
Pimiento: A Vertex-Centric
Graph-Processing Framework

on a Single Machine

Jianqiang Huang1,2, Wei Qin1, Xiaoying Wang2, and Wenguang Chen1,2(B)

1 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

{hjq16,tanw16}@mails.tsinghua.edu.cn, cwg@tsinghua.edu.cn
2 Department of Computer Technology and Applications, Qinghai University,

Xining 810016, China
Wangxiaofu163@163.com

Abstract. Here, we describe a method for handling large graphs with
data sizes exceeding memory capacity using minimal hardware resources.
This method (called Pimiento) is a vertex-centric graph-processing
framework on a single machine and represents a semi-external graph-
computing system, where all vertices are stored in memory, and all
edges are stored externally in compressed sparse row data-storage for-
mat. Pimiento uses a multi-core CPU, memory, and multi-threaded data
preprocessing to optimize disk I/O in order to reduce random-access
overhead in the graph-algorithm implementation process. An on-the-fly
update-accumulated mechanism was designed to reduce the time that
the graph algorithm accesses disks during execution. Our experiments
compared external this method with other graph-processing systems,
including GraphChi, X-Stream, and FlashGraph, revealing that Pimiento
achieved 7.5×, 4×, 1.6× better performance on large real-world graphs
and synthetic graphs in the same experimental environment.

Keywords: Vertex-centric · Graph processing · Semi-external ·
Passing message · Asynchronous update accumulation

1 Introduction

With the rapid development of the internet and the big-data era, there is a need
to analyze large volumes of data. As an abstract data structure, graphs are used
by many applications to represent large-scale data in real scenarios, and graph
data structures are used to describe the relationships among data, such as mining
relationships in social networks, goods recommendations in e-commerce systems,
and analysis of the impact of traffic accidents on road networks. Additionally,
many types of unstructured data are often transformed into graphs for post-
processing and analysis. Research into large-scale graph-processing has increased
in both academia and industry, and recently, numerous systems and state-of-the
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 42–56, 2020.
https://doi.org/10.1007/978-3-030-38961-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_5

Pimiento: A Vertex-Centric Graph-Processing Framework 43

art techniques for graph processing have emerged, including distributed systems
and heterogeneous systems. Such systems present new computing models or
highlight the design of high-performance runtime systems used to adapt to the
features of graph data, such as its large scale, ability to dynamically change, and
its high efficiency when processing big graph data.

Examples of these systems include distributed graph-computing systems,
such as pregel [1], GraphLab [2], PowerGraph [3], and Gemini [4], which can
theoretically deal with any large-scale graph data by deploying clusters with
good extensibility and computational efficiency; however, there remain prob-
lems, including maintenance of load balance between nodes and communication
latency.

Other systems include single graph computing system, such as GraphChi [5],
X-Stream [6], FlashGraph [12], GridGraph [8], and other external graph-
processing systems [7,9–11,13,14,22], which can reduce random disk-read and
disk-write operations, avoid high communication overhead, and use paralleliza-
tion technology to fully exploit multi-core computing resources to address large-
scale graph data. Compared with distributed systems, these exhibit lower hard-
ware cost and power consumption.

GraphChi is a single graph-computing system using a vertex-centric calcu-
lation model and multi-threaded parallel computing to improve computing per-
formance. It utilizes parallel sliding-window (PSW) [5] technology to reduce
random access to the disk and supports asynchronous computations. GraphChi
processes graphs in three stages: (1) loading graph data from the disk to mem-
ory, (2) updating the values of vertices and edges, and (3) writing updates to
disk.

GraphChi exhibits good platform usability and computing performance; how-
ever, its preprocessing requires sorting of the source vertex of the edges, which
is costly. Moreover, computing processes and disk I/O access are executed in
serial, and the parallelism between disk I/O and the CPU is not fully utilized to
overlap computing and I/O in order to further improve computing performance.
By contrast, X-Stream uses an edge-centric computing model, where all states
are stored in the vertex.

To address these issues, we propose Pimiento, a vertex-centric graph-
processing framework that combines asynchronization with efficiency. The out-
line of our paper is as follows: Sect. 2 introduces disk-based graph-computation
challenges, describes system design and implementation in Sect. 3, Sect. 4
describes evaluation of Pimiento on large problems (graphs with billions of edges)
using a set of algorithms, such as single source shortest path (SSSP), PageRank,
and breadth-first search (BFS).

