, but refer to the reader to several works in this open problem
area of varying discretizations including, but not limited to, Forman curvature [8,
16], Bakery Emery [17] as well as recent comparisons [17, 18]. This said, we can
define Ollivier-Ricci curvature between any two nodes x and y as:

κ(x, y) := 1−W1(μx, μy)/d(x, y). (7)

This definition, motivated by coarse geometry, is applicable to the graph setting
whereby the geodesic distance d(x, y) is given by the hop metric. From this, we can
define the Ollivier-Ricci flow with an initial condition μ0(x, y) = φ0(x, y) as:

d

dt
μt (x, y) : = −κ(x, y)μt (x, y) (8)

where μt(x, y) (with an abuse of notion) is the normalized edge weights, i.e.,
μt(x, y) ∈ [0, 1]. Here, we can treat this flow as an open-loop control problem
[19, 21] for which the “dynamics” to be controlled is Ollivier-Ricci curvature
κ(x, y). In particular, motivated philosophically by Maxwell’s Demon [20], we seek
to characterize an “intelligent being” to control entropy via discrete Ricci flow.

3.2 Control Law Construction and Existence

To begin developing our control-based approach, let us redefine the above flow as a
closed-loop problem with the following form given as:

d

dt
μt (x, y) = [− κ(x, y)+ ψ(μt , μ

∗)
]
μt(x, y) (9)

μ0(x, y) = φ0(x, y)

where limt→∞ μt(x, y) → μ∗(x, y) and where ψ(μ,μ∗) is the control law
whereby the system is stable in the sense of Lypanuv (e.g., inputs “near” equilibrium
stay or decay towards equilibrium). To understand the above in the context of this
paper, we first note that it can be seen that the discrete Ricci Flow can be viewed
as “rewiring” network functionality (to some steady state configuration) by altering
the geometry or edge weights over the particular network. This is also indirectly
correlated to altering network entropy through previous established relationships in
Sect. 2. Thus, if we are to assume there exists a particular intelligent being whose
“demonic” (discrete) input is able to combat such thermodynamically favorable
“directions”, then one can characterize such an action via ψ(μt , μ

∗) in the general
sense and therefore, such action must be considered to be stable (i.e., the system
does not implode due to the demon). To show how such actions can be performed
in a stable manner, we assume μ∗(x, y) is ideal and for which there exists no error;
i.e., we want the flow to converge entirely to such an end (network) point. To do so,
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let us further define the point-wise and total error as

δt (x, y) := μt(x, y)− μ∗(x, y) (10)

Σt(δt ) := 1

2

∑

x

∑

y

||δt (x, y)||2. (11)

Given this, we are now able to show the existence of a regulatory control.

Theorem 3.1 The control law that stabilizes the closed-loop system in Eq. (9) from
μt(x, y) to μ∗(x, y) is given by:

ψ(μ,μ∗) = β2
t (x, y)δt (x, y) (12)

where β2(x, y) ≥ 2 and δt (x, y) is given by Eq. (11).

Proof Let us first note that δt (x, y) is bounded, i.e., −1 ≤ δt (x, y) ≤ 1 and that
−2 ≤ κ(x, y) ≤ 1. From this, we choose Σt as the candidate Lyapunov function
and differentiate it with respect t which yields the following:

dΣt

dt
=
∑

x,y

δt (x, y)· ∂δt (x, y)

∂t

=
∑

x,y

δt (x, y)·[ ∂

∂t
μt (x, y)− ∂

∂t
μ∗(x, y)

︸ ︷︷ ︸
0

]

=
∑

x,y

δt (x, y)·[− κ(x, y)− β2
t (x, y)δt (x, y)

]
μt(x, y)

≤
∑

x,y

[|κ(x, y)|δ2
t (x, y)− β2

t (x, y)δ2
t (x, y)

]
μt(x, y)

≤
∑

x,y

δ2
t (x, y)

[
2− β2

t (x, y)
]
μt(x, y)

≤ 0

We note that while the above control law is due to the reliance on bounds of Ollivier-
Ricci curvature, this will not hold for other discretizations such as Forman curvature
[8, 10]. We have also assumed that one not only has an ideal representation of the
corresponding network configuration μ∗(x, y), but the input is error-free and there
are no modifications by a “demonic” operator during the entropic (Ricci) flow, e.g.,
impose node constraints. This is discussed in the next section.
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3.3 “Non-Perfect Demonic” Input

We are now ready to define an estimator and observer-like framework for which
an input may begin to control graph curvature and subsequently control network
entropy. This can be akin to the thought experiment proposed by James Maxwell
for which the “demon” seeks to violate the second law of thermodynamics, namely
alter entropy [20]. Here, we assume there exists error from both the demon (and
end targeted) state as well as the chosen (Ollivier-Ricci) flow model. As such, let us
define μ̂∗t (x, y) as the estimate of the ideal knowledge μ∗(x, y) with corresponding
error terms associated with the demon and the model as

δ̂t (x, y) := μt(x, y)− μ̂∗t (x, y) (Type I Error)

γt (x, y) := μ̂∗t (x, y)− λt (x, y) (Type II Error)

where λt (x, y) := ∑l=k
l=0 εk

t (x, y) and εk
t (x, y) := ±p (constant) are the k input at

time t . From this, the total error for the above Type I/II errors can be seen as:

Σ̂t (x, y) := 1

2

∑

x

∑

y

||δ̂t (x, y)||2 (13)

Γt(x, y) := 1

2

∑

x

∑

y

|λt (x, y)|||γt (x, y)||2. (14)

Theorem 3.2 Let us assume input has stopped and further assume the above total
label errors defined for Type I/II error, then the following flow

d

dt
μ̂t (x, y) = [δ̂t (x, y)+Φ(λt , γt )

]
μ̂t (x, y) (15)

μ̂0(x, y) = φ0(x, y)

where Φ(λt , γt ) = −|λt (x, y)|γt (x, y) provides an estimator such that the total
error Vt (x, y) := Σ̂t (x, y) + Γt(x, y) has a negative semi-definite derivative. In
turn, this provides a stable coupled feedback system together with Eq. (9) where the
ideal configuration μ∗(x, y) is replaced with an estimator μ̂∗t (x, y).

Proof Computing the total error Vt (x, y) := Σ̂t (x, y)+ Γt(x, y) and dropping the
spatial dependency (for reading ease), yields the following:

∂Vt

∂t
=
∑

x,y

δ̂t · ∂δ̂t

∂t
+ λtγt

∂μ̂t

∂t

=
∑

x,y

δ̂t ·
[
∂μt

∂t
− ∂μ̂t

∂t

]

+ λtγt

∂μ̂t

∂t
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=
∑

x,y

δ̂t

∂μt

∂t
− δ̂t

∂μ̂t

∂t
+ λtγt

∂μ̂t

∂t

=
∑

x,y

δ̂t

∂μt

∂t︸ ︷︷ ︸
≤0

−∂μ̂t

∂t

[

δ̂t − λtγt

]

≤ −∂μ̂t

∂t

[

δ̂t − λtγt

]

≤ 0

As one can see from coupling both the estimator and autonomous model, a useful
qualitative behavior emerges. In particular, when the “demon” is satisfied with the
agreement between μt(x, y) and their ideal μ∗(x, y) configuration, it is assumed
that the total input λt (x, y) will then remain constant. That is, either the “demon”
never needed to apply a correction or has otherwise stopped providing inputs.
Nevertheless, in this case, μ̂∗t (x, y) should “follow” μt(x, y). On the other hand,
when the total input error λt (x, y) grows due to persistent input, μ̂∗t (x, y) will
be increasingly driven towards λt (x, y) irrespective of the agreement between
μ̂t
∗
(x, y) and μt(x, y). Ultimately, the demon has control of the seemingly accurate

autonomous flow and can override systems actions.

4 Results

In this section, we present results using graph curvature to indirectly control network
entropy. We caution the reader that these results are preliminary and to motivate
theory presented. This said, we conduct experiments primarily focused involve
scale-free networks as it provides natural topological hubs to test particular inputs
can impede (induce fragility) via varying levels of input. For all experiments,
we generate networks via the Python NetworkX package and utilize the classic
definition of network entropy [9].

The first set of experiments focuses on controlling network entropy via discrete
Ollivier-Ricci flow seen in Fig. 2. As there exists an intimate connection that relates
that changes in entropy are positively correlated with changes in Ricci curvature,
i.e., ΔH × ΔRic ≥ 0, we generate scale-free networks with node sizes of
n = {100, 200, 400, 600} with uniform edge weights. From this, we target the
node with the highest degree and begin “injecting” input and allow for our flow
to evolve as described by the coupled feedback equations in Eqs. (9) and (15).
To be more precise, at time t = {30, 75, 120, 175} we make an input of values
p = {−2, 2, 4,−4}, respectively. The resulting changes in network entropy as
well as average Olliver-Ricci curvature can be seen as solid colored lines in Fig. 2.
Remarkably, we see a very close relationship between network entropy and that
of network curvature. Furthermore, to validate our ability to “change direction”
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Fig. 2 Results on scale-free networks of varying node sizes and the impact of operator input in
“injecting” curvature of a single node associated with the highest topological degree. (a) Average
Ollivier-Ricci curvature. (b) Average network entropy. Note: due to scaling, values for curvature
and entropy differ; however, ΔH ×ΔRic ≥ 0
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Fig. 3 Results on scale-free networks of node size n = 200 and the impact of operator input at
varying levels of p from t = 100 to t = 200 for the node associated with the highest topological
degree. (a) Average Ollivier-Ricci curvature. (b) Average network entropy. Note: the degree of
operator input naturally controls (increases) both curvature and entropy in the aforementioned time
region

in terms of altering network entropy, we re-run the same experiment with a slight
change by “turning off” input at t = 120; i.e., for t = {30, 75, 120, 175} we make
an input of values p = {−2, 2, 0, 0}, respectively. Once again, we see the natural
impact and differences of operator input.

On the other hand, we also want to measure how the degree of input (e.g.,
choosing the constant p) alters networks entropy as well as the impact of altering
more than one hub node in a given network. To this end, we generate scale-free
networks of node size n = 200. From this, at time t = {30, 75, 100, 200} we make
an input of values p = {−2, 2, θ,−θ}where θ = {5, 4, 3, 2, 1}. As one can see from
Fig. 3, we see exactly this behavior which also correlates to the degree of operator
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input. Next, we make a slight alteration to this experiment and now at iterations
{30, 75, 100, 200}, we make an operator input of values p = {−2, 2, 4,−4} similar
to the first experiment for a scale-free network of node size n = 400. However, we
now plot changes in network entropy and network curvature as a function of altering
the top n nodes with the highest degree. Again, we see the behavior that is to be
expected in increasing network robustness as seen in Fig. 4. For this experiment,
Fig. 5 shows Type I and Type II error for completeness.
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Fig. 4 Results on scale-free networks of node size n = 400 and the impact of providing operator
input to several nodes associated with the highest topological degree. (a) Average Ollivier-Ricci
curvature. (b) Average network entropy. Note: the number of nodes an operator interacts with
naturally controls (increases/decreases) both curvature and entropy
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Fig. 5 We present errors results associated with Fig. 4 experiment related to node alteration and
operator input. (a) Type I error. (b) Type II error. Specifically, such errors relate to the geometric
discrete Ricci flow (Type I) compared to that of the “demonic” input (Type II) and where the
resulting steady state result seeks to minimize both joint errors
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5 Conclusions and Future Work

We propose a network control framework that couples the discrete Ollivier-Ricci
flow with operator input from a feedback perspective. To this end, we provide
the necessary stability conditions in the sense of Lyapunov. This said, there exists
several avenues that we are currently pursuing. The above framework has potential
biological application towards the real-world setting in which we often seek to
understand how can we induce fragility on targets that are deemed “undruggable”
[6]. We also aim to extend the above framework for non-constant user input, time-
delayed response, and as applied to specific application domains. As such, this work
has laid the foundation for which further examination is needed.
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Two Dimensional Opinion Dynamics of
Real Opinion and Official Stance

Akira Ishii and Nozomi Okano

Abstract Multi-dimensional opinion dynamics including both trust and distrust
between people is presented. Opinion dynamics of two dimensions is applied to
real opinion and official stance of people, agents and governments. As examples
of the application of the two-dimensional opinion dynamics, we present the case
of “Romeo and Juliet” and the conflict of two countries. Analyzing the movement
in society, including the difference between the real opinion and the official stance
gives us great freedom to the analysis.

1 Introduction

In general, opinion is not simple. For example, in the famous play of Romeo and
Juliet by Shakespeare, real opinions of Romeo and Juliet were attracted to each
other. However, the families to which Romeo and Juliet belonged were in conflict,
so they could not express that they were attracted to each other. This is an example
of the conflict between real opinion and official stance.

In international conflicts, if the conflict of interest between the two countries is
very serious, the diplomatic efforts may not be made. In that case, the conflict of
interest between the two countries correspond to real opinion and the diplomatic
attitude corresponds to official stance. At the case that the difference between the
official stance and the real opinion is very large, the consensus formation in the
official stance would be very difficult because of the large distance between the real
opinion of the two countries.

In order to consider such conflicts in opinion dynamics, we should consider
both official stance and real opinion. In this paper, we present the two dimensional
opinion dynamics of both official stance and real opinion as a case of multi-
dimensional opinion dynamics theory.
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In the approaches of opinion dynamics, rather than the binary approach which
asks whether someone agree or disagree, we will try to tackle this problem by
taking an approach that deals with the transition of opinions continuously. The
opinion dynamics theory that handles the transition of opinions continuously is
the Bounded Confidence Model [1–5]. Using these theories, we can handle only
the trust relationship between persons in the simulation, so that we always obtain
consensus formation in the simulation. Recently, Ishii and Kawahata presented a
new theory including both trust and distrust between people as an extension of the
Bounded Confidence Model [6–12]. Using this new opinion dynamics theory, we
can obtain various simulations for society.

The expressed opinion or official stance of an agent may be different from its
real opinion. The problem of the difference between expressed opinion or official
stance and real opinion is first considered by Asch [13]. Recently, many works
introducing official stance (expressed opinion) and real opinion are published [14–
17]. However, these works assume the consensus formation and do not consider
the distrust between people. The distrust is sometimes very significant for opinion
dynamics.

Based on the above new opinion dynamics theory of Ishii and co-workers, we
present here a new theory; multi-dimensional opinion dynamics theory. Though the
theory can be used as multi-dimensional opinion dynamics theory, we apply this
theory to the two-dimensional opinion dynamics.

The two dimensions in this paper means the official stance and the real opinion
explained above. The purpose of this paper is to present the possibility of analysis
of the conflict between real opinion and official stance in the frame of opinion
dynamics theory.

2 Theory

2.1 One Dimensional Opinion Dynamics Theory

Our model is based on the original bounded confidence model of Hegselmann-
Krause [3]. For a fixed agent, say i, where 1 ≤ i ≤ N , we denote the agents opinion
at time t by Ii(t). As shown in Fig. 1, person i can be affected by surrounding
people. According to Hegselmann-Krause [3], opinion formation of agent i can be
described as follows.

Ii(t + 1) =
N∑

j=1

Dij Ij (t) (1)

This can be written in the following form.
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ΔIi(t) =
N∑

j=1

Dij Ij (t)Δt (2)

where it is assumed that Dij ≥ 0 for all i, j in the model of Hegselmann-Krause.
Based on this definition, Dij = 0 means that the opinion of agent i is not affected by
the opinion of agent j . In this Bounded Confidence Model, it is expected implicitly
that the final goal of the negotiation among people is the formation of consensus.

However, in the real society in the world, the formation of consensus among
people is sometimes very difficult. We can find many such examples in the interna-
tional politics in the world history. Even in domestic problems, the opinions between
people pursuing economic development and people claiming nature conservation
are not compatible and agreement of the two people is very difficult. Since it is not
possible to define the payoff matrix for such serious political conflict, application
of game theory may be difficult. Thus, in order to deal with problems that are
difficult to form consensus among these people, it is necessary to include the
lack of trust between people in our opinion dynamics theory. Here, as a result of
exchanging opinions, consider the possibility that the opinions of two people with
different opinions change move in different directions. We consider the distribution
of opinions in the positive and negative directions of a one-dimensional axis. In this
case, the value range of Ii(t) is−∞ ≤ Ii(t) ≤ +∞. Here, we assume that Ii(t) > 0
means positive opinion and Ii(t) < 0 means negative opinion. Even in the limitation
of Hegselmann-Krause model, one can assume that 1/2 ≤ Ii(t) ≤ 1 corresponds
to positive opinion and 0 ≤ Ii(t) ≤ 1/2 corresponds to negative opinion. However,
our definition is intuitive, easy to understand and easy to apply to various examples.

We modify the meaning of the coefficient Dij as the coefficient of trust between
the agent i and the agent j . We assume here that Dij > 0 if there is a trust
relationship between the two persons, and Dij < 0 if there is distrust relationship
between the two persons.

According to our previous theory [7], we consider here that people disregard
the opinion far removed from their opinions without agreeing or repelling. Also,
opinions that are very close to himself/herself will not be particularly affected. To
include the two effects, we use the following function instead of Dij Ij (t) as follows,

DijΦ(Ii, Ij )(Ij (t)− Ii(t)) (3)

where

Φ(Ii, Ij ) = 1

1+ exp(β(|Ii − Ij | − b))
(4)

This function is Sigmoid function and it works as a smooth cut-off function at
|Ii − Ij | = b. The typical graph of this function is shown in Fig. 1. Using this
Sigmoid function, we assume that if the opinions of the two are too far apart, they
will not be totally influenced by each other’s opinion. Moreover, because of the
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Fig. 1 The typical graph of
the Sigmoid function (4) as
smooth cut-off function
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factor Ij (t) − Ii(t), the opinion Ii(t) is not affected by the opinion Ij (t) if the
opinion Ij (t) is almost same as the opinion Ii(t).

For the factor Ij (t) − Ii(t), we consider that Ij (t) − Ii(t) gives the same effect
whether Ii(t) and Ij (t) are both positive or both negative or either positive or
negative. This is very natural that, for example, even between conservatives, there
are intense debates between those with moderate conservatives and those with
radical conservatives.

Influences of mass media and government statements can not be ignored in
the formation of public opinion. Such mass media effect can also work even for
negotiations of small size group. Since formula of our theory above is similar to the
model of hit phenomena [18] where the popularity of certain topic is analyzed using
the sociophysics model, we introduce here the effects of mass media similar to the
way of Ref. [18]. Let A(t) be the pressure at time t from the outside and denote the
reaction difference for each agent is denoted by the coefficient ci . The coefficient
ci can have different values for each person and ci can be positive or negative. If
the coefficient ci is positive, the person i moves the opinion toward the direction of
the mass media. On the contrary, if the coefficient ci is negative, the opinion of the
person change against the mass media direction.

Therefore, including such mass media effects, the change in opinion of the agent
can be expressed as follows.

ΔIi(t) = ciA(t)Δt +
N∑

j=1

DijΦ(Ii(t), Ij (t))(Ij (t)− Ii(t))Δt (5)

We assume here that Dij is an asymmetric matrix; Dij and Dji , Dij �= Dji and
Dij and Dji can have different signs.

Long-term behavior requires attenuation, which means that topics will be
forgotten over time. Here we introduce exponential attenuation. The expression is
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as follows.

ΔIi(t) = −αIi(t)Δt + ciA(t)Δt +
N∑

j=1

DijΦ(Ii(t), Ij (t))(Ij (t)− Ii(t))Δt (6)

This is the equation of the one-component version of our new opinion dynamics
theory.

2.2 Multi-Dimensional Opinion Dynamics Theory

We extend the above one dimensional opinion dynamics theory to multi-
dimensional theory. First, we assume that the multi-dimensional opinion can be
write as the following multi-component vector.

Θi(t) = (I
(1)
i (t), I

(2)
i (t), · · · ) (7)

The effect of mass media can be extend that the term of mass media effects is χiA(t)

where

χi = (C
(1)
i , C

(2)
i , · · · ) (8)

The effects from other people’s opinion is Ωij as an extension of Dij to multi-
dimension.

Thus, multi-dimension opinion dynamics can be write down as the following
equation.

Θi(t +Δt)−Θi(t) =
⎡

⎣χiA(t)+
∑

j

ΩijΘj (t)

⎤

⎦Δt (9)

Namely,

dΘi(t) =
⎡

⎣χiA(t)+
∑

j

ΩijΘj (t)

⎤

⎦ dt (10)

2.3 Two Dimensional Opinion Dynamics Theory

For two dimension, we can write the two-component opinion as follows,
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Θi(t) = (I
(1)
i (t), I

(2)
i (t)) (11)

The effect of mass media in two dimension is χiA(t) where

χi = (C
(1)
i , C

(2)
i ) (12)

The effects from other people’s opinion is Ωij as an extension of Dij to multi-
dimension.

Ωij =
(

D
(1)
ij E

(12)
ij

E
(21)
ij D

(2)
ij

)

Thus, two-dimension opinion dynamics can be write down as the following
equation.

Θi(t +Δt)−Θi(t) =
⎡

⎣χiA(t)+
∑

j

ΩijΘj (t)

⎤

⎦Δt (13)

Namely,

dΘi(t) =
⎡

⎣χiA(t)+
∑

j

ΩijΘj (t)

⎤

⎦ dt (14)

Actual equations of two dimension opinion dynamics are as follows,

dI
(1)
i =

⎡

⎣c
(1)
i A(t)+

∑

j

D
(1)
ij I

(1)
j (t)+

∑

j

E
(12)
ij I

(2)
j (t)

⎤

⎦ dt (15)

dI
(2)
i =

⎡

⎣c
(2)
i A(t)+

∑

j

E
(21)
ij I

(1)
j (t)+

∑

j

D
(2)
ij I

(2)
j (t)

⎤

⎦ dt (16)

Apply similar interaction as (3) to the effect of other persons, actual equations of
two dimension opinion dynamics are as follows.
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dI
(1)
i =

⎡

⎣c
(1)
i A(t)+

∑

j

D
(1)
ij Φ(I

(1)
i (t), I

(1)
j (t))(I

(1)
j (t)− I

(1)
i (t))

+
∑

j

E
(12)
ij Φ(I

(2)
i (t), I

(2)
j (t))(I

(2)
j (t)− I

(2)
i (t))

⎤

⎦ dt

(17)

dI
(2)
i =

⎡

⎣c
(2)
i A(t)+

∑

j

E
(21)
ij Φ(I

(1)
i (t), I

(1)
j (t))(I

(1)
j (t)− I

(1)
i (t))

+
∑

j

D
(2)
ij Φ(I

(2)
i (t), I

(2)
j (t))(I

(2)
j (t)− I

(2)
i (t))

⎤

⎦ dt

(18)

Similar to one dimension opinion dynamics of Ishii [7], we introduce here the
strength of will for both component separately.

μi =
(

m
(1)
i 0
0 m

(2)
i

)

Using the above strength of will, the two-dimensional opinion dynamics equations
is as follows.

μidΘi(t) =
⎡

⎣χiA(t)+
∑

j

ΩijΘj (t)

⎤

⎦ dt (19)

For each component of the opinion, we can write the equation of the two-
dimensional opinion dynamics theory as follows.

m
(1)
i dI

(1)
i =

⎡

⎣c
(1)
i A(t)+

∑

j

D
(1)
ij Φ(I

(1)
i (t), I

(1)
j (t))(Ij (t)− Ii(t))

+
∑

j

E
(12)
ij Φ(I

(2)
i (t), I

(2)
j (t))(I

(2)
j (t)− I

(2)
i

⎤

⎦ dt

(20)
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m
(2)
i dI

(2)
i =

⎡

⎣c
(2)
i A(t)+

∑

j

E
(21)
ij Φ(I

(1)
i (t), I

(1)
j (t))(I

(1)
j (t)− I

(1)
i (t))

+
∑

j

D
(2)
ij Φ(I

(2)
i (t), I

(2)
j (t))(I

(2)
j (t)− I

(2)
i (t))

⎤

⎦ dt

(21)

2.4 Discussion of Two-Dimensional Opinion Dynamics Theory

In this two-dimensional opinion dynamics equation, we introduce four coefficients
D

(1)
ij , D(2)

ij , E(12)
ij and E

(21)
ij . D(1)

ij is the strength of the effect from the official stance
of the person j to the official stance of the person i. This coefficient is same as the
coefficient of one-dimensional opinion dynamics [6, 7].

D
(2)
ij is the strength of the effect from the real opinion of the person j to the real

opinion of the person i. Since the real opinion is not open to public, the effect from
the real opinion of the person j to the real opinion of the person i can not be observed
in real situation. The people, agents or governments just suggest the real opinion of
the other.

E
(12)
ij is the strength of the effect from the real opinion of the person j to the

official stance of the person i. This effect means that, addition to the official stance
of person j, person i try to guess the real opinion of person j. It means that persons
try to look at the other person’s real opinion. The similar situation is also important
for negotiation between nations. For example, on the negotiation between US and
China, US government try to looks at the real opinion of the Chinese government
and Chinese government try to looks at the real opinion of US government during
the negotiation. this coefficient E

(12)
ij is significant for such movements.

E
(21)
ij is the strength of the effect from the official stance of the person j to the

real opinion of the person i. This effect means that real opinion of people can be
affected by the official stance of other persons. When the turmoil of the revolution
grows, people’s real opinions may be influenced and changed by the official stance
of the people around them.

As described above, this two-component opinion dynamics theory can be applied
to the situation where the real opinion are mixed with the official stance.
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3 Results and Discussion

3.1 Real Opinion and Official Stance

First, we show the calculation of Fig. 2. In this calculation, we assume that the
coefficients for the official stance I

(1)
A (t), I (1)

B (t) and the real opinion I
(2)
A (t), I (2)

B (t)

are completely same. Thus, the official stance and the real opinion are same.
Figure 3 is the case that the agent A and B have trust each other and they reach the

consensus agreement on the official stance. However, the real opinions of them are
different. In Fig. 3, we cut off the interaction between the official stance and the real
opinion. Figure 4 is, addition to Fig. 3, we set the strength of the effect from the real
opinion of the other agent to the official stance of the agent to be positive. Positive
means that the agents trust each other on real opinion. Because of this positive effect
from the real opinion to the official stance, the consensus formation is rapid.

On the other hand, in Fig. 5, we set that, in addition to Fig. 3, we set the strength
of the effect from the real opinion of the other agent to the official stance of the
agent to be negative. Negative means that the agents distrust each other. Because
of this negative effect from the real opinion to the official stance, the consensus
formation is very slow. This no consensus situation on the official stance is caused
by the distrust on the real opinion.

3.2 Romeo and Juliet

Next, we consider the situation that the A and B have trust each other on their real
opinions but their official stances should be conflicted. This situation is very similar
to the famous play “Romeo and Juliet” by William Shakespeare [19]. We calculate
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the original situation of “Romeo and Juliet” in Fig. 6a, where we set that the official
stances of the agent A and B have no trust each other and the real opinions of
the agent A and B have trust each other. There are many works for the love affair
of Romeo and Juliet using mathematical model [20–22]. However, in such works,
calculations were done only for intentions of Romeo and Juliet.

