
Sheng Wen
Albert Zomaya
Laurence T. Yang (Eds.)

LN
CS

 1
19

45

19th International Conference, ICA3PP 2019
Melbourne, VIC, Australia, December 9–11, 2019
Proceedings, Part II

Algorithms and Architectures
for Parallel Processing

Lecture Notes in Computer Science 11945

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Sheng Wen • Albert Zomaya •

Laurence T. Yang (Eds.)

Algorithms and Architectures
for Parallel Processing
19th International Conference, ICA3PP 2019
Melbourne, VIC, Australia, December 9–11, 2019
Proceedings, Part II

123

Editors
Sheng Wen
Department of Computer Science
and Software Engineering
Swinburne University of Technology
Hawthorn, Melbourne, VIC, Australia

Albert Zomaya
School of Computer Science
The University of Sydney
Camperdown, NSW, Australia

Laurence T. Yang
Department of Computer Science
St. Francis Xavier University
Antigonish, NS, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-38960-4 ISBN 978-3-030-38961-1 (eBook)
https://doi.org/10.1007/978-3-030-38961-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020, corrected publication 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-38961-1

Preface

Welcome to the proceedings of the 19th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP 2019). ICA3PP is with the series of
conferences started in 1995 that are devoted to algorithms and architectures for parallel
processing.

The conference of ICA3PP 2019 will be organized by Swinburne University of
Technology, Australia, and was held in Melbourne, Australia. The objective of
ICA3PP 2019 was to bring together researchers and practitioners from academia,
industry, and governments to advance the theories and technologies in parallel and
distributed computing. ICA3PP 2019 follows the traditions of the previous successful
ICA3PP conferences held in Hangzhou, Brisbane, Singapore, Melbourne, Hong Kong,
Beijing, Cyprus, Taipei, Busan, Melbourne, Fukuoka, Vietri sul Mare, Dalian, Japan,
Zhangjiajie, Granada, Helsinki, and Guangzhou.

ICA3PP focuses on two broad areas of parallel and distributed computing: archi-
tectures, algorithms, and networks, and systems and applications. This conference is
now recognized as the main regular event of the world that is covering the many
dimensions of parallel algorithms and architectures, encompassing fundamental theo-
retical approaches, practical experimental projects, and commercial components and
systems. As applications of computing systems have permeated in every aspect of daily
life, the power of computing system has become increasingly critical. This conference
provides a forum for academics and practitioners from countries around the world to
exchange ideas for improving the efficiency, performance, reliability, security, and
interoperability of computing systems and applications.

ICA3PP 2019 attracted 251 high-quality research papers highlighting the founda-
tional work that strives to push beyond the limits of existing technologies, including
experimental efforts, innovative systems, and investigations that identify weaknesses in
existing parallel processing technology. Each submission was reviewed by at least two
experts in the relevant areas, based on their significance, novelty, technical quality,
presentation, and practical impact. According to the review results, 73 full papers were
selected to be presented at the conference, giving an acceptance rate of 29%. We also
accepted 29 short papers. In addition to the paper presentations, the program of the
conference included three keynote speeches and two invited talks from esteemed
scholars in the area, namely: (1) Y. Thomas Hou from Virginia Tech (USA), talking
about “GPU-Based Parallel Computing for Real-Time Optimization,” (2) Ying-Dar Lin
from National Chiao Tung University (Taiwan), giving us a speech “5G Mobile Edge
Computing: Research Roadmap of the H2020 5G-Coral Project,” (3) Wanlei Zhou
from University of Technology Sydney (Australia), giving us a talk “AI Security:
A Case in Dealing with Malicious Agents,” and (4) Hai Jin from Huazhong University
of Science and Technology (China), giving us a talk “Evening Out the Stumbling
Blocks for Today’s Blockchain Systems.” We were extremely honored to have had
them as the conference keynote speakers and invited speakers.

ICA3PP 2019 was made possible by the behind-the-scene effort of selfless indi-
viduals and organizations who volunteered their time and energy to ensure the success
of this conference. We thank all participants of the ICA3PP conference for their
contribution. We hope that you will find the proceedings interesting and stimulating. It
was a pleasure to organize and host the ICA3PP 2019 in Melbourne, Australia.

December 2019 Sheng Wen
Albert Zomaya

Laurence T. Yang

vi Preface

Organization

Honorary Chair

Yong Xiang Deakin University, Australia

General Chairs

David Abramson The University of Queensland, Australia
Yi Pan Georgia State University, USA
Yang Xiang Swinburne University of Technology, Australia

Program Chairs

Albert Zomaya The University of Sydney, Australia
Laurence T. Yang St. Francis Xavier University, Canada
Sheng Wen Swinburne University of Technology, Australia

Publication Chair

Yu Wang Guangzhou University, China

Publicity Chair

Jing He Swinburne University of Technology, Australia

Steering Committee

Yang Xiang (Chair) Swinburne University of Technology, Australia
Weijia Jia Shanghai Jiaotong University, China
Yi Pan Georgia State University, USA
Laurence T. Yang St. Francis Xavier University, Canada
Wanlei Zhou University of Technology Sydney, Australia

Program Committee

Marco Aldinucci University of Turin, Italy
Pedro Alonso-Jordá Universitat Politècnica de València, Spain
Daniel Andresen Kansas State University, USA
Danilo Ardagna Politecnico di Milano, Italy
Man Ho Au The Hong Kong Polytechnic University, Hong Kong,

China
Guillaume Aupy Inria, France

Joonsang Baek University of Wollongong, Australia
Ladjel Bellatreche LIAS/ENSMA, France
Siegfried Benkner University of Vienna, Austria
Jorge Bernal Bernabe University of Murcia, Spain
Thomas Boenisch High performance Computing Center Stuttgart, Germany
George Bosilca University of Tennessee, USA
Suren Byna Lawrence Berkeley National Laboratory, USA
Massimo Cafaro University of Salento, Italy
Philip Carns Argonne National Laboratory, USA
Arcangelo Castiglione University of Salerno, Italy
Tania Cerquitelli Politecnico di Torino, Italy
Tzung-Shi Chen National University of Tainan, Taiwan
Kim-Kwang Raymond

Choo
The University of Texas at San Antonio, USA

Jose Alfredo Ferreira
Costa

Federal University of Rio Grande do Norte, Brazil

Raphaël Couturier University of Burgundy - Franche-Comté, France
Masoud Daneshtalab Mälardalen University, KTH Royal Institute

of Technology, Sweden
Gregoire Danoy University of Luxembourg, Luxembourg
Saptarshi Debroy City University of New York, USA
Casimer Decusatis Marist College, USA
Eugen Dedu FEMTO-ST Institute, University of Burgundy -

Franche-Comté, CNRS, France
Frederic Desprez Inria, France
Juan-Carlos Díaz-Martín University of Extremadura, Spain
Christian Esposito University of Napoli Federico II, Italy
Ugo Fiore University of Napoli Federico II, Italy
Franco Frattolillo University of Sannio, Italy
Marc Frincu West University of Timisoara, Romania
Jorge G. Barbosa University of Porto, Portugal
Jose Daniel Garcia University Carlos III of Madrid, Spain
Luis Javier García

Villalba
Universidad Complutense de Madrid, Spain

Harald Gjermundrod University of Nicosia, Cyprus
Jing Gong KTH Royal Institute of Technology, Sweden
Daniel Grosu Wayne State University, USA
Houcine Hassan Universitat Politècnica de València, Spain
Sun-Yuan Hsieh National Cheng Kung University, Taiwan
Xinyi Huang Fujian Normal University, China
Mauro Iacono Università degli Studi della Campania Luigi Vanvitelli,

Italy
Shadi Ibrahim Inria Rennes Bretagne Atlantique Research Center, France
Yasuaki Ito Hiroshima University, Japan
Edward Jung Kennesaw State University, USA
Georgios Kambourakis University of the Aegean, Greece

viii Organization

Helen Karatza Aristotle University of Thessaloniki, Greece
Gabor Kecskemeti Liverpool John Moores University, UK
Muhammad Khurram

Khan
King Saud University, Saudi Arabia

Sokol Kosta Aalborg University, Denmark
Dieter Kranzlmüller Ludwig Maximilian University of Munich, Germany
Peter Kropf University of Neuchâtel, Switzerland
Michael Kuhn University of Hamburg, Germany
Julian Martin Kunkel University of Reading, UK
Algirdas Lančinskas Vilnius University, Italy
Che-Rung Lee National Tsing Hua University, Taiwan
Laurent Lefevre Inria, France
Kenli Li Hunan University, China
Xiao Liu Deakin University, Australia
Jay Lofstead Sandia National Laboratories, USA
Paul Lu University of Alberta, Canada
Tomas Margalef Universitat Autònoma de Barcelona, Spain
Stefano Markidis KTH Royal Institute of Technology, Sweden
Barbara Masucci University of Salerno, Italy
Susumu Matsumae Saga University, Japan
Raffaele Montella University of Naples Parthenope, Italy
Francesco Moscato University of Campania Luigi Vanvitelli, Italy
Bogdan Nicolae Argonne National Laboratory, USA
Anne-Cécile Orgerie CNRS, France
Francesco Palmieri University of Salerno, Italy
Dana Petcu West University of Timisoara, Romania
Salvador Petit Universitat Politècnica de València, Spain
Riccardo Petrolo Konica Minolta Laboratory Europe
Florin Pop University Politehnica of Bucharest, National Institute

for Research and Development in Informatics (ICI),
Romania

Radu Prodan University of Klagenfurt, Austria
Suzanne Rivoire Sonoma State University, USA
Ivan Rodero Rutgers University, USA
Romain Rouvoy University of Lille, Inria, IUF, France
Antonio Ruiz-Martínez University of Murcia, Spain
Francoise Sailhan CNAM, France
Sherif Sakr The University of New South Wales, Australia
Ali Shoker HASLab, INESC TEC, University of Minho, Portugal
Giandomenico Spezzano CNR, Italy
Patricia Stolf IRIT, France
Peter Strazdins The Australian National University, Australia
Hari Subramoni The Ohio State University, USA
Frederic Suter CC IN2P3, CNRS, France
Andrei Tchernykh CICESE Research Center, Mexico
Massimo Torquati University of Pisa, Italy

Organization ix

Tomoaki Tsumura Nagoya Institute of Technology, Japan
Vladimir Voevodin RCC MSU, Russia
Xianglin Wei Nanjing Telecommunication Technology Research

Institute, China
Sheng Wen Swinbourne University of Technology, Australia
Jigang Wu Guangdong University of Technology, China
Roman Wyrzykowski Czestochowa University of Technology, Poland
Ramin Yahyapour GWDG, University of Göttingen, Germany
Laurence T. Yang St. Francis Xavier University, Canada
Wun-She Yap Universiti Tunku Abdul Rahman, Malaysia
Junlong Zhou Nanjing University of Science and Technology, China
Albert Zomaya The University of Sydney, Australia

x Organization

Contents – Part II

Parallel and Distributed Architectures

SPM: Modeling Spark Task Execution Time
from the Sub-stage Perspective . 3

Wei Li, Shengjie Hu, Di Wang, Tianba Chen, and Yunchun Li

Improving the Parallelism of CESM on GPU . 11
Zehui Jin, Ming Dun, Xin You, Hailong Yang, Yunchun Li,
Yingchun Lin, Zhongzhi Luan, and Depei Qian

Parallel Approach to Sliding Window Sums . 19
Roman Snytsar and Yatish Turakhia

Rise the Momentum: A Method for Reducing the Training Error
on Multiple GPUs . 27

Yu Tang, Lujia Yin, Zhaoning Zhang, and Dongsheng Li

Pimiento: A Vertex-Centric Graph-Processing Framework
on a Single Machine . 42

Jianqiang Huang, Wei Qin, Xiaoying Wang, and Wenguang Chen

Software Systems and Programming Models

Parallel Software Testing Sequence Generation Method Target at Full
Covering Tested Behaviors. 59

Tao Sun, Xiaoyun Wan, Wenjie Zhong, Xin Guo, and Ting Zhang

Accurate Network Flow Measurement with Deterministic
Admission Policy . 68

Hongchao Du, Rui Wang, Zhaoyan Shen, and Zhiping Jia

A Comparison Study of VAE and GAN for Software Fault Prediction. 82
Yuanyuan Sun, Lele Xu, Lili Guo, Ye Li, and Yongming Wang

A Framework for Designing Autonomous Parallel Data Warehouses 97
Soumia Benkrid and Ladjel Bellatreche

Distributed and Parallel and Network-based Computing

Stable Clustering Algorithm for Routing Establishment in Vehicular
Ad-Hoc Networks . 107

Jieying Zhou, Pengfei He, Yinglin Liu, and Weigang Wu

Utility-Based Location Distribution Reverse Auction Incentive Mechanism
for Mobile Crowd Sensing Network . 116

Chunxiao Liu, Huilin Wang, Yanfeng Wang, and Dawei Sun

Safeguarding Against Active Routing Attack via Online Learning 128
Meng Meng, Ruijuan Zheng, Mingchuan Zhang, Junlong Zhu,
and Qingtao Wu

Reliability Aware Cost Optimization for Memory Constrained
Cloud Workflows . 135

E Cao, Saira Musa, Jianning Zhang, Mingsong Chen, Tongquan Wei,
Xin Fu, and Meikang Qiu

Null Model and Community Structure in Heterogeneous Networks 151
Xuemeng Zhai, Wanlei Zhou, Gaolei Fei, Hangyu Hu, Youyang Qu,
and Guangmin Hu

Big Data and Its Applications

An Asynchronous Algorithm to Reduce the Number of Data Exchanges 167
Zhuo Tian, Yifeng Chen, and Lei Zhang

Two-Stage Clustering Hot Event Detection Model for Micro-blog
on Spark . 175

Ying Xia and Hanyu Huang

Mobility-Aware Workflow Offloading and Scheduling Strategy
for Mobile Edge Computing . 184

Jia Xu, Xuejun Li, Xiao Liu, Chong Zhang, Lingmin Fan, Lina Gong,
and Juan Li

HSPP: Load-Balanced and Low-Latency File Partition and Placement
Strategy on Distributed Heterogeneous Storage with Erasure Coding 200

Jiazhao Sun, Yunchun Li, and Hailong Yang

Adaptive Clustering for Outlier Identification in High-Dimensional Data 215
Srikanth Thudumu, Philip Branch, Jiong Jin, and Jugdutt Jack Singh

Penguin Search Aware Proactive Application Placement 229
Amira Rayane Benamer, Hana Teyeb, and Nejib Ben Hadj-Alouane

A Data Uploading Strategy in Vehicular Ad-hoc Networks Targeted
on Dynamic Topology: Clustering and Cooperation. 245

Zhipeng Gao, Xinyue Zheng, Kaile Xiao, Qian Wang, and Zijia Mo

Cloud Server Load Turning Point Prediction Based on Feature Enhanced
Multi-task LSTM . 261

Li Ruan, Yu Bai, and Limin Xiao

xii Contents – Part II

Distributed and Parallel Algorithms

Neuron Fault Tolerance Capability Based Computation Reuse in DNNs. 269
Pengnian Qi, Jing Wang, Xiaoyan Zhu, and Weigong Zhang

Reliability Enhancement of Neural Networks via Neuron-Level
Vulnerability Quantization . 277

Keyao Li, Jing Wang, Xin Fu, Xiufeng Sui, and Weigong Zhang

A Fault Detection Algorithm for Cloud Computing Using QPSO-Based
Weighted One-Class Support Vector Machine. 286

Xiahao Zhang and Yi Zhuang

ParaMoC: A Parallel Model Checker for Pushdown Systems 305
Hansheng Wei, Xin Ye, Jianqi Shi, and Yanhong Huang

FastDRC: Fast and Scalable Genome Compression Based on Distributed
and Parallel Processing . 313

Yimu Ji, Houzhi Fang, Haichang Yao, Jing He, Shuai Chen, Kui Li,
and Shangdong Liu

A Parallel Approach to Advantage Actor Critic in Deep
Reinforcement Learning . 320

Xing Zhu and Yunfei Du

Applications of Distributed and Parallel Computing

Blockchain-PUF-Based Secure Authentication Protocol for Internet
of Things . 331

Akash Suresh Patil, Rafik Hamza, Hongyang Yan, Alzubair Hassan,
and Jin Li

Selective Velocity Distributed Indexing for Continuously Moving
Objects Model . 339

Imene Bareche and Xia Ying

A New Bitcoin Address Association Method Using a Two-Level
Learner Model . 349

Tengyu Liu, Jingguo Ge, Yulei Wu, Bowei Dai, Liangxiong Li,
Zhongjiang Yao, Jifei Wen, and Hongbin Shi

Fog Computing Based Traffic and Car Parking Intelligent System. 365
Walaa Alajali, Shang Gao, and Abdulrahman D. Alhusaynat

Contents – Part II xiii

Service Dependability and Security

Semi-supervised Deep Learning for Network Anomaly Detection 383
Yuanyuan Sun, Lili Guo, Ye Li, Lele Xu, and Yongming Wang

A Vulnerability Assessment Method for Network System Based
on Cooperative Game Theory . 391

Chenjian Duan, Zhen Wang, Hong Ding, Mengting Jiang, Yizhi Ren,
and Ting Wu

Enhancing Model Performance for Fraud Detection by Feature Engineering
and Compact Unified Expressions . 399

Ikram Ul Haq, Iqbal Gondal, and Peter Vamplew

Network Intrusion Detection Framework Based on Embedded Tree Model . . . 410
Jieying Zhou, Pengfei He, Rongfa Qiu, and Weigang Wu

Generative Adversarial Nets Enhanced Continual Data Release Using
Differential Privacy . 418

Stella Ho, Youyang Qu, Longxing Gao, Jianxin Li, and Yong Xiang

Data Poisoning Attacks on Graph Convolutional Matrix Completion 427
Qi Zhou, Yizhi Ren, Tianyu Xia, Lifeng Yuan, and Linqiang Chen

Secure Data Deduplication with Resistance to Side-Channel Attacks via
Fog Computing. 440

Fuyou Zhang, Saiyu Qi, Haoran Yuan, and Meng Zhang

Practical IDS on In-vehicle Network Against Diversified Attack Models 456
Junchao Xiao, Hao Wu, Xiangxue Li, and Yuan Linghu

Ultragloves: Lowcost Finger-Level Interaction System for VR-Applications
Based on Ultrasonic Movement Tracking . 467

Si Li, Yanchao Zhao, and Chengyong Liu

Adaptive Detection Method for Packet-In Message Injection Attack
in SDN . 482

Xinyu Zhan, Mingsong Chen, Shui Yu, and Yue Zhang

PMRS: A Privacy-Preserving Multi-keyword Ranked Searchover
Encrypted Cloud Data . 496

Jingjing Bao, Hua Dai, Maohu Yang, Xun Yi, Geng Yang, and Liang Liu

Privacy-Preserving Fine-Grained Outsourcing PHR with Efficient
Policy Updating . 512

Zuobin Ying, Wenjie Jiang, Ximeng Liu, and Maode Ma

xiv Contents – Part II

Lightweight Outsourced Privacy-Preserving Heart Failure Prediction Based
on GRU. 521

Zuobin Ying, Shuanglong Cao, Peng Zhou, Shun Zhang, and Ximeng Liu

DAPS: A Decentralized Anonymous Payment Scheme with Supervision 537
Zhaoyang Wang, Qingqi Pei, Xuefeng Liui, Lichuan Ma, Huizhong Li,
and Shui Yu

An Approach of Secure Two-Way-Pegged Multi-sidechain. 551
Jinnan Guo, Keke Gai, Liehuang Zhu, and Zijian Zhang

IoT and CPS Computing

DCRRDT: A Method for Deployment and Control of RFID Sensors Under
Digital Twin-Driven for Indoor Supervision . 567

Siye Wang, Mengnan Cai, Qinxuan Wu, Yijia Jin, Xinling Shen,
and Yanfang Zhang

A Binary Code Sequence Based Tracking Algorithm in Wireless
Sensor Networks . 577

Yang Zhang, Qianqian Ren, Yu Pan, and Jinbao Li

Sampling Based Katz Centrality Estimation for Large-Scale
Social Networks . 584

Mingkai Lin, Wenzhong Li, Cam-tu Nguyen, Xiaoliang Wang,
and Sanglu Lu

Location Prediction for Social Media Users Based on Information Fusion . . . 599
Gaolei Fei, Yang Liu, Yong Cheng, Fucai Yu, and Guangmin Hu

Performance Modelling and Evaluation

Concurrent Software Fine-Coarse-Grained Automatic Modeling Method
for Algorithm Error Detection. 615

Tao Sun, Jing Zhang, and Wenjie Zhong

EC-ARR: Using Active Reconstruction to Optimize SSD
Read Performance . 624

Shuo Li, Mingzhu Deng, Fang Liu, Zhiguang Chen, and Nong Xiao

Research of Benchmarking and Selection for TSDB 642
Feng Ye, Zihao Liu, Songjie Zhu, Peng Zhang, and Yong Chen

HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline
of FAST . 656

Yiming Ji, Ce Yu, Jian Xiao, Shanjiang Tang, Hao Wang, and Bo Zhang

Contents – Part II xv

Understanding the Resource Demand Differences of Deep Neural
Network Training . 673

Jiangsu Du, Xin Zhu, Nan Hu, and Yunfei Du

Twitter Event Detection Under Spatio-Temporal Constraints. 682
Gaolei Fei, Yong Cheng, Yang Liu, Zhuo Liu, and Guangmin Hu

Correction to: Reliability Enhancement of Neural Networks via
Neuron-Level Vulnerability Quantization . C1

Keyao Li, Jing Wang, Xin Fu, Xiufeng Sui, and Weigong Zhang

Author Index . 695

xvi Contents – Part II

Contents – Part I

Parallel and Distributed Architectures

PPS: A Low-Latency and Low-Complexity Switching Architecture
Based on Packet Prefetch and Arbitration Prediction 3

Yi Dai, Ke Wu, Mingche Lai, Qiong Li, and Dezun Dong

SWR: Using Windowed Reordering to Achieve Fast and Balanced
Heuristic for Streaming Vertex-Cut Graph Partitioning. 17

Jie Wang and Dagang Li

Flexible Data Flow Architecture for Embedded Hardware Accelerators 33
Jens Froemmer, Nico Bannow, Axel Aue, Christoph Grimm,
and Klaus Schneider

HBL-Sketch: A New Three-Tier Sketch for Accurate
Network Measurement . 48

Keyan Zhao, Junxiao Wang, Heng Qi, Xin Xie, Xiaobo Zhou,
and Keqiu Li

Accelerating Large Integer Multiplication Using Intel AVX-512IFMA. 60
Takuya Edamatsu and Daisuke Takahashi

A Communication-Avoiding Algorithm for Molecular
Dynamics Simulation. 75

Bei Wang, Yifeng Chen, and Chaofeng Hou

Out-of-Core GPU-Accelerated Causal Structure Learning 89
Christopher Schmidt, Johannes Huegle, Siegfried Horschig,
and Matthias Uflacker

Software Systems and Programming Models

Accelerating Lattice Boltzmann Method by Fully Exposing
Vectorizable Loops . 107

Bin Qu, Song Liu, Hailong Huang, Jiajun Yuan, Qian Wang,
and Weiguo Wu

A Solution for High Availability Memory Access . 122
Chunjing Gan, Bin Wang, Zhi-Jie Wang, Huazhong Liu, Dingyu Yang,
Jian Yin, Shiyou Qian, and Song Guo

Verification of Microservices Using Metamorphic Testing 138
Gang Luo, Xi Zheng, Huai Liu, Rongbin Xu, Dinesh Nagumothu,
Ranjith Janapareddi, Er Zhuang, and Xiao Liu

A New Robust and Reversible Watermarking Technique
Based on Erasure Code . 153

Heyan Chai, Shuqiang Yang, Zoe L. Jiang, Xuan Wang, Yiqun Chen,
and Hengyu Luo

Exit-Less Hypercall: Asynchronous System Calls in Virtualized Processes . . . 169
Guoxi Li, Wenhai Lin, and Wenzhi Chen

Automatic Optimization of Python Skeletal Parallel Programs. 183
Frédéric Loulergue and Jolan Philippe

Distributed and Parallel and Network-Based Computing

Impromptu Rendezvous Based Multi-threaded Algorithm for Shortest
Lagrangian Path Problem on Road Networks . 201

Kartik Vishwakarma and Venkata M. V. Gunturi

FANG: Fast and Efficient Successor-State Generation for Heuristic
Optimization on GPUs. 223

Marcel Köster, Julian Groß, and Antonio Krüger

DETER: Streaming Graph Partitioning via Combined Degree
and Cluster Information . 242

Cong Hu, Jiang Zhong, Qi Li, and Qing Li

Which Node Properties Identify the Propagation Source in Networks? 256
Zhong Li, Chunhe Xia, Tianbo Wang, and Xiaochen Liu

t/t-Diagnosability of BCube Network . 271
Yuhao Chen, Haiping Huang, Xiping Liu, Hua Dai, and Zhijie Han

Big Data and Its Applications

Strark-H: A Strategy for Spatial Data Storage to Improve Query Efficiency
Based on Spark. 285

Weitao Zou, Weipeng Jing, Guangsheng Chen, and Yang Lu

Multitask Assignment Algorithm Based on Decision Tree in Spatial
Crowdsourcing Environment. 300

Dunhui Yu, Xiaoxiao Zhang, Xingsheng Zhang, and Lingli Zhang

xviii Contents – Part I

TIMOM: A Novel Time Influence Multi-objective Optimization Cloud
Data Storage Model for Business Process Management 315

Erzhou Zhu, Meng Li, Jia Xu, Xuejun Li, Feng Liu, and Futian Wang

RTEF-PP: A Robust Trust Evaluation Framework with Privacy Protection
for Cloud Services Providers . 330

Hong Zhong, JianZhong Zou, Jie Cui, and Yan Xu

A Privacy-Preserving Access Control Scheme with Verifiable
and Outsourcing Capabilities in Fog-Cloud Computing 345

Zhen Cheng, Jiale Zhang, Hongyan Qian, Mingrong Xiang, and Di Wu

Utility-Aware Edge Server Deployment in Mobile Edge Computing 359
Jianjun Qiu, Xin Li, Xiaolin Qin, Haiyan Wang, and Yongbo Cheng

Predicting Hard Drive Failures for Cloud Storage Systems 373
Dongshi Liu, Bo Wang, Peng Li, Rebecca J. Stones, Trent G. Marbach,
Gang Wang, Xiaoguang Liu, and Zhongwei Li

Distributed and Parallel Algorithms

Efficient Pattern Matching on CPU-GPU Heterogeneous Systems 391
Victoria Sanz, Adrián Pousa, Marcelo Naiouf, and Armando De Giusti

Improving Performance of Batch Point-to-Point Communications by Active
Contention Reduction Through Congestion-Avoiding Message Scheduling . . . 404

Jintao Peng, Zhang Yang, and Qingkai Liu

Applications of Distributed and Parallel Computing

An Open Identity Authentication Scheme Based on Blockchain 421
Yuxiang Chen, Guishan Dong, Yao Hao, Zhaolei Zhang, Haiyang Peng,
and Shui Yu

RBAC-GL: A Role-Based Access Control Gasless Architecture
of Consortium Blockchain . 439

Zhiyu Xu, Tengyun Jiao, Lin Yang, Donghai Liu, Sheng Wen,
and Yang Xiang

Developing Patrol Strategies for the Cooperative Opportunistic Criminals . . . 454
Yanan Zhao, Mingchu Li, and Cheng Guo

Deep Learning vs. Traditional Probabilistic Models:
Case Study on Short Inputs for Password Guessing 468

Yuan Linghu, Xiangxue Li, and Zhenlong Zhang

Contents – Part I xix

A Fully Anonymous Authentication Scheme Based
on Medical Environment . 484

Jing Lv, Ning Xi, and Xue Rao

Service Dependability and Security

RaNetMalDozer: A Novel NN-Based Model for Android Malware
Detection Over Task Kernel Structures . 501

Xinning Wang and Chong Li

Moving Target Defense Against Injection Attacks . 518
Huan Zhang, Kangfeng Zheng, Xiaodan Yan, Shoushan Luo,
and Bin Wu

Tiger Tally: Cross-Domain Scheme for Different
Authentication Mechanism . 533

Guishan Dong, Yuxiang Chen, Yao Hao, Zhaolei Zhang, Peng Zhang,
and Shui Yu

Simultaneously Advising via Differential Privacy
in Cloud Servers Environment . 550

Sheng Shen, Tianqing Zhu, Dayong Ye, Mengmeng Yang, Tingting Liao,
and Wanlei Zhou

Feature Generation: A Novel Intrusion Detection Model Based
on Prototypical Network . 564

Shizhao Wang, Chunhe Xia, and Tianbo Wang

Topic Reconstruction: A Novel Method Based on LDA Oriented
to Intrusion Detection . 578

Shengwei Lei, Chunhe Xia, Tianbo Wang, and Shizhao Wang

PDGAN: A Novel Poisoning Defense Method in Federated Learning Using
Generative Adversarial Network . 595

Ying Zhao, Junjun Chen, Jiale Zhang, Di Wu, Jian Teng, and Shui Yu

A Geo-indistinguishable Location Privacy Preservation Scheme
for Location-Based Services in Vehicular Networks. 610

Li Luo, Zhenzhen Han, Chuan Xu, and Guofeng Zhao

A Behavior-Based Method for Distinguishing the Type of C&C Channel. . . . 624
Jianguo Jiang, Qilei Yin, Zhixin Shi, Guokun Xu, and Xiaoyu Kang

xx Contents – Part I

IoT and CPS Computing

Sparse Representation for Device-Free Human Detection and Localization
with COTS RFID . 639

Weiqing Huang, Shaoyi Zhu, Siye Wang, Jinxing Xie,
and Yanfang Zhang

A Novel Approach to Cost-Efficient Scheduling of Multi-workflows
in the Edge Computing Environment with the Proximity Constraint 655

Yuyin Ma, Junyang Zhang, Shu Wang, Yunni Xia, Peng Chen, Lei Wu,
and Wanbo Zheng

Differential Privacy Preservation for Smart Meter Systems 669
Junfang Wu, Weizhong Qiang, Tianqing Zhu, Hai Jin, Peng Xu,
and Sheng Shen

Performance Modelling and Evaluation

Secure Multi-receiver Communications: Models, Proofs,
and Implementation . 689

Maomao Fu, Xiaozhuo Gu, Wenhao Dai, Jingqiang Lin, and Han Wang

Author Index . 711

Contents – Part I xxi

Parallel and Distributed Architectures

SPM: Modeling Spark Task Execution Time
from the Sub-stage Perspective

Wei Li, Shengjie Hu, Di Wang, Tianba Chen, and Yunchun Li(&)

Beijing Key Lab of Network Technology, School of Computer Science
and Engineering, Beihang University, Beijing, China

{liw,hushengjie,fdjwd,chentb,lych}@buaa.edu.cn

Abstract. Tasks are the basic unit of Spark application scheduling, and its
execution is affected by various configurations of Spark cluster. Therefore, the
prediction of task execution time is a challenging job. In this paper, we analyze
the features of task execution procedure on different stages, and propose the
method of prediction of each sub-stage execution time. Moreover, the correla-
tive time overheads of GC and shuffle spill are analyzed in detail. As a result, we
propose SPM, a task-level execution time prediction model. SPM can be used to
predict the task execution time of each stage according to the input data size and
configuration of parallelism. We further apply SPM to the Spark network
emulation tool SNemu, which can determine the start time of each shuffle
procedure for emulation effectively. Experimental results show that the pre-
diction method can achieve high accuracy in a variety of Spark benchmarks on
Hibench.

Keywords: Spark � Task-level execution time prediction � Regression model �
Network emulation

1 Introduction

In recent years Spark [1] has been widely used in many fields to process massive data,
which leads to the researches on Spark performance. In-memory cluster computing
help Spark avoid unnecessary transmission compared to Hadoop [2]. However, when
the wide dependency transformation of RDD [3] happens, the shuffle transmission is
unavoidable. The network emulation tool can help researchers to implement large-scale
Spark network transmission behavior research at a lower cost.

For the emulation of the procedures of network transmission in Spark cluster,
obtaining the time of shuffle transmission is a key technical problem. The transmission
time of shuffle procedures are related to different computing operators. Therefore, it’s
important to find the connection between computing and shuffle transmission to get the
time of shuffle. According to the scheduling mechanism of Spark, tasks pull shuffle
data at the beginning of execution. Meanwhile, after the completion of a task, the
executor node running this task will have an idle core. In order to achieve work
conservation, the driver node will immediately dispatch the locality optimal task in the
scheduling queue to this core. Therefore, we can predict the task execution time of each
stage in the application and emulate the task scheduling process of Spark. Then, the

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 3–10, 2020.
https://doi.org/10.1007/978-3-030-38961-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_1

start time of each task is obtained and it can be treated as the time when the task pulls
shuffle data.

In this paper, we explore the relation between the execution time of each sub-stage
(The subphase of the spark task execution process) and the payload of the task. As a
result, a task-level execution time prediction model is proposed. We make the fol-
lowing contributions:

• We propose SPM, a task execution time prediction model for Spark, and prove its
effectiveness in multiple benchmarks.

• We quantize the relation of extra time overheads associated with GC and shuffle
spill during the computation stage.

• We apply SPM to the network emulation tool of Spark to provide shuffle start time
prediction, and verify the effectiveness of SPM.

The rest of this paper is organized as follows: Related works are shown in Sect. 2.
We introduce the prediction model, SPM, in Sect. 3. Experimental results are illus-
trated in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Related Work

To implement a high reliability Spark network emulation tool, it’s important to model
the computing process and network load for trace input. One part of the job is to
extrapolate shuffle start time through predicting task execution time. Task execution
time prediction is usually presented as a part of performance analysis and optimization.
Gu et al. [4] use prediction job duration from a random forest performance model to
drop the cost of configuration optimization for Spark Streaming. PREDIcT [5] uses
sample runs for capturing the algorithm’s convergence trend and uses an experimental
methodology to predict the execution time of algorithms with different iterative fea-
tures. Nguyen et al. [6] qualitatively analyze the impact of Spark configuration changes
on multiple performance metrics through an execution process-driven model. FiM [7]
implements a performance approximation method to simulate the performance of
multi-stage iterative applications through stochastic markov model. Ernest [8] uses
samples in small scale to fit linear regression model for application duration and help
predict the duration in large scale. Wang et al. [9] use the results of partial input in a
small-scale environment to predict the performance of complete input in a large-scale
environment. Both of the above two works [8, 9] model execution time coarsely
(application duration and total task execution time respectively), which may ignore the
randomness factor in the actual task execution procedure.

In our work, we analyze Spark’s task scheduling and execution mechanism and
then divide the execution process into different sub-stages. Then, the relationship
between the execution time of each sub-stage and the specified configurations is fitted
by quantitative analysis of the performance. Finally, the task execution time can be
obtained by adding the predicted time of all sub-stages. This fine-grained prediction
can fully consider the characteristics of each sub-stage, so as to predict the execution
time more accurately.

4 W. Li et al.

3 Modeling Task-Level Execution Time

3.1 Parameters for Prediction

Spark tasks are performed in a sequence of sub-stages, which are described as follow:
(a) Scheduler process. In this process, task is distributed from the scheduler to the
executor. (b) Task Deserialization. Executor deserializes the task closure. (c) Shuffle
Read. Executor pulls the intermediate result from previous stages. (d) Computing.
Executor processes computing work. (e) Shuffle Write. Executor then writes the result
of the task to the local disk. (f) Result Serialization. Finally, executor serializes the
metadata of the task result, which will be sent to the driver node. (g) In addition, there
are also some potential processes during task execution, like GC and Shuffle Spill. On
this basis, we propose Spark task execution time prediction model SPM.

In SPM, the variables primarily considered in the prediction of task execution time
are the amount of input data of applications and the configuration of parallelism. We
predict the time overhead of each sub-stage during the task execution rather than the
total duration. Moreover, we predict the potential extra overheads of GC and shuffle
spill. All these parameters are shown in Table 1. The target of our prediction is the
average execution time of tasks. It can be modeled by adding all the sub-stage over-
heads up, like formula (1).

TTask ¼ TSD þ TTD þ TSR þ TCP þ TSW þ TRS þ TGC þ TSS ð1Þ

3.2 Prediction of Sub-stage Execution Time

Payload Sensitive Sub-stages. For Computing Time and Shuffle Write Time, we
build a linear regression model between execution time and payload of each task via

Table 1. Parameters in the prediction model

Parameter
type

Parameter
name

Parameter
explanation

Parameter
name

Parameter
explanation

Input
parameters

InputSize The amount of input
data

Parallelism Configuration of
parallelism

plinit InputSize� 1
Parallelism

General
parameters

TSD Task Scheduler
Delay

TCP Task Computing
Time

TTD Task Deserialization
Time

TSW Task Shuffle Write
Time

TSR Task Shuffle Read
Time

TRS Result Serialization
Time

Extended
parameters

TGC Task GC time TSS Task Shuffle Spill
Time

Prediction
target

TTask Task execution time

SPM: Modeling Spark Task Execution Time from the Sub-stage Perspective 5

non-negative least squares (NNLS). NNLS can avoid over-fitting and ensure the result
which can be used for analysis is meaningful. Both of Computing Time and Shuffle
Write Time are positively correlated to the payload of the task. Thus, the independent
variable in the model should be plinit. Taking potential system overhead into consid-
eration, we add bias to correct the value. The prediction model of Computing Time and
Shuffle Write Time are shown in formula (2) and formula (3).

TCP ¼ hCP0 þ hCP1 � plinit ð2Þ

Tsw ¼ hSW0 þ hSW1 � plinit ð3Þ

hCP0 and hSW0 represent the potential fixed overheads of Computing Time and Shuffle
Write Time respectively. hCP1 and hSW1 represent the correlation coefficient between
execution time and payload.

Payload Insensitive Sub-stages. For the payload insensitive fixed overheads
(Scheduling Delay, Deserialization Time, Shuffle Read Time and Result Serialization
Time), the weight of these times in the whole execution time is very small. We use the
average of samples as the prediction results, which is shown in formula (4).

TP ¼ 1
n
�
Xn

i¼1
Ti
P; TP 2 TSD; TTD; TSR; TRSf g ð4Þ

TP is the predictive value of specific sub-stage execution time. Ti
P is the execution

time of specific sub-stage for the ih sample. n is the number of samples.

Analysis of Time Compensation. In SPM, we consider three special factors that affect
the execution time, namely GC Time, Shuffle Spill and first batch tasks. This section
presents solutions for these three cases.

GC Time. In SPM, we only predict the overhead of minor GC. We treat the tasks
which contain Full GC as outliers (In fact, the proportion of these tasks is quite small).
We still use NNLS to fit the prediction model of GC Time. The main parameters we
consider are (a) plinit, caused by the characteristics of the Spark in-memory cluster
computing. (b) pl2init, to model the situations where intermediate data needs to be
cached. (c) bias, which is the potential system overhead. The formula (5) describes the
predict of GC Time.

TGC ¼ hGC0 þ hGC1 � plinit þ hGC2 � pl2init ð5Þ

Shuffle Spill Time. Shuffle spill often occurs when the payload of a task is large.
Therefore, we make the predict of shuffle spill an extension module. If shuffle spill
occurs on most tasks, we analyze the correlation coefficient between the Computing
Time TCP of the sample and the payload plinit to find the point where the correlation
coefficient suddenly increases. Then we use it as the threshold, pss, to enable shuffle
spill module. Later we use samples which are either below the threshold or above the

6 W. Li et al.

threshold to construct model respectively via formula (2). Finally, the shuffle spill time,
Tss, can be calculated by the difference between the correlation coefficient and the fixed
overhead. The process is shown in formula (6).

Tss ¼ 0 ; plinit � pss
hs0 � hcp0
� �þ hs1 � hcp1

� � � plinit; plinit [pss

�
ð6Þ

Tss is the time overhead of shuffle spill. hs0, h
s
1 are the fixed overhead and correlation

coefficient of the payload during shuffle spill. hCP0 , hCP1 are the fixed overhead and
correlation coefficient of the payload under the same configuration without shuffle spill.
pss is the threshold of payload for shuffle spill.

First Batch Tasks. First batch tasks (The first task on each core) of each stage perform
information deserialization and prepare the worker node for computing. Their execu-
tion time is usually greater than the execution time of subsequent tasks. Therefore, we
perform a separate prediction model for first batch tasks. It is similar to the model of
subsequent tasks. The only difference is that the training set is the first batch tasks.

4 Experiments

4.1 Experimental Setup and Data Acquisition

Our experimental cluster consists of four nodes. One of them is the Spark master node
and HDFS name node. Others are used as Spark slave nodes and HDFS data nodes.
Each node is configured with 4 CPU cores at 3.6 GHz, 8G RAM, and 1T HDD. The
four nodes are connected with a gigabit switch. We deploy ubuntu 16.04, Hadoop 2.9.0
and Spark 2.3.2 in each node.

We use Hibench [10] as the benchmark tool and select WordCount, PageRank and
TeraSort as benchmarks. The changes of benchmark configuration in the experiments
are shown in Table 2. In each set of experiments, 80% of samples are used as the
training set for the prediction model, and the remaining 20% as the test set to test the
accuracy of the prediction.

Table 2. Configuration changes of benchmark in the experiments

Benchmark Input data amount Parallelism Total samples

WordCount 3:2� 108–3:2� 109 records
(Step 1:6� 108)

24–84 (Step 12) 120

PageRank 2:5� 105–3:75� 106 records
(Step 2:5� 105)

12–120 (Step 12) 150

TeraSort 3:2� 106–3:2� 107 records
(Step 3:2� 106)

24–84 (Step 12) 120

SPM: Modeling Spark Task Execution Time from the Sub-stage Perspective 7

4.2 Experimental Results

Accuracy. We first evaluate the accuracy of the prediction. We use Accuracy as a
measure, and it is used to indicate how close the test value of all test set data is to the
actual value, as defined by formula (7).

Accuracy ¼ 1� 1
n

Xn

i¼1

Ti
pred � Ti

test

Ti
test

�����
����� ð7Þ

n is the number of test set. i is the sequence number of test data. Ti
test is the actual

value of the ith test data, and Ti
pred is the corresponding predicted value.

Figure 1 shows the prediction accuracy of task execution time in each stage of
PageRank, WordCount and TeraSort. The red bars in the figure represent the prediction
accuracy of the first batch tasks, and the blue ones represents the following batches
tasks. As can be seen from the results, the prediction accuracy of each stage is above
90%. Given the fact that the execution time may fluctuate during the actual task
execution, it can be considered that the execution time prediction of the task is accurate.

Efficiency of SPM. Subsequently, we verify that SPM is more efficient than the
coarse-grained model for task execution time. As a comparison, we implement a
coarse-grained prediction model according to the method in Ernest [8], which directly
establishes the relation between task payload and task execution time. The accuracy of
the two methods is compared using PageRank and TeraSort data. The result is shown in
Fig. 2. It can be seen that SPM effect in most stages is significantly better than the
coarse-grained model. This is mainly because the coarse-grained prediction model
cannot describe the overheads of GC and shuffle spill well.

Fig. 1. The accuracy of the prediction (Color figure online)

8 W. Li et al.

Application in The Emulation Tool. Finally, we evaluate the performance of the
prediction model in SNemu [11], a data-driven spark cluster network emulation tool
based on Mininet. Taking PageRank as an example, we set the parallelism to 12 and the
iteration to 3, which means there are 6 stages (5 shuffle transmission) and one bitch
tasks in each stage. The result is shown in Fig. 3 and the 5 larger data transmission
represent the 5 shuffle transmission. It can be seen that the emulation result is very
close to the real trace in the start time distribution of 5 shuffle transmission. The traffic
that occurs in the real trace at around 10000 ms is the data transmission in the
preparation stage of application execution (getting the jar file, reading the input data
from the HDFS node, etc.). Since SNemu focuses on the transmission of shuffle, there
is no emulation of the traffic in the preparation stage.

5 Conclusion

In this paper, we propose an execution time prediction model, SPM, for Spark cluster.
It is able to predict the sub-stage execution time and potential time overheads (GC,
shuffle spill) of Spark task based on the payload. As a result, SPM can efficiently
predict the average task execution time of Spark applications. Experimental results
show that our prediction model can well predict the task execution time of various

Fig. 2. Comparing SPM with coarse-grained prediction model

Fig. 3. Emulation network transmission compared with the real trace

SPM: Modeling Spark Task Execution Time from the Sub-stage Perspective 9

benchmarks. Further, we combine SPM with a Spark network emulation tool. Emu-
lation result shows that the prediction of task execution time can effectively determine
the time of shuffle transmission.

Acknowledgement. This work is supported by the National Key Research and Development
Program of China (Grant No. 2016YFB1000304) and National Natural Science Foundation of
China (Grant No. 1636208).

References

1. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. HotCloud 10(10–10), 95 (2010)

2. Hadoop Homepage. http://Hadoop.apache.org/. Accessed 4 Sept 2019
3. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory

cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, p. 2. USENIX Association (2012)

4. Gu, J., Li, Y., Tang, H., Wu, Z.: Auto-tuning spark configurations based on neural network.
In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2018)

5. Popescu, A.D., Balmin, A., Ercegovac, V., Ailamaki, A.: Predict: towards predicting the
runtime of large scale iterative analytics. Proc. VLDB Endow. 6(14), 1678–1689 (2013)

6. Nguyen, N., Khan, M.M.H., Albayram, Y., Wang, K.: Understanding the influence of
configuration settings: an execution model-driven framework for apache spark platform. In:
2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pp. 802–807.
IEEE (2017)

7. Bhimani, J., Mi, N., Leeser, M., Yang, Z.: FIM: performance prediction for parallel
computation in iterative data processing applications. In: 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), pp. 359–366. IEEE (2017)

8. Venkataraman, S., Yang, Z., Franklin, M., Recht, B., Stoica, I.: Ernest: efficient performance
prediction for large-scale advanced analytics. In: 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2016), pp. 363–378 (2016)

9. Wang, K., Khan, M.M.H.: Performance prediction for apache spark platform. In: 2015 IEEE
17th International Conference on High Performance Computing and Communications, 2015
IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems, pp. 166–173. IEEE (2015)

10. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The hibench benchmark suite:
characterization of the mapreduce-based data analysis. In: 2010 IEEE 26th International
Conference on Data Engineering Workshops (ICDEW 2010), pp. 41–51. IEEE (2010)

11. SNemu. https://github.com/lab821/SNemu. Accessed 4 Sept 2019

10 W. Li et al.

http://Hadoop.apache.org/
https://github.com/lab821/SNemu

Improving the Parallelism
of CESM on GPU

Zehui Jin1, Ming Dun1, Xin You1, Hailong Yang1(B), Yunchun Li1,
Yingchun Lin2, Zhongzhi Luan1, and Depei Qian1

1 School of Computer Science and Engineering, Beihang University,
Beijing 100191, China

hailong.yang@buaa.edu.cn
2 Fourth Research Institute of Telecommunications Technology Corporation,

Xi’an 710061, Shaanxi, China

Abstract. Community Earth System Model (CESM) is one of the
most popular climatology research models. However, the computation
of CESM is quite expensive and usually lasts for weeks even on high-
performance clusters. In this paper, we propose several optimization
strategies to improve the parallelism of three hotspots in CESM on GPU.
Specifically, we analyze the performance bottleneck of CESM and pro-
pose corresponding GPU accelerations. The experiment results show that
after applying our GPU optimizations, the kernels of the physical model
achieve significant performance speedup respectively.

Keywords: CESM · GPU · Performance optimization

1 Introduction

Scientists have been striving to understand and even predict the earth’s cli-
mate system since the early days. The effort led by the National Center for
Atmosphere Research (NCAR) gave birth to the open-source simulation model
named Community Climate Model (CCM) [4]. As the successor of CCM, NCAR
released The Community Earth System Model (CESM), which becomes one of
the cutting-edge climate simulation models nowadays.

The CESM simulation model is constituted of five geophysical components,
including atmosphere, land, ocean, sea-ice and land-ice component. There is also
a coupler in CESM to incorporate the above geophysical components. However,
both the computation and memory cost when running CESM is overwhelm-
ingly high on CPU due to the complex mathematical equations adopted in the
simulation.

There have already been several works optimizing CESM by accelerating cer-
tain kernels in CESM on GPU. Korwar et al. [5] implement the long wave and
short wave radiation kernels on GPU. Carpenter et al. [3] implement the spectral
element based dynamical core (HOMME) on GPU. Sun et al. [10] optimize a
solver in the chemistry procedure of the atmospheric component and implement
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 11–18, 2020.
https://doi.org/10.1007/978-3-030-38961-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_2

12 Z. Jin et al.

it on GPU for higher performance. However, none of the existing works simul-
taneously accelerates three hotspot kernels on GPU including aerosol masses
conversion, longwave radiation, and solar radiation.

This work focuses on optimizing the performance of the atmospheric com-
ponent, which is one of the most time-consuming components of CESM. First,
we comprehensively analyze the performance bottlenecks of CESM. Then we
optimize the three hotspot kernels on GPU. We demonstrate the effectiveness of
our optimizations with experiment results.

In short, this paper makes the following contributions:

– We conduct a comprehensive performance analysis of CESM and identify
three hotspot kernels in the atmospheric component.

– We implement the identified hotspot kernels on GPU and optimize the kernels
for better performance.

The rest of the paper is organized as follows. The background of CESM and
existing parallel methods are presented in Sect. 2. We perform the bottleneck
analysis of CESM and present the performance optimization strategies in Sect. 3.
In Sect. 4, the detailed experiment results are given. We present the related work
in Sect. 5 and conclude this paper in Sect. 6.

2 Background

2.1 CESM Overview

CESM is mainly developed by the NCAR and its predecessor is known as the
CCSM. CESM is comprised of several coupled components: atmosphere, ocean,
land, land-ice, sea-ice and a central coupler component. Once the simulation
began, the coupler will swap the two-dimensional data. The cutting-edge earth
system simulation software provides support for plenty of options in different
combinations of component configurations and resolutions [11].

2.2 The Atmosphere Component

The atmosphere component of CESM is called the Community Atmosphere
Model (CAM). CAM 4.0 mainly constitutes four kinds of dynamical cores and a
physical model which is an aggregation of the simulation of the physical process.
The total parameter package of physical model can be indicated as Eq. 1, where
M means (Moist) precipitation processes, R for radiation and clouds, S for the
abbreviation of the Surface model, and T for Turbulent mixing [8].

P = {M,R, S, T} (1)

Improving the Parallelism of CESM on GPU 13

2.3 Parallelization of CESM

Computation Parallelization. Within almost every geophysical part of
CESM, the system is divided into hierarchical grids and the grids are allocated
to different processes to compute. To the perspective of a standalone compo-
nent, the atmosphere, ice, ocean, and land component support two levels of
parallelization: the distributed memory parallelism(MPI) and the shared mem-
ory parallelism model (OpenMP) [13]. For the whole CESM, some geophysical
components can run concurrently but there remain constraints. For instance, the
atmosphere component cannot run with ice or land component.

I/O Parallelization. CESM usually use netCDF [9] for reading and writing
data. There are two ways to parallel the I/O procedure. One way is by enabling
the parallelism version of netCDF and the other way is to replace the default
netCDF with pnetCDF [6]. Paralleled netCDF can read input data through
multiple processors which can contribute to I/O acceleration.

3 Performance Optimization Strategies

3.1 Bottleneck Analysis of CESM

We probe the hotspots of CESM by using HPCToolkit on the platform whose
software and hardware details are shown in Sect. 4. The hotspot analysis is shown
in Fig. 1. From the analysis result, the conclusion can be drawn that the atmo-
sphere component costs most of the execution time, as the dynamical part spends
approximately 48.8% of total running time while the physical part takes up about
33% of the overall execution time.

other parts in ATM
OCN LND and
other components

stepon
includes

cd_core trac2d
…

other parts in physpkg
convert_deep_tend …

radiation
includes solar wave,
long wave and
aerosol radiation

2.5%
16.2%

15.0%

17.3%

49.1%

Fig. 1. The performance bottleneck analysis of CESM.

It can be figured out that the MPI communication and cd core are two
hotspots in the dynamic part. However, since the optimization of MPI can be

14 Z. Jin et al.

done by alternating MPI library which is much easier than algorithm optimiza-
tion and cd core consists of numerous loops that only cost about 0.1% of exe-
cution time each, we focus on optimizing the hotspots in physical part in this
paper.

In the physical model, it can be revealed from the result that the radiation
routine is a hotspot which takes up 15% of execution time approximately. The
radiation routine includes solar radiation, longwave radiation and aerosol masses
conversion, which contains computation-intense loops.

3.2 Solar Radiation Optimization

In the original solar radiation routine in CESM, there is a computation-intense
triple cycle which contains nswband× (pver+1)×Nday iterations. To enhance
the performance in its GPU implementation, we assign every iteration to a thread
in GPU to improve parallelization, the stream number and the size of the grid
are shown in Algorithm 1. Once all the threads finish liquid and ice valid com-
putation, they get the boundaries of solar radiation and then compute radiative
properties of layers. After all the computation is done, the results will be sent
to the host.

Algorithm 1. The optimized solar radiation kernel on GPU
1: malloc memory for temporary vars on GPU
2: malloc memory for input vars on GPU and copy values
3: / ∗ stream number = 1 ∗ /
4: / ∗ grid size = 4 × 4 × 1 ∗ /
5: / ∗ block size = 64 × 4 × 1 ∗ /
6: / ∗ total threads amount = Nday × (pver + 1) × nswbands ∗ /
7: for each thread do
8: initialize global constant parameters
9: if (blockIdx.y × blockDim.y + threadIdx.y)%(pver + 1) �= 0 then
10: calculate liquid and ice valid
11: end if
12: synchronize
13: get boundaries of solar wave spectral
14: compute layer radiative properties
15: end for
16: copy out results and free memory on GPU

3.3 Longwave Radiation Optimization

We focus on optimizing the absorptivities computation kernel when improving
the performance of the longwave radiation routine. In the original kernel, there
is a triple cycle which iterates ncol× (pverp−ntoplw+1)× (pverp−ntoplw+1)
times. To implement this kernel to GPU, we assign the threads to each iteration
as shown in Algorithm 2. For each thread, it computes the band-dependent
indices for non-window and window. Next, the threads calculate the absorptivity
for non-nearest layers and finally calculate total absorptivity based on previous
steps.

Improving the Parallelism of CESM on GPU 15

Algorithm 2. The optimized longwave radiation kernel on GPU
1: Initialize constants as local parameters
2: / ∗ stream number : 1 ∗ /
3: / ∗ grid size : 5 × 4 × 1 ∗ /
4: / ∗ block size : 4 × 64 × 1 ∗ /
5: / ∗ total threads amount : ncol × (pverp − ntoplw + 1) × (pverp − ntoplw + 1) ∗ /
6: for each thread do
7: / ∗ H2O Continuum path for 0 − 800 and 1200 − 2200 cm−1 ∗ /
8: Band − dependent indices for non − window
9: / ∗ Line transmission in 800 − 1000 and 1000 − 1200 cm−1 intervals ∗ /
10: Get O3 9.6 micrometer band
11: Get CO2 15 micrometer band system
12: Calculate absorptivity for non nearest layers
13: Calculate total absorptivity based on previous five steps
14: end for

3.4 Aerosol Masses Conversion Optimization

In the GPU implementation of aerosol masses conversion routine whose process-
ing logic is shown in Algorithm 3. After the stream and thread are set up by
GPU, the device will get opticstype which indicates the type of aerosol to be com-
puted. There are four types of aerosols: hygroscopic aerosols, non-hygroscopic
aerosols, volcanic aerosols, and volcanic radius aerosols. Once the opticstype is
received, the threads will calculate the corresponding optical properties for those
aerosols.

Algorithm 3. The optimized aerosol masses conversion kernel on GPU
1: Malloc memory for temporary variables on GPU
2: Create CUDA stream
3: / ∗ total threads = pver × pcols × nswbands ∗ /
4: / ∗ stream number = 1
5: / ∗ grid size = 8 × 4 × 1 ∗ /
6: / ∗ block size = 64 × 4 × 1 ∗ /
7: for iaerosol = 1 → numaersols do
8: Get opticstype : optics ← StringToInt(optistype)
9: if optics == 1 then
10: for each thread, calculate optical properties for hygroscopic aerosols
11: else if optics == 2 then
12: for each thread, calculate optical properties for non − hygroscopic aerosols
13: else if opitcs == 3 then
14: for each thread, calculate optical properties for volcanic aerosols
15: else if optics == 4 then
16: for each thread, calculate optical properties for volcanic radius aerosols
17: else
18: return error message / ∗ default ∗ /
19: end if
20: copy results to host′s memory
21: free memory on GPU
22: end for

16 Z. Jin et al.

4 Evaluation

4.1 Experiment Setup

The experiments are conducted on a single server. The server is equipped with
2× Intel Xeon E5-2680v4 2.40 GHz 14 cores and two NVIDIA Volta 32 GB
V100. The operating system installed is CentOS v7.6 with Linux kernel v3.10.0-
957.el7.x86 64. We use CESM v1.2.2 compiled with Intel compiler v2018.5.274
as our baseline. CUDA version is 10.1, and netCDF is v4.6.2 enabled paralleliza-
tion. For the simulation input, we choose two representative datasets, E1850CN
and F, with corresponding simulation setups. For each dataset, we run CESM
on two commonly used resolutions, 0.47 × 0.63 and 0.23 × 0.31.

4.2 Performance Analysis

In Fig. 2(a), the orange bars represent the average running time of the aerosol
masses conversion kernel in the original CESM, whereas the purple ones repre-
sent the average running time of our GPU optimization. It is obvious that our
GPU optimization of the kernel reduces the execution time significantly. The
average performance speedup on dataset E1850CN and F is 6.91× and 9.14×
respectively.

0

50

100

150

200

av
er

ag
e

ru
nt

im
e/

us

Aerosol Masses
Conversion

0
100
200
300
400
500
600
700
800

av
er

ag
e

ru
nt

im
e/

us

Solar Radiation

0

1

2

3

4

5

lo
g1

0(
av

er
ag

e
ru

nt
im

e/
us

)

Longwave Radiation

A B C D A B C D A B C D

(a) (b) (c)

datasets and resolutions : A: E1850CN/0.47x0.63 B: E1850CN/0.23x0.31
C: F/0.47x0.63 D: F/0.23x0.31original CESM CUDA version

Fig. 2. The performance speedup of the three kernels. (a) for aerosol masses conversion
kernel, (b) for solar radiation and (c) for longwave radiation kernel. (Color figure online)

We can see from Fig. 2(b) that the experiment results on solar radiation
kernel show the similar trend. The average performance speedup on dataset
E1850CN and F is 8.36× and 12.38× respectively. The higher performance
speedup achieved by solar radiation kernel is due to its high computation inten-
sity that benefits from the massive parallelism of GPU.

The performance speedup on longwave radiation kernel is much higher than
the previous two kernels. As shown in Fig. 2(c), due to the computation-intensive

Improving the Parallelism of CESM on GPU 17

nature of the longwave radiation kernel, the original implementation takes more
than 104 microseconds to complete, so we show the logarithmic results. The
average performance speedup on dataset E1850CN and F is 114.95× and 222.4×
respectively.

5 Related Work

Most of the relevant works port some of the kernels in CESM to GPU. Korwaret
et al. [5] transfer the long-wave and solar radiation routines to GPU by OpenACC
and develop a CPU-GPU asynchronous scheme. In the meantime, the spectral
element based dynamical core(HOMME) is implemented to GPU by Carpenter
et al. [3]. Later, Werkhoven et al. [12] modify the block-partitioning strategies
in the ocean component of CESM named POP into a hierarchical scheme to
optimize load balance and reduce MPI communication. Furthermore, Sun et
al. [10] accelerate the second-order Rosenbrock solver by implementing it to
GPU, and it turns out that a higher performance will be reached when the block
size is equal to the warp size and memory is continuous. Moreover, as a part
of the OpenACC based project Energy Exascale Earth System Model(E3SM)
whose atmospheric component is a derivative of CAM5 in CESM1, Bertagna et
al. [2] rewrite the HOMME with C++ and Kokkos which makes the core portable
to GPU, which results in better performance. Since the inappropriate parameters
can cause severe performance deterioration, an optimal execution configuration
is desirable. Nan et al. [7] develop a framework named CESMTuner which can
detect the best configuration automatically. Balaprakash et al. [1] develop a
static parameter-probing model based on machine learning and apply it to the
ice component of CESM.

6 Conclusion

In this paper, we optimize three hotspot kernels in CESM on GPU and achieve
significant performance speedup. We use the HPC toolkit to analyze the perfor-
mance of CESM and identify three hotspot kernels. Then we implement these
hotspot kernels on GPU and optimize them correspondingly. The experiment
results show that our GPU optimizations achieve 11.25×, 15.02× and 237× per-
formance speedup for aerosol masses conversion, solar radiation and longwave
radiation respectively.

Acknowledgement. This work is supported by National Key Research and Develop-
ment Program of China (Grant No. 2016YFB1000304) and National Natural Science
Foundation of China (Grant No. 61502019).

18 Z. Jin et al.

References

1. Balaprakash, P., Alexeev, Y., Mickelson, S.A., Leyffer, S., Jacob, R., Craig, A.:
Machine-learning-based load balancing for community ice code component in
CESM. In: Daydé, M., Marques, O., Nakajima, K. (eds.) VECPAR 2014. LNCS,
vol. 8969, pp. 79–91. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17353-5 7

2. Bertagna, L., et al.: HOMMEXX 1.0: a performance portable atmospheric dynam-
ical core for the energy exascale earth system model. Technical report, Sandia
National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia . . . (2018)

3. Carpenter, I., et al.: Progress towards accelerating homme on hybrid multi-core
systems. Int. J. High Perform. Comput. Appl. 27(3), 335–347 (2013)

4. Kiehl, T., Hack, J., Bonan, B., Boville, A., Briegleb, P., Williamson, L., Rasch, J.:
Description of the NCAR community climate model (CCM3) (1996)

5. Korwar, S.K., Vadhiyar, S., Nanjundiah, R.S.: GPU-enabled efficient executions of
radiation calculations in climate modeling. In: 20th Annual International Confer-
ence on High Performance Computing, pp. 353–361. IEEE (2013)

6. Li, J., et al.: Parallel netCDF: a high-performance scientific I/O interface. In: SC
2003: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, pp.
39–39. IEEE (2003)

7. Nan, D., Wei, X., Xu, J., Haoyu, X., Zhenya, S.: CESMTuner: an auto-tuning
framework for the community earth system model. In: 2014 IEEE International
Conference on High Performance Computing and Communications, 2014 IEEE
6th International Symposium on Cyberspace Safety and Security, 2014 IEEE
11th International Conference on Embedded Software and Systems (HPCC, CSS,
ICESS), pp. 282–289. IEEE (2014)

8. Neale, R.B., et al.: Description of the NCAR community atmosphere model (CAM
4.0) (2010)

9. Rew, R., Davis, G.: NetCDF: an interface for scientific data access. IEEE Comput.
Graph. Appl. 10(4), 76–82 (1990)

10. Sun, J., et al.: Computational benefit of gpu optimization for the atmospheric
chemistry modeling. J. Adv. Model. Earth Syst. 10(8), 1952–1969 (2018)

11. Vertenstein, M., et al.: CESM user’s guide (CESM1.2 release series user’s guide).
NCAR technical note (2013)

12. van Werkhoven, B., et al.: A distributed computing approach to improve the per-
formance of the parallel ocean program (v2.1). Geosci. Model Dev. 7(1), 267–281
(2014)

13. Worley, P.H., Mirin, A.A., Craig, A.P., Taylor, M.A., Dennis, J.M., Vertenstein,
M.: Performance of the community earth system model. In: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis, p. 54. ACM (2011)

https://doi.org/10.1007/978-3-319-17353-5_7
https://doi.org/10.1007/978-3-319-17353-5_7

Parallel Approach to Sliding
Window Sums

Roman Snytsar1(B) and Yatish Turakhia2

1 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA
Roman.Snytsar@microsoft.com

2 Stanford University, Stanford, CA 94305, USA

Abstract. Sliding window sums are widely used for string indexing,
hashing, time series analysis and machine learning. New vector algo-
rithms which utilize the advanced vector extension (AVX) instructions
available on modern processors, or the parallel compute units on GPUs
and FPGAs, would provide a significant performance boost.

We develop a generic vectorized sliding sum algorithm with speedup
for window size w and number of processors P is O(P/w) for a generic
sliding sum. For a sum with commutative operator the speedup is
improved to O(P/log(w)). Implementing the algorithm for the bioin-
formatics application of minimizer based k-mer table generation using
AVX instructions, we obtain a speedup of over 5×.

1 Introduction

1.1 Prefix Sum

Parallel algorithms are often constructed from a set of universal building blocks.
One of the hardest to identify, but extremely useful is the concept of a prefix
sum, and the accompanying scan algorithm. A prefix sum is a transformation
that takes an operator ⊕, and a sequence of elements

x0, x1, . . . , xk, . . .

and returns the sequence

yi =
i∑

j=0

xj = x0 ⊕ x1 ⊕ . . . ⊕ xi (1)

or in recurrent form
yi+1 = yi ⊕ xi+1 (2)

Despite the data carry dependency, the first N elements of the prefix sum with
an associative operator could be computed in O(log(N)) parallel steps using
scan algorithm, as shown by [3].

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 19–26, 2020.
https://doi.org/10.1007/978-3-030-38961-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_3

20 R. Snytsar and Y. Turakhia

1.2 Sliding Window Sum

Sliding window sum (sliding sum) takes a window size w in addition to an
operator ⊕, and a sequence of elements, and returns the sequence

yi =
i+w−1∑

j=i

xj = xi ⊕ xi+1 ⊕ . . . ⊕ xi+w−1 (3)

where each sum is defined in terms of the operator ⊕ and contains exactly w
addends. The asymptotic complexity of a naive sliding sum algorithm is O(wN)
where N is the length of the source sequence.

Every sum defined by Eq. 3 is a prefix sum with operator ⊕ and input
sequence xi . . . ⊕ xi+w−1. Many useful operators are associative, so the prefix
scan algorithm is applicable here, reducing complexity of every sum in Eq. 3
to O(log(w)) and, trivially, the overall sliding sum complexity to O(Nlog(w))
parallel steps.

Sliding window operators are widely used in the high frequency data mining
[2]. Using elaborate queue-based data structures, these streaming applications
achieve O(N) complexity, which is the current state of the art [11]. In machine
learning, the sliding window approach is used for validating the time series mod-
els [5]. While working on the bioinformatics applications, we have used sliding
window sums to represent the minimizer seeds.

1.3 The Seed-filter-extend Paradigm

Most heuristics to local sequence alignment are based on the seed-filter-extend
paradigm, which was first popularized by the BLAST algorithm [1]. In aligning
a reference sequence R with a query sequence Q, the seeding stage finds small
local matches, called seed hits, of size k (also called k-mer, typically 10–19 base-
pairs in size) between R and Q. The filtering stage itself may consist of several
smaller sub-stages, which further reduces the search space by a combination of
techniques, such as ungapped extension [1,4] or chaining multiple seed hits in
a diagonal band [7,12]. The extension stage typically performs the compute-
intensive dynamic programming step, usually employing the Smith-Waterman
equations [9].

1.4 Seed Tables and Minimizers

Heuristics based on the seed-filter-extend paradigm often maintain a seed table—
a data structure that enables fast lookup of seed hits in reference, R. Figure 1
shows an example reference sequence and seed table for seed size k = 2. Seed
table maintains two tables: (i) a seed pointer table and (ii) a seed position table.
For each of the 4k possible seeds (16 seeds in Fig. 1), lexicographically sorted,
the seed pointer table points to the beginning of a list of hits in the seed position
table. In Fig. 1, lookups to ‘CG’ and ‘CT’ in the seed pointer table give the start
and end addresses in the seed position table for hits of ‘CT’ in the reference.

Parallel Approach to Sliding Window Sums 21

Fig. 1. An example reference sequence and seed table used in D-SOFT.

Starting with R = r0, r1, ...rn, we can define k-mers of R as a sliding sum over
window size k, string concatenation operator, and R. If we introduce operation
substr(K, i), a substring of string K starting from position i, a reverse operation
to the string concatenation, it is possible then to generate k-mers recursively in
O(N) time:

Ki+1 = substr(Ki, 1) ⊕ ri+k (4)

Minimizer seeds (or minimizers for short), an idea originally proposed for
compressing large seed tables in 2004 by Roberts et al. [8], have seen a recent
revival in bioinformatics with the advent long read alignment [7] and metage-
nomics [13]. Minimizers can greatly reduce the storage requirements for the seed
position table by storing only a subset of the seeds with only a small drop in
sensitivity of the aligner.

Figure 2 illustrates how minimizers can be used to build a seed position table
with an example. In addition to the seed size k, minimizers require a parameter
w, the minimizer window size. In Fig. 2, k = 3 and w = 3. In each position
p of the reference R, a window w consecutive seeds of size k (k-mers) starting
from position p in R are used to find the lexicograpically minimum seed s and
its position p′, which is recorded in the seed position table. Adjacent windows
can share the same minimizer (i.e. the (s, p′) pair), which reduces the storage
requirement for the seed position table. Figure 2a shows the minimizers for four
consecutive positions 0–3 in R and the corresponding entries in the seed position
table in Fig. 2b. Windows at positions p = 1 and p = 2 share the same minimizer
(‘CTT’, 2), which is stored only once in Fig. 2b. Moreover, as seen in Fig. 2b,
seeds at position 0, 2 and 5 are stored in the seed position table but those
at positions 1, 3 and 4 are dropped. Roberts et al. [8] have shown that with a
minimizer window of size w, a new minimizer occurs every w/2 bases on average.

Minimizers are a key innovation in Minimap [6] and its successor Min-
imap2 [7], both of which achieve an order of magnitude speedup over prior

22 R. Snytsar and Y. Turakhia

Fig. 2. Illustration of minimizer seeds using (k = 3, w = 3). (a) An example reference
sequence with a minimizer window sliding over 4 positions. The three seeds within the
window are underlined in red and the minimizer seed within the window is highlighted
in bold. (b) Minimizer seed-position pairs as constructed from (a). (Color figure online)

techniques, most speedup resulting from fewer seed hits per read due to min-
imizers. We have found that turning off minimizers (using w = 1 instead of
the default w = 10) slows down the seeding and filtering stage of Minimap2 by
nearly 7× with only 0.5% higher sensitivity for sequencing reads from Pacific
Biosciences. Constructing seed tables can take several hours for the de novo
assembly of a human genome [12]. In this paper, we take a closer look at the
connection between sliding sums and prefix sums, and attempt to supersede the
linear complexity achieved by previous approaches.

2 Methods

2.1 Vector Algorithms

Our first algorithm is a vector-friendly way of calculating sliding sum assuming
the input sequence elements become available one by one and are processed using
the vector instructions of width P > w:

Vector Y is initialized to the suffix sums with the number of elements decreas-
ing from w − 1 to 0. Then in a loop every incoming element xk is broadcast to
the first w elements of vector X. After vector addition the zeroth element of Y
contains the next sliding sum. Next, the vector Y is shifted left by one element,
as denoted by operator ≪, and the state is ready for the next iteration.

Asymptotic complexity of the scalar input algorithm is O(N) with no addi-
tional requirements on the operator ⊕.

This result could be improved if we assume that the input sequence arrives
packed in vectors of width P > w.

At every iteration P input elements are placed into vector X. X1 is filled
with the prefix sums of up to w addends, and Y1 is filled with the suffix sums
constructed from the elements of X, as shown on the Fig. 3. Then the vector
sum of Y and X1 yields the next P output elements. Finally, the suffix sums

Parallel Approach to Sliding Window Sums 23

Algorithm 1. Scalar Input
procedure ScalarInput(x0 . . . xn−1)

Y ←
(w−2∑

j=0

xj ,

w−2∑
j=1

xj , . . . , xw−3 ⊕ xw−2, xw−2

︸ ︷︷ ︸
w−1

, 0, . . . , 0
)

for i = w − 1 to N do

X ←
(
xi, xi, . . . , xi︸ ︷︷ ︸

w

, 0, . . . , 0
)

Y ← Y ⊕ X
yi−w+1 ← Y [0]
Y ← Y ≪ 1

end for
end procedure

Algorithm 2. Vector Input
procedure VectorInput(x0 . . . xn−1)

Y ←
(w−2∑

j=0

xj ,

w−2∑
j=1

xj , . . . , xw−3 ⊕ xw−2, xw−2

︸ ︷︷ ︸
w−1

, 0, . . . , 0
)

for i = w − 1 to N step P do

X ←
(
xk, xk+1, . . . , xk+p−1

)

X1 ←
(
X0, X0 ⊕ X1, . . . ,

w−2∑
j=0

Xj

︸ ︷︷ ︸
w−1

,
w−1∑
j=0

Xj , . . . ,
p−1∑

j=p−w

Xj

)

Y 1 ←
(
0, . . . , 0,

p−1∑
j=p−w

Xj ,

p−2∑
j=p−w

Xj , . . . , Xp−w

︸ ︷︷ ︸
w−1

)

Y ← Y ⊕ X1
yk−w+1 . . . yk−w+p ← Y [0] . . . Y [p − 1]
Y ← Y 1 ≪ (P − w)

end for
end procedure

from Y 1 are shifted into proper positions in vector Y , and it is ready for the
next iteration.

The asymptotic complexity thus is O(N · w/P) with the parallel speedup
O(P/w) for any operator ⊕. If ⊕ is associative, the prefix/suffix sums could be
computed in parallel using the algorithm in [3], and the complexity is reduced
to O(N · log(w)/P) with the speedup improving to O(P/log(w)).

For example, since min is an associative operator, the sliding window mini-
mum can be computed using the faster version of the vector input algorithm.

24 R. Snytsar and Y. Turakhia

Fig. 3. Data flow of the vector input sliding sum algorithm.

3 Results

We tested the performance of various sliding minimum algorithms using the
hashed 15-mers of the reference human genome assembly (GRCh38) from the
Genome Reference Consortium. The test imitates a minimizer based seed table
construction by a long-read aligner, such as Minimap2 [7], GraphMap [10] or
Darwin [12]. Figure 4 compares the performance of the näıve array-based algo-
rithm, linear dequeue-based algorithm, and our proposed vector algorithm.

The computer platform is an Intel Xeon Platinum 8168 system with 16 cores
running at 2.7 GHz and 32 GB of RAM. The test for every data point has been
run 3 times, and presented numbers are the averages of the observed run times.

Deque-based algorithm performance is indeed independent of the window
size. It comes, however, at the cost of a significant overhead of managing the
deque data structure and unpredictable branching.

Array-based algorithm, despite the worst asymptotic complexity, is simple to
implement, and benefits from the automatic compiler vectorization. It is clear
how the times drop when the window size is aligned with the SIMD vector width
(P = 4, 8, and 16). For small window sizes the array algorithm is competitive
with the deque approach.

Our vector sliding sum algorithm beats both previous implementations by a
factor of 5×. With the SSE/AVX instruction set, any window size requires the
same number of instructions as the closest (larger) power of 2. So the perfor-

Parallel Approach to Sliding Window Sums 25

4 6 8 10 12 14 16 18

20

40

60

80

Window Size

T
im

e
s

Dequeue
Array
Vector

Fig. 4. Performance of the sliding minimum algorithms.

mance of our vector implementation does not change linearly with w but drops
when we switch to the different SIMD vector width P at w = 5, 9, 17. Also, prefix
sum computation across wider vectors incurs additional latencies for cross-lane
data exchanges, resulting in the speedup less than theoretical 2×.

4 Conclusion

We introduced a family of algorithms for parallel evaluation of sliding window
sums. The parallel speedup for window size w and number of processors P is
O(P/w) for a generic sliding sum. For a sum with a commutative operator
the speedup is improved to O(P/log(w)). This gives the developer a choice of
fast branchless algorithms suitable for implementation on any modern parallel
architecture including modern CPUs with instruction-level parallelism, pipelined
GPUs, or FPGA reconfigurable hardware.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

2. Basak, A., Venkataraman, K., Murphy, R., Singh, M.: Stream Analytics with
Microsoft Azure: Real-Time Data Processing for Quick Insights Using Azure
Stream Analytics. Packt Publishing Ltd., Birmingham (2017)

3. Blelloch, G.E.: Prefix sums and their applications. In: Synthesis of Parallel Algo-
rithms. Morgan Kaufmann (1993)

4. Harris, R.S.: Improved pairwise alignment of genomic DNA. ProQuest (2007)

26 R. Snytsar and Y. Turakhia

5. Kotu, V., Deshpande, B.: Data Science: Concepts and Practice. Morgan Kaufmann,
Burlington (2018)

6. Li, H.: Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics 32(14), 2103–2110 (2016)

7. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 1,
7 (2018)

8. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage
requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369
(2004)

9. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

10. Sović, I., Šikić, M., Wilm, A., Fenlon, S.N., Chen, S., Nagarajan, N.: Fast and
sensitive mapping of nanopore sequencing reads with graphmap. Nat. Commun.
7, 11307 (2016)

11. Tangwongsan, K., Hirzel, M., Schneider, S.: Constant-time sliding window aggre-
gation. IBM, IBM Research Report RC25574 (WAT1511-030) (2015)

12. Turakhia, Y., Bejerano, G., Dally, W.J.: Darwin: a genomics co-processor provides
up to 15,000 x acceleration on long read assembly. In: Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 199–213. ACM (2018)

13. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biol. 15(3), R46 (2014)

Rise the Momentum: A Method
for Reducing the Training Error

on Multiple GPUs

Yu Tang, Lujia Yin, Zhaoning Zhang(B), and Dongsheng Li

Science and Technology on Parallel and Distributed Laboratory,
National University of Defense Technology, Changsha, China

zzningxp@gmail.com

Abstract. Deep neural network training is a common issue that is
receiving increasing attention in recent years and basically performed
on Stochastic Gradient Descent or its variants. Distributed training
increases training speed significantly but causes precision loss at the
mean time. Increasing batchsize can improve training parallelism in dis-
tributed training. However, if the batchsize is too large, it will bring
difficulty to training process and introduce more training error. In this
paper, we consider controlling the total batchsize and lowering batchsize
on each GPU by increasing the number of GPUs in distributed train-
ing. We train Resnet50 [4] on CIFAR-10 dataset by different optimizers,
such as SGD, Adam and NAG. The experimental results show that large
batchsize speeds up convergence to some degree. However, if the batch-
size of per GPU is too small, training process fails to converge. Large
number of GPUs, which means a small batchsize on each GPU declines
the training performance in distributed training. We tried several ways
to reduce the training error on multiple GPUs. According to our results,
increasing momentum is a well-behaved method in distributed training to
improve training performance on condition of multiple GPUs of constant
large batchsize.

Keywords: Multiple GPUs · Batchsize · Distributed training ·
Momentum

1 Introduction

Over the past few years, deep learning has made great progress in plenty of fields,
such as object detection [3,5,6,8], semantic segmentation [17–19], and image
classification [2,7,9]. As the number of layers of neural networks continue to
increase and the size of data continues to expend, training deep neural networks
places higher demands on the computing power of computers. The development
and applying of GPU satisfies this requirement which training deep learning
model needs, making it possible to training deep neural networks within an
acceptable time. However, factors such as GPU memory also limits large-scale
neural network training.
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 27–41, 2020.
https://doi.org/10.1007/978-3-030-38961-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_4

28 Y. Tang et al.

On the other hand, distributed training architecture provides a new idea
of training deep neural networks, including some new ideas about distributed
training [1]. Distributed training declines the training time through parallelism.
Parameter Sever [10] is a new kind of distributed training architecture, through
which we could get an ideal reduction of time without doing much harm to the
accuracy.

Stochastic Gradient Decent(SGD) [16] is a common used algorithm in deep
learning. It utilizes a random subset of training dataset to update weights of
the loss function. The size of the subset which is often viewed as batchsize
is an important factor in deep learning training, as has shown in [16]. It can
not only affect the training speed but also have non-negligible influence on the
convergence of neural networks. Nowadays, large-scale training has become a
research hotspot [25]. Large batchsize can be used to improve parallelism of
SGD and reduce training time [15,22,23,26] while smaller batchsize may get a
better training performance at the cost of time.

To fully understand these issues, we trained Resnet50 [4] on CIFAR-10
dataset and conducted several experiments. In this paper, We define a new vari-
able momentum-like factor: factors controlling the former gradient influence
on parameter updates in each iteration. We showed how batchsize influences
training performance and convergence in Parameter Server [10]. Also, we ana-
lyzed the influence of GPU numbers in the Parameter Server for the number of
GPUs plays a key role in distributed training. We kept the total batchsize con-
stant in Parameter Server and according to the results, large batchsize and large
number of GPUs do harm to the training performance in distributed training.
Finally, based on our analysis we changed the momentum-like factor in different
optimizers, such as SGD, Adam and NAG, and explored how they affected the
training performance. Besides, we tried two different ways to increase the valida-
tion accuracy and found out one well-behaved way of declining the accuracy loss
caused by multiple GPUs training. A key contribution of our work is introducing
momentum-like factors and exploring how they improve training performance in
distributed training.

The rest of this paper is organized as follows. Section 2 describes some pre-
vious work related to our work including Parameter server [10] and Stochastic
Gradient Descent [16] and its variants. In Sect. 3, we conduct mathematical
derivation analysis of linear learning rate strategy [14] and batch normalization
[20]. In multi-GPUs training, we give an understanding of increasing momentum.
We conduct our experiments on CIFAR-10 in the way of controlling batchsize
and the number of GPUs respectively and present the accuracy results in Sect. 4.
Finally in Sect. 5 conclusions are drawn.

2 Related Work

2.1 Parameter Server

The development of deep neural network causes the expansion of parameters’
scale of some common models, which increases the difficulty of getting an

Rise the Momentum: A Method for Reducing the Training Error 29

expected training performance within some limited time. Parameter Server (PS)
[10] aims to increase training efficiency of large models while maintaining the
accuracy or getting an acceptable accuracy loss.

In Parameter Server, there are two kinds of nodes, namely workers and
servers. They play different roles in this architecture. Workers are responsi-
ble for calculating the data allocated to itself and updating the corresponding
parameters. Servers utilize distributed storage and each one stores a part of the
global parameters. Workers and servers communicate with each other through
Push and Pull operation. After computation, workers send updated parameters
to servers through Push operation and servers receive the parameter query and
parameter update request of workers.

Parameter Server has the following features in distributed training. First,
communicate efficiently. It mainly adopts the asynchronous communication
mode, which reduces the delay in the training process, network traffic and com-
munication overhead. Second, flexible consistency. Parameter Server allows the
users to design the experiment according to their own requirements. Third, scal-
ability. Parameter Server has good scalability and it does not require restarting
the system when added a server into this system. Fourth, good fault tolerance.
If there happens to be a fault in the system, we don’t need to interrupt the
computation which prevents a lot of trouble. Fifth, simplicity. Parameters in the
parameter server architecture can be expressed in various forms to facilitate the
development and application of machine learning algorithms.

2.2 Stochastic Gradient Descent and Its Variants

Stochastic Gradient Descent(SGD) [16] is one of the simplest first-order algo-
rithms for full-batch training, which introduces noise into the gradient and block
optimization in training progress [32]. It is an expansion of Gradient Descent.
Gradient descent uses all samples to update parameters, which is very slow when
there are billions of samples. SGD randomly selects one sample or a random sam-
ple set at a time for parameter updating, so that updating the parameters does
not create redundancy. When the data size is large, it can effectively accelerate
the training.

The key insight of SGD is that we can view the gradient as the expectation
and expect to use small-scale sample approximations. SGD can be parameter-
ized in a training set or a subset of training sets, i.e. mini-batch. The size of
mini-batch, namely batchsize, is an important superparameter in deep learning.
How to choose a suitable batch decides the direction of the gradient of the loss
function. If the dataset is small enough, we can set full dataset as a batch. By this
mean, we can get a better representation of dataset and reduce training time.
But for larger dataset, if batchsize is equal to the full dataset, it may exceed
GPU’s memory, which results in training difficulty or bad training performance.
Generally, training is performed by selecting a subset of the training data set.
It has been proved that if the dataset is sufficient, training using a subset of the
training dataset can theoretically achieve the same effect as training with the
entire dataset.

30 Y. Tang et al.

[12] stated that SGD should be interpreted as integrating stochastic equation.
They also presented the scale of random fluctuation in the SGD dynamics,

g = ξ(
N

M
− 1) (1)

where ξ is the learning rate, N is the size of training set and M is the batchsize.
This fluctuation scale g could also be considered as noise factor. If we decay
the learning rate ξ, the noise scale g falls, enabling to get a better training
performance. On the other hand, when we keep learning rate ξ constant, we
could also increase batchsize M to lower the negative impact of noise scale.
In contrast, small batchsize raises the noise scale and does harm to training
performance. According to [21], calculating the mean and variance values over
a batch makes the loss calculated for a particular example dependent on other
examples in the same batch. Therefore, if the batchsize is large, high dependency
between samples in the batch leads to lower training performance. When M �
N , applying linear scaling rule [14] maintains the mean SGD weight update
constant per training sample. More specific description about linear scaling rule
[14] is shown in Sect. 3.1.

There have been many optimization methods for SGD in recent years, such
as [24,27]. A common one is SGD with momentum [12]. [12] extended traditional
SGD to include momentum, and found the noise factor g changed into

g =
ξ

1 − m
(
N

M
− 1)

≈ ξN

M(1 − m)

(2)

where m is the momentum. This degenerates into the vanilla SGD when m = 0. If
linear lscaling rule is adopted, then ξ/M is constant. Then we get g ∝ 1/(1−m).
Increasing m results in the increasing of g, which may cause the drop of gen-
eralization performance. However this analysis is different from the results of
our experiments in multi-GPUs training. While SGD algorithm improves train-
ing speed effectively compared with GD, it is difficult to choose a well-behaved
learning rate. Besides, for some optimization problem or some convex problem,
it cannot get the global optimal solution, only the local optimal solution can be
obtained. Also, it is not easy to be achieved in parallel.

Adam [33] combines the advantages of two optimization algorithms, AdaGrad
[35] and RMSProp [34]. It evaluates the First Moment Estimation of the gradient
and the Second Moment Estimation and then calculates the update step. Adam
is a second-order optimization method, which adjusts the learning rate for each
parameter by performing smaller updates for frequent and larger updates for
infrequent parameters. In Adam algorithm, β1 and β2 are set to control the
influence of gradients and the square of gradients on the parameter update.
They play the same role as momentum in SGD with momentum method. So
they could be viewed as those momentum-like factors.

NAG (Nesterov accelerated gradient) [36] is an improved way of Momentum
[37]. It updates with the gradient by “looking ahead” instead of the current

Rise the Momentum: A Method for Reducing the Training Error 31

gradient. In this method, the momentum-like factor controls the former gradient
weight in each iteration [38]. Besides, it calculates variety of gradients with
respect to last one. Utilizing these values, it updates the parameters in the
training process. Therefore, NAG is a second-order optimizer.

3 Multi-GPUs Training

3.1 Linear Scaling Rule [14]

Assuming a deep neural network model with parameters θ, and its corresponding
loss function L(θ). So L(θ) is defined as the average of the total loss over the
training dataset. The formula is as follows.

L(θ) =
1
M

M∑

i=1

Li(θ) (3)

Li(θ) is the loss of the ith training example. M is the size of training dataset.
As stated in Sect. 2.2, SGD uses one stochastic sample or one stochastic sample
set to get the approximation of the gradient of the loss funstion L(θ). For batch
B including m training examples, its batchsize is m. Its corresponding weight
update rule is

θk+1 = θk + ξΔθk (4)

ξΔθk = − ξ

m

m∑

i=1

∇θLi(θk) (5)

where ξ denotes the learning rate and k is the kth epoch.
From formula (4), we can get E{ξΔθ} = −ξE{∇θL(θ)}, which means the

average of SGD weight update. So for batch B whose batchsize is m, the mean
value of SGD weight update is proportional to ξ/m. Adopting linear scaling
rule[14] is to keeps the mean SGD weight update per training example constant.

So if we want to keep the the average of SGD algorithm weight update
between two adjacent training samples constant, we are supposed to set learning
rate ξ and batchsize m follow linear scaling rule[14], which plays an important
role in the subsequent experiments.

This linear scaling rule is adopted widely in [12,14,29–31].

3.2 Batch Normalization

Batch Normalization (BN) [20] is commonly deployed in modern deep neural
networks. It has shown excellent achievements in improving training perfor-
mance. However it also causes the performance decline in multi-GPU distributed
training.

Considering a batch B = {x0, x1, ..., xM−1} of batchsize M , its mini-batch
mean value is

μB =
1
M

M−1∑

i=0

xi (6)

32 Y. Tang et al.

where xi is one sample of set B. Its variance is

δ2B =
1
M

M−1∑

i=0

(xi − μB)2 (7)

Then the samples are normalized by

x̂i =
xi − μB√

δ2B + ε
(8)

where i changes from 1 to M and ε is a small enough to avoid the denominator
of formula 8 is zero. The mathematical expectation is

E1 = E(δ2B) = (M − 1)δ2 (9)

After Batch Normalization, the samples are following the normal distribution
whose variance is δ2. These values are fed into some layers in the deep neural
networks to get better training results.

Now, we are considering training on multiple GPUs. Assuming that there
are P GPUs in the distributed training system and batch B = {x0, x1, ..., xM−1}
whose batchsize is M . So, the batch on per GPU is a subset of batch B and its
batchsize is K = M/P . On GPU j(j changes from 0 to P − 1), the mean value
of its training samples is

μj =
1
K

K−1∑

i=0

xji =
P

M

M/P−1∑

i=0

xji (10)

and its corresponding variance is

δ2j =
1
K

K−1∑

i=0

(xji − μj)2 =
P

M

M/P−1∑

i=0

(xji − μj)2 (11)

where xji is the ith training sample on GPU j. The mean value of all samples
of batch B is

μ̂B =
1
P

P−1∑

j=0

μj (12)

The sum of every variance of all GPUs in the system is

Se =
P−1∑

j=0

M

P
δ2j =

M

P

P−1∑

j=0

δ2j (13)

The variance of all training batches among GPUs is

Sa =
P−1∑

j=0

M

P
(μj − μ̂B)2 =

M

P

P−1∑

j=0

(μj − μ̂B)2 (14)

Rise the Momentum: A Method for Reducing the Training Error 33

So, the total variance St is

St = Se + Sa =
M

P

P−1∑

j=0

δ2j +
M

P

P−1∑

j=0

(μj − μ̂B)2 (15)

When P = 1, formula 15 degenerate into formula 7.
Based on statistical knowledge, the expectation of formula 15 is

E2 = E(St)

= (M − 1)δ2 +
M(P − 1)

P
δ2

(16)

where δ2 has the same meaning as that in formula 9.
Comparing formula 9 with formula 16, we get E2 ≥ PE1 ignoring dependen-

cies between samples when P ≥ 1, which declines input features after normaliza-
tion. Therefore, the variance of training on multiple GPUs raises which results
in performance degradation.

As the variance of Batch Normalization increases, the gradient calculated on
each worker in Parameter Server tends to be unstable. The gradient in multiple-
GPU training update more than that of training on a single GPU. If we use
SGD optimizer, considering a good method namely training on multiple GPUs
with momentum value m, which means the proportion of former gradient in the
training process, according to [13], the momentum update rule is

A = −(1 − m)A +
dL(θ)
dw

(17)

Δw = −ΔAξ = [(1 − m)A +
dL(θ)
dw

]ξ (18)

where A denotes the “accumulation” and dL(θ)
dw is the average gradient of per

training example. From formulas 17 and 18, Δw declines if increasing momen-
tum, which means slowing down the attenuation of weights. This correspondingly
reduces training error on multiple GPUs in the same iteration.

4 Experiments

4.1 Experiment Setup

In order to explore the impact of the batchsize and the number of GPUs on the
experimental results in the parameter server architecture, we mainly set up the
experiments using MXNet [11], training Resnet50 on the CIFAR-10 dataset to
evaluate the acceleration and effectiveness. To explore the influence of different
batchsizes on the experimental results, we set the batchsize to 32, 64, 128, 256,
512, 1024, and 2048 respectively. At the same time, we explored the impact
of the number of GPUs on the experimental results and use 1, 2, 4, 8, 16,
32 GPUs and test the validation accuracy of CIFAR-10 dataset in the case of

34 Y. Tang et al.

different batchsizes and GPU numbers. Finally we presented our experiments in
the following subsections. For the sake of convenience, in Fig. 1 we didn’t show
the validation accuracy when batchsize is 32 and the number of GPUs is 32, for
the validation accuracy is 0.199.

4.2 SGD

We show our experiment results in Fig. 1. These values are also showed in Table 2
in Appendix A.

Batchsize. We set momentum 0.9 and adopt linear scaling rule [14]: when the
mini-batch size is multiplied by k, multiply the learning rate by k. The learning
rates corresponding to different batchsize are displayed in Table 1.

Table 1. The learning rates corresponding to different batchsizes

Batchsize Learning rate

32 0.0125

64 0.025

128 0.05

256 0.1

512 0.2

1024 0.4

2048 0.8

In distributed training, the choice of batchsize is critical. According to our
experiment, when batchsize is 32 and 32 GPUs are used, the validation accuracy
is 0.199, which means that in distributed training such a small batchsize can’t
make the training process converge. There are 8 hosts in this case. The batchsize
on each host is 4, which is relatively small and prevents it from convergence. From
Fig. 1, we get a downtrend when the batchsize is rising. When the batchsize
exceeds 512, the effect of increasing the batchsize on the experimental results is
small, and the maximum drop is 0.008 (16 GPUs).

GPU. Multi-GPU training is a common way in distributed training. As the
number of GPUs increases, the time for distributed training decreases corre-
spondingly. Theoretically, the linear acceleration ratio can be obtained.

When the number is 1, 2, 4, we only use one single host. According to Fig. 1,
within a single host, the GPU number from 1 to 4, the accuracy difference is
relatively small, among which the maximum is 0.018 (batchsize 512: 0.925 and
0.907 respectively; batchsize 1024: 0.927 and 0.909 respectively). When using
multiple GPUs, especially 32 GPUs, the accuracy can drop by 0.069 (batchsize
64) on the condition that only considering the training process is convergent.
Because it is not convergent when the batchsize is 32 using 32 GPUs.

Rise the Momentum: A Method for Reducing the Training Error 35

Fig. 1. Utilizing SGD, validation accuracy of Resnet50 on CIFAR-10 of different batch-
sizes on multiple GPUs in Parameter Server. In these experiments, all hyperparameters
except batchsize and the number of GPUs are set default.

Momentum. We discussed the increasing of GPU number in Parameter Server
caused the decline of training accuracy when the batchsize remains constant
before. In order to improve the accuracy of this situation, we increased the
momentum [15], and compare the improvement of different momentums given a
large batchsize of 1024. The results are shown in Fig. 2.

Fig. 2. Validation accuracy of different momentums on multiple GPUs. In these experi-
ments, we set the momentum values 0.9, 0.95, 0.975 and 0.99 respectively. (Color figure
online)

36 Y. Tang et al.

From Fig. 2, when the batchsize is 1024 and the momentum is 0.9, the final
validation accuracy is 0.927 on 1 GPU while it drops to 0.876 on 32 GPUs
(green line). When the momentum is 0.95, the validation accuracy is 0.93 and
0.892 on 1 GPU and 32 GPU, respectively(red line). It increases by 0.003 and
0.016 compared with that when the momentum is 0.9.

When the momentum increases to 0.99, the accuracy is 0.904 on 1 GPU and
0.907 on 32 GPUs (purple line). Compared with the green line (momentum is
0.9), accuracy drops by 0.026 on 1 GPU but increases 0.031 on 32 GPUs. From
the curve trend in Fig. 2, it can be analyzed that increasing the momentum
factor can effectively alleviate the accuracy degradation caused by the increase
in the number of GPUs in the parameter server architecture, but the lifting
effect is obvious for multi-GPU scenarios. However when the number of GPUs
is small (less than 4), the effect is not obvious, and even leads to performance
degradation.

4.3 Adam

To investigate the influence of increasing momentum, we also conduct experi-
ments by increasing one of the momentum-like factors, β1, in Adam algorithm,
which could be regarded as increasing momentum in SGD. Regularly, β1 and β2

are set 0.9 and 0.999 respectively. We display our results of Resnet50 on CIFAR-
10 in Fig. 3. These result values are also showed in Table 3 in Appendix B.

Fig. 3. Utilizing Adam, validation accuracy of Resnet50 on CIFAR-10 of different
batchsizes on multiple GPUs in Parameter Server. The hyperparameters are set the
same as those in the former SGD experiments.

Besides, we increase β1 from 0.9 to 0.95, 0.975, 0.99 to explore its influence in
distributed training given a large batchsize. We compare different β1 values when

Rise the Momentum: A Method for Reducing the Training Error 37

Fig. 4. Validation accuracy of different
β1 values in Adam method on multiple
GPUs given batchsize = 1024

Fig. 5. Validation accuracy of different
β1 values in Adam method on multiple
GPUs given batchsize = 2048

Fig. 6. Utilizing NAG, validation accuracy of Resnet50 on CIFAR-10 of different batch-
sizes on multiple GPUs in Parameter Server. The hyperparameters are set the same as
those in the former SGD and Adam experiments.

batchsize is 1024 and 2048. From Figs. 4 and 5, we can identity that increasing β1

can improve performance in distributed training. However, these improvements
are not obvious in Adam method.

4.4 NAG

In Fig. 6, we show the validation accuracy of batchsize 1024 with different
momentums, 0.9, 0.95, 0.975, 0.99. From Fig. 6, we find that in distributed train-
ing using more GPUs, the validation accuracy drops when momentum is 0.9, 0.95
and 0.975. When momentum is 0.99, the validation accuracy improves. Larger
momentum alleviate the negative influence better.

38 Y. Tang et al.

4.5 Warm-Up Strategy

In addition to increasing momentum to improve training performance, we also
adopt the warm-up strategy. The learning rate follows the linear strategy and the
number of warm-up epoch is 5. We display the experimental results of batchsize
1024 and different momentum values, as shown in Fig. 7. From Fig. 7, in the
case of 32 GPUs, the validation accuracy raises from 0.695 to 0.816 when the
momentum changes from 0.9 to 0.99, increasing by 0.125.

Fig. 7. Validation accuracy of different momentums on multiple GPUs with Warm-up

5 Conclusion

In this paper, we explored the impact of batchsize and the number of GPU on
performance in distributed training. Using the parameter server as the basic
architecture, we trained Resnet50 on the CIFAR-10 dataset. According to the
experimental results, we found, to some degree, that we could increase the effi-
ciency of distributed training and reduce the training time by increasing the
batch size and increasing the number of GPUs. When increasing the number
of GPUs to achieve distributed training, on one hand, increase the batchsize to
ensure training convergence. On the other hand, we conclude that, for SGD-
like optimizers, increase the momentum-like factors to alleviate the performance
loss caused by the increase of the number of GPUs in distributed training or
even improve the accuracy. Increasing momentum-like factors not only benefit
for first-optimizers such as SGD, but also good for second-order optimizers, such
as Adam and NAG. Besides, warm-up strategy is not a good way to improve
distributed training. We tried other ways, such as Layer Normalization [28], and
found Layer Normalization is unable to train convergence.

Rise the Momentum: A Method for Reducing the Training Error 39

Acknowledgement. This work is sponsored in part by the National Key R&D Pro-
gram of China under Grant No. 2018YFB2101100 and the National Natural Science
Foundation of China under Grant No. 61932001 and 61872376.

A Appendix A

Table 2. SGD’s results of Resnet50 on CIFAR-10 of different batchsizes on multiple
GPUs in Parameter Server

Batchsize 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs

32 0.928 0.923 0.917 0.91 0.917 0.199

64 0.928 0.924 0.916 0.908 0.891 0.839

128 0.923 0.924 0.917 0.906 0.896 0.87

256 0.926 0.914 0.913 0.901 0.891 0.878

512 0.925 0.917 0.907 0.901 0.893 0.88

1024 0.927 0.916 0.909 0.899 0.893 0.876

2048 0.923 0.919 0.906 0.901 0.885 0.872

B Appendix B

Table 3. Adam’s Results of Resnet50 on CIFAR-10 of different batchsizes on multiple
GPUs in Parameter Server

Batchsize 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs

32 0.807 0.839 0.864 0.894 0.898 0.432

64 0.734 0.802 0.845 0.885 0.908 0.901

128 0.665 0.765 0.816 0.869 0.897 0.922

256 0.547 0.665 0.757 0.848 0.886 0.91

512 0.492 0.583 0.562 0.794 0.871 0.902

1024 0.399 0.329 0.361 0.578 0.847 0.883

2048 0.173 0.177 0.103 0.353 0.675 0.768

References

1. Li, D., et al.:HPDL: towards a general framework for high-performance distributed
deep learning. In: Proceedings of 39th IEEE International Conference on Dis-
tributed Computing Systems (IEEE ICDCS) (2019)

2. Szegedy, C., Ioffe, S., Vanhoucke, V., et al.: Inception-v4, Inception-ResNet and
the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)

3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv
preprint (2016)

40 Y. Tang et al.

4. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

5. Huang, G., Liu, Z., Weinberger, K.Q., et al.: Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, vol. 1, no. 2, p. 3 (2017)

6. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.: SSD: single shot
multibox detector. arXiv:1512.02325v2 (2015)

7. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

8. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully
convolutional networks. In: NIPS, pp. 379–387 (2016)

9. Qin, Z., Zhang, Z., Chen, X., et al.: FD-MobileNet: improved MobileNet with a
fast downsampling strategy. arXiv preprint arXiv:1802.03750 (2018)

10. Li, M., et al.: Scaling distributed machine learning with the parameter server. In:
Proceedings of OSDI, pp. 583–598 (2014)

11. Chen, T., et al.: MXNet: a flexible and efficient machine learning library for het-
erogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

12. Smith, S.L., Le, Q.V.: A Bayesian perspective on generalization and stochastic
gradient descent. arXiv preprint arXiv:1710.06451 (2017)

13. Smith, S.L., Kindermans, P.-J., Le, Q.V.: Don’t decay the learning rate, increase
the batch size. arXiv preprint arXiv:1711.00489 (2017)

14. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997 [cs.NE] (2014)

15. Nitish, S.K., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836 (2016)

16. Goyal, P.,: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677 (2017)

17. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

19. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task net-
work cascades. arXiv:1512.04412 (2015)

20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: Proceedings of 32nd International Conference
on Machine Learning, ICML15, pp. 448–456 (2015)

21. Masters, D., Luschi, C.: Revising small batch training for deep neural networks.
arXiv preprint arXiv:1804.07612 (2018)

22. You, Y., Gitman, I., Ginsburg, B.: Scaling SGD batch size to 32k for ImageNet
training. arXiv preprint arXiv:1708.03888 (2017a)

23. Akiba, T., Suzuki, S., Fukuda, K.: Extremely large minibatch SGD: training
ResNet-50 on ImageNet in 15 minutes. arXiv preprint arXiv:1711.04325 (2017)

24. Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y.: Entropy-SGD: biasing
gradient descent into wide valleys. arXiv preprint arXiv:1611.01838 (2016)

25. You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., Keutzer, K.: ImageNet training in
minutes. CoRR, abs/1709.05011 (2017)

http://arxiv.org/abs/1512.02325v2
http://arxiv.org/abs/1802.03750
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1710.06451
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1512.04412
http://arxiv.org/abs/1804.07612
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1711.04325
http://arxiv.org/abs/1611.01838

Rise the Momentum: A Method for Reducing the Training Error 41

26. Balles, L., Romero, J., Hennig, P.: Coupling adaptive batch sizes with learning
rates. arXiv preprint arXiv:1612.05086 (2016)

27. Li, Q., Tai, C., Weinan, E.: Stochastic modified equations and adaptive stochastic
gradient algorithms. arXiv preprint arXiv:1511.06251 (2017)

28. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 [stat.ML] (2016)

29. Chen, J., Pan, X., Monga, R., Bengio, S., Jozefowicz, R.: Revisiting distributed
synchronous SGD. arXiv preprint arXiv:1604.00981 [cs.LG] (2016)

30. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine
learning. arXiv preprint arXiv:1606.04838 [stat.ML] (2016)

31. Jastrzȩbski, S., et al.: Three factors influencing minima in SGD. arXiv preprint
arXiv:1711.04623 [cs.LG] (2017)

32. Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for
nonconvex stochastic composite optimization. Math. Program. 155(1–2), 267–305
(2014)

33. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
34. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop, coursera: neural networks for

machine learning. University of Toronto, Technical report (2012)
35. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning

and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121–2159 (2011)
36. Nesterov, Y.: A method for unconstrained convex minimization problem with the

rate of convergence o(1/k2). Doklady ANSSSR (Transl. Soviet. Math. Docl.), 269,
543–547 (1983)

37. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural
Netw.: Off. J. Int. Neural Netw. Soc. 12(1), 145–151 (1999)

38. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 [cs.LG] (2017)

http://arxiv.org/abs/1612.05086
http://arxiv.org/abs/1511.06251
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1606.04838
http://arxiv.org/abs/1711.04623
http://arxiv.org/abs/1609.04747

Pimiento: A Vertex-Centric
Graph-Processing Framework

on a Single Machine

Jianqiang Huang1,2, Wei Qin1, Xiaoying Wang2, and Wenguang Chen1,2(B)

1 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

{hjq16,tanw16}@mails.tsinghua.edu.cn, cwg@tsinghua.edu.cn
2 Department of Computer Technology and Applications, Qinghai University,

Xining 810016, China
Wangxiaofu163@163.com

Abstract. Here, we describe a method for handling large graphs with
data sizes exceeding memory capacity using minimal hardware resources.
This method (called Pimiento) is a vertex-centric graph-processing
framework on a single machine and represents a semi-external graph-
computing system, where all vertices are stored in memory, and all
edges are stored externally in compressed sparse row data-storage for-
mat. Pimiento uses a multi-core CPU, memory, and multi-threaded data
preprocessing to optimize disk I/O in order to reduce random-access
overhead in the graph-algorithm implementation process. An on-the-fly
update-accumulated mechanism was designed to reduce the time that
the graph algorithm accesses disks during execution. Our experiments
compared external this method with other graph-processing systems,
including GraphChi, X-Stream, and FlashGraph, revealing that Pimiento
achieved 7.5×, 4×, 1.6× better performance on large real-world graphs
and synthetic graphs in the same experimental environment.

Keywords: Vertex-centric · Graph processing · Semi-external ·
Passing message · Asynchronous update accumulation

1 Introduction

With the rapid development of the internet and the big-data era, there is a need
to analyze large volumes of data. As an abstract data structure, graphs are used
by many applications to represent large-scale data in real scenarios, and graph
data structures are used to describe the relationships among data, such as mining
relationships in social networks, goods recommendations in e-commerce systems,
and analysis of the impact of traffic accidents on road networks. Additionally,
many types of unstructured data are often transformed into graphs for post-
processing and analysis. Research into large-scale graph-processing has increased
in both academia and industry, and recently, numerous systems and state-of-the
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 42–56, 2020.
https://doi.org/10.1007/978-3-030-38961-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_5

Pimiento: A Vertex-Centric Graph-Processing Framework 43

art techniques for graph processing have emerged, including distributed systems
and heterogeneous systems. Such systems present new computing models or
highlight the design of high-performance runtime systems used to adapt to the
features of graph data, such as its large scale, ability to dynamically change, and
its high efficiency when processing big graph data.

Examples of these systems include distributed graph-computing systems,
such as pregel [1], GraphLab [2], PowerGraph [3], and Gemini [4], which can
theoretically deal with any large-scale graph data by deploying clusters with
good extensibility and computational efficiency; however, there remain prob-
lems, including maintenance of load balance between nodes and communication
latency.

Other systems include single graph computing system, such as GraphChi [5],
X-Stream [6], FlashGraph [12], GridGraph [8], and other external graph-
processing systems [7,9–11,13,14,22], which can reduce random disk-read and
disk-write operations, avoid high communication overhead, and use paralleliza-
tion technology to fully exploit multi-core computing resources to address large-
scale graph data. Compared with distributed systems, these exhibit lower hard-
ware cost and power consumption.

GraphChi is a single graph-computing system using a vertex-centric calcu-
lation model and multi-threaded parallel computing to improve computing per-
formance. It utilizes parallel sliding-window (PSW) [5] technology to reduce
random access to the disk and supports asynchronous computations. GraphChi
processes graphs in three stages: (1) loading graph data from the disk to mem-
ory, (2) updating the values of vertices and edges, and (3) writing updates to
disk.

GraphChi exhibits good platform usability and computing performance; how-
ever, its preprocessing requires sorting of the source vertex of the edges, which
is costly. Moreover, computing processes and disk I/O access are executed in
serial, and the parallelism between disk I/O and the CPU is not fully utilized to
overlap computing and I/O in order to further improve computing performance.
By contrast, X-Stream uses an edge-centric computing model, where all states
are stored in the vertex.

To address these issues, we propose Pimiento, a vertex-centric graph-
processing framework that combines asynchronization with efficiency. The out-
line of our paper is as follows: Sect. 2 introduces disk-based graph-computation
challenges, describes system design and implementation in Sect. 3, Sect. 4
describes evaluation of Pimiento on large problems (graphs with billions of edges)
using a set of algorithms, such as single source shortest path (SSSP), PageRank,
and breadth-first search (BFS).

The main contributions of this paper are as follows:

– We describe the use of a vertex-centric computing model with effective
graph-storage structure that adopts an innovative asynchronous update-
accumulation mechanism. This enables update and repeat visits to any vertex
to occur in memory in order to avoid a large number of random I/O and repeat
I/O operations generated by frequent updates and reads of disk data.

44 J. Huang et al.

– Pimiento implements a semi-external asynchronous graph-processing frame-
work to maximize on-the-fly updates via thread optimization of computing
and I/O, thereby reduced access to I/O data.

– Our evaluation showed that Pimiento outperformed current state-of-the-art
techniques.

2 Disk-Based Graph Computation

A graph is a data structure that describes the complex relationship between
data and comprises vertices and edges usually expressed as G = (V,E), where
the vertex set, V , represents an object or entity, and the edge set, E, represents
the relationship between objects or entities. Each vertex v ∈ V will have a vertex
value. Given a directed edge from vertex u to vertex v, e = (u, v), e is the in-
edges of v and the out-edges of u, where u represents the in-vertex of v, and v
represents the out-vertex of u.

In a vertex-centric calculation model for iterative calculations, the value of
each update vertex usually involves only the input vertex value. Once a ver-
tex value is updated, a new message is sent to the output side, and the value
of the output side is updated. This dynamic update of the iterative process is
terminated when a convergence condition is satisfied. As framework [5] shows,
a vertex-centric calculation model can address a broad range of problems. The
method proposed in this paper is based on asynchronous calculations using a
vertex-centric value-calculation model. Combined with the on-the-fly accumula-
tion of the update mechanism, it promotes an effective graph-storage and calcu-
lation models. Based on the effective management of graph data, it can minimize
disk data traffic and make full use of the parallel update of memory and CPU
resources in order to improve computational efficiency.

2.1 Maintaining Specification Integrity

We divided vertex set V of graph into P intersecting intervals (see Fig. 1(b)).
Each interval correlates with a shard that contains information needed to update
the vertex calculation. As a result of the asynchrony of cumulative iterative
computations, the graph partition has little effect on performance. This method
only supports hash or range partitions based on a graph vertex number.

The system described by Pearce et al. [19] uses a CSR storage format to store
the graph on a disk and is equivalent to storing the graph as an adjacency table,
where the edges in each edge shard are sorted according to a source vertex. We
call these edge data, which are stored continuously in contiguous blocks on the
disk.

Suppose that the vertex set in Fig. 1(a) is divided into three intervals (inter-
val1 = [1, 2], interval2 = [3, 4], and interval3 = [5, 6]), each of which is associated
with a shard, including the edge-and vertex shards. All Vertex shards will cas-
cade into a vertex table in order to initialize the vertex information, and all edge

Pimiento: A Vertex-Centric Graph-Processing Framework 45

2

3

1

4

5

6

(a) Example graph

Interval(1) Interval(2) Interval(P)

|V|

Edge
shard(1)

Edge
shard(2)

Edge
shard(P)

1 V1 V2

Vertex
shard(1)

Vertex
shard(P)

Vertex
shard(2)

(b) Intervals and shards

Fig. 1. Intervals and shards in the graph.

shards will cascade into an edge data stream in order to flow updates to the
vertex information.

This graph-storage structure addresses the following three problems:

– To improve the parallelism of single-machine graph calculation, the graph-
storage structure of the shard is used to render each executing thread respon-
sible for one or more shards for parallel calculation;

– Because random access is more than an order of magnitude slower than
sequential access to a disk, and given that the number of vertices in real-
world graph data is smaller than the number of edges, we used memory for
constant iterative updates of vertex data and secondary storage for edge lists
in order to make full use of the random read-write capability of memory and
the large capacity of secondary storage;

– To avoid secondary storage of random I/O, we organized edge data to ensure
that access to graph data involves sequential I/O.

2.2 Computational Model

In incremental iterative calculations, graph data include read-only data by con-
stantly updating vertex value V , as the vertex value of the cumulative value ΔV .
We found that ΔV is involved in the update of adjacent vertices and will usually
be accessed many times. I/O represents a bottleneck to disk-based methods, and
in order to avoid frequent updates and reads of disk V and ΔV , thereby caus-
ing repeated random I/O and I/O, read-only edge data are detached from the
variable-peak value of V and ΔV , and the read-only edge data are continuously
stored on the edge shard disk.

We combined the cumulative iterative computations and the cache of all of
the vertices values for V and ΔV into the memory. Because the space occupied
by vertices values V and ΔV are less than the space occupied by the edge
data, the memory capacity of the modern computer can meet the requirements.
Pimiento uses flow calculation, and the space occupied by the edge list in memory

46 J. Huang et al.

is dynamically balanced and controllable, which also proves the desirability of
caching vertex data into memory. Due to the cumulative nature of the algorithm,
the updates and access to peak value V and ΔV can be performed in memory.
At this point, updating each interval requires only one sequential scan of the
corresponding read-only edge list to minimize the I/O overhead of graph data
access.

This paper is based on the traditional incremental iteration theory [15] and
presents a graph-computing model in a parallel environment for application
for stand-alone large graph data processing. The parallel-computing model is
adopted in the framework of general graph computing, where each execution
thread is responsible for one or more shards, as well as each subdivision, includ-
ing the vertex shard and a corresponding edge shard. Additionally, smaller ver-
tex shards are loaded into memory to support frequent updates, and larger edge
shards are placed on the disk to save memory.

The computing framework of the diagram is shown in Fig. 2. During the
implementation process of the iterative calculation, each execution thread reads
the edge information sequentially from disk and updates the neighbor vertex
state based on the state of vertices V and ΔV in the local Vertex shard. The
communication between threads involves passing ΔV . There are two main over-
heads in this model: I/O overhead for reading graph data from the disk and the
overhead of interthread communication. This computing model uses cumulative
iterative computation to greatly reduce these two overhead issues.

Fig. 2. Memory and secondary storage in the graph

2.3 Update Scheme

Algorithm 1 describes the implementation of the cumulative iterative-computing
model in a single-machine parallel-computing environment. First, edge data is
sequentially read for any vertex i, from edge shard data from the disk, and the
information record of this vertex, i (Vi and ΔVi), in the memory vertex shard
is positioned according to the source vertex number of the edge data. When the
vertex, i, edge data is loaded into memory, the algorithm determines whether

Pimiento: A Vertex-Centric Graph-Processing Framework 47

the vertex information is a valid change (i.e., whether ΔVi indicates 0) for the
effective information (ΔVi �= 0). First Algorithm 1: pseudo-code of the vertex
update function for weighted PageRank.

Algorithm 1 :Pseudo-code of the vertex update function for weighted PageR-
ank.
Input: All intervals vertex-shards and edge-shards of graph G, optional initialization

data.
Output: Desired output results.
1: function Update(vertex)
2: Initialize(vertex-shards);
3: repeat
4: v[i] ← read values of out-edges of vertex i ;
5: vertex.value ← f(v[i]) ;
6: if Δf(v[i]) = 0 then f(v[i]) ← Δf(v[i])+ f(v[i]) ;
7: for each edge of vertex do
8: edge.value ← f(vertex.value, edge.value));
9: Δf(v[i]) ← 0 ;
10: end for
11: end if
12: until
13: PassingMessage(vertex) ;
14: remove outgoing edges of i
15: end function

Accumulate ΔVi to vertex i and perform an update operation to use the
update of ΔVj of the neighbor vertex, j, followed by resetting the change of
information in vertex i. When the operation on vertex i is completed, the edge
data of vertex i is deleted from memory to free memory space for other uncom-
puted vertex edge data. This activity is repeated until the algorithm converges.

Table 1. Notations of a graph

Notation Meaning

G A graph G = (V, E)

V Vertices in G

E Edges in G

n Number of vertices in G, n = [V]

m Number of edges in G, m = [E]

P Number of intervals

Ba Size of a vertex attribute in bytes

Bv Size of a vertex id in bytes

Be Size of an edge in bytes

BM Size of available memory budget in bytes

B Size of a disk block accessed by an I/O unit

48 J. Huang et al.

2.4 Analysis of the I/O Costs

During an iteration, GraphChi [5] processes each shard in three steps: (1) load
the sub-graph from the disk; (2) update the vertex and edge values; and (3)
write the updated values to the disk. In steps 1 and 3, each vertex is loaded and
written back to the disk once, and the nBv data volume is read and written.
For each edge data, in the worst case, each edge is accessed twice (once in each
direction). The amount of data 2m(Bv +Be) will be read in step 1, the updated
edge value will be calculated in step 2, and the amount of data 2m(Bv + Be)
will also be written in step 3. During the entire calculation, the total amount of
data in GraphChi read and written is 2m(Bv +Be)+nBv. During each iteration,
PSW [5] generates P 2 random reads and writes, whereas in during the entire
calculation process, the number of I/O read and write events for the PSW is
(2m(Bv + Be)+nBv)/B+P 2, Table 1 shows the Notations of a graph.

In X-Stream [6], an iteration is divided into: (1) a mixed scatter/shuffle phase
and (2) a gather phase. In phase 1, the X-Stream loads all vertex and edge data,
updates each edge, and writes the updated edge data back to disk. Because the
edge data after update are used to pass values between adjacent vertices, we
assume that the size of an updated piece of edge data is Be; therefore, for phase
1, the amount of data read is nBv + mBe, and the amount of data written is
mBe. In phase 2, the X-Stream loads all updated edge data and updates each
vertex; therefore, for phase 2, the amount of data read is nBv and the amount
of data written is nBv. Therefore, for an iterative-calculation process, the total
amount of data read by X-Stream is (Bv + Be)m + nBv, the total data amount
written is nBv + mBe, the number of I/O reads is (m(Bv + Be) + nBv)/B, and
the number of I/O writes is nBv/B + mBvlog

P/B
Bm/B.

In FlashGraph [12], during the entire computation process, the number of
I/O reads by Pimiento is (mBe + nPBv)/B, and the number of I/O writes is
nBv/B.

In Pimiento, the entire computation process loads all of the vertex shares
once. During each iteration, all edge shares are loaded from disk in turn, and the
entire computation process requires reading the amount of data (mBe + nBa).
After the computation, the vertex data value will be written back to disk, and
the amount of data in nBv needs to be written. Note that the edge shard is
read-only. To analyze the I/O cost, we use B to represent the size of the disk
block accessed by an I/O unit. According to a previous report, B is 1MB on
the SSD. During the entire computation process, the number of I/O reads by
Pimiento is (mBe + nBa)/B, and the number of I/O writes is nBa/B.

3 System Design and Implementation

Based on the asynchronous incremental-update model, we implemented the
Pimiento system with C++. Pimiento divides each graph-processing task into
three steps:

Pimiento: A Vertex-Centric Graph-Processing Framework 49

– Graph data shard and vertex information in memory are initialized;
– Stream-load edge data into memory, update vertex information, and clear

edge data in order to free memory;
– Write the final result in memory back to disk.

Optimization techniques implemented in this paper include: I/O thread opti-
mization, memory resource monitoring, and automatic switching of memory-
external memory computing.

3.1 I/O Thread Optimization

Pimiento initiates parallel processing by executing threads that need to read
edge data on the edge shard before they can perform subsequent vertex updates,
which results in a lot of I/O. Because there is no synchronization between execu-
tion threads, computation and update speeds are very fast. However, it is often
necessary to wait for the end of the I/O operation; therefore, I/O represents the
Pimiento performance bottleneck.

A thread execution includes an I/O operation and an update operation. The
I/O operation loads edge data into memory, and the update operation updates
the vertex using edge data. However, this binds the I/O operation to the update
operation in a thread of execution. In this case, I/O operations and update
operations are synchronized more frequently, resulting in lower I/O throughput
and CPU-resource utilization.

To address these problems, Pimiento separates the I/O operation from the
update operation, creating multiple update threads responsible for each vertex-
update operation while creating multiple I/O threads responsible for loading
edge data into memory, thereby more reasonably allocating I/O and computing
resources. However, if there are too many I/O threads relative to update threads,
there will be too much cache data, and the update thread will not be able to
execute, which will cause the cache to rapidly expand and fill memory. If the
I/O thread is too small relative to the update thread, the update thread will
execute too quickly while the I/O thread will be too small to keep up with the
influx of data, resulting in an idle update thread while it waits for I/O.

To avoid these situations, Pimiento allows users to set the I/O- and update
thread allocations according to resource and application features in order to use
a memory monitoring strategy to ensure balance between the update and I/O
threads to maintain saturation of I/O and CPU resources and maximize system
performance.

3.2 Memory Resource Monitoring

In Pimiento, the I/O thread reads edge data and caches it in memory while and
the update thread digests the edge data to update the graph vertex state, after
which memory is freed when graph edge data is used. Because the I/O thread
executes in parallel with the update thread, the I/O operation is not controlled
by the update thread, which could result in a mismatch between the throughput

50 J. Huang et al.

of the graph edge data in during update thread processing and throughput of
the graph edge data during I/O thread reading. If I/O throughput is too fast,
this will result in increased caching of edge data loaded from disk into memory,
which will eventually lead to memory overflow. If I/O throughput is too slow,
this will result in the update thread remaining in a waiting state, leading to
CPU-resource waste.

