
Understanding the Resource Demand
Differences of Deep Neural Network

Training

Jiangsu Du(B), Xin Zhu, Nan Hu, and Yunfei Du

School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
dujs@mail2.sysu.edu.cn

Abstract. More deep neural networks (DNN) are deployed in the real
world, while the heavy computing demand becomes an obstacle. In this
paper, we analyze the resource demand differences of DNN training
and help understand its performance characteristic. In detail, we study
both shared-memory and message-passing behavior in distributed DNN
training from layer-level and model-level perspectives. From layer-level
perspective, we evaluate and compare basic layers’ resource demand.
From model-level perspective, we measure parallel training of represen-
tative models then explain the causes of performance differences based on
their structures. Experimental results reveal that different models vary
in resource demand and even a model can have very different resource
demand with different input sizes. Further, we give out some observations
and recommendations on performance improvement of on-chip training
and parallel training.

Keywords: Deep neural network training · Performance · Resource
demand differences

1 Introduction

Over the last few years, deep learning (DL) achieves great success in many
domains. New deep learning (DL) applications are constantly developed and
deployed to real-world utility [4]. New requirement that provides high perfor-
mance under limited budgets is emerged.

In this paper, we uncover resource demand differences of DNN models from
which people can understand the resource demand features of all kinds of mod-
els. In order to have a comprehensive understanding, we analyze models in a
divide-conquer style, from layer-level and model-level perspectives. From layer-
level perspective, we first abstract training process of DNN and measure the
floating point operands (FLOPs), memory consumption, and communication
amount of basic layers. Moreover, two metrics are designed to compare their
resource demand differences. From model-level perspective, we evaluate overall
throughput with different batch sizes and interconnection networks. Then an

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 673–681, 2020.
https://doi.org/10.1007/978-3-030-38961-1_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_56&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_56


674 J. Du et al.

analysis is given based on their structure. We provide readers a comprehensive
insight on DNN training, and make some important observations and recommen-
dations on performance improvement of DNN on-chip computing and parallel
computing.

2 Methodology

2.1 Training Simplification

Based on a careful technical survey and the node usage of a commercial V100
GPU cluster locating at national supercomputing center in Guangzhou, we
choose data parallelism, synchronous stochastic gradient descent (SGD), and
all-reduce methods as our experimental object since their effectiveness and pop-
ularity. Notably, our focus is the feature of models, and the simplification is to
make our analysis intuitive. As shown in Fig. 1(a), under the configuration above,
DNN training can be divided into on-chip computation and off-chip communi-
cation. In each iteration, each device has a complete model copy and runs both
feed-forward and back-propagation locally. After all devices complete computing,
updates will be aggregated for next iteration.

Update

Device0

Device0

Device3 Device2

Device1

Update

UpdateUpdate

On-chip Computation Communication

(a) Training Simplification

GPU3

GPU0 GPU1

GPU2

CPUPC
Ie

 
Sw

itc
h

(b) Topology of DGX Station

Fig. 1. Parallel Training and DGX Topology (Color figure online)

2.2 Layer-Level Perspective

The training of DNN includes two processes, feed-forward and back-propagation.
Generally, a DNN is made up by several different layers and the computing
process between upper and lower layers is independent. Thus, the next layer
cannot start operating until finishing the previous layer. Therefore, the overall
training process can be divided by layers and studied independently.

Basic layers mainly used today are Fully Connected Layer (FCL), Convolu-
tional Layer (CONVL) and Recurrent Layer (RCL). Their static structure can
be easily learned from online resources today. For RCL, the basic RCL and two
variants, LSTM and GRU are considered.



