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Abstract. High-dimensional data brings new challenges and opportu-
nities for domains such as clinical, scientific and industry data. How-
ever, the curse of dimensionality that comes with the increased dimen-
sions causes outlier identification extremely difficult because of the scat-
tering of data points. Furthermore, clustering in high-dimensional data
is challenging due to the intervention of irrelevant dimensions where a
dimension may be relevant for some clusters and irrelevant for others. To
address the curse of dimensionality in outlier identification, this paper
presents a novel technique that generates candidate subspaces from the
high-dimensional space and refines the identification of potential outliers
from each subspace using a novel iterative adaptive clustering approach.
Our experimental results show that the technique is effective.

Keywords: Outlier detection + High-dimensionality problem -
Adaptive clustering - Big data

1 Introduction

Large amounts of data and data sources have become ubiquitous in recent years
and become available for analysis in many application domains. This availability
is commonly referred to as “big data” comprising large-volume, heterogeneous,
complex, unstructured data sets with multiple, autonomous sources growing
beyond the ability of available tools. As Gartner [8] noted, big data demands
cost-effective novel data analytics for decision-making that infer useful insights.
In recent years, the core challenges of big data have been widely established.
These are contained within the five Vs of big data volume, velocity, variety,
veracity and value. However, such a definition ignores another important aspect:
“dimensionality”, that plays a crucial role in real-world data analysis. Research
in the data analytics community has mostly been concerned with “volume”,
whereas “dimensionality” of big data has received lesser attention [19].
Dimensionality refers to the number of features, attributes or variables within
the data. High-dimensionality refers to data sets that have a large number of
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independent variables, components, features, or attributes within the data avail-
able for analysis. Data with high-dimensionality has become increasingly perva-
sive, and has created new analytical problems and opportunities simultaneously.
The curse of dimensionality often challenges our intuition based on two and
three dimensions [3]. Anomaly detection in high-dimensional data sets is com-
putationally demanding and there is a need for more sophisticated approaches
that are currently available. An important issue in big data is outlier or anomaly
detection, outliers represent fraudulent activities or other anomalous events that
are subject to our interest. The “curse of dimensionality”, may negatively affect
outlier detection techniques as the degree of data abnormality in fault-relevant
dimensions can be concealed or masked by unrelated attributes. When dimen-
sionality increases, the data set becomes sparse, and the conventional methods
such as distance based, proximity based, density based and nearest neighbour
becomes far less effective [6]. The average distance between a random sample of
data points in a high-dimensional space is much larger than the typical distance
between one point and the mean of the same sample in low-dimensional space.

While high-dimensionality is one measure of high volume big data, much
recent work has focused on finding anomalies using methods that can only draw
implicit assumptions from relatively low dimensional data [1]. Furthermore, when
the available dimensions of the data are not relevant to the specific test point,
the analysis quality may not be credible as the underlying measurements are
affected by irrelevant dimensions. This result in a weak discriminating situation
where all data points are situated in approximately evenly sparse regions of full
dimensional space. However, computing the similarity of one data point to other
data point is essential in the outlier detection process.

Clustering in high-dimensional data space is a difficult task due to the inter-
vention of multiple dimensions. A dimension may be relevant for some specific
clusters, but unrelated to others. However, clustering is an indispensable step
for data mining and knowledge discovery; characterised by unsupervised learn-
ing that seeks to detect homogeneous groups of objects based on the values of
their attributes or dimensions and grouping them based on similarity, to reveal
the underlying structure of data. Conventional methods of clustering attempt to
identify clusters constituted of similar samples based on some statistical signifi-
cance such as distance measurement. The increase in dimensions facilitates simi-
lar distance points originated from sparsity triggered by irrelevant dimensions or
other noise, aiding to difficulty in identifying accurate and reliable clusters with
high quality. The existence of irrelevant attributes or noise in the subspaces crit-
ically impacts the formation of clusters. As a result, different subsets of features
may be relevant for different clusters, in addition to which diverse correlations
among attributes may tend to determine different clusters. Consequently, the
curse of dimensionality has become the main challenge for data clustering in
high dimensional data sets [7]. This challenge of the clustering process in high
dimensional data makes a global dimensionality reduction process inappropriate
to identify a subspace that encompasses all the clusters. Nevertheless, in high-
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dimensional space, meaningful clusters can be found by projecting data onto
certain lower-dimensional feature subspaces and manifolds [9,10,12,17].