To address this problem, Pimiento uses a memory resource-monitoring thread
to monitor memory usage. When memory for cached data is running low, the
monitoring thread signals individual I/O threads to block I/O threads to prevent
edge data loading in order to wait for the update thread to process the edge data
and release memory. When the monitoring thread detects that memory overflow
is no longer a possibility, it signals the individual I/O threads to continue loading
edge data. The memory resource-monitoring strategy increases Pimiento mem-
ory efficiency, maximizes memory utilization to improve computing speed, and
avoids memory overflow. The memory monitoring thread perfectly coordinates
the update thread with the I/O thread, making the system more robust and
coordinated while performing parallel computations and disk I/O operations.

4 Experimental Evaluation

We implemented and evaluated a wide range of applications in order to demon-
strate the applicability of Pimiento to multi-domain problems. Despite the
restrictive external memory setting, Pimiento retains the expressivity of other
external graph-processing frameworks.

4.1 Test Setup

All experiments used a commercial server equipped with an e5-2670@v3 proces-
sor, which has two sockets running at 2.3 GHz, 32 MB L3 cache, with 12 cores
per socket, and a disabled CPU hyper-threading feature. The commercial server
was equipped with 32 Gbyte of memory and 1 Tbyte of disk (SSD), and the
operating system was 64-bit Ubuntu 14.04 LTS. We evaluated Pimiento using
the applications described in Section and analyzed its performance on a selection
of large graphs (Table 2).

Table 2. Real-world and synthetic graphs data used in the experiments

Dataset Twitter [16] UK-2007 [17] Rmat27 [18]

Vertex num 41.6M 134M 128M

Edge num 1.5B 5.5B 2B

Avg deg 35.3 41.2 16

Max outdeg 770K 22.4K 123K

Size 25 GB 93GB 32GB

Pimiento: A Vertex-Centric Graph-Processing Framework 51

Fig. 3. Comparison of execution time when performing PageRank, SSSP and BFS over
different data sets.

52 J. Huang et al.

4.2 Comparison with Other Systems

4.2.1 Propagation-Based Algorithms

First, we evaluated graph-propagation-based traversal, such as that using
BFS and SSSP. Figure 3 shows that Pimiento performed better on SSD than
GraphChi and X-Stream. Compared with GraphChi, X-Stream, and FlashGraph
on Twitter, Uk-2007, and Rmat27, respectively, Pimiento was 1.6 times to 7.5
times faster. There are mainly two reasons for the acceleration:

– Pimiento reads edge data sequentially from disk, thereby reducing random
access to the disk

– Pimiento can reduce the amount of data written back to disk, effectively
avoiding a data race.

4.2.2 Iteration-Based Algorithms

We then evaluated graph iteration-based algorithms, such as PageRank, and
confirmed that PageRank is representative of a cumulative algorithm. When
computing a PageRank value, each vertex should first collect all values from
its source vertices in order to compute a sum. Pimiento uses a vertex-centric
on-the-fly update model.

We compared four systems: Pimiento, GraphChi, X-Stream, and FlashGraph.
In each iteration, the graph-processing system computed the new PageRank
value for each vertex and selects the largest one. The iteration stops when the
maximum PageRank value reaches a stable state (i.e., when the maximum change
in PageRank value between iterations is less than the threshold value, computing
is assumed to have converged and ends).

As shown in Fig. 3, Pimiento performed better on different data sets than
GraphChi, X-Stream, and FlashGraph. Because Pimiento uses sequential disk
access, it is multi-fold faster than GraphChi and X-Stream. Specifically, Pimiento
is 2.3 times faster than GraphChi and 1.5 times faster than X-Stream on a
Twitter dataset. The primary reason for this is that values of all vertices are
sent to destination vertices along outer edges for cumulative updates, and there
is no need to write the values of destination vertices back to disk. To evaluate
the improved performance of Pimiento, we analyzed the total amount of I/O
performed by the BFS, SSSP, and PageRank algorithms on different graphs (see
Fig. 4). Specifically, compared with GraphChi, S-Stream, and FlashGraph, the
I/O-data volume of Twitter, Uk-2007, and Rmat27 was reduced by a range of
30% to 98%, because the status values of all vertices were updated instantly,
precluding the need to write the vertex state back to disk.

4.3 Optimization of the Update- and I/O Thread Proportions

When using SSD, we open multiple I/O threads in order to increase the storage
capacity of data reading and computational efficiency. To explore the effect of

Pimiento: A Vertex-Centric Graph-Processing Framework 53

Fig. 4. Comparison of overall I/O data amount when performing PageRank, SSSP and
BFS over different data sets.

54 J. Huang et al.

the update- and I/O thread number selection on the performance of Pimiento,
we compared the convergence speed of Pimiento in executing the iteration algo-
rithm under different proportions of update and I/O threads. Figure 5 shows the
average time for PageRank to converge relative to Pimiento, revealing that the
convergence speed first increased and then decreased after peaking at a propor-
tion of 4:1.

Our analyses showed that when the I/O thread was busier that the update
thread, too much cache-structure data would require processing, precluding exe-
cution of the update thread. However, if the amount of data going to the I/O
thread was less than that to the update thread, the update thread would execute
too rapidly while the I/O would need to starve in order to maintain pace with
the data input. These two situations would result in the output described in
Fig. 5, which should be avoided.

Fig. 5. Update and I/O threads proportion

5 Related Work

Here, we proposed improvements in single-computer-processing power and stor-
age capacity using a graph-processing model. Such systems demonstrate ade-
quate graph-processing performance, and compared with distributed systems,
their obvious advantages include low hardware cost and low power consump-
tion.

TurboGraph [9] makes full use of multi-core concurrency and the I/O per-
formance of Flash SSD [20] to parallelize CPU processing and I/O processing in
order to support rapid graph data storage. VENUS [14] is a point-centric stream-
lining graph-processing model that introduces a more efficient model for storing
and accessing disk graph data using a cache strategy. FlashGraph [12] is a single-
machine graph-processing system that can handle trillions of nodes on a solid-
state hard-disk array while providing a dynamic load balancer to solve CPU-idle

Pimiento: A Vertex-Centric Graph-Processing Framework 55

results from uneven computing tasks. GridGraph [21] supports selective schedul-
ing, which can greatly reduce I/O and improve computing performance in algo-
rithms, such as BFS and weakly connected components. NXgraph [13] provides
three update strategies: (1) sort by the target vertex of each sub-shard edge; (2)
based on the size of the graph and the available memory resources, the fastest
execution strategy for different graph problems is adaptively selected to take full
advantage of memory space and reduce data transmission; and (3) to solve the
problem of large graphs fully loaded into memory, a previous study described
the design of a disk-based single graph-processing platform using MMap [10] in
Linux memory management. MMap maps a file or other pair to memory, where
a process can access the file just as it accesses a normal memory without using
operations, such as read() and write().

6 Conclusions

There currently numerous studies focused on addressing large graph-processing
problems using high-performance single-server systems. The existing single-
server graph-processing system has limitations, including poor locality, heavy
synchronization cost, and frequent I/O access. Our study compared out-of-
core graph-computing systems, including GraphChi, X-Stream, and FlashGraph,
with Pimiento, revealing that Pimiento achieved 7.5×, 4×, 1.6× better perfor-
mance on large real-world graphs and synthetic graphs in the same experimental
environment.

Acknowlegements. This paper is partially supported by “QingHai Province High-
end Innovative Thousand Talents Program-Leading Talents”, The National Natural
Science Foundation of China (No. 61762074, No.61962051), The Open Project of State
Key Laboratory of Plateau Ecology and Agriculture, Qinghai University (No. 2020-ZZ-
03), and National Natural Science Foundation of Qinghai Province (No. 2019-ZJ-7034).

References

1. Malewicz, G., et al.: Pregel: a system for large scale graph processing. In: Proceed-
ings of the 2010 International Conference on Management of Data, SIGMOD 2010,
pp. 135–146 (2010)

2. Low, Y., Bickson, D., Gonzalez, J., Kyrola, A., Hellerstein, J.M.: Distributed
GraphLab: a framework for machine learning and data mining in the cloud. In:
Proceedings of the VLDB Endowment, pp. 716–727 (2012)

3. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D.: PowerGraph: distributed graph-
parallel computation on natural graphs. In: Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI 2012, pp. 17–30
(2012)

4. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed
graph processing system. In: Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, pp. 301–316 (2016)

56 J. Huang et al.

5. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph computation on
just a PC. In: Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI 2012, pp. 31–46 (2012)

6. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing
using streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pp. 472–488 (2013)

7. Shao, Z., He, J., Lv, H., Jin, H.: FOG: a fast out-of-core graph processing frame-
work. Int. J. Parallel Prog. 45(6), 1259–1272 (2017)

8. Zhu, X.W., Han, W.T., Chen, W.G.: Grid graph: large-scale graph processing on a
single machine using 2-level hierarchical partitioning. In: Proceedings of the 2015
USENIX Conference on USENIX Annual Technical Conference, pp. 375–386 (2015)

9. Han, W.-S., et al.: TurboGraph: a fast parallel graph engine handling billion-scale
graphs in a single PC. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 77–85 (2013)

10. Lin, Z., Kahng, M., Sabrin, K.M., Chau, D.H.P., Lee, H., Kang, U.: Mmap: fast
billion-scale graph computation on a PC via memory mapping. In: IEEE Interna-
tional Conference on Big Data, IEEE, pp. 159–164 (2014)

11. Yuan, P., Zhang, W., Xie, C., Jin, H., Liu, L., Lee, K.: Fast iterative graph compu-
tation: a path centric approach. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 401–412. IEEE Computer Soci-
ety (2014)

12. Zheng, D., Mhembere, D., Burns, R., Vogelstein, J., Priebe, C.E., Szalay, A.S.:
FlashGraph: processing billion-node graphs on an array of commodity SSDs.
In:13th USENIX Conference on File and Storage Technologies (FAST 2015)
USENIX Association, pp. 45–58 (2015)

13. Chi, Y., Dai, G., Wang, Y., Sun, G., Li, G., Yang, H.: NXgraph: an efficient graph
processing system on a single machine. In: Proceedings of the 32nd International
Conference on Data Engineering, ICDE 2016, pp. 409–420 (2016)

14. Cheng, J., Liu, Q., Li, Z., Fan, W., Lui, J.C.S., He, C.: VENUS: vertex-centric
streamlined graph computation on a single PC. In: Proceedings of the 31nd Inter-
national Conference on Data Engineering, ICDE 2015, pp. 1131–1142 (2015)

15. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Maiter: an asynchronous graph process-
ing framework for delta-based accumulative iterative computation. IEEE Trans.
Parallel Distrib. Syst. 25(8), 2091–2100 (2014)

16. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web,
pp. 591–600 (2010)

17. Boldi, P., Santini, M., Vigna, S.: A large time-aware web graph. SIGIR Forum
42(1), 78–83 (2008)

18. The graph 500 list (2014). http://www.graph500.org/
19. Pearce, R., Gokhale, M., Amato, N.: Multithreaded asynchronous graph traversal

for in-memory and semi-external memory. In: SuperComputing (2010)
20. Badam, A., Pai, V.S.: SSDAlloc: hybrid SSD/RAM memory management made

easy. In: Proceedings of the 8th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, p. 16 (2011)

21. Zhu, X., Han, W., Chen, W.: GridGraph: largescale graph processing on a single
machine using 2-level hierarchical partitioning. Proceedings of the 2015 USENIX
Annual Technical Conference, pp. 375–386 (2015)

22. Vora, K., Xu, G., Gupta, R.: Load the edges you need: a generic I/O optimiza-
tion for disk-based graph processing. In: Proceedings of the 2016 USENIX Annual
Technical Conference, pp. 507–522 (2016)

http://www.graph500.org/

Software Systems and Programming
Models

Parallel Software Testing Sequence
Generation Method Target at Full

Covering Tested Behaviors

Tao Sun(&), Xiaoyun Wan, Wenjie Zhong, Xin Guo, and Ting Zhang

College of Computer Science of Inner Mongolia University,
Hohhot 100021, Inner Mongolia, China

cssunt@imu.edu.cn, 15690582836@163.com,

zhongwenjie@mail.imu.edu.cn, guoxin_2017@163.com,

m15561836616@163.com

Abstract. Parallel software system testing is very difficult because the number
of states expands sharply caused by parallel behaviors. In this paper, a testing
sequence generation method is proposed, target at full covering tested behaviors
and related behaviors over all execution paths. Because of state spaces of par-
allel software systems are often large, this paper focuses on the state space sub-
graph, contained all firing of tested and related behaviors, of system model.
Firstly, the software system is modeled with Colored Petri Net (CPN), called
system model (SM), and every tested behavior or related behavior is modeled
also with CPN, called Behavior Model Unit (BMU). Then, the method proposes
mapping operation, intersection operation, and so on to finally realize the
generation of test sequence. Practices show that this method is efficient, which
could achieve full coverage.

Keywords: Parallel software � Testing sequence generation � Full covering �
Tested behaviors � Colored Petri Net (CPN)

1 Introduction

Many traditional Model-based testing technologies [1, 2] cannot work effectively for
parallel systems with masses of states. Some formal languages, like Finite State
Machine, are not suitable for parallel software modeling. Some languages are suitable
for parallel software modeling, but the state space of the model is not clear. So it is
difficult to achieve full covering testing for tested behaviors all over execution paths.

This paper argues model-based testing for parallel software based on Colored Petri
Net (CPN), because CPN is very suitable for parallel behaviors modeling, and the state
space graph of the model could be calculated automatically. Methods in literature [3–5]
are based on simply searching or traversal for the state space of CPN models, which
will generate many redundant test sequences and the testing efficiency is low. Literature
[6] proposed a test sequence generation method target at full covering sequence of
linear tested behaviors, however, the method has limitation because tested behaviors
must be linear.

In this paper, a testing sequence generation method is proposed, target at full
covering tested behaviors and related behaviors over all execution paths. Firstly, the

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 59–67, 2020.
https://doi.org/10.1007/978-3-030-38961-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_6

software control flow is modeled with CPN. Then the testing purpose is described as
tested behaviors and related behaviors. Tested behaviors we mean behaviors in the
testing purpose, and related behaviors we mean behaviors related to tested behaviors in
data flow. Testing sequences should cover all execution paths including these behav-
iors, so that all execution possible sequences in the software are covered, and we can
know whether tested behaviors are correctly implemented.

Due to the state spaces of parallel software systems are often large, this paper
focuses on the state space sub-graph of SM, which containing all firing of tested
behaviors and related behaviors. The software system modeled with CPN is called
system model (SM), and every tested behavior or related behavior modeled also with
CPN is called Behavior Model Unit (BMU). State spaces of SM and all BMUs are
calculated, the mapping operation between SM and a BMU is proposed, by which the
state space sub-graph of SM containing all firing of the BMU is obtained. The inter-
section operation between these sub-graphs is used, BMUs with intersection are
grouped into the same group, and union sub-graph of overlap sub-graphs in a group are
obtained. Then testing sequences are generated in union sub-graphs, after that, repet-
itive removing operation and testing sequences connecting operation will be used.
Sequences got by this method are fully covering tested behaviors and related behaviors
over all execution paths in the parallel software system. Before this method, initial
marking of SM has been given aiming at tested behaviors and related behaviors, which
is described in our other papers [7].

The rest of this paper is organized as follows. Section 2 gives key definitions of the
method. Section 3 describes sequence generation algorithm. Section 4 describes some
practical applications of the method, and we conclude the paper in the last section.

2 Key Operations

This section presents some key operations in the sequence generation method. The
definition about CPN and marking and state space are as same as common definitions.
CPN model is supported by CPN Tools. There are seven key operations in the method.

Definition 1. Mapping(SM, BMU) operation.
This operation consists of two parts, Projection operation and Get Graph operation

respectively and the result is the state space sub-graph of SM containing all firing of the
BMU, which is written as BMU.mp. This operation should be used on all BMUs.

Projection operation P(SM, BMU). Projection operation is used between SM and a
state M1 in BMU: P(SM, M1) = {m | m 2MSM, 8p 2 PBMU, M1(p) � m(p)}. The set of
states (i.e. markings) in SM is called MSM. The set of places in BMU is called PBMU.
The result of P(SM, M1) is a state set of SM, whose states are all containing the same
tokens in the same places of state M1 in BMU.

Projection operation is used between SM and BMU: P(SM, BMU) = (SMBMUI,
SMBMUE), SMBMUI = P(SM, BMUI), SMBMUE = P(SM, BMUE). P(SM, BMU) returns
(SMBMUI, SMBMUE). The initial state and the end state of the BMU model are denoted
by BMUI and BMUE. SMBMUI is a state set of SM, whose states are all containing the
same tokens in the same places of state BMUI in BMU, SMBMUE is a state set of SM,

60 T. Sun et al.

whose states are all containing the same tokens in the same places of state BMUE in
BMU. Sub-graph between SMBMUI and SMBMUE contains all the firing of the BMU.

Get Graph operation GetGraph(SMBMUI, SMBMUE). Depth-First algorithm is used in
this operation. SMBMUI and SMBMUE are two sets of states, so operations Max(M)
and Min(M) are used. Sub-graph between Max(SMBMUI) and Min(SMBMUE) is obtained
in Get Graph operation, which is same as sub-graph between SMBMUI and SMBMUE.

Any state-set M � MSM, the number of states in M is n, and M1, M2,…, Mn 2 M. If
i 2 1 … n, and M1, … , Mn are not precursor of Mi, then Mi is the max-state of M. The
set of all max-states in M is called max-states set, denoted by Max(M). Similarly, if i 2
1 … n, and M1, …, Mn are not successor of Mi, then Mi is the min-state of M. The set
of all min-states in M is called min-states set, denoted by Min(M).

Definition 2. Intersection(S1, S2) operation, written as S1 \ S2.
Every BMU.mp is covering only one of tested behaviors or related behaviors so the

intersection operation is used between two BMU.mps. The set of nodes in sub-graph s
is written as s.NS, and the set of arcs in sub-graph s is written as s.AS. S1 and S2 are
two sub-graphs of SM state space. The result of Intersection(S1, S2) is ∅ or a sub-
graph called ISG, which is obtained by set intersection operation of NS and AS.

Intersection(S1, S2) = ∅ iff S1.AS\ S2.AS = ∅, Intersection(S1, S2) = ISG iff S1.
AS\ S2.AS 6¼ ∅, and ISG.NS = S1.NS\ S2.NS, and ISG.AS = S1.AS\ S2.AS.

For two BMUs called BMU1 and BMU2,

(1) If BMU1.mp \ BMU2.mp = ∅, then BMU1 and BMU2 are not parallel
behaviors.

(2) If BMU1.mp \ BMU2.mp 6¼ ∅, then BMU1 and BMU2 are parallel behaviors.

Definition 3. Grouping(BMU[]) operation.
The array BMU[] contains all BMUs and every element of the array is a BMU. The

array BMUGSet[] contains all sets of BMUs and every element of the array is a set of
BMUs. The result of this operation is putting intercross execution BMUs into the same
set. If two BMUs have intercross execution sub-graph, they must be parallel behaviors,
so they should be in the same set. Particularly, a set may contain more than two BMUs,
direct or indirect parallel behaviors are all in the same group.

Definition 4. Union(S1, S2) operation, written as S1[S2.
The result of Union(S1, S2) is the union sub-graph of S1 and S2 called USG, which

is obtained by set Union operation of NS and AS. Union(S1, S2) = USG, and USG.
NS = S1.NS [S2.NS, and USG.AS = S1.AS [S2.AS. S1 and S2 are two sub-
graphs of SM state space. BMUs in a set of BMUGSet[] are parallel behaviors. The
intersection operation is used between two BMU.mps. When the number of BMUs in
the set is larger than two, there will be more than one ISGs for BMUs in the set. Then
the union sub-graph for all the ISGs in a set should be obtained, called USGForSet.

Definition 5. Generating(S) operation.
S is a sub-graph of SM state space. The result of this operation is a path set which

contains all paths in S. For a group, the union sub-graph contains all the intercross
execution of BMUs in the group. This operation is used on union sub-graph, which
generates sequences full covering tested behaviors and related behaviors in the

Parallel Software Testing Sequence Generation Method 61

group. Other BMUs are not parallel with BMUs in the set, so sequences are also full
covering BMUs in the set over all the system.

Definition 6. Repetitive-removing(PathSet, BMUGSet).
PathSet is a set of paths. BMUGSet is an element of BMUGSet[], which is a set of

BMUs. The result of this operation is another set of paths, which been removed
repetitive paths. There are two additional definitions in the operation: (1) Mapping
testing sequences operation MPTS(p, BMUGSet), which returns the projection
sequence of path p on BMUs in BMUGSet. The projection sequence is p retained BMUs
in BMUGSet but removed other behaviors, and the sequence element kept the same
order as p. (2) MPTS[] is an array used to store mapping testing sequences.

Definition 7. Connecting(PathSet1, PathSet2), PathSet1 � PathSet2.
PathSet1 and PathSet2 are two sets of paths. The result of this operation is another set

of paths which connects all paths of PathSet1 and all paths of PathSet2. Paths in different
PathSets may not be consecutive, then this operation will connect them with one of the
paths between them in the state space of SM. For every BMUGSet, the PathSet without
repetition has been obtained. Then PathSets of different BMUGSet should be connected,
so that generating full-paths of SM, which begins with initial marking and ends with end
markings. The set of full-paths is called FullPathSet, the set of SM initial marking is
called {MI}, and the set of SM end markings is called {ME}. FullPathSet is obtained by:
{MI} � BMUGSet [1].path � …�BMUGSet[i].path � …�{ME}.

3 Testing Sequence Generation Algorithm

The main algorithm of testing sequence generation method is shown in Fig. 1, based on
the operations shown in Sect. 2.

{
Begin
For each BMU in BMU[]
BMU.mp = Mapping(SM, BMU);

Next
BMUGSet[] = Grouping (BMU[]);
For each BMUGSet in BMUGSet[]
USGForSet = ;
For each (BMUi, BMUj) in BMUGSet

If (BMUi.mp∩BMUj.mp)
USGForSet = USGForSet (BMUi.mp∩BMUj.mp);

End If
Next
PathSet = Generating(USGForSet);
BMUGSet.pathset=Repetitive-removing(PathSet,BMUGSet);

Next
FullPathSet=MI}×BMUGSet[1].pathset×…×BMUGSet[i].pathset×…×{ME};
End

}

Fig. 1. Testing sequence generation algorithm

62 T. Sun et al.

There are three key steps in the algorithm.

(1) According to projection operation definition between SM and BMU makes that all
firing of the BMU must be in the sub-graph, otherwise, it will be inconsistent with
the definition of projection operation. To focus on the state space sub-graph of
SM, mapping operation should be used on all BMUs. The result sub-graph of the
operation achieves full coverage of the BMU and more efficiency for testing
sequence generation.

(2) For two BMUs, BMUi and BMUj, the result of intersection operation, BMUi.mp
\ BMUj.mp, is the intercross execution sub-graph of the two BMUs, which is
guaranteed by the definition of projection operation and intersection operation. If
two BMUs have intercross execution sub-graph, they must be parallel behaviors,
so they should be in the same group. When the number of BMUs in a group is
larger than two, there will be more than one intersection sub-graphs for BMUs in
the group. Then the union sub-graph for all the intersection sub-graphs in a group
should be obtained, which is full covering BMUs in the group. Other BMUs are
not parallel with BMUs in the group, so sequences generating for the union sub-
graph are also full covering BMUs in the group over all the system.

(3) Generating operation, repetitive-removing operation and connecting operation are
traversing all the sequences of union sub-graphs in all groups, so sequences
generated from this algorithm are full covering all tested and related behaviors.
The search scope of the sequence generating is cut by mapping operation, the
repetitive sequences are removed by repetitive-removing operation, finally
sequences generated from this algorithm are full covering all tested and related
behaviors.

P1

INT

1

P2

INT

P3

INT

P4

INT

P6

INT

P5

INT

P13

INT

P12

INT

P16

INT

P17

INT

P18

INT

P9

INT

P11

INT

P19

INT

P20

INT

P21

INT

P25

INT

P23

INT

P27

INT

P28

INT

P29

INT

P26

INT

P22

INT

P7

INT

P8

INT

P24

INT

T1 T2

T3

T4

T5

T6

T11

T12

T13

T9

T14

T18

T16

T20

T21T22 T19

T15

T7

T8

T17

n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n n n n

n

n

n

n n

n

n

n
n

n

nnn nnn

n n n

n n n

nnn

n n n

Fig. 2. CPN model of a simple project contract approval system

Parallel Software Testing Sequence Generation Method 63

4 Testing Example and Result Analysis

The Fig. 2 is the CPN model of a simple project contract approval system. The Table 1
is the transition description of the model in Fig. 2. In the table head of Table 1, T
means Transition and E means Explanation. The Fig. 3 is the state space of model in
Fig. 2. We chose three test purposes for the experiment. Among them, the testing
process interpretation and the result analysis were carried out for test purpose1, and the
test purpose2 and test purpose3 only carried out the result analysis. In test purpose1,
tested behaviors are T5 T6 T18 and T19. T20 is data related with T19, so related
behavior is T20.

Step1: The result of Mapping(SM, BMU) is shown in Table 2. In the table head of
Table 2, T means Transition, P means initial and ending place.
Step2: T5.mp \ T6.mp 6¼ ∅, T18.mp \ T19.mp 6¼ ∅, T18.mp \ T20.mp 6¼ ∅,
T19.mp \ T20.mp 6¼ ∅, so BMUGSet[1] = {T5, T6}, BMUGSet[2] = {T18,
T19, T20}.

1
0:1

2
1:1

3
1:2

5
1:3

4
1:2

7
2:3

9
1:3

8
1:3

13
2:3

12
2:3

11
2:3

15
2:3

16
1:2

14
1:2

6
1:2

10
1:1

21
3:3

18
2:3

20
2:2

19
2:3

22
2:2

24
2:2

17
2:2

23
2:2

28
3:3

31
3:2

30
3:2

25
2:2

27
2:2

29
2:2

26
2:2

32
2:2

37
3:2

38
3:2

36
3:2

34
3:2

33
2:1

35
2:1

39
1:1

43
2:1

42
3:2

40
3:1

41
3:1

45
2:1

44
3:1

46
2:1

47
1:1

48
1:3

51
1:3

50
1:3

49
1:3

57
1:2

55
2:3

54
2:3

56
1:2

52
2:3

53
1:2

63
2:2

62
2:2

64
2:2

59
3:3

61
2:2

60
2:2

58
2:2

70
2:1

67
3:2

69
2:1

65
3:2

68
3:2

66
2:1

73
3:1

71
3:1

72
3:1

74
3:1

75
1:1

76
1:0

Fig. 3. State space of model in Fig. 2

64 T. Sun et al.

Step3: The result of union operation. BMUGSet[1]: USGForSet = (M5, M34),
BMUGSet[2]: USGForSet = (M52/M54/M55, M74)
Step4: The result of Generating(USGForSet). For BMUGSet[1], there are 4 paths,
M5-M9-M15-M21-M28-M34, M5-M7-M13-M19-M28-M34, M5-M8-M15-M21-
M28-M34, M5-M7-M12-M21-M28-M34. For BMUGSet[2], There are 36 paths.
And the PathSet of BMUGSet[2] is not shown because of the limit of the length.

Table 1. Transition description of model in Fig. 2

T E T E T E

T1 Application submitting T8 Review 2 T16 Review of
the budget

T2 Contract classification T9 Review 3 T17 Procurement
approval

T3 Resource classification T11 Comments 1 T18 Feedback
comment1

T4 Submission to the
security department

T12 Comments 2 T19 Feedback
comment2

T5 Submission to the
funding department

T13 Submission to the
competent department

T20 Feedback
comment3

T6 Submission to the
technical department

T14 Submission to sub-
departments

T21 Comments
summary

T7 Review 1 T15 Review of legal
materials

T22 Supervisor
approval

Table 2. Mapping(SM, BMU) operation on T5, T6, T18, T19, T20

T P Initial and ending sets of projection states Sub-graph

T5 P5 {M5, M7, M8, M11, M12, M14, M17, M18, M20, M25, M27,
M33}

(M5,
M40)

P7 {M9, M13, M15, M19, M21, M23, M26, M28, M30, M34,
M36, M40}

T6 P6 {M5, M7, M9, M11, M13, M16, M17, M19, M22, M26, M29,
M35}

(M5,
M41)

P8 {M8, M12, M15, M18, M21, M24, M25, M28, M31, M34,
M37, M41}

T18 P22 {M50, M52, M55, M58, M59, M63, M65, M67, M71} (M50,
M74)P25 {M56, M60, M64, M66, M68, M70, M72, M73, M74}

T19 P23 {M51, M54, M55, M59, M61, M64, M65, M68, M72} (M51,
M74)P26 {M57, M62, M63, M67, M69, M70, M71, M73, M74}

T20 P24 {M49, M52, M54, M59, M60, M62, M67, M68, M73} (M52,
M74)P27 {M53, M58, M61, M65, M66, M69, M71, M72, M74}

Parallel Software Testing Sequence Generation Method 65

Step5: The result of Repetitive-removing(PathSet, BMUGSet).
There are 2 paths, M5-M9-M15-M21-M28-M34, M5-M8-M15-M21-M28-M34, in
BMUGSet[1].pathset and 6 paths, M55-M59-M65-M71-M74, M52-M59-M67-
M73-M74, M52-M60-M66-M72-M74, M52-M59-M68-M73-M74, M55-M59-
M67-M71-M74, M52-M59-M65-M72-M74, in BMUGSet[2].pathset.
Step6: FullPathSet after connecting operation. FullPathSet =

M1f g� M5�M9�M15�M21�M28�M34
M5�M8�M15�M21�M28�M34

� �
�

M55�M59�M65�M71�M74
M52�M59�M67�M73�M74
M52�M60�M66�M72�M74
M52�M59�M68�M73�M74
M55�M59�M67�M71�M74
M52�M59�M65�M72�M74

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

� M76f g.

Table 3. Final result of FullPathSet

Paths

M1-M2-M5-M9-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50-M55-M59-M65-
M71-M74-M75-M76
M1-M2-M5-M9-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M52-M59-M67-
M73-M74-M75-M76
M1-M2-M5-M9-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M52-M60-M66-
M72-M74-M75-M76
M1-M2-M5-M9-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M52-M59-M68-
M73-M74-M75-M76
M1-M2-M5-M9-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M55-M59-M67-
M71-M74-M75-M76
M1-M2-M5-M9-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M52-M59-M65-
M72-M74-M75-M76
M1-M2-M5-M8-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50-M55-M59-M65-
M71-M74-M75-M76
M1-M2-M5-M8-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M52-M59-M67-
M73-M74-M75-M76
M1-M2-M5-M8-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M52-M60-M66-
M72-M74-M75-M76
M1-M2-M5-M8-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M52-M59-M68-
M73-M74-M75-M76
M1-M2-M5-M8-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M55-M59-M67-
M71-M74-M75-M76
M1-M2-M5-M8-M15-M21-M28-M34-M40-M44-M46-M47-M48-M50- M52-M59-M65-
M72-M74-M75-M76

Table 4. Testing sequences of three testing purposes

Test purpose Description Number of sequences

1 T5, T6, T18, T19, T20 12
2 T5, T6, T9 6
3 T18, T19, T20 6

66 T. Sun et al.

The final result of FullPathSet contains 12 testing sequences shown in Table 3.
Testing Sequences of three testing purposes is shown in Table 4.
Experimental results show that the sequence generated by this method completely

covers all the tests and related behaviors and has efficiency.

5 Conclusion

In this paper, a testing sequence generation method is proposed, target at full covering
tested behaviors and related behaviors over all execution paths. Due to state spaces of
parallel software systems are large, this paper focuses on the state space sub-graph of
SM, which containing all firing of tested behaviors and related behaviors. Generating
operation, repetitive-removing operation and connecting operation are traversing all the
sequences of USG in all groups, and the search scope of the sequence generating is cut
by projection operation in mapping, the repetitive sequences are removed by repetitive-
removing operation. Finally, experiments show that the sequence generated by this
algorithm completely covers all tested and related behaviors.

Acknowledgment. This work was supported by the National Natural Science Foundation of
China under Grant No. 61562064 and No. 61661041.

References

1. Dalal, S.R., Jain, A., Karunanithi, N., et al.: Model-based testing in practice. In Proceedings of
the 21st International Conference on Software Engineering, pp. 285–294 (1999)

2. Yan, J., Wang, J., Chen, H.: Survey of model-based software testing. Comput. Sci. 31(2),
184–187 (2004)

3. Watanabe, H., Kudoh, T.: Test suite generation methods for concurrent systems based on
coloured petri nets. In: Proceedings of the 2nd Asia-Pacific Software Engineering Conference,
pp. 242–251 (1995)

4. Desel, J., Oberweis, A., Zimmer, T., et al.: Validation of information system models: petri
nets and test case generation. In: Proceedings of the 10th IEEE International Conference on
Systems, Man, and Cybernetics, pp. 3401–3406 (1997)

5. Farooq, U., Lam, C.P., Li, H.: Towards automated test sequence generation. In Proceedings of
the 19th Australian Conference on Software Engineering, pp. 441–450 (2008d)

6. Sun, T., Ye, X., Liu, J.: A test generation method based on model reduction for parallel
software. In: Proceedings of the International Conference on Parallel and Distributed
Computing, Applications and Technologies, pp. 777–782 (2012)

7. Sun, T., Zhang, L., Ma, H.: An automatic generation method for condition expressions of
CPN model focus on tested behaviors. In: processing of the 10th International Conference on
Security, Privacy and Anonymity in Computation, Communication and Storage Workshops,
pp. 271–285 (2017)

Parallel Software Testing Sequence Generation Method 67

Accurate Network Flow Measurement
with Deterministic Admission Policy

Hongchao Du1, Rui Wang2, Zhaoyan Shen1, and Zhiping Jia1(B)

1 School of Computer Science and Technology, Shandong University,
Qindao 266237, China

mrdu@mail.sdu.edu.cn, {shenzhaoyan,jzp}@sdu.edu.cn
2 State Grid Shandong Electric Power Research Institute, Jinan 250002, China

wangruiwell@foxmail.com

Abstract. Network management tasks require real-time visibility of
current network status to perform the appropriate operations. However,
the resource limitation of network devices and the real-time requirements
make it difficult to provide accurate network measurement feedbacks.
To reduce the error and inefficiencies caused by random operations in
existing algorithms, we propose an efficient measurement architecture
with the Deterministic Admission Policy (DAP). DAP provides accu-
rate large-flow detection and high network measurement precision by
making full use of the information belong to large flows and small flows,
and dynamically filtrating small flows as the network status evolves. To
make the algorithm easy to implement on hardware, we propose d-Length
DAP by replacing the global optimality with local optimality. Experi-
mental results show that our algorithm can reduce the measurement error
by 3 to 25 times compared to other algorithms.

Keywords: Network measurement · Top-K flow detection · Sketch

1 Introduction

Network measurement is an indispensable part of network management. Network
managers support tasks such as anomaly detection, traffic engineering, and load
balancing by collecting information of the network at different levels [1–10].
Thus, how to accurately measure the network situation is of vital importance.
Currently, the analysis of network flows is the most commonly used network
measurement method [1,3,7,10–12]. Network packets can be divided into flows
based on the specific characteristics of the header. By counting the number of
packets per flow, we can grasp the basic state of the current network.

The network measurement schemes consume DRAM, SRAM, and TCAM
resources for counting network flows. However, today’s network equipment has
limited storage resources which cannot deal with a large number of network
flows [1,7–10]. Meanwhile, network measurements also require real-time process-
ing [2,4]. Both these constraints make the accurate network flow measurement
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 68–81, 2020.
https://doi.org/10.1007/978-3-030-38961-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_7

Accurate Network Flow Measurement with Deterministic Admission Policy 69

very challenging. To concur these issues, the state-of-the-art networks usually
adopt two types of policies: counters or sketches.

The counter based methods allocate a counter and an ID to each flow and
update it when a packet belonging to this flow arrives [1,7]. However, it is imprac-
tical to assign a counter and an ID to all network flsows, since recording a large
number of flows can be very space consuming [2]. Therefore, some methods
rely on the heavy-tail characteristic of network traffic propose only to count the
large flows and ignore those small flows [1,13–15]. These methods trade off space
overhead and data integrity. Unlike the counter based methods, the sketch based
methods no longer retain the ID information of the flow, and the counter is
shared by several flows, which significantly reduces the space overhead. Sketch
mainly uses hash functions to maintain the mapping relationship between flow
ID and counter. The sharing of counters occurs between the flows that have hash
collisions [16]. The sketch methods use a fixed size space to count the dynamically
changing traffic while providing provable tradeoffs of memory and accuracy [6].

The counter and sketch methods both have their shortcomings. The counter
methods only count the large flow, resulting in complete loss of small flow infor-
mation [2]. And the measurement accuracy is limited by the performance of the
large flow detection algorithm [1]. To save space, the sketch methods don’t sup-
port storage ID, so it cannot actively feedback the flow information, and can
only passively accept query or offline analysis [3,16]. This also led to the lack
of large-flow definition capabilities required for many tasks. Furthermore, exist-
ing large flow monitoring algorithms have involved random operations, which
reduces measurement accuracy [1,13–15]. We intend to propose a new measure-
ment architecture. Our goal is to provide accurate measurement of all flows with
limited memory resource while providing large flow identification.

To achieve this, we deal with the large flow and the small flow separately.
For large flows, we assign separate counters. For smaller flows, we count them
with shared counters. Only the IDs of the large flows are recorded. In this way,
we can provide large-flow monitoring capability in a limited space without losing
small flow information. We propose the Deterministic Admission Policy (DAP)
to dynamically distinguish between the large and small flows. Specifically, only
the flow that becomes large enough in the small flow part is likely to enter the
large flow part. Compared with other algorithms to randomly select a flow, our
replacement algorithm provides the deterministic characteristics, which signifi-
cantly improves the accuracy and reduces error. To make the algorithm easy to
implement on hardware devices, we also proposed d-Length DAP (dL-DAP) by
replacing the global optimality with local optimality. For better accuracy, in dL-
DAP, we adopt a one-dimensional loop array that uses linear probing to reduce
hash collisions. Experimental results show that DAP and dL-DAP efficiently
improve the network measurement accuracy compared with the state-of-the-art
algorithms.

Our main contributions are concluded as follows:

– We propose a novel accurate network measurement scheme to deal with large
flows and small flows separately.

70 H. Du et al.

– We propose a DAP algorithm to distinguish between the large flows and small
flows, and dynamically detect the large flows with the network traffic evolutes.

– To make the algorithm to be easily adopted to network hardware devices, we
propose a dL-DAP with low hash collisions.

– We implement a prototype of our algorithm, and the evaluation results with
real network data sets prove the validity and efficiency of our algorithm.

2 Background and Motivation

With the rapid development of the Internet, the emergence of new requirements
has challenged the management of the network. Most network management tasks
require the measurements of network status to perform the further operations.
Due to the limited storage space and computing power of network devices, it is a
crucial issue to provide accurate measurement results effectively with low over-
head [1–10]. Among various network measurement methods, flow-based analysis
is a typical measurement method [1,3,7,10–12]. A flow is a set of network pack-
ets with specific characteristics, such as IP 5-tuple. We can get the basic state of
the current network by counting the number of packets per flow. By whether or
not the counters are shared, we divide the measurement methods for flows into
counter-based and sketch-based.

Due to the limited number of counters, many counter-based methods focus on
calculating top-K flows, which account for the vast majority of the entire traffic.
The ability to identify large flows is required by many management tasks. How
to determine which flow is a top-K flow is key to such a method. In the existing
methods, Lossy Counting [14] and Frequent [13] enable the newcomer to enter
the top-K flow by periodically decrementing the counter value and filtering out
the flow whose counter value is zero; Space Saving [15] replaces the minimum
flow in the current counter with each new incoming flow. The disadvantage of
these methods is the accuracy of the measured flow is affected by the unmeasured
flow. Therefore, Ran et al. proposed RAP [1], a randomized admission policy.
Each unmeasured flow packet has a probability of 1

Cm+1 replacing the minimum

f

+1

+1

+1

+1

h0(f)=3

h1(f)=3

h2(f)=6

h3(f)=5

Fig. 1. The Count Min sketch with d = 4

Accurate Network Flow Measurement with Deterministic Admission Policy 71

flow with a counter value of Cm. RAP effectively reduces the measurement error
and improving the accuracy of the large flow detection. It is state of the art in
this type of methods.

Sketch uses shared counters to count all flow information with limited space.
For example, Count Min sketch [16] performs d hash operations on each flow ID,
and updates the corresponding counter, where the minimum value is used as an
estimate of the size of the flow (Fig. 1). Most sketches are only available for one
type of task. UnivMon [5] proposes a single universal sketch to provide general
support for measurement tasks while ensuring comparable accuracy. SketchVi-
sor [4] uses a fast path technique to handle high traffic loads and improves
robustness. The disadvantage of these methods is that they are computationally
intensive and can not effectively detect the large flow. Elastic sketch [2] designs
a flexible heavy part and light part to enable efficient measurements in differ-
ent network environments. But its large flow detection algorithm is not efficient
enough, resulting in reduced accuracy.

By carefully analyzing the above counter and sketch methods, we believe that
a proper measurement architecture should meet the following points: (1) large
flow detection capability (2) maintain information integrity (3) lower computa-
tion and resource overhead. To achieve this, we try to design a differentiated
measurement architecture through separate processing of large and small flows.
The key to this architecture is to distinguish between large flows and small flows
accurately. The work most similar to us is the Elastic sketch. But the large-
flow detection algorithm it uses does not converge, resulting in huge errors. The
most effective way to detect large flows is RAP. However, in RAP algorithm and
other large-flow monitoring algorithms, any flow may be regarded as a large flow,
which leads to many invalid replacements. To this end, we propose DAP, and
only the flow that has a hash conflict with the real large flow can be regarded
as a large flow so that the number of candidate large flows can be reduced to
improve accuracy.

3 Architectural Overview

3.1 Design of DAP

The design idea of DAP is to divide the measurement space into two parts: large
flow part and small flow part, and only the flow that is large enough in the small
flow part can enter the large flow part. As shown in Fig. 2, The measurement
architecture we designed consists of two parts, separate counters for measuring
large flows (L) and shared counters for measuring small flows (S). Each item in
L includes ID and V alue, which are used to record the flow ID and the number
of packets, respectively. S is a shared counter array; each counter is shared by
flows that have hash collisions at this location. Based on this architecture, the
DAP algorithm includes update, replace, and query operations.

72 H. Du et al.

f7

f3

f2

(ID,Value)

(f6,7)

(f1,9)

...

(f3,5)

...

L
0

0

0

0

0

0

0

0

0

0

S

(f3,5+1)

(f2,1)

Miss f7

h(f7)=2

freq

+1

(a) update operation

f8

(ID,Value)

(f6,13)

(f1 ,26)

(f2,9)

...

(f3,7)

...

L
3

7

5

2

0

1

4

3

4

0

S

Miss f8

h(f8)=1

freq

7+1>fmin

(fmin)

0

f3

h(f3)=5
(f8,7+1)

7

(b) replace operation

Fig. 2. The operations of DAP.

Update Operation. In the initial stage of DAP, both L and S are empty, and
all new incoming flows are treated as a large flow. The ID used to define the flow
is extracted from the packet, and (ID, 1) is inserted into L. Then all packets
belonging to this flow will increment the counter. If L has no extra items, the
new incoming flow will update S, which is an improvement of CountMin sketch
at d = 1. Although setting a more significant d will make the measurement more
accurate, d = 1 is already precise enough. The update operation is shown in
Fig. 2(a): the flow f2 is not in the L part but there is still a empty item, so
(f2, 1) is inserted into L. With no empty item for f7, the counter with index of
h(f7) = 2 in S is updated. The flow f3 take a position in L, so it just increases
the counter.

Replace Operation. The first incoming flow is not necessarily a large flow, so
when the real large flow appears and the L part has no empty item, we need
to perform the replacement operation. The idea behind replace operation is as
follows: if the true large flow is not in the L part, the value of the counter
corresponding to it in the S part must be greater than the minimum value in
the L part. So when updating the S part, we judge whether the value of the
counter exceeds the minimum value of the L part, and if it is satisfied, replace
the minimum flow of L with the current flow. The specific process is shown in
Fig. 2(b): the minimum value of the L part is (f3, 7), the current packet is f8,
and the S part counters corresponding to f3 and f8 are respectively S1 = 7,
S5 = 1. Because S1 + 1 = 7 + 1 > fmin = 7, the (f8, 7 + 1) replaces (f3, 7) in L
part with S1 = 0, S5 = 7.

Query Operation. The query operation is similar to the update. First, search
the L part according to the ID, and return the Value if hit. Otherwise, calculate

Accurate Network Flow Measurement with Deterministic Admission Policy 73

the hash value of ID and return the frequency of the corresponding counter in
the S part.

3.2 Accuracy Analysis

Given two parameters ε and δ, let w = � e
ε �, d = �ln(1δ)�.d and w are the number

of rows and the number of counters per row in L. The error of the DAP algorithm
for flow size estimation satisfies the following theory:

Theorem 1. For any flow, set f to the true size of the flow, Then the size f̂
estimated by DAP satisfies the following formula with a probability of at least
1 − δ:

f̂ ≤ f + εNS < f + εN

Where NS is the sum of counters in S, and N is the number of all the packets.

Proof. First, we prove that the worst case satisfies the above bound, that is,
f is in the S part and has never performed a replacement operation. In fact,
f̂ is the CM sketch’s estimate of f . And the error of CM sketch satisfies f <
f̂ ≤ f + εNS [16], so the theory is established. The counters in the S where the
replacement has occurred can be divided into two cases, one is to filter into the
L, and the other is to be replaced by a large flow. For the former, the counter is
cleared to 0, which satisfies the theory. For the latter, assume that the original
counter value is c1, and the value of the large flow that is replaced is v1. The
estimate of CM sketch for this case is c1 + v1, and we let f̂ = v1 ≤ c1 + v1, so
it satisfies the theory. For the flow of L part, because each flow has a counter
exclusively, we think that its error is much smaller than the error of the CM
sketch, and the longer the time a flow stays in the L, the smaller the error.

Next, we prove that our replacement operation can minimize the error caused by
hash conflicts. Specifically, it is the replacement operations for S part counters
that appear in our algorithm. We use the value of L to replace the counter in S
directly. We emphasize that for several flows where a hash collision occurs in a
counter of L, the error caused by returning the maximum value is much smaller
than the error caused by the return sum. We have the following theory:

Theorem 2. For CM sketch, if the value of each counter is no longer the sum
of all the flows mapped to this counter, but the maximum, then we estimate the
error for flow f will satisfy the following formula with a probability of at least
1 − δ:

f < f̂ < εN

Proof. This theorem can be demonstrated by a method similar to that shown by
CM sketch [16], as long as the summation operation is replaced by the maximum
operation. The expectation of sum is less than f + εN , and the expectation of
the maximum is less than εN , from which it can be proved.

74 H. Du et al.

According to Theory 2, we can prove that directly replacing the value of the
S part counter with the amount of the large flow can reduce the error of the CM
sketch. Because the value of the large flow is larger than the sum of the other
flows of the L counter, that is, the value of the large flow is equivalent to the
maximum value of all flows.

4 dL-DAP

The L part of the DAP needs to maintain a minimum while supporting fast
finds and updates. These operations can be implemented efficiently using some
data structures [17,18]. However, these data structures are complex and not suit-
able for implementation on hardware [1]. In this section, we introduce d-Length
Deterministic Admission Policy, which is an variant of DAP that implements
on hardware. The critical idea of dL-DAP is to use a hash table to maintain the
mapping between flows and counters for fast lookups and updates. The key issue
is that we need a strategy to resolve hash collisions, which is also required to
maintain the minimum. We first briefly introduce common strategies for resolv-
ing hash conflicts in Sect. 4.1.

4.1 Hash Collision Resolution

The hash table uses the hash function to map keys to a bucket in the table.
All the keys assigned to the same bucket have hash collisions. There are several
strategies for resolving hash conflicts [19].

Separate Chaining. In the method known as separate chaining, each bucket
is independent and has some sort of list of entries with the same index. The time
for hash table operations is the time to find the bucket (which is constant) plus
the time for the list operation.

Open Addressing. In another strategy, called open addressing, all entry
records are stored in the bucket array itself. When a new entry has to be inserted,
the buckets are examined, starting with the hashed-to slot and proceeding in
some probe sequence, until an empty slot is found. When searching for an entry,
the buckets are scanned in the same sequence, until either the target record is
found, or an unused array slot is found, which indicates that there is no such
key in the table.

4.2 Design of dL-DAP

dL-DAP uses a structure similar to a hash table to implement the L part of
the DAP, enabling fast lookups and updates. To resolve hash conflicts, we can
use separate chaining or open addressing strategy. However, based on actual
conditions, we must impose certain restrictions on these two methods. If the

Accurate Network Flow Measurement with Deterministic Admission Policy 75

length of the chaining list or buckets array is too large, the efficiency of the
algorithm is significantly reduced. Therefore, we use d to limit the range of the
list or array of the two methods.

f h1(f)=1

(a) separate chaining

f h2(f)=6

(b) open addressing with linear probing

Fig. 3. Different ways to resolve hash conflicts where d = 5.

dL-DAP implemented using separate chaining as shown in Fig. 3(a): all coun-
ters are organized into a two-dimensional array with the number of counters per
row being d. Each packet is mapped to a row by a hash function. Both lookups
and updates are made in this line. Similarly, the global minimum is replaced
with the local minimum in this row, so that all operations can be performed lin-
early, and the execution speed is positively correlated with d. The disadvantage
of using separate chaining is that the number of large flows mapped to each row
is not uniform, resulting in a high large flow collision rate, which causes incorrect
replacements. Using an open addressing strategy can alleviate this problem.

An example of using an open addressing strategy is shown in Fig. 3(b): all
counters form a one-dimensional loop array, and each packet is mapped to one of
its locations. In this figure, the remaining candidate positions are determined by
a linear probing method, that is, starting from the hashed-to slot, linearly looking
backward for d counters, all operations are performed on the d counters. Since
the range of hash is expanded from n

d to n, the large-flow hashes collision rate is
reduced. We can use a more random distribution method to reduce further the
collision rate of large flows, such as using quadratic probing or double hashing.
However, the latter techniques destroy the principle of locality, so we use the
open addressing method with linear probing. The comparison of these methods
is shown in Fig. 4. We use counters from 27 to 212 to count the same number of
flows, and the recall value is the ratio of the number of flows finally obtained to
the total.

5 Evaluation

5.1 Experimental Setup

Trace. We use the CAIDA 2015 data set [20] as experimental data. This dataset
contains anonymized passive traffic traces from CAIDA’s Equinix-Chicago mon-
itor on high-speed Internet backbone links. We divide the data set into 1M
packets per part and extract the IP 5-tuple as the ID of the flow.

76 H. Du et al.

Fig. 4. Comparison of different strategies for solving hash conflicts.

Metrics. A flow that occupies a certain percentage of the overall packets is a
large flow, such as a flow that accounts for more than 1%, 0.5%, or 0.01% of the
total flow. Define the number of flows that satisfy such conditions as K. Let the
number of returning large flows be N , where the number of real large streams is
k. We compared the following metrics:

– Recall Rate (RR): RR = k
K

– Precision Rate (PR): PR = k
N

– F1 score: F1 = 2× RR × PR
RR+PR

– Mean Error Square (MSE): MSE = 1
N

∑n
i=1(f̂i − fi)2

– Replacement Number (RN): the number of times the replace operation occurs

5.2 Experimental Result

Large Flow Detection. First, we verify the validity of DAP by comparing with
RAP and Elastic sketch. We set the size of the L part counter to 16 bits and
the S part to 8 bits. We test the RR, PR, and F1 scores for large-flow detection
when the number of counters in the large flow part is from 27 to 212. The small
flow part of DAP and Elastic Sketch is sized to be the same as the large flow
part. The results of setting the large flow threshold to 0.1%, 0.05% and 0.01%
are shown in Fig. 5.

When the threshold is 0.1%, we can find that even if only a small number
of counters DAP are used, the RR value can still reach 100%, which is higher
than the other two algorithms. This is due to the deterministic characteristics
of DAP. As long as the flow is large and located in the S, it’s counter value
will exceed the minimum of the L, and it is very likely to be detected. However,
when the number of counters is small, the hash collision rate of the S portion
is also high. This leads to a false positive phenomenon. Many small flows add

Accurate Network Flow Measurement with Deterministic Admission Policy 77

Fig. 5. Validity verification of DAP

up to the value of the large flow. This results in a lower PR value for the DAP,
but in most cases, the PR value of the DAP is still better than the other two
algorithms. The results of the F1 score also prove this: DAP is optimal in most
cases, only slightly worse than RAP when the number of counters is 27 because
the number of counters is insufficient and the hash collision rate is high.

In the case of the threshold is 0.5% and 0.01%, the RR values of three algo-
rithms are not high when the number of counters is minimal, such as the thresh-
old is 0.5% with the number of counters is 27, the threshold is 0.01% with the
number of counters less than 211. This is because the number of large flows
caused by the small threshold is more than the number of counters. We use this
situation to test which algorithm performs best when space is relatively limited.
The results show that the DAP algorithm outperforms the other two algorithms
with all parameters, which proves the validity of our algorithm.

78 H. Du et al.

Fig. 6. Replacement number of different algorithms.

Replacement Strategy Effectiveness. As shown in Fig. 6, we also compared
the number of replacement operations during the execution of different algo-
rithms. Since the replacement operation is often the most complex operation in
each case, this can reflect the time overhead of the algorithm to some extent. It
also shows the effectiveness of the replacement: if the replacement operation is
accurate, then there is no need to replace it again to correct the error, and also
ensure the measurement accuracy. The results show that our algorithm performs
replacement operations much less often than other algorithms, further demon-
strating the effectiveness of deterministic over random. At the same time, we
noticed that although the Elastic sketch is replaced more times than DAP, its
performance seems to be more stable. This is because the replacement operation
of the Elastic sketch is only related to the number of packets and parameter λ,
which leads to large measurement errors [2]. We will confirm this in the next
experiment.

Large Flow Accuracy of dL-DAP. To further test our measurement algo-
rithm, we compared dL-DAP and dW-RAP and Elastic sketch from the per-
spective of easy implementation and practical use. We set the d of the three
algorithms to 8. Since dW-RAP has no small flow part, we assign it twice the
counter, and the final result considers the most significant half. The result is
shown in Fig. 7. The experimental results show that even if the L part has only
half of the counter, the RR value of our algorithm is still the highest, although
the PR value is worse than dW-RAP. However, our algorithm is still optimal in
most of the cases according to the more comprehensive evaluation criteria F1
score.

Finally, we compare the MSE of the top-K flow for the three algorithms,
where K is the number of L parts. The result is shown in Fig. 8. It shows that

Accurate Network Flow Measurement with Deterministic Admission Policy 79

our algorithm obtains more accurate measurements. We can see that when the
number of counters is 28, the MSE of 8L-DAP is still about 2.5 times lower than
the one of 8L-RAP. In all situations, the MSE of 8L-DAP is over ten times lower
than the one of Elastic sketch.

Fig. 7. Comparison of three algorithms in the case of d = 8.

Fig. 8. Error comparison of three algorithms.

6 Conclusion

Accurate measurement of network traffic is an essential part of current network
management tasks. Providing versatility support for a variety of network tasks
is challenging under the hardware limitations of network devices. Traditional
counter-based and sketch-based methods are subject to random operations and
high hash collision rates, resulting in low accuracy. To solve this problem, we
propose an efficient measurement architecture and offer a deterministic algo-
rithm DAP for detecting large flows, thus achieving accurate measurements with
less overhead. Also, we have introduced a hardware friendly algorithm dL-DAP

80 H. Du et al.

replacing the global optionality with the local optionality. Experiments show
that our algorithm significantly reduces the error compared to other algorithms
and improves the accuracy of the measurement.

Acknowledgments. This research is sponsored by National Key R&D Pro-
gram of China (2017YFB0902600); State Grid Corporation of China Project
(SGJS0000DKJS1700840) Research and Application of Key Technology for Intelligent
Dispatching and Security Early-warning of Large Power Grid.

References

1. Basat, R.B., Einziger, G., Friedman, R., Kassner, Y.: Randomized admission policy
for efficient top-k and frequency estimation. In: IEEE INFOCOM Conference on
Computer Communications, pp. 1–9. IEEE (2017)

2. Yang, T., et al.: Elastic sketch: adaptive and fast network-wide measurements.
In: Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, pp. 561–575. ACM (2018)

3. Huang, Q., Lee, P.P.C., Bao, Y.: Sketchlearn: relieving user burdens in approximate
measurement with automated statistical inference. In: Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication, pp. 576–590.
ACM (2018)

4. Huang, Q.: Sketchvisor: robust network measurement for software packet process-
ing. In: Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, pp. 113–126. ACM (2017)

5. Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., Braverman, V.: One sketch to rule
them all: rethinking network flow monitoring with UnivMon. In: Proceedings of
the ACM SIGCOMM Conference, pp. 101–114. ACM (2016)

6. Yu, M., Jose, L.,Miao, R.: Software defined traffic measurement with OpenSketch.
In: Presented as part of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2013), pp. 29–42 (2013)

7. Zhou, Y., Zhou, Y., Chen, S., Zhang, Y.: Highly compact virtual active counters
for per-flow traffic measurement. In: IEEE INFOCOM Conference on Computer
Communications, pp. 1–9. IEEE (2018)

8. Assaf, E., Basat, R.B., Einziger, G., Friedman, R.: Pay for a sliding bloom filter
and get counting, distinct elements, and entropy for free. In: IEEE INFOCOM
Conference on Computer Communications, pp. 2204–2212. IEEE (2018)

9. Xiwen, Y., Hongli, X., Yao, D., Wang, H., Huang, L.: CountMax: a lightweight
and cooperative sketch measurement for software-defined networks. IEEE/ACM
Trans. Netw. (TON) 26(6), 2774–2786 (2018)

10. Basat, R.B., Einziger, G., Friedman, R., Kassner, Y.: Optimal elephant flow detec-
tion. In: IEEE INFOCOM Conference on Computer Communications, pp. 1–9.
IEEE (2017)

11. Basat, R.B., Einziger, G., Friedman, R., Kassner, Y.: Heavy hitters in streams
and sliding windows. In: IEEE INFOCOM - The 35th Annual IEEE International
Conference on Computer Communications, pp. 1–9. IEEE (2016)

12. Nyang, D.H., Shin, D.O.: Recyclable counter with confinement for real-time per-
flow measurement. IEEE/ACM Trans. Netw. (TON) 24(5), 3191–3203 (2016)

Accurate Network Flow Measurement with Deterministic Admission Policy 81

13. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Möhring, R., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45749-6 33

14. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
VLDB 2002: Proceedings of the 28th International Conference on Very Large
Databases, pp. 346–357. Elsevier (2002)

15. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and
top-k elements in data streams. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 398–412. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30570-5 27

16. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

17. Einziger, G., Friedman, R.: Tinyset–an access efficient self adjusting bloom filter
construction. IEEE/ACM Trans. Netw. 25(4), 2295–2307 (2017)

18. Einziger, G., Friedman, R.: Counting with tinytable: every bit countscounting with
tinytable: every bit counts! IEEE Access (2019)

19. Hash table. https://en.wikipedia.org/wiki/Hash table
20. The CAIDA UCSD anonymized internet traces 2015 - February 19th. http://www.

caida.org/data/passive/passive dataset.xml

https://doi.org/10.1007/3-540-45749-6_33
https://doi.org/10.1007/3-540-45749-6_33
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-540-30570-5_27
https://en.wikipedia.org/wiki/Hash_table
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml

A Comparison Study of VAE and GAN
for Software Fault Prediction

Yuanyuan Sun1,2,3(&), Lele Xu3(&), Lili Guo3, Ye Li3,
and Yongming Wang2(&)

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

sunyuanyuan@csu.ac.cn
2 Institute of Information Engineering, Chinese Academy of Sciences,

Beijing, China
wangyongming@iie.ac.cn

3 Key Laboratory of Space Utilization, Technology and Engineering Center
for Space Utilization, Chinese Academy of Sciences, Beijing, China

xulele@csu.ac.cn

Abstract. Software fault is an unavoidable problem in software project. How to
predict software fault to enhance safety and reliability of system is worth
studying. In recent years, deep learning has been widely used in the fields of
image, text and voice. However it is seldom applied in the field of software fault
prediction. Considering the ability of deep learning, we select the deep learning
techniques of VAE and GAN for software fault prediction and compare the
performance of them. There is one salient feature of software fault data. The
proportion of non-fault data is well above the proportion of fault data. Because
of the imbalanced data, it is difficult to get high accuracy to predict software
fault. As we known, VAE and GAN are able to generate synthetic samples that
obey the distribution of real data. We try to take advantage of their power to
generate new fault samples in order to improve the accuracy of software fault
prediction. The architectures of VAE and GAN are designed to fit for the high
dimensional software fault data. New software fault samples are generated to
balance the software fault datasets in order to get better performance for soft-
ware fault prediction. The models of VAE and GAN are trained on GPU TITAN
X. SMOTE is also adopted in order to compare the performance with VAE and
GAN. The results in the experiment show that VAE and GAN are useful
techniques for software fault prediction and VAE has better performance than
GAN on this issue.

Keywords: Deep learning � VAE � GAN � Software fault prediction

1 Introduction

In software project, software fault is an inescapable problem. Software fault may be
incurred by internal defects of software or external attacks. Many cases show that
software fault can cause huge loss and catastrophic consequences. For example, in
1962, the famous software fault resulted in the failure of Mariner rocket to Venus.

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 82–96, 2020.
https://doi.org/10.1007/978-3-030-38961-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_8

In 2003, the blackouts of the Northeastern United States were also because of software
fault. In 2009, attackers launched offensive to the video software. This caused exten-
sive software fault that people of 6 provinces in China could not access internet.

Software fault is closely related to security, reliability, maintainability of system
[1]. Especially for high-risk system, software fault can lead to serious consequences. In
software project, it is quite difficult for testers to find all the software faults.
Researchers focus on software fault prediction, which can help tester estimate the
number and distribution of fault reasonably. Researchers have studied on the metrics
which are used to represent attributes of software. These attributes are quite helpful for
software fault prediction, which can be used as features to predict software fault. The
classical metrics include LOC count, McCabe [2, 3] and Halstead [2, 4].

Machine learning is always used in software fault prediction. 22 classifiers based on
machine learning were used for software fault prediction in [5]. L Kumar set up the
model of Least Square Support Vector Machine (LSSVM) for software fault prediction
[6]. DR Ibrahim used random forest based on improved feature for software fault
prediction [7]. An approach of decision tree for software fault prediction was proposed
by Rathore [8]. Logistic Regression was compared with decision tree to enhance the
result of software fault prediction [9].

Though these machine learning techniques are applied for software fault prediction,
an important problem of software fault is ignored. That is imbalanced data [10]. Taking
software fault for example, the amount of non-fault data (majority) is always well
above the amount of fault data (minority) in software project. Especially, the fault data
(minority) will always be predicted to the non-fault data (majority). How to resolve the
difficulty of imbalanced data? There are usually two kinds of ways to deal with this
problem. They are under-sampling [11] and over-sampling [12]. Under-sampling
random reduces the amount of majority to balance the class of majority and minority.
But it will bring out useful information loss. Usually, over-sampling is adopted.
SMOTE (synthetic minority over-sampling technique) [13] is a famous over-sampling
technique, which is very useful to resolve the problem of imbalanced data.

Can we utilize deep learning techniques for software fault prediction? In recent
years, deep learning is widely used in many fields, such as image recognition, natural
language processing [14] and voice recognition. It has achieved a resounding success.
While up to present, it is seldom applied in the domain of software fault prediction.

It can be found that most applications of Variational Autoencoder(VAE) are used
for image processing [15, 16]. Some of them are used for text generating [17]. Simi-
larly, GAN (Generative Adversarial Networks) is always used for images [18, 19]. The
framework of VAE is a generative model [20]. The framework of GAN is combined by
a generative model and a discriminative model [21]. Both VAE and GAN have the
ability to generate new synthetic samples which obey the distribution of real data.

Few researches involve deep learning techniques for software fault prediction.
Here, we have the inspiration of utilizing the ability of generating synthetic samples of
VAE and GAN to generate new fault samples. The new samples can be used to balance
the class. In our previous work [22], we adopted VAE for software fault prediction and
compared its performance with no-sampling method. In this paper, furthermore, both
VAE and GAN are used and compared for software fault prediction. As we known,
GAN has better ability to generate new image samples compared to VAE [23].

A Comparison Study of VAE and GAN 83

Intuitively, we get the idea of adopting both VAE and GAN to deal with the issue of
imbalanced data and finding out which one is better in software fault prediction.
SMOTE is also used in order to compare the performance with VAE and GAN.

In this paper, we find that deep learning techniques of VAE and GAN are useful in
the field of software fault prediction. VAE has better performance than GAN and
SMOTE. GAN outperforms SMOTE on some datasets.

The main contributions in this paper are as follows:

– Software fault data are multivariable data which are different with image data. The
models of VAE and GAN are designed to fit for this type of data. The deep
architectures of VAE and GAN are realized on GPU TITAN X by the framework of
Keras.

– As far as we know, it is the first time we do research on both VAE and GAN for
software fault prediction and the performance of VAE, GAN and SMOTE are
compared. The results of experiment not only demonstrate that VAE and GAN are
useful for software fault prediction, but also show that VAE outperforms GAN and
SMOTE. It can be inferred that VAE has better ability than GAN on generating
multivariable data of software fault, though GAN has better performance than VAE
for generating image.

The rest part of the paper is structured as follows: in Sect. 2, the background
knowledge is described; in Sect. 3, the methods of experiment are demonstrated; in
Sect. 4, the results of experiment are given out; a conclusion is drawn in Sect. 5.

2 Background

2.1 Variational Autoencoder (VAE)

In 2014, Kingma proposed the theory of VAE. VAE is the theory that combines
statistics learning and deep learning techniques [20]. VAE can generate new samples
which obey the probability distribution of Z. Assuming Z is subject to Gaussian dis-
tribution p(Z). Random sampling Z from p(Z), new samples can be created on the basis
of p(Z/X). Within VAE model, assuming p(Z/X) is subject to normal distribution.
Supposing the input is Xk. Xk obeys distribution of p(Z|Xk). A generator, G = g(Z), is
trained. Gk can be generated by sampling Z from p(Z|Xk).

The mathematic theory of VAE is complicated, while its realization is not hard to
understand in engineering [24]. The implementation of VAE is shown in Fig. 1. VAE
is combined with an encoder and a decoder (generator). The input data enter the
encoder, and then the encoder outputs the latent variable’s mean and logarithmic
variance. After that, the outputs of encoder are transformed to obey standard normal
distribution. It is implemented by formula (1) and (2). By sampling e from the dis-
tribution of N(0, I), Z is acquired. The model of VAE is trained to minimize the loss of
KL divergence. The VAE network can be trained by Stochastic Gradient Des-
cent (SGD). Gk is the generated data by decoder (generator).

84 Y. Sun et al.

e ¼ ðz� uÞ=r ð1Þ

Z ¼ lþ e� r ð2Þ

2.2 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) was proposed in 2014 by Goodfellow [21].
GAN is a hot topic in recent years. It is widely used in the fields of image translation,
Super-Resolution and semantic segmentation etc. The basic structure of GAN is
illustrated in Fig. 2. GAN contains two parts. One is the generator G, the other is the
discriminator D. The generator learns the distribution of real samples. Random noise is
the input of the generator. The generator can utilize both random noise and the real
sample’s distribution to produce fake samples in order to simulate real samples. Both
real samples and fake samples go into the discriminator. The discriminator tries to
determine the input is real or fake. In short, the generator can be seen as a team of
counterfeiter who tries to make fake currency, and use it freely without being found.
The discriminator can be seen as police who tries to find the fake currency made by
counterfeiters. The generator tries to cheat the discriminator and the discriminator tries
to see through the fraud.

In the paper of Goodfellow, the generator and the discriminator are composed of
multilayer perceptrons. The objective function can be seen in Eq. (3).

min
G

max
D

VðD;GÞ :¼ Ex� px½logDðxÞ� þEx� pg½logð1� DðGðzÞÞÞ� ð3Þ

The output of D is a single scalar, DðxÞ is the probability of denoting x from real
samples. D is trained to maximize the probability of giving correct label to real sample
and fake sample. G is also trained simultaneously to minimize logð1� DðGðzÞÞÞ. The

X1

X2

X3

X4

X5

X6

Encoder

Z-mean

Z-log-var

Z1

Z2

Z3

Z4

Z5

Z6

Decoder
(Generator)

G1

G2

G3

G4

G5

G6

N(0.1)
Sampling ε

Fig. 1. The realization diagram of VAE

A Comparison Study of VAE and GAN 85

generator and the discriminator compete with each other. This is a problem of min-max
game. At last the generator and the discriminator reach Nash equilibrium.

2.3 Synthetic Minority Over-Sampling Technique (SMOTE)

SMOTE (Synthetic Minority Over-sampling Technique) was presented in 2002 by NV
Chawla. It is the improvement of random over-sample. Random over-sample just
increases samples by copying original samples. This always brings out the problem of
poor generalization. SMOTE can improve the generalization ability. It can analyze the
minority and generate synthetic samples for minority. In fact, the core of the technique
is based on the idea of interpolation. The realization of SMOTE is as follows:

• Given a sample xi in minority, i 2 1; . . .; Tf g, T is the amount of samples in
minority; Computing the Euclidean distance to each sample in the set of minority,
k neighbors are achieved. xiðnearÞ, near 2 ð1; . . .; kÞ

• A sample xiðnnÞ from k neighbors is chosen randomly. New sample is synthetized by
the following formula.

xi1 ¼ xi þ f � ðxiðnnÞ � xiÞ; f 2 ð0; 1Þ ð4Þ

• Repeating N times, N new samples are generated from sample xi. xinew,
new 2 1; . . .N.

Real Samples

Fine Tune
Training

G
Generator

D
DiscriminatorNoise

Is D
correct?

Generate
Fake

Samples

Fig. 2. Basic structure of GAN: the noise in latent space is the input of G. G generates fake
samples. The real samples and fake samples go into D respectively. D will determine the sample
is real or fake. The determination of D will be compared with the ground truth. The result of
comparison will be sent back to G and D. G and D begin to adjust the parameters of networks by
fine tune training.

86 Y. Sun et al.

3 Experimental Methodology

The experimental methodology is demonstrated in this section. As can be seen from the
flow chart of Fig. 3, the main idea of the experiment is to balance the software fault
data by the methods of VAE, GAN and SMOTE, which are used to generate synthetic
fault samples to increase the amount of samples for minority. New fault samples
generated by different methods will be added into original software fault data
respectively. This can make the amount of fault samples approach the amount of non-
fault samples. The flow chart of experiment will be explained in further details.

At beginning, data are processed. Data processing includes deleting missing data
and normalization. And then the models of VAE and GAN are trained to generate new
fault samples. SMOTE is also adopted to generate synthetic fault samples. The samples
generated by VAE, GAN and SMOTE are added into original fault data (minority)
respectively. These methods are called “VAE”, “GAN” and “SMOTE” in the flow
chart of Fig. 3. Four classifiers, such as RF (Random Forrest), SVM (Support Vector
Machine), LR (Logistic Regression) and DT (Decision Tree) are adopted to get the

Deleting
Missing Data

Normalization

Dataset

RF

SVM

LR

DT

Classifier

VAE

GAN

SMOTE

Data Processing

Over-sampling

Training Data Test Data

Learning Model Prediction

Comparing
Performance

Fig. 3. The flow chart of the experiment

A Comparison Study of VAE and GAN 87

results of software fault prediction. The measures of AUC, MCC, recall and F1-
measure are selected to evaluate the results of classifiers. The performance is compared
between the methods of VAE, GAN and SMOTE. The results of VAE and GAN in this
experiment are also compared with the results of paper [5]. The experiment is
implemented on the GPU of TITAN X. The runtime environment is as follows:

• Python 3.6
• Keras 2.1.6
• Tensorflow 1.4.1.

3.1 Data Processing

Data processing is the premise of the experiment. After deleting missing data, nor-
malization is carried out in the process of data processing. Normalization has the ability
to make values of different dimension to the same scope. Min-Max scaling and Z-score
are classical techniques for normalization. Min-Max scaling is always adopted in neural
network. In this paper, VAE and GAN are designed by the frameworks of MLP. We
choose Min-Max scaling for normalization. The transformation of Min-Max scaling
can be realized by the following formula (5).

Z ¼ xi �MinðxiÞ
MaxðxiÞ �MinðxiÞ ð5Þ

As for the missing data, there are several ways to deal with them. For example, let
missing data be 0, 1 or the means of feature. Here, in order to reduce uncertainty, the
missing instances are deleted. This is done by Pandas.

3.2 The Design of VAE

It can be seen from Table 1, the architecture of VAE is designed by MLP (multilayer
perceptron).The dimension of input data for encoder is the number of code attributes of
software fault data. In this experiment, the dimension of input is 21. The number of
neurons of hidden layer is set to 100. In fact, in the process of training, it can be found
that when we set the number of neuron of hidden layer to 100, the value of loss reduced
rapidly. The dimension for output of encoder is 2. The output is mean and logarithmic
variance of latent variable. As for the decoder (generator), the number of neurons of the
first dense is also 100, and the output is fault instance of simulation. The dimension of
the generator’s output is also 21. RMSProp is selected as the optimizer for the model of
VAE. The loss function of the model is KL divergence.

88 Y. Sun et al.

3.3 The Design of GAN

The most difficult problem in the experiment is training the module of GAN. MLP is
selected to set up generator and discriminator. After several times of failed attempt, a
successful model is achieved for software fault data. The architecture of GAN can be
seen in Table 2. The loss curves of generator and discriminator are as expected, which
are shown in Fig. 4. Adam is selected as the optimizer for the model of GAN. The
Leaky ReLU slope is set to 0.2.

Table 1. The architecture of VAE

Structure Units Non linearity Dropout

Encoder
Dense 100 Tanh 0
Dense 2 Linear 0
Decoder (Generator)
Dense 100 Tanh 0
Dense 21 sigmoid 0

Table 2. The architecture of GAN

Structure Units Non linearity Dropout

Generator G(z)
Dense 42 Leaky Relu 0
Dense 42 Leaky Relu 0
Dense 42 Leaky Relu 0
Dense 21 Tanh 0
Discriminator D(x)
Dense 42 Leaky Relu 0
Dense 21 Leaky Relu 0
Dense 1 sigmoid 0

Fig. 4. The loss curves of generator and discriminator

A Comparison Study of VAE and GAN 89

3.4 Evaluation

In the experiment, AUC, MCC, recall and F1-measure are selected to evaluate the
results of the experiment. AUC is the area under ROC (ROC represents receiver
operating characteristic curve).

recall ¼ TP
TPþFN

ð6Þ

F1 ¼ 2� ðrecall� precisionÞ
recallþ precision

ð7Þ

MCC ¼ ðTP� TNÞ � ðFP� FNÞffiðTP� FPÞþ ðTP� FNÞþ ðTN � FPÞþ ðTN � FNÞp ð8Þ

MCC: Matthews correlation coefficient;
F-measure: the harmonic mean of recall and precision;
TP: True Positives; FP: False Positives;
TN: True Negatives; FN: False negatives.

4 The Results of Experiment

In the experiment, three datasets of JM1, KC1 and KC2 are selected from Promise
Repository. The datasets are public and can be downloaded from the Internet [25]. The
three datasets are about software fault of spaceflight from NASA. In the three datasets,
the number of code attributes is 21. The code attributes include the metrics of McCabe,
Halstead, LOC and Miscellaneous which can be found in Table 3.

Table 3. The metrics in JM1, KC1, and KC2

JM1 KC1 KC2

McCabe metrics
Cyclomatic_Complexty ✓ ✓ ✓

Decision_Density
Design_ Complexty ✓ ✓ ✓

Design_ Density
Essential_ Complexty ✓ ✓ ✓

Halstead metrics
Num_Operators ✓ ✓ ✓

Num_Operands ✓ ✓ ✓

Num_Uniq_ Operands ✓ ✓ ✓

Num_Uniq_ Operators ✓ ✓ ✓

(continued)

90 Y. Sun et al.

The amount of normal and anomaly instances used by the methods of VAE, GAN,
and SMOTE can be seen in in Table 4. Anomaly instances represent fault data which
belong to the minority. We focus on the performance of different methods for fault
prediction in the experiment. The measures of AUC, MCC, recall and F1-measure are
compared. In the three datasets, 90% of data are used for training set and 10% of data
are used for test set. Three methods including VAE, GAN and SMOTE are adopted in
the experiment. The results of AUC and MCC are shown in Table 5.

For JM1, in the three methods, VAE has the best AUC and MCC by classifier of
Random Forest. The values of AUC and MCC are 0.92 and 0.78 respectively. The best
AUC and MCC of GAN are 0.92 and 0.77 by classifier of Random Forest, which are
higher than the best AUC and MCC of SMOTE. The best AUC and MCC of SMOTE
are 0.89 and 0.73 respectively.

Table 4. Data in the experiment

NASA
software fault datasets

Original data VAE/GAN/SMOTE
Normal Anomaly Normal Anomaly

JM1 8777 2103 8777 8424
KC1 1783 326 1783 1630
KC2 415 107 415 400

Table 3. (continued)

JM1 KC1 KC2

Length ✓ ✓ ✓

Volume ✓ ✓ ✓

Level ✓ ✓ ✓

Difficulty ✓ ✓ ✓

Content ✓ ✓ ✓

Error_Estimate ✓ ✓ ✓

Programming_time ✓ ✓ ✓

Programming Effort ✓ ✓ ✓

LOC based metrics
LOC_Total ✓ ✓ ✓

LOC_comments ✓ ✓ ✓

LOC_executalble ✓ ✓ ✓

LOC_Blank ✓ ✓ ✓

LOC_Code_and_comment ✓ ✓ ✓

Number_of_lines ✓ ✓ ✓

Miscellaneous
Branch_count ✓ ✓ ✓

Number of code attributes 21 21 21

A Comparison Study of VAE and GAN 91

For KC1, in the three methods, VAE has the best AUC and MCC by classifier of
Random Forest. The values of AUC and MCC are 0.94 and 0.81 respectively. The best
AUC and MCC of GAN are 0.87 and 0.65 by classifier of SVM, which are lower than
the best AUC and MCC of SMOTE. The best AUC and MCC of SMOTE are 0.88 and
0.69 respectively.

For KC2, in the three methods, VAE has the best AUC and MCC by classifier of
Logistic Regression. The values of AUC and MCC are 0.94 and 0.83 respectively. The
best AUC and MCC of GAN are 0.93 and 0.78 by classifier of Random Forest, which
are higher than the best AUC and MCC of SMOTE. The best AUC and MCC of
SMOTE are 0.92 and 0.76 respectively.

The comparison of the best average recall in the three datasets by the methods of
VAE, GAN and SMOTE can be seen in Fig. 5. For JM1, the recall of VAE is 0.89,
which is the highest in the three methods. The recall of GAN is 0.88 and it is higher
than that of SMOTE. The recall of SMOTE is 0.86. For KC1, the recall of VAE is 0.90,
which is the highest in the three methods. The recall of GAN is 0.83 and it is lower than
that of SMOTE. The recall of SMOTE is 0.85. For KC2, the recall of VAE is 0.92,
which is the highest in the three methods. The recall of GAN is 0.89 and it is higher
than that of SMOTE. The recall of SMOTE is 0.88.

The comparison of the best average F1-measure in the three datasets by the
methods of VAE, GAN and SMOTE can be seen in Fig. 6. It is the same with the
comparison of recall. VAE has the highest F1-measure in the three methods. GAN has
better F1-measure than that of SMOTE on the datasets of JM1 and KC2.

Table 5. AUC and MCC of VAE, GAN and SMOTE

JM1
AUC

JM1
MCC

KC1
AUC

KC1
MCC

KC2
AUC

KC2
MCC

VAE
RF 0.92 0.78 0.94 0.81 0.92 0.74
SVM 0.87 0.68 0.87 0.67 0.94 0.80
LR 0.87 0.67 0.86 0.62 0.94 0.83
DT 0.88 0.71 0.92 0.76 0.93 0.79
GAN
RF 0.92 0.77 0.84 0.59 0.93 0.78
SVM 0.89 0.72 0.87 0.65 0.88 0.635
LR 0.88 0.69 0.85 0.59 0.88 0.614
DT 0.88 0.69 0.80 0.47 0.90 0.680
SMOTE
RF 0.89 0.73 0.88 0.69 0.92 0.76
SVM 0.71 0.27 0.72 0.27 0.92 0.757
LR 0.71 0.27 0.71 0.24 0.91 0.707
DT 0.86 0.65 0.85 0.60 0.89 0.681

92 Y. Sun et al.

The results of AUC of two datasets including JM1 and KC1 can be found in paper
[5]. We compare the best AUC in paper [5] with the best AUC of VAE and GAN in
this experiment. Comparison is shown in Table 6. It can be found that the methods of
VAE and GAN have higher AUC than that of the best results in paper [5].

From comparison of the experiment, we find that VAE has better performance than
GAN and SMOTE on the three datasets of JM1, KC1 and KC2. GAN has better
performance than SMOTE on the datasets of JM1 and KC2. The best AUC of VAE and
GAN outperform the best AUC acquired in paper [5]. It can be said that VAE and GAN

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.89

0.88
0.86

0.9

0.83
0.85

0.92

0.89
0.88

Recall

Recall

Fig. 5. The best average recall on three datasets by VAE, GAN and SMOTE

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.89

0.88
0.86

0.9

0.83
0.85

0.92

0.89
0.88

F1-measure

F1-measure

Fig. 6. The best average Fl-Measure on three datasets by VAE, GAN and SMOTE

A Comparison Study of VAE and GAN 93

are useful methods for software fault prediction. Compared with VAE, GAN usually
has better ability to generate image samples. While in this experiment, VAE outper-
forms GAN for generating software fault samples.

5 Conclusion

In this paper, we utilize deep learning techniques of VAE and GAN for software fault
prediction and compare the performance of them. The architectures of VAE and GAN
are designed to fit for the multivariable data of software fault. The ability of VAE and
GAN to generate new fault samples is used to balance the normal and anomaly class.
An experiment is implemented to verify the scheme we proposed. Typical datasets of
JM1, KC1 and KC2 are selected, which are from NASA’s software projects of
spaceflight. Four classifiers are used for the experiment. We find that the scheme of
VAE has better performance than the schemes of GAN and SMOTE for software fault
prediction. Though GAN usually has better ability to generate image compared with
VAE, it does not have better performance than VAE for generating software fault data
in this experiment. GAN has better performance than SMOTE on the datasets of JM1
and KC2. Comparing the results of VAE and GAN with the results in paper [5], it can
be found that VAE and GAN have better AUC. It can be inferred that it is practicable to
apply deep learning techniques of VAE and GAN for software fault prediction, and
VAE has better performance compared to GAN.

Acknowledgement. This work is supported by the National Natural Science Foundation of
China (No. 61901454), and the Foundation of key Laboratory of Space Utilization, Technology
and Engineering Center for Space utilization Chinese Academy of Sciences (No. CSU-QZKT-
2018-08).

References

1. Sharma, D., Chandra, P.: Software fault prediction using machine-learning tech-
niques. Smart Comput. Inform. 78, 541–549 (2018)

2. Curtis, B.: Measuring the psychological complexity of software maintenance tasks with the
halstead and McCabe metrics. IEEE Trans. Softw. Eng. SE 5(2), 96–104 (1979)

3. Yahya, N., Bakar, N.S.A.A.: McCabe’s complexity and CK metrics on the internal quality of
test first implementation in Malaysian education settings. Adv. Sci. Lett. 24(2), 1201–1205
(2018)

Table 6. Comparison of AUC

JM1
AUC

KC1
AUC

VAE 0.92 0.94
GAN 0.92 0.87
Paper [5] 0.76 0.78

94 Y. Sun et al.

4. Bailey, C.T., Dingee, W.L.: A software study using Halstead metrics. In: ACM
Workshop/symposium on Measurement and Evaluation of Software Quality, pp. 189–197
(1981)

5. Lessmann, S.: Benchmarking classification models for software defect prediction a proposed
framework and novel findings. IEEE Trans. Softw. Eng. 34(4), 485–496 (2008)

6. Zhang, P., Chang, Y.T.: Software fault prediction based on grey neural network (2012)
7. Kanmani, S.: Object-oriented software fault prediction using neural networks. Inf. Softw.

Technol. 49(5), 483–492 (2007)
8. Shanthini, A., Vinodhini, G., Chandrasekaran, R.M.: Bagged SVM classifier for software

fault prediction. Int. J. Comput. Appl. 62(15), 21–24 (2013)
9. Ibrahim, D.R., Ghnemat, R., Hudaib, A.: Software defect prediction using feature selection

and random forest algorithm. In: International Conference on New Trends in Computing
Sciences (2017)

10. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),
1263–1284 (2009)

11. Donoho, D.L., Tanner, J.: Precise undersampling theorems. Proc. IEEE 98(6), 913–924
(2010)

12. Last, F., Douzas, G., Bacao, F.: Oversampling for imbalanced learning based on K-Means
and SMOTE (2017)

13. Chawla, N.V., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell.
Res. 16(1), 321–357 (2002)

14. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
15. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain future: forecasting from static

images using variational autoencoders. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9911, pp. 835–851. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46478-7_51

16. Simonovsky, M., Komodakis, N.: GraphVAE: towards generation of small graphs using
variational autoencoders. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L.,
Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 412–422. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01418-6_41

17. Semeniuta, S., Severyn, A., Barth, E.: A hybrid convolutional variational autoencoder for
text generation (2017)

18. Ding, Z., et al.: TGAN: deep tensor generative adversarial nets for large image generation
(2019)

19. Gurumurthy, S., Sarvadevabhatla, R.K., Babu, R.V.: DeLiGAN: generative adversarial
networks for diverse and limited data. In: IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society (2017)

20. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Conference Proceedings:
Papers Accepted to the International Conference on Learning Representations. arXiv.org
(2014)

21. Goodfellow, I.J., et al.: Generative adversarial nets. In: International Conference on Neural
Information Processing Systems (2014)

22. Sun, Y., Xu, L., Li, Y., et al.: Utilizing deep architecture networks of VAE in software fault
prediction. In: 2018 IEEE International Conference on Parallel and Distributed Processing
with Applications, Ubiquitous Computing and Communications, Big Data and Cloud
Computing, Social Computing and Networking, Sustainable Computing and Communica-
tions (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 870–877. IEEE (2018)

A Comparison Study of VAE and GAN 95

https://doi.org/10.1007/978-3-319-46478-7_51
https://doi.org/10.1007/978-3-319-46478-7_51
https://doi.org/10.1007/978-3-030-01418-6_41

23. Lesort, T., Stoian, A., Goudou, J.-F., Filliat, D.: Training discriminative models to evaluate
generative ones. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019.
LNCS, vol. 11729, pp. 604–619. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30508-6_48

24. SOHU. https://www.sohu.com/a/226209674_500659. Accessed 25 June 2019
25. Promise homepage. http://promise.site.uottawa.ca/SERepository/datasets-page.html. Acces-

sed 25 June 2019

96 Y. Sun et al.

https://doi.org/10.1007/978-3-030-30508-6_48
https://doi.org/10.1007/978-3-030-30508-6_48
https://www.sohu.com/a/226209674_500659
http://promise.site.uottawa.ca/SERepository/datasets-page.html

A Framework for Designing Autonomous
Parallel Data Warehouses

Soumia Benkrid1(B) and Ladjel Bellatreche2(B)

1 Ecole nationale Supérieure d’Informatique (ESI), Algiers, Algeria
s benkrid@esi.dz

2 LIAS/ISAE-ENSMA, Poitiers, France
bellatreche@ensma.fr

Abstract. Parallel data platforms are recognized as a key solution for
processing analytical queries running on extremely large data warehouses
(DW s). Deploying a DW on such platforms requires efficient data parti-
tioning and allocation techniques. Most of these techniques assume a pri-
ori knowledge of workload. To deal with their evolution, reactive strate-
gies are mainly used. The BI 2.0 requirements have put large batch and
ad-hoc user queries at the center. Consequently, reactive-based solutions
for deploying a DW in parallel platforms are not sufficient. Autonomous
computing has emerged as a paradigm that allows digital objects man-
aging themselves in accordance with high-level guidance by the means
of proactive approaches. Being inspired by this paradigm, we propose in
this paper, a proactive approach based on a query clustering model to
deploying a DW over a parallel platform. The query clustering triggers
partitioning and allocation processes by considering only evolved query
groups. Intensive experiments were conducted to show the efficiency of
our proposal.

Keywords: Partitioning · Allocation · Common sub-expressions ·
Utility maximization · Autonomous system · Workload clustering

1 Introduction

With the invention of the Web 2.0, the traditional BI got impacted and auto-
matically moved to BI 2.0, where the BI does not rely only on enterprise inter-
nal sources anymore but also makes heavy use of external data sources. One
of the fundamental recommendations of BI 2.0 is to put the decision-makers
at the center of the BI applications. This implies the development of sup-
ports and solutions covering software, hardware and platforms to deal with a
large set of ad-hoc queries issued by these users in a batch fashion. This situa-
tion strongly influences the different design phases of a DW . The main partic-
ularity of these phases is that their algorithms are driven by two main entries
representing (1) the functional and non-functional requirements and (2) the data
sources.

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 97–104, 2020.
https://doi.org/10.1007/978-3-030-38961-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_9

98 S. Benkrid and L. Bellatreche

The analysis of traditional DW design state-of-art shows that the large
majority of the proposed solutions dedicated to all design phases are based on
the KDK principle: Knowing that Designers Know the two entries. This prin-
ciple is an instantiation of the Knowing that One Knows thesis [7]. The result
of the design following this principle is static and cannot be reproduced in the
context of BI 2.0 that needs adaptive design solutions. To illustrate this point,
we consider in this paper the deployment phase which aims to find the adequate
platform to deploy a DW . Once the platform is chosen, complex processes includ-
ing data partitioning and fragment allocation have to be performed accompanied
by query processing policy. Traditional parallel DW design problem is formal-
ized as a Constraint Optimization Problem [1], this formalization follows the
KDK principle. When the parallel DW does not meet the fixed non-functional
requirements, reactive adaptation strategies are triggered. They are based on
adjustment techniques using Machine Learning [5] or utility-driven techniques
[9]. An extreme alternative is to forecast queries of the workload. The query
forecasting has recently been studied in the context of self-driving DBMS [10],
data partitioning [4,5] and sub-common expression selection [9]. These studies
have three main limitations: (i) they do not focus on parallel DW design, (ii)
they do not deal with batch queries and (iii) they forecast a small set of queries.

To overcome the limitations of KDK and forecasting principles, we propose
a new framework to design parallel DW , inspired by humans. It includes an off-
line learning phase that plays the role of knowledge base and an on-line phase
responsible to enable proactive adaptation of parallel DW design. This principle
is largely used in designing autonomous systems [8]. Initial partitioning and
allocation schemes are obtained by the training set of OLAP queries used by
the off-line phase. By making the parallel to human daily where activities are
clustered into several classes, the queries of the training set are clustered based
on their similarity measured by the degree of their shared common expressions.
Each cluster is used to partition the DW . This augments the chance that all
queries participate in the partitioning process and most probably future queries
can be classified into the clusters generated by the off-line phase. The updated
clusters will trigger partitioning and allocation processes.

The paper is structured as follows: fundamental notions and related work
are presented in Sect. 2. In Sect. 3, we describe our framework in designing
autonomous parallel DW . Section 4 presents the algorithm for fragment allo-
cation. Section 5 provides our experimental results. Finally, Sect. 6 summarizes
the main findings of our research.

2 Background and Related Work

Given the complexity of the subject that covers several problems, we are obliged
to mix the related works and the background.

Common Expression Sharing between Queries. Generally speaking,
OLAP workloads are a windfall of query sharing. This is because a typical OLAP

A Framework for Designing Autonomous Parallel Data Warehouses 99

and reporting workloads are overlapping. This overlap can occur for several rea-
sons [13]: (i) queries might overlap in the kind of analysis they perform since dif-
ferent queries could compute different aggregates over a join (with selection(s))
of the same set of tables. The problem of identifying common expressions is
known as Multi-Query Optimization (MQO). It has been largely studied in 80’s
[14] and then in all database generations without any exception. This is because
it aims at optimizing the global performance of queries collectively instead of
individually. The identified common query subexpressions may be candidates for
caching, materializing [9], reusing, indexing, partitioning [2,4], . . . etc.

Workload Clustering. The workload clustering consists in splitting large work-
load to a number of groups such that queries in the same group are related to
each other. To ensure this clustering, feature selection is needed to represent the
queries. Three types of features are used to represent queries: (1) lexical features
represented by the logical structures of SQL string (query type, tables, columns,
join clauses, selection predicates, aggregations) [4], (2) physical features charac-
terized mainly by runtime metrics [6] and (3) arrival rate history represented by
the past arrival rates of queries [10].

Autonomous System. It is a system able to automatically manage its behav-
iors in accordance with its internal state and its environment. IBM [8] defines an
autonomous system as a system with 4 basic properties: self-configuration, self-
optimization, self-healing, and self-protection. To achieve this type of systems,
reference models have been proposed [3], we quote mainly MAPE-K (Monitor-
Analyze-Plan-Execute-Knowledge), PLA (Proactive Latency-aware Adaptation)
and Multi-Systems-Agents. We notice that the database community focused on
self-optimization propriety [11].

3 Our Framework for Autonomous Parallel DW Design

Our challenge is to design an autonomous PDW in two steps phases: off-line
and on-line. The first phase consists in determining the best data placement
scheme, whereas the second one plays the role of the adaptation manager of our
target deployed DW . The functioning of the off-line phase is quite similar to
the traditional parallel DW design [1]. The sole difference between the existing
state-of-art solutions is that the training set of queries TQ is clustered into a
set of disjoint homogeneous queries groups T Q = {Q1, . . . , Qh} that will be
used to partition the DW . Once all the partitioning schemes are built, they
will be merged into a single partitioning schema. This merging may reduce the
number of final fragments. Finally, the so-generate fragments are allocated over
the database cluster using an allocation algorithm. Each step aims to maximize
the reuse of common sub-expression and minimize the cost of the workload Q.
We emphasize that the processing of ad-hoc queries, in the on-line phase, is
considered by the workload clustering model. Specifically, when a new query
occurred, we assign it to the best group by calculating the similarity of the new
query with existing groups.

100 S. Benkrid and L. Bellatreche

3.1 Workload Clustering

To ensure our clustering, we use a bag-of-words approach. To do that, we use a
lexical-semantic workload clustering algorithm following three main steps:

– Selection of Query Features. The goal of this step is to find the rele-
vant clustering model for the predefined workload (past) and future queries
(present and future). The only shared elements between the past, present, and
the future represent the common sub-expressions. In this work, we consider
the set of common sub-expressions as relevant features using Apriori algo-
rithm because selecting the optimal set of common sub-expressions patterns
is equivalent to finding the frequent itemsets mining.

– Query representation. Each query is represented by a binary vector in the
m-dimensional space, where m represents the number of selected item-sets
{FI1, . . . , F Im}. The vector representing a query takes the form of a binary
vector, where for each selected common sub-expression FIj , the corresponding
weight value wij equals 1 if FIi occurred in the query Qj and 0 otherwise.

– Queries clustering. Unsupervised learning algorithms family includes
a large set of examples (K-means, Mean-Shift, DBSCAN, . . .). We use
DBSCAN clustering, in which it is not necessary to specify the number of
clusters to be generated.

3.2 Our Data Partitioning Algorithm

We focus on range partitioning that splits each partitioning attribute into sev-
eral sub-domains [1]. Any partitioning algorithm used for this purpose has to
exploit as much as possible the common shared expression as in [2]. Merging the
local partitioning schemes may generate numerous fragments of the fact table
and consequently violates the maintenance constraint. To satisfy this constraint,
we formalize the problem of scheme merging as a Set-union Knapsack Problem
(SUKP) [12]: Given:

– Let A = {A1, , AZ} be the set of fragmentation attributes. Due to
the range partitioning, the domain of each attribute Ai is decomposed into
ni sub-domains {x11, x12, . . . , x1ni

}. Each xij has a weight wij (number of
the fragments). Let SD be the union of all sub-domains of fragmentation
attributes SD = {x11, x12, . . . , x1n1 , . . . , xL1, xL2, . . . , xZnZ

}.
– A fragmentation maintenance constraint W ,
– A target profit d which represents the minimum desired utility.
– A collection of generated partitioning schemes SF = {S1, S2, ..., Sm}, where

each Si (Si ⊆ SD) is associated to a profit pi.

The SUKP involves finding a sub-set SF ∗ of SF such as:

P (SF ∗) = max(
t∑

j=1

pj ≥ d) (1)

A Framework for Designing Autonomous Parallel Data Warehouses 101

where t is the cardinal of SF ∗ and under the following constraint:

W (SF ∗) =
t∏

j=1

wj ≤ W (2)

This problem is known to be NP-hard [12]. We propose a greedy algorithm
with two steps to solve it as follows:

– Initialization phase. For each generated partitioning attribute Ai, we first
extract from the so-generated partitioning schemes (S), a set of sub-domain
attributes. Then, we keep only those that occur frequently together using
Close algorithm in order to reduce the size of the search space.

– Exploration phase. The main purpose is to find sub-domains that have a
high “utility” for workload optimization. For this end, we propose an algo-
rithm to incremental selecting partitioning attributes to deal with the on-line
phase. This algorithm ranks partitioning attributes according to their occur-
rence frequency in the generated fragmentation schemes and selects the best
schema that maximizes the profit (number of inputs-outputs). The idea is to
select, first, sub-domains according to the partitioning attribute selected by
the majority of query groups (the first one is denoted p1). Then, the sub-
domains that scores the maximum value of utility are chosen. The second
attribute must maximize the utility of the attribute set p1, p2, and so on
until the NF fragments are chosen. Some queries clusters are so-called vic-
tims because they will not benefit from the new scheme, we treat them in an
individual way where necessary.

– Evaluation. Primarily, for each query cluster Qi (1 ≤ i ≤ h), we esti-
mate the number of inputs/outputs (IOs) required for executing Qi (denoted
InitialIOi). Next, we evaluate the number of IOs resulting of the execution
of Qi under the current partitioning schema (denoted CurrentIOi) and we
calculate the utility as follows:

pi = InitialIOi − CurrentIOi ∀i 1 ≤ i ≤ h (3)

The utility of the global partitioning schema is the sum of utilities pi and it
must exceed a threshold d fixed by the designer.

Utility =
∑

i≤h

pi (4)

4 Generating Allocation Schema

The fragment allocation problem on a database cluster can be formalized as an
clustering problem [1] Our allocation procedure is defined as follows:

– Fragments representation in �d. First of all, we describe a set of NF frag-
ments F = {F1, F2, . . . , FNF } by a set of m features A = {A1, A2, . . . , AL} of

102 S. Benkrid and L. Bellatreche

queries. In this work, our fragment set F is represented as a matrix (denoted
FM). A value FM(Fi, Cj) is defined as follows:

FM(Fi, Cj) =

⎧
⎨

⎩

1 Qi involves only the fact fragment Fj

join Qi involves Fj and dimension tables
0 otherwise

– Construction of Cluster Membership Matrix. CCM indicates the
degree to which fragments belong to each cluster. Our fragments allocation
policy is based on the following idea: “strongly and positively correlated frag-
ments belong to the same class”. For this, we combine a dimension reduction
method such as the ACP and a classification method like K-means++. The
value CCM [i] [j], such that (1 ≤ i ≤ NF) and (1 ≤ j ≤ M), belongs to the
interval [0, 1]. This value corresponds to the distance between a fragment Fi

and the centroid of the class Cj (each class represents a node).
– Construction of Fragment Placement Matrix. Once CCM is created,

we tag fragments into clusters by allocating each fragments class on one node
of the database cluster. The outcomes of this step is a binary matrix, called
MP where MP [i] [m] = 1 if the fragment Fi is allocated on the node Nm,
otherwise MP [i] [m] = 0.

5 Experimental Results

In this section, we present the set of experiments that we conduct to evaluate
the effectiveness of our proposal. The experiments were conducted on a database
cluster of 10 processing nodes, where each node has a 3, 33 GHz Intel Core i7
processor, a 16 GB main memory, and a Microsoft SQL Server 2016 like DBMS.
Our algorithms are implemented in Java. We use the datasets of the Star Schema
Benchmark (SSB) with a scale factor of 1 (SF = 1). For the Workload, 1000
queries are randomly generated from the 13 original SSB queries.

In the first experiment, we study the impact of workload clustering on the
quality of the obtained deployment. To do so, we compare the efficiency of our
lexico-semantic features against logical features. Clustering using logical features
gives 6 queries classes, whereas the lexical-semantic features selection provides
5, 8 and 13 queries classes for a minsup of ≥ 30%, 20%, 10% respectively. The
results in Fig. 1 show that increasing the number of queries clusters improves
the workload performance significantly. This experiment shows that our features
selection method has successfully contributed to improving the efficiency of the
deployed DW . This result confirms that the batch execution improves the per-
formance of small workloads.

In the second experiment, we study the quality of our proposed approach
in terms of its speed-up. For a partitioning threshold of 100 and a workload
categorized into 5 query clusters, we vary the number of nodes from 1 to 10.
For each value, we calculate the speed up. As shown in Figure 2, our approach
scale linearly, but it is not ideal. That is due to the fact that we use a multi-
level partitioning based on the splitting of the attribute’s domain. To solve this

A Framework for Designing Autonomous Parallel Data Warehouses 103

Fig. 1. Workload clustering performance Fig. 2. SpeedUp

issue, we can improve the query processing by migrating fragments from highly
loaded nodes to the lowly one. Another potential solution is to select relevant
materialized views and/or replicas.

Finally, in the third experiment, we study the performance of our utility-
based partitioning approach. we vary the fragmentation threshold in the inter-
val [100–300] and we calculate the throughput workload execution. For that, we
compare our approach based mainly on the workload clustering and a partition-
ing approach without workload clustering (we use the same approach used for
partitioning each queries class). As depicted in Fig. 3, increasing the fragmen-
tation threshold improves query performance. In addition, when the number of
groups of queries is relatively large, the global fragmentation scheme favors more
queries. This implies better utility for each queries group.

Fig. 3. Performance of our partitioning approach based on utility

6 Conclusion

In this paper, we attempt to integrate the fundamental characteristics of
autonomous systems designing parallel data warehouses. We spent a lot of efforts
in analyzing the existing studies and showed that they are based on the principle
of Knowing that Designers Know the two entries representing workload and data

104 S. Benkrid and L. Bellatreche

sources. We rapidly identified its limitations in designing advanced data ware-
houses in the B2.0 era known by its batch and ad-hoc queries. The integration
of this dimension in the design is ensured by proposing an adaptive technique.
To do so, we proposed a comprehensive framework with a proactive off-line app-
roach to designing a parallel DW over a database cluster. The off-line step is the
core of design since it represents the basic knowledge base composed of a training
set of OLAP queries. This set is clustered based on new feature selection method
guided by lexical and semantic of the queries captured by their shared common
nodes. Our framework is instantiated by proposing dynamic algorithms for data
partitioning and fragment allocation. Intensive experiments were conducted and
show the effectiveness and efficiency of our proposal.

References

1. Benkrid, S., Bellatreche, L., Cuzzocrea, A.: A global paradigm for designing parallel
relational data warehouses in distributed environments. Trans. Large-Scale Data-
Knowl.-Cent. Syst. 15, 64–101 (2014)

2. Boukorca, A., Bellatreche, L., Benkrid, S.: HYPAD: hyper-graph-driven approach
for parallel data warehouse design. In: Wang, G., Zomaya, A., Perez, G.M., Li,
K. (eds.) ICA3PP 2015, Part IV. LNCS, vol. 9531, pp. 770–783. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-27140-8 53

3. Cámara, J., et al.: Self-aware computing systems: related concepts and research
areas. In: Kounev, S., Kephart, J., Milenkoski, A., Zhu, X. (eds.) Self-Aware Com-
puting Systems, pp. 17–49. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-47474-8 2

4. Du, J., Miller, R.J., Glavic, B., Tan, W.: DeepSea: progressive workload-aware
partitioning of materialized views in scalable data analytics. In: EDBT, pp. 198–
209 (2017)

5. Durand, G.C., et al.: GridFormation: towards self-driven online data partition-
ing using reinforcement learning. In: First International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management, pp. 1–7 (2018)

6. Ghosh, A., Parikh, J., Sengar, V.S., Haritsa, J.R.: Plan selection based on query
clustering. In: VLDB, pp. 179–190 (2002)

7. Hintikka, J.: ‘Knowing that one knows’ reviewed. Synthese 21(2), 141–162 (1970)
8. Horn, P.: Autonomic computing: IBM\’s perspective on the state of information

technology. IBM (2001)
9. Jindal, A., Karanasos, K., Rao, S., Patel, H.: Selecting subexpressions to materi-

alize at datacenter scale. Proc. VLDB Endow. 11(7), 800–812 (2018)
10. Ma, L., Van Aken, D., Hefny, A., Mezerhane, G., Pavlo, A., Gordon, G.J.: Query-

based workload forecasting for self-driving database management systems. In:
ACM SIGMOD, pp. 631–645 (2018)

11. Nehme, R. Bruno, N.: Automated partitioning design in parallel database systems.
In: Proceedings of the 2011 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2011, pp. 1137–1148. ACM, New York (2011)

12. Goldschmidt, O., Nehme, D., Yu, G.: Note: on the set-union knapsack problem.
Nav. Res. Logist. (NRL) 41(6), 833–842 (1994)

13. Roy, P., Sudarshan, S.: Multi-query optimization. In: Encyclopedia of Database
Systems, 2nd edn (2018)

14. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. 13(1), 23–52
(1988)

https://doi.org/10.1007/978-3-319-27140-8_53
https://doi.org/10.1007/978-3-319-47474-8_2
https://doi.org/10.1007/978-3-319-47474-8_2

Distributed and Parallel and
Network-based Computing

Stable Clustering Algorithm for Routing
Establishment in Vehicular Ad-Hoc Networks

Jieying Zhou, Pengfei He(&), Yinglin Liu, and Weigang Wu

School of Data and Computer Science, Sun Yat-sen University,
Guangzhou, China

{isszjy,wuweig}@mail.sysu.edu.cn,

{hepf3,liuylin6}@mail2.sysu.edu.cn

Abstract. With regard to the complex and varied urban scenes in Vehicular
Ad-Hoc Network, such as the vehicle nodes with fast speed, unstable links and
frequent changes in network topology, this paper proposed a stable clustering
algorithm to establish routing for VANET. In this algorithm, clustering was first
formed according to the Similar Neighbor Node Table. Then on the basis of the
Highest Connectivity Algorithm, parameters such as position and speed of the
node were introduced to calculate the Selection Priority which were used to
produce the preferred and the alternative cluster head node. The introduction of
alternative cluster head nodes improved the stability of clustering to a certain
extent. Finally, the clustering was established and maintained for six special
scenarios. Compared with the traditional clustering algorithm in VANET, it had
the characteristics of lower end-to-end delay, higher packet delivery rate and
lower change rate of preferred cluster head nodes, which greatly improved the
communication quality of VANET.

Keywords: Vehicular Ad-Hoc Network � Routing protocol � Clustering
algorithm

1 Introduction

People increasingly place their hope of alleviating or even completely solving traffic
problems on intelligent transportation system and vehicle self-organizing network
technology [1]. The Vehicular Ad-hoc Networks (VANET) builds a centerless, multi-
hop, self-organizing mobile communication network with many nodes [2, 3]. And
clustering algorithm is the key content that determines the performance of the
VANET [4].

However, at present, there is no clear standard for the routing protocol or clustering
algorithm in VANET industry. The clustering algorithm in VANET usually draws
lessons from the clustering algorithm in the Mobile Ad-hoc Network (MANET). The
representative algorithms are: Minimum ID Algorithm (ID-Lowest) [5], Highest
Connectivity Algorithm (HC) [6], WCA [7], AOW [8], ALM [9] and so on. The
advantages of ID-Lowest are as follows: the implementation process is simple and
convenient; the change rate of cluster head nodes is low. However, its shortcomings are
also obvious: because only the minimum ID is considered as the cluster head, it will be

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 107–115, 2020.
https://doi.org/10.1007/978-3-030-38961-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_10

unfair and unstable, and there is no good maintenance mechanism to manage clus-
tering. The HC [6] is similar to ID-Lowest. The disadvantage of HC is that if there is no
limit on the number of members in the cluster, it can be a lot. If the number of clusters
becomes smaller, then the channel utilization will become very low, the throughput will
decrease rapidly.

Although VANET and MANET have some similarities, there are still some dif-
ferences between VANET in traffic roads. In this paper, according to the characteristics
of urban traffic conditions, and its research and analysis, a stable clustering algorithm is
designed, which is more suitable for VANET. Compared with HC, ID-Lowest and
other clustering algorithms, it has smaller preferred cluster head node change rate and
more lasting preferred cluster head node maintenance time, which improves the packet
delivery rate, reduces the topology change rate, and can reduce the network trans-
mission delay. The packet delivery rate is improved, which greatly improves the
communication quality in the VANET.

2 Scenario of the Stable Clustering Algorithm

As shown in Fig. 1, in a road section with three lanes, a cluster was formed because
vehicles a, b and c were close, and their average speed was similar. Because the speed
of vehicle h was fast, even if it was added to the cluster, it would get out of the cluster
quickly, so the vehicle h was excluded from the cluster. Similarly, vehicles d, e, f and
g formed a cluster. Because the average speed of i was slow, it was also excluded from
cluster. Vehicle i needed to find other vehicles to form a cluster. Based on this clus-
tering idea, it designs a stable clustering algorithm, which can effectively reduce the
network size in the urban scene, reduce the change rate of network topology, and
improve the communication quality of the network.

3 Mechanism of the Stable Clustering Algorithm

In this stable clustering algorithm, it is assumed that all vehicle nodes in the VANET
can get the following information:

• The direction, speed, the longitude and latitude of the location and other infor-
mation of the vehicle by related devices, such as GPS, on-board sensor devices, etc.

• The HELLO messages used to maintain the topology of the network from the
vehicle nodes in their communication range.

Fig. 1. The cluster of vehicles in local road sections

108 J. Zhou et al.

• The Beacon message within limited number of hops which includes vehicle ID,
position, direction, speed and speed standard deviation, etc.

3.1 Clustering for the Similar Neighbor Nodes

In the range of communication between vehicular nodes, the neighbor vehicle nodes
obtain each other’s basic information through Beacon message. Only the vehicle nodes
whose driving speed is within a certain confidence interval are selected to form a
similar cluster of neighbor vehicle nodes. The traffic roads in the city will be quite
straight and regular. In order to facilitate analysis, only the vehicles driving in the same
direction are selected to form a cluster. It is defined that vehicle node m has the
following related parameters:

• j: the number of neighbor vehicle nodes of the vehicle node m;
• DT : the sampling period of obtaining the speed of the vehicle node;
• vm tð Þ, rvm: the speed at a certain t time and the standard deviation of speed;
• �vm: the average speed over the periodic sampling interval;
• rvmax: the maximum standard deviation of speed in neighbor nodes;
• Vmj

min, V
mj
max: the minimum and maximum driving speed of vehicle nodes;

• l: the adjustable coefficient of the size of the speed range.

The vehicle node m records its speed in the time interval DT . Calculate the average
speed and the standard deviation of the vehicle node m:

�vm ¼ 1
DT

XDT

t¼0
vm tð Þ ð1Þ

rv
m ¼

ffi
1
DT

XDT

t¼0
vm tð Þ � �vmð Þ2

r
ð2Þ

Since it is assumed that the number of neighbor vehicle nodes of the vehicle node
m is j, the vehicle node m needs to find a maximum speed standard deviation among the
(j + 1) vehicle nodes. Calculate the maximum speed standard deviation:

rvmax ¼ max rvm; r
v
kjk ¼ 1; 2; . . .; j

� � ð3Þ

The confidence interval is used to exclude a few vehicle nodes whose speed is very
different from that of most vehicle nodes. On the basis of (3), an adjustable coefficient l
is introduced, and the minimum and the maximum speed of vehicle nodes in the
confidence interval of Gaussian Mixture Model can be obtained:

Vmj
min ¼ �vm � lrvmax ð4Þ

Vmj
max ¼ �vm þ lrvmax ð5Þ

The value of l can be adjusted according to the average speed of the vehicle and
the actual traffic environment. From the properties of the Model, the range of the

Stable Clustering Algorithm for Routing Establishment in VANET 109

confidence interval and the value of the adjustable coefficient l can be obtained
(Fig. 2):

P X � �vmj j\cf g ¼ 2U c
r

� �� 1
P X � �vmj j\2:58lf g ¼ 2U 2:58l

r

� �� 1 � 99%
P X � �vmj j\1:96lf g ¼ 2U 1:96l

r

� �� 1 � 95%
P X � �vmj j\1:64lf g ¼ 2U 1:64l

r

� �� 1 � 90%

8>>><
>>>:

ð6Þ

It can be obtained from (6) that some special nodes can be excluded by selecting the
appropriate confidence interval. After the confidence interval is set, all the vehicle
nodes that satisfy the driving speed in the interval Vmj

min �Vmj
j �Vmj

max are formed into a
new set in the neighbor table. Then a similar neighbor node table (SNNT) is created to
store and record the information of all vehicle nodes in this collection.

3.2 Selection of Preferred Cluster Head Node

The parameters such as the number of neighbor vehicle nodes, speed and position
spacing are modeled as a Gaussian Mixture Model. When the number of neighbor
vehicle nodes is larger and the driving speed and vehicle position spacing are closer to
the average value of the overall vehicle nodes in the table, the greater the selection
priority (SP), the greater the probability that the vehicle node will become the preferred
cluster head. It is defined that vehicle node m has the following related parameters:

• h, vm: the number of vehicle nodes in SNNT and the speed of the vehicle node m;
• vn: the speed of each vehicle node in the SNNT, n = 1, 2, …, h;
• �vmean: the average speed of vehicle nodes in SNNT;
• xm, ym: the position parameter of the vehicle node m;
• xn, yn: the location parameters of each vehicle node in SNNT.
• Pn, �Pmean: the Euclidean distance and the average Euclidean distance between m and

the vehicle nodes in the SNNT;
• rv, rp: the standard deviation of the speed and the Euclidean distance P in SNNT;
• Nv;Np : the normalization of the speed and the Euclidean distance P;
• SP: the selection priority of the preferred cluster head node.

Fig. 2. The confidence probability of Gaussian Mixture Model

110 J. Zhou et al.

Calculate the average speed of vehicle nodes, the Euclidean distance and the
average of Euclidean distance between m and the vehicle nodes in its SNNT:

�vmean ¼ 1
h

Xh

n¼1
vn ð7Þ

Pn ¼ arccos sin LatmÞsinðLatnð Þð Þþ cos Latmð Þ cos Latnð Þ cos Lngm � Lngnð Þð Þð Þ � R ð8Þ

�Pmean ¼ 1
h

Xh

n¼1
Pn ð9Þ

In (8), Lng and Lat represent longitude and latitude, respectively. By using the Z-
score standardization method, it is necessary to calculate the standard deviation of
speed and Euclidean distance of vehicle nodes in SNNT:

rv ¼
ffi
1
h

Xh

n¼1
vn � �vmeanð Þ2

r
ð10Þ

rp ¼
ffi
1
h

Xh

n¼1
Pn � �Pmeanð Þ2

r
ð11Þ

Then, the normalization of speed and Euclidean distance can be calculated:

Nv ¼ vm � �vmeanð Þ=rv ð12Þ

Np ¼ Pn � �Pmeanð Þ=rp ð13Þ

Finally, the selection priority of m is calculated:

SP ¼ h

e Nvj j þ Npj jð Þ ¼
h

e
vm��vmean

rvj jþ Pn��Pmean
rp

���
���

� 	 ð14Þ

3.3 Selection of Alternative Cluster Head Node

After the cluster is formed, the most suitable cluster member should be selected as the
alternative cluster head node, which makes the cluster structure more stable during the
period of maintenance. It is defined that vehicle node m has the following related
parameters:

• Hn, N: the Nth cluster and the number of member nodes in the cluster;
• /p: a set of neighbor vehicle nodes of a member node in a cluster;
• li, hi: the ID of member node in cluster, i is a sort index in the range of 1 – N;
• C lið Þ: the coverage cardinality of member nodes in a cluster;
• g hið Þ, p: the SP of member nodes in a cluster and a member node in the cluster.

Stable Clustering Algorithm for Routing Establishment in VANET 111

The coverage cardinality (CC) represents the number of same nodes in the cluster
as the neighbor vehicle nodes of a member node p:

CCp ¼ Hn \/p

�� ��; 8p 2 Hn
� � ð15Þ

Define a set UIC , which consists of the C lið Þ of all the member nodes in the cluster
Hn, with a total of N member nodes:

UIC ¼ C l1ð Þ;C l2ð Þ;C l3ð Þ; . . .;C lNð Þf g ð16Þ

The ID li of all the member nodes in the cluster is sorted within the set UIC . As
i gets bigger and bigger, the CC C lið Þ are sorted from large to small, corresponding to
the ID li of the member node. The sort set of the member node ID can be represented
as:

IC ¼ l1; l2; l3; . . .; lN jC lkð Þ�C lj
� �

; 8k \ j
� � ð17Þ

The ID hi of all the member nodes in the cluster are sorted in the set g hið Þ. As i gets
bigger and bigger, the SP of all the member nodes in the cluster Hn are sorted from
large to small. The sort set IP of the member node ID can be represented as:

IP ¼ h1; h2; h3; . . .; hN jg hkð Þ�g hj
� �

; 8k \ j
� � ð18Þ

A new alternative cluster head node has to meet the following two conditions: the
vehicle node with a larger CC C lið Þ in (17), that is, the member node in the front of the
set; the SP g hið Þ of the selected vehicle node is greater than a set threshold gT . This
threshold is selected in the set IP of (18) and satisfies the following formula:

gT ¼ g hið Þ i ¼ 1; 2; . . .;N ð19Þ

Therefore, a new alternative cluster head node is represented as follows:

CHB ¼ argmax lijg lið Þ� gTf g ð20Þ

3.4 Maintenance of Neighbor Cluster

The maintenance of neighbor cluster is summarized into the following six scenarios,
and targeted treatment is made to make the cluster stable.

1. The member nodes in the cluster are separated from the cluster: the ordinary
member node in the cluster fails to receive HELLO message of the separated node,
all the information of the node is deleted from its SNNT and the topology structure
is updated. The separated node will clear the SNNT and change the state to the
undetermined state, and regenerate the Beacon message to request to join other
clusters.

112 J. Zhou et al.

2. The alternative cluster head node is separated from cluster: the member node in the
cluster initiates the selection process of the alternative cluster head node and
immediately selects a new alternative cluster head node.

3. The preferred cluster head node is separated from cluster: the alternative cluster
head node immediately becomes the preferred cluster head node and manages all
the members of the cluster. And then re-select an alternative cluster head node.

4. The merging of neighbor clusters: the two preferred cluster head nodes exchange
information through Beacon messages, and then calculate the degree D of dis-
similarity between the two nodes. When D is smaller than a certain threshold, the
cluster merge is carried out.

D ¼ hd
dcbj j
dcom

þ hv
vcbj j
vc

ð21Þ

5. Adding the undetermined vehicle nodes to the cluster: when an undetermined
vehicle node u is in the communication range of a cluster, u will send its Beacon
message to the preferred cluster head node of the cluster. After receiving the
message, the preferred cluster head node H calculates D, according to (21), between
itself and u, and then decides whether to accept u or not.

6. Re-establishment of cluster: the preferred cluster head node needs to obtain the
vehicle node information from the SNNT, and then calculates its SP according to the
(14). Finally, according to the (22), it is decided whether the vehicle node continues
to be the preferred cluster head node:

SP ¼ h

e
vm��vmean

rvj j þ Pn��Pmean
rp

���
���

� 	\
ph

4e
1
rvj jþ 1

rp

���
���

� 	 ð22Þ

4 Simulation and Result Analysis

A routing protocol, the Stable Clustering-Based Routing Protocol in Vehicular Ad-Hoc
Networks (SCBR), is proposed based on the stable clustering algorithm which is
simulated and tested with the NS2 and the VanetMobiSim.

The driving speeds of vehicle nodes are 5, 10, 15, 20, 25 and 30 m/s, respectively.
The number of vehicle nodes is set to 200. According to the simulation results, the
influence of different vehicle node speed on the performance index is evaluated.

Fig. 3. The effect of speed on end-to-end delay

Stable Clustering Algorithm for Routing Establishment in VANET 113

As shown in Fig. 3, when the number of vehicle nodes is the same, the speed of
vehicle nodes has little effect on the end-to-end delay. The main factors affecting the
end-to-end delay are the distribution and density of vehicle nodes, the average number
of packets forwarding hops and the routing algorithm mechanism of the protocol.
When a routing error occurs, the CBRP protocol can be repaired locally, so the end-to-
end delay is lower than that of the AODV protocol. The stable clustering algorithm of
SCBR protocol can improve the stability of communication link and clustering
structure, and ensure that the data packet can reach the destination node successfully.
Therefore, using the SCBR protocol, the driving speed of the vehicle node has the least
effect on the end-to-end delay.

As shown in Fig. 4, when the vehicle node speed increases, the packet delivery rate
of AODV decreases the fastest, while the SCBR decreases more slowly, which is less
affected by the vehicle node speed. The main reason is that even when the vehicle
nodes are driving at high speed, as long as they can maintain relative stillness with the
neighbor vehicle nodes, the cluster structure can be relatively stable and the vehicle
nodes can communicate with each other normally. Compared with AODV and CBRP,
SCBR has higher packet delivery rate, and its performance index is the best.

5 Conclusion

SCBR protocol based on stable clustering algorithm proposed has good performance
compared with other relative protocols in urban traffic roads. Clustering algorithm for
suburban or high-speed environment could be further studied in the future so that the
protocol could be applied to multiple environments simultaneously.