The main contributions of this paper are as follows:

– We describe the use of a vertex-centric computing model with effective
graph-storage structure that adopts an innovative asynchronous update-
accumulation mechanism. This enables update and repeat visits to any vertex
to occur in memory in order to avoid a large number of random I/O and repeat
I/O operations generated by frequent updates and reads of disk data.

44 J. Huang et al.

– Pimiento implements a semi-external asynchronous graph-processing frame-
work to maximize on-the-fly updates via thread optimization of computing
and I/O, thereby reduced access to I/O data.

– Our evaluation showed that Pimiento outperformed current state-of-the-art
techniques.

2 Disk-Based Graph Computation

A graph is a data structure that describes the complex relationship between
data and comprises vertices and edges usually expressed as G = (V,E), where
the vertex set, V , represents an object or entity, and the edge set, E, represents
the relationship between objects or entities. Each vertex v ∈ V will have a vertex
value. Given a directed edge from vertex u to vertex v, e = (u, v), e is the in-
edges of v and the out-edges of u, where u represents the in-vertex of v, and v
represents the out-vertex of u.

In a vertex-centric calculation model for iterative calculations, the value of
each update vertex usually involves only the input vertex value. Once a ver-
tex value is updated, a new message is sent to the output side, and the value
of the output side is updated. This dynamic update of the iterative process is
terminated when a convergence condition is satisfied. As framework [5] shows,
a vertex-centric calculation model can address a broad range of problems. The
method proposed in this paper is based on asynchronous calculations using a
vertex-centric value-calculation model. Combined with the on-the-fly accumula-
tion of the update mechanism, it promotes an effective graph-storage and calcu-
lation models. Based on the effective management of graph data, it can minimize
disk data traffic and make full use of the parallel update of memory and CPU
resources in order to improve computational efficiency.

2.1 Maintaining Specification Integrity

We divided vertex set V of graph into P intersecting intervals (see Fig. 1(b)).
Each interval correlates with a shard that contains information needed to update
the vertex calculation. As a result of the asynchrony of cumulative iterative
computations, the graph partition has little effect on performance. This method
only supports hash or range partitions based on a graph vertex number.

The system described by Pearce et al. [19] uses a CSR storage format to store
the graph on a disk and is equivalent to storing the graph as an adjacency table,
where the edges in each edge shard are sorted according to a source vertex. We
call these edge data, which are stored continuously in contiguous blocks on the
disk.

Suppose that the vertex set in Fig. 1(a) is divided into three intervals (inter-
val1 = [1, 2], interval2 = [3, 4], and interval3 = [5, 6]), each of which is associated
with a shard, including the edge-and vertex shards. All Vertex shards will cas-
cade into a vertex table in order to initialize the vertex information, and all edge

Pimiento: A Vertex-Centric Graph-Processing Framework 45

2

3

1

4

5

6

(a) Example graph

Interval(1) Interval(2) Interval(P)

|V|

Edge
shard(1)

Edge
shard(2)

Edge
shard(P)

1 V1 V2

Vertex
shard(1)

Vertex
shard(P)

Vertex
shard(2)

(b) Intervals and shards

Fig. 1. Intervals and shards in the graph.

shards will cascade into an edge data stream in order to flow updates to the
vertex information.

This graph-storage structure addresses the following three problems:

– To improve the parallelism of single-machine graph calculation, the graph-
storage structure of the shard is used to render each executing thread respon-
sible for one or more shards for parallel calculation;

– Because random access is more than an order of magnitude slower than
sequential access to a disk, and given that the number of vertices in real-
world graph data is smaller than the number of edges, we used memory for
constant iterative updates of vertex data and secondary storage for edge lists
in order to make full use of the random read-write capability of memory and
the large capacity of secondary storage;

– To avoid secondary storage of random I/O, we organized edge data to ensure
that access to graph data involves sequential I/O.

2.2 Computational Model

In incremental iterative calculations, graph data include read-only data by con-
stantly updating vertex value V , as the vertex value of the cumulative value ΔV .
We found that ΔV is involved in the update of adjacent vertices and will usually
be accessed many times. I/O represents a bottleneck to disk-based methods, and
in order to avoid frequent updates and reads of disk V and ΔV , thereby caus-
ing repeated random I/O and I/O, read-only edge data are detached from the
variable-peak value of V and ΔV , and the read-only edge data are continuously
stored on the edge shard disk.