In this paper we propose a novel method of clustering that can identify pos-
sible outliers in the candidate subspaces of high-dimensional data. To effectively
detect outliers in high-dimensional space, we integrate a technique based on our
previous work [16] that explores locally relevant and low-dimensional subspaces
using Pearson Correlation Coefficient (PCC) and Principal Component Analysis
(PCA).

The structure of the paper is as follows: Sect.2 presents the related work.
Section 3 discusses the proposed algorithm. Section4 discusses the proposed
adaptive clustering framework for outlier identification in high-dimensional data.
Section 5 presents the experimental results, followed by the conclusion and future
work.

2 Related Work

The curse of dimensionality poses significant challenges for traditional clustering
approaches, both in terms of efficiency and effectiveness. Tomasev et al. [18] have
proved that hubness-based clustering algorithms perform well, whereas standard
clustering methods fail due to the curse of dimensionality. Hubness is the ten-
dency of data points to occur frequently to k-nearest-neighbor lists of other
data points in a high-dimensional space. To address the challenges of cluster-
ing technique in high-dimensional data, Ertoz et al. [6] presented an algorithm
that can handle multiple dimensions and varying densities, which automatically
determines the number of clusters. The algorithm is more focused on identifying
clusters in the presence of noises or outliers but not particularly on outlier detec-
tion. Deriving meaningful clusters from the data set is an important step because
outliers are hidden due to the sparsity in high-dimensional space. Agrawal et al.
[2] presented a clustering algorithm called CLIQUE that accurately finds clusters
in large high-dimensional data sets. Schubert et al. [15] presented a framework
for clustering by extracting meaningful clusters from uncertain data that visual-
izes and understand the impact of uncertainty by selecting clustering approaches
with less variability.

Furthermore, subspace clustering is another technique that is proposed to
address the limitations of traditional clustering, which aims to find clusters in
all subspaces, but, it is not effective or scalable in case of increasing dimen-
sionality. Liu et al. [13] proposed identifying subspace structures from corrupted
data by an objective function that finds the lowest rank representation among
all the candidates and can represent the data samples as linear combinations.
Elhamifar and Vidal [4] proposed a method for clustering based on sparse rep-
resentation from multiple low-dimensional subspaces. They have also proposed
sparse subspace clustering algorithm [5] to cluster data points that fall in a union
of low-dimensional subspaces. Zimek et al. [20] have discussed some important
aspects of the ‘curse of dimensionality’ in detail by surveying specialized algo-
rithms for outlier detection. Many researchers addressed important issues but
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the key issue of computationally feasible algorithms for anomaly detection in
high dimensional space is still largely open. This paper attempts such an algo-
rithm where outliers are derived from low-dimensional subspaces using a novel
iterative clustering technique.

3 Proposed Algorithm

The objective of the proposed algorithm is the identification of outliers from
the resulting candidate subspaces in the high-dimensional data. Details of elici-
tation of candidate subspaces are presented in [16]. However, we have included
the approach in Algorithm 1 from steps for discovering candidate subspaces in
high-dimensional data. The contribution of this paper is the technique based on
adaptive clustering approach in the identification of fine-grained outliers from
the candidate subspaces of high-dimensional data.

Algorithm 1. Fine-grained Outliers in High-dimensional data:

1: Apply Standardization or Normalization
2: for ¢ =1 to no. of dimensions do

calculate correlation r = n(oab)- (3 a)(Fb)

VInE a2=(Z a)2][n T b2 (X b)2]

end for

Calculate positive correlation to CORR

Calculate negative correlation to UNCORR

Apply PCA X = W.3_.W7 on CORR and generate PCleorr and PC2eorr
by selecting two highest variances

8: for i =1 to no. of dimensions in UNCORR do

9:  Apply PCA on PCleorr ;, PC2corr and it" dimension of UNCORR
10:  Save to resultant subspaces C'S;

11: end for

12: for i = 1 to no. of candidate subspaces in C'S do

13:  Apply Clustering on each C'S;

14:  Generate optimal j clusters using Elbow criterion

15:  for j =1 to no. of clusters in each C'S do

16: Calculate centroid of each cluster (z¢, yc)i

17: while k < threshold do

18: Calculate the distance of centroid and each point in the cluster
Di = \/(ze = 2:)* + (ve — 4:)?