In contrast to these works, we introduce both official stance and real opinion for
Romeo and Juliet. In Fig. 6b, we introduce the negative effect of official stance to
the real opinions of Romeo and Juliet. In this case, since Romeo and Juliet take
care of the official stances, the calculated real opinion of Romeo and Juliet is far
from consensus formation. This is the case that Romeo and Juliet do not fall into
love because of the constraint of the conflict between their families. In Fig. 6c, we
introduce the positive effect of the real opinion to the official stances of Romeo and
Juliet. In this case, because of their real opinions, the official stances of Romeo and
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Juliet tend to approach. If this situration was realized, the play of Romeo and Juliet
would be a happy end story.

3.3 Conflict of Two Countries

Here we consider the case that the agent A and B try to obtain consensus formation
but their real opinion is far from the consensus formation. Such case can be found
in society as the negotiation between two country or between two company. In
Fig. 7a we show that A and B get consensus formation in official stance but not
in real opinion. In this case, since both A and B trust the other’s real opinion on the
official stance, A and B can obtain the consensus formation each other on the official
stance. In Fig. 7b, we show the case that A and B try to get consensus formation in
official stance but not in real opinion. It means that we set to be E

(12)
AB = −0.2 and

E
(12)
BA = −0.2. In this case, both A and B distrust the other’s real opinion, so that

the consensus formation in the official stance is incomplete compared with the case
of Fig. 7a because of the effect of distrust of the real opinion of the other. The case
of Fig. 7c is that A and B obtain consensus formation in official stance where A and
B trust the other’s real opinion. For the real opinion, A and B have no trust on the
real opinion of the other but the the consensus formation on the official stance affect
the real opinion due to E

(21)
AB = 0.5 and E

(21)
BA = 0.5. Thus, we found that the real

opinion of A and B come closer in this calculation, Fig. 7c.
On the problem of conflict of countries, the landscape theory [23] and related

theory [24] are well known. On these theories, the size, the propensity and the
distance between each two country are considered to obtain the energy or the
conflict minimization. However, in these theories they do not pay attention to the
real opinion we include in the present theory. Usually, the states compromise in
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diplomatic negotiations though the real opinion of the states are still apart. Thus, the
present theory can be used to analyze such compromise though the real opinion is
not compromised.
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Fig. 7 Calculation of official stance and real opinion for two countries. The left is official distance
and the right is real opinion. The vertical axis means opinion and the horizontal axis means time.
The parameters of the calculations are D

(1)
AB = 1, D

(1)
BA = 1, D

(2)
AB = 0, D

(2)
BA = 0. For three

calculations, we set as follows. (a) E
(12)
AB = 0.2, E

(12)
BA = 0.2, E

(21)
AB = 0, E

(21)
BA = 0. (b) E

(12)
AB =

−0.2, E
(12)
BA = −0.2, E

(21)
AB = 0, E

(21)
BA = 0. (c) E

(12)
AB = −0.5, E

(12)
BA = −0.5, E

(21)
AB = 0.5,

E
(21)
BA = 0.5.



152 A. Ishii and N. Okano

3.4 Discussion

As we see in the two example calculations of Romeo and Juliet and conflict of two
countries, we can do a lot of variation of social simulation using this two component
opinion dynamics theory of official stance and real opinion. As we include distrust
into calculation, we can even do the simulation of the social devision where effect of
real opinion would be very important. For example, in the case of religious conflict,
analysis of their official stance would be not enough. The analysis of their real
opinion would be very important.

The application of the presented two dimensional opinion dynamics theory is not
the analysis of negotiations using real opinions and official stance, because, usually,
we cannot obtain the correct information of the real opinion of the negotiation
partner. The application of this theory should be the guess of the real opinion of the
negotiation partner using this two-dimensional opinion dynamics. Such application
is possible even using social media informations.

4 Conclusion

Multi-dimensional opinion dynamics including both trust and distrust between
people is presented. Opinion dynamics theory of two dimensions is applied to real
opinion and official stance of people, agents and governments. The two dimension,
the official stance and the real opinion is very natural to analyze negotiation,
discussion and love. Analyzing the negotiations, including the difference between
the real opinion and the official stance gives great freedom to the analysis. Therefore,
the two-dimensional opinion dynamics theory we present here is very useful and
powerful for analyzing social phenomena.
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On the Fundamental Equation of User
Dynamics and the Structure of Online
Social Networks

Masaki Aida, Chisa Takano, and Masaki Ogura

Abstract Online social networks suffer from explosive user dynamics such as
flaming that can seriously affect social activities in the real world because the
dynamics have growth rates that can overwhelm our rational decision making
faculties. Therefore, a deeper understanding of user dynamics in online social
networks is a fundamental problem in computer and information science. One of the
effective user dynamics models is the networked oscillation model; it uses a second-
order differential equation with Laplacian matrix. Although our previous study
indicates that the oscillation model provides us with a minimal but effective model
of user interactions, there still remains the open problem as to the existence of a first-
order fundamental differential equation that respects the structure of the original
network. This paper fills in this gap and shows that, by doubling the dimension of
the state space, we can explicitly but naturally construct a fundamental equation that
fully respects the structure of the original network.

1 Introduction

The widespread adoption of information networks, has dramatically activated the
exchange of information among individuals, and the dynamics of users in online
social networks is beginning to have a major impact beyond online communities;
social activities in the real world are being influenced. In particular, explosive user

M. Aida (�)
Graduate School of Systems Design, Tokyo Metropolitan University, Hino, Tokyo, Japan
e-mail: aida@tmu.ac.jp

C. Takano
Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
e-mail: takano@hiroshima-cu.ac.jp

M. Ogura
Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
e-mail: m-ogura@ist.osaka-u.ac.jp

© Springer Nature Switzerland AG 2020
N. Masuda et al. (eds.), Proceedings of NetSci-X 2020: Sixth International Winter
School and Conference on Network Science, Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-38965-9_11

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38965-9_11&domain=pdf
mailto:aida@tmu.ac.jp
mailto:takano@hiroshima-cu.ac.jp
mailto:m-ogura@ist.osaka-u.ac.jp
https://doi.org/10.1007/978-3-030-38965-9_11


156 M. Aida et al.

dynamics such as the flaming phenomenon that occurs in online social networks
can spread far faster than human rational decision making can respond, which can
cause major social unrest. Therefore, understanding the dynamics of online social
networks in an engineering framework is an urgent and important issue.

Studies into the dynamics of online social networks have examined various mod-
els that reflect the diversity of characteristics of user dynamics. User dynamics that
describe the adoption and abandonment of a particular social networking service
(SNS) have been modeled by the SIR model, which is a traditional epidemiological
model, and the irSIR model, which is an extension of that model [1, 2]. The
consensus problem including user opinion formation is typical of the dynamics in
online social networks [3, 4]. This is modeled by a first-order differential equation
with respect to time using a Laplacian matrix that represents the social network
structure. The differential equation used in this model is a sort of continuous-time
Markov chain on the network. First-order differential equations with respect to time
are also used in modeling of the temporal change of social network structure (how
to link or to delink the nodes), and there are models that change in a continuous-time
Markov chain [5]. In addition to theoretical modeling, user dynamics analysis based
on real network observations has also been studied [6, 7].

This paper focuses on explosive user dynamics such as flaming, which is defined
as the divergence of the intensity of user dynamics. Since both epidemiological
models and continuous-time Markov chains on networks describe the transition to
the final state (steady state), they cannot describe the divergence of the intensity.
Moreover, it is difficult to clarify the structure of the theoretical model behind
user dynamics from just an analysis of actual data. User dynamics in online
social networks, including the explosive user dynamics, is generated by interactions
between users. It is difficult to fully understand the details of interactions between
users, but we can apply the concept of the minimal model; it models the simple
interactions exhibited by a wide type of user interactions. Based on the minimal
model, it has been proposed to apply the oscillation model on networks to describe
user dynamics in online social networks [8]. In the oscillation model approach,
network dynamics is described by the wave equation on networks. The oscillation
energy of each node calculated from the oscillation model gives a generalization
of node centrality and includes the conventional node centrality measures (degree
centrality and betweenness centrality) [9–11] commonly used in network analysis
[12]. Also, by considering that the occurrence of explosive user dynamics such as
flaming in online social networks demonstrate the characteristic that the oscillation
energy diverges with time, we can discuss appearance factors of explosive user
dynamics in relation to the structure of the online social network [8].

This paper examines a fundamental equation [8] of the oscillation model on
networks. The fundamental equation can explicitly describe the causal relation
of the influence of the network structure on user dynamics. We give solutions
to two major unresolved issues with the fundamental equation. Specifically, we
derive all solutions of the wave equation from the fundamental equation and draw
a concurrence between the link structure of the networks (represented by the
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fundamental equation) and that of the wave equation. Surprisingly, they are solved
naturally and simultaneously.

2 Oscillation Model on Networks

This section briefly summarizes the oscillation model on networks according to [8].
Let G(V,E) be a simple directed graph (without self-loop and duplicated links)

with n nodes representing a social network, V = {1, . . . , n} denote the set of nodes,
and E denote the set of links. Hereafter, node IDs are denoted by Roman characters
1 ≤ i, j ≤ n and the oscillation modes are denoted by Greek characters 0 ≤ μ, ν ≤
n− 1.

For a pair of adjacent nodes i, j ∈ V , we let the link weight of directed link
(i → j) ∈ E be denoted by wij , and define the adjacency matrixA = [Aij ]1≤i,j≤n

as

Aij :=
{

wij , (i → j) ∈ E,

0, (i → j) �∈ E.
(1)

In addition, if the nodal degree of out-links from node i is given as di :=∑j∈∂i wij ,
the degree matrixD := diag(d1, . . . dn), where ∂i denotes the set of out-neighbors
of node i. Finally, Laplacian matrix L is defined as L := D−A.

Let tm = (m1, . . . , mn) denote a left eigenvector associated with the eigenvalue
0 of Laplacian matrixL. We say that the directed graph is symmetrizable if and only
if mi > 0 for all i ∈ V and

mi wij = mj wji,

for all pairs of adjacent nodes (i → j) ∈ E. Hereafter, we denote the Laplacian
matrix of a symmetrizable directed graph as L0. The Laplacian matrix L0 can
be transformed into a symmetric matrix S0 by the similarity transformation using
M := diag(m1, . . . , mn), as

S0 := M+1/2L0 M−1/2;

S0 andL0 have the same eigenvalues. Furthermore, the eigenvalues are nonnegative
and we sort them as

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1.

In addition, we choose the eigenvectors vμ of S0 associated with λμ in such a way
that the eigenvectors form an orthonormal eigenbasis, vμ · vν = δμν .

Next, we consider a simple and universal interaction model among users through
recourse to the concept of the minimal model [8]. We assume that the state of node i
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at time t (representing a user in the online social network) can be described by a one-
dimensional parameter, xi(t). Also, it is assumed that the influence exists between
adjacent nodes, such that they are influenced by the other’s state quantities and tend
to harmonize. We specifically assume that the strength of the influence between a
pair of adjacent nodes, i and j , is proportional to the absolute value of the difference
between their state quantities, |xi(t) − xj (t)|. Then, the equation of motion (EoM)
of state vector x(t) = t(x1(t), . . . , xn(t)) can be denoted as

d2

dt2 x(t) = −L x(t). (2)

This equation is called the wave equation on networks, and the above modeling is
called the oscillation model on networks.

We can calculate the oscillation energy of the whole network from the solution,
x(t), of EoM (2). In particular, if the social network is a symmetrizable directed
graph, we can calculate the oscillation energy of each node from that of the whole
network and, furthermore, the oscillation energy of each node gives a generalized
notion of node centrality. Node centrality is a quantitative index indicating how
important a particular node is in a network, and there are various different
node centrality measures depending on the definition of importance used. The
representative indices are the degree centrality and the betweenness centrality, but
the oscillation model on networks gives a framework that can explain both indices in
a unified manner. For example, if the weight of all links is 1, the oscillation energy
for each node becomes the degree centrality for the non-biased usage condition
of the network. Also, by taking the number of routes passing through a link (or
the amount of passing traffic) as the link weight, the oscillation energy for each
node gives an value related to the betweenness centrality, again for the non-biased
usage condition of the network. In particular, the oscillation energy of each node
can generalize the node centrality even in various network usage situations such as
having a biased usage condition where a specific node is the information source
[12].

If the social network is not symmetrizable, the oscillation energy of the whole
network may diverge with time depending on the network structure. This corre-
sponds to the phenomenon where the strength of the user dynamics activity on the
network diverges, like flaming on online social networks. Since it is known that
such divergence is not generated by symmetrizable directed graphs, the oscillation
model on networks gives a model offers a generation mechanism of explosive user
dynamics caused by the network structure [12].
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3 Fundamental Equation of the Oscillation Model on
Networks

This section briefly summarizes the fundamental equation of the oscillation model
on networks according to [8].

We specifically consider the situation where the network is not symmetrizable,
and can be decomposed into a symmetrizable and one-way link parts. We first
discuss the difficulty in expressing the solution of the wave equation (4) as a product
of the solutions arising from the decomposition. We then show that, by reducing
the second-order differential equation (4) to a first-order equation, we can obtain a
product-form solution that reflects the decomposition.

We start with the decomposition of Laplacian matrix L into the Laplacian matrix
of symmetrizable directed graph, L0, and that of a one-way link graph, LI, as

L = L0 +LI, (3)

where the one-way link graph is a directed graph that has at most only one-way links
between nodes. The decomposition (3) is not unique and any directed graph can be
decomposed as shown in (3). Since the non-uniqueness of the decomposition (3)
leads to the selection of orthogonal bases in the state space through the choice of
S0, we can choose a convenient decomposition that makes the Laplacian matrix of
a one-way link graph LI simple.

The cause of the divergence in the oscillation energy is the influence of the
one-way link graph, since the divergence of the oscillation energy is not inherent
in symmetrizable directed graphs. In order to directly express the influence of a
one-way link graph on a symmetrizable directed graph, let us rewrite the EoM
using the coordinate system obtained by converting L0 into a diagonal matrix.
Let the orthonormal basis determined from S0 based on the decomposition (3) be
{vμ}0≤μ≤n−1. By using the orthogonal matrix P := [v0, v1, . . . , vn−1], L0 can be
diagonalized as

�0 := tP S0 P = tP
(
M+1/2L0 M−1/2

)
P ,

where �0 = diag(λ0, . . . , λn−1). Let us define ψ(t) := tP M+1/2 x(t) and �I :=
tP
(
M+1/2LI M−1/2

)
P . Then, the EoM (2) can be transformed into

d2ψ(t)

dt2 = −� ψ(t) = −(�0 +�I)ψ(t) (4)

where � := �0 +�I.
The solution of the wave equation (4) for �I = O (null matrix) is easily

obtained. In order to explicitly describe the causal relation of the influence of �I,
it is preferable that the solution of (4) be cast in product-form; it consists of the
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solutions of the wave equations related to �0 and �I. Unfortunately, attempting the
product-form solution of the wave equation (4) will not succeed. This is because
the wave equation (4) is a second-order differential equation with respect to time,
so the equation yields an extra cross term. Hence, to obtain a first-order differential
equation with respect to time, we define the following matrix,


2 = � = �0 +�I. (5)

This means 
 is the square root of matrix � and it is unique if we choose 
 to
be semi-positive definite. If we define 
0 := �

1/2
0 , the square root matrix 
 is

decomposed as


 = 
0 +
I. (6)

By using the diagonal matrix M that symmetrizes L0 into S0, the square root
matricesH0 of L0, andH of L are defined, respectively, as

H0 := M−1/2 (P 
0
tP )M+1/2,

H := M−1/2 (P Ω tP )M+1/2.

Also, we defineHI by using the decomposition

H = H0 +HI. (7)

Note thatHI is not the square root of LI.
By using the square root matrix 
 of �, we introduce the following two different

wave equations:

+i
d ψ+(t)

dt
= 
 ψ+(t), −i

d ψ−(t)

dt
= 
 ψ−(t). (8)

The solutions of the wave equations (8) satisfy the following equation (double sign
correspondence) as

d2ψ±(t)

dt2 = ∓i

d ψ±(t)

dt
= −
2 ψ±(t) = −(�0 +�I)ψ±(t).

This means that the solutions of the wave equations (8) solve the original wave
equation (4).

Conversely, let us confirm that the solution of the wave equation (4) does not
necessarily solve (8). For constants c+ and c−, let us consider a linear combination
of the solutions of the two different equations (8), c+ ψ+(t)+ c− ψ−(t). The linear
combination solves (4)
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d2

dt2 (c+ ψ+(t)+ c− ψ−(t)) = i 

d

dt
(−c+ ψ+(t)+ c− ψ−(t))

= −
2 (c+ ψ+(t)+ c− ψ−(t)) = −� (c+ ψ+(t)+ c− ψ−(t)).

However, the linear combination satisfies neither of equations in (8). This problem
is discussed later.

Next, let us consider the possibility of the product-form solution of ψ±(t) for
the wave equation (8). The goal here is to write solution ψ±(t) in product-form, i.e.
ψ±(t) = �±

0 (t)ψ±
I (t) by using solutions of the two wave equations with respect to


0 and 
I. By choosing the initial condition of �±
0 (0) = I (n×n unit matrix), that

is, ψ±(0) = ψ±
I (0), and by using the decomposition (6), we introduce the following

differential equations:

±i
d

dt
ψ±

0 (t) = 
0 ψ±
0 (t), (9)

±i
d

dt
ψ±

I (t) = (�±
0 (−t)
I �±

0 (t)
)
ψ±

I (t), (10)

where �±
0 (t) is the diagonal matrix with diagonals tψ±

0 (t) = (ψ±
0 (0; t),

ψ±
0 (1; t), . . . , ψ±

0 (n− 1; t)), that is,

�±
0 (t) =

⎡

⎢
⎢
⎢
⎢
⎣

ψ±
0 (0; t) 0 . . . 0

0 ψ±
0 (1; t) . . .

...
...

. . .
. . . 0

0 0 0 ψ±
0 (n− 1; t)

⎤

⎥
⎥
⎥
⎥
⎦

.

From the initial condition �±
0 (0) = I ,

�±
0 (−t) = �±

0 (t)−1 = �∓
0 (t). (11)

For tψ±
I (t) = (ψ±

I (0; t), ψ±
I (1; t), . . . , ψ±

I (n−1; t)), the structure of the product-
form solution is expressed as

ψ±(t) = �±
0 (t)ψ±

I (t) =

⎛

⎜
⎜
⎜
⎝

ψ±
0 (0; t) ψ±

I (0; t)
ψ±

0 (1; t) ψ±
I (1; t)

...

ψ±
0 (n− 1; t) ψ±

I (n− 1; t)

⎞

⎟
⎟
⎟
⎠

.

By substituting ψ±(t) = �±
0 (t)ψ±

I (t) into the wave equations (8), and using
the differential equations (9) and (10), and the relation (11), we obtain
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±i
d ψ±(t)

dt
= ±i

d

dt
(�±

0 (t)ψ±
I (t))

= 
0 �±
0 (t)ψ±

I (t)+�±
0 (t)

(
�±

0 (−t)
I �±
0 (t)

)
ψ±

I (t)

= (
0 +
I)ψ±(t) = 
 ψ±(t).

This implies that the attempt to derive the product-form solution has succeeded.
Summarizing the above, the solution of the wave equation (8) is also the solution

of the original wave equation (4) and can be expressed as the product-form solution
with respect to ψ±

0 (t) and ψ±
I (t). Therefore, the causal relation of the influence of

the one-way link graph can be explicitly described.
From the above examination, the wave equations (8) that describe the causality

of the oscillation dynamics can be considered as more fundamental than the original
wave equation (4) (or the original EoM (2)). For this reason, we call the wave
equations (8) the fundamental equations of oscillation dynamics on directed graphs.
Similarly, the first-order differential equations with respect to time that the original
EoM (2) can be rewritten into are

+i
d x+(t)

dt
= H x+(t), −i

d x−(t)

dt
= H x−(t), (12)

they are the fundamental equations that are mathematically equivalent to (8).

4 Fundamental Equation and Quantum Theory

Let us rewrite the fundamental equations (12) into a single equation.
First, we set the components of the n-dimensional vectors x+(t) and x−(t) as

x+(t) = t(x+1 (t), x+2 (t), . . . , ψ+
n (t)),

x−(t) = t(x−1 (t), x−2 (t), . . . , ψ−
n (t)).

By combining them, we define the new 2n-dimensional vector x̂(t) as

x̂(t) := t(x+1 (t), x−1 (t), x+2 (t), x−2 (t), . . . , x+n (t), x−n (t)).

Also, for Laplacian matrix L, we define the following 2n× 2n square matrix

̂L := L⊗E, (13)

where E denotes the 2×2 unit matrix and⊗ denotes Kronecker product [13], which
is, for L = [Lij ]1≤i,j≤n,
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̂L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

L11 E L12 E · · · L1n E

L21 E L22 E · · · L2n E

L31 E L32 E · · · L3n E

.

.

.
.
.
.

. . .
.
.
.

Ln1 E Ln2 E · · · Lnn E

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L11 0 L12 0 · · · L1n 0
0 L11 0 L12 · · · 0 L1n

L21 0 L22 0 · · · L2n 0
0 L21 0 L22 · · · 0 L2n

L31 0 L32 0 · · · L3n 0
0 L31 0 L32 · · · 0 L3n

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

Ln−1,1 0 Ln−1,2 0 · · · Ln−1,n 0
0 Ln−11 0 Ln−1,2 · · · 0 Ln−1,n

Ln1 0 Ln2 0 · · · Lnn 0
0 Ln1 0 Ln2 · · · 0 Lnn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In order to express both L = H2 and L = (−H)2 simultaneously, the square
root ̂H of ̂L is defined as

̂H = H⊗
[

1 0
0 −1

]

.; (14)

̂H satisfies ̂L = ̂H
2
.

By using the above 2n-dimensional notations, the components of the fundamen-
tal equations (12) can be expressed as the one equation of

i
d x̂(t)

dt
= ̂H x̂(t). (15)

It is worth to note that this equation has essentially the same structure as the Dirac
equation found in relativistic quantum theory [8, 14].

5 Problems with the Fundamental Equation of the
Oscillation Model

The two expressions of the fundamental equations (8) and (12) are mathematically
equivalent and they can be transformed into each other by using a simple linear
transformation. On the other hand, there are two crucial problems with the funda-
mental equation (12) as listed below.

– The solutions of the fundamental equation (12) are also solutions of the original
wave equation (2). Unfortunately, the converse is not true, as shown in Sect. 3.
If we are to claim that the fundamental equation (12) is really fundamental, it
should be possible to derive all solutions of the original wave equation (2) from
the fundamental equation (12).

– The square root matrix H of the Laplacian matrix that is appeared in the
fundamental equation (12) does not reflect the structure of social networks
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Fig. 1 Link structures and link weights described by Laplacian matrixL and its square root matrix
H

described by the Laplacian matrix L. Since it is unacceptable in practice to
hypothesize some direct relationships between nodes where links do not exist
in the social network structure described by the Laplacian matrix, the Laplacian
matrix L and its square root matrix H should have completely identical link
structures.

Here, we describe the latter problem via an example. The figure on the left of
Fig. 1 shows an example of a social network structure. For the Laplacian matrix L
describing the left figure, the figure on the right describes link structure of the square
root matrix H of L. Even if the structure of a social network is sparse, the link
structure of its square root matrix is a complete graph, in general. This means that
some direct relationships exist between all users yielding an unacceptable situation.
Conversely, if we give H as a sparse matrix, L is also sparse. However, their link
structures are not identical, in general, which is also an unacceptable situation.

To solve these problems at the same time, we discuss the following proposition
in the next section.

Proposition 1 By utilizing one advantage of the structure of the 2n-dimensional
wave equation (15), the following two properties hold simultaneously:

– The fundamental equation can generate all solutions of the original wave
equation (2), and

– the matrix ̂H appearing in the fundamental equation can be chosen so that its
link structure completely matches the link structure represented by the Laplacian
matrix.
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6 Fundamental Equation Reflecting Social Network
Structure

As shown in (14), the square root matrix ̂H of ̂L := L⊗E is chosen not as a semi-
positive definite matrix, so the choice of ̂H is not unique. The first attempt utilizes
this degree of freedom of the choice to yield matching link structures, ̂H and ̂L.

First, we decompose H into diagonal matrix H(d) and the other matrix −H(a),
which has only non-diagonal components, as

H = H(d) −H(a).

SinceH2 = L and

H2 = (H(d) −H(a))2 = (H(d))2 −H(d)H(a) −H(a)H(d) + (H(a))2,

the link structures of bothH and L are identical, if (H(a))2 = O. In order to realize
this relation, we consider the following 2n× 2n matrix

̂H
(a) = H(a) ⊗ 1

2

[
1 1
−1 −1

]

. (16)

The 2× 2 matrix used here exhibits nilpotency and so has the following property

[
1 1
−1 −1

]2
=
[

0 0
0 0

]

,

so (̂H
(a)

)2 = O.
Let this nilpotent 2 × 2 matrix be X; by choosing a certain 2 × 2 matrix Y , we

introduce

̂H = H(d) ⊗ Y −H(a) ⊗X.

Here, we consider the possibility of whether or not the following relation is realized:

̂H
2 = L⊗E.

From the expansion of ̂H
2
, we obtain

̂H
2 = (H(d) ⊗ Y −H(a) ⊗X)2

= (H(d))2 ⊗ Y 2 − (H(d)H(a))⊗ (YX)

− (H(a)H(d))⊗ (XY )+ (H(a))2 ⊗X2
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= (H(d))2 ⊗ Y 2 − (H(d)H(a))⊗ (YX)− (H(a)H(d))⊗ (XY ).

Therefore, the sufficient condition for ̂H
2 = L⊗E can be written as

Y 2 = E, XY = YX = E, X2 = O. (17)

Here, the second condition implies Y = X−1, but it is known that no nilpotent
matrix has an inverse. Thus we cannot choose Y that satisfies the condition (17).

The next step is to relax the condition Y = X−1. As one example that satisfies
the following relation

Y 2 = E, X2 = O, (18)

let us consider the following matrix [15]

̂H := ̂H
(d) − ̂H

(a) = H(d) ⊗
[

1 0
0 −1

]

−H(a) ⊗ 1

2

[
1 1
−1 −1

]

. (19)

The corresponding fundamental equation is expressed as

i
d x̂(t)

dt
= ̂H x̂(t)

=
(

H(d) ⊗
[

1 0
0 −1

]

−H(a) ⊗ 1

2

[
1 1
−1 −1

])

x̂(t). (20)

Here, we obtain

̂H
2 = (H(d))2 ⊗

[
1 0
0 1

]

− (H(d)H(a))⊗ 1

2

[
1 1
1 1

]

− (H(a)H(d))⊗ 1

2

[
1 −1
−1 1

]

= (H(d))2 ⊗E − (H(d)H(a) +H(a)H(d))⊗ 1

2
E

− (H(d)H(a) −H(a)H(d))⊗ 1

2

[
0 1
1 0

]

. (21)

So, if H(d)H(a) = H(a)H(d), that is, H(d) and H(a) are commutable (the order of

product of matrices is commutable), we obtain the relation ̂H
2 = L⊗E. However,

the commutation relation does not hold in general, and it is limited to the case when
H(d) is proportional to the unit matrix I .