We combined the cumulative iterative computations and the cache of all of
the vertices values for V and ΔV into the memory. Because the space occupied
by vertices values V and ΔV are less than the space occupied by the edge
data, the memory capacity of the modern computer can meet the requirements.
Pimiento uses flow calculation, and the space occupied by the edge list in memory

46 J. Huang et al.

is dynamically balanced and controllable, which also proves the desirability of
caching vertex data into memory. Due to the cumulative nature of the algorithm,
the updates and access to peak value V and ΔV can be performed in memory.
At this point, updating each interval requires only one sequential scan of the
corresponding read-only edge list to minimize the I/O overhead of graph data
access.

This paper is based on the traditional incremental iteration theory [15] and
presents a graph-computing model in a parallel environment for application
for stand-alone large graph data processing. The parallel-computing model is
adopted in the framework of general graph computing, where each execution
thread is responsible for one or more shards, as well as each subdivision, includ-
ing the vertex shard and a corresponding edge shard. Additionally, smaller ver-
tex shards are loaded into memory to support frequent updates, and larger edge
shards are placed on the disk to save memory.

The computing framework of the diagram is shown in Fig. 2. During the
implementation process of the iterative calculation, each execution thread reads
the edge information sequentially from disk and updates the neighbor vertex
state based on the state of vertices V and ΔV in the local Vertex shard. The
communication between threads involves passing ΔV . There are two main over-
heads in this model: I/O overhead for reading graph data from the disk and the
overhead of interthread communication. This computing model uses cumulative
iterative computation to greatly reduce these two overhead issues.

Fig. 2. Memory and secondary storage in the graph

2.3 Update Scheme

Algorithm 1 describes the implementation of the cumulative iterative-computing
model in a single-machine parallel-computing environment. First, edge data is
sequentially read for any vertex i, from edge shard data from the disk, and the
information record of this vertex, i (Vi and ΔVi), in the memory vertex shard
is positioned according to the source vertex number of the edge data. When the
vertex, i, edge data is loaded into memory, the algorithm determines whether

Pimiento: A Vertex-Centric Graph-Processing Framework 47

the vertex information is a valid change (i.e., whether ΔVi indicates 0) for the
effective information (ΔVi �= 0). First Algorithm 1: pseudo-code of the vertex
update function for weighted PageRank.

Algorithm 1 :Pseudo-code of the vertex update function for weighted PageR-
ank.
Input: All intervals vertex-shards and edge-shards of graph G, optional initialization

data.
Output: Desired output results.
1: function Update(vertex)
2: Initialize(vertex-shards);
3: repeat
4: v[i] ← read values of out-edges of vertex i ;
5: vertex.value ← f(v[i]) ;
6: if Δf(v[i]) = 0 then f(v[i]) ← Δf(v[i])+ f(v[i]) ;
7: for each edge of vertex do
8: edge.value ← f(vertex.value, edge.value));
9: Δf(v[i]) ← 0 ;
10: end for
11: end if
12: until
13: PassingMessage(vertex) ;
14: remove outgoing edges of i
15: end function

Accumulate ΔVi to vertex i and perform an update operation to use the
update of ΔVj of the neighbor vertex, j, followed by resetting the change of
information in vertex i. When the operation on vertex i is completed, the edge
data of vertex i is deleted from memory to free memory space for other uncom-
puted vertex edge data. This activity is repeated until the algorithm converges.

Table 1. Notations of a graph

Notation Meaning

G A graph G = (V, E)

V Vertices in G

E Edges in G

n Number of vertices in G, n = [V]

m Number of edges in G, m = [E]

P Number of intervals

Ba Size of a vertex attribute in bytes

Bv Size of a vertex id in bytes

Be Size of an edge in bytes

BM Size of available memory budget in bytes

B Size of a disk block accessed by an I/O unit

48 J. Huang et al.

2.4 Analysis of the I/O Costs

During an iteration, GraphChi [5] processes each shard in three steps: (1) load
the sub-graph from the disk; (2) update the vertex and edge values; and (3)
write the updated values to the disk. In steps 1 and 3, each vertex is loaded and
written back to the disk once, and the nBv data volume is read and written.
For each edge data, in the worst case, each edge is accessed twice (once in each
direction). The amount of data 2m(Bv +Be) will be read in step 1, the updated
edge value will be calculated in step 2, and the amount of data 2m(Bv + Be)
will also be written in step 3. During the entire calculation, the total amount of
data in GraphChi read and written is 2m(Bv +Be)+nBv. During each iteration,
PSW [5] generates P 2 random reads and writes, whereas in during the entire
calculation process, the number of I/O read and write events for the PSW is
(2m(Bv + Be)+nBv)/B+P 2, Table 1 shows the Notations of a graph.