Acknowledgment. This work is supported by the National Key R&D Program of China
(2018YFB0203803), the National Natural Science Foundation of China (U1801266), and the
Program of Science and Technology of Guangdong (2015A010103007).

Fig. 4. The effect of speed on packet delivery rate

114 J. Zhou et al.

References

1. Jin, M.: A brief talk on the development of China’s intelligent transportation. Transp. Sci.
Tech. 20(2), 140–142 (2013). (in Chinese)

2. Zhang, Y., Wang, H., Peng, L.: Single-layer and cross-layer routing protocols in vehicular ad-
hoc networks. Commun. Technol. 50, 2279–2284 (2017)

3. Cheng, J., Ni, W., Wu, W.: A survey of the application research of vehicle ad hoc networks in
intelligent transportation. Comput. Sci. 36(1), 1–10 (2014). (in Chinese)

4. Menouar, H., Filali, F., Lenardi, M.: A survey and qualitative analysis of MAC protocols for
vehicular ad-hoc networks. IEEE Wirel. Commun. 13(5), 86–94 (2011)

5. Lin, C.R., Gerla, M.: Adaptive clustering for mobile wireless networks. IEEE J. Sel. Areas
Commun. 15(7), 1265–1275 (1997)

6. Li, S., Xiao, X.: Vehicle ad-hoc network routing protocol based on road segmentation.
Comput. Eng. 45(2), 32–37 (2019)

7. Chatterjee, M., Das, S.K., Turgut, D.: WCA: a weighted clustering algorithm for mobile ad
hoc networks. IEEE J. Cluster. Comput. 5(2), 193–204 (2002)

8. Wang, Z.: A vehicle ad-hoc network opportunity routing protocol in 3D urban scene. Electron
Technol. 47(7), 60–63 (2018)

9. Togou, M.A., Hafid, A.: Stablecds-based routing protocol for urban vehicular ad hoc
networks. IEEE Trans. Intell. Transp. Syst. 17(5), 1298–1307 (2017)

Stable Clustering Algorithm for Routing Establishment in VANET 115

Utility-Based Location Distribution Reverse
Auction Incentive Mechanism for Mobile

Crowd Sensing Network

Chunxiao Liu1(&), Huilin Wang1, Yanfeng Wang2, and Dawei Sun3

1 College of Information Science and Technology,
Bohai University, Jinzhou, People’s Republic of China

xiaoxiao198525@163.com
2 School of Engineering, Huzhou University,
Huzhou, Zhejiang, People’s Republic of China

3 School of Information Engineering, China University of Geosciences,
Beijing, People’s Republic of China

Abstract. In the mobile crowd sensing network, the existing research does not
consider the completion quality factor of the task and the individualized dif-
ference of the participant’s ability. The location distribution of the participant
will affect the quality of the task and the timeliness of obtaining the sensing task
information. Participants in good positions can improve the completion rate of
tasks, while participants with good reputation values can ensure the quality of
the tasks. In this paper, the distance between the sensing point and the worker is
used as one of the criteria for selecting the sensing task object. A utility-based
location-distribution reverse auction incentive mechanism (ULDM) is proposed,
which comprehensively considers budget constraints, worker’s reputation, and
location characteristics in the sensing model, define the distance correlation and
time correlation to evaluate the utility of the data collected by the winner.
Finally the experimental results show that the successful package delivery rate,
average delay and energy consumption are used as evaluation parameters, which
improves the quality of task completion and suppresses the selfish behavior of
selfish workers, which proves that ULDM has better incentive effect than rep-
utation incentive mechanism.

Keywords: Sensing task � Distance � Winner � Utility

1 Introduction

In mobile crowd sensing, for the sensing platform, it is hoped to recruit more partic-
ipants with the least cost or controllable cost, and is the provider of high quality
credibility data [1]. In addition, for participants who sensing tasks, most participants

This work is supported by Social Science Foundation of Liaoning Province (L18AXW001), Huzhou
Public Welfare Application Research Project (2019GZ02).

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 116–127, 2020.
https://doi.org/10.1007/978-3-030-38961-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_11

definitely want to get a certain return through their own sensing behavior, but some
participants may upload false data in order to get more rewards.

Wu [2] pointed out that it is difficult to ensure the high-quality completion of the
sensing tasks because the user’s participation rate is improved. Therefore, the incentive
mechanism should also stimulate the user’s sensing behavior according to the task
requirements and improve the quality of the sensing data. Ning [3] proposed a user
participation incentive mechanism based on credibility model. The initial value of the
user’s credibility set in the task allocation process to select high credibility of the user
to participate in task processing, and set the factor to reduce the cost of the user’s cost,
so that improve the efficiency of task processing on the basis of effective control of the
budget. Therefore, the incentive mechanism also needs to consider many incentives for
participants to sensing behavior and improve the credibility of participants [4, 5]. It can
be seen that for the sensing platform, a reasonable incentive mechanism must not only
ensure that the sensing task has a higher level of participation, but also stimulate the
quality of the task completion. In this paper, the distance between the sensing point and
the worker is used as one of the criteria for selecting the sensing task object. A utility-
based location-distribution reverse auction incentive mechanism (ULDM) is proposed,
which comprehensively considers budget constraints, worker’s reputation, and location
characteristics in the sensing model, select the winner to complete the sensing task,
define the distance correlation and time correlation to evaluate the utility of the data
collected by the winner. The sensing model in this paper improves the quality of the
task completion, strengthens the incentive effect, and makes the winner receive more
reasonable compensation, and eliminates the problem that the winner’s own bid is
unreasonable.

2 Sensing Model

Completing the sensing task is the main goal of the existence and development of
mobile crowd sensing. This paper divides the complex sensing task with long time span
and multiple sensing points from time and space to form a single task set of multiple
single sensing points with short time spans. In this way, a large-scale complex sensing
task can be transformed into a simple task set. The task set is represented as
s ¼ fs1; s2; . . .; sng, and si 2 s represents one of the tasks. One of the tasks is repre-
sented in the form of a multi-group, as shown in (1):

si ¼ \x; p; r; d; s;Q; v;m[ð1Þ

Where x is the number of potential participants who issued the task, and p is the sensing
data center point specified by the sensing task si, but the worker cannot completely
reach the collection location for data collection.

Therefore, the sensing platform setting distance r represents the coverage of the
collection location p, that is, in the range where p is the center and r is the radius, the
sensing platform will consider the data collected by the worker to be valid. The sensing

Utility-Based Location Distribution Reverse Auction Incentive Mechanism 117

task si will specify the optimal acquisition time d of the task, but it is difficult to ensure
that each worker collects data at the optimal time. Therefore, the sensing platform
setting s indicates the invalid time of the task, that is, within the d ± s time range, the
data collected by the worker will be considered as the effective time of the task. For
workers, its historical reputation value is also very important. It needs to have a good
reputation when accepting a certain sensing task. The reputation value is represented by
Q in the sensing task. v is the budget cost estimated by the sensing platform before the
sensing task begins, and m is the total remuneration paid by the sensing platform after
the task is completed.

2.1 Release Task Stage

The publisher generates the sensing data needs, submits the task to the sensing plat-
form, and after the sensing platform evaluates the task, feeds back the budget of the
task to the publisher, and the publisher determines the budget and sends it to the
sensing platform. The sensing platform publishes tasks, using pre-assessed task budgets
to attract potential participants to participate in sensing tasks and become task workers.

Definition 1. Potential Participant Set
During the valid period of the sensing task, all online mobile users are represented by
the set as X = {x1, x2, …, xn}, xi 2 X represents one of the potential participants. Each
potential participant is represented by a two-dimensional array, that is, xi = (wi, ci).

wi ¼
1

0

(
ð2Þ

Where wi indicates whether to accept the task, wi and ci indicates the bid of the
potential participant xi. wi = 1, means accepting the task, and willing to report the
payment budget. wi = 0, means not accepting the task, not reporting the payment
budget.

Definition 2. Task Budget Assessment
The sensing platform analyzes the data of the online sign-in data of the LBSN [6], and
then evaluates the task with the time and place attribute according to the analysis result
to obtain the budget for executing the task. There are two influencing factors in
evaluating the task budget: regional heat and time heat. The regional heat is a measure
of the frequency of user access in the area where the task is located. The time heat is a
measure of the frequency of user access during the effective time of the task.
(1) Regional Heat
Calculate the regional heat of the task by analyzing the participants in the LBSN online
data and their corresponding sign-in locations. The regional heat increases with the
number of participants in the task coverage area and the number of sign-in. The
regional heat of the task area pi specified by the publisher is represented by H(pi), and

118 C. Liu et al.

the change of the regional heat is between 0 and 1. The regional heat defined here is the
embodiment of the number of times of sign-in in the unit area and the diversity of the
sign-inusers. Calculate the regional heat H(pi) as (3) in the literature [13].

EnðUTi;piÞ ¼ �
X
y2Y

ðpTi;piðyÞ � log2 pTi;piðyÞÞ ð3Þ

H pið Þ ¼

P
y2Y ;pi2P

UTi;piðyÞP
y2Y

UTi;PðyÞ
� EnðUTi;piÞ ð4Þ

UTi;piðyÞ indicates the number of times the Ti participant y has signed in at the task
point pi during the same time period, P indicates the set of all the sign-in locations, and
Y indicates the set of all participants. represents the total number of sign-in of partic-
ipants y at all sign-in locations UTi;PðyÞ during the same time period Ti, represents the
time period Ti, the information entropy of the participants in the area where the task
point pi is located. indicates EnðUTi;piÞ the probkability that the participant y will sign in
the task point pi, that is, the proportion of the number of times the participant y has
signed in the task point pi to the number of times of sign-in pTi;piðyÞ all areas. The
information entropy calculation formula is as (4) in the literature [13].
(2) Time Heat
The number of sign-in in the LBSN data in a certain period of time is proportional to
the total number of participants in the period, so the ratio of the number of sign-in of
the period to the total number of sign-in in all time periods can fully represent the ratio
of the total number of participants in the period to the total number of participants in all
time periods, that is time heat. The time heat is expressed by H(Ti) and is calculated as
(5) in the literature [8].

H Tið Þ ¼

P
Ti2T ;y2Y

RTiðyÞP
y2Y

RTðyÞ ð5Þ

(3) Task Budget Assessment
The LBSN online sign-in data analysis is used to obtain the regional heat and time heat
of the task, and then the task budget is evaluated according to these two attributes.
denotes the average of the regional heat that a participant has signed in all areas H pið Þ
by (3) represents the average of the time heat that all participants has signed by (5).
When the regional heat is and the time heat is H Tið Þ, the task cost is 1, which is the unit
cost of the task. For any task, the task budget vi is calculated as (6) in the literature [13],
where the formula indicates H pið Þ that the task budget is inversely proportional to the
regional heat and time heat of the region.

Utility-Based Location Distribution Reverse Auction Incentive Mechanism 119

vi ¼ H Tið Þ
H Tið Þ �

H pið Þ
H pið Þ ð6Þ

2.2 Select Worker Stage

In the selection worker stage, the primary goal of the sensing platform is to screen out
the potential participants from the sensing task to identify workers who agree to par-
ticipate in the sensing task. Each worker can accept and complete multiple tasks, the
premise is that the time to complete each task does not conflict. After the release task
stage is over, the worker set who accept the sensing task is represented by W as =
{worker1, worker2, …, workern}, where workeri 2 W represents a worker.

Definition 3. Task Generation
If the number of workers is workeri � 1, it means that the task is generated. If the
number of workers is workeri = 0, it means that the task is unmanned execution, and
the sensing platform only needs to count such tasks and feed back to the publisher.

Definition 4. Task Assignment
Suppose that this model selects only one worker as the winner, all tasks s = {s1, s2, …,
sn}, There are two situations in which the task si is completed by one person:
1) The task has only one worker, that is, workeri = 1 and workeri meets the task

budget condition, it is the minimum condition for the task to be completed, and the
winner Ws = {workeri}.

2) There are multiple workers in the task, that is, workeri � 2, and it is necessary to
select a workeri from the set W = {worker1, worker2, …, workeri} and satisfy the
winner condition, which is an ideal condition for the task to be completed, and the
winner Ws = {workeri}.

2.3 Selecting the Winner Stage

The worker updates the location information to the sensing platform, and uses the
distance from the sensing point as the criterion for screening the winner. The winner
selects the effective worker first, thereby, the sensing task cannot be completed in time,
the waste of invalid workers is avoided, and more energy and bandwidth overhead are
avoided.

Definition 5. The Winner Condition
In the number of workers is workeri � 2, the workeri becomes the winner of the task
to meet the following conditions:

D ¼ 0; kðpi; wor keriÞ[r

1; kðpi; wor keriÞ� r

(
ð7Þ

120 C. Liu et al.

r is the acceptable threshold for the distance between the workeri and the sensing
point pi, that is, the coverage of the sensing point. k(pi, workeri) is the linear distance
between the sensing point pi and the workeri. When the value is not greater than r, the
value of D is 1, which is a valid worker, and has the opportunity to complete the
sensing task as the winner. When the value is not greater than r, the value of D is 0,
which is an invalid worker, who cannot participate in the sensing task.

The reputation value reflects the quality of the submitted data during the worker’s
historical execution of the task. This paper assumes that workers with high reputation
values have relatively high quality of sensing data. In order to ensure the quality of the
submitted data, the reputation of the worker is taken into account when selecting the
winner of the task, and the reputation value is reordered among the remaining effective
workers. When the task si is processed, the sensing platform selects the workers with
the highest reputation value (that is, the largest Qi) to become the winner to complete
the task si, and obtains the final winner Ws.

Set a separate threshold [9, 11] (that is, Thresi) for each active worker, which is
confidential to other workers and platforms, and set a reputation value Qi based on the
ratio of the threshold of each active worker and the threshold of all workers. The
formula is as (7) in the literature [3].

Qi ¼
P

Thres
Thresi

ð8Þ

The task bid refers to the reference of the worker’s task budget calculated by (6),
first calculating the cost of completing the task with own condition by (10), and then
submitting the psychological price to the sensing platform. Under the assumption of a
rational worker, the worker provides a bid that is lower than the task budget to increase
the probability of becoming a winner. Therefore, after the worker submits the data bid,
the article selects the winner based on the reverse auction, that is, selects the worker
with the lowest bid and pays for it.

Definition 6. Task Budget Condition
This model uses reverse auction, sensing platform is willing to choose the low budget
of the worker as the winner. When the number of workers is workeri = 1, the com-
pletion of all tasks s requires agreement with the task budget condition, which is
expressed as (9) and (10):

ai\ci\vi ð9Þ

m�
XL
k¼1

v ð10Þ

The cost ai must be less than the final bid of the reverse auction ci is less than the
budget cost vi estimated by the sensing platform before the sensing task begins. m is the
total reward for the last payment of the sensing platform after the task is completed,
L represents the number of tasks in the task s.

Utility-Based Location Distribution Reverse Auction Incentive Mechanism 121

Definition 7. The Cost Of The Worker
Considering that each task si may have multiple workers and only one winner, the
winner Ws will incur a cost when processing the task si. In this paper, for a task si, the
cost function is expressed by ai = f{gi, ki, Qi}, that is, the cost of the worker is affected
by the assigned task size gi, the distance between the sensing point and the worker ki,
and the worker’s reputation value Qi. It is proportional to the reputation value and the
task size, and inversely proportional to the distance between the sensing point and the
worker. Assuming that the two workers have the same reputation value, the farther
away the worker is from the sensing point, the higher the cost. The formula is as shown
in (11).

ai ¼ agQi
i � b0:5ki ð11Þ

Where a and b are two factors and aþ b ¼ 10.

2.4 Submit Data and Payment Stage

In order to increase the user’s participation and maintain a certain number of partici-
pants, the publisher pays the reward and task compensation to the winner and the loser
according to (12). For the winner, the publisher pays the bid in the reverse auction, and
for the loser, the remaining budget after paying the winner is distributed to each user on
average.

mi ¼ ci; Ws is thewinner
vi�ci
n�1 ; W �Ws is the loser

�
ð12Þ

Where ci refers to the task bid submitted by the winner Ws during the reverse
auction process, that is, the reward that the winner wants to submit data to the sensing
platform. vi refers to the publisher’s task budget. n means the number of workers.

2.5 Evaluate the Data Stage

In this model, the sensing data acquired by the sensing platform for the winner is to be
evaluated, because the value of sensing data in the sense of mobile crowd sensing
cannot be measured by the quality of pixels, sharpness, etc., the utility value [7] of the
sensing data is measured in multiple dimensions. The data of the inefficient value
cannot satisfy the sensing platform’s demand for the sensing data. If the sensing
platform collects a large amount of inefficient sensing data, it will not only affect the
sensing platform’s analysis of the sensing task, at the same time, it will also cause
waste of resources such as communication, calculation and payment of the sensing
platform.

This paper calculates the relevance of sensing data from the two dimensions of time
and distance [8], express the sensing data as data = {VD(k), VT(t)}, where t represents
the acquisition time and k represents the distance between the collection location and
the task point.

122 C. Liu et al.

(1) Time correlation
To calculate the time correlation in the sensing data utility multi-group, first set the
optimal acquisition time d that contains the sensing data in the sensing task. The time
correlation of the sensing data is determined by the relationship between the time t at
which the winner collects the data and the optimal acquisition time d of the sensing
task. For example, if there are two sensing data, that is, data1 and data2, except for
t1 6¼ t2 in data1 and data2, all the other elements are the same, and |t1 − d| < |t2 − d|,
and t1, t2 2 [d − s, d + s], then the time correlation of data1 is higher than the time
correlation of data2. Therefore, it can be seen that the time correlation of the sensing
data is centered on the optimal acquisition time d of the sensing task, and is attenuated
on both sides. When the winner collects data at time t 2 [d − s, d + s] of the sensing
data, the time correlation of the sensing data is 1; When the winner collects data at time
t 62 [d − s, d + s] of the data is sensed, the time correlation of the sensing data is 0. The
time correlation VT(t) is calculated as (13) in the literature [8].

VT tð Þ ¼ 2� sgn t � dj jð Þ � 1
1þ e d�tj jð Þ þ sgn � t � dj jð Þ

sgn xð Þ ¼
1; x [0
1
2 ; x ¼ 0
0; x\ 0

8<
: ð13Þ

(2) Distance correlation
The distance correlation of the sensing data is determined by the distance between the
location where the winner collects the sensing data and the sensing task point, that is,
the larger the value of k is, the smaller the distance correlation of the sensing data is, for
example, if there are two sensing data, that is, data1 and data2, except for k1 6¼ k2 in
data1 and data2, all the other elements are the same. If k1 < k2, and k1, k2 � r (r is the
coverage of the sensing point), then the distance correlation of data1 is higher than the
distance correlation of data2. Therefore, it can be seen that the change in the distance
correlation of the sensing data is in the range of [0, r], and decreases with the increase
of k. When the winner collects the distance k 2 [0, r] between the location of the
sensing data and the sensing point, the distance correlation is 1, and when the winner
collects the distance k 62 [0, r] between the location of the sensing data from the sensing
point, the distance correlation is 0. The calculation of the distance correlation VD(k) is
as shown in (14).

VDðkÞ ¼ 1; k 2 ½0; r�
2� sgnð�ðk � rÞÞ � 1

1þ e�ðk�rÞ � sgnðk � rÞ; k 62 ½0; r�
�

ð14Þ

Utility-Based Location Distribution Reverse Auction Incentive Mechanism 123

(3) sensing data utility value
In a sensing task, the utility value of the sensing data is represented by Utility, which
reflects the value of the sensing data provided by the winner in the sensing task. The
calculation of the utility value is as (15).

Utility ¼ score� A� VT tð ÞþB� VD kð Þð Þ ð15Þ

Use the scoring system to reflect the publisher’s satisfaction with the winner’s
submission of data, that is, the degree of correlation between the submitted data and the
task requirements. The value interval for defining the evaluation score is [0, 1]. When
the score is 0, the Utility is always 0, A and B are the weight values of the time
correlation and the distance correlation, respectively, and A + B = 1. The sensing
platform can adjust the weight value according to the task requirements to change the
sensing data utility. For example, for time-sensitive task, the platform can increase the
weight of the time correlation. For distance-sensitive task, the platform can increase the
weight of the distance correlation.

2.6 ULDM Incentive Algorithm

Input: The task set is represented as s = {s1,s2,…, sn}, potential participant set X = {x1,
x2, …, xn}

Output: the reward value m
Step 1, After the publisher issues a sensing task, the sensing platform will release

the sensing task to potential participants in the network, Count the number of potential
participants xi of each task si.

Step 2, through whether the potential participants xi accept the task si, determine the
worker set W.

Step 3, the sensing platform prioritizes the screening of workers who are too far
away, and then combines their own reputation value with the proposed the final bid of
the reverse auction to determine the final winner Ws,

Step 4, the publisher pays the winner, and the sensing platform gives a little reward
mi to the remaining workers who actively participate in the sensing task.

Step 5, The sensing platform then defines the distance correlation and time cor-
relation, finally evaluates the utility of the winner’s data collection.

3 Experimental Analysis

In order to measure the validity of the incentive mechanism proposed in this paper, we
choose the package delivery rate, average latency and energy consumption as the
evaluation parameters.

3.1 Simulation Environment and the Corresponding Parameter Settings

We use the D2DCrowd simulation platform to create a 500 � 500 m2 simulation
scenario. The simulation time of each group of experiments is 1000 s, assigning 10

124 C. Liu et al.

sensing points and 10 workers collecting data, and the worker receiving the task moves
to the target position at a speed of 7 m/s and a lower limit of 3 m/s. The worker will
stay at a certain sensing point for a random time from zero to the maximum dwell time.
The worker’s minimum dwell time is 0 s and the maximum dwell time is 60 s. After
completing a sensing task, the worker moves to a new randomly generated destination.
The initial energy of the mobile phone device is set to 100, 200, 300 … 1000 J,
respectively. The distance threshold r is 25.

3.2 Simulation Results Analysis

In the context of AODV routing algorithm, there are selfish workers in the network.
Analyze the simulation results from the following two incentive mechanisms:

① A+Reputation: indicates that the Reputation incentive mechanism is running on
the AODV routing protocol.

② A+ULDM: Utility-based location distribution reverse auction incentive mech-
anism proposed in this paper runs on the AODV routing protocol.

(1) The impact of two kinds of incentive mechanisms in the network on package
delivery rate.

As can be seen from Fig. 1, as the number of selfish workers in the network
increases, the successful delivery rate of A+Reputation decreases. When the proportion
of selfish workers exceeds 60%, the incentive effect of the A+Reputation decreases
rapidly, and the change of the delivery rate of A+ULDM is relatively flat, indicating
that A+ULDM is still ideal in the case of more selfish workers.

(2) The impact of two kinds of incentive mechanisms in the network on energy
consumption.

According to Fig. 1, the A+Reputation mechanism has poor incentive effect, and
the reason why the energy consumption is less is that when the selfish worker gradually
increases, Its selfish behavior leads to unwillingness to forward data, which saves
power consumption, and the delivery rate is more. The smaller the delivery rate, the
less energy consumption, both of which are inversely proportional to the proportion of

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8

De
liv

er
y

ra
te

Selfish ratio

A+ULDM

A+Reputation

Fig. 1. Delivery rate under different selfish ratios

Utility-Based Location Distribution Reverse Auction Incentive Mechanism 125

selfish workers, and with the increase of selfish proportion, the energy consumption of
A+ULDM is still much, indicating that the proposed incentive mechanism has a good
incentive effect, as shown in Fig. 2.

(3) The impact of two kinds of incentive mechanisms in the network on average
latency.

As can be seen from Fig. 3, the average delay of A+Reputation will gradually
increase with the increase of the number of selfish workers, mainly because the
incentive effect is weak, and the worker is still selfish and the message is not delivered
to the destination in time.

4 Conclusion

In order to ensure the network scale and user participation, the incentive mechanism is
an indispensable technology in the mobile crowd sensing network. Since the user
participates in the sensing task and needs a certain time and energy cost, the incentive
mechanism needs to provide a certain economic reward to encourage the user [10],

0
50

100
150
200
250
300

0.0 0.2 0.4 0.6 0.8En
er

gy
 c

on
su

m
pt

io
n

(J)

Selfish ratio

A+ULDM

A+Reputation

Fig. 2. Energy consumption under different selfish ratios

0

1000

2000

3000

4000

5000

6000

0.0 0.2 0.4 0.6 0.8

Av
er

ag
e

de
la

y
(s

)

Selfish ratio

A+ULDM

A+Reputation

Fig. 3. Average delay under different selfish ratios

126 C. Liu et al.

thereby improving the participation of the entire mobile crowd sensing network. At the
same time, the quality of the completion of the sensing task is also very important,
which will affect the actual working conditions of the entire sensing network. This
paper conducts targeted research on this issue, the sensing platform is only interested in
maximizing its own utility. Auction theory [12] is the perfect theoretical tool for
designing incentive mechanisms for user-centered models. We proposed a utility-based
location-distribution reverse auction incentive mechanism that takes the bids submitted
by workers, the reputation of workers, and the location distribution of sensing points as
inputs, and gives the winners reasonable and effective rewards, giving some com-
pensation to other workers. Finally, the utility data is evaluated for its utility, and the
sensing utility value is used to measure the value of the sensing task data, thereby
updating the reputation value of the winner. The experimental results show that ULDM
improves the quality of the task completion, strengthens the incentive effect, and makes
the winner receive more reasonable compensation, and eliminates the problem that the
winner’s own bid is unreasonable.

References

1. Luo, T., Das, S.K., Tan, H.P., et al.: Incentive mechanism design for crowdsourcing: an all-
pay auction approach. ACM Trans. Intell. Syst. Technol. J. 7(3), 1–26 (2016)

2. Wu, Y., Zeng, J.R., Peng, H., et al.: A review of research on incentive mechanism of crowd
sensing. J. Softw. J. 27(8), 2025–2047 (2016)

3. Ning, Z., Hua, S., Xue, M.S., et al.: User participation incentive mechanism of crowd
sensing network based on reputation model. Comput. Appl. Softw. J. 2017, 119–122 (2017)

4. Wang, H.: Resarch on incentive technology in participatory sensing network. Harbin
Engineering University, Harbin (2014)

5. Zhao, L.M.: The research and implement of incentive mechanism based on participatory
sensing. Beijing University of Posts and Telecommunication, Beijing (2015

6. Zheng, Y.: Tutorial on location-based social networks. In: Proceedings of the 21st
International Conference on World Wide Web, WWW 2012, vol. 12 (2012)

7. Zhao, D., Li, X.Y., Ma, H.: How to crowdsource tasks truthfully without sacrificing utility:
online incentive mechanisms with budget constraint. In: 2014 Proceedings of
IEEE INFOCOM, pp. 1213–1221. IEEE (2014)

8. Tao, D., Zhong, S., Luo, H.: Staged incentive and punishment mechanism for mobile crowd
sensing. Sens. J. 18(7), 2391–2452 (2018)

9. Zhang, Y., Van der Schaar, M.: Reputation-based incentive protocols in crowdsourcing
applications. In: 2012 Proceedings of IEEE INFOCOM, pp. 2140–2148. IEEE (2012)

10. Gao, L., Hou, F., Huang, J.: Providing long-term participation incentive in participatory
sensing. In: Computer Communications, pp. 2803–2811. IEEE (2016)

11. Liu, J., Issarny, V.: An incentive compatible reputation mechanism for ubiquitous computing
environments. In: International Conference on Privacy, pp. 297–311 (2016)

12. Zhu, G., Wei, X.J.: Research progress of multi-attribute reverse auction mechanism.
J. Beijing Univ. Inform. Sci. Technol. (Nat. Sci.) J. 31(2), 40–49 (2016)

13. Nan, W.Q., Guo, B., Chen, H.H., et al.: Dynamic incentive model of crowd sensing based on
multi-interaction of cross-space. Chin. J. Comput. J. 38(12), 2412–2425 (2015)

Utility-Based Location Distribution Reverse Auction Incentive Mechanism 127

Safeguarding Against Active Routing
Attack via Online Learning

Meng Meng, Ruijuan Zheng(B), Mingchuan Zhang, Junlong Zhu,
and Qingtao Wu

College of Information Engineering, Henan University of Science and Technology,
Luoyang 471023, China

zhengruijuan@haust.edu.cn

Abstract. The Border Gateway Protocol (BGP) is a vital protocol on
the Internet. However, the BGP is susceptible against the prefix inter-
ception attack, how to seek a secure route against prefix interception
attacks is an important problem. For this reason, we propose a novel
and effective router selection method on the Internet. First, we evaluate
resilience of autonomous systems against prefix interception attacks. Sec-
ond, we evaluate security risk of next-hop routers and we also obtain the
historical performance of next-hop routers via online learning. Finally,
we compromise the two performance metrics of routers’ resilience and
historical performance to choose a secure route. Our method is verified
by network simulations. The results show that the proposed method has
more resilience against prefix interception attacks.

Keywords: Online learning · Prefix interception · Routing attacks

1 Introduction

The Border Gateway Protocol (BGP) is a standard for changing network routes
between autonomous systems (ASes). The BGP does not validate route updates
via security mechanisms although it is vital to forward traffic on the Internet.
The BGP is vulnerable to the previously unknown active BGP routing attacks.
The BGP routing attacks including prefix hijacks and interception attacks [1].

The first prefix attack is succeed on January 22, 2006 [2]. AS-27506 mistak-
enly declared the IP prefix which is a part of AS-19758. Because the routers
don’t want to verify exactly the rightful origin of every prefix. So they received
the announcement from the false/true origin which is based on route policies
and other standards. Finally, some ASes sent the traffic to the false origin takes
the place of the true origin. This is a prefix hijack attack. The prefix interception
attack is more advance than prefix hijack, the false origin AS will send the traffic
to the true origin AS after receive the traffic. The prefix interception attack does
not cause a great influence on the Internet. So prefix interception attacks are
hard to detect on the Internet.
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 128–134, 2020.
https://doi.org/10.1007/978-3-030-38961-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_12

Safeguarding Against Active Routing Attack via Online Learning 129

Several methods have been proposed to improve the safety of BGP, which
broadly fall into three categories: encipherment, anomaly mitigation, and
anomaly detection. Cryptographic methods [3] generally use the Public Key
Infrastructure to insure the routing announcements and guard against BGP
attacks. Anomaly mitigation [4] propose to demote dubious route once it is
detected. Anomaly detection approaches [5–8] discover anomalous information
or behaviors in the BGP announcement and give alarm. Those methods aim to
solve BGP routing attacks but they are weakness for defend prefix interception
attacks.

To overcome this weakness, we represent a novel and effective route selection
method against prefix interception attacks in this paper. First, we introduce the
concept of resilience to evaluate the resilience of ASes against prefix intercep-
tion attacks. The resilience of routers ensure the routes’ reachability. Second, we
evaluate the historical performance of routers via online learning and it ensures
routes’ security. And the risk value of prefix interception attacks is defined by
mathematics first time. Finally, we compromise the two performance metrics of
routers’ resilience and historical performance to ensure the security and reach-
ability of routes. We propose the method can significantly improve the security
of routes by verified network simulations.

The paper is organized as follows. Section 2 describes the resilience evalua-
tion of prefix interception attacks. We present a novel router selection method
base on resilience and historical performance in Sect. 3. Section 4 uses network
simulations on the Internet topology to evaluate the performance of our method
and Sect. 5 concludes this paper.

2 Observation Resilience for the Prefix Interception
Attacks

In this section, the concept of resilience is introduced for evaluating the ability
of ASes against the prefix interception attack in AS-level.

Resilience: We introduce the resilience [9] to observe the ability of routers
to resist prefix interception attacks. If the source AS j is not hoaxed by a false
origin source AS f and still sends it’s traffic to the true origin source AS t. We
thought the source AS j is resilience to the prefix interception attack initiated
by the false origin AS f on the true origin AS t.

Each node can be attacked success or failure, so we set α(t, j, f) to measure
the resilience of nodes be attacked. Then, we have

α(t, j, f) =
{

1, hoaxed success;
0, otherwise. (1)

Each node has multiple paths leading to the false AS f and the true AS t.
Therefore, the resilience of a node is calculated as follows:

ᾱ(t, j, f) =
p(j, t)

p(j, t) + p(j, f)
. (2)

130 M. Meng et al.

In this formula, p(j, t) is the number of paths from the AS j to the true origin
AS t. p(j, f) is the number of paths from the AS j to the false origin AS f .
Further, we can calculate the resilience of the AS j when the true origin ASes t
is decided and the false origin AS f is not decided. Then, the resilience of AS j
is calculated as follows

R(j, t) :=
∑
f∈H

ᾱ(t, j, f)
(H − 2)

. (3)

H is the set of all ASes and the H is the total quantity of ASes.
Route prediction: The route is decided via two conditions, which has shown

in [10]: (1) Local Priority: The priority order is customer route, peer route
and provider route; (2) Shortest Path: The path with the shortest hops will
be preferred. And there are two cases to take into account if the invalid path be
declared. In the first case, the existing routes from the false origin AS f to the
true origin AS t are via peer or customer route, then its existing route to the
true origin AS t will not be effected. In the second case, the existing routes from
the false origin AS f to the true origin AS t are via provider route, then it only
can make the wrong announcement to its peers and customers.

Based on the above conditions, we use Algorithm 1 to measure the resilience
of routers against the prefix interception attack.

Algorithm 1. Resilience to prefix interception attacks for ASes.
Function CalcInterceptResilience(graph G, node j, node t).
CalcPathsFromNode(G, j, t).

R(j, t) = 0 ∀ AS j, t.
for each reachable node v from node j do

h ←num. of less preferred nodes than node t,
H ← set of more preferred node than node t.
if existing route j to v is provider route then

H ← H ⋂ M where M contains all nodes for which j to m is provider route.
end if
F ← set of equally preferred node as node t.
if existing route j to v is provider route then

P ← F ⋂ M where M contains all nodes m for which j to m is provider route,
F ← F − P.

end if
R(j, t) ← h + len(H) + len(P) +

∑
v∈V ᾱ(v, j, t)

end for
H ← number of nodes in G.
return [R(j, t)/(H − 2) for each node j, t in R].
end Function

3 Safeguarding Against the Prefix Interception Attack
via Online Learning

In this section, we evaluate the historical performance of routers via online learn-
ing [11,12]. And we assume each AS has only one BGP router.

Safeguarding Against Active Routing Attack via Online Learning 131

Consider a network with a set of N = {1, 2, . . . , N} routers, the next-hop
router is denoted by a set of J = {1, 2, . . . , J} and the round is denoted by a set
of T = {1, 2, . . . , T}. If an AS announces a prefix that it doesn’t own, what is an
AS launched prefix interception attacks. The false origin AS will send packets
back to the true origin AS in a prefix interception attack. Because the false AS
announcement a prefix which is same to packets’ prefix of destination address.
The false origin AS send the traffic to the true origin AS will be detected via
neighbour nodes. Let rt(j) denotes the security risk of next-hop router j, we
have

rs
t (j) =

∑T
t=1 1(packets prefix �= true BGP prefix)

T
. (4)

The prefix interception attack is time-sensitive, rs
t should change with time

and the formula is valid during time interval D.
In this paper, we aim to chosen a security route. Consistent with this crite-

rion, we assume router s is allowed to randomly select next-hop router from a
given distribution as

t ∼ ps
t ∈ RJ . To summarize, we have

min
{ps

t∈ΔJ s
t ,∀t,s}

T∑
t=1

S∑
s=1

(ps
t)

�rs
t (5)

The as
t denotes the set of selected next-hop router from the router s in past

round. Js
t represents the set of next-hop router that s can select in round t, and

1 denotes the indicator function. ΔJ s
t is defined as

ΔJ s
t :=

⎧⎨
⎩p ∈ RJ

+

∣∣∣∣
∑
j∈Jt

p(j) = 1; p(j) = 0, j /∈ J s
t

⎫⎬
⎭ (6)

where p(j) is denotes the j-th entry of p.
The historical performance of routers use information interaction assist the

learning process. The information interaction between routers can be represented
by a undirected graph. Consider a BGP router s obtains the security risk of the
next-hop router rs

t , it also obtains the historical performance of other routers
via information interaction. In this undirect graph Gs

t , the node sets are the
routers set N . And we have Ks

t ⊆ N , Ks
t is not obligatorily a subset of J s

t what
is meaning that it’s possible for router s to acquire the historical performance
of neighbor routers by information interaction. The historical performance of
routers denote by

ws
t (j) = exp(−ηs

t R̂
s
t−1(j)),∀j ∈ J . (7)

The ηs
t represents the stepsize, and Rs

t−1(j) represents the accumulated security
risk of router j, showed as

R̂s
t−1(j) =

t−1∑
τ=1

r̂s
τ (j),∀j ∈ J . (8)

132 M. Meng et al.

The r̂s
τ (j) is estimated security risk. The next-hop set Ks

t is showed, the possi-
bility of the router s choose the next-hop router j is

ps
t (j) =

ws
t (j)1(j ∈ J s)∑

n∈J s
t

ws
t (n)

. (9)

Therefore, if j /∈ J s
t , we have ps

t (j) = 0. Following ps
t , a next-hop router is chosen,

and correspondent historical performance is showed after communication is over.
We employ a biased and reduced-variance estimator in here, r̂s

t (j) is defined as
follow.

r̂s
t (j) =

rs
t (j)1(j ∈ {as

t

⋃
Ks

t})
μs

t + Σ(n,j)∈Gs
t
ps

t (n)
,∀j ∈ J (10)

where (n, j) ∈ Gs
t denotes the whole edges between node n and node j in Gs

t .
The algorithm is conclusion in Algorithm 2.

Algorithm 2. The Security-Aware Router Selection under Stochastic client
Attack

Initialize: weight ws
1 = 1/J , implicit explore factor μs

t , learning rate ηs
t .

for t = 1, 2, · · · , T do
Compute ws

t via (7).
Reveal the available next-hop routers.
Compute ps

t via (9) and choose next-hop as
t ∼ ps

t .
Receive rt(a

s
t) and send rt(a

s
t) to other routers in {i | s ∈ Ki

t}.
Compute the security risk via (4).
Estimate the security risk via (10)

end for

We describe two performance metrics of routers on above paper. The security
of route can not ensure if we just care about the resilience of routers, and the
reachability of route can not ensure if we just care about the historical perfor-
mance. We compromise the two performance metrics of routers’ resilience and
historical performance to ensure the security and reachability of routes.

The steps are described as follows: First, we evaluate the resilience of routers
use Algorithm 1. Second, we estimate the historical performance of routers via
Algorithm 2. Finally, we offer a tunable parameter β ∈ [0, 1] for compromise the
two performance metrics,

Wj = β × R(j, t) + (1 − β)ws
t (j). (11)

We obtain the best next-hop router by choosing the maximum value of Wj .

4 Simulation Tests

In this paper, we assess the router selection algorithm and compare it with
counter-raptor (guard relay selection algorithm).

Safeguarding Against Active Routing Attack via Online Learning 133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Resilience Probability

C
D

F
β=1
β=0.75
β=0.5
β=0.25
β=0

Fig. 1. Resilience probability.

10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

Download Time (s)

C
um

ul
at

iv
e

Fr
ac

tio
n

counter−raptor
online learning

Fig. 2. Download time for 5 MB data.

We compromise the two performance metrics of routers’ resilience and his-
torical performance with parameter β. We see the resilience probability has sig-
nificantly improve when the historical performance participate in the next-hop
router choose in Fig. 1. But with the increase of β, the increase of resilience prob-
ability is not significant. In the following work, we choose β as 0.5 to evaluate
the performance of network via measure the download time and the throughput
of all nodes.

The network performance results shown this method has better performance
from the network simulation. Figure 2 shows the download times of 5 MB data,
and we can see that the latency has minor increase relative to guard relay selec-
tion algorithm for download 5 MB size data. Figure 3(a) and (b) show the 60s
average receiver and sender throughput for all nodes, we can see that the online
learning has almost the same throughput as counter-raptor during network sim-
ulation.

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60
60 second moving average throughput, send

Tick(s)

T
hr

ou
gh

pu
t(

M
iB

/s
)

counter−raptor
online learning

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60
60 second moving average throughput, recv

Tick(s)

T
hr

ou
gh

pu
t(

M
iB

/s
)

counter−raptor
online learning

Fig. 3. Large-scale network performance evaluation.

5 Conclusion

In this work, we presented safeguard route against prefix interception attacks.
First, we evaluate the resilience of routers for prefix interception attacks. Second,
we measure the historical performance of routers for prefix interception attacks.
Finally, we compromise the resilience and historical performance of routers to
choose a best performance of next-hop router. The method successfully increases

134 M. Meng et al.

the probability of a AS being resilient to prefix interception attacks. Overall,
our work is focus on proactively mitigating prefix interception attacks on the
Internet.

Acknowledgment. This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grants No. 61602155, No. U1604155, and No.
61871430, and in part by the basic research projects in the University of Henan Province
under Grants No. 19zx010, and in part by the Science and Technology Development
Programs of Henan Province under Grant No. 192102210284.

References

1. Ballani, H., Francis, P., Zhang, X.: A study of prefix hijacking and interception in
the internet. In: Proceedings of the ACM SIGCOMM 2007 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications,
pp. 265–276 (2007)

2. Lad, M., Oliveira, R., Zhang, B., Zhang, L.: Understanding resiliency of Internet
topology against prefix hijack attacks. In: The 37th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, pp. 368–377 (2007)

3. Huston, G., Michaelson, G.: Validation of Route Origination Using the Resource
Certificate Public Key Infrastructure and Route Origin Authorizations (2012).
https://www.tools.ietf.org/html/rfc6483

4. Bellovin, S.M., Bush, R., Ward, D.: Security requirements for BGP path validation
(2011). http://tools.ietf.org/html/draft-ymbk-bgpsec-reqs-02

5. Johann, S., Ralph, H., Quentin, J., Georg, C., Ernst, B.W.: HEAP: reliable assess-
ment of BGP hijacking attacks. IEEE J. Sel. Areas Commun. 34, 1849–1861 (2016)

6. Rahul, H., Niklas, C., Nahid, S.: Collaborative framework for protection against
attacks targeting BGP and edge networks. Comput. Netw. 122, 120–137 (2017)

7. Shi, X., Xiang, Y., Wang, Z., Yin, X., Wu, J.: Detecting prefix hijackings in the
Internet with argus. In: Proceedings of the 12th ACM SIGCOMM Internet Mea-
surement Conference (2012)

8. Zhang, Z., Zhang, Y., Mao, H.Y.C., Morley, Z., Randy, B.: ISPY: detecting IP
prefix hijacking on my own. IEEE/ACM Trans. Netw. 6, 1815–1828 (2010)

9. Sun, Y., Anne, E., Nick, F., Mung, C., Prateek, M.: Counter-RAPTOR: safeguard-
ing Tor against active routing attacks. In: 2017 IEEE Symposium on Security and
Privacy (2017)

10. Gao, L., Rexford, J.: Stable Internet routing without global coordination.
IEEE/ACM Trans. Netw. 9, 681–692 (2001)

11. Elad, H.: Introduction to online convex optimization. The Computing Research
Repository (2019)

12. Li, B., Chen, T., Giannakis, G.B.: Secure mobile edge computing in IoT via col-
laborative online learning. The Computing Research Repository (2018)

https://www.tools.ietf.org/html/rfc6483
http://tools.ietf.org/html/draft-ymbk-bgpsec-reqs-02

Reliability Aware Cost Optimization for
Memory Constrained Cloud Workflows

E Cao1, Saira Musa1, Jianning Zhang1, Mingsong Chen1(B), Tongquan Wei1,
Xin Fu2, and Meikang Qiu3

1 Shanghai Key Lab of Trustworthy Computing, East China Normal University,
Shanghai, China

mschen@sei.ecnu.edu.cn
2 Department of Electrical and Computer Engineering, University of Houston,

Houston, USA
3 Department of Computer Science, Texas A&M University, Commerce, TX, USA

Abstract. Due to the increasing number of constituting jobs and input
data size, the execution of modern complex workflow-based applications
on cloud requires a large number of virtual machines (VMs), which makes
the cost a great concern. Under the constraints of VM processing and
storage capabilities and communication bandwidths between VMs, how
to quickly figure out a cost-optimal resource provisioning and scheduling
solution for a given cloud workflow is becoming a challenge. The things
become even worse when taking the infrastructure-related failures with
transient characteristics into account. To address this problem, this paper
proposes a soft error aware VM selection and task scheduling approach
that can achieve near-optimal the lowest possible cost. Under the reli-
ability and completion time constraints by tenants, our approach can
figure out a set of VMs with specific CPU and memory configurations
and generate a cost-optimal schedule by allocating tasks to appropriate
VMs. Comprehensive experimental results on well-known scientific work-
flow benchmarks show that compared with state-of-the-art methods, our
approach can achieve up to 66% cost reduction while satisfying both
reliability and completion time constraints.

Keywords: Workflow scheduling · Cost optimization · Reliability
constraint · Soft error · Evolutionary algorithm

1 Introduction

Along with the increasing popularity of cloud services in a pay-as-you-go manner,
more and more enterprises and communities adopt cloud platforms to deploy

Supported by the grants from National Key Research and Development Program of
China (No. 2018YFB2101300), Natural Science Foundation of China (No. 61872147)
and National Science Foundation (No. CCF-1900904, No. CCF-1619243, No. CCF-
1537085 (CAREER)).

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 135–150, 2020.
https://doi.org/10.1007/978-3-030-38961-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_13

136 E Cao et al.

their commercial or scientific workflows to facilitate the distribution of data
and computation-intensive applications [1]. However, as modern workflows grow
rapidly in terms of the number of constituting jobs and input data size, their
task allocation and scheduling complexity is skyrocketing. The scheduling of
workflows requires large number of virtual machines (VMs), which makes the
workflow execution cost a great concern to cloud service providers.

Since the resource allocation problem for cloud workflows is NP-complete
[1], various heuristics have been proposed to find near-optimal schedules quickly.
However, as more and more data center servers adopt CMOS-based processors,
few of existing methods take transient faults (i.e., soft errors) [2,3] into account.
Typically, a modern CMOS processor consists of billions of transistors where one
or more transistors form one logic bit to hold the logic value 0 or 1. Unfortunately,
various phenomena (e.g., high energy cosmic particles, cosmic rays) can result
into the notorious soft error where the binary values held by transistors are
changed by mistake, and the probability of incorrect results or system crashes
during cloud workflow execution becomes increasingly higher.

As a reliable fault-tolerance mechanism, the checkpointing with rollback-
recovery [4] has been widely adopted to improve the reliability of cloud workflow
execution. By periodically saving VM execution states in some stable storage
at specified checkpoints, the rollback-recovery can restore the system with the
latest correct state to enable re-execution when an execution error is detected.
However, the unpredictable overhead of checkpointing with rollback-recovery
operations prolonged the execution time of workflow jobs due to re-execution
which not only cause severe temporal violations [1], but also increase the overall
execution cost.

To achieve increasing profit in the fierce cloud computing market, cloud ser-
vice providers need to explore efficient cloud workflow schedules involving both
resource provisioning (i.e., a set of VMs with specific processing and storage
configurations) and allocation (i.e., assignment of workflow tasks to the VMs
without violating VM memory constraints) to minimize the execution cost. In
this paper, we propose a novel approach that can generate cost-optimal and soft
error resilient schedules for workflow applications considering the overhead of
both checkpointing with rollback-recovery and inter-VM communications. This
paper makes following three major contributions:

– Under the constraints of VM memory size and overall workflow makespan,
we formalize the cost-optimization problem of task scheduling for cloud work-
flows considering the overhead of both checkpointing with rollback-recovery
and inter-VM communication.

– Based on two-segment group genetic algorithm (TSG-GA), we propose a soft
error aware cost-optimized workflow scheduling approach that can quickly
figure out a schedule with cost-optimal resource provisioning and task-to-VM
allocation for a given workflow application.

– We evaluate our approach on well-known complex scientific benchmarks and
show the effectiveness of the proposed approach.

Reliability Aware Cost Optimization for Memory Constrained Workflows 137

The rest of this paper is organized as follows. Section 2 presents Section the
related work. Section 3 formalizes the cost optimization problem for cloud work-
flow scheduling considering both resource and reliability constraints. Section 4
details our proposed approach, and Sect. 5 presents the corresponding experi-
mental results on well-known benchmarks. Finally, Sect. 6 concludes the paper.

2 Related Work

Despite all the advantages of cloud computing, task scheduling in cloud work-
flows with minimum completion time and reduced cost while maintaining high
reliability have become a major challenge, which have attracted great attention
from researchers and industry. For instance, Topcuoglu et al. [5] proposed a
Heterogeneous Earliest Finish Time (HEFT) algorithm which assigns the task
with the highest priority to the VM, in order to achieve the earliest finish time.
Panday et al. [6] presented a scheduling heuristic based on Particle Swarm Opti-
mization (PSO) to minimize the total execution cost of application workflows
on cloud computing environments while balancing the task load on the available
resources. Since, the faster cloud services are normally more expensive, therefore,
users face a time-cost trade-off in selecting services. As any delay in completion
time can produce negative impacts on cost optimization of workflow schedul-
ing. A general way to address this trade-off is to minimize monetary cost under
a deadline constraint. Nonetheless, only a few approaches have been presented
to address this issue in the literature [7–10], which solve the workflow schedul-
ing problem on the Infrastructure as a Service (IaaS) platform. Aforementioned
literatures can effectively minimize the makespan or cost but, none of them
considered reliability during task scheduling.

In order to achieve the reliability, Wang et al. [11] proposed a LAGA (Look-
Ahead Genetic Algorithm) to optimize the reliability and makespan of a workflow
application simultaneously. An algorithm was designed and implemented in [12]
by Wen et al. to solve the problem of deploying workflow applications over fed-
erated clouds while meeting the reliability, security and monetary requirements.
Although the above work can guarantee the reliability but, they did not consider
the soft error occurrences in cloud data centers. Wu et al. [3] proposed a soft
error-aware energy-efficient task scheduling for workflow applications in DVFS-
enabled cloud infrastructures under reliability and completion time constraints.
However, the above work did not consider the cost optimization.

To our best knowledge, our work is the first attempt to minimize the execu-
tion cost of cloud workflows under makespan, reliability and memory constraints
while considering soft errors in cloud data centers.

3 Scheduling Model and Problem Definition

In this section, we present VM model, workflow model and fault tolerance.
Finally, the problem of cost optimization workflow scheduling in the cloud envi-
ronment is defined.

138 E Cao et al.

3.1 Modeling of VM

IaaS cloud provider offers a set of VM configurations C = {C0, C1, ..., Cn} to
tenants by renting VMs on demand. The VM configuration Ci is characterized by
a four-tuple (vn, bw, ram, price), where vn(Ci), bw(Ci), ram(Ci) and price(Ci)
denote the number of vCPUs, the network bandwidth, the memory and the rental
price per unit time of Ci, respectively. A running VM with certain configuration
is treated as an instance and customers can purchase unlimited number of VM
instances according to their requirements. The set of VM instances is denoted
by S = {S0, S1, ..., Si}, where Si is a VM instance with a certain configuration
ϕ(Si) of C. We assume that all the tasks are parallelizable so that all vCPUs can
be fully used and have same processing capacities. It is noteworthy that although
cloud service providers have massive computing and memory resources, there are
upper limits on the number of vCPU and the amount of memory for a single VM
instance. In addition, the allocation of memory source of VM is usually discrete,
i.e., ram(Si) = α · M , where M is the unit of memory which depends on cloud
service providers and α is an integer.

3.2 Modeling of Workflow

A workflow W = (T,E) as shown in Fig. 1 with dependent tasks is represented as
the Directed Acyclic Graph (DAG), where T = {t0, t1, ..., tn} represents the task
set and E denotes the set of dependencies between tasks. For instance, euv ∈ E
indicates the dependency between task tu and tv, where tu is the immediate
predecessor of tv, and tv is the immediate successor of tu. We use a four-tuple
(referload,mem, pred, succ) to represent a task, where referload(tu), mem(tu),
pred(tu) and succ(tu) denote the reference workload, the maximum memory
required for task execution on a VM instance, the immediate predecessors and
the immediate successors of task tu, respectively. If pred(tu) = ∅, then tu is an
entry task and if succ(tu) = ∅, then tu is an exit task. This article allows single
entry and exit task, this can be assured by adding a pseudo entry task and a
pseudo exit task. We assume the reference workload is task execution time on a
VM instance whose vCPU number equals 1.

t0

t1

t5

t4

t2

t3

540

240

240
540

1040

240

240

20

Fig. 1. A workflow example with 6 tasks

As shown in Fig. 1, each edge euv have weight wtu,v, which represents the
amount of data that needs to be transmitted from tu to tv. A task cannot start

Reliability Aware Cost Optimization for Memory Constrained Workflows 139

its execution until the input data has been received from all of its predeces-
sors. If task tu and tv are assigned to VM Si and Sj , the communication cost
comm(tu, tv) can be calculated as follows:

comm(tu, tv) =

{
0 if Si = Sj

wtuv

bwi,j
if Si �= Sj

(1)

We consider that the communication bandwidth bwi,j between Si and Sj is
the lower bandwidth, i.e., bwi,j = min(bw(ϕ(Si)), bw(ϕ(Sj))).

3.3 Modeling of Tasks with Fault Tolerance

To ensure the reliability of workflow execution in a cloud environment, we use an
equidistant checkpointing technique [4], where the lengths of checkpoint inter-
vals are same. The execution state of task is stored in a secure device [3,13],
guaranteeing that the task can read the latest correct state to re-execute when
a soft error occurs.

Suppose that task tu is assigned to VM Si, so the best case execution time
of task tu without any soft error can be formulated as

ETbest(tu, Si) =
referload(tu)

vn(ϕ(Si))
+ N(tu, Si) · Oi, (2)

where N(tu, Si) is the number of checkpoint of task tu on VM Si and Oi is the
time overhead of checkpointing. Checkpoint interval length of task tu assigned
to VM Si is formulated as

Seg(tu, Si) =
referload(tu)

vn(ϕ(Si))
· 1
N(tu, Si) + 1

. (3)

Let Fmax denotes the maximum number of fault occurrences during task
execution. Therefore, with Fmax soft error occurrences, the worst case execution
time of task tu on VM Si can be expressed as

ETw(tu, Si) =
referload(tu)

vn(ϕ(Si))
+ 2 · N(tu, Si) · Oi + Seg(tu, Si) · Fmax, (4)

where 2 ·N(tu, Si) indicates the accumulative overhead of Fmax checkpoint sav-
ing and retrieval operations, and Seg(tu, Si) ·Fmax represents the fault tolerance
overhead.

In order to minimize the worst case execution time ETw(tu, Si), we use the
optimal number of checkpoint Nopt(tu, Si) [4], which can be calculated as

Nopt(tu, Si) =

√
Fmax

Oi
· referload(tu)

vn(ϕ(Si))
− 1. (5)

140 E Cao et al.

We assume that the average arrival rate of soft error λi of the VM instance
Si is consistent with Poisson distribution [3]. Therefore, the probability of F soft
error occurrences on VM Si can be formulated as

Pr(tu, Si, F) =
e−λi·ETw(tu,Si) · (λi · ETw(tu, Si))F

F !
. (6)

Task reliability is defined as the probability that a task can be successfully
executed in the presence of soft errors. The probability of successful recovery of
F faults can be calculated as

Prsucceed(F, Si) = e−λi·F ·Seg(tu,Si). (7)

Hence, the reliability of task tu on VM Si can be calculated as

R(tu, Si) =
Fmax∑
F=0

Pr(tu, Si, F) · Prsucceed(F, Si). (8)

3.4 Problem Definition

A binary tuple (Task VM, VM VMC) is used to represent a workflow scheduling
scheme P , where Task VM represents the mapping of tasks to VM instances,
and VM VMC represents the VM instances to VM configurations mapping.
VM VMCi is used to represent the configurations of VM instance Si, i.e.,
ϕ(Si) = VM VMCi. Task VMu indicates the VM instance to which task tu
is assigned. Let STi,u and FTi,u denote the start time and finish time of task tu
on VM Si, respectively. We get the start time of the task tu on VM Si as follows:

STi,u =

⎧⎪⎪⎨
⎪⎪⎩

0 if pred(tu) = ø
max

tw∈previous(tu)
{ max

tv∈pred(tu)
{FTi,u+

comm(tu, tv)}, FTi,w} if pred(tu) �= ø

(9)

FTi,w is the finish time of the task tw executed before task tu on the same
VM instance Si and previous(tu) represents the tasks executed before tu on Si.
Note that if there are multiple tasks that can be executed at the same time on
the same VM instance, we select a task according to the order in which the tasks
are scheduled to the VM instance. Therefore, FTi,u is formulated as

FTi,u = STi,u + ETw(tu, Si). (10)

The makespan of workflow W can be obtained as,

makespan(W,P) = max
tu∈T (W)&Si∈S(P)

{FTi,u}, (11)

where T (W) is the task set of workflow W , S(P) is the set of VM instances
obtained by scheduling scheme P . In Sect. 3.3 we have obtained the reliability

Reliability Aware Cost Optimization for Memory Constrained Workflows 141

of a task, to calculate the workflow reliability we find the cumulative product of
the reliability R(W,P) of all the workflow tasks [3,14], such as

R(W,P) =
∏

tu∈T (W)&Si∈S(P)

R(tu, Si). (12)

Let ti denote the tasks assigned to the VM Si, i.e., ti = {tu|Task V Mu = Si}.
The start time V MSTi

and end time V MFTi
of VM Si can be formulated as

V MSTi
= min

tu∈ti
{STi,u}, (13)

V MFTi
= max

tu∈ti
{FTi,u}. (14)

Finally, the cost of workflow W scheduling can be formulated as

Cost(P,W) =
∑

Si∈S(P)

price(VM VMC i(P)) · (V MSTi
− V MFTi

). (15)

Considering a workflow W and a set of VM configurations C, we need to
find a suitable scheduling scheme P to minimize the cost of workflow scheduling
while satisfying the makespan constraint Dgoal, memory constraint, and relia-
bility constraint Rgoal. Therefore, the problem to be solved in this paper can be
formally defined as the minimization problem:

Minimize : Cost(W, P) (16)
Subject to : R(W, P) ≥ Rgoal, (17)

makespan(W, P) ≤ Dgoal, (18)
mem(tu) < ram(ϕ(Si)), tu ∈ T (W) & Si ∈ S(P). (19)

Equation (19) describes the memory constraints of workflow scheduling. The
memory required for a task should not exceed the RAM of the VM instance
on which the task it assigned. The problem presented in this paper is a typical
combinatorial optimization problem. It is worth noting that although assigning
tasks to the powerful VM instances can reduce the makespan of a workflow, but
the idle time caused by data dependencies on the powerful VM instances will
increase the cost and excessive memory resources can also impose costly penal-
ties. Meanwhile, the reliability of task can also be influenced by the processing
capability of VM instances, which makes the scheduling problem more complex.

4 Our Evolutionary Approach

Genetic algorithm (GA) has the characteristics of powerful global search ability,
excellent concurrency and strong robustness, which is easy to combine with other
methods and has become a universal optimization method [15]. It is widely used

142 E Cao et al.

in workflow scheduling and cloud computing [8,16,17]. Since the existing GA is
difficult to apply directly to the workflow scheduling problem, we explore the
two-segment group genetic algorithm (TSG-GA) for cost optimized workflow
scheduling with makespan, reliability and memory constraints. The algorithm
consists of encoding, initial population generation, selection, crossover, mutation,
elitism, fitness function and chromosome modification.

Initial Population

Chromosome Modification
& Elitism

Selection

of iterations > K

Optimal Solution

C0 C1 C2 C3

Crossover Operation

C3 C2 C1

C0 C1 C1 C3 C3 C1 C2 C6

Task_VM & VM_VMC Mapping

C0 C4 C1 C3 C3 C5 C2 C6

Randomly
Delete

Randomly
Delete

Mutation OperationC1 C1

t4 t5 t3
t0 t0 t4t2 t1 t3 t1 t2 t5

t0 t4 t1 t3 t2 t5 t0 t1 t3 t4 t5 t2

t1 t3 t1 t3

t0 t4 t1 t2 t3 t5 t0 t1 t3 t4 t5 t2

Fig. 2. The execution process of TSG-GA

The overall execution process of TSG-GA is shown in Fig. 2. We first ran-
domly generate the initial population according to the target encoding, and select
individuals with better fitness from initial population for crossover, mutation,
and modification operations. Here the modification operation is used to satisfy
the memory constraint for each chromosome. Then, we use the elitism strategy
to preserve the best individual generated during the process of evolution. After
a certain number of iterations (K), the final best individual (global optimal
solution) is returned as the workflow scheduling solution.

4.1 Encoding

As discussed in Sect. 3.4, the encoding of our approach is a two segment integer
encoding based on task grouping. For example, we use ind to represent a chro-
mosome, i.e., an individual in the population, and ind consists of two segment:
ind.Task VM and ind.VM VMC.

The encoding example is shown in Fig. 3. Task VM is a group-based integer
encoding, grouping tasks according to their corresponding VM instances. The
encoding length of Task VM is equal to the number of tasks. Gene index in
Task VM encoding represents the task, and the value represents the correspond-
ing VM instance, For example, Task VM(1) = 1 indicates that task t1 is assigned
to VM instance S1. VM VMC is encoded as a variable length integer encoding,
the length of which is the maximum index value of the VM instances in Task VM.

Reliability Aware Cost Optimization for Memory Constrained Workflows 143

Task

Task_VM

VM_VMC

0 1 2 3 4 5

VM_Configs 0 1 2

0 1 0 1 2 3

0 1 2 3

3

Fig. 3. An example of encoding

Similar to Task VM encoding, VM VMC(1) = 2 indicates that the configuration
of VM Instance S1 is C2. The two-segment integer encoding method designed in
this paper is simple and intuitive.

4.2 Fitness Function

Fitness function is used to evaluate the fitness of solution in the evolution pro-
cess. In this paper, we use fitness function to minimize the cost Cost(W,P) as
described in Eq. (15). In order to satisfy makespan and reliability constraints,
penalty parameters γ and δ are introduced. How to satisfy memory constraints
will be described in Sect. 4.4. The fitness of a chromosome deteriorates if it does
not meet the makespan or reliability constraint. Let ξ be the set of constraints
{Dgoal, Rgoal}, the Fitness function can be formulated as

Fitness(W,P) =

{
Cost(W,P), ξ is satisfied

γ · δ · Cost(W,P), otherwise
(20)

γ and δ are the real numbers greater than 1 if Dgoal and Rgoal are not
satisfied, respectively. The goal of TSG-GA is to minimize the Fitness(W,P).

4.3 Crossover and Mutation

The designed crossover operator can ensure that the original task grouping and
VM configurations information of chromosomes will not be lost, which uses the
tasks in the same VM instance as the crossover unit to avoid the problem that
the direct crossover for Task VM may destroy the task grouping information.

Figure 4 shows the execution process of the crossover operator. Suppose ind1
and ind2 are parents. Firstly, an empty chromosome L1 is created as the off-
spring, and then a segment of genes of ind1.Task VM are randomly selected.
As shown in Fig. 4, ind1.Task VM(3) to ind1.Task VM(4) are selected. Genes
in the same groups as the selected genes are copied into the offspring L1
with the associated VM configurations, i.e., ind1.Task VM(1), ind1.Task VM(3),
ind1.Task VM(4), ind1.VM VMC(1), and ind1.VM VMC(2). The length of the
selected genes is limited to length of ind1.VM VMC to avoid duplicating genes

144 E Cao et al.

Task_VM

VM_VMC

ind1 ind2

L1L2

Randomly Choose
VM Instances

Crossover

L1L2

Fig. 4. An example of Task VM and VM VMC crossover

from ind1 too much which destroy the grouping information of ind2. Then copy
the groups and corresponding VM configurations of ind2 that do not overlap
with the previously copied genes of ind1 into L1. Here ind2.Task VM(2) and
ind2.Task VM(5) cannot be copied because the corresponding VM instances
overlap with the previously copied VM instances. At this time, there are some
fragments of L1.Task VM are not filled. We simply assign the tasks in these
fragments to the existing or new VM instances and the crossover operation is
completed. Same operation is performed by swapping the roles of ind1 and ind2,
and we get the offspring individual L2.

For mutation operator, as shown in Fig. 2, it marks a chromosome as a
mutated individual according to mutate rate, where we randomly delete one
of the VM instance and assign the tasks of the VM instance to the existing or
new VM instances. This paper argues that splitting and reorganizing the tasks
in the VM instance with the most tasks is beneficial to jump out of the local
optimum.

4.4 Chromosome Modification

The cloud workflow scheduling problem in this paper includes memory constraint
that genetic algorithm does not have ability to deal with. In the process of evo-
lution, if memory constraint is not satisfied, chromosome modification algorithm
is called to satisfy the memory constraint.

As shown in Algorithm 1, for the chromosome that does not satisfy memory
constraint, lines 3–15 search for an alternative VM configuration for each VM
instance (traversing from k = 0) that does not satisfy memory constraint. Line
8 uses GetAvailV mConfig function to get an available VM configuration for
the VM instance which need to increment the RAM from VM configurations C.
The available configuration should satisfy memory constraint and have the same
or similar processing capability with the original VM instance (the number of
vCPUs is close to the original VM instance). Then line 9 uses the available VM
configuration to replace the configuration of original VM instance, and line 12

Reliability Aware Cost Optimization for Memory Constrained Workflows 145

Algorithm 1: Chromosome Modification
Input: i) ind, the chromosome to be modified;

ii) vmConfigs, available VM configuration set;
Output: new ind, modified chromosome

1 ReformIndividual(ind, vmConfigs) begin
2 new ind = ind;
3 for k = 0 to ind.V M V MC.size() do
4 v = ind.V M V MC[k];
5 candidate = [];
6 tasks = GetTasks(ind, k);
7 if FindMaxMem(tasks) > vmConfigs[v].ram then
8 for vmConfig ∈ GetAvailV mConfig(vmConfigs[v], tasks) do
9 new ind.V M V MC[k] = vmConfig;

10 candidate ind = new ind;
11 candidate.add(candidate ind);

12 end
13 new ind = FindElitis(candidate);

14 end

15 end
16 return new ind;

17 end

adds the modified chromosome to the candidate individual set. Line 13 selects
the best individual from the candidate individual set. In the end, the entire
chromosome is modified and the memory constraint is satisfied.

Table 1. Price of custom machine types provided by Google Cloud

Charge items Cost

vCPU $0.033174/vCPU hour

Memory $0.004446/GB hour

5 Performance Evaluation

The effectiveness of the proposed method was evaluated through thorough exper-
iments based on WorkflowSim [18] using well-known workflows [19] such as
CyberShake, Inspiral and Epigenomics. Three workflows with two sets of tasks
for each workflow were used in the experiment, which were generated by the
toolkit Workflow-Generator [20] based on its default configurations. To reflect
memory constraints, we randomly add memory attributes (1–8 GB) to the tasks
of the generated workflows. Furthermore, HEFT and PSO algorithms with

146 E Cao et al.

makespan and VM idle time minimization were compared with the proposed
method. The HEFT algorithm assigns a task to the VM instance to achieve
the earliest finish time according to task priority, yielding shortest workflow
makespan. The PSO is an evolutionary computational algorithm which is widely
used in the research of task scheduling for workflow application in the cloud. For
comparison with our approach, the HEFT and PSO algorithm were modified
to make sure an unlimited number of VM instances can be created with the
same configuration. We also added memory constraints in both HEFT and PSO
algorithm, and minimized the size of the memory of VM instance to reduce its
execution cost. In addition, we calculated the reliability and cost of workflow
scheduling according to Eqs. (12) and (15), respectively. All the experiments
were performed on a desktop with 3.10 GHz Intel Core i5 CPU and 8 GB RAM.

5.1 Experimental Setting

The VM configuration and price were set by referring to custom machine types
of Google Cloud. According to the characteristics of workflows and the VM
configurations, a total of 40 VM configurations are selected with vCPU 1–4 and
memory of 1–10 GB (1 GB, 2 GB, ..., 10 GB). Moreover, the network bandwidth
between VM instances is 10 Mbps. The price of custom machine types provided
by Google Cloud is shown in Table 1:

Note that although the price shown in Table 1 is in hour, Google Cloud
can charge each VM instance in seconds. We assume that the soft error occurs
independently in each VM instance and it is in accordance with the Poisson
distribution. Supposing soft error occurrence rate λi of each VM instance is
the same for a workflow, we have taken different soft error rates for different
workflows, and the value of λi ranges from 10−6 to 10−3. We set the maximum
soft error tolerance number Fmax to 1, and the overhead of each checkpoint Oi

to 0.1 s. The size of the population of TSG-GA is 100, the number of generation,
the crossover rate, and the mutation rate are 100, 0.8 and 0.1, respectively. For
PSO, the size of the population is 100 and the number of generation is 100.
While the learning factors c1 = 2, c2 = 2, and inertia weight is 0.9.

To evaluate the effectiveness of the proposed TSG-GA under makespan, reli-
ability and memory constraints, we set makespan constraint to Dgoal = θ · MH,
where MH is the workflow scheduling makespan obtained by HEFT algorithm
and θ is a constant real number. In the experiment, we let θ take different values
(1 ≤ θ ≤ 2), which means that our approach should not make the makespan
of a workflow scheduling θ times longer than the makespan obtained by HEFT
algorithm, meanwhile, we set the workflow scheduling reliability constraint to
Rgoal = RH − β, where RH is the workflow scheduling reliability obtained by
HEFT algorithm and β is the reliability margin. The number of soft error toler-
ances Fmax is fixed and assumed that the soft error rate of each VM instance is
the same. Since the reliability of the task is directly related to the task execu-
tion time, it is more likely to encounter a soft error when the execution time
becomes longer, which results in lower reliability. The HEFT algorithm can
achieve approximate shortest makespan and highest task reliability as it finishes

Reliability Aware Cost Optimization for Memory Constrained Workflows 147

the task in the earliest time. Therefore, we used the reliability and makespan
obtained by HEFT as references of Rgoal and Dgoal for each workflow.

5.2 Results and Analysis

In the experiment, the workflow scheduling generated by our approach always
satisfies the memory constraint, because chromosome modification guarantees
the memory constraints. We performed experiments five times on each workflow
and finally took the average as the final result.

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0 1.2 1.5 2.0

C
os

t

Dgoal (θ)

CyberShake

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0 1.2 1.5 2.0

C
os

t

Dgoal (θ)

Epigenomics

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1.0 1.2 1.5 2.0

C
os

t

Dgoal (θ)

Sipht

Fig. 5. Cost of large workflows with fixed reliability (β = 0) and varying makespan

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0 1.2 1.5 2.0

C
os

t

Dgoal (θ)

CyberShake

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1.0 1.2 1.5 2.0

C
os

t

Dgoal (θ)

Epigenomics

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0 1.2 1.5 2.0

C
os

t

Dgoal (θ)

Sipht

Fig. 6. Cost of small workflows with fixed reliability (β = 0) and varying makespan

Results of Workflows with Fixed Reliability Constraint. Firstly, we per-
formed experiments using three workflows with two sets of task for each workflow
under different makespan constraints, fixed reliability constraint, and memory
constraint. Each set of tasks were defined as small and large workflows with 30 (or
24) and 100 tasks, respectively. We set θ to 1, 1.2, 1.5 and 2, and set β to 0 (i.e.,
RH). Figures 5 and 6 show the cost results of the proposed approach in compar-
ison with HEFT and PSO on large workflows (i.e., CyberShake 100, Sipht 100
and Epigenomics 100) and small workflows (i.e., CyberShake 30, Sipht 30 and
Epigenomics 24). Note that we did not set any constraint for PSO method, and
just get results of HEFT and PSO once for one workflow in the case of θ = 1.
Our approach spent around 11.20 s on average to generate one schedule on large
workflows and 1.41 s on small workflows.

To facilitate performance comparison, we took HEFT method as baseline,
and took scheduling costs divided by the cost of HEFT as the final costs for

148 E Cao et al.

each workflow. Our approach always satisfied the constraints both on large and
small workflows. From Figs. 5 and 6, it can be observed that our approach out-
performs the HEFT and PSO algorithms. For example, compared to the HEFT
algorithm, PSO can achieve 40.0% cost reduction on the CyberShake 100 while
our approach can achieve 44.1% cost reduction when θ = 1. When θ = 2, PSO
can achieve 39.1% cost reduction on Sipht 30 while our approach can achieve
66.0% cost reduction. If we compare the worse performance cases, the proposed
approach TSG-GA only performs worse than PSO on CyberShake 30 in the case
of θ = 1. However, PSO performance is even worse than HEFT on half of the
workflows. This is mainly because it tends to converge prematurely and falls
into local optimum due to the lack of diversity of the population in the search
space. The processing capability of the VM instance using custom machine type
provided by Google Cloud is linear to the price in the experiment. Therefore,
cost reduction lies in reducing the idle time of VM instances, while HEFT just
finishes tasks as quickly as possible. Complex dependencies between tasks make
tasks to wait for execution on the VM instances, making it impossible to guar-
antee a minimum idle time. Our approach can create an appropriate number
of VM instances with appropriate configurations and schedule tasks reasonably
according to the dependencies, while reducing idle time of instances to reduce
costs. We can see that the cost optimization achieved on Epigenomics is only 2%.
This is because Epigenomics workflow transmits less data and its data depen-
dency is relatively simple, so its main cost comes from the vCPU usage time but
not idle time. It can be seen that as θ increases, our approach can achieve better
results due to the vast search space in genetic algorithm.

Results of Workflows with Fixed Makespan Constraint. We conducted
experiments with the three workflows discussed in the previous section under
fixed makespan constraint, different reliability constraints and memory con-
straint. We set θ to 1 and β to 0.0000, 0.0001, 0.0002 and 0.0003. Figures 7 and
8 show the comparisons of workflow scheduling results obtained by our approach
on those three workflows with HEFT and PSO algorithm.

Similarly, we used the HEFT as the benchmark. It is found that our app-
roach always satisfies the constraints on these three workflows and outperforms
the HEFT and PSO algorithms as depicted in Figs. 7 and 8. When β = 0, the
reliability constraint of CyberShake 30 is 0.9987 and our approach can achieve
6.5% cost reduction compared to HEFT method. When β = 0.0003, the relia-
bility constraint of CyberShake 30 is 0.9984, our approach can achieve 12% cost
reduction compared to HEFT method. Reliability constraint make VM config-
urations to have strong processing capability to allow tasks to be completed as
quickly as possible, which improves the reliability of the tasks. It can be seen
from Figs. 7 and 8, when reliability constraint become loose, our approach can
search for a better scheduling scheme.

Reliability Aware Cost Optimization for Memory Constrained Workflows 149

 0

 0.2

 0.4

 0.6

 0.8

 1

0.9972 0.9971 0.9970 0.9969

C
os

t

Rgoal

CyberShake

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.9972 0.9971 0.9970 0.9969

C
os

t

Rgoal

Epigenomics

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

0.9990 0.9989 0.9988 0.9987

C
os

t

Rgoal

Sipht

Fig. 7. Cost of large workflows with fixed makespan (θ = 1) and varying reliability

 0

 0.2

 0.4

 0.6

 0.8

 1

0.9987 0.9986 0.9985 0.9984

C
os

t

Rgoal

CyberShake

 0

 0.2

 0.4

 0.6

 0.8

 1

0.9991 0.9990 0.9989 0.9988

C
os

t

Rgoal

Epigenomics

 0

 0.2

 0.4

 0.6

 0.8

 1

0.9996 0.9995 0.9994 0.9993

C
os

t

Rgoal

Sipht

Fig. 8. Cost of small workflows with fixed makespan (θ = 1) and varying reliability

6 Conclusions

Due to the increasing number of transistors on modern processors, the servers
in data center is more susceptible to the notorious transient faults (i.e., soft
errors). Although checkpointing with rollback-recovery mechanism is promising
in tackling this problem to improve the reliability of cloud workflows, its over-
head is too large to be neglected. The inevitable overhead will strongly affect
the overall cost of workflow execution on cloud with a pay-as-you-go manner.
To address this problem, this paper proposed a genetic algorithm based app-
roach, known as TSG-GA, that can quickly figure out a cost-optimal schedule
by considering both the overhead of checkpointing with rollback-recovery and
the resource constraints (i.e., maximum number of vCPUs and available memory
within a VM, network bandwidth) given by cloud workflow tenants. Comprehen-
sive experimental results on well-known complex scientific benchmarks shows the
effectiveness of our proposed approach.

References

1. Liu, X., et al.: The Design of Cloud Workflow Systems. Springer, New York (2012).
https://doi.org/10.1007/978-1-4614-1933-4

2. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reli-
ability. In: Proceedings of ACM Symposium on Cloud Computing (SoCC), pp.
193–204 (2010)

3. Wu, T., Gu, H., Zhou, J., Wei, T., Liu, X., Chen, M.: Soft error-aware energy-
efficient task scheduling for workflow applications in DVFS-enabled cloud. J. Syst.
Archit. 84, 12–27 (2018)

https://doi.org/10.1007/978-1-4614-1933-4

150 E Cao et al.

4. Wei, T., Chen, X., Hu, S.: Reliability-driven energy-efficient task scheduling for
multiprocessor real-time systems. IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst. (TCAD) 30(10), 1569–1573 (2011)

5. Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
(TPDS) 13(3), 260–274 (2002)

6. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments.
In: Proceedings of International Conference on Advanced Information Networking
and Applications, pp. 400–407 (2010)

7. Qiu, M., Sha, E.H.M.: Cost minimization while satisfying hard/soft timing con-
straints for heterogeneous embedded systems. ACM Trans. Des. Autom. Electron.
Syst. (TODAES) 14(2), 1–30 (2009)

8. Zhang, M., Li, H., Liu, L., Buyya, R.: An adaptive multi-objective evolution-
ary algorithm for constrained workflow scheduling in Clouds. Distrib. Parallel
Databases 36(2), 339–368 (2018)

9. Sahni, J., Vidyarthi, D.P.: A cost-effective deadline-constrained dynamic schedul-
ing algorithm for scientific workflows in a cloud environment. IEEE Trans. Cloud
Comput. 6(1), 2–18 (2015)

10. Chen, M., Huang, S., Fu, X., Liu, X., He, J.: Statistical model checking-based
evaluation and optimization for cloud workflow resource allocation. IEEE Trans.
Cloud Comput. 1 (2016)

11. Wang, X., Yeo, C.S., Buyya, R., Su, J.: Optimizing the makespan and reliability for
workflow applications with reputation and a look-ahead genetic algorithm. Future
Gener. Comput. Syst. 27(8), 1–18 (2011)

12. Wen, Z., Cala, J., Watson, P., Romanovsky, A.: Cost effective, reliable, and secure
workflow deployment over federated clouds. In: Proceedings of IEEE International
Conference on Cloud Computing, pp. 604–612 (2015)

13. Han, L., Canon, L., Casanova, H., Robert, Y., Vivien, F.: Checkpointing workflows
for fail-stop errors. IEEE Trans. Comput. 67(8), 1105–1120 (2018)

14. Zhang, L., Li, K., Li, C., Li, K.: Bi-objective workflow scheduling of the energy
consumption and reliability in heterogeneous computing systems. Inf. Sci. 379,
241–256 (2016)

15. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
16. Zhang, X., Wu, T., Chen, M., Wei, T., Zhou, J., Hu, S., Buyya, R.: Energy-aware

virtual machine allocation for cloud with resource reservation. J. Syst. Softw. 147,
147–161 (2019)

17. Gai, K., Qiu, M., Zhao, H.: Cost-aware multimedia data allocation for heteroge-
neous memory using genetic algorithm in cloud computing. IEEE Trans. Cloud
Comput. 1 (2016)

18. Chen, W., Deelman, E.: WorkflowSim: a toolkit for simulating scientific workflows
in distributed environments. In: Proceedings of International Conference on E-
Science, pp. 1–8 (2012)

19. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M., Vahi, K.: Char-
acterization of scientific workflows. In: Proceedings of International Workshop on
Workflows in Support of Large-Scale Science, pp. 1–10 (2008)

20. Da Silva, R.F., Chen, W., Juve, G., Vahi, K., Deelman, E.: Community resources
for enabling research in distributed scientific workflows. In: Proceedings of Inter-
national Conference on e-Science, pp. 177–184 (2014)

Null Model and Community Structure
in Heterogeneous Networks

Xuemeng Zhai1(B) , Wanlei Zhou2, Gaolei Fei1, Hangyu Hu1, Youyang Qu3,
and Guangmin Hu1(B)

1 University of Electronic Science and Technology of China, Chengdu 611731, China
zhaixuemeng@hotmail.com, hgm@uestc.edu.cn

2 University of Technology Sydney, Ultimo, NSW 2007, Australia
3 Deakin University, Burwood, VIC 3125, Australia

Abstract. Finding different types of communities has become a research
hot spot in network science. Plenty of the real-world systems containing
different types of objects and relationships can be perfectly described
as the heterogeneous networks. However, most of the current research
on community detection is applied for the homogeneous networks, while
there is no effective function to quantify the quality of the community
structure in heterogeneous networks. In this paper, we first propose the
null model with the same heterogeneous node degree distribution of the
original heterogeneous networks. The probability of there being an edge
between two nodes is given to build the modularity function of the het-
erogeneous networks. Based on our modularity function, a fast algorithm
of community detection is proposed for the large scale heterogeneous net-
works. We use the algorithm to detect the communities in the real-world
twitter event networks. The experimental results show that our method
perform better than other exciting algorithms and demonstrate that the
modularity function of the heterogeneous networks is an effective param-
eter that can be used to quantify the quality of the community structure
in heterogeneous networks.

Keywords: Heterogeneous network · Community detection ·
Modularity · Twitter network

1 Introduction

Network science is a fundamental tool to analyze the basic problems of the real-
world complex systems, such as social networks, metabolic networks, computer
networks and etc. [2]. Community detection has become a key research in net-
work science during the past decades [4,8]. The community refers to the cluster
of nodes that are connected densely and community detection focuses on find-
ing the such clusters effectively in the networks. The modularity proposed by

This work was supported by National Natural Science Foundation of China No.
61571094 and Sichuan Science and Technology Program under Grant 2019YFG0456.

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 151–163, 2020.
https://doi.org/10.1007/978-3-030-38961-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_14&domain=pdf
http://orcid.org/0000-0002-3344-3647
https://doi.org/10.1007/978-3-030-38961-1_14

152 X. Zhai et al.

Newman based on the null model is the most famous parameter to quantify
the quality of the community structure in the homogeneous single networks [9].
Based on the modularity function, effective algorithms of the community detec-
tion in homogeneous networks are proposed such as the famous BGLL algorithm
[1]. The null model and the modularity function are also used in the research on
the homogeneous multiplex networks [7,13]. However, most of the research just
focus on the homogeneous networks and there is no effective function to quantify
the quality of the community structure in heterogeneous networks.

Most of the real-world networks contain more than one type of the nodes and
relationships. For example, in the DBLP networks, there are three types of nodes:
authors, papers, and conferences [12] and in twitter event networks, there are two
types of nodes: users and events [5]. Such networks are heterogeneous in nature.
The community detection method is no longer available for those heterogeneous
networks. Therefore, it is necessary to propose the suitable method to detect the
communities in heterogeneous networks. The main problem of the heterogeneous
community detection is how to deal with the heterogeneous relationships among
the different types of the nodes. Researchers propose several method to detect the
heterogeneous communities focused on the heterogeneous relationships. However,
the basic community structure is ignored so that there is no effective function to
quantify the quality of the community structure in heterogeneous networks like
the homogeneous modularity function.

In this paper, we propose the null model and modularity function of the het-
erogeneous networks. The heterogeneous node degree is proposed to replace the
node degree of homogeneous networks based on the heterogeneous relationships
in the heterogeneous networks. Then we build the null mode of the heterogeneous
networks with the same heterogeneous node degree distribution of the original
network. The modularity function of the heterogeneous networks is built with
the probability of there being an edge between two nodes in the null model.
Based on our modularity function, a fast algorithm of heterogeneous community
detection is proposed to demonstrate the effectiveness of the modularity. The
experimental results show that the community structure of the heterogeneous
networks can be exposed effectively through the modularity function. Our find-
ings fill the gap in the field of null model of heterogeneous networks and provide
a powerful tool for detecting communities in the complex systems with multiple
objects and relationships in many general scientific fields.

The reminder of the paper is structured as follows: The Sect. 2 is the related
work about our research. The heterogeneous node degree and null model of
heterogeneous networks are introduced in Sect. 3. In the Sect. 4, we discuss the
modularity function of the heterogeneous networks and the algorithm of the
community detection is shown in Sect. 5. The experiments is presented on Sect. 6.
The Sect. 7 is the conclusions.

2 Related Work

The null model in homogeneous networks has the same degree distribution with
the original network. The modularity function proposed by Newman based on

Null Model and Community Structure in Heterogeneous Networks 153

the null model is the most famous parameter that can be used to quantify the
quality of the communities in homogeneous network [10]. The modularity refers
to the number of edges within communities minus the expected number of such
edges in the null model. Based on the modularity, Blondel et al. [1] propose a fast
modularity optimization method called BGLL algorithm. They found the high
modularity partitions of large networks in short time and unfolded a complete
hierarchical community structure for the network. The method still focused on
the homogeneous networks.

Compared with analysis for the homogeneous single networks and multi-
plex networks, the research on community detection in heterogeneous networks
started relatively late. Cai et al. [3] propose a method to find the hidden commu-
nity in heterogeneous social networks. They built the weighted matrix of differ-
ent relationships according to the priori community detection results and used
the optimized algorithm to calculate the optimal coefficient of each relationship
matrix. The coefficient represented the influence of the different relationships
on the result of the community detection. The method requires prior knowledge
about community detection.

Zhao et al. [14] propose a framework of mining different types of communities
from web based on the heterogeneity and evolution of web data. They gave the
clearly definition of the heterogeneous networks and use a 8-tuple vector to
represent them. The features of particular communities were extracted using the
PopRank algorithm to build the SVM regression model for the prediction.

Comar et al. [6] use the multi-task learning to classify nodes and detect
communities at the same time. They derived two homogeneous subnetworks
form a heterogeneous network that contains two types of nodes, one subnetwork
for classification and the other for community detection. The author classify the
nodes and detect communities through the relevance of the two subnetworks.
The methods requires the heterogeneous networks must be bipartite.

Qiu et al. [11] focus on the overlapping community detection of the hetero-
geneous social networks. They propose an algorithm called OcdRank (Overlap-
ping Community Detection and Ranking) combining the overlapping community
detection and community-member ranking together in directed heterogeneous
social networks. The algorithm still works on bi-type heterogeneous social net-
works.

Our work differs from those found on the literature because the null model
and modularity are the basic theory of the community detection in homogeneous
networks. We propose the two basic conceptions of the heterogeneous networks
and focus on the community structure itself with the considering of the hetero-
geneity in heterogeneous networks. The work is original and unprecedented.

3 Null Model of Heterogeneous Networks

3.1 Heterogeneous Networks and Heterogeneous Node Degree

We first introduce the basic conception of the heterogeneous networks. In this
paper, we use the set of adjacency matrices to describe a heterogeneous net-

154 X. Zhai et al.

works (HW) as HW = {AS , ...,HSR, ...}, S,R ∈T , where T refers to the type
of nodes. AS = (aS

ij)NS×NS
donated as the adjacency matrix of the same-type

nodes, where NS refers to the number of S-type nodes. HSR = (hSR
ij)NS×NR

donated as the adjacency matrix of two different types of nodes. In the repre-
sentation, we just separate the homogeneous nodes and heterogeneous nodes to
ensure importance of the heterogeneous links in the community detection of the
heterogeneous networks.

The existing null model of the homogeneous single network is proposed by
Newman and has the same distribution of the node degree with the original
network. To build the null model of the heterogeneous networks, we should first
propose a new parameter to describe the basic connection among the different
types of nodes in the heterogeneous networks like the node degree in the homo-
geneous networks. Therefore, we first define the heterogeneous node degree as
follows:

Definition 1. Heterogeneous Node Degree: For each type of nodes, there are
neighbors of the S-type node i. The heterogeneous node degree refers to the num-
ber of neighbors of different types from a node i. We give the uSR

i to represent
the heterogeneous node degree of types R for the S-type node i. When S = R,
the heterogeneous node degree uSS

i becomes the homogeneous node degree ki.
Therefore, the node degree in the heterogeneous networks is divided into two

parts: the homogeneous node degree ki and the heterogeneous node degree of all
types

∑
R uSR

i (S �=R).

3.2 Null Model of the Heterogeneous Networks

With both homogeneous and heterogeneous node degree, we give definition of
the null model of the heterogeneous networks:

Definition 2. Null Model of Heterogeneous Networks: The null model of the
heterogeneous networks refers to those network models that has the same set of
types of nodes T , number of homogeneous nodes N , number of heterogeneous U ,
distribution of homogeneous node degree P (k) and distribution of heterogeneous
node degree P (u) with the original network, while otherwise is taken to be an
instance of the random network.

For each two types of the nodes, there is a distribution of heterogeneous node
degree. Therefore, there are |T |2 −|T | distribution of heterogeneous node degree
in a heterogeneous network, where T refers to the set of types of nodes.

3.3 Random Walk on Heterogeneous Networks

Here we use the random walk theory to build the null model of the heterogeneous
networks. The process can be explained by the Laplacian Dynamics. Considering
a homogeneous network, if there is an edge between node i and node j, the two
nodes are regarded as reachable. We suppose that there is a walker walking
randomly among the nodes in the networks and each walk from one node to the

Null Model and Community Structure in Heterogeneous Networks 155

other is completely independent and random. The process is actually a Markov
process in which each walk has no relationship with the last time. Therefore, the
probability of the walker walking from a arbitrary node j to node i and staying
at nodei, ṗi is:

ṗi =
∑

j

aij

kj
pj − pi (1)

where pj refers to the probability of the walker staying at the node j. Differ-
ently, in a heterogeneous network, the edges among nodes is divided into homo-
geneous edges (edges between two same-type nodes) and heterogeneous edges
(edges between two different-type nodes). Therefore, when the walker walks in
the heterogeneous network, both homogeneous and heterogeneous edges should
be considered. The probability of the walker walking from a arbitrary R-type
node j to S-type node i and staying at nodei, ṗSi is:

ṗSi =
∑

j,R

aS
ijδSR + hSR

ij δSR

κR
j

pRj − pSi (2)

where aS
ij refers to the connection relationship between the two nodes i and j that

belong to the same type S; hSR
ij refers to the connection relationship between

S-type node i and R-type node j; δSR is the reaction function; When S = R,
δSR = 1; When S �=R, δSR = 1; pRj refers to the probability of the walker staying
at the R-type node j; κR

j refers to total degree of the R-type node j, that is the
sum of homogeneous degree and heterogeneous degree, donated as:

κR
j = kR

j +
∑

S

uRS
j (3)

Therefore, we give the conditional probability of the walker walking from R-type
node j to S-type node i of in the null model of heterogeneous networks, donated
as:

p(Si |jR) =
kR
j

κR
j

kS
i

2MS
δSR +

uRS
j

κR
j

uSR
i

2MSR
δSR (4)

where MS refers to the edge number among the S-type nodes and MSR refers
to the edge number between S-type nodes and R-type nodes. When the Markov
process of random walk reaches steady state, the steady probability of the walks
staying at the R-type node j is donated as:

pR∗
j =

κR
j

2M
(5)

where M refers to the total number of the edges in the heterogeneous network.
Therefore, the joint probability of the walker walking from R-type node j to
S-type node i in the null model is:

156 X. Zhai et al.

p(Si,Rj) = p(Si |jR)×pR∗
j

= (
kR
j

κR
j

kS
i

2MS
δSR +

uRS
j

κR
j

uSR
i

2MSR
δSR)

κR
j

2M

=
1

2M
(
kR
j kS

i

2MS
δSR +

uRS
j uSR

i

2MSR
δSR)

(6)

The p(Si,Rj) is the probability of there being an edge between S-type node i and
R-type node j in the null model of the heterogeneous network. The equation is
divided into two pasts: the homogeneous part and the heterogeneous part. The
homogeneous part is the same with the probability in the homogeneous null
model and the homogeneous part represents the heterogeneous relationships in
the heterogeneous network. With this edge-building probability, we could build
the modularity function of the heterogeneous network based on the null model.

4 Modularity Function of Heterogeneous Networks

The modularity function is first proposed by Newman in 2006. The modular-
ity Q = (the number of edges within communities-the expected number of such
edges in the null model). The null model here is homogeneous and the modular-
ity proposed by Newman is still built for the homogeneous networks. Similarly,
when we replace the null model of homogeneous networks by the one of hetero-
geneous networks, we can build the modularity function of the heterogeneous
networks. Here, we give the definition of the modularity function of heteroge-
neous networks:

Definition 3. Modularity Function of Heterogeneous Networks: The modular-
ity function of heterogeneous networks Qh = (the number of edges within com-
munities in heterogeneous networks-the expected number of such edges in the
heterogeneous null model) and normalized by the total degree of the networks:

Qh =
1

2M

∑

ijSR

[E(Si,Rj) − P (Si,Rj)]δ(gSi, gRj) (7)

where E(Si,Rj) refers to the number of edges within communities in heteroge-
neous networks and P (Si,Rj) refers to the expected number of such edges in
the heterogeneous null model. δ(gSi, gRj) = 1 if the S-type node i and R-type
node j belong to the same community, otherwise δ(gSi, gRj) = 0. In the Eq. 6,
we obtain the probability of there being an edge between S-type node i and
R-type node j in the null model of the heterogeneous network. Therefore, the
P (Si,Rj) is donated as:

P (Si,Rj) = p(Si,Rj) ∗ 2M

=
kR
j kS

i

2MS
δSR +

uRS
j uSR

i

2MSR
δSR

(8)

Null Model and Community Structure in Heterogeneous Networks 157

The actual number of edges between two nodes in heterogeneous networks can
be represented as:

E(Si,Rj) = AR
ijδSR + HSR

ij δSR (9)

Withe give the equation of the modularity function in details:

Qh =
1

2M

∑

ijSR

[(AS
ij − kR

j kS
i

2MS
)δSR+

(HSR
ij − uRS

j uSR
i

2MSR
)δSR]δ(gSi, gRj)

(10)

In the Eq. 10, we divide the modularity function of heterogeneous networks Qh

into two parts, the homogeneous part AS
ij − kR

j kS
i

2MS
and the heterogeneous part

HSR
ij − uRS

j uSR
i

2MSR
. Therefore, the modularity can be understood as the sum of

both homogeneous and heterogeneous part, which reflects the whole kinds of
relationships in the heterogeneous networks.

5 Community Structure and the Fast Algorithm
in Heterogeneous Networks

Similar with the homogeneous networks, there are also community structure in
the heterogeneous networks, that is, the set of multi-type nodes that are con-
nected closely. The modularity of heterogeneous networks can be used to quantify
the quality of the heterogeneous community structure. When the modularity get
max, the results of the community detection are the best.

We start from the basic structure of the networks to detect the heterogeneous
communities. Therefore, we do not distinguish the type of nodes when detecting
the communities. Which community a node belongs to is decided by the change
of modularity function when it joins the community. The final results of each
heterogeneous community will contain at least one type of nodes or more. It all
depends on the maximum modularity function of the heterogeneous networks.
After the community detection, we could extract the same-type nodes in each
community to get the homogeneous node clusters.

Based on the modularity function of heterogeneous networks, we give a fast
algorithm to detect the communities in the heterogeneous networks. The process
of the algorithm in shown in Algorithm1. The time complexity of Algorithm 1
(FAHCD) is O(N×max(κi)). The algorithm is based on the famous fast algo-
rithm BGLL of the homogeneous networks. In the large networks, the max(κi)
is far less than the the number of nodes N . Therefore, the time complexities of
the Algorithm 1 is close to O(N).

6 Experiments

We use the FAHCD to detect the heterogeneous communities of the twitter event
networks we build through the real-world data. The twitter data is collected from

158 X. Zhai et al.

Algorithm 1 . Fast Algorithm of Heterogeneous Community Detection
(FAHCD).
Require: The adjacency matrix set of heterogeneous network, HW =

{AS , ..., HSR, ...}, S, R∈T
Ensure: The results of the heterogeneous communities, CK

h = {Ch1 , Ch2 , ..., Chn};
1: initial HW 0 = HW ;
2: repeat
3: Regarding each node in HW kas a community initially. Ck

h =
{Node1, Node2, ..., NodeN}, where N is the total number of nodes in HW k;

4: Computing the increment of modularity ΔQij
h between each node i and its each

neighbor j in the heterogeneous network;

5: ΔQij
h = 1

2M
{∑

z∈gj
[(AS

iz − kS
i kR

z
2MS

)δSR + (HSR
iz − uSR

i uRS
z

2MSR
)δSR] − ∑

z∈gi
[(AS

iz −
kS
i kR

z
2MS

)δSR + (HSR
iz − uSR

i uRS
z

2MSR
)δSR]};

6: For the node j with the max ΔQij
h with node i, adding the node i into the

community with node j;
7: Updating the set of communities Ck

h after the aggregation of Ck−1
h in step 6;

8: Regarding each type of nodes in the new community in Ck
h as the new specific-

type node; Regarding connections among the nodes as the self-loop of the new node
with the weight of number of connections; Regarding edges between two different
type of nodes as the new edge between two new nodes with the weight of number
of edges; Generating a new heterogeneous network HW k

9: until ΔQh < 0 of all nodes;
10: return CK

h ;

the Twitter API. The MongoDB database is used to store the collected data.
After pre-processing, including tweet language filtering, spam tweet filtering,
useless field filtering and text content filtering, we obtained the valuable tweets
and accounts. The Named Entity Recognition (NER) is used to extract the name
of related people in each tweet and to extract the hashtag by the key symbol #.
The twitter events are clustered based on the text similarity among the tweets.
We cluster a large number of tweets with high text similarity to detect a twitter
event that occur in the Twitter space. Then we build the twitter event networks
with 5 type of nodes: Account, Tweet, Event, NameEntity and Hashtag. We
capture 4 type of relationships among the 5 type of nodes. The networking rules
are shown in Table 1.

We collected Twitter data about the UK elections from May 12nd, 2017 to
June 10th, 2017. The Twitter event network in 30 days we built consisted of
70,536 account nodes, 32,593 tweet nodes, 2,618 event nodes, 1745 named entity
nodes, and 1462 hashtag nodes. The twitter event network on May 12nd, 2017
is visualized in Fig. 1. There are 3,459 nodes and 4,329 edges including 2232
account nodes, 854 tweet nodes, 161 event nods, 134 named entity nods and 78
hashtag nodes. As shown in Fig. 1, the core-type of the nodes are the tweet nodes.
They are connected with the rest other type of nodes to form the 4 types of the
edges in the Twitter event networks. The rest 4 types of nodes are disconnected.

Null Model and Community Structure in Heterogeneous Networks 159

Table 1. The networking rules of the Twitter event network

Type Name Description

Node Account The twitter accounts of the users

Node Tweet The short message written by the twitter users

Node Event The events detected in the Twitter space

Node Named Entity The name of related people detected in tweets

Node Hashtag The content tag for the tweets

Edge Account and Tweet Connected if the tweet is written by the account

Edge Tweet and Event Connected if the tweet belongs to the event

Edge Tweet and NameEntity Connected if the name appears in the tweet

Edge Tweet and Hashtag Connected if the tweet has the hashtag

We detected the heterogeneous communities on the Twitter event networks
we built in 30 days using FAHCD. The partial results of the community detection
are visualized in Fig. 2. Nodes in the same color belong to the same communities.
For visualization, we delete lots of nodes and edges of the network. The results
show that different types of nodes could be divided into the same community
because the dense connection among them such as the green nodes in the center
in Fig. 2. Because of the different types of connection, different types of nodes
could be divided into different communities, such as the orange nodes and the
red nodes in the left top of Fig. 2. The orange nodes are account and the red
nodes are hashtag. They are all connected with the tweet nodes in green but
they are divided in to different communities just because the connections among
them are heterogeneous. Therefore, our algorithm detects the communities using
modularity based on the heterogeneous structure itself of the heterogeneous net-
works. It can not be replaced by transferring the heterogeneous networks into
homogeneous networks and using the homogeneous community detection meth-
ods, which ignores the critical heterogeneous structure information.

The 504 communities are detected in the Twitter event network consists of
108,954 nodes. 84% communities contains the whole 5 types of nodes and only
4 communities contains just 2 types of the nodes. Such communities are small
with less than 100 nodes and made up by the account nodes and tweet nodes.
They are not connected with any other types of nodes. We manually labeled
the election position of 1350 account nodes as the ground-truth to quantify the
performance of our community detection. The results are shown in Table 2. Here
we got three position about the UK election: proposition, neutral and opposition.
The position of a community is determined by the position of most of its nodes. If
the most of nodes are proposition in a community, all of nodes in the community
are regarded as the proposition node. Therefore, we could calculate the accuracy
as follows:

Accuracy =
Ncorrect

Ntotal
, (11)

160 X. Zhai et al.

Account
Tweet
Event
Named Entity
Hashtag

Fig. 1. The Twitter event network about UK elections.

account

account

account

account

Tweet
Event

Hashtag

Hashtag

Hashtag

Hashtag

Tweet

Tweet

Tweet

Event

NamedEntity

Tweet

Tweet

Hashtag

Event

account

account
Tweet

NamedEntity

Tweet

Tweet

Tweet
account

Tweet

account

NamedEntity

account

account

account

account

account
account

account
account

account

account

account

Tweet

account

account

account

account

account

account

account

account

account
account

Fig. 2. The partial results of the heterogeneous community detection on Twitter event
network. (Color figure online)

Null Model and Community Structure in Heterogeneous Networks 161

where Ncorrect refers to the number of nodes with the correct position and Ntotal

refers to the total number of nodes in the communities of a same position. From
the results, we could conclude that people may communicate with each other who
has the same position in Twitter. Our algorithm detect the cluster of most people
with the same position on the UK election from the Twitter event heterogeneous
networks. The error less than 10% is caused by those active nodes and some junk
accounts who may connect with people of any position.

Table 2. The performance of FAHCD based on ground-truth

Election position Number of communities Accuracy

Proposition 256 92.3%

Neutral 127 94.7%

Opposition 121 91.2%

7 Conclusion

The results in the experiment section demonstrate the advantageous heteroge-
neous community detection performance on real-world Twitter event networks
based on the null model of heterogeneous networks. Our method could deal with
large-scale heterogeneous networks on a almost linear time complexity. Based
on the FAHCD, we find the cluster of most people with the same position on
the UK election from the Twitter event heterogeneous networks we built. The
accuracy of all three position is over 90%, which show a great performance of
our method on heterogeneous community detection. The community we detected
contains more than one type of nodes based on the structure of heterogeneous
networks and could be further divided into several homogeneous communities
based on the type of each node.

In a general sense, the null model of heterogeneous networks is a general
null model for any systems with multi-type of nodes including social networks.
The rationality of the model can be explained by the traditional random-walk
theory. The general significance of the model is that in addition to heteroge-
neous community structure, many other specific properties of heterogeneous
networks can be revealed through the model. These properties, including motif
identities, propagation-rate threshold, redundancy-distribution correlations and
synchronization-state stability, have already been shown to be important in
homogeneous network research. Additionally, the null model of heterogeneous
networks can be used in directed networks based on in-and-out heterogeneous
degree. Our future work is based on such extensions of our null model and
its high-order representations, which may lead to some problems involving the
applications of all systems with multi-type of nodes that can be described by
heterogeneous networks.

162 X. Zhai et al.

Finally, the null model of heterogeneous networks provides a powerful tool
for the structure analysis of complex systems with multi-type of nodes. Through
comparisons, the specific nature of these systems can be exposed quantitatively
by the model. We believe that the null model of heterogeneous networks can give
rise to much stronger and more general applications in many areas, including
social science, Internet topology, bioscience, engineering, economics, and educa-
tion, where systems can be described by heterogeneous networks. To accomplish
this, much more work needs to be done to gain a deeper understanding of the
model and its high-order representations. We hope that many more attributes
of the complex systems can be modelled and analysed through the null model
of heterogeneous networks.

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China No. 61571094 and Sichuan Science and Technology Program under Grant
2019YFG0456. The data sets used to obtain the results in this manuscript are collected
through Twitter API (https://dev.twitter.com/).

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
community hierarchies in large networks. J. Stat. Mech. (2008). abs/0803.0476

2. Börner, K., Sanyal, S., Vespignani, A.: Network science. Ann. Rev. Inf. Sci. Technol.
41(1), 537–607 (2007)

3. Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Mining hidden community in heteroge-
neous social networks. In: Proceedings of the 3rd International Workshop on Link
Discovery, pp. 58–65. ACM (2005)

4. Cao, Y., Zhang, G., Li, D., Wang, L.: Online energy management for smart commu-
nities with heterogeneous demands. In: 2018 IEEE Global Communications Con-
ference (GLOBECOM), pp. 1–6. IEEE (2018)

5. Chen, F., Neill, D.B.: Non-parametric scan statistics for event detection and fore-
casting in heterogeneous social media graphs. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1166–1175. ACM (2014)

6. Comar, P.M., Tan, P.N., Jain, A.K.: Simultaneous classification and community
detection on heterogeneous network data. Data Min. Knowl. Disc. 25(3), 420–449
(2012)

7. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Commu-
nity structure in time-dependent, multiscale, and multiplex networks. Science
328(5980), 876–878 (2010)

8. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2),
167–256 (2003)

9. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

10. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree
distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

11. Qiu, C., Chen, W., Wang, T., Lei, K.: Overlapping community detection in directed
heterogeneous social network. In: Dong, X.L., Yu, X., Li, J., Sun, Y. (eds.) WAIM
2015. LNCS, vol. 9098, pp. 490–493. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21042-1 47

https://dev.twitter.com/
https://doi.org/10.1007/978-3-319-21042-1_47
https://doi.org/10.1007/978-3-319-21042-1_47

Null Model and Community Structure in Heterogeneous Networks 163

12. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information
networks with star network schema. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 797–806.
ACM (2009)

13. Zhai, X., et al.: Null model and community structure in multiplex networks. Sci.
Rep. 8(1), 3245 (2018)

14. Zhao, Q., Bhowmick, S.S., Zheng, X., Yi, K.: Characterizing and predicting com-
munity members from evolutionary and heterogeneous networks. In: Proceedings
of the 17th ACM Conference on Information and Knowledge Management, pp.
309–318. ACM (2008)

Big Data and Its Applications

An Asynchronous Algorithm to Reduce
the Number of Data Exchanges

Zhuo Tian(B) , Yifeng Chen, and Lei Zhang

HCST Key Lab, EECS, Peking University, Beijing 100871, China
{t.z,cyf,lei.z}@pku.edu.cn

Abstract. Communication or data movement cost is significantly higher
than computation cost in existing large-scale clusters, for clusters having
long network latency. For high-frequency parallel iterative applications,
performance bottleneck is the long network latency caused by frequent
data exchange. This paper presents an asynchronous algorithm capable of
reducing the number of data exchanges among processes of parallel iter-
ative applications. The proposed algorithm has been tested on a stencil-
based parallel computation and compared with a BSP implementation of
the same application. The asynchronous algorithm can effectively reduce
the number of data exchanges at the expense of higher computation
overhead and larger message size, performance can be improved up to
2.8x.

Keywords: Communication · Data exchange · Asynchronous · Stencil

1 Introduction

Existing supercomputer tends to have memory access delays and long network
latency. We test the communication speed of existing large-scale infiniband clus-
ters with manycore or GPU accelerators. It only executes peer-to-peer commu-
nication but no computation which means computation speed is very fast. Clus-
ters can only deliver maximum 3000 32-way neighborhood send-receive short
messages per second [1]. If the cost of data exchange is under 20% of total exe-
cution time, a cluster at most runs 600 time steps per second (20%*1 s = 0.2 s,
3000msgs/s*0.2s = 600msgs), but it is too slow for scientists.

Therefore, the problem for existing clusters is the strong mismatch between
computing performance and communication performance. Especially for high-
frequency iterative applications, frequent data exchanges make communication
be the major performance bottleneck.

Then, can we reduce the number of data exchanges for high-frequency parallel
iterative applications? Actually: Yes.

Supported by National Key R&D Program of China (2017YFB0202001), and National
Natural Science Foundation of China (61432018, 61672208).

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 167–174, 2020.
https://doi.org/10.1007/978-3-030-38961-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_15&domain=pdf
http://orcid.org/0000-0001-8927-4099
https://doi.org/10.1007/978-3-030-38961-1_15

168 Z. Tian et al.

We propose a new asynchronous algorithm, which is able to reduce the num-
ber of data exchanges at the expense of performing more floating-point arith-
metics and exchanging larger messages, but doing fewer times of communica-
tions(and hence fewer messages).

Our experiment is based on stencil computation [2] which is a determinant
component for the performance of seismic simulation [3], atmospheric modeling
[4], gaseous wave propagation [5], etc. For stencil computation, the asynchronous
algorithm can reduce the number of data exchanges to 1/4, and the actual per-
formance is improved by 2.8 times.

2 Existing Parallel Models

Existing parallel models mainly include the Parallel in Time model (PiT) [6]
and the Asynchronous Iterative Algorithm (AIA) [7,8] model. Both of them
have certain limitations.

PiT algorithms start with a first coarse guess of the trajectory with long
time steps. Then it runs fine propagator on each long time steps in parallel with
shorter time steps [9]. PiT model is not effective in practice such as for protein
folding. A coarse iteration likely deviates from its correct path after a few steps.
Fine iterations starting from coarse states on incorrect slopes of surface will
slide into wrong directions, rendering their entire computation useless or even
counterproductive.

AIA model communicates asynchronously and computes speculatively with
the outdated states of other processes. It does not guarantee convergence of
trajectory. In molecular dynamics simulation [10], physical forces like van der
Waals in close range are drastically non-linear in nature and sensitive to atomic
displacement. In experiments inaccurate atomic positions can easily cause the
iteration to diverge.

Our asynchronous algorithm in fact combines the characteristics of the two
existing algorithmic models. It computes from coarsely speculated future states
in parallel and communicates asynchronously. But the asynchronous algorithm
can guarantee convergence of trajectory and does not deviate from its correct
path.

3 Asynchronous Algorithm

3.1 Description of the Method

The asynchronous algorithm is based on multiple rounds of iteration. Specifically,
in round 1, each process starts with the same initial states. In other steps of
round 1, each process computes speculatively with the outdated states of other
processes without data exchanging. Repeating the iteration over multiple rounds,
all of the states will converge.

We compare the differences between BSP algorithm [11] and asynchronous
algorithm(fewer data exchanges than BSP) as shown in Algorithm 1 and Algo-
rithm 2. In BSP model, it computes one step at one time and exchanges data

An Asynchronous Algorithm to Reduce the Number of Data Exchanges 169

with others after one step. In asynchronous algorithm, during each round of iter-
ation, every process computes its local states of all steps within some interval
independently without performing any internode communications. After each
round, all processes exchange states with each other so that remote states of the
current round are actually the computed states of the last round; Such iteration
and data exchange are repeated until no state changes.

Algorithm 1. BSP Algorithm
1: for n = 1 to nsteps do
2: computation();
3: data exchange();
4: end for

Algorithm 2. Asynchronous Algorithm
1: for n = 1 to nrnds do
2: for n = 1 to nsteps do
3: computation();
4: end for
5: data exchange();
6: end for

Considering two processes in two rounds, as shown in Figs. 1 and 2. The
left part is on process p0 and the right part is on process p1. Each process is
responsible for updating local state Sp(t, i) which occurs at time step t during
round i. As a basic rule, all processes share the same initial state, Sp0(0, i) =
Sp1(0, i).

In round 0, Sp0(0, 0) = Sp1(0, 0). Thus, Sp0(1, 0) and Sp1(1, 0) are accurate
in round 0. But Sp0(1, 0) will be sent asynchronously to process p1 at the end of
round 0. That means, process p0 will get the accurate state Sp1(1, 0) in round
1, and can accurately compute the state Sp0(2, 1) in round 1.

4 The Optimization

We can shorten the message length by reducing the number of steps in each
round. If the asynchronous algorithm converges to step t (t ≥ k) in round k,
then in round k+1, it can be calculated from step t+1, rather than from step 0.

In addition, if the asynchronous algorithm converges to step t in round k,
then step t+1 will import small error. Based on this error, step t+2 will import
larger error. An so on, the error will be magnified. We consider discarding some
time steps with larger error for they have little effect on the precision.

170 Z. Tian et al.

Fig. 1. The asynchronous algorithm in round 0.

Fig. 2. The asynchronous algorithm in round 1.

The calculated interval can be called a window, and the size of window should
not be set too small or too large. Smaller window means we have discarded more
time steps. Thus, the asynchronous algorithm will not provide more speculative
computations for next round and convergence speed will be very slow. But if it’s
too large, computing more time steps will slow down the computation speed.
Thus, we should choose a suitable window size according to the computational
complexity and the data length of different applications.

5 Implementation

In this section, we take Himeno benchmark [12] for example. The Himeno bench-
mark was developed by Dr. Ryutaro Himeno in 1996 at the RIKEN Institute in
Japan. Since its introduction the benchmark has grown in popularity and is used
throughout the HPC community, especially in Japan [13]. Our tests choose the
following sets of imax = 32, jmax = 32, kmax = 64 and choose weights as stan-
dard values as defined in the benchmark. Algorithm 3 shows the asynchronous
implementation of Himeno benchmark.

The asynchronous algorithm is composed of multiple rounds and each round
is composed of multiple iterative time steps. All computed states (p[n][i][j][k])
should be communicated with other processes at the end of a round. During

An Asynchronous Algorithm to Reduce the Number of Data Exchanges 171

every round of iteration, each process iterates through multiple steps but is only
responsible for updating local partition of global state, while states of other par-
titions come from asynchronous exchange of state updates with other processes.
Such iteration and data exchange are repeated until no state changes.

Algorithm 3. Himeno Benchmark(Asynchronous Algorithm)
1: for rnd = 0 to NRNDS do
2: for n = 0 to 4096 do
3: for i = 1 to 32 − 1 do
4: for j = 1 to 32 − 1 do
5: for k = 1 to 64 − 1 do
6: s0 = p[n][i + 1][j][k] + p[n][i][j + 1][k]
7: +p[n][i][j][k + 1] + p[n][i − 1][j][k]
8: +p[n][i][j − 1][k] + p[n][i][j][k − 1]
9: ss = s0 ∗ a3[i][j][k] − p[n][i][j][k];

10: sbuf [n][i][j][k] = p[n][i][j][k] + omega ∗ ss;
11: end for
12: end for
13: end for
14: end for
15: send(sbuf);
16: recv(rbuf);
17: p[n][i][j][k] = rbuf [n][i][j][k];
18: end for

6 Performance Results and Analysis

We define two concepts:

– samsara speed: the number of rounds to converge per second.
– iteration speed: convergence speed * samsara speed

By deferring the position of starting point, we can avoid repeating compu-
tation of steps that have converged. Deferring starting point does not affect the
convergence speed of asynchronous algorithm. But the samsara speed will be
influnced.

Advancing the position of ending point could change the size of window. In
this section, we test the speedup, the samsara speed and the iteration speed at
different window sizes. Figure 3 shows the convergence speed will be effected by
the window size. Horizontal axis indicates the size of window and vertical axis
denotes the convergence speed. The larger the window, the faster the convergence
speed. Larger window can cover more time steps in each round, and the computed
steps is more accurate.

172 Z. Tian et al.

Fig. 3. The convergence speed at different window sizes.

If the size of windows is nsteps (the number of iteration steps in BSP), the
covergence speed can reach 58x. But the computation strength and the mes-
sage length is quite unreasonable, and the samsara speed will be very slow. Our
goal of optimization is to reduce the window size from nsteps to a reasonable
range. In the asynchronous algorithm, convergence speed is the theoretical max-
imum speed, but we should consider the influnce of samsara speed. Performance
depends on the iteration speed which is the product of covergence speed and
samsara speed.

Increasing the window size, although the convergence speed will increase as
shown in Fig. 3, but the samsara speed will decrease as shown in Fig. 4. The
reason is that the increased window size will lead to increase the computation
strength and the message length. Thus, we should mainly concern the iteration
speed which could directly reflect the speedup of the asynchronous algorithm.

As limited by cluster communication speed, iteration speed of BSP model
does not exceed 6000 times/s. But, in asynchronous algorithm, the fastest iter-
ation speed is 17528 steps/s when window size is 32, which is 2.8 times faster
than BSP model as shown in Fig. 5.

Our work gives a solution for reducing the number of data exchanges on a
stencil-based parallel computation. But, the asynchronous algorithm also can
be applicable to other time-dependent problems such as solving sparse linear
equations and graph algorithms where synchronization is often the bottleneck of
performance.

An Asynchronous Algorithm to Reduce the Number of Data Exchanges 173

Fig. 4. The samsara speed at different window sizes.

Fig. 5. The iteration speed at different window sizes.

7 Conclusion

In this paper, we propose an asynchronous algorithm which can effectively reduce
the number of data exchanges in communication at the expense of higher com-
putation length and larger message size. If the computation time does not exceed
the time of data exchanges and the longer messages do not significantly increase
the communication time, performance will be improved. The asynchronous algo-
rithm implements 2.8x faster on stencil-based problem than the BSP model.

When problem size and network setup make communication latency the
main performance bottleneck, asynchronous algorithm will demonstratehe per-

174 Z. Tian et al.

formance advantage. The main challenge of implementing asynchronous algo-
rithm lies in optimization of communications.

References

1. Chen, Y., Huang, K., Wang, B., Li, G., Cui, X.: Samsara parallel: a non-BSP
parallel-in-time model. In: Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, Barcelona (2016)

2. Ao, Y., et al.: 26 PFLOPS stencil computations for atmospheric modeling on sun-
way TaihuLight. In: IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS 2017). IEEE (2017)

3. Shield, C.K., French, C.W., Timm, J.: Development and implementation of the
effective force testing method for seismic simulation of large-scale structures. Phi-
los. Trans. Roy. Soc. London A: Math. Phys. Eng. Sci. 359(1786), 1911–1929 (2001)

4. Dennis, J.M., Edwards, J., Evans, K.J., et al.: CAM-SE: a scalable spectral ele-
ment dynamical core for the community atmosphere model. Int. J. High Perform.
Comput. Appl. 26(1), 74–89 (2012)

5. Dou, H.-S., Tsai, H.M., Khoo, B.C., Qiu, J.: Simulations of detonation wave prop-
agation in rectangular ducts using a three-dimensional WENO scheme. Combust.
Flame 154(4), 644–659 (2008)

6. Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zerah, G.: Parallel-in-time
molecular-dynamics simulations. Phys. Rev. E 66, 5 (2002)

7. Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Evaluation of the asynchronous
iterative algorithms in the context of distant heterogeneous clusters. Parallel Com-
put. 31(5), 439–461 (2005)

8. Blathras, K., Szyld, D.B., Shi, Y.: Timing models and local stopping criteria for
asynchronous iterative algorithms. J. Parallel Distrib. Comput. 58(3), 446–465
(1999)

9. Lions, J.-L., Manday, Y., Turinici, G.: Resolution EDP par un schema en temps
parareal. C. R. Acad. Sci. Numer. Anal. 332(7), 661–668 (2001)

10. Yu, Y.: Parallel implementation and performance optimization for refactoring
GROMACS on the sunway many-core architecture. University of Science and Tech-
nology of China (2018)

11. Valiant, L.G.: A bridging model for parallel computation. SIAM J. Sci. Stat. Com-
put. 33, 103–111 (1990)

12. The Riken Himeno CFD Benchmark. http://accc.riken.jp/HPC/HimenoBMT/
indexe.html

13. Phillips, E.H., Fatica, M.: Implementing the Himeno benchmark with CUDA on
GPU clusters. In: IEEE International Symposium on Parallel and Distributed Pro-
cessing IEEE (2010)

http://accc.riken.jp/HPC/HimenoBMT/index e.html
http://accc.riken.jp/HPC/HimenoBMT/index e.html

Two-Stage Clustering Hot Event
Detection Model for Micro-blog on Spark

Ying Xia(B) and Hanyu Huang

School of Computer Science and Technology,
Chongqing University of Posts and Telecommunications, Chongqing 400065, China

xiaying@cqupt.edu.cn, hanyuhuang.hhy@gmail.com

Abstract. With the rapid development of micro-blog, it has become
one of the main platforms to publish news and express opinions. Micro-
blog analyzing for hot event detection is widely concerned by researchers.
However, hot event detection is not easy because micro-blog blogs have
the characteristics of large scale, short text and irregular grammar. In
order to improve the performance of hot event detection, a two-stage
clustering hot event detection model for micro-blog is proposed. The
model is designed in spark environment and divided into two parts. First,
K-Means method is improved by threshold setting and cosine similarity
to cluster blogs. Then, the result of blogs clustering is clustered again to
detect hot events by LDA (Latent Dirichlet Allocation) model. Sufficient
experiments have been carried out in spark environment, it is shown
that the proposed model gains higher accuracy and time efficiency for
hot event detection.

Keywords: Micro-blog blogs · Hot event detection · Spark ·
Two-stage cluster · K-Means model · LDA model

1 Introduction

Hot event refers to event with high public discussion and widespread concern.
Timely detection of hot event has great significance for society management and
public safety maintenance. Micro-blog is an important online communication
media, hot event can be considered when a large number of blogs discussing a
same topic. To detect hot events, researchers have proposed different models.
These models can be divided into two categories, keywords extraction model
and topic model.

Keywords extraction model can analyze and extract keywords from blogs.
Extracted keywords are used to cluster texts and then detect events. Early
research [9] paid more attention to extract keywords. But only extract keywords
may cause insufficient semantic information. To solve this problem, researchers
combine related features and keywords to detect events. Stilo et al. [12] and
Ozdikis et al. [11] used Hashtag to enhance accuracy of event detection. Fur-
thermore, different features are added according to different research objectives.
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 175–183, 2020.
https://doi.org/10.1007/978-3-030-38961-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_16

176 Y. Xia and H. Huang

Sun et al. [13] combined external knowledge base of related fields to detect events.
Yilmaz et al. [17] and Zhong et al. [18] mixed geographical position and keywords
to detect location-related events. In addition, in order to improve efficiency of
event detection and ensure accuracy, keywords clustering process are focused. Ai
et al. [1] proposed a TMHTD model in Spark, it detects events via calculating
the similarity of keywords in two-layers structure.