From the above discussion, it can be seen that for a general Laplacian matrix
̂H

2 = L ⊗ E cannot be satisfied while matching the links actually present.
Conversely, in order to match the link structures of 2n × 2n matrices ̂H and ̂L, we
can recognize that two solutions of the fundamental equations (12) should be mixed
by the influence of the third term of the right-hand side of (21). Expressing such a
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mixture of solutions yields the benefit of expressing the fundamental equation (15)
by using a 2n-dimensional vector and a 2n× 2n square matrix.

Halting the attempt to realize ̂H
2 = L ⊗ E, We aim to reproduce the original

equation of motion by pursuing the benefit of expressing the fundamental equation
as a 2n-dimensional vector. Here, as discussed in Sect. 3, remember that the
solutions of the wave equations (8) and that of the original equation of motion (4)
are not the same. The solutions of the wave equations (8) are always the solution of
the original equation of motion (4), but the linear combination of the solutions of
the two different wave equations (8) is also a solution of (4). Therefore, no problem

is created if ̂H
2

mixes the solutions of the two fundamental equations (8) even if
they have different signs; on the contrary, it is a desirable situation.

From the fundamental equation (20), the second derivative of x̂(t) is written as

d2 x̂(t)

dt2 = −i
d x̂(t)

dt
̂H x̂(t) = −̂H

2
x̂(t)

= −
(

(H(d))2 ⊗
[

1 0
0 1

]

− (H(d)H(a) +H(a)H(d))⊗ 1

2

[
1 0
0 1

]

− (H(d)H(a) −H(a)H(d))⊗ 1

2

[
0 1
1 0

])

x̂(t). (22)

By extracting the differential equations for x+(t) and x−(t), we obtain

d2 x+(t)

dt2 = −
(

(H(d))2 − 1

2
(H(d)H(a) +H(a)H(d))

)

x+(t)

−
(

−1

2
(H(d)H(a) −H(a)H(d))

)

x−(t), (23)

d2 x−(t)

dt2 = −
(

(H(d))2 − 1

2
(H(d)H(a) +H(a)H(d))

)

x−(t)

−
(

−1

2
(H(d)H(a) −H(a)H(d))

)

x+(t). (24)

Here, by adding both sides of the differential equations (23) and (24), we obtain

d2

dt2 (x+(t)+ x−(t)) = −
(
(H(d))2 −H(d)H(a)

)
(x+(t)+ x−(t)). (25)

This equation corresponds to the original equation of motion (2). In addition, the
solutions x+(t) and x−(t) of the fundamental equations satisfy, respectively, the
same fundamental equation even if multiplied by a constant, so Eq. (25) shows that
the linear combination of the solutions of the fundamental equations (20) is also the
solution of the original equation of motion (2).
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From the above, by setting the fundamental equation to (20), it is possible to not
only perfectly match the link structures between nodes represented by ̂H and L, but
also generate all solutions of the original equation of motion (2).

The correspondences of H to the Laplacian matrix L, the adjacency matrix A,
and the degree matrixD are obtained as

L = (H(d))2 −H(d)H(a), A = H(d)H(a), D = (H(d))2. (26)

More specifically, we obtain the simple relations of

H(d) = diag
(√

d1, . . . ,
√

dn

)
, (27)

and, sinceH(a) = (H(d))−1A,H(a) = [H(a)
ij ]1≤i,j≤n is obtained by

H(a)
ij :=

{
wij /

√
di, (i → j) ∈ E,

0, (i → j) �∈ E.
(28)

Incidentally, the existence of simple relations (27) and (28) is due to the selection

of the nilpotent matrix
[

1 1
−1 −1

]
. If we choose the nilpotent matrix of

[
1 −1
1 −1

]
, the

adjacent matrix is obtained as A = H(a)H(d), and the relations are complicated.
This is because it complicates the use of the property of the Laplacian matrix that
the row sum is zero.

Figure 2 shows an example of social network structures of ̂L and ̂H.

Fig. 2 Link structures and link weights described by the Laplacian matrix ̂L and the proposed
matrix ̂H
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7 Conclusions

The two key remaining problems with the fundamental equation (12) of the
oscillation model on networks have been solved. One is the problem that the
solutions of (12)–(20) do not represent all the solutions of the original wave
equation (2), and the other is that the link structures expressed by H and those
expressed by L do not coincide.

This paper examined solutions to the latter problem and clarified that the
two problems can be solved naturally and simultaneously. The constraints of
the matching the link structures of H and L while keeping the characteristic of
modeling that clearly describes the causality of the fundamental equation (8) is
retained by considering the wave equation (15) as a 2n-dimensional vector. By
utilizing one advantage of the structure of 2n-dimensional wave equation (15), the
solutions of the fundamental equations (12) mix naturally and generate the solutions
of the original equation of motion (2) of the n-dimensional vector, so solving the

fundamental equation (20) gives all solutions of (2). While ̂H
2 �= ̂L := L⊗ E, ̂H

is not the square root matrix of ̂L, the following n× 2n matrix

I ⊗ (1, 1) =

⎡

⎢
⎢
⎢
⎣

1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1

⎤

⎥
⎥
⎥
⎦

,

can be used to obtain

(I ⊗ (1, 1)) ̂H
2
x̂ = L x. (29)

where (I ⊗ (1, 1)) x̂ = x.
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Coexistence of Cultural Diversity
and Structural Connectivity Is Possible
with Social Constituent Diversity
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Abstract Social fragmentation caused by widening differences among constituents
has recently become a highly relevant issue to our modern society. Theoretical
models of social fragmentation using the adaptive network framework have been
proposed and studied in earlier literature, which are known to either converge
to a homogeneous, well-connected network or fragment into many disconnected
subnetworks with distinct states. Here we introduced the diversities of behavioral
attributes among social constituents and studied their effects on social network
evolution. We investigated, using a networked agent-based simulation model, how
the resulting network states and topologies would be affected when individual
constituents’ cultural tolerance, cultural state change rate, and edge weight change
rate were systematically diversified. The results showed that the diversity of cultural
tolerance had the most direct effect to keep the cultural diversity within the society
high and simultaneously reduce the average shortest path length of the social
network, which was not previously reported in the earlier literature. Diversities of
other behavioral attributes also had effects on final states of the social network, with
some nonlinear interactions. Our results suggest that having a broad distribution of
cultural tolerance levels within society can help promote the coexistence of cultural
diversity and structural connectivity.
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1 Introduction

Social fragmentation caused by widening differences among constituents has
recently become a highly relevant issue to our modern society, as various forms of
gaps and conflicts are emerging from cultural, political, economic, ethnic, religious,
linguistic, and other driving factors. Researchers have developed theoretical models
of social fragmentation using the adaptive network framework [1–5], where the
topologies of social ties between constituents and their states co-evolve simulta-
neously through homophily, social contagion, and/or other social processes. Such
adaptive social network models are known to either converge to a homogeneous,
well-connected network (=loss of cultural diversity), or fragment into many dis-
connected subnetworks with distinct states (=loss of structural connectivity). From
a viewpoint of social capital and innovation, however, neither of these two social
states would be desirable, because the former would mean the loss of information
and the latter the loss of communication. In order to keep our society active
and innovative, we should maintain cultural/informational diversity within our
society high while also maintain information exchange and communication actively
ongoing. This can be conceptualized as a structurally well-connected network with
diverse node states. Earlier theoretical models of adaptive social network dynamics
did not succeed in demonstrating how such outcomes could occur.

We note that those earlier models typically used stylized assumptions that behav-
ioral attributes of social constituents were spatially homogeneous, and therefore,
they may not have fully reproduced richer macroscopic outcomes, such as potential
coexistence of diverse cultures within a connected network structure. To overcome
this limitation, here we introduced the diversities of behavioral attributes among
social constituents into an adaptive social network model, and computationally
investigated their effects on social network evolution.

The rest of the paper is organized as follows. Section 2 describes our networked
agent-based simulation model. Section 3 describes the design of our computational
experiments and outcome measures. Section 4 summarizes the results. Section 5
concludes the paper with a brief discussion on the implications of the results for
relevant research fields and real-world socio-cultural dynamics.

2 Model

For the purpose of this study, we developed a computational adaptive social network
model of cultural diffusion dynamics by using our previous work on cultural
integration in corporate merger [6, 7] as the basis and implementing some revisions
to it to allow representation of social constituent diversity.

In this model, we simulate the dynamics of an adaptive social network made of
two initially distant cultural groups, each consisting of 50 individual constituents
(nodes). Individuals are connected to each other through directed weighted edges,
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which represent the direction and intensity of cultural information flow. Constituents
within each group and across the two groups are initially connected randomly with
20% and 2% edge densities, respectively, to represent initially modularized social
structure. Edge weights are initially random, with weights sampled from a uniform
distribution between 0 and 1. This initial network structure captures the state of two
groups that is distant from each other both structurally and culturally.

Each individual constituent has its cultural state as a vector in a 10-dimensional
continuous cultural space, based on previous empirical studies on measuring
organizational cultural dimensions [8, 9]. The distance between two cultures is
characterized by the Euclidean distance between their two vectors in the cultural
space. The cultural distributions among individual constituents are initialized as
follows: First, two cultural “center” vectors are created for the two groups, separated
by 3.0 (in an arbitrary unit) in the cultural space. Then individual cultural vectors
are created for individuals in each group by adding a random number drawn from
a normal distribution with a mean of 0 and a standard deviation of 0.1 (in the same
unit used above) to each component of the cultural center vector of that group. This
creates an initial condition in which the average between-group cultural difference is
approximately seven times larger than the average within-group cultural difference.

Such an initial condition made of two distant, distinct cultural clusters may
not be a popular choice for models studied in complex systems, network science,
and statistical physics, where more randomized, homogeneous initial conditions are
typically preferred. However, such random homogeneous conditions are extremely
rare and unrealistic in real society, even for initial conditions. Rather, large-scale
social systems emerge and evolve through numerous encounters and interactions
between multiple smaller communities that are often culturally distinct from each
other at the beginning. The heterogeneous, clustered initial conditions adopted in
our study were intended to capture such social encounter situations, with the aim
to increase the realism and applicability of our model and results in view of actual
social self-organization and evolution.

Each iteration in simulation consists of simulating actions for all individual
constituents in a sequential order. In its turn to take actions, an individual first selects
an information source from its local in-neighbors with 99% probability (in this case
the selection probabilities are proportional to edge weights), or with 1% probability,
from anyone in the connected component to which the focal individual belongs. If
there is no edge in the latter case, a new directed edge is created from the source to
the focal individual with a minimal edge weight 0.01. Then, the individual decides
to either accept or reject the source’s cultural vector based on the distance between
the received cultural vector and its own. The probability of cultural acceptance PA

is an exponentially decreasing function of the cultural distance, defined as

PA =
(

1

2

) |vi−vj |
d

, (1)
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where vi and vj are the cultural vectors of the individual’s own and of the selected
source, respectively, and d is the cultural tolerance, or the characteristic cultural
distance at which PA becomes 50%. If the received culture is accepted, the
individual’s cultural vector is updated as

vi → (1− rs) vi + rsvj , (2)

where rs is the rate of cultural state change, and the edge weight from the source to
the focal individual wij is updated as

wij → logistic
(
logit

(
wij

)+ rw
)
, (3)

where rw is the rate of edge weight change. Or, if the received culture is rejected, no
change occurs to the focal individual’s culture, but the edge weight is updated in an
opposite direction as

wij → logistic
(
logit

(
wij

)− rw
)
. (4)

The above formula that combines logit and logistic functions guarantees that
the updated edge weight is always constrained between 0 and 1. When the edge
weight falls below 0.01, the edge is considered insignificant and is removed from
the network. Additional details of these model assumptions, parameter settings, and
their rationale can be found in our earlier work [6, 7].

In the present study, we use d = 0.5, rs = 0.5 and rw = 0.5 as their mean
values within the social network, and we systematically vary their variances among
social constituents as the key experimental parameters. More details are given in the
following section.

3 Experiments

We computationally investigated how the resulting social network states and topolo-
gies would change as social constituents’ behavioral attributes were systematically
diversified within the simulated society. The standard deviations of d, rs, and rw were
varied from 0 to 0.5 at interval 0.1, which makes the total number of parameter value
combinations |{0, 0.1, 0.2, 0.3, 0.4, 0.5}|3 = 63 = 216. We ran 100 independent
simulation runs for each specific combination of parameter values (and therefore,
the total number of simulations = 21,600 runs). Each run was simulated for 500
iterations.

After each simulation run was completed, the following two quantities were
measured as outcome variables on the final network configuration:
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• <CD>: average cultural distance between constituents in the initially distant two
groups

• <SPL>: average shortest path length within the whole network

In these two measures, social fragmentation transitions can be captured as a
positively correlated increase or decrease of both quantities. Namely, (<CD>,
<SPL>) = (high, high) implies social fragmentation, while (<CD>, <SPL>) =
(low, low) implies social assimilation with loss of cultural diversity.

4 Results

Figure 1 shows the baseline behaviors of the proposed model in the low behavioral
diversity parameter region (d≤ 0.1, rs ≤ 0.1, rw ≤ 0.1), in which previously reported
social fragmentation transitions are clearly observed as transitions between (<CD>,
<SPL>) = (high, high) and (<CD>, <SPL>) = (low, low) behaviors (Fig. 1, black
trend curve). Meanwhile, none of the simulation results showed (<CD>, <SPL>)
= (high, low) behaviors (Fig. 1, red dashed circle) when social constituents were
behaviorally homogeneous.

Fig. 1 Scatter plot showing two outcome measures <CD> and <SPL> of the final network
configuration for baseline results obtained in the low behavioral diversity parameter region (d ≤
0.1, rs ≤ 0.1, rw ≤ 0.1). Each dot represents a result of one simulation run. A black cubic trend
curve is drawn to illustrate the social fragmentation transition between (<CD>, <SPL>) = (high,
high) and (<CD>, <SPL>) = (low, low) behaviors. Meanwhile, the dashed circle indicates the
missing (<CD>, <SPL>) = (high, low) behavior that does not occur when social constituents are
behaviorally homogeneous
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Fig. 2 3D scatter plots showing the effect of each experimental parameter, i.e., standard deviation
of d (top), rs (bottom left) and rw (bottom right), on two outcome measures <CD> and <SPL> of the
final network configuration. Each dot represents a result of one simulation run, colored according
to the parameter value

Figure 2 shows the same (<CD>, <SPL>) plots for different standard deviations
of d (top), rs (bottom left) and rw (bottom right). It is seen that greater diversity of
d and rs helps maintain <CD> at higher levels. In addition, greater diversity of d
also helps lower <SPL> more (Fig. 2 top; orange/red dots), which corresponds to
the (<CD>, <SPL>) = (high, low) behavior that was not previously recognized in
the literature. Meanwhile, the effect of diversity of rw is not as clearly seen in this
visualization compared to the other two parameters. These results strongly imply
that having a broad distribution of cultural tolerance levels within society can help
promote the coexistence of cultural diversity and structural connectivity.
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Fig. 3 Two examples of final network configuration. Left: Standard deviations of (d, rs, rw) =
(0.0, 0.2, 0.2). Right: Standard deviations of (d, rs, rw) = (0.5, 0.2, 0.2). Node colors represent the
individuals’ cultural values (multidimensional vectors projected to a linear color scale)

Table 1 ANOVA table of linear regression of <CD> shown in Eq. (5)

Sum of squares df Mean square F Sig.

σd 1782.60 1 1782.60 9797.94 p < 0.0001
σ rs 1847.26 1 1847.26 10,153.30 p < 0.0001
σ rw 445.64 1 445.64 2449.42 p < 0.0001
σd σ rs 1474.26 1 1474.26 8103.16 p < 0.0001
σd σ rw 239.38 1 239.38 1315.75 p < 0.0001
σ rsσ rw 280.83 1 280.83 1543.57 p < 0.0001
Error 3928.56 21,593 0.18
Total 9998.54 21,599

All terms were statistically extremely significant

Figure 3 shows typical final network configurations for two experimental set-
tings. In a situation where culturally heterogeneous constituents remain connected
(Fig. 3 right), constituents with different levels of cultural tolerance typically occupy
different positions in the network. For example, less tolerating constituents tend to
form clusters of their own, acting as cultural memory, while more tolerating ones
tend to act as a “glue” to connect such culturally distinct clusters, serving as bridges.

We also conducted linear regression analysis to regress each of the two outcome
variables onto the three experimental parameters (i.e., standard deviations of
the three behavioral attributes; denoted as σd, σ rs, and σ rw below) and their
interactions. Results are given in Eqs. (1) and (2), and their ANOVA tables are
shown in Tables 1 and 2.
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Table 2 ANOVA table of linear regression of <SPL> shown in Eq. (6)

Sum of squares df Mean square F Sig.

σd 253.02 1 253.02 58, 391.20 p < 0.0001
σ rs 0.64 1 0.64 148.78 p < 0.0001
σ rw 2.26 1 2.26 521.21 p < 0.0001
σd σ rs 2.80 1 2.80 646.91 p < 0.0001
σd σ rw 2.28 1 2.28 526.55 p < 0.0001
σ rsσ rw 0.28 1 0.28 63.83 p < 0.0001
Error 93.47 21,571 0.00
Total 354.75 21,577

All terms were statistically extremely significant. There were several simulation runs in which
some individual nodes became disconnected, and such cases were excluded from the calculation
(which is the reason that the dfs of Error and Total have smaller values than in Table 1)

< CD >∼ 1.87262+ 3.01908 σd + 2.97431 σrs–2.72074 σrw

− 8.95723 σd σrs + 3.60938 σd σrw + 3.90939 σrs σ rw (5)

< SPL >∼ 2.31216–0.624629 σd + 0.0989771 σrs–0.178676 σrw

− 0.390949 σd σrs + 0.35265 σd σrw + 0.122775 σrs σ rw (6)

The linear terms in Eq. (5) imply that the average cultural distance (<CD>)
is maintained by having the diversities of d and rs, while the diversity of rw has
a negative effect on the cultural distance. Meanwhile, the linear terms in Eq. (6)
indicate that the average shortest path length (<SPL>) is reduced by having the
diversities of d and rw, while the diversity of rs has only a marginal (positive) effect
on the average shortest path length.

The nonlinear interaction terms in Eqs. (5) and (6) imply that the interaction
between the diversities of d and rs has a negative effect on both outcome measures,
while other interaction terms generally have positive effects on them. Their interac-
tions were visualized in more detail in the 3D scatter/surface plots shown in Fig. 4.
These plots illustrate that the interactions of diversity parameters are much more
significant on <CD> than on <SPL>, and that greater diversity of either d or rs

maintain <CD> consistently at a higher level.
Among all the terms included in these regression models, the only term whose

coefficients point to the (<CD>, <SPL>) = (high, low) direction is the diversity of
cultural tolerance (σd). This result suggests that enhancing the diversity of cultural
tolerance has the single most effective way to achieve the social state that maintain
high cultural diversity and high structural connectivity simultaneously.
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Fig. 4 3D scatter plots showing the interactions between diversities of d and rs (top), d and rw
(middle), and rs and rw (bottom), on outcome measures <CD> (left) and <SPL> (right). Each blue
dot represents a result of one simulation run. Average trends are also shown as a surface
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5 Conclusions

In this brief paper, we computationally studied the effects of behavioral diversities
of social constituents on the resulting cultural diversity and social connectivity
using a networked agent-based simulation model. Our results indicated that allowing
cultural tolerance levels to differ broadly within society helps promote the coexis-
tence of cultural diversity and structural connectivity, which is a novel macroscopic
state of the adaptive social network models that was previously not known in the
literature.

Our key finding above is interesting and relevant to network science, complex
systems and social/organizational sciences in a couple of distinct ways.

First, it offers a clear demonstration of the risk in assuming that agents in a
social system are identical and homogeneous. In view of the complexity of real-
world systems, such a simplification is apparently wrong, but it is still widely used
in many complex systems/network models of social dynamics. Our results show
that inclusion of variations in individual attributes even in the simplest manner may
already have huge impacts on the macroscopic outcomes of the system’s evolution.

Second, our results point out the importance of behavioral diversity, not demo-
graphic or other surface-level diversities that are often discussed in the context of
social, organizational and political studies. In contrast to demographic properties
that cannot be altered easily, behaviors of people are by a large part acquired traits,
and therefore, they can be trained and modified through proper intervention. This
indicates that our finding may eventually lead to some education/intervention strate-
gies to promote the maintenance of informational diversity and communication,
possibly enhancing the creativity and innovation of our society as a whole.

Third, we note that our finding indicates the importance of the diversity of
cultural tolerance levels, and not the tolerance itself. In today’s socio-political
climate, cultural tolerance is highly encouraged, but our model does not imply that
simply increasing the cultural tolerance levels globally within the social network
would lead to beneficial outcomes. Additional experiments with globally enhanced
cultural tolerance levels of all the constituents (i.e., simply increasing the value of
d for all individuals; results not shown here) did not generate the same outcome
as presented in this paper, because such a condition would quickly lead to a loss
of cultural diversity. This implies that, at least from the perspective of enhancing
both informational diversity and communication, telling people to be just tolerating
does not produce the desired outcomes. These findings and implications collectively
illustrate the highly non-trivial nature of the cultural dynamics in our society.

This study is still far from completion, and there are several future tasks to
conduct. One obvious limitation of our present model is that it is fairly complicated
and is not suitable for mathematical analysis. We plan to develop a much more sim-
plified model of the same adaptive social network dynamics so that its behavior can
be analyzed and explained mathematically. The other important direction of future
research is to compare the dynamics of these adaptive social network models with
real-world data of information exchange in order to validate and revise the model
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assumptions. For this purpose, we are currently working on collecting empirical data
of cultural dynamics from social media and other online/offline sources. Recent
machine learning tools for content analysis [10, 11] allow researchers to quantify
similarities and differences between contents posted by users, and this information
can be examined with regard to its potential correlation with temporal changes of
future contents posted by the same users as well as their social relationships [12].
Our future goal is to use such empirical data to determine the role and importance
of individual behavioral heterogeneity in real-world adaptive social networks, as
predicted in the theoretical model presented in this paper.
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Part III
Resilience and Robustness



Complex Networks Antifragility under
Sustained Edge Attack-Repair
Mechanisms

Alexandru Topîrceanu, Mihai Udrescu, and Radu Mărculescu

Abstract Resilience is an important property of real-world complex networks with
many applications in technological, biological, and social systems. While many
natural systems are particularly resilient, some are antifragile, namely, they become
stronger when being subjected to attacks, volatility, or errors. In this paper, we
consider an edge-attack and local edge-repair response mechanism over several
synthetic and real-world datasets, on which we quantify both antifragility (as the
dynamics of the largest connected component) and the cost incurred by edge
repairs. Our findings show that (1) random repairs generate a stronger antifragile
response, thus confirming that antifragility manifests itself in the context of random,
rather than deterministic events; and (2) antifragile behavior is fostered by strongly
clustered topologies (e.g., real-world networks and the synthetic Watts–Strogatz
model with degree distribution). Our results represent a first step towards designing
highly resilient networks and developing new methods for thwarting the antifragile
response of harmful and hostile systems.

1 Introduction

The term antifragility describes a system that grows stronger (up to a point) when
being exposed to attacks, volatility or randomness [1]. Thus, antifragility goes
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beyond the conventional concepts of robustness (i.e., mere resistance to attacks)
and fragility [2].

Antifragility is the defining characteristic of many complex (organic) systems
that were shaped by evolution in adverse environments, as opposed to top-down
designed synthetic systems. As such, the first practical explorations of antifragile
behavior were performed in biological and social systems [3]. To this end, the
authors of [4] propose a non-causal method of preparing organizations and social
systems for future unexpected events. Another useful application is the prevention
of antifragile behavior when trying to dismantle potentially hostile systems [5] such
as criminal networks [6, 7]. Also, the authors of [8] investigate how to calibrate
chemotherapy such that cancer cells’ behavior does not become antifragile. There
are also various applications of antifragility in engineering, in areas as diverse as
wireless communications [9], cloud computing [10], power grids [11], intelligent
autonomous systems [12], and cyber-physical systems [13]. For instance, in April
2011, a large crash in Amazon cloud put out of service some of their main clients
(e.g., Quora, Reddit), while Netflix remained functional; it turned out that Netflix
uses a failure injection tool for SDN (software-defined networking) called “Chaos
Monkey” [14], in order to make their systems antifragile.

The exploration of antifragility is new to network science, having been only
recently addressed in [15]. Similar to [6, 7, 9–11], we interpret a robust network
as being characterized by a high connectivity between nodes, whereas a fragile
network as having a low connectivity. Accordingly, antifragility increases network
connectivity when subjected to attacks. Quantitatively, we measure the robust,
fragile, and antifragile behaviors using the largest connected component size (LCS)
and the number of connected components (NCC), as these parameters are directly
related to network’s communication capacity [16–18]. Thus, the objectives of our
analysis are as follows:

– Analyze the response to attacks at micro-scale (i.e., node-to-node local inter-
action through links) that triggers an antifragile behavior at macro-scale (i.e.,
network-level); such an antifragile behavior indicates a highly resilient network.

– Identify the topological properties that foster an antifragile behavior in complex
networks.

– Quantify the costs entailed by the response mechanisms that induce an antifragile
network behavior.

Our approach is to consider attacks as continuous removal of links at micro-
scale. Without a proper response to such aggression, the network evolves towards
structural and functional collapse. Consequently, to induce antifragility, the network
must benefit from some link repairs. To this end, we design a decentralized repair
mechanism where the nodes affected by the removal of incident links are themselves
creating new links in response to the attacks.

To uncover the topological features that foster antifragile behavior in complex
networks, we simulate multiple attack-repair scenarios on some generic synthetic
topologies (random, mesh, small-world and scale-free), as well as real-world
network topologies. Accordingly, the antifragile network behavior is detected at
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macro-scale if, as simulation unfolds, the connectivity of the network (measured
via LCS and NCC variations) does increase under sustained attacks. The fragile
network behavior under attack corresponds to the network’s reduced tolerance to
incurred faults (i.e., destroyed links), leading to degraded LCS and NCC [19–21].

As the state-of-the-art applications of antifragility aim at improving the commu-
nication capacity of the system, we focus only on edge attacks (i.e., a node with no
edges is considered to be removed from the network). As such, the contributions
related to our generalized edge attack-repair mechanism that aims at inducing
antifragility are:

– We consider sustained attacks, where network responses to current attacks must
happen in real time, in order to meet the deadline before the next wave of attacks.

– We propose a decentralized (node-level) repair mechanism that requires only
local information processing.

– We provide an analytical framework based on Markov chains, that connects the
network topological features to the time-to-dismantle a network, given an attack-
repair mechanism.

– We analyze the network topological features that foster antifragility at macro-
scale, by factoring in the costs entailed by the decentralized edge repairs.

The remainder of this paper is organized as follows: In Sect. 2, we present the
proposed attack-repair simulation mechanism, along with the formal models for
network analysis. In Sect. 3, we show our simulation results. Finally, we discuss the
implications of our results and draw some conclusions in Sect. 4.