In X-Stream [6], an iteration is divided into: (1) a mixed scatter/shuffle phase
and (2) a gather phase. In phase 1, the X-Stream loads all vertex and edge data,
updates each edge, and writes the updated edge data back to disk. Because the
edge data after update are used to pass values between adjacent vertices, we
assume that the size of an updated piece of edge data is Be; therefore, for phase
1, the amount of data read is nBv + mBe, and the amount of data written is
mBe. In phase 2, the X-Stream loads all updated edge data and updates each
vertex; therefore, for phase 2, the amount of data read is nBv and the amount
of data written is nBv. Therefore, for an iterative-calculation process, the total
amount of data read by X-Stream is (Bv + Be)m + nBv, the total data amount
written is nBv + mBe, the number of I/O reads is (m(Bv + Be) + nBv)/B, and
the number of I/O writes is nBv/B + mBvlog

P/B
Bm/B.

In FlashGraph [12], during the entire computation process, the number of
I/O reads by Pimiento is (mBe + nPBv)/B, and the number of I/O writes is
nBv/B.

In Pimiento, the entire computation process loads all of the vertex shares
once. During each iteration, all edge shares are loaded from disk in turn, and the
entire computation process requires reading the amount of data (mBe + nBa).
After the computation, the vertex data value will be written back to disk, and
the amount of data in nBv needs to be written. Note that the edge shard is
read-only. To analyze the I/O cost, we use B to represent the size of the disk
block accessed by an I/O unit. According to a previous report, B is 1MB on
the SSD. During the entire computation process, the number of I/O reads by
Pimiento is (mBe + nBa)/B, and the number of I/O writes is nBa/B.

3 System Design and Implementation

Based on the asynchronous incremental-update model, we implemented the
Pimiento system with C++. Pimiento divides each graph-processing task into
three steps:

Pimiento: A Vertex-Centric Graph-Processing Framework 49

– Graph data shard and vertex information in memory are initialized;
– Stream-load edge data into memory, update vertex information, and clear

edge data in order to free memory;
– Write the final result in memory back to disk.

Optimization techniques implemented in this paper include: I/O thread opti-
mization, memory resource monitoring, and automatic switching of memory-
external memory computing.

3.1 I/O Thread Optimization

Pimiento initiates parallel processing by executing threads that need to read
edge data on the edge shard before they can perform subsequent vertex updates,
which results in a lot of I/O. Because there is no synchronization between execu-
tion threads, computation and update speeds are very fast. However, it is often
necessary to wait for the end of the I/O operation; therefore, I/O represents the
Pimiento performance bottleneck.

A thread execution includes an I/O operation and an update operation. The
I/O operation loads edge data into memory, and the update operation updates
the vertex using edge data. However, this binds the I/O operation to the update
operation in a thread of execution. In this case, I/O operations and update
operations are synchronized more frequently, resulting in lower I/O throughput
and CPU-resource utilization.

To address these problems, Pimiento separates the I/O operation from the
update operation, creating multiple update threads responsible for each vertex-
update operation while creating multiple I/O threads responsible for loading
edge data into memory, thereby more reasonably allocating I/O and computing
resources. However, if there are too many I/O threads relative to update threads,
there will be too much cache data, and the update thread will not be able to
execute, which will cause the cache to rapidly expand and fill memory. If the
I/O thread is too small relative to the update thread, the update thread will
execute too quickly while the I/O thread will be too small to keep up with the
influx of data, resulting in an idle update thread while it waits for I/O.

To avoid these situations, Pimiento allows users to set the I/O- and update
thread allocations according to resource and application features in order to use
a memory monitoring strategy to ensure balance between the update and I/O
threads to maintain saturation of I/O and CPU resources and maximize system
performance.