19: Calculate the mean of all the distances
Dimean = Z(Dz)/N

20: Use Dmean as the equivalent radius to formulate a circle

21: Exclude data points within the circle

22: end while

23: end for

24: end for

25: for i = 1 to no. of candidate subspaces in C'S do
26:  Append remainder data points

27: end for

28: Calculate the occurrences of data points in each CS
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Algorithm 1 provides a step-by-step approach to the technique. Initially, a
standardization technique is applied as a pre-processing step to rescale the range
of features of input data set if the features of input data consist of large variances
between their ranges. To check the correlation among the dimensions of the
input data, a Pearson Correlation Coefficient (PCC) is applied to measure the
strength of a linear association among the available dimensions. Highly correlated
dimensions are combined to form a correlated subspace, and all the uncorrelated
dimensions to an uncorrelated subspace, respectively. PCC calculates correlation
coefficient of any two dimensions and generates a series of values between +1 to
—1. Therefore the correlation coefficient of every dimension with all the other
available dimensions in the dataset is calculated and summed up resulting in
a final score. If the resultant final correlation score of any dimension is greater
than zero, then that particular dimension belongs to CORR subspace or else it
belongs to UNCORR subspace.

Principal component analysis (PCA) is applied on the correlated subspace
to identifying two highest variances, called principal components, along which
the variation in the data is maximal. The resultant principal components are
iteratively combined with each dimension of uncorrelated subspace to populate
Candidate Subspaces(CS). Every derived candidate subspace is applied with a
K-means clustering technique. To find the optimal number of clusters, Elbow
model is applied [11]. Based on the result, every CS generates the required
number of clusters. In every cluster, a centroid is calculated along with the
mean of the distances of available data points to the centroid which we call an
“Equivalent Radius” (ER). A circle is formulated in the cluster, and the data
points falling within the circle in each cluster are excluded, and the remainder of
data points are carry forwarded to the next stage. A new centroid is calculated
again in the next stage based on the remaining data points; mean of the distances
among each available data points to the new centroid is calculated for a new
ER. Then the data points falling within the circle established on the new ER
are excluded again. The remainder of the data points is carried forward to the
next stage. This process is repeated until the number of data points drops below
a certain threshold. Once the threshold is reached, the data points in each CS
are calculated for the number of occurrences.

4 Adaptive Clustering Framework

This section discusses the proposed framework based on the adaptive cluster-
ing approach. Figurel delineates the process of outlier identification from the
candidate subspaces of the high-dimensional data.

4.1 Local Relevancy and Low-Dimensionality

The local relevant subspaces are defined by applying PCC to the data set that
differentiates the correlated and uncorrelated dimensions as given in (1), for
all the available dimensions 1...n in the data set where no two columns are
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equal (a # b). The resultant correlated dimensions are referred to a correlated
subspace. Each dimension that is in the uncorrelated subspace is referred to a
low-dimension.

n(d ab) — (3. a)(3.0)
VI a? = (X a)ln 302 — (X 0)7]

(1)

Ta#b =

PCA is applied on the subspace of correlated dimensions using eigen decom-
position or singular value decomposition and we call this subspace as locally
relevant subspace.

X=w) w" (2)

4.2 Candidate Subspaces

The principal components resulted from the correlated subspace are combined
with each of the low-dimension available from the uncorrelated subspace are
the candidate subspaces of the original data. The intention behind combining
every low-dimension of uncorrelated subspace with the principal components of
the correlated subspace is to reveal the hidden outliers masked by the curse of
dimensionality. Furthermore, data points appearing in more than one CS have
the highest probability of being an anomaly or outlier.

4.3 Adaptive Clustering

A clustering on each CS is applied to exclude the data points falling within
the definition. Sectionb discusses the importance of repetitive application of
this technique and the reason we call as “Adaptive Clustering” on candidate
subspaces of high-dimensional data.

K-Means Clustering. The proposed technique uses a k-means clustering algo-
rithm that flows a simple and easy way to classify a given dataset through a
certain number of clusters (K- clusters) fixed a priori [14].

k m
_ (4)
B=> (Il ~ ¢,1)° 3)
=1 j=1
Repeat until reach athreshold
Clustering oneach Calculationof . . -
| candidate »  equidistant radius 2EE po_unts B Fme-gfalned
subspace for each cluster Exclusion Outliers

Fig. 1. Outlier identification from candidate subspaces
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Optimal Number of Clusters. The number of clusters should match the
data in the CS. An unfitting selection of the number of clusters may undermine
the whole process. The best approach is to use Elbow criterion that interprets
and validates the consistency within cluster analysis to find the optimal number
of clusters [11]. The Elbow model is applied to each CS to deduce the optimal
number of clusters in each CS.