2 Methods

A network G = (V ,E) is the pair of node (vertex) and link (edge) sets, V and E

respectively. The number of nodes |V | is fixed, whereas the number of links |E| is
variable during simulation (|E| ≤ |V |(|V |−1)

2 ); |E|may decrease until the network is
considered destroyed (or dysfunctional). Similar to [22], the LCS and NCC metrics
quantify the evolution of structural fragility of network G. More precisely, a network
is considered fragile if its LCS decreases rapidly during simulation, and antifragile
if its LCS increases during the attack-repair process up to a specific stress point.

To consider this scenario, we start our simulations with disconnected networks
(NCC > 1); depending on the attack-repair ratios, the LCS may counterintuitively
increase, even though the network is losing edges overall (e.g., the attacks mostly
remove edges in smaller components, while edge repairs connect the new nodes to
the largest connected component). This is the antifragile effect that we intend to
quantify.
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2.1 Edge Attacks

The simulation that we employ in all scenarios finishes after 100 iterations; from our
experience, this is sufficient to highlight both the fragile and antifragile behaviors.
At each iteration, a fixed ratio α of edges (which we call the attack rate) is removed;
therefore, the number of removed edges is r = α · |E|. In [15], four α values are
considered (α ∈ {1%, 2%, 5%, 10%}) to conclude that α = 0.05 (5%) is the optimal
trade-off between speed and amplitude of network destruction.

From literature, we find that while most attack strategies focus primarily on
node centralities [23, 24], but random attacks are also used; thus, we consider the
following types of attacks:

– Random attacks: Any edge eij ∈ E in the network can be removed with an equal
probability.

– Targeted attacks: Any edge eij ∈ E can be removed with probability pij

proportional with the average centrality of adjacent vertices vi and vj . For
any vertex vi , its centrality C(vi) can be any of the following: degree (Deg),
betweenness (Btw), or eigenvector (Eig). Thus, the probability of removing

edge eij (connecting nodes vi and vj ) is proportional to C(eij ) = 1

2
· (C(vi) +

C(vj )): pij = C(eij )
∑

e∈E C(e)
.

2.2 Edge Repairs

The response after each attack is a set of edge repairs which happen with rate β. We
discuss two different simulation settings: one in which β < 1 (i.e., fewer edges are
repaired than destroyed), and another in which β ≥ 1 (i.e., more edges are repaired
than destroyed).

In our decentralized repair decision approach, a key aspect is the selection of
vertices that will add new incident edges in response to attacks; these vertices are
taken from the set of affected nodes Va , i.e., vertices that lost at least one edge
during the current iteration. By removing r edges during the current iteration, a
maximum of max {|Va|} = 2r nodes may become affected (some edges may be
incident to the same nodes); the theoretical minimum number of affected nodes is
min {|Va|} = r + 1, which corresponds to a star topology. However, in real-world
situations, |Va| is closer to 2r . The repair strategy determines which of the maximum
2r affected nodes will add new edges:

– Random selection: A number of βr < |Va| random vertices from the list of
affected nodes Va .
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– Selection paired with the attack strategy: βr vertices from Va are selected; each
affected node in Va has a probability pi of being selected that is proportional
with the node’s centrality (the same centrality considered for attacking).

To perform the repairs, each selected (affected) node vi ∈ Va will add an edge to
a target node that is designated according to the following strategies:

– Random repair: The selected node vi adds a new edge eij that connects to a
randomly designated node vj .

– Centrality-driven repair: High degree first (HDF), high betweenness first (HBF),
and high eigenvector first (HEF). For example, HDF defines probability pj of
designating vertex vj to connect to the selected affected node vi via eij as pj =

dj
∑
∀ι∈V (dι)

, where dι is the degree of node vι.

In this paper, we consider attacking edges with a specific targeted strategy and
then either repairing them at random or with a paired strategy (e.g., betweenness
targeted attack and repair—HBF).

2.3 Network Topologies

We first use the following synthetic topologies [25]: random ER (Erdős-Rényi),
mesh Me, Watts–Strogatz small-world SW , and scale-free SF . We also append the
topology with the Watts–Strogatz model developed by including degree distribution
[26], denoted as WD, to serve as a more complex synthetic topology.

We consider several real-world networks which are relevant to the applications
of antifragility [6, 10–12]: a US power-grid network1 (UP ) [27], a network
representing cloud routers2 (Rt) [27], an email collaboration network 3 (Em) [28],
a criminal network4 (Mo) [27], and a set of disconnected Twitter ego-networks5

(T w) [29] to explore the antifragility of social networks in general. Our aim is to
compare the responses to attacks and repairs of these real networks against those
observed on synthetic networks.

As explained, all the networks that we use in our simulations are initially
disconnected graphs. This enables us to measure a possible increase in LCS,
respectively a decrease in NCC, from the very beginning of each simulation.
Thus, using a big network like Twitter [29] allows us to make better observations
regarding the studied phenomenon. We also add the Molloy-Reed (M-R) criterion

1Available at http://networkrepository.com/power.php.
2Available at http://networkrepository.com/tech-routers-rf.php.
3Available at https://www.cs.cmu.edu/~enron/.
4Available at http://networkrepository.com/ia-crime-moreno.php.
5Available at https://snap.stanford.edu/data/ego-Twitter.html.

http://networkrepository.com/power.php
http://networkrepository.com/tech-routers-rf.php
https://www.cs.cmu.edu/~enron/
http://networkrepository.com/ia-crime-moreno.php
https://snap.stanford.edu/data/ego-Twitter.html
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Table 1 Graph theoretical measurements for synthetic and real-world networks

Data N |E| 〈cc〉 Dmt Mod NCC LCS

ER 5000 4198 0 45 0.963 1067 3336

Me 5000 4276 0.018 82 0.953 1083 3339

SW 5000 4730 0.121 80 0.974 983 2447

SF 5000 6224 0 26 0.871 945 3696

WD 1007 3535 0.472 9 0.960 229 52

UP 4941 5685 0.093 58 0.946 289 4402

Rt 2113 4871 0.274 15 0.702 220 1876

Em 12,625 19,358 0.519 9 0.690 503 12,123

Mo 829 1026 0.006 15 0.692 101 720

T w 6735 15,388 0.554 16 0.994 467 80

All metrics reflect the initial state of the networks, before simulating multiple iterations of attacks
and repairs

[30] to complement the observations of the LCS evolution. M-R states that a largest
connected component exists if, on average, each node in the network has at least

two links, or M−R = 〈d2〉
〈d〉 > 2, where 〈d〉 is the average node degree.

The synthetic datasets we use consist of V = 5000 vertices divided into roughly
1000 distinct components. To obtain these customized datasets, we generate the
networks according to the conventional algorithms in the literature [25, 30], then
remove some of their edges at random until the NCC rises to≈1000. Table 1 details
the following measurements on our networks: network size (N = |V | and |E|),
average clustering coefficient (〈cc〉), diameter (Dmt), modularity (Mod), number
of connected components (NCC), and largest connected component size (LCS).

2.4 Quantitative Characterization of Antifragility

For each simulation, we obtain two time series, namely the evolution of LCS(t) and
NCC(t) over 100 iterations, t ∈ {1, . . . , 100}. To quantify the antifragile response,
we use two intuitive measures:

– The maximum improvement (I ) of LCS for repair rate β, based on the maximum
of ensemble averages Ie(t = k), is defined as

Ie(t = k) = average{LCS(0 < t ≤ k)}
LCS(t = 0)

, Iβ = max{Ie(t)}. (1)

– For a repair rate β, when I > 1 (i.e., antifragility is present), the duration of
antifragility Dβ is the time interval when LCS(t) ≥ LCS(t = 0),
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Dβ = {t2 − t1 | LCS(t) ≥ LCS(t = 0), t1 ≤ t ≤ t2}. (2)

If the simulation exhibits any antifragile behavior, then I ≥ 1 and 0 < D ≤ 100.
If the edge repair rate is higher than the attack rate, we obtain a high duration,
D ≈ 100. However, to maintain a robust topology with minimal repair costs and
limited resources for response, we are most interested in scenarios where D > 0 for
a repair rate of β < 1.

2.5 Analytical Estimation of the Time to Network Dismantling

The time-to-dismantle a network, given the attack-repair mechanisms with rates α

and β, is related to the topological features of the network. We link this time-to-
dismantle a network to α and β using a Markov model. The rate of disconnection,
which means jumping from state S0 (connected network) to state S1 (disconnected
network with a largest connected component) in one iteration, is the attack rate α

(Fig. 1). The transition from state S1 to state S2 (disconnected network without a
large connected component) is proportional to the attack rate α, but is considerably
slower, i.e., kα with k < 1. Parameter k depends on the network topological
features (i.e., link density, degree distribution) and the attack and repair strategy.
For instance, if the number of iterations until the LCS decays under 10% of its

initial size is nd , then k = 1

nd

.

A dismantled network cannot be repaired for β < 1, therefore S2 becomes an
absorbing state. However, a transition from S1 to S0 is possible, given that repairs
can initially be effective for graph reconnection; therefore we consider a repair rate
of βα from S1 to S0.

According to the Markov diagram in Fig. 1, the probabilities of being in states
S0, S1, or S2 are given by

Fig. 1 Markov model representing the process of dismantling a complex network, where S0
represents a connected network, S1 represents a network with a large connected component and
many (smaller) disconnected components, and state S2 represents a disconnected network without
a large connected component (Molloy-Reed parameter M−R ≤ 2). The rates of disconnecting
and dismantling, α and kα, depend on the attack rate α, the attack and repair mechanisms, and the
network topology; the connection repair rate βα is proportional with edge repair rate β
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dPS0 (t)

dt
= −αPS0 (t)+ βαPS1 (t),

dPS1 (t)

dt
= αPS0 (t)− (β + k) αPS1 (t),

dPS2 (t)

dt
= kαPS1 (t) .

(3)

To solve the system of equations, we apply the Laplace transform L{} from t

to s, then solve in s, finding that the probability of having a network with a large
connected component (if the system starts in state S0) is

R (s) = PS0 (s)+ PS1 (s) = s + α (1+ β + k)

s2 + [α (1+ β + k)] s + kα2
. (4)

If the system starts in state S1, then we have

R (s) = PS0 (s)+ PS1 (s) = s + α (1+ β)

s2 + [α (1+ βa + k)] s + kα2 . (5)

The Mean Time To Failure MT T F (mean time-to-dismantle the network) is

L
{

lim
t→∞

∫ t

0

(
PS0 (τ )+ PS1 (τ )

)
dτ

}

= lim
s→0

R (s) . (6)

In our case, if the system starts in state S0, then MT T F = 1+ k (1+ β)

kα
; if

it starts in S1, then MT T F = 1+ β

kα
. Accordingly, simulations can be used to

estimate k for various combinations of topologies and attack-repair mechanisms,
then compute the expected time-to-dismantle the network (a situation indicated by
M−R ≤ 2).

2.6 Cost-Optimality Considerations

Our attack-repair mechanism implies edge repairs at every iteration. In the real
world, these edge repairs would incur corresponding costs. For instance, either
we consider adding or repairing power lines, creating new physical links between
routers, or establishing new social links, we need to minimize the cost of repairs.

We define the absolute cost at iteration t as the sum of degrees for all target nodes
receiving new links in that iteration costAbs (t) = ∑

j dj (t) (where dj (t) is the
degree of node vj which receives a new link at iteration t). Further, for each iteration,
we define the absolute repair efficiency as the gain/cost ratio LCS(t)/costAbs(t).
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3 Results

For each of the ten networks, we run four paired centrality simulations, three
simulations where each targeted attack is repaired by a random strategy, and three
where each random attack is repaired by a targeted strategy; this leads to a total of
10 · (4+ 3+ 3) = 100 distinct scenarios. For each attack-repair scenario, we use an
α = 0.05 attack rate, but test 6 different repair rates β ∈ {0.5, 0.7, 0.9, 1, 1.3, 1.5}.
The total number of individual simulations is 100 · 6 = 600, therefore we
only present the results for the most relevant attack-repair scenarios. Computing
betweenness after an attack round entails a big overhead. However, we get a
convenient tradeoff between simulation accuracy and runtime by running the
betweenness computation algorithm [31] once every 10 iterations.

In Table 2, we provide the improvements I and durations D (see Sect. 2.4) mea-
sured on all datasets in the context of random (Rand), degree (Deg), betweenness
(Btw), and eigenvector (Eig) paired attack-repairs with repair rates of β = 0.7 (i.e.,
reduced repair rate) and β = 1 (i.e., balanced repair rate).

By analyzing the data in Table 2, we find that antifragility does occur in our
simulations, as LCS increases for a limited period although the network loses more
edges than it regains (β < 1).

Of all synthetic networks, we find that SW networks exhibit an improvement
I > 1 under a reduced repair rate β = 0.7; this improvement is obtained under
random and degree repair-attacks, but not for betweenness and eigenvector repair
strategies. When moving to the more complex synthetic topology (WD), both I and
D increase noticeably. Here we observe the same pattern, i.e., random attack-repairs
offer the highest improvement, followed by degree, eigenvector, and betweenness.

The emergence of antifragile responses in synthetic and real-world networks
seems to follow a correlation with the complexity of the underlying topology.
Namely, the real-world networks (especially the natural ones) show the highest
antifragile improvement of I ≈ 1.0 − 78.8, followed by WD (I = 17.08), then
SW (I = 1.24), SF (I = 1.03), and finally ER and Me (I < 1).

Overall, we conclude that the paired random repair-attacks are the best combina-
tion for triggering an antifragile behavior in both synthetic and real-world networks.
Second, the betweenness attacks consistently rank as the most destructive strategy
overall, regardless of the repair strategy. Third, we find that the random strategy
offers the highest improvements I , on average, with the degree strategy providing
slightly longer antifragile durations D.

We structure our graphical results into three categories: (A) impact of paired
versus non-paired repairs on synthetic networks; (B) the antifragile response of a
more complex synthetic topology (i.e., Watts–Strogatz with degree distribution) and
real-world networks; (C) the evolution of LCS(t)/costAbs(t) for networks with
antifragile behavior.
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Table 2 Topological improvement I and antifragile duration D (in parentheses) for paired
centrality attack-repairs on each network, with β = 0.7 (upper half) and β = 1 (lower half)

Network Rand Deg Btw Eig

β = 0.7 ER 0.98 (–) 0.97 (–) 0.94 (–) 0.94 (–)

Me 0.99 (–) 0.98 (–) 0.95 (–) 0.96 (–)

SW 1.19 (17) 1.24 (21) 0.73 (–) 1.07 (9)
SF 1.03 (16) 0.99 (–) 0.97 (–) 0.99 (–)

WD 17.08 (85) 14.76 (100) 12.88 (55) 11.83 (56)
UP 0.98 (–) 0.96 (–) 0.95 (–) 0.97 (–)

Rt 1.0 (10) 0.99 (–) 0.99 (–) 1.0 (–)

Em 1.03 (1) 1.02 (1) 1.03 (1) 1.03 (2)
Mo 0.99 (–) 0.98 (–) 0.98 (–) 0.99 (–)

T w 78.82 (68) 74.49 (96) 49.06 (20) 67.31 (55)
β = 1 ER 1.03 (100) 1 (1) 0.94 (–) 0.96 (–)

Me 1.02 (100) 0.99 (–) 0.95 (–) 0.95 (–)

SW 1.49 (100) 1.35 (100) 0.85 (–) 1.17 (100)
SF 1.21 (100) 1.0 (5) 0.98 (–) 0.99 (–)

WD 18.02 (100) 14.97 (100) 13.84 (100) 13.04 (100)
UP 1.0 (6) 0.98 (–) 0.98 (–) 0.98 (–)

Rt 1.10 (68) 0.99 (–) 0.99 (–) 0.99 (–)

Em 1.00 (3) 1.0 (7) 1.0 (1) 1.0 (8)
Mo 1.02 (91) 0.99 (–) 0.98 (–) 0.98 (–)

T w 81.73 (100) 75.22 (100) 57.03 (100) 70.19 (100)

A higher I denotes a stronger antifragility, I < 1 means no antifragility. A higher D value indicates
a longer response measured as the number of attack-repair rounds, a dash (–) means no antifragile
response. The antifragile behaviors are shown in bold

3.1 Paired Versus Non-paired Repairs on Synthetic Networks

We explore the impact of different repair strategies (paired—Deg, versus non-
paired—Rand) applied after a Deg attack. Specifically, we find two different
responses. In Fig. 2a, we showcase the scenario for ER networks where the Deg

repairs are better than the Rand repairs for a reduced repair rate β < 0.9 (similar
results are noticed for SW and SF networks). Then, in Fig. 2b, we show that on
meshes (Me) the random repairs (Rand) are more efficient.

Further, we explore the response in the same context, but with higher repair rates
of β > 1. Again, we find that the Me topology responds differently than the other
three topologies. We display the representative response for SF in Fig. 2c, namely
Deg repairs are weaker than random repairs (ER and SW have similar responses).
Conversely, for Me, Deg repairs are more efficient than random ones (Fig. 2d).

From the results in Fig. 2, we draw two important insights:

– In terms of efficiency of random repairs, the mesh (Me) topology has a different
response than the other three topologies (ER, SW , SF ).
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Fig. 2 Evolution of the LCS for networks under degree-driven HDF attack (Deg) with an attack
rate of α = 0.05; the results highlight the impact of a paired Deg repair versus a non-paired
random Rand repair. (a) For a random ER network and repair rate β ∈ {0.5, 0.7, 0.9} the HDF
repair is more efficient than the random repair (Deg > Rand)—the same results are obtained on
SW and SF ; (b) for a mesh Me with β ∈ {0.5, 0.7, 0.9} the HDF repair is less efficient than the
random repair (Deg < Rand); (c) for a scale-free SF network with β ∈ {1, 1.3, 1.5} the HDF
repair is less efficient than the random repair (Deg < Rand)—we obtain the same results for ER

and SW ; (d) for Me with β ∈ {1, 1.3, 1.5}, the HDF repair is more efficient than the random repair
(Deg > Rand)

– There is a transition around β = 1 between the efficiency of Deg (paired) versus
Rand (non-paired) repairs. On meshes, Deg is more efficient than the other
repair strategies for β > 1 and less efficient than Rand for β < 1. The opposite
is true for the other topologies.

3.2 Antifragility in Complex Synthetic and Real-World
Networks

In Fig. 3a, b, we illustrate the antifragile responses (i.e., high I and D values) for all
four paired attack-repair strategies on the WD topology [26].

The edge attack-repair methodology applied to real-world datasets further
confirms the propensity for antifragile behavior in complex networks. Indeed, in
Fig. 3c, d, we show the responses for all four paired attack-repair strategies on
the T w topology (clustering similar to SW and high modularity), which clearly
exhibits an antifragile response for both LCS and M−R. The performance of
targeting strategies remain the same as the one on the synthetic networks: Rand >
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Fig. 3 Evolution of the LCS and M−R parameters for complex networks under paired centrality
attacks, with attack rate α = 0.05, and repair rate β = 0.7 (we highlight the improvement I

and antifragility duration D for each attack-repair strategy): (a) LCS for the WD network; (b)
Molloy-Reed parameter (M−R) for WD; (c) LCS for the Twitter network T w; (d) M−R for T w

Deg > Eig > Btw. The duration of response are slightly longer for Rand while
Deg, Eig and Btw hardly permit a positive response for β = 0.7. As a baseline
comparison for our Rand and Deg repair mechanisms we use random rewiring
(RR) and preferential rewiring (PR) to highlight the difference between local and
centralized repairs.

3.3 Antifragility Repair Costs

We analyze the costs, according to the measures in Sect. 2.6, for topologies where
antifragility is observed. In Fig. 4 we depict the scaling of the proposed edge repair
cost ratio: LCS(t)/costAbs(t) on the SW and SF networks, and on the Mo and
T w networks respectively.

All the cost efficiency plots (LCS/costAbs) show that the random strategy is
better at first but—as the simulation progresses and a significant number of edges is
lost—the network becomes more fragile and, in this context, the degree-driven Deg

strategy becomes more efficient. We validate the empirical results for real-world
networks using their corresponding rewired versions, which preserve the number of
nodes, the number of edges, and the degree distribution (see the dashed RR and PR
lines in Fig. 4) according to [32, 33].
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Fig. 4 Scaling of LCS(t)/costAbs(t) on the SW (a), SF (b), Mo criminal (c), and T w Twitter
(d) networks using four different paired attack-repair strategies. All plots indicate that the random
Rand strategy is initially better, but as the network loses links, the centrality-driven strategies
(especially Deg) become more efficient

4 Conclusion

In this paper, we have introduced a new edge attack-repair mechanism meant to
explore whether an antifragile behavior is exhibited in complex networks. To the
best of our knowledge, the synergy between sustained edge attacks balanced by
decentralized edge repairs represents a scientific novelty.

We have first shown that antifragility is more pronounced on more complex
synthetic topologies such as WD and real-world networks. We then have found
that the random targeting repair strategy provides the highest improvements at first,
thus confirming the theory stating that antifragility appears in the context of random
solution searches, rather than deterministic ones [1]. We have also found that
betweenness-driven attacks are the most destructive on all tested datasets. Another
important observation is that natural real-world topologies have a stronger drive
towards antifragility than their technological counterparts. Finally, the efficiency
analysis based on costs shows that the random strategy is initially better but, as the
network becomes more damaged, the degree-driven HDF strategy becomes more
cost-effective. Taken together, these results suggest that, for network systems that
require a high resilience, the evolutionary strategy of trying solutions at random and
then letting the environment perform the selection is more efficient when the system
is not too damaged and has enough time to react; otherwise, preferential attachment
works best.
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We hope that our findings will stimulate new research towards developing
dynamic edge reconfiguration models based on the principle of antifragility. Further
research will need to consider more sophisticated repair strategies based on other
node centralities, i.e., intra-community-first, inter-community-first, etc.

References

1. Taleb, N.N.: Antifragile: How to Live in a World We Don’t Understand. Allen Lane, London
(2012)

2. Taleb, N.N., Douady, R.: Mathematical definition, mapping, and detection of (anti) fragility.
Quant. Financ. 13(11), 1677–1689 (2013)

3. Danchin, A., Binder, P.M., Noria, S.: Antifragility and tinkering in biology (and in business)
flexibility provides an efficient epigenetic way to manage risk. Genes 2(4), 998–1016 (2011)

4. Derbyshire, J., Wright, G.: Preparing for the future: development of an ‘antifragile’ methodol-
ogy that complements scenario planning by omitting causation. Technol. Forecast. Soc. Chang.
82, 215–225 (2014)

5. Ren, X.-L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network dismantling.
Proc. Natl. Acad. Sci. U. S. A. 116(14), 6554–6559 (2019)

6. Bright, D., Greenhill, C., Britz, T., Ritter, A., Morselli, C.: Criminal network vulnerabilities
and adaptations. Global Crime 18(4), 424–441 (2017)

7. Duxbury, S.W., Haynie D.L.: Criminal network security: an agent-based approach to evaluating
network resilience. Criminology 57(2), 314–342 (2019)

8. Gatenby, R.A., Silva, A.S., Gillies, R.J., Frieden, B.R.: Adaptive therapy. Cancer Res. 69(11),
4894–4903 (2009)

9. Lichtman, M., Vondal, M.T., Clancy, T.C., Reed, J.H.: Antifragile communications. IEEE Syst.
J. 12(1), 659–670 (2018)

10. Abid, A., Khemakhem, M.T., Marzouk, S., Jemaa, M.B., Monteil, T., Drira, K.: Toward
antifragile cloud computing infrastructures. Prog. Comput. Sci. 32, 850–855 (2014)

11. Fang, Y., Sansavini, G.: Emergence of antifragility by optimum postdisruption restoration
planning of infrastructure networks. J. Inf. Syst. 23(4), 04017024 (2017)

12. Mujumdar, A., Mohalik, S.K., Badrinath R.: Antifragility for intelligent autonomous systems
(2018). arXiv: 1802.09159

13. Jones, K.H.: Engineering antifragile systems: a change in design philosophy. Proc. Comput.
Sci. 32, 870–875 (2014)

14. Basiri, A., Behnam, N., De Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J., Rosenthal, C.:
Chaos engineering. IEEE Softw. 33(3), 35–41 (2016)

15. Topirceanu, A., Udrescu M.: Topological fragility versus antifragility: understanding the
impact of real-time repairs in networks under targeted attacks. In: 2018 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis and Mining (ASONAM),
pp. 1215–1222. IEEE, Barcelona (2018)

16. He, S., Li, S., Ma, H.: Effect of edge removal on topological and functional robustness of
complex networks. Phys. A: Stat. Mech. Appl. 388(11), 2243–2253 (2009)

17. Piraveenan, M., Thedchanamoorthy, G., Uddin, S., Chung, K.S.K.: Quantifying topological
robustness of networks under sustained targeted attacks. Soc. Netw. Anal. Min. 3, 939–952
(2013)

18. Sun, W., Zeng, A.,: Target recovery in complex networks. Eur. Phys. J. B 90(1), 10 (2017)
19. Iyer, S., Killingback, T., Sundaram, B., Wang, Z.: Attack robustness and centrality of complex

networks. PLoS One 8, e59613 (2013)
20. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature

406(6794), 378 (2000)



Complex Networks Antifragility under Sustained Edge Attack-Repair Mechanisms 199

21. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance of complex
networks. Phys. A Stat. Mech. Appl. 340(1–3), 388–394 (2004)

22. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility:
percolation on random graphs. Phys. Rev. Lett. 85(25), 5468–5471 (2000)

23. Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and
fragility. IEEE Trans. Circ. Syst. Fund. Theory Appl. 49(1), 54–62 (2002)

24. Vespignani, A.: Complex networks: the fragility of interdependency. Nature 464(7291), 984
(2010)

25. Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Circ.
Syst. Mag. 3(1), 6–20 (2003)

26. Chen, Y.W., Zhang, L.F., Huang, J.P.: The Watts–Strogatz network model developed by
including degree distribution: theory and computer simulation. J. Phys. A Math. Theor. 40(29),
8237 (2007)

27. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and
visualization (2015). http://networkrepository.com

28. Makse, H.: Software and data. http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/
software-and-data/

29. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances
in Neural Information Processing Systems, pp. 539–547 (2012)

30. Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)
31. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177

(2001)
32. Dekker, A.H.: Realistic social networks for simulation using network rewiring. In: International

Congress on Modelling and Simulation, pp. 677–683 (2007)
33. Pósfai, M., Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Effect of correlations on network controlla-

bility. Sci. Rep. 3, 1067 (2013)

http://networkrepository.com
http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/software-and-data/
http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/software-and-data/


How to Collect Private Signals in
Information Cascade: An Empirical
Study

Kota Takeda, Masato Hisakado, and Shintaro Mori

Abstract In the information cascade experiment, several subjects sequentially
answer a two-choice question, after referring to previous subjects’ choices. Infor-
mation cascade is defined as a tendency to follow the majority choice, even if, one’s
private signal suggests the minority choice. When information cascade occurs, the
private signal is lost, and the collective intelligence mechanism does not work. If
the majority’s choice is wrong at the onset of the information cascade, it continues
to be wrong forever. How can we find the correct choice even when the majority
choice is wrong? In this study, we investigate a Bayesian Inference method, which
collects private signals in the information cascade, based on the choice behavior of
the subjects. Using the empirical data of an experiment, we estimate the probabilistic
rule of the choice behavior. We demonstrate that the Bayesian algorithm works and
one can know the correct choice even if the majority’s choice is wrong.