3.2 Memory Resource Monitoring

In Pimiento, the I/O thread reads edge data and caches it in memory while and
the update thread digests the edge data to update the graph vertex state, after
which memory is freed when graph edge data is used. Because the I/O thread
executes in parallel with the update thread, the I/O operation is not controlled
by the update thread, which could result in a mismatch between the throughput

50 J. Huang et al.

of the graph edge data in during update thread processing and throughput of
the graph edge data during I/O thread reading. If I/O throughput is too fast,
this will result in increased caching of edge data loaded from disk into memory,
which will eventually lead to memory overflow. If I/O throughput is too slow,
this will result in the update thread remaining in a waiting state, leading to
CPU-resource waste.

To address this problem, Pimiento uses a memory resource-monitoring thread
to monitor memory usage. When memory for cached data is running low, the
monitoring thread signals individual I/O threads to block I/O threads to prevent
edge data loading in order to wait for the update thread to process the edge data
and release memory. When the monitoring thread detects that memory overflow
is no longer a possibility, it signals the individual I/O threads to continue loading
edge data. The memory resource-monitoring strategy increases Pimiento mem-
ory efficiency, maximizes memory utilization to improve computing speed, and
avoids memory overflow. The memory monitoring thread perfectly coordinates
the update thread with the I/O thread, making the system more robust and
coordinated while performing parallel computations and disk I/O operations.

4 Experimental Evaluation

We implemented and evaluated a wide range of applications in order to demon-
strate the applicability of Pimiento to multi-domain problems. Despite the
restrictive external memory setting, Pimiento retains the expressivity of other
external graph-processing frameworks.

4.1 Test Setup

All experiments used a commercial server equipped with an e5-2670@v3 proces-
sor, which has two sockets running at 2.3 GHz, 32 MB L3 cache, with 12 cores
per socket, and a disabled CPU hyper-threading feature. The commercial server
was equipped with 32 Gbyte of memory and 1 Tbyte of disk (SSD), and the
operating system was 64-bit Ubuntu 14.04 LTS. We evaluated Pimiento using
the applications described in Section and analyzed its performance on a selection
of large graphs (Table 2).

Table 2. Real-world and synthetic graphs data used in the experiments

Dataset Twitter [16] UK-2007 [17] Rmat27 [18]

Vertex num 41.6M 134M 128M

Edge num 1.5B 5.5B 2B

Avg deg 35.3 41.2 16

Max outdeg 770K 22.4K 123K

Size 25 GB 93 GB 32 GB

Pimiento: A Vertex-Centric Graph-Processing Framework 51

Fig. 3. Comparison of execution time when performing PageRank, SSSP and BFS over
different data sets.

52 J. Huang et al.

4.2 Comparison with Other Systems

4.2.1 Propagation-Based Algorithms

First, we evaluated graph-propagation-based traversal, such as that using
BFS and SSSP. Figure 3 shows that Pimiento performed better on SSD than
GraphChi and X-Stream. Compared with GraphChi, X-Stream, and FlashGraph
on Twitter, Uk-2007, and Rmat27, respectively, Pimiento was 1.6 times to 7.5
times faster. There are mainly two reasons for the acceleration:

– Pimiento reads edge data sequentially from disk, thereby reducing random
access to the disk

– Pimiento can reduce the amount of data written back to disk, effectively
avoiding a data race.

4.2.2 Iteration-Based Algorithms

We then evaluated graph iteration-based algorithms, such as PageRank, and
confirmed that PageRank is representative of a cumulative algorithm. When
computing a PageRank value, each vertex should first collect all values from
its source vertices in order to compute a sum. Pimiento uses a vertex-centric
on-the-fly update model.

We compared four systems: Pimiento, GraphChi, X-Stream, and FlashGraph.
In each iteration, the graph-processing system computed the new PageRank
value for each vertex and selects the largest one. The iteration stops when the
maximum PageRank value reaches a stable state (i.e., when the maximum change
in PageRank value between iterations is less than the threshold value, computing
is assumed to have converged and ends).

As shown in Fig. 3, Pimiento performed better on different data sets than
GraphChi, X-Stream, and FlashGraph. Because Pimiento uses sequential disk
access, it is multi-fold faster than GraphChi and X-Stream. Specifically, Pimiento
is 2.3 times faster than GraphChi and 1.5 times faster than X-Stream on a
Twitter dataset. The primary reason for this is that values of all vertices are
sent to destination vertices along outer edges for cumulative updates, and there
is no need to write the values of destination vertices back to disk. To evaluate
the improved performance of Pimiento, we analyzed the total amount of I/O
performed by the BFS, SSSP, and PageRank algorithms on different graphs (see
Fig. 4). Specifically, compared with GraphChi, S-Stream, and FlashGraph, the
I/O-data volume of Twitter, Uk-2007, and Rmat27 was reduced by a range of
30% to 98%, because the status values of all vertices were updated instantly,
precluding the need to write the vertex state back to disk.