Understanding the Resource Demand Differences of DNN Training 675

Here we analyze runtime resource demand which is floating point unit, mem-
ory and interconnection. So we measure FLOPs, memory consumption, and
communication amount to reflect the demand. At first, we identify what
resource demand should be included for a layer. For FLOPs demand, it is easy
to distinguish. For memory demand, the boundary is not that clear. The memory
of a layer consists of input placeholder, newly requested memory by operations,
and weights. Input placeholder is also the output of the upper or lower layer,
so it is not counted in. In this way, we only include newly requested memory
and weights as a layer’s memory demand. Also it is common to reuse memory
requested in feed-forward for back-propagation, so here we don’t count twice.
Notably, the intermediate result produced by feed-forward is called feature map
and that of back-propagation is called gradient map. As for communication
demand, because almost all communication overhead comes from weight syn-
chronization, so we represent communication demand by weight amount.

We implement each basic layer in Tensorflow and evaluate using TFprofiler.
Because minibatch SGD can largely increase the concurrency in today’s multi-
core or many-core architecture, we evaluate the demand with different batch
sizes. Additionally, different configurations of layers are taken into account.

Moreover, two metrics are defined to compare resource demand. The first
metric is based on two facts. The first fact is that the memory access intensity of
dominant operations in these layers are similar. Second, because of the compute
dependency, the FLOPs can not directly determine the running time. However,
for RCL, the influence of dependency goes weaker as batch size becomes large.
The first metric is floating point operands per weight (FOPP). It can reflect how
sensitive is a model to interconnect performance. The mathematical expression
is as follows:

FOPP =
floating point operands

weights × batch size
(1)

The second metric is instant floating point operands per memory (IFOPM),
it reflects the demand ratio of floating point unit and memory size. As for RCL,
it should be additionally divided by time step since the FLOPs of different time
step cannot be computed simultaneously. The mathematical expression is as
follows:

IFOPM =
floating point operands

memory usage (×time step)
(2)

2.3 Model-Level Perspective

We analyze the resource demand differences of models selected through observ-
ing their performance change with different memory usage and interconnects.
Memory usage is achieved by setting different batch sizes. As for different inter-
connect, we switch between NvLink and PCIe. Figure 1(b) displays the topology
of DGX Station. It has 1 CPU and 4 GPUs. Each GPU can access other GPUs
by NvLink (green lines) or PCIe Gen3 ×16 (orange lines). According to our
measurement, the bandwidth of Nvlink is about 5× of PCIe and latency is only



676 J. Du et al.

1 eighth. Obviously, there is a great difference between these two interconnection
networks.

3 Evaluation and Analysis

3.1 Environmental Setup

The software we use: Ubuntu 16.04.4 LTS, CUDA 10, NCCL 2.4.2, cuDNN 7.4.2,
Tensorflow v1.11, Pytorch 1.0. DGX Station is equipped with a Intel Xeon E5-
2698 V4 CPU and 4 Tesla V100 (32 GB) with NVLink.

3.2 Basic Layer Result

Fully Connected Layer. We configure FCL with different batch size and
neuron number, and evaluate corresponding weight amount, FLOPs and mem-
ory usage. From the result, we can observe that FLOPs increase proportionally
with both layer size and batch size. The dominant operation in FCL is matrix
multiplication which accounts for more than 99%. For memory, it increases pro-
portionally with layer size and a little with batch size. Memory demand for
FCL is from memory newly requested by matrix multiplication and weights. For
matrix multiplication, it needs one copy of weight and only request new memory
for feature map in feed-forward. When using larger batch size, only feature map
will increase. However, the variable number of feature map is only equal to layer
size, so the memory consumed by weights is thousands of times larger than that
of feature map.

Insights: Weights occupy most memory demand in FCL training and it only
brings a little memory increase with larger batch size.

Convolutional Layer. We configure CONVL with different batch size and
kernel size, and evaluate corresponding weights, FLOPs and memory usage. Our
result presents that FLOPs and memory demand are almost proportional to
batch size. For FLOPs, the dominant operation is Conv2D which accounts for
more than 99.5%. For memory demand, feature map occupied most of newly
requested memory. Not like FCL, memory usage of feature map is much larger
than that of weights in CONVL.