1 Introduction

Nowadays, people’s choices are highly influenced by others’ evaluations and
choices. When shopping at online stores such as Amazon, we often refer to
the product ratings, which are based on other people’s ratings and their review
comments, and based on this, we decide whether to buy or what to buy [1]. Imitating
others’ behaviors and choices is called social learning [2]. When we are forced to
make decisions in uncertain situations, social learning is known to be a rational
strategy, as it often suggests optimal options. On the contrary, social learning is also
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known to be error prone, as the obtained information might be outdated or wrong.
Even so, inadvertent filtering of social learning makes it an efficient strategy for
decision making [2, 3].

Information cascade is a type of social learning in the sequential choices of
several persons, which are taken after referring to previous persons’ choices [4, 5].
When one picks the majority choice from the previous persons’ choices that is
different from the choice suggested by one’s private signal, it is called information
cascade. Information cascade is also called rational herding, as the majority’s choice
is more optimal than that suggested by one’s private signal, in numerous cases.
As the essential mechanism of collective intelligence is to aggregate each person’s
private signals [6, 7], information cascade acts as an impediment when people stop
showing their private signals by following the majority choice.

It is important to remove the “fog” caused by information cascade and collect
private signals. Wang et al. proposed an algorithm to infer the true ratings of the
products on Amazon [1]. When we shop at Amazon’s online store, we observe the
ratings and reviews of the products. We expect that ratings, to some extent, would
reflect the true values of the products. Wang et al. assume the products’ true values
and herding effect are two fundamental factors that drive the dynamics of the ratings.
Based on the probabilistic rule of the dynamics of the ratings, they proposed an
algorithm to remove rating distortions, caused by herding. However, the verification
of the true rating is impossible. Nobody knows the true ratings of the products on
Amazon.

Instead, we study a Bayesian estimation method to infer private signals using
information cascade experiment data [8, 9]. By collecting the private signals, we
infer the correct choice. Contrary to Amazon’s ratings, there is an answer to each
question and based on that we can check the validity of the inference method. In the
information cascade experiment, subjects answer two choice questions, one by one,
sequentially, after referring previous subjects’ choices. We adopt the canonical one
of two-choice urn quiz [10]: There are two urns, urn A and urn B. Urn A contains
m red balls and n−m blue balls. Urn B contains n−m red balls and m blue balls.
m > n − m and urn A contains more red balls than urn B. At the beginning of an
experiment, one of the two urns is chosen as the answer, which is called urn X. The
quiz is whether X is A or B. The subjects need to choose urn A or urn B. By the
choice of the correct urn, subjects receive payoffs.

Subjects decide based on two information,private signal and social information.
As the private signal, each subject draws a ball from urn X. If the ball is red, urn
X is more likely to be urn A, and vice versa. In addition, subjects answer one by
one, after referring choices by previous subjects’, which we call social information.
In the simplest case, the social information is provided as summary statistic: how
many subjects chose urn A or urn B [8, 11]. The history of the choices: Say the
first subject chooses urn A, the second subject chooses urn B, etc. is provided
as social information in previous experiments [10, 12]. If the subjects refer the
history of the choices and choose based on a Bayesian inference, the majority choice
coincides with the answer after many subjects’ choices. The reversed cascade, where
the majority choice is wrong, is fragile [12]. However, if the social information is
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provided as summary statistics, the reverse cascade is robust [4]. When the subjects
choose based on a Bayesian inference and the difference in the choices of each urn
exceeds two, information cascade starts. The subjects discard their private signals
after that and the majority choice does not change forever. Two experiments studied
the possibility and showed that the reversed cascade is robust [8, 11].

In this paper, we reexamine the choice behavior of the subjects in an information
cascade experiment. We consider the amount of social information and propose a
refined model of the choice behavior of subjects t , where t indicates the order in the
subjects’ sequence. In particular, we show that Weber’s law, which states that the
probability of choosing an option depends on the proportion of previous answers
choosing that option, and not on the total number of those answers, is applicable for
t ≥ 20 [13]. Next, we study a Bayesian method to infer the private signals [14]. By
collecting those, we can know the configuration of the balls in urn X, even in the
reverse cascade situation.

We organize the paper as follows: In Sect. 2, we explain the experimental design
and introduce a model for the choice behavior. A Bayesian algorithm, to infer the
private signals of the subjects is introduced in Sect. 3. In Sect. 4, we reexamine
the experimental data and propose a refined model for the choice behavior of the
subjects. We show that the algorithm succeeds in gathering private signals from the
subjects’ choice sequence, in Sect. 5. Section 6 presents the conclusions.

2 Information Cascade Experiment and Bayesian Inference
Formula

The experimental implementation of information cascade is based on the “Basic”
model [4] where, a two-choice question is the choice of one of the two urns. There
are two urns, urn A and urn B. Urn A contains m red and n − m blue balls. Urn B
contains n−m red and m blue balls. We adopt (m, n) ∈ {(5, 9), (2, 3), (7, 9), (8, 9)}.
At the beginning, urn X is chosen at random from the two urns A, B and the task is
to guess which urn is X. As the private signal, one draws a ball from X. If the ball
is red, the posterior probability that urn X is A is m/n. Additionally, if the ball is
blue, the posterior probability that urn X is B is m/n. (5, 9) and (8, 9) are the most
difficult and the easiest quizzes, respectively. As public information, one knows that
CA subjects choose urn A and CB subjects choose urn B. We denote the length of
the subjects’ sequences as T , and the order of a subject as t ∈ {1, · · · , T }. Without
loss of generality, we express the correct and wrong signals (choice) by 1 and 0,
respectively. If urn X is A and the private signal of subject t is a red ball, we denote it
as S(t) = 1. Additionally, if the private signal of subject t is a blue ball, we denote it
as S(t) = 0. If subject t chooses urn A, we denote the choice as X(t) = 1. If subject
t chooses urn B, we denote the choice as X(t) = 0. We denote the number of correct
and wrong choices up to subject t as C1(t) and C0(t). C1+C0 = t holds. We denote
the ratio of correct choices up to subject t as Z(t) ≡∑t

s=1 X(s)/t = C1/t .
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Subject t+1 refers S(t+1), C1(t) and C0(t) = t−C1(t). We write the probability
that subject t + 1 chooses X(t + 1) = 1 under the condition S(t + 1) = s, Z(t) = z

as f (s, z).

f (s, z) ≡ P(X(t + 1) = 1|S(t + 1) = s, Z(t) = z).

The choice sequence becomes a nonlinear Pólya urn, that is a binary stochastic
process X(t + 1) ∈ {0, 1}, t = 1, · · · , and the probability for X(t) = 1 is a
nonlinear function f (z) [15].

f (z) ≡ P(X(t + 1) = 1|Z(t) = z) = f (z).

f (z) is given by the average of f (s, z) as f (z) = ∑
s f (s, z)P (S = s). In the

information cascade experiment, P(S = s) is given as

q ≡ P(S = 1) = m

n
.

From the Z2 symmetry of the system (X,Z, S) → (1 − X, 1 − Z, 1 − S), f (s, z)

should obey the next relation.

f (1− s, 1− z) = 1− f (s, z).

For the first subject, that is t = 1, there is no social information, and therefore, we
set Z(0) = 1/2. The probability for X(1) = 1 is then given as

P(X(1) = 1|S(1) = s, Z(0) = 1

2
) = f (s,

1

2
).

In addition, we usually assume that f (s, z) is monotonic non-decreasing function
of z for s ∈ {0, 1}.

The number of stable states in nonlinear Pólya urn is the number of downcrossing
fixed points {z|f (z) = z} [15]. Here, the stable state is an equilibrium where the
probability that Z(t) converges to it in the limit t →∞ is positive. If there is only
one downcrossing fixed point z+, Z(t) converges to z+ and limt→∞ Z(t) = z+
(Fig. 1a). If there are two downcrossing fixed points z− < z+, the probabilities
that Z(t) converges to z+ and to z− are both positive (Fig. 1b). Furthermore, the
probabilities depend on the history of the choices X(t), t = 1, . . . [16].

We adopt a logistic regression model for f (s, z) which preserves the Z2-
symmetry as

f (s, z) = 1

1+ exp(−β1(s − 1/2)− β2(z− 1/2))
. (1)

β1(≥ 0) represents the strength to rely on one’s private signal. β2(≥ 0) shows the
strength of the tendency to follow the majority’s choice. In the limit β1 → ∞ and
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Fig. 1 Plot of f (1, z) (broken line), f (0, z) (dotted line) and f (z) (solid line) of the logistic
model (1). We set q = 2/3. (a) is for β1 = 3, β2 = 2 and (b) is for β1 = 3, β2 = 9, respectively.
The downcrossing point of f (z) with the diagonal (chain line) is the stable state of the nonlinear
Pólya urn. There is one stable state z+ in (a). There are two stable states z− < z+ in (b). The
upcrossing point zu between z− and z+ is unstable state of the process

β2 = 0, one chooses the same option with one’s private signal. If one draws a red
ball, one chooses urn A, and vice versa. There is only one stable state z+. When
β2 > β1, the subject tends to follow the majority’s choice. In the limit β2 → ∞,
one discards one’s private signal and follows the majority’s choice. There are two
stable states z− < z+ and it is probabilistic whether the majority’s choice converges
to z+ or to z−. It crucially depends on the first subject’s choice X(1) [16, 17].

In general, the regression coefficients βi, i = 1, 2 should depend on the order t

of the subjects. If t is small, the amount of social information in z(t − 1) is little,
one might trust one’s private signal and β1 > β2. If t is large, there are many
subjects who have answered the question previously and subject t might tend to
follow the majority’s choice. Then, β2 > β1 holds. If t becomes too large and one’s
decision does not depends on t , βi, i = 1, 2 converges to some constants. Weber’s
law states that human’s decision depends on C1(t), C0(t) through the form of the
ratio Z(t) = C1(t)/t instead of the difference C1(t)− C0(t) [13]. In the regression
model context, Weber’s law suggests that the regression coefficients don’t depend
on t .

3 Bayesian Estimation of Private Signal

We explain a Bayesian algorithm, which tells the probability q = P(S = 1) using
the information Z(t − 1) = z, X(t) = x and prior qprior. We denote the posterior
probability as qt (x, z, qprior).
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qt (x, z, qprior) ≡ P(S(t) = 1|X(t) = x,Z(t − 1) = z, qprior).

As there are total n red and blue balls in the two urns, the prior qprior is qprior ≡
P(S(t) = 1) = 1/2. The Bayes’ theorem for the posterior qt (x, z, qprior) is

qt (x, z, qprior) ∝ qprior × P(X(t) = x|S(t) = 1, Z(t − 1) = z).

More explicitly, we can write qt (x, z, qprior) for x = 1 using f (s, z) as

qt (1, z, qprior) = qpriorf (1, z)

qpriorf (1, z)+ (1− qprior)f (0, z)
.

Likewise, for x = 0, we have

qt (0, z, qprior) = qprior(1− f (1, z))

qprior(1− f (1, z))+ (1− qprior)(1− f (0, z))
.

These equations show the amount of information encoded in X(t). We consider
the case β2 � β1. When z ∼ 1, almost all preceding subjects choose X(s) =
1, s < t . If subject t chooses X(t) = 1, as f (0, z) # 1 and f (1, z) # 1, and
qt (1, z, qprior) # qprior. We do not receive much information from the choice X(t) =
1. If subject t chooses X(t) = 0, the relative difference between 1−f (0, z) # 0 and
1 − f (1, z) # 0 is large and qt (0, z, qprior) � qprior. We receive much information
in the choice X(t) = 0. Likewise, if z ∼ 0, we receive much information from the
choice X(t) = 1. Using the posterior, we can collect private signals and estimate q.

When β1 � 1 and β2 = 0, f (1, z) = 1 and f (0, z) = 0. We have
qt (1, z, qprior) = 1 and qt (0, z, qprior) = 0. If X(t) is urn A, subject t must draw a
red ball. There is a significant amount of information in X(t).

In order to collect the private signals in the choice sequence X(t), t = 1, · · · , we
estimate the expected value of the posterior probability as E(qt |z, qprior).

E(qt |z, qprior) ≡
∑

s=0,1

∑

x=0,1

qt (x, z, qprior)P (x|s, z)P (S(t) = s). (2)

Using Eq. (2), we obtain

E(q(t)|z, qprior)− qprior

= (q − qprior)qprior(1− qprior)(f (1, z)− f (0, z))2

(qpriorf (1, z)+ (1− qprior)f (0, z))(qprior(1− f (1, z))+ (1− qprior)(1− f (0, z)))
.

The curve of E(qt |z, qprior) vs. qprior passes through the diagonal at qprior = 0, 1 and
qprior = q. The solid line in Fig. 2 shows the plots of the curves with the same sets
of parameters in Fig. 1. The broken line and the dotted line shows qt (x, z, qprior)

with x = 1 and x = 0, respectively. One sees that E(qt |z, qprior) > qprior and
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Fig. 2 Plot of qt (1, z, qprior) (broken line), qt (0, z, qprior) (dotted line) and E(qt |z, qprior) (solid
line) vs. qprior. We adopt the same values for the parameters in Fig. 1. We also set z = 2/3 in (a)
and z = 0.95 in (b)

E(qt |z, qprior) < qprior hold for qprior < q and qprior > q, respectively, for ∀z ∈
[0, 1]. If there is one stable state z+, case of (a), |qt (x, z, qprior) − qprior| are large
for both of x = 1 and x = 0. If there are two stable states and z ∼ z+, case of (b),
|qt (0, z, qprior) − qprior| > |qt (1, z, qprior) − qprior|. The amount of information in
x = 0 is much larger than that in x = 1. As we shall see below, by collecting the
difference in the amount of information of x = 0 and that of x = 1, we can estimate
q.

As the curve (qprior, E(qt |z, qprior)) passes through the diagonal at qprior = q, we
have the next relation for q as

q = {qprior s.t. E(qt |z, qprior) = qprior}.

By solving the relation E(qt |z, qprior) − qprior = 0, we can estimate q. In the study
of experimental data, we replace the expectation value with the average over the
choice history X(s), Z(s−1), s = 1, · · · , t . We denote the average over the history
(X(s), Z(s − 1), s = 1, · · · , t as qt (qprior).

qt (qprior) ≡ 1

t

t∑

s=1

qt (X(s), Z(s − 1), qprior). (3)

We propose an estimator of q as

q̂ = {qprior|qt (qprior) = qprior}. (4)
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q̂ shows the rate of the majority ball in X. If q̂ > 1/2, we can correctly guess
whether X is A or B. In the derivation of the estimator q̂, we replace the expectation
value with the time average over a particular sample path. If the system is stationary,
one can justify the replacement. However, the nonlinear Pólya urn is not a stationary
stochastic process. Later, we demonstrate the validity of the estimator empirically,
whereas we do not understand why it works.

4 Choice Behaviors: Result I

We estimate βi, i = 1, 2 empirically for q = m/n ∈ Q = {5/9, 2/3, 7/9, 8/9}
using the maximum-likelihood method. The detailed information of the experiment
can be found in [8] and the experimental data is open [9]. We prepared I = 200
questions for q ∈ {5/9, 2/3, 7/9} and I = 400 questions for q = 8/9. We label the
questions as i = 1, 2, · · · , I . We obtained I sequences of answers of length T = 63
for q ∈ {5/9, 2/3}. The average length T is 54.0 for q = 7/9 and 60.5 for q = 8/9.

As explained in Sect. 2, subject t answers the question with the private signal S(t)

and the ratio of correct choices up to the previous subject Z(t − 1). In the previous
work, we assume Weber’s law and estimate β1 = 2.92 and β2 = 7.64 using the data
for t ≥ 20. Here, we estimate βi for subject t using all sample sequence for each
q ∈ Q and verify Weber’s law.

Figure 3 depicts the plot of β1 and β2 vs. t for each q ∈ Q. The error-bars show
95% confidence intervals. In either case, both β1 and β2 fluctuate around a constant
value for t ≥ 20, which suggests that Weber’s law holds for t ≥ 20.

We fit the t-dependence of βi, i = 1, 2 assuming the next functional form,
which is the sum of the logistic function with three parameters ci, i = 1, 2, 3 and a
constant c4.

βi(t) = c1

1+ c2 exp (−c3t)
+ c4. (5)

By the least squares method, we estimate the parameters of βi(t), i = 1, 2 for each
q ∈ Q. The results are shown in Table 1. The solid and broken lines in Fig. 3 are
the results of the fitting. From the solid lines, β1 converge from 2.0 to 4.0 at t ≥ 10
for each q ∈ Q. From the broken lines, β2 converge to approximately 8.0 at t ≥ 20
for each q ∈ Q. In the next section, we estimate q using the above functional forms
for βi, i = 1, 2.

5 Estimation of q: Results II

We estimate q by solving qt (qprior) = qprior for the sample sequences (X(s), Z(s −
1)), s = 1, · · · , T using Eq. (3). We write the solution as q̂. Figure 4 shows the
violin plot of q̂ and Z(T ) for each q. In each figure, the black boxes show the



How to Collect Private Signals in Information Cascade 209

l

l

l

l
l

l
l

l

l

l

l l
l

0 10 20 30 40 50

0
2

4
6

8
10

12
14

(a)

t

β i

l

l

l

l

l
l

l

l

l
l l

l

l

0 10 20 30 40 50

0
2

4
6

8
10

12
14

(b)

t
β i

l l

l

l l

l

l

l

l

l

l
l

l

0 10 20 30 40 50

0
2

4
6

8
10

12
14

(c)

t

β i l

l

l

l

l
l

l

l
l

l

l
l

l

0 10 20 30 40 50

0
2

4
6

8
10

12
14

(d)

t

β i

Fig. 3 Plots of β1 and β2 vs. t for (a) q = 5/9, (b) q = 2/3, (c) q = 7/9, and (d) q = 8/9. The
error-bars are 95% confidence intervals. The solid and broken lines are the results of the fitting
with (5) for βi, i = 1, 2, respectively

Table 1 Estimated values of the parameters in Eq. (5) for β1(left table) and β2(right table)

q c1 c2 c3 c4

5/9 −9.07 −0.58 0.55 0.556

2/3 −3.09 31.32 1.48 5.75

7/9 −7.36 0.64 0.32 10.62

8/9 −8.73 4.03 0.81 12.71

q c1 c2 c3 c4

5/9 −9.87 0.18 −0.25 7.94

2/3 −6.14 0.19 −0.16 8.02

7/9 −38.94 −0.37 0.48 46.87

8/9 −2.27 −0.91 0.16 10.70
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Fig. 4 Violin plot of q̂ and Z(T ) for (a) q = 5/9, (b) q = 2/3, (c) q = 7/9, and (d) q = 8/9.
The solid line shows 1/2 and broken lines show 5/9, 2/3, 7/9 and 8/9

boxplots. In addition, the white dots indicate the median value of each data and the
gray regions indicate the density of each data distribution. The statistics of q̂ are
shown in Table 2.

It can be seen that the average values of q̂ almost coincide with q. As q increases
from 5/9 to 8/9, the accuracy of the classification of correct urn by q̂ > 1/2
improves. For the most difficult case of q = 5/9, the classification fails for 31.5%
of the scenarios. For q = 2/3, the success rate is 89.5%. On the other hand, if we
classify by Z(T ) > 1/2, the success rates are 64.5 and 84.5% for q = 5/9 and
2/3, respectively. If we infer that X is A by observing that the majority subjects
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Table 2 Statistics of q̂ and the ratio of Z(T ) > 1/2

q q̂25% q̂50% q̂75% q̂mean q̂ > 1/2 Z(T ) > 1/2

5/9 0.470 0.555 0.645 0.556 0.685 0.645

2/3 0.580 0.685 0.745 0.661 0.895 0.845

7/9 0.725 0.795 0.865 0.790 0.970 0.940

8/9 0.832 0.915 0.925 0.885 0.995 0.980

have chosen A and vice versa, the accuracy of the naive method is lower than
that obtained by qt (x, z, qprior). As one can clearly see in Fig. 4, the median value
of Z(T ) is far from q. The subjects’ choices are greatly influenced by the social
information. From the violin plots, one can also observe two peaks in the distribution
of Z(T ). It is difficult to estimate q from Z(T ). In the case of the distribution
of q̂, the mode of the distribution almost coincides with the true value. These
results indicate that the proposed Bayesian method is extremely effective owing
to the success of the collection of the private signals. Notably, we use qt (x, z, qprior)

instead of X(t).

6 Conclusions

In this paper, we proposed a Bayesian method to collect private signals in case
of information cascade. The tendency to follow the majority choice is so strong
that it becomes difficult to collect private signals, from the choice sequences of
the subjects. The Bayesian method to infer the private signal S(t), is based on
the probabilistic rule for X(t) under the condition S(t), Z(t − 1). We reexamine
the choice behavior of subjects empirically, and verify that Weber’s law holds for
t ≥ 20. For t < 20, we describe the t dependencies of the regression coefficients.
We estimate q by solving qt (qprior) = qprior in Eq. (4). The mean value of q̂, almost
coincides with q, which proves the validity of the Bayesian estimation and the
logistic regression model for the choice behavior.
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Space Geometry Effect over the Internet
as a Physical-Logical Interdependent
Network

Ivana Bachmann, Francisco Sanhueza, and Javier Bustos-Jiménez

Abstract In this article we study the Internet’s robustness under physical node
failures, given that the physical layer is built over spaces with geometry/shape
restrictions. This is of special interest for countries prone to natural catastrophes,
and long and narrow geographies such as Chile and Japan. We model the Internet
as an interdependent network composed of the Internet’s physical layer (Internet
backbone) and he Internet’s logical layer (Autonomous System level network)
coupled. Here, the robustness is tested by measuring the amount of functional
nodes on the logical network after randomly removing physical nodes. In this
work, we tested six different spatially constrained network models to generate the
Internet’s physical layer (Yao graphs, geometric preferential attachment, Erdős-
Rényi, n-nearest neighbours, Gabriel graphs, and Modified relative neighbourhood
model), and three different geometries with width to lengths ratios going from
a square geometry to a Chile-like space geometry. Additionally, we study the
relation between the amount of physical edges and the Internet’s robustness. Our
findings suggest that both: the edge addition strategy (i.e. the physical network
model used) and the amount of physical edges play an important role on the
Internet’s robustness. Our results also suggest that Internet based interdependent
systems whose robustness is affected by the space geometry (geometry-sensitive)
can become more robust by randomly adding few edges. Furthermore, these
interdependent systems can become geometry-insensitive after the edge addition,
meaning that the robustness of the interdependent system is no longer affected by
the space geometry.
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1 Introduction

The Internet has been mostly studied as the Autonomous System level network
(Border Gateway Protocol network or Internet’s logical layer). However, many
more layers interact and affect the Internet’s logical layer. Each of these layers
corresponds to a network with its own set of nodes and edges. The interactions
among these layers generate dependencies that affect one another in ways that
can lead to cascading failures on the system. Even more, dependencies between
networks are known to affect the robustness of the whole system in ways that can
not be understood by studying each network in isolation [6]. Cases of massive
power grid blackouts in the past due to interdependencies between the power grid
and its communication network [11, 32] have motivated the study and analysis of
complex systems as interdependent networks. However, for the Internet case few
interdependent network models have been proposed [3, 10].

It has been stated before that in order to understand the Internet’s behaviour we
must first understand the underlying structures that compose it, and how they affect
one another [36]. On the one hand there is the physical Internet network comprising
cables, antennas, routers, etc. On the other hand, there is the logical Internet network
composed of autonomous systems (AS) [2] which are connected according to the
Border Gateway Protocol (BGP) protocol [5]. These networks interact with each
other and damage on one network may affect the other.

In particular physical node failures can affect the functionality of the logical
Internet network by damaging the information flow between Internet consumers
and Internet Service Providers (ISPs). Damaging this flow can leave users without
Internet access. Countries such as Chile and Japan are particularly prone to physical
failures due to natural catastrophes such as earthquakes, floods, typhoons, etc. These
natural events can damage the Internet’s physical layer, negatively affecting the
whole system. These negative effects over the system can end up disrupting the
user’s ability to access the Internet. Severe damage to the Internet’s functionality
due to natural catastrophes has been observed before: after the 8.8 Mw earthquake
in Chile in 2010 a 1 day Internet outage was reported [30]. Hence, we are interested
on measuring the effects over the Internet’s robustness as the user’s ability to access
the Internet, after physical node removal. We are also interested in the effects that
the physical environment in which the physical layer is built has over the robustness.

A question that naturally emerges for the case of a country with Chile’s peculiar
geography is: does an elongated country shape such as that of Chile have an impact
over the Internet’s robustness? (See Fig. 1.) We would like to know whether the
shape of a country affects in some way the robustness of the Internet as a physical-
logical interdependent network. This question was initially explored in a previous
article [3]. In that article we proposed a physical model and an interdependencies
model and found that the shape of the area where physical network is built affects the
overall robustness, making the interdependent networks more fragile as the shape
becomes narrower. We found that this effect can be diminished on interdependent
systems by increasing the amount of inter-links. However, the robustness was tested
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Fig. 1 Chile’s geography. The continental portion of Chile has a proportion of approximately 1:25
width to length. Chile is 4270 km long

using only one physical model. To further understand the phenomena observed in
[3], we should explore other physical network models and observe the system’s
behaviour under physical constraints and physical node failures.

In this work, we test the robustness of the Internet modeled as an interdependent
system that comprises the BGP network (also referred in this work as logical
network) and the physical Internet network. We test the robustness of six network
models as physical networks of the Internet based interdependent system under
random physical node removal. More specifically, we study the effect over the
Internet system’s robustness of the space shape (also referred as geometry) in which
the physical network is built in, the maximum amount of interdependencies, and the
amount of edges that the physical network has. Our findings suggest that there is
a non-trivial relation between the Internet system robustness under physical node
failure, the model used to generate the physical network, and the number of edges
in the physical network. Our findings also suggest that systems whose robustness
is affected by the space geometry (geometry-sensitive system) such as the one
presented in [3] can become more robust, to a point where the system is no longer
affected by the space geometry (geometry-insensitive system).

2 Related Work

Previously Willinger and Roughan have mentioned the need for a way of modeling
the Internet that considers real-world AS-connection policies, multiple links, and
geographic location among others, instead of considering just the AS-level Internet
in isolation as a simple connected di-graph [36]. However, few studies have included
more complex interactions and characteristics when modeling the Internet [3, 10].

Here, we have modeled the Internet as an interdependent network system
composed of the physical Internet network, and the BGP or logical Internet network.
Particularly, we aim to assess the Internet’s robustness under physical damage.

Interdependent networks are systems comprising two or more interacting
networks, with behaviours that emerge from such interactions. This emerging
behaviour cannot be observed by studying single isolated networks. During the last
decade the study of the robustness of interdependent networks has been explored.
Those studies have led to the development of several frameworks to tackle the
robustness assessing problem. The first work published in the area was presented
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by Buldyrev et al. [6] in 2010. There, they proposed the “one to one” model, which
considers two interacting networks where each node depends on exactly one node
in the other network with mutual dependency, meaning that if a node fails, then
necessarily its interdependent neighbour will also fail.