Compared with keywords extraction model, topic model gains higher event
detection accuracy but needs sufficient features. LDA model [2] is a representa-
tive topic model, it uses word bags to describe events and no need to consider
words order in texts. Hao et al. [5] used LDA model to extract topics while
identifying abnormal behavior sentences with each topic. Wang et al. [14] visu-
alized topics after extracting topics from LDA model. In addition, some research
try to improve accuracy of topic model by expanding feature space [3,4,6,7].
However, complex features are difficultly added due to the limitation of model
structure. Some research extended semantic information to further improve accu-
racy. Yan et al. [16] and Kitajima et al. [8] used advanced semantic information
like binary or triple sets instead of word bags for clustering. Xu et al. [15] pro-
posed a TUS-LDA model which used pseudo-texts as the input of LDA model.
The pseudo-texts were clustered by different topic types to expand semantic
information.

Considered the advantages of the two categories of models, a two-stage clus-
tering hot event detection model is proposed. These two stages are named text-
cluster stage and semantic-cluster stage, respectively. In which, K-Means model
and LDA model are involved in clustering process according to data character-
istics of different stages, K-Means model is optimized by threshold setting and
cosine similarity for keywords extraction, and a set of spark jobs is designed for
large-scale data processing.

The rest of paper is organized as follows. Section 2 presents terminology def-
inition. Section 3 proposes the two-stage clustering hot event detection model.
Section 4 designs the optimized model in Spark environment. Section 5 evaluates
accuracy and efficiency of proposed model. Section 6 draws a summary.

2 Terminology Definition

For easily understanding, related terminologies are presented here.

Micro-blog Blogs: Micro-blog blogs are stored by rows, each blog includes
tags, content and related features. Related features mainly include timestamp,
number of comments, number of forwards and number of likes.

Word-bag: Word-bag is a set of keywords with an id. The keywords are from
the text corresponding to the id and can describe the text. This paper mainly
uses word-bag to describe text.

Heat: Heat is used to evaluate the popularity level, which is calculated by the
related features of blog posts. Heat of blogs can be abbreviated as Heat (di) and

Two-Stage Clustering Hot Event Detection Model 177

Heat of event can be abbreviated as Heat (E). Specific definitions are as follows,

Heat (di) = sum (featuresi) = comments + forwards + likes (1)

where comments represents the number of comment, forwards is the number
of forwarding and likes is the number of like in blogs. The sum of Heat (di)
represents the heat of the event Heat (E).

3 Two-Stage Clustering Hot Event Detection Model

A two-stage clustering hot event detection model is proposed that contains both
text-cluster and semantic-cluster. Because K-Means and LDA models will be
used in each of two stages for improvement respectively, thus the proposed model
is abbreviated as KMLDA.

3.1 Text-Cluster Stage

In text-cluster stage, micro-blog blogs are equally divided into slices to reduce
the size of data. The blogs in each slice are divided into words by Jieba1 and
then converted to vectors using the Word2vec [10] method. Finally, K-Means is
selected as a clustering method to cluster blogs of each slice. After text-cluster,
many text clusters will be generated. Text clusters with a small number of blogs
will be filtered because they represent insufficient discussion. Furthermore, K-
Means is optimized to fit KMLDA model. Main optimizations are as follows.

(1) Cosine similarity is used as the measure distance of K-Means, and it is
defined as Eq. (3),

dis = 1 − cos(−→wi,
−→wj)

= 1 − −→wi·−→wj

‖−→wi‖·‖−→wj‖

= 1 −
n∑

k=1
wi,k·wj,k

√
n∑

k=1
w2

i,k

√
n∑

k=1
w2

j,k

(2)

where −→wi represents weight vectors of blog di, n is feature dimension, and
wi,k is the kth weight of blog di. When dis is smaller, the blog similarity
will be higher.

(2) Set AV G(dis) as a minimum similarity threshold. Because the accuracy
of cluster-centers updating may be affected by large dis in the K-Means
training process. Specific definition as Eq. (3),

AV G(dis) = SUM(dismax)
NUM(d) = 1

n ·
n∑

i=1

dismax,i (3)

1 “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best
Python Chinese word segmentation module. GitHub: https://github.com/fxsjy/
jieba/.

https://github.com/fxsjy/jieba/
https://github.com/fxsjy/jieba/

178 Y. Xia and H. Huang

where NUM(d) is the number of blogs, SUM(dismax) is the sum of the
cosine similarities dismax,i which are the maximum cosine similarity between
text and cluster-centers.

AV G(dis) as a threshold, dis beyond this threshold will not participate in
update of cluster-centers.

3.2 Semantic-Cluster Stage

LDA model is chosen for semantic-cluster because it can accurately detect hot
events when semantic information is sufficient. LDA model is implemented
through the spark machine learning package. Meanwhile, how to input the
results of text-cluster into LDA model is designed in detail. The process of
processing text clusters is divided into two steps: keyword extraction and vector
transformation.

Keywords are extracted from text clusters and used as word-bags. In order
to find words of widespread concern, blog heat which is introduced in Sect. 2 is
used to extract keywords.

With word-bags, we need to convert them to vectors because the input of
LDA model is a vectorized text. TF-IDF method is used to vectorize word-
bags due to high effective and adapted the characteristics of word-bags. Specific
definitions are shown in Eq. (4),

wi,k = tfi,k ∗ idfk = ni,k

ni
∗ log(N

nk+1) (4)

where tfi,k represents word frequency, ni,k is the number of the kth word in
word-bags wbi, and ni is the number of words in word-bags wbi. idfk represents
reverse text frequency, N is the number of text clusters, nk is the number of
text clusters which include the kth word.wi,k represents weight of the kth word
of word-bags wbi.

After transforming word-bags into vectors by TF-IDF method, the vectors
are used as input to cluster hot events by LDA model. The hot events clustered
are displayed in the form of word-bags and sorted by Heat (E) which is the heat
of the event.

4 Parallel Computing Design and Implementation

Spark is a popular memory-based large data processing framework, which pro-
cesses and stores data based on the data structure RDD. In order to meet the
requirement of large-scale blog processing, a set of spark jobs are designed for
KMLDA model so that to ensure event detection efficiently. Meanwhile, a par-
allel processing framework on Spark is designed for text-clustering to reduce the
size of data per RDD and improve computational efficiency.

Two-Stage Clustering Hot Event Detection Model 179

4.1 Updating Cluster-Center

The KMLDA framework is divided into two parts. The first part corresponds to
the text-cluster stage. Firstly, micro-blog blogs and related features are read into
RDD. Then, the RDD is equally divided into multiple parts which represent as
{RDD1,RDD2,...,RDDn}. For each RDDi ∈ RDD, the clustering operation in
Sect. 3.2 is executed by parallel. The second part corresponds to the semantic-
cluster stage. All RDD which have processed by test-cluster are merged into one
RDD. The operation in Sect. 3.3 and Sect. 3.4 are used to process this RDD and
detect events.

4.2 Spark Implementation

In the text-cluster stage, it is necessary to update cluster-center when training K-
Means. Training data is in one RDD makes it difficult to update cluster centers,
because data within the RDD is difficult to interoperate. To solve this problem,
a flag is added to each blog after judging cluster-center of the blog. The flag is
used to mark which cluster center the blog belongs to. Flags will be grouped to
update cluster-centers.

In the semantic-cluster stage, word-bags are needed to be transformed into
vector by TF-IDF method. However, the calculation of IDF value is limited by
the size of data. In order to efficiently calculate IDF value, an inverted sorting
method is designed. Words are used as keys to cluster blogs and calculate their
number. A Hashmap containing words and the number of texts is made. The
Hashmap makes it easy to calculate IDF values.

5 Experiment and Analysis

5.1 Experimental Preparation

In order to verify accuracy and efficiency of KMLDA model, experiments are
performed on Sina Weibo. Totally 49.19 million micro-blog blogs are collected
by Sina Weibo API. The data have no specific category and longer than three
words. Among them, 17 million micro-blog blogs are marked with a single word,
like cooking, football, Messi, Trump, etc. The other data has type labels, like
weather, sports, life, etc. This part of data is used to train KMLDA model and
marked data is used to verify the accuracy of KMLDA model.

Test environment is a Spark cluster which has two nodes, each node is Cen-
tOS7 and 256 GB memory. Spark-LDA [2] and TMHTD [1] are chosen as com-
parative models. Spark-LDA improves LDA model to run in the Spark environ-
ment. TMHTD is an event detection model with two-layer cosine clusters which
running in the Spark environment.

180 Y. Xia and H. Huang

5.2 Accuracy Evaluation

Recall rate, accuracy rate and event accuracy rate are used as evaluation indi-
cators. Specific definitions are as follows,

recall = Nreality

Nall
(5)

accuracy = Nright

Nreality
(6)

eventAccuracy = Eright

Eall
(7)

where Nreality represents the number of blogs after clustering, Nright represents
the number of blogs which are correctly clustered, Eall represents the number
of blogs before clustering, Eright represents the number of events which are
correctly detected, Eall represents the number of events.

These indicators accuracy rate and recall rate are based on blog, and even-
tAccuracy rate is based on event. The marked blogs are extracted to different
sizes for accuracy verification, results are shown in Table 1.

Table 1. Accuracy evaluation.

Data size Methods Accuracy Recall EventAccuracy

64 MB Spark-LDA 0.7832 0.8912 0.94

TMHTD 0.8575 0.9131 0.94

KMLDA 0.8523 0.9254 0.96

128 MB Spark-LDA 0.7551 0.8543 0.90

TMHTD 0.8564 0.8856 0.93

KMLDA 0.8357 0.9133 0.96

512 MB Spark-LDA 0.7324 0.8102 0.85

TMHTD 0.8365 0.8772 0.89

KMLDA 0.8336 0.8935 0.93

2 GB Spark-LDA 0.6567 0.7154 0.75

TMHTD 0.7886 0.8225 0.85

KMLDA 0.7552 0.8543 0.91

4 GB Spark-LDA 0.5546 0.6625 0.63

TMHTD 0.7138 0.7856 0.81

KMLDA 0.6958 0.8127 0.86

The experiment uses data sets under different size, including 64 MB, 128 MB,
512 MB, 2 GB and 4 GB. As can be seen from Table 1, the indicators show a
downtrend with the increase of data size. Compared with TMHTD and KMLDA,
the downtrend of Spark-LDA is obvious. In addition, TMHTD is slightly better
than KMLDA in accuracy rate, because TMHTD is supposed to calculate cosine

Two-Stage Clustering Hot Event Detection Model 181

similarity between any two blogs. For the recall rate, KMLDA is higher than the
other models. The reason is that KMLDA is not strict in setting blog filtering
conditions. Meanwhile, KMLDA considers keywords extraction according to the
heat of blogs, and LDA model has better event detection ability, so that KMLDA
performs better than Spark-LDA and TMHTD in eventAccuracy rate.

5.3 Running Time Comparison

Time efficiency verification is mainly divided into running time comparison and
scalability verification. As shown in Fig. 1.

Fig. 1. Time efficiency evaluation.

The left figure represents the running time of each algorithm under different
size of data. From figure, KMLDA has a significant improvement in running
time which compared with Spark-LDA and TMHTD. It is proved that KMLDA
which designs parallel calculation framework and linear algorithm complexity
has high efficiency to detect events.

As shown in right figure, the scalability of KMLDA is tested by increasing
memory and adjusting the size of data. From figure, the running time of KMLDA
gradually decreases with the increase of memory size. However, by algorithm
complexity, CPU resources and IO stream, the running time finally approaches
to a stable value.

6 Summary

In this paper, a two-stage clustering hot event detection model KMLDA for
micro-blog is proposed on Spark. This model considers the characteristics of
blogs and time efficiency in big data environment. The process of KMLDA is
divided into two stages. In text-cluster stage, data size can be reduced via slicing,
and K-Means is adapted to improve the accuracy by threshold setting and cosine
similarity. In semantic-cluster stage, word-bags are extracted from text clusters
and then LDA model clusters word-bags to detect hot events. Experimental

182 Y. Xia and H. Huang

results show that KMLDA improves the accuracy and time efficiency of hot
event detection in big data environment. In future work, how to integrate user
characteristics and topic types to satisfy personalized event detection, and real-
time data processing of micro-blog blogs will be considered.

Acknowledgments. This work was financially supported by the Natural Science
Foundation of China (41571401).

References

1. Ai, W., Li, K., Li, K.: An effective hot topic detection method for microblog on
spark. Appl. Soft Comput. 70, 1010–1023 (2018)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

3. Cao, J.X., Xu, S., Chen, G.J., Zhao, L.Y., Zhou, T., Liu, B.: Discovering geograph-
ical topics in online social networks. Chin. J. Comput. 40(7), 1530–1542 (2017)

4. Chen, X., Zhou, X., Sellis, T., Li, X.: Social event detection with retweeting behav-
ior correlation. Expert Syst. Appl. 114, 516–523 (2018)

5. Hao, Y., Zheng, Q., Chen, Y., Yan, C.: Recognition of abnormal behavior based
on data of public opinion on the web. Comput. Res. Dev. 53(3), 611–620 (2016)

6. Huang, F.L., Feng, S., Wang, D.L., Yu, G.: Mining topic sentiment in microblogging
based on multi-feature fusion. Chin. J. Comput. 40(4), 872–888 (2017)

7. Huang, F.L., Yu, G., Zhang, J.L., Li, C.X., Yuan, C.A., Lu, J.L.: Mining topic
sentiment in micro-blogging based on micro-blogger social relation. J. Softw. 28(3),
694–707 (2017)

8. Kitajima, R., Kobayashi, I.: A latent topic extracting method based on events in
a document and its application. In: Proceedings of the ACL 2011 Student Session,
pp. 30–35. Association for Computational Linguistics (2011)

9. Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the twitter
stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, pp. 1155–1158. ACM (2010)

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. Comput. Sci. (2013)

11. Ozdikis, O., Senkul, P., Oguztuzun, H.: Semantic expansion of hashtags for
enhanced event detection in Twitter. In: Proceedings of VLDB 2012 Workshop
on Online Social Systems, pp. 1–6 (08 2012)

12. Stilo, G., Velardi, P.: Temporal semantics: time-varying hashtag sense clustering.
In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014.
LNCS (LNAI), vol. 8876, pp. 563–578. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13704-9 42

13. Sun, R., Guo, S., Ji, D.H.: Topic representation integrated with event knowledge.
Chin. J. Comput. 40(4), 791–804 (2017)

14. Wang, Z.H., Chen, S.M., Yuan, X.R.: Visual analysis for microblog topic modeling.
J. Softw. 29(4), 1115–1130 (2018)

15. Xu, K., Qi, G., Huang, J., Wu, T., Fu, X.: Detecting bursts in sentiment-aware
topics from social media. Knowl.-Based Syst. 141, 44–54 (2018)

16. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In:
Proceedings of the 22nd International Conference on World Wide Web, pp. 1445–
1456. ACM (2013)

https://doi.org/10.1007/978-3-319-13704-9_42
https://doi.org/10.1007/978-3-319-13704-9_42

Two-Stage Clustering Hot Event Detection Model 183

17. Yilmaz, Y., Hero, A.O.: Multimodal event detection in Twitter hashtag networks.
J. Signal Process. Syst. 90(2), 185–200 (2018)

18. Zhong, Z.M., Guan, Y., Li, C.H., Liu, Z.T.: Localized top-k bursty event detection
in microblog. Chin. J. Comput. 41(7), 1504–1516 (2018)

Mobility-Aware Workflow Offloading
and Scheduling Strategy for Mobile

Edge Computing

Jia Xu1, Xuejun Li1, Xiao Liu2(&), Chong Zhang2, Lingmin Fan1,
Lina Gong1, and Juan Li3

1 School of Computer Science and Technology, Anhui University, Hefei, China
2 School of Information Technology, Deakin University, Geelong, Australia

xiao.liu@deakin.edu.au
3 Computer Science and Technology School, Wuhan Institute of Technology,

Wuhan, China

Abstract. Currently, Mobile Edge Computing (MEC) is widely used in dif-
ferent smart application scenarios such as smart health, smart traffic and smart
home. However, smart end devices are usually constrained in battery and
computing power, and hence how to optimize the energy consumption of end
devices with intelligent task offloading and scheduling strategies under con-
straints such as deadlines is a critical yet challenging topic. Meanwhile, most
existing studies do not consider the mobility of end devices during task exe-
cution but in reality end devices may need to be constantly moving in a MEC
environment. In this paper, motivated by a patient health monitoring scenario,
we propose a Mobility-Aware Workflow Offloading and Scheduling Strategy
(MAWOSS) for MEC which provides a holistic approach that covers the
workflow task offloading strategy, the workflow task scheduling algorithm and
the workflow task migration strategy. Comprehensive experimental results show
that compared with others, MAWOSS is able to achieve the optimal fitness with
lower energy consumption and smaller workflow makespan under the deadlines.

Keywords: Mobile Edge Computing �Mobility �Workflow � Task offloading �
Task scheduling

1 Introduction

With the rapid enhancement of the computing power of mobile devices, many new
smart applications such as smart health, smart traffic and smart home are being
developed in the market. In a patient health monitoring scenario, it is necessary to
analyze massive and heterogeneous medical business processes, and require timely
collection of medical data [1, 2]. For example, if one medical data indicator contains 4
bytes and the data collection frequency is every 1 min, then 6 indicators need 24 bytes
per minute, namely 12 MB per year. If the resident population is 5 million, then a
massive 57.3 PB of data will be generated in a year [3]. For such a kind of smart health
scenario, traditional cloud computing cannot meet its requirement of fast response time.

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 184–199, 2020.
https://doi.org/10.1007/978-3-030-38961-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_17

Meanwhile, Mobile Edge Computing (MEC) is gradually becoming the next
generation information technology platform [4]. MEC comprehensively utilizes three
different layers of computing resources including end devices, edge servers and cloud
servers. Different from cloud computing, MEC does not need to transmit every task to
the cloud. Instead, it makes fully use of the idle resources at the end device and edge
servers by filtering and analyzing the characteristic of the tasks [5]. It can not only
utilize the powerful computing capacity of cloud computing, but also meet the flexible
requirements of distributed environment and real-time response of various smart
applications [6]. Therefore, various smart health applications such as patient health
monitoring can be deployed in the MEC environment so that the workflow tasks of
smart health business process can meet the requirements of computing resources and
real-time response constraints [7].

However, compared with standalone cloud computing, MEC has more heteroge-
neous computing resources and more complicated network structures. At present, many
researchers focus on resource management problems in the edge computing environ-
ment, specifically the task offloading strategy and the task scheduling algorithm [8–11].
The task offloading strategy mainly tackles the limitation of battery and computing
capacity of end devices by offloading tasks to the edge or cloud server [12]. The task
offloading strategy aims to optimize the task execution time and the energy con-
sumption of end devices in the MEC environment [13]. The task scheduling algorithm
mainly tackles the task scheduling problem on the edge or cloud server with the aim to
optimize the task execution time at different resource layers [14].

Currently, most existing research works on task offloading and task scheduling in
MEC fail to consider the mobility of end devices [14, 15]. The location of the end
device is assumed to be fixed during the period of task execution at the edge server.
However, this is impractical in the real world as most mobile devices in the MEC
environment are constantly moving. Therefore, task migration among edge servers
needs to be considered when the location of mobile devices changes. Otherwise, the
task execution result may fail to be delivered to the end device in time as the con-
nection to the edge server which executes the task is seriously weakened or even lost
completely. To address such a problem and using a patient health monitoring scenario
as the motivating example, this paper proposes the novel Mobility-Aware Workflow
Offloading and Scheduling Strategy (MAWOSS). We first define the location and
moving path model of the end device in the MEC environment. Second, we construct
the energy consumption and response time models of workflow tasks in the MEC
environment. Finally, we present the detailed strategies and algorithms used in
MAWOSS. Specifically, in the task offloading stage, MAWOSS can make the best
offloading decisions for workflow tasks according to the characteristic of the task
workload and data size. In the task execution stage, MAWOSS can find the best task
scheduling plan with the minimum energy consumption of the moving end device
under the deadlines. When the task execution stage finished, MAWOSS can select the
best edge server for task migration according to the updated location of the end device.
Comprehensive experimental results show that compared with other existing strategies,
our proposed strategy is able to achieve the optimal fitness with lower energy con-
sumption and smaller workflow makespan under the deadlines.

Mobility-Aware Workflow Offloading and Scheduling Strategy for MEC 185

The major contributions of this paper include: (1) important models have been
formulated for the mobility of the end device, the energy consumption of the end
device, and the time of workflow tasks in the MEC environment; (2) the novel
Mobility-Aware Workflow Offloading and Scheduling Strategy (MAWOSS) for MEC
has been proposed as a holistic approach which covers the workflow task offloading
strategy, the workflow task scheduling algorithm and the workflow task migration
strategy; (3) comprehensive experiments have been conducted to evaluate our strategy
and compare with five other representative strategies.

The rest of this paper is organized as follows. Section 2 presents the problem
formulation with detailed models. Section 3 proposes our novel Mobility-Aware
Workflow Offloading and Scheduling Strategy. Section 4 demonstrates the experi-
mental results. Finally, Sect. 5 concludes this paper and points out some future work.

2 Problem Formulation

In this section, using a patient healthcare monitoring example scenario, we propose the
major models used in this paper including the location and moving path model for the
end device, the wireless signal model for the edge server, the energy consumption and
task response time model for the end device, the edge server and the cloud server, and
the fitness value model for measuring the quality of task offloading decisions.

A. The Location and Moving Path Model
For an example emergent treatment process, the starting location of the hospital bed

(installed with many mobile monitoring devices) is the emergency department. The
hospital bed then passes through the examination room, operating room and finally

Emergency room

Operating room

Checkout room

Clinics

EDGE NODE1
(ES1)

Cloud Server Layer

Edge Server Layer

Mobile end device
moving path

10

20

30

40

50

60

70

80

90
100

10 30 40 50 60 70 80 90 100

EDGE NODE4
(ES4)

EDGE NODE2
(ES2)

EDGE NODE5
(ES5)

EDGE NODE3
(ES3)

0 20

Fig. 1. The location and moving path model.

186 J. Xu et al.

reaches to the ward. Based on these four key locations, the location and moving path
model of the end device is shown in Fig. 1. The location model is a square with the side
length of 100 meters which includes three different types of computing resources: the
cloud server, the edge server and the mobile end device. The number of virtual machines
in the cloud server is M, which are denoted as CSi ¼ CS1;CS2; . . .;CSMf g. The CPU
frequency of the cloud server is f cloudi ¼ f cloud1 ; f cloud2 ; . . .; f cloudM

� �
. There are N edge

servers in this area which are denoted as ESi ¼ ES1;ES2; . . .;ESNf g. Each edge server

contains K virtual machines and the CPU frequency is f edgei ¼ f edge1 ; f edge2 ; . . .; f edgeK

n o
.

The CPU frequency of the end device is f end . The end device moves through this area
according to the moving path as depicted in Fig. 1 during the workflow task response
time interval tstart; tend½ �. The location of ES2 is considered as the original point and the
line between ES2 and ES3 is considered as the X axis. The line between ES1 and ES2 is
considered as the Y axis. Accordingly, the coordinate of the end device’s position at
time t can be represented by x; yð Þ, where 0� x� 100; 0� y� 100. The distance
between the end device and edge servers is distanceti ¼ distancet1; distance

t
2;

�
. . .; distancetNg.
B. The Wireless Signal Model

In the offloading process of workflow tasks, each task is transferred to the edge
server or the cloud server for execution, or executed locally at the end device,
according to the offloading decision. When the task is being offloaded to the edge
server, the speed of data transfer is changing with the location of the end device. The
larger the distance between the end device and the edge server, the lower the data
transfer speed is, and vice versa. In this paper, without the loss of generality, the
effective communication radius of each edge server is assumed to be 50 m, and the
transmission speed is divided into three levels [14]. As illustrated in Fig. 2, with three
circles centered at the edge server i ESið Þ, the radius of each circle are r1; r2; r3
respectively. Furthermore, we partition the biggest circle into three parts which are
represented by l1; l2; l3 respectively. Specifically, when the end device is within the area
of l1; l2; or l3, the data transmission speeds are 2048 KB per second, 1024 KB per
second, or 512 KB per second respectively.

l1
l2
l3

Fig. 2. The communication radius of each edge server.

Mobility-Aware Workflow Offloading and Scheduling Strategy for MEC 187

C. The Energy Consumption and Task Response Time Model
Here we will present the energy consumption and task response time models

according to different task offloading decisions, viz. at the end device (namely no
offloading), at the edge server, and at the cloud server. Please be noted that since the
focus in MEC is to reduce the energy consumption of the end device so as to extend its
battery life, the energy consumptions of the edge server and the cloud server are not
considered in this paper. The task response time is the time between the task submitted
by end device to the result data return to the end device, which includes transfer time
before the task execution, task execution time and receiving time after task completion.
Each workflow task Ti can be represented by a quadruple, Ti ¼ loadi; transferi;f
receivei; deadlineig. Specifically, loadi is the workload of Ti, transferi is the size of data
transferred before the task execution, receivei is the size of data the end device received
after task completion, deadlinei is the deadline constraint of Ti.

(1) Energy Consumption and Task Response time at the End Device
When the workflow task Ti is not offloaded to the edge or cloud server, it will be

executed locally at the end device. The energy consumption of the end device for the
execution of task Ti is calculated as follows:

Eend
i ¼ Pend � Tend

i ð1Þ

Where Eend
i is the energy consumption for the end device to execute task Ti. The

task execution power of end device is Pend . Tend
i is the task response time at the end

device which can be calculated as follows:

Tend
i ¼ loadi

f end
ð2Þ

Where loadi is workload of task Ti. f end is the CPU frequency of the end device.

(2) Energy Consumption and Task Response time when offloaded to the Edge Server
When task Ti is offloaded to the edge server, the energy consumption is divided into

three parts. The first part is the energy consumption for transferring the task data from
the end device to the edge server. The second part is the energy consumption for
receiving the task data back to the end device. The third part is the idle energy
consumption of the end device when the task is being executed and migrated at the
edge server. The total energy consumption for task Ti when offloaded to the edge server
is calculated as follows:

Eedge
i ¼ Ptr � Ttran

i þPre � Trece
i þPidle � Texec

i þ Tmigr
i

� � ð3Þ

Where Ptr is the data transfer power of the end device. Ttran
i is the time of task data

transfer. Trece
i is the time of task data receive. Texec

i is the task response time in edge
server. Tmigr

i is the task migration time of the Ti. Pidle is the idle power of the end
device. Pre is the task data receive power of the end device.

188 J. Xu et al.

The total task response time includes four parts when task Ti is offloaded to edge
server. The first part is the time for task data transfer to the edge server. The second part
is the actual response time for task execution at the edge server. The third part is for
task data transfer back to the end device. The last part is the time for task migration
when the task needs to be migrated to another edge server due to the movement of the
end device. The total task response time in edge server is calculated as follows:

Tedge
i ¼ Ttran

i þ Texec
i þ Trece

i þ Tmigr
i ð4Þ

Texec
i ¼ loadi

f edgej

ð5Þ

Ttran
i ¼ transferi

Rtran
i

ð6Þ

Trece
i ¼ receivei

Rrece
i

ð7Þ

Tmigr
i ¼ receivei

Rmigr
i

ð8Þ

Where loadi is the workload of the task Ti. f
edge
j is the CPU frequency of the virtual

machine j in edge server. Tmigr
i is the time of migration when task is migrated to another

edge server. Rmigr
i is the task migration speed when task migrate to other edge

server.transferi is the data size of Ti sent to the edge server. Rtran
i is the data transfer

speed when task offloading to edge server. receivei is data size of Ti when task send
back to end device. Rrece

i is data receive speed when task return to end device. Rmigr
i is

the data migration speed when task migrate to other edge server node.

(3) Energy Consumption and Task Response time when offloaded to the Cloud Server
Similarly, when task Ti is offloaded to the cloud server, the energy consumption

includes three parts which are data transfer to the cloud server, data transfer back to the
end device and the idle energy consumption of the end device. The total energy
consumption for task Ti when offloaded to the cloud server is calculated as follows:

Ecloud
i ¼ Ptr � transferi

Rcloud
tran

þPre � receivei
Rcloud
rece

þPidle � Tcloud
i ð9Þ

Where Rcloud
tran is the data transfer speed to the cloud server. Rcloud

rece is the data transfer
speed back to the end device. Tcloud

i is the task response time at the cloud server.
transferi is the size of data transferred before the task execution, receivei is the size of

Mobility-Aware Workflow Offloading and Scheduling Strategy for MEC 189

data the end device received after task completion. The total task response time at the
cloud server is calculated as follows:

Tcloud
i ¼ transferi

Rcloud
tran

þ loadi
f cloudj

þ receivei
Rcloud
rece

ð10Þ

Where f cloudj is the CPU frequency of the virtual machine j in the cloud server.

D. The Fitness Value
The fitness value is designed to evaluate the quality of offloading decisions and task

scheduling plan. The fitness function can evaluate the energy consumption of end
device under workflow task deadlines [16]. The smaller fitness value, the lower energy
consumption of the solution is. The fitness value can be calculated as follows:

fitness ¼ f1 � Esumð Þþ f2 � 10� Esum � makespan
deadline

� �
ð11Þ

Where Esum is the total energy consumption of the end device. makespan is the
duration for the whole workflow. deadline is the workflow deadline constraint. The
penalty coefficient for missing the deadline is set as 10, which is the same as in the
previous work [16]. The total energy consumption of the end device for the whole
workflow is calculated as follows:

Esum ¼
Xmax

i¼1

Eend
i þ

Xmax

j¼1

Eedge
j þ

Xmax

k¼1

Ecloud
k

ð12Þ

Eend
i ; Eedge

j ; Ecloud
k are the energy consumption of the end device when the task is

executed at the end device, offloaded to the edge server or offloaded to the cloud server,
respectively.

The fitness function consists of two parts: the first part is the total energy con-
sumption of the end device when the workflow deadline is met f1 ¼ 1; f2 ¼ 0ð Þ; the
second part is the total energy consumption of the end device when the deadline is
missed f1 ¼ 0; f2 ¼ 1ð Þ. The idea is that when the workflow deadline is met, the energy
consumption of the end device (the first part) is regarded as the fitness value. In this
case, the strategy mainly focuses on optimizing the energy consumption of the end
device. However, if the workflow deadline is missed, the penalty for missing the
deadline is regarded as the fitness value (the second part). In this case, the strategy
should focus on optimizing the energy consumption under the deadline constraint.

3 Mobility-Aware Workflow Offloading and Scheduling
Strategy

Based on these models presented in Sect. 3, the novel Mobility-Aware Workflow
Offloading and Scheduling Strategy (MAWOSS) is proposed in this section to solve the
task offloading and scheduling problem for a moving end device in the MEC envi-
ronment. As depicted in the pseudocode below, the process of MAWOSS has three

190 J. Xu et al.

main phases. Firstly, MAWOSS generates the offloading decisions for all workflow
tasks (Lines 1–3). Secondly, after all offloading decisions are made, workflow
scheduling is conducted for all types of resources allocated in the MEC environment
(Lines 4–9). Finally, once the execution of a workflow task is completed, according to
the updated location of the end device, the task migration strategy can select the best
edge server for task migration to make sure the task execution result will be delivered
successfully back to the end device (Lines 10–14). Detailed strategies and algorithms
are presented in the subsequent sections.

Overview of MAWOSS
1 for i=1 to _
2 generate the offloading decision of task according to Strategy 1;
3 end for
4 generate the task queues in all resources allocated in the MEC environment ac-
cording to the task offloading decisions;
5 for i=1 to 3 //three different types of resources including the end device, the edge
server and the cloud server
6 generate the scheduling plan in three different types of resource according to the
Algorithm 1
7 end for
8 task offloading according to the generated task offloading decisions;
9 task scheduling and execution according to the generated task scheduling plan;
10 for i=1 to _
11 generate the best task migration plan for task according to Strategy 2;
12 migrate according to the generated task migration plan;
13 task execution result sent back to the end device;
14 End for

3.1 Mobility-Aware Workflow Task Offloading Strategy

Strategy 1 shows the Mobility-Aware Workflow Task Offloading Strategy for the end
device. As described in the pseudocode below, the strategy consists of five major parts.
The first part is to get the ready tasks according to the dependency of workflow tasks
(Line 2). The second part is to calculate the task data transfer time and the execution
time when the task is offloaded to the edge server (Lines 3–6). In the third part, the
strategy makes the task migration decision and calculates the migration time and
energy consumption of the end device (Lines 7–10). The fourth part is to calculate the
energy consumption of the end device and total task response time with different task
offloading decisions (Lines 11–12). The last part is to choose the best offloading
decision which has the lowest energy consumption of the end device under the given
deadline constraint and update the ready task queue according to the dependency of
workflow tasks (Lines 13–22).

Mobility-Aware Workflow Offloading and Scheduling Strategy for MEC 191

3.2 PSO Based Task Scheduling Algorithm in the MEC Environment

Algorithm 1 describes the Particle Swarm Optimization based Task Scheduling
Algorithm in the Mobile Edge Computing Environment. This algorithm mainly
includes three parts: initialization of the task scheduling plan, iterative process of the
algorithm, and return the best task scheduling plan for the three resource layers. The
initialization of the task scheduling plan is to randomly generate the task scheduling

Strategy 1: Mobility-Aware Workflow Task Offloading Strategy
Input: Current time , Tasks , Cloud Server CS, Edge Server ES，End
Device END, task deadline constraint ;
Output: the best task offloading decision − ;
1 while _ ! = 0
2 getting the ready task according to the dependency of workflow task and put
into the ready task queue _ , calculate the number of ready task queue _ ;
3 for i=1 to _
4 calculate the distance between the end device to different edge servers

according to the current time ;
5 chose the edge server node which has the fastest transfer speed between
the end device to edge server;
6 calculate the task execution time and transfer time when task offloading to
edge server by Formulas 5-6;
7 update the end device receive data time according to Step 6 and calcu-
late the distance between the end device to different edge servers ;
8 chose the edge server node which has the fastest receiving speed between
the edge server to end device;
9 compare the edge server which has the fastest transfer speed with the
edge server which has the fastest receive speed and migrate the task to the
best edge server ;
10 calculate the task migration time by Formula 8;
11 calculate the energy consumption of end device and task response time when
task offloading to edge server by Formulas 3-4;
12 calculate the energy consumption of end device and task response time when
task executed in end device or offloading to cloud server by Formulas 1-2, 9-10;
13 if (>)&& > &&(>)
14 chose the lowest energy consumption offloading decision as the task ;
15 else
16 chose the lowest energy consumption under the deadline constraint offloading
decision as the task ;
17 end if
18 update the current time according to the task offloading decision;
19 end for
20 _ = _ − _ ；

21 end while
22 return −

192 J. Xu et al.

plan and the search speed to find the initial global best task scheduling plan (Lines 1–
8). The iterative process of the algorithm consists of two loops (Lines 9–18). The outer
loop updates the task scheduling plan and other algorithm parameters (Lines 9–18).
The inner loop calculates the fitness value of each task scheduling plan (Lines 11–14).
In the inner loop, the algorithm first calculates the task energy consumption of end
device and the task response time in three different types of computing resources (Line
12). Then, the algorithm calculates the total energy consumption of the end device, the
total workflow makespan and the fitness value according to the scheduling plan (Line
13). Finally, we select the task scheduling plan with the lowest fitness value as the
global best task scheduling plan (Line 15). When the iteration terminates, the algorithm
returns the best task scheduling plan (Line 19). The details about the parameters and
operators of the Particle Swarm Optimization (PSO) algorithm can be found in our
previous work [17] and hence omitted here due to the space limits.

Algorithm 1: Particle Swarm Optimization based Task Scheduling Algorithm in
the Mobile Edge Computing Environment
Input: maximum iterations: Iteration, tasks , cloud server CS, edge server ES，
end device END, task deadline constraint ;
Output: the best task scheduling plan − ;
1 for i=1 to k do
2 initial the task scheduling plan and search speed randomly;
3 end for
4 for i=1 to k do
5 calculate the energy consumption of the end device and the task response time in
three different types of computing resources according to the task scheduling plan

.(Formulas 1-6);
6 calculate the total energy consumption of the end device, the total workflow
makespan and the fitness value according to the scheduling plan (Formulas 11-
12);
7 end for
8 select the global best task scheduling plan from scheduling plan ;
9 for i=1 to Iteration do
10 update the task scheduling plan according to the search speed ;
11 for j=1 to k do
12 calculate the energy consumption of the end device and the task response time
in three different types of computing resources according to the task scheduling plan

.(Formulas 1-6);
13 calculate the total energy consumption of the end device, the total workflow
makespan and the fitness value according to the scheduling plan (Formulas 11-
12);
14 end for
15 select the task scheduling plan with the lowest fitness value as the global
best task scheduling plan;
16 update the inertia weight;
17 update the search speed ;
18 end for
19 return − ;

Mobility-Aware Workflow Offloading and Scheduling Strategy for MEC 193

3.3 Mobility-Aware Task Migration Strategy

The Mobility-Aware Task Migration Strategy is shown in Strategy 2. This strategy
mainly includes three parts: initialization of the finished task queue, the iterative
process to find the best task migration decision, and the return of the task migration
decision Menergy�best. Initialization of the finished task queue is to get the queue of the
finished tasks at the current edge server from Algorithm 1 and then put it into the global
finished task queue and calculate the number of finished tasks (Line 1). The iterative
process is used to find the best task migration decision (Lines 2–8). In the iterative
loop, the strategy first calculates the distances between the end device and different
edge servers according to the task finish time and then chose the edge server having the
fastest data receiving speed (Lines 3–4). Then, the strategy makes the task migration
decision having the lowest migration energy cost Menergy�best (Line 5). When the
iteration terminates, the strategy return the best task migration plan (Line 9).

Strategy 2: Mobility-Aware Task Migration Strategy
Input: task finish time ，tasks ，edge server ES，task deadline constraint

;
Output: the best task migration plan − ;
1 get the finished task queue of the edge server from Algorithm 1 and put it into the
global finished task queue ℎ_ , calculate the total number of finished tasksℎ_ ;
2 for i=1 to ℎ_
3 calculate the distance between the end device and different edge servers
according to the task finish time ;
4 choose the edge server node which has the fastest receiving speed between
the edge server and the end device;
5 make the task migration decision − which migrates the task from its
current edge server as in Strategy 1 to the selected edge server ;
6 calculate the energy consumption of the end device and the task response time
(Formulas 3-4);
7 update the current time ;
8 end for
9 return −

4 Evaluation

In this section, simulation experiments are conducted to validate the effectiveness of
our proposed MAWOSS strategy. We compare MAWOSS with five other task
offloading strategies in terms of their fitness value, the energy consumption of the end
device and the workflow makespan. The results on the time and energy consumption
for task migration are also highlighted given the focus of this paper on the mobility of
the end device. Specifically these strategies include: (1) the local-based partial rea-
sonable task schedule construction algorithm (LOPRTC) [14]; (2) the energy efficient
multi-resource computation offloading strategy (EMO) [17]; (3) the strategy which

194 J. Xu et al.

executes all tasks in the cloud server (ONLY-CLOUD); (4) the strategy which executes
all tasks in the edge server (ONLY-EDGE); (5) the strategy which executes all tasks in
the end device (ONLY-END). For the fairness of comparison, particle swarm opti-
mization based task scheduling algorithm is used with all offloading strategies.

4.1 Experimental Settings

The simulation experiment runs on a PC with the following configurations: Intel Core
i7 3.6 GHz CPU, 16 GB RAM, and Windows 10 OS. The simulations are developed in
MatlabR2017b. The workflow structure is defined using the Montage workflow which
is widely used for simulation experiments [18]. The task number of workflows ranges
from 50 to 300. The workload of each task is generated between 30 and 30000 Mega
Cycles randomly [14]. The upload and download data size of each task varies from
500 KB to 1000 KB [14]. The transmission, receiving, execution and idle power of end
device are 100 mW, 50 mW, 700 mW, 3 mW respectively [19]. The network band-
widths of LAN and WAN are 100 Mbps and 10 Mbps respectively [14]. The number
of virtual machines in the cloud server is set as 5. The number of virtual machines in
the edge server is set as 3. The CPU frequency of the end device is 3 GHz. The CPU
frequency of the virtual machines in the edge server varies from 3 GHz to 9 GHz.
The CPU frequency of the virtual machines in the cloud server varies from 9 GHz to
15 GHz. The deadlines of workflow tasks are assigned as double the average response
time of workflow tasks running a 9 GHz CPU [14]. The parameter settings of the
particle swarm optimization algorithm are set according to the work in [17]. The
location of the edge servers and the moving path of the end device are set the same as
in the example patient healthcare monitoring scenario shown in Fig. 1. Under such a
physical setting, the end device will always be covered by at least one effective edge
server. Therefore, the failure of task migration (when the end device is outside the
effective communication range of any edge servers) is not considered in our experi-
ments, but we will investigate such abnormal situations in the future.

4.2 Evaluation Results

A. Fitness value
The fitness value represents the general effectiveness of these strategies. The results

on the fitness are shown in Fig. 3. As the number of tasks grows, the fitness value of all

0

100

200

300

400

50 100 150 200 250 300

Fi
tn

es
s

Number of Tasks

MAWOSS

LOPRTC

EMO

ONLY-CLOUD

ONLY-EDGE

ONLY-END

Fig. 3. Comparison of the fitness value.

Mobility-Aware Workflow Offloading and Scheduling Strategy for MEC 195

methods increases. It can be seen that the fitness value of MAWOSS is much lower
than the other five methods, which means that MAWOSS can always find the task
offloading decision and scheduling plan with lower energy consumption of the end
device under the given deadline constraint. For example, when the task number is 50,
the fitness value of MAWOSS is 2% lower than LOPRTC. When the task number
becomes 300, the fitness value of MAWOSS is 4% lower than LOPRTC. Therefore, in
general, MAWOSS is the most effective task offloading and scheduling strategy for
reducing the energy consumption under the given deadlines.

B. Energy consumption of the end device
Figure 4 shows the results on the energy consumption of the end device. The

energy consumption of the ONLY-EDGE strategy is always the lowest. However, the
gap between ONLY-EDGE and our MAWOSS strategy is small. For example, when
the task number is 150, the energy consumption of MAWOSS is 3% lower than
LOPRTC. However, if comparing their workflow makespan as shown in Fig. 5, we can
find that the workflow makespan of ONLY-EDGE is much higher than MAWOSS. For
example, when the task number is 150, the workflow task makespan of ONLY-EDGE
is 14% higher than MAWOSS. This means ONLY-EDGE’s task offloading decision
and scheduling plan may miss the given deadlines. In contrast, MAWOSS can always
find the best task offloading decision and scheduling plan for reducing the energy
consumption under the given deadlines.

C. Workflow makespan
The results on the workflow makespan are shown in Fig. 5. It can be seen that the

workflow makespan of ONLY-END is always the lowest, and MAWOSS is the

0

200

400

600

800

1000

50 100 150 200 250 300

E
ne

rg
y

C
on

su
m

pt
io

n/
J

Number of Tasks

MAWOSS

LOPRTC

EMO

ONLY-CLOUD

ONLY-EDGE

ONLY-END

Fig. 4. Comparison of the end device’s energy consumption.

0

1000

2000

3000

4000

5000

6000

50 100 150 200 250 300

M
ak

es
pa

n/
s

Number of Tasks

MAWOSS
LOPRTC
EMO
ONLY-CLOUD
ONLY-EDGE
ONLY-END

Fig. 5. Comparison of the workflow makespan.

196 J. Xu et al.

second-lowest. However, if comparing their energy consumption of the end device as
shown in Fig. 4, we can find that the workflow makespan of ONLY-END is much
higher than MAWOSS. For example, when the task number is 100, the workflow
makespan of ONLY-END is 9.8 times higher than MAWOSS. Therefore, it proves that
MAWOSS can always find the best task offloading decision and scheduling plan for
reducing workflow makespan and energy consumption under the given deadlines.

D. Task migration time and energy consumption
Since task migration among edge servers directly deals with the mobility issue of

the end device, here we present a detailed look at the results on time and energy
consumption of the end device for task migration as shown in Figs. 6 and 7. As ONLY-
CLOUD and ONLY-END do not have task migration, we compare MAWOSS with
LOPRTC, EMO and ONLY-EDGE. It can be seen that the task migration time and
energy consumption of MAWOSS are always lower than the other strategies. For
example, when the task number is 50, the task migration time and energy consumption
of MAWOSS is 6.3% lower than LOPRTC. When the task number becomes 300, the
task migration time and energy consumption of the MAWOSS is 15.1% lower than
LOPRTC. Therefore, MAWOSS is able to achieve the minimum task migration time
and energy consumption.

0

20

40

60

80

50 100 150 200 250 300

T
as

k
M

ig
ra

tio
n

T
im

e/
s

Number of Tasks

MAWOSS
LOPRTC
EMO
ONLY-EDGE

Fig. 6. Comparison of the task migration time.

0

2

4

6

8

50 100 150 200 250 300

M
ig

ra
tio

n
E

ne
rg

y
C

on
su

m
pt

io
n/

J

Number of Tasks

MAWOSS
LOPRTC
EMO
ONLY-EDGE

Fig. 7. Comparison of the task migration energy consumption.

Mobility-Aware Workflow Offloading and Scheduling Strategy for MEC 197

5 Conclusion and Future Work

Most existing works on task offloading and task scheduling in the mobile edge com-
puting environment overlooked the mobility issue of the end device, which could result
in the failure of delivering the task execution results back to the end device in time and
hence halt the workflow execution. In this paper, considering the mobility of the end
device, we propose the Mobility-Aware Workflow Offloading and Scheduling Strategy
(MAWOSS) as a holistic approach to minimize the energy consumption of the end
device and the workflow makespan under the deadlines. Experimental results showed
that the MAWOSS can always achieve the optimal fitness with lower energy con-
sumption and smaller workflow makespan compared with other strategies.

This paper focused on the workflow offloading and scheduling problem for a single
end device in the MEC environment. In the future, we can explore a more complicated
scenario where multiple end devices are running multiple different workflows in MEC
environment.

Acknowledgement. This work is the partially supported by the Humanities and Social Sciences
of MOE Project No. 16YJCZH048, the National Natural Science Foundation of China Project
No. 61972001, the Key Natural Science Foundation of Education Bureau of Anhui Province
Project KJ2016A024, and the Nature Science Foundation of Hubei Province Project
2019CFB172.

References

1. Azimi, I., Pahikkala, T., Rahmani, A., et al.: Missing data resilient decision-making for
healthcare IoT through personalization: a case study on maternal health. Future Gener.
Comput. Syst. 96, 297–308 (2019)

2. Hamza, R., Yan, Z., Muhammad, K., et al.: A privacy-preserving cryptosystem for IoT E-
healthcare. Inf. Sci. (2019, early access)

3. Forkan, A., Khalil, I., Atiquzzaman, M.: ViSiBiD: a learning model for early discovery and
real-time prediction of severe clinical events using vital signs as big data. Comput. Netw.
113, 244–257 (2017)

4. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, fog et al.: a survey and analysis
of security threats and challenges. Future Gener. Comput. Syst. 78, 680–698 (2018)

5. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)
6. Bouet, M., Conan, V.: Mobile edge computing resources optimization: a geo-clustering

approach. IEEE Trans. Netw. Serv. Manag. 15(2), 787–796 (2018)
7. Sodhro, A., Luo, Z., Sangaiah, A., et al.: Mobile edge computing based QoS optimization in

medical healthcare applications. Int. J. Inf. Manag. 45, 308–318 (2019)
8. Lyu, X., Tian, H., Ni, W., et al.: Energy-efficient admission of delay-sensitive tasks for

mobile edge computing. IEEE Trans. Commun. 66(6), 2603–2616 (2018)
9. Zhang, W., Zhang, Z., Zeadally, S., et al.: Efficient task scheduling with stochastic delay cost

in mobile edge computing. IEEE Commun. Lett. 23(1), 4–7 (2018)
10. Ning, Z., Dong, P., Kong, X., et al.: A cooperative partial computation offloading scheme for

mobile edge computing enabled Internet of Things. IEEE Internet Things J. 6(3), 4804–4814
(2018)

198 J. Xu et al.

11. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation
offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)

12. Lyu, X., Tian, H., Jiang, L., et al.: Selective offloading in mobile edge computing for the
green Internet of Things. IEEE Netw. 32(1), 54–60 (2018)

13. Kuang, Z., Li, L., Gao, J., et al.: Partial offloading scheduling and power allocation for
mobile edge computing systems. IEEE Internet Things J. (2019, early access)

14. Zhu, T., Shi, T., Li, J., et al.: Task scheduling in deadline-aware mobile edge computing
systems. IEEE Internet Things J. 6(3), 4854–4866 (2018)

15. Hu, M., Zhuang, L., Wu, D., et al.: Learning driven computation offloading for
asymmetrically informed edge computing. IEEE Trans. Parallel Distrib. Syst. (2019, early
access)

16. Hu, J., Jiang, M., Zhang, Q., et al.: Joint optimization of UAV position, time slot allocation,
and computation task partition in multiuser aerial mobile-edge computing systems. IEEE
Trans. Veh. Technol. (2019, early access)

17. Xu, J., Li, X., Ding, R., et al.: Energy efficient multi-resource computation offloading
strategy in mobile edge computing. Comput. Integr. Manuf. Syst. 25(4), 954–961 (2019)

18. WorkflowGenerator. https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator.
Accessed 03 July 2019

19. Cao, S., Tao, X., Hou, Y., et al.: An energy-optimal offloading algorithm of mobile
computing based on HetNets. In: 2015 International Conference on Connected Vehicles and
Expo (ICCVE), pp. 254–258. IEEE, Shenzhen (2015)

Mobility-Aware Workflow Offloading and Scheduling Strategy for MEC 199

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

HSPP: Load-Balanced and Low-Latency
File Partition and Placement Strategy on
Distributed Heterogeneous Storage with

Erasure Coding

Jiazhao Sun, Yunchun Li, and Hailong Yang(B)

Sino-German Joint Software Institute, School of Computer Science and Engineering,
Beihang University, Beijing 100191, China

hailong.yang@buaa.edu.cn

Abstract. To speedup the accesses to massive amount of data, hetero-
geneous architecture has been widely adopted in the mainstream storage
system. In such systems, load imbalance and scheduler overhead are the
primary factors that slow down the I/O performance. In this paper, we
propose an effective file scheduling strategy HSPP that includes statistic
based file classification, partition with erasure coding and adaptive data
placement to optimize load balance and read latency on the distributed
heterogeneous storage system. The experiment results show that HSPP
is superior than existing strategies in terms of load balance, read latency,
and scheduling overhead.

Keywords: Data partition and placement · Erasure coding ·
Heterogeneous storage

1 Introduction

Large-scale storage and distributed file system have become the foundation of
the IT industry, such as Alibaba Network Attached Storage [1] and Google File
System [15]. In recent years, in-memory storage systems [2,5,6,10] have gradually
replaced traditional disk-based systems [3,11] for better I/O performance. The
need for large scale storage in production system conflicts with the high price
and volatility of memory, which leads to the design of heterogeneous storage
system. Optimizing the file partition and placement in heterogeneous storage
system becomes important to improve the I/O performance.

Many distributed storage systems [2,3,19,22,23] support integrating various
storage devices, where HDFS [3] and Alluxio [2] are wildly deployed systems
that can support storage devices such as memory, SSD and disk. Due to the dif-
ference of storage devices, there are many research works to optimize file place-
ment on distributed heterogeneous storage system to improve overall I/O perfor-
mance [18,30,36,37]. The erasure coding has been applied in distributed storage
systems to achieve the load balance and low latency [21,28,32]. Joshi et al. [21]
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 200–214, 2020.
https://doi.org/10.1007/978-3-030-38961-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_18

HSPP 201

establish a model for the read process in the distributed storage system with era-
sure coding using the (n, k) fork-join queuing model, and demonstrate the mean
latency of the proposed model is tightly bounded. Moreover, studies [32,34]
develop this theory with the tradeoffs among the partition number, network
communication overhead and the system straggler, where Yu et al. [34] observe
the elbow point and apply an approximation method to determine the optimal
partition number.

The file partition and placement strategies mentioned above can effectively
balance the load in the homogeneous storage system. However, in the heteroge-
neous storage system, the load tends to aggregate on nodes with multiple storage
layers, which enlarges the overall access latency. In addition, existing strategies
incur significant scheduling overhead due to the coarse-grained file classification.
Therefore, this paper proposes an effective file partitioning and placement strat-
egy of heterogeneous storage system (named as HSPP), which optimizes load
balance and read latency significantly. In addition, the Reed-Solomon (RS) era-
sure coding is used to resist system straggler under low redundancy overhead.
The experimental results show that the load imbalance factor reduces by more
than 9×, and the mean and tail latency reduces by more than 18% for read
operation with HSPP compared with existing strategies.

Specifically, this paper makes the following contributions:

– We establish a model for the upper bound of mean read latency, and propose
the exponential search algorithm to determine the optimal number of file
partitions. In addition, the erasure coding is used to mitigate the mean and
tail latency under system straggler.

– We propose a new file classification mechanism that place the files at the
optimal storage layer, which significantly reduces the scheduling overhead
and extends the lifespan of SSD.

– We implement the above strategies on Alluxio (named as HSPP) with the
partition vectors. The vectors are generated on Master with the file popularity
and size, the HSPP partition and place files adaptively to reduce both the
scheduling and redundancy overhead.

The rest of this paper is organized as follows. Section 2 presents the back-
ground and research motivation. Section 3 describes the file partition and place-
ment mechanism of HSPP. Section 4 presents the implementation details of
HSPP. Section 5 compares HSPP with existing file partition and placement
strategies on the distributed heterogeneous storage system. Section 6 presents
the related works. We conclude this paper in Sect. 7.

2 Background and Motivation

In this section, we briefly introduce the storage heterogeneity and high skewed
popularity and size distribution observed of the production load, which leads to
the motivation of this paper.

202 J. Sun et al.

2.1 Heterogeneity in Distributed Storage System

With the emergence of high-speed network equipment and the advances of net-
work fabrics, the gap between network bandwidth and storage bandwidth is
rapidly shrinking [14,16], and the performance bottleneck of distributed storage
systems is shifting from network to storage I/O. To meet high-speed and massive
files write and read, amounts of distributed storage systems apply heterogeneous
architecture, consists of storage devices with different bandwidth and capacity.

Some distributed storage systems such as HDFS [3], OcotpusFS [22] and
Alluxio [2] currently support the configuration and management of memory,
SSD and disk. Table 1 summarizes the characteristics of the storage devices,
where the write and read throughput is evaluation on Alluxio. It should be
noted that the lifespan of SSD is much shorter than memory and disk, because
the Program/Erase Cycle of NAND Flash is approximately 3,000 times [33].

Table 1. The characteristics of different storage devices.

Tier Write throughput
(MB/s)

Read throughput
(MB/s)

Price each GB (USD) P/E Cycle

MEM 750 1100 4.500 –

SSD 600 750 0.310 3000

HDD 450 550 0.003 –

Existing studies [19,23,30,37] optimized the file placement with various stor-
age devices based on cache eviction algorithms [20,25,26,31], by placing hot
files on high throughput storage to improve overall I/O. For the limited P/E
cycles of SSD, the LARC algorithm [18] is improved by ARC, which can reduce
the SSD traffic. However, this kind of approaches that ignores load statistical
characteristics can’t describe the file popularity as a whole, resulting in frequent
data migration between storage layers. The high scheduling overhead drags the
overall throughput, which is verified in Sect. 5.

2.2 Load Imbalance

Load imbalance and system straggler are common in distributed storage systems.
Main factors of the load imbalance is the high skewed popularity and the high
imbalanced network traffic [9,28,34].

File popularity in production load generally subjects to the Zipf distribu-
tion [28,29]. The majority of file access is contributed by a handful of hot files.
Figure 1 presents The distribution of file popularity and size in Yahoo! cluster [7].
Most files (77.64%) are cold with less than 10 access, while 2.29% of files are very
hot with more than 100 access. We also found a positive correlation between file
access popularity and size. The existing in-memory [28,34] and disk-based [9,17]
solutions cannot adequately balance high skewed load. HSPP partitions the file

HSPP 203

with optimal number of (n, k) fork-join queuing model, and decide placement
node with the weighted random algorithm, which effectively balancing the load
of distributed heterogeneous storage system.

2.3 The (n,k) Fork-Join Queuing Model

Suppose that the file is divided into k partitions, and r redundant partitions
are generated by erasure coding, then n = k + r data partitions are placed on
separate nodes. The file request can be modeled as the (n ,k) fork-join queuing
system, and is completed when any k out of n tasks are served.

Assuming that the file read request as a Poisson process with rate λ, so the
service delay of each node is exponentially distributed with mean μ [12,21,32].
Since each node holds 1

k of the file, so the service delay is exponentially dis-
tributed with mean μ

k . The queue of each node can be modeled as an indepen-
dent M/M/1 queue with the exponentially distributed service delay. But in fact,
it is hard to describe the service delay in a single model, so the queue should
be extend to the M/G/1 model. Studies [21,32] demonstrates that the mean
latency upper bound of the (n, k) fork-join queuing model could tightly bound
the practical latency.

(a) Distribution of file popularity (b) Distribution of file size

Fig. 1. The distribution of file popularity and size observed in Yahoo! cluster trace.

2.4 Motivation

Although there are research works on file placement strategies to improve I/O
performance, the existing strategies fail to utilize the unique characteristics of
heterogeneous storage system, and thus lead to severe load imbalance and high
read latency when directly applied. The above shortcomings motivate our work
to propose a new strategy to partition and place the files effectively in hetero-
geneous storage system. In addition, when the file popularity and size changes,
the proposed strategy can adaptively adjust the placement horizontally and ver-
tically to improve load balance and reduce read latency.

204 J. Sun et al.

3 The Methodology of HSPP

The HSPP includes the methods for data partitioning, data classification and
data placement, that together effectively address the issues of high read latency,
load imbalance and poor utilization of top-layer storage in distributed heteroge-
neous storage.

3.1 Partition with Erasure Coding

HSPP partitions the file to k evenly, and calls Intel ISA-L library [4] to generate
r redundant partitions by RS erasure encoding, and then place the n = k + r
data partitions on separate nodes with the weighted random algorithm. The file
read request forks n sub-requests, and any k out of n sub-requests are served,
the file can be decoded to retrieve.

Upper Bound of Mean Latency. The service delay of file i in server s is
represented by Di,s, which consists of queuing delay and transfer delay. In the
(n, k) fork-join model, if any k data blocks arrive, the read request for file i
completes, so the service delay of file i is determined by the delay of the kth

arriving partition, so the mean service delay Tn,k of file i is described as Eq. 1.
The (k, k) fork-join model is a particular state of the (n, k) system, since no
redundant partitions, in which the read request for the file completes with all
partitions arriving. Therefore, Tk,k is the upper bound of Tn,k [32,34].

Tn,k = E(Di,s(k)) ≤ Tk,k = E(maxDi,s) (1)

Xiang et al. [32] prove that on (k, k) fork-join queuing model, there is a tight
upper bound of mean read latency by solving a convex optimization problem, as
shown in Eq. 2.

T ≤ ̂T = min
z∈R

{

z +
∑

s:Cs

1
2
(E(Di,s) − z) +

∑

s:Cs

1
2

√

(E(Di,s) − z)2 + V ar(Di,s)

}

(2)
Where z is an auxiliary variable introduced to make upper bound tighter, Cs

denotes the set of servers on which the file i is placed. It should be noted that the
Eq. 2 is not a closed form and is solved as a convex optimization problem with
the expectation and variance of Di,s. With the Pollaczek-Khinchin transform,
the expectations and variances can be calculated as Eqs. 3 and 4.

E(Di,s) =
Si

kiBt
+

LsΓ
2
s

2(1 − ρs)2
(3)

V ar(Di,s) =
(

Si

kiBt

)2

+
LsΓ

2
s

3(1 − ρs)
+

Ls(Γ 2
s)2

2(1 − ρs)2
(4)

Where Γ 2
s and Γ 3

s indicate the second and third moment of the service delay,
which is exponentially distributed, so Γ 2

s and Γ 3
s are derived as Eqs. 5 and 6,

HSPP 205

where t is the stored layer, ρs indicates the request intensity, Ls is the load of
server s. μs is the mean transfer delay of server s as shown in Eq. 7, pi is the
popularity of file i as described in Sect. 3.3.

Γ 2
s =

∑

t∈Ts

∑

i∈Cs,t

2
pi

Ls

(

Si

kiBt

)2

(5)

Γ 3
s =

∑

t∈Ts

∑

i∈Cs,t

6
pi

Ls

(

Si

kiBt

)3

(6)

μs =
∑

t∈Ts

∑

i∈Cs,t

piSi

kiBt
(7)

Determine the Optimal K and R. To verify the mean read latency upper
model, we deployed a distributed system with 20 heterogeneous storage nodes
and wrote in 100k 10 MB files. The detailed setting of our experiment is given in
Sect. 5. As shown in Fig. 2, we compare the upper bound and the measured mean
read latency within three types of storage devices. When the partition number k
is small, the upper bound of memory and SSD could strictly limit the evaluated
read latency. Since the addressing delay of HDD is not included in upper bound
model due to the high unpredictability, the bounding effect is little weak.

Fig. 2. Comparison of the theoretical upper bound and the measured mean read latency
on heterogeneous storage system.

Although the upper bound decrease as the partition increases, in fact, the
mean read latency will increase when partition number is large, because of excess
network overhead and straggler effect, such as amount of TCP connections and
the incast effect. HSPP resort to an exponential search algorithm to find the
optimal k on the model. Initially, the k is setting to N

5 , where N is the number
of storage nodes. And then inflates k by 1.5× each iteration until the latency

206 J. Sun et al.

improvement is below 5%, that means the extra network overhead offsets the
latency gain. The optimal partition number k is negatively related to storage
throughput, that is, the optimal partition number k in memory is smaller than
SSD and HDD. And it should be noted that the computational overhead is so
limited, it takes only 5.54 s to determine optimal k for 100k files in our system.

To alleviate the severe impact of straggler on tail latency, HSPP applys redun-
dant partitions and extra read threads. Since redundant partitions introduce
storage overhead, the optimal number of redundant partitions requires a trade-
off between redundant overhead of storage and read latency. We designed a set of
experiments to observe the impact of redundant partition number r on the mean
and tail read latency with system straggler of various frequency. The straggler
is generated with given frequency and in Microsoft Bing cluster pattern [8], and
k is set to 10.

As shown in Fig. 3, the evaluation was divided into three groups, and the
straggler frequency was 0, 0.05 and 0.1 (very intensive). We found that redun-
dant partitions can reduce the mean and tail latency. Even in the group without
straggler, the tail latency decreases obviously. In the group with intensive strag-
gler, the redundant partitions are most effective. These confirm that the redun-
dant partitions could highly improve the system anti-straggler ability. However,
redundant partitions introduce excess storage and network overhead, which will
drag system performance. We found that the mean and tail latency is optimal
when r is 3, so HSPP sets the redundancy ratio to 30%. Also, we proposed a
redundant migration mechanism to utilize the storage heterogeneity, which ver-
tically migrates the redundant partitions to the lower layer to reduce the upper
overhead, especially in improving the memory usage. The mechanism will be
introduced in Sect. 4.

(a) Mean Latency (b) Tail Latency (95th percentile)

Fig. 3. The Mean (a) and tail (b) read latency under different frequency of straggler
occurrence.

HSPP 207

3.2 Statistic Based Data Classification

Analysis of read trace of Google [29] and Yahoo! [7], we found that the popu-
larity of hot files subjects the heavy-tailed distribution over time. For example,
the popularity of hot file gradually decrease over a long span, there is still a
considerable amount of access in the span. So this type of files can be classified
as the warm files. And we regard the files with power-low distributed popularity
as the cold files.

HSPP describes the file popularity with exponential decay algorithm, which
could effectively fit the re-access probability of files [13]. As shown in Eq. 8, n is
the count of file access, and ti represents the time of ith access. For long-running
loads, HSPP needs to describe the popularity of the file on a large time scale, so
the parameter a is set to 10−6 in this paper.

P (t) =
n

∑

i=1

e−a(t−ti) (8)

The exponential decay algorithm is recursive that popularity can be updated
only with the time interval. If the file is not accessed within the time interval Δt,
the new popularity at time t +Δt is calculated as Eq. 9. If it is accessed at time
t +Δt, the new popularity is calculated as Eq. 10. The computational overhead
for updating file popularity is so limited that takes only 90 ms to update the
popularity of 100K files in our system.

P (t + Δt) = P (t) × e−aΔt (9)

P (t + Δt) = P (t) × e−aΔt + 1 (10)

HSPP periodically samples the file popularity and finds the 90 and 60 quan-
tiles as the Hot and Warm thresholds, and then classify all the files with the
thresholds as shown in Table 2. The files are divide to Hot, Warm and Cold, and
writing in memory, SSD, and HDD preferentially. If the optimal layer of Alluxio
worker does not have enough space, the data blocks are written to the lower
layer. The classification method based on statistical characteristics reduce the
scheduling overhead and traffic into SSD effectively.

Table 2. Data classification threshold and optimal storage layer.

Type Threshold Optimal layer

Hot p>p90 MEM

Warm p90>p>p60 SSD

Cold p<p60 HDD

208 J. Sun et al.

3.3 Adaptive Data Placement

This subsection presents the design detail of data placement in the distributed
heterogeneous storage system.

HSPP utilize the partition vector <K, R, MEM, SSD, HDD> to maintain
the file storage state, K and R represent the number of source partitions and
redundant partitions respectively. MEM, SSD, and HDD represent number of
partitions stored in memory, SSD, and Disk. The HSPP-Master periodically
updates the partition vector of files, and the HSPP-Client responds to vari-
ous update requests discriminatively. For example, the partition vector of file i
changes from <3, 1, 4, 0, 0> to <3, 1, 0,4,0>, only needs to migrate all the file
partitions from memory to SSD. If a node has no SSD layer, the partition will
be migrated to other node. If the number of file partitions has changed, such as
vector changing from <3, 1, 4, 0, 0> to <4, 1, 5, 0, 0>, the HSPP-Client should
rewrite the file.

The storage node adjusts the weights depend on its load. The load L of server
s is as shown in Eq. 11, where Ts is the layer set of server s, Cs,t is the set of files
which has place a partition at layer t of server s, and pi represents the popularity
of file i, and the file size is Si. The weight of the node is as shown in Eq. 12. The
lower the load, the higher the weight of that node, so the weight can be adjusted.
Compared with the random placement algorithm adopted by EC-Cache [28] and
Selective Partition [34], the load balance is significantly improved with HSPP.
The experiment in Sect. 5 verifies that.

Ls =
∑

t∈Ts

∑

i∈Cs,t

piSi

ki
(11)

weight =
1

Ls

∑

1
Ls

(12)

4 The Implementation of HSPP

We have implemented HSPP atop the Alluxio with HSPP-Master and HSPP-
Client. The overview of system architecture is shown in Fig. 4. The HSPP-Master
is responsible for metadata maintaining and management, including file popu-
larity and storage status, and periodically updating file popularity and partition
vectors. The HSPP-Client partitions and erasure encodes files according to the
partition vector, and then place the partitions on separate nodes. The erasure
coding is implemented by Intel ISA-L library [4]. The HSPP-Client periodically
notifies the HSPP-Master of the file retrieve log. In particular, HSPP further
reduce the read latency with the Dual-Way Service mechanism, and utilize the
index K-Hit Ratio to adaptively migrate the redundant partitions vertically to
spare upper layer storage.

HSPP 209

HSPP-Client

Split

Encode

Write

Node 1

MEM

SSD

HDD

Node 2

MEM

SSD

HDD

Node 3

MEM

HDD

MEM

SSD
...

Node N

MEM

HDD

Decode Receive

Node 4

Receive

Retrieve
Dual-Way Service

Read

HSPP-Master

Heterogeneous
Storage

Monitor

Storage Status

File Popularity

Status

Retrieve Log

<K,R,M,S,H>

MEM

SSD

Partition Vector

Fig. 4. The overview of HSPP implementation.

4.1 Dual-Way Service

Although the ISA-L library provides a highly optimized implementation of RS
decoding, the decoding overhead is still not trivial. We found that the decoding
overhead is positively correlated with file size as shown in Fig. 5. For example,
retrieving a 300 MB file results in 800 ms overhead, and the missing source
partitions may arrive during the decoding window. Therefore, we design a dual-
way service mechanism to shorten the service delay further. As shown in Fig. 4,
the erasure decoding is started with first k partitions, and forking a new thread to
receive the missing source partitions. If all the source partitions arrive, HSPP-
Client will stop decoding and complete the file request. Compared with late
binding, dual-way service mechanism could utilize the decoding window to reduce
file read latency.

4.2 K-Hit Ratio

We consider the file retrieve with source partitions as a K-Hit event, and the K-
Hit Ratio indicates the necessity of redundant partitions. In HSPP, if the K-Hit
ratio reaches 80%, the redundant block will be migrated to the lower storage to
release upper space. For instance, the partition vector <10, 3, 13, 0, 0> changes
to <10, 3, 12, 1, 0>, it means that move a redundant partition from memory to
SSD. This approach can reduce the redundancy overhead of the upper storage
in the case of sparse straggler.

5 Evaluation

5.1 Experimental Setup

We evaluate on a distributed heterogeneous storage system with 20 nodes, which
can be divided into four groups based on the hardware configurations in Table 3.
Additional 5 nodes are used as the clients to continuously submit read requests
following Poisson distribution. The load is synthesized based on the file popu-
larity and size distribution of the Yahoo! cluster [27].

210 J. Sun et al.

Table 3. The hardware configuration of the evaluation system.

CPU MEM layer
(GB)

SSD layer
(GB)

HDD layer
(GB)

nodes

Intel Xeon Phi 7210 20 50 100 4

Intel Xeon E5-2650 5 20 100 7

Intel Xeon E5620 10 0 200 5

Intel Xeon E5620 5 0 100 4

We compare HSPP with three widely used file partition and placement strate-
gies on distributed storage system:

Selective Replication: to keep up with the 30% redundancy overhead in HSPP,
we generate three replicas for the top 10% popular files and use the consistent
hashing algorithm to determine the file placement [24].

EC-Cache: to provide a fair comparison, we adopt the (13, 10) erasure coding
scheme and determine the partition placement with the algorithm [28]. The file
read is served with the late binding mechanism, which means, when any 10
partitions have arrived, it starts decoding and ignores the rest partitions.

Selective Partition: use the same latency upper bound model and the search
algorithm for the optimal number of file partitions as HSPP, but without redun-
dant partitions. In addition, the file partition placement is based on the algorithm
[34].

5.2 Load Balance

We use the imbalance factor to indicate the level of load imbalance in a dis-
tributed storage system. As shown in Eq. 13, the smaller the ξ is, the more
balanced the system load is. As shown in Fig. 6, compared to the other three
strategies, HSPP achieves the optimal load balance. Specifically, the ξ of HSPP
is 0.023, which is 35×, 11×, and 9× better than selective replication (0.822),
EC-Cache (0.263) and selective partition (0.219) respectively. Due to copy and
distribute the replications of hot files that easily generates hotspots in the sys-
tem, the load under Selective Replication is most unbalanced.

EC-Cache and Selective Partition show good performance in the homoge-
neous storage system with random placement algorithm. However, in heteroge-
neous storage system, the load aggregates on nodes with multiple storage layers.
Specifically, the load of EC-Cache is higher than Selective Partition, therefore
the load imbalance is more severe. Based on the optimal file partition, HSPP
applies the weighted random algorithm to determine placement, thus minimizing
the load imbalance in heterogeneous storage system.

ξ =
Lmax − Lmin

Lavg
(13)

HSPP 211

Fig. 5. The correlation between decod-
ing window and file size.

Fig. 6. The load distribution under
four different strategies.

5.3 Mean and Tail Latency

We evaluate the read mean and tail latency under different strategies by setting
the frequency of straggler to 0.05, which represents the real situation on produc-
tion cluster. As shown in Fig. 7, the mean and tail latency of HSPP is the lowest
among all strategies. The mean latency of Selective Replication is higher than
HSPP and EC-Cache. This is because the delay of file transfer is much higher
than file partitioning. In addition, the load with highly skewed file popularity
and size causes hotspots, which leads to long service queue and increases the
read latency, especially the tail latency. Selective Partition achieves the highest
mean latency due to the severe influence of straggler. Once a node becomes the
straggler, the read latency of files with partition stored on that node increases
significantly. Compared to EC-Cache, the mean and tail latency of HSPP reduces
by 18% both. This is because the dual-way service mechanism can reduce the
read latency by utilizing the decoding window. In addition, the adaptive redun-
dant partitions can reduce the storage overhead so that the memory layer can
store 1.3× more files than EC-Cache.

5.4 Scheduling Overhead

The scheduling overhead of the heterogeneous storage systems mainly comes
from the migration of files between different storage layers. We define the
amount of data written at all storage layers as scheduling overhead, and com-
pare HSPP with other scheduling strategies, including LRU [31], LRFU (0.25),
LRFU (0.025) [25] and ARC [26]. As shown in Fig. 8, the scheduling overhead
of other strategies is 1.5× to 2.5× higher than HSPP. In particular, the SSD
lifespan is strongly related to the amount of data written. Under the same load,
the amount of data written at SSD under HSPP is much smaller than other
strategies. This is because the exponential decay algorithm used in HSPP can
accurately represent the file popularity and thus place the file at optimal storage
layer correspondingly.

212 J. Sun et al.

Fig. 7. The mean and tail latency of
file read under four different strategies.

Fig. 8. The scheduling overhead under
four different strategies.

6 Related Work

File replication and partition can achieve load balance and better utilization of
the I/O bandwidth of distributed storage. Replication strategies applied on disk-
based storage systems typically use consistent hashing [24] or self-tuning mech-
anism [9,17,27,35] to place replications on the system, such as Selective repli-
cation [9,17]. However, these methods introduce high storage overhead, and the
load becomes unbalanced when the file popularity are highly skewed. Partition
strategies are commonly used on homogeneous storage systems, such as Selective
Partition [34] and EC-Cache [28], which partitions files in the non-redundant and
low-redundant manner respectively, and then randomly distributes the partitions
in the system for load balance. However, in the case of intensive straggler, the
read latency of the above strategies increases significantly. Moreover, to provide
high throughput I/O, distributed storage systems generally apply heterogeneous
architecture such as HDFS [3], Alluxio [2] and OctopusFS [22], which drives the
study of data schedule strategies [18,19,23,30,37]. Our work distinguishes from
existing works by proposing an effective file partition and placement strategy for
the heterogeneous storage system.

7 Conclusion

This paper proposes an effective file partition and placement strategy HSPP for
heterogeneous storage system. In HSPP, we establish an upper bound model
for the mean read latency and determine the optimal number of file partitions
based on the exponential search algorithm. To mitigate the system straggler, the
erasure coding is used to generate the redundant partitions. Moreover, a new file
classification mechanism is proposed to enable the file placement at the optimal
layer of the system. The experiment results show that HSPP is more effective to
improve load balance and reduce read latency compared to existing strategies.

HSPP 213

Acknowledgement. This work is supported by National Key Research and Develop-
ment Program of China (Grant No. 2016YFB1000304) and National Natural Science
Foundation of China (Grant No. 61502019).

References

1. Alibaba network attached storage. https://www.alibabacloud.com/product/nas
2. Alluxio. http://alluxio.org/
3. Hdfs. https://hadoop.apache.org
4. Intel storage acceleration library (open source version). https://goo.gl/zkVl4N
5. Memcached. http://www.memcached.org
6. Redis. http://www.redis.io
7. Yahoo! webscope dataset. https://webscope.sandbox.yahoo.com
8. Ananthanarayanan, G., Kandula, S., Greenberg, A.G., Stoica, I., Harris, E.: Rein-

ing in the outliers in map-reduce clusters using mantri. In: Usenix Conference on
Operating Systems Design & Implementation (2010)

9. Ananthanarayanan, G., et al.: Scarlett: coping with skewed content popularity in
mapreduce clusters. In: Eurosys 2011, pp. 287–300 (2011)

10. Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: ACM
SIGMOD International Conference on Management of Data (2015)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

12. Fidler, M., Jiang, Y.: Non-asymptotic delay bounds for (k, l) fork-join systems and
multi-stage fork-join networks (2015)

13. Floratou, A., Megiddo, N., Potti, N., Özcan, F., Kale, U., Schmitz-Hermes, J.:
Tech. rep. IBM (2015)

14. Gao, P.X., et al.: Network requirements for resource disaggregation. In: Usenix
Conference on Operating Systems Design & Implementation (2016)

15. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43
(2003)

16. Han, S., Egi, N., Panda, A., Ratnasamy, S., Shi, G., Shenker, S.: Network sup-
port for resource disaggregation in next-generation datacenters. In: Twelfth ACM
Workshop on Hot Topics in Networks (2013)

17. Hong, Y.J., Thottethodi, M.: Understanding and mitigating the impact of load
imbalance in the memory caching tier. In: Symposium on Cloud Computing (2013)

18. Huang, S., Wei, Q., Chen, J., Chen, C., Feng, D.: Improving flash-based disk cache
with lazy adaptive replacement. In: Mass Storage Systems & Technologies (2013)

19. Islam, N.S., Lu, X., Wasi-Ur-Rahman, M., Shankar, D., Panda, D.K.: Triple-H: a
hybrid approach to accelerate HDFS on HPC clusters with heterogeneous storage
architecture. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp. 101–110 (2015)

20. Jiang, S., Zhang, X.: LIRS: an efficient low inter-reference recency set replacement
policy to improve buffer cache performance. ACM SIGMETRICS Perform. Eval.
Rev. 30(1), 31–42 (2002)

21. Joshi, G., Liu, Y., Soljanin, E.: On the delay-storage trade-off in content download
from coded distributed storage systems. IEEE J. Sel. Areas Commun. 32(5), 989–
997 (2014)

https://www.alibabacloud.com/product/nas
http://alluxio.org/
https://hadoop.apache.org
https://goo.gl/zkVl4N
http://www.memcached.org
http://www.redis.io
https://webscope.sandbox.yahoo.com

214 J. Sun et al.

22. Kakoulli, E., Herodotou, H.: OctopusFS: a distributed file system with tiered stor-
age management. In: Proceedings of the 2017 ACM International Conference on
Management of Data, pp. 65–78. ACM (2017)

23. Krish, K.R., Anwar, A., Butt, A.R.: hatS: a heterogeneity-aware tiered storage
for hadoop. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp. 502–511 (2014)

24. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44, 35–40 (2010)

25. Lee, D., et al.: LRFU: a spectrum of policies that subsumes the least recently used
and least frequently used policies. IEEE Trans. Comput. 50(12), 1352–1361 (2001)

26. Megiddo, N., Modha, D.S.: ARC: a self-tuning, low overhead replacement cache.
In: Usenix Conference on File & Storage Technologies (2003)

27. Paiva, J., Ruivo, P., Romano, P., Rodrigues, L.: AUTOPLACER: scalable self-
tuning data placement in distributed key-value stores. ACM Trans. Auton. Adapt.
Syst. 9(4), 19 (2014)

28. Rashmi, K.V., Chowdhury, M., Kosaian, J., Stoica, I., Ramchandran, K.: EC-
Cache: load-balanced, low-latency cluster caching with online erasure coding. In:
Usenix Conference on Operating Systems Design & Implementation (2016)

29. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: ACM Symposium on
Cloud Computing (2012)

30. Shu, P., Gu, R., Dong, Q., Yuan, C., Huang, Y.: Accelerating big data appli-
cations on tiered storage system with various eviction policies. In: IEEE Trust-
com/BigDataSE/ISPA (2016)

31. Weng, M., Shang, Y., Tian, Y.: The design and implementation of LRU-based web
cache. In: International Conference on Communications and NETWORKING in
China, pp. 400–404 (2013)

32. Xiang, Y., Lan, T., Aggarwal, V., Chen, Y.F.R.: Joint latency and cost optimiza-
tion for erasurecoded data center storage. ACM SIGMETRICS Perform. Eval. Rev.
42(2), 3–14 (2014)

33. Yu, C., Luo, Y., Haratsch, E.F., Mai, K., Mutlu, O.: Data retention in MLC NAND
flash memory: characterization, optimization, and recovery. In: IEEE International
Symposium on High Performance Computer Architecture (2015)

34. Yu, Y., Huang, R., Wang, W., Zhang, J., Letaief, K.B.: SP-cache: load-balanced,
redundancy-free cluster caching with selective partition. In: SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis
(2018)

35. Zaman, S., Grosu, D.: A distributed algorithm for the replica placement problem.
IEEE Trans. Parallel Distrib. Syst. 22, 1455–1468 (2011)

36. Zhou, J., Xie, W., Dai, D., Chen, Y.: Pattern-directed replication scheme for hetero-
geneous object-based storage. In: IEEE/ACM International Symposium on Cluster
(2017)

37. Zhou, W., Feng, D., Tan, Z., Zheng, Y.: PAHDFS: preference-aware HDFS for
hybrid storage. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP
2015. LNCS. Part II, vol. 9529, pp. 3–17. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-27122-4 1

https://doi.org/10.1007/978-3-319-27122-4_1
https://doi.org/10.1007/978-3-319-27122-4_1

Adaptive Clustering for Outlier
Identification in High-Dimensional Data

Srikanth Thudumu1(B), Philip Branch1, Jiong Jin1, and Jugdutt Jack Singh2

1 Swinburne University of Technology, Hawthorn, VIC 3122, Australia
{sthudumu,pbranch,jiongjin}@swin.edu.au

2 State Government of Sarawak, Kuching, Malaysia
jack.singh@sarawak.gov.my

Abstract. High-dimensional data brings new challenges and opportu-
nities for domains such as clinical, scientific and industry data. How-
ever, the curse of dimensionality that comes with the increased dimen-
sions causes outlier identification extremely difficult because of the scat-
tering of data points. Furthermore, clustering in high-dimensional data
is challenging due to the intervention of irrelevant dimensions where a
dimension may be relevant for some clusters and irrelevant for others. To
address the curse of dimensionality in outlier identification, this paper
presents a novel technique that generates candidate subspaces from the
high-dimensional space and refines the identification of potential outliers
from each subspace using a novel iterative adaptive clustering approach.
Our experimental results show that the technique is effective.

Keywords: Outlier detection · High-dimensionality problem ·
Adaptive clustering · Big data

1 Introduction

Large amounts of data and data sources have become ubiquitous in recent years
and become available for analysis in many application domains. This availability
is commonly referred to as “big data” comprising large-volume, heterogeneous,
complex, unstructured data sets with multiple, autonomous sources growing
beyond the ability of available tools. As Gartner [8] noted, big data demands
cost-effective novel data analytics for decision-making that infer useful insights.
In recent years, the core challenges of big data have been widely established.
These are contained within the five Vs of big data volume, velocity, variety,
veracity and value. However, such a definition ignores another important aspect:
“dimensionality”, that plays a crucial role in real-world data analysis. Research
in the data analytics community has mostly been concerned with “volume”,
whereas “dimensionality” of big data has received lesser attention [19].

Dimensionality refers to the number of features, attributes or variables within
the data. High-dimensionality refers to data sets that have a large number of

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 215–228, 2020.
https://doi.org/10.1007/978-3-030-38961-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_19

216 S. Thudumu et al.

independent variables, components, features, or attributes within the data avail-
able for analysis. Data with high-dimensionality has become increasingly perva-
sive, and has created new analytical problems and opportunities simultaneously.
The curse of dimensionality often challenges our intuition based on two and
three dimensions [3]. Anomaly detection in high-dimensional data sets is com-
putationally demanding and there is a need for more sophisticated approaches
that are currently available. An important issue in big data is outlier or anomaly
detection, outliers represent fraudulent activities or other anomalous events that
are subject to our interest. The “curse of dimensionality”, may negatively affect
outlier detection techniques as the degree of data abnormality in fault-relevant
dimensions can be concealed or masked by unrelated attributes. When dimen-
sionality increases, the data set becomes sparse, and the conventional methods
such as distance based, proximity based, density based and nearest neighbour
becomes far less effective [6]. The average distance between a random sample of
data points in a high-dimensional space is much larger than the typical distance
between one point and the mean of the same sample in low-dimensional space.

While high-dimensionality is one measure of high volume big data, much
recent work has focused on finding anomalies using methods that can only draw
implicit assumptions from relatively low dimensional data [1]. Furthermore, when
the available dimensions of the data are not relevant to the specific test point,
the analysis quality may not be credible as the underlying measurements are
affected by irrelevant dimensions. This result in a weak discriminating situation
where all data points are situated in approximately evenly sparse regions of full
dimensional space. However, computing the similarity of one data point to other
data point is essential in the outlier detection process.

Clustering in high-dimensional data space is a difficult task due to the inter-
vention of multiple dimensions. A dimension may be relevant for some specific
clusters, but unrelated to others. However, clustering is an indispensable step
for data mining and knowledge discovery; characterised by unsupervised learn-
ing that seeks to detect homogeneous groups of objects based on the values of
their attributes or dimensions and grouping them based on similarity, to reveal
the underlying structure of data. Conventional methods of clustering attempt to
identify clusters constituted of similar samples based on some statistical signifi-
cance such as distance measurement. The increase in dimensions facilitates simi-
lar distance points originated from sparsity triggered by irrelevant dimensions or
other noise, aiding to difficulty in identifying accurate and reliable clusters with
high quality. The existence of irrelevant attributes or noise in the subspaces crit-
ically impacts the formation of clusters. As a result, different subsets of features
may be relevant for different clusters, in addition to which diverse correlations
among attributes may tend to determine different clusters. Consequently, the
curse of dimensionality has become the main challenge for data clustering in
high dimensional data sets [7]. This challenge of the clustering process in high
dimensional data makes a global dimensionality reduction process inappropriate
to identify a subspace that encompasses all the clusters. Nevertheless, in high-

Adaptive Clustering in High-Dimensional Data 217

dimensional space, meaningful clusters can be found by projecting data onto
certain lower-dimensional feature subspaces and manifolds [9,10,12,17].

In this paper we propose a novel method of clustering that can identify pos-
sible outliers in the candidate subspaces of high-dimensional data. To effectively
detect outliers in high-dimensional space, we integrate a technique based on our
previous work [16] that explores locally relevant and low-dimensional subspaces
using Pearson Correlation Coefficient (PCC) and Principal Component Analysis
(PCA).

The structure of the paper is as follows: Sect. 2 presents the related work.
Section 3 discusses the proposed algorithm. Section 4 discusses the proposed
adaptive clustering framework for outlier identification in high-dimensional data.
Section 5 presents the experimental results, followed by the conclusion and future
work.

2 Related Work

The curse of dimensionality poses significant challenges for traditional clustering
approaches, both in terms of efficiency and effectiveness. Tomašev et al. [18] have
proved that hubness-based clustering algorithms perform well, whereas standard
clustering methods fail due to the curse of dimensionality. Hubness is the ten-
dency of data points to occur frequently to k-nearest-neighbor lists of other
data points in a high-dimensional space. To address the challenges of cluster-
ing technique in high-dimensional data, Ertoz et al. [6] presented an algorithm
that can handle multiple dimensions and varying densities, which automatically
determines the number of clusters. The algorithm is more focused on identifying
clusters in the presence of noises or outliers but not particularly on outlier detec-
tion. Deriving meaningful clusters from the data set is an important step because
outliers are hidden due to the sparsity in high-dimensional space. Agrawal et al.
[2] presented a clustering algorithm called CLIQUE that accurately finds clusters
in large high-dimensional data sets. Schubert et al. [15] presented a framework
for clustering by extracting meaningful clusters from uncertain data that visual-
izes and understand the impact of uncertainty by selecting clustering approaches
with less variability.

Furthermore, subspace clustering is another technique that is proposed to
address the limitations of traditional clustering, which aims to find clusters in
all subspaces, but, it is not effective or scalable in case of increasing dimen-
sionality. Liu et al. [13] proposed identifying subspace structures from corrupted
data by an objective function that finds the lowest rank representation among
all the candidates and can represent the data samples as linear combinations.
Elhamifar and Vidal [4] proposed a method for clustering based on sparse rep-
resentation from multiple low-dimensional subspaces. They have also proposed
sparse subspace clustering algorithm [5] to cluster data points that fall in a union
of low-dimensional subspaces. Zimek et al. [20] have discussed some important
aspects of the ‘curse of dimensionality’ in detail by surveying specialized algo-
rithms for outlier detection. Many researchers addressed important issues but

218 S. Thudumu et al.

the key issue of computationally feasible algorithms for anomaly detection in
high dimensional space is still largely open. This paper attempts such an algo-
rithm where outliers are derived from low-dimensional subspaces using a novel
iterative clustering technique.

3 Proposed Algorithm

The objective of the proposed algorithm is the identification of outliers from
the resulting candidate subspaces in the high-dimensional data. Details of elici-
tation of candidate subspaces are presented in [16]. However, we have included
the approach in Algorithm 1 from steps for discovering candidate subspaces in
high-dimensional data. The contribution of this paper is the technique based on
adaptive clustering approach in the identification of fine-grained outliers from
the candidate subspaces of high-dimensional data.

Algorithm 1. Fine-grained Outliers in High-dimensional data:
1: Apply Standardization or Normalization
2: for i = 1 to no. of dimensions do
3: calculate correlation r = n(

∑
ab)−(

∑
a)(

∑
b)√

[n
∑

a2−(
∑

a)2][n
∑

b2−(
∑

b)2]

4: end for
5: Calculate positive correlation to CORR
6: Calculate negative correlation to UNCORR
7: Apply PCA X = W.

∑
.WT on CORR and generate PC1corr and PC2corr

by selecting two highest variances
8: for i = 1 to no. of dimensions in UNCORR do
9: Apply PCA on PC1corr , PC2corr and ith dimension of UNCORR

10: Save to resultant subspaces CSi

11: end for
12: for i = 1 to no. of candidate subspaces in CS do
13: Apply Clustering on each CSi

14: Generate optimal j clusters using Elbow criterion
15: for j = 1 to no. of clusters in each CS do
16: Calculate centroid of each cluster (xc, yc)i
17: while k < threshold do
18: Calculate the distance of centroid and each point in the cluster

Di =
√

(xc − xi)2 + (yc − yi)2

19: Calculate the mean of all the distances
Dmean =

∑
(Di)/N

20: Use Dmean as the equivalent radius to formulate a circle
21: Exclude data points within the circle
22: end while
23: end for
24: end for
25: for i = 1 to no. of candidate subspaces in CS do
26: Append remainder data points
27: end for
28: Calculate the occurrences of data points in each CS

Adaptive Clustering in High-Dimensional Data 219

Algorithm 1 provides a step-by-step approach to the technique. Initially, a
standardization technique is applied as a pre-processing step to rescale the range
of features of input data set if the features of input data consist of large variances
between their ranges. To check the correlation among the dimensions of the
input data, a Pearson Correlation Coefficient (PCC) is applied to measure the
strength of a linear association among the available dimensions. Highly correlated
dimensions are combined to form a correlated subspace, and all the uncorrelated
dimensions to an uncorrelated subspace, respectively. PCC calculates correlation
coefficient of any two dimensions and generates a series of values between +1 to
−1. Therefore the correlation coefficient of every dimension with all the other
available dimensions in the dataset is calculated and summed up resulting in
a final score. If the resultant final correlation score of any dimension is greater
than zero, then that particular dimension belongs to CORR subspace or else it
belongs to UNCORR subspace.

Principal component analysis (PCA) is applied on the correlated subspace
to identifying two highest variances, called principal components, along which
the variation in the data is maximal. The resultant principal components are
iteratively combined with each dimension of uncorrelated subspace to populate
Candidate Subspaces(CS). Every derived candidate subspace is applied with a
K-means clustering technique. To find the optimal number of clusters, Elbow
model is applied [11]. Based on the result, every CS generates the required
number of clusters. In every cluster, a centroid is calculated along with the
mean of the distances of available data points to the centroid which we call an
“Equivalent Radius” (ER). A circle is formulated in the cluster, and the data
points falling within the circle in each cluster are excluded, and the remainder of
data points are carry forwarded to the next stage. A new centroid is calculated
again in the next stage based on the remaining data points; mean of the distances
among each available data points to the new centroid is calculated for a new
ER. Then the data points falling within the circle established on the new ER
are excluded again. The remainder of the data points is carried forward to the
next stage. This process is repeated until the number of data points drops below
a certain threshold. Once the threshold is reached, the data points in each CS
are calculated for the number of occurrences.

4 Adaptive Clustering Framework

This section discusses the proposed framework based on the adaptive cluster-
ing approach. Figure 1 delineates the process of outlier identification from the
candidate subspaces of the high-dimensional data.

4.1 Local Relevancy and Low-Dimensionality

The local relevant subspaces are defined by applying PCC to the data set that
differentiates the correlated and uncorrelated dimensions as given in (1), for
all the available dimensions 1...n in the data set where no two columns are

220 S. Thudumu et al.

equal (a �= b). The resultant correlated dimensions are referred to a correlated
subspace. Each dimension that is in the uncorrelated subspace is referred to a
low-dimension.

ra�=b =
n(

∑
ab) − (

∑
a)(

∑
b)

√
[n

∑
a2 − (

∑
a)2][n

∑
b2 − (

∑
b)2]

(1)

PCA is applied on the subspace of correlated dimensions using eigen decom-
position or singular value decomposition and we call this subspace as locally
relevant subspace.

X = W.
∑

.WT (2)

4.2 Candidate Subspaces

The principal components resulted from the correlated subspace are combined
with each of the low-dimension available from the uncorrelated subspace are
the candidate subspaces of the original data. The intention behind combining
every low-dimension of uncorrelated subspace with the principal components of
the correlated subspace is to reveal the hidden outliers masked by the curse of
dimensionality. Furthermore, data points appearing in more than one CS have
the highest probability of being an anomaly or outlier.

4.3 Adaptive Clustering

A clustering on each CS is applied to exclude the data points falling within
the definition. Section 5 discusses the importance of repetitive application of
this technique and the reason we call as “Adaptive Clustering” on candidate
subspaces of high-dimensional data.

K-Means Clustering. The proposed technique uses a k-means clustering algo-
rithm that flows a simple and easy way to classify a given dataset through a
certain number of clusters (K- clusters) fixed a priori [14].

β =
k∑

i=1

m∑

j=1

(||a(j)
i − cj ||)

2
(3)

Fig. 1. Outlier identification from candidate subspaces

Adaptive Clustering in High-Dimensional Data 221

Optimal Number of Clusters. The number of clusters should match the
data in the CS. An unfitting selection of the number of clusters may undermine
the whole process. The best approach is to use Elbow criterion that interprets
and validates the consistency within cluster analysis to find the optimal number
of clusters [11]. The Elbow model is applied to each CS to deduce the optimal
number of clusters in each CS.

Equivalent Radius (ER). The centroid for each cluster in each CS is com-
puted. Then the centroid is used for estimating the mean of the distances between
each data point within the cluster to its centroid. The resultant mean value is
used to formulate a circle in the cluster. This process is repeated until the total
number of data points in each CS are less than the given threshold.

Di =
√

(xc − xi)2 + (yc − yi)2 (4)

Calculate the mean of all the distances

Dmean =
∑

(Di)/N (5)

Use Dmean as the equivalent radius to formulate a circle.

Data Points Exclusion. The data points inside the circle definition based on
the calculation of ER are excluded, and the data points outside the circle are
carried out to the next stage. A new centroid is calculated based on the new
set of data points and latest ER is used to form another circle. This process of
calculation of the new ER is carried out until a specific condition or threshold is
reached. If the data points are less than the given threshold, the ER before the
given limit is taken into consideration, and the resulting data points from each
CS where the threshold is reached are analysed.

Fine-Grained Outliers. The calculation of the number of occurrences of each
data point in all the CS are calculated based on the final iteration. The more
number of times a particular data point appears, the more likely that data point
is an outlier. This process is referred to as fine-graining of outliers. The next
step is to trace back the fine-grained outliers to its original index.

5 Experimental Evaluation

We used a data set with 19 dimensions and 21000 rows, of which 17 are corre-
lated, and 2 are uncorrelated when analysed with PCC. To verify the effective-
ness of outlier identification, we have purposefully introduced synthetic anoma-
lies into the data. The combination of correlated subspace with every dimension
from uncorrelated subspace with the application of PCA results in two candi-
date subspaces, as seen in Fig. 2. We applied the proposed technique of adaptive
clustering to both candidate subspaces to fine-grain the outliers in each CS.

222 S. Thudumu et al.

(a) CS1 (b) CS2

Fig. 2. Original candidate subspaces

In this section, we present the results of three experiments we have conducted
to explain the effectiveness of the adaptive clustering approach in identifying
outliers. Figure 2a represents the first candidate subspace and Fig. 2b represents
the second candidate subspace.

Table 1. Equivalent radii and the associated data points

Figure Equivalent radius Iterations No. of data points

a ER*1 0 15498

b ER*1.06 0 14951

c ER*3.0 0 2086

d ER*4.0 0 569

e ER*5.0 0 219

5.1 Data Points Exclusion Using a Large ER

Identifying anomalous data points from the candidate subspaces is difficult and
may not reveal real anomalies as there are many data points in each CS as
depicted in Fig. 2. Hence, an efficient technique is required to filter the possible
outliers in each CS. In this experiment, we present a technique that finds outliers
and evaluates the technique’s effectiveness in outlier identification by taking one
candidate subspace CS1 and a large ER, that excludes data points within the
circle definition from every cluster. As mentioned in Sect. 4.3, an ER is computed
from the mean of the distances of data points available within the cluster to
its centroid. The computed ER is used to define a circle, and the data points
within the circle definition are excluded from the CS. The motivation behind the
proposed equivalent radius is to deselect the nearest points as to reveal hidden
outliers.

Adaptive Clustering in High-Dimensional Data 223

(a) 1 ER (b) 1.06 ER

(c) 3.0 ER (d) 4.0 ER

(e) 5.0 ER

Fig. 3. Exclusion of data points using large radii

Table 1 presents the number of remaining data points after the exclusion of
data points from the definition of a circle formed from the respective ER. The
increase in ER leads to a decrease in the number of data points remaining. How-
ever, this approach is not effective when finding the outliers in each cluster of the
CS. Furthermore, the increase in ER caused the circle to grow bigger, excluding
even the possible outliers that may be hidden in the clusters. Figure 3 shows
the exclusion of data points when the ER is increased progressively. Figure 3a
represents the exclusion of data points when the computed mean is taken 1 ER,
however, when we multiply 1 ER to 1.06 (ER*1.06) as in Fig. 3b, 3.0 as in Fig. 3c,
4.0 as in Fig. 3d and 5.0 as in Fig. 3e, the declination of data points or irrele-
vant grouping is observed. To address this issue and to fine-grain the outliers,

224 S. Thudumu et al.

we calculated the ER iteratively, defining a new circle after each exclusion and
presented in the following section.

5.2 Data Points Exclusion with Iterative ER

In the second experiment, we evaluate the behaviour of outlier identification by
iteratively calculating the ER depending on the new set of data points after the
exclusion from the previous circle. The process of computing a new ER that
forms a dependent circle is terminated when the total data points in the CS
becomes lesser than the given threshold of 100 data points.

When the ER is computed to form a circle followed by the exclusion of
data points within the respective circle definition, a centroid is calculated again
based on the new set of data points upon which new ER is calculated, defining
a respective circle area. The process was repeated until the total number of
data points became less than 100. The process was terminated, and the most
recent CS with before the threshold is benchmarked. If the ER is smaller with
the fewer data points or no data points are excluded even with new iterations,
an increase in ER value progressively is needed. Originally, second experiment
has generated many graphs; however, we present the less results that exhibit
the effectiveness of the technique. Table 2 presents the number of data points
and iterations processed, along with the remaining data points within the circle
definition formed by the respective ER. The results show that outliers can be
effectively filtered when the ER is increased progressively and iterated until the
threshold is met. Figure 4 shows the exclusion of data points when the ER is
increased progressively. Figure 4a shows the remainder of 4413 data points when
the computed ER is multiplied with 1.02 (ER*1.02) after 7 iterations, Fig. 4b
shows the remainder of 4304 data points when the ER is increased to ER*1.03
after 7 iterations, we observe a slight decline of data points when there is an
increase in ER. The data points decreased slightly with more iterations, Fig. 4c

Table 2. Iterative ER and the associated data points

Figure Equivalent radius Iterations No. of data points

a ER*1.02 7 4413

b ER*1.03 7 4304

c ER*1.08 8 3895

d ER*1.06 9 3963

e ER*1.05 12 1869

f ER*1.11 18 502

g ER*1.1 21 359

h ER*1.04 22 608

i ER*1.12 23 116

j ER*1.09 36 123

Adaptive Clustering in High-Dimensional Data 225

(a) Iteration 7 with 1.02 ER (b) Iteration 7 with 1.03 ER

(c) Iteration 8 with 1.08 ER (d) Iteration 9 with 1.06 ER

(e) Iteration 12 with 1.05 ER (f) Iteration 18 with 1.11 ER

(g) Iteration 21 with 1.1 ER (h) Iteration 22 with 1.04 ER

(i) Iteration 23 with 1.12 ER (j) Iteration 36 with 1.09 ER

Fig. 4. Exclusion of data points using ER iteration approach

226 S. Thudumu et al.

consists of 3895 data points with 8 iterations, however, Fig. 4d has 3963 data
points with 1.06 ER even after 9 iterations. Hence, the increase in ER filters
out more data points than more iterations. We continued the experimentation
to observe the decline of the grouping of data points, at 12th iteration with
ER*1.05, we observed that there is a slight decline of irrelevant grouping as
observed in Fig. 4e.

We continued observing the data points Fig. 4f with 18 iterations and
ER*1.11, Fig. 4g with 21 iterations and ER*1.1, Fig. 4h with 22 iterations and
ER*1.04, Fig. 4i with 23 iterations and ER*1.12, and Fig. 4j with 36 iterations
and ER*1.09. Finally, when the threshold of less than 100 data points is reached,
the iteration stops and resulting in Fig. 4i with the remainder of 116 data points
and Fig. 4j with 123 data points. When compared the two final CS with the
results generated when using one large ER presented in Sect. 5.1, the iterative
approach of calculating ER outperforms the first experiment with one large ER.

(a) CS1 (b) CS2

Fig. 5. Final candidate subspaces

5.3 Calculation of Occurrences for Fine-Grain Outliers

To identify the synthetically introduced outliers, we integrated a technique for
the occurrence calculation of each data point in the final candidate subspaces.
The more times a particular data point appears in all of the candidate subspaces,
the more likely the data point is an outlier. We call the most appeared data points
fine-grained outliers. To verify the synthetically introduced outliers are in the
final subspace, we traced back each data point to its original index location before
evaluating the occurrence in each CS. As observed in Fig. 5, the final data points
in CS1 (Fig. 5a) and CS2 (Fig. 5b), 90% of synthetically introduced outliers have
appeared in both the candidate subspaces, and 10% of them appeared once.
However, it is to be noted that all the introduced outliers are observed in the
final candidate subspaces.

Adaptive Clustering in High-Dimensional Data 227

6 Conclusion and Future Work

This paper introduces Adaptive Clustering that identifies the outliers from the
candidate subspaces of the high-dimensional data. To reduce the effect caused
by the curse of dimensionality PCC and PCA are integrated to define locally
relevant and low-dimensional subspaces. An equivalent radius in each cluster of
the candidate subspace is calculated based on the mean of the distances between
the centroid and the data points. An iterative application of equivalent radius
is computed and used to exclude data points of no interest. To demonstrate
that iterative calculation of equivalent radius is more effective, we evaluated the
results from both large equivalent radii and iterative calculations of ER and
showed that the iterative approach outperforms the other approach. Finally, the
resultant data points in each candidate subspace are computed for the number
of occurrences. The more times a data point appears, the more likely it is an
outlier. In our future work, we will evaluate the performance and accuracy of
the proposed technique by analysing the trade-off with respect to the volume
and dimensionality to develop a big data framework.

References

1. Aggarwal, C.C., Philip, S.Y.: An effective and efficient algorithm for high-
dimensional outlier detection. VLDB J. 14(2), 211–221 (2005)

2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications, vol. 27. ACM (1998)

3. Christiansen, B.: Ensemble averaging and the curse of dimensionality. J. Clim.
31(4), 1587–1596 (2018)

4. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2790–2797. IEEE (2009)

5. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and appli-
cations. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

6. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes,
and densities in noisy, high dimensional data. In: Proceedings of the 2003 SIAM
International Conference on Data Mining, pp. 47–58. SIAM (2003)

7. Gan, G., Ng, M.K.P.: Subspace clustering with automatic feature grouping. Pattern
Recogn. 48(11), 3703–3713 (2015)

8. Gartner, I.: Big data definition. https://www.gartner.com/it-glossary/big-data/.
Accessed 6 Sept 2019

9. Jing, L., Ng, M.K., Huang, J.Z.: An entropy weighting k-means algorithm for
subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data
Eng. 8, 1026–1041 (2007)

10. Jing, L., Ng, M.K., Xu, J., Huang, J.Z.: Subspace clustering of text documents
with feature weighting K -means algorithm. In: Ho, T.B., Cheung, D., Liu, H.
(eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 802–812. Springer, Heidelberg
(2005). https://doi.org/10.1007/11430919 94

11. Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic man-
agement research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458
(1996)

https://www.gartner.com/it-glossary/big-data/
https://doi.org/10.1007/11430919_94

228 S. Thudumu et al.

12. Li, T., Ma, S., Ogihara, M.: Document clustering via adaptive subspace itera-
tion. In: Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 218–225. ACM (2004)

13. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace
structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell.
35(1), 171–184 (2012)

14. Mucha, H.J., Sofyan, H.: Nonhierarchical clustering (2011)
15. Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K.A., Zimek, A.: A frame-

work for clustering uncertain data. Proc. VLDB Endow. 8(12), 1976–1979 (2015)
16. Thudumu, S., Branch, P., Jin, J., Singh, J.J.: Elicitation of candidate subspaces

in high-dimensional data. In: 2019 IEEE 21st International Conference on High
Performance Computing and Communications. IEEE (2019, in press)

17. Tomasev, N., Radovanovic, M., Mladenic, D., Ivanovic, M.: The role of hubness in
clustering high-dimensional data. IEEE Trans. Knowl. Data Eng. 26(3), 739–751
(2014)

18. Tomašev, N., Radovanović, M., Mladenić, D., Ivanović, M.: Hubness-based clus-
tering of high-dimensional data. In: Celebi, M.E. (ed.) Partitional Clustering Algo-
rithms, pp. 353–386. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
09259-1 11

19. Zhai, Y., Ong, Y.S., Tsang, I.W.: The emerging “big dimensionality” (2014)
20. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection

in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5),
363–387 (2012)

https://doi.org/10.1007/978-3-319-09259-1_11
https://doi.org/10.1007/978-3-319-09259-1_11

Penguin Search Aware Proactive
Application Placement

Amira Rayane Benamer1(B), Hana Teyeb2(B),
and Nejib Ben Hadj-Alouane2(B)

1 Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
amira.rayane.benamer@gmail.com

2 National Engineering School of Tunis, OASIS Research Lab,
University of Tunis El Manar, Tunis, Tunisia
hana.teyeb@gmail.com, nejib bha@yahoo.com

Abstract. With the huge proliferation of IoT devices, new challenges
have been raised. These IoT devices generate a huge amount of data,
instantly. In addition, they are time sensitive, geographically distributed,
require high bandwidth, and location awareness. In order to cope with
these challenges, recent studies have allowed exploring a new paradigm
so-called fog computing. This latter extends Cloud computing at the edge
of the network. Fog computing is an intermediate layer that facilitates
the deployment of IoT applications by leveraging new characteristics such
as support of mobility, location-awareness, and lower latency. However,
its limited resources arise the problem of resource provisioning which
has an impact on the application placement decisions. In this paper, we
focus on the mobile application placement problem in hybrid Cloud-Fog
environment. We have considered both delay-sensitive and delay-tolerant
applications. Hence, we propose an exact solution as well as a new app-
roach based on penguin search metaheuristic named PsAAP to fulfill
the dynamic demands as well as the application’s QoS requirements. To
evaluate the proposed approach, we introduce a mobile scenario including
three different types of applications. Moreover, we compare the suggested
policy with the exact solution, baseline algorithms, heuristic, and meta-
heuristic methods. Experiments have been conducted using CPLEX and
IfogSim-simulator. The final results show the effectiveness of the pro-
posed approach.

Keywords: Placement · Latency · QoS · Fog · Cloud

1 Introduction

Due to the wide-spread popularity of Internet of Things (IoT) [17], and the
embedded applications, a huge amount of data will be generated. However, IoT
devices have a limited resource capacity and computational power, to process all
this data. This latter arises the need for external computing resources. Besides,

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 229–244, 2020.
https://doi.org/10.1007/978-3-030-38961-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_20

230 A. R. Benamer et al.

IoT applications may have different requirements in terms of Quality of Ser-
vice (QoS) which includes latency, deadline, mobility awareness, etc. Hence, all
these factors will impact the choice of the host nodes. In spite of its limitless
capacity, cloud computing is not able, in some cases, to meet alone all these
requirements [3], due to bandwidth constraints, and high number of compet-
ing demands. Thus, in order to bridge this gap, fog computing was introduced
as an intermediate layer [5]. Its main concept consists of bringing back part of
the back-end (i.e cloud) computation to the front-end devices. This paradigm
is characterized by its location awareness, low latency, support of mobility and
scalability [5]. Despite all these benefits, fog computing still rises new challenges
due to its limited resources. As a result, a hybrid cloud-fog environment is cru-
cial in order to satisfy all users demands. In this context, one of the main issues
is the dynamic application resource provisioning. This latter consists of deciding
where the application modules should run according to their requirements in
terms of computing resources and QoS. Moreover, the problem becomes more
challenging for heterogeneous mobile applications. In this case, we could distin-
guish several application classes: critical mission, sensitive, and delay-tolerant
applications [10]. This classification has a huge impact, over time, on placement
decisions. This is due to the variation of workloads, more applications may come
and others may leave. To tackle this problem, throughout this paper, we inves-
tigate how to place applications’ modules, and update the deployment of those
already placed for optimized usage of fog stratum. We believe that application
placement problem in a fog-cloud context is different from that already discussed
only in a cloud context [7,13]. This is due to the wide distribution of fog nodes,
resource capacity constraints and stringent applications’ tolerable thresholds.
Despite tremendous proposed solutions in a hybrid context for such a problem
[1,4,14,18], placement application related issues still an open room for further
optimization. As this problem is qualified to be NP-Hard [18] and large scale
problem in terms of chosen nodes and applications to be deployed, metaheuris-
tics may be the less expensive solution that can explore the space efficiently
within a reasonable time frame [2].

Therefore, in this paper, first, we formally define the problem of dynamic
resource provisioning and placement for different IoT application classes. We
then solve it via the use of new metaheuristic recently proposed, so-called pen-
guin search (PS) algorithm [9]. Our aim is to investigate a new metaheuristic,
not yet used in literature, and explore its effectiveness to solve such a problem.
Finally, we solve the exact problem formulation using CPLEX [8]. Then, we eval-
uate the adopted metaheuristic by calculating the gap with the exact solution.
In addition, we evaluate our proposed approach using a well-known fog simulator
IfogSim [11].

The remainder of this paper is organized as follows: Sect. 2 reviews relevant
related works. In Sect. 3, we present the system model. As for Sect. 4, it describes
the studied use case. Section 5 presents the exact solution as well as the proposed
metaheuristic. Section 6 details and illustrates experiment results. Finally, we
conclude in Sect. 7.

Penguin Search Aware Proactive Application Placement 231

2 Related Work

In [18], a heuristic policy was proposed to allocate resources for application mod-
ules in a hybrid fog-cloud environment. In this work, the authors have considered
only resource requirements while maximizing the utilization of fog stratum. [1]
reduced the overall latency of an application by minimizing the latency between
application components. However, they did not consider the maximization of
fog resource utilization nor application sensitivity. In [4], the authors studied
the application placement problem by considering dynamic heterogeneous appli-
cation demands. In this work, they applied three baseline algorithms which are
FCFS (First Come First Served), Concurrent loading, Priority Delay Strategy.
However, these three strategies were not efficient for a huge number of problem
instances. The authors of [16] adopted the genetic algorithm to solve the prob-
lem. However, the experiments have been conducted only over small instance
sizes and compared only with a baseline algorithm and cloud-based execution.
By adopting the simulated annealing algorithm, [15] aimed at minimizing the
energy, power consumption, and cost. However, the maximization of fog resource
usage was not considered. In a Cloud environment, [12] solved the problem by
formulating an integer linear programming (ILP) model, and an iterative sequen-
tial co-deployment algorithm. However, neither the application’s priority nor
resource optimization were considered while placing services. Other works [7,13]
were proposed for the same objective, in Cloud context. However, these solu-
tions cannot directly be adopted for fog computing. As known, fog nodes are
widely distributed with a larger number and have a restrict resource capacity,
in contrast to the fewer centralized cloud datacenters with limitless resources.
Hence, in this paper, we aim to cope with such a problem differently from already
studied in the literature. In the next section, we present the system model.

3 System Model

3.1 IoT-Fog-Cloud Architecture

IoT-Fog-Cloud computing architecture is composed of three-hierarchical layers
as represented in Fig. 1. The front-end layer consists of a plethora of heteroge-
neous devices that act as user interfaces. The far-end layer represents the cloud
with limitless capacity. The near-end layer is an intermediate layer, ensures an
IoT-cloud service continuum, composed of a set of fog nodes. These nodes may
collaborate among them to accomplish a task. Consequently, more efficient solu-
tions could be offered in regards to user requirements. However, these collabora-
tions may also impact the QoS if are not well managed. Therefore, we propose
to integrate an orchestrator with a global view over the network, to receive user
demands, ensures dynamically an effective collaboration among nodes, and plac-
ing applications regarding their requirements. This may result in improving the
resource management of the fog nodes as well as the user’s quality of experience
QoE. In this context, the orchestrator has proactive behavior, as it replaces all
the application demands periodically.

232 A. R. Benamer et al.

Fig. 1. IoT-Fog-Cloud architecture.

Fig. 2. EEG Tractor Beam Game.

3.2 IoT Application Model

In literature [11,14,18], IoT applications are modeled as a set of interdependent
lightweight application modules, to facilitate their deployment on fog nodes.

Considering three genres of applications Figs. 2, 3, and 4, EEG Tractor Beam
Game [11], the Intelligent Surveillance Application VSOT [11], and the Health
Care Application HC [15], respectively.

The EEG application is a human-vs-human game that necessitates to be
processed within a real-time frame. Its main module is Concentration Calculator
that processes the incoming data sent from Client to calculate the concentration
level and determining the user brain state. In its turn, this information will be
displayed on Actuator. In addition, Coordinator performs in the global level to
coordinate between all players and continuously sends the current sate of all
players to the Client module.

The Intelligent Surveillance Application VSOT monitors a specified area by
coordinating different cameras. The Motion Detector module should be placed

Penguin Search Aware Proactive Application Placement 233

Fig. 3. Intelligent Surveillance Application VSOT.

Fig. 4. Health Care Application.

on Camera for filtering the raw video streams and forwarding them, in case of
detection of motion, to the Object Detector for further processing. The Object
Detector recognizes the moving object, then it calculates its coordinates in order
to sending them to the Object Tracker. This latter calculates the optimal PTZ
to send it to the PTZ Control module.

The Health Care Application HC aims to monitor patient health. To this end,
the Patient module which is placed on user phone collects data. Then, it forwards
them to Vital Sign Monitoring for further processing. In case of detecting signs,
the current module sends them to Monitoring Fire-Fighter Vital Signs which is
responsible for sending instructions to the user. Otherwise, the Actor Hospital
will be the last solution.

As shown, each application is composed of an aggregator module that collects
data from sensors. This latter should be placed on the user device. In addition,
a global coordinator module that maintains the global state, it should be placed
on the cloud. To process the collected data, and track user demands, processing
module should be placed according to a prior strategy. This latter is the critical
module that should be placed carefully in regards to the application requirements
i.e in terms of latency and resource requirements.

234 A. R. Benamer et al.

We assume that HC applications are mission-critical because any module
failure may cause a significant risk on patient safety. Hence, HC requires less
than 100 ms to work. EEG requires a real time interactions, but without any
high risk. Thus, it needs less than 200 ms; whereas the VSOT application is
tolerant to latency. In the next section, we illustrate and detail the studied use
case.

4 Studied Use Case

In a smart nursing house, private and common rooms are covered by one, and
a number of smart cameras, respectively. These smart cameras are running the
VSOT application. Besides, we distinguish other types of users. These users may
be EEG players, and/or HC users. During daily peak times, several users move
to a common room. Thus, further heterogeneous workloads need to be placed,
subject to their latency and resource requirements. As a result, a prior strategy
is required to manage the three types of applications and mapping them on fog-
cloud in an effective manner without violating application requirements and by
avoiding an over-provisioning or capacity wastage related issues. Therefore, in
the next section, we present the exact and metaheuristic solutions to tackle such
a problem.

5 Problem Formulation

5.1 Exact Solution

We denote by A the set of applications where a ∈ A. We distinguish three
categories of applications, in regards to their latency tolerable thresholds, critical
mission, sensitive and tolerant applications. The threshold Ca is defined by the
user. To prioritize the applications per their QoS requirements, we use CP (a) as
follows CP (a) = 1

Ca
. The CP (a) reinforces, as much as possible, the placement

of sensitive applications while maximizing the utilization of resources. If the node
cannot host a sensitive application, the CP (a) ensures the maximization of the
resource utilization by accepting placement solutions of tolerant applications.
Each application a ∈ A is composed of a set of services so-called modules denoted
Ma. We denote by N a set of nodes that can host Ma. Let us define Pnr the
available capacity of the node n ∈ N , and Uir the requirements of the module
i ∈ Ma, in terms of resources r ∈ R (CPU, RAM, Storage).

In this formulation we use the following decision variable:

• xij is equal to 1 if the module i ∈ Ma is placed on the node j ∈ N , 0 otherwise.

Our purpose is to maximize the fog landscape usage by placing a maximum
number of services while ensuring their QoS requirements, as shown in expression
(1). To do so, we place services on the most consumed fog nodes to the less ones
via adoption of Uir/Pnr.

Penguin Search Aware Proactive Application Placement 235

The problem is defined as follows:

max
∑

a∈A

∑

i∈Ma

∑

j∈N

∑

k∈R

Uik

Pjk
.xij .CP (a) (1)

∑

a∈A

∑

i∈Ma

Uir.xin ≤ Pnr ∀n ∈ N, r ∈ R (2)

∑

n∈N

xin = 1 ∀i ∈ Ma,∀a ∈ A (3)

xin ∈ {0, 1} ∀i ∈ Ma,∀a ∈ A,∀n ∈ N (4)

The Eq. (2) aims to ensure node capacity constraints. Constraint (3) ensures
that each module will be running on exactly one node.

5.2 Penguins Search Metaheuristic

Penguins Search Optimization Algorithm (PeSOA) [9] is a bio-inspired meta-
heuristic based on the hunting behavior of penguins population. These penguins
are divided into groups with varied sizes. Each group forages randomly in the
sea looking for foods. In fact, this foraging process depends on penguins’ oxygen
reserves. Oxygen reserve of the penguin represents its health condition while
foraging action. Throughout the search for food, the penguins change their loca-
tions according to the best local leader of each group (i.e group leader) as well
as to their last position, as shown in Eq. 5.

Xnew = Xid + rand()|XBestGlobal − Xid| (5)

Xnew is the new generated position for the penguin
Xid is the last position for the penguin
rand() is a random number drawing from (0, 1)
XBestGlobal is the best position of the local leader

After a rough number of dives, penguins return to the ice for sharing their
locations and the abundance of food sources with their groups via intra-group
communications. In the case of poor groups, they can follow the best group
(XBestGlobal) via inter-group communications.

5.3 Penguin Search Aware Application Resource Provisioning

Typically, Penguin Search Metaheuristic Aware Application Provisioning
(PsAAP) aims to find the combination of fog nodes that can maximize resource
utilization. In our case, the sea corresponds to the space solution, which is the
set of fog node candidates. So, the penguin searching purpose is to locate the
best position showing the maximized fog resource utilization. Thus, the position
of each penguin is a candidate solution for the application placement problem.
In order to encode the individual penguin, a two-dimensional matrix is adopted.

236 A. R. Benamer et al.

As shown in Table 1, the size of each penguin is m× n, where m, and n refer to
the number of all offloaded applications’ modules, and all candidate resources,
respectively. Furthermore, in the matrix, the intersection (i.e row with column)
represents a placement decision of the module in row i on the corresponding
node in column j. This placement decision is represented by a check mark that
corresponds to xij = 1, otherwise 0, in Sect. 5.1. The quantity of hunted food
represents the fitness of our problem, expression (1). As input, PsAAP receives
a set of different application’s modules with their requirements and the list of
node candidates (including cloud). As output, PsAAP gives a mapping scheme
for all applications. Initially, we need to fix the oxygen reserve, the population
size, and the number of generations. Afterward, we generate randomly a set of
penguins so-called the initial population. In order to widely explore the search
space, we assign each penguin to one independent group. So, search progress
depends on the actual position of the penguin X id as well as on the position
of the best group in the population XBestGlobal which has the maximum fitness
value. This latter should be valid, which means it should fulfill the two problem
constraints (i.e 2 and 3). By following the XBestGlobal in the population, pen-
guins could converge rapidly to the global optimum within a reasonable number
of iterations. So, the penguin updates its position using the adjusted Eq. 6.

Xnew = Xid ⊕ rand() ⊗ |XBestGlobal � Xid| (6)
XBestGlobal is the best solution in the population
Xid is the current solution
rand() is a binary random number

As the taken decision is binary (i.e 1 or 0), we have redefined the arithmetic
operations of the Eq. 6. All present operations act on two operands bit by bit. The
subtraction operation is defined as �. This latter is to do OR exclusive between
two bits. The multiplication is defined as ⊗. It acts as a Binary OR operator. The
addition ⊕ is considered as Binary AND operator. The result of the equation
is not necessarily valid in terms of the two aforementioned constraints 2, and
3. Furthermore, the chosen combination may not guarantee the satisfaction of
QoS applications. So, to cope with this problem, we propose the Allocation
Repair Algorithm (ARA). After repairing solutions using (ARA), the fitness of
those solutions will be compared to the current ones. Whether the new solution
maximizes the solution more than the current one, or the old solution does
not satisfy problem constraints 2, 3, the penguin changes its place to the new
one. Once the oxygen reserves are consumed, the penguins return to share the
information via inter-group communications by choosing the best group whose
chased a lot of fish (i.e fitness). The foraging process stills running until reaching
the stopping criterion. Both concepts of PsAAP and ARA are summarized in
Algorithm 1 and, Algorithm 2, respectively.