Insights: Intermediate result occupies most memory demand in CONVL train-
ing. If memory size becomes a limitation for DNN training in GPU. CONVL
can be the primary structure to be considered when reducing memory demand
by re-calculating feature maps.

Recurrent Layer. We configure RCL with different batch size, neuron num-
ber and time step, and evaluate corresponding weights, FLOPs and memory
usage. It can be observed that different RCLs demonstrate very similar trends



Understanding the Resource Demand Differences of DNN Training 677

on FLOPS and memory. For weight number, they are only influenced by hidden
layer size. For FLOPs, matrix-related operations dominate the overall computa-
tional complexity and they occupy more than 99%. Notably, the weight amount
and FLOPs of these three RCLs are about 1:3:4. For memory, it is much more
complicated than FCL and CONVL. Memory is not mainly requested by a single
operation. In RCLs, newly requested memory comes from element-wise, matrix-
vector multiplication, and data movement operations. The increase of memory
is only proportional to time step and slower than a linear relation with hidden
layer size and batch size. Based on the profiling result, these implementations
will take three copies of weights. Even so, weights only contribute to a small
percentage of memory usage and the intermediate result is dominant.

Comparison. The comparison uses metrics, FOPP and IFOPM, raised above.
To make the result easy-observable, values are normalized.

For FOPP, FCL and CONVL fluctuate at a stable value. FCL is about 0.006
and CONVL is about 6. In terms of RCL, the metric of basic RCL, GRU, and
LSTM only change with time step. If we divide FOPP of RCL by time step,
they are similar with FCL at 0.006. As we investigate in complete applications,
time step is the length of human sentence in general, so FOPP of these layers:
FCL >> BasicRNN ≈ LSTM ≈ GRU >> CONV L.

Insights: FCL or RCL, especially FCL, usually contribute to more weights and
less computation comparing to CONVL.

For IFOPM, all these layers change in a wide range. We explore their range
based on evaluation and theoretical analysis. Firstly, variables of a FCL are input
size, output size, and batch size. As claimed above, both memory demand and
FLOPs are proportional to input size. FLOPs are proportional to output size and
memory demand is almost not related to output size. For batch size, it ranges
widely from 16 to 1024 or even larger. So, IFOPM of FCL is approximately
from 12 to 756 (even larger and mainly around 100). Secondly, variables of a
CONVL are kernel size, kernel number, batch size, input size. We can know
that input size, batch size, and kernel number only slightly influence this metric.
For kernel size, it is quadratic to FLOPs and only influence memory demand a
little. The biggest kernel size yet we know is 11 and it cannot be smaller than
2. Also, a kernel is sometimes 3 dimensions and IFOPM should be multiplied
with the channel number. So, IFOPM of CONVL is approximately from 2 to 183
(even larger). Thirdly, for RCL, IFOPM of three variants are similar and always
LSTM > GRU > BasicRCL when using same configuration. We consider
hidden layer size is from 16 to 1024, batch size is from 16 to 512, and time
step is from 5 to 40. Then, basic RCL is from 0.17 to 23, GRU is from 0.17 to
24.5, and LSTM is from 0.26 to 25.7. Comparing these three layer types, the
rank of IFOPM is FCL ≥ CONV L > LSTM > GRU > BasicRCL in most
circumstances.

Insights: A layer with different input size or configuration can vary in resource
demand. FCL has much more weights than CONVL, but the IFOPM of FCL



678 J. Du et al.

can be similar or even larger than CONVL, which is different to our initial
impression. Additionally, for a device, RCL occupies larger memory then it can
use up floating point unit.

3.3 Model Result

This part we evaluate representative models that achieve competitive accuracy
in their domains. Models are listed in Table 1.