Since then several other interdependent models have been developed. Among
these, we can find variations of the “one to one” model [21, 23, 29, 33, 35, 39], new
models such as those with “many to many” interdependencies where each node may
be interconnected to 0 or more nodes in the other network [9, 13, 26, 28, 31], as well
as models that focus on specific networks such as power grids [7, 20, 22, 25], and
spatially constrained networks [1, 4, 12].

As for modeling the Internet as an interdependent network system we have not
found many models where the Internet is explicitly part of an interdependent system.
An example is the recent work of Chen et al. where the AS-level Internet is coupled
with a power-grid [10]. However, up to the authors knowledge there haven’t been
other works that attempt to model the Internet itself as an interdependent model
composed of the physical and the logical layers aside from our previous work [3].

3 Internet Modeling

In this work, we used an interdependent model [3] based on a model previously pro-
posed by Parandehgheibi et al.[27]. Our model considers a physically constrained
network representing the physical Internet layer, and a network representing the
logical Internet layer (with no physical constraints). Both of these networks are
interdependent: on the one hand we have that each AS node in the logical network
may be allocated in one or more nodes in the physical network. If all the physical
nodes where a logical node is allocated fail, none of its physical systems is able
to communicate, thus the logical node fails. Conversely, a physical node may route
several ASes. If all the logical nodes allocated in a physical node fail, then that
physical node becomes unable to function as it cannot answer.

Both layers were modeled to have a consumer-provider behaviour as stated by
Parandehgheibi’s work [27], that is, consumer nodes must have a path that connects
them to a provider node within their own network. This allow us to model the
fact that in order for a user to have Internet access the user has to have a path
to an Internet Service Provider (ISP). This consumer-provider behaviour naturally
emerges on the AS-level BGP network since in order for a node to have access to
the Internet service it must be connected through at least one path to an ISP and to
an International gateway to have access to the worldwide network. This behaviour
is replicated on the physical layer since each node in the logical layer has one or
more physical counterparts.
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3.1 Interdependencies Model

Based on the model presented by Parandehgheibi et al. [27] we considered an
interdependence model where each node in each network can be bidirectionally
interdependent with 0 or more nodes in the other network. Here, if a node loses all of
its inter-connections then it fails. In the Parandehgheibi model adaptation presented
in [3], we set a maximum amount of interdependencies for each logical node
Imax ∈ N, with Imax ≥ 1, instead of fixed a amount of inter-connections for all the
logical nodes. Here, each logical node u is inter-connected to I (u) ∈ {1, . . . , Imax}
nodes in the physical network, where I (u) is selected at random from the set
{1, . . . , Imax} for each node u in the logical network. Each of these I (u) inter-
connections is randomly established between u and a node in the physical network.
Here, node u must be inter-connected to exactly I (u) nodes in the physical network.

3.2 Logical Network Model

Since the purpose of this work is to study the effect of using different physical
models over the system’s robustness, a simple scale-free network was used to
model the BGP network. scale-free networks have been previously used to model
AS-level networks [17], and it was used in the work preceding this current
article [3]. However, we must note that this approach has been criticized before
[16, 24, 37]. Alternative models that can be applied to represent more accurately
the BGP network that we should consider for future works are HOT-Nets (highly
organized/optimized tolerances/tradeoffs [8, 16]). HOT-Nets allow the incorporation
of optimized aspects that engineered networks, such as the Internet’s logical layer,
usually present.

3.3 Physical Network Model

To further test the effects over the system’s robustness that a country’s shape has,
we used the following existing models: Yao graphs [38], peometric preferential
Attachment [18], Erdős-Rényi [15], n-nearest neighbours [14], and Gabriel Graphs
[19]. All of these models were tested and compared to previous results obtained
using a modified relative neighbourhood model [3].

For Yao Graphs [38] we have that each node “selects” their neighbors using the
following procedure: first the node partitions the space into six parts of equal area.
This partition is done taking the node as center point. Once the partition is done, the
node will select the closest node for each area an will connect to that node.

The geometric preferential attachment (GPA) model was described by Flaxman
et al. [18]. Here, networks are generated using an iterative algorithm. First, a random
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node u is selected. Within a specific radius r , taking u as center, the usual rules
of preferential attachment are used. Thus, node u will be connected to another
node with a probability that is proportional to the degree of such node, and that
node has to be located within radius r . On each iteration five edges are added in
order to resemble the original experiment. In case of ending up with more than one
connected component due to the narrowness of the spaces we tested, we have opted
to use an elliptical area to find u’s neighbors instead of a circular one.

Erdős-Rényi models (ER) [15] allocate n nodes at random where each possible
edge is added with probability p. The probability p was set to log(n)

(n)
since this value

should generate a single connected component.
For the case of n-nearest neighbours models (nNN) [14] each node is connected

to the n nodes closest to it. In this work we used n = 5 in order to obtain a single
connected component, thus we have a (5NN) model.

Gabriel graphs (GG) [19] are generated as follows: given two points u and v, we
create an edge between them if the circular area between them does not have other
nodes. This circular area has as diameter the distance between u and v, and u and v

are located on the circumference of this area.
The modified nelative neighborhood model (MRN) [3] is a model based on the

interdependent network model proposed in [34]. In this model given two nodes u

and v, and given d(u, v) the euclidean distance between u and v, we create an edge
between them if the intersection area between the two circles of radius d(u, v),
centered on u and v respectively, is empty. That is, there are no other nodes in that
intersection area.

4 Results

Our objective was to study the country’s shape effect over the Internet’s robustness.
For this we tested 5 new network models as physical networks built over spaces of
different shapes, and contrasted these results with the ones obtained using the MRN
model [3].

To do this we tested the effect of three different shapes: a square shape (with an
aspect ratio of 1:1), a Chile-like shape (with an aspect ratio of 1:25), and a shape in
between a Chile-like shape and a square shape (with an aspect ratio of 10:125). We
considered Pl = 6 to be the amount of ISPs, as there are 6 ISP nodes in Chile’s BGP
network. We also tested the robustness of the system for Imax ∈ {1, 3, 5, 7, 10}. As
for the number of nodes for each network we followed an approximation of the
amount of BGP nodes that Chile has, that is, 300 nodes. The same approximation
was used for the amount of physical nodes, that is, 2000 nodes. On each experiment
each layer started with a single connected component. Thus, if two logical nodes
ul and vl are connected by a path in the logical network, then their interdependent
physical nodes are also connected through a path in the physical network.

We defined the Internet’s robustness as the ability to keep users with Internet
access in case of failure. For that we measured the fraction of functional nodes after
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failure. Here, a node is said to be functional if it has Internet access (i.e. a path
to a provider node), and at least one of their original interdependent nodes is still
functional.

To measure the robustness we used the GL index proposed in [3]. Here, GL =
N

f
l

Nl
, where Nl is the amount of logical nodes that are functional before damaging

the system, and N
f
l is the amount of functional logical nodes after the system has

been damaged, and cascading failures have stopped.
To test the robustness of each interdependent system under each scenario (shape,

physical network model, and Imax) we randomly removed nodes from the physical
network and any edge or inter-edge connecting the removed node with other nodes.
The results were obtained from 10 interdependent systems simulated for each
possible case (geometry, Imax , physical model). For each interdependent system
100 iterations of random physical node removal were considered. The results shown
in Sects. 4.1, and 4.2 were obtained averaging those results. In particular we focus
on results obtained when 15% of the physical nodes have been removed on the
following subsections, since once 15% of the physical nodes have been removed,
the most fragile Internet based interdependent system tested in this work reaches a
state of total failure.

4.1 Country Shape Effect

As we can see in Fig. 2, although every model tested is generated using geometrical
parameters such as areas and distances, most of them are not notoriously affected
by the geometry of the space in which they are built in.

For Internet based interdependent systems generated using Yao and GPA physical
models (see Fig. 2a and b) we observe that the space geometry does not have a
significant effect over the system’s robustness. On these systems we can also observe
that a higher Imax value increases the robustness to some extent.

In the case of the Internet based interdependent systems generated using GG and
ER models (see Fig. 2e and c) we observe a slightly more pronounced effect of
the space shape over the system’s robustness. However, these effects do not show a
clear trend regarding whether a narrower space decreases (or increases) the system’s
robustness.

The cases of Internet based interdependent systems built using 5NN and MRN
models as physical networks (see Fig. 2d and f respectively) show a clear effect of
the geometry in which they where built in over the system’s robustness. Specifically,
a narrower space geometry leads to a less robust Internet system. For the case shown
in Fig. 2d we observe that as the Imax value increases, the effect of the space shape
over the robustness becomes less noticeable. In particular, we see that once Imax ≥
5, a narrow Chile-like space does not seem to behave so much worse than a square
space. As for the case shown in Fig. 2f we observe a relatively constant effect of the
space shape over the Internet system robustness.
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Fig. 2 System’s robustness after 15% of the physical nodes have been removed. Blue indicates
physical networks built in a square geometry, yellow indicates systems over a Chile-like geometry,
and red represents system built in an geometry between a square space and a Chile-like space.
(a) Yao physical network. (b) GPA physical network. (c) ER physical network. (d) 5NN physical
network. (e) GG physical network. (f) MRN physical network

As a general observation we see in Fig. 2 that the robustness in every Internet
system tested improves with a greater Imax value. In particular all the systems
improve their robustness to a similar level once an Imax ≥ 7 is reached.

It is worth asking ourselves the reason why such dissimilar robustness outcomes
are observed despite the fact that all the physical networks used to test the Internet
based interdependent system were generated using spatial parameters. In an attempt
to understand this phenomena we decided to study the effect of the amount of edges
that each system has over the Internet based interdependent system.
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4.2 Effects of the Number of Edges

To further understand the phenomena observed in Sect. 4.1 we studied whether the
differences observed among system’s with different physical network models were
due to the amount of edges, or some other network characteristics, such as the way
in which the edges are allocated in the physical network.

In Fig. 2 we observe that Internet based interdependent systems generated using
Yao and GPA physical models have a similar robustness under physical attacks given
the different space geometries and Imax values tested. However, it is interesting to
note that these two system have a relatively big difference on the amount of edges
they have (approximately 4200 edges), this can be appreciated in Table 1 and Fig. 3.

A similar phenomenon is observed on Internet based interdependent systems
generated using GG and ER physical models. Here, systems created using ER
networks as physical networks have 3700–3900 edges more than those using
GG networks as physical network. Just as the previously described case, systems
generated using GG and ER physical models have a similar robustness under
physical attacks given the different space geometries and Imax values tested (see
Fig. 3, and Table 1).

On the other hand, we observe in Fig. 3 and Table 1 that Internet based
interdependent systems generated using 5NN and GG physical models do not
present a great difference on their edges amount (between 500 and 600 edges more
in 5NN systems). Nonetheless, GG systems are more robust than 5NN systems
under the same adverse scenarios despite GG systems having fewer edges than 5NN
systems.

Fig. 3 Average number of
edges of each physical
network tested
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Table 1 Average number of
edges per physical network

Model\space 1:1 10:125 1:25

MRN 2531 2487 2451

GG 3893.82 3819.8 3740.96

5NN 4406.92 4369.82 4339.16

Yao 5810.32 5817.52 5815.98

ER 7634.8 7649.8 7619

GPA 9999 9999 9999
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Regarding Internet based interdependent systems generated using 5NN and MRN
physical models, we can see in Fig. 3 and Table 1 that 5NN systems have between
1280 and 1370 edges more than MRN systems. For this pair of systems it is
interesting to note that for the case of a space with 1:25 proportions and for an
Imax = 3. Both 5NN and MRN systems have a similar GL, meaning a similar
robustness level is achieved by MRN systems with approximately 1300 less edges
than 5NN systems. However this is an isolated case and 5NN systems are on average
much more robust than MRN systems.

Another observation is that MRN based physical networks have approximately
500 edges more than the minimum amount of edges needed to have a single
connected component given that all the physical networks have 2000 nodes. This
minimum amount of edges is given by the amount of edges needed to generate a tree
graph which is n − 1, given a graph with n nodes. This contrasts with all the other
networks models tested as physical networks, which have at least 1280 edges more
than the minimum amount of edges needed to have a single connected component
for the same 2000 nodes.

4.3 Adding Edges to the MRN-Based System

To understand the effect that the amount of edges in the physical Internet network
has over the Internet’s robustness under random physical node removal, we tested
the effect of randomly adding edges to the most fragile system, in this case the
MRN-based Internet based interdependent system.

To test this we randomly added edges to the MRN-based Internet based interde-
pendent system without changing anything else, that is: no interdependent edges are
changed or added, no logical nodes or edges were added, and no previously existing
physical edges were changed.

Given g ∈ {1:1, 10:125, 1:25} a space geometry, we define EGPA
g , and EMRN

g to
be the amount of edges of GPA systems and MRN systems on a space with geometry
g as shown in Table 1, we tested two cases: (1) Adding enough edges to obtain a
physical network with an amount of edges between the highest amount and the

lowest amount per space geometry (i.e.
EGPA

g +EMRN
g

2 ). (2) Adding enough edges to
obtain a physical network with an amount of edges equivalent to half of the amount

of edges obtained on case (1) (i.e.
EGPA

g +EMRN
g

4 ) as this amount is roughly between
the amount of edges of GG and MRN (see Table 1).

Both cases were tested over fifteen initial Internet based interdependent systems
generated using MRN physical models, one per space geometry in {1:1, 10:125,
1:25} and Imax ∈ {1, 3, 5, 7, 10}. For case (1) the final amount of edges of the
physical network for geometry (1:1) was 6260, for geometry (10:125) was 6231,
and for geometry (1:25) was 6238. While, for case (2) the final amount of edges of
the physical network for geometry (1:1) was 3130, for geometry (10:125) was 3116,
and for geometry (1:25) was 3119. Thus, on case (1) an average of 3757 edges were
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Fig. 4 Test case of MRN-based Internet based interdependent systems with no added edges (a),
an average addition of 635 edges (b), and an average addition of 3757 edges (c)

added, and on case (2) an average of 635 edges were added. In Fig. 4a we can see
the robustness of the originally generated systems, i.e, systems with no added edges.
In Fig. 4c and b we have the robustness of the cases (1) and (2) respectively.

In Fig. 4 we observe that adding edges at random to the Internet based interdepen-
dent systems generated using MRN as physical model with edges added according
to case (1) greatly improves the system’s robustness. Indeed, by adding an amount
of edges according to case (1), the robustness of the Internet system becomes similar
to the robustness shown by Internet based interdependent systems generated using
CPA physical models, while having on average 3756 fewer edges.

As for case (2), we see in Fig. 4 that by adding an average of 635 edges at
random the robustness of MRN-based Internet systems improves the robustness of
the system even more so than 5NN-based systems. Thus, MRN-based systems are
more robust than 5NN-based systems while having 1250 fewer edges on average. In
particular the robustness shown by the system generated from case (2) edge addition
presents a robustness similar to GG-based systems while having 697 fewer edges on
average.
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5 Discussion

From the results shown in Sect. 4.1 we observe that the relation between space shape
in which the physical network is built in and the robustness of the Internet based
interdependent system under random physical node failures greatly depends on the
structure of the physical network, and the Imax value. Specifically, we observe that in
all the cases tested a greater Imax value is positively correlated with the robustness.

In particular, we observe in Sect. 4.2 that the relation between the amount of
edges of the physical network and the robustness of the system under physical node
removal is non-trivial. Indeed, we observe that systems with similar robustness
can have relatively large differences on their amount of edges. This suggests that
the strategy used to generate the physical network, and thus the way in which we
allocate the edges between nodes can have an enormous impact over the system’s
robustness under physical node failure. In addition, this suggests that it is possible to
obtain Internet systems with a high robustness to physical attack with fewer physical
edges. This is important given how costly it can be to create a new edge on the
Internet physical network.

The results presented in Sect. 4.3 are especially interesting as they contrast with
the results shown in Sect. 4.2. These results suggest that it is possible to greatly
improve the robustness of a geometry-sensitive system such as the one generated
using a MRN physical network by randomly adding edges. Improving to the point
of becoming geometry-insensitive. Even more, this is achieved by adding relatively
few edges (an average of 635 edges added). We see this on the Internet system
generated by case (2) presented in Sect. 4.3 (see Fig. 4b). This system shows a
robustness similar to ER and GG-based Internet systems while still having fewer
edges than all the other physical models tested.

In particular, given that no specific strategy was followed when adding edges,
our results suggest that with a smart edge allocation strategy we could get a
similar robustness improvement, while adding even fewer edges to physical Internet
network. Therefore suggesting that improving the robustness of the Internet based
interdependent system against physical failures may be not that expensive.

6 Conclusion

Here, we have tested the Internet’s robustness under physical node failures by
measuring the amount of BGP or logical network nodes that are able to access
the Internet after physical node failure. We showed that the geometry or shape in
which the physical Internet network is built in may affect the Internet’s robustness
against physical node failure depending on factors such as the physical model, edge
allocation strategy, and the amount of inter-connections between the physical and
the logical layer.
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We also showed that the relation between the robustness, edge allocation strategy,
and edge density is non-trivial, thus this relation should be further studied. In
particular we showed that geometry-sensitive Internet based interdependent systems
can become geometry-insensitive, and that we can greatly improve the Internet’s
robustness by adding relatively few edges at random to the physical network. Thus,
suggesting it is possible to improve the robustness of the Internet against physical
failures with relatively few resources.

Here, we have shown that robustness improvement can be achieved by adding a
small amount of edges without a particular strategy, that is, adding edges uniformly
at random. The next steps would be to test the effect of non-random failures, as
well as using smart edge addition strategies to maximize the robustness gain while
minimizing the amount of edges added, hence minimizing the resource expenditure.
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The Power of Communities: A Text
Classification Model with Automated
Labeling Process Using Network
Community Detection

Minjun Kim and Hiroki Sayama

Abstract Text classification is one of the most critical areas in machine learn-
ing and artificial intelligence research. It has been actively adopted in many
business applications such as conversational intelligence systems, news articles
categorizations, sentiment analysis, emotion detection systems, and many other
recommendation systems in our daily life. One of the problems in supervised text
classification models is that the models’ performance depends heavily on the quality
of data labeling that is typically done by humans. In this study, we propose a new
network community detection-based approach to automatically label and classify
text data into multiclass value spaces. Specifically, we build networks with sentences
as the network nodes and pairwise cosine similarities between the Term Frequency-
Inversed Document Frequency (TFIDF) vector representations of the sentences as
the network link weights. We use the Louvain method to detect the communities
in the sentence networks. We train and test the Support Vector Machine and the
Random Forest models on both the human-labeled data and network community
detection labeled data. Results showed that models with the data labeled by the
network community detection outperformed the models with the human-labeled
data by 2.68–3.75% of classification accuracy. Our method may help developments
of more accurate conversational intelligence and other text classification systems.
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1 Introduction

Text data is a great source of knowledge for building many useful recommendation
systems, search engines as well as conversational intelligence systems. However, it
is often found to be a difficult and time-consuming task to structure the unstructured
text data especially when it comes to labeling the text data for training text
classification models. Data labeling, typically done by humans, is prone to make
mislabeled data entries, and hard to track whether the data is correctly labeled or not.
This human labeling practice indeed impacts on the quality of the trained models in
solving classification problems.

Some previous studies attempted to solve this problem by utilizing unsupervised
[1–3] and semisupervised [4] machine learning models. However, those studies used
a pre-defined keyword list for each category in the document, which provides the
models with extra referential materials to look at when making the classification
predictions, or included already labeled data as a part of the entire data set from
which the models learn. In case of using unsupervised algorithms such as K−means
and LDA [2, 3], it is very much possible that frequently appearing words in multiple
sentences can be used as features for multiple classes. This leads the models to
render more ambiguity and to result in a poor performance in classifying documents.
Also, the number of distinct classes (K) to be made is not determined systematically
using the data, but heuristically by trying out many different values of K which is
not a reliable optimization.

Although there are many studies in text classification problems using machine
learning techniques, there have been a limited number of studies conducted in text
classifications utilizing network science. Network science is actively being adopted
in studying biological networks, social networks, financial market prediction [5] and
more in many fields of study to mine insights from the collectively inter-connected
components by analyzing their relationships and structural characteristics. Only
a few studies adopted network science theories to study text classifications and
showed preliminary results of the text clustering performed by network analysis
specially with the network community detection algorithms [6–8]. However, those
studies did not clearly show the quality of community detection algorithms or
other possible useful features. Network community detection [9] is graph clustering
methods used in complex networks analysis from large social networks analysis [10]
to RNA-sequencing analysis [11] as a tool to partition a graph data into multiple
parts based on the network’s structural properties such as betweenness, modularity,
etc.

In this paper, we study further to show the usefulness of the network community
detection on labeling unlabeled text data that will automate and improve human
labeling tasks, and on training machine learning classification models for a partic-
ular text classification problem. We finally show that the machine learning models
trained on the data labeled by the network community detection model outperform
the models trained on the human-labeled data.
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2 Method

We propose a new approach of building text classification models using a network
community detection algorithm with unlabeled text data, and show that the network
community detection is indeed useful in labeling text data by clustering the text data
into multiple distinctive groups and also in improving the classification accuracy.
This study takes the following steps (see Fig. 1), and uses Python packages such as
NLTK, NetworkX and SKlearn.

– Gathered a set of text data that was used to develop a particular conversational
intelligence system from an artificial intelligence company, Pypestream. The
data contains over 2000 sentences of user expressions on that particular chatbot
service such as [“is there any parking space?”, “what movies are playing?”, “how
can I get there if I’m taking a subway?”]

– Tokenizing and cleaning the sentences by removing punctuations, special char-
acters and English stopwords that appear frequently without holding much
important meaning. For example, [“how can I get there if I’m taking a subway?”]
becomes [‘get’, ‘taking’, ‘subway’]

– Stemmizing the words following a suffix stripping algorithm [12], and adding
synonyms and bigrams of the sequence of the words left in each sentence to
enable the model to learn more kinds of similar expressions and the sequences
of the words. For example, [‘get’, ‘taking’, ‘subway’] becomes [‘get’, ‘take’,
‘subway’, ‘tube’, ‘underground’, ‘metro’, ‘take metro’, ‘get take’, ‘take subway’,
‘take underground’, . . . ]

– Transforming the preprocessed text data into a vector form by computing TFIDF
of each preprocessed sentence with regard to the entire data set, and computing
pair-wise cosine similiarity of the TFIDF vectors to form the adjacency matrix
of the sentence network

– Constructing the sentence network using the adjacency matrix with each pre-
processed sentence as a network node and the cosine similarity of TFIDF
representations between every node pair as the link weight.

– Applying a network community detection algorithm on the sentence network
to detect the communities where each preprocessed sentence belong, and build
a labeled data set with detected communities for training and testing machine
learning classification models.

2.1 Data, Preprocessing and Representation

The data set obtained from Pypestream is permitted to be used for the research
purpose only, and for a security reason, we are not allowed to share the data set. It
was once originally used for creating a conversational intelligence system (chatbot)
to support customer inquiries about a particular service. The data set is a two-column
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Fig. 1 Analysis process. (a) Preprocess the text data by removing punctuations, stopwords and
special characters, and add synonyms and bigrams, (b) transform the prepocessed sentence into
TFIDF vector, and compute pair-wise cosine similairy between every sentence pair, (c) construct
the sentence networks, and apply the Louvain method to detect communities of every sentence, (d)
label each sentence with the detected communities, (e) train and test the support vector machine
and the random forest models on the labeled data

comma-separated value format data with one column of “sentence” and the other
column of “class”. It contains 2212 unique sentences of user expressions asking
questions and answering to the questions the chatbot asked the users. The sentences
are all in English without having any misspelled words, and labeled with 19 distinct
classes that are identified and designed by humans. Additional data set that only
contains the sentences was made for this study by taking out the “class” column
from the original data set.

From each sentence, we removed punctuations, special characters and English
stopwords to keep only those meaningful words that serve the main purpose of the
sentence and to avoid any redundant computing. We then tokenized each sentence
into words to process the data further in word level. For words in each sentence, we
added synonyms of the words to handle more variations of the sentence as a typical
method of increasing the resulting classification models’ capability of understanding
more unseen expressions with different words that describe similar meanings. The
synonyms we added to the data are not context-specific synonyms, but all predefined
synonyms of particular words. Although we used the predefined synonyms from the
Python NLTK package, one might develop it’s own synonym data to use under the
context of the particular data to achieve better accuracy. We also added bigrams of
the words to deal with those cases where the tokenization breaks the meaning of
the word that consists of two words. For example, if we tokenized the sentence “go
to Binghamton University” and process the further steps without adding bigrams of
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them, the model is likely to yield lower confidence on classifying unseen sentences
with “Binghamton University” since the meaning of “Binghamton University” is
lost in the data set [13].

With the preprocessed text data, we built vector representations of the sentences
by performing weighted document representation using the TFIDF weighting
scheme [14–16]. The TFIDF, as known as Term frequency inversed document
frequency, is a document representation that takes account of the importance of each
word by its frequency in the whole set of documents and its frequency in particular
sets of documents. Specifically, let D = {d1, . . . , dn} be a set of documents and
T = {t1, . . . , tm} the set of unique terms in the entire documents where n is the
number of documents in the data set and m the number of unique words in the
documents. In this study, the documents are the preprocessed sentences and the
terms are the unique words in the preprocessed sentences. The importance of a word
is captured with its frequency as tf (d, t) denoting the frequency of the word t ∈ T

in the document d ∈ D. Then a document d is represented as an m-dimensional
vector #»

td = (tf (d, t1), . . . , tf (d, tm)). However, In order to compute more concise
and meaningful importance of a word, TFIDF not only takes the frequency of
a particular word in a particular document into account, but also considers the
number of documents that the word appears in the entire data set. The underlying
thought of this is that a word appeared frequently in some groups of documents
but rarely in the other documents is more important and relevant to the groups of
documents. Applying this concept, tf (d, t) is weighted by the document frequency
of a word, and tf (d, t) becomes tf idf (d, t) = tf (d, t) × log

|D|
df (t)

where df (t) is
the number of documents the word t appears, and thus the document d is represented
as #»

td = (tf idf (d, t1), . . . , tf idf (d, tm)).

2.2 Sentence Network Construction

With the TFIDF vector representations, we formed sentence networks. In total,
10 sentence networks (see Figs. 2 and 5) were constructed with 2212 nodes
representing sentences and edge weights representing the pairwise similarities
between sentences with 10 different network connectivity threshold values. The
networks we formed were all undirected and weighted graphs. Particularly, as for
the network edge weights, the cosine similarity [16, 17] is used to compute the
similarities between sentences. The cosine similarity is a similarity measure that is
in a floating number between 0 and 1, and computed as the angle difference between
two vectors. A cosine similarity of 0 means that the two vectors are perpendicular to
each other implying no similarity, on the other hand, a cosine similarity of 1 means
that the two vectors are identical. It is popularly used in text mining and information
retrieval techniques. In our study, the cosine similarity between two sentences i and
j is defined as below equation.