5.4 Allocation Repair Algorithm (ARA)

The allocation repair algorithm (ARA) is composed of three parts which are:
capacity constraint, one placement constraint, and QoS constraint. First, we

Penguin Search Aware Proactive Application Placement 237

Algorithm 1. Penguin Search Aware Application Provisioning
Input: List<AppModule>M, List<Nodes>N
Output: modulesMapping [M][N]

1: Initialize the population P, Iterations, RO2
2: Define XBestGlobal � individual valid with high fitness
3: while (iter<Iterations) do
4: for each individual i ∈ P do
5: while (RO2>0) do
6: Generate a new solution Xnew using Eq 6
7: Repair Xnew using ARA algorithm
8: if (fitness(Xnew)>fitness(Xid)) Or !checkConstraints(Xid) then
9: Replace Xid by Xnew

10: end if
11: end while
12: end for
13: if (fitness(Xid)>fitness(XBestGlobal)) then
14: Replace XBestGlobal by Xid

15: end if
16: end while
17: moduleMapping=XBestGlobal

18: return moduleMapping

Table 1. Encoding scheme.

1 2 3 4 .. n

1 �
2

4 �
i

.. �
m �

address the problem of excess of capacity, constraint 2, for each fog node candi-
date. In such a case, we choose randomly modules, assigned to the corresponding
host, and forwarding them to the cloud. We choose the cloud as a rapid solution
to the problem. Then, we test the obtained result, if it satisfies constraint 3. In
such a case, there are two possibilities: several placements for one module or the
module was not be placed. In the first case, we choose randomly one fog node
between all nodes, and we remove the module from the others. In the other case,
we place it on the cloud for further improvement. However, the cloud may not
fulfill application QoS requirements. For this reason, we sort the placed modules
on the cloud by their sensitivity (i.e from sensitive modules to tolerant ones).
In addition, we sort fog nodes per their available resources (i.e from the most
consumed to the less one). Next, we choose the fog node that can satisfy mod-
ule resource requirements as well as maximizing the objective function (i.e to

238 A. R. Benamer et al.

Algorithm 2. Allocation Repair Algorithm
Variables: violation: Boolean, count: Integer
Input: Xnew[M][N], List<AppModule>M, List<Nodes> N
Output: Xnew[M][N]

1: for each node n ∈ N do � constraint 2
2: violation=true
3: while (violation) do
4: if (nusedCapacity > navailableCapacity) then
5: Forward randomly one module to the cloud
6: release space in n
7: else
8: violation=false
9: end if

10: end while
11: end for
12: for each module m ∈ M do � constraint 3
13: count=0
14: for each node n ∈ N do
15: count+=Xnew[m][n]
16: end for
17: if count > 1 then
18: choose randomly one node and release other ones
19: end if
20: if count = 0 then
21: place m on Cloud
22: end if
23: end for
24: Sort modules placed on cloud per sensitivity
25: for each module placed on the cloud do � QoS satisfaction
26: Sort resources per their availability
27: for each n in N do
28: if (module req <=navailableCapacity) then
29: Place module on n
30: Update Xnew

31: break
32: end if
33: end for
34: end for
35: return Xnew

guarantee to meet QoS requirements of applications). This process is repeated
for all modules placed on Cloud. Eventually, we obtain a maximized usage of
fog stratum and a maximum satisfaction percentage of all offloaded applications;
whatever their classes1.

1 Oxygen reserves.

Penguin Search Aware Proactive Application Placement 239

Table 2. Fog node Resources class.

Class Resources

CPU (MIPS) RAM (GB) Storage (GB)

Small 1000 1 2

Medium 2000 2 4

Large 4000 4 8

0

2

4

6

8

10

12

2 0 4 0 8 0 1 0 0 5 0 0 7 5 0 1 0 0 0

O
BJ

EC
TI

VE
 F

U
N

CT
IO

N

NUMBER OF APPLICATION

PsAAP Exact

Fig. 5. Comparison of exact solution and PsAAP.

Table 3. Average optimality gap and execution time.

Nbr of
applications

Nbr of
nodes

PsAAP
execution
time (s)

Exact solution
execution
time (s)

Gap %

20 10 0.246 2.48 2.05

40 20 1.205 3.22 1.11

80 40 13.697 88 2.97

100 50 12.5 112 1.43

500 200 73.962 153.46 8.68

750 300 205.380 708.49 2.79

1000 500 874.206 2140 11.22

6 Simulation and Experiments

In this section, we present the result of experiments conducted on both proposed
exact and heuristic solutions. A summary of different used parameters is shown
in Tables 2, 4, 5, and 6. All parameter values are taken from the literature [4],
[11], [18], and [16]. Metaheuristic parameter values (i.e R02, Population size,
and iteration number) are obtained after completing some experiments on each
variable.

240 A. R. Benamer et al.

Table 4. Application resource requirements.

Application Modulesa CPU (MIPS) RAM (GB) Storage (GB)

EGG Concentration Calculator 350 0.4 0.3

Coordinator 100 0.1 0.2

VSOT Object Detector 300 0.35 0.5

Object Tracker 300 0.2 0.3

HC Vital Sign Monitoring 350 0.2 0.5

Monitoring Fire Fighter 350 0.35 0.3
aProcessing module to be placed for each application [11,15]

Table 5. Metaheuristics parameters.

Metaheuristic Parameters Value

PsAAP Ro2 3

Generation 50

Population Size 20–200

GA Crossover rand 0.5

Mutation rand 0.7

Table 6. UpLink nodes latency

Node type Latency (ms)

End Device to Fog Node 2

Fog Node to Gateway 4

Gateway to Cloud 100

6.1 Exact Solution Vs PsAAP

In order to evaluate the PsAAP’s solution quality, we compare it with the exact
solution benchmark using CPLEX [8].

Figure 5 shows the goal function results for metaheuristic and exact solution.
As shown, PsAAP results are very closer to the optimal solution. In addition,
we have calculated the average gap G [6] among the exact S∗ and approximate
S solutions. This is achieved by varying the number of applications, the number
of nodes and their sizes.

G =
|S∗ − S|

max{S∗;S} ∗ 100

Table 3 shows the consumed time for generating solutions, as well as the gap
for the two solutions. The results show that the overall gap for all configurations
does not exceed 5%. According to [6], we can say that the solution provided by
the PsAAP has a good quality.

Penguin Search Aware Proactive Application Placement 241

0
200
400
600
800

1000
1200
1400
1600
1800

EEG VSOT EEG VSOT EEG VSOT EEG VSOT EEG VSOT EEG VSOT EEG VSOT

0 10 20 30 40 80 100

N
et

w
or

k
De

la
y

(m
s)

Number of Modules

PsAAP LB Priority_Delay FCFS

Fig. 6. Network Delay of EEG and VSOT.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 10 20 30 40 80 100

N
et

w
or

k
U

sa
ge

 (M
eg

ab
yt

es
)

Number of Modules

PsAAP LB Priority_Delay FCFS

Fig. 7. Total network usage for EEG and VSOT.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 10 20 30 40 80 100

O
pe

ra
on

al
 C

os
t

Number of Modules

PsAAP LB Priority_Delay FCFS

Fig. 8. Operational execution cost on cloud.

6.2 Simulations

Using IfogSim [11], the proposed PsAAP is compared with different approaches,
baseline algorithms [4], heuristic [18], and metaheuristic [16], over the proposed
scenario Sect. 4.

In this set of tests, a service execution delay, network usage and cloud exe-
cution cost, reported by IfogSim [11], are considered as performance metrics. By
Analyzing the source code of Ifogsim Simulator2, the operational cost is calcu-
2 https://github.com/harshitgupta1337/fogsim.

https://github.com/harshitgupta1337/fogsim

242 A. R. Benamer et al.

0

50

100

150

200

250

300

EE
G

VS
O

T

HC EE
G

VS
O

T

HC EE
G

VS
O

T

HC EE
G

VS
O

T

HC EE
G

VS
O

T

HC

20 30 40 50 60

N
et

w
or

k
De

la
y

(m
s)

Number of Modules

PsAAP GA

Fig. 9. Network Delay of EEG, VSOT, and HC.

lated in function of the total cost TC, the reported cloudsim clock CC, RPM
refers to the rate per MIPS, the last utilization update time LUUT, and the
total MIPS of the host THM, as represented in the Eq. 7:

Cost = TC + (CC + LUUT) ∗ RPM ∗ LU ∗ THM (7)

Figure 6 shows the network delay of both applications EEG and VSOT.
PsAAP keeps the latency reduced for all the configurations. This is because
the orchestrator manages dynamically the placement of application modules
regarding their tolerable thresholds while getting benefit from all available fog
nodes. Hence, modules will stay closer to sensors, and response delay under
tolerable thresholds. Meanwhile, [18] which is the closest to PsAAP manages
modules regarding their resource requirements without considering their latency
constraints.

In Fig. 7, PsAAP reduces network usage considerably compared to other
approaches. PsAAP achieves a reduced network usage due to maximizing fog
landscape usage while placing modules. Thus, a few numbers of modules will be
sent to Cloud in case of no available capacity at the edge of the network. Figure 8
shows cloud operational cost results. Because PsAAP places modules at the rim
of the network in contrast to all compared methods, and reduces network usage,
consequently the amount of used cloud resources will be reduced. As a result,
the operational cost on the cloud also will be reduced.

Figure 9 shows the latency of the three applications EEG, VSOT, HC, simul-
taneously. PsAAP minimizes the latency compared to the genetic algorithm
(GA). This is due to ARA algorithm that helps Penguin search to refine its
solutions regarding problem constraints. In the last configuration, the PsAAP
prioritizes the HC and EEG applications than the VSOT which revealed the
importance of priority management while mapping phase.

7 Conclusion and Future Work

Integrating fog computing as an intermediate layer has opened perspectives to
support IoT applications’ demands while reducing delays. However, due to its

Penguin Search Aware Proactive Application Placement 243

limited capacity, new issues have been risen in terms of optimal resource provi-
sioning and application placement. Therefore, in this paper, we addressed this
issue in a hybrid cloud-fog computing, for heterogeneous application genres. This
was achieved by proposing both exact and metaheuristic solutions. Experiments
were discussed in terms of optimality gap, network delay, operational cost and
network usage.

In future work, we plan to investigate other metaheuristics, and compare
them with the proposed policy. In addition, we plan to study a decentralized
resource provisioning to deal with scalability issue. We also aim to focus on the
scheduling problem of modules after placing them on devices.

References

1. Benamer, A.R., Teyeb, H., Ben Hadj-Alouane, N.: Latency-aware placement heuris-
tic in fog computing environment. In: Panetto, H., Debruyne, C., Proper, H.,
Ardagna, C., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11230, pp.
241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02671-4 14

2. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on meta-
heuristics for stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287
(2009)

3. Bittencourt, L., et al.: The internet of things, fog and cloud continuum: integration
and challenges. Internet Things 3, 134–155 (2018)

4. Bittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F., Parashar, M.: Mobility-
aware application scheduling in fog computing. IEEE Cloud Comput. 4(2), 26–35
(2017)

5. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, pp. 13–16. ACM (2012)

6. Bovet, D.P., Crescenzi, P., Bovet, D.: Introduction to the Theory of Complexity.
Citeseer (1994)

7. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator place-
ment for distributed stream processing applications. In: Proceedings of the 10th
ACM International Conference on Distributed and Event-based Systems, pp. 69–
80. ACM (2016)

8. Flatberg, T.: IBM Corporation ILOG CPLEX (2009). http://www.ilog.com/
products/cplex/

9. Gheraibia, Y., Moussaoui, A.: Penguins search optimization algorithm (PeSOA).
In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J.
(eds.) IEA/AIE 2013. LNCS (LNAI), vol. 7906, pp. 222–231. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38577-3 23

10. Guevara, J.C., Bittencourt, L.F., da Fonseca, N.L.: Class of service in fog comput-
ing. In: 2017 IEEE 9th Latin-American Conference on Communications (LATIN-
COM), pp. 1–6. IEEE (2017)

11. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Softw.: Pract. Exp. 47(9), 1275–
1296 (2017)

https://doi.org/10.1007/978-3-030-02671-4_14
http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/
https://doi.org/10.1007/978-3-642-38577-3_23

244 A. R. Benamer et al.

12. Kang, Y., Zheng, Z., Lyu, M.R.: A latency-aware co-deployment mechanism for
cloud-based services. In: 2012 IEEE 5th International Conference on Cloud Com-
puting (CLOUD), pp. 630–637. IEEE (2012)

13. Leitner, P., Hummer, W., Satzger, B., Inzinger, C., Dustdar, S.: Cost-efficient
and application SLA-aware client side request scheduling in an infrastructure-as-a-
service cloud. In: 2012 IEEE Fifth International Conference on Cloud Computing,
pp. 213–220. IEEE (2012)

14. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application mod-
ule management for fog computing environments. ACM Trans. Internet Technol.
(TOIT) (2018)

15. Rezazadeh, Z., Rahbari, D., Nickray, M.: Optimized module placement in IoT
applications based on fog computing. In: Iranian Conference on Electrical Engi-
neering (ICEE), pp. 1553–1558. IEEE (2018)

16. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized iot
service placement in the fog. Serv. Oriented Comput. Appl. 11(4), 427–443 (2017)

17. Sun, X., Ansari, N.: EdgeIoT: mobile edge computing for the internet of things.
IEEE Commun. Mag. 54(12), 22–29 (2016)

18. Taneja, M., Davy, A.: Resource aware placement of IoT application modules in
fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 1222–1228. IEEE (2017)

A Data Uploading Strategy in Vehicular
Ad-hoc Networks Targeted on Dynamic
Topology: Clustering and Cooperation

Zhipeng Gao(&), Xinyue Zheng(&), Kaile Xiao, Qian Wang,
and Zijia Mo

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China

{gaozhipeng,zxy_feifei,wangqian1991,

mozijia}@bupt.edu.cn, xiaokaile77@gmail.cn

Abstract. Vehicular Ad-hoc Network (VANET) is a special network com-
posed of driving vehicles with dynamic topology. Data uploading from the
VANET to the computation server is a challenging issue due to the high
mobility of vehicles. By introducing the Mobile Edge Computing (MEC) server
deployed on the roadside, this paper proposes a stable clustering strategy based
on adjacency screening and designs an Intra-Cluster Data Uploading (ICDU)
algorithm to improve the efficiency of data uploading in a dynamic environment.
The connection lifetime between vehicles is taken as a key indicator for our
proposed clustering strategy to form stable clusters. After the formation of
clusters, the ICDU algorithm plans a stable path for vehicles in a cluster to
upload data in a cooperative method. Extensive simulation results show that the
proposed clustering strategy performs better in terms of the clustering stability
compared with Vehicular Multi-hop algorithm for Stable Clustering (VMaSC)
and the greedy clustering strategy. The results also prove that our proposed
ICDU algorithm outperforms the self-uploading algorithm and can achieve a
larger data uploading throughput in the dense scenario compared with the
greedy-uploading algorithm.

Keywords: Vehicular Ad-hoc Network � Dynamic topology � Mobile Edge
Computing � Clustering � Data uploading

1 Introduction

With the application of Internet of Things (IoT) in the automotive field, the concept of
Intelligent Transportation System (ITS) has gradually arisen, and the Vehicular Ad-hoc
network (VANET) has gradually entered our vision. Nowadays, under the circum-
stance that vehicles and roads are equipped with intelligent communication units,
VANET makes it possible for us to have safer integrated services which are more
efficient, comfortable and energy-saving. In the driving process of a vehicle, some real-
time task requests will be generated constantly and need to be offloaded to the server
for computation. In order to respond quickly to the real-time task requests, Mobile
Edge Computing (MEC) with high bandwidth and low latency is widely used in this

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 245–260, 2020.
https://doi.org/10.1007/978-3-030-38961-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_21

scenario [1]. Since the amount of input data of a task in VANET is larger than that of
output data [2], data uploading has become an important issue to study on. Massive
data generated during the driving process need to be uploaded from the onboard unit
(OBU) which is deployed on the vehicle to the roadside unit (RSU) which is deployed
on the road. RSUs are equipped with MEC servers with limited resources to provide
computation services for the driving vehicles. However, the mobility of vehicles in
VANET makes it a complex and challenging problem to upload data, i.e., vehicles may
pass by an RSU within an extremely short time while the considerable data to be
uploaded may not be all uploaded to the same RSU completely. Specifically, if data
from a moving vehicle is irregularly segmented and uploaded to several different RSUs
along the driving trace, the data handoff between RSUs will occur frequently. The
communication between adjacent RSUs is established by the wireless backhaul, which
has an unpredictable delay and a low data rate due to the effect of the urban envi-
ronment and the interference of wireless links [2]. As a result of the data handoff
between RSUs, the delay of data uploading will be increased. Therefore, in this paper,
we propose a stable clustering strategy targeted on the dynamic topology of VANET
and an Intra-Cluster Data Uploading (ICDU) algorithm to avoid the data handoff
between RSUs. Consequently, the efficiency of data uploading in the dynamic envi-
ronment of VANET can be improved.

In VANET, the communications of data uploading process are called V2X com-
munications, in which we mainly consider two methods: vehicle-to-infrastructure (V2I)
communications and vehicle-to-vehicle (V2V) communications [3, 4]. V2I commu-
nications can provide connections between vehicles and roadside infrastructures (such
as traffic lights or dedicated roadside units) via the fourth generation (4G) cellular
network which can also be described as Long Term Evolution (LTE) network. V2V
communications can establish connections between vehicles by using Dedicated Short-
Range Communication (DSRC) technology [9]. DSRC uses the Wireless Access in
Vehicular Environment (WAVE) which is also known as IEEE 802.11p protocol to
build the communications. Vehicles in VANET are in a heterogeneous moving state,
which results in the dynamic topology of the network. However, data dissemination in
a dynamic topology in VANET still remains an unresolved issue worthy of study. One
of the best strategies adopted for improving the scalability of data uploading in a
dynamic topology is clustering [5]. A framework UFC is proposed to optimize the
cluster performance by improving the efficiency of cluster formation, cluster changing
rate and cluster stability [5]. But the identification of a cluster is ambiguous as a result
of the overlapping between clusters in UFC. Vehicular Multi-hop algorithm for Stable
Clustering (VMaSC) [6] is a clustering technique based on choosing the node with the
least mobility as cluster head by controlling several different types of timers. Compared
with VMaSC, VMaSC-LTE [7] combines the LTE and VMaSC to keep the usage of
cellular network at a minimum level in order to achieve a high data packet delivery
ratio. Another clustering strategy PMC ensures the coverage and stability of cluster
based on the idea of multi-hop clustering [8]. There also exists a self-adaptive clus-
tering method based on the iterative self-organizing data analysis technique to adjust
the optimal number of clusters automatically [9]. In addition, some clustering strategies

246 Z. Gao et al.

are based on the trajectory. A clustering algorithm using Affinity Propagation (AP) for
VANET is proposed in [10] based on that all vehicles share their locations and tra-
jectories with each other. A trajectory-aware edge node clustering (TENC) scheme is
proposed in [11] for the edge nodes to form a cluster depending on the trajectory of a
target vehicle. A two-level cooperative clustering scheme which uses K-means algo-
rithm to determine the deployment of RSUs and uses the spectral clustering strategy to
form a cluster is proposed in [12]. A density-based clustering algorithm is proposed in
[13]. In urban city scenario, a new mobility-based and stability-based clustering
algorithm (MSCA) is proposed in [14] to improve the stability of clusters. There are
still many different clustering methods in [16–18].

However, most of the previous works only focused on the clustering strategies,
lacking a clear description of the specific data uploading process after the formation of
a cluster. To fill the gap, this paper proposes a stable clustering strategy based on
adjacency screening and also designs an Intra-Cluster Data Uploading (ICDU) algo-
rithm for vehicles in a cluster to upload data in a cooperative method. To ensure the
stability and reliability of clusters, the proposed strategy forms clusters in terms of the
V2V connection lifetime, which can lead to a lower frequency of the cluster recon-
struction. The selection of cluster head (CH) is based on the average relative speed
(ARS). The global ARS for each vehicle in a cluster will be taken into consideration in
this paper, while in [6] the relative speed of each vehicle is calculated only based on its
neighbors. In the previous work [9, 16, 18], only CH can exchange messages with
RSUs, which results that CH is facing tremendous pressure of the network traffic flow.
Different from previous works, in the proposed strategy, the responsibility of CH is to
integrate the global structure of its cluster and then plan a cooperative path for the
cluster member (CM) who requires to upload its data, which means that each vehicle in
the path can exchange data with RSUs. Compared to the path planned by SDN server
for the target vehicle to offload the whole task in [15], in the proposed algorithm, the
path planned by CH for the target CM is used to divide its data into several segments so
that each vehicle in this path can help the target CM vehicle to upload a part of the data
segments collaboratively.

2 System Model

2.1 Scenario Architecture

In this paper, we consider the data uploading problem in VANET in which messages
can be disseminated through V2I communications and multi-hop V2V communica-
tions. The communication range of V2I and V2V are denoted by Rv2i and Rv2v,
respectively. Since the transmitting power and antenna gain of V2I is usually higher
than those of V2V, we assume that Rv2i is wider than Rv2v. As shown in Fig. 1, vehicles
run along the one-dimensional west-east road in both directions and each direction can
have three lanes. Each vehicle will generate its task including a heterogenous amount

A Data Uploading Strategy in VANET Targeted on Dynamic Topology 247

of input data which needs to be uploaded to a proper RSU firstly. We assume that
adjacent RSUs deployed on the road have an equal and fixed distance. Each RSU is
equipped with a MEC server for calculation.

2.2 Cluster Formation

In the data uploading strategy proposed in this paper, when driving on the road,
vehicles are organized into clusters based on adjacency screening in terms of the
lifetime they can hold the V2V communication links among them. The adjacency
screening will be introduced in detail in Sect. 3.1. In order to ensure that clusters don’t
need to be reconstructed frequently and the stability and reliability of clusters can be
improved, vehicles in a cluster need to drive towards the same direction so that the
cluster can have the longest lifetime. Each vehicle ni is equipped with the embedded
GPS interfaces to get its location denoted by li tð Þ at the time instant t. Then the relative
distance between vehicle ni and vehicle nj can be denoted by Ddij tð Þ ¼ li tð Þ � lj tð Þ

�� ��.
At the same time, the velocity of vehicle ni is denoted as vi tð Þ. In the scenario which we
described in Sect. 2.1, since each direction on the road has three lanes, the direction of
a driving vehicle may not simply be a straight west-east line. Therefore, the velocity of
vehicle ni is regarded as a two-dimensional vector, which means it can be decomposed
into two components in west-east direction and north-south direction expressed as

vi tð Þ ¼ vWE
i tð Þ; vNSi tð Þ� � ð1Þ

vi tð Þj j ¼
ffi
vWE
i tð Þ½ �2 þ vNSi tð Þ½ �2

q
ð2Þ

Fig. 1. Scenario architecture.

248 Z. Gao et al.

where vWE
i tð Þ 2 �1; 0ð Þ [0; þ1ð Þ denotes the west-east velocity component,

vNSi tð Þ 2 �1; þ1ð Þ denotes the north-south velocity component. When the vehicle ni
is driving towards east, vWE

i tð Þ[0, otherwise vWE
i tð Þ\0. Similarly, when the vehicle

ni is changing its lane towards south, vNSi tð Þ[0 and vNSi tð Þ\0 when towards north. It
is noted that if the vehicle ni is driving on a straight line without changing lanes,
vNSi tð Þ ¼ 0. In comparison to velocity and for simply calculation, we can also
decompose the scalar relative distance between vehicle ni and vehicle nj into the two
corresponding components which can be denoted as

Ddij tð Þ ¼
ffi
DdWE

ij tð Þ
h i2

þ DdNSij tð Þ
h i2r

ð3Þ

where DdWE
ij tð Þ denotes the west-east relative distance component at the time instant t,

while DdNSij tð Þ denotes the north-south relative distance component. If the vehicle ni
and vehicle nj are on the adjacent lanes, then DdNSij tð Þ ¼ dl where dl is the width of a
lane, and if there is a middle lane between vehicle ni and vehicle nj, then we have
DdNSij tð Þ ¼ 2dl. It is also noted that if the vehicle ni and vehicle nj are driving on the

same lane, DdNSij tð Þ ¼ 0.
In order to improve the stability of the cluster, we take the lifetime of each V2V

link into consideration and as a key indicator to form a cluster. When vehicle ni drives
out of the communication range of vehicle nj which equals to the V2V communication
range Rv2v, the connection between them is broken. Therefore, there are three different
situations which need to be considered to calculate the lifetime of the connection
between two vehicles: (1) the vehicle in the rear has a faster velocity than the vehicle in
the front, (2) the vehicle in the rear has a slower velocity than the vehicle in the front,
(3) the vehicle in the rear has the same velocity with the vehicle in the front.

As shown in Fig. 2(a), vehicle nr is in the rear while nf is in the front, and the
velocity of nr is faster than that of nf . Then the connection life time between them
denoted by LTrf tð Þ satisfies

Fig. 2. Three different situations when calculating the V2V connection lifetime.

A Data Uploading Strategy in VANET Targeted on Dynamic Topology 249

LTrf tð Þ ¼ Dtc þDtb ð4Þ

Dtc ¼
DdWE

rf tð ÞÞ
vWE
r tð Þ � vWE

f tð Þ ð5Þ

Dtb ¼
DdWE

rf tþDtcð Þ
vWE
r tþDtcð Þ � vWE

f tþDtcð Þ ð6Þ

where Dtc is the chasing time for nr to catch vehicle nf , Dtb is the subsequent
connection-breaking time before nr drives out of vehicle nf ’s communication range
Rv2v. Since the DdNSrf tð Þ can be easily achieved by their driving lanes, then DdWE

rf tð Þ ¼ffi
Ddrf tð Þ� �2� DdNSrf tð Þ

h i2r
.

In Fig. 2(b), the velocity of vehicle nr is slower than that of vehicle nf . In this
scenario, there doesn’t exist the chasing time Dtc on account that nr cannot catch up
with vehicle nf . Then the connection lifetime satisfies

LTrf tð ÞvWE
f tð Þ � DdWE

rf tþ LTrf tð Þ� � ¼ LTrf tð ÞvWE
r tð Þ � DdWE

rf tð Þ ð7Þ

The connection lifetime in this situation can be obtained by a simplification of
formula (7) as follows.

LTrf tð Þ ¼ DdWE
rf tþ LTrf tð Þ� �� DdWE

rf tð Þ
vWE
f tð Þ � vWE

r tð Þ ð8Þ

DdWE
rf tþ LTrf tð Þ� � ¼ ffi

R2
v2v � DdNSrf tþ LTrf tð Þ� �2q

ð9Þ

DdWE
rf tð Þ ¼

ffi
Ddrf tð Þ2�DdNSrf tð Þ2

q
ð10Þ

where DdNSrf tþ LTrf tð Þ� �
and DdNSrf tð Þ can be directly obtained by the driving lanes of

vehicles at the time instant respectively.
As shown in the Fig. 2(c), when vehicle nr and vehicle nf are driving at the same

velocity, the connection between them can be maintained and its lifetime can be
regarded as 1 until they change their speed and then satisfy one of the two situations
mentioned above. Thus, we can obtain that LTfr tð Þ equals to LTrf tð Þ and

LTrf tð Þ ¼
Dtc þDtb; vr tð Þ[vf tð Þ

DdWE
rf tþLTrf tð Þð Þ�DdWE

rf tð Þ
vWE
f tð Þ�vWE

r tð Þ ; vr tð Þ\vf tð Þ
1; vr tð Þ ¼ vf tð Þ

8><
>: ð11Þ

250 Z. Gao et al.

2.3 Cluster Head Selection

Message can be disseminated between every two vehicles in a cluster by adopting
multi-hop V2V communications. A cluster consists of two roles to construct its
structure: a unique CH and several CMs. Each cluster must have a CH and each cluster
is uniquely identified by its CH. Since the CH plays a critical role in a cluster, it is
necessary to select a proper vehicle to be the CH after clustering vehicles by lifetime.
CHs need to be stable so that clusters do not need to occupy extra bandwidth frequently
to reconstruct their structures. To ensure the stability of CHs, the average relative speed
with other vehicles in a cluster is calculated in our clustering strategy. The average
relative speed of vehicle ni is denoted by

ARSi tð Þ ¼
PRe nið Þ

j¼1 vi tð Þ � vj tð Þ
�� ��
Re nið Þ ð12Þ

where Re nið Þ is the number of remaining vehicles except for vehicle ni in the cluster,
vi tð Þ is the velocity of ni while vj tð Þ is the velocity of vehicle nj. Therefore, the vehicle
nk who satisfies

ARSk tð Þ ¼ min ARSi tð Þf g ¼ min

PRe nið Þ
j¼1 vi tð Þ � vj tð Þ

�� ��
Re nið Þ

()
ð13Þ

will be selected as the CH in the current cluster.

2.4 Cluster Communication

In a cluster, CMs broadcast their hello packets including their locations and velocities
periodically to its one-hop neighbors to have a calculation of the connection lifetime. It
is noted that since velocity is a two-dimensional vector, there is no need to describe the
driving directions which can be derived from the velocity. Then CMs broadcast beacons
periodically to the CH which include their heterogeneous information, e.g., locations,
velocities, relative distance and lifetime of connections with its neighbors. We assume
that the period for vehicles to broadcast beacons to CHs is db and vehicles drive at a
constant velocity during db. The format of beacons from CMs to its CH is denoted as

bMi tð Þ ¼ li tð Þ; vi tð Þ;NRDM
i tð Þ;NLTM

i tð Þ� � ð14Þ

where li tð Þ is the location of CM ni at the time instant t, vi tð Þ is the velocity of CM ni,
NRDM

i tð Þ denotes the set that includes relative distance from CM ni to its one-hop
neighbors in the cluster, NLTM

i tð Þ denotes the connection lifetime between CM ni and
its one-hop neighbors. CH broadcast an overview beacon of its cluster to the CHs of
neighboring clusters to identify its existence. We denote the beacons from CH nj to its
neighbor CH nk as

bHjk tð Þ ¼ sj tð Þ;�vj tð Þ;CRDH
jk tð Þ

� 	
ð15Þ

A Data Uploading Strategy in VANET Targeted on Dynamic Topology 251

where sj tð Þ is the size of cluster j which is uniquely identified by its CH j and sj tð Þ is
denoted by the number of vehicles in the cluster, �vj tð Þ ¼ 1

sj tð Þ
Psj tð Þ

i¼1 vi tð Þ is the average

velocity of cluster j which is also a two-dimensional vector, CRDH
jk tð Þ denotes the

relative distance between cluster j and cluster k which is denoted by the relative
distance between their CHs. In addition, the CH will send a periodical message
including the lifetime of the current cluster structure and the number of the CMs to the
nearest RSU, then the RSU will send the message to the MEC server in order to let the
server have a global overview of the current traffic structure in its coverage.

3 Clustering Strategy and Cooperative Uploading

3.1 Adjacency Screening

In this paper, a clustering strategy based on adjacency screening is proposed. Let the set
N ¼ ni; i ¼ 1; 2; . . .Nf g represents the vehicles on the road at the initial time. Each
vehicle ni maintains an information table (VIT) including the connection lifetime with
the adjacent vehicles. And the adjacent vehicles of ni are gathered in the set ADi after
exchanging hello packets with its one-hop neighbors. Vehicles will be organized into
clusters by achieving the maximum average adjacent connection lifetime of the current
cluster denoted by AALTc and meanwhile constrained by the predetermined maximum
numbers of hops denoted by MAX HOP which means the number of hops between the
two farthest vehicles in a cluster. When the first vehicle ni is chosen, it scans the
connection lifetime in its VIT. If its adjacent vehicle nj which has the longest con-
nection lifetime with ni does not join other clusters, then nj and ni will be organized
into the same cluster. After the cluster has at least two vehicles in it, ni continuously
scans its adjacent vehicles and calculates

AALTc ¼
P

LTv2v
vehicle num

ð16Þ

where LTv2v is the connection lifetime between the vehicle and its selected adjacent
vehicles, and vehicle num is the number of vehicles whose connection lifetime are
added in the molecule in the current cluster. If AALTc can be enlarged or maintained
after introducing the adjacent vehicle nk, then nk can be organized into the current
cluster. After ni finished screening all the adjacent vehicles, the newly joined adjacent
vehicles sequentially start to screen its adjacent vehicles and calculate AALTc to
introduce vehicles into the cluster until the cluster satisfies the limitation of
MAX HOP.

It is noted that when the vehicle ni is screening its adjacency, it prefers to select the
vehicle who has the same velocity with it to join the cluster. Since the connection
lifetime between vehicles with the same velocity is regarded as 1 in formula (11), it
will not be added in the molecule when calculating AALTc.

252 Z. Gao et al.

Fig. 3. An example of adjacency screening.

Taking an example in Fig. 3, the weight between two vehicles is their connection
lifetime calculated by formula (11). The initial vehicle n1 screens in its AD1 and firstly
selects n4 and n5 who have the same velocity with it and thus lifetime is 1 to join its
cluster. Then n1 continuously screens in AD1 and selects n3 who has the longest
countable connection lifetime to join its cluster and calculates AALTc. Then n1 scans n2
and calculates AALTc, it finds that if n2 is introduced into the cluster, AALTc will be
decreased. Thus, n2 will not be accepted to join the current cluster. So far, AD1 has
been finished screening and the adjacency AD4 of newly joined vehicle n4 will be
screened next in the same method.

3.2 Cooperative Uploading

In VANET, data are disseminated through two types of channels: control channel
(CCH) and service channel (SCH). The CCH is utilized to transmit control data
including the beacons from CMs to CH, while the SCH transmits the service data. In
this section, we mainly consider the service data that need to be uploaded through SCH.
When uploading data to the RSU, each vehicle will be allocated with a limited part of
the bandwidth of the SCH. The massive data will cost a long time delay when uploaded
through a small and limited bandwidth. In addition, the occurrences of data handoff
between RSUs also have a significant impact on the uploading delay due to the low
data rate between RSUs. Therefore, an Intra-cluster Cooperative Data Uploading
(ICDU) algorithm which can reduce the delay and improve the efficiency of data
uploading is proposed in this paper. In the proposed algorithm, after the cluster
organization is completed, the CM with data to be uploaded will send a data uploading
request to CH. CH received the request and responded CM with a stable intra-cluster
data segmentation and collaboration path to divide data into segments for multiple
vehicles in the path to upload segments collaboratively. It is noted that in our proposed
algorithm, the responsibility of CH is to plan the cooperative vehicles and integrate the
structure of the cluster. Unlike that only CH can communicate with RSU in the pre-
vious studies, each CM can upload data segments to RSU in the proposed algorithm.

The pseudo code of the proposed algorithm ICDU for CH is shown in Table 1.
When CH received data uploading request from CM ni, according to the location of the
cluster, it firstly chooses a proper target RSU from the RSUs that can be access to. The
standard of choosing RSUs is to allow more CMs to participate in collaborative data
uploading process. Let the set {linkij; nj 2 cluster} denotes the set of connection life-
time of the path from vehicle ni to nj. Let Path denotes the vehicle set which includes

A Data Uploading Strategy in VANET Targeted on Dynamic Topology 253

vehicles selected to participate in the data uploading process of ni in the coverage of the
target RSU. In the proposed algorithm, the main idea of selecting vehicles to participate
in the data uploading is that these vehicles need to have a long connection lifetime with
each other. The reason is that the V2V connections among the cooperative vehicles will
not break during the uploading process so that it can efficiently avoid the packet loss in
data segmentation. After initializing the {linkijg, CH scans the vehicle nj who has not
been visited and has the maximum value in {linkijg to add into Visited. After nj is
added in Visited, vehicles in adjacency ADj of nj and not in Visited will update the
connection lifetime of the path from ni to themselves. It is noted that once one of the
V2V connections is broken, the path is broken. Therefore, the connection lifetime of a
path is not the sum of each V2V connection lifetime, it actually is the shortest V2V
connection lifetime in this path.

Table 1. Intra-cluster cooperative data uploading algorithm for CH.

254 Z. Gao et al.

To illustrate the ICDU-CH algorithm, an example is depicted in Fig. 4. A cluster
consists of the vehicle set N ¼ ni; i ¼ 1; 2; . . .12f g and the CH is vehicle n5. When
vehicle n1 sends a data uploading request to n5, n5 decides the target RSU which is
RSUf in this example and uses ICDU-CH algorithm to obtain the
Path ¼ n1; n4; n5; n7; n9; n10f g. The lifetime of the data segmentation path equals to
LT57 ¼ 7. It is noted that when the CH scans the adjacency of n5, it will finally choose
n7 rather than n8 to participate in the path as a result that LT8;10 is shorter than LT79 and
LT9;10.

After receiving the respond including the target RSU and the data segmentation
path from CH, CM ni will use the ICDU-CM algorithm (Table 2) to divide its data to
the vehicles in the path. Specifically, when CM ni received the information of the target
RSU, it firstly checks whether itself is in the coverage of the target RSU, which
determines the number of segments it will divide its data into. Let Path num denotes
the number of vehicles in the Path. If CM ni is covered by the target RSU, ni will
divide its data into Path numþ 1 segments, otherwise data will be divided into
Path num segments for vehicles to upload cooperatively.

Fig. 4. An example of ICDU algorithm.

A Data Uploading Strategy in VANET Targeted on Dynamic Topology 255

4 Simulations and Analysis

In this section, the proposed clustering strategy based on adjacency screening and the
proposed ICDU algorithm are implemented. We compare the proposed clustering
strategy with VMaSC designed in [7] and the clustering strategy which we regard as a
greedy clustering strategy in [18] in which vehicles are organized into clusters as long
as the distance between them is shorter than Rv2v. Then the proposed ICDU algorithm
are compared with two benchmark algorithms. One is self-uploading without coop-
eration and another is greedy-uploading in which all the vehicles in the coverage of the
target RSU will participate in the collaborative uploading process.

4.1 Basic Simulation Settings

In the simulation, a 3000m � 26m west-east road segment which has 6 lanes with 3
lanes in each direction is modeled. The width of each lane is 4 m and there is a 2 m-
wide isolation zone in the middle of the road. The locations of vehicles are generated
randomly based on the Poisson distribution and the velocity of each vehicle varies from
10 m/s to 30 m/s. We assume that vehicles drive at a constant velocity during each time
interval db ¼ 2 s which means vehicles can only change their velocities at the start of
each db. And the communication range of V2I and V2V are set as Rv2i ¼ 300m,
Rv2v ¼ 100m respectively. In addition, the data rate of V2I communications is 3 Mbps
and MAX HOP ¼ 5.

Table 2. Intra-cluster cooperative data uploading algorithm for CM.

256 Z. Gao et al.

4.2 Performance Analysis

The Number of Clusters. The number of clusters is reflected by the number of CHs
among all the current vehicles. As shown in Fig. 5(a), when the density of vehicles is
quite small at the beginning, the number of clusters is slightly larger than the minimum.
The reason is that when the vehicle density is sparse, the isolated vehicle who has no
neighbors in its V2V communication range will form itself as a cluster separately. In
Fig. 5(a), the number of clusters formed by the proposed clustering strategy is more
than that of the greedy clustering and less than that of VMaSC. The reason behind it is
that the cluster formation in our proposed strategy is constrained by each V2V con-
nection lifetime. However, the large number of clusters means that each cluster has
fewer vehicles in it and the small number of clusters means that there are more vehicles
in a cluster. When the number of vehicles in each cluster is small, the cluster may be
less stable because the slight velocity change can impact the CH selection easily.
Correspondingly, when the number of vehicles in a cluster is too large, it is a great
burden for CH to exchange beacons with its CM which means that the CH may be
overloaded.

CH Change Rate. The stability of a cluster can be represented by the CH change rate.
We compared the CH change rate of the proposed clustering strategy with that of the
greedy clustering and VMaSC. The result is shown in Fig. 5(b). It can be found that
when the vehicles are sparse, the CH change rate is relatively high. The explanation is
that the number of vehicles in each cluster is small so that the velocity change can
change its CH easily. The performance proved that the CH change rate of proposed
clustering strategy is much lower than that of the greedy clustering and VMaSC. The
greedy clustering strategy in [18] chooses the vehicle who is closest with the target
RSU as CH, which makes the CH change rate is large due to the mobility of vehicles.
The CH selection in VMaSC is based on the average relative speed in a neighboring
area while our proposed strategy takes the global relative speed into consideration. That
is the reason why the CH change rate in our proposed strategy is lower than that of
VMaSC.

A Data Uploading Strategy in VANET Targeted on Dynamic Topology 257

Data Uploading Throughput. Throughput is a typical metric that can reflect the
efficiency of data uploading. The data uploading throughput in each time interval db is
calculated in the simulation. The simulation results of the proposed ICDU algorithm are
compared with that of self-uploading and greedy-uploading strategies. Figure 5(c)
depicts that when the density of vehicles is in the medium level, the throughput of
ICDU algorithm is larger than that of self-uploading but smaller than that of greedy-
uploading. The explanation is that our proposed ICDU algorithm works in a con-
strained and cooperative method. With the help of cooperative vehicles to upload data
at the same time, the data uploading bandwidth can be enlarged for the target vehicle.
Thus, the data throughput of proposed algorithm performs better than self-uploading
without cooperation. When the data to be uploaded do not achieve a saturated level in
the network, the CH in greedy-uploading will choose all the vehicles in the coverage to
help uploading data cooperatively, which can lead to a large throughput. However,
when the density of vehicles is high, i.e., there exists a large amount of data to be
uploaded, the greedy-uploading may lead to the failure of uploading. The reason is that

Fig. 5. The metrics performance.

258 Z. Gao et al.

it chooses cooperative vehicles without constraints, the connection lifetime may be
extremely short between vehicles. It is more likely for greedy-uploading that the data
segmentation path breaks frequently due to the short V2V connection lifetime, which
may lead to the packet loss. And our proposed algorithm avoids the path from breaking
frequently by selecting proper vehicles with long connection lifetime between each
other to participate in the uploading process. Therefore, the proposed ICDU algorithm
can provide a stably increasing data uploading throughput compared with two
benchmark strategies and can achieve a larger throughput than greedy-uploading when
vehicles are dense.

5 Conclusion

In this paper, a clustering strategy and a cooperative intra-cluster data uploading
(ICDU) algorithm are proposed. We modeled the number of clusters, CH change rate,
and the data uploading throughput in the simulation. The number of CHs and CH
change rate of the proposed clustering strategy are compared with those of VMaSC and
greedy clustering strategy. The outcome shows that the proposed clustering strategy
outperforms the two previous works. The data uploading throughput of the proposed
ICDU algorithm is also compared with self-uploading and greedy-uploading strategies.
The result shows that ICDU performs better than self-uploading in all kinds of the
vehicle densities and outperforms greedy-uploading when in the dense scenario.

As for future work, we aim to investigate the cooperation between different clusters
to make the adjacent clusters work together in order to optimize the efficiency of global
data uploading in VANET. The data uploading method based on trajectory prediction
will be taken into consideration.

Acknowledgement. This work is supported by National Key Research and Development
Program of China (2016YFE0204500), National Science and Technology Pillar Program
(2015BAH03F02), and Industrial Internet Project of Ministry of Industry and Information
Technology of PRC.

References

1. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation
offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)

2. Zhang, K., Mao, Y.: Mobile-edge computing for vehicular networks: a promising network
paradigm with predictive off-loading. IEEE Veh. Technol. Mag. 12(2), 36–44 (2017)

3. Sun, F., Hou, F.: Cooperative task scheduling for computation offloading in vehicular cloud.
IEEE Trans. Veh. Technol. 67(11), 11049–11061 (2018)

4. Hou, X., Li, Y.: Vehicular fog computing: a viewpoint of vehicles as the infrastructures.
IEEE Trans. Veh. Technol. 65(6), 3860–3872 (2016)

5. Ren, M.: A unified framework of clustering approach in vehicular ad hoc networks. IEEE
Trans. Intell. Transp. Syst. 19(5), 1401–1414 (2018)

A Data Uploading Strategy in VANET Targeted on Dynamic Topology 259

6. Ucar, S.: VMaSC: vehicular multi-hop algorithm for stable clustering in vehicular ad hoc
networks. In: IEEE Wireless Communications and Networking Conference (WCNC):
Network, pp. 2381–2386 (2013)

7. Ucar, S.: Multihop-cluster-based IEEE 802.11p and LTE hybrid architecture for VANET
safety message dissemination. IEEE Trans. Veh. Technol. 65(4), 2621–2636 (2016)

8. Zhang, D.: New multi-hop clustering algorithm for vehicular ad hoc networks. IEEE Trans.
Intell. Transp. Syst. 20(4), 1517–1530 (2019)

9. Wang, T.: Self-adaptive clustering and load-bandwidth management for uplink enhancement
in heterogeneous vehicular networks. IEEE Internet Things J. 6(3) (2019)

10. Shahwani, H.: A stable clustering algorithm based on affinity propagation for VANETs. In:
The 19th International Conference on Advanced Communications Technology
(ICACT2017), February 2017

11. Lee, J.: Trajectory-aware edge node clustering in vehicular edge clouds. In: The 16th IEEE
Annual Consumer Communications & Networking Conference (CCNC) (2019)

12. Calvo, J.A.L.: A two-level cooperative clustering scheme for vehicular communications. In:
The 6th International Conference on Information Communication and Management (2016)

13. Kuklinski, S., Wolny, G.: Density based clustering algorithm for vanets. In: 2009 5th
International Conference on Testbeds and Research Infrastructures for the Development of
Networks Communities and Workshops. TridentCom 2009, pp. 1–6, April 2009

14. Ren, M.: A new mobility-based clustering algorithm for Vehicular Ad Hoc Networks
(VANETs). In: 2016 IEEE/IFIP Network Operations and Management Symposium (NOMS
2016), April 2016

15. Huang, C.-M.: V2V data offloading for cellular network based on the software defined
network (SDN) inside mobile edge computing (MEC) architecture. IEEE Access, 17741–
17755 (2018)

16. Lakshmi Devi, R.: A cluster based authentic vehicular environment for simple highway
communication. In: International Conference on Information and Network Technology
(ICINT 2012), vol. 37 (2012)

17. Hande, R.S.: Comprehensive survey on clustering-based efficient data dissemination
algorithms for VANET. In: International Conference on Signal Processing, Communication,
Power and Embedded System (SCOPES) (2016)

18. Ni, Y.: Data uploading in hybrid V2V and V2I vehicular networks: modeling and
cooperative. IEEE Trans. Veh. Technol. 67(5), (2018)

260 Z. Gao et al.

Cloud Server Load Turning Point
Prediction Based on Feature Enhanced

Multi-task LSTM

Li Ruan1,2(B), Yu Bai1,2, and Limin Xiao1,2

1 State Key Laboratory of Software Development Environment, Beihang University,
Beijing 100191, China

{ruanli,mr by2017,xiaolm}@buaa.edu.cn
2 School of Computer Science and Engineering, Beihang University,

Beijing 100191, China

Abstract. Cloud workload turning point is either a local peak point
which stands for workload pressure or a local valley point which stands
for resource waste. The local trend on both sides of it will reverse. Pre-
dicting such kind of point is the premise to give warnings to the sys-
tem managers to take precautious measures. Comparing with the value
base workload predication approach, turning point prediction can pro-
vide information about the changing trend of future workload i.e. down-
trend or uptrend. So more elaborate resource management schemes can
be adopted for these rising and falling trends. This paper is the first study
of deep learning based server workload turning point prediction in cloud
environment. A well-designed deep learning based model named Feature
Enhanced multi-task LSTM is introduced. Novel fluctuate features are
proposed along with the multi-task and feature enhanced mechanisms.
Experiments on the most famous Google cluster trace demonstrate the
superiority of our model comparing with five state-of-the-art models.

Keywords: Cloud computing · Turning point prediction · Multi-task
LSTM · Feature fusion · Time series

1 Introduction

The last decade has witnessed a surge of interest and commercial usage in Cloud
computing. Better resource management strategy have been well studied [1].
With the development of artificial intelligence, machine learning based and deep
learning based server load prediction models have been closely integrated with
the resource management strategy. The more information we can get about the
future workload the more efficient our resource management will be.

Although value based prediction methods have made great progress, due to
the volatility of cloud host load, accurately predicting host load is still a chal-
lenge. Even if we can predict the load value at the next moment, it is difficult

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 261–266, 2020.
https://doi.org/10.1007/978-3-030-38961-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_22

262 L. Ruan et al.

to know the workload state and dynamics of the underlying trend, more specif-
ically it’s hard to know whether it is the potential peak point which stands for
workload pressure or valley point which stands for resource waste. Because they
could deliver very little information about future.

In this paper we focus on predicting the turning point of cloud server work-
load. A turning point is a local peak or valley point, the local trend on both
sides of it will reverse. Figure 1(a) and (b) show a valley point and a peak point,
The dotted lines on either side of the point represent local trends. Both of the
two kinds are what we called turning point. Our main goal is to predict whether
the current workload is a turning point.

(a) Example 1 server workload with
turning points

(b) Example 2 server workload with
turning points

Fig. 1. Turning points in a real cloud server

The study most similar to us is [5], the authors use the state-of-the-art turn-
ing point prediction model in the stock market area called WSVM [4] to predict
abrupt changes of the number of virtual machine requests. Comparing with the
number of virtual machine requests, cloud server workloads have stronger nonlin-
earity and time variability, which are difficult for conventional machine learning
model to capture.

So, in this paper we propose our cloud server workload turning point predic-
tion model, which consists of three parts: workload repository, workload prepro-
cessing, and Feature-Enhanced Multi-task LSTM.

The contributions of this paper are summarized as following:

– We introduce a Feature Enhanced Multi-task LSTM for cloud server work-
load turning point prediction. To the best of our knowledge, we are the first
to propose a deep learning model to do turning point prediction in cloud
environment.

– Four novel fluctuate features are proposed along with the multi-task and
feature enhanced mechanisms.

– We conduct extensive experiments on the most famous Google production
cluster trace, the result demonstrate the superiority of our model comparing
with five state-of-the-art models.

Cloud Server Load Turning Point Prediction 263

2 Notation and Problem Definition for Workload Turning
Point Prediction

2.1 Definition for Workload Turning Point

Given a workload time series x = (x1, ...x2, ...xT), local trend is often captured
by applying a piece wise linear time series segmentation (or called representation)
algorithm (PLR) [2]. The boundaries of segments are the candidate set of turning
points. After filtering the additional boundaries point we can get the labels. 1
means turning point and 0 means common point, and the other points which
are not segment boundaries are also labeled as common point.

We can predict the turning point by learning a turning point indicative func-
tion yt = f(xt) where yt ∈ (0, 1). 0 means xt is a common point and 1 means
xt is a turning point.

3 Workload Turning Point Prediction for Cloud Server

Our model architecture is shown in Fig. 2, which consists of three parts: workload
repository, workload preprocessing, and Feature-Enhanced Multi-task LSTM.
The workload repository keeps the trace of cloud servers, including time series
of CPU, memory and other workloads, which are the inputs our model. The work-
load preprocessing module is responsible for extracting features of the workload
and generating labeled data for model training, both of them are sent to the sub-
sequent prediction module. The prediction module uses the Feature Enhanced
Multi-task LSTM deep model to predict turning point and output the corre-
sponding predicted label.

Fig. 2. Architecture of our cloud server workload turning point prediction model

In addition to the three basic statistical features (current workload, average
of the workload, variance of the workload) reported in [5], we have proposed
four novel fluctuant features, each of which can partially reflect recent load
fluctuation:

264 L. Ruan et al.

– Relative strength of the workload:

frsi = xup/(xup + xdown) (1)

xup =
n−1∑

i=1

|xt−i+1 − xt−i|I(xt−i+1 − xt−i > 0) (2)

xdown =
n−1∑

i=1

|xt−i+1 − xt−i|I(xt−i+1 − xt−i < 0) (3)

– Absolute sum of the workload changes:

fasc =
n−1∑

i=1

|xt−i+1 − xt−i| (4)

– Mean second derivative central of the workload:

fmsdc
1

n − 2

n−1∑

i=2

[(xt−i+2 − xt−i+1) − (xt−i+1 − xt−i)]. (5)

– Linear trend slope of the workload.

3.1 Feature Enhanced Multi-task LSTM

After the preprocessing steps, workload features along with the raw workload
series are sent to our Feature Enhanced multi-task LSTM model to do the final
prediction. The extracted feature sequences have different meanings from the
original time series data. The feature sequence describes the local trend changes
from a higher level. So a proper way is to model the raw workload series and
its feature sequence separately, by using two LSTM. This is what we called
multi-task. However, considering the combination of features and the raw work-
load series may generate new useful features (for example the intersection of
the moving average sequence of the workload and the original workload reflects
a new changing pattern of local workload trend), we use another LSTM layer
to fusion the hidden representation of them. And this is what we called feature
enhanced. We use two different LSTM as encoder to encoder the feature sequence
and the raw workload series separately. Along with the generation of two kinds
of representation at each time step, they are fed into the another LSTM which
is played as the fusion encoder. Finally we will get three kinds of hidden repre-
sentation at the last time step: the raw workload series representation hf

t , the
feature series representation hf

t , the newly generated feature representation hu
t .

They are added together to get the final representation for workload turning
point prediction.

Cloud Server Load Turning Point Prediction 265

4 Experiments

To evaluate the performance of the proposed model, we have conducted exten-
sive experiments on a famous public trace google cluster trace1. We randomly
select three machines with ID: 207776314 (M1), 908054 (M2), 1273805 (M3)
as three of our experiment data sets. We divide each data set into a training
set, a validation set, and a test set with ratio 0.8, 0.1 and 0.1. We refer our
Feature Enhanced Multi-task LSTM model as FEMT-LSTM, and in order to
verify the effectiveness of our method, we compared five state-of-the-art mod-
els. Logistic regression (LR), weighted SVM with basic features (WSVM-Basic)
[3], WSVM-basic model with fluctuant features (WSVM-Fluctuant), LSTM with
only workload series as input (P-LSTM), LSTM with workload series and the
feature series as inputs but without a separate approach (S-LSTM). And We use
the F1-score as the main metrics for model evalution.

Table 1. Comparing of 6 model performance in M1 −M3.

Method M1 M2 M3

F1 Precision Recall F1 Precision Recall F1 Precision Recall

LR 0.4428 0.3500 0.5900 0.3444 0.2716 0.4705 0.1597 0.2053 0.1306

SV M − Basic 0.5 0.4201 0.6206 0.4487 0.3736 0.5614 0.3949 0.4405 0.3579

SV M − Fluctuant 0.5237 0.4703 0.6012 0.4789 0.4715 0.4866 0.4201 0.4143 0.4261

P − LSTM 0.4692 0.3097 0.9671 0.4964 0.4416 0.5668 0.4562 0.3651 0.6079

S − LSTM 0.5144 0.3911 0.7511 0.5011 0.4395 0.5828 0.4212 0.3290 0.5852

FEMT − LSTM 0.5660 0.4774 0.6948 0.5056 0.4346 0.6043 0.4706 0.3816 0.6136

The experiment results are shown in Table 1. As We can see, our FEMT-
LSTM achieve the best F1-score in all the three data set, with a maximum
improvement more than 4.2%. Note that the two LSTM baselines we propose
can often beat the traditional WSVM based models, and achieve second place,
so the 4.2% improvement is comparing with our baseline LSTM models. When
comparing with the LR and WSVM based models, our model can improve 5%
at most in F1-score.

The WSVM model with fluctuant features beats the WSVM without fluctu-
ant features on three data set with a maximum improvement more than 5.3%. It
means our features are effective for turning point prediction. The FEMT-LSTM
model beats the P-LSTM with a maximum improvement more than 9.5%. After
fusing the handcraft Fluctuant features we can get a better performance, It
demonstrates the feature enhanced characteristic of our FEMT-LSTM model.
The FEMT-LSTM model beats the S-LSTM with a maximum improvement
more than 5.1%. Modeling the raw workload series and the features series sep-
arately will improve the performance. And this demonstrates the multi-task
characteristic of our FEMT-LSTM model.

1 https://github.com/google/cluster-data.

https://github.com/google/cluster-data

266 L. Ruan et al.

5 Conclusion

In this paper, we study for the first time the problem of workload turning point
prediction in cloud environment. And we are the first to propose a deep learn-
ing model to do the prediction. Four novel fluctuate features and the specially
designed Feature Enhanced Multi-task LSTM are introduced along with the
multi-task and feature enhanced mechanisms for better prediction. Extensive
experiments on the most famous real production cloud workload trace, Google
cluster trace, demonstrate the superiority of our model comparing with five
state-of-the-art models.

Acknowledgements. This work is by supported by the National Key R&D Pro-
gram of China under Grant NO. 2017YFB0202004, the fund of the State Key Labo-
ratory of Software Development Environment under Grant No. SKLSDE-2017ZX-10,
and the National Science Foundation of China under Grant No. 61772053 and No.
61572377. Guangzhou Science and Technology Projects (Grant Nos. 201807010052 and
201610010092).

References

1. Duggan, M., Shaw, R., Duggan, J., Howley, E., Barrett, E.: A multitime-steps-ahead
prediction approach for scheduling live migration in cloud data centers. Softw. Pract.
Exp. 49(4), 617–639 (2019). https://doi.org/10.1002/spe.2635

2. Keogh, E.J., Chu, S., Hart, D.M., Pazzani, M.J.: An online algorithm for segmenting
time series. In: Proceedings of the 2001 IEEE International Conference on Data
Mining, 29 November–2 December 2001, San Jose, California, USA, pp. 289–296
(2001). https://doi.org/10.1109/ICDM.2001.989531

3. Luo, L., Chen, X.: Integrating piecewise linear representation and weighted support
vector machine for stock trading signal prediction. Appl. Soft Comput. 13(2), 806–
816 (2013). https://doi.org/10.1016/j.asoc.2012.10.026

4. Luo, L., You, S., Xu, Y., Peng, H.: Improving the integration of piece wise linear
representation and weighted support vector machine for stock trading signal predic-
tion. Appl. Soft Comput. 56, 199–216 (2017). https://doi.org/10.1016/j.asoc.2017.
03.007

5. Xia, B., Li, T., Zhou, Q., Li, Q., Zhang, H.: An effective classification-based frame-
work for predicting cloud capacity demand in cloud services, p. 1 (2018). https://
doi.org/10.1109/TSC.2018.2804916

https://doi.org/10.1002/spe.2635
https://doi.org/10.1109/ICDM.2001.989531
https://doi.org/10.1016/j.asoc.2012.10.026
https://doi.org/10.1016/j.asoc.2017.03.007
https://doi.org/10.1016/j.asoc.2017.03.007
https://doi.org/10.1109/TSC.2018.2804916
https://doi.org/10.1109/TSC.2018.2804916

Distributed and Parallel Algorithms

Neuron Fault Tolerance Capability Based
Computation Reuse in DNNs

Pengnian Qi1, Jing Wang1,2(&), Xiaoyan Zhu1,
and Weigong Zhang1,2

1 School of Information Engineering, Capital Normal University, Beijing, China
pengnianqi@gmail.com, {jwang,zwg771,5590}@cnu.edu.cn

2 Beijing Advanced Innovation Center for Imaging Technology, Beijing, China

Abstract. For applications of speech and video, the consecutive inputs exhibit
a high degree of similarity, hence, some results of previous execution can be
reused. The technique of quantization can efficiently increase the similarity of
consecutive inputs. However, when using quantization, the smaller the number
of quantization bits the higher the similarity, as the inputs are constrained to a
smaller set of values, but the larger the accuracy loss since input errors are
increased. Therefore, we observe that existing reuse schema just applied unique
the number of quantization bits in the entire network. If the number of quan-
tization bits is too long, it will directly reduce the similarity between the inputs
and thus reduce the reuse ratio. Hence, it is important that exploits the tradeoff
among the number of quantization bits, reuse rate, and accuracy. There is an
opportunity to significantly improve the performance and efficiency of DNN
execution by use multiple quantization bits simultaneously according to the
technique of neuron criticality analysis. To do so, we propose a novel reuse
schema called Mquans based on neuron criticality analysis without accuracy
loss. And evaluation results show that our proposed design achieves 2.7
speedups and 38% energy saving on average over the baseline.

Keywords: Deep learning � Computational reuse � Approximate computation

1 Introduction

An initial proposal [1] aims to reuse some results of previous executions, instead of
computing the entire DNN. However, it’s just applied unique the number of quanti-
zation bits in the entire network. If the number of quantization bits is too long it will
directly reduce the similarity between the inputs and thus reduce the reuse ratio. On the
contrary, if the number of quantization bits is too short, the loss of precision will be
very large. Instead of using uniquely the number of quantization bits where one of the
inputs can reuse the previous result. We opt to design a novel computational reuse
schema called Mquans (applying multiple the number of quantization bits simulta-
neously) combination neurons criticality analysis [3]. The technique of neurons criti-
cality analysis can simply explain that computing the partial derivative of each neuron
from backward propagation in training phase, the larger the partial derivative, the fairly
small fault can cause a large error, and the poor fault tolerance of the neuron is more

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 269–276, 2020.
https://doi.org/10.1007/978-3-030-38961-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_23

critical. In this paper, we calculate first the criticality factor of each neuron in the
training phase based on ApproxANN [3]. Then, using computational results divide all
neurons into different clusters by the k-medoids algorithm by computed value. We also
define the criticality level of each cluster by computed value—finally, we applying a
specific quantization bit for each cluster according to their criticality level. Evaluation
results show that our proposed design achieves 2.7 speedups and 38% energy saving on
average over the baseline reuse schema.

In summary, the main contributions of this work include:

• The quantization can further increase the similarity between consecutive inputs.
However, the smaller the number of quantization bits the higher the similarity, as
the inputs are constrained to a smaller set of values, but the larger the accuracy loss
since input errors are increased. Therefore, it is important that exploits the tradeoff
among the number of quantization bits, reuse rate, and accuracy.

• We propose a novel computation reuse scheme based on neuron critical analysis
which employs multiple the number of quantization bits simultaneously in reuse
case to increase reuse rate without accuracy loss.

• We implement a reuse-based inference technique with the software on top of state-
of-the-art DNN accelerator. Evaluation results show that our proposed design
achieves 2.7 speedups and 38% energy saving on average over the baseline reuse
schema.

2 Background

2.1 Input Similarity Analysis

Figure 1 illustrates a simple case of speech recognition that classifies a sequence of
audio frames in phonemes by DNN execution multiple times. We found that those
consecutive frames have high similarity. On the other hand, some applications such as
video processing also exhibit similar behavior; the consecutive images in a video tend
to be very similar. It’s mainly due to the following reasons. At first, the length of frames
in the order of several milliseconds, and the speech signal almost stationary in each

Time10 ms

frame0 frame1 frame2 frame3 frame4

Fr
eq

ue
nc

y

Exec1 Exec2 Exec3

Fig. 1. [1] The audio signal is split in frames of 10 ms, in speech recognition. The DNN is
executed multiple times to classify the frames in phonemes. In this example, each DNN
execution takes as input windows of three frames.

270 P. Qi et al.

short interval; therefore, adjacent frames exhibit a high degree of similarity. And then,
the DNN uses neighbor frames to classify to each audio frame. Hence, successive
execution operations overlapping windows of frames [1].

2.2 Reuse Principle

We apply a mechanism that calculates the outputs of each DNN layer by reusing the
buffered results for the previous execution. Assuming that the output z1 is the result of
the first execution of DNN, it can compute as follow: z1 = i11w1 + i12w2 + i13w3 + b,
where i, w and b are the inputs, weights, and bias respectively. Same as z1, z2 is the
output of second DNN execution of this neuron also computed as z2 = i21w1 +
i22w2 + i23w3 + b. However, if the first two inputs are the same in both we apply, the
output can be computed more efficiently as z2 = z1 + (i32 − i31)w3. It is obvious that
we just need to subtract inputs that are different and multiplied by their respective
weights, then, added the result of the previous execution. Note that in this case, only
one weight has to be fetched instead of three, the bias is not required and only three
floating-point computations are performed instead of six.

From the above, we can summarize the general conclusion as follow:

z0o ¼ zo þ
Xn

i¼1

ððq0i � qiÞ �WioÞ ð1Þ

For each layer, we first compute the difference between the quantized value of
previous and current (di ¼ q0i � qi). For each output neuron o, we just need to multiply
the weight and its corresponding difference di and added the result of previous exe-
cution, only if di is not equal to zero. Otherwise, directly reuse previous execution
result and skip all computations and data accesses.

2.3 Neurons Criticality Analysis

In [3], Zhang et al. proposed a theoretical neuron criticality analysis technique based on
approximate computing, which can be efficiently applied to neural networks. We used
that method to calculate the criticality factor of neurons in each output layer and hidden
layers after the training phase while all the weights have been fixed. And then, we
classified them into different clusters by k-medoids algorithm, according to the com-
puted value. Note that the value of k decided how many criticality levels we classified
for all neurons. In this work, we applied several k values (3, 6, 9, 12) to compare their
different impact for reuse rate and accuracy loss.

Neuron Fault Tolerance Capability Based Computation Reuse in DNNs 271

3 Mquans Reuse Schema

3.1 Cluster-Wise Quantization

We define the quantization function Q(i) as [2]:

QðiÞ ¼ 1
2k � 1

roundðð2k � 1Þ � zqÞ ð2Þ

Where Zi denotes the full-precision value of the input, Q ið Þ 2 0; 1½ � denotes the
quantized value. And same as [2], we first use a clip function f(zi) = clip(zi, 0, 1) to
bound the inputs to [0,1]. After that, we conduct quantize the inputs by applying the
quantization function Q(i) on f(zi).

zq ¼ Qðf ðziÞÞ ð3Þ

As shown in Table 1, we list different quantization strategies corresponding to the
number of clusters. We used 32-bit quantization bits for the least fault tolerant clusters,
mainly due to that is the longest quantization bits used in the baseline articles. The
baseline also applied 16 bits, 12 bits, 8 bits, respectively. Besides, we employed other
quantization bits in our experiment. And the experimental results showed that with the
number of clusters increases computational reuse rate gradually drops and accuracy
increase obviously. Note that 3 clusters have the highest reuse rate and the worst
accuracy, the 12 clusters have the best accuracy and the worst reuse rate. However,
reuse rates averaged 18% higher than baseline and accuracy loss less than 6% when we
used 12 clusters. And it’s the best tradeoff between accuracy and reuse rate which
dividing all neurons into 6 clusters in our experiments.

3.2 Mquans Reuse Schema

As shown in Fig. 2, we design two buffers to support our reuse schema. The reuse
buffer is used to store the data of applied in reuse schema. And we organized in three
different areas for it. The first area used to store the quantization value that is required
to verify whether an input approximates equal the previous execution one. The second
area stores the output of all the layers where the computation reuse schema is exploited,
and to be later reused in next DNN execution. The third area stores the intermediate
data of layers (temporal activations) where our reuse schema is not applied. The
Weights-Buffer has used to stores the weight of every neuron.

Table 1. Quantize full-precision inputs into different bit-width based on the criticality of each
cluster

Cluster The number of quantization bits for each cluster

3 32-16-12
6 32-26-20-16-12-8
9 32-28-24-20-16-12-8-6-4
12 32-28-24-20-16-16-8-8-6-6-4-4

272 P. Qi et al.

Figure 3 shows the execution flow of our reuse schema. Note that first execution is
different, as it must be calculated the DNN from scratch whereas subsequent executions
can reuse previous results. The first execution can describe as follows: initially, the
DNNs reads and quantizes the first input, and the quantization process is to select the
corresponding the number of quantization bits according to the fault tolerance capa-
bility level of the cluster this neuron belonged. In parallel, DNN read N weights of
different neurons from the buffer. The quantized value of the input is stored into Reuse-
Buffer to preparation for reuse in the next execution. It performs N multiplications by
input and weight, followed by N additions to accumulate the result of each output
neuron. The next step is stored outputs into Reuse-Buffer, to be used by the next layer
and to be reused by the same layer in the next DNN execution. Subsequent executions
employ our Mquans reuse model. At first, the accelerator reads first input and the
corresponding quantized value of previous execution input from Reuse-Buffer. The
next step is quantized the current input and subtracted the quantized value of the
previous execution input. If the outcome is zero, the DNN ignored current input and
skipped all corresponding computations and memory accesses. In case the outcome is
not zero, the quantized value of current, stored into Reuse-Buffer, as the target of next
time compared. To this end, the DNN fetched N weights of different neurons from
memory. Then, N multiplications performed with corresponding weight and the dif-
ference between the current input and the previous one. At the same time, DNN reads
N outputs of previously executed from Reuse-Buffer. And then, computes the final

Reuse Buffer Weights Buffer

Fig. 2. The structure of reuse buffer and configurable buffer

More
Inputs?

Read Qi from
Reuse-buffer

Cluster ?

Quant
Function ?

Read xi from RB Ci=quant(xi)

di=Qi-Ci di=0 ?
Update Qi in
reuse-buffer

no Read N
weight

N MULs
di*(wh+wm+

wl)ij

Read N
output(zj)

N ADDs
zj+(di*wij)

Write N output to
reuse-buffer

More
Neurons?

no

no

Fig. 3. The execution flow of Mquans reuse schema

Neuron Fault Tolerance Capability Based Computation Reuse in DNNs 273

result and updated in the Reuse-Buffer. DNN repeated this process until all neurons are
corrected for changed input.

4 Experiment and Evaluation

4.1 Experimental Setup

We implement our design and baseline using a software simulator based on compu-
tational reuse schema shown in Sect. 3. We evaluate our reuse schema on three state-
of-the-art DNNs from different application domains, including acoustic scoring, speech
recognition and video classification. We first use MLP to implement acoustic scoring in
the Kaldi toolkit that is a popular framework for speech recognition and trained by
Librispeech dataset. Then, we use RNN to implement end-to-end speech recognition in
Pytorch, and trained by TEDLIUM dataset. Finally, We employ C3D, an efficient video
classification framework from Facebook implemented in Caffe. We use UCF10 dataset
to evaluate C3D. We compare our reuse schema running on a high-performance CPU
(Intel Core i7 4790), and a modern high-end GPU (NVIDIA GTX TiTan X). We use
the RAPL library [4] to collect energy consumption in the CPU, and Nvidia-smi
(NVIDIA System Management Interface) to measure GPU power dissipation.

4.2 Results Analysis

The reuse schema proposed by baseline achieved 1.9X and 2.1X speedup for Kaldi,
EESEN, respectively. Hence, we choose these applications as our workloads. As
shown in Fig. 4, our design can achieve consistent speedups for three DNNs that range
from 2.2X (C3D) to 3.3 (EESEN). Furthermore, the overheads of performing the
quantization and comparison two consecutive inputs are fairly small.

Figure 5 illustrates the energy saving for each DNN that applied in our experi-
ments. On average, our reuse schema reduces the energy consumption of the DNN by
38%. The energy saving mainly correlated with the diversity of quantization precision
and optimization of inputs that cannot be reused in DNN execution.

3.1
2.6

3.6

2.8
2.3

3.4

2.5
2.1

3.2

2.3
1.9

2.92.7
2.2

3.3

0

1

2

3

4

Kaidi C3D EESEN

Sp
ee

du
p

3 6 9 12 Average

Fig. 4. Overall speedup among different applications and 3, 6, 9, 12 denotes that we classified
all the neurons into 3, 6, 9, 12 clusters

274 P. Qi et al.

As shown in Fig. 6, we compare speedup and energy saving for our reuse schema
with software implementation running on CPU and GPU. Regarding the speedup, our
accelerator outperforms both CPU and GPU in all workloads except C3D. This is
because C3D achieves close to peak performance in the GPU. On average, the energy
saving form CPU and GPU is 4.1X and 5.3X respectively.

5 Related Works

CNN Accelerator. DianNao [6] was the first work that includes its own on-chip
SRAM buffers to reduce memory accesses energy consumptions, and DaDianNao [7]
further improved this aspect by adding eDRAM to store the weights. Eyeriss [10]
proposed a row stationary dataflow by exploiting local data reuse of filter weights and
input neurons. Farabet et al. [5] propose a systolic architecture called NeuFlow by
remaining weights in the register to reuse it as far as possible.

Computational Reuse. Several research [1, 8, 9], proposed various computational
reuse technique to reduce the overhead of computations and memory accesses in DNN.
The [1] designs an accelerator that exploits computational reuse by input similarity.
Hegde et al. [8] proposed a CNN accelerator called Unique Weight CNN Accelerator
(UCNN) which uses weight repetitions to reuse CNN sub-computations (e.g., dot
productions) and to reduce model size. COREX [9] leverages datacenter redundancy by

0%

20%

40%

60%

Kaidi C3D EESEN Average

N
or

m
al

ize
d

En
er

gy

(%
)

Fig. 5. Energy saving for each DNN

0

2

4

6

8

Kaldi C3D EESEN

Speedup GPU Energy Saving GPU Speedup CPU Energy Saving CPU

Fig. 6. Speedup and energy saving for accelerator with software implementation running on
GPU and CPU

Neuron Fault Tolerance Capability Based Computation Reuse in DNNs 275

integrating a storage layer together with the accelerator processing layer and added
layer stores the outcomes of previous computations. The preciously computed results
are reused in the case of recurring computations, thus eliminating the need to re-
compute them.

6 Conclusion

To improve the percentage of reuse without accuracy loss, we applied the technique of
neurons criticality analysis into our reuse model and divided all neurons from each
layer into different clusters by k-medoids algorithm, and each cluster uses a specific
quantization precision. Evaluation results show that our proposed accelerator achieves
2.7 speedups and 38% energy saving on average over the baseline accelerator.

Acknowledgment. This work was supported by the National Natural Science Foundation of
China (NSFC) under grants (61772350), Common Information System Equipment Pre-research
Funds (Open Project, JZX2017-0988/Y300), the Construction Plan of Beijing High-level Tea-
cher Team (CIT&TCD201704082, CIT&TCD20170322), the Open Project of State Key Lab-
oratory of Computer Architecture (CARCH201607). The work is also supported by the Capacity
Building for Sci-Tech Innovation Fundamental Scientific Research Funds (025185305000).
Beijing Nova program (Z181100006218093), Research Fund from Beijing Innovation Center for
Future Chips (KYJJ2018008).

References

1. Riera, M., Arnau, J.-M., Gonzalez, A.: Computation reuse in DNNs by exploiting input
similarity. In: ISCA (2018)

2. Zhou, S., Wu, Y., Ni, Z., et al.: DoReFa-net: training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016)

3. Zhang, Q., Wang, T., Tian, Y., Yuan, F., Xu, Q.: ApproxANN: an approximate computing
framework for artificial neural network. In: DATE (2015)

4. Weaver, V.M., et al.: Measuring energy and power with PAPI. In: ICCP (2012)
5. Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., LeCun, Y.: NeuFlow: a

runtime reconfigurable dataflow processor for vision. In: CVPRW (2011)
6. Chen, T., et al.: DianNao: a small-footprint High-throughput accelerator for ubiquitous

machine-learning. In: ASPLOS (2014)
7. Chen, Y., et al.: Dadiannao: a machine-learning supercomputer. In: MICRO (2014)
8. Hegde, K., Yu, J., Agrawal, R., et al.: UCNN: exploiting computational reuse in deep neural

networks via weight repetition. In: ISCA (2018)
9. Fuchs, A., Wentzlaff, D.: Scaling datacenter accelerators with compute-reuse architectures.

In: ISCA (2018)
10. Chen, Y.-H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient dataflow

for convolutional neural networks. In ISCA (2016)

276 P. Qi et al.

http://arxiv.org/abs/1606.06160

Reliability Enhancement of Neural Networks
via Neuron-Level Vulnerability Quantization

Keyao Li1, Jing Wang1,2(&), Xin Fu3, Xiufeng Sui4,
and Weigong Zhang1,2

1 School of Information Engineering, Capital Normal University, Beijing, China
{2171002068,jwang,zwg771}@cnu.edu.cn

2 Beijing Advanced Innovation Center for Imaging Technology, Beijing, China
3 Department of Electrical and Computer Engineering, University of Houston,

Houston, USA
xfu8@central.uh.edu

4 School of Information and Electronics, Beijing Institute of Technology,
Beijing, China

suixiufeng@bit.edu.cn

Abstract. Neural networks are increasingly used in recognition, mining and
autonomous driving. However, for safety-critical applications, such as autono-
mous driving, the reliability of NN is an important area that remains largely
unexplored. Fortunately, NN itself has fault-tolerance capability, especially,
different neurons have different fault-tolerance capability. Thus applying uni-
form error protection mechanism while ignore this important feature will lead to
unnecessary energy and performance overheads. In this paper, we propose a
neuron vulnerability factor (NVF) quantifying the neural network vulnerability
to soft error, which could provide a good guidance for error-tolerant techniques
in NN. Based on NVF, we propose a computation scheduling scheme to reduce
the lifetime of neurons with high NVF. The experiment results show that our
proposed scheme can improve the accuracy of the neural network by 12% on
average, and greatly reduce the fault-tolerant overhead.

Keywords: Neural network � Soft error � Reliability � Memory protection �
Neuron Vulnerability Factor � Fault tolerance

1 Introduction

Neural networks (NN) is popular in many fields such as speech recognition, autono-
mous vehicles, and data centers as they can achieve unprecedented accuracy.
Although NN has been increasingly used in many applications, the use of NN must
comply with the application’s requirements on precision, flexibility, reliability and
safety. For example, neural networks greatly improves the performance of autono-
mouse driving during using to sense and learn the road conditions. But if the auton-
omous vehicle misclassifies a truck or a pedestrian as a flying object due to errors, the
vehicle may not execute the brake operation to avoid the collision. Therefore, it is

The original version of this chapter was revised: the affiliation of the third author was corrected.
The correction to this chapter is available at https://doi.org/10.1007/978-3-030-38961-1_58

© Springer Nature Switzerland AG 2020, corrected publication 2022
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 277–285, 2020.
https://doi.org/10.1007/978-3-030-38961-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_58
https://doi.org/10.1007/978-3-030-38961-1_24

necessary to protect the neural networks from errors that cause the malfunction of the
self-driving system. As can be seen, the reliability investigation becomes imperative
especially in some safety-critical fields, that is because any failure in output may lead to
catastrophic consequences.

Unfortunately, the reliability of DNN is rarely investigated. The primary unreliable
factor in modern systems mainly comes from the soft errors. Soft errors can change the
data (e.g. bit flips [1]), which may further cause large deviation of standard system
outputs [2]. Studies have shown that about 80% of application failures are caused by
soft errors [3]. So in this study, we mainly focus on the soft error reliability for NN.

The conventional fault-tolerant methods, such as error correcting codes, can be
applied to tolerate soft errors in DNNs. However, 100% accurate and totally fault-free
may cause redundancy on design and significant energy overhead. Fortunately, NN has
natural fault tolerance capability, and there have been some studies leverages NN’s
inherent fault-tolerant characteristics for error tolerance and correction, which com-
promises between accuracy and energy consumption to improve performance [4, 5].
However, different applications have different requirements on the accuracy (e.g., self-
driving car has strict requirements on accuracy while data center [6] can tolerate
considerable accuracy loss). It implies that different NN applications should be treated
differently on soft error tolerance to achieve the optimal application-specific
accuracy/performance/energy trade-offs [7, 8]. More interestingly, neurons in the NN
usually exhibit different capability in fault tolerance [9, 10]. Applying uniform error
protection mechanism while ignoring this important feature will lead to unnecessary
energy and performance overheads.

In this study, we propose NVF, a quantitative method, to measure the effect of soft
errors on network output, and propose a set of NVF-guided reliability optimization
techniques for NN. The contributions are summarized as follows:

• We propose a neuronal sensitivity factor (NVF), which combines hardware struc-
tural and neuron’s criticality and can provide guidance for error-tolerant techniques.

• We propose a computation scheduling scheme to reduce the lifetime of high NVF
neurons, hence, improving the reliability of the network to tolerate soft errors.

2 Background

It is well known that not all soft errors will affect the correct execution of the program,
and some soft errors can be masked, the processor architecture level can shield more
than half of the soft errors. In order to predict the failure rate of the system caused by
soft errors and quantify the fault shielding effect, an architectural vulnerability factor
(AVF), also called soft error-sensitive factor, is proposed [11]. For example, if a single-
bit fault in the committed program counter causes wrong instructions to be executed,
which will certainly affect the program’s result, then the AVF for the committed
program counter is 100%. The key to computing AVFs is to determine which bits affect
the final system output (i.e., which are the ACE bits) and which do not (i.e., the un-
ACE bits). Then, the AVF of a hardware structure is equal to:

278 K. Li et al.

R residency ðin cycles) of all ACE bits in a structure
number of bits in hardware structure � execution cycles

ð1Þ

AVF can also measure the structural vulnerability factors of the neural networks.
However, it will treat all neurons equally and uniformly in the network, which leading
to in-accurate measurement of the NN’s vulnerability to soft errors. This is because
neural networks have some unique characteristics compared to general system struc-
tures. Studies have shown that errors that occur on different neurons have different
effects [10].

As the notations illustrated in Fig. 1, E represents the network’s cost function can
be described as:

E =
1
2

Xc

k¼1
tk � y oð Þ

k

� �2
ð2Þ

the i-th neuron’s criticality, denoted by di, can be represented by the derivative of E
with respect to yi, as illustrated by Eq. (3):

di ¼ @E
@yi

ð3Þ

As can be seen, naively applying AVF to measure the soft error vulnerability of the
neural network fails to obtain the neuron level charactor. The importance of a neuron in

the network, @E
@y, and combined with the characteristics of neural networks need to be

considered as well.

y1 yi

t1 ti tc

yc

wo

wk

wj

x1 xi xd

Fig. 1. Notations in neural network structure [10]

Reliability Enhancement of Neural Networks 279

3 NVF: Neuronal Soft-Error Vulnerability Factor

In order to accurately measure the soft error sensitivity factor of the neural network, we
propose Neuronal soft-error Vulnerability Factor (NVF) which describes the proba-
bility that the output result is affected by soft errors in NN. We estimate NVF from
hardware structural and neuron’s criticality perspectives, and characterize them using

two factors: AVF and
@E
@y

. And the following is the analysis of these factors.

Hardware Structural Vulnerability: AVF can calculate the component vulnerability
of neural networks. As can be seen from Eq. (1), AVF considers the proportion of ACE
bits in the structure and the execution time. Since operations of operators (CNN, Full
Connection and Pooling, etc.) are fixed, and computation of each layer is always
cyclical repetition, and the structure of neurons is usually similar in each layer, so the
ratio of ACE is fixed. The major difference is the residency time or lifetime of each
neuron in the network. AVF exactly reflects the impact of the neuron’s residency time
on vulnerability.

Neuron’s Criticality: Since AVF does not consider uniqueness of the neural network
and the difference among neurons, we take neuron’s criticality into consideration as
well, which could differentiate the criticality of the node. Theoretically critical analysis
of the neurons is performed based on Eq. (3).

Based on the above hardware structural and neuron’s criticality characteristics, we
combine them together and define the neuronal vulnerability factor (NVF). The cal-
culation formula of NVF of each neuron is:

NVFnode = AVF*
@E
@y

ð4Þ

The NVF for one layer is:

NVFlayer ¼
RAVF � @E

@y
number of nodes in the layer

ð5Þ

NVF could quantify the vulnerability of the neurons, and as well as the overall
network. Soft error on neurons with lower NVF may induce no or little impact on NN
accuracy due to the inherent fault-tolerant ability of neuron network. And it will
seriously affect the output when a neuron with a high NVF value is attacked by a soft
error. So reducing the NVF of the entire network can improve the NN reliability to soft
errors.

280 K. Li et al.

4 NVF-Guided Reliability Enhancements for the NNs System

NVF describes the probability that a particle strike will result in erroneous outputs or
accuracy loss. The factor AVF reflects the fraction of the neuron’s lifetime during
which the neuron contains ACE bits. To optimize the NN’s reliability, we should
reduce the lifetime of neurons with higher NVF that is more vulnerable to soft errors.
Scheduling the computation sequence could change the lifetime of neurons, and
improve the NN accuracy.

4.1 NVF-Guided Neuron Scheduling

Neurons with higher NVF value is more likely to be affected by soft errors, and the
possibility of erroneous output induced by soft error will increase, with longer high
NVF neurons lifetime. One efficient way to tackle this challenge is processing these
vulnerable neurons as soon as possible to reduce the lifetime.

Our main idea is giving the neurons with high NVF higher priority to be calculated.
As shown in Eq. (5), if the neuron process sequecne is ranked according to their

NVF values, the NVF of each layer will be reduced, hence, reducing the probability of
the entire neural network being affected by soft errors.

Scheduling the neuron processing order can be viewed as transforming the NN
during its training procedure, where the weight array is transformed under the guidance
of NVF. As shown in Fig. 2, this transformation involves two key steps: (1) Calcula-
tion of NVF, the vulnerability is analyzed to identify how neurons impact output
quality. (2) Reconstruct of weight array, in which the weigh array of each layer is re-
arranged based on NVF, thus reducing the lifetime of high NVF neurons. In Fig. 3,
(a) represents original NN, while (b) is the transformed NN, and the red number in
green circle represents the NVF value, and the number in blue circle in (a) and red
circle in (b) is the label number of neurons, in (b) a darker color implies a higher NVF.
We take the first hidden layer as an example, and suppose the system perform cal-
culation of one neuron each time, the grey neuron in figure represents nodes that finish
operations. The average NVF of the first layer is 5.25 at beginning, then the average
NVF of original process sequence is 6, 5.5 and 9, while the NVF after scheduling is 4,
2.5 and 2. As can be seen from the change of NVF value, the vulnerability is improved
under our NVF-guided neuron scheduling.

x1

4
x3

x2
3

2

1
5

6

7

8

9

4

3

2

1

5

6

7

8

9

1 5
3 6

24
7 8
9

x1

3
x3

x2
1

2

4
7

5

6

8

9

Fig. 2. NVF guided neuron scheduling flow chart

Reliability Enhancement of Neural Networks 281

NVF Calculation. A neural network needs to be trained before it can be deployed for
an inference or classification task. Training entails learning and updating the weights of
each neuron of a neural network is by performing the backward propagation algo-
rithms. We propose to utilize back propagation to characterize the criticality of each
neuron. Back propagation apportions the error at the output of the NN to the outputs of
individual neurons. Thereby, it provides a qualification of the error contributed by each
neuron to the outputs of the network. Neurons that contribute the least to the global
error are more resilient. Conversely, neurons contributing the highest error during back
propagation are deemed sensitive.

For each instance in the training dataset, the error at the output of the neural network
is computed using forward propagation. Then the errors are propagated back to the
outputs of individual neurons and their average error contribution over all inputs in the
training set is obtained. We use a statistical-based method to calculate NVF: First, for
each input in the dataset, we calculate NVF of all neurons, and sort neurons by NVF.
Then, we combine the ranking results of all input into an M � N matrix, where M
denotes number of neurons, and N denotes number of inputs in the dataset. Finally, we
analyze which neuron in each row of the matrix appears most frequently, and rear-
rangement the weight array based on the analysis.

5 Evaluation

5.1 Experimental Setup

In this section, we use four datasets: MNIST, Fashion-MNIST, SVHN, and CIFAR-10
to evaluate NVF guided scheduling and heterogeneous memory protection scheme. The

x1

x3

x2 b

1

2

3

4

5

6

7

NVF 2layer2 =4
3

NVFlayer2 =++= 2.5
2

NVFlayer2 =+=5.25
4

NVFlayer2 =+++=

5.25
4

2379

9273NVFlayer2 =+++= 6
3

237

927NVFlayer2 =++= 5.5
2

23

92NVFlayer2 =+= 9NVFlayer2 =

x1

x3

x2 b

4

2

1

3

7

5

6

x1

x3

x2 b

1

2

3

4

5

6

7

3

7 x1

x3

x2 b

1

2

3

4

5

6

7

3

7

2

x1

x3

x2 b

1

2

3

4

5

6

7

3

x1

x3

x2 b

4

2

1

3

7

5

6

9

x1

x3

x2 b

4

2

1

3

7

5

6

9

7 x1

x3

x2 b

4

2

1

3

7

5

6

9

7

3

Fig. 3. Network NVF before (a) and after (b) scheduling

282 K. Li et al.

network topology of Fashion-MNIST is 300 � 200 � 100, and MNIST, SVHN, and
CIFAR-10 is 256 � 256 � 256. They are trained and tested on PyTorch which is a fast
and flexible experimentation that has been widely used in both industry and academia.

5.2 Effectiveness of Neurons Scheduling Scheme

We evaluate the effectiveness of NVF guided neurons scheduling scheme on four data
sets, and compare the improvment on accuracy over original process by using our NVF
scheduling approach with (1) @E=@y: scheduling scheme only considers @E=@y,
(2) NVF: scheduling scheme combines @E=@y and AVF. The injected fault time and
fault location are generated randomly, and the failure rate is set to 2%, 4%, 6%, and
8%, respectively. We conduct 25 runs of random fault injection experiments and
present the averaged improvement on output accuracy.

As Fig. 4(a) shows, when fault rate is 4% and running SVHN dataset, compared
with random processing, @E=@y guided scheduling improves accuracy by 14%, and
NVF guided scheduling improves accuracy by 21%. And compared with @E=@y
guided scheduling, NVF leading to accuracy improvements of 1%, 7%, 1% and 4% at
different failure rates. This is because our NVF guided technique leverages the critical
of neurons to effectively improve the reliability of neural network. In Fig. 4(b), while
running Fashion MNIST dataset, the improvement on accuracy compared with @E=@y
is 1.3%, 0.7%, 2.8%, 4%. We can find the optimization effect is more obvious at higher
fault rate. As Fig. 4(c) shown, while running MNIST dataset, the improvement on
accuracy compared with @E=@y is 3%, 7%, 1%, 5.4%. Finally, the improvement on
Cifar-10 is lower than 2%, that is because the accuracy of Cifar-10 is lower compared
with other datasets and the space for reliability improvement is small.

0

0.05

0.1

0.15

0.2

0.25

2% 4% 6% 8%

av
er

ag
e

 a
cc

ur
ac

y

error rate

0

0.05

0.1

0.15

0.2

0.25

2% 4% 6% 8%

 a
ve

ra
ge

 a
cc

ur
ac

y

error rate

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2% 4% 6% 8%

av
er

ag
e

 a
cc

ur
ac

y

error rate

0

0.05

0.1

0.15

0.2

0.25

2% 4% 6% 8%

 a
ve

ra
ge

 a
cc

ur
ac

y

error rate

(d) Cifar -10

(b) Fashion mnist

(c) Mnist

(a) Svhn

NVF

Fig. 4. Improvement on accuracy of the network using different scheduled schemes

Reliability Enhancement of Neural Networks 283

The evaluation result shows, for all datasets, under different failure rates and dif-
ferent network configuration, @E=@y scheduling performance better than random and
original process sequence. Moreover, the performance of NVF scheme is better than
@E=@y, and the best accuracy is obtained, which proves the effectiveness of our NVF
guidance scheduling.

6 Conclusion

We leverage the observation that neurons in the NN usually exhibit different capability
in fault tolerance, and present a neuron vulnerability factor (NVF) to quantify the
neural network vulnerability to soft error. This paper also proposes an optimization
scheme based on NVF: a NVF-guided scheduling scheme to reduce the lifetime of
vulnerable neurons. The experiment result shows our scheme could effectively improve
the overall accuracy and system reliability.

Acknowledgment. This work was supported by the National Natural Science Foundation of
China (NSFC) under grants (61772350), Common Information System Equipment Pre-research
Funds (Open Project, JZX2017-0988/Y300), the Construction Plan of Beijing High-level Tea-
cher Team (CIT&TCD201704082, CIT&TCD20170322), the Open Project of State Key Lab-
oratory of Computer Architecture (CARCH201607). The work is also supported by the Capacity
Building for Sci-Tech Innovation Fundamental Scientific Research Funds (025185305000).
Beijing Nova program (Z181100006218093), Research Fund from Beijing Innovation Center for
Future Chips (KYJJ2018008).

References

1. Sangchoolie, B., Pattabiraman, K., Karlsson, J.: One bit is (not) enough: an empirical study
of the impact of single and multiple bit-flip errors. In: International Conference on
Dependable Systems and Networks (2017)

2. Azizimazreah, A., et al.: Tolerating soft errors in deep learning accelerators with reliable on-
chip memory designs. In: IEEE International Conference on Networking, Architecture and
Storage (NAS) (2018)

3. Karlsson, J., Liden, P., Dahlgren, P., Johansson, R., Gunneflo, U.: Using heavy-ion radiation
to validate fault-handling mechanisms. In: MICRO (1994)

4. Zhang, Q., Xu, Q.: Approxit: a quality management framework of approximate computing
for iterative methods. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. (2017)

5. Chen, X., Chen, D.Z., Hu, X.S.: moDNN: memory optimal DNN training on GPUs. In:
DATE (2018)

6. Ma, Y., et al.: Optimizing loop operation and dataflow in FPGA acceleration of deep
convolutional neural networks. In: FPGA (2017)

7. Savino, A., Vallero, A., Carlo, S.D.: ReDO: cross-layer multi-objective design-exploration
framework for efficient soft error resilient systems. IEEE Trans. Comput. 67, 1462–1477
(2018)

8. Reagen, B., et al.: Minerva: enabling low-power, highly-accurate deep neural network
accelerators. In: ISCA (2016)

284 K. Li et al.

9. Venkataramani, S., Ranjan, A., Roy, K., Raghunathan, A.: AxNN: energy-efficient
neuromorphic systems using approximate computing. In: ISLPED (2014)

10. Zhang, Q., Wang, T., Tian, Y., Yuan, F., Xu, Q.: ApproxANN: an approximate computing
framework for artificial neural network. In: DATE (2015)

11. Mukherjee, S.S., Weaver, C., Emer, J., Reinhardt, S.K.: A systematic methodology to
compute the are ehitectural vulnerability factors for a hish performance microprocessor. In:
MICRO (2003)

Reliability Enhancement of Neural Networks 285

A Fault Detection Algorithm for Cloud
Computing Using QPSO-Based Weighted

One-Class Support Vector Machine

Xiahao Zhang and Yi Zhuang(&)

Department of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics,

Nanjing 211106, Jiangsu, China
{zxh,zy16}@nuaa.edu.cn

Abstract. The complexity and diversity of cloud computing bring about cloud
faults, which affect the quality of services. Existing fault detection methods
suffer problems such as low efficiency and low accuracy. In order to improve the
reliability of the cloud data center, a fault detection algorithm based on weighted
one-class support vector machine (WOCSVM) is proposed to detect and identify
the host faults in the cloud data center. Specifically, first, we conduct correlation
analysis among monitoring metrics and select key ones for reducing the com-
plexity. Second, for imbalanced monitoring dataset, one-class support vector
machine is used to detect and identify host faults, and a weight allocation
strategy is proposed to assign weights to the samples, which describes the
importance of different sample points in order to improve detection accuracy on
potential faults. Finally, for the purpose of increasing the accuracy further, the
parameters are set via a parameter optimization algorithm based on quantum-
behaved particle swarm optimization (QPSO). Furthermore, experiments by
comprising with similar algorithms, demonstrate the superiority of our algorithm
under different classification indicators.

Keywords: Cloud computing � Fault detection � Mutual information �
One-class support vector machine � Quantum-behaved particle swarm
optimization

1 Introduction

Cloud computing is a new computing model that provides computing, services, and
applications as public facilities to users [1]. As more applications and services are
deployed in clouds, the reliability of cloud computing becomes more important. Cloud
computing has complex features such as resource virtualization, application hosting,
rapid elastic architecture and multi-tenancy, which will bring about cloud faults from
time to time. The faults not only have a huge bad impact on people’s normal life and
work, but also cause serious economic losses in business and society. For example, the
Amazon website was down for about 45 min in 2013, which brought about 5.3 million
losses as customers could not make purchases during that period [2]. Hence, the
effective fault detection algorithm is one of the key techniques of guaranteeing the
reliability of cloud computing systems.

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 286–304, 2020.
https://doi.org/10.1007/978-3-030-38961-1_25

http://orcid.org/0000-0001-7257-2153
http://orcid.org/0000-0003-0706-0148
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_25

Faults in cloud computing systems are often caused by hardware faults and software
faults, which are usually randomly generated and are difficult to be reproduced.
Although virtualization provides software faults isolation among different virtual
machines, virtualization infrastructure including hypervisors and privileged virtual
machines is still vulnerable to hardware errors [3]. Due to the complex structure and
dynamic characteristics of the cloud computing systems, the detection efficiency and
accuracy of existing fault detection methods need improvement. To track the running
status of these hosts, the monitoring system needs to collect a large amount of moni-
toring data from different categories including processor, memory, disk and network of
hosts. However, the fault detector analyzing such large-scale data will bring huge
overhead. Therefore, it is urgent to propose a fault detection method that better adapts to
the cloud computing environment to improve the reliability of cloud computing systems.

Recently, lots of methods have been developed to detect faults in the cloud data
center. Threshold-based methods are most frequently used in practical applications. In
terms of academia, more research is based on statistics and machine learning methods.
The statistical methods [4] describe the system by a certain probability model in order
to obtain the fault information. However, these methods are heavily dependent on
probability distribution, which reduces the detection performance. Machine learning-
based methods are mainly divided into supervised [5, 6] and unsupervised methods [7],
these methods aims at identifying fault behavior by modeling historical data. However,
supervised methods are not so suitable for fault detection in the cloud environment
because the fault data is difficult to be obtained, and these methods usually suffer
problems such as low accuracy and low efficiency.

Considering these problems, a fault detection algorithm based on weighted one-class
support vector machine (WOCSVM) is proposed to detect the host faults in the cloud
data center. Specifically, first, we select key metrics which reflect a system’s running
status in order to reduce the complexity of the model and improve detection efficiency.
Second, we detect and identify the host faults by using one-class SVM (OCSVM) which
only needs normal data. Then a weight allocation strategy is proposed to improve
detection ability on potential faults, and use quantum-behaved particle swarm opti-
mization (QPSO) to find the optimal parameters combination of the WOCSVM model.
Finally, we simulate three fault types based on OpenStack in order to evaluate the
proposed algorithm, and the proposed algorithm is compared with similar algorithms.

Our main contributions are summarized as follows.

• We design a key metric selection algorithm based on mutual information, for
reducing the complexity of the model and improving detection efficiency.

• We propose a WOCSVM model to solve the problem of cloud computing fault
detection, and we design a weight allocation strategy to improve detection ability on
potential faults.

• We decide the optimal parameters combination of the WOCSVM model by using
quantum-behaved particle swarm optimization (QPSO) for improving the accuracy
of the detection model.

• We build a virtual platform based on OpenStack to evaluate the proposed algorithm,
and we perform comparative experiments with similar algorithms for validating the
effectiveness of our algorithm.

A Fault Detection Algorithm for Cloud Computing 287

The remainder of this paper is organized as follows. Section 2 introduces the
related work. Section 3 presents the QPSO-based weighted one-class support vector
machine (QPSO-WOCSVM) model. The QPSO-based WOCSVM host fault detection
algorithm is described in Sect. 4. Section 5 conducts performance evaluation. Even-
tually, the conclusion is summarized in Sect. 6.

2 Related Work

Fault detection methods can generally be divided into two categories including rule-
based detection and anomaly detection [8]. Rule-based detection method defines the
distinguishable features of the fault based on the phenomena represented by the his-
torical fault, and then matches the observed phenomena with the defined fault features.
When the match is successful, it is detected as faulty, otherwise, the system is considered
to be operating normally. Qiang et al. [9] proposed a fault detection method based on
Bayesian and decision tree. Firstly, the Bayesian model was used to detect the fault
node. After the system administrator verified the abnormality, the data was marked and
then the marked data was used to construct the decision tree, which is used to predict
failures. Arefin et al. [5] proposed a framework called FlowDiff, which collects infor-
mation from all entities including applications and infrastructure operated in the data
center and continuously builds behavioral models of operations, and then analyzing the
problem by matching the current information to a known fault model or rule. Rule-based
fault detection methods require a large amount of information inside the system to
describe the fault characteristics, while a large number of metrics need to be monitored
and analyzed. It is difficult for system administrators to make rules based on experience,
and rule-based detection methods cannot identify the faults that have not occurred.

Methods based on anomaly detection generally establish a model for the target
system, and the system behavior is compared with the benchmark to determine whether
the fault occurred or not. Liu et al. [10] proposed a fault detection model based on
neural network, which uses genetic algorithm to optimize weights, and the proposed
model had high precision and generalization ability. However, methods based on
neural network require a large amount of training samples, and it is very difficult to
collect sufficient fault samples. Modi et al. [11] proposed a fault detection algorithm
which combining Snort and Bayesian for cloud computing systems. The algorithm uses
Bayesian classifier to predict whether a given event is an attack by observing previ-
ously stored network events, while Snort is used to detect network faults in the cloud
environment. Palm et al. [12] designed a Bayesian fault detection system for cloud
computing systems, which uses Bayesian network to describe the complex relation-
ships between fault factors to effectively diagnose and predict faults of cloud com-
puting systems. However, Bayesian network is complicated to construct because it is
necessary to consider both network structure and sample integrity, and are usually
applied to the modeling of discrete attributes, so it might be not suitable for large-scale
cloud computing systems. Dinh-Mao et al. [13] proposed a IaaS system fault detection
algorithm based on fuzzy logic and prediction technology, which uses Gaussian Pro-
cess Regression (GPR) to predict the host resource utilization and network metrics of
next epoch, and then detect the faults by using fuzzy logical algorithm. However, GPR

288 X. Zhang and Y. Zhuang

has huge overhead of calculation when the data set is large, which is not suitable for
high real time cloud computing systems, and expert knowledge in the reasoning pro-
cess is difficult to obtain for fault detection. Wang et al. [4] proposed a self-adaptive
fault detection algorithm for cloud computing systems, which uses principal compo-
nent analysis to describe the operating status of the system, and then evaluates the
anomaly degree based on the cosine similarity. Finally, the reliability model was built
based on the exponential distribution model to predict the time of fault to adjust the
monitoring period. Adamu et al. [6] proposed a fault detection method for cloud data
centers based on Support Vector Machine (SVM), which uses normal samples and fault
samples to train the fault detection model, and then determined whether the hosts were
abnormal or not by inputting the monitoring data into the model. The authors in [14]
pointed out that SVM has a strong mathematical foundation and high reliability in
many applications. However, SVM suffers problems such as difficulty in determining
kernel function and hyperparameters, and SVM is not suitable for the cases where the
training set is imbalanced.

To sum up, the existing fault detection methods for cloud computing have the
following shortcomings.

• Some machine learning-based detection methods suffer problems such as difficulty
in selecting hyperparameters and kernel function which will affect the detection
accuracy.

• Statistical methods rely on certain probability distribution assumptions, so it is not
suitable for complex and varying cloud environments.

• Supervised detection algorithms require labeled data to train models. However, in
cloud environments, it is highly cost that using expert knowledge to distinguish and
mark data [7]. Generally, the dataset is an imbalanced dataset containing a large
amount of normal data and a small amount of abnormal data, which will reduce the
detection accuracy while using two-category classification algorithms.

3 Methodology

Different from the two-category SVM, by just providing the normal monitoring data of
hosts, OCSVM can create a fault detection model to detect the host faults. Therefore,
OCSVM is suitable for cloud computing environment where normal monitoring data
are easy to be obtained. The WOCSVM model combines weight allocation strategy and
OCSVM algorithm, and a host fault identification method is proposed based on
OCSVM, which improves the fault detection capability on different fault types. Fur-
thermore, good accuracy can still be acquired without enough priori knowledge. Based
on metrics gathered from hosts, we extract the key metrics, and the WOCSVM model
is built for normal host operation, then the model is used to pinpoint anomalous events.

3.1 Dimensionality Reduction

In order to guarantee the reliability of the cloud services, the monitoring system needs
to collect a large number of metrics to continuously track the running status of the hosts

A Fault Detection Algorithm for Cloud Computing 289

in the cloud data center. However, the metrics usually correlate strongly with each
other. Therefore, it is necessary to select key metrics while satisfying the accuracy of
detection model.

Let host monitoring metric vector set MS ¼ fM1;M2; � � � ;Mj; � � � ;Mng, where
Mj ¼ fm1;m2; � � �mYg contains Y metrics which is collected regularly from the hosts.
Especially, we mainly collect metrics related to CPU, memory, network and disk (e.g.,
resource utilization and packet loss rate). The similarity among system metrics can be
assessed by the mutual information (MI) [15], which is an information metric for
measuring the amount of shared information between the two random variables. Not
limited to the linear relationship, MI is also applicable for evaluating the nonlinear
correlation of two variables. The mutual information Iðmi;mjÞ for any two metrics mi

and mj is defined as:

Iðmi;mjÞ¼
X
mj2M

X
mi2M

pðmi;mjÞlog pðmi;mjÞ
pðmiÞpðmjÞ ; ð1Þ

where, Iðmi;mjÞ represents the amount of information shared between mi and mj,
pðmi;mjÞ is the joint probability function of mi and mj, and pðmiÞ and pðmjÞ are their
marginal probability distribution functions, respectively. mi and mj are independent
with each other if there is no shared information between them. The stronger the
correlation is, the higher the mutual information is.

In order to improve the detection efficiency, the correlation between every two
metrics is obtained by Eq. (1), and then the key metrics is selected according to the
correlation among the metrics. Let key metric vector set KS ¼ fS1; S2; � � � ; Sj; � � � ; Sng,
where Sj ¼fs1; s2; � � � ; skg is the key metric vector after extracting, and k represents the
number of key metrics. The key metric selection algorithm is proposed specifically in
Algorithm 1, and we describe the algorithm as follows.

Algorithm 1. Key Metric Selection algorithm
Input: monitoring metric vector set MS .
Output: key metric vector set KS
Step 1: Calculate the normalized mutual information by (1) between every two metrics
in the same category (network, memory), for representing the correlation. Then, we use
an undirected graph to describe the correlation among metrics. In the graph, each node
represents a metric, and two metrics with strongly correlated should be connected. The
weight of each node means the number of connected edges.
Step 2: Delete the edges and nodes connected to node which have the largest weight,
and update the weight of each node. Repeat until the number of edges in the graph is
zero.
Step 3: For all categories, perform the first two steps. Then, we obtain KS according
to remaining nodes in Step 2.

290 X. Zhang and Y. Zhuang

The process of the Algorithm 1 is shown in Fig. 1, and the key metrics m1 and m6

are finally obtained. In Step 1, the correlation between every two metrics is calculated
to establish an undirected graph, and the time complexity is Oðx2Þ, where x is the
number of metrics. In Step 2, all nodes are sorted by the weight. After that the node

with the largest weight is deleted, along with its adjacent edges and nodes. And then the
remaining nodes are reordered by the weight again. Finally, the key metric is obtained,
thus, the time complexity is Oðx2 log xÞ.

3.2 Fault Detection and Identification Model

OCSVM is an unsupervised learning algorithm extended by Scholkopf et al. on tra-
ditional SVM algorithm, which has many advantages such as less calculation time and
good generalization ability in processing small numbers of sample [16]. The fault
detection model based on OCSVM generates a boundary in the kernel space that
maximizes the interval between the normal data and the origin to determine the fault
data, and we let as many cloud normal data points as possible fall inside the decision
boundary.

In this paper, we choose KS as the training set. Let y represents the detection
function of the host fault, which is defined as:

y ¼ sgnðf ðSÞÞ ¼ sgnðx � /ðSÞ � qÞ; ð2Þ

Where, x and q are hyperplane parameters, /ðSÞ maps the key metric vector from
the low dimensional space to a high dimensional space where the samples can be
linearly separable. The host is abnormal when y ¼ �1, and y ¼ 1 denotes the host is
normal. According to the principle of structural risk minimization of OCSVM [14], the
optimization problem of the cloud data center host fault detection function is as follows

1m

2m

3m

4m

5m

6m

7m

1m

7m

1m

6m6m

Fig. 1. The process of key metric selection.

A Fault Detection Algorithm for Cloud Computing 291

min
x;b;ni

1
2 xk k2 þ 1

vn

Pn
i¼1

ni � q

s:t: xT/ðSiÞ� q� ni
ni � 0; i ¼ 1; 2; . . .; n

; ð3Þ

Here, n denotes the number of training samples, v 2 ð0; 1� is the regularization
parameter which indicates the degree of the trade-off between maximum margin and
minimum classification error. Since the training set may have fault records which
should not fall inside the fault detection boundary, slack variable ni is introduced to let
some fault points fall outside the fault detection boundary, which will improve the fault
detection accuracy. The selection of the kernel function is critical to the performance of
the fault detection model. Radial Basis Function (RBF) has good generalization ability
and fast convergence [17], and it requires fewer parameters. Using RBF can reduce the
complexity of the model and improve the detection accuracy. Therefore, we adopt RBF
as the kernel function in this paper, then the decision function of the fault detection
model can be solved as:

y ¼ sgnðf ðSÞÞ ¼ sgnð
Xn
i¼1

aiexpð� Si � Sk k2
2r2

Þ � qÞ; ð4Þ

Where r[0 is the parameter of Gaussian kernel function, and the fault detection
boundary is more compact when the r is smaller.

The above OCSVM-based fault detection model cannot identify the fault type. In
this paper, a fault identification method is proposed for the monitoring data which falls
outside the fault detection boundary. By calculating the contribution of each metric of
the monitoring data to the deviation from the fault detection boundary, the fault type
depends on the metric with the greatest contribution. For example, if the metric with the
greatest contribution is a processor related metric, then the host fault type is determined
to be a processor fault.

According to (4), the data falling outside the boundary has the greater anomaly
when the Euclidean distance between the abnormal data and the support vector in the
kernel space is larger. If a sample S falling outside the boundary, then the contribution
of metric sj to the deviation from the fault detection boundary is calculated as:

CðjÞ ¼
XN
i¼1

svij � sj
�� ��2

Pk
l¼1

svil � slj j2
; ð5Þ

Here, N is the number of samples located on the detection boundary in the training
set, and svij is the j

th metric of the ith sample which lies on the boundary in S. According
to (5), higher CðjÞ indicates a greater contribution of metric sj to the deviation from the
fault detection boundary, then the fault is identified according to the metric with the
greatest CðjÞ.

292 X. Zhang and Y. Zhuang

3.3 Weight Allocation Strategy

The weight of the training sample has an important impact on detection performance.
The existence of the outliers, which may be fault samples in the training set, will shift
the fault detection boundary and reduce the generalization ability of the model. The
detection model based on OCSVM is not robust to the outliers in the training set. The
work in [18] pointed out that sample points far from the center have a small influence
on the fault detection boundary and are given smaller weights, while bigger weights are
given to sample points near the center so that the fault detection boundary is closer to
the normal samples, thus reducing the influence of outliers on the hyperplane and more
potential fault data can be found, and the sample weight is calculated as follows:

disi ¼ expð� d̂2ðSi;CÞ
2

Þ; ð6Þ

Where, C is the center of training set, and d̂ðSi;CÞ represents the normalized
distance, which indicates the ratio of the distance between Si and C to the maximum
distance.

For the cases when the potential fault sample points are near to the normal sample
points, these potential fault samples will be assigned higher weights, which reduces the
sensitivity of the fault detection boundary to detect potential faults. In order to improve
the detection ability on potential faults, we design a weight allocation strategy for
training samples to determine the location of the fault detection boundary. The strategy
considering both the distances between training samples to C and their local density.
The local density based weighting strategy considers that the sample points in the high-
density region should be given a larger weight, and the local density weight deni of
training sample Si is designated as:

deni ¼ expð� loc2ðSiÞ
2

Þ; ð7Þ

Where, locðSiÞ represents the local density of Si, which is given by

locðSiÞ ¼

Ph
j¼1

dðSi; SiðjÞÞ � min
i¼1;...n

Ph
j¼1

dðSi; SiðjÞÞ

max
i¼1;...n

Ph
j¼1

dðSi; SiðjÞÞ � min
i¼1;...n

Ph
j¼1

dðSi; SiðjÞÞ
; ð8Þ

Where, SiðhÞ is the hth nearest neighbor of Si. According to (7) and (8), when Si is
in the high-density region, locðSiÞ becomes smaller while deni becomes larger. The
weight wi of sample Si we proposed is shown as:

wi ¼ u1deni þ u2disi; ð9Þ

A Fault Detection Algorithm for Cloud Computing 293

Here, u1; u2 2 0; 1½ � are trade-off parameters of these two strategies, respectively.
After setting weights for all samples, Eq. (3) was transformed into

min
x;b;ni

1
2 xk k2 þ 1

vn

Pn
i¼1

wini � q

s:t: xT/ðSiÞ� q� ni
ni � 0; i ¼ 1; 2; . . .; n

; ð10Þ

According to Eq. (9), the proposed weight allocation strategy combines the
advantages of two strategies, which can assess the outlier degree of the training samples
more accurately and improve the detection ability of the detection model on potential
faults.

3.4 Parameter Optimization Algorithm Based on QPSO

The fault detection algorithm based on WOCSVM cannot handle the problem of
parameter selection well, while inappropriate parameters will reduce the detection
ability. In the cloud host fault detection problem in this paper, the parameters that need
to be set in advance are the penalty factor v in Eq. (3) and the Gaussian kernel
function’s parameter r in Eq. (4). The regularization parameter v represents the degree
of the trade-off between maximum margin and minimum classification error, and the
Gaussian kernel function’s parameter r denotes the bandwidth value which controls the
radial extent of the function. Since the combination of these two parameters will limit
the performance of the fault detection model, we consider the parameter selection
problem as an optimization problem and adopt quantum-behaved particle swarm
optimization algorithm to solve it.

Since the Particle Swarm Optimization (PSO) algorithm has fast convergence and is
easy to fall into local optimum, Sun et al. proposed Quantum-behaved Particle Swarm
Optimization (QPSO) [19]. In the QPSO algorithm, the particle system is assumed to
be a quantum particle system where each particle has a quantum behavior, and the
probability density function is used to represent the probability of a particle at a certain
location. Compared with the PSO algorithm, the QPSO algorithm has a stronger power
to search global optimal solutions and has been successfully applied in various practical
fields [20, 21].

Let ri ¼ ðvi; riÞ indicates the position of the ith particle, and each position repre-
sents a parameter combination of the WOCSVM model. Firstly, the position of
q particles r1; r2; . . .rq

� �
is initialized. Then, the fitness of each individual in the

population is calculated as:

f ðrÞ ¼ 1� lf
l
; ð11Þ

Where lf is the number of misclassified samples, and l is the total number of
samples. The fitness of the ith particle is greater when the detection accuracy of the
model is higher. Therefore, we find the best parameter combination when the particle
fitness is the global optimal. Next, each particle records its own historical optimal

294 X. Zhang and Y. Zhuang

position pbesti and the global optimal position gbest searched in the population, and the
positions of all particles are updated by

rijðtþ 1Þ ¼
pbestijðtÞþ bðtÞ � MbestjðtÞ � rijðtÞ

���
��� � lnð1lÞ; if l� 0:5

pbestijðtÞ � bðtÞ � MbestjðtÞ � rijðtÞ
���

��� � lnð1lÞ; if l\0:5

8<
:

9=
;; ð12Þ

Where, rijðtþ 1Þ is the jth position of the ith particle after updating, MbestjðtÞ is the
jth average optimal position of all particles at the tth iteration, pbestijt(t) indicates the j

th

historical optimal position of the ith particle at the tth iteration, µ is random numbers in
[0, 1], and b(t) is the control parameter, which is determined by [22]

bðtÞ ¼ bmax �
t � ðbmax � bminÞ

MaxITER
; ð13Þ

Where MaxITER is the maximum of iterations, bmax and bmin are the maximum and
minimum of bðtÞ, respectively, and t is the number of iterations currently. After
updating the positions of all particles, we calculate the fitness of them by (11) and then
update the pbest of all particles and gbest. The pbesti is determined by [23]

pbestidðtþ 1Þ ¼ c � pbestidðtÞþ ð1� cÞ � gbestd; ð14Þ

Here, c is a random number in ½0; 1�. Finally, the iterations are performed until the
fitness of one particle is within the expected error range or finishing the maximum of
iterations, and the position of the global optimal particle we obtained is the best
parameter combination of the WOCSVM model.

4 The QPSO-Based WOCSVM Fault Detection Algorithm

The QPSO-based WOCSVM (QPSO-WOCSVM) fault detection algorithm is divided
into four parts, including key metrics selection, model training, fault detection and fault
identification. In the first stage, we make correlation analysis to select key metrics,
which reducing complexity and improving detection efficiency. In the model training
phase, the samples are set weights according to the weight allocation strategy for
improving the ability to detect the potential faults, and OCSVM is used to create a fault
detection boundary for fault detection. At the same time, the QPSO-based parameter
optimization algorithm is used to find the optimal parameter combination ðv; rÞ of the
WOCSVM model. In the fault detection stage, we input the monitoring data after
extracting the key metrics to the decision function of the fault detection model, and we
can determine whether there is abnormity in the host according to (2), if there is,
identifying the fault type according to the result of (5). The architecture of the QPSO-
WOCSVM fault detection algorithm is shown in Fig. 2.

A Fault Detection Algorithm for Cloud Computing 295

In the weight allocation phase, the distances between each node and its neighboring
nodes need to be calculated, so the time complexity is Oðh � n � log nÞ, where h is the
number of neighboring nodes, and n is the number of training samples. In the model
training phase, the time complexity is between Oðsv3 þ n � sv2 þ k � n � svÞ and Oðk � n2Þ
which is same as the OCSVM algorithm. Here, sv is the number of the support vector
and k is the sample dimension. In the fault detection phase, the time complexity is
Oðk � nÞ, and in the fault identification stage, the metric with the greatest contribution is
calculated, thus, the time complexity is Oðk � sv � log kÞ. The pseudocode of QPSO-
WOCSVM fault detection algorithm in the cloud data center is shown in Algorithm 2.

Algorithm 2 QPSO-WOCSVM fault detection algorithm
Input The host monitoring data set MS
Output The detection result
1. begin
2. Get the training set KS by Algorithm 1;
3. Normalize the KS ;
4. Calculate the weights of training samples by (9);
5. Get parameter combination by QPSO;
6. for 1i = to n
7. WOCSVM.train(. iKS S);
8. end for
9. while i n> and i end< do
10. iS =KeyMetric (iM);
11. Fault detection by (2) and (5);
12. i + + ;
13. end while
14. end

Cloud Data
Center

Physical
Host

Physical
Host

Physical
Host

Physical
Host

Physical
Host

Physical
Host Detector

Training

Preprocessing
Monitoring

Data Set
Correlation

Analysis
Key Metric
Selection Normalization

Training
Model

Weight Allocation
Strategy

Parameter
Optimization

Training
Data Set

Key Metric
Extraction

Fault Detection
and Identification

Monitoring
System Result

Monitoring
Metrics

Fig. 2. The architecture of the QPSO-WOCSVM fault detection algorithm.

296 X. Zhang and Y. Zhuang

5 Experiments and Analysis

In order to verify the algorithm proposed in this paper, we build the simulation platform
based on OpenStack and collect the monitoring data for comparison experiments. We
get abnormal samples by injecting faults into compute node, and the experimental error
is evaluated by using accuracy, precision, recall, and F-score. The experimental plat-
form we built is shown in Fig. 3.

5.1 Experimental Setting

According to Fig. 3, the virtual platform consists of four hosts including two compute
nodes, one controller node and one storage node. The Experiment configurations is
shown in Table 1.

Reference to the paper [22, 24, 25], the parameter settings of the QPSO-WOCSVM
fault detection algorithm are shown in Table 2.

Local Area Network(LAN)

Controller

Host A Host B

Deploying

Metrics

Fault Injection

Storage

Cinder Requests

Router

Internet

Monitor

Fig. 3. Experimental platform setup.

Table 1. Experiment configurations.

Name Configuration

CPU Intel Core i5-6500
Memory 8 GB
Disk 512G
Operating system Ubuntu 16.04
OpenStack version OpenStack Newton

A Fault Detection Algorithm for Cloud Computing 297

5.2 Analysis of Experimental Results

Correlation Analysis. There are six projects deploying on the compute node, and the
controller node creates instances for running those. For collecting the monitoring data,
we use the sysstat [26] to collect 36 system metrics in more than four categories
including CPU, memory, disk, network and so on from the compute node every ten
seconds. For selecting key metrics, we take network related metrics as an example.
Table 3 shows the seven network related metrics we collect.

We calculate the correlation between each two metrics and connect two metrics with
strong correlation, and an undirected graph is obtained as shown in Fig. 4.

Table 2. Parameters settings for the proposed algorithm.

Parameter name Value

Correlation threshold 0.8
Regularization parameter v 0.15–0.85
Gaussian kernel function parameter r 0.001–100
Maximum of b(t) 1
Minimum of b(t) 0.5
Population scale 20
Number of iterations 200

Table 3. Network related metrics.

Metric’s index Description

rxpck/s Number of received packets per second
txpck/s Number of sent packets per second
rxmcst/s Number of received multicast packets per second
rxerr/s Number of errors in receiving packets per second
txerr/s Number of errors in sending packets per second
rxdrop/s Number of dropped in receiving packets per second
txdrop/s Number of dropped in sending packets per second

rxpck/s
txerr/stxpck/s

rxmcst/s

rxerr/s
rxdrop/s txdrop/s

Fig. 4. Correlations among network-related metrics.

298 X. Zhang and Y. Zhuang

It can be seen from Fig. 4 that the most network related metrics correlate strongly
with each other. Then, we obtain the key metrics (i.e., rxpck/s and txerr/s) by using
Algorithm 1.

Parameter Optimization. By providing the parameter settings in Table 2, we find the
optimal parameter combination of WOCSVM model according to Algorithm 2. The
relation between fitness and the iteration number is shown in Fig. 5.

The iteration results show that QPSO reaches the optimal solution when the iteration
number is 80. By using QPSO, the optimal parameters for WOCSVM are obtained as
v ¼ 0:0016, r ¼ 6:25. Then, the obtained optimal parameter combination are used to
train the WOCSVM model.