Table 1. Domains, models, datasets, and frameworks

Domains Models Dominant layer Framework Dataset

Image classification AlexNet CONVL, FCL Tensorflow ImageNet-1k

Vgg16 CONVL, FCL Tensorflow ImageNet-1k

ResNet50 CONVL Tensorflow ImageNet-1k

InceptionV3 CONVL Tensorflow ImageNet-1k

Object detection SSD [2] CONVL Pytorch COCO

Recommendation NCF [1] FCL Pytorch MovieLens

Adversarial learning DCGAN [3] CONVL Pytorch LSUN

Machine translation Seq2Seq [5] (GRU) GRU Pytorch WMT16

Seq2Seq (LSTM) LSTM Pytorch WMT16

We display our results in Fig. 2 and further extract features in Fig. 3(a)
and Fig. 3(b). Figure 3(a) is the performance improvement rate when expanding
batch size. In other words, it is the ratio of performance with two neighborhood
batch size when using a single GPU. Figure 3(b) shows the performance ratio of
4 GPUs with different interconnection networks.

AlexNet, Vgg16, InceptionV3, ResNet50. We first compare the results of
image classification models. For AlexNet, it has 8 layers (5 convolutional layers
and 3 fully connected layers). After simple calculation, almost all the weights
come from fully connected layer. For Vgg16, it has 16 layers (3 FCLs) and most
of weights still come from fully connected layer. For ResNet50, only one fully
connected layer is used in ResNet. In this way, weights are not mainly contributed
by fully connected layer. For InceptionV3, it completely remove fully connected
layer.

Moving on to the evaluation, Fig. 2(a), (b), (c), and (d) show the result of
these four models. Initially, we focus on the on-chip performance with different
batch size. When batch size is small, the expansion of batch size can bring
considerable performance improvement, and it becomes weak when batch size
goes large. As for AlexNet, because of simplicity, it obtains good performance
improvement at beginning then declines quickly. The growing rate of other three
models is very limited, especially for Vgg16. From the evaluation, we can predict
there exist a saturation point of floating point unit and the performance will not
keep increasing with batch size. In other words, it uses up floating point unit.



Understanding the Resource Demand Differences of DNN Training 679

(a) AlexNet (b) Vgg16 (c) InceptionV3

(d) ResNet50 (e) DCGAN (f) SSD

(g) NCF (h) OpenNMT LSTM (i) OpenNMT GRU

Fig. 2. Model performance display

Moving on to multi-GPU training, we can observe that all these models
gain performance improvement when using large batch size, because the com-
munication frequency is relatively reduced. However, the batch size cannot be
increased infinitely since it will damage convergence speed. From Fig. 3(b), mod-
els show different sensitivity to interconnection. For AlexNet, it is influenced
largely switching to weak interconnection. For Vgg16, the influence of weak
interconnection is also huge (about 21%) but much better than AlexNet. For
InceptionV3 and ResNet50, the bad interconnection performance damages only
a little performance (about 1.4% and 7.6%). These ratio is calculated when using
4 GPUs and the largest batch size.

DCGAN. DCGAN uses two CNNs as the core of model. Although the training
process is more complicated than pure CNN models, its training can be simply
considered as the addition of two CNNs. The implementation uses four convolu-
tional layers as generator network and five convolutional layers as discriminator
network. It removes all fully connected layer and pooling layer. Figure 2(e) dis-
plays the evaluation result. For single GPU training, its performance improve-
ment rate is quite high at the beginning comparing with other CNN based models
since it is a very small model which can hardly consume much resource. Then the
improvement rate gradually reduces to a normal level. For multi-GPU training,



680 J. Du et al.

(a) On-chip Computation (b) Parallel Computation

Fig. 3. Performance change summary

it is not very sensitive to interconnect performance. It experiences about 11%
performance decline when using 4 GPUs at batch size 1024.

Single Shot MultiBox Detector. SSD can use ResNet, Vgg, and other clas-
sical CNN as its backbone. In our implementation, ResNet34 is used. Besides
ResNet34, there exists some other structure which contributes extra time.

Figure 2(f) displays the evaluation of SSD. Obviously, in Fig. 3(a) and (b), it
shows very similar trend with InceptionV3 and ResNet50.