Equivalent Radius (ER). The centroid for each cluster in each CS is com-
puted. Then the centroid is used for estimating the mean of the distances between
each data point within the cluster to its centroid. The resultant mean value is
used to formulate a circle in the cluster. This process is repeated until the total
number of data points in each CS are less than the given threshold.

Di=/(vc — 2:)% + (Yo — i)? (4)
Calculate the mean of all the distances
DnLean = Z(Dl)/N (5)

Use Dyean as the equivalent radius to formulate a circle.

Data Points Exclusion. The data points inside the circle definition based on
the calculation of ER are excluded, and the data points outside the circle are
carried out to the next stage. A new centroid is calculated based on the new
set of data points and latest ER is used to form another circle. This process of
calculation of the new ER is carried out until a specific condition or threshold is
reached. If the data points are less than the given threshold, the ER before the
given limit is taken into consideration, and the resulting data points from each
CS where the threshold is reached are analysed.

Fine-Grained Outliers. The calculation of the number of occurrences of each
data point in all the CS are calculated based on the final iteration. The more
number of times a particular data point appears, the more likely that data point
is an outlier. This process is referred to as fine-graining of outliers. The next
step is to trace back the fine-grained outliers to its original index.

5 Experimental Evaluation

We used a data set with 19 dimensions and 21000 rows, of which 17 are corre-
lated, and 2 are uncorrelated when analysed with PCC. To verify the effective-
ness of outlier identification, we have purposefully introduced synthetic anoma-
lies into the data. The combination of correlated subspace with every dimension
from uncorrelated subspace with the application of PCA results in two candi-
date subspaces, as seen in Fig. 2. We applied the proposed technique of adaptive
clustering to both candidate subspaces to fine-grain the outliers in each CS.
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Fig. 2. Original candidate subspaces

In this section, we present the results of three experiments we have conducted
to explain the effectiveness of the adaptive clustering approach in identifying
outliers. Figure 2a represents the first candidate subspace and Fig. 2b represents
the second candidate subspace.

Table 1. Equivalent radii and the associated data points

Figure | Equivalent radius | Iterations | No. of data points
a ER*1 0 15498
b ER*1.06 0 14951
c ER*3.0 0 2086
d ER*4.0 0 569
ER*5.0 0 219

5.1 Data Points Exclusion Using a Large ER

Identifying anomalous data points from the candidate subspaces is difficult and
may not reveal real anomalies as there are many data points in each CS as
depicted in Fig. 2. Hence, an efficient technique is required to filter the possible
outliers in each CS. In this experiment, we present a technique that finds outliers
and evaluates the technique’s effectiveness in outlier identification by taking one
candidate subspace CS1 and a large ER, that excludes data points within the
circle definition from every cluster. As mentioned in Sect. 4.3, an ER is computed
from the mean of the distances of data points available within the cluster to
its centroid. The computed ER is used to define a circle, and the data points
within the circle definition are excluded from the CS. The motivation behind the
proposed equivalent radius is to deselect the nearest points as to reveal hidden
outliers.
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Fig. 3. Exclusion of data points using large radii

Table 1 presents the number of remaining data points after the exclusion of
data points from the definition of a circle formed from the respective ER. The
increase in ER leads to a decrease in the number of data points remaining. How-
ever, this approach is not effective when finding the outliers in each cluster of the
CS. Furthermore, the increase in ER caused the circle to grow bigger, excluding
even the possible outliers that may be hidden in the clusters. Figure3 shows
the exclusion of data points when the ER is increased progressively. Figure 3a
represents the exclusion of data points when the computed mean is taken 1 ER,
however, when we multiply 1 ER to 1.06 (ER*1.06) as in Fig. 3b, 3.0 as in Fig. 3c,
4.0 as in Fig.3d and 5.0 as in Fig. 3e, the declination of data points or irrele-
vant grouping is observed. To address this issue and to fine-grain the outliers,
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we calculated the ER iteratively, defining a new circle after each exclusion and
presented in the following section.

5.2 Data Points Exclusion with Iterative ER

In the second experiment, we evaluate the behaviour of outlier identification by
iteratively calculating the ER depending on the new set of data points after the
exclusion from the previous circle. The process of computing a new ER that
forms a dependent circle is terminated when the total data points in the CS
becomes lesser than the given threshold of 100 data points.