Algorithm Performance Analysis. We compare the QPSO-WOCSVM fault detection
algorithm with PSO-OCSVM [27] and IPSO-MSVM [28] algorithms. Since both
OCSVM and SVM use radial basis kernel function and have good classification per-
formance, they are often used in the fault detection field. We use sklearn package [29]
for data processing and model training.

In our experiment, 5000 monitoring samples were selected from the compute node
as the training data set, and we obtain abnormal samples by injecting faults into the
compute node. Specifically, we choose three typical faults related with network, CPU
and memory to inject with methods as follows.

1. Memory related faults: We use Stress [30] to simulate memory leak by constantly
applying dynamic memory without releasing the space until exhausting memory
resources.

2. CPU related faults: We use Stress to simulate CPU hog, which increasing com-
puting resource load by adding CPU processes.

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Fi
tn

es
s(

%
)

Iteration number

Best fitness
Average fitness

Fig. 5. The results of QPSO.

A Fault Detection Algorithm for Cloud Computing 299

3. Network related faults: We use iPerf [31] to simulate network transmission con-
gestion by sending data packets to other network nodes to occupy the network
bandwidth of the compute node.

We use the same data set to train the QPSO-WOCSVM and PSO-OCSVM algo-
rithms, and we set labels for the abnormal samples after fault injection, then 6000
abnormal samples consist of 2000 memory fault samples, 2000 CPU fault samples and
2000 network fault samples are selected into the data set to train the IPSO-MSVM
algorithm. The three algorithms were tested with the same test sets. Figures 6, 7, 8 and
9 and Table 4 show the test results.

Figure 6 shows the recall of three algorithms under network, CPU, and memory
related faults. Recall refers to the ratio of detected abnormal samples to total abnormal
samples, which is the primary concern for fault detection. We can see that for network
congestion, the recall of the proposed algorithm exceeds 92%, while the recall of other
two algorithms are relatively lower, respectively 84.6% and 87.2%. For Memory leak
and CPU hog, the recall of the proposed algorithm is also obviously better than the

80

82

84

86

88

90

92

94

Network congestion Memory leak CPU hog

R
ec

al
l(%

)

QPSO-WOCSVM PSO-OCSVM IPSO-MSVM

Fig. 6. Recall of three algorithms.

80
81
82
83
84
85
86
87
88
89
90
91

Network congestion Memory leak CPU hog

A
cc

ur
ac

y(
%

)

QPSO-WOCSVM PSO-OCSVM IPSO-MSVM

Fig. 7. Accuracy of three algorithms.

300 X. Zhang and Y. Zhuang

other two algorithms. It can be seen from Fig. 6 that the proposed algorithm has a
stronger ability to detect the faults and a higher fault identification rate on these three
fault types.

Figure 7 shows the accuracy of three algorithms, which is the ratio of correctly
detected samples to all samples. We add normal samples into each fault test set for
testing the detection accuracy of three algorithms, and it can be seen from Fig. 7 that
compared with the other two algorithms, the proposed algorithm in this paper has better
detection accuracy.

Precision is the ratio of the true abnormal samples to the samples which are pre-
dicted to be abnormal. As shown in Fig. 8, due to the similar detection accuracy on
normal data by three algorithms, the precision of the three algorithms is similar, and the
precision of the QPSO-WOCSVM fault detection algorithm is still better than the other
two algorithms.

80

82

84

86

88

90

Network congestion Memory leak CPU hog

Pr
ec

is
io

n(
%

)

QPSO-WOCSVM PSO-OCSVM IPSO-MSVM

Fig. 8. Precision of three algorithms.

80
81
82
83
84
85
86
87
88
89
90
91
92

Network congestion Memory leak CPU hog

F-
sc

or
e(

%
)

QPSO-WOCSVM PSO-OCSVM IPSO-MSVM

Fig. 9. F-score of three algorithms.

A Fault Detection Algorithm for Cloud Computing 301

Figure 9 shows the F-score which indicates the harmonic mean of precision and
recall of three algorithms, and the algorithm have a larger F-score only if both precision
and recall are larger. The numerical identification results are shown in Table 4.

It can be seen from Table 4 that the identification results using QPSO-WOCSVM
algorithm is better than the other two algorithms, and the mean accuracy reaches
91.3%, which confirms that the superiority of the proposed algorithm.

6 Conclusion

In this paper, a weighted one-class support vector machine (WOCSVM) model was
proposed for the host fault detection and identification in the cloud data center. Aiming
at the problem of higher overhead on analyzing a large number of monitoring metrics
by the fault detector, we used mutual information to conduct correlation analysis and
select key metrics for reducing the complexity of the proposed algorithm. One-class
support vector machine algorithm was used to detect and identify the host faults in the
case where the training set is imbalanced. The weight allocation strategy was used for
improving the ability to detect the potential faults, and the quantum particle swarm
optimization algorithm was used to optimize the parameters for improving detection
performance. Finally, based on the WOCSVM model, a QPSO-WOCSVM fault
detection algorithm was proposed to detect the host faults of the cloud data center. At
the same time, we built a virtual platform based on OpenStack, and we compared the
proposed algorithm with PSO-OCSVM and IPSO-MSVM algorithms. For training
SVM and testing three algorithms, we obtained abnormal samples by injecting mem-
ory, CPU, and network related faults into the compute node, then verified the proposed
algorithm by using accuracy, precision, recall and F-score. The experimental results
showed that the proposed algorithm outperforms the other two similar algorithms. In
the future, we will continue to modify our model for better efficiency.

Acknowledgements. This work was supported by the National Natural Science Foundation of
China (General Program) under Grant No.61572253 and the Aviation Science Fund under Grant
No. 2016ZC52030.

Table 4. The identification results.

Fault type Number of test
samples

Number of correctly identified samples

QPSO-WOCSVM PSO-OCSVM IPSO-MSVM

Normal 2000 1764 1782 1780

Network congestion 2000 1844 1692 1742

Memory leak 2000 1840 1664 1726

CPU hog 2000 1856 1690 1760

Total 8000 7304 6828 7008

Mean accuracy 91.3% 85.35% 87.6%

302 X. Zhang and Y. Zhuang

References

1. Bera, S., Misra, S., Rodrigues, J.J.P.C.: Cloud computing applications for smart grid: a
survey. IEEE Trans. Parallel Distrib. Syst. 26(5), 1477–1494 (2015)

2. Yousif, M.: Cloud computing reliability—failure is an option. IEEE Cloud Comput. 5(3), 4–5
(2018)

3. Zhang, P.Y., Shu, S., Zhou, M.C.: An online fault detection model and strategies based on
SVM-grid in clouds. IEEE/CAA J. Automatica Sinica 5(2), 445–456 (2018)

4. Wang, T., Xu, J., Zhang, W., et al.: Self-adaptive cloud monitoring with online anomaly
detection. Future Gener. Comput. Syst. Int. J. Escience 80, 89–101 (2018)

5. Arefin, A., Singh, V.K., Jiang, G., et al.: Diagnosing data center behavior flow by flow. In:
IEEE International Conference on Distributed Computing Systems 2013, pp. 08–11. IEEE,
Philadelphia (2013)

6. Adamu, H., Mohammed, B., Maina, A., et al.: An approach to failure prediction in a cloud
based environment. In: IEEE International Conference on Future Internet of Things & Cloud
2017, pp. 191–197. IEEE, Prague (2017)

7. Watson, M., Shirazi, N.: Malware Detection in Cloud Computing Infrastructures. IEEE
Trans. Dependable Secure Comput. 13(2), 192–205 (2016)

8. Tao, W., Zhang, W., Wei, J., et al.: Fault detection for cloud computing systems with
correlation analysis. In: IFIP/IEEE International Symposium on Integrated Network
Management 2015, pp. 652–658. IEEE, Ottawa (2015)

9. Qiang, G., Ziming, Z., Song, F.: Ensemble of bayesian predictors and decision trees for
proactive failure management in cloud computing systems. J. Commun. 7(1), 52–61 (2012)

10. Liu, Q., Feng, Z., Min, L., et al.: A fault prediction method based on modified Genetic
Algorithm using BP neural network algorithm. In: IEEE International Conference on
Systems 2017, pp. 4614–4619. IEEE, Budapest (2016)

11. Modi, C.N., Patel, D.R., Patel, A., et al.: Bayesian classifier and snort based network
intrusion detection system in cloud computing. In: Third International Conference on
Computing Communication & Networking Technologies 2012, Coimbatore, India (2012)

12. Palm, E., Mitra, K., Saguna, S.: A Bayesian system for cloud performance diagnosis and
prediction. In: IEEE International Conference on Services Computing 2017, pp. 281–288.
IEEE, Honolulu (2017)

13. Dinh-Mao, B., Thien, H.-T., Lee, S.: Early fault detection in IaaS cloud computing based on
fuzzy logic and prediction technique. J. Supercomput. 74(11), 5730–5745 (2018)

14. Rahulamathavan, Y., Phan, R., Veluru, S., et al.: Privacy-preserving multi-class support
vector machine for outsourcing the data classification in cloud. IEEE Trans. Depend. Secur.
Comput. 11(5), 467–479 (2014)

15. Vinh, L.T., Lee, S., Park, Y.T., et al.: A novel feature selection method based on normalized
mutual information. Appl. Intell. 37(1), 100–120 (2012)

16. Scholkopf, B., Platt, J.C., Shawe-Taylor, J., et al.: Estimating the support of a high-
dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

17. Shen, W., Guo, X., Wu, C., et al.: Forecasting stock indices using radial basis function
neural networks optimized by artificial fish swarm algorithm. Knowl.-Based Syst. 24(3),
378–385 (2011)

18. Yang, J., Deng, T., Sui, R.: An adaptive weighted one-class SVM for robust outlier
detection. In: Jia, Y., Du, J., Li, H., Zhang, W. (eds.) Proceedings of the 2015 Chinese
Intelligent Systems Conference. LNEE, pp. 475–484. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-48386-2_49

A Fault Detection Algorithm for Cloud Computing 303

https://doi.org/10.1007/978-3-662-48386-2_49
https://doi.org/10.1007/978-3-662-48386-2_49

19. Sun, J., Xu, W.B., Feng, B., et al.: A global search strategy of quantum-behaved particle
swarm optimization. In: IEEE Conference on Cybernetics and Intelligent Systems 2004,
Singapore, vol. 1, pp. 111–116 (2004)

20. Liu, G.Q., Chen, W.Y., Chen, H.D.: Quantum particle swarm with teamwork evolutionary
strategy for multi-objective optimization on electro-optical platform. IEEE Access 7, 41205–
41219 (2019)

21. Duca, A., Duca, L., Ciuprina, G.: QPSO with avoidance behaviour to solve electromagnetic
optimization problems. Int. J. Appl. Electromagnet. Mech. 59(1), 63–69 (2019)

22. Jia, Y., Gong, Q., Li, J., et al.: The power load combined forecasting based on CEEMDAN
and QPSO-SVM. Electr. Meas. Instrum. 54(1), 16–21 (2017)

23. Ghorbani, M.A., Kazempour, R., Chau, K.-W., et al.: Forecasting pan evaporation with an
integrated artificial neural network quantum-behaved particle swarm optimization model.
Eng. Appl. Comput. Fluid Mech. 12(1), 724–737 (2018)

24. Thomaz, R., Carneiro, P., Bonin, J.E., et al.: Novel Mahalanobis-based feature selection
improves one-class classification of early hepatocellular carcinoma. Med. Biol. Eng.
Comput. 56(5), 1–16 (2017)

25. Wuensch, K.L.: Straightforward statistics for the behavioral sciences. J. Am. Stat. Assoc. 91
(436), 1750 (1996)

26. SYSSTAT. http://sebastien.godard.pagesperso-orange.fr
27. Miandare, M.S., Jalili, S.: VoIP anomaly detection by combining OCSVM and PSO

algorithm. In: International Symposium on Telecommunications (IST) with Emphasis on
Information and Communication Technology 2012, ITRC, pp. 1038–1043. ICT Res Inst,
Tehran, IRAN (2012)

28. Sun, Y.K., Xie, G., Cao, Y. et al.: A fault diagnosis method for train plug doors based on
MNPE and IPSO-MSVM. In: International Conference on Control Automation and
Information Sciences 2018, pp. 467–471. IEEE, Hangzhou (2018)

29. Scikit learn. https://scikit-learn.org/stable/index.html
30. Stresslinux. http://www.stresslinux.org/sl/
31. Iperf.fr. https://iperf.fr/

304 X. Zhang and Y. Zhuang

http://sebastien.godard.pagesperso-orange.fr
https://scikit-learn.org/stable/index.html
http://www.stresslinux.org/sl/
https://iperf.fr/

ParaMoC: A Parallel Model Checker
for Pushdown Systems

Hansheng Wei1, Xin Ye1,4, Jianqi Shi1,2(B), and Yanhong Huang1,3

1 National Trusted Embedded Software Engineering Technology Research Center,
East China Normal University, Shanghai, China

jqshi@sei.ecnu.edu.cn
2 Hardware/Software Co-Design Technology and Application Engineering,

Research Center, Shanghai, China
3 Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China

4 LIPN and Paris University 7, Paris, France

Abstract. Model checking on Pushdown Systems (PDSs) has been
extensively used to deal with numerous practical problems. However,
the existing model checkers for pushdown systems are executed on the
central processing unit (CPU), the performance is hampered by the com-
puting power of the CPU. Compared with the CPU, the graphics pro-
cessing unit (GPU) has more processing cores, which are suitable and
efficient for parallel computing. Therefore, it is very attractive to acceler-
ate model checking of PDSs on the GPU. In this paper, we present a new
parallel model checker, named ParaMoC, to speed up the performance
of model checking problems for pushdown systems (PDSs). Moreover,
we focus on how to use Graphics Processing Units (GPUs) to accelerate
the reachability verification and the LTL model checking of PDSs. The
ParaMoC running on a state-of-the-art GPU can be 100 times faster
than the traditional PDS model checker.

1 Introduction

Model checking is an important formal verification technique using the state-
space searching to explore all possible system states. In this way, this technique
makes it possible to check whether a given system can satisfy some specific prop-
erties or not. A pushdown system (PDS) is a finite transition system equipped
with a stack. Due to its stack, PDSs have been successfully used in malware
detection [11] and data flow analysis [9]. However, there are also two major
problems that limit the development of model checking of PDSs. Firstly, with
the complexity of the program, one of the real challenges encountered in model
checking is the well-known state explosion problem. This problem may make the
execution time of model checking unbearable. Secondly, the efficiency of existing
model checker for PDSs is always subject to the size of the state space. It is
challenging to perform model checking more effectively with limited processors
on the CPU.

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 305–312, 2020.
https://doi.org/10.1007/978-3-030-38961-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_26

306 H. Wei et al.

By now, many techniques are proposed to solve the above problems, e.g.,
symbolic model checking approaches [4], symmetry reduction [3] and other
technologies. Besides these typical techniques, parallel computing has recently
shown unique advantages in large-scale computing tasks, which has attracted
widespread attention from model checking researchers. Verification would be
much more efficient if the procedure of the PDS model checking is parallel.

Parallel computing is a type of computation which can carry out calculations
simultaneously [1]. The GPU has a tremendous potential advantage over alter-
natives. It runs thousands of threads in parallel and improves the performance
with several orders of magnitude. In the past few years, accelerating computation
on the GPU and other parallel frameworks has achieved a remarkable progress.
The key to effective utilization of the GPU for model checking is the design and
implementation of data transferring and synchronization.

To the best of our knowledge, there is none similar model checker addressing
the model-checking problem of PDSs with the GPU. In this paper, we present
a new parallel model checker called ParaMoC (A Parallel Model Checker for
Pushdown Systems). ParaMoC is based on CUDA [8] parallel architecture and
employs the GPU to accelerate the reachability verification and the LTL model
checking of PDSs. We also propose a parallel transition generation mechanism
and a parallel transition transferring for better performance. According to the
experimental results, it has been shown that our model checker can achieve
up to around 100X speedup compared to Moped [10], one of the most widely
used model checkers for PDSs.

The paper is structured as follows. Section 2 introduces a brief background of
model checking on pushdown systems. The details of ParaMoC will be presented
in Sect. 3. In Sect. 4, experimental results are shown. The conclusion is given in
Sect. 5.

Related Work. The model checking problem for PDSs was considered in [5].
Our tool serves as an extension of those works in the parallel version. Moped [10]
is a popular model checker to check reachability and LTL formulas for PDSs.
However, this tool is only run on the CPU, which is not efficient when the model
is too large. PDSolver [6] is a μ-calculus model checker to check branching time
properties for PDSs, but it is not suitable for reachability analysis and LTL
formulas. Different from previous existing researches, our tool take advantage
of the multithreading of the GPU to improve the performance of reachability
analysis and LTL model checking for PDSs.

2 Model Checking on Pushdown Systems

In this section, we introduce a brief background of model checking on pushdown
systems.

Pushdown Systems. A pushdown system is a quadruple P =
(P, Γ,Δ, 〈p0, w0〉), where P contains the control locations and Γ is the stack
alphabet. A configuration c is a pair 〈p,w〉, where p ∈ P and w ∈ Γ ∗. The tran-
sition rule set Δ is a finite subset of (P × Γ) × (P × Γ ∗). If 〈p, γ〉 ↪→ 〈q, w〉 ∈ Δ,

ParaMoC: A Parallel Model Checker for Pushdown Systems 307

there is a successor relation 〈p, γw′〉 ⇒ 〈q, ww′〉 for every w′ ∈ Γ . The head
of a transition rule 〈p, γ〉 ↪→ 〈p′, w〉 is the configuration 〈p, γ〉. A head 〈p, γ〉 is
repeating if there exists v ∈ Γ ∗ such that 〈p, γv〉 can be reached from for some
v while visiting some accepting state along the way.

Reachability problem is the base of model-checking problems which can be
solved in two ways: forward and backward. Given a pushdown system P and
a set of configurations C, the reachability analysis consists of computing the
predecessors of elements of C (backward) and the successors of elements of C
(forward).

Büchi Automaton. A Büchi automaton B is a tuple (Q,Γ, δ, q0, F) where Q
is a finite set of states, Γ is a finite set of alphabet, δ ⊆ (Q × Γ × Q) is a set of
transitions, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states. The
language accepted by B is the set of all infinite sequences w where q0

w−→ p for
some p ∈ F .

LTL Model Checking on Pushdown Systems. Given a pushdown system
and an LTL formula ϕ, the LTL model checking problem is to check whether
the pushdown system satisfies the LTL formula. Let B = (Q, 2At(ϕ), δ, q0, F) be
a Büchi automaton which accepts the negation of a LTL formula ϕ. A Büchi
pushdown system BP = (P, Γ,Δ, c0, G) is the product of a Büchi automaton
for ¬ϕ and a pushdown system P, where P is the finite set of states, Γ is a
finite alphabet, Δ ∈ (P × Γ) × (P × Γ ∗) is a finite set of transition rules, c0
is an initial configuration, and G ⊆ P is a set of final states. The LTL model
checking problem boils down to the emptiness problem of BP [10]. While the
most important step to the emptiness problem of BP is computing the repeating
heads with the reachability graph G of BP. G is a directed labelled graph whose
nodes are the head of BP and whose edges are labelled with 0 or 1.

3 Overview of ParaMoC

The ParaMoC model checker is an extension of Moped. In order to support the
GPU, ParaMoC runs the model checking algorithms [10] on many threads in
parallel. The challenge is how to effectively perform the model checking on the
GPU. This section will introduce the details of ParaMoC.

3.1 Architecture and Implementation

ParaMoC is implemented in CUDA. Figure 1 presents the architecture of
ParaMoC. Given a PDS and an LTL formula, ParaMoC outputs YES if the
PDS satisfies the LTL formula. Otherwise, ParaMoC outputs NO and an counter
example. ParaMoC consists of two components including BP Constructor and
Model Checking Engines.

BP Constructor takes as input a PDS and an LTL formula and constructs
them into a Büchi pushdown system. BP Constructor relies on Spin [7] and
Moped [10]. Spin translates an LTL formula into a Büchi automaton. Moped

308 H. Wei et al.

Model Checking
Engines

LTL

PDS

BP
Constructor

Graph
Module

Reachability
Module

Partition
Module

SCC
Module

Yes/No

Fig. 1. The architecture of ParaMoC

synchronizes a PDS and a Büchi automaton to a Büchi pushdown system. Model
Checking Engines are composed of four modules, respectively, Partition module,
Reachability Module, Graph Module and SCC Module. Partition module parti-
tions a Buc̈hi pushdown system into sub Buc̈hi pushdown systems. Reachability
Module takes as input a sub Buc̈hi pushdown system and computes predecessors.
Graph Module takes as input the results of Reachability Module and builds the
reachability graph. SCC Module computes the SCC (Strongly Connected Com-
ponents) and the repeating heads with Tarjan Algorithm [13]. For reachability
analysis of pushdown systems, ParaMoC only invokes the partition module and
the reachability module to compute the predecessors and the successors.

GlobalTrans

LocalTrans

Transition
Generation

No more
transition

to be
added

end

GM

LM

Kernel Threads

Initial
transitions

1 4

5

6

2

3

7

Fig. 2. Parallel transition generation mechanism

In the GPU, different types of memory have different access rates, mem-
ory costs and time consumptions. For data accessing, storage and synchroniza-
tion, we propose a parallel transition generation mechanism. As shown in Fig. 2,
GlobalTrans and LocalTrans are used to store transitions in different memories.
GlobalTrans is Global Memory (GM), and LocalTrans is Local Memory (LM)
in the GPU. Note that all threads share only one GlobalTrans, and each thread
has a LocalTrans.

Our parallel transition generation works in the GPU as follows. The com-
putation starts from 1©. The kernel is launched from the CPU to start threads.
Each thread independently obtains the initial transitions in 2© and processes the
transition generation in 3©. If there are no more transition to be added, the tran-
sition generation ends and those threads terminate, as shown in 4©. Otherwise,
the transitions generated in each thread are stored in LocalTrans, as shown in

ParaMoC: A Parallel Model Checker for Pushdown Systems 309

5©. In 6©, there is synchronization, which moves all of the LocalTrans to Global-
Trans. Then, in 7©, the threads will fetch the transitions from GlobalTrans again
and start a new iteration.

0 1 2 3

globalTrans

threads

Fig. 3. Parallel transitions transferring

For transitions transferring, we should ensure that all of the threads can
fetch transitions simultaneously. Figure 3 shows how threads get transitions from
GlobalTrans. Assuming that there are n transitions in GlobalTrans, namely
t1, t2, ..., tn, and 4 threads in the GPU with thread numbers from 0 to 3. Threads
with thread number from 0 to 3 share GlobalTrans. For example, when fetching
the transitions, thread 0 takes the transitions t1, t5, t9, ..., tn−3, thread 1 takes
the transitions t2, t6, t10, ..., tn−2, thread 2 takes the transitions t3, t7, t11, ..., tn−1,
and thread 3 takes the transitions t4, t8, t12, ..., tn. They do not interact with each
other and can get their respective transitions at the same time.

The transition generation involves many iterations, and each iteration
requires a global synchronization. In this type of problem, one has to consider
how the threads in different blocks communicate with each other. Instead of
using locks, we take advantage of the new feature cooperative group of CUDA 9
to synchronize threads. There is a flag in each thread to mark whether the thread
has completed its iteration. When all of the threads complete their respective
iterations, there will be a global synchronization which moves all of the Local-
Trans to GlobalTrans.

3.2 The Usage of ParaMoC

We provide ParaMoC as an executable file, so that it can be directly used without
having to compile it. It requires at least CUDA9.0 and JDK1.8 for the operation
of ParaMoC. The tool ParaMoC1 is available for evaluation. It is possible to
download the command-line version, together with the usage and some examples.

4 Experiment

This section gives the experimental evaluation of ParaMoC and its application
in malware detection.

1 ParaMoC is available at https://sites.google.com/view/ParaMoC.

https://sites.google.com/view/ParaMoC

310 H. Wei et al.

4.1 Performance Evaluation

As a benchmark, we compared our tool to Moped version 1.0.16. The push-
down systems are translated from Java programs. The tested data are from
the DaCapo Benchmarks [2], which is a set of general purpose, realistic, freely
available Java applications. We chose parts of the programs and then use Jim-
pletoPDSolver [6] to translate real Java programs into PDSs. Our experiments
were conducted on a Linux platform (Ubuntu 16.04) with Intel i7-7820X CPU
and NVIDIA GTX 1080TI GPU. To ensure the fairness of the experiment, the
price of the CPU is similar to the price of the GPU. The compute capability of
the GPU is 6.1 based on the Pascal architecture. The version of CUDA used is
CUDA9.0. We mark the execution time of computation on both ParaMoC and
Moped.

0
20
40
60
80

100
120

SP
EE
DU

P

backward forward

Fig. 4. Speedups of reachability analysis

The experimental results of reachability analysis are presented in Fig. 4. In
Fig. 4, the y-axis is the speedup ratio, and the x-axis is the pushdown systems.
We compare the performance of ParaMoC on the GPU with Moped on the CPU.
The baseline for speedup is Moped on the CPU. Based on the performance com-
parison, our parallel tool is very efficient for the backward and forward reach-
ability analysis of PDSs. In terms of these PDSs, our tool achieves up to 100X
acceleration.

0

20

40

60

80

100

120

160 320 480 640 800 960 1120 1280

SP
EE
DU

P

#THREADS

AvroraISEA AvroraStack AvroraSim FO2RTF FO2PDF

Fig. 5. Speedups of LTL model checking

Figure 5 shows the scalability of the multi-thread acceleration using the
speedups of the ParaMoC to Moped. The y-axis is the speedup ratio of LTL

ParaMoC: A Parallel Model Checker for Pushdown Systems 311

model checking, and the x-axis is number of threads. Because there are 32 threads
per warp in CUDA, the number of threads we used is a multiple of 32. In Fig. 5,
the speedups of five different benchmarks using different numbers of threads are
compared. Obviously, all of them demonstrate robust scalability, indicating that
the speedup grows as the number of threads increases. The experimental results
show that the LTL model checking of PDSs can be pleasingly parallelized with
multi-thread.

4.2 Application

Many well-known malwares use stack operations for adding useless push and pop
instructions, or hiding calls to the operating system. Using pushdown systems
as program model allows to consider malwares’ stack. LTL can express many
malicious behaviors more precisely. For example, there is a statement that “A
register r1 is assigned by 0, and then the content of this register is pushed onto
the stack.” This statement can be expressed in LTL as mov(r1, 0) ∧ push(r1).

Our parallel model checker can be used to solve malware detection problems.
We use the method proposed in [11] to model the binary program as PDS,
where PDS’s control locations correspond to the control points of the program,
and the PDS’s stack mimics the execution stack of the program. This method
uses disassemble tools to get the control flow graph of the binary program and
translate the control flow graph into a pushdown system. The LTL formulas we
used to describe the malicious behaviors comes from [12].

Table 1. Detection of some real programs

Dataset #LOC Time (s) Result

Virus.Win32.Anar.b 671 0.11 Yes

Email-Worm.Win32.Mydoom.y 26902 20.28 Yes

Trojan-PSW.Win32.LdPinch.aar 1245 18.59 Yes

Trojan-PSW.Win32.LdPinch.ld 6609 1.61 Yes

Virus.Win32.Alcaul.b 904 2.83 Yes

Virus.Win32.Agent.ce 8951 15.26 Yes

shutdown.exe 2524 13.87 No

Regsvr32.exe 1280 18.56 No

Cmd.exe 35887 45.95 No

Java.exe 21868 39.10 No

We carried out some experiments to detect some real binary programs from
VX Heavens and Microsoft WindowsXP system, the results of which are pre-
sented in Table 1. Column Dataset shows the name of the program we checked.
Column #LOC denotes the number of instructions in the program. The run-
ning times are given in seconds. The result Yes denotes that the program is

312 H. Wei et al.

detected as a malware. Otherwise, the result is No. As it can be seen, our tool
can correctly perform malware detection.

5 Conclusions

In this paper, we presented a new parallel model checker called ParaMoC, which
enhances the performance of model checking for PDSs with the GPU. Compared
with the sequential model checker for the same purpose in the literature, our tool
runs faster. For future study, one problem that we are aware of is the limited
memory size of a single GPU device. We are going to solve this limitation by
employing our approach on multi-GPUs. We also plan to integrate the unpacking
tool into ParaMoC so that our tool can perform malware detection directly.

Acknowledgements. This work is partially supported by Shanghai Science and Tech-
nology Committee Rising-Star Program (No. 18QB1402000), National Natural Sci-
ence Foundation of China (No. 61602178), China HGJ Project under Grant (No.
2017ZX01038102-002), and National Defense Basic Scientific Research Program of
China (No. JCKY2016204B503).

References

1. Almasi, G.S., Gottlieb, A.: Highly parallel computing (1988)
2. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development

and analysis. In: ACM Sigplan Notices, vol. 41, pp. 169–190. ACM (2006)
3. Bošnački, D., Leue, S., Lafuente, A.L.: Partial-order reduction for general state

exploring algorithms. Int. J. Softw. Tools Technol. Transf. 11(1), 39–51 (2009)
4. Clarke, E.M., Mcmillan, K.L., Campos, S.V.A., Hartonasgarmhausen, V.: Symbolic

model checking, pp. 419–427 (1993)
5. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model

checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 20

6. Hague, M., Ong, C.-H.L.: Analysing mu-calculus properties of pushdown systems.
In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 187–192.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16164-3 14

7. Holzmann, G.J.: The model checker spin. TSE 23(5), 279–295 (1997)
8. Nvidia: Nvidia CUDA compute unified device architecture (2010). https://

developer.nvidia.com/cuda-toolkit/
9. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their

application to interprocedural dataflow analysis. SCP 58, 206–263 (2005)
10. Schwoon, S.: Model-checking pushdown systems, pp. 73–84 (2002)
11. Song, F., Touili, T.: Efficient malware detection using model-checking. In: Gian-

nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 418–433. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 34

12. Song, F., Touili, T.: LTL model-checking for malware detection. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 416–431. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 29

13. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/978-3-642-16164-3_14
https://developer.nvidia.com/cuda-toolkit/
https://developer.nvidia.com/cuda-toolkit/
https://doi.org/10.1007/978-3-642-32759-9_34
https://doi.org/10.1007/978-3-642-36742-7_29

FastDRC: Fast and Scalable Genome
Compression Based on Distributed

and Parallel Processing

Yimu Ji1,4,5,6, Houzhi Fang1, Haichang Yao1,2(&) , Jing He3,
Shuai Chen1, Kui Li1, and Shangdong Liu1

1 School of Computer Science, Nanjing University of Posts
and Telecommunications, Nanjing 210023, China

2017040238@njupt.edu.cn
2 School of Computer and Software, Nanjing Institute of Industry Technology,

Nanjing 210023, China
3 School of Software and Electrical Engineering,

Swinburne University of Technology, Melbourne 3122, Australia
4 Institute of High Performance Computing and Big Data,

Nanjing University of Posts and Telecommunications, Nanjing 210003, China
5 Nanjing Center of HPC China, Nanjing 210003, China

6 Jiangsu HPC and Intelligent Processing Engineer Research Center,
Nanjing 210003, China

Abstract. With the advent of next-generation sequencing technology, sequenc-
ing costs have fallen sharply compared to the previous sequencing technologies.
Genomic big data has become the significant big data application. In the face of
growing genomic data, its storage and migration face enormous challenges.
Therefore, researchers have proposed a variety of genome compression algo-
rithms, but these algorithms cannot meet the processing requirements for large
amount of biological data and high processing speed. This manuscript proposes a
parallel and distributed referential genome compression algorithm-Fast Dis-
tributed Referential Compression (FastDRC). This algorithm compresses a large
number of genomic sequences in parallel under the Apache Hadoop distributed
computing framework. Experiments show that the compression efficiency of the
FastDRC is greatly improvedwhen it compresses large quantities of genomic data.
Moreover, FastDRC leads to the only distributed computing method known to us
in the field of genome compression. The source code for FastDRC can be obtained
from this link: https://github.com/GhostCCCatHenry/FastDRC.

Keywords: Genome compression � Distributed processing � Apache Hadoop �
FASTA

1 Introduction

Nowadays, high-throughput genome sequencing technology has gradually matured,
sequencing efficiency continues to increase while sequencing cost are gradually
reduced. In the context of this development, genomic data accumulates at an

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 313–319, 2020.
https://doi.org/10.1007/978-3-030-38961-1_27

http://orcid.org/0000-0002-5751-960X
https://github.com/GhostCCCatHenry/FastDRC
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_27

exponential rate. Faced with such a large amount of data, how to store them will
become an important problem for researchers to solve [1].

Compression is the most direct and effective way to solve the problem. The genome
compression algorithm based on the reference sequence effectively improves com-
pression ratio. These algorithms select a sequence file as the reference file, and only the
difference between the original file and the reference file is stored in the compressed
file.

The FASTA format is a text-based format representing nucleotide or polypeptide
sequences [2]. In this format, each sequence text will have a single-line description in
the front, followed by multiple lines of sequence information, where the nucleic acid or
amino acid information will be represented by a single letter. Compression for the
FASTA format is the focus of genomic data compression.

2 Problem Statement and Methodology

At present, a large number of referential compression algorithms based on FASTA
format sequences have been proposed [3–5]. In addition, until now FASTA format
genome compression algorithms are all stand-alone algorithms. However, when deal-
ing with terabytes of gene files, serial compression algorithms need to take dozens of
hours to complete the compression of these files, which reduces the practicability of the
compression algorithm. Therefore, the use of big data technology to achieve the
compression of genomic big data is one of the research focuses in this field.

In this manuscript, a fast and scalable genome compression based on distributed
and parallel processing (FastDRC) is proposed. The Hadoop’s MapReduce program-
ming paradigm [6] is used to improve FastRC. Use Yarn to isolate resources to adjust
resource distribution parameters to achieve different degrees of optimization. Maximize
the working potential of Hadoop to achieve optimal use. The detailed process and
experimental verification are described in the following parts.

3 Method

3.1 Distributed Method

As a reference sequence compression algorithm, FastDRC is mainly divided into three
steps: reading the sequence files, matching the compressed sequence, and serializing of
the matching result in binary format. The entire calculation process is completed only
in the Map tasks, and the Reduce task is deserted. Therefor the entire compression
process is completed in the memory of the same node and the disk shuffle can be
avoided.

In order to ensure high utilization of resources, the decisive factors of the degree of
parallelism is further refined from the number of nodes. Yarn uses Linux’s CGroups
mechanism to divide each node resource into many containers. These computing
containers do not affect each other. In summary, the number of calculations of
FastDRC equals the total number of divided containers. The degree of parallelism

314 Y. Ji et al.

determines the number of containers that execute the compression algorithm at the
same time. The target files will be entered into their respective containers through the
index queue for calculation. The overall process is shown in Fig. 1.

3.2 Implementation Steps

Sequence Information Extraction. Since these gene files are stored in HDFS, which
is a distributed abstract storage system, it is necessary to take into account the size
setting for input slice and the cache configuration of input files when processing input
files.

Map Input Slice. In HDFS, large sequence files will be divided into several data
blocks. If the capacity of the input splits is not adjusted before the Map task, the input
slice will be processed by different Map tasks. Since the processing is independent of
each other, it will eventually lead to compression errors. Before input, the range of the
capacity of each input split Ssplit shall be Sfile � Ssplit\Sblock þ Sfile, where Sblock rep-
resents the size of a data block in HDFS, and Sfile represents the size of the file to be
compressed. If the size of the input single-sequence file exceeds the size of each HDFS
block, the Map input fragmentation capacity should be adjusted to a multiple of the
block size during the compression process. This ensures that all sequences of blocks
can be completely read.

HDFS storage

FASTA document Working containers

Input split

Reference sequence

Pending blocks

Reading
sequence

information

Map task-2

Matching
sequence

information

Binary coding
Sequence

Reading
sequence

information

Map task-1

Matching
sequence

information

Binary coding
Sequence

Reading
sequence

information

Map task-3

Matching
sequence

information

Binary coding
Sequence

Distributed cache

Input split

Input split

Writing sequence files

ACTACGTGCATNNNNCGTAGCTAAGGTCT
TAGCGTACGTAGCNNNNNNNNNNNNagc
tgatttcagcccatgcttagctagctttgaaagcgctag

ctactatgcCGATGCTAGCGTA

101000101001

Fig. 1. FastDRC implementation process. Firstly, the gene files in FASTA format are stored in
the HDFS, and these files are divided into blocks for storage [7]. When the MapReduce task is
executed, these file blocks are divided into input splits and sent to the working container. All file
scheduling follows the FIFO principle. After being compressed, the files output as binary files
and they are saved to HDFS again.

FastDRC: Fast and Scalable Genome Compression 315

MapReduce Distributed Cache. Since the reference sequence is shared by all nodes, in
order to reduce transmission costs, MapReduce distributed cache is adopted. Sending
file on HDFS to each working node, and caching it in a specific directory as an index
file. In this way, the number of network transmissions is only the total number of
nodes.

Information Extraction Process. The extraction of reference sequence only takes the
A, C, G, T characters into account. The lowercase characters of the sequences shall be
converted into uppercase characters. The positions of lowercase characters that appear
will be stored in a vector. This part is done in the Setup function of the Map class. Next,
the sequence to be compressed is read as a line-by-line iteration process via the Map
function from the input files. Replace the default TextInputFormat method with the
KeyValueInputFormat. When <key, value> is divided for each line, the former does
not need to calculate the offset position of each line as the latter, thereby reducing the
operation time. The reading mode of the uppercase characters and the lowercase is
similar to the reference sequence. The remaining character information (special char-
acters such as N characters) is extracted using the same extraction method as lowercase
characters.

Sequence Information Matching. At this stage, the procedure uses the static char-
acter array Gtarget and Greference for greedy matching, not involving data iteration and is
mainly done in the last custom function Cleanup in the Map class.

Binary Encoding. To output binary in MapReduce, it is necessary to encode the input
in binary using the SequenceFile format. The serialized encapsulation format of the
output is set to BytesWritble. Experimental Verification and Analysis.

4 Experimental Environment and Data

The experiment selects 6 servers for cluster construction and distributed computing. All
working nodes are configured as 32 GB RAM with two six-core Intel(R) Xeon(R) CPU
E5-2620 v2 2.10 GHz and a 3 TB hard disk and responsible for storing data blocks and
performing calculations.

The experiment selects the current largest genome dataset 1000 Genome Project [8]
full-quantity data, a total of 1092 human genome data. We also selected hg13, hg16,
hg17, hg18, hg19, hg38, K131, K224, YH and HuRef as experimental subjects. The
above 10 data are the standard test data of the gene compression algorithm.

4.1 Experimental Results and Analysis

FastDRC is an extensible algorithm that can increase the speed of operation by scale-
out of cluster nodes and vertical expansion of computing resources of a single node.
The Yarn [9] resource scheduling platform can be used to increase the number of
working containers. This algorithm regulates the Yarn resource allocation in the
Hadoop configuration file, and maximize cluster load. Degree of parallelism is set to

316 Y. Ji et al.

35. The parameters that can be used for improvement in terms of the compression
algorithm are the K-mer read length k and the hash length threshold of matched
sequence m. In the phase of matching, k is used to reduce the number of comparisons,
and m is used to ensure the length of the matched sequence. But too high k and m will
have a negative impact on performance. After a lot of experiments, take k as 12 and m
as 30. Then, overall comparison was done using the optimal parameters of FastDRC
between FastDRC algorithm and FastRC algorithm. Finally, FastDRC is compared
with other mainstream algorithms ERGC [4], HiRGC [10] for standard data sets.

Overall Comparison. This part is performed on the two methods in terms of com-
pression time and compression ratio. The experimental compression test data set selects
the chr1–8 chromosome of 1091 people in 1000 Project, and the reference sequence
selects the chromosome of human with number HG0096. The experimental results are
shown in Table 1. From this table, we can see that the compression time and the
compression ratio of FastDRC has been greatly improved compared with FastRC
(Table 1).

Comparison with Popular Compression Algorithms. To verify the competitiveness
of FastDRC, compare it to the performance of today’s mainstream algorithms. The
experimental compression test data set selects 1000Project and standard performance
test data sets. The reference sequence selects the chromosome sequence file with
human number hg13. The experimental results are shown in Table 2. The experimental
results show that FastDRC has far surpassed the two algorithms in compression time.
However, in terms of compression ratio, it only surpasses ERGC, and there is still a gap
with HiRGC.

Table 1. Overall comparison of FastDRC and FastRC.

Chromosome
number

Compression
time (s)

Relative
compression
speed gain

Compression ratio Relative
compression ratio
gainFastDRC FastRC FastDRC FastRC

Chr1 2538 61511 24.2 276 163 1.7
Chr2 3194 55435 17.4 273 159 1.7
Chr3 2086 42478 20.4 247 147 1.7
Chr4 1959 28912 14.8 241 145 1.7
Chr5 1920 29353 15.3 261 158 1.7
Chr6 2157 26569 12.3 232 140 1.7
Chr7 2300 25269 11.0 260 159 1.6
Chr8 1789 20357 11.4 240 153 1.6

FastDRC: Fast and Scalable Genome Compression 317

5 Conclusion

This manuscript proposes a genome compression algorithm improved by the big data
parallel computing framework. This algorithm compensates for the gap in the field of
parallel genome compression, and uses the computing resource cluster to shorten the
original tens of hours of compression time to only tens of minutes, which greatly
improves the efficiency of genome file compression. Through improving the algorithm,
the compression ratio is improved. However, there is still much space for improvement.
In the face of different data sets, the compression ratio of the algorithm will decrease,
and in terms of compression performance, there is a gap between high-end algorithms
such as HiRGC. In the next phase, it is necessary to improve these issues and think
about the introduction of the Reduce method for secondary compression.

Acknowledgements. We would like to thank all reviewers for their valuable comments and
suggestions to improve the quality of our manuscript.

Table 2. Comparison with HiRGC and ERGC.

Chromosome number
and original size (MB)

Compression time (s) Compressed size (MB)
FastDRC HiRGC ERGC FastDRC HiRGC ERGC

Chr1(265231.7) 4107 43023 92898 3129 2475 5760
Chr2(258893.9) 3685 37064 82602 2979 2365 4889
Chr3(210796.8) 3150 21441 75184 3508 430 3035
Chr4(203284.7) 1860 18395 52556 1885 1272 2625
Chr5(192592.7) 1801 19837 34552 1719 1187 2449
Chr6(181202.1) 1380 16263 21614 1104 619 1272
Chr7(169370.1) 1430 17457 24129 1327 892 1840
Chr8(155750.5) 1718 15850 21784 2127 1605 2638
Chr9(150259.3) 1330 12953 18387 1478 1001 1640
Chr10(144293.6) 1206 12524 15354 876 541 884
Chr11(143680.6) 1473 13455 19085 1470 1070 1755
Chr12(142399.7) 2422 24895 22362 3105 2651 4374
Chr13(122600.1) 780 9616 7628 600 333 626
Chr14(114222.3) 891 9409 10717 652 390 615
Chr15(109143.7) 945 11900 7558 1050 767 1104
Chr16(96191.3) 1748 15960 10459 1984 121 2294
Chr17(86397.2) 1838 19664 12285 2375 1784 3385
Chr18(83120.9) 860 9232 8026 660 402 758
Chr19(62903.2) 1175 10293 6505 278 222 415
Chr20(67082.5) 995 7901 4703 374 164 308
Chr21(51209.9) 479 4863 4984 698 420 795
Chr22(54541.3) 560 5540 8845 339 297 560
ChrX(163753.4) 1376 18625 20521 2107 1568 2967
ChrY(29133.1) 347 2357 2831 77 85 167

318 Y. Ji et al.

Funding. This work was supported by the National Key R&D Program of China
[2017YFB1401302, 2017YFB0202200], the National Natural Science Foundation of P. R. China
[No. 61572260, 61872196], Outstanding Youth of Jiangsu Natural Science Foundation
[BK20170100], Key R&D Program of Jiangsu [BE2017166], Postgraduate Research & Practice
Innovation Program of Jiangsu Province [KYCX19_0906, KYCX19_0921], The Natural Science
Foundation of the Jiangsu Higher Education Institutions of China [19KJD520006] and Modern
Educational Technology Research Program of Jiangsu Province in 2019 [2019-R-67748].

References

1. Kahn, S.D.: On the future of genomic data. Science 331(6018), 728–729 (2011)
2. Pearson, W.R.: Rapid and sensitive sequence comparison with FASTP and FASTA.

Methods Enzymol. 183(1), 63–98 (1990)
3. Xie, X., Zhou, S., Guan, J.: CoGI: towards compressing genomes as an image. IEEE/ACM

Trans. Comput. Biol. Bioinform. 12(6), 1275–1285 (2015)
4. Deorowicz, S., Grabowski, S., Ochoa, I., et al.: ERGC: an efficient referential genome

compression algorithm. Bioinformatics 31(21), 3468–3475 (2015)
5. Wandelt, S., Leser, U.: FRESCO: referential compression of highly similar sequences.

IEEE/ACM Trans. Comput. Biol. Bioinform. 10(5), 1275–1288 (2014)
6. Wu, X.-D., Ji, S.-W.: Comparative study on MapReduce and spark for big data analytics.

J. Softw. 29(6), 1770–1791 (2018)
7. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:

Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), MSST 2010, pp. 1–10. IEEE Computer Society, Washington, DC (2010)

8. Abecasis, G.: The 1000 genomes project consortium. An integrated map of genetic variation
from 1,092 human genomes. Nature 491, 56–65 (2012)

9. Vavilapalli, V.K,, Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., et al.:
Apache hadoop YARN: yet another resource negotiator. In: Proceedings of the 4th Annual
Symposium on Cloud Computing, p. 5. ACM, New York (2013)

10. Liu, Y.S., et al.: High-speed and high-ratio referential genome compression. Bioinformatics
33(21), 3364–3372 (2017)

FastDRC: Fast and Scalable Genome Compression 319

A Parallel Approach to Advantage Actor
Critic in Deep Reinforcement Learning

Xing Zhu(B) and Yunfei Du

School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
zhux25@mail2.sysu.edu.cn

Abstract. Deep Reinforcement learning (DRL) algorithms recently still
take a long time to train models in many applications. Parallelization has
the potential to improve the efficiency of DRL algorithms. In this paper,
we propose an parallel approach (ParaA2C) for the popular Actor-Critic
(AC) algorithms in DRL, to accelerate the training process. Our work
considers the parallelization of the basic advantage actor critic (Serial-
A2C) in AC algorithms. Specifically, we use multiple actor-learners to
mitigate the strong correlation of data and the instability of updating,
and finally reduce the training time. Note that we assign each actor-
learner MPI process to a CPU core, in order to prevent resource con-
tention between MPI processes, and make our ParaA2C approach more
scalable. We demonstrate the effectiveness of ParaA2C by performing on
Arcade Learning Environment (ALE) platform. Notably, our ParaA2C
approach takes less than 10 min to train in some commonly used Atari
games when using 512 CPU cores.

Keywords: Deep reinforcement learning · Advantage actor critic ·
Parallelization · MPI · Scalable

1 Introduction

Reinforcement learning (RL) is an efficient approach able to solve sequential
decision making problems. The problems are described as such a process that
an agent continuously interacts with an environment by trial-and-error until
reaching the target state. Deep reinforcement learning (DRL) combines deep
neural networks (DNN) and RL algorithms, to become a very attractive direc-
tion. Recently for many applications and models, DRL algorithms still take a
long time to train.

Specifically, the popular Actor-Critic (AC) algorithms in DRL combine value-
based and policy-based methods that are widely mentioned. Among these AC
algorithms, the basic advantage actor critic (Serial-A2C) [7] uses sequential
observed data to learn, and it is strongly correlated as Serial-A2C is an online-
learning-based DRL algorithm. In addition, due to the instability of generated
data, the model updating is unstable in Serial-A2C. In order to mitigate the
instability and the correlation, the previous work focused on the parallelization
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 320–327, 2020.
https://doi.org/10.1007/978-3-030-38961-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_28

A Parallel Approach to Advantage Actor Critic 321

and algorithmic optimization, such as asynchronous A2C (A3C) [9], and opti-
mization approaches like PPO [11].

In order to further improve the algorithmic efficiency, we present ParaA2C,
a parallel approach for serial-A2C. Our ParaA2C has the ability to reduce
the training time significantly, as well as provide a good scalability for online-
learning-based AC algorithms on a CPU cluster. In ParaA2C approach, we use
multiple parallel actor-learners, where each actor interacts with an environment
instance and each learner learns a model replication. Each actor-learner has an
unique MPI process running on a CPU core. In this way, ParaA2C enables each
actor-learner to fully utilize the computing capability of a CPU core, further
exposing a high degree of parallelism. With 32 nodes and each node has 16 MPI
processes, our ParaA2C approach can play some commonly used Atari games in
less than 10 min.

2 Related Work

Asynchronous Serial-A2C (A3C) [9] performs the asynchronous parallel training
for several days on a multi-core CPU. GPU-based A3C (GA3C) [3] accelerates
the A3C using a GPU and performs training for over a dozen hours. Batched
A3C (BA3C) [2] is a CPU implementation of GA3C and has similar perfor-
mance. Distributed-BA3C [1] could play Atari games in 21 min, when using 64
distributed CPU nodes to train, with each node performs BA3C. A2C imple-
mented in OpenAI baselines [6] is a synchronous Serial-A2C algorithm, which
has similar performance with A3C. Parallel Advantage Actor Critic (PAAC) [5]
is a GPU-based algorithm outperforming previous GA3C, but also takes more
than ten hours to train. Further, Adam Stooke and Pieter Abbeel [12] evaluate
the previous Serial-A2C-based algorithms. They perform the experiments on the
state-of-the-art NVIDIA DGX-1 platform which has 40 CPU cores and 8 GPUs,
and enable the training to coverage in about 10 min.

According to the above, the training of Serial-A2C-based algorithms can be
accelerated on CPUs or GPUs. In this paper, we regard Serial-A2C algorithm
as an entirety, and consider its parallelization. As the batch size of Serial-A2C
is too small, our approach is not suitable for performing on a GPU. Thus the
proposed ParaA2C scales Serial-A2C on a modern CPU cluster. At best, the
algorithm is trained to converge in less than 10 min when adopting 512 CPU
cores.

3 Our ParaA2C Approach

3.1 Coarse-Grained Parallelization

The implementation of Serial-A2C algorithm has two stages: sampling and train-
ing. In sampling stage, an actor interacts with an environment simulator and
generates interactive data. In training stage, a learner trains the model network

322 X. Zhu and Y. Du

Worker nWorker 1

Simulator Model

state action

Update

Model Simulator

Store (s,a,r)
of t steps

action state...

AllReduce

Store (s,a,r)
of t steps

reward

Update

reward

gradients gradients

Fig. 1. The multiple actor-learners parallelization. Each worker executes Serial-A2C,
and communicates gradients with each other.

using the interactive data. Both sampling and training stages can be acceler-
ated by parallelization. Our work uses multiple actors to interact with multiple
environment simulators, in order to generate a larger batched input data and
accelerate the sampling stage. In addition, we use multiple learners to accelerate
the training stage by learning multiple model replications with data parallelism.

In our proposed ParaA2C, we regard Serial-A2C algorithm as an entirety,
and consider its coarse-grained parallelization. Specifically, we adopt multiple
actor-learners and make each actor-learner as a worker to perform a Serial-
A2C algorithm separately. Different from OpenAI baselines [6] that synchronizes
the samples of all actors, ParaA2C synchronizes the gradients calculated by all
actor-learner workers, and each worker has a model replication for inference and
training.

Multiple Actor-Learners. ParaA2C assigns an actor and a learner to a
worker, and uses multiple workers to perform training as shown in Fig. 1. In
each worker, an actor uses a model replication to generates tmax-step interactive
samples, and a learner in turn uses these samples to calculate its gradients. The
gradients require to be communicated between all workers. Then new gradients
are applied to the parameters of each model replication.

At each iteration, a worker i generates a batch data Bi consisting of tmax

samples to calculate its gradients �Ji(θ). After completing an iteration, N work-
ers adopt All-Reduce patterns to communicate �Ji(θ), and apply new gradients
�J(θ) = 1

N

∑N
i=1

1
tmax

∑
x∈Bi

�l(x, θ) = 1
Ntmax

∑N
i=1

∑
x∈Bi

�l(x, θ) to update
parameters. when B = {B1, ..., BN}, �J(θ) = 1

Ntmax

∑
x∈B �l(x, θ). It is intu-

itive that using N workers and processing tmax samples per worker is equivalent
to one worker to copy with Ntmax samples. Thus model replications on all work-
ers are all the same at every iteration, further implementing the data parallelism.

A Parallel Approach to Advantage Actor Critic 323

Algorithm 1. ParaA2C algorithm
Set P MPI processes.
Initialize model network parameters θ.
Process 0 broadcasts its parameters to other processes.
Initialize total interaction steps Ttotal and number of steps per iteration tmax.
Set number of updates Nupdate = Ttotal / (tmax × P).
for j ∈ [1, Nupdate] do

for t ∈ [1, tmax] do
Input st into the model and get state value vt

Select an action at

Execute the action at and get reward rt and next observation st+1

store (st, at, rt, vt)
end
Input st+1 into the model and store state value vt+1

for t ∈ [tmax, 1] do

ggae =

{
rt − vt, st+1is terminal

rt + γvt+1 − vt + γλggae, st+1is non-terminal

Rt = ggae + vt

end
Compute loss function li(s, θ) using Rt

Compute gradients �Ji(w) = 1
tmax

∑
s∈Bi

�li(s, θ)
Communicate gradients between P processes using All-Reduce
All p processes get gradients �J(θ) = 1

Ptmax

∑P
i=1

∑
s∈Bi

�li(s, θ)
Update θ using �J(θ) and RMSprop optimizer

end

3.2 Scalability

To explore the scalability by using multiple CPU cores, we use P actor-learner
MPI processes in our ParaA2C approach. Each actor-learner MPI process per-
forms Serial-A2C algorithm and communicates gradients after completing an
iteration. The implementation details are shown in Algorithm1.

Note that if we assign an actor-learner MPI process to a CPU core, it is able
to handle tmax samples quickly, and prevent resource contention between MPI
processes. Especially, when tmax is empirically set to 5, the utilization rate of a
CPU core is close to 100%. In general, the value of tmax will not be too large
for most Serial-AC-based algorithms which use temporal-difference learning. If
tmax is too large, some instant rewards used for updating may be neutralized,
and will cause a same problem with policy gradient methods. But if tmax is too
small, we cannot make full use of the computing capability of a CPU core in our
experiments.

Our approach that assigns a MPI process to a CPU core has a good scalabil-
ity. Once we increase the number of CPU cores, the batch size is enlarged, and
will not affect the calculation of other cores. When 16 actor-learners work on a
CPU node, we can scale our ParaA2C algorithm to 32 CPU nodes (512 cores),

324 X. Zhu and Y. Du

and at best, the algorithm can be trained to converge in less than 10 min during
our experiments.

4 Evaluation

We perform the experiments on a CPU cluster to evaluate the performance
of the ParaA2C approach. The ParaA2C approach is implemented using C++
programming language in the PyTorch framework. The CPU cluster has 32 nodes
and each node has 2 Intel Xeon 12-core CPUs. We adopt environment simulators
from the commonly used Arcade Learning Environment (ALE) platform [4] that
includes over 60 Atari 2600 games. Especially, the preprocessing of data from
ALE framework is described in [10]. We invoke many parallel workers to train a
model synchronously, and each worker performs a actor-learner MPI process. For
scalable comparisons, we use 16 cores per node, and assign a worker to a core in
our experiments. In each ALE game, we carried out 6 experiments respectively,
with the number of nodes Nnode doubling from 1 to 32, and the number of
environment simulators ne ranging from 16 to 512 correspondingly. When tmax

set to 5, the batch size bs increases from 80 to 2560.

4.1 Learning Rate Study

As the same to the previous Serial-A2C-based approaches, our ParaA2C app-
roach is relatively sensitive to learning rate(LR) η. At first, we select two com-
monly used methods from distributed deep learning to adjust the learning rate
of ParaA2C. Linear scaling rule increases LR with the batch size [8]. Sqrt scal-
ing rule increases LR with the square root of the batch size [8]. Experimental
results show that the sqrt scaling rule is better than the linear scaling rule in our
ParaA2C approach. However, when the number of CPU cores scales to 256 or
512, the sqrt scaling rule cannot provide performance improvements in ParaA2C
approach. Thus we conduct several experiments to adjust the learning rate η,
and find that when we set η = 0.001 and keep it fixed, the performance is more
stable and the acceleration is more significant. For comparison, we finally use
η = 0.001 in all our experiments for scalable performance.

4.2 Performance Study

In order to get significant performance improvement and explore scalable par-
allelization, we compare the results of each ALE game with 16, 32, 64, 128,
256, and 512 CPU cores, respectively. Generally, for a fixed number of data for
updating, when the batch size is larger, the number of iteration will be smaller.
This is the advantage of data parallelism as the training time will be shorter.
But this results in a scalability bottleneck as the optimal value may be neglected
in the gradient descent. Thus we next focus on two performance metrics: one is
number of iterations and the other is training time.

A Parallel Approach to Advantage Actor Critic 325

0 2 4 6 8 10
number of iterations 104

0

1000

2000

3000

4000
m

ea
n

ru
nt

im
e

sc
or

es

assault
16
32
64
128
256
512

0 2 4 6 8 10
number of iterations 104

-20

0

20

40

60

80

100

m
ea

n
ru

nt
im

e
sc

or
es

boxing
16
32
64
128
256
512

0 2 4 6 8 10
number of iterations 104

0

100

200

300

400

500

m
ea

n
ru

nt
im

e
sc

or
es

breakout
16
32
64
128
256
512

0 2 4 6 8 10
number of iterations 104

-30

-20

-10

0

10

20

30

m
ea

n
ru

nt
im

e
sc

or
es

pong
16
32
64
128
256
512

0 2 4 6 8 10
number of iterations 104

0

0.5

1

1.5

2

m
ea

n
ru

nt
im

e
sc

or
es

104 qbert
16
32
64
128
256
512

0 2 4 6 8 10
number of iterations 104

0

500

1000

1500

2000

m
ea

n
ru

nt
im

e
sc

or
es

seaquest
16
32
64
128
256
512

Fig. 2. The learning curves vs the number of iterations in ALE games.

Figure 2 shows the learning curves vs the number of iterations in ALE games,
with the number of CPU cores ranging from 16 to 512. Experiment results show
that when the number of CPU cores increases, our ParaA2C approach takes
the less number of iterations Itermax to converge to a feasible solution. This is
because of the increasement of batch size in the ParaA2C approach. With using
512 CPU cores, Itermax reduces more than four times comparing with that using
16 CPU cores. Thus under the current settings, our ParaA2C approach has a
good performance speedup with the increasing number of CPU cores.

Figure 3 shows the learning curves vs training time in ALE games. Exper-
iment results show that the more the number of CPU cores, the shorter the
training time to reach the same optimal runtime reward, that shows a good

326 X. Zhu and Y. Du

0 10 20 30 40 50 60 70 80
training time (/minutes)

0

1000

2000

3000

4000

m
ea

n
ru

nt
im

e
re

w
ar

d
assault

16
32
64
128
256
512

0 10 20 30 40 50 60 70 80
training time (/minutes)

-20

0

20

40

60

80

100

m
ea

n
ru

nt
im

e
re

w
ar

d

boxing
16
32
64
128
256
512

0 10 20 30 40 50 60 70 80
training time (/minutes)

0

100

200

300

400

500

m
ea

n
ru

nt
im

e
re

w
ar

d

breakout
16
32
64
128
256
512

0 10 20 30 40 50 60 70 80
training time (/minutes)

-30

-20

-10

0

10

20

30

m
ea

n
ru

nt
im

e
re

w
ar

d

pong
16
32
64
128
256
512

0 10 20 30 40 50 60 70 80
training time (/minutes)

0

0.5

1

1.5

2

m
ea

n
ru

nt
im

e
re

w
ar

d

104 qbert
16
32
64
128
256
512

0 10 20 30 40 50 60 70 80
training time (/minutes)

0

500

1000

1500

2000

m
ea

n
ru

nt
im

e
re

w
ar

d

seaquest
16
32
64
128
256
512

Fig. 3. The learning curves vs training time in ALE games.

scalability. In some better cases, the ParaA2C approach only takes about 10 min
to complete the steepest learning phase and enter the convergence phase using
256 or 512 CPU cores. Especially with the seaquest game, it converges in less
than 10 min. In addition, all test ALE games in our experiments retain a higher
score in the process of scaling ParaA2C to more CPU cores, while suffering from
a bottleneck or a sharp performance decline at a certain threshold.

5 Conclusions

In this paper we present ParaA2C, a parallel approach for Serial-A2C that
provides the scalable performance speedup. Our ParaA2C approach is data

A Parallel Approach to Advantage Actor Critic 327

parallelism by leveraging multiple actor-learners. Specifically, we assign each
actor-learner MPI process to a CPU core, in order to prevent resource contention
between MPI processes. At each iteration of training, these actor-learners com-
municate gradients using All-Reduce of MPI, and then apply new gradients to
their own model parameters. When scaling to 32 nodes (512 CPU cores), our
ParaA2C approach retains the best performance, that it takes less than 10 min
to train in some ALE games to generate an optimized result.

Acknowledgements. This research was supported by the Natural Science Founda-
tion of China under Grant NO. U1811464 and the Program for Guangdong Introducing
Innovative and Enterpreneurial Teams under Grant NO. 2016ZT06D211.

References

1. Adamski, I., Adamski, R., Grel, T., J ↪edrych, A., Kaczmarek, K., Michalewski,
H.: Distributed deep reinforcement learning: learn how to play atari games in
21 minutes. In: Yokota, R., Weiland, M., Keyes, D., Trinitis, C. (eds.) ISC High
Performance 2018. LNCS, vol. 10876, pp. 370–388. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92040-5 19

2. Adamski, R., Grel, T., Klimek, M., Michalewski, H.: Atari games and intel proces-
sors. In: Cazenave, T., Winands, M.H.M., Saffidine, A. (eds.) CGW 2017. CCIS,
vol. 818, pp. 1–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75931-9 1

3. Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., Kautz, J.: Reinforcement
learning through asynchronous advantage actor-critic on a GPU. arXiv preprint
arXiv:1611.06256 (2016)

4. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279
(2013)

5. Clemente, A.V., Castejón, H.N., Chandra, A.: Efficient parallel methods for deep
reinforcement learning. arXiv preprint arXiv:1705.04862 (2017)

6. Dhariwal, P., et al.: Openai baselines (2017). https://github.com/openai/baselines
7. Konda, V.R., Tsitsiklis, J.N.: Actor-critic algorithms. In: Advances in Neural Infor-

mation Processing Systems, pp. 1008–1014 (2000)
8. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.

arXiv preprint arXiv:1404.5997 (2014)
9. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-

national Conference on Machine Learning, pp. 1928–1937 (2016)
10. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature

518(7540), 529 (2015)
11. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
12. Stooke, A., Abbeel, P.: Accelerated methods for deep reinforcement learning. arXiv

preprint arXiv:1803.02811 (2018)

https://doi.org/10.1007/978-3-319-92040-5_19
https://doi.org/10.1007/978-3-319-92040-5_19
https://doi.org/10.1007/978-3-319-75931-9_1
https://doi.org/10.1007/978-3-319-75931-9_1
http://arxiv.org/abs/1611.06256
http://arxiv.org/abs/1705.04862
https://github.com/openai/baselines
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1803.02811

Applications of Distributed and Parallel
Computing

Blockchain-PUF-Based Secure
Authentication Protocol
for Internet of Things

Akash Suresh Patil, Rafik Hamza, Hongyang Yan, Alzubair Hassan,
and Jin Li(B)

School of Computer Science and Cyber Engineering, Guangzhou University,

Guangzhou 51006, People’s Republic of China

Abstract. Devices constituting the Internet of Things (IoT) have
become widely used, therein generating a large amount of sensitive data.
The communication of these data across IoT devices and over the public
Internet makes them susceptible to several cyber attacks. In this paper,
we propose an efficient blockchain approach based on the secret compu-
tational model of a physically unclonable function (PUF). The proposed
framework aims to guarantee authentication of the devices and the miner
with a faster verification process compared to existing blockchain tech-
niques. Furthermore, the combination of the blockchain and PUF allows
us to propose an efficient framework that guarantees data provenance
and data integrity in IoT networks. The proposed framework employs
PUFs, which provide unique hardware fingerprints for establishing data
provenance. Smart contracts based on the blockchain provide a decen-
tralized digital ledger that is able to resist data tampering attacks.

Keywords: Blockchain · Physically Unclonable Function ·
Authentication · Internet of Things · Data integrity

1 Introduction

The rapid development and evolution of miniaturization and electronics as well
as the massive deployment of communications and networking technologies have
bestowed unprecedented advances onto the world [1]. This trend has emerged in
a number of electronic devices in every field of work, reducing human effort and
increasing the cost of productivity. This rapid development is facilitating a shift
toward the digital world.

The Internet ensures fast and efficient communication, which facilitates soci-
etal advancement. In recent decades, digitalization has seen significant progress,
with developments that can be achieved and implemented through the Internet
and through the concept of the Internet of Things (IoT). IoT has emerged as
an encapsulate of various technologies, from radio frequency identification to
wireless sensors networks to physical sensors [2]. Indeed, IoT equipment with

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 331–338, 2020.
https://doi.org/10.1007/978-3-030-38961-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_29&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_29

332 A. S. Patil et al.

micro-controllers, digital communication transreceivers and protocol stacks that
allow communication has become an integral part of the Internet. IoT devices can
be applied in many research areas as electronic devices, from wearable devices
to physical hardware development platforms [3,4].

Security issues have become the most challenging problem facing IoT [5].
It is essential to provide security because IoT systems are directly involved in
human safety. A large number of IoT devices are connected in a system and
are not managed by a single controller [6]. The design of security protocols is
complicated due to the aforementioned issues.

Most security protocols are reliable for the Internet; however, they are not
satisfactory for IoT systems [7–9]. Modern security protocols must be resistant
to physical and side channel attacks, in addition to preserving anonymity and
privacy. Additionally, modern security protocols must be efficient when used
in IoT devices because they have very low computational, power and memory
resources [10–12]. Thus, new security protocols and frameworks are required for
establishing a secure and reliable IoT system.

In this paper, we present a blockchain-based architecture for IoT security.
Moreover, we propose an authentication framework between IoT devices and
miners in a blockchain network. Our work contributes to achieving identity
authentication, access control, replay attack resistance, DOS attack resistance
and data integrity without incurring overhead or delays. The unique features of
the physically unclonable function (PUF) offer hardware security for IoT devices
because a PUF carries a unique identification number for every chip at the time
of manufacture, thereby offering data provenance.

In the next section, we will present the background of the presented material
and challenges. In Sect. 3, we present our system architecture and the proposed
framework’s information work-flow. In Sect. 4, Security evaluations are discussed.
Finally, the conclusions are given in Sect. 5.

2 Background and Related Works

2.1 Physical Unclonable Function (PUF)

The PUF is defined as a digital fingerprint that offers unique identification for
semiconductor devices such as microprocessors. PUFs are based on unique phys-
ical variations developed during manufacturing. In short, a PUF is a physical
entity embodied in a physical structure [13]. A PUF is based on the concept
that even though the mask and manufacturing process are the same for every
integrated circuit (IC), each IC is quite different from other ICs due to normal
manufacturing variability. PUFs hold this variability to derive secret informa-
tion that is unique to the chip. PUFs are promising novel primitives that can be
used for secret key storage and authentication without the need for expensive
hardware [14,15]. PUFs derive their secrecy from the physical characteristics of
the IC. Thus, there is no need to store secrets in digital memory.

Blockchain-PUF-Based Secure Authentication Protocol for IoT 333

2.2 Blockchain

The first record of blockchain technology came in 2008 by mysterious founders
using the name Satoshi Nakamoto [16].

Basically, a blockchain is a time-stamped chain of blocks jointly maintained
by every participating node. Each block is chained together cryptographically.
Blocks are digitally signed and chained to a previous block using their hash
values. Blockchain technology is completely distributed, restricted to the given
contractual code, autonomous and fully traceable [17].

2.3 Challenges

The IoT environment encapsulates millions of devices, and each device should be
authenticated to the network before establishing communication. Because there
is no human intervention in an IoT system, every IoT device should be equipped
with a way to identify and authenticate themselves. However, modern techniques
require secret credentials to be stored in the device memory. Unfortunately, these
modern techniques are not well suited for the physically unprotected devices that
are part of IoT systems [18]. An adversary may use various physical attacks to
manipulate the entire IoT system.

Another issue relates to physical and cloning attacks, where an adversary may
attempt to imitate a genuine and authenticated IoT device by cloning other IoT
devices by extracting secret information [15]. The main intention of an attacker
is to manipulate and access the IoT data sent by the other IoT devices. An
attacker can eavesdrop on the communication by introducing a new message,
change or replay messages, or establish other identities.

3 Proposed Framework Based on PUF Model

3.1 System Architecture

In this section, we introduce our system architecture equipped with various enti-
ties, such as the IoT devices, blockchain networks and the data owner, as shown
in Fig. 1.

In our system, we have three participants: the IoT devices, the blockchain
network and the data user.

– Various physical objects are merged to become smart objects, along with
sensors and actuators, allowing the collection and processing of data from
the real world.

– A peer-to-peer network, where every node may be a high-resource device.
This network imbues our system with a distributed nature. Every node in
the blockchain acts as a server/miner and maintains the history of all trans-
actions. The blockchain is the mechanism that allows transactions to verify
and provide the distributed, immutable, transparent, auditable and secure
features. Additionally, every node of the blockchain network is responsible
for data storage and providing the required computations.

334 A. S. Patil et al.

Fig. 1. The proposed system architecture

– A data user is an entity who has authority to provide their own personal
data. They have full control over their data and set data access policies for
intended purposes only. By adopting the blockchain and PUFs, data integrity,
data provenance, and data tampering resistance can be achieved for the owner
of the data.

3.2 Enrollment Phase

First, the IoT devices will request a node/miner in the blockchain network for
registration. Then, this node/miner will store the registration details in local
storage in a database. After successfully storing these details, the node/miner
will be approved by the IoT devices (see Fig. 2). Simultaneously, the node/miner
will broadcast the registration to the whole blockchain network, which will be
confirmed to the user.

3.3 Verification Phase

When a user wants to interact with the node/miner, the user has to request
permission; the node/miner will query this permission from local storage. Then,
the node/miner will broadcast the request signed by the node/miner to the
blockchain network. Once the blockchain network verifies the request, the user
can interact with the IoT devices (see Fig. 3).

Our proposed work presents a unique approach to authentication using block-
chain based smart contracts along with the PUF model, which offers a dense
solution for secure authentication. Basically, our proposed solution will interact

Blockchain-PUF-Based Secure Authentication Protocol for IoT 335

Fig. 2. Enrollment phase

Fig. 3. Verification phase

with a blockchain based smart contract to ensure safe and secure communication.
A smart contract is designed in such a way that the data coming from the
IoT devices will interact with the distributed nodes in the blockchain network.
Initially, all devices will need to enroll following their respective device ID and
secret computational PUF model with the smart contract. Figure 4 presents the
information flow of the entire IoT system.

4 Analysis

In this section, we illustrate some perspectives on evaluating the proposed PUF-
based blockchain.

1. Faster verification process
Existing PUF-based blockchain techniques require storing lists of challenge-
response pairs (CRPs) in the database on the verifier side [19]. Therefore,
collecting new CRPs from devices and storing them will become an exhaustive
task and require unnecessarily storage and computations, especially under
resource-constrained environments. We intend to overcome these problems by

336 A. S. Patil et al.

Fig. 4. The information flowchart of the IoT system.

proposing a new approach with minimally intensive processes on the database
on the verifier side.

2. Authentication of the devices and the miner
In the proposed PUF-blockchain model, IoT devices are authenticated with
miner nodes after validating the ID, MAC address, and secret computational
model (PUF model) parameters. The challenge-response protocol concatena-
tion with hash ID transactions that will be verified with the stored hash IDs
on the miner side at the time of enrollment. This guarantees a secure authen-
tication of the devices in IoT networks.
The server/miner will perform authentication using the device parameters
that have been established in the previous transactions. The miner node will
receive an ID from the users, and accordingly, it will send challenges or reject
their requests. The parameters received from legitimate devices are checked
and used to decide whether to continue or terminate the process.

3. Data provenance and data integrity
The use of PUFs and the features of the blockchain ensure data provenance
and data integrity for IoT environments [20]. The blockchain employs hash
functions that confirm data integrity, while the unique ID in the PUF model
guarantees data provenance for each IoT device. The blockchain holds a list of
transactions between users, which are user data that are robust to tampering.
This provides immunity from impersonation attacks. The blockchain offers an
immutable chain of records; all the data transmitted previously are validated
and then stored in the blockchain in such a way that these data cannot be
altered by attackers.

4. Resistance against replay attacks
Every step of the timestamp is used to check the data freshness, including all
hash lists when transmitting the transactions. Thus, the proposed framework
is well protected against replay attacks and can withstand such attacks.

Blockchain-PUF-Based Secure Authentication Protocol for IoT 337

5. Resistance against man-in-the-middle attacks
The proposed scheme guarantees resistance against man-in-the-middle
attacks. The sender is validate and verified by the receiver before process-
ing any transactions.

Additionally, the security evaluation of the proposed framework illustrates a
high level of security. The smart contract stores the full list of registered device
IDs, MAC addresses and PUF models during the enrollment phase. Thus, it is
nearly impossible for attackers to apply well-known attacks such as denial of
service attacks, distributed denial of service attacks, and impersonation attacks.
The smart contract maintains the list of registered IoT devices and the respective
PUF model, along with the MAC addresses of the IoT devices, thereby offering
trustworthiness for user access policies and user data usage records.

5 Conclusion

In this paper, we present an emerging technology: the PUF-based blockchain.
The proposed framework ensures authentication for users and data integrity in
IoT systems. Our proposed method represents an efficient and secure method
for interaction between IoT devices and a miner in a blockchain network. Dis-
tributed ledgers and smart contracts carried out on the blockchain guarantee
data integrity and user privacy. Cryptographic operations are implemented to
enhance the blockchain protocol and ensure secure, efficient and more reliable
authentication protocols. The proposed PUF-based blockchain can be employed
as an efficient solution to preserve data integrity and facilitate authentication as
well as reduce the computation power for IoT devices as PUF equipped in it.

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China (No. 61702125, 61702126).

References

1. Lu, Y., Xu, L.D.: Internet of Things (IoT) cybersecurity research: a review of
current research topics. IEEE Internet Things J. 6(2), 2103–2115 (2019)

2. Bedi, G., Venayagamoorthy, G.K., Singh, R., Brooks, R.R., Wang, K.: Review
of Internet of Things (IoT) in electric power and energy systems. IEEE Internet
Things J. 5(2), 847–870 (2018)

3. Ikpehai, A., et al.: Low-power wide area network technologies for Internet-of-
Things: a comparative review. IEEE Internet Things J. 6(2), 2225–2240 (2019)

4. Udoh, I.S., Kotonya, G.: Developing IoT applications: challenges and frameworks.
IET Cyber-Phys. Syst.: Theor. Appl. 3(2), 65–72 (2018)

5. Frustaci, M., Pace, P., Aloi, G., Fortino, G.: Evaluating critical security issues of
the iot world: present and future challenges. IEEE Internet Things J. 5(4), 2483–
2495 (2018)

6. Arif, M., Wang, G., Wang, T., Peng, T.: SDN-based secure VANETs communica-
tion with fog computing. In: Wang, G., Chen, J., Yang, L.T. (eds.) SpaCCS 2018.
LNCS, vol. 11342, pp. 46–59. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-05345-1 4

https://doi.org/10.1007/978-3-030-05345-1_4
https://doi.org/10.1007/978-3-030-05345-1_4

338 A. S. Patil et al.

7. Patil, A.S., Tama, B.A., Park, Y., Rhee, K.-H.: A framework for blockchain based
secure smart green house farming. In: Park, J.J., Loia, V., Yi, G., Sung, Y. (eds.)
CUTE/CSA -2017. LNEE, vol. 474, pp. 1162–1167. Springer, Singapore (2018).
https://doi.org/10.1007/978-981-10-7605-3 185

8. Granjal, J., Monteiro, E., Sá Silva, J.: Security for the Internet of Things: a survey
of existing protocols and open research issues. IEEE Commun. Surv. Tutorials
17(3), 1294–1312 (2015)

9. Muhammad, K., Hamza, R., Ahmad, J., Lloret, J., Wang, H., Baik, S.W.: Secure
surveillance framework for IoT systems using probabilistic image encryption. IEEE
Trans. Ind. Inf. 14(8), 3679–3689 (2018)

10. Nguyen, V., Lin, P., Hwang, R.: Energy depletion attacks in low power wireless
networks. IEEE Access 7, 51915–51932 (2019)

11. Arif, M., Wang, G., Balas, V.E.: Secure vanets: trusted communication scheme
between vehicles and infrastructure based on fog computing. Stud. Inform. Control
27(2), 235–246 (2018)

12. Hamza, R., Yan, Z., Muhammad, K., Bellavista, P., Titouna, F.: A privacy-
preserving cryptosystem for IoT e-healthcare. Inf. Sci. (2019)

13. Herder, C., Yu, M., Koushanfar, F., Devadas, S.: Physical unclonable functions
and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)

14. Gao, Y., Ma, H., Abbott, D., Al-Sarawi, S.F.: Puf sensor: exploiting puf unreli-
ability for secure wireless sensing. IEEE Trans. Circ. Syst. I: Regul. Pap. 64(9),
2532–2543 (2017)

15. Mukhopadhyay, D.: Pufs as promising tools for security in Internet of Things. IEEE
Des. Test 33(3), 103–115 (2016)

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. http://bitcoin.org/
bitcoin.pdf

17. Casino, F., Dasaklis, T.K., Patsakis, C.: A systematic literature review of
blockchain-based applications: current status, classification and open issues. Telem-
atics Inf. 36, 55–81 (2019)

18. Mukherjee, A.: Physical-layer security in the Internet of Things: sensing and com-
munication confidentiality under resource constraints. Proc. IEEE 103(10), 1747–
1761 (2015)

19. Javaid, U., Aman, M.N., Sikdar, B.: Blockpro: blockchain based data provenance
and integrity for secure IoT environments. In: BlockSys@SenSys (2018)

20. Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: Provchain:
a blockchain-based data provenance architecture in cloud environment with
enhanced privacy and availability. In: 2017 17th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID), pp. 468–477, May
2017

https://doi.org/10.1007/978-981-10-7605-3_185
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Selective Velocity Distributed Indexing
for Continuously Moving Objects Model

Imene Bareche(B) and Ying Xia

School of Computer Science and Technology,
Chongqing University of Posts and Telecommunications, Chongqing 400065, China

imen.1993.bareche@gmail.com

Abstract. The widespread of GPS embedded devices has lead to a
ubiquitous location dependent services, based on the generated real-
time location data. This introduced the notion of continuous querying,
and with the aid of advanced indexing techniques several complex query
types could be supported. However the efficient querying and manip-
ulation of such highly dynamic data is not trivial, processing factors
of crucial importance should be carefully thought out such as accuracy
and scalability. In this study we focus on Continuous KNN (CKNN)
queries processing, one of the most well-know spatio-temporal queries
over large scale of continuously moving objects. In this paper we pro-
vide an overview of CKNN queries and related challenges, as well as an
outline of proposed works in the literature and their limitations, before
getting to our contribution proposal. We propose a novel indexing app-
roach model for CKNN querying, namely VS-TIMO. The proposed struc-
ture is based on a selective velocity partitioning method, since we have
different objects with varying speeds. Our structure base unit is a com-
prised of a non overlapping R-tree and a two dimensions grid. In order to
enhance performances, we design a compact multi-layer index structure
on a distributed setting, and propose a CKNN search algorithm for accu-
rate results using a candidate cells identification process. We provide a
comprehensive vision of our indexing model and the adopted querying
technique.

Keywords: Continuous KNN querying · Moving objects indexing ·
Distributed spatio-temporal indices · Velocity partitioning based
index · Parallel processing

1 Introduction

Nowadays, we are experiencing a rapid growth in the scale of generated spatio-
temporal data, which has inspired a series of new services called Location Aware
Services (LAS); referring to location-related requests regardless to user’ location,
for example searching the list of available hotels in a city. Location dependent
services LDS are a sub-class of LAS, intended to address people’s social and
societal needs based on their positioning data [1], for example searching the
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 339–348, 2020.
https://doi.org/10.1007/978-3-030-38961-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_30&domain=pdf
http://orcid.org/0000-0003-4865-3492
https://doi.org/10.1007/978-3-030-38961-1_30

340 I. Bareche and Y. Xia

nearest hospital to user’ location. LDS has attracted substantial interests in
both academia and industry. Business talking it has accumulated a huge collec-
tion of data of which we could make benefit in different real-world services to
boost economy and improve people’ life and safety. LDS are designed by Loca-
tion Dependent Queries (LDQ), the result set will vary according to the user’
location that might be moving. LDQs processing is more challenging in terms of
accuracy since they include both the spatial and the temporal component over
moving objects. Besides the response frequency feature, because objects might
be static or moving leading to two main types of queries namely snapshot or con-
tinuous queries respectively [1]. Many studies in academia have addressed the
problem of efficiently answering such a time-parametrized and position-related
requests. However the research is not yet well established and still need to be
investigated. Researchers have targeted two main points: indexing efficiency and
querying efficiency. Various indexing structures and querying approaches have
been proposed for different types of LDQ among which KNN queries. The index-
ing and querying of a snapshot KNN query has been extensively addressed in the
last decades, while continuous KNN and LDQ indices in general still have more
technical issues to deal with. The first technique dealing with the CKNNs was
proposed in [3], it was designed for centralized setting such in most of existing
works and can not be deployed in a distributed architecture. This is mainly due
to the continuous updates process inspired from the snapshot KNN querying,
which drastically reduces performances. Despite the rising number of spatial dis-
tributed platforms and frameworks, the continuous querying under distributed
setting is not yet well addressed.

1.1 Contribution

Based on these observations we propose a distributed hybrid index for continuous
queries namely CKNN and trajectory multi-attribute query. The proposed index
called VS-TIMO (Velocity Saptio-Temporal Index for Moving Objects) aims to
handle the problems of accuracy and querying complexity cost in a distributed
setting. Our index is implemented in parallel distributed master-sleeve paradigm.
Calculations over sleeve nodes are parallelized to reduce the complexity cost then
summarized and sent to the master node for final results compilation. Our main
contribution can be summarized as follows:

– We propose a velocity partitioning of objects based on selective similar veloc-
ities equation, leading to two distinct views of the sub-space.

– We design a region-based indexing for continuously moving objects in each
view within a distributed setting.

– We implement a two layered compact index model, described in two base
structures: tree-like and grid-based layout in a simple way to benefit from
both at once. We integrate a multi-attribute trajectory querying structure on
the top of the index.

– We propose an algorithm for dynamic CKNN query candidates selection.

Selective Velocity Distributed Indexing 341

The remainder of this paper is organized as follows: Sect. 2, consists of the
research motivation, the corresponding main factors to consider, and an overview
of some related works. In Sect. 3, we present the proposed index structure
and the proper querying technique in details. Section 4 Concludes the paper
with directions on the future works to be after implementation to enhance
performances.

2 Background, Challenges and Related Works

In this section we first point the motivation and the background of MO pro-
cessing, we discuss some basic concepts and major challenges; then we outline
existing works. Ground intelligent transportation systems, Business Coverage
Analysis, Location-based recommendation are examples of LDS applications over
moving objects supported by complex LDQs, by means of advanced indexing
techniques and novel appropriate spatial processing platforms. The complexity
of location-related systems in general and continuously MO processing above all,
is related to several factors, including: (a) Data nature and variability: besides
of its significant amount the indexed data are highly volatile much more in con-
tinuous context. (b) Data’ auto-correlation: since changes in the spatio-temporal
component of objects occur smoothly over time. Besides the CKNN related works
limitations including: (c) Velocity uncertainty: most of works on MO uncertain
velocity focus exclusively on Euclidean spaces [11,13], but when considering
objects within a road network the location accuracy [6] involves more repeti-
tive query re-evaluation. (d) The undefined number of CKNN search iterations:
most of search algorithms are based on unknown number of iterations to locate
the region of the KNN, which results in an extra communication cost [11] in a
distributed setting. (e) Data skewness: the skew distribution of data over nodes
reduces the performances due to the nonuniform distribution over space. Pro-
posed indexing paradigms to alleviate the complexity of MO querying can be
classified into three main categories according to the index structure base unit:
Tree-like indices, Grid-based indices, Hybridized indices; In regard to the target
data model MO indexing techniques have been addressed under two primary cat-
egories: Euclidean space MO indexing and MO indexing within real-world road
network. In this latter, we index the road network information, besides assuming
movement patterns and calculating the distance between objects based on the
road segments and not the euclidean distance equation. R-tree variants indices
are very common in state-of-the-art and known for large amount of data sup-
port, and fast search but high maintenance cost. R-tree-like indices are based
on the use of MBRs (Minimum Bounding Rectangle) for spatial information,
then extended to fit the mobility nature of data by introducing velocity compo-
nent like in TPR-tree [2] and its variants, which is a modified R*-tree used to
index moving objects for KNN queries. The main drawbacks in this approach
were the unconditional expansion of MBRs, and the maintenance cost. This lat-
ter was addressed later in TPR*-tree [3] while the former remained unsolved,
until authors in [4] proposed Bx-tree, and have also investigated MO frequent

342 I. Bareche and Y. Xia

updates. However the structure was sensitive to data skeweness and the query-
ing approach reduced the accuracy. Unlike previous approaches authors in [11]
consider MO within a road network constraints for CKNN queries, a two-layered
index structure that indexes road information. Other approaches have investi-
gated the problem of the repeated KNN search technique using an R-tree like
in [6]which unfortunately lead to an expensive search process. Due to its simple
and clear representation and low update cost, grid-based structures for MO con-
tinuous querying are numerous. Grid-based indices [1,7,9] divide the sub-space
into units designed as vertical and/or horizontal splits that indexes the enclosed
objects. Generally the KNN objects search processing begins from the query cell
then accesses the next closest cells, in a rotating fashion drawing a circle with the
query issuer as a centre. This process is performed repetitively for unknown num-
ber of iterations until K objects are found, which is one of the main drawbacks
of grid indexing. In recent years we had a proliferation of big data distributed
systems and cloud-streaming solutions such as Hadoop MapReduce [15], Apache
Storm [16], S4 [17], and Apache Spark [18]. These systems support big amounts
of data and allow fast distributed processing, therefore various indexing meth-
ods [1,7–9] are built on the top of it to inherit the scalability and fault-tolerance
features of the underlying frameworks [13].

3 Proposed Indexing Technique Outline

In this section we explain our proposed indexing structure model, the underlying
concept and used techniques.

3.1 Index Structure

We design a multi-layer indexing structure based on selective similar velocities
partitioning as a first step. We represent the top layer in an R-tree structure,
and the bottom is grid of 2 dimensions on a distributed cluster of nodes, because
Tree-like structures are suitable for large amounts of objects and provides fast
search, and grid-based ones are appropriate for frequent updates and outper-
form indexing trees in terms of maintenance cost. The second step is building
the region based index, defined as an R-tree with minimal number of MBRs for
root and non leaf nodes with no overlap. Combined with a grid based structure
for leaf nodes to index enclosed objects with a low cost and a simple represen-
tation. On the other hand since we are tracking objects movement and visited
regions, we integrate a storage model for multi-attribute trajectory querying in
a supplementary structure in the master node, described in a hash-map repre-
sentation for simple and fast retrieval.

CKNN Querying’ Velocity Selective Region-Based Structure. In this
section we present the proposed selective indexing technique, which will be per-
formed into 3 steps as follows:

Selective Velocity Distributed Indexing 343

1. Objects analysis: the system will analyze velocities to classify objects into two
distinct classes fast objects and slow objects. The selective classification (As
shown in Fig. 1) is according to the predefined equation that calculates the
standard deviation σ of objects velocity in real-time, based on the dispersion
of speed values as defined in Eq. (2). This partitioning will save the cost of
unnecessary access to objects remained in the same region, and reduce search
time and split/merge cost.

Let n be the number of objects at any given time t and vi the objects velocities
vector:

S =

n∑

i=1

v2
i

n
− (

n∑

i=1

vi

n
)2 (1)

σ =
√

S (2)

Fig. 1. Example of objects partitioning according to velocities into two views.

2. Region-split: after partitioning, we have two views the system will index
objects of each one in a VS-TIMO index. The sub-space will be sliced into
regions of interest: a minimalist number of vertical equal-sized splits accord-
ing to the X axis. A split should satisfy the condition: min.max ≥ k where
min(max) is the predefined minimum(maximum) number of objects per region
to make sure that there are at least k nearest neighbors in the candidate split
and avoid data skewness.

3. Split indexing: the indexing hybrid multi-layer structure is defined as a tree-
like structure on the top layer and a grid-based one on the bottom.

The process is as follows: (1) a customized R-tree: a minimalist R-tree is
created to index the root and the non-leaf nodes per splits, MBRs number is set
to a minimum proper value to avoid overlapping. (2) a grid structure for leaf

344 I. Bareche and Y. Xia

Fig. 2. Region-based splitting for indexing.

nodes: we divide the MBR space into M*M grid of equal size α squares (cells),
based on a 2-D array that stores the set of objects within cells. Each cell C
is denoted by C(pnt, i, j) corresponding to its row and column indices and the
pointer to a list of buckets, referring to the enclosed objects meta-data. From the
pointers in the bucket we access to information like the objects data, contained
objects number and the next bucket. Given an object O at time t preliminary
represented by the a triple tuple (id, (Ox, Oy), t) where Ox and Oy define its
spatial position at time t, we can easily know in which cell it falls to start the
kNN search by checking whether O’ spatial components satisfy inequalities in
(3) (Fig. 2):

Let OC(t) = {o1, o2, . . . on} be the set of moving objects that fall within the
cell C at any given time t,

O ∈ OC if and only if

⎧
⎨

⎩

i ∗ α ≤ Ox(t) ≤ (i + 1) ∗ α
&

j ∗ α ≤ Oy(t) ≤ (j + 1) ∗ α
(3)

The update algorithm in VS-TIMO is handled as a sequential companion of two
processes: delete and insert, similar to the update process used for a moving
objects database in [10], but adapted to our continuous context. To be the most
responsive to the CKNN querying requirement the data layout is defined as
shown in Fig. 3 we include time, velocity information and MO type in data
representation thus the objects will be represented by the tuple (id, (Ox, Oy),
v, t, type). We also define a time interval Δt for receiving new locations to
update the index, to guarantee a compact data representation without loss of
information on the one hand. And to have less space and calculations, and less
but larger time units on the other hand, similarly to the proceedings of packing
method used over trajectories databases for continuous tracking such as in [3].

Multi-attribute Trajectory Query Key-Based Supplementary Struc-
ture. Besides the described region-based structure for CKNN queries, we imple-

Selective Velocity Distributed Indexing 345

Fig. 3. The basic structure of the index.

ment a supplementary key-based structure on the top of VS-TIMO for users’
multi-attribute trajectory retrieval, an emerging query type investigated in a
set of proposals [5,12,14,19], it includes semantic attributes giving more query-
ing possibilities for a better understanding of objects behaviour [3]; Since users
tend to be of different types (for example taxi, person, or a bus) we integrate a
hash map to store a key-value structure since hash maps are suitable for small
amounts of data and support frequent changes. It stores in records users visited
regions with other attributes that specifies some related data such as user type
as follow: (id, [trajectory], type) . The hash map applies a straightforward search
method that is a linear scan, hence the time complexity of a query is O(m).

3.2 CKNN Query Processing

For a simple CKNN query processing we first don’t make any assumption about
objects movement pattern, and consider them in an euclidean space, we perform
the query over the R-trees and combine the result sets at the end. The KNN
query search method in conducted in an incremental way starting from the query
issuer q in both views (low and high velocity views) following a filter-and-refine
paradigm.we perform a minimum number of iterations to search the nearest
objects, we detect the ζ candidate cells by identifying the nearest buckets that
contain at least k neighbours all along a time interval Δt such that ζ.ε ≥ k where
ε is a minimum threshold. Then we take the distance r between q and the k -th
nearest neighbour we take q as a center and r as a radius and draw the first
iteration circle. Since we deal with continuously moving objects in real-time the
results set of a query q sent at t0 should be in coherence with data in response
time t1 (t1 ≥ t0). To achieve this we use a linear representation introduced in
various approaches [4,5] to model the mobility as a linear function of time, and
predict the position x of an object at any given time t denoted as x(t) based on
its position xref at a time reference denoted as tref and the velocity vector v as
defined in Eq. (4).

x(t) = xref + v(t − tref) : tref < t (4)

346 I. Bareche and Y. Xia

CKNN query search is performed over the grid cells to determine candidate
objects easily as presented in Algorithm 1, and use Lemma 1 for objects selection.

Fig. 4. Example of selecting objects candidates of a cell Ci.

Algorithm 1 Candidate cells objects selection
Input: A set MO, grid cell Ci, a threshold number τ K, and a time interval Δ T

Output:A set of candidate objects CCo
1: for (each Oi in MO) do
2: compute D(Oi,Ci);

3: sort objects in ascending order of D(Oi,Ci);
4: end for
5: dist-threshold ← The τ K-th object smallest D(Oi,Ci);

6: for (each Oi in MO) do
7: compute D(Oi,Ci);

(D(Oi,Ci) ≤ dist-threshold) insert Oi into CCo
8: end for
9: return CCo;

Lemma 1. Given a grid candidate cells Cs = {Ci : 1 ≤ i ≤ m}. In Fig. 4 and
for intuitive understanding we take a simple example of only one cell Ci; Let Co
be the enclosed objects set within cells Cs and a CKNN query q within the time
interval [tref , tref + Δt] : Co ⊆ Cs. Let PCo(tref) and PCo(tref + Δt) be the
positions vector of objects in Co at time tref and (tref + Δt) respectively when
objects move according to the related velocities vector. If the position of object
O ∈ Co occurs in both PCo(tref + Δt) and PCo(tref).i.e. the object still fills in
the candidate cells all along the time interval, then we can say that it belongs to
CCo the query candidate objects set: O ∈ CCo =⇒ O ∈ Co. In other words the
candidate objects set CCo for a query is a subset of the enclosed objects in the
whole grid candidate cells Cs denoted as Co : CCo ⊆ Co.

Proof. Let O be an object within a candidate cell Ci : O ∈ Ci. As shown in Fig. 4,
the positions O(tref) and O(tref +Δt) fill in Ci all along [tref , tref +Δt]. Because
all positions along the line segment (O(tref + Δt)O(tref)) are fully enclosed by
Ci during the time interval [tref , tref + Δt] we have: (a) The minimal possible
value of distance d(O, q) between an object O and the query issuer q must be

Selective Velocity Distributed Indexing 347

greater than or equal to the minimal possible value distance d(Ci, q) between q
and cell Ci : d(O, q) ≥ d(Ci, q); and (b)The maximal possible distance value D(O,
q) between O and q must be less than or equal to the maximal possible distance
value D(O, Ci) between O and Ci : D(O, q) ≤ D(O,Ci). Proof by contradiction:
Let’s assume that a query candidate object is not enclosed in candidate cells Ci,
suppose that an object O’ is a candidate object from the grid for query q but
does not belong to any of the candidate cells set (O’ 	∈ Cs) such that: O’∈ CCo
& O’	∈ Co. Intuitively there exist at least a number of τ K objects such that
(Ci is a candidate cell): D(O, q) ≤ D(Ci, q) & d(O,q) ≥ d(Ci, q), and whose
maximal possible distances from q D(O, q) are less than the minimal distance
d(O’, q) since it does not fill in Cs. Accordingly O’ cannot be a candidate object
for the query q and does not belong to the set of query candidate objects CCo
which leads to a contradiction with the assumed statement OO’∈ CCo. This
proves that O ∈ Co must be satisfied and cells candidates enclose the objects
candidates set.

4 Conclusion

In this paper we have conducted a study on CKNN queries, an important
research axis in nowadays world. We presented the research background and
motivation to have an overview of the continuous querying field. we have high-
lighted the limitations of indexing approaches of state-of-the-art under dis-
tributed settings, such as data skeweness, search iterations unknown number
for CKNN queries and the maintenance cost to support objects mobility. Then,
we presented the model of the proposed indexing approach VS-TIMO; which
introduces first a velocity objects distinction step followed by a region-based
splitting. In order to maintain a compact data representation, we have defined a
hybrid two-layered structure: R-tree+Grid. We have also introduced a process-
ing technique similar to the trajectories packing method, and defined a CKNN
query candidates selection method for scalable accurate querying. Finally, and
with a view to enhance performances and parallelize processing tasks in a scal-
able manner; we envision to embed our index structure in an appropriate spatial
platform to inherit the advantages of a scalable distributed processing system.
Apache Spark is one of the most used distributed systems, that introduces the
concept of partitioning and RDDs to store data, and seems to be suitable for
our distributed parallel processing scenario.

Acknowledgments. This work was financially supported by the Natural Science
Foundation of China (41571401).

348 I. Bareche and Y. Xia

References

1. Yang, M., Ma, K., Yu, X.: An efficient index structure for distributed k-nearest
neighbours query processing. Soft Comput. 22, 1–12 (2018)

2. Tao, M.Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal
access method for predictive queries. In: Proceedings of the 29th VLDB Conference,
vol. 29, February 2013

3. Lee, J., Hong, B., Hong, J., Kim, C., Kim, C.W.: Optimal index partitioning of
main-memory based TPR*-tree for real-time tactical moving objects. In: IEEE
International Conference on Big Data and Smart Computing, January 2018

4. Jensen, C., Lin, D., Ooi, B.C.: Query and update efficient B-tree based indexing
of moving objects. In: Proceedings of the 30th International Conference on Very
Large Data Bases VLDB Endowment, October 2004

5. Parent, C., Spaccapietra, S., Renso, C., et al.: Semantic trajectories modeling and
analysis. ACM Comput. Surv. 45(4), article 42 (2013)

6. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: Interna-
tional Conference on Very Large Databases VLDB, August 2002

7. Xiong, X., Mokbel, M. F., Aref, W.: SEA-CNN: scalable processing of continuous k-
nearest neighbor queries in spatio-temporal databases. In: International Conference
on Data Engineering (ICDE), pp. 643–654, May 2005

8. Yu, Z., Yu, X., Pu, K.Q., Liu, Y.: Scalable distributed processing of k nearest
neighbor queries over moving objects. IEEE Trans. Knowl. Data Eng. 4347(c),
1–14 (2015)

9. Zhang, F., Zheng, Y., Xu, D., Du, Z., Wang, Y., Liu, R.: Real-time spatial queries
for moving objects using storm topology. In: The International Journal of Geo-
Information, vol. 5, September 2016

10. Rslan, E., Hameed, H.A., Ezzat, E.: Spatial R-tree index based on grid division
for query processing. Int. J. Database Manag. Syst. (IJDMS) 9(6), 25–36 (2017)

11. Fan, P., Li, G., Yuan, L., Li, Y.: Vague continuous K-nearest neighbor queries over
moving objects with uncertain velocity in road networks. Syst. Inf. 37(1), 13–32
(2012)

12. Zhang, C., Han, J., Shou, L., Lu, J., Porta, T.F.L.: Splitter: mining fine-grained
sequential patterns in semantic trajectories. Proc. VLDB Endow. PVLDB 7(9),
769–780 (2014)

13. Mahmood, A., Aref, W.G., Punni, S.: Spatio-temporal access methods: a survey
(2010–2017). GeoInformatica 22, 1–36 (2018)

14. Belhassena, A., HongZhi, W.: Distributed skyline trajectory query processing. In:
Proceedings of the ACM Turing 50th Celebration Conference-China ACM TUR-C
2017, pp. 19–25. ACM, May 2017

15. Dittrich, J., Quiane-Ruiz, J.A.: Efficient big data processing in hadoop mapreduce.
Proc. VLDB Endow. 5(12), 2014–2015 (2012)

16. Toshniwal, A., Taneja, S., et al.: Storm@ Twitter. In: The International Conference
on Management of Data (SIGMOD 2014), pp. 147–156, June 2014

17. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: The 10th IEEE International Conference on Data Mining Workshops,
pp. 170–177, December 2010

18. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

19. Xu, J., Guting, R.H.: MwgenG: a mini world generator. In: Proceedings of the
IEEE 13th International Conference on MobileData Management (MDM 2012),
pp. 258–267. IEEE, July 2012

A New Bitcoin Address Association
Method Using a Two-Level Learner

Model

Tengyu Liu1,2, Jingguo Ge1,2(B), Yulei Wu3, Bowei Dai4, Liangxiong Li1,2,
Zhongjiang Yao1,2, Jifei Wen1,2, and Hongbin Shi1,2

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
gejingguo@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

3 College of Engineering, Mathematics and Physical Sciences, University of Exeter,
Exeter EX4 4QF, UK

4 Institute of Microelectronics of the Chinese Academy of Sciences,
Beijing 100029, China

Abstract. Users in the Bitcoin system adopt a pseudonym-Bitcoin
address as the transaction account, making Bitcoin address correlation
analysis a challenging task. Under this circumstance, this paper provides
a new Bitcoin address association scheme which makes address trac-
ing possible in Bitcoin systems. The proposed scheme can be used to
warn relevant institutions to study more secure encryption algorithms
to protect users’ privacy. Specifically, the important features of a Bit-
coin address are extracted. After that, to reduce the computational com-
plexity, we transform the clustering problem of addresses into a binary
classification problem in which we integrate the features of two Bitcoin
addresses. A novel two-level learner model is then built to analyze if the
two Bitcoin addresses are belonging to the same user. Finally we cluster
the addresses belonging to the same user accordingly. Extensive exper-
imental results show that the proposed method outperforms the other
address association schemes, which use deep learning models or heuris-
tics, and can achieve an increase by 6%–20% in precision and by 10%
improvement in recall.

Keywords: Bitcoin · Blockchain · Two-level learner · Bitcoin security

1 Introduction

Bitcoin is the first successful implementation of a digital currency that enables
instant payments to anyone, anywhere in the world. The Bitcoin system is
designed based on the idea of using a decentralized peer-to-peer network, rather
than relying on central authorities. Blockchain is the basis of the Bitcoin system,

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 349–364, 2020.
https://doi.org/10.1007/978-3-030-38961-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_31&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_31

350 T. Liu et al.

which provides a distributed infrastructure and an anonymous way of trading to
guarantee the security and freedom of Bitcoin. There is no central server in the
network. It uses distributed nodes to generate, update, and store data. Further-
more, it employs cryptography for data transmission and provides a secure and
credible environment for Bitcoin transactions.

In details, when users use Bitcoin to trade with others, these transactions
will be verified by the nodes in the blockchain network and then be recorded
on the blockchain. To enhance privacy and security, users adopt pseudonyms-
Bitcoin addresses [1] as their transaction accounts to send and receive bitcoins.
The user’s real identity will not be publicly bound to the transaction account.
In principle, each user can have hundreds of different Bitcoin addresses.

This pseudo-anonymity nature has been improperly used by illegal activities,
such as money laundering [2,3] and ransomware [4], to circumvent supervision.
Recently, many researchers focus on Bitcoin de-anonymization to address this
issue. De-anonymization makes Bitcoin address tracing possible and helps the
regulatory system implement network security management. In addition, it can
also warn relevant institutions to study more secure encryption algorithms to
protect users’ privacy.

Many heuristics and deep learning methods have been investigated to do
Bitcoin de-anonymization. However, the performance of these methods were
still not satisfactory. To make the Bitcoin de-anonymization more accurate and
simple-to-implement, in this paper we resort to the important information of Bit-
coin addresses based on the historical transactions and manage to associate the
addresses. However, there exist many challenges because of the privacy issues:
(1) The real identity of the owner of Bitcoin addresses involved in the transaction
is unknown because of the anonymity. Thus, few features of Bitcoin addresses
can be obtained to analyze. (2) Users may generate fresh Bitcoin addresses for
each transaction. (3) It is difficult to apply the clustering analysis of Bitcoin
addresses to associate them, because of the large number of users and massive
categories to be classified.

To this end, we propose a new Bitcoin de-anonymization method, Bitcoin
address association, in which we combine Bitcoin addresses in pairs and then
use a two-level learner to determine whether two Bitcoin addresses belong to
the same user. The main contributions of this paper can be summarized as
follows:

– The large number of clustering categories increases the complexity of cluster-
ing algorithms. To tackle this problem, we transform the clustering problem
into a binary classification problem to categorize the address pairs.

– In order to gain better classification results, we propose a new model, which
is a two-level learner to classify Bitcoin address pairs. XGBoost, LightGBM
and Gradient boosting decision tree (GBDT) are used in the first-level learner
because they can handle all kinds of features well (see Sect. 3.3 for details).
Deep neural network (DNN) is then employed in the second-level learner due
to its excellent performance on classification (details in Sect. 3.3).

A New Bitcoin Address Association Method 351

– Extensive experimental results are conducted to compare the performance
of our proposed model with other existing methods. The results demon-
strate that our model outperforms the existing methods, with almost 6%–10%
improvement in precision and almost 20% improvement in recall.

– We further analyze the effect of Bitcoin address combination orders on the
performance of the model. The results show that the combination order of two
groups of addresses has little effect on the model’s performance. It is therefore
not necessary to consider the combination order of the two addresses when
using our model for address association.

The rest of this paper is organized as follows. Section 2 gives a minimalistic
introduction about related work on Bitcoin address de-anonymization. Section 3
presents the main method of how to associate two Bitcoin addresses. Section 4
shows the experimental results and carries out the performance analysis. Finally,
we draw conclusions in Sect. 5.

2 Related Work

With the continuous development and maturity of the Bitcoin system, the
number of Bitcoin users is increasing. Researchers began to study the de-
anonymization of Bitcoin addresses mainly through three ways. One is clustering
analysis on the basis of heuristics, another is analyzing the structure and charac-
teristics of the underlying distributed system, and the last one is based on deep
learning methods.

Clustering Analysis. In [5], the authors proposed two heuristic methods. One
is “multi-input” heuristic, which is the most effective and simplest method. This
method assumes that all input addresses participating in the same transaction
belong to the same user. The second is “shadow” address. Assuming that a user
seldom trades with two different users, the Bitcoin address storing the change
resulted from a transaction also belongs to the input user of the transaction. The
authors can easily map any Bitcoin addresses and users through the above two
heuristic analysis of large transactions in the Bitcoin trading network. Fleder
et al. [6] crawled the Bitcoin addresses and transaction information fragments
from web forums. They then tracked users’ whereabouts and conducted cluster-
ing analysis, so as to associate transactions and users, and achieve the purpose of
de-anonymity. The authors in [7] introduced an efficient automatic cluster app-
roach which used off-chain information as votes for address separation, and then
considered it together with blockchain information obtained during the cluster-
ing model construction step. In [8], Nick combined the above two heuristics with
other heuristics, and the mean recall for address mapping is approximately 0.709.

Using Distributed Networks. Several researches are performed to track the
source of Bitcoin addresses by observing and analyzing the structure and char-
acteristics of Bitcoin’s underlying distributed networks. In [9], the authors used

352 T. Liu et al.

the open trading history of Bitcoin to establish the transaction network between
addresses and between users. They combined these structures with external infor-
mation and techniques such as context discovery and flow analysis to investigate
an alleged theft of Bitcoin. The studies in [10] and [11] tracked user’s iden-
tity information with distributed network characteristics and demonstrated the
power of data mining technology in the de-anonymization of Bitcoin addresses.
Sybil Attack in [12] and Fake Node Attack in [13] used the users’ IP addresses
to perform de-anonymization analysis. Mastan [14] proposed a new approach to
link the sessions of unreachable Bitcoin nodes, based on the organization of the
block-requests made by the nodes in a Bitcoin session graph with a precision of
0.90 and a recall of 0.71.

Deep Learning Methods. In [15], Shao, Li and Chen designed a pipeline
for Bitcoin address featuring that converts raw address features into a pri-
mary address vector. Then they employed a deep learning system and k-
NearestNeighbor algorithm that realize Bitcoin addresses clustering progres-
sively whose precision achieves 0.766 and recall is 0.836.

Although many de-anonymization technologies for tracing illegal activities
and strengthening supervision have been proposed, their performance is still not
satisfactory and the risks still exist.

3 The Proposed Method

The main workflow of this article is as follows. We extract each Bitcoin address’
base features (in Sect. 3.1) and pre-process the samples of Bitcoin addresses (in
Sect. 3.2). We then use the GBDT, XGBoost and LightGBM mechanisms and
the Function L to learn the new features, which are then fed into a DNN network
(in Sect. 3.3) for further analysis. Finally, we cluster the addresses based on the
relationship between them.

3.1 Basic Feature Analysis and Extraction

We analogize the transactions between Bitcoin addresses to those between users
on e-commerce platforms. The user characteristics obtained from e-commerce
platforms are mainly based on the users’ behaviors, including transaction time,
transaction amount, transaction times and other characteristics [16]. The trans-
actions between Bitcoin addresses can be treated as a network, which we call
a Bitcoin transaction network. Bitcoin addresses are the network nodes, and
the transaction amount flows are the network links. When the address acts as
a money receiver, the number of links pointing to it is called in-degree. Out-
degree is the contrary. We analyze the in-degree and out-degree distributions
of Bitcoin addresses in this network as shown in Fig. 1, which illustrates the
number of Bitcoin addresses of in-degree and out-degree. From Fig. 1, we can
find that there are a large number of small degree nodes in the network, and
also a considerable number of high degree nodes (Hub nodes). The degree can

A New Bitcoin Address Association Method 353

(a) in-degree (b) out-degree

Fig. 1. The degree distribution of a Bitcoin transaction network: (a) represents the
in-degree distribution of Bitcoin addresses which act as a money receiver, and (b)
represents the out-degree distribution of Bitcoin addresses which act as a money sender.

therefore be considered as a key feature to distinguish the addresses of different
users.

To enhance the security, one user may create multiple Bitcoin addresses and
use different addresses for transactions. Many addresses are used only for a short
time, such as “shadow address” in [5]. Different users may use Bitcoin addresses
differently, so we consider the characteristics related to the lifetime of a Bitcoin
address. 18 features of a Bitcoin address are exacted according to [17], which are
shown in Table 1.

3.2 Clustering to Binary-Classification Transformation

A straightforward way to identify which addresses belong to the same user
is addresses clustering analysis [18]. Each user represents a category. Bitcoin
addresses belonging to the same user are classified into the same category. When
the number of users go up to a certain scale, it increases the difficulty and com-
plexity of clustering algorithms and reduces the accuracy of clustering results.

In view of the problem that there are a huge number of categories to be clas-
sified in the address association problem, we combine two Bitcoin addresses into
a new sample, instead of directly using a single address as a classification sample
according to the suggestion from social network account association [19]. The
purpose of our approach is to perform the classification in Bitcoin address pairs.
In this way, we transform a clustering problem into a binary classification prob-
lem to categorize the address pairs. The experiments in Sect. 4 illustrate this new
method can alleviate the difficulty in the clustering problem. The combination
method is as follows.

354 T. Liu et al.

Table 1. The features and its interpretation of each bitcoin address

Feature Interpretation

Lifetime The lifetime of each address

activity days The number of days that the address has participated in at
least one transaction

max trans per day The maximum number of daily transactions of each address

total received The values of each address received

total sent The values sent out by each address

avg val The average of the values transformed from/to each address

std val The standard deviation of the values transformed from/to
each address

in gini The Gini coefficient of the values transformed to the
address

out gini The Gini coefficient of the values transformed from the
address

in trans num The number of transactions which the address acts as the
input address

out trans num The number of transactions which the address acts as the
output address

ratio btw in out The ratio between in trans num and out trans num

in digree The number of addresses which have transferred money to
the address

out digree The number of addresses which have received money from
the address

max time diff The maximum delay between the time when the address
has received money and the time it has sent out to some
others

min time diff The minimum delay between the time when the address has
received money and the time it has sent out to some others

avg time diff The average delay between the time when the address has
received money and the time it has sent out to some others

balance two days The maximum difference between the balance of the
address in two consecutive days

We use ap = (x1, x2, . . . , xi, . . . , xn) representing the address p’s eigenvec-
tor, and use aq = (y1, y2, . . . , yi, . . . , yn) representing the address q’s eigen-
vector. xi and yi denote the i-dimensional feature of ap and aq , respec-
tively. Given the addresses p and q, we can construct the address pair
(ap ,aq) = (x1, x2, . . . , xi, . . . , xn, y1, y2, . . . , yi, . . . , yn). Then the relationship
between addresses can be determined by a binary classification problem.

A New Bitcoin Address Association Method 355

Fig. 2. The Two-level Learner Architecture: GBDT, XGBoost, LightGBM mechanism
and Function L are used to perform the classification work in the first-level learner.
Then the results are fed into the second-level learner which includes a DNN model to
output the final results.

3.3 Model Stacking Architecture: A Two-Level Learner

Deep learning models [20] have been successfully applied in many fields and have
performed well in classification problems. The structure of these models can be
adjusted according to the experimental results.

Tree boosting is an effective and widely used machine learning method, due
to its strong generalization ability and the capability of well-handling all kinds of
features. Gradient boosting decision tree (GBDT) [21] is a typical tree boosting
model, which can improve the accuracy of the final classifier by reducing the
deviation in the training process. The experimental results in Sect. 4.3 show
that it performs better than DNN [20] in classification problems. XGBoost [22]
is a scalable end-to-end tree boosting system, which is widely used by data
scientists to achieve state-of-the-art results on many machine learning challenges.
Especially, it can automatically use the multi-threads of a CPU to parallelize the
computation tasks and improve the accuracy on the basis of GBDT. LightGBM
[23] is an efficient tree boosting model with higher computational speed and less
memory consumption than GBDT and XGBoost. The experiments in Sect. 4.3
show that the three models perform well in the classification problems of Bitcoin
addresses.

Stacking is a model ensembling technique used to combine information from
multiple predictive models to generate a new model. Often, the stacked model
(also called two-level learner) outperforms each of the individual models due to
its smoothing nature, and the ability to highlight each base model on its best
performance cases [24].

The model stacking is therefore employed in this paper to construct a two-
level learner. The first-level learner is trained by the initial dataset, and the
output is regarded as the input features of the second-level learner; the labels

356 T. Liu et al.

of the initial samples are still regarded as the labels of the second-level learner.
The above three tree boosting models are considered as the first-level learner to
get preliminary results. A DNN model is adopted in the second-level learner; its
input features obey binomial distribution, and each input feature has the dimen-
sions with the same order of magnitude. The experiments in Sect. 4.3 demon-
strate that the use of DNN as the second-level learner outperforms that only
using DNN as a classifier. The model architecture is shown in Fig. 2.

The First-Level Learner. As Fig. 2 shows, the first-level learner employs three
tree models using the principle of GBDT, XGBoost, and LightGBM. At first,
2300 trees are built with the maximum depth of 8, which are based on GBDT.
Then 465 trees are constructed using XGBoost mechanism; the maximum depth
of the tree model is 15. Lastly we use the LightGBM mechanism to generate
1800 trees, and each tree has at most 34 leaves. These hyper-parameters are
obtained experimentally. Because the outputs of the three models are decimal

in [0, 1], we employ a function L: y =

{
0 0 ≤ x ≤ 0.5
1 0.5 < x ≤ 1

to transform the output

of each model to 0 or 1, where x stands for the outputs of the three models,
and y stands for the final results of the first-level learner. We then get the three
corresponding outputs marked as (O1, O2, O3).

The Second-Level Learner. The second-level learner is based on DNN, which
consists of three fully connected layers. As for the design of the first layer, we
adopt five units and the input is the output, (O1, O2, O3), of the first-level
learner. ReLU [25] is employed as the activation function. The output is sent
to the second layer, which has six units and also adopts ReLU as the activation
function. Then, we take the output of the second layer to the last layer with
two units. At this layer, we employ Softmax [26] as the activation function. The
number of units in each layer are confirmed through experiments. The details of
DNN is summarized in Table 2.

Table 2. The details of deep neural network part

Layer Input Output Activation function

First 3*1 5*1 ReLU

Second 5*1 6*1 ReLU

Third 6*1 2*1 Softmax

4 Experimental Results and Analysis

4.1 Dataset

The dataset in [27,28] which contains the transaction history in Mt.Gox is used
in this study. This data set records the user’s access to Bitcoin on the platform.

A New Bitcoin Address Association Method 357

The user uses WalletID as the identity on the Mt.Gox platform. When the
user needs to send or receive bitcoin, he only needs to initiate a request to
Mt.Gox, and Mt.Gox helps the user complete the transaction and will record
(WalletID, Entry, Date, Amount) on the platform. Each row in the dataset
corresponds to a transaction of a user, and the transaction is simultaneously
recorded on the blockchain with the bitcoin addresses of the user or Mt.Gox as
input or output. According to the transaction time and amount, each row in
the datasets correspond a transaction record on the blockchain. Some WalletIDs
appear multiple times in the dataset, representing the user’s multiple bitcoin
exchanges. Table 3 shows a segment of the data recorded on 15 June 2013. There
are 1048196 users in the dataset. So, clustering is difficult.

Table 3. Partial transaction records on MtĠox.

Wallet Entry Date Operation Amount

292938a9-ea37-4d58-a6c2-

a7774159dbf7

7e1db835-a3f0-4527-a804-

dd47e5a5e59c

2013/6/15 23:48 Withdraw −0.9318619

07df3a31-4bfe-4178-a05c-

5daab4e96575

6603e225-cb52-45e9-8190-

9ac8dc74048f

2013/6/15 23:49 Withdraw −2.622

2720c9d5-add9-4319-aa4e-

ffd3a0ef3e48

853b7efe-b3dc-4cc5-a779-

c23c6ab759a8

2013/6/16 0:04 Deposit 0.01298472

How to map user-address is described as follows [29]. Let T trans represent
the transaction time recorded by Mt.Gox, and T block denote the block creation
time. Let B be the block height. When the user deposits money into Mt.Gox at
time T trans, we find the block B whose creation time is T trans. Due to the
delay of the transaction record in the blockchain, we traverse block B∼B+36 to
find the transaction whose amount uniquely matches to the amount recorded by
Mt.Gox. If we find it, the output addresses of the transaction recorded on the
blockchain are associated with the current user [9]. When the user withdraws the
money from Mt.Gox, we traverse block B-6-36∼B-6-1 (A transaction is confirmed
after 6 new blocks generated [30]) to map the input addresses with the user.

We choose the data from 1 May 2013 to 31 July 2013. Finally, 7945 unique
(walletID, address) pairs are found. The partial results are shown in Table 4.

Table 4. Partial Results of (walletID, address) Pairs: Some walletIDs in MtĠox and
Bitcoin addresses they used in blockchain.

walletID Address

162aa442-0771-4bf7-a917-44b13506c139 1NYTFydxJFVEosz8M4KMQwWgmwPCTo6uVM

162aa442-0771-4bf7-a917-44b13506c139 1HwjJsntuJ8EU1r3xa3yZ8unFBmdR4BnS7

2663b417-a49b-4e34-a102-17f6cb885bda 1KmN99HPiYgVfvD1v648cccBbEkuRZgt19

203354fb-663b-4ee3-85e9-7d85c357927b 1FHQV8uGggQBnsE6XggP3c4iJpdjpKcE5u

203354fb-663b-4ee3-85e9-7d85c357927b 18C7SGRMNuCrmKypEnDzyi92QoyBzvwkMV

358 T. Liu et al.

We arbitrarily extract two addresses from the above results to form address
pairs marked as (ap ,aq). If ap and aq have the same walletID, the label of
(ap ,aq) is 1. If not, the label is 0. There are then 5496694 negative samples
and 13853 positive samples. Among them, the number of available samples of
negative cases is much more than that of positive cases. In order to ensure the
balance of the number of samples and improve model accuracy, the available
samples of negative cases are randomly screened, so that the number of positive
and negative cases are basically the same [17].

We use the API in [31] to find the transactions in which the Bit-
coin addresses participate, and calculate the features’ value of each unique
address listed in Sect. 3.1. Then we combine the features of the two addresses
in address pairs mentioned in Sect. 3.2, with the form: (ap ,aq , label) =
(x1, x2, . . . , xi, . . . , xn, y1, y2, . . . , yi, . . . , yn, l), where l represents the label.
Then, the shape of the final samples is (27670, 37).

Table 5. The evaluation scores of machine learning models

Metrics DNN GBDT XGBoost LightGBM Two-level learner

Time (µs) 368731 583201 497931 194901 1276033

Precision 0.5070 0.7940 0.7951 0.7870 0.9603

Recall 0.4763 0.8047 0.7855 0.7755 0.9570

F1 0.4921 0.7993 0.7903 0.7812 0.9586

4.2 Model Training

For all the models, we divide 80% of the samples into the training dataset and
20% as the testing dataset. 4-fold cross validation is employed in the training
dataset [32]. The size of verification datasets is kept consistent with that of
testing datasets for the purpose of gaining the best results. The verification
datasets are used to verify whether the hyper-parameters of the model are tuned
to be optimal. The optimal hyper-parameters and training datasets are used to
train the model again, and then the model is utilized on the testing datasets.

After we get the samples in Sect. 4.1, we send them to the first-level learner.
To prevent overfitting, in GBDT model, every iteration adopts 90% samples and
considers up to 35 features when looking for the best split. For each tree in the
GBDT model, the minimum number of samples required to split an internal
node is 88. In XGBoost model, we extract 90% of the samples and 70% of the
features randomly to train each boosting tree. In LightGBM model, we choose
90% of the samples in every 5 iteration and 60% of the features randomly in
each iteration.

The DNN in the second-level learner uses Adam [33] as the optimizer. The
purpose is to minimize the sum of categorical cross-entropy loss. The class labels
are encoded as a one-hot vector. Finally, the learning procedure stops after
around 35 epochs.

A New Bitcoin Address Association Method 359

4.3 Experimental Results

Feature Analysis. A heat-map is employed to represent the Pearson correla-
tion [34] between features. The feature 1 and feature 2 are used to represent the
address i’s features and address j’s features, respectively, according to Sect. 4.1.
As Fig. 3 shows, most Pearson correlation coefficient is around 0, which explains
there are not too many features strongly correlated with each other. This is
good from the point of view of feeding these features into our learning model,
because this means that there is not much redundant or superfluous data in our
datasets, and each feature carries some unique information. For example, the
Pearson correlation coefficient between in degree 1 and avg val 1 is 0.01; they
are therefore both important to our classification model.