SIMC(
#»
tdi

,
# »
tdj

) =
#»
tdi
· # »
tdj

| #»
tdi
|| # »
tdj
| (1)
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Fig. 2 A sentence network
and its communities. The
sentence network with no
threshold on the node
connectivity has 18 distinct
communities including three
single node communities

where:
#»
tdi
= (tf idf (di, t1), . . . , tf idf (di, tm)), the T FIDF vector of i-th sentence

# »
tdj

= (tf idf (dj , t1), . . . , tf idf (dj , tm)), the T FIDF vector of j -th
sentence

d = a preprocessed sentence in the data set

t = a unique word appeared in the preprocessed data set

To build our sentence networks, we formed a network adjacency matrix for 2212
sentences, M , with the pairwise cosine similarities of TFIDF vector representations
computed in the above step.

M =

⎛

⎜
⎜
⎜
⎝

d1 d2 ... d2212

d1 SIMC(
# »
td1,

# »
td1) SIMC(

# »
td1,

# »
td2) . . . SIMC(

# »
td1,

#      »
td2212)

d2 SIMC(
# »
td2,

# »
td1) SIMC(

# »
td2,

# »
td2) . . . SIMC(

# »
td2,

#      »
td2212)

...
...

...
. . .

...

d2212 SIMC(
#      »
td2212,

# »
td1) SIMC(

#      »
td2212 ,

# »
td2) . . . SIMC(

#      »
td2212,

#      »
td2212)

⎞

⎟
⎟
⎟
⎠

2.3 Network Community Detection and Classification Models

The particular algorithm of network community detection used in this study is the
Louvain method [18] which partitions a network into the number of nodes—every
node is its own community, and from there, clusters the nodes in a way to maximize
each cluster’s modularity which indicates how strong is the connectivity between the
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nodes in the community. This means that, based on the cosine similarity scores—
the networks edge weights, the algorithm clusters similar sentences together in
the same community while the algorithm proceeds maximizing the connectivity
strength amongst the nodes in each community. The network constructed with no
threshold in place was detected to have 18 distinct communities with three single
node communities. Based on the visualized network (see Fig. 2), it seemed that the
network community detection method clustered the sentence network as good as the
original data set with human-labeled classes although the communities do not look
quite distinct. However, based on the fact that it had three single node communities
and the number of distinct communities is less than the number of classes in the
human-labeled data set, we suspected possible problems that would degrade the
quality of the community detection for the use of training text classification models.

Quality of Network Community Detection Based Labeling We checked the
community detection results with the original human-labeled data by comparing
the sentences in each community with the sentences in each human-labeled class
to confirm how well the algorithm worked. We built class maps to facilitate
this process (see Fig. 3) that show mapping between communities in the sen-
tence networks and classes in the original data set. Using the class maps, we
found two notable cases where; (1) the sentences from multiple communities are
consist of the sentences of one class of the human-labeled data, meaning the
original class is splitted into multiple communities and (2) the sentences from
one community consist of the sentences of multiple classes in human-labeled data,
meaning multiple classes in the original data are merged into one community. For
example, in the earlier case (see blue lines in Fig. 3) which we call Class-split, the
sentences in COMMUNITY_1, COMMUNITY_2, COMMUNITY_5, COMMUNITY_8,
COMMUNITY_10, COMMUNITY_14 and COMMUNITY_17 are the same as the
sentences in CHAT_AGENT class. Also, in the later case (see red lines in Fig. 3)
which we call Class-merge, the sentences in COMMUNITY_7 are the same as the
sentences in GETINFO_PARKING, GETINFO_NEARBY_RESTAURANT, GET-
INFO_TOUR, GETINFO_EXACT_ADDRESS, STARTOVER, ORDER_EVENTS,
GETINFO_JOB, GETINFO, GETINFO_DRESSCODE, GETINFO_LOST_FOUND
as well as GETINFO_FREE_PERFORMANCE.

The Class-split happens when a human-labeled class is divided into multiple
communities as the sentence network is clustered based on the semantic similarity.
This actually can help improve the text classification based systems to perform
more sophisticatedly as the data set has more detailed subclasses to structure the
systems with. Although it is indeed a helpful phenomenon, we would like to
minimize the number of subclasses created by the community detection algorithm
simply because we want to avoid having too many subclasses that would add more
complexity in designing any applications using the community data. On the other
hand, the Class-merge happens when multiple human-labeled classes are merged
into one giant community. This Class-merge phenomenon also helps improve the
original data set by detecting either mislabeled or ambiguous data entries. We
will discuss more details in the following subsection. Nonetheless, we also want
to minimize the number of classes merged into the one giant community, because
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Fig. 3 A class map between detected communities and human-labeled classes. The class map
shows a mapping (all lines) between communities detected by the Louvain method and their
corresponding human-labeled classes of the sentence network with no threshold

when too many classes are merged into one class, it simply implies that the sentence
network is not correctly clustered. For example, as shown in Fig. 3 red lines, 12
different human-labeled classes that do not share any similar intents are merged into
COMMUNITY_7. If we trained a text classification model on this data, we would
have lost the specifically designed purposes of the 12 different classes, expecting
COMMUNITY_7 to deal with all the 12 different types of sentences. This would
dramatically degrade the performance of the text classification models.

In order to quantify the degree of Class-split and Class-merge of a network, and
to find out optimal connectivity threshold that would yield the sentence network
with the best community detection quality, we built two metrics using the class
map. We quantified the Class-split by counting the number of communities splitted
out from each and every human-labeled class, and the Class-merge by counting the
number of human-labeled classes that are merged into each and every community.
We then averaged the Class-splits across all the human-labeled classes and Class-
merges across all the communities. For example, using the class map of the sentence
network with no threshold, we can easily get the number of Class-split and Class-
merge as below. By averaging them, we get the Class_split and Class_merge scores
of the sentence network, which is 2.7368 and 2.8333 respectively.

Class_split = [2, 1, 4, 5, 1, 2, 2, 1, 1, 4, 1, 9, 1, 1, 4, 2, 2, 2, 7]

Class_merge = [1, 1, 1, 1, 4, 1, 2, 1, 2, 4, 1, 9, 2, 1, 1, 1, 6, 12]
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Fig. 4 Optimal connectivity threshold point based on Class-split and Class-merge metrics. The
normalized Class-split score (blue line) increases as the threshold gets larger. On the other hand,
normalized Class-merge (red line) decreases as the threshold gets larger. The optimal connectivity
threshold is the point where both scores are minimized which is 0.5477

We computed the normalized Class_split and Class_merge scores for all 10
sentence networks (see Fig. 4). Figure 4 shows the normalized Class-split and Class-
merge scores of the 10 sentence networks with different connectivity thresholds
ranging from 0.0 to 0.9 (shown in Fig. 5). With these series of Class_split and
Class_merge scores, we found out that at 0.5477 of connectivity threshold we can
get the sentence network that would give us the best quality of community detection
result particularly for our purpose of training text classification models.

Detecting Mislabeled or Ambiguous Sentences in Human-Made Data Set
Using the Class_merge information we got from the class map, we were able to
spot out those sentences that are either mislabeled or ambiguous between classes in
the original data set. This is extreamly helpful and convenient feature in fixing and
improving text data for classification problems, because data fixing is normally a
tedious and time consuming task which takes a great amount of human labor. For
example, by looking at the class map, in our sentence network with no threshold,
COMMUNITY_5 contains sentences appeared in GETINFO_EXACT_ADDRESS
and CHAT_AGENT classes. We investigated the sentences in COMMUNITY_5,
and were able to spot out one sentence [“I need to address a human being!”]
which is very ambiguous for machines to classify between the two classes.
This sentence is originally designed for CHAT_AGENT class, but because of its
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Fig. 5 Nine sentence networks with different connectivity thresholds. Each node represents a
sentence and an edge weight between two nodes represents the similarity between two sentences.
In this study, we removed edges whose weight is below the threshold. (a) Network with threshold
of 0.1 has 29 distinct communities with 11 single node communities. (b) Network with threshold
of 0.2 has 45 distinct communities with 20 single node communities, (c) network with threshold
of 0.3 has 100 distinct communities with 58 single node communities, (d) network with threshold
0.4 has 187 distinct communities with 120 single node communities, (e) network with threshold
0.5 has 320 distinct communities with 204 single node communities, (f) network with threshold of
0.6 has 500 distinct communities with 335 single node communities, (g) network with threshold of
0.7 has 719 distinct communities with 499 single node communities, (h) network with threshold
of 0.8 has 915 distinct communities with 658 single node communities, (i) network with threshold
of 0.9 has 1140 distinct communities with 839 single node communities. Based on the visualized
sentence networks, as the threshold gets larger it is shown that each network has more distinct
communities
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ambiguous expression with the word ‘address’, it is together with sentences in
GETINFO_EXACT_ADDRESS in COMMUNITY_5. After fixing the ambiguity of
that sentence by correcting it to [“I need to talk to a human being!”], we easily
improved the original data set.

Classification Models Once we got the optimal connectivity threshold using the
Class_split and Class_merge scores as shown in previous sections, we built the
sentence network with the optimal threshold of 0.5477. We then applied the Louvain
method to detect communities in the network, and to automatically label the data
set. The network with the threshold of 0.5477 has 399 communities with 20,856
edges. Class_split and Class_merge scores of the network were 22.3158 and 1.0627
respectively. We finally trained and tested machine learning based text classification
models on the data set labeled by the community detection outcome to see how well
our approach worked. Following a general machine learning train and test practice,
we split the data set into a train set (80% of the data) and a test set (20% of the data).
The particular models we trained and tested were the Support Vector Machine [19]
and the Random Forest [20] models that are popularly used in natural language
processing such as spam e-mail and news article categorizations. More details about
the two famous machine learning models are well discussed in the cited papers.

3 Result

Table 1 shows the accuracy of the four Support Vector Machine and the Random
Forest models trained on the original human-labeled data and the data labeled by our
method. The accuracies are hit ratios that compute the number of correctly classified
sentences over the number of all sentences in the test data. For example, if a model
classified 85 sentences correctly out of 100 test sentences, then the accuracy is 0.85.
In order to accurately compute the ground truth hit ratio, we used the ground truth
messages in the chatbot. The messages are the sentences that are to be shown to the
chatbot users in response to the classification for a particular user query as below.

input sentence → detected class → output message

For example, for a question of “how do I get there by subway?”,
in the chatbot, there is a designed message of “You can take line M or
B to 35th street” to respond to that particular query. Using these output

Table 1 Accuracies of text
classification models

Data labeling SVM Random forest

Human labeled 0.9572 0.9504

Network community labeled 0.9931 0.9759

It is shown that the models trained on the community data
resulted in higher accuracy in classifying the sentences in
the test data
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messages in the chatbot, we were able to compute the ground truth accuracy of
our classification models by comprehending the input sentences in the test sets,
the detected classes from the models and linked messages. In our test, the Support
Vector Machine trained on human-labeled data performed 0.9572 while the same
model trained on the data labeled by our method resulted in 0.9931. Also, the
Random Forest model trained on human-labeled data resulted in an accuracy value
of 0.9504 while the same model trained on the data labeled by our method did
0.9759.

4 Discussions and Conclusion

In this study, we demonstrated a new approach of training text classification models
using the network community detection, and showed how the network community
detection can help improve the models by automatically labeling text data and
detecting mislabeled or ambiguous data points. As seen in this paper, we were able
to yield better results in the accuracy of the Support Vector Machine and the Random
Forest models compared to the same models that were trained on the original
human-labeled data for the particular text classification problem. Our approach is
not only useful in producing better classification models, but also in testing the
quality of human-made text data. One might be able to get even better results
using this method by utilizing more sophisticatedly custom-designed synonyms
and stopwords, using more advanced natural language processing methods such
as word-embeddings, utilizing higher n-grams such as trigrams, and using more
balanced data sets. In the future, we would like to expand this study further to use
the network itself to parse out classifications of unseen sentences without training
machine learning models.
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Effective Implementation of Energy
Aware Polarization Diversity for IoT
Networks Using Eigenvector Centrality

Sakil Chowdhury, Laurent Hébert-Dufresne, and Jeff Frolik

Abstract The Internet of Things (IoT) is one the most promising area of applica-
tions for complex networks since we know that both the efficiency and fidelity of
information transmission rely critically on our understanding of network structure.
While antenna diversity schemes improve reliability and capacity for point-to-point
links of an IoT network that employs multi-polarized antennas, it is currently unclear
how implementation should depend on the network structure of the IoT and what
impact structure-dependent implementations will have on the energy consumption
of IoT devices. We propose an antenna diversity scheme that leverages local network
structure and a distributed calculation of centrality to reduce power consumption
by 13% when compared to standard selection diversity technique. The proposed
approach exploits distributed eigenvector centrality to identify the most influential
nodes based on data flow and then limits their antenna switching frequency
proportionally to their centrality. Our results also demonstrate that by taking routers’
centrality metric into account, a network can reduce antenna switching frequency
by 17% while ensuring approximately 99% packet delivery rate. More broadly, this
study highlights how network science can contribute to the development of efficient
IoT devices.

1 Introduction

The Internet of Things (IoT) interconnects heterogeneous entities like sensors,
actuators, wearable items and phones to develop an integrated system where these
multipurpose devices can monitor their surrounding environment, react to a certain
event, collect sensory data and forward the data in multi-hop fashion to back-
end systems for further processing [1]. The applications of IoT span from small
scale implementation such as patient monitoring, smart homes, to large scale
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implementations of industrial monitoring, smart farming, smart cities, etc. [2, 3].
In many of these potential applications, IoT devices are deployed in environments
which are not ideal for wireless communication. Environments such as industrial
facilities are particularly harsh where reflection, diffraction and scattering from
metal structures cause distortion to the radio signal, known as multipath fading [4].
Signal attenuation, phase shifting and inter-symbol interference caused by multipath
fading significantly degrade reliability and throughput of the network.

Multi-polarized antennas are an effective solution to overcome multipath effects
as they allow the receiver to have multiple copies of the transmitted signal by
using orthogonally polarized antenna elements [5]. However, the problem is then to
choose which antenna polarization should be used given local conditions, including
network structure. Selection diversity is the simplest diversity technique used in
conjunction with multi-element antennas in which the antenna polarization having
the highest signal strength is chosen for transmission or reception. Due to cost
constraints and limited processing capabilities of IoT devices, selection diversity
uses a single radio-frequency (RF) chain and switches between polarizations to
determine the ‘best’ polarization using a RF switch. Existing works in the literature
related to selection diversity schemes primarily focus on ensuring link reliability,
minimizing low bit error rate (BER) and attaining high signal-to-noise (SNR)
ratio. For example, the authors of Ref. [6] developed an algorithm with quartic
complexity to select optimal subset of antennas that ensures maximum SNR for
systems with many transmit antennas. In Ref. [7], a low-complexity generalized
selection combining (GSC) scheme is introduced, which is able to match the
performance of a full diversity system in terms of outage probability and symbol
error rate while utilizing only a subset of the available antennas to transmit and
receive. In Ref. [8], capacity maximizing suboptimal antenna selection algorithm for
medium to high SNRs is proposed to determine the transmit antenna in a Rayleigh
fading environment. However, all the mentioned works required either multiple RF
chains to be active simultaneously or the device to solve complex optimization
problems, which is not suitable for low-cost, constrained IoT devices. Moreover, the
network structures of IoT systems are often complex and hierarchical, suggesting
that diversity technique might be an interesting avenue of research.

In multi-hop communication based routing, router nodes that are near the base
station relay the data collected by the sensor nodes that are further away from the
base. Thus, in this network, the closer a router is to the base, the higher its data
traffic load will be, resulting in frequent use of selection diversity to select antenna
polarization. This will cause faster depletion of energy of the routers with high data
traffic compared to the routers with less traffic, i.e., far away routers. Intuitively, in
an IoT network operating in multipath environment, the time between consecutive
data transmission by a sensor node can be large compared to the coherence time
(time over which the channel changes significantly) of the channel and thus, each
transmission sees independent fading. On the contrary, as routers manage packets
from multiple sensor nodes, the coherence time for routers is large relative to the
time between consecutive transmission/reception which implies that the fading seen
by packets are correlated. For example, IoT networks aimed at wildfire detection,
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forest environment and agriculture monitoring require geographically dispersed
sensor nodes to transmit sensed information periodically at a low data rate. The base
station can provide valuable forecast, improve safety and efficiency by integrating
the sensed data that is relayed through routers [9, 10]. This motivates us to consider
controlling the use selection diversity according to nodes’ data traffic load as
approximated by their position in the network structure. Indeed, an IoT network
can be effectively represented as a complex network [11], a graph object whose
vertices correspond to sensor or router nodes while edges stand for data transmission
between nodes. More specifically, we consider the problem of finding routers with
high data traffic in an IoT network as a problem of finding the crucial nodes in a
complex network. Then, we can leverage centrality metrics [12], which rank the
nodes of a network based on their importance in a network, to identify highly
congested routers. Our focus in this paper is to apply ideas from complex network
science in order to implement a device-specific diversity scheme that considers
nonuniform depletion of energy of routers in an IoT network.

By combining complex network theory and the concept of antenna diversity,
we propose a network-wide diversity technique, where devices will use selection
diversity in a periodic manner instead of using it before every transmission or
reception and the period will be proportional to their centrality. In summary, the
main contributions of this paper are as follows.

1. We employ the concept of eigenvector centrality to determine crucial nodes
in an IoT network consisting of a large number of stationary nodes from
the view point of data packet transmission and reception. The centrality is
calculated by autonomous sensor and router nodes in a distributed manner
which reduces computation complexity and ensures low-memory usage for low-
resource, energy-constrained IoT devices compared to centralized computation.

2. In contrast to the conventional selection diversity technique that allows all
devices to switch antenna element before every transmission or reception, our
proposed energy-aware diversity scheme controls the switching of devices such
that low-scoring routers are allowed to switch antenna more frequently compared
to the high-scoring ones and hence, reduces excessive switching and is able to
minimize antenna switching by at least 17%.

3. We demonstrate through simulation that the reduction of excessive antenna
switching achieved by our Distributed Eigenvector Centrality (DEC) diversity
approach decreases energy consumption of routers by at least 13% compared to
simple network-wide selection diversity approach, without degrading network
reliability.

The paper is organized as follows: Sect. 2 reviews related works. In Sect. 3, we
give an overview of the type of target IoT networks and deployment environment
considered. Section 4 introduces a distributed calculation of eigenvector centrality
and proposes an implementation for IoT network in which an individual antenna
switching rate is controlled based on its centrality in the network structure. Section 5
describes the comparison between our proposed centrality based diversity scheme
and simple selection diversity scheme and Sect. 6 concludes the paper.
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2 Related Works

A network consists of a set of nodes connected by edges which can be directed or
undirected, weighted or unweighted. Centrality is often used in complex network
systems to identify the relative influence of a node or edge with respect to the entire
network. Various centrality measures such as betweenness, closeness and eigen-
vector centrality have been studied in the literature based on application context and
different characteristics of a network. Betweenness centrality determines the amount
of influence a node has over the information flow of a network. It first calculates the
shortest path between every pair of nodes in a network and assigns a centrality
to nodes based on how frequently they lie along shortest paths [13]. Closeness
centrality is defined as the inverse of the average distance between a given node
and all other nodes in the network [14] such that high closeness centrality indicates
central nodes that have shorter distances to other nodes. However, most centrality
measures are calculated based on global topology information which is prohibitive
for memory-constrained, low-cost devices of an IoT network with a large number
of nodes. Another popular measure is eigenvector centrality, which calculates a
node’s importance in a network by summing the importance of its neighbors [12].
Eigenvector centrality is defined based on the eigenvector of the network adjacency
matrix such that the centrality x satisfies Ax = λx where A is the N ×N adjacency
matrix, x is the eigenvector associated to the greatest eigenvalue λ of A and N is the
number of nodes.

Although a node which is central by one centrality measure may be central
by other centrality measures, this is not necessarily always true. Compared to
betweenness centrality (measures the number of paths that pass through each node)
and closeness centrality (based on average distances), eigenvector centrality is based
on the idea that a central node is connected to other central nodes, which is a natural
definiton for centrality in an IoT network. However, one of the major disadvantage
of eigenvector centrality measure is that the calculation is quite complex and
complexity grows as N increases which is challenging for battery-powered nodes
with limited storage and processing capabilities. In this present work, we utilize
the concept of eigenvector centrality and leverage the tree structure of our IoT
networks for a distributed computation of centrality, where a node relies on its next
hop neighbors only to compute its individual centrality. Restricting the topology
means nodes do not have to obtain information about far-away nodes which reduces
resource usage.

Recently, several studies have focused on exploiting eigenvector centrality in a
distributed way. For example, Ref. [15] presented a reception-equal rate allocation
strategy for cooperative streaming so that all nodes receive the stream with the
minimal global use of resources by using a distributed version of the eigenvector
centrality. Although the proposed centrality measure can be computed distributedly,
every node still needs to be aware of the full network topology to calculate
the centrality. In Ref. [16], the authors studied a distributed computation of the
PageRank algorithm, a variant of the eigenvector centrality. In our work, we focus



Energy Aware Polarization Diversity for IoT Networks 249

on a distributed version of the classic eigenvector centrality, which can be measured
individually by each node of a directed loop-free wireless network consisted of
resource constrained devices.

3 System Model

Due to scalability, low cost and ease of deployment, IoT networks are gaining
increasing interests in the research community. Depending on the particular appli-
cation, different network architecture may be of interest. We consider an IoT
network, where both nodes and routers are autonomous and characterized as energy-
constrained devices with limited memory and poor processing capabilities. Routers
function as data aggregators and relay the received data to the base station, which
has unlimited power supply and is far from the sensing area, in a directed multi-hop
fashion through other routers. In addition, all the deployed devices are only aware of
their next hop neighbors and have no global knowledge of network. An example of
such network is a time-driven IoT network, used to collect spatio-temporal readings
of various environmental parameters through densely deployed sensor nodes.

We assume that all devices are equipped with tripolar antenna consisting of three
orthogonal mutual collocated antenna elements to create vertical (V) polarization,
horizontal (H) polarization and a third polarization (W) which is perpendicular to
the other two [16].

Figure 1 demonstrates available channel gains for such systems which can
be described using a 3 × 3 complex channel matrix. During transmission, we
assume that the signal gets affected by Rayleigh fading, which is independent
and identically distributed on each antenna element. Both nodes and routers use
selection diversity to determine the best polarization for transmission and reception.

Fig. 1 Block diagram of
transmission and reception
using tripolar antenna
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To reduce hardware complexity, a single RF chain is used by the tripolar antenna
which changes antenna element using a RF switch. IoT devices receive pilot
symbols using different polarization from their next hop router to estimate the
channel gain of all three antenna elements by means of received signal strength.
The receiver antenna then selects one of the polarizations based on its estimates. The
base is assumed to be unaffected by multipath fading and uses vertical polarization
only for transmission.

4 Distributed Eigenvector Centrality

Classic eigenvector centrality, which measures how well connected a node is to
other well-connected nodes in the network, is computed globally. To facilitate faster
computation and reduce memory usage of resource-constrained IoT devices, we
use distributed eigenvector centrality (DEC), where each device (sensor or router)
will calculate their own centrality. To model the IoT network, we let G(V,E) be
a directed graph with N sensor nodes and R router nodes, where V is a set of
vertices representing all devices of the network and E is a set of edges representing
links between the devices. To calculate the centrality of node k with neighbor set
{1, 2, . . . , j}, we define an edge-weight matrix W, which is a j × 1 column matrix,
and neighbor-centrality matrix C̄vk

, which is a 1× j row matrix, as,

W =

⎡
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⎤

⎥
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⎥
⎥
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j×1

and C̄vk
= [cv1 cv2 . . . cvj

]
1×j

(1)

here weight of each edge wi,k is either 1 or 0 and i is one hop neighbor of node k.
In the context of our network, a directed edge from node i to node k indicates data
packet flow direction from i to k. If there is an edge from node i to node k, then
wi,k = 1, otherwise wi,k = 0. Also, cvi

denotes the centrality of the node i. The
proposed centrality scheme in initialized by awarding one centrality point to each
vertices. After that each node calculates its own centrality by summing the centrality
of its neighbor nodes that have edges directed towards them. Thus, DEC for node
k is defined as the weighted sum of the centralities of all its neighbor sensor nodes
and routers and can be written as

cvk
= 1+WC̄vk

= 1+
j∑

i=1,i �=k

wi,kcvi
(2)

Figure 2 illustrates an example of centrality calculation using two routers and five
sensors. Sensor nodes n1, n2 and n3 do not have any directed edge towards them and
hence each sensor has centrality 1. On the other hand, R1 has a centrality of 4 since



Energy Aware Polarization Diversity for IoT Networks 251

Fig. 2 Sample network of
two routers and five sensor
nodes with routers depicted in
green and sensors depicted in
light blue color
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Fig. 3 An illustration of data
transmission by sensors and
router. Solid circles indicate
usage of selection diversity
before transmission while
empty circles indicate no
antenna switching occurred
and colors represent different
polarizations. Top: Router R1
uses conventional selection
diversity Bottom: R1 uses
centrality based selection
diversity

there are three directed links from three neighbor nodes each having a centrality of
1. Although R2 is a neighbor of R1, it does not contribute to the centrality of R1 as
there is no directed edge from R2 to R1. Similarly R2 has a centrality of 7 since it
has directed edges from neighbors with centrality 1, 1 and 4.

Under the assumption that each device knows their type and total number of
devices present in the network, it can compute their centrality by only using local
interactions with its neighbor. Our goal is to allow nodes to limit their antenna
switching based on their centrality. We can then define the interval slot for node k as

$sk% = 1

(N + R)
αcvk

(3)

where, N and R are the total number of sensors and routers, respectively. Also, sk
is the number of transmissions during which a node will not use selection diversity
unless the signal strength of the currently used antenna branch falls below the
threshold and α is an integer that denotes the interval parameter. We note that the
interval slot, i.e., the waiting period between two consecutive antenna switching is
proportional to a node’s centrality and it increases for large values of α.

Figure 3 presents an illustration of transmission rates between nodes and a router
for the example network presented in Fig. 2, where sensor nodes (denoted as n1, n2,



252 S. Chowdhury et al.

and n3) are transmitting data packets to the router R1 at different rates. We note that,
when R1 uses conventional selection diversity (see Fig. 3 Top), it requires antenna
switching before every transmission. On the other hand, when R1 employs centrality
based switching (see Fig. 3 Bottom), antenna checks for best polarization among the
three elements only after some fixed (3 in this example) transmission slots. For high
centrality routers, the interval between consecutive receptions and transmissions
will be smaller and hence it’s highly likely that the channel conditions will not
change between consecutive transmissions. Thus, restricting the use of selection
diversity for such routers before every transmission will reduce excessive switching
and minimize energy consumption at the same time. With a time complexity scaling
linearly with the number of vertices in the network, DEC offers fast computation
and requires little memory usage. Moreover, with DEC, any changes in network
topology can be dealt locally as only a part of nodes need to recalculate their
centrality.