When the ER is computed to form a circle followed by the exclusion of
data points within the respective circle definition, a centroid is calculated again
based on the new set of data points upon which new ER is calculated, defining
a respective circle area. The process was repeated until the total number of
data points became less than 100. The process was terminated, and the most
recent CS with before the threshold is benchmarked. If the ER is smaller with
the fewer data points or no data points are excluded even with new iterations,
an increase in ER value progressively is needed. Originally, second experiment
has generated many graphs; however, we present the less results that exhibit
the effectiveness of the technique. Table2 presents the number of data points
and iterations processed, along with the remaining data points within the circle
definition formed by the respective ER. The results show that outliers can be
effectively filtered when the ER is increased progressively and iterated until the
threshold is met. Figure4 shows the exclusion of data points when the ER is
increased progressively. Figure 4a shows the remainder of 4413 data points when
the computed ER is multiplied with 1.02 (ER*1.02) after 7 iterations, Fig.4b
shows the remainder of 4304 data points when the ER is increased to ER*1.03
after 7 iterations, we observe a slight decline of data points when there is an
increase in ER. The data points decreased slightly with more iterations, Fig. 4c

Table 2. Iterative ER and the associated data points

Figure | Equivalent radius | Iterations | No. of data points
a ER*1.02 7 4413
b ER*1.03 7 4304
¢ ER*1.08 8 3895
d ER*1.06 9 3963
e ER*1.05 12 1869
f ER*1.11 18 502
g ER*1.1 21 359
h ER*1.04 22 608
i ER*1.12 23 116
j ER*1.09 36 123
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consists of 3895 data points with 8 iterations, however, Fig.4d has 3963 data
points with 1.06 ER even after 9 iterations. Hence, the increase in ER filters
out more data points than more iterations. We continued the experimentation
to observe the decline of the grouping of data points, at 12" iteration with
ER*1.05, we observed that there is a slight decline of irrelevant grouping as
observed in Fig. 4e.

We continued observing the data points Fig.4f with 18 iterations and
ER*1.11, Fig. 4g with 21 iterations and ER*1.1, Fig.4h with 22 iterations and
ER*1.04, Fig. 41 with 23 iterations and ER*1.12, and Fig.4j with 36 iterations
and ER*1.09. Finally, when the threshold of less than 100 data points is reached,
the iteration stops and resulting in Fig. 4i with the remainder of 116 data points
and Fig.4j with 123 data points. When compared the two final CS with the
results generated when using one large ER presented in Sect. 5.1, the iterative
approach of calculating ER outperforms the first experiment with one large ER.

08
08
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04
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0.2

001 » . o | o0] <7 . '..’—:
02 00 02 04 06 08 02 00 02 04 06
(a) CS1 (b) CS2

Fig. 5. Final candidate subspaces

5.3 Calculation of Occurrences for Fine-Grain Outliers

To identify the synthetically introduced outliers, we integrated a technique for
the occurrence calculation of each data point in the final candidate subspaces.
The more times a particular data point appears in all of the candidate subspaces,
the more likely the data point is an outlier. We call the most appeared data points
fine-grained outliers. To verify the synthetically introduced outliers are in the
final subspace, we traced back each data point to its original index location before
evaluating the occurrence in each CS. As observed in Fig. 5, the final data points
in CS1 (Fig. 5a) and CS2 (Fig. 5b), 90% of synthetically introduced outliers have
appeared in both the candidate subspaces, and 10% of them appeared once.
However, it is to be noted that all the introduced outliers are observed in the
final candidate subspaces.
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6 Conclusion and Future Work

This paper introduces Adaptive Clustering that identifies the outliers from the
candidate subspaces of the high-dimensional data. To reduce the effect caused
by the curse of dimensionality PCC and PCA are integrated to define locally
relevant and low-dimensional subspaces. An equivalent radius in each cluster of
the candidate subspace is calculated based on the mean of the distances between
the centroid and the data points. An iterative application of equivalent radius
is computed and used to exclude data points of no interest. To demonstrate
that iterative calculation of equivalent radius is more effective, we evaluated the
results from both large equivalent radii and iterative calculations of ER and
showed that the iterative approach outperforms the other approach. Finally, the
resultant data points in each candidate subspace are computed for the number
of occurrences. The more times a data point appears, the more likely it is an
outlier. In our future work, we will evaluate the performance and accuracy of
the proposed technique by analysing the trade-off with respect to the volume
and dimensionality to develop a big data framework.
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