The feature importance ranking in each basic tree boosting model is calcu-
lated by how many times a feature is used to separate decision trees. It is shown
in Fig. 4. We combine addresses in the order (ai ,aj), and the feature impor-
tance ranking of the three models is shown in Fig. 4(a), (b) and (c). As shown
in the figures, these three models have the similar feature importance ranking.
The features which have higher scores are related to time, value, amount and
degree of the users’ transaction. The result is consistent with the feature analysis
in Sect. 3.1. We can then conclude that the addresses belonging to a user have
the similar transaction characteristics, and we can safely utilize these features
to correlate Bitcoin addresses.

Address Clustering. According to the experimental results of the classifica-
tion, the addresses belonging to one user can be aggregated together. In the test-
ing dataset, we get 1299 groups of addresses. The addresses in each group belong
to the same user. Figure 5 shows the distribution of the number of addresses
owned by the user. Most users have a small number of addresses. It illustrates
that if we cluster the addresses directly, there are few samples in each category,
and the information in each category is not sufficient. Clustering directly will
thus be a complex task.

Performance Analysis. Three common and widely-used metrics, i.e., preci-
sion, recall and F1-measure are adopted to validate our proposed model. These
metrics are formulated as follows: precision = TP

TP+FP , recall = TP
TP+FN , and

F1 = 2TP
2TP+FP+FN , where TP and FP represent the number of items correctly

and incorrectly labelled as belonging to the positive class, respectively. FN is
the number of items incorrectly labelled as belonging to the negative class.

We use the unit of millisecond to measure the time of the model spending
from training to prediction. It reflects the operational efficiency of each model.
The two-level learner’s time is the sum of the time spent by all the models
involved in the two-level learners.

The different evaluation scores of machine learning models are shown in
Table 5. GBDT, XGBoost and LightGBM as tree boosting models can handle
all kinds of features well and have strong generalization ability (see the analysis

360 T. Liu et al.

Fig. 3. Pearson Correlation Coefficient of Features: 1 denotes the total positive linear
correlation, 0 means no linear correlation, and −1 represents the total negative linear
correlation.

in Sect. 3.3). They perform better than the DNN model in precision, recall and
F1 scores. We can see that GBDT, XGBoost and LightGBM get similar preci-
sion, recall and F1 scores. Because of the small number of features and samples,
XGBoost and LightGBM cannot significantly improve precision and show advan-
tages compared with GBDT. However, LightGBM is superior to XGBoost and
GBDT in running speed due to its parallel optimization (see the discussions in
Sect. 3.3). As to the two-level learner, we gain about 18% higher scores compared
to other single models due to its smoothing nature and the ability to highlight
each base model on its best performance cases (see Sect. 3.3 for details). It proves
the effectiveness of adding the DNN layer after the three basic models and build-
ing the two-level learner model for Bitcoin address association.

In comparison with the existing works which use deep learning method in
Sect. 2, where the precision is 0.766 and recall is 0.836, our model outperforms it
by almost 20% in precision and 10% in recall. When using the heuristic methods

A New Bitcoin Address Association Method 361

(a) GBDT

(b) XGBoost

(c) LightGBM

Fig. 4. Feature importance ranking of GBDT, XGBoost and LightGBM

362 T. Liu et al.

Fig. 5. The logistic function distribution of the number of addresses owned by the user:
most users have a small number of addresses.

Fig. 6. The evaluation scores of different address combination orders: the blue bars
represent original order and the red bars represent the reverse order. (Color figure
online)

in Sect. 2, the mean recall is 0.709, our model outperforms it by almost 20% in
recall.

For training sets, validation sets, and test sets, we generally use a consistent
feature order as input. But in this experiment, we exchange the order of the
two input addresses in the test datasets, that is, exchange the features’ order.
The evaluation scores of different address combination order are shown in Fig. 6.
It shows that different orders result in the similar results. It illustrates that
different orders do not have a significant impact on the classification of address
pairs, which simplifies our address association work.

5 Conclusion

This paper has provided a Bitcoin address association method to perform de-
anonymization, which transforms the clustering problem into a binary classifi-
cation problem. The main idea of the method is to check if the two addresses

A New Bitcoin Address Association Method 363

belong to the same user and then cluster the addresses based on this check. The
proposed method has combined both boosting tree models and deep learning
models into a two-level learner to perform the classification. XGBoost, Light-
GBM and GBDT have been utilized as the first-level learner, and a three-layer
deep neural network has been adopted as the second-level learner. By perfor-
mance comparison, our method has performed more excellently than the ones
which only employ one boosting method, such as XGBoost, LightGBM and
GBDT, or only employs a deep neural network model, in terms of higher preci-
sion, recall and F1-measure scores. The research results in this paper can offer
the suggestions and references for the investigation and tracking of illegal activ-
ities in Bitcoin systems and guide the blockchain system to study more secure
and reliable encryption mechanisms.

References

1. ShenTu, Q.C., Yu, J.P.: Research on anonymization and de-anonymization in the
bitcoin system. arXiv preprint arXiv:1510.07782 (2015)

2. Brenig, C., Accorsi, R., Müller, G.: Economic analysis of cryptocurrency backed
money laundering. In: ECIS (2015)

3. Fanusie, Y., Robinson, T.: Bitcoin laundering: an analysis of illicit flows into digital
currency services. Center on Sanctions & Illicit Finance memorandum, January
2018

4. Liao, K., Zhao, Z., et al.: Behind closed doors: measurement and analysis of Cryp-
toLocker ransoms in bitcoin. In: 2016 APWG Symposium on Electronic Crime
Research (eCrime), pp. 1–13. IEEE (2016)

5. Meiklejohn, S., Pomarole, M., et al.: A fistful of bitcoins: characterizing payments
among men with no name. In: Proceedings of the 2013 Conference on Internet
Measurement Conference, pp. 127–140. ACM (2013)

6. Fleder, M., Kester, M.S., Pillai, S.: Bitcoin transaction graph analysis. arXiv
preprint arXiv:1502.01657 (2015)

7. Ermilov, D., Panov, M., Yanovich, Y.: Automatic bitcoin address clustering. In:
2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 461–466. IEEE (2017)

8. Nick, J.D.: Data-driven de-anonymization in bitcoin. Master’s thesis, ETH-Zürich
(2015)

9. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
privacy in social networks, pp. 197–223. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-4139-7 10

10. Ron, D., Shamir, A.: How did dread pirate roberts acquire and protect his bitcoin
wealth? In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS,
vol. 8438, pp. 3–15. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44774-1 1

11. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

12. Kaminsky, D.: Black ops of TCP/IP. Black Hat USA, p. 44 (2011)
13. Biryukov, A., Pustogarov, I.: Bitcoin over tor isn’t a good idea. In: 2015 IEEE

Symposium on Security and Privacy, pp. 122–134. IEEE (2015)

http://arxiv.org/abs/1510.07782
http://arxiv.org/abs/1502.01657
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-662-44774-1_1
https://doi.org/10.1007/978-3-662-44774-1_1
https://doi.org/10.1007/978-3-642-39884-1_2

364 T. Liu et al.

14. Mastan, I.D., Paul, S.: A new approach to deanonymization of unreachable bitcoin
nodes. In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp.
277–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7 13

15. Shao, W., Li, H., Chen, M., Jia, C., Liu, C., Wang, Z.: Identifying bitcoin users
using deep neural network. In: Vaidya, J., Li, J. (eds.) ICA3PP 2018. LNCS, vol.
11337, pp. 178–192. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
05063-4 15

16. Sanjaya, C., et al.: Revenue prediction using artificial neural network. In: 2010 Sec-
ond International Conference on Advances in Computing, Control, and Telecom-
munication Technologies, pp. 97–99. IEEE (2010)

17. Bartoletti, M., et al.: Data mining for detecting Bitcoin Ponzi schemes. In: 2018
Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84. IEEE
(2018)

18. Ghahramani, Z.: Unsupervised learning. In: Bousquet, O., von Luxburg, U.,
Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 72–112. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28650-9 5

19. Fan, X., Hongbo, X., Liang, Y.: A sock-puppet relation detection method on social
network. J. Chin. Inf. Process. 28(6), 162–168 (2014)

20. LeCun, Y., Bengio, Y.: Deep learning. Nature 521(7553), 436 (2015)
21. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.

Stat. 29(5), 1189–1232 (2001)
22. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

23. Ke, G., Meng, Q., et al.: LightGBM: a highly efficient gradient boosting decision
tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

24. A guide to model stacking in practice (2016). http://blog.kaggle.com/2016/12/27/
a-kagglers-guide-to-model-stacking-in-practice

25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-10), pp. 807–814 (2010)

26. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional
neural networks. In: ICML, vol. 2 (2016)

27. mtgox2014leak. https://www.reddit.com/r/mtgoxAddresses/wiki/mtgox2014leak
(2014)

28. Chen, W., Wu, J., Zheng, Z., Chen, C., Zhou, Y.: Market manipulation of bitcoin:
evidence from mining the Mt. Gox transaction network. In: IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pp. 964–972. IEEE (2019)

29. Xing, Y., Li, X., et al.: Research on de-anonymization techniques of bitcoin trading
network. A Thesis Submitted to Southeast University For the Academic Degree of
Master of Engineering, China (2017)

30. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted (2008)
31. Blockchain data API. https://www.blockchain.com/zh/api/blockchain api (2017)
32. Arlot, S., Celisse, A., et al.: A survey of cross-validation procedures for model

selection. Stat. Surv. 4, 40–79 (2010)
33. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci.

(2014)
34. Pearson correlation coefficient. https://en.wikipedia.org/wiki/Pearson correlation

coefficien (2019)

https://doi.org/10.1007/978-3-030-02641-7_13
https://doi.org/10.1007/978-3-030-05063-4_15
https://doi.org/10.1007/978-3-030-05063-4_15
https://doi.org/10.1007/978-3-540-28650-9_5
http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice
http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice
https://www.reddit.com/r/mtgoxAddresses/wiki/mtgox2014leak
https://www.blockchain.com/zh/api/blockchain_api
https://en.wikipedia.org/wiki/Pearson_correlation_coefficien
https://en.wikipedia.org/wiki/Pearson_correlation_coefficien

Fog Computing Based Traffic and Car
Parking Intelligent System

Walaa Alajali1(B) , Shang Gao1 , and Abdulrahman D. Alhusaynat2

1 Deakin University, Melbourne 3217, Australia
{wkalajal,shang.gao}@deakin.edu.au

2 Thi-Qar University, Nasiriyah 64001, Iraq
rahman dakhil@yahoo.com

Abstract. Internet of Things (IoT) has attracted the attention of
researchers from both industry and academia. Smart city, as one of the
IoT applications, includes several sub-applications, such as intelligent
transportation system (ITS), smart car parking and smart grid. Focus-
ing on traffic flow management and car parking systems because of their
correlation, this paper aims to provide a framework solution to both
systems using online detection and prediction based on fog computing.
Online event detection plays a vital role in traffic flow management,
as circumstances, such as social events and congestion resulting from
accidents and roadworks, affect traffic flow and parking availability. We
developed an online prediction model using an incremental decision tree
and distributed the prediction process on fog nodes at each intersection
traffic light responsible for a connecting road. It effectively reduces the
load on the communication network, as the data is processed, and the
decision is made locally, with low storage requirements. The spatially
correlated fog nodes can communicate if necessary to take action for an
emergency. The experiments were conducted using the Melbourne city
open data.

Keywords: Traffic flow · Prediction · ITS · Smart car parking

1 Introduction

In the past few years, many cities around the world are experiencing population
growth. The United Nations estimates that 70% of the world’s population will
live in cities by 2050; in Australia, 90% of the population currently live in cities
[7,23]. Consequently, the number of vehicles in cities has also increased. For
example, in the United States (US) in 2013, there were 798 vehicles per 1,000
people [37]. The increase in the urban populations has led to many problems,
including noise, environmental pollution and overcrowding, wasting time and
money and adversely affecting people’s mobility [32]. Intelligent transportation
systems (ITS) have been developed in several cities [28], integrating various
technologies, such as electronic information, artificial intelligence, geographical

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 365–380, 2020.
https://doi.org/10.1007/978-3-030-38961-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_32&domain=pdf
http://orcid.org/0000-0002-4309-2393
http://orcid.org/0000-0002-2947-7780
http://orcid.org/0000-0002-8933-4511
https://doi.org/10.1007/978-3-030-38961-1_32

366 W. Alajali et al.

information and global positioning systems [35,50]. An ITS is an effective way
for smart cities to solve the transportation problems as a result of the significant
increase in traffic levels in the urban areas. Managing traffic flow and reducing
congestion are among the primary goals of ITS [18], as traffic congestion is a
critical issue in most cities around the world [10,31,43].

Congestion refers to the traffic state when the number of vehicles using the
road increases, impeding traffic flow. Its main signs are reduced speeds and
increased trip times. Based on time and location, the definition of congestion may
vary. For example, congestion differs on highways and arterial roads. In general,
congestion is deemed to have occurred when a vehicle’s average speed is below an
identified threshold [37]. In Australia (according to the Bureau of Transportation
Regional Economics), Melbourne, Sydney and Brisbane are congested cities,
and an estimated 20.4 billion AUD is required to reduce congestion [7,40]. In
addition, in 2015, the Texas A&M Transportation Institute released a report
with a Mobility Scorecard showing that in the US in 2014, around 6.9 billion
hours were wasted due to traffic congestion [38]. In China, traffic congestion
causes $1 billion in economic losses for busy cities every day [27]. Air pollution
is another adverse impact of traffic congestion [10]. Detecting and managing
traffic congestion will result in improved environmental conditions and will solve
the economic problems that are caused by congestion [33].

One solution to congestion is to expand the road network; another is to
develop intelligent and efficient transportation management systems by installing
sensors on roads and in cars (in addition to existing cameras) to collect data,
which can then be analysed to better understand the characteristics of traffic,
such as speed and flow. The first solution is difficult to implement in many cities
due to financial concerns and the city’s structure, so most efforts have concen-
trated on devising an efficient management system to solve traffic problems,
including congestion [29]. The efficiency of ITS depends on how accurately it
analyses and models transportation data [14]. Using multiple data sources to
study traffic in an ITS has several benefits. Prediction model is significant for
increasing the efficiency of the system and improving the services provided to
users. It is also challenging, as traffic is dynamic and certain events can affect
the accuracy of the forecast if the system is not updated in real time to ensure
that appropriate decisions are made. Moreover, because sensors produce data
continuously, this generates a substantial amount of data and increases the load
of the network. To address this issue, in this paper, a distributive processing
concept has been developed to process data locally and evaluate the response in
real-time.

On-street car parking is another cause of traffic congestion. A driver starts
searching for parking when approaching the destination and tries to find an
available lot [1,8]. An estimated 30% of congestion in cities’ internal roads results
from drivers searching for a parking space, which consumes an average of 8 min
[13]. Therefore, a smart car-park and traffic-management system will reduce
congestion, providing accurate services to users and increasing the quality of
smart cities.

Fog Computing Based Traffic and Car Parking Intelligent System 367

Many cities have developed on-street smart car-park systems, including San
Francisco (SFpark), Los Angeles (LA Express Park) and Melbourne [30]. One
proposed solution to this problem involves providing users with real-time infor-
mation on available parking spaces, but this solution alone is insufficient, as
a driver may get to a space and find it occupied. Therefore, determining the
number of available parking spaces plays an essential role by providing advance
information about the parking situation so users can make appropriate deci-
sions. These two parts of ITS are related to each other, where on-street car-park
system causes increase in the traffic on the roads. In addition, road traffic con-
ditions also affect the car-park system, as accidents and roadworks make finding
suitable parking more difficult.

Fog computing has emerged as a way to moving processing to a network’s
edges (devices) by distributing a computing task among several devices (called
nodes) at the edges. In recent years, several studies have investigated the advan-
tages of applying fog computing in ITS (particularly in the case of VANETs),
primarily to reduce the load on the communication network by not transferring
all the data to the cloud for processing. This enhances the capacity for real-
time processing and for making decisions locally and more quickly, especially
in response to accidents and events. Finally, fog computing architecture is dis-
tributed, which reduces storage requirements by processing the data in a stream
at each node for short-term decisions. A selected part of the data or the final
decision can be transferred to the cloud for long-term planning, depending on
what has been displayed.

In this paper, we offer a framework for traffic-flow management and an on-
street smart car-park system based on a fog computing approach. We propose
a computing network comprising nodes installed at each intersection with the
ability to process data from each road segment belonging to the intersections.
The main goal of this model is to detect congestion caused by accidents and
roadworks and then, based on the current situation, to predict the traffic in the
next time interval. This solution also includes a model for a parking system that
provides the available car-park lots that are accessible from an intersection after
detecting variables such as social and sporting events, taking traffic conditions
into consideration and predicting the car-park lots available in the next time
interval. The major contributions of this study comprise:

– Introducing a framework for traffic flow and car-park prediction based on fog
computing to provide scalable real-time processing.

– Proposing a new, streaming-based concept drift detection to identify an
abnormal situation in real time.

– Using incremental learning to update the model for newly arrived examples.

The remaining part of this paper is arranged as follows: Sect. 2 focuses on the
related work. Section 3 presents the proposed framework, and Sect. 4 provides
a discussion of the proposed prediction approach. The experiments, including
datasets, outcomes and a comparative analysis of the approaches, are provided
in Sect. 5. In the final Section VI, the conclusion and suggestions for further
related research are presented.

368 W. Alajali et al.

2 Related Work

Short-term traffic prediction models can be classified by learning method as
non-incremental learning models and incremental learning models [44]. In non-
incremental learning models, the whole dataset is available and can be used for
training and testing the model. Many models stand under this umbrella, some
using parametric methods; the most popular of these models are auto-regressive
integrated moving average (ARIMA) [22,30,34,42] and support vector regression
(SVR) [9,49]. Non-parametric approaches include k-Nearest Neighbours (kNN)
[15,18,53]. Deep learning is also used in [33]. Decision trees are the most under-
standable method and are used in various ways, such as gradient boosting trees
(GBRT), random forest (RF) and extreme gradient boosting trees (XGboost) [3].

Traffic is dynamic [3,5] and a non-recurrent event on the street can affect
traffic prediction accuracy. Therefore, online learning is essential to deal with
streaming data generated by sensors on the roads and to update the model
incrementally if a change appears. A few efforts have been made in this area:
online SVR is used in [13] to predict traffic, and this approach was improved
in [26] by adding weights for the incoming instances. Fast incremental model
trees with drift detection (FIMT-DD) [25] is used in [4,41] to predict traffic.
According to [51] a social event is an occurrence that involves lots of people and
is accompanied by an obvious rise in the human flow. Social events involve large
numbers of people [2,51], which affects traffic, causes congestion and changes the
availability of parking in cities. Events must be taken into consideration when
predicting traffic or available car parking. Although some events are planned,
their time may change, and some events may occur suddenly. Also, some events
do not specify in advance the time of their completion, so autonomously detecting
these events is beneficial to users and managers.

In terms of concept drift detection, several approaches have been suggested
in the literature. They can be classified into sequential analysis-based, data
distributed-based and learner output-based [45].

In sequential analysis based methods, the probability distribution of the
incoming data is determined by comparing the current distribution and the previ-
ous one, to see if it is significantly different. Page-Hinkley test [36] is the example
of this category. However, the drawback is it is dealing with univariate time series.
Its use is limited to multivariate time series. In our proposed External-DD method,
we modify the sequential model to deal with multivariate time series.

The second type is the distributed-based model. It requires storing raw data
in two windows and using a hypothesis test to compare the distribution in two
windows and detect drift. The main drawback is that it requires identifying the
length of the window.

Finally, the linear output-based detection method depends on building a clas-
sifier model and monitoring the error if the error increases significantly. DMM,
RDDM are examples. However, it updates the model after the error number is
more than a specific threshold. In that case, still, there is a possibility to pro-
duce errors especially if the drift is not sudden but incremental as in the case
of congestion. In this paper, we combine FIMTDD prediction with External-DD
to reduce the error caused if both of the sudden and incremental drift happen.

Fog Computing Based Traffic and Car Parking Intelligent System 369

3 Proposed Framework

3.1 Preliminaries

The framework suggested in this paper is to enhance the prediction of traffic flow
and improve a smart car-park system. Prediction based on multi-source data is
important. Indeed, enhancing the services provided by a smart car-park sys-
tem can reduce congestion, as unorganised searching for parking space increases
traffic. Social and unexpected events also affect the accuracy of the system, and
congestion due to accidents and roadworks can affect the car-park system by
increasing prediction errors. Therefore, providing a framework for both systems
is useful. The framework is described in Fig. 2, and the processing sequence is
described in Fig. 3.

Incremental Learning. Data-stream processing plays an important role in the
real-time collection, integration, and analysis of scalable and continuous data
produced by IoT devices. Data-stream processing bridges the gap between the
traditional batch processing approach and processing high-rate data. The other
advantage of stream processing is its suitability in a dynamic environment, as
it updates the query result incrementally [12]. According to [19], a data stream
is an unlimited sequence of objects that flows continuously at a high rate of
speed, and the distribution of the data may evolve over time. A stream-mining
approach is a set of techniques used to extract information in real-time processing
of streaming data [6]. A finite set of training data and a static model are used
in standard data-mining approaches.

The situation is different for ITS data, however, as the data collection in a
non-stationary environment changes over time in a dynamic way. Furthermore,
the data will remain unused until the next update is performed, so the model
needs to retrain, making a static model unsuitable. In addition, the data must be
processed upon arrival, otherwise the value of the data will be wasted. According
to IoT data features, the following requirements are fundamental in designing
methods to analyse IoT data [17].

– The model should be maintained online and should incorporate data on the
fly;

– The model should use an unbounded training dataset; the length of the
dataset is infinite;

– A dynamic model should be used to detect and adapt to changes in the
environment.

Concept Drift Detection. According to [20], “Concept drift primarily refers
to an online supervised learning scenario when the relation between the input
data and the target variable changes over time”. In ITS concept drift caused
by accidents, roadworks, and social events. Social event refers to the observed
increase in the number of people at a particular place and time. The analysis and

370 W. Alajali et al.

monitoring of these events are of great importance in determining their impact
on the rest of the essential facilities in cities, including their effects on traffic
and the parking management system [51]. Previously, the identification of these
events was made in traditional ways, which required human effort to count any
noticeable increase in the number of people. Now, with the evolution of technol-
ogy, especially IoT applications in smart cities, roads are equipped with sensors
and cameras to monitor traffic and pedestrians, through which it is possible to
obtain data to judge their impact on the rest of a city’s systems. Figure 1 illus-
trates the yearly average pedestrian volume of various streets in the Melbourne
CBD. We aim to automatically detect social events and the congestion caused
by accidents and roadworks using online concept drift detection and then pre-
dict the short-term traffic flow and car-park availability using locally based fog
computing. Algorithm 1 is another description of the proposed framework.

Fig. 1. Pedestrian volume all sensors 2014

Fog Computing. Recently Fog Computing has been proposed as a distributed
solution to ITS applications. According to the survey [24] that presented the def-
inition of fog computing, characteristics and applications, fog computing entails
the integration of both cloud centres and network edge devices in a seamless man-
ner. It is an effective solution for surmounting these limitations. Fog computing is
a geographically distributed computing architecture using several heterogeneous
devices at a network’s edge that are connected ubiquitously to deliver elastic
storage and computation services [47]. Importantly, the most noticeable facet of
fog computing remains the extension of cloud service into the network’s edge.
This, in turn, makes computation, communication, storage and control closer to
users by enabling the pooling of local resources.

Fog paradigm is capable of adequately addressing the real-time demands
of applications that are latency-sensitive and remove bandwidth bottlenecks in
case of video processing and VANET as examples. The architecture adds a layer

Fog Computing Based Traffic and Car Parking Intelligent System 371

Fig. 2. Flow chart, step (1–5) on cloud and step (6–13) on fog node

between end devices and cloud to tackle the underlying problems affecting high
security and reliability, low latency, high performance, interoperability and also
mobility [39,48]. This platform consists of several fog nodes that are inclusive
of the number of devices as well as management systems, even encompassing a
few virtualise data centres that are edge-centric [52]. Fog nodes can store the
data that is created by edge devices as well as sensors. By collaborating with
the conventional model of cloud computing, fog computing plays a more effective
role in its utilisation as a green computing platform, something that it also helps
cloud computing to accomplish [21,46].

3.2 Framework Description

The framework consists of two components: cloud and fog nodes. The main steps
of the process are done at the fog level, as shown in Fig. 3. The online concept
drift detection and online prediction model are supposed to be installed in each
node since they do not require storing data, making it efficient in time. In a fog
node, the following steps are performed. First, the incoming data from sensors
is detected for unusual events using External-DD method. The output of this
method is used with other features as input to FIMTDD. The same process
can be used for the car park system. The aim to detect events using the same
detection method is detecting pedestrian volume. The output of detection from
traffic and pedestrians can be used as a feature for FIMTDD to predict the car
park availability in next time interval. Figure 2 and Algorithm 1 demonstrate
the steps.

372 W. Alajali et al.

The second component is the cloud, instead of transferring all the data to the
cloud for processing, especially if the data has to be transmitted from VANET.
Statistics show aggregated data by day, week or month is transferred to the
cloud. The reason is for the long term prediction for planning and to have a full
system overview. In addition, the other feature is that the nodes can be spatially
clustered as a group, so they can exchange information if required, as shown in
Fig. 4. For the node clustering process, any common clustering method can be
used, for instance, k-mean based on spatial features.

Fig. 3. Framework: distributed traffic flow and car parking prediction

3.3 Proposed Prediction Method

In this paper, we propose an incremental learning for prediction method called
FIMT-DD [25] with an internal and external concept drift detection. This
method has been used for the prediction of streaming data. It includes an internal
concept drift detection method called the Page-Hinckley change detection test
[36]. If the model error exceeds a defined threshold, the model will be updated.
However, there remains a possibility of producing errors until the error exceeds
the threshold. This paper proposes a simple mathematical concept drift model
known as External-DD, as described in Algorithm 2. This method can be used to
detect abnormal events such as accidents, roadworks and social events that could

Fog Computing Based Traffic and Car Parking Intelligent System 373

Fig. 4. Cooperative fog nodes

lead to changes in the prediction accuracy. It does not require saving the actual
values, only the mean of the inputs, making it efficient in terms of time and
memory. We used a 2D array (2, 97) to store the mean values, as shown in Fig. 5
below. Time complexity is O(1). The threshold is set as 0.75 ×mean[i, j]. The
first column day indicates if it is a weekday or weekend and the other columns
are for time, where each index represents 15 min time interval with total number
96 for a day. The input time value is compared with the mean value at time t
after specifying if the day is weekday or weekend. If the difference between the
mean and the input is greater than a threshold, the output is abnormal (event
or congestion). Otherwise, the output is normal and a new mean is calculated.
As such, we deal with a multivariate time series problem in concept drift which
is the main problem for sequential concept drift model [45].

Algorithm 1. Hybrid TFCP Prediction (Fog Node Level)
Input: Three streaming data: Traffic Volume Tvt, Car Park availability CPt, Pedes-
trians Data Pdt. /* t is the time */
Output: Traffic Flow and Car Park Availability for next 15 min.
Procedure:

1: For each Tvt do;
2: Apply Concept Drift Detection Model for Congestion;
3: Update Traffic Prediction Model (FIMT-DD);
4: Update Car Park Prediction Model (FIMT-DD);
5: Update Cooperative Nodes Status;
6: For each Pdt do;
7: Apply Concept Drift Detection for Social Event;
8: IF Event = True Then;
9: Update Car Park model;

10: Transmit the Result.

374 W. Alajali et al.

Algorithm 2. Concept Drift Detection(External-DD)
Input: Data stream X, at time t and date d
Output: Result; Normal N ; Concept drift (C) at time t; /*concept drift representing
an event such as accident*/
Procedure:

1: Create M(2×n) matrix; /* where Mi,t = Mean(Xt), t ∈ {1, tcurrent}; 96× 15 min
time slot in a day */

2: For each Xt do
3: From d find M[i,1]; /* 0 for weekday and 1 for weekend */
4: IF |(Xt − M [i, t]| >= Cthr;/* Where Cthr is concept drift threshold */
5: Result= C;
6: Else
7: Result=N;
8: Update M [i, t] /* calculate new mean*/
9: Feed Result as a feature in input features to Hybrid TFCP Prediction.

Fig. 5. 2D array to store time mean values

4 Experiments

Experiments were performed for evaluation of the performance of the above
proposed approach. The real-world datasets were employed to evaluate the algo-
rithms compared to state-of-the-art. The development and the tests were done
on the Massive Online analysis software for streaming data processing (MOA)
[11] and the Eclipse environment.

4.1 Dataset

We employed three datasets from various domains (on-street car parking data,
pedestrian data and car traffic data) in Melbourne City, Australia, as shown
in Table 1 [16]. For the on-street car parking dataset, the data was obtained
by 4,600 in-ground sensors located in various streets in the Melbourne CBD.
The data for the pedestrian dataset was from 36 sensors of the 44 in current
use, which are installed in strategic streets in the Melbourne CBD to monitor
pedestrian activities and analyse their changes and developments over time. The
sensors count the number of pedestrians who pass the installed locations. The
intersection traffic volume dataset covers more than 4,598 traffic signals through-
out Melbourne and some suburban areas. The sensors installed at these traffic
signals provide real-time traffic volume at the intersections. For each sensor, the
data stream is aggregated into 96 bins for each day, in 15-minute time intervals.

Fog Computing Based Traffic and Car Parking Intelligent System 375

Table 1. Description of Datasets

Dataset Type Time interval

Traffic volume Public 15min

Car parking Public 15min

Pedestrian Public 15min

4.2 Discussion and Evaluation of Results

Two performance metrics, mean absolute error (MAE) and root mean square
error (RMSE), were used to record the accuracy of the prediction methods and
the advantages of internal and external concept drift methods. The most accurate
model was proved to be with the smallest MAE and RMSE values, as described
in following equations, where ȳi is the predicted value and yi is the real value.

MAE =
N∑

i=1

|ȳi − yi|/N (1)

RMSE =

√√√√ 1
N

N∑

i=1

(ȳi − yi)2 (2)

Our prediction model comprises two parts: the first is the external con-
cept drift detection model, to identify the unusual events or congestion namely,
External- DD. The output of this part is either a normal or abnormal input.
This feature along with other features such as time, day of the week, week-
day/weekend, peak/off peak, were then used in incremental prediction model
FIMTDD.

The results in Fig. 6 show that the accuracy of the FIMTDD prediction
method increased after using an external concept drift to detect congestion
caused by accidents and roadworks. Table 2 demonstrates the prediction error,
MAE equal to 0.641 using FIMTDD only, however, this value is reduced to
0.606 after using FIMTDD and External-DD. The second metric is the RMSE,
with the value equal to 0.822 using FIMTDD and also reduced to 0.79 using
our method. Comparing the result with that of FIMT, the latter ignores the
detected drift and does not update the model, so the error is increased with
MAE equal to 0.686 and after using External-DD the error is reduced to 0.655
and RMSE records 0.89 and 0.859 respectively. Thus, FIMTDD with internal
and external concept drift detection outperforms FIMT and ORTO. ORTO is
a regression method for streaming data used in our experiments. It records the
highest error and Table 3 shows the evaluation of FIMTDD with External-DD,
suggesting efficiency in time and space.

376 W. Alajali et al.

Fig. 6. Comparison of the results using MAE and MSE

Table 2. Results

Table 3. Description and evaluation of the results using proposed method

Learning evaluation
instances

Evaluation
time (CPU
seconds)

Model cost
(RAM hours)

Classified
instances

Mean absolute
error

Root mean
squared error

100 0.015625 0 100 1.115124771 1.477465394

200 0.03125 0 100 0.946889883 1.255662272

300 0.03125 0 100 1.128056522 1.401679781

400 0.046875 0 100 0.800534942 1.18219432

500 0.046875 0 100 0.719083747 1.118842788

600 0.046875 0 100 0.327865222 0.459055334

700 0.0625 0 100 0.609368106 0.830886628

800 0.0625 0 100 0.683963244 0.924470448

900 0.0625 0 100 0.478814355 0.665715537

1000 0.078125 0 100 0.436850643 0.608490533

1100 0.078125 0 100 0.551151138 0.769255381

1200 0.09375 0 100 0.493650102 0.722171056

1300 0.09375 0 100 0.411204979 0.508820137

1400 0.09375 0 100 0.473706375 0.825236894

1500 0.09375 0 100 0.539935928 0.741406081

1600 0.09375 0 100 0.292022692 0.369561128

1700 0.09375 0 100 0.412347144 0.609504873

1800 0.09375 0 100 0.393053805 0.523699751

1900 0.109375 0 100 0.362047581 0.456501883

2000 0.109375 0 100 0.470569252 0.732041187

2100 0.109375 0 100 1.127129006 1.378777728

Fog Computing Based Traffic and Car Parking Intelligent System 377

5 Conclusion

This paper investigated traffic prediction in ITS and its importance in improv-
ing services. Three concerns were addressed. First, traffic is dynamic because
of potential unforeseen changes that may occur due to accidents, roadworks or
presence of social events. A prediction model must deal with this issue. We sug-
gested an upward prediction model that dealt with the concept drift resulting
from a non-stationary environment by adding an external method to the predic-
tion model used, to increase efficiency. A second concern was how to deal with
the size of the data. We proposed a fog computing-based processing method, in
which each node represents one intersection and the data is processed locally.
This also adds the possibility of benefiting from the collaborating nodes, classi-
fied by location in transferring alert messages. The last concern was addressed
by providing a framework for both systems due to the correlation between them.
In future work, we aim to apply the proposed method in the detection of social
events and highlight its advantage in a smart car-park system.

References

1. Ahangari, S., Chavis, C., Jeihani, M., Moghaddam, Z.R.: Quantifying the impact of
on-street parking information on congestion mitigation using a driving simulator.
Technical report (2018)

2. Alajali, W., Wen, S., Zhou, W.: On-street car parking prediction in smart city:
a multi-source data analysis in sensor-cloud environment. In: Wang, G., Atiquz-
zaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10658, pp.
641–652. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72395-2 58

3. Alajali, W., Zhou, W., Wen, S.: Traffic flow prediction for road intersection safety.
In: 2018 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud and
Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 812–820. IEEE (2018)

4. Alajali, W., Zhou, W., Wen, S., Wang, Y.: Intersection traffic prediction using
decision tree models. Symmetry 10(9), 386 (2018)

5. Anantharam, P., Thirunarayan, K., Marupudi, S., Sheth, A.P., Banerjee, T.:
Understanding city traffic dynamics utilizing sensor and textual observations. In:
AAAI, pp. 3793–3799 (2016)

6. Ángel, A.M., Bartolo, G.J., Ernestina, M.: Predicting recurring concepts on data-
streams by means of a meta-model and a fuzzy similarity function. Expert Syst.
Appl. 46, 87–105 (2016)

7. Anwar, T.: Spatial partitioning of road traffic networks and their temporal evolu-
tion. Ph.D. thesis, Swinburne University of Technology (2017)

8. Arnott, R., Inci, E.: An integrated model of downtown parking and traffic conges-
tion. J. Urban Econ. 60(3), 418–442 (2006)

9. Asif, M.T., et al.: Spatiotemporal patterns in large-scale traffic speed prediction.
IEEE Trans. Intell. Transp. Syst. 15(2), 794–804 (2014)

10. Backfrieder, C., Ostermayer, G., Mecklenbräuker, C.F.: Increased traffic flow
through node-based bottleneck prediction and V2X communication. IEEE Trans.
Intell. Transp. Syst. 18(2), 349–363 (2017)

https://doi.org/10.1007/978-3-319-72395-2_58

378 W. Alajali et al.

11. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11(May), 1601–1604 (2010)

12. Buyya, R., Dastjerdi, A.V.: Internet of Things: Principles and paradigms. Elsevier,
Amsterdam (2016)

13. Castro-Neto, M., Jeong, Y.S., Jeong, M.K., Han, L.D.: Online-SVR for short-term
traffic flow prediction under typical and atypical traffic conditions. Expert Syst.
Appl. 36(3), 6164–6173 (2009)

14. Chen, D.: Research on traffic flow prediction in the big data environment based
on the improved RBF neural network. IEEE Trans. Ind. Inform. 13, 2000–2008
(2017)

15. Clark, S.: Traffic prediction using multivariate nonparametric regression. J. Transp.
Eng. 129(2), 161–168 (2003)

16. City of Melbourne Data (2017). https://data.melbourne.vic.gov.au/. Accessed
March 2017

17. De Francisci Morales, G., Bifet, A., Khan, L., Gama, J., Fan, W.: IoT big data
stream mining. In: Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 2119–2120. ACM (2016)

18. Dell’Acqua, P., Bellotti, F., Berta, R., De Gloria, A.: Time-aware multivariate
nearest neighbor regression methods for traffic flow prediction. IEEE Trans. Intell.
Transp. Syst. 16(6), 3393–3402 (2015)

19. Faria, E.R., Gonçalves, I.J., de Carvalho, A.C., Gama, J.: Novelty detection in
data streams. Artif. Intell. Rev. 45(2), 235–269 (2016)

20. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

21. Hajibaba, M., Gorgin, S.: A review on modern distributed computing paradigms:
cloud computing, jungle computing and fog computing. J. Comput. Inform. Tech-
nol. 22(2), 69–84 (2014)

22. Hamed, M.M., Al-Masaeid, H.R., Said, Z.M.B.: Short-term prediction of traffic
volume in urban arterials. J. Transp. Eng. 121(3), 249–254 (1995)

23. Henry, K.: To build or not to build: infrastructure challenges in the years ahead
and the role of the government: address to the conference on the economics of
infrastructure in a globalised world: issues, lessons and future challenges (2010)

24. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture,
key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42
(2017)

25. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data
streams. Data Min. Knowl. Disc. 23(1), 128–168 (2011)

26. Jeong, Y.S., Byon, Y.J., Castro-Neto, M.M., Easa, S.M.: Supervised weighting-
online learning algorithm for short-term traffic flow prediction. IEEE Trans. Intell.
Transp. Syst. 14(4), 1700–1707 (2013)

27. Jia, R., Jiang, P., Liu, L., Cui, L., Shi, Y.: Data driven congestion trends prediction
of urban transportation. IEEE Internet Things J. 5, 581–591 (2017)

28. Kim, Y.J., Hong, J.S., et al.: Urban traffic flow prediction system using a multifac-
tor pattern recognition model. IEEE Trans. Intell. Transp. Syst. 16(5), 2744–2755
(2015)

29. Lana, I., Del Ser, J., Velez, M., Vlahogianni, E.I.: Road traffic forecasting: recent
advances and new challenges. IEEE Intell. Transp. Syst. Mag. 10(2), 93–109 (2018)

30. Lee, S., Fambro, D.: Application of subset autoregressive integrated moving aver-
age model for short-term freeway traffic volume forecasting. Transp. Res. Rec.: J.
Transp. Res. Board 1678, 179–188 (1999)

https://data.melbourne.vic.gov.au/

Fog Computing Based Traffic and Car Parking Intelligent System 379

31. Levy, J.I., Buonocore, J.J., Von Stackelberg, K.: Evaluation of the public health
impacts of traffic congestion: a health risk assessment. Environ. Health 9(1), 65
(2010)

32. Lindley, J.A.: Urban freeway congestion: quantification of the problem and effec-
tiveness of potential solutions. ITE J. 57(1), 27–32 (1987)

33. Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: A hybrid
method for short-term traffic congestion forecasting using genetic algorithms and
cross entropy. IEEE Trans. Intell. Transp. Syst. 17(2), 557–569 (2016)

34. Min, X., Hu, J., Zhang, Z.: Urban traffic network modeling and short-term traffic
flow forecasting based on GSTARIMA model. In: 2010 13th International IEEE
Conference on Intelligent Transportation Systems (ITSC), pp. 1535–1540. IEEE
(2010)

35. Mitrovic, N., Asif, M.T., Dauwels, J., Jaillet, P.: Low-dimensional models for
compressed sensing and prediction of large-scale traffic data. IEEE Trans. Intell.
Transp. Syst. 16(5), 2949–2954 (2015)

36. Mouss, H., Mouss, D., Mouss, N., Sefouhi, L.: Test of page-hinckley, an approach
for fault detection in an agro-alimentary production system. In: 2004 5th Asian
Control Conference (IEEE Cat. No. 04EX904), vol. 2, pp. 815–818. IEEE (2004)

37. Networking, T.D.: Connected vehicular transportation. IEEE Veh. Technol. Mag.
12, 42–54 (2017)

38. Schrank, D., Eisele, B., Lomax, T., Bak, J.: Urban mobility scorecard. Texas A&M
Transportation Institute and the Texas A&M University System (2015)

39. Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security
issues. In: 2014 Federated Conference on Computer Science and Information Sys-
tems (FedCSIS), pp. 1–8. IEEE (2014)

40. Bureau of Transport and Regional Economics: Estimating urban traffic and con-
gestion cost trends for Australian cities (2007)

41. Wibisono, A., Jatmiko, W., Wisesa, H.A., Hardjono, B., Mursanto, P.: Traffic big
data prediction and visualization using fast incremental model trees-drift detection
(FIMT-DD). Knowl.-Based Syst. 93, 33–46 (2016)

42. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a
seasonal arima process: theoretical basis and empirical results. J. Transp. Eng.
129(6), 664–672 (2003)

43. Wongcharoen, S., Senivongse, T.: Twitter analysis of road traffic congestion sever-
ity estimation. In: 2016 13th International Joint Conference on Computer Science
and Software Engineering (JCSSE), pp. 1–6. IEEE (2016)

44. Xiao, J., Xiao, Z., Wang, D., Bai, J., Havyarimana, V., Zeng, F.: Short-term traffic
volume prediction by ensemble learning in concept drifting environments. Knowl.-
Based Syst. 164, 213–225 (2019)

45. Yang, Z., Al-Dahidi, S., Baraldi, P., Zio, E., Montelatici, L.: A novel concept drift
detection method for incremental learning in nonstationary environments. IEEE
Trans. Neural Netw. Learn. Syst. (2019)

46. Yannuzzi, M., Milito, R., Serral-Gracià, R., Montero, D., Nemirovsky, M.: Key
ingredients in an IoT recipe: fog computing, cloud computing, and more fog com-
puting. In: 2014 IEEE 19th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), pp. 325–329. IEEE
(2014)

47. Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In: 2015
Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),
pp. 73–78. IEEE (2015)

380 W. Alajali et al.

48. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues.
In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42. ACM (2015)

49. Zhan, H., Gomes, G., Li, X.S., Madduri, K., Sim, A., Wu, K.: Consensus ensemble
system for traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 19, 3903–3914
(2018)

50. Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intel-
ligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12(4),
1624–1639 (2011)

51. Zhang, W., Qi, G., Pan, G., Lu, H., Li, S., Wu, Z.: City-scale social event detection
and evaluation with taxi traces. ACM Trans. Intell. Syst. Technol. (TIST) 6(3),
40 (2015)

52. Zhang, Y., Niyato, D., Wang, P., Kim, D.I.: Optimal energy management policy
of mobile energy gateway. IEEE Trans. Veh. Technol. 65(5), 3685–3699 (2016)

53. Zhao, J., Sun, S.: High-order gaussian process dynamical models for traffic flow
prediction. IEEE Trans. Intell. Transp. Syst. 17(7), 2014–2019 (2016)

Service Dependability and Security

Semi-supervised Deep Learning for Network
Anomaly Detection

Yuanyuan Sun1,2,3(&), Lili Guo3(&), Ye Li3, Lele Xu3,
and Yongming Wang2

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

2 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

3 Key Laboratory of Space Utilization, Technology and Engineering Center
for Space Utilization, Chinese Academy of Sciences, Beijing, China

{sunyuanyuan,guolili}@csu.ac.cn

Abstract. Deep learning promotes the fields of image processing, machine
translation and natural language processing etc. It also can be used in network
anomaly detection. In practice, it is not hard to obtain normal instances. How-
ever, it is always difficult to label anomalous instances. Semi-supervised
learning can be utilized to resolve this problem. In this paper, we make a
comprehensive study of semi-supervised deep learning techniques for network
anomaly detection. Three kinds of deep learning techniques including GAN
(Generative Adversarial networks), Auto-encoder and LSTM (Long Short-Term
Memory) are studied on the latest network traffic dataset of CICIDS2017. Five
deep architectures based on semi-supervised learning are designed, including
BiGAN, regular GAN, WGAN, Auto-encoder and LSTM. Seven schemes of
semi-supervised deep learning for anomaly detection are proposed according to
different functions of anomaly score. Grid search is utilized to find the threshold
of anomaly detection. Two traditional schemes of machine learning are also
adopted to compare performance. There are altogether nine schemes of anomaly
detection for CICIDS2017. From results of the experiment for network anomaly
detection, it can be found that Auto-encoder outperforms LSTM and the three
kinds of GAN. BiGAN and LSTM are both better than WGAN and regular
GAN. All the seven schemes of semi-supervised deep learning for anomaly
detection outperform the two traditional schemes. The work and results in this
paper are meaningful on the application of semi-supervised deep learning for
network anomaly detection.

Keywords: Deep learning � Network anomaly detection � Auto-encoder �
LSTM � BiGAN � Regular GAN � WGAN

1 Introduction

With the development of science and technology, network scale is increasing rapidly.
The types of network are manifold, including Internet, mobile network, IoT (Internet of
things), WSN (wireless sensor network), and industrial control network etc. There is a

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 383–390, 2020.
https://doi.org/10.1007/978-3-030-38961-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_33&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_33

pressing problem. How to guarantee the safety and reliability of network? The defects
of network and various malicious attacks can lead to network anomaly.

Anomaly detection is to separate abnormal behaviors and characteristics from
normal instances by specific methods. Anomaly detection can be widely used in var-
ious fields of intrusion detection, sensor networks, and fraud detection etc. Machine
learning techniques have been used for anomaly detection for last two decades. As we
known, there are three types of learning in machine learning, which are supervised
learning, unsupervised learning, and semi-supervised learning.

In supervised learning, labels of all the samples are needed [1]. There are two
problems for anomaly detection by supervised learning. One problem is that acquiring
labels of instances is labor-intensive and time consuming. The other problem is that
anomaly samples are always not easy to acquire. In most circumstance, only normal
samples can be acquired.

In unsupervised learning, labels are not needed [2]. The typical example for
unsupervised learning is clustering. Classical algorithms of clustering include K-means,
K-medoids, CLARANS, DBSCAN, BIRCH, and CURE. There are no labels in the
process of training by unsupervised learning, while the results of learning are always
unsatisfactory.

In semi-supervised learning, a small number of labeled samples are utilized to train
a learning model and the model can be used to predict the unlabeled samples [3]. For
network anomaly detection, in most cases, normal labels can be acquired. But
anomalous activities change constantly. It is a hard task to label the unknown
anomalous activities. In this situation, semi-supervised learning is a good option for
network anomaly detection.

It is well known that deep learning is an emerging branch of machine learning in
recent years. Deep learning techniques power the domains of image processing, natural
language processing, network information recommendation and machine translation
etc. It is a promising branch to replace traditional machine learning techniques [4]. In
terms of deep learning, there are representative techniques including CNN (Convolu-
tional Neural Networks) [5], LSTM (Long Short-Term Memory) [6], Auto-encoder
(AE) [7], and GAN (Generative Adversarial Networks) [8]. While most deep learning
methods are supervised learning which still need the labels of normal and abnormal
instances.

In [9], some kinds of traditional supervised learning techniques are adopted for an
excellent network traffic dataset of CICIDS2017. In this paper, we make a compre-
hensive study of semi-supervised deep learning techniques for network anomaly
detection. Seven anomaly detection schemes of semi-supervised deep learning are
proposed for CICIDS2017.

The contributions of this paper are as follows:

– Nine schemes including seven schemes of semi-supervised deep learning and two
traditional schemes are compared for network anomaly detection on the dataset of
CICIDS 2017. To the best of our knowledge, semi-supervised deep learning

384 Y. Sun et al.

techniques are first applied on analyzing the latest dataset of CICIDS2017. The
work and results in this paper are meaningful on the application of semi-supervised
deep learning for network anomaly detection [10].

– We study five deep architectures including BiGAN [11], regular GAN [12], WGAN
[13], Auto-encoder [14, 15] and LSTM [16, 17] for semi-supervised anomaly
detection. By different anomaly score functions, seven semi-supervised deep
learning schemes for anomaly detection are proposed for CICIDS2017. Other two
traditional schemes including one class SVM and K-means are utilized in the
experiment for comparing performance.

– It is quite difficult to train the model of GAN. BiGAN, regular GAN, and WGAN
are designed and successfully trained on CICIDS2017. Batch normalization and
feature matching techniques are adopted in order to get more stable model of GAN.

– The deep architectures of Auto-encoder and LSTM are designed for the dataset of
CICIDS2017. Two functions of anomaly score based on MAE and MSE for Auto-
encoder and LSTM are utilized, respectively.

2 Experimental Methodology

In this section, we will introduce the methods used in the experiment. The experiment
is done on GPU TITAN X. The runtime environment includes python3.7, Keras, and
Tensorflow.

Deleting
Invalid Attributes

Deleting
Missing Data

Deleting
Indefinite Data

Normalization

BiGAN_ A(x)

Regular GAN_ A(x)

WGAN_ A(x)

AE_ MAE

AE_ MSE

LSTM_ MAE

LSTM_ MSE

OC_ SVM

K-means

Original
Data Performance

Comparing

Fig. 1. The flow chart of experiment

Semi-supervised Deep Learning for Network Anomaly Detection 385

The flow chart of experiment is shown in Fig. 1. Firstly, original data is processed
by deleting invalid, missing and indefinite data. After normalization, data is detected by
nine anomaly schemes proposed in the experiment. The nine schemes are as follows:

• BiGAN_A(x); Regular GAN_A(x); WGAN_A(x);
• AE_MAE; AE_MSE;
• LSTM_MAE; LSTM_MSE;
• OC-SVM, K-means.

For the first seven names of semi-supervised deep learning schemes, the left part of
underscore represents the deep architecture and the right part of underscore represents
the function of anomaly score.

A(x) represents the function of anomaly score which is the same with that in [18];
MAE means that the function of anomaly score is mean absolute error; MSE means
that function of anomaly score is mean squared error. Grid search is utilized to find the
threshold of anomaly detection. If the anomaly score of instance is higher than the
threshold, the instance is anomalous. If the anomaly score of instance is lower than the
threshold, the instance is normal.

The results of nine anomaly detection schemes are compared by metrics of preci-
sion, recall and F1-measure.

2.1 Dataset

In this paper, we choose the dataset of CICIDS2017 [9, 19] to conduct the experiment.
CICIDS2017 is alike to the data of real-world. It includes the most up-to-date common
attack types and normal activities. The dataset is labeled by CICFlowMeter. The
dataset includes data of five days from Monday to Friday. There are only normal
activities in Monday. From Tuesday to Friday, besides normal activities, many types of
attacks occur, such as Botnet, DDoS, DoS, Heartbleed, Brute Force FTP, Web Attack,
Brute Force SSH, and Infiltration. The data of Wednesday are selected for this
experiment.

2.2 Data Processing

The dataset of CICIDS2017 is CSV file. We find that, there is one repetitive attribute
and some invalid attributes in which all the values are 0. These attributes are deleted
directly by the software of Excel. At last, there are 67 attributes left.

Before normalization, the missing instances are deleted for minimizing the
uncertainty, other than using ‘0’, ‘1’ or mean of attributes to replace missing value.
This is done by Pandas function “dropna”. After this step, the infinite instances also
have to be deleted. Otherwise, normalization could not be accomplished.

We use Z-score method to normalize the data to interval [−1, 1]. The values of
attributes are subject to standard normal distribution.

z ¼ xi � l
d

ð1Þ

386 Y. Sun et al.

3 Results of the Experiment

In the data of Wednesday from CICIDS2017, 80% of normal instances are used for
training. The rest instances are used for validation set and test set. The ratio of instances
for validation set and test set is 1:1. The metrics of precision, recall, and F1-measure are
adopted in the experiment. The results are based on test set, which are shown in
Table 1.

It can be compared in the three anomaly detection schemes for CICIDS2017 by
three kinds of GAN. In BiGAN_A(x), Regular GAN_A(x) and WGAN_A(x), it is
clearly that BiGAN_A(x) has the best performance. Its metrics of precision, recall, and
F1-measure are 0.845, 0.999 and 0.915 respectively. The precision and F1-measure of
BiGAN are higher than those of Regular GAN and WGAN. The recall of BiGAN is
equal to that of WGAN and higher than that of Regular GAN. As for WGAN, its
precision, recall and F1-measure are all higher than those of Regular GAN.

By the comparison, the performance of BiGAN is the best one in the three schemes
of GAN. WGAN is better than regular GAN. The training loss of BiGAN can be seen
in Fig. 2, the loss curves of encoder, generator and discriminator converged at about
the epoch of 15000.

Table 1. The performance of nine schemes for network anomaly detection

Scheme Precision Recall F1-measure

BiGAN_A(x) 0.845 0.999 0.915
WGAN_A(x) 0.786 0.999 0.879
Regular GAN_A(x) 0.762 0.993 0.863
AE-MAE 0.890 0.996 0.940
AE-MSE 0.866 0.997 0.927
LSTM-MAE 0.820 0.993 0.898
LSTM-MSE 0.813 0.977 0.887
K-means 0.410 0.310 0.350
OC-SVM 0.880 0.790 0.810

Fig. 2. Loss curves of encoder, generator, and discriminator for BiGAN

Semi-supervised Deep Learning for Network Anomaly Detection 387

The two anomaly detection schemes of Auto-encoder (AE) adopt MSE and MAE
as the functions of anomaly score respectively. The MSE and MAE curves of Auto-
encoder are illustrated in Fig. 3. During the training of Auto-encoder, MSE is selected
as loss function. The curve of MSE is also the curve of loss. It is shown that from the
MSE curve in the left part of Fig. 3, at about the epoch of 12, the model of Auto-
encoder becomes stable. We can see the results of anomaly detection by schemes of
AE_MAE and AE_MSE from Table 1. The performance of AE_MAE is better than the
performance of AE_MSE. For AE-MAE, the precision and F1-measure are both higher
than those of AE_MSE. Especially F1-Measure is 0.940 for AE_MAE and 0.927 for
AE_MSE. Though the recall of AE_MSE is higher than that of AE_MAE, we can still
judge that the scheme of AE_MAE is better than the scheme of AE_MSE. Here, F1-
Measure is the comprehensive metric of recall and precision. When there is a conflict
between recall and precision, F1-measure can play an important role.

The two anomaly detection schemes of LSTM also adopt MAE and MSE as the
functions of anomaly score. From Table 1, it is obvious that LSTM_MAE has better
performance than LSTM_MSE. The precision, recall and F1-measure of LSTM_MAE
are all higher than those of LSTM_ MSE. The MAE and MSE curves of LSTM are
illustrated in Fig. 4. During the training of LSTM, MAE is selected as loss function.
The curve of MAE is also the curve of loss. From the loss curve in the left part of
Fig. 4, it can be seen that the model of LSTM converged at about the epoch of 10.

Comparing AE with LSTM, the two schemes of AE_MAE and AE_MSE have
better performance than the two schemes of LSTM_MAE and LSTM_MSE.

Comparing the schemes of BiGAN_A(x), AE_MAE and LSTM_MAE, we can find
that AE_MAE has the best performance in the three schemes and BiGAN_A(x) is
better than LSTM_MAE. The converging rate of AE and LSTM are both faster than
that of BiGAN.

Compared with traditional machine learning of OC-SVM (semi-supervised) and K-
means (unsupervised), all the seven anomaly detection schemes designed by semi-
supervised deep learning have better performance. K-means has the worst performance.
As for OC-SVM, the precision is 0.88, but the recall and F1-measure are both lower
compared with the seven schemes of semi-supervised deep learning.

Fig. 3. MSE and MAE curves of Auto-encoder

388 Y. Sun et al.

It is obvious that from the experiment, the anomaly detection scheme of Auto-
encoder has best performance. The scheme of BiGAN is better than LSTM. The
scheme of LSTM is better than the two schemes of Regular GAN and WGAN. The
schemes of Regular GAN and WGAN are not good enough in the seven schemes of
semi-supervised deep learning, but they are still better than OC-SVM and K-means.

4 Conclusion

In this paper, we make a comprehensive study of semi-unsupervised deep learning
techniques for network anomaly detection. The network traffic dataset of CICIDS2017,
which contains the most up-to-date attack types, is selected in the experiment. Five
architectures of BiGAN, regular GAN, WGAN, Auto-encoder and LSTM are designed
for network anomaly detection. Nine schemes including seven semi-supervised deep
learning schemes and two traditional schemes for network anomaly detection are
compared in the experiment. A(x) is selected as anomaly score function for BiGAN,
regular GAN and WGAN. MAE and MSE are selected as anomaly score functions for
Auto-encoder and LSTM. Grid search is utilized to determine the threshold of anomaly
detection. From the experiment, we find that, two schemes of Auto-encoder perform
best in the nine schemes. The scheme of BiGAN is better than the two schemes of
LSTM. The two schemes of LSTM are both better than the schemes of WGAN and
regular GAN. The scheme of selecting MAE as anomaly score has better performance
than the scheme of selecting MSE. All the seven schemes of semi-unsupervised deep
learning outperform the other two schemes of traditional machine learning. The work
and results in this paper are meaningful on applying semi-supervised deep learning for
network anomaly detection.

Acknowledgement. This work is supported by the National Natural Science Foundation of
China (No. 61901454), and the Foundation of key Laboratory of Space Utilization, Technology
and Engineering Center for Space utilization Chinese Academy of Sciences (No. CSU-QZKT-
2018-08).

Fig. 4. MSE and MAE curves of LSTM

Semi-supervised Deep Learning for Network Anomaly Detection 389

References

1. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of
classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

2. Hodeghatta, U.R., Nayak: Unsupervised machine learning. In: Business Analytics Using
R - A Practical Approach, pp. 233–255. Apress, Berkeley (2017)

3. Adeli, E., Thung, K.H., An, L., et al.: Semi-supervised discriminative classification robust to
sample-outliers and feature-noises. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 515–522
(2019)

4. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image

recognition. Comput. Sci. (2014)
6. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-

structured long short-term memory networks. Comput. Sci. 5(1), 36 (2015)
7. Chandar, A.P.S., Lauly, S., Larochelle, H., et al.: An autoencoder approach to learning

bilingual word representations In: International Conference on Neural Information
Processing Systems (2014)

8. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets In:
International Conference on Neural Information Processing Systems (2014)

9. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In: 4th International Conference on Information
Systems Security and Privacy (ICISSP), Portugal, January 2018

10. Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical generative
adversarial networks. Comput. Sci. (2015)

11. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv preprint arXiv:
1605.09782 (2016)

12. Goodfellow, I.J., et al.: Generative adversarial nets. In: International Conference on Neural
Information Processing Systems (2014)

13. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875
(2017)

14. Zhang, J., Wang, H., Yang, H.: Dimension reduction method of high resolution range profile
based on Autoencoder. J. Pla Univ. Sci. Technol. (2016)

15. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimension-
ality reduction. In: Mlsda Workshop on Machine Learning for Sensory Data Analysis (2014)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

17. Jason Brownlee Blog. https://machinelearningmastery.com/convert-time-series-upervised-
learning-problem-python/. Accessed 25 June 2019

18. Zenati, H., Foo, C.S., Lecouat, B., et al.: Efficient gan-based anomaly detection. arXiv
preprint arXiv:1802.06222 (2018)

19. UNB. https://www.unb.ca/cic/datasets/index.html. Accessed 25 June 2019

390 Y. Sun et al.

http://arxiv.org/abs/1605.09782
http://arxiv.org/abs/1605.09782
http://arxiv.org/abs/1701.07875
https://machinelearningmastery.com/convert-time-series-upervised-learning-problem-python/
https://machinelearningmastery.com/convert-time-series-upervised-learning-problem-python/
http://arxiv.org/abs/1802.06222
https://www.unb.ca/cic/datasets/index.html

A Vulnerability Assessment Method
for Network System Based

on Cooperative Game Theory

Chenjian Duan, Zhen Wang(B), Hong Ding, Mengting Jiang, Yizhi Ren,
and Ting Wu

School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China
duanchenjian1018@gmail.com, {wangzhen,dinghong,

renyizhi,wuting}@hdu.edu.cn, jiangmt9706@gmail.com

Abstract. It is very important for administrators to understand the
severity of vulnerabilities in network systems. Although many systems
such as CVSS can evaluate individual vulnerabilities, they do not take
into account the specific environment, so the results are not helpful. In
our paper, we construct a vulnerability dependency graph by model-
ing the complex dependencies between vulnerabilities, and introduce the
Shapley value in the cooperative game. We consider an attack path as a
cooperation between the vulnerability nodes, and use Access Complex-
ity as the attack cost of each node, define the characteristic function in
the cooperative. Finally, according to the Shapley value of each node, all
the vulnerabilities are ranked, and the administrator can patch the high-
rank vulnerabilities with the limited security resources. Our experimen-
tal results demonstrate that show that our method can more effectively
assess the severity of vulnerabilities in specific environments.

Keywords: Vulnerability ranking · Shapley value · Vulnerability
Dependency Graph

1 Introduction

Enterprise networks are essential for companies, government agencies, and uni-
versities, but as the size of the network grows, people are beginning to pay
attention to security issues. Vulnerability is a key factor affecting network secu-
rity. In general, the administrator will analyze the vulnerabilities in the network
through vulnerability scanning tools, and choose some to patch. The practice
has shown that although some isolated vulnerabilities have low impact, they
are often related. If this relation is exploited by attackers through the network,

This work was supported by the Natural Science Foundation of Zhejiang Province
(Grant No. LY18F020017, LY18F030007 and LQY19G030001), National Natural Sci-
ence Foundation of China (Grant No. 61872120) and key technologies, system and
application of Cyberspace Big Search, Major project of Zhejiang Lab (Grant No.
2019DH0ZX01).

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 391–398, 2020.
https://doi.org/10.1007/978-3-030-38961-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_34&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_34

392 C. Duan et al.

the probability of a successful attack will be greatly improved. Therefore, it is
worthwhile to study the vulnerability assessment in consideration of the specific
network environment.

The vulnerability assessment of network systems presents significant chal-
lenges. First of all, because the real network is large in scale and has many
vulnerabilities, analyzing the dependencies will become very complicated. Sec-
ond, the same vulnerability can occur on different attack paths, and it plays
different roles in different attack paths, and the benefits of each path are differ-
ent, which makes the problem more complicated. The problem in some works is
that their assessment method is not designed for vulnerability assessment, nor
does it give a list of vulnerability rankings.

The existing vulnerability assessment methods are mainly CVSS [5] which
is a published standard used by organizations worldwide. Therefore, we use the
Vulnerability Dependency Graph to model the vulnerability dependencies in the
network, then use the metrics of CVSS as the weight of the nodes, and introduce
the idea of marginal contribution in the cooperative game. In this model, we
calculate the Shapley value of each node and rank the vulnerabilities according
to it. The results show that our method performs better than other papers.

2 Related Work

There are a lot of works based on CVSS and attack graph to assess the network
environment. Miura-Ko et al. [6] raised a new scheme called SecureRank for
prioritizing vulnerabilities. SecureRank takes into account the network topology
and potential node interactions in calculating their relative risk and prioritizes
vulnerabilities. Sawilla et al. [1] proposed AssetRank, a generalization of Google’s
PageRank algorithm. AssetRank addresses the unique semantics of dependency
attack graphs to compute metrics. Homer et al. [2] use the existing work in
attack graphs and probabilistic reasoning to generate a reliable quantitative
risk model, and this model can handle cycles correctly. Li et al. [3] proposed
an algorithm named NodeRank in state enumeration attack graphs, which not
only the network topology relationship is put into consideration, but also they
consider the effects of nodes’ intrinsic attributes. Wang [4] et al. use Bayesian
Attack Graph to model the attack events and the vulnerabilities. Their approach
named HTV can identify the vulnerabilities in the system correctly and availably.

The attack graph is a common tool for us to analyze the security of the
network system. Li et al. [7] based on system vulnerability data, system configu-
ration data, and vulnerability scanner results defined exploitation graphs. Yang
et al. [8] propose a new methodology called DBRank which prioritizes vulnera-
bilities based on the diffusibility and benefit of vulnerability exploitation. Jiang
et al. [9] score and rank vulnerabilities in SOA. Their framework, VRank, which
takes into account the contexts of the services having this vulnerability. Zhuang
et al. [10] proposed a practical framework, NCVS, that offers an automatic and
contextual scoring mechanism to assess the severity of vulnerabilities for cloud
service.

Another line of research is about cooperative game theory. Shapley pro-
posed to evaluate the role played by individual players in a coalitional game

A Vulnerability Assessment Method Based on Cooperative Game Theory 393

by comparing their marginal contributions to every possible coalition [11]. Up
to now, Shapley values have been used in research in various fields. Michalak
et al. [12] applied the Shapley value to find key players in terrorist networks.
Szczepański et al. proposed algorithms for calculating the betweenness central-
ity based on the Shapley value in 2016 years of work [13].

3 Model

3.1 Network Environment

In a network system, all devices are represented as Device, and one of the devices
is denoted by d, e.g. d ∈ Device. For each vulnerability, it can be evaluated by
the existing standard like CVSS. The CVSS score is represented by Impact(v).
There is an exploitability metrics named Access Complexity in the standard of
CVSS. This metric describes the conditions beyond the attacker’s control that
must exist in order to exploit the vulnerability, so we can use AC(v) to represent
the cost of an attacker exploiting a vulnerability.

3.2 Vulnerability Dependency Graph

We model the complex dependencies between vulnerabilities as vulnerability
dependency graph and then analyze it. VDG is an abstract concept based on
attack graph [7]. There are dependencies between vulnerabilities in VDG.

In our implementation, the vulnerability dependency graph is modeled as
a direct graph G = (V,E), and we use V to denote the set of vulnerabilities
and the total number of vulnerabilities is N = |V |. We use a set of edges E
to denote the relationship between vulnerabilities. As mentioned early, VDG is
a directed graph, so we denote the in-degree and out-degree of a vertex v as
din(v), and dout(v), respectively. Then for a vertex v, we denote pre(v) as the
set of predecessors, similarly, post(v) is the set of successors. We define a path p
which is an ordered set of vertices beginning with the vertex which din(v) = 0,
and we can use algorithm to obtain all the path sets P , e.g. p ∈ P . We assume
that there is no loop in the graph. In order to facilitate the analysis of the
boundary nodes, add a virtual node S to represent the external attacker.

3.3 Shapley Value Based on VDG

With the dependency relationship in the vulnerability dependency graph, we use
the idea of the cooperative game to regard each vulnerability node as an agent
and regard an attacker’s attack as a cooperation between these agents. We apply
one of the fundamental concepts named the Shapley value in cooperative game
theory to rank these vulnerabilities. Specifically, Shapley value is proposed to
evaluate the role played by individual players in a coalitional game by comparing
their marginal contributions to every possible coalition [12].

In order to formalize this concept, let π ∈ ∏
(V) denote a permutation of

players in V , let Xπ
i denote the coalition made of all predecessors of node vi in

394 C. Duan et al.

π. We denote the location of vj in π by π(j). In the vulnerability dependency
graph context, we define every single coalition denoted by c is an attack path
p, and the Shapley value of vi denoted SVi(F) is then defined as the average
marginal contribution of vi to coalition Xπ

i over all p ∈ P :

SVi(F) =
1

N !

∑

c∈P

[F (Xc
i ∪ vi) − F (Xc

i)] (1)

where F is characteristic function, in coalitional games this function, F : 2V →
R, assigns to every coalition c a numerical value representing its performance.
And F (Xπ

i ∪ vi) − F (Xπ
i) is the characteristic function difference before and

after adding the node vi, that is the marginal contribution.

3.4 Weighted Shapley Value

In the process of calculating the Shapley value, if we consider the importance
of different individuals players, this generalization of the Shapley value is called
weighted Shapley value. Castro et al. [14] define this concept. Let w be a weight
vector, where wi > 0 represents the weight of the player i. Given w and a
permutation π, a probability function that represents the probability of the
different orders in

∏
(N) can be defined as follows:

Prow(π) =
n∏

k=1

wπ(k)
∑k

l=1 wπ(l)

(2)

According to Eq. 2, we consider Access Complexity of each vulnerability node
as a weight vector. Finally, the weighted Shapley value of each vulnerability node
vi is defined as:

SVi(F) =
∑

c∈P

|c|∏

k=1

ACc(k)
∑k

l=1 ACc(l)

[F (Xc
i ∪ vi) − F (Xc

i)] (3)

In general, the characteristic function represents the performance of the coali-
tional games, but in our paper, the performance of a game can also be called the
utility of the attack. In the previous section, we converted the cost of vulnera-
bility which is exploited by attackers into the weight of the node and calculated
the probability of each path in the weighted Shapley values. For any coalition c,
we define its characteristic function as follows:

F (c) =
∑

v∈c

Impact(v) ∗ length(v) (4)

where length(v) is the shortest path length from the virtual node S to the node v.

4 Algorithm

We use Algorithm 1 to assess the vulnerabilities. After calculating the Shapley
value of each vulnerability node, we rank the vulnerabilities based on the value.

A Vulnerability Assessment Method Based on Cooperative Game Theory 395

Algorithm 1. Assess algorithm
Input: the VDG
Output: the vulnerability ranking list

1: P ← EnumerationPaths();
2: w ← CalcuateWeight();
3: list ← CalcuateShapleyValue(P , w);
4: return list

Algorithm 2. EnumerationPaths
Input: the VDG
Output: all the path sets P

findpath(start, end, visited[], Stack s)
EnumerationPaths()

1: Initialize visited[N+1]←0, s← empty stack;
2: for v ∈ V do
3: if v is target node then
4: findpath(N , v, visited, s)
5: visited[N+1]←0
6: while s not empty do
7: pop s

8: return P

In Algorithm 1, all paths are obtained by Algorithm2, then the weight of
each path is calculated according to Eq. 2, the Shapley value of each node is
calculated according to Eq. 3, and finally, the rank result is returned.

The function findpath is a recursive function for finding a path from start
to end, and target node in the line 3 of function EnumerationPaths indicates a
node where din(v) = 0 without considering the virtual node S in the pseudo-code
of Algorithm 2.

5 Result

We use an example networked system in Fig. 1 to show our model and result.
We used the same experimental environment as the paper [15] to compare
experiments and ensure the objectivity of the results. There are a total of six
devices including WEB server(v2,v3), DNS server(v1), FTP server(v63), database
server(v7), Windows host(v5), and Linux host(v4).

According to the impact and Access Complexity of nodes and Eq. 3, we can
calculate the Shapley values of each node in Fig. 2, the results are shown in
Table 1.

As can be seen from Table 1, the Shapley values of the nodes v1, v4, v3 are
higher than others, so they are more harmful in the network. Because v1 is one of
the starting nodes in this network, this node will be a breakthrough for successful
attacks. And v2, which is also the starting node, has only one successor node, so

396 C. Duan et al.

A acker

Web
Server

DNS
Server

FTP
Server

Database
Server

Windows
host

Linux
host

Fig. 1. Experimental network Fig. 2. Vulnerability dependency graphs
of experimental network

the harm is lower than v1. As for v3 and v4, they are more harmful than other
nodes because they are the first successor to the starting node v1 and serve as a
bridge in multiple attack paths.

Fig. 3. The time to compute Shapley
values at different network sizes

Table 1. Shapley values of vulnerability
nodes

Node Shapley value

v1 17.7463

v2 8.77885

v3 11.1209

v4 13.6318

v5 9.89147

v6 8.55995

v7 4.56531

5.1 Scalability Analysis

Unfortunately, the problem of computing the Shapley value is an NP-complete
problem [16]. To illustrate this, we conduct experiments on synthetic networks
as follows.

We use the Scale-Free network generated by Barabási-Albert model [17] to
simulate large-scale VDG. Then we use the JSON Feed CVE-2019 published in
[18]. Finally, we associate each node with a vulnerability randomly.

We perform all the experiments on a PC with 1.60 GHz double core CPU and
8.00 GB memory. The time of enumerating all paths are also taken into account.
We get the average time over 50 samples for each size network. The result is
shown in Fig. 3.

A Vulnerability Assessment Method Based on Cooperative Game Theory 397

It can be seen from Fig. 3 that the calculation time is exponential, in this case,
the vulnerability dependency graph becomes very large and difficult to analyze,
so we only consider the effectiveness of this method in small-scale networks.

5.2 Solution Quality Analysis

CVSS provides a way to produce a numerical score reflecting its severity.
Columns 2 and 3 of the Table 2 gives a comparison of our method and CVSS.

Table 2. A vulnerability rank list compared to CVSS

Rank Our method CVSS BM

1 CVE-2003-0722 CVE-2003-0722 CVE-2008-2219

2 CVE-2007-5904 CVE-2008-0075 CVE-2007-5904

3 CVE-2008-0074 CVE-2006-6171 CVE-2003-0722

4 CVE-2008-2219 CVE-2008-0074 CVE-2008-0075

5 CVE-2008-0075 CVE-2007-5904 CVE-2008-0074

6 CVE-2006-6171 CVE-2008-2219

7 CVE-2007-2583 CVE-2007-2583

In the CVSS standard, the impact of CVE-2006-6761 is greater than that
of CVE-2007-5904, but in the experimental network, CVE-2007-5904 is the pre-
decessor of CVE-2006-6761. If the attacker fails to exploit CVE-2007-5904, it
is impossible to exploit CVE-2006-6761, so CVE-2007-5904 is more severe than
CVE-2006-6761, this phenomenon can be reflected in our results. So our method
is more effective than CVSS while considering the network environment.

Our paper uses the same example of the work of Jia et al. [15]. We call their
method the modified betweenness (MB). Columns 2 and 4 of the Table 2 gives
a comparison of our method and MB.

It can be seen that among the top three vulnerabilities, only one of our results
is different from BM. According to the definition of Shapley value, if a node can
provide more a marginal contribution in cooperation, its Shapley value will be
higher. And node v3 acts as a bridge in the network, so that the attacker has
more choices from the starting node S to v5. Our method is more effective than
BM in analyzing the effects of the same node on different paths.

6 Conclusions and Future Work

This paper proposes a vulnerability assessment method based on Shapley value,
which combines the concept of cooperative game with CVSS standard. Our
method fills in the gaps in which CVSS does not consider where the vulner-
ability is located, and compared with other methods, we find that our method
is more reasonable and accurate.

398 C. Duan et al.

However, it is still very difficult to analyze large-scale vulnerability depen-
dency graphs. The problem of computing the Shapley value is an NP-complete
problem, and we have not given a solution algorithm. We will focus on the prob-
lem in future work.

References

1. Sawilla, R.E., Ou, X.: Identifying critical attack assets in dependency attack
graphs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
18–34. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5 2

2. Homer, J., Ou, X., Schmidt, D.: A sound and practical approach to quantifying
security risk in enterprise networks. Kansas State University Technical report 1–15
(2009)

3. Li, P., Qiu, X.: NodeRank: an algorithm to assess state enumeration attack graphs.
In: 2012 8th International Conference on Wireless Communications, Networking
and Mobile Computing, pp. 1-5. IEEE, Shanghai (2012)

4. Wang, H., Chen, F.W., Wang, Y.F.: An approach of security risk evaluation based
on the Bayesian attack graph. Open Cybern. Syst. J. 9, 953–960 (2015)

5. Mell, P., Scarfone, K., Romanosky, S.: A complete guide to the common vulnera-
bility scoring system version 2.0. FIRST-Forum of Incident Response and Security
Teams 1:23 (2007)

6. Miura-Ko, R.A., Bambos, N.: SecureRank: a risk-based vulnerability management
scheme for computing infrastructures. In: IEEE International Conference on Com-
munications, pp. 1455–1460. IEEE, Scotland (2007)

7. Li, W., Vaughn, R.B., Dandass, Y.S.: An approach to model network exploitations
using exploitation graphs. Simulation 82(8), 523–541 (2006)

8. Yang, X., Shunhong, S., Yuliang, L.: Vulnerability ranking based on exploitation
and defense graph. In: 2010 International Conference on Information, Networking
and Automation, pp. V1-163–V1-167. IEEE, Kunming (2010)

9. Jiang, J., Ding, L., Zhai, E., et al.: VRank: a context-aware approach to vulnera-
bility scoring and ranking in SOA. In: 2012 IEEE Sixth International Conference
on Software Security and Reliability, pp. 61–70, IEEE, Maryland (2012)

10. Zhuang, H., Pydde, F.: A non-intrusive and context-based vulnerability scoring
framework for cloud services. arXiv:1611.07383 (2016)

11. Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317
(1953)

12. Michalak, T.P., Rahwan, T., Szczepanski, P.L., et al.: Computational analysis of
connectivity games with applications to the investigation of terrorist networks. In:
Twenty-Third International Joint Conference on Artificial Intelligence, pp. 293–
301. AAAI, Beijing (2013)

13. Szczepański, P.L., Michalak, T.P., Rahwan, T.: Efficient algorithms for game-
theoretic betweenness centrality. Artif. Intell. 231, 39–63 (2016)

14. Castro, J., Gómez, D., Tejada, J.: Polynomial calculation of the Shapley value
based on sampling. Comput. Oper. Res. 36(5), 1726–1730 (2009)

15. Jia, W., Feng, D.G., Lian, Y.F.: Network-vulnerability evaluation method based
on network centrality. J. Grad. Univ. Chin. Acad. Sci. 9(4), 529–535 (2012)

16. Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts.
Math. Oper. Res. 19(2), 257–66 (1994)

17. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

18. NVD Home (2019). https://nvd.nist.gov/vuln/data-feeds

https://doi.org/10.1007/978-3-540-88313-5_2
http://arxiv.org/abs/1611.07383
https://nvd.nist.gov/vuln/data-feeds

Enhancing Model Performance for Fraud
Detection by Feature Engineering
and Compact Unified Expressions

Ikram Ul Haq(&), Iqbal Gondal, and Peter Vamplew

ICSL, School of Science, Engineering and Information Technology,
PO Box 663, Ballarat, VIC 3353, Australia

ikramulhaq@students.federation.edu.au,

{iqbal.gondal,p.vamplew}@federation.edu.au

Abstract. The performance of machine learning models can be improved in a
variety of ways including segmentation, treating missing and outlier values,
feature engineering, feature selection, multiple algorithms, algorithm tuning/
compactness and ensemble methods. Feature engineering and compactness of
the model can have a significant impact on the algorithm’s performance but
usually requires detailed domain knowledge. Accuracy and compactness of
machine learning models are equally important for optimal memory and storage
needs. The research in this paper focuses on feature engineering and compact-
ness of rulesets. Compactness of the ruleset can make the algorithm more
efficient and derivation of new features makes the dataset high dimensional
potentially resulting in higher accuracy. We have developed a technique to
enhance model’s performance with feature engineering and compact unified
expressions for dataset of unknown domain using profile models approach.
Classification accuracy is compared using well-known classifiers (Decision
Tree, Ripple Down Rule and RandomForest). This technique is applied on fraud
analysis bank dataset and multiple synthetic bank datasets. Empirical evaluation
has shown that not only the ruleset size of training and prediction dataset is
reduced but performance is also improved in other performance metrics
including classification accuracy. In this paper, the transformed data is used for
the experimental validation and development of fraud detection technique, but it
can be used in other domains as well especially for scalable and distributed
systems.

Keywords: Model performance � Fraud detection � Unified expressions �
Feature engineering � Categorical data � Compactness � Ruleset � Situated
profiles � RDR

1 Introduction

The accuracy of a machine learning model can be boosted with the use of various
methods such as segmentation [1], adding more data, treating missing [2] and outlier
values, feature engineering (FE) [3–5], feature selection, multiple algorithms, algorithm
tuning and ensemble methods. Particularly, feature engineering helps to extract more

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 399–409, 2020.
https://doi.org/10.1007/978-3-030-38961-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_35&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_35

information from existing data by deriving new features from existing features. It helps
to unleash the hidden relationships in a dataset. Derived features may help in
explaining the variance in the training data more accurately and result in higher
accuracy. FE could be done using indicator variables, features interaction, feature
representation by extracting information from the existing features, transforming cat-
egorical to numeric features, by creating dummy features or by using external data.
Feature representation can be mainly applied to categorical attributes. In this paper, we
have focused on feature representation with minimum knowledge of the domain of an
external dataset. One of the challenges in FE is to determine if FE can be applied on a
particular feature and whether it could be applied via contextual expressions or via
external sources, while another challenge is that data become high dimensional as new
features are derived from existing features. We have developed a Feature Engineering
and Compact Unified Expressions (FECUE) technique to improve model performance
with feature engineering with minimal prior knowledge of the domain of the dataset
coupled with compacting the ruleset and dataset with unified expressions using a
model-based approach. Performance is measured using three well-known classifiers
(Decision Tree [6], Ripple Down Rules(RDR) [7] and RandomForest [8]). The pro-
posed technique is applied to bank datasets. The empirical evaluation has shown that
model’s performance has improved while training and prediction model sizes have also
been reduced. Main contributions are listed below:

• Study of feature engineering and unified expressions to improve fraud analysis.
• Development of feature engineering technique using custom and configurable sit-

uated profile models (SPM) when the domain of a dataset is not known in advance.
• Empirical evaluation of the developed technique with multiple datasets.
• Ruleset compactness using contextual expressions and situated profile models.
• Evaluating performance in terms of standard performance metrics including clas-

sification accuracy, precision, recall, f-measure, time and ruleset size.

2 Related Work

Some of the known methods of improving model performance are highlighted below:

• Segmentation [1] by dividing the population into several groups.
• Adding more data to produce more accurate models and treating missing [2] and

outlier values.
• Feature Engineering [3–5], extracting more information from existing features.
• Feature selection by finding and the most important subset of features.
• Multiple algorithms by applying a relevant model to see better suitability of models

for a particular domain.
• Algorithm tuning by finding optimum parameter values used in the algorithm.

400 I. U. Haq et al.

Our research focuses on feature engineering which is being used in different
domains to improve model performance. In [3] authors have conducted an educational
data mining study; and evaluated feature engineering for KDD Cup 2010 by training
the model from students’ past behavior and then predicting future performance.
Authors in [4] have designed an information extraction technique using feature engi-
neering with a combination of rule-based and machine learning methods. This tech-
nique is applied on narrative clinical discharge summaries. Turner et al. [5] proposed
the concepts of FE and evaluated its impact on the software development life cycle.
They proposed their research as the first step towards the development of feature
engineering and its relationship to other domains. One text classification feature
engineering technique is developed by [9], which is ontology guided. This technique
utilizes the domain knowledge encoded in the taxonomical structure of the Medical
Language System with the help of context-dependent relatedness between pairs of
concepts.

These developed techniques have a variety of limitations and are either domain or
context-specific. They do not discuss the problem or the solution of the increase of data
dimension with the application of FE. Also, the performance impact in terms of either
of the classification accuracy, time and model’s size is not discussed. FE via external
sources is also not used in these techniques. Considering these limitations, we have
proposed an innovative technique which improves model performance over a variety of
performance metrics. The proposed technique is a situated profile model-based, domain
independent FE technique using compact unified expressions.

3 Methodology

Out of various methods available for improving model accuracy, research in this paper
focuses on feature engineering and compression of ruleset of the training model. One of
the challenges was to identify appropriate FE methods for individual attributes, ideally
requiring minimal domain knowledge. Another challenge was the compactness of the
ruleset. Four situated profiles models (SPM) are developed and used in this technique
to predict features, which type of FE to use and how to apply the ruleset compactness.
SPMs are explained in Sect. 3.1. Situated profile models make the technique more
generic for different datasets. Consider the nomenclature of a typical bank transaction
log as explained by Maruatona [10] Table 7-1.

Categorical attributes represent a type of data which may be divided into groups.
Typically, a categorical attribute represents discrete values and have no concept of
ordering the values of that attribute. From Maruatona [10] Table 7-1, some of the fields
can be used for feature extraction. The developed technique is divided into two parts,
feature representation and compactness of the ruleset. A situated profile (SP) [11]
defines values relative to the situations, so these are only applied in situations for which
they are valid. A situated profile could help in intelligence extraction efficiently.
In RDR, the modelling is also based on SPs [10], as it describes every attribute for a
particular case. The developed technique is explained in more detail in Sect. 3.4.

Enhancing Model Performance for Fraud Detection by Feature Engineering 401

3.1 Feature Engineering Techniques for Bank Dataset

Many classification algorithms do not use attributes like Event-time, IP Address and
Browser string as these type of attributes are ignored in the feature selection process.
Feature engineering [12] is a critical and underexplored aspect of building high-quality
knowledge base construction systems and is an understudied problem relative to its
importance, especially in fraud detection. One way of FE is extracting information
from the existing features, while another way is by using external data sources with
some application program interface (APIs) or source like geocoding and demographics.
In this paper, we have also applied FE with external data sources.

If we derive new attributes from existing attributes and train the model, we can see
that the new attributes are used by the classifier. The newly derived features either can
be numeric or can be easily transformed to numeric attributes. Numeric features give
better performance in machine learning algorithms. Similarly, clustering algorithms
work effectively on the data where all attributes are either numeric or categorical data,
as compared to mixed data types [13]. [14] also proved higher classification accuracy
with numeric data opposed to mixed datasets. In bank dataset, more attributes can be
derived from Event-time, e.g. hour, day, month, year, day-of-week, holiday and
weekend-flag. Browser string attribute may further produce attributes like O.S, browser
and device identifiers. New attributes derived from an IP Address value could be either
four segments separated by token character or location-based attributes. External data
sources are available which provide geographic information of an IP Address. These
newly derived attributes could also be helpful in identifying suspected transactions in
terms of fraud. For example, if event hour is not in normal time, or if it is a holiday or
weekend or if the location of the IP Address is different from the actual user’s location,
then there is higher chance of a potential fraud. Same applies with the attributes derived
from Browser string attribute. Different SPMs are formed to aid this method be generic
and domain-independent.

3.2 Situated Profile Models

A number of situated profiles models (SPM) were developed to process features and for
the ruleset compactness. These models are used for banking dataset, but could also be
modified for a specific dataset. Table 1 SPM is a set of tokenizer characters and their
applicability to attributes, while Table 2 explains different measures to predict an
attribute based on the type and category. With Table 3 FE could be categorized if it can
be done via contextual expressions. E.g. extracting day-of-week from date field or
getting geocoding and demographic information from an IP Address.

402 I. U. Haq et al.

Below table is a sample list of UEL operators, which can be replaced with simple
mathematical operator to achieve compactness in UEL ruleset.

Table 2. Feature prediction model sample

Type Category Possible values

Attribute data type Comparison String, date, amount, integer
Tokenizer Boolean exists Yes/no
Tokenizer Find Ref: Table 1
Tokenizer Count 1, 2, 3
Attribute Length 0–100

Table 1. Tokenizer character model sample

Token character Category Attribute index

. Include 2, 6
_ Include 3, 5, 4
; Include 5
, Skip all
) Skip 5

Table 3. FE type model sample

FE source Attribute index

Contextual expressions 3
Contextual expressions 4
Contextual expressions 5

Table 4. Rules compression model sample

UEL operator Simple operator Types

Between >= Integer, amount
Between <= Integer, amount
Like/in ¼ String
Not between NA Integer, amount
Not In NA String

Enhancing Model Performance for Fraud Detection by Feature Engineering 403

3.3 Challenges and Tokenizing a Feature Value

One of the challenges in FE is how to evaluate which information or features could be
extracted from a particular feature, which already exists in the dataset. It cannot be
done without domain knowledge or at-least heuristic approach needs to be applied
based on the data type. Without domain knowledge of fraud dataset, how we will know
that browser OSVer, O.S, Ver and device features can be extracted from raw Browser
string. Heuristically, we know that hour, day, month, day-of-week, holiday and
weekday flag information can be extracted from a date-time feature and that an IP
Address contains geolocation data, which can be extracted by some external APIs.

A new way of FE is introduced in this paper, which can extract information from
existing features with a minimum domain knowledge of the dataset. Four situated
profile models (SPM) (Tables 1, 2, 3 and 4) are developed in this technique to predict a
feature and to decide the source of feature engineering. This way is explained in
Algorithm 1 and in Sect. 3.6 with a rule-based approach. By using this algorithm and
the suggested rule-based approach, information can be extracted by tokenizing a feature
value with non-alphanumeric characters. E.g comma, space, bracket, colon and semi-
colon, Table 1 is configurable to update tokenizer characters with respect to attributes.
From a sample date-time value “15/10/2018 23:55:10” six numeric attributes can be
extracted by using Algorithm 1, which are “15 10 2018 23 55 10”. A classifier doesn’t
need to know which value is an hour, day, month or a year. Similarly from a sample
Browser string value “Mozilla/5.0 (iPad; CPU OS 3_2_1 like Mac OS X; en-us)
AppleWebKit/531.21 (KHTML, like Gecko) Mobile”, O.S, browser and device iden-
tifiers can be extracted. Although the contents of a Browser string will slightly vary
based on the browser and the underlying operating system, but once the system knows
that it is a Browser string field it can further extract these attributes. A ruleset can be
further developed to extract browser name, operating system and the versions, as
Browser string contents may vary based on the browser and the O.S. These newly
extracted attributes are a combination of categorical and numeric attributes. But the
extracted categorical attribute can also be converted to numeric attribute, which was not
possible with the original attribute value of Browser string. Various SPMs are devel-
oped in this technique for bank dataset, but may also be customized for a particular
dataset.

3.4 Algorithms

The developed technique is based on feature engineering and compactness of ruleset
for the model. Feature engineering is explained in Algorithm-1, while ruleset com-
pactness is explained in Algorithm 2. Tokenizer characters are maintained in situated
profiles for every attribute, as a particular character could be a tokenizer character for
one attribute, but not valid for other attributes.

404 I. U. Haq et al.

Algorithm-1.

Input: Instance from a dataset. Output: Instance with addition of new features with feature engineering.
#Load Source data and perform data cleaning. Do feature selection and filter categorical features and other
features having tokenizer characters.
1. Process instances.
2. Process each Feature
3. IF Feature (Is Categorical) or (Having tokenizer characters)
i. Categorise the feature based on Table-1 and Table-2 (explained in more detail in section 3.6.)
ii. For each feature transform and extract new features with FE.
iii. Tokenize / Split with Tokenizer characters from Situated Profiles using Table-1 and Table-2
FOR Feature 1 to n LOOP

IF NEW Tokenizer THEN Update Situated Profiles
Situated profiles will manage collection of tokenizer characters on attribute level.
ELSE IF Tokenizer THEN NewFeatures = ExtractFeatures(feature)
#Extract feature with the token
NEXTVALUE

ENDLOOP
4. IF (more features in the row) Goto step-2
#Extract features from complete Row from Step 2-4, IF (more Row) Goto Step-1 ELSE FINISH

Algorithm-2.
Input: A unified expression format rule from a ruleset. Output: A compact unified expression format rule.
#Load Ruleset.
1. Process each rule in the ruleset and compact the ruleset using fCompact function (1).
2. Process each expression in the rule.
3. IF (Expression is >= or <=) Process current rule and update UEL Rule 3.a

#Update UEL Rule with BETWEEN operator
ELSE if (Expression is ==)
#Process current rule and update UEL Rule 3.a. Update UEL Rule with UEL operators as Table-4
ELSE SKIP
ENDIF
3.a Update Unified Expression Rule (UEL)

#Update with appropriate UEL operator (BETWEEN, IN, NOT IN, LIKE, NOT LIKE) as explained in Table-
4 and in section 3.5
4.IF (more expression) Goto step-2
#Process expressions from complete Rule from Step 2-4. IF (more Rules) Goto Step-1 ELSE FINISH

3.5 Unified Expressions Language

In this paper, we have considered rule-based classifiers. One of the well-known clas-
sifiers is RDR. We have suggested ruleset compactness in RDR using unified
expressions using SPMs. Unified Expressions Language (UEL) can evaluate mathe-
matical expressions with a lot of operators and enables dynamic scripting feature. Some

Enhancing Model Performance for Fraud Detection by Feature Engineering 405

of the advantages of UEL is that it supports more than 30 different operators; and
expressions can also invoke functions, which can help in getting external data for
feature engineering. For example, extracting geolocation data in bank dataset. Rule-
based classifiers use only limited operators. However, using UEL many more operators
can be used e.g. IN and LIKE Operators. In FE, features interaction can be achieved by
dynamically evaluating expressions using Add, Subtract, Multiply and Divide opera-
tors instead of creating new features in the prediction phase. FE with feature interaction
will be only needed for training the model. Authors in [14] have highlighted the
importance of compactness of the prediction model and demonstrated that a compact
prediction model is more efficient. The UEL expression will help in ruleset compact-
ness and will improve performance in terms of the time taken for model prediction.

Algorithm 2 explains compactness with Expression Language using a configurable
situated profile model (Table 4). This model uses a relevant UEL operator which can
be used based on simple operator and attribute type. Ruleset compactness with unified
expressions is explained below:

Rule-1: ‘Source_Acc’=‘Personal’ and ‘Country’=‘AU’ and Browser=‘MOZ-5Win’
THEN FRAUD
Rule-2: ‘Source_Acc’=‘Personal’ and ‘Country’=‘AU’ and Browser=‘MOZ-5Lin’
THEN FRAUD
Compressed Rule: (Using IN Operator)
‘Source_Acc’=‘Personal’ and ‘Country’=‘AU’ and Browser IN (‘MOZ-5Lin’,
‘MOZ-5Win’) THEN FRAUD
Other Operator could be BETWEEN for numeric features and LIKE for categorical
features.

Compactness of an expression is explained with below equation.

Rcomp ¼ f Compact
Z n

1Y
i

expSetð Þm 6¼ null ð1Þ

Where expSet is a set of expressions from RDR ruleset and Rcomp is a compact rule
set with unified expressions and fCompact is a function to compact an RDR ruleset
which compacts simple mathematical expressions from 1 to n from SPM Table 4 on ith

rule index having m value which is non-null.

Contextual Expressions
Unified expressions can be used to get further useful information from the existing
attributes through external sources, e.g. getting geocoding and demographic informa-
tion from IP Address in bank dataset. Which can help in making further decisions
related to fraudulent transactions and will improve model accuracy as well. To make it
generic which attributes needs FE from an external source, a situated profile model
Table 3 is developed and used in this technique. This model decides FE based on the
attributes, which is predicted from two other models Tables 1 and 2. E.g. Get country
information from IP Address may help in detecting suspected tunnel sites usage. We
can add a rule when IP Address and user’s actual country are different.

Rule: ‘Source_Acc’ == ‘Personal’ and ‘UserCountry’ <> ‘IPCountry’ THEN
FRAUD

406 I. U. Haq et al.

3.6 Constructing a Feature

Extracting features from the existing feature is a challenging task, especially without
knowing the domain of the dataset. However, if we know the feature name in a
particular dataset, it will help in extracting more features from this feature. Considering
commonly used data types explained by [15], [16] and adding some further measures
of feature content length and presence of the token character, a rule-based approach is
developed to predict a feature name. To make the technique more generic, four situated
profile models are developed and used in this technique. See a ruleset example.

Rule-1: DataType=’String’ and Count(Token_Character=’.’)=3 THEN IPAddress

Rule-2: DataType =’String’ and Token_Character==’;’ THEN BrowserString

Rule-3: DataType =’String’ and (No_Token_Character or Token_Character=’_’)

THEN SourceAccount

Rule-1, 2 and 3 can also be represented as:

DataType =’String’

Count (Token_Character=’.’) = 3 THEN IPAddress

Token_Character=’;’ THEN BrowserString

(No_Token_Character or Token_Character=’_’) THEN SourceAccount

Comparison with attribute types and checking the existence of a particular and
using other measures of length or count is used from the SPMs explained in Sect. 3.1

4 Results

Empirical evaluation was done for both original and the dataset produced by FECUE
technique. Performance was measured with a variety of performance metrics including
classification accuracy, precision, recall, f-measure, time and ruleset compactness.

Accuracy ¼ TPþ TN
TPþ FPþ FNþTN

ð2Þ

Precision ¼ TP
TPþ FP

ð3Þ

Recall ¼ TP
TPþ FN

ð4Þ

F�measure ¼ 2 � Recall * Precisionð Þ
Recall þ Precisionð Þ ð5Þ

Where TP are correctly predicted positive and TN are correctly predicted negative
values, FP when actual class is no and predicted class is yes and FN when actual class
is yes but predicted class is no.

Enhancing Model Performance for Fraud Detection by Feature Engineering 407

4.1 Bank Datasets

Various performance metrics with three well-known classifiers has been compared for
the original datasets and corresponding datasets with derived attributes after feature
engineering using FECUE. The results in Tables 5 and 6 show that there is an
improvement in performance metric results. In this study, 30% and 70% split is done
for training and testing datasets. Average measurement was calculated for various
dataset sizes ranging from small to large datasets and for multiple simulation runs for
each classifier. RIDOR is RDR and J48 is decision tree implementation in WEKA.

Above tables shows that there is an overall improvement (original and corre-
sponding datasets after FE with FECUE) in all performance metrics with both bank’s
datasets.

5 Conclusion

Model performance can be improved in a variety of ways including segmentation,
treating missing and outlier values, feature engineering, feature selection, multiple
algorithms, algorithm tuning and ensemble methods. This paper has presented model
accuracy and compactness technique (FECUE), and it is observed that derivation of
new features makes the dataset high dimensional. The developed technique has
enhanced the model’s performance with feature engineering (when the domain of a
dataset is not known in advance), with the use of external sources and compact unified
expressions. Multiple situated profile models (SPM) are used to make the technique
more generic so that it is applicable on multiple datasets and domains. Performance in
terms of classification accuracy, precision, recall, f-measure, time and ruleset com-
pactness is compared using three well-known classifiers. FECUE has been applied on
reference bank dataset and multiple synthetic bank datasets. The empirical evaluation
has shown that not only the ruleset in training and prediction model are reduced but the

Table 5. Performance with reference bank dataset

Classifier Accuracy Precision Recall F-Measure Time Ruleset

RIDOR 3.96% 1.85% 4.05% 4.05% 58.06% 26.09%
C45/J48 0.32% −0.10% 0.00% 0.00% 50.00% −10.67%
R. forests 49.39% 91.49% 33.68% 97.39% −8.33%

Table 6. Performance with Synthetic Bank dataset

Classifier Accuracy Precision Recall F-Measure Time Ruleset

RIDOR 6.75% 7.34% 6.75% 7.91% 165.32% 50.32%
C45/J48 2.64% 5.87% 6.37% 2.53% 108.41% 15.53%
R. forests 50.58% 52.42% 50.58% 119.64% 20.26%

408 I. U. Haq et al.

performance improvement is also observed in other standard performance metrics. The
developed technique is mainly applied in fraud detection area, but it can be used in
other domains as well. One of the future works would be to test this technique on a
variety of datasets especially with high dimensional data.

References

1. Bijak, K., Thomas, L.C.: Does segmentation always improve model performance in credit
scoring? Expert Syst. Appl. 39(3), 2433–2442 (2012)

2. Xiaofeng, Z., Shichao, Z., Zhi, J., Zili, Z., Zhuoming, X.: Missing value estimation for
mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23(1), 110–121 (2011)

3. Yu, H.-F., et al.: Feature Engineering and Classifier Ensemble for KDD Cup 2010 (2010)
4. Xu, Y., Hong, K., Tsujii, J., Chang, E.I.-C.: Feature engineering combined with machine

learning and rule-based methods for structured information extraction from narrative clinical
discharge summaries. J.A.M.I.A 19(5), 824–832 (2012)

5. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: A conceptual basis for feature
engineering. J. Syst. Softw. 49(1), 3–15 (1999)

6. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
7. Compton, P., Jansen, R.: Knowledge in context: a strategy for expert system maintenance.

In: Barter, C.J., Brooks, Michael J. (eds.) AI 1988. LNCS, vol. 406, pp. 292–306. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-52062-7_86

8. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
9. Garla, V.N., Brandt, C.: Ontology-guided feature engineering for clinical text classification.

J. Biomed. Inform. 45(5), 992–998 (2012)
10. Maruatona, O.O.: Internet Banking Fraud Detection Using Prudent Analysis. University of

Ballarat, Ballarat (2013)
11. Vastenburg, M.H.: SitMod: A Tool for Modeling and Communicating Situations (2004)
12. Ré, C., et al.: Feature Engineering for Knowledge Base Construction (2014)
13. Shih, M.-Y., Jheng, J.-W., Lai, L.-F.: A two-step method for clustering mixed categroical.

Tamkang J. Sci. Eng. 13(1), 11–19 (2010)
14. Ul Haq, I., Gondal, I., Vamplew, P., Brown, S.: Categorical features transformation with

compact one-hot encoder for fraud detection in distributed environment. In: The 16th
Australasian Data Mining Conference, Bathurst NSW, Australia (2018)

15. Witten, I.H., Eibe, F.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. edited by Jim Gray, M.R. Morgan Kaufmann (2005)

16. Durrant, B.: An ARFF (Attribute-Relation File Format). University of Waikato. https://
waikato.github.io/weka-wiki/arff_stable/. Accessed 9 Nov 2018

Enhancing Model Performance for Fraud Detection by Feature Engineering 409

https://doi.org/10.1007/3-540-52062-7_86
https://waikato.github.io/weka-wiki/arff_stable/
https://waikato.github.io/weka-wiki/arff_stable/

Network Intrusion Detection Framework
Based on Embedded Tree Model

Jieying Zhou(&), Pengfei He, Rongfa Qiu, and Weigang Wu

School of Data and Computer Science, Sun Yat-sen University,
Guangzhou, China

{isszjy,wuweig}@mail.sysu.edu.cn,

{hepf3,qiurf5}@mail2.sysu.edu.cn

Abstract. Network intrusion detection system plays a vital role in network
security protections that could be used to protect personal privacy and property
security so as to protect users from attackers. However, there are a few samples
of attack types with various characteristics. To solve the problem of class-
imbalance in network security and correctly detect the attack, this paper pro-
poses a network intrusion detection framework: random forest and gradient
boosting decision tree (RF-GBDT). Random forest model is used for feature
transformation and gradient boosting decision tree model is used for classifi-
cation. RF-GBDT was used on the UNSW-NB15 dataset in which only 8 fea-
tures were selected for training and a large number of irrelevant features were
deleted. RF-GBDT not only reduced the training time but also improved the
detection rate. The experiment result shows that RF-GBDT model has a higher
detection rate and lower false alarm rate compared with other relative
algorithms.

Keywords: Network intrusion detection system � UNSW-NB15 dataset �
Class-imbalance

1 Introduction

With the rapid development of computer application, network intrusion detection has
become an important barrier to ensure the computer security. The intrusion detection is
a security mechanism. It monitors and filters the network behaviors by analyzing the
data such as the host audit data and the network flow data, then identifies the abnormal
access in the network communication and notice the administrator in time. By doing all
this, it achieves the purpose of protecting network information security.

Intrusion detection system (IDS) can be divided into three modules, which showed
by Fig. 1. There are data collection module, intrusion detection module and response
module. The data collection module collects data from system logs, network data flow,
host audit data and etc. These data collected will be sent to the intrusion detection
module. Then the intrusion detection module will conduct data processing and mod-
eling analysis on these data, which helps determine whether the behaviors are
aggressive or what type of attacks it belongs to. This module is the kernel of intrusion
detection system, which directly affects the performance of the system. Finally, the

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 410–417, 2020.
https://doi.org/10.1007/978-3-030-38961-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_36&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_36

response module receives the attacking data detected by intrusion detection module and
takes some actions according to what type the data belongs to.

The network intrusion detection mainly faces the following several problems:
(1) diversity: there are many types of attack. So, in the detection, so intrusion detection
is regarded as a multi-classification problem rather than a binary classification problem;
(2) class-imbalance: there are small amounts of samples belonging to attacking types.

To solve the multi-classification and class-imbalance problem, this paper proposes
the RF-GBDT model framework which has a high accuracy of detection and good
generalization performance.

The rest of the paper is organized as follows. Section 2 provides a summary of the
previous work in intrusion detection. Section 3 presents the theory of grandient
boosting decision tree. Section 4 shows the proposed model framework. Section 5
presents the UNSWNB-15 dataset and evaluation. Section 6 discusses experimental
results. The conclusion is drawn in Sect. 7.

2 Related Works

In the recent years, the machine learning algorithms are widely used to solve the
network intrusion detection problem. Aiming at the class-imbalance problem in net-
work intrusion detection, people mainly study in the following two aspects: the
methods based on data level [1] and the methods based on algorithm level [6, 7].

The methods based on data level use data sampling technology, and the train the
model. In the recent years, the classification method based on sampling algorithm has
become the research hotspot [8, 9]. Chawla [2] proposed a boosting method based on
Synthetic Minority Over-sampling Technique (SMOTE), which used SMOTE to up-
sample in every iteration. However, the methods based on sampling have changed the
distribution of data. Majority of machine learning algorithms are established on the
hypothesis of the training data and testing data having the same data distributions.

Themethods based on algorithm level promote the classification performance mainly
by improving the process of training and adopting several integrated strategies, such as
adopting the feature selection technologies and classifier integrated technologies. The
integrated classifier combines multiple weak classifiers to improve the performance of
multi-classification throughmajority voting, boosting or bagging. It can effectively avoid
the problem of consumption of resource and the bias of classification that the single
classifier will cause. By the way, it can also improve the classifier performance of the
detection models and reduce the variance which can prevent overfitting.

Fig. 1. Intrusion detection system

Network Intrusion Detection Framework Based on Embedded Tree Model 411

3 Theory of Gradient Boosting Decision Tree

The GBDT model [5] is an additive model:

F xð Þ ¼
XT

t¼1

atht xð Þ ð1Þ

where x is the input sample, ht xð Þ is Classification and Regression Trees (CART), and
T is the number of trees, at is the weight of the tth tree.

GBDT uses the forward distribution algorithm. At first, it selects a constant F0 xð Þ
as the initial value of model. And the model of the mth step is:

Fm xð Þ ¼ Fm�1 xð Þþ amhm xð Þ ð2Þ

Fm�1 xð Þ is the current model. hm xð Þ is computed by the minimizing loss function:

hm ¼ argmin
h

XN

i¼1

L yi;Fm�1 xið Þþ hðxiÞð Þ ð3Þ

N is the number of samples.
GBDT uses the gradient descent method to compute the optimal model, which

regards the negative gradient value of loss function on the current model Fm�1 xð Þ as the
direction of gradient descent:

FmðxÞ ¼ Fm�1 � am
XN

i¼1

rFL y;Fm�1 xið Þð Þ ð4Þ

am is computed by the line search:

am ¼ argmin
a

XN

i¼1

Lðyi;Fm�1ðxiÞ � a
@Lðyi;Fm�1ðxiÞÞ

@Fm�1ðxiÞ ð5Þ

The regularization of GBDT can be controlled by setting the learning rate:

Fm xð Þ ¼ Fm�1 xð Þþ mamhm xð Þ ð6Þ

m is the learning rate. The smaller it is, the more CART we need and we will have
the less error. But it will increase the training time. Therefore, we need to control
learning rate and the amount of CART at the same time to confirm a model having high
velocity and accuracy.

412 J. Zhou et al.

4 The Proposed Framework

RF-GBDT is constituted of three parts which are feature selection, feature transfor-
mation and the classifier. Firstly, the training data is trained by GBDT to get the
features which are sorted by feature importance from high to low. Then Recursive
Feature Elimination method is used to select the optimal feature subset. Next, Random
Forest model is used to train the feature subset. And this paper uses the indexes of the
leaves which the samples fall on as the final input of the classifier. If there are
m samples and the Random Forest model has n trees, then the size of transformed data
is m � n. At last, this paper use GBDT model to train and predict on transformed
features. The overall structure of the model framework is shown by Fig. 2.

The first part is feature selection. This paper proposes a Recursive Feature Elimi-
nation method based on GBDT (GBDT-RFE), which belongs to one kind of wrapper
feature selection algorithms. The algorithm uses GBDT model for multi-round training
and records the loss value in each round of training. Then it eliminates the feature with
the least importance, and then carries on the next round of training based on the new
feature set until the feature set is eliminated completely. The workflow is given in
Algorithm 1.

The second part is feature transformation. He [3] has proposed the decision tree
feature transformation method. On the basis of that method, this paper uses Random
Forest model to generate the embedded leaf features, as shown in Fig. 3. For example,

Fig. 2. The proposed model framework

Algorithm 1 GBDT-RFE
1: Input: X, y
2: Output: F
3: while features_list:
4: Train GBDT (X, y) on features_list:
5: Record Loss:
6: Get ranked_feature_importances;
7: del ranked_feature_importances [-1];
8: features_list = ranked_feature_importances;
9: end while
10:

Network Intrusion Detection Framework Based on Embedded Tree Model 413

while sample x traversing all trees, it will firstly pass the first tree and fall on the leaf
having index of index_1. Then it will pass the second tree and fall on the leaf having
index of index_2. This process stops when the sample passes the last tree and falls on
the leaf having index of index_n. All these indexes of leaves will combine to generate
the embedded leaf features. The paper [3] use One-Hot Encoding after feature trans-
formation. But this paper directly uses indexes of leaves as features rather than encode.
If there are n trees in Random Forest model and m samples, then the shape of the
embedded leaf features will be m � n.

The third part is the classifier. GBDT model is used to train on the training dataset
with size of m � n. And then predict on the testing dataset. The cross-validation
method is used to select parameters such as the number of trees and learning rate.

5 Dataset and Evaluation

5.1 UNSW-NB15 Dataset

In 2015, Nour and Slay proposed the UNSW-NB15 dataset [4]. As a new benchmark
dataset in the field of intrusion detection, UNSW-NB15 dataset can correctly reflect
today’s diverse attack types and complex network conditions.

There are 2,540,044 samples in the UNSW-NB15 dataset, including 49 features
and 10 classes. They are normal samples “Normal” and nine attack types: “Fuzzers”,
“Analysis”, “Backdoors”, “DoS”, “Exploits”, “Generic”, “Reconnaissance”, “Shell-
code” and “Worms”. The UNSW-NB15 dataset [4] has a subset version, with 175,341
samples in the training dataset and 82,332 samples in the test dataset, including 41
features.

5.2 Testing Evaluation and Performance Measures

The flow data in network security field has the characteristic of unbalanced distributed
samples. So, in order to reflect the true effect of model, the proper evaluation measures
should be selected. For performance estimation, precision, detection rate, false alarm
rate and F1-score performance measures are taken. Confusion matrix is used and
shown in Table 1.

Fig. 3. New features generated by leaf index

414 J. Zhou et al.

• Detection Rate (DR): the ratio of the abnormal samples correctly predicted in all
abnormal samples;

• False Alarm Rate (FAR): the ratio of the normal samples mistakenly predicted
abnormal;

• Precision: the ratio of the abnormal samples correctly predicted in the samples
predicted abnormal;

• F1-score: the harmonic mean of recall rate and precision.

DR ¼
PC

i¼1
TPi

PC

i¼1
ðTPi þFNiÞ

ð7Þ

FAR ¼
PC

i¼1
FPi

PC

i¼1
ðFPi þ TNiÞ

ð8Þ

Precision ¼
PC

i¼1
TPi

PC

i¼1
ðTPi þFPiÞ

ð9Þ

F1score ¼ 2� Precision� Recall
PrecisionþRecall

ð10Þ

C is the amount of types.

6 Experiments and Results

The hardware configuration of experiment is the 2.5 GHz Intel Core processor with
8 GBs of RAM and 64-bit Windows10 operating system. This experiment uses Python
on Anaconda Platform by calling the Scikit-learn Toolkit. RF-GBDT model framework
are also compared to the following four algorithms such as Adaboost, Random Forest,
K-Nearest Neighbor and Logistic Regression.

Table 1. Confusion matrix

True label Predicted label
1. Attack 2. Normal

Attack True Positive (TP) False Negative (FN)
Normal False Positive (FP) True Negative (TN)

Network Intrusion Detection Framework Based on Embedded Tree Model 415

6.1 Result Comparison

Table 2 shows the performance with 10-fold cross-validation on training dataset of K-
NN, AdaBoost, LR, RF-GBDT, DNN [10] and RICSA-KELM [11]. In the table, N/A
indicates that the result doesn’t exist or can’t do comparison because of different
evaluating methods. RF-GBDT has a detection rate of 83.78%, a false alarm rate of
1.8% and the F1 score is 83.78%.

As a multi-class model, RF-GBDT also has a high detection rate on each class.
Table 3 shows the detection performance on each class of four algorithms such as K-
NN, AdaBoost, LR and RF-GBDT. Although there ara a few samples of minority class,
the detection rate is over 84%, such as “Worns”, “Reconnaissance”, “Shellcode” and
“Generic”.

7 Conclusion

In this paper, RF-GBDT model is proposed to solve the problem of multi-classification
of class-imbalance in network intrusion detection. The model framework consists of
three parts: feature selection, feature transformation and classifier.

Table 2. Comparisons of results

Method DR (%) FAR (%) F1Score (%)

K-NN 64.35 ± 1.05 3.96 ± 0.12 64.35 ± 1.05
AdaBoost 73.85 ± 0.82 2.91 ± 0.09 73.85 ± 0.82
LR 63.16 ± 0.84 4.09 ± 0.84 63.16 ± 0.84
DNN 80 N/A 76
RICSA-KELM N/A 2.12 N/A
RF-GBDT 83.78 – 0.91 1.80 – 0.91 83.78 – 0.91

Table 3. Results of detection rate

Type Rate (%) DR (%)
K-NN LR Ada-Boost RF-GBDT

Analysis 1.85 52.71 25.74 52.43 70.52
Backdoor 1.84 14.23 3.66 53.65 72.65
DoS 3.88 7.78 1.39 21.98 35.47
Exploits 12.53 60.50 60.29 62.71 76.31
Fuzzers 9.33 39.02 33.12 54.00 63.50
Generic 9.73 56.31 40.51 67.90 84.27
Normal 43.79 85.57 87.58 86.34 92.38
Reconn. 8.69 56.19 71.71 81.68 92.89
Shellcode 7.51 48.49 43.36 83.72 91.23
Worms 0.87 14.62 0.00 41.54 82.31

416 J. Zhou et al.

Selecting features by the feature importance of GBDT and deleting the irrelevant
features, can not only reduce training time cost and reduce the amount of calculation,
but increase the detection rate of model.

Experiments show that RF-GBDT has the characteristics of high detection rate and
low false alarm rate on UNSW-NB15 data set. The results showed that the detection
rate was 83.78%, the false alarm rate was 1.8%, the F1 score was 83.78%, and the
ROC AUC was 98.31%

The RF-GBDT model can accurately detect the attack types in the network flow
data, especially the attack types with litter samples. For example, “Worns”, “Shell-
code”, “Reconnaissance” and “Generic” have a few samples, but the detection rate is
more than 84%. Therefore, RF-GBDT has an obvious advantage on solving the multi-
class problem with class-imbalanced data in network intrusion detection.

Acknowledgment. This work is supported by the National Key R&D Program of China
(2018YFB0203803), the National Natural Science Foundation of China (U1801266), and the
Program of Science and Technology of Guangdong (2015A010103007).

References

1. Garca, S., Derrac, J., Triguero, I., et al.: Evolutionary-based selection of generalized
instances for imbalanced classification. Knowl.-Based Syst. 25(1), 3–12 (2012)

2. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: improving
prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski,
L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39804-2_12

3. He, X., Pan, J., Jin, O., et al.: Practical lessons from predicting clicks on ads at Facebook. In:
Proceedings of the Eighth International Workshop on Data Mining for Online Advertising,
pp. 1–9. ACM (2014)

4. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set). In: 2015 Military Communications and
Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015)

5. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat.
29(5), 1189–1232 (2001)

6. Sun, Z., Song, Q., Zhu, X., et al.: A novel ensemble method for classifying imbalanced data.
Pattern Recognit. 48(5), 1623–1637 (2015)

7. Zhang, Z., Krawczyk, B., Garcìa, S., et al.: Empowering One-vs-One Decomposition with
Ensemble Learning forMulti-Class Imbalanced Data. Elsevier Science Publishers B.V. (2016)

8. Sain, H., Purnami, S.W.: Combine sampling support vector machine for imbalanced data
classification. Procedia Comput. Sci. 72(Complete), 59–66 (2015)

9. Jian, C., Gao, J., Ao, Y.: A New Sampling Method for Classifying Imbalanced Data Based
on Support Vector Machine Ensemble. Elsevier Science Publishers B.V. (2016)

10. Cai, H., Wang, Q.: Research on intrusion detection technology based on deep learning. In:
Network Security Technology and Application (2017)

11. Chao, M.: A parallel intrusion detection method based on relieff and improving crow search
optimization. Comput. Appl. Res. 11, 1–3 (2019)

Network Intrusion Detection Framework Based on Embedded Tree Model 417

https://doi.org/10.1007/978-3-540-39804-2_12

Generative Adversarial Nets Enhanced
Continual Data Release Using Differential

Privacy

Stella Ho1,2(B), Youyang Qu1, Longxing Gao1, Jianxin Li1, and Yong Xiang1

1 Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
{hoste,y.qu,longxiang.gao,jianxin.li,yong.xiang}@deakin.edu.au

2 Cyber Security Cooperative Research Centre, Joondalup, WA 6027, Australia

Abstract. In the era of big data, increasing massive volume of data is
generated and published consecutively for both research and commercial
purposes. The potential value of sensitive information also attracts inter-
est from adversaries and thereby arises public concern. Current research
mostly focuses on privacy-preserving data release in a statistic manner
rather than taking the dynamics and correlation of context into consid-
eration. Motivated by this, a novel idea is proposed by combining dif-
ferential privacy and generative adversarial nets. Generative adversarial
nets and its extensions are used to generate a synthetic data set with
indistinguishable statistic features while differential privacy guarantees
a trade-off between the privacy protection and data utility. Extensive
simulation results on real-world data set testify the superiority of the
proposed model in terms of privacy protection and improved data util-
ity.

Keywords: Differential privacy · Generative adversarial nets ·
Continue data

1 Introduction

Nowadays, with the explosive growth of data in terms of volume, velocity and
variety and rapid development of the Internet-of-Things (IoT), massive volume
of streaming data that generated by individuals are being collected and analyzed
due to its great potential for both research and commercial uses [15]. Streaming
data refers to data that is updating and evolving through time, such as social
media data, online game data and search engineer data [3]. Thereby, those con-
tinually updating data that contains personally identifiable information requires
strong privacy protection in case of personally identifiable information leakage
and violation of one’s privacy [3,6].

In the context of raised data privacy concern in the era of big data, dif-
ferential privacy as a wide-utilized privacy guarantee aims to address the issue
regarding privacy-preserving data analysis [5,6]. As one of the effective privacy-
preserving techniques [21], research on differential privacy that focuses on
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 418–426, 2020.
https://doi.org/10.1007/978-3-030-38961-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_37&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_37

GANs Enhanced Continual Data Release Using Differential Privacy 419

privacy-preserving data publishing by taking the dynamics and correlation of
context into consideration is yet to be well-developed [2,7]. In order to cope
with explosive data traffic and public arising security concern of compromising
individuals’ privacy by streaming data, differentially private algorithms require
to provide strong privacy guarantees not only for static data but also for data
that is varying or evolving through time. Therefore, a study named differential
privacy under continual observation initiated by Dwork et al., is used to address
such issue due to the urgent demand for streaming data privacy preservation [6].

In differentially private mechanism, algorithms are desired to characterize
data distribution so as to not affect the output [5,7,9]. The demand of learning
true data distribution and balancing the level of privacy protection and data
utility [13,18] can be satisfied by utilizing deep generative models, especially by
using generative adversarial nets (GANs) [8,14,20].

In deep generative models that employed for synthesizing new data via
capturing the underlying distribution [1], GANs has drawn a lot of atten-
tions recently showing its significant performance on generating realistic images
[8,11,16]. In GANs, the objective is to drive two models to contest with each
other in order to improve their method until indistinguishable results are pro-
duced by the generative model. Such that, the adversarial modelling framework
of GAN refers to two-player game [8,10,11]. In state-of-the-art, triple generative
adversarial nets (triple-GANs) model introduces a classifier for classification to
solve the problems that existed in two-player adversarial model, as mentioned in
Sect. 3.1. Therefore, the updated three-player model has shown a novel perspec-
tive of solving problems by not limiting two players in the modelling framework
for better performance on generating realistic data-label pairs [11].

The three-player adversarial model has never been considered for the use of
privacy preserving on continual data release. In the differential private mech-
anism, an objective is to produce approximately the same data set compared
to the given data for privacy protection [5–7], which can apply the framework
that utilized in triple-GANs. In this paper, we present an adversarial genera-
tive model for privacy protection on continual data release in the adversarial
modelling framework of three players. The novel idea is introducing an identi-
fier into the system for labelling the generated samples whether they fulfill the
demand of differential privacy. The modelling details are illustrated in Sect. 3.
The evaluation results on the proposed model are shown in Sect. 4.

2 Related Work

Recent years, due to the explosive data traffic in big data era, the methods
of handling static data cannot be fully adapted to dealing with data that is
varying with respect to time. In the field of privacy protection, the study of dif-
ferential privacy under continual observation was first proposed by Dwork et al.
to address such problems. The concept of pan-privacy and user-level/event-level
privacy was also proposed for the privacy preserving on continual data release.
A differentially private continual counter with error O(1ε ·(logt)1.5) where t refers

420 S. Ho et al.

to the number of time steps [3,6]. Later, a model called ε−deferentially private
continual counter with poly-log error with a guaranteed error O(1ε ·(logt)1.5 ·log 1

δ)
was established by Chan, Shi and Song [3]. The model that outputs at every time
step, not only has a considerably small error with respect to time but achieves
time unboundedness in its mechanism to work functionally with respect to data
utility and privacy guarantee for continual data publishing based on the theo-
retical results [3].

Recently, several studies have focused on the privacy guarantee of differential
privacy on correlated data. The temporal correlation of continuously generated
data can be obtained by adversaries and have a high risk of compromising private
information, which significantly lower the level of privacy protection [2,12]. Based
on [2], it shows that employing differential privacy in the Laplace mechanism as
primitives for data privacy preserving of continual data release at each time slot
(i.e., event-level privacy) can lead to temporal correlations of data due to the
nature of dynamic data, which result in potential privacy leakage.