4.1 Centrality Based Diversity Scheme

We now describe the infrastructure of the IoT network that is used for simulation
and also how experimental data is incorporated to assess the performance of the
proposed scheme in a Rayleigh-fading environment. The network is initialized
with random sensor node deployment and the base is located at one corner of
the monitoring area. The routers are equidistant form one another and when
a router joins the network, it sends a multicast packet to discover its adjacent
sensors and routers and creates a routing table based on the received response.
The time difference between two consecutive data packet transmission by sensor
nodes is varied randomly between 1–10 s. Centrality is calculated in a bottom-up
approach, where each sensor and router use their own routing table to calculate
their centrality and share the score to their next level router only. Once calculated,
devices will keep using the centrality unless there are changes in their neighborhood.
If a new sensor or router joins, then their neighboring devices update centrality.
After computing centrality, devices determine their individual switching rate, which
defines how often a device will use selection diversity to select the best antenna
element. Once a device selects a polarization for transmission/reception, it may
need to wait for a couple of transmission slots to use selection diversity again and,
importantly, this waiting period is chosen proportionally to its centrality. During the
interval, the antenna will keep monitoring the signal strength of the currently used
antenna branch and if the branch falls below a predetermined threshold, it will use
selection diversity to select the best branch among the three branches. To asses the
performance under a setting similar to real world environment, we exploit the signal
strength and energy consumption data obtained experimentally, as described in Ref.
[16], using embedded devices equipped with tripolar antennas in a high multipath
environment.
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5 Performance Evaluation

In this section, we describe the simulation parameters used to evaluate the perfor-
mance of the proposed diversity scheme. Furthermore, we also compare the results
with existing selection diversity technique.

5.1 Simulation Model

We present the results for a case with 50 sensors and 10 routers as depicted in
Fig. 4a, where devices are using different antenna polarization at a certain time. We
note that, routers that are closer to the base station see substantially more data traffic
compared to the routers that are far away from the base or on the edge of the sensing
area. Figure 4b demonstrates the use of DEC, where high centrality is assigned to the
routers that are closer to the base and tend to aggregate more data packets compared
to routers that are far from the base.

In order to evaluate the performance of the proposed centrality based diversity
scheme, we consider an IoT network that performs periodic data collection through
sensor nodes based on IEEE 802.15.4 protocol. Sensor nodes are static and unable to
relay data from other nodes. Routers receive data from other nodes and forward the
data to the next hop routers in a tree-based routing fashion. We built a discrete event
simulator based on Matlab where a rectangle region is used to deploy the nodes. The
default parameters used in our simulation are presented in Table 1.

Fig. 4 (a) Basic architecture of an IoT network consisting of 50 sensors and 10 routers. Colors
represents different polarizations, sizes represents different type of IoT devices. (b) Representation
of the network presented in (a) using DEC. Color coding and size indicates centrality of sensor and
router nodes. Less central nodes have smaller size and lighter color compared to more central nodes
which have larger size and darker colors
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Table 1 Simulation parameters

Parameter Value

Area of deployment 300 × 300 m2

Number of sensors 50

Number of routers 10

Energy: transmission 0.01 J

Energy: reception 0.008 J

Energy: switching 0.001 J

Energy: pilot packets (transmission/reception) 0.002 J

Data packet size 32 bytes

Data rate 250 kbit/s

Pilot packet size 16 bytes

Battery capacity 18.7 kJ

Frequency 2.4 GHz

MAC protocol 802.15.4

Number of repetitions 10

We then run a comparative analysis between our proposed scheme and selection
diversity technique. Three performance metrics are used: switching frequency,
packet delivery ratio and energy consumption. In the baseline scenario, we consider
a network, where each device uses selection diversity to determine the best antenna
element for transmission and reception. To analyse the performance of our proposed
model, we experiment with different network sizes in terms of the number of sensors
and routers.

5.2 Simulation Results

Figure 5 presents our results on the impact of the centrality metric in decreasing
antenna switching rate. We focus on the routers only since sensor nodes are assumed
to be unable to perform data forwarding. Figure 5a illustrates the centrality of
routers calculated based on Eq. (2) and normalized by the total number of devices
60. We note that few routers stand out amongst other routers due to high centrality
and thus, serve as central points of data aggregations. We also see that the high
scoring routers receive and forward more data traffic, which deplete their energy
rapidly, compared to other routers with low centrality values. The results also show
the heterogeneity among routers in terms of data traffic through them and hence,
reinforces the requirement of node-specific diversity scheme. Figure 5b shows the
effect of using interval parameter α, where the antenna switching of routers with
high centrality are restricted compared to other routers. Even though the number of
switching varies for routers for different simulation runs, we observe that when α is
set to 2, our proposed diversity scheme decreases antenna switching approximately
by 17% compared to the conventional selection diversity.
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Fig. 5 (a) The number of packets received by routers, plotted against their normalized centrality.
It can be seen that routers which receive more data packets have higher centrality. (b) Comparison
between selection diversity and the proposed technique in terms of switching frequency. Routers
are plotted in ascending order based on the number of switching. Note that the number of switching
is decreased for high scoring routers
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Fig. 6 Comparison between selection diversity and the proposed technique for different values of
α in terms of (a) packet drop rate and (b) energy consumption rate, for a network consisting of
50 sensor nodes and 10 routers. As can be seen in the figure, for α = 3, our proposed scheme
has approximately 99% successful packet delivery rate and reduces energy consumption by 13%
compared to the selection diversity technique

Figure 6 demonstrates the use of interval parameter by comparing the centrality
based diversity scheme with selection diversity technique in terms of packet delivery
and energy consumption for different values of α. From Fig. 6a, we note that
when 2 ≤ α ≤ 3, the proposed centrality based diversity scheme is on par
with selection diversity technique in terms of packet delivery rate. However, as
α increases, packet drop rate increases for our proposed scheme compared to the
selection diversity. Since a large value of α increases the waiting time between
consecutive antenna polarization selection, network reliability decreases. Figure 6b
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demonstrates the influence of α on the energy consumption of routers, where energy
consumption includes power consumed due to antenna switching, transmission
and reception of both pilot packets and data packets. Since a large value of α

implies that more routers have reduced switching rate, the energy consumption
decreases considerably. However, restriction in updating antenna polarization for
longer period results in greater packet loss compared to the selection diversity.
Therefore, selecting an appropriate value of α is crucial for achieving satisfactory
performance in terms of reliability and energy efficiency.

6 Conclusion

In this work, we present an energy-aware polarization diversity scheme based
on node centrality metric for IoT networks. We consider a typical IoT network
composed of sensor devices that periodically sense data and utilizes tripolar antenna
to forward it to the base station through routers in a multi-hop fashion. The proposed
diversity scheme leverages distributed eigenvector centrality metric, calculated by
all IoT devices individually without requiring global information about the network
topology, to measure a router’s importance based on the importance of its connected
neighbors. The identification of most influential router nodes allows us to employ
a node-specific diversity scheme that lets low scoring routers to switch polarization
more frequently compared to high scoring routers and hence decreases excessive
switching over the whole network.

Our results suggest that methods to rank the influence of different nodes in
complex networks can be applied in IoT networks to save energy consumption
without compromising fidelity. Indeed, our simulation results demonstrate that the
proposed centrality based approach reduces switching by at least 17% compared
to the approach of utilizing selection diversity for all sensor and router nodes
irrespective of their roles. This shows that the proposed scheme is able to lessen
energy consumption by at least 13% compared to the conventional selection
diversity while offering similar network reliability. In future work, we plan to
implement the proposed scheme in real devices using various topologies and routing
strategies.
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Using Network Science to Quantify
Economic Disruptions in Regional
Input-Output Networks

Emily P. Harvey and Dion R. J. O’Neale

Abstract Input-output (IO) tables provide a standardised way of looking at inter-
connections between all industries in an economy, and are often used to estimate
the impact of disruptions or shocks on economies. IO tables can be thought of
as networks—with the nodes being different industries and the edges being the
flows between them. We develop a network-based analysis to consider a multi-
regional IO network at regional and sub-regional level within a country. We calculate
both linear matrix-based IO measures (‘multipliers’) and new network theory-
based measures, and contrast these measures with the results of a disruption model
applied to the same IO network. We find that path-based measures (betweenness
and closeness) identify the same priority industries as the simulated disruption
modelling, while eigenvector-type centrality measures give results comparable to
traditional IO multipliers, which are dominated by overall industry strength.

1 Introduction

Economic disruptions such as those due to natural hazards have a large impact
on local and global economies. There is evidence that the flow-on impacts of
disruptions will have an increasing impact as the world becomes more globalised
and inter-connected [1, 4]. In order to build resilience and prioritise investment to
mitigate impacts, it is crucial to identify key industry sectors and regions that play
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a role in amplifying (or dampening) the flow-on impacts of disruptions or shocks.
When considering disruption impacts, economists and disruption planners are faced
with the need to evaluate a number of different measures of economic impacts that
are not necessarily comparable and which almost certainly can not all be minimised
simultaneously.

Internationally, studies of flow-on impacts of disruptions on economic systems
have most commonly been based on the data from input-output (IO) tables, which
are readily available, at least at a national, and often also at regional levels. Many
years of research has gone into using IO tables in economic impact analysis [14]
and a common approach is to use ‘multipliers’, based on linear algebra matrix
formulations, to estimate the indirect impacts of a change in demand (or supply)
for an industry. In response to natural hazard events, the most popular approach has
been inoperability input-output models, which are based on standard ‘IO multiplier
analysis’ with minor modifications [6].

Recently IO tables have been thought of as networks, with the nodes being the
different industries and the edges being the flows between the industries. This has
enabled network science techniques to be used to attempt to identify crucial nodes
(industry sectors) within an economy and other industry structures. Existing work in
this field began with calculating the properties of IO networks [2, 3, 13], and is now
beginning to investigate the propagation of shocks on the networks [4, 11, 13, 16].

In this work we seek to consider the connections between industries as a
network, to determine whether the structure of the network can provide useful extra
information for quantifying the importance of industries or regions in propagating
disruptions. We consider a multi-regional IO network at local (Territorial Authority)
level within the Waikato Region in New Zealand, and calculate both linear matrix-
based IO measures (e.g. ‘multipliers’) and network theory-based measures at this
higher spatial resolution. We compare these network-based measure with results
from a disruption model applied to the same IO data, which gives us further
information about disruption impacts.

Research to date has considered global IO networks, looking at flows within and
between each country, or looking at a single country of interest. However, when
considering more fine-grained economic data regions are often heterogeneous and
impacts can be highly local. By comparing and contrasting the analysis at both
Regional and Local spatial resolutions, we are also able to investigate the impact
of spatial resolution on the results obtained.

2 Background and Data

2.1 Level of Spatial and Industry Aggregation

In this work, our starting data is a Multi-regional Input-Output table (MRIO) which
partitions the 10 Territorial Authorities (TAs) in the Waikato Region into separate
subregions and breaks the rest of New Zealand into ‘North of the Waikato Region’
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(Auckland and Northland) and ‘South of the Waikato Region’ (all other Regions).
This gives us 12 different spatial regions which span a large range of sizes, both
geographically and economically. The number of industry sectors is aggregated to
106, which is the maximum allowed from the reference data used to construct the
IO tables.

2.2 Economic Network Setup

IO networks are weighted, directed networks, where the weighting indicates the size
($) of inter-industry-location flows, and the direction depends on which industry-
location the flow is from and to. In this work we have 1272 industry-location nodes
(12 regions (locations) and 106 (industry) sectors) in the network. In addition to
the flows between industry sectors, the IO tables we use include inputs from four
Value Added categories (labour and capital inputs, taxes/subsidies on products and
production) and Imports, and outputs to three Final Demand categories (household
and government consumption, capital formation) and Exports. This adds another
three nodes to each of the 12 ‘regions’ for Final Demand, four nodes for Value
Added at whole country level, and a node each for Imports and Exports.

It is a requirement of IO tables that flows in and out of an industry-location
must balance, so this places restrictions on the network, specifically the row and
column sums of the weights in the adjacency matrix must much once value added
and final demand components are included. Additionally, because the nodes are the
grouping of all industries of the same ‘sector’ in the TA, self-links are possible and
will typically account for a significant fraction of monetary flows. There are some
other features of IO networks that it is worth noting; one of which is that they are
very dense (nearly-complete) with most industries having connections with most
other industries, though not all of these flows (link weights) will be significant.
These features mean that a lot of the standard approximations and simplifications
for weighted, directed network analysis are often not able to be applied [12].

3 Method

3.1 Network Analysis

In network science centrality broadly refers to the ‘importance’ or ‘influence’ of
a node in the network. Centrality measures can range from local node properties
(e.g. node strength); to more extensive properties that consider the properties of
those nodes connected to a node of interest (e.g. PageRank centrality); to measures
that account for the structure or topology of the network (e.g. betweenness
centrality). In this work we analyse the network using a range of different centrality
measures, including those that have been identified as potentially important in
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economic networks. Where possible we consider the network as a weighted, directed
network, with self-loops, but not all algorithms allow for this.

The centrality measures used here were chosen to cover a range different types
of measures while keeping the range of measures manageable. Specifically, we
consider the following (from the igraph package [5]):

Node Strength An equivalent of node degree that accounts for the differing edge
weights in a network. The strength of a node is simply the sum of the weights of
edges connected to that node.

PageRank A popular variant of eigenvector centrality. Eigenvector-based mea-
sures consider not only the strength of a node but also how well connected a node is
to other nodes with high node strength.

Kleinburg Centrality A generalisation of eigenvector centrality. Nodes are
imbued with two attributes: Authority—how much information/influence is held
by the node; and Hubness—how well a node connects to nodes with high authority.
If A is the adjacency matrix of a network, the hub score of nodes is calculated as
the principle eigenvector of AAT .

Authority Related to hub centrality, the authority centrality of vertices is calculated
as the principle eigenvector of AT A.

Diversity The scaled Shannon entropy of the edge weights of a node. Given the
context of IO networks it is worth noting that the diversity measure used here is a
version of the species diversity measure commonly used in ecology to quantify the
diversity of a habitat [9], not the measure of diversity sometimes used in economic
geography and popularised by Hausmann and Hidalgo in [8] which is simply the
node degree of a binary matrix that measures whether a region is strongly associated
with particular products or exports.

Betweenness The number of weighted shortest paths that pass through a node,
given all possible paths between pairs of nodes in the network.

Closeness The number of steps required to reach every other node in a network
from a given node following edge-weighted paths.

Having calculated this selection of centrality measures, we use Kendall’s τ

[10] to calculate the correlation between the importance rankings of the industries
between any two centrality measures.

3.2 Multiplier Analysis

IO Multipliers In calculating the economic effects of changes in an economy (pos-
itive or negative shocks), ‘IO multipliers’ are the most commonly used approach.
When the change is considered on the demand side the ‘Leontief inverse’ is
used, which propagated the change to all downstream industries. When the change
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is considered on the supply side the ‘Ghosh inverse’ is used which effectively
propagates the change to all upstream industries. See [14] for a full description.

The main technique used for quantifying economic impacts of a disaster (for
example a natural hazard such as an earthquake or volcanic eruption) is known
as Inoperability Input-Output Model (IIM) or the Dynamic IIM as a time varying
extension [6]. In this model, the inoperability of industries is assumed to follow a
smooth logistic curve from the disaster induced loss of productive capacity back to
full capacity over a specified recovery period. The direct loss of production due to
industry-location inoperability is calculated and used to modify the final demand
by the same amount; that is, if production halved from $20,000 to $10,000 then the
final demand vector for that industry-location in that region would be reduced by
$10,000. Then the flow on impacts from this reduced demand would be calculated
using the Leontief inverse [14]. This continues through time, until full operability is
restored.

In this work we calculate both Type I (industry to industry spending only) mul-
tipliers and Type II (including household spending and labour income) multipliers,
for the whole multi-regional IO table, following [14].

Disruption Multipliers There are many issues with this IIM approach [15],
including that it can lead to double counting and not only inaccurate quantitative
results, but more importantly it can lead to inaccurate rankings for prioritisation of
industries. Harvey et al. [7] have instead developed a dynamic model that propagates
short-term (days to weeks) disruptions through the multi-regional IO network. Using
this model ‘disruption multipliers’ can be calculated by disrupting one industry-
location at a time in each region and working out the ratio of direct effects to flow-on
(indirect) effects throughout the whole of New Zealand.

3.3 Comparing Network Centralities with IO and Disruption
Multipliers

We use Kendall’s τ [10] to calculate the correlation between industry-location
rankings based on the multiplier measures compared to the centrality measures.

3.4 Comparing Spatial Aggregation

In parallel with this, we also construct a network at the level of the Waikato
Region (not separated at TA level) and the same ‘North of the Waikato Region’ and
‘South of the Waikato Region’ regions (3 network regions) to investigate the impact
of spatial aggregation of IO tables on the economic multipliers and the network
properties.
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4 Results

4.1 Network Centrality Measures and Their Correlations

Figure 1 shows a heatmap of the Kendall correlation coefficients [10] between all
the centrality measures considered here. Before comparing the centrality measure
rankings, we first remove the industries from the rest of New Zealand (North and
South of the Waikato Region), as these have much larger inputs/outputs than those
broken down by TA within the Waikato Region and risk dominating the results.
Furthermore, we are focused here on identifying important industry-location pairs
within the Waikato Region.

We find that overall the different eigenvector-based centrality measures are
highly correlated, in particular the Kleinburg Authority, Kleinburg Hub, and PageR-
ank, and that these are strongly driven by the node strength (total inputs/outputs)
of the industry-location pairs. The different path-based measures are also highly
correlated, for example, the closeness and betweenness measures. These path-
based measures highlight different industry-location pairs to those identified by
the eigenvector-based methods, as shown by the high level of anti-correlation
(red) between these types of measures. More importantly, the path-based mea-
sures identify industry-location pairs that would not be immediately revealed by
eigenvector-based methods, or by linear economic multiplier measures that are
strongly linked to their size (strength) in the local economy. We elaborate on this
in the next section.

Fig. 1 Centrality measure
correlations (τ values) for
industries in the ten TAs in
the Waikato Region
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Fig. 2 Centrality measure
correlations (τ values) for
industries in the Waikato
Region as a single network
region
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If we aggregate the ten TAs up to a single Waikato Region, we can compare
centrality measure correlations over a much smaller set of industry-location pairs
(106 nodes instead of 1060). This produces slightly weaker correlations, as shown
in Fig. 2, but overall the pattern remains.

4.2 Comparing Multiplier and Centrality Measures

Comparing rankings for the different multipliers calculated, we find that the
correlation between the Industry (Type I) and Household (Type II) disruption
multipliers is τ = 0.21. This matches the literature which shows that the inclusion
of the household sector has a large impact on the results [14]. When we look at
the Disruption multiplier, we find that this has a correlation of τ = 0.38 with
the Industry multiplier and τ = −0.01 with the Household multiplier. This shows
that the Disruption model, which simulates a disruption propagating through the IO
network, is identifying different key industries to the existing IO multiplier analysis.
This has implications for regional disruption planning.

Comparing the three multipliers with the network centrality measures (Fig. 3a),
we find that the overall correlations are lower (−0.33 to 0.36) but that overall the
eigenvector-based centralities and the overall industry-location strengths tend to
match up with the traditional IO multipliers. This is not unexpected as they are both
based on linear algebra matrix calculations that are mathematically similar, and the
numerics agree with this. More interestingly the path-based measures (betweenness
and closeness) are much more strongly correlated with the Disruption multipliers.



266 E. P. Harvey and D. R. J. O’Neale

In
du

st
ry

 M
ul

tip
lie

r

H
ou

se
ho

ld
 M

ul
tip

lie
r

D
is

ru
pt

io
n 

M
ul

tip
lie

r

Diversity

Closeness

Betweenness

Kleinburg Authority

Kleinburg Hub

PageRank

Node Strength

−0.2 0.2

Color Key

(A)

In
du

st
ry

 M
ul

tip
lie

r

H
ou

se
ho

ld
 M

ul
tip

lie
r

D
is

ru
pt

io
n 

M
ul

tip
lie

r

Diversity

Closeness

Betweenness

Kleinburg Authority

Kleinburg Hub

PageRank

Node Strength

0.5 0.5

Color Key

(B)

Fig. 3 Comparing the network centrality measures with: the two IO multipliers, the mean of the
IO multipliers, and the disruption multiplier. This shows correlations between eigenvector-based
centrality measures and IO multipliers, whereas path-based centrality measures correlate well with
Disruption multipliers. There is a negative correlation between the two. For (a) industries in the
ten TAs in the Waikato Region, and (b) industries in the Waikato Region as a whole

This makes intuitive sense as they are both concerned with flows and bottlenecks,
that is with quantifying how disruptions to specific nodes flow on to impact the
activity of dependent nodes. Another point to note is that we find the having a high
diversity score is connected to having both a high Industry multiplier and a high
Disruption multiplier. This highlights the potential importance of rarer industries
within economic networks.

Aggregating to a single Waikato Region, we find much the same results (Fig. 3b),
but with slightly weaker correlations (and anti-correlations). This is due to the
disruption modelling becoming more homogenous in terms of industry-location
distribution and activity when looking at the aggregated Region. A feature of the
Disruption model is that it was designed to consider lower levels of aggregation,
with the aim to be able to provide detailed results at single industry-location level
resolution.

4.3 Impact of Spatial Aggregation

For all the analyses performed we considered the IO tables and economic networks
with the Waikato Region broken down into 10 subregions (TAs) as well as with
the whole Waikato Region considered together. This allowed us to look at the
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impact of the spatial aggregation on the industries identified as as important from
the disruption analysis.

We find that the eigenvector-based (strength-based) network measures identify
the same key industries at both Region and TA levels of resolution. We find the
same pattern for the Industry and Household multipliers. The value in analysing the
system at the TA level disaggregation then becomes simply the ability to identify
which TA the identified industry is most important to—it does not change which
industries are identified. The exception is for industries that are disproportionately
(or uniquely) represented in one or two TAs; for example, Coal Mining in the
Waikato District, and Hospitals in Hamilton City. In these cases looking at TA level
allows these to be ranked higher in importance than they would be if aggregating up
to Regional level. Selected examples are given in Table 1.

However, for any path-based measures and for the Disruption multipliers, the
level of spatial aggregation has a large impact on which industries are identified
as important. Examples are given in Table 2. This can be explained as follows:
aggregating the network up changes its structure—for example, at TA level there
are fewer individual businesses within each industry categorisation, so the self-loops
are smaller. Furthermore, the proportion of inter-industry flows that are within the
TA itself is quite low (14–32%), with the majority of flows into (or out) of each
industry coming from (or going to) other TAs within the Waikato Region and the
rest of NZ. When considering the whole region, the proportion of inter-industry
flows that stay within the region increases to around 60%. This is still far below the
equivalent proportions that are typically observed in the literature when looking at
IO networks at a whole country level [12]. It is therefore worth noting that metrics
that are applicable for national level analysis may not behave as expected when
working with disaggregated regional data, such as that considered here.

5 Discussion

In this work we have considered the question of how to identify industries that
have a large impact on an economic system when they are disrupted. A goal of
this paper was to show that network science measures can provide new useful
tools for targeting interventions to reduce the impacts of disruptions on regional
economies. In order to approach this, we have considered traditional IO multipliers,
a new disruption model multiplier, and a range of network centrality measures. We
have found that although traditional IO measures and eigenvector-based centrality
measures are good at picking out the largest industries in terms of gross output or
value-added, they do not match up with the industries that disruption modelling
shows to have a large amplifying effect. We find that path-based measures, such
as betweenness and closeness centrality, are far better at identifying industries that
would have large flow-on impacts. These path-based methods explicitly consider
the flow of money through the economy, and we find that the industries identified
on these measures depend strongly on the level of spatial resolution.
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Table 1 Selection of industries identified as important that are the same at Regional and TA level

Measure Regional level TA level

Total industry
value added

Dairy cattle farming Owner-occupied property operation
(Hamilton City)

Owner-occupied property oper-
ation

Hospitals (Hamilton City)

Dairy cattle farming (Matamata-
Piako)

Node strength Dairy product manufacturing Dairy product manufacturing (3 TAs)

Dairy cattle farming

Electricity generation and on-
selling

Electricity generation and on-selling
(1 TA)

Dairy cattle farming (1 TA)

Coal mining (Waikato District)

PageRank Dairy product manufacturing Dairy product manufacturing (3 TAs)

Dairy cattle farming

Electricity generation and on-
selling

Meat and meat product manufactur-
ing (1 TA)

Dairy cattle farming (1 TA)

Coal mining (Waikato District)

Industry
Multiplier

Electricity generation and on-
selling

Electricity generation and on-selling
(6 TAs)

Primary metal and metal prod-
uct manufacturing

Primary metal and metal product
manufacturing (7 TAs)

Dairy product manufacturing Dairy product manufacturing (7 TAs)

Meat and meat product manu-
facturing

Meat and meat product manufactur-
ing (7 TAs)

Household Mul-
tiplier

Preschool education Preschool education (10 TAs)

Postal and courier pick up and
delivery services

Postal and courier pick up and deliv-
ery services (10 TAs)

Specialised food retailing Specialised food retailing (10 TAs)

In considering a natural hazard disruption, both the total size of the industry
and the proportion its impact gets amplified by will play a role in determining the
resulting impacts. By taking a network science approach, we are able to get a fuller
picture of the potential targets for mitigation investment (e.g. stockpiling goods,
having back-up generators in case of electricity outages).

In most disruption events, the impact will not be homogeneous through space. In
most cases we would like to be able to consider the impact of a disruption on the
well-being of communities, instead of just at national or even regional level. This
is especially true for smaller localised events, which will not have a large impact at
a national or regional level, but that could devastate a community. We have found
that by considering smaller spatial units (in this case TA level) it is possible to get a
better estimate of where the impacts will fall, as well as where susceptibilities are.
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Table 2 Selection of industries identified as important on measures that differ Regional and TA
level

Measure Regional level TA level

Betweenness Petroleum and coal product manufac-
turing

Motor vehicle and motor vehicle
parts wholesaling (Hauraki)

Defence Sewerage and drainage services
(Thames-Coromandel)

Sewerage and drainage services Waste collection, treatment and dis-
posal services (2 TAs)

Air and space transport Health and general insurance (Taupō)

Petroleum and coal product manufac-
turing (Matamata-Piako)

Warehousing and storage services
(Waitomo)

Closeness Air and space transport Other transport (Otorohanga)

Petroleum and coal product manufac-
turing

Motor vehicle and motor vehicle
parts wholesaling (Hauraki)

Beverage and tobacco product manu-
facturing

Warehousing and storage services
(Waitomo)

Warehousing and storage services Health and general insurance (Taupō)

Waste collection, treatment and dis-
posal services

Polymer product and rubber product
manufacturing (2 TAs)

Machinery manufacturing

Electricity transmission and distribu-
tion

Disruption
Multiplier

Defence Other transport (Otorohanga)

Life insurance Motor vehicle and motor vehicle
parts wholesaling (Hauraki)

Petroleum and coal product manufac-
turing

Warehousing and storage services
(Waitomo)

Warehousing and storage services Waste collection, treatment and dis-
posal services (Waitomo)

Polymer product and rubber product
manufacturing (3 TAs)

Health and general insurance (Taupō)

Even for the measures that do not change much between Region and sub-regional
(TA) level (Table 1), looking at a higher granularity allows one to identify the unique
(spatially specific) industries e.g. Hospitals and Coal Mining, that would be missed
at a Regional level.

In future, increased data collection will make it possible to create networks at
individual firm level. Making sure that we understand how different measures scale
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from National to Regional all the way to individual firm level will be an important
focus of future research.
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