4.3 Optimization of the Update- and I/O Thread Proportions

When using SSD, we open multiple I/O threads in order to increase the storage
capacity of data reading and computational efficiency. To explore the effect of

Pimiento: A Vertex-Centric Graph-Processing Framework 53

Fig. 4. Comparison of overall I/O data amount when performing PageRank, SSSP and
BFS over different data sets.

54 J. Huang et al.

the update- and I/O thread number selection on the performance of Pimiento,
we compared the convergence speed of Pimiento in executing the iteration algo-
rithm under different proportions of update and I/O threads. Figure 5 shows the
average time for PageRank to converge relative to Pimiento, revealing that the
convergence speed first increased and then decreased after peaking at a propor-
tion of 4:1.

Our analyses showed that when the I/O thread was busier that the update
thread, too much cache-structure data would require processing, precluding exe-
cution of the update thread. However, if the amount of data going to the I/O
thread was less than that to the update thread, the update thread would execute
too rapidly while the I/O would need to starve in order to maintain pace with
the data input. These two situations would result in the output described in
Fig. 5, which should be avoided.

Fig. 5. Update and I/O threads proportion

5 Related Work

Here, we proposed improvements in single-computer-processing power and stor-
age capacity using a graph-processing model. Such systems demonstrate ade-
quate graph-processing performance, and compared with distributed systems,
their obvious advantages include low hardware cost and low power consump-
tion.

TurboGraph [9] makes full use of multi-core concurrency and the I/O per-
formance of Flash SSD [20] to parallelize CPU processing and I/O processing in
order to support rapid graph data storage. VENUS [14] is a point-centric stream-
lining graph-processing model that introduces a more efficient model for storing
and accessing disk graph data using a cache strategy. FlashGraph [12] is a single-
machine graph-processing system that can handle trillions of nodes on a solid-
state hard-disk array while providing a dynamic load balancer to solve CPU-idle

Pimiento: A Vertex-Centric Graph-Processing Framework 55

results from uneven computing tasks. GridGraph [21] supports selective schedul-
ing, which can greatly reduce I/O and improve computing performance in algo-
rithms, such as BFS and weakly connected components. NXgraph [13] provides
three update strategies: (1) sort by the target vertex of each sub-shard edge; (2)
based on the size of the graph and the available memory resources, the fastest
execution strategy for different graph problems is adaptively selected to take full
advantage of memory space and reduce data transmission; and (3) to solve the
problem of large graphs fully loaded into memory, a previous study described
the design of a disk-based single graph-processing platform using MMap [10] in
Linux memory management. MMap maps a file or other pair to memory, where
a process can access the file just as it accesses a normal memory without using
operations, such as read() and write().

6 Conclusions

There currently numerous studies focused on addressing large graph-processing
problems using high-performance single-server systems. The existing single-
server graph-processing system has limitations, including poor locality, heavy
synchronization cost, and frequent I/O access. Our study compared out-of-
core graph-computing systems, including GraphChi, X-Stream, and FlashGraph,
with Pimiento, revealing that Pimiento achieved 7.5×, 4×, 1.6× better perfor-
mance on large real-world graphs and synthetic graphs in the same experimental
environment.

Acknowlegements. This paper is partially supported by “QingHai Province High-
end Innovative Thousand Talents Program-Leading Talents”, The National Natural
Science Foundation of China (No. 61762074, No.61962051), The Open Project of State
Key Laboratory of Plateau Ecology and Agriculture, Qinghai University (No. 2020-ZZ-
03), and National Natural Science Foundation of Qinghai Province (No. 2019-ZJ-7034).