Neural Collaborative Filtering. NCF can be divided into 4 layer types: input
layer, embedding layer, neural CF layer, and output layer. In our implementa-
tion, all these layer are substantially FCLs. For single GPU training, as is shown
by Fig. 3(a), it only improves a little, which can validate that FCL has very
high IFOPM. As for multi-GPU training, even using large batch size, it experi-
ences a 44.4% decline when switching interconnection. It is extremely sensitive
to interconnect since it is almost fully made up by FCLs.

Insights: All previous models use CONVL and FCL as their main structure.
FCL usually contributes most weights and CONVL contributes most FLOPs in
a CNN. For on-chip performance, they quickly occupy all floating point unit
when increasing batch size. For parallel performance, FCL hugely influences the
scalability of training and CONVL-dominant models show slight performance
decline when switching to weak interconnection. For FCL-dominant models, data
parallelism can gain even no improvement if only PCIe provided.

Seq2Seq (GRU), Seq2Seq (LSTM). These two models are dominated by
RCLs. Here we use the Seq2Seq demo provided officially by OpenNMT. The
demo uses 2 RCLs as encoder and another 2 RCLs as decoder (500 hidden size).
Also, users can choose RCL type, LSTM or GRU.

Figure 2(i), and (h) demonstrate the results. From Fig. 3(a), they occupy the
top 2 places. Although they experience a decline when batch size increases, the
improvement rate is still very high. In other words, they gain more improvement
when increasing batch size. In other words, it is difficult for RCLs to occupy
all floating point units with small batch size. For multi-GPU training, even



Understanding the Resource Demand Differences of DNN Training 681

with large batch size, weak interconnection still damage overall performance
a lot (20.8% for OpenNMT (GRU), 17.8% for OpenNMT (LSTM)). 3-GPU
training with Nvlink sometimes is even better than 4-GPU training with PCIe.
Additionally, comparing Seq2Seq(GRU) and Seq2Seq(LSTM), it validates that
LSTM consumes more resources than GRU.

Insights: For on-chip performance, RCL based model needs a large batch size
to occupy all floating point unit which leads to higher memory requirements.
For parallel performance, RNN heavily depends on interconnection performance.
Additionally, for all models, a frequently mentioned but very important insight
is that increasing batch size can largely improve the on-chip running time and
decrease communication frequency.

4 Conclusion

DNN training has stepped into a new stage, which raised new challenges on
improving performance and reducing cost. We try to uncover resource demand
differences of DNN training. The work focuses on both on-chip computation and
off-chip communication. To have an insight on the demand, we analyze from
layer-level and model-level perspectives. The results reveal that there exist huge
resource demand differences among models. In detail, FCL and RCL should
contribute to much more communication overhead. FCL has much more weights
than CONVL but it has similar or even larger FOPP. For RCL, because of com-
puting dependency, it will create more intermediate results and RCL needs larger
memory size to use up device’s floating point unit. Based on these results, we
make several important observations, which can provide guidance for designing
software and hardware or simply purchasing new hardware.

Acknowledgement. This research was supported by the Natural Science Foundation
of China under Grant NO. U1811464 and the Program for Guangdong Introducing
Innovative and Enterpreneurial Teams under Grant NO. 2016ZT06D211.

References

1. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filter-
ing. In: Proceedings of the 26th International Conference on World Wide Web, pp.
173–182. International World Wide Web Conferences Steering Committee (2017)

2. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

3. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

4. Ratner, A., et al.: SysML: the new frontier of machine learning systems. arXiv
preprint arXiv:1904.03257 (2019)

5. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1904.03257

	Understanding the Resource Demand Differences of Deep Neural Network Training
	1 Introduction
	2 Methodology
	2.1 Training Simplification
	2.2 Layer-Level Perspective
	2.3 Model-Level Perspective

	3 Evaluation and Analysis
	3.1 Environmental Setup
	3.2 Basic Layer Result
	3.3 Model Result

	4 Conclusion
	References