References

1. Malewicz, G., et al.: Pregel: a system for large scale graph processing. In: Proceed-
ings of the 2010 International Conference on Management of Data, SIGMOD 2010,
pp. 135–146 (2010)

2. Low, Y., Bickson, D., Gonzalez, J., Kyrola, A., Hellerstein, J.M.: Distributed
GraphLab: a framework for machine learning and data mining in the cloud. In:
Proceedings of the VLDB Endowment, pp. 716–727 (2012)

3. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D.: PowerGraph: distributed graph-
parallel computation on natural graphs. In: Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI 2012, pp. 17–30
(2012)

4. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed
graph processing system. In: Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, pp. 301–316 (2016)

56 J. Huang et al.

5. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph computation on
just a PC. In: Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI 2012, pp. 31–46 (2012)

6. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing
using streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pp. 472–488 (2013)

7. Shao, Z., He, J., Lv, H., Jin, H.: FOG: a fast out-of-core graph processing frame-
work. Int. J. Parallel Prog. 45(6), 1259–1272 (2017)

8. Zhu, X.W., Han, W.T., Chen, W.G.: Grid graph: large-scale graph processing on a
single machine using 2-level hierarchical partitioning. In: Proceedings of the 2015
USENIX Conference on USENIX Annual Technical Conference, pp. 375–386 (2015)

9. Han, W.-S., et al.: TurboGraph: a fast parallel graph engine handling billion-scale
graphs in a single PC. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 77–85 (2013)

10. Lin, Z., Kahng, M., Sabrin, K.M., Chau, D.H.P., Lee, H., Kang, U.: Mmap: fast
billion-scale graph computation on a PC via memory mapping. In: IEEE Interna-
tional Conference on Big Data, IEEE, pp. 159–164 (2014)

11. Yuan, P., Zhang, W., Xie, C., Jin, H., Liu, L., Lee, K.: Fast iterative graph compu-
tation: a path centric approach. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 401–412. IEEE Computer Soci-
ety (2014)

12. Zheng, D., Mhembere, D., Burns, R., Vogelstein, J., Priebe, C.E., Szalay, A.S.:
FlashGraph: processing billion-node graphs on an array of commodity SSDs.
In:13th USENIX Conference on File and Storage Technologies (FAST 2015)
USENIX Association, pp. 45–58 (2015)

13. Chi, Y., Dai, G., Wang, Y., Sun, G., Li, G., Yang, H.: NXgraph: an efficient graph
processing system on a single machine. In: Proceedings of the 32nd International
Conference on Data Engineering, ICDE 2016, pp. 409–420 (2016)

14. Cheng, J., Liu, Q., Li, Z., Fan, W., Lui, J.C.S., He, C.: VENUS: vertex-centric
streamlined graph computation on a single PC. In: Proceedings of the 31nd Inter-
national Conference on Data Engineering, ICDE 2015, pp. 1131–1142 (2015)

15. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Maiter: an asynchronous graph process-
ing framework for delta-based accumulative iterative computation. IEEE Trans.
Parallel Distrib. Syst. 25(8), 2091–2100 (2014)

16. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web,
pp. 591–600 (2010)

17. Boldi, P., Santini, M., Vigna, S.: A large time-aware web graph. SIGIR Forum
42(1), 78–83 (2008)

18. The graph 500 list (2014). http://www.graph500.org/
19. Pearce, R., Gokhale, M., Amato, N.: Multithreaded asynchronous graph traversal

for in-memory and semi-external memory. In: SuperComputing (2010)
20. Badam, A., Pai, V.S.: SSDAlloc: hybrid SSD/RAM memory management made

easy. In: Proceedings of the 8th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, p. 16 (2011)

21. Zhu, X., Han, W., Chen, W.: GridGraph: largescale graph processing on a single
machine using 2-level hierarchical partitioning. Proceedings of the 2015 USENIX
Annual Technical Conference, pp. 375–386 (2015)

22. Vora, K., Xu, G., Gupta, R.: Load the edges you need: a generic I/O optimiza-
tion for disk-based graph processing. In: Proceedings of the 2016 USENIX Annual
Technical Conference, pp. 507–522 (2016)

http://www.graph500.org/

	Pimiento: A Vertex-Centric Graph-Processing Framework on a Single Machine
	1 Introduction
	2 Disk-Based Graph Computation
	2.1 Maintaining Specification Integrity
	2.2 Computational Model
	2.3 Update Scheme
	2.4 Analysis of the I/O Costs

	3 System Design and Implementation
	3.1 I/O Thread Optimization
	3.2 Memory Resource Monitoring

	4 Experimental Evaluation
	4.1 Test Setup
	4.2 Comparison with Other Systems
	4.3 Optimization of the Update- and I/O Thread Proportions

	5 Related Work
	6 Conclusions
	References