Due to GANs’ outstanding ability of estimating the underlying distribution
and generating realistic samples that can be employed for data privacy preser-
vation, the idea of combining GANs and differential privacy has shown in [20]
and proven its feasibility. A differentially private GAN, namely GANobfusca-
tor, that proposed for mitigating the privacy leakage under GANs, successfully
achieves (ε, σ)−differential privacy under GANs through introducing controlled
noise to gradients during the training procedure. GANobfuscator shows its great
performance on generating synthetic samples for arbitrary analysis tasks with a
strong privacy guarantee for training data [20]. However, the model is only used
for privacy preservation in a static manner.

3 System Modelling

The proposed model, namely DP-GAN model, is illustrated in this section.

3.1 Preliminary

Differential Privacy. The definition of Differential Privacy (DP) refers to
a stringent mathematical interpretation of privacy in the context of privacy-
preserving data analysis [7]. A differentially private mechanism serves on a
database or a data set, which holds the collections of individuals’ records. Each
row in the database or the data set represents a record that contains an indi-
vidual’s data. A differential privacy algorithm ensures presence or absence of an
individual will not have a significant impact on the output of the algorithm. The
mathematical interpretation in differentially private mechanisms focus on the
probability of a given output and its variation by adding or removing of any row
in the given database or the given data set. Let (D,D′) be a pair of database,
where one is a subset of the other by missing one row compared to the larger
database, implying two database only varying in one row [5,6].

GANs Enhanced Continual Data Release Using Differential Privacy 421

Definition 1. [5] A randomized function K gives ε-differential privacy if for all
data sets D and D′ differing in at most one row, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε) × Pr[K(D′) ∈ S], (1)

where the probability is over the coin flips of K.

For appropriate privacy loss ε, a mechanism K satisfying this definition by gen-
erating approximately the same results with or without the presence of any
individual’s data in the data set [5].

Pan-Privacy. Pan-Privacy can be defined as the internal state of an algorithm
in a differential private mechanism satisfied the constraint of differential privacy
in the context of private preserving for data analysis on a streaming of data [7].
That is, differential privacy preservation maintains even if the database experi-
ences an intrusion once and the internal state of the algorithm is exposed to the
adversary. Hereby, a pan-private algorithm is capable of hiding its internal state
evolving process from one intrusion which can occur at an unpredictable time
so as to private-preserve on continuous data releasing by prevent the internal
state and output sequence leakage. Pan-Privacy can be described as the orthog-
onal presentation of differential privacy preserving under continual observation
[3,6,7].

Triple-GANs. Triple-GANs, proposed by Chongxuan et al., show its out-
standing performance on generating indistinguishable samples by updating two-
player game framework of GANs in general into three-players formulation [11]
to address the issue caused by the restriction of existing two-player generative
models in semi-supervised learning, i.e., discriminator in two-player formulation
is incapable of playing two crucial roles at the same time—competing with gen-
erator by identifying fake sample and acting as a classifier for label prediction
of unlabelled real samples [11,17,19].

In deep generative model, the adversarial generative framework with two
player forms a minimax game, the training procedure is shown as:

min
G

max
D

Ũ(D,G) = Ex∼p(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(Z)))] (2)

where pz(z) is a simple distribution(e.g., uniform and standard norm), which is
the random noise z that taken by the generator G drawn from [8,11].

From two-player adversarial modeling framework that only consists of genera-
tor and discriminator, Triple-GANs upgraded into three-player game framework
by introducing a classifier and highlighting classification and class-conditional
generation through conditional distributions and joint distribution, where both
the classifier C and the generator G are expected their outputs to converge to
the real data distribution by characterizing their conditional distributions, which
is pc(y|x) ≈ p(y|x) for the classifier and pg(x|y) ≈ p(x|y) for the generator. The
discriminator D only focus on distinguishing fake sample pairs from the true

422 S. Ho et al.

data distribution p(x, y) [11]. The training process in Triple-GANs is described
as a three-player minimax game:

min
C,G

max
D

Ũ(C, G, D) = E(x,y)∼p(x,y)[logD(x, y)] + αE(x,y)∼pc(x,y)[log(1 − D(x, y))]

+ (1 − α)E(x,y)∼pg(x,y)[log(1 − D(G(y, z), y))] + RL,

(3)
where α ∈ (0, 1) is a constant that implies the relative weighting of genera-
tion and classification in the Triple-GANs system [11], and RL = E(x,y)∼p(x,y)

[−logpc(y|x)] denotes the standard supervised loss to C to address the global
optimum of the equilibrium, i.e., p(x, y) = pg(x, y) = pc(x, y).

3.2 Differential Privacy Identifier

Inspired by three-player game framework, the proposed differential privacy algo-
rithm that utilized GANs generative model can be seen as semi-supervised or
unsupervised learning model with classification and class-conditional generation
work done inside the adversarial modelling framework in the purpose of learning
true data distribution while providing a strong differential privacy guarantee by
introducing a differential privacy identifier.

The proposed generative model consists of three components: (1) a differ-
ential privacy identifier I to identify whether the generated data set fulfill the
stringent requirement of differential privacy; (2) a generator G for characterizing
the true data distribution and data-label pairs generation; and (3) a discrimi-
nator D to distinguish a received sample-label pair from whether the generator
or the true data-label pairs, produced by the identifier, that draw from realistic
data distribution and contain correct label information regarding differentially
privacy preservation. In the three-player game, by competing with both the dis-
criminator and the differential privacy identifier, the generator are expected its
outputs to not only converge to the true data distribution, but also have correct
labels with respect to the level of privacy protection, especially the labels that
indicate a strong privacy guarantee in a differentially private mechanism under
continual observation (Fig. 1).

Fig. 1. “A” and “R” stand for acceptance and rejection in D correspondingly.

GANs Enhanced Continual Data Release Using Differential Privacy 423

In the proposed three-player game framework, differential privacy identifier
I produce a label y for a given data x that sampled from true data distribution
p(x) by examining x through differentially private mechanisms. Under given x
for label y, the conditional distribution refers to pi(y|x). Hereby, the data-label
pair can be expressed as a data that draw from the joint distribution pi(x, y) =
p(x)pi(y|x). Similarly, generator G generates a pseudo data x for a given label y
that draw from label distribution p(y). The conditional distribution for x under
label y is pg(x|y) while the joint contribution that applied in generator represents
as pg(x, y) = p(y)pg(x|y). In order to learn generator’s distribution over input
data x given label y, G receives an input noise variable z that sampled from
a simple distribution pz(z) (e.g., uniform or standard normal), hereby x can
be defined mathematically by x = G(y, z). After classification and generation
process through I and G respectively, the synthetic data-label pairs (x, y) are
sent to discriminator D for identifying whether the given data-label pairs are
from true data distribution or the generator G. Seeing that the proposed model
is a time-related adversarial generative model as described in Sect. 3.3, pp(x, y) is
introduced and denotes the joint distribution of synthetic data-label pairs at the
previous time slots. The formulation of modified three-player adversarial model
that stated as above is represented as a minimax equation,

min
I,G

max
D

Ũ(I, G, D) = E(x,y)∼p(x,y)[logD(x, y)] + αE(x,y)∼pi(x,y)[log(1 − D(x, y))]

+ E(x,y)∼pg(x,y)[log(1 − D(G(y, z), y))] + RL,

(4)
where α ∈ (0, 1) is a constant that shows the importance of fulfilling the strin-
gent requirement of differential privacy in the game, implying the relaxations
of differential privacy is applicable in Eq. 4 in order to improving the degree of
data utility. RL mentioned in Sect. 3.1 is to address the unique global optimum
issues regarding the equilibrium p(x, y) = pg(x, y) = pi(x, y). Additionally, see-
ing the privacy requirements for label information in Sect. 3.3, our model does
not have the issue regarding insufficiency of label information in semi-supervised
learning. Pseudo discriminative loss is not considered in the training procedure
of our model.

3.3 Differential Privacy Under Continual Observation

Applying differential privacy on a streaming of data that continues to change and
evolve through time refers to differential privacy under continual observation.
The continual observation algorithms can be seen as applying strong privacy
protection in a differentially private mechanism at discrete time intervals [6].

To define privacy under continual observation, Dwork et al. proposed the
concept of adjacency with respect to time in [6]. The definition of adjacency can
be expressed as follows: Adj(S, S′) if and only if ∃x, x′ ∈ X and ∃T ⊆ [|S|],
such that S|T :x→x′ = S′, i.e., S, a stream prefix, is defined to be adjacent to S′,
another stream prefix with a different length compared to S if and only if there
exist x, x′ from X, the universe of possible input symbols so that some of the

424 S. Ho et al.

occurrences of x in S is replaced with x at T , a set of indices in the S, and then
form S′ [6].

Our model utilizes the definition of adjacency in the differential privacy iden-
tifier for streaming data. The proposed model divides streaming data into mul-
tiple time slots for data privacy preserving. The data at each time slot are pro-
cessed respectively, meaning our generative model treats the streaming data sep-
arately with respect to time. At each time unit, the generated data are required
to not only can be identified as differential private-preserving data and also be
the adjacent to the generated data that passed the test from the differential
privacy identifier at the last time unit.

In differential privacy identifier I, data is processed in differentially private
mechanisms by each time unit. At given time slot t, the input data is categorized
by binary classification to examine whether the input data meet the demand of
differential private preserving under continual observation. In our model, we
altered Eq. 1 to be dependent on time, the mathematical interpretation of dif-
ferential privacy with respected to time as follows:

Pr[K(D) ∈ S] ≤ exp(ε(t)) × Pr[K(D′) ∈ S], (5)

At each time unit, the input data that provide a strong differential privacy
guarantee should not only satisfy the differential privacy in Eq. 5 but also be
identified as adjacency to the input data at previous time unit. The input data
that failed to any the two conditions stated as above is classified into unsatisfac-
tory data for privacy protection. Namely, the identifier classifies data according
to the two strict requirements for differential privacy under continual observa-
tions, i.e., the definition of differential privacy and the definition of adjacency
for pan-privacy.

4 Performance Evaluation

The experimental results of the proposed model are illustrated in this section
by using real-world data. First, the preliminaries of the data set are briefly
described. Then, we conduct performance evaluations of the proposed model in
terms of privacy protection. The evaluation results of DP-GAN model shows its
superiority in comparison of two conventional differentially private mechanisms,
i.e., Laplace mechanism and Gaussian mechanism.

The applied data set for performance evaluation is Iris Data Set from UCI
Machine Learning Repository [4]. The correlations of this data set is as Fig. 2.
In the following subsections, for testifying the effectiveness and feasibility of
DP-GAN model, Laplace mechanism and Gaussian mechanism are employed for
comparisons. The level of data utility is evaluated by Root Mean Square Error
(RMSE) between the true data and the synthetic data.

Refers to Fig. 3, it is evident that the level of data utility is raised along with
the increase of the value of ε. Namely, the privacy level decreases during this
procedure seeing that the value of ε can be interpreted as privacy loss. Thus,
it can be said that the proposed model can offer higher privacy-preserving level
where data utility is a constant.

GANs Enhanced Continual Data Release Using Differential Privacy 425

Fig. 2. Statistics correlations of Iris Data
Set

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Unified Data Utility

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Pr
iv

ac
y

L
ev

el
(

))

DP-GAN
Laplace
Gaussian

Fig. 3. Privacy level comparison

5 Summary and Future Work

In this paper, we present our adversarial generative model that employ theoret-
ical game framework with three players, i.e., a generator, a discriminator and a
differential privacy identifier, to provide a strong privacy protection in differen-
tially private mechanisms on continual data publishing through semi-supervised
learning process. Also, we shows extensive simulation results on real-world data
set for evaluation our proposed model. The outcome indicates the performance
of our model is significantly great in terms of privacy protection.

In the future work, we plan to manage the resource allocation of the two
games to improve the efficiency and lessen the requirements of computational
power. In addition, we intend to use generative adversarial nets to further opti-
mize the privacy protection by deriving the minimum privacy budget.

Acknowledgements. The work has been supported by the Cyber Security Research
Centre Limited whose activities are partially funded by the Australian Government’s
Cooperative Research Centres Programme.

References

1. Audebert, N., Le Saux, B., Lefevre, S.: Generative adversarial networks for realistic
synthesis of hyperspectral samples. In: IGARSS 2018–2018 IEEE International
Geoscience and Remote Sensing Symposium, pp. 4359–4362 (2018)

2. Cao, Y., Yoshikawa, M., Xiao, Y., Xiong, L.: Quantifying differential privacy in
continuous data release under temporal correlations. IEEE Trans. Knowl. Data
Eng. 9, 1281–1295 (2018)

3. Chan, T.H.H., Shi, E., Song, D.: Private and continual release of statistics. ACM
Trans. Inf. Syst. Secur. (TISSEC) 14(3), 26 (2011)

4. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

5. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/11787006_1

426 S. Ho et al.

6. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under con-
tinual observation. In: Proceedings of the Forty-Second ACM Symposium on The-
ory of Computing, pp. 715–724. ACM (2010)

7. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends R© Theor. Comput. Sci. 9(3–4), 211–407 (2014)

8. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems 27: Annual Conference on Neural Information Process-
ing Systems 2014, 8–13 December 2014, Montreal, Quebec, Canada, pp. 2672–2680
(2014)

9. Inan, A., Gursoy, M.E., Saygin, Y.: Sensitivity analysis for non-interactive differ-
ential privacy: bounds and efficient algorithms. IEEE Trans. Dependable Secur.
Comput. (2018)

10. Kawai, Y., Seo, M., Chen, Y.: Automatic generation of facial expression using
generative adversarial nets. In: 2018 IEEE 7th Global Conference on Consumer
Electronics (GCCE), pp. 278–280 (2018)

11. Li, C., Xu, T., Zhu, J., Zhang, B.: Triple generative adversarial nets. In: Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp.
4091–4101 (2017)

12. Ou, L., Qin, Z., Liao, S., Hong, Y., Jia, X.: Releasing correlated trajectories:
towards high utility and optimal differential privacy. IEEE Trans. Dependable
Secur. Comput. (2018)

13. Qu, Y., Yu, S., Gao, L., Zhou, W., Peng, S.: A hybrid privacy protection scheme
in cyber-physical social networks. IEEE Trans. Comput. Soc. Syst. 5(3), 773–784
(2018)

14. Qu, Y., Yu, S., Zhang, J., Binh, H.T.T., Gao, L., Zhou, W.: GAN-DP: generative
adversarial net driven differentially privacy-preserving big data publishing. In: ICC
2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6.
IEEE (2019)

15. Qu, Y., Yu, S., Zhou, W., Peng, S., Wang, G., Xiao, K.: Privacy of things: emerg-
ing challenges and opportunities in wireless Internet of Things. IEEE Wireless
Commun. 25(6), 91–97 (2018)

16. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

17. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: Advances in Neural Information Pro-
cessing Systems, pp. 2234–2242 (2016)

18. Soria-Comas, J., Domingo-Ferrer, J., Sánchez, D., Meǵıas, D.: Individual differ-
ential privacy: a utility-preserving formulation of differential privacy guarantees.
IEEE Trans. Inf. Forensics Secur. 12(6), 1418–1429 (2017)

19. Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical
generative adversarial networks. arXiv preprint arXiv:1511.06390 (2015)

20. Xu, C., Ren, J., Zhang, D., Zhang, Y., Qin, Z., Ren, K.: GANobfuscator: mitigating
information leakage under GAN via differential privacy. IEEE Trans. Inf. Forensics
Secur. 14(9), 2358–2371 (2019)

21. Xu, C., Ren, J., Zhang, Y., Qin, Z., Ren, K.: DPPro: differentially private high-
dimensional data release via random projection. IEEE Trans. Inf. Forensics Secur.
12(12), 3081–3093 (2017)

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06390

Data Poisoning Attacks on Graph
Convolutional Matrix Completion

Qi Zhou, Yizhi Ren(B), Tianyu Xia, Lifeng Yuan, and Linqiang Chen

School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China
isq.zhou@gmail.com, {renyz,15084234,yuanlifeng,clq}@hdu.edu.cn

Abstract. Recommender systems have been widely adopted in many
web services. As the performance of the recommender system will directly
affect the profitability of the business, driving bad merchants to boost
revenue for themselves by conducting adversarial attacks to compromise
the effectiveness of such systems. Several studies have shown that recom-
mender systems are vulnerable to adversarial attacks, e.g. data poisoning
attack. Since different recommender systems adopt different algorithms,
existing attacks are designed for specific systems. In recent years, with
the development of graph deep learning, recommender systems have been
also starting to use new methods, like graph convolutional networks.
More recently, graph convolutional networks have also been found to be
affected by poisoning attacks. However, characteristics of data sources
in recommender systems, such as heterogeneity of nodes and edges, will
bring challenge to solve attack problem. To overcome this challenge, in
this paper, we propose data poisoning attacks on graph convolutional
matrix completion (GCMC) recommender system by adding fake users.
The key point of the method is to make fake users mimicrking rating
behavior of normal users, then pass the information of thier rating behav-
iors towards the target item back to related normal users, attempting to
interfere with the prediction of the recommender system. Futhermore, on
two real-world datasets ML-100K and Flixster, the results show that our
method significantly overmatches three baseline methods: (i) random
attack, (ii) popular item based attack, (iii) and mimicry with random
scores based attack.

Keywords: Poisoning attack · Recommender system · Graph
auto-encode

1 Introduction

Recommender systems have been widely used in web services and E-commerce
to help users to screen out valuable information from miscellaneous choice. The

This work was supported by the Natural Science Foundation of Zhejiang Province
(Grant No. LY18F020017, LY18F030007, and LQY19G030001, National Natural Sci-
ence Foundation of China (Grant No. 61872120) and Key Technologies, System and
Application of Cyberspace Big Search, Major project of Zhejiang Lab (Grant No.
2019DH0ZX01)).

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 427–439, 2020.
https://doi.org/10.1007/978-3-030-38961-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_38&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_38

428 Q. Zhou et al.

recommender system first collects the user’s historical behavior data to obtain
the user-rating matrix through the pre-processing method, and then uses the
relevant recommendation technology in the machine learning field to form a
personalized recommendation for the user. Existing approaches include content-
based methods [1], graph-based methods [2] and factoriztion-based methods [3].
As the most popular method, collaborative filtering (CF) models solve the matrix
completion task. The key idea is considering the historical collective interaction
information to make predictions.

As the recommendation system plays an increasingly important role in cur-
rent web services, their vulnerability to malicious attacks is exposed as well.
Poisoning attack is one of the most common attacks, which injects fake users to
a recommonder system with crafted rating behaviors to reduce the effectiveness
of the system. For instance, a merchant may hire the black market to promote
the rating score and exposure rate of his merchandise. In recent years, several
studies proposed poisoning attacks to recommender systems [4,5]. Li et al. [4]
proposed poisoning attacks to factorization-based recommender systems. Fang et
al. [5] proposed poisoning attacks to graph-based recommender systems. These
attack methods are designed for specific systems respectively.

Recently, researchers focus on the application of graph convolution networks
(GCN) in recommendation system [6,7]. GCN models capture structured fea-
tures through information propagation between nodes, eliminating the need of
feature engineering. However several studies revealed that GCN models were
also vulnerable in face of data poisoning attacks [8–10]. Literature [8,9] first
proposed adversarial attacks against GCN models at different knowledge levels
of the attacker respectively, Chen et al. [10] proposed data poisoning attacks
on graph convolutional auto-encoder under the task of link prediction. However,
above attack methods are for the general case and most existing attacks are
performed on homogenous graph. Since the special data characteristics in rec-
ommendation task, such as heterogeneity of nodes and edges, implement data
poisoning attacks on such GCN based system will be more challenging.

In this work, we focus on designing data poisoning attacks for recommender
system using graph convolutional networks, more specifically, Graph Convolu-
tional Matrix Completion (GCMC) [11]. GCMC uses a graph auto-encoder to
achieve the edge-type specific information passing on a user-item bipartite graph,
information only be passed along the edge of the same rating type. To get the
user embeddings and item embeddings, the output of graph convolution layer
will be sent to a dense layer. Finally, with a bilinear decoder, links in the bipartite
interaction graph will be reconstructed to achieve the predicting process.

This paper makes the following key contributions. First, in order to evaluate
the threats faced by recommender systems, we propose a special data poisoning
attack on graph auto-encoder recommender system GCMC. According to the
principle of information propagation through specific rating types in GCMC,
The attack method is based on mimicry related normal users, inducing related
normal users giving high rating scores to target items. Then achieve the goal
of fooling recommender system. Second, we conduct several evaluation of our

Data Poisoning Attacks on Graph Convolutional Matrix Completion 429

method on different real-world datasets, and the results show that (i) our attack
method is overmatch other baseline methods, 5–8 times in best cases. (ii) For
cold start, our method can significantly increase the rating scores.

2 Related Work

2.1 Recommender System

Recommender systems have been widely deployed in web services. As the most
common method, collaborative filtering can be divided into user-based CF, item-
based CF and model-based CF. User-based CF is based on the assumption that
similar users may have the same preferences [12], therefore system first calculate
the users similarity, ratings by more similar users contribute more to predicting
the item rating. Item-based CF approaches [13] apply the same idea but use
similarity between items instead of users. Similarly, ratings from more similar
items contribute more. Model-based CF uses machine learning methods to solve
the recommendation problem, such as matrix factorization [3] and graph-based
model [14].

2.2 Graph Convolutional Network

In recent years, with the development of deep learning, deep learning methods are
gradually applied to graph data, i.e. graph convolutional networks (GCN) [15].
The key idea of GCN is to aggregate information from neighbor nodes in the
graph to capture structured features. Due to the good nature of GCN, it is
gradually applied in the recommendation field [6,7,11,19,20]. Most relevant work
to this paper is GCMC [11], it proposed a novel recommendation method using
graph convolutional auto-encoder. The first order convolution of user nodes and
item nodes is carried out to obtain respective embeddings. Then a decoder is
used for link prediction.

2.3 Adversarial Attacks to Recommender Systems

In recommender system, a mainstream attack aims to spoof a recommender
system so that the target item is recommended to more users or fewer users.
Specially, poisoning attacks [4,5,16,18] implement attacks by injecting fake users
with crafted fake rating scores to the system such that a biased model is learnt
from contaminated dataset. E.g., In random attacks [16], given the number of
fake users an attacker can inject and the number of items that each fake user can
rate, the attacker randomly selects the items to be filled and the rating scores
from a normal distribution.

More recent poisoning attacks [4,5] generate fake rating scores for specific rec-
ommender system by respective optimization algorithm. Specically, Li et al. [4]
proposed poisoning attacks to matrix-factorization-based recommender systems.
Fang et al. [5] proposed poisoning attacks to graph-based recommender systems.

430 Q. Zhou et al.

For each fake user, attack algorithm selects filler items by computing gradient.
However, above methods are proposed corresponding to specific recommender
systems.

2.4 Adversarial Attacks to GCN

In this work, we focus on attacking graph convolutional auto-encoder model.
There are some similar work about adversarial attacks against GCN models [8–
10]. Zügner et al. [8] proposed the first adversarial attacks against GCN and
defined some metrics about attacking neural networks for graph data. In their
settings, the attacker have full knowledge of the model. Dai et al. [9] proposed a
reinforcement learning based attack method, and studied the method and effect
of corresponding attack under different knowledge level of the attacker. Chen
et al. [10] studied data poisoning attacks on graph convoluntional auto-encoder
model under the task of link prediction. The data and downstream task in the
model mentioned above are different from those of the recommender systems,
which will cause the definition of the attack problem to be different.

3 Problem Definition and Preliminary

3.1 Victim Model

In this work, we choose GCMC as the victim model. GCMC contains a graph
convolutional encoder and a bilinear decoder. Given a rating matrix M
of shape Nu × Nv, where Nu is the number of users and Nv is the number of
items. Entries Mob denotes the observed ratings and Mun denotes the unobserved
ratings. Notice that Mob ∪ Mun = M . GCMC model uses Mob as the training
set and then predict the unobserved ratings (Fig. 1). The whole model is shown
in Fig. 1.

Fig. 1. GCMC model

Data Poisoning Attacks on Graph Convolutional Matrix Completion 431

Graph Convolutional Encoder. Consists of two parts: (1) a graph convolu-
tion layer and (2) a dense layer. By assigning a specific transformation for each
rating level in rating matrix, user nodes and item nodes will be represented as
node embedding. Then the final embedding can be reached with a dense layer
Eq. (3).

μj→i,r =
1
cij

Wrxj (1)

hi = σ[accum(
∑

j∈Ni,1

μj→i,1, ...,
∑

j∈Ni,R

μj→i,R)] (2)

The convolution process is shown in Eqs. (1) and (2), Eq. (1) shows the infor-
mation passing from node j to node i along the edge type r ∈ R, where cij is a
normalization constant, Wr is an edge-type specific parameter matrix and xj is
the feature vector of node j. Equation (2) shows the aggregation process, where
Ni,r denotes the neighbors of node i under a specific edge-type r. And accum(·)
denotes an accumulation operation such as stack(·) or sum(·).

μi = σ(Whi) (3)

Equation (3) shows the dense layer, where W is the parameter matrix. After
that, encoder can get both user embeddings and item embeddings.

Bilinear Decoder. Reconstructs links in the bipartite interaction graph, and
treat each rating level as a separate class. M̌ij is defined as the reconstructed
rating score that user i gives to item j, the decoder produces a probability distri-
bution over possible rating levels, using a bilinear operation and then applying
a softmax function Eq. (4).

p(M̌ij = r) =
eu

T
i Qrvj

∑
s∈R eu

T
i Qsvj

(4)

where Qr a trainable parameter matrix of shape E ×E, and E is the dimension-
ality of user(item) embedding ui(vj). The predicted rating is computed as

M̌ij = g(ui, vj) = Ep(M̌ij=r)[r] =
∑

r∈R

rp(M̌ij = r) (5)

3.2 Threat Model

Attacker’s Goal. In our single attack setting, the attacker’s goal is to design
a data poisoning attack to promote the ratings of a certain item. For example,
the seller may try to promote his own products by buying fake users and ratings

432 Q. Zhou et al.

from the balck market. It means that the attacker can construct data poisoning
attack by adding fake users and controlling these fake users’ rating behaviors.

Attacker’s Knowledge and Capability. In our attack scenarios, we assume
the attacker has full knowledge of victim model, including dataset and model
architecture. Corresponding attack scenario setting in adversarial machine learn-
ing is called white-box attack. Although this assumption is somewhat unrealistic,
we can evaluate the security of the victim model in the worst case.

Limitation. We assume that the attacker has limited resource. Consider that
creating fake users costs money, it can be seen as money resources. Besides,
the attacker need to make sure their attacks are undetectable. We regard this
limitation as a tiny change of the original graph, by limiting the number of items
that per fake user can rate.

3.3 Attack Model

Given the original rating matrix M , the victim model f and target item vt ∈ V .
In this work, we focus on GCMC, thus f can be regarded as the GCMC model.
Let ru ′ be the rating score vector of a fake user u′ ∈ Ufake, where ruv is the
rating score that the fake user u gives to the item v. Noticed that the number
of fake user |Ufake| and the number of items that a fake user can rate, which
can be represented as |ru ′ |, are limited. We consider a rating score is in the set
of integers {1, 2, ..., rmax}, where rmax is the maximum rating score value. Our
goal is to find the rating score vector for each fake user which maximizes the
total predicted rating score of the target item M̌vt

. Mathematically, the attack
problem can be formally described as the following optimization problem:

max M̌vt
=

∑

u∈Nvt

M̌u,vt
(6)

s.t. |Ufake| ≤ N, |ru ′ | ≤ n, ru′v ∈ {1, 2, ..., rmax} (7)

Where M̌vt
is the total predicted ratings of target item vt, which is the sum

of predicted ratings to target item by each neighbor user u ∈ Nvt
in test dataset.

Notice that fake users |Ufake| are not included in the test dataset, which means
u /∈ Ufake. N and n are the restrictions on the number of fake users and ratings.

4 Poisoning Attacks

In this section, we will introduce our data poisoning attack algorithm. Before
that, We review how GCMC works. Specifically, the key operation of graph con-
volutional layer. For both user nodes and item nodes, information is propagated
through the special rating-type edges, see formula (2). Thus the same rating
behavior from a user to an item will work on both the user embedding and item
embedding, which means we can implement attacks by poisoning target item
embedding and corresponding user embeddings. However, we have no access to

Data Poisoning Attacks on Graph Convolutional Matrix Completion 433

manipulate the rating behavior of normal users but only fake users whose rat-
ing behaviors can not influence above embeddings directly. Beyond that, unlike
the 2nd-order graph convolution on homogeneous graph, GCMC uses 1st-order
graph convolution for two types of nodes on heterogeneous bipartite graph. It
is hard to evaluate the equivalency or similarity of this two different methods,
meaning that the indirect effects by 2-hop neighbors are also ambiguous. These
make it difficult to solve the above optimization problem. To tackle our data
poisoning attack, we use a heuristic method to approximate the solution.

u1

u2

u3

v1

vt

v3

5

5 5

5

44

4

Users Items

Fake user

Fig. 2. Illustration

The key idea of our method is that under the constraint of the limited ability
of the attacker, we try to make fake users to mimic the normal users as much
as possible, and guide the normal users to rate the target item with a higher
score. First, given a target item vt, we find the users to predict as candidate sets,
denoted by Uvt

, as nodes u1 and u3 shown in Fig. 2. Then sort in descending order
according to co-occurrence frequency of (item, rating) pair from the collection
of users’ rating behaviors in Uvt

, the sorted rating behavior set is denoted by
C = (V, R). For each fake user, we give vt the highest score and then select
top-(n − 1) (item, rating) pair from C as remaining items and corresponding
rating scores. For example, if top-1 pair is (v1, 5.0), then each fake user will give
a rating score 5.0 to item v1. Since co-occurrence frequency of (item, rating)
pair represents how many related normal users have the same rating behavior.
The intuition behind this step is that, by rating items with higher co-occurrence
frequency, fake users will be more likely to simulate more normal users who are
related to the target item. After that, the high score rating behavior from fake
users to target item may be excepted to contaminate related user embeddings.
The algorithm is giving as follows.

434 Q. Zhou et al.

Algorithm 1. Mimicry related users
Input: Rating matrix M , target item vt, fake user number limitation N , fake

user rating number limitation n
Output: Poisoning rating matrix M ′

M ′ ← M ;
Get user candidate set Uvt ;
Sort (item, rating) pair in descending order by co-occurrence frequency, get
sorted rating behavior candidate set C = (V, R);
for i = 1, 2, ..., N do

Create fake user node u′
i;

for j = 1, 2, ..., n do
if j = 1 then

ru′
ivt

= rmax

else
vj = V [j − 1]
ru′

ivj
= R[j − 1]

end

end
add ru ′ to M ′

end
return M ′

5 Experiments

In this section, we compare our data poisoning attacks on with three baseline
attack methods. And show advantages of our method, then we will give the
analysis about the results and explain why our method is effective.

5.1 Experiments Setup

Datasets. We choose two real-world datasets, which are very common in rec-
ommendation systems and data mining tasks. We use the same datasets as in
literature [11].

MovieLens 100K. This dataset consists of 943 users, 1682 items and 100,000
ratings.

Flixster. This dataset consists of 3000 users, 3000 items and 26,173 ratings.
We follow the definition of sparsity proposed in literature [5].

Sparsity = 1 − number of ratings
number of users × number of items

(8)

In the following experiments, we will show the influence of data sparsity on the
attack results. The statistic analysis of these two datasets is given in Table 1.

Baseline. We compare our attack method with three baseline methods. In all
these attacks, an attacker injects N fake users to the recommender system. Each

Data Poisoning Attacks on Graph Convolutional Matrix Completion 435

Table 1. Datasets statistic analysis

Dataset Users Items Ratings Sparsity Ratings

MovieLens 100K (ML-100K) 943 1682 100,000 93.67% 1, 2, . . . , 5

Flixster 3000 3000 26,173 99.71% 1, 2, . . . , 10

fake user rates n items, gives the maximum rating score to the target item and
gives respective ratings scores to the remaining n−1 items. The main difference
between those attack methods is how to select remaining items and generate
corresponding ratings scores to these items.

Random Attack (RA) [16]: RA uniformly selects remaining items from the item
list at random. For each selected remaining item, RA randomly generates rating
scores from the distribution of ratings occurred in training data.

Popular-item based Attack (PA): Different from RA, this attack selects the top
n−1 most popular items in training data as remaining items. We define popular
as the total rating scores of an item. For each selected item, rating scores is
generated in the same way as RA.

Mimicry with Random scores Attack (MRA): This attack considers having fake
users to mimic the users related with the target item. MRA selects the top n−1
most popular 2nd-order neighbor items of the target item, trying to mimic as
many related users as possible. Rating scores generation is the same as RA.

Target Item. In ML-100K dataset, we divide items into three categories: Pop-
ular, Medium and unpopular. In Flixster, considering that the dataset is sparse,
we only divide items into popular and unpopular.

Parameter Setting. There are two main parameters in our experiment,
the number of fake users N and the number of items that a fake user can
rate n. In order to make the disturbance as small as possible, we set N =
λ · number of users, λ is the inject size of fake users (e.g. λ = 1%, 2% and 3%),
and n = 10. In order to avoid deviation, we choose T = 20 target items for each
dataset. For each target item, we conduct the experiment three times to take
the average of predicted results of the model.

Evaluation. To evaluate the performance of different attack methods, we use
the average improvement ratio of predicted rating scores as metric. The formula
as follows.

Improvement Rate =
1
T

∑

T

M̌vt
− Mvt

Mvt

(9)

436 Q. Zhou et al.

5.2 Results

In this part, we will show our attack method results in different experiments
parameter settings on several real-world datasets, and show how our method is
more competitive than baseline methods.

Table 2. Improvement rate of predicted ratings for different attack methods with
different inject size

Dataset Attack Inject size λ

Popular items Moderate items Unpopular items

0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03

ML-100K RA 0.00551 0.00857 0.00900 0.02515 0.04735 0.06606 0.06189 0.11240 0.16716

PA 0.01240 0.01299 0.01505 0.05961 0.08761 0.12553 0.01251 0.03548 0.07424

MRA 0.01470 0.01183 0.01311 0.02889 0.04126 0.07941 0.05869 0.10854 0.17710

Ours 0.01692 0.02695 0.03459 0.12353 0.15396 0.19085 0.86140 0.84865 0.86380

Flixster RA 0.09545 0.13409 0.15266 – – – 0.43948 0.43946 0.40501

PA 0.09886 0.12647 0.13258 – – – 0.28090 0.41489 0.46656

MRA 0.09876 0.12914 0.142068 – – – 0.31826 0.37060 0.37506

Ours 0.11991 0.14381 0.14768 – – – 1.22288 1.29889 1.38286

Overall Comparison. Table 2 shows the improvement rate of predicted ratings
for different attack methods under different inject size. In detail, inject size on
each dataset are 1%, 2% and 3%. In ML-100K dataset, we divide the target items
into popular, moderate and unpopular. The criteria for classifying categories is
that, a target item is regarded as popular if its total predicted rating score is
higher than 50 under the circumstance that the victim model is not contami-
nated. Likewise, lower than 20 is unpopular, between 20 and 50 is moderate. In
Flixster dataset, due to the sparsity of ratings, we only divide them into two
categories, popular with total rating score higher than 20 and unpopular with
total rating score lower than 5. As we can see in each column, in all datasets, our
attack method is significantly better than other baseline approaches for differ-
ent categories of target items and inject size. Besides, comparing different item
types under the same inject size, we can see as the popularity of target items
decreases, the improvement rate of each method increases. That is because for
an popular item, it will be influenced by more neighbors, which will weaken the
impact of the attack. In addition, the evaluation metric itself also limits the
numerical values toward popular target items.

Compare with Different Methods. In ML-100K dataset, our method is
slightly better than the others for popular items, but none of the attack meth-
ods work particularly well. In other two item type settings, the result of our
method is several times that of the others. For moderate items, our method is
almost twice as many as the others. And for unpopular items, our method turns
out to be about seven times better than the others. Contrary to popular items,
moderate and unpopular items have less connection with other nodes, and this

Data Poisoning Attacks on Graph Convolutional Matrix Completion 437

Fig. 3. Improvement rate varies with the size of inject size for each target item type
on ML-100K

Fig. 4. Improvement rate varies with the size of inject size for each target item type
on Flixster

makes the impact of the attack more significant. Things are almost the same on
Flixster dataset. For popular items, all four methods performed similarly. For
un-popular items, baseline methods are almost equaled but slightly difference
with different inject size. Our method is also 3–4 times better than baseline
methods. Noticed that MRA is the ablation of our method, the main difference
is giving rating scores to remaining items. The results show that MRA has no
advantage over the other two baseline methods. We regard this phenomenon as
the basis for verifying the validity of our method. Since the information prop-
agation of GCMC model is based on specific rating type edge, this may result
in not all rating behavior information being passed to the neighbor nodes, but
only those behaviors with consistent ratings.

Impact of Inject Size. As is shown in Figs. 3 and 4, with the growth of inject
size, the influence of fake users to the target item also increases, leading the
overall trend of improvement rate to increase. For RA and PA method, it is
more likely to hit the remaining items and appropriate rating behaviors due to
the randomness of attack algorithm. For MRA, since the remaining items are the
same as our proposed method, so there will be no more contingency for nodes.
But rating behaviors still have more chance to impact the target items. Notice
that on ML-100K dataset, for unpopular items, the effect of our method is no

438 Q. Zhou et al.

longer increased as inject size increasing, but it is maintained at around 0.85.
This may due to the effectiveness of the method has reached the upper limit.

6 Conclusion

In this work, we propose the data poisoning attacks on GCMC recommender
system. We show that the recommender system based on graph convolutional
network is vulnerable in the face of adversarial attacks. Although the GCMC
model restricts the propagation of information on bipartite graphs by distin-
guishing different types of ratings, which makes the attack more difficult. We
propose attack method based on mimicking the rating behaviors of related users.
And by selecting the behaviors that are the highest frequency of co-occurrence,
fake users can share their high-score rating behaviors towards the target item to
the relevant users as much as possible. We verify the effectiveness of our method
by experiments on several real-world datasets, and the results show that our
method is more effective than baseline method in different experimental set-
tings. However, our method assumes the attacker has full knowledge, which may
be unrealistic. We leave more strict limits on the knowledge of attacker for future
work.

Interesting extensions of this work includes (i) studying data poisoning
attacks against graph convolutional recommender systems in more practical sce-
narios, (ii) exploring how to use gradient-based method to solve the optimization
problem in this paper, (iii) studying to improve the robustness of graph convo-
lutional recommender system in the face of attack.

References

1. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol.
4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72079-9 10

2. Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of similarities
between nodes of a graph with application to collaborative recommendation. IEEE
Trans. Knowl. Data Eng. 19, 355–369 (2007)

3. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 39(8), 30–37 (2009)

4. Li, B., Wang, Y., Singh, A., et al.: Data poisoning attacks on factorization-based
collaborative filtering. Advances in Neural Information Processing Systems, pp.
1885–1893 (2016)

5. Fang, M., Yang, G., Gong, N.Z., et al.: Poisoning attacks to graph-based recom-
mender systems. In: Proceedings of the 34th Annual Computer Security Applica-
tions Conference, pp. 381–392. ACM (2018)

6. Ying, R., He, R., Chen, K., et al.: Graph convolutional neural networks for web-
scale recommender systems. In: Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 974–983. ACM
(2018)

https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1007/978-3-540-72079-9_10

Data Poisoning Attacks on Graph Convolutional Matrix Completion 439

7. Wu, S., Tang, Y., Zhu, Y., et al.: Session-based recommendation with graph neural
networks. arXiv preprint arXiv:1811.00855 (2018)

8. Zügner, D., Akbarnejad, A., Gnnemann, S.: Adversarial attacks on neural net-
works for graph data. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2847–2856. ACM (2018)

9. Dai, H., Li, H., Tian, T., et al.: Adversarial attack on graph structured data. In:
Proceedings of the 35th International Conference on Machine Learning, PMLR, 80
(2018)

10. Chen, J., Shi, Z., Wu, Y., et al.: Link prediction adversarial attack. arXiv preprint
arXiv:1810.01110 (2018)

11. Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv
preprint arXiv:1706.02263 (2017)

12. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the Fourteenth conference on Uncer-
tainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 43–52 (1998)

13. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM
Trans. Inf. Syst. (TOIS) 22(1), 143–177 (2004)

14. Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of similarities
between nodes of a graph with application to collaborative recommendation. IEEE
Trans. Knowl. Data Eng. 3, 355–369 (2007)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

16. Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: Proceed-
ings of the 13th international conference on World Wide Web, pp. 393–402. ACM
(2004)

17. Mobasher, B., Burke, R., Bhaumik, R., et al.: Toward trustworthy recommender
systems: an analysis of attack models and algorithm robustness. ACM Trans. Inter-
net Technol. (TOIT) 7(4), 23 (2007)

18. O’Mahony, M., Hurley, N., Kushmerick, N., et al.: Collaborative recommendation:
a robustness analysis. ACM Trans. Internet Technol. (TOIT) 4(4), 344–377 (2004)

19. Fan, W., Ma, Y., Li, Q., et al.: Graph neural networks for social recommendation.
In: The World Wide Web Conference, pp. 417–426. ACM (2019)

20. Song, W., Xiao, Z., Wang, Y., et al.: Session-based social recommendation via
dynamic graph attention networks. In: Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining, pp. 555–563. ACM (2019)

http://arxiv.org/abs/1811.00855
http://arxiv.org/abs/1810.01110
http://arxiv.org/abs/1706.02263
http://arxiv.org/abs/1609.02907

Secure Data Deduplication
with Resistance to Side-Channel

Attacks via Fog Computing

Fuyou Zhang, Saiyu Qi(B), Haoran Yuan, and Meng Zhang

School of Cyber Engineering, Xidian University, Xi’an, Shaanxi, China
fuyouzhang@yeah.net, syqi@connect.ust.hk, hryuan1@163.com,

zhangmeng1575431@163.com

Abstract. Deduplication could greatly save the storage overhead of
cloud server by eliminating duplicated data and retaining one copy. In
order to ensure the data privacy, many researchers try to make deduplica-
tion feasible in ciphertext. A typical scheme is message-locked encryption
(MLE) which takes cryptographic hash value of message as encryption
key. However, MLE is vulnerable to side-channel attacks. To our knowl-
edge, the existing schemes try to mitigate these attacks with either secu-
rity drawbacks or expensive overhead. In this paper, we propose two new
techniques to solve two typical side-channel attacks named probe attack
and key-cache attack via fog computing with new security and efficiency
tradeoffs. Built on the new techniques, we propose a secure data dedu-
plication system in fog computing environment. Our evaluation shows
that our system has better performance compared with previous works.

Keywords: Message-locked encryption · Deduplication · Fog
computing · Side-channel attack

1 Introduction

Cloud computing is a new computation paradigm which was proposed by Google
in 2006. It adopts a centralized computation mode to mitigate the resource-
constrained burden of personal devices [7]. Many users incline to store data
on the cloud server instead of local devices. According to the analysis report
of International Data Corporation (IDC), the volume of data in the world is
expected to reach 40 trillion gigabytes in 2020 [20,37]. Another survey of IDC
indicates that 75% data items are duplicated, since the redundant data wastes
numerous storage resources [17,27].

In order to ensure the data privacy, end users usually encrypt data before
uploading to the cloud server [6,7,34]. However, traditional encryption schemes
do not support data deduplication [32,36]. Specifically, same data items will be
encrypted into different ciphertexts since different users might select distinct
encryption keys. In response, MLE [2] provides a viable option to ensure data

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 440–455, 2020.
https://doi.org/10.1007/978-3-030-38961-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_39&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_39

Secure Data Deduplication with Resistance to Side-Channel Attacks 441

confidentiality while enabling data deduplication. It encrypts a data item with
a MLE key, which is derived from a cryptographic hash value of the data item
content. In this way, MLE ensures that data items with the same content will
be encrypted into same ciphertexts.

However, MLE is vulnerable to two side-channel attacks: Probe attack [13]
and key-cache attack [21]. Through probe attack, the adversary can infer the
existence of certain data items of other users by checking whether these data
items have been deduplicated at the cloud side. Through key-cache attack, the
adversary can decrypt data items by caching MLE keys. Both attacks leak the
privacy of user data. Although several works [12,21] have been proposed to solve
these attacks, these works either suffer security drawbacks or incur expensive
overhead. For example, one solution to prevent key-cache attack is to select a
new MLE key to re-encrypt the whole data item. However, this solution requires
to download/upload a large volume of data, incurring high communication over-
head. In order to solve above questions, another solution is REED [21], which
supports lightweight rekeying by re-encrypting only a little part of a data item
named stub. However, REED does not completely mitigate the key cache attack
since the adversary can still access the rekeyed data item by retaining the stub.

Based on above questions, we design a new secure deduplication storage
system to prevent the two side-channel attacks with new security and efficiency
tradeoffs. Our system leverages fog nodes [5] to execute some critical tasks in
data deduplication process. Compared with cloud server, fog nodes have higher
credibility since they only afford simple tasks and thus suffer less software attacks
[1,26,28,30,33]. As a result, many cloud-based secure data storage systems rely
on fog nodes to afford critical tasks [15,16,19,31,35]. Different with these works,
we design two new techniques to mitigate side-channel attacks in the context
of secure data deduplication via fog computing. This paper makes the following
contributions.

– We design a random position re-encryption technique to prevent key-cache
attack. Our technique combines message-locked encryption and convergent
All-or-nothing transform (CAONT) [22], which allows a fog node to re-
encrypt a random position of a data item in a rekeying operation. Compared
with previous works, our technique mitigates key-cache attack while avoiding
re-encrypting large volume of data.

– We design a two-stage deduplication technique to prevent probe attack. Our
technique deduplicates data items through two stages. The first stage is con-
ducted between a user and a fog node, and the second stage is conducted
between a fog node and the cloud server. Both stages adopt client-side dedu-
plication. Compared with previous works, our technique mitigates probe
attack while avoiding high communication overhead incurred by server-side
deduplication and high computation overhead incurred by client-side dedu-
plication.

– We implement our system on a local PC and a commercial cloud server. We
evaluate some critical parameters in our experiment to prove the efficiency of

442 F. Zhang et al.

our system. The result shows that our system ensures high speed of encryption
and data access. Our system also supports efficient data deduplication.

This paper is organized as follows. In Sect. 2, we introduce some related
backgrounds about our system. In Sect. 3, we elaborate the system details of our
scheme. The security analysis of our system is presented in Sect. 4. The imple-
mentation and evaluation have been given in Sect. 5 and Sect. 6, respectively. In
Sect. 7, we introduce related works. Finally, we draw conclusions in Sect. 8.

2 Background

In this section, we describe the architecture of fog storage systems and crypto-
graphic primitives. Besides, we define the threat model of our system.

2.1 System Overview

Fog computing is considered as an extension of the cloud computing to the edge
of the internet [19]. It always provides computation, storage, and networking
services to undertake the cloud computation task. Our system model consists of
a cloud server, a set of fog nodes, a set of users and a key manager. Different with
traditional cloud based on system model, our model considers the deployment of
fog nodes. Fog computing is a combination of the Internet of Things (IoT) and
cloud computing [5,14]. Our system architecture is shown in Fig. 1.

Key Manager

Fog Node 1

Fog Node 2

Cloud

Storage
Backend

Certificate

Certificate

Server

Server

Server

Fig. 1. System model (Wireless base stations represent fog nodes. Each fog node man-
ages three users. Key manager sends certificates to fog nodes and users. The small
square denotes user data item. Different color express different data contents).

Secure Data Deduplication with Resistance to Side-Channel Attacks 443

Cloud Server: The cloud server is a centralized service which provides long-
term data storage and retrieval services. It stores deduplicated data items and
maintains a global data index.

Fog Node: A fog node is a distributed entity which acts as a proxy for the
cloud server by providing storage services and lightweight computation tasks at
the network edge. The fog node is connected to the cloud server and manages
data ownership of users within certain area.

User: A user uploads/downloads the data items to/from the cloud server. In
a data uploading/downloading operation, the user selects a local fog node as a
proxy to forward the data item between it and the cloud server. According to
the uploading order of a data item, a user can be classified as an initial uploader
and a subsequent uploader.

Key Manager: Our system deploys a key manager to provide certificates for
fog nodes and users. The certificate is used to distinguish users and fog nodes in
data uploading/downloading operations. Specifically, a user needs to prove its
role to a fog node and a fog node needs to prove its role to the cloud sever.

2.2 Threat Model and Design Goals

We consider a malicious cloud server that aims to explore the contents of user
data items. As a result, data items of users should be encrypted before uploading
to the cloud server. Also, we consider malicious users that aim to explore the
contents of data items outside their access authorities. MLE is an important
tool to reconcile encryption and deduplication. However, the usage of MLE also
opens a door for malicious users to launch side-channel attacks since it is a
deterministic encryption.

We mainly consider two side-channel attacks namely probe attack and key-
cache attack, which can be used to explore the contents of data items as demon-
strated by previous works [12,13]. For key-cache attack, once a user deletes his
data item, the user should have no authority to access the data item anymore.
However, the user can cache the MLE key of the data item to continuously access
it. For probe attack, a malicious user could infer the existence of data items of
other users by checking whether these data items have been deduplicated by the
cloud server. In a typical storage system with deduplication, a user first sends
a hash value of his data item to the cloud server to check if the hash value has
already existed in its storage. If yes, the user does not need to upload the data
item anymore. However, a malicious user can upload the hash values of inter-
ested data items, too. If the cloud server does not require the user to upload
these data items, the user knows that these data items have already existed in
the cloud server.

Our threat model makes the following assumptions. We assume that the
key manager could contact with fog nodes and users in a security channel which
means the malicious user cannot launch man-in-the-middle attack. Besides, each
user and key manager cannot infer the fingerprint information and learn the

444 F. Zhang et al.

message content. We also assume that any adversaries don’t have abilities to
compromise or gain access to the key manager.

To this end, our system focuses on the following main security goals. First,
our system ensures confidentiality, such that data items are kept secret against
malicious server and users. In addition, our system could prevent the probe
attack and the key-cache attack.

2.3 Cryptography Primitives

In this section, we first introduce the basic definition and properties of message-
locked encryption and then we present the definition of convergent All-or-
nothing-transform and broadcast encryption.

Message-Locked Encryption: Message-locked encryption is a symmetric
encryption scheme in which the key used for encryption and decryption is derived
from the message itself. EncMLE(·) algorithm has such steps. First, KenGenMLE(·)
calculates cryptographic hash value of plaintext M and generates the symmetric
key KMLE. Then, EncAES(M,KMLE) → C1. Decryption algorithm is similar as
encryption algorithm. It takes C1 and KMLE as input and outputs plaintext M :
DecMLE(C1,KMLE) → M .

Convergent All-or-Nothing Transform: CAONT is derived from All-or-
nothing transform (AONT) which was proposed by Rivest in 1997. EncAONT(·)
algorithm [29] needs two inputs: data M and a random key KAONT. And it
generates AONT ciphertext CAONT which could define property that one must
decrypt the entire ciphertext before one can determine even one message block.
CAONT is the same as AONT which replaces the random key to a hash value h.
Encryption and decryption algorithms could be denoted as follows respectively:
EncCAONT(M,h) → (C2, t), DecCAONT(C2, t) → M .

Broadcast Encryption: A broadcast encryption system is made up of the
following randomized algorithms [4]. SetupBE(·) algorithm takes the number
of receivers n as input, and it outputs n private keys d1, d2, ..., dn and a pub-
lic key PK. Encryption algorithm takes a subset S ⊆ {1, ..., n} and a pub-
lic key PK as input. It outputs a pair (Hdr, K) where Hdr is called the
header and K is a message encryption key. CM is the ciphertext of M under
the symmetric key K. For simplicity, the encryption and decryption algorithms
could be expressed as follows respectively: EncBE(M,S, PK) → (CM,Hdr, S),
DecBE(S, di,Hdr, CM) → M .

3 System Design

3.1 Design Philosophy

As mentioned above, a secure data deduplication system that adopts MLE always
suffered two kinds of side-channel attack: key-cache attack and probe attack.
Accordingly, we design two new techniques: random position re-encryption and
two-stage deduplication to mitigate the two attacks via fog nodes.

Secure Data Deduplication with Resistance to Side-Channel Attacks 445

Random Position Re-encryption: In key-cache attack, a revoked user could
cache old MLE keys to decrypt the encrypted data items. One solution [19,25] is
to re-encrypt the data item by a new MLE key to make the revoked key invalid.
This procedure, however, needs to download/upload a large volume of data and
distribute the new MLE key to other users, incurring high communication over-
head. Another solution is REED [21], which supports lightweight rekeying by
re-encrypting a small part of data item. REED adopts two-layers encryption to
protect user data. The first layer uses MLE and the second layer uses CAONT.
A small part of CAONT ciphertext named stub is encrypted by a data key. The
usage of CAONT ensures that the data item cannot be decrypted unless the
stub can be decrypted. In a rekeying operation, REED uses a new data key to
re-encrypt the stub. Since a revoked user cannot access the new data key, he
cannot access the data even he caches the MLE key. However, since the location
of the stub is fixed, a revoked user that has accessed the data item can just
retain the stub to continuously access the rekeyed data item.

We design a random position re-encryption technique to prevent the key-
cache attack as shown in Fig. 2. Similar with REED, we also adopt two-layers
encryption to protect a data item. Unlike REED, we always select a random part
of the data item as the new stub in each rekeying operation. We rely on fog nodes
to conduct rekeying operations and to record the current location of the current
stub. When an authorized user needs to access the data item, the fog node sends
the location and the data key to the user to decrypt the data item. The random
position re-encryption technique could prevent key-cache attack while avoiding
re-encryption of the whole data item. Importantly, a revoked user that retains
the old stub cannot access the data item anymore since the position of the stub
is changed after each re-keying operation.

Two-Stage Deduplication: To prevent the probe attack, one solution is to
adopt server-side deduplication, in which users directly upload their data items
to the cloud sever without any check, and the cloud server conducts the dedupli-
cation tasks. This solution prevents a malicious user from checking the existence
of data items of other users, but incurs high communication overhead since same
data items can be submitted multiple times. Another solution is to adopt client-
side deduplication with a proof of ownership (PoWs) protocol [12], in which
a user proves to the cloud server that he owns the data item. However, this
solution incurs high computation overhead at user side. For example, when the
bandwidth is 100 Mbps, PoWs might consumes 20% uploading time [12].

Table 1. Local data index

Data tag Data item Data owner

dcfc5f6e22231a2a data0596 UserA UserF

4c15796c7aec02b8 data4368 UserB UserG UserJ

b0b2676cb488c75c data5968 UserA UserG UserK

446 F. Zhang et al.

We design a two-stage deduplication technique to prevent probe attack. Our
technique requires that the cloud server maintains a global data index and each
fog node maintains a local data index to keep track of which data items have been
stored and deduplicated. The local data index records data tags, corresponding
data items and data owners, an example of a local data index is shown in Table 1.
The global data index just records data tags and corresponding data items. The
two deduplication stages are implemented as follows. In the first stage, a user
uploads his data item to a local fog node. Before uploading the data item, the
user uploads the tag of data item to the fog node. With the tag value, the fog
node checks its local data index to decide if the data item has been uploaded
before. If yes, the user does not need to upload the data item. In the second
stage, the fog node further uploads the tag of the data item to the cloud server.
The cloud server uses its global data index to decide whether the data item has
been uploaded before. If yes, the fog node does not need to upload the data
item. Figure 3 shows the details of the two-stage deduplication technique. In
this way, our system achieves a similar communication efficiency with client-side
deduplication while constraining a malicious user to be able to only check the
existence of data items of users managed by a certain fog node.

Stub Block

Block Block

Block Stub

DecAES(·) 1
2

EncAES(·)

KeyGEN(·)
3

4

Fog Node

Update
Stub

position

······ ······

······ ······

······ ······

Fig. 2. Random position re-encryption

M6M1M1MM

Fog
node 1

Cloud server

User 2User 1

Fog
node 2

M2M1 M3 M4M2 M5

M2 M3M1 M4 M5

tag1 M6

tag1 M6

Fig. 3. Two stage deduplication

3.2 Encryption Scheme

Our encryption scheme uses and adjusts CAONT. We use CAONT to protect
MLE ciphertext rather than plaintext. The encryption procedure to encrypt a
data item M is shown in Fig. 4. The first step is executed at user side, the specific
process is as follows. First, M is encrypted by the message-locked encryption:
EncMLE(M,KMLE) → C1. The user retains the MLE key KMLE. Second, the
user encrypts C1 by CAONT. Specifically, the user calculates the hash function
over C1 and gets a hash value h. Let h XOR with C1 to get a ciphertext C2.
Let the hash value of C2 XOR h to get a tail part t. C2 and t form a CAONT
package.

The second step is executed at fog node side, the process is shown in Fig. 5.
First, the fog node randomly selects a 256 bits long part p from the CAONT

Secure Data Deduplication with Resistance to Side-Channel Attacks 447

package. Second, the fog node creates a data key KF. Third, the fog node sym-
metrically encrypts p: EncAES(p,KF) → Cstub. Fourth, the fog node treats the
rest of the CAONT package as a rest package Crest. Finally, the fog node uploads
Crest and Cstub to the cloud server.

M C1

KMH

E C1

H h

G

XOR

XOR

C2

t

MLE CAONT

H

Fig. 4. Encryption at user side

Select 256bits

CAONT Package

256bits Data Key

E

Stub Rest Package

Fig. 5. Encryption at fog node
side

3.3 Design Details

Our deduplication system supports three types of operations: data upload, data
download, and authority update. Each operation involves a user, a fog node
and the cloud server. The fog node needs to check the certificate of the user to
confirm its role and the cloud server needs to check the certificate of the fog
node to confirm its role. The detailed processes are as follows.

Data Upload: The specific steps of data upload are as follows.

– When a user wants to upload a data item M , the user sends a data tag tag
of M to a local fog node. The fog node then checks if its local data index
contains tag. If yes, the user does not need to upload M anymore and the
fog node updates its local data index to add the user as an owner of M .
Otherwise, the user is considered as an initial uploader and the fog node asks
user to upload M .

– If the user is required to upload M . M needs to be encrypted before upload-
ing. First, the user executes encryption operation: EncMLE(M,KMLE) →
C1. The user next encrypts C1 by CAONT to get a CAONT package:
EncCAONT(C1, h) → (C2, t). After that, the user sends C2, t and tag to the
fog node.

– The fog node adds a new encryption layer. As shown in Fig. 5, the fog node
creates a data key KF to encrypt a randomly selected part of C2 and gets
Crest and Cstub respectively: EncAES(p,KF) → Cstub. Finally, the fog node
preserves Crest, Cstub and sends tag to the cloud server. Besides, the fog node
also inserts tag into its local data index and adds the user as an owner of the
data item.

– Upon receiving tag, the cloud server checks if its global data index contains
tag. If yes, the fog node does not need to upload M anymore. Otherwise, the
fog node uploads Crest, Cstub to the cloud server. In this case, the cloud server
adds Crest, Cstub and tag to its global data index.

448 F. Zhang et al.

Data Download: When a user wants to download a data item M , he sends
a download request tag to a local fog node. The fog node checks the user’s
authority in its local data index. If the user is not a legal data owner of
M , the fog node will refuse the request. Otherwise, the fog node forwards
the download request to the cloud server and gets the Crest and Cstub. After
that, the fog node returns KF and the position of stub to the user. First, the
user decrypts Cstub: DecAES(Cstub,KF) → (C2, t). Second, the user decrypts
C2 and t: DecCAONT(C2, t) → C1. Finally, the user decrypts C1 and gets M :
DecMLE(C1,KMLE) → M .

Authority Update: When a user deletes a data item M , its access authority
about M is revoked by the responsible fog node. Suppose that the user sends a
data deletion request to the fog node. The fog node first downloads Cstub and
executes DecAES(Cstub,KF) → p. The fog node also randomly selects a new part
p2 of Crest and creates a new data key KF2. Then the fog node symmetrically
encrypts p2 by KF2 to get a new stub Cstub2: EncAES(p2,KF2) → Cstub2. Finally,
the fog node uploads Crest2 and Cstub2 for the cloud server to update the old
Crest and Cstub. In addition, the fog node updates its local data index and deletes
the ownership of the user about M . Meanwhile KF2 and the position of Cstub2

are recorded in the fog node.
After updating the ciphertext, there is only one fog node knowing KF2

and the position of the Cstub2. If other fog nodes need to download M , they
cannot decrypt it anymore since Cstub2 and KF2 are not equal to Cstub and
KF respectively. Thus, the fog node who reserves KF2 needs to distribute the
position of Cstub2 and KF2 to other fog nodes. Our system uses the broadcast
encryption [10] to do so. The fog node encrypts KF2 and the position of Cstub2:
EncBE(MBE, S, PK) → (CM, S,Hdr) where MBE contains KF2 and the position
of Cstub2, CM is the ciphertext of MBE. The fog node sends CM, S and Hdr to
the cloud server. Other fog nodes who want to download M need to decrypt CM

by their private keys: DecBE(CM, S, di,Hdr) → MBE.

4 Security Analysis

We now analyze the security of our system. We assume that our system has n
fog nodes. Each fog node locates in the area and manages li users.

Key-Cache Attack: We elaborate the key-cache attack firstly. We consider two
different abilities of a malicious revoked user. First of all, we consider that the
malicious user cannot compromise the cloud server. We assume that the lkth
user in the lth fog node has been revoked. If the user intends to get data Cstub

and Crest through the lth fog node, the lth fog node will check his authority
and reject the request. In this way, the malicious user cannot obtain Cstub and
Crest. Thus, he cannot get M , either. Second, we consider that the user could
compromise the cloud server to get the updated Cstub2 and Crest2. In addition,
the malicious user could also cache KMLE, KF and Cstub in the latest data
download operation. Due to our random re-encryption technique, the fog node

Secure Data Deduplication with Resistance to Side-Channel Attacks 449

selects a random position of Crest and encrypts it by a new data key KF2 in
an authority update operation. As a result, the user cannot use either the old
data key KF or the old stub Cstub to recover the CAONT package. Without
the CAONT package, the user cannot further use the KMLE to decrypt it to
recover M .

Probe Attack: We next discuss the probe attack that a malicious user can
check the existence of a data item M by using its data tag tag in a data upload
operation. We still assume that the lkth user belonging to the lth fog node is the
malicious user. Due to our two-stage deduplication technique, the user needs to
submit tag to the lth fog node. The lth fog node checks tag and replies the check
result to the user. Since a fog node only manages a small number of users, the
user can only probe if the data items of these users are existed in the fog node.
As a result, our system constrains the user to launch probe attack in the certain
area.

5 Implementation

In this section, we discuss the implementation details of our system. We imple-
ment our system in Python 3.5. We use pyCrypto library [23] and pyCryptodome
library [9] to realize related cryptographic primitives. In our system, we divide
a whole data into different chunks. Each chunk is encrypted by the message-
locked encryption and CAONT. The MLE key is generated from its correspond-
ing chunk. We calculate SHA-256 hash function value for the plaintext as MLE
key and record it into a text file which is preserved by the user. Meanwhile, we
use ‘scp’ protocol measuring upload and download performance.

The previous works point out the key management overhead of convergent
encryption (e.g., especially fine-grained block-level deduplication) becomes more
prominent [20]. For example, if we store 1 TB of data with all unique blocks of
size 4 KB each, and that each convergent key is the hash value of SHA-256. Then
the total size of keys is 8 GB. The key storage occupies a lot of overhead. Thus,
to optimize the efficiency of our system, we implement the upload performance,
encryption performance, update performance and deduplication performance in
different chunk sizes. And we conclude which size of block could maintain the
maximum storage efficiency.

6 Evaluation

We evaluate the encryption efficiency on the local PC, which is equipped with a
Intel Xeon E5-1630 v3 3.5 GHz CPU and 16 GB RAM. We cascade three physical
machines as fog nodes. Each of them has the same performance index as ibid.
In addition, we deploy the cloud server based on the aliyun cloud with 1 CPU
and 2 GB RAM, and the bandwidth is 2 MB.

450 F. Zhang et al.

6.1 Real-World Data

First, we utilize real-world data to evaluate the encryption, decryption, update
and upload performance. We select the data which is suitable for experiments
from Aliyun Tianchi dataset. We select different dataset sizes to accomplish
our experiment which ensure our experiment more credible. For example, we
evaluate encryption performance in 10 MB, 50 MB, 100 MB, 500 MB, and 1 GB,
respectively. We divide the total file size by the time to get the encryption rate.
The experimental diagram shows the average encryption speed.

Experiment 1.1 (Encryption Performance): We first measure the perfor-
mance of encryption and decryption. What needs to be emphasized is that the
test results include two steps: message-locked encryption and CAONT opera-
tion. Both of them are executed at the user side. Besides, the test range doesn’t
contain re-encryption process in the fog node.

Figure 6 shows the encryption and decryption performance at the user side.
We observe that when the average chunk size increases, the encryption speed
also gets the corresponding improvement. For example, when the chunk size is
32 KB, the encryption speed reaches 37.5 MB/s.

Experiment 1.2 (Re-encryption Performance): We measure the decryp-
tion performance and re-encryption performance in fog node. It is worth noting
that this operation not only contains encryption process but also includes file
reading and writing operations.

Figure 7 shows the result of re-encryption performance. As mentioned above,
the chunk size is large, fewer chunks need to be processed, and the performance
has been improved. We observe the re-encryption speed reaches 104.77 MB/s
when the chunk size is 32 bits. The reason why re-encryption performance better
than encryption performance at user side is that re-encryption operation just
needs to encrypt 256 bits part rather than the whole chunk. We observe that
the decryption operation has the higher performance than encryption operation.
Because re-encryption operation contains file reading and writing.

Experiment 1.3 (Update Performance): We measure the update perfor-
mance in fog node. To prove the advantage of our system, we compare our
system with traditional update and REED.

Figure 8 shows the result of update speed. We observe that our system is much
better than the traditional update but lower than REED. As Fig. 8 shows, when
the chunk size is 16 KB, the update speed of our system could reach 52 MB/s
and traditional update speed merely reaches 37 MB/s. But REED reaches up to
120 MB/s. The reason is that REED just needs to encrypt and decrypt a little
stable part of data. Our system wastes some time in file reading and writing.
Although we have the performance disadvantages compared with REED, our
system still achieves satisfactory result.

Experiment 1.4 (Upload Performance): We measure upload performance
at the user side. In order to ensure maximum upload efficiency, we set the chunk
size into 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, respectively. Theoretically, in 2 MB

Secure Data Deduplication with Resistance to Side-Channel Attacks 451

bandwidth network, the maximum upload speed is 256 KB/s. As shown in Fig. 9,
when the chunk size reaches 16 KB, the upload speed could achieve 228 KB/s
closing to the theoretical maximum speed. Henceforth, the upload speed does
not improve with growing of chunk size.

4 8 16 32 64
Average Chunk Size (KB)

15

20

25

30

35

40

45

50

Sp
ee

d
(M

B
/S

)

Encryption Speed
Decryption Speed

Fig. 6. Encryption performance

4 8 16 32 64
Average Chunk Size (KB)

0

50

100

150

200

250

Sp
ee

d
(M

B
/S

)

Encryption Speed
Decryption Speed

Fig. 7. Re-encryption performance

4 8 16 32 64
Average Chunk Size (KB)

0

50

100

150

200

250

300

350

U
pd

at
e

Sp
ee

d
(M

B
/S

)

Traditional Update
Our Scheme
REED

Fig. 8. Update performance

4 8 16 32 64
Average Chunk Size (KB)

0

50

100

150

200

250

U
pl

oa
d

Sp
ee

d
(K

B
/S

)

Fig. 9. Upload performance

6.2 Synthetic Data

We evaluate upload performance in synthetic data. We set different deduplication
rate to measure the upload speed and deduplication performance.

Experiment 2.1 (Upload Performance): Unlike experiment 1.4, we measure
the upload performance in different deduplication rates. We set the deduplication
rate as 10%, 20%, 30%, 40%, 50% and 60%. Meanwhile, we set the chunk size
in 32 KB which ensures the maximum upload speed in 2 MB bandwidth. As
shown in Fig. 10, the upload speed increases with the raising of deduplication
rate. Because our system uses client-side deduplication, the duplicate files need
not be uploaded again. Therefore, when the deduplication rate reaches 10%, the
upload speed is 260 KB/s which is higher than the theoretical maximum speed.

In addition, we could find that our system has much upload performance
advantages than REED and traditional re-encryption, especially when dedupli-
cation rate is high. As shown in Fig. 10, when the deduplication rate is 50%, the

452 F. Zhang et al.

upload speed of our system could reach 460 KB/s, which is twice as much as
REED. In addition, unlike PoWs [12], our system doesn’t need user to do extra
calculation which saves their computation resource. We also find that REED is
slower than traditional encryption. Because REED separates each chunk into
two parts: stub and trimmed package. And ‘scp’ protocol always processes data
one by one. More data parts will waste more time.

Experiment 2.2 (Deduplication Performance): We generate 12 GB syn-
thetic file to measure the deduplication performance. The dataset has 75% dupli-
cated chunks. We measure the deduplication rate changes of file number and file
size over time. As shown in Fig. 11, file is gradually decreasing over time. After
120 min deduplicating, the file size reaches 3 GB which means most duplicated
chunks have been eliminated.

10% 20% 30% 40% 50% 60%
Deduplication Rate

200

300

400

500

600

U
pl

oa
d

Sp
ee

d
(K

B
/S

)

REED
Traditional Update
Our Scheme

Fig. 10. Upload performance

0 20 40 60 80 100 120
Time (min)

0

10

20

Fi
le

 S
iz

e
(G

B
)

0

5

10

Fi
le

 N
um

be
r

105

File Size
File Number

Fig. 11. Deduplication performance

7 Related Work

Deduplication which stores only one copy of identical messages and eliminates
redundant data could achieve storage efficiency. Each Message is identified by a
fingerprint and computed as a cryptographic hash value of the message content.
We assume that two messages are identical if their fingerprints are identical
[3]. However, deduplication in ciphertext is infeasible, because the same content
might be encrypted into different ciphertext.

Message-locked encryption [2] is a cryptographic primitive that provides con-
fidentiality guarantee for deduplication storage. It is a symmetric encryption and
MLE key is derived from message itself. Thus, MLE ensures the same plaintext
will be encrypted as the same ciphertext which makes deduplication plausible.
A special case of MLE is convergent encryption (CE) [8], which directly uses the
message’s fingerprint as the MLE key.

However, MLE (e.g., including CE) is inherently vulnerable to brute-force
attacks, and achieves security only for unpredictable messages [2]. To address
the unpredictability assumption, DupLESS [18] uses oblivious pseudo-random
function (OPRF) [11] to implement server-aided MLE. But it needs a trusted

Secure Data Deduplication with Resistance to Side-Channel Attacks 453

third party. Liu et al. [24] propose a password authenticated key exchange pro-
tocol for MLE key generation. Li et al. [21] propose a deduplication scheme
which supports lightweight update. Koo et al. [19] design a deduplication sys-
tem based on fog computing environment, but the update process wastes too
much calculation resources.

8 Conclusion

We present a new encrypted data deduplication system in fog computing environ-
ment that aims for secure and lightweight rekeying. The core idea is re-encrypting
a part of CAONT package. We propose a two-stage deduplication which saves
communication overhead and resists probe attack. In addition, when the data
needs to be updated, we propose random position re-encryption technique to
prevent key-cache attack. Furthermore, we show the confidentiality and security
of our system under our security definitions. Last, we implement our system to
show its performance and storage effectiveness.

Acknowledgement. We acknowledge the support from National Natural Science
Foundation of China (No. 61602363), China Postdoctoral Science Foundation (No.
2016M590927), National Cryptography Development Fund (No. MMJJ20180110) and
Graduate Innovation Foundation, School of Cyber Engineering, Xidian University (No.
20109194858).

References

1. Ahmad, M., Amin, M.B., Hussain, S., Kang, B.H., Cheong, T., Lee, S.: Health fog:
a novel framework for health and wellness applications. J. Supercomput. 72(10),
3677–3695 (2016). https://doi.org/10.1007/s11227-016-1634-x

2. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 18

3. Black, J.: Compare-by-hash: a reasoned analysis. In: Proceedings of the 2006
USENIX Annual Technical Conference, Boston, MA, USA, 30 May–3 June 2006,
pp. 85–90 (2006). http://www.usenix.org/events/usenix06/tech/black.html

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

5. Bonomi, F., Milito, R.A., Zhu, J., Addepalli, S.: Fog computing and its role in the
Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC@SIGCOMM 2012, Helsinki, Finland, 17 August
2012, pp. 13–16 (2012). https://doi.org/10.1145/2342509.2342513

6. Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable databases with
efficient updates. IEEE Trans. Dependable Sec. Comput. 12(5), 546–556 (2015).
https://doi.org/10.1109/TDSC.2014.2366471

https://doi.org/10.1007/s11227-016-1634-x
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-38348-9_18
http://www.usenix.org/events/usenix06/tech/black.html
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/TDSC.2014.2366471

454 F. Zhang et al.

7. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing
of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9), 2386–2396
(2014). https://doi.org/10.1109/TPDS.2013.180

8. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: ICDCS, pp. 617–624
(2002). https://doi.org/10.1109/ICDCS.2002.1022312

9. Eijs, H.: Pycryptodome-the Python cryptography toolkit. https://pypi.org/
project/pycryptodome/ (2019)

10. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

11. Goldwasser, S., Bellare, M.: Lecture notes on cryptography. Summer course “Cryp-
tography and computer security” at MIT 1999 (1996)

12. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote
storage systems. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS 2011, Chicago, Illinois, USA, 17–21 October 2011,
pp. 491–500 (2011). https://doi.org/10.1145/2046707.2046765

13. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side channels in cloud services: dedu-
plication in cloud storage. IEEE Secur. Priv. 8(6), 40–47 (2010). https://doi.org/
10.1109/MSP.2010.187

14. Hong, K., Lillethun, D.J., Ramachandran, U., Ottenwälder, B., Koldehofe, B.:
Mobile fog: a programming model for large-scale applications on the Internet of
Things. In: Proceedings of the Second ACM SIGCOMM Workshop on Mobile
Cloud Computing, MCC@SIGCOMM 2013, Hong Kong, China, 16 August 2013,
pp. 15–20 (2013). https://doi.org/10.1145/2491266.2491270

15. Huang, H., Chen, X., Wu, Q., Huang, X., Shen, J.: Bitcoin-based fair payments for
outsourcing computations of fog devices. Future Gener. Comp. Syst. 78, 850–858
(2018)

16. Huang, Q., Yang, Y., Wang, L.: Correction to “secure data access control with
ciphertext update and computation outsourcing in fog computing for Internet of
Things”. IEEE Access 6, 17245 (2018)

17. Jiang, T., Chen, X., Wu, Q., Ma, J., Susilo, W., Lou, W.: Secure and efficient cloud
data deduplication with randomized tag. IEEE Trans. Inf. Forensics Secur. 12(3),
532–543 (2017)

18. Keelveedhi, S., Bellare, M., Ristenpart, T.: DupLESS: server-aided encryption
for deduplicated storage. In: Presented as part of the 22nd USENIX Secu-
rity Symposium (USENIX Security 2013), pp. 179–194. USENIX, Washing-
ton, D.C. (2013). https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/presentation/bellare

19. Koo, D., Hur, J.: Privacy-preserving deduplication of encrypted data with dynamic
ownership management in fog computing. Future Gener. Comp. Syst. 78, 739–752
(2018)

20. Li, J., Chen, X., Li, M., Li, J., Lee, P.P.C., Lou, W.: Secure deduplication with
efficient and reliable convergent key management. IEEE Trans. Parallel Distrib.
Syst. 25(6), 1615–1625 (2014). https://doi.org/10.1109/TPDS.2013.284

21. Li, J., Qin, C., Lee, P.P.C., Li, J.: Rekeying for encrypted deduplication storage.
In: 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2016, Toulouse, France, 28 June–1 July 2016, pp. 618–629 (2016).
https://doi.org/10.1109/DSN.2016.62

https://doi.org/10.1109/TPDS.2013.180
https://doi.org/10.1109/ICDCS.2002.1022312
https://pypi.org/project/pycryptodome/
https://pypi.org/project/pycryptodome/
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1145/2046707.2046765
https://doi.org/10.1109/MSP.2010.187
https://doi.org/10.1109/MSP.2010.187
https://doi.org/10.1145/2491266.2491270
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bellare
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bellare
https://doi.org/10.1109/TPDS.2013.284
https://doi.org/10.1109/DSN.2016.62

Secure Data Deduplication with Resistance to Side-Channel Attacks 455

22. Li, M., Qin, C., Lee, P.P.C.: CDStore: toward reliable, secure, and cost-efficient
cloud storage via convergent dispersal. In: USENIX Annual Technical Conference,
pp. 111–124. USENIX Association (2015)

23. Litzenberger, D.C.: Pycrypto-the Python cryptography toolkit. https://www.dlitz.
net/software/pycrypto (2016)

24. Liu, J., Asokan, N., Pinkas, B.: Secure deduplication of encrypted data without
additional independent servers. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, Denver, CO, USA, 12–16 Octo-
ber 2015, pp. 874–885 (2015). https://doi.org/10.1145/2810103.2813623

25. Liu, J., Duan, L., Li, Y., Asokan, N.: Secure deduplication of encrypted data:
refined model and new constructions. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS,
vol. 10808, pp. 374–393. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76953-0 20

26. Madsen, H., Burtschy, B., Albeanu, G., Popentiu-Vladicescu, F.: Reliability in the
utility computing era: Towards reliable fog computing. In: 2013 20th International
Conference on Systems, Signals and Image Processing (IWSSIP), pp. 43–46, July
2013. https://doi.org/10.1109/IWSSIP.2013.6623445

27. Miao, M., Wang, J., Li, H., Chen, X.: Secure multi-server-aided data deduplication
in cloud computing. Pervasive Mob. Comput. 24, 129–137 (2015)

28. Ni, J., Lin, X., Zhang, K., Yu, Y.: Secure and deduplicated spatial crowdsourcing: a
fog-based approach. In: 2016 IEEE Global Communications Conference (GLOBE-
COM), pp. 1–6, December 2016. https://doi.org/10.1109/GLOCOM.2016.7842248

29. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Fast Soft-
ware Encryption, 4th International Workshop, FSE 1997, Haifa, Israel, 20–22 Jan-
uary 1997, Proceedings, pp. 210–218 (1997). https://doi.org/10.1007/BFb0052348

30. Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security
issues. In: Proceedings of the 2014 Federated Conference on Computer Science
and Information Systems, Warsaw, Poland, 7–10 September 2014, pp. 1–8 (2014).
https://doi.org/10.15439/2014F503

31. Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a com-
prehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev.
44(5), 27–32 (2014)

32. Wang, J., Chen, X., Li, J., Kluczniak, K., Kutylowski, M.: TrDUP: enhancing
secure data deduplication with user traceability in cloud computing. IJWGS 13(3),
270–289 (2017)

33. Wang, Y., Uehara, T., Sasaki, R.: Fog computing: issues and challenges in security
and forensics. In: 39th Annual Computer Software and Applications Conference,
COMPSAC Workshops 2015, Taichung, Taiwan, 1–5 July 2015, pp. 53–59 (2015).
https://doi.org/10.1109/COMPSAC.2015.173

34. Xiang, Y., Bertino, E., Kutylowski, M.: Security and privacy in social networks.
Concurr. Comput.: Pract. Exp. 29(7) (2017)

35. Yu, Z., Au, M.H., Xu, Q., Yang, R., Han, J.: Towards leakage-resilient fine-grained
access control in fog computing. Future Generation Comp. Syst. 78, 763–777
(2018). https://doi.org/10.1016/j.future.2017.01.025

36. Yuan, H., Chen, X., Jiang, T., Zhang, X., Yan, Z., Xiang, Y.: DedupDUM: secure
and scalable data deduplication with dynamic user management. Inf. Sci. 456,
159–173 (2018)

37. Zhang, X., Jiang, T., Li, K., Castiglione, A., Chen, X.: New publicly verifiable
computation for batch matrix multiplication. Inf. Sci. 479, 664–678 (2019)

https://www.dlitz.net/software/pycrypto
https://www.dlitz.net/software/pycrypto
https://doi.org/10.1145/2810103.2813623
https://doi.org/10.1007/978-3-319-76953-0_20
https://doi.org/10.1007/978-3-319-76953-0_20
https://doi.org/10.1109/IWSSIP.2013.6623445
https://doi.org/10.1109/GLOCOM.2016.7842248
https://doi.org/10.1007/BFb0052348
https://doi.org/10.15439/2014F503
https://doi.org/10.1109/COMPSAC.2015.173
https://doi.org/10.1016/j.future.2017.01.025

Practical IDS on In-vehicle Network
Against Diversified Attack Models

Junchao Xiao1,2, Hao Wu4, Xiangxue Li2,3(B), and Yuan Linghu2

1 School of Systems Science and Engineering, Sun Yat-Sen University,
Guangzhou, China

2 School of Software Engineering, East China Normal University, Shanghai, China
xxli@cs.ecnu.edu.cn

3 Westone Cryptologic Research Center, Beijing, China
4 CNCERT/CC, Beijing, China

wuhao@cert.org.cn

Abstract. A vehicle bus is a specialized internal communication net-
work that interconnects components inside a vehicle. The Controller
Area Network (CAN bus), a robust vehicle bus standard, allows micro-
controllers and devices to communicate with each other. The commu-
nity has seen many security breach examples that exploit CAN func-
tionalities and other in-vehicle flaws. Intrusion detection systems (IDSs)
on in-vehicle network are advantageous in monitoring CAN traffic and
suspicious activities. Whereas, existing IDSs on in-vehicle network only
support one or two attack models, and identifying abnormal in-vehicle
CAN traffic against diversified attack models with better performance
is more expected as can be then implemented practically. In this paper,
we propose an intrusion detection system that can detect many differ-
ent attacks. The method analyzes the CAN traffic generated by the in-
vehicle network in real time and identifies the abnormal state of the
vehicle practically. Our proposal fuses the autoencoder trick to the SVM
model. More precisely, we introduce to the system an autoencoder that
learns to compress CAN traffic data into extracted features (which can
be uncompressed to closely match the original data). Then, the support
vector machine is trained on the features to detect abnormal traffic. We
show detailed model parameter configuration by adopting several con-
crete attacks. Experimental results demonstrate better detection perfor-
mance (than existing proposals).

Keywords: In-vehicle network · Intrusion detection systems ·
Autoencoder

1 Introduction

Vehicles have become a ubiquitous means of transportation in modern society,
and the development of information technology has made the communication
components inside the vehicles more complicated. A variety of electronic prod-
ucts are rapidly applied in vehicles. For example, the GPS units provide vehicle
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 456–466, 2020.
https://doi.org/10.1007/978-3-030-38961-1_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_40&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_40

Practical IDS on In-vehicle Network Against Diversified Attack Models 457

location information. The vehicle sound equipment is connected to the phone
for functions such as calling and play music. The Internet of Vehicles is designed
to meet the communication of various devices in the vehicles. However, unreg-
ulated communication between electronic devices exposes in-vehicle network to
security threats [1]. Recent work show that attackers can take advantage of the
vulnerabilities of in-vehicle network to manipulate vehicles [2].

For now, in-vehicle network communication mainly relies on the Controller
Area Network (CAN) bus. The CAN bus, a robust vehicle bus standard, allows
microcontrollers and devices to communicate with each other. There are many
Electronic Control Units (ECUs) in the vehicles, and the ECU sends instruc-
tions through the CAN bus to handle specific tasks. The CAN protocol was
invented in the 1980s for the internal communication without considering cyber-
security threat. For example, the CAN bus uses Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) to transmit instructions. All ECUs can
receive instructions transmitted on the bus. As long as one ECU is controlled
by attackers, all ECUs confront potential security threats [3].

There are currently two methods for reinforcing CAN protocol security. One
line is to design Message Authentication Code (MAC), and another method
installs an intrusion detection system on the vehicles [4]. The MAC has higher
reliability but needs to occupy the data fields in the CAN packets. The data
fields in the CAN packets are only 8 bytes and the maximum transmission rate
is only 1 M/s, which cannot meet the MAC requirements. Therefore, the appli-
cation of the MAC is bound to change the existing vehicle structure and increase
product costs, which is currently difficult to widely popularize. Another line is
to construct intrusion detection system (IDS) [5], which does not need to change
the structure of the vehicles and can be installed in the vehicle’s gateway to
detect malicious behavior in real time. Therefore, the IDS is more suitable for
improving the security of in-vehicle network.

In the paper, we propose a practical IDS of in-vehicle network to extract
features using an autoencoder and solicit support vector machines (SVM) for
anomaly detection. The proposed detection model provides better performance
and can monitor the status of the in-vehicle network in real time. Our contribu-
tions include the following.

1. We present a novel detection model that can effectively detect multiple
attacks. In our model, each CAN bus instruction is encoded by the autoen-
coder into a number which can represent the instruction itself. The SVM
analyzes the features of these numbers to identify abnormal instructions.

2. Unlike most detection models that can only detect one single attack [6], our
method can detect a variety of attack models. We mention that IDS of in-
vehicle network should support the capability of detecting multiple attacks.
If the detection model can only detect one single attack model, then secu-
rity engineers have to accumulate multiple models to effectively detect the
abnormal state of the in-vehicle network. This greatly increases the compu-
tational cost and is clearly not suitable for practical application in vehicles.
Our proposal effectively fills the gap.

458 J. Xiao et al.

3. A detection model based on time series prediction needs to separately train
the model by instruction ID. However, the CAN protocol is a combination of
multiple instructions, and one single ID prediction may lose some important
information. The numbers we get by the autoencoder are grouped in chrono-
logical order per 100 as the input data of the SVM. This effectively solves the
problem of training multiple time series prediction models.

4. Oue model is compared to the other two methods to demonstrate its detection
superiority. One method is to use 100 instructions directly as input data to
the SVM. This method does not use an autoencoder to extract numbers.
Other method is to use LSTM, a time series prediction model, to train only
one model without separate ID for training.

2 Related Work

Machine learning methods are widely used in IDS. Larson et al. present a CAN
bus network attack detection method based on security rules [7]. The method
calls the object dictionary of CANopen protocol, uses protocol-level security
rules to detect illegal ECU behavior, and provides a set of example security
rules [7]. Wang et al. propose a time series prediction model that trains different
types of instructions in the CAN protocol separately and finally combines them
[8]. Müter et al. detect attacks by calculating the entropy of normal traffic and
abnormal traffic on the CAN bus [5]. Hu et al. use the SVM model to detect the
abnormal states of vehicles [9]. However, these methods have inherent drawbacks.
For example, in [8], the instruction IDs of the CAN bus are separated, resulting
in the loss of part of the information. In [5], the entropy-based method can only
perform preliminary statistics and detect a part of the attack methods, which
has no effect on most attack methods. In [9], directly detecting the abnormal
state of the vehicle with SVM requires excessive computational resources, and
it is difficult to ensure real-time monitoring. Our proposed IDS of in-vehicle
network can defeat these obstacles.

3 Can Bus Data and Attack Models

An attacker can operate the vehicle ECU remotely or physically. Access points
include but are not limited to Bluetooth, OBD II, Wi-Fi, physical access, and
USB ports, as shown in Fig. 2. In the paper, we suppose two types of attacks, one
by directly modifying the vehicle ECU nodes and the other by injecting unau-
thenticated information directly into the in-vehicle network. First, we assume
that the attacker can physically control and modify the target ECU node in
the vehicles, so that the target ECU node stops transmitting information and
allows the impersonating node to replace the sending information, causing the
malicious node to replace the target ECU node. For the overall information, the
system has not changed. We call this attack as impersonation attack. We may
also assume that the attacker can not control the target ECU node, but inject
malicious information to induce a fault or remotely maneuver the vehicle which
lead to two types of injection attacks-DoS attack and fuzzy attack [10].

Practical IDS on In-vehicle Network Against Diversified Attack Models 459

Our CAN bus data is sourced from http://ocslab.hksecurity.net/Data
set/CAN-intrusion-dataset. It is constructed by logging CAN traffic via the
OBD-II port from a real vehicle of KIA SOUL while message injection attacks
are performing. We view the data as the following four sets:

– Attack-free: Capture the CAN bus data under normal conditions once the
vehicle starts.

– Dos attack: The attacker periodically injects high-priority CAN bus instruc-
tions so that legitimate instructions do not respond in time. One quintessen-
tial trick is to inject the highest priority instruction with ID 0000.

– Fuzzy attack: The attacker randomly sends instructions to cause the vehicle
to perform unexpected behavior. In order to implement a fuzzy attack, the
attacker needs to find specific information about the vehicle and an instruc-
tion ID that can produce unexpected behavior. Unlike the Dos attack, it
paralyzes functions of a vehicle rather than delaying normal messages via
occupancy of the bus.

– Impersonation attack: After an adversary attacks an ECU causing it to lose
the capacity of work, he inserts his ECU for a specific purpose. The inserted
ECU is disguised as this ECU that stops working, and can periodically reply
to the remote frame [10,11]. Refer to [10] for the construction and distribution
characteristics of the attack data set.

The attack-free data set takes the first 2300000 instructions. The Dos attack,
fuzzy attack, and impersonation attack data sets take the first 590000 instruc-
tions. All data sets are normalized (from 0 to 1) by the following formula:
xnormali = x−min

max−min , where x represents data that needs to be normalized,
and min (and max) represents the minimum (maximum, respectively) value of
an attribute in the dataset.

4 Autoencoder and Feature Extraction

We apply the classic autoencoder [12]. The autoencoder is forced to learn the fea-
tures of the input data by setting the number of the hidden layer’s units less than
the input layer’s units and using the smaller variables to store the information as
much as possible. If the activation function is linear, the autoencoder is similar to
the principal component analysis (PCA), with the function of a low-dimensional
linear representation, and then decoded to produce output data similar to the
input data, x ≈ x. The autoencoder consists of two functions: the first one is the
encoding function fθ1(x), which maps the high-dimensional input data to the
latent feature h, where x denotes the input data, and θ1 = {w(1), b(1)} denotes
transition and bias parameter, respectively. The second one is the decoding func-
tion gθ2(fθ1(x)), which maps the latent feature to the reconstructed input data x
and the parameter θ2 = {w(2), b(2)}. It should be noted that the mapping rules of
the encoding function and the decoding function are respectively f : RN → RK

and g : RK → RN , where N is the dimension of the input data, and K is the
number of units in the hidden layer.

http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset
http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset

460 J. Xiao et al.

Specifically, the encoding function maps the input vector x ∈ RN , which
can be expressed as h = δ(w1x + b1), where δ(·) is the activation function,
w1 is N × K matrix, and b1 is the bias vector. In other words, the decoding
function maps the latent features to the output reconstructed data, which can
be expressed as x = δ(w2x + b2). Herein, w2 is a K × N matrix and b2 is the
bias vector. Each input sample data xi maps to the latent feature hi, and is then
reconstructed to x. The parameter θ = {θ1, θ2} of autoencoder is determined by
the loss function that can minimize the average reconstruction error. The loss
function is expressed by the cross-entropy as follows:

LH(x, x) = −
n∑

i=1

xilogxi + (1 − xi)log(1 − xi). (1)

We define the stacked autoencoder with three hidden layers, one input layer,
and one output layer. The number of neurons per layer and activation function
are shown in Table 1, and each layer is fully connected. The neurons number of
input and output layer neurons are defined as 11 as the vector length of input
data is 11. The activation functions of the third hidden layer and the output
layer are set to Sigmoid in order to renormalize the encoded data (from 0 to 1).
The structure of the autoencoder is shown in Fig. 1.

Fig. 1. The structure of the autoencoder.

CAN bus network

ECU

ECU ECUECU

ECU ECU

Attack

Physical
access

OBD_II

Bluetooth

Wi-Fi
USB port

Fig. 2. Attack models. Fig. 3. The effect of instruction sequence
length on the detection performance.

Practical IDS on In-vehicle Network Against Diversified Attack Models 461

We employ keras to implement a standard stacked autoencoder. The opti-
mization algorithm adopts an improved version of the stochastic gradient descent
(SGD) so that the learning rate can be updated automatically according to dif-
ferent learning environments and the convergence rate can also be speed up
simultaneously. Mini-batch is defined as 128. The model converges after itera-
tions of 500.

We use the first 500000 instructions in the attack-free data set to train the
autoencoder. The reason for using the attack-free dataset is to make the model
better understand the data distribution characteristics under normal conditions.
We view the output data from the third layer of the autoencoder as the CAN
bus instruction feature data are extracted from the autoencoder. An instruction
originally conveys 11 attributes, and is now reduced to 1 attribute by the autoen-
coder encoding feature, which greatly degrades the data set sample dimension.
The obtained features are different from those produced by principal compo-
nent analysis (PCA) [13]. In general, PCA extracts the main components of the
data and loses some of the information in the process. However, the autoencoder
abstracts data in a way that minimizes information loss, and the abstracted
data can better reflect the original data. The feature largely filters out irrelevant
information that contributes less to the classification, resulting in better per-
formance of the IDS. Unless otherwise stated, the instructions in the following
represent instructions that are already handled by the autoencoder.

5 Support Vector Machine Model and Abnormal State
Detection

In machine learning, support vector machines (SVMs) are supervised learning
models with associated learning algorithms that analyze data used for classi-
fication and regression analysis. In our context, the SVM attempts to find a
classification hyperplane to detect the abnormal state of the vehicle. We refer to
[14] for more details on SVM.

Given training vectors xi ∈ Rp i = 1, ..., n, in two classes, and a vector
y ∈ {1,−1}n, SVM mainly performs the calculation of the following tasks:

min
w,b,ζ

1
2
wT w + C

n∑

i=1

ζi

s.t. yi(wT φ(xi) + b) ≥ 1 − ζi

ζi ≥ 0, i = 1, ..., n

(2)

Its dual is
min

α

1
2
αT Qα − eT α

s.t. yT α = 0
0 ≤ αi ≤ C, i = 1, ..., n

(3)

462 J. Xiao et al.

where C > 0 is an n × n positive semidefinite matrix, Qij ≡ yiyjK(xi, xj),
K(xi, xj) = eγ(||x−y||2) is the kernel. Training vectors are implicitly mapped into
a higher (maybe infinite) dimensional space by the function K(xi, xj).

The decision function is: sgn(
∑n

i=1 yiαiK(xi, xj) + ρ).

6 Model Parameter Configuration

The instruction sequence is used as the input data of the SVM, and its length
affects the final detection results. If the length of the instruction sequence is too
short, then the computational consumption per second could be too large. In
addition, it is not easy to find the statistical distribution characteristics of the
data, resulting in unexpected detection accuracy. Conversely, due to errors in the
instructions of the autoencoder transition, the accumulated error will affect the
detection accuracy if the length of instruction sequence is too long. Therefore,
we need to determine the appropriate length of the instruction sequence. We
separately take the length of 25, 50, 100, 200 as the input sequence of the SVM
to find the appropriate sequence length. The experimental results are shown in
Fig. 3.

We take the instructions of 500000 to 2000000 in the attack-free dataset, and
Dos attack, fuzzy attack, and impersonation attack data set from 0 to 500000
instructions as sample data using the 10-cross-validation method for experi-
ments. The main method is to split the attack-free, Dos attack, fuzzy attack,
impersonation attack data sets into 10 groups, and 9 groups as the training set
and 1 group as the test set. We train the SVM model 10 times, and each group
is used as a test set to produce 10 detection results. Figure 3 shows the average
detection results.

Fig. 4. Attack-free data distribution. Fig. 5. Dos attack data distribution.

As shown in Fig. 3, a sequence length of 25 as the input sample does not
obtain good results, as too little data volume makes it impossible for SVM to
find a relatively good hyperplane in detecting the abnormal state. The sequence
of length 200 has a relatively large volume of data, which amplifies the autoen-
coder transform error and obtains relatively unsatisfactory result. The sequence

Practical IDS on In-vehicle Network Against Diversified Attack Models 463

length of 50 obtains a slightly better result than the sequence length of 100,
but the detection of a short sequence results in a multiplication of the computa-
tional requirements. In order to match the computational power of the in-vehicle
gateway, we select a sequence length of 100 as the input sample of the SVM.

We randomly select consecutive 100 instructions in the four data sets to
check their data distribution characteristics. Figure 4 indicates the distribution
of data under normal conditions. Figure 5 shows the data distribution under Dos
attack. It can be seen that most of the data gather around 0.78, and the data
distribution is quite different from the attack-free data.

Figure 6 shows the data distribution under fuzzy attack, with significantly
more data near 0 compared to attack-free data. Figure 7 shows the data distri-
bution under impersonation attack, with more data between 0.8 and 1 compared
to attack-free. Through the above analysis, it can be seen that the instruction
features extracted by the autoencoder have a tendency to distinguish the normal
state data and the abnormal state data. Better detection performance can be
obtained by further processing of the SVM model.

Fig. 6. Fuzzy attack data distribution. Fig. 7. Impersonation attack data dis-
tribution.

7 Experiments and Evaluations

The training process of the SVM is shown in Fig. 8. We take the instructions of
500000 to 2000000 in the attack-free dataset, and Dos attack, fuzzy attack, and
the impersonation attack data set from 0 to 500000 instructions as training set.

Simultaneously, we take the instructions of 2000000 to 2270000 in the attack-
free data set, and DoS attack, fuzzy attack, and impersonation attack data set
from 500000 to 590000 instructions as test set. The IDS performance evaluation
and testing steps are shown in Fig. 9.

464 J. Xiao et al.

Fig. 8. SVM training process. Fig. 9. The IDS performance evalua-
tion and testing steps.

We introduce as reference models the LSTM model [15] and the original
instruction SVM model that does not extract instruction features from the
autoencoder. At present, the LSTM detection predicted by time series is separat-
ing out common instruction ID for training and detection, and an LSTM model
can only detect common instruction ID. Since our detection model takes the
generated input sequence in the order of instruction generation, we do not train
the LSTM model based on the same instruction ID, but only train one LSTM
model in the order of instruction generation. The reason why LSTM is used as
a comparative experiment is that LSTM is a classic time series prediction algo-
rithm, and many improved algorithms use it as a prototype. The experimental
results are shown in Table 1, Fig. 10.

Table 1. Detection accuracy comparison.

Detection model Accuracy

Autoencoder + SVM 0.970

SVM 0.927

LSTM 0.500

Figure 10 shows the ROC curves of the three detection models that visually
explain their detection performance. The True Positive Rate (TPR) is the ratio
of finding the abnormal state correctly. The False Positive Rate (FPR) indicates
the rate that the detected model misjudges the abnormal state for actual normal
state. The area under the ROC curve represents the Area Under Curve (AUC)
value, and the greater the AUC, the better the performance of the model.

As shown in Fig. 11, compared with the other two methods, our proposed
IDS provides the best performance. The SVM model that does not extract fea-
tures from the autoencoder has a slightly lower performance. The input sequence
length of the SVM model is 1100, while that of the autoencoder + SVM model
is only 100. The experimental results show that the proposed detection model
not only improves the performance of the model but also reduces the computa-
tional complexity after shrinking the instruction attributes. The LSTM model
basically has no detection capability, as the instruction data of different IDs are

Practical IDS on In-vehicle Network Against Diversified Attack Models 465

too different, so that the LSTM model cannot find out the existing rules in a
limited time period.

Fig. 10. Detection ROC curve compar-
ison.

Fig. 11. Recall rates for different attack
data.

We also calculate the recall rates of SVM and autoencoder+SVM under
different attack types. The recall rate represents the rate at which the attack
data is correctly detected. The recall of each attack is shown in Fig. 11. It can
be seen that for the detection of impersonation attack, the autoencoder+SVM
method has better performance.

To evaluate the performance of IDS for unknown attack data, we remove
the impersonation attack data in the training set and only the impersonation
attack data is available in the test set. We choose the impersonation attack as
the unknown attack because the features of the impersonation attack are similar
to those of the attack-free and are more difficult to detect. The experimental
results show that the SVM and autoencoder + SVM for impersonation attack
detection precision is 1.

The FPR is one of the important evaluation indicators for vehicle IDS. If the
false alarm is too frequent for a driving vehicle, it will affect the driver’s driving
experience and might cause traffic accident. The FPR of SVM is 0.13 and the
FPR of autoencoder+SVM is 0.06.

Acknowledgement. The paper is supported by the National Natural Science Foun-
dation of China (Grant Nos. 61572192, 61971192) and the National Cryptography
Development Fund (Grant No. MMJJ20180106).

References

1. Woo, S., Jo, H.J., Lee, D.H.: A practical wireless attack on the connected car
and security protocol for in-vehicle CAN. IEEE Trans. Intell. Transp. Syst. 16(2),
993–1006 (2015)

2. Foster, I., Prudhomme, A., et al.: Fast and vulnerable: a story of telematic failures.
In: USENIX Workshop on Offensive Technologies (2015)

466 J. Xiao et al.

3. Li, X., Yu, Y., Sun, G., et al.: Connected vehicles’ security from the perspective of
the in-vehicle network. IEEE Netw. 32(2), 58–63 (2018)

4. Groza, B., Murvay, S.: Efficient protocols for secure broadcast in controller area
networks. IEEE Trans. Ind. Inform. 9(4), 2034–2042 (2013)

5. Muter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In:
Proceedings of IEEE Intelligent Vehicles Symposium (IV), June, pp. 1110–1115
(2011)

6. Ji, H., Wang, Y., Qin, H., Wang, Y., Li, H.: Comparative performance evaluation of
intrusion detection methods for in-vehicle networks. IEEE Access 6, 37523–37532
(2018)

7. Larson, U.E., Nilsson, D.K., Jonsson, E.: An approach to specification-based attack
detection for in-vehicle networks. In: 2008 Intelligent Vehicles Symposium, pp. 220–
225. IEEE (2008)

8. Wang, C., Zhao, Z., Gong, L., et al.: A distributed anomaly detection system for
in-vehicle network using HTM. IEEE Access 6(99), 9091–9098 (2018)

9. Hu, W., Liao, Y., Vemuri, V.R.: Robust anomaly detection using support vector
machines. In: Proceedings of International Conference on Machine Learning, pp.
282–289 (2003)

10. Lee, H., Jeong, S.H., Kim, H.K.: OTIDS: a novel intrusion detection system for in-
vehicle network by using remote frame. PST (Privacy, Security and Trust) (2017)

11. Cho, K.-T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion
detection. In: Proceedings of USENIX (2016)

12. Cozzolino, D., Verdoliva, L.: Single-image splicing localization through
autoencoder-based anomaly detection. IEEE International Workshop on Informa-
tion Forensics and Security. IEEE (2017)

13. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev.
Comput. Stat. 2(4), 433–459 (2010)

14. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

Ultragloves: Lowcost Finger-Level
Interaction System for VR-Applications
Based on Ultrasonic Movement Tracking

Si Li, Yanchao Zhao(B), and Chengyong Liu

Nanjing University of Aeronautics and Astronautics, Nanjing, China
{lisinuaa1994,yczhao}@nuaa.edu.com

Abstract. The VR technology is undergoing a series of evolution,
including not only the higher video quality but also more fluent human-
computer interaction operations. Current solution mainly use camera-
based or specified equipment-based hand gesture recognition, where the
former suffers from low accuracy and limited interaction capacity while
the latter suffers from expensive cost. In this paper, we propose Ultra-
gloves, which is a high accurate finger-level and low cost gesture inter-
action system for VR and smartphones. Specifically, it is enabled by the
gloves implanting multiple microphones with which the ultrasonic signal
are played. In the VR or mobile devices, the hand gestures are rebuilt
with the recorded FMCW-signal and the hand motion model. Further-
more, to improve the accuracy and calculation speed, we propose a par-
allel processing algorithm for the signals, which could greatly accelerate
our solution to real time manner even in COTS smartphones. The real
implementation based experiments shows that, Ultragloves could capture
the gestures in the accuracy of 2 cm while the parallel algorithm could
accelerate the solution with about 3 times.

Keywords: Ultrasonic tracking · Multi-finger gesture capture ·
System implementation

1 Introduction

1.1 Background

VR (Virtual Reality) is envisioned to be the dominant displaying and interaction
technology that bridge the gap between virtual and real world. It basically gen-
erates an interactive 3D dynamic view and can provide the user with an immerse
experience where user can have a virtual space view, auditory, tactile and other
sensory simulation in a full range of embedded virtual environment. VR is not
only applied to the field of human-computer interaction, but also has a large
number of applications for CAD, technical education and training institution.

Despite its bright future and fast development in the high quality display,
the interaction technology in VR is still facing challenges such as low recognition
accuracy and high recognition cost in gesture recognition, which greatly increase
the device expense and compromise the user experience to a large extent (Fig. 1).
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 467–481, 2020.
https://doi.org/10.1007/978-3-030-38961-1_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_41&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_41

468 S. Li et al.

Fig. 1. VR glove usage scenario and the processing flow of the system.

1.2 Limitation of State-of-the-Art

Both research and industry community endeavored to improve the interaction
experience for VR systems, the solutions of which can be mainly divided into
two categories: device-free and device-wearing.

Device-Free Method. Among the devices-free methods, the techniques are
mainly divided into visual-based and acoustic signal-based solutions.

In vision-based recognition, such as Leap Motion [3], through the parallax,
the depth of the space is obtained. Leap Motion uses this principle to identify
the movement of the hand within the range by capturing the difference between
the images captured by the two cameras. Recently, in [6], the authors use visual
and acoustic signals together to make it possible to detect inputs in the air.
However, vision based solution suffers from limited recognition range and poor
performance in multi-finger tracking scenario.

Another tack of solution uses acoustic signal to capture the hand movements,
such as EchoTrack [1], which utilizes the motion of the palm near the echo recog-
nition device; LLAP [9]and Strata [11] measure the phase change caused by the
motion of the hand on the transmitted sine wave; FingerIO [5] measures the
single-finger motion near the device by the echo of the OFDM signal; UltraGes-
ture [4] uses sound signal driven model training to detect gestures; QGesture
[10] and Venkatnarayan’s research [8] use the wifi to measures the Gesture.

Although device-free solutions have advantage in the interaction experience,
none of them can achieve fine-grained multi-finger identification, as the move-
ment of the multi-finger is too complicated with multiple degrees of freedom
while the reflection of signal suffers from multipath effect and thus hinder to
identification of multiple objects.

Device-Wearing Method: The main focus of this track is on how to accurately
measure the movement of the multiple components of the wearing devices so as
to extract the gesture in a fine-grained manner.

Typically, Dison Technologies’ Synertial [7] finger-capture system captures
the movement of the wearer’s hand through an inertial measurement unit (IMU)

Ultragloves: Lowcost Finger-Level Interaction System for VR-Applications 469

on the glove; 5DT magnetic resonance imaging(MRI) gloves measure the move-
ment of the glove through magnetic resonance techniques. The SoundTrak [12]
study uses a ring with a mini-speaker to acquire the motion of the ring by mea-
suring the phase of the motion through the matrix of the microphone; In [7],
expensive IMUs and complex initialization were used. However, MRI not only
requires expensive equipment, but also requires a magnetic resonance environ-
ment. In [12], the device is still not applicable to multi-finger scenarios.

1.3 Challenges

In summary of the existing work, gesture recognition in the VR field mainly has
challenges such as high recognition cost, large amount of calculation, and lack
of multi-finger movement capture support in mobile devices. Specifically, they
could be summarized as follows.

– High wearable equipment cost: VR technology often requires additional
equipment which are specifically designed and often very expensive. Plus, the
redundant equipment is cumbersome and inflexible, which seriously reduces
the user experience.

– Low recognition accuracy: The positioning error of the low-cost device
node is large, and it is impossible to accurately recognize the finger-level
movement and reduce the user experience.

– Lack of Multi-finger movement capture: Multi-finger movement support
is the milestone to enable fully VR interaction. How to capture multi-finger
motion with portable equipment is indispensable and urgently.

1.4 Our Approach and Contributions

To tackle above challenges, we proposed a comprehensive solution consisting of
following components.

– For issue of redundant and expensive equipment, we designed a glove implant-
ing multiple speakers in the crucial position, with which the motion model of
the finger could be obtained by measuring the motion trajectory of the nodes.
This glove is very light and agile, thus rarely affects the user experience.

– Considering that the accuracy of inexpensive gyroscopes and accelerometer
nodes is almost ad-hoc, we chose the microphone node as the measurement
sensors. Inspired by the radar system, we chose the FMCW as the signal to
measure the location of the microphone. It basically compares the frequency
difference between the transmitted frequency modulated continuous wave and
the received signal. Then, the distance from the microphone to the sound
source is calculated by converting the frequency difference into a ToA.

– To achieve multi-finger motion capture in commercial mobile devices, we first
draw the trajectory of a single node by periodically measuring the position
of the node on the glove. Then we proposed an parallel algorithm to fully
utilize the multicore nature of the mobile devices and accelerate the system
to a realtime manner.

470 S. Li et al.

The contributions of our work could be summarized as follows:

– We propose and implement a prototype system for capturing finger-level ges-
tures for VR and smartphone devices based on ultrasonic ranging techniques.

– Compared to the previous study, our system could achieve acceptable accu-
racy with only low end speaker nodes and low end mobile processors. With
this, our technique shows great potential for severing as an substitute of the
other interaction techniques, as the accuracy could be improved by upgrading
the hardware without change our technical frameworks.

– Compared to current acoustic signal-based studies, our research manage to
capture the multiple finger gestures. At the same time, to achieve both fine-
grained and realtime interaction, we design a parallel algorithm to measure
and process signals recorded from multiple speaker nodes in a realtime man-
ner. This algorithm gives great potential for the future when we can increase
the density of speaker nodes so as to capture finer-grained interaction ges-
tures.

2 Modeling and Preliminaries

In this section, we introduce our basic positioning model and preliminaries.

2.1 Application Model

We envision that our system is mainly used for interactive assistance of VR
systems, including smartphone VR systems and conventional VR systems. In
smartphone VR system, a mobile phone generally has a plenty of speakers. By
using these speakers to send inaudible ultrasound that does not affect the user,
we can use Ultraglove to interact in the VR world. In conventional VR systems,
ultrasound can also be played through the bypass of the device’s speakers for
the positioning of our system.

In these scenarios, we can enrich the user’s interaction with the VR world
without affecting the user experience.

2.2 One-Dimensional Positioning Model

To locate the position of the node in space, we first need to measure the one-
dimensional distance from the node to the sound source.

The basic idea is as follows. The distance from the node to the source is
measured using the FMCW(Frequency-Modulated Continuous Wave) technique.
FMCW technology has mature applications and high-precision ranging in the
radar field. In FMCW technology (as shown in Fig. 2), it changes its operating
frequency during the measurement. The transmitted signal is shown as a solid
line in Fig. 2. From the initial frequency f0, the frequency increases with a slope
B/T over time. The received signal is shown in the dotted line in Fig. 2. At
time t0, the frequency of the transmitted signal is f2, and the frequency of the

Ultragloves: Lowcost Finger-Level Interaction System for VR-Applications 471

received signal is f1. The difference between the two frequencies is obtained by:
�f = f2 − f1. By dividing by the frequency change slope B/T, we can get:

�t = �f × T/B = (f2 − f1) × T/B, (1)

where �t is the time from the sound source to the node. By multiplying the
speed of sound, the distance from the source to the node can be obtained.

Fig. 2. The frequency curve of the original waveform and the recorded waveform of
the FMCW.

2.3 Three-Dimensional Positioning Model

An one-dimensional distance alone cannot locate a node’s position in space. In
order to locate the position of the node in space, we use a plurality of sound
sources for positioning, as shown in Fig. 3.

Fig. 3. Schematic diagram of a three-
position model.

Fig. 4. Schematic diagram of measuring
the node to sound in a three-dimensional
model

472 S. Li et al.

For one speaker node on the Ultraglove, we can get its distance to all sources
using the one-dimension technique. After obtaining the distance from the three
sources to the node (taking three speakers as an example), we use three sound
sources as the center of the sphere and the distance is the radius. Then we will
get three balls and there are two intersections between the three balls. In order
to select the correct position from the position in these two spaces. We choose
an initial position in the space. At the beginning of the system, the node is in its
initial position. We rely on the near and low speed criteria to select the location
near the previous location as the correct location.

Assuming that the location of the sound source and the initial position of
the node are known, then we model it as in Fig. 4. Here, S1, S2 and S3 represent
three sound sources, and S1(x0, 0, 0), S2(0, 0, z0), S3(0, y0, 0), O1 represents the
coordinates of initial location. H is a node, the coordinates are (x, y, z), and the
distance to three sound sources is D1, D2, D3. The coordinates of the point H
can be obtained by solving the following equations:

⎧
⎨

⎩

D1 =
√

(x − x0)2 + y2 + z2,

D2 =
√

x2 + y2 + (z − z0)2,
D3 =

√
x2 + (y − y0)2 + z2.

(2)

After obtaining the coordinates of the node at the current time, we compare it
to the coordinate position of the previous moment (or initial position). Then we
can determine that the position with less movement is the correct position.

3 Technical Details

In this section, we will provide a detailed description of the specific implemen-
tation steps of the system.

3.1 System Overview

The basic idea of our prototype system is to measure the position of the nodes
that fit on the surface of the hand in space. This represents the position of the
hand in space. As shown in Fig. 5, the system mainly includes the following steps:

Initialization: In the initialization phase, we need to prepare the signal for
FMCW ranging. The initial frequencies of the three main sources we selected
were 18 kHz, 19.5 kHz and 21 kHz. The frequency width is B = 1 kHz and the
sweep time is T = 5000points. The sampling rate we use is FS = 48 kHz. Then
we initialize the microphone, speaker and place the speaker in the initial position.
And we place the node of the ultraglove at the initial position for 1 s.

Recording the Signal: After initializing the original waveform, speaker and
microphone, we use multiple speakers to play the signals in the respective bands.
Then we need to keep all the microphone nodes in the recording state and record
all the microphones at the same time.

Ultragloves: Lowcost Finger-Level Interaction System for VR-Applications 473

Initialization
Signal

Generation

Sensing
Play and Record

the signal

Segmentation
FMCW

measures 1-D
distance

3D
model

Hand movement
track

Motion trajectory

multiple
channels

time series

Fig. 5. System overview of ultraglove.

Segmentation: After recording each microphone separately, we cut the window
of the recorded signal. The recorded signal contains a mix of signals from all
speakers.

Measuring 1-D Distance: After adding the initial translation, we obtain the
sinusoidal waveform of the frequency difference between the original signal and
the received signal by multiplying the original signals of the different speakers.
Then we perform a discrete Fourier transform on it and measure the position of
the frequency response peak that is less than half the original signal bandwidth.
The distance from the node to the source of the original signal is measured by
measuring the frequency difference between the original signal and the received
signal.

Calculating 3D Position: After obtaining the 1−D distance from the node to
all sources, we can find the position of the node in space through the 3−D model.
Although in the context of the three sound sources, the resolved coordinate
points have two points that are spatially symmetric. But since the initial position
is known, we can choose one of the solutions by the continuous motion trajectory.

Fig. 6. A schematic diagram of the node on the glove, the red dot represents the
microphone node on the glove. (Color figure online)

474 S. Li et al.

Motion Trajectory and Hand Movement Track. By periodically obtaining
the coordinates of the node in the coordinate system, we can obtain a series of
point coordinates arranged in time. Although our periodic gap is large, and the
feedback frequency is around 9 Hz per second. However, since the movement of
the hand is not too fast, we can still restore the movement trajectory of the
human hand by connecting the discrete coordinate points.

According to the user’s needs, we can deploy multiple nodes on each finger
of the glove, as shown in Fig. 6. We know the discrete motion coordinate system
of each node which constitutes the user’s finger through the directed coordinate
points of the nodes on the same finger. Through the coordinate points of the
time series, we can fit the movement of the hand.

3.2 Distance Measurement

We modulate the signal sent by the FMCW as follows:

Y (t) = cos(2π × f(t) × t), (3)

where f(t) is expressed as follows:

f(t) =
B

2T
× t + f0. (4)

Here B is the frequency width; T is the period length; f0 is the initial frequency.
The received signal is:

R(t) =
N∑

k=1

cos(2π × f(t − �tk) × t). (5)

And this includes echoes of all multipaths. In order to calculate the distance, we
need to get the �t first. According to the trigonometric formula, we multiply
the received signal by the original signal:

I(t) = Y (t) × R(t) = cos(2π × f(t) × t) ×
N∑

k=1

cos(2π × f(t − �tk) × t) (6)

According to the following trigonometric function, we simplify one of the paths.

cos(α) × cos(β) =
cos(α + β) + cos(α − β)

2
(7)

Since we are using high frequency signals, the high frequency part is filtered out,
and the rest are as follows:

I(t) =
N∑

k=1

cos(2π × t × �fk). (8)

Although I include multipath, the energy of others is much smaller than the
energy of the direct path. By measuring the frequency component of the most

Ultragloves: Lowcost Finger-Level Interaction System for VR-Applications 475

energy in I, �f can be obtained. Thereby we obtain fly time �t. Then we
multiply the speed of sound vs to get the distance D from the source to the
microphone node:

D = vs × �t (9)

We use the above method to find the distance. Therefore, we need to get the
signal emitted at the current moment and the exact frequency at which the
waveform needs to be solved.

If the system is integrated, it is not difficult to obtain the signal transmitted
at the current moment. But our system is a separate system, we will use the
following way to get the signal transmitted at the current time.

1. After turning on the system, user place the node at the initial position Dinitial

where the distance is known in advance for a certain period of time.
2. After taking a signal R of several period, the signal is multiplied by the

original transmitted signal to obtain the signal I.
3. The Fourier transform is performed on the signal I to convert the original

signal from the time domain to the frequency domain. In the 0 to B frequency
band, we find the highest frequency fpeak.

4. We get the amount of translation Movinitial = fp×T
B .

The period we chose was T = 5000 sample points. So the coverage is about
35 m. After solving this translation Movinitial, we plus T/4 to get Mov. This
will ensure that the measured fp will not jump from 0 to B/2 during the run.

To get the exact frequency, we use a discrete Fourier transform at the end
of the zero. After we have obtained the exact frequency of fpeak, we obtain the
distance by:

D = vs × (fpeak − Mov)/B × T + Dinitial (10)

3.3 Parallel Acceleration for Multi-finger Signal

In our prototype system, simultaneous recording of multiple microphone nodes is
required. So we also introduce parallel processing of signals recorded by multiple
microphones.

Microphone
node-n

Recording
thread n

Recording
data

container n

Processing
thread n

Processing
thread n-1

Processing
thread n-2

Processing
thread n-3

Distance
n-3

Distance
n-2

Distance
n-1

Microphone
node-1

Recording
thread 1

Recording
data

container 1

Processing
thread 1

Processing
thread 1-1

Processing
thread 1-2

Processing
thread 1-3

Distance
1-3

Distance
1-2

Distance
1-1

Fig. 7. Parallel processing frame schematic.

476 S. Li et al.

Our processing framework is shown in Fig. 7. We use multiple threads for
parallel processing. Each microphone corresponds to one thread and this thread
is only responsible for recording a corresponding microphone and storing the
recorded signal in a corresponding container. There are also a large number of
processing threads in the system. These processing threads are shown in the
figure. In our processing, there is a rate matching algorithm, as shown in Algo-
rithm1. This algorithm ensures that the distance we are getting is the latest
data.

Algorithm 1. Rate Matching algorithm
Input: Stack for storing the recording signal window. The latest data is at the top of

the stack. The stack lock flag
Output: Data used to calculate distance.
1: last = list()
2: while isempty(stack) do
3: wait for a short time.
4: end while
5: while flag == False do
6: wait for a short time.
7: end while
8: flag = False %add lock to the stack
9: if size(stack) >= 2 then

10: now = pop(stack)
11: last = pop(stack)
12: clear(stack)
13: else if size(stack) == 1 then
14: last = now %last now is the last window of signal
15: now = pop(stack)
16: end if
17: flag = True %unlock the stack
18: Data = connect(last, now)
19: return Data

The thread then adds the data to the pre-allocation value Mov and assigns
the data to the child thread of the thread. Each child thread calculates only the
distance between one microphone node and one sound source.

Such a framework is mainly to match the calculation rate and the record-
ing rate. Our prototype system not only supports large VR systems, but also
supports smartphone VR systems. The computing power of smartphones is not
strong and the calculation rate is slow. Therefore, we only consider the latest
data for each calculation and then clear the old data. We use this method to
reduce the amount of calculation.

3.4 3D Position Measurement

In order to get the position in the three-dimensional space. We need to know
the distance between the node and the sound source at the same time. So we

Ultragloves: Lowcost Finger-Level Interaction System for VR-Applications 477

use multi − channel FMCW . We call the signal sent by each sound source a
channel. Each channel uses a different frequency and does not intersect each
other. We put the signals of all channels into the same spectrogram in Fig. 8. We
choose B = 1000 Hz, T = 5000 points. At a sampling rate of 48 kHz, the period
is approximately 0.1 ms. The bright band between 18 kHz and 19 kHz on the
map is emitted by a sound source. The period is 5000 point. After receiving the
signal, by multiplying the original signal of each sound source, the spectrum is
shown in Fig. 9.

0 5 10 15 20
Frequency (kHz)

20

40

60

80

100

120

140

160

180

200

Ti
m

e
(m

s)

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Fig. 8. Spectrogram of multiple sound
sources. Put the frequencies of the
three channels into the same spectrum.

0 5 10 15 20
Frequency (kHz)

20

40

60

80

100

Ti
m

e
(m

s)

-100

-80

-60

-40

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

200 400 600 800 1000 1200 1400 1600 1800 2000
Frequence(Hz)

0

500

1000
Am

pl
itu

de

Fig. 9. The figure above is the spectrum
diagram, and the figure below is the dia-
gram after the signal is Fourier trans-
formed.

With a sound speed of 343 m/s, our measurement range is approximately
34.3 m. Since we added the T/4 offset value to the original signal, the measured
peak value falls within the cell near B/4 when the user moves. The distance
corresponding to B/4 is about 8 m. After the received signal R is multiplied
by a certain channel, as shown in the following figure of Fig. 9. Between 0 and
1000 Hz, we observed a large peak at about 260 Hz. After subtracting the initial
translation value of 250 Hz, 10 Hz is obtained. By calculation, the distance is
35.7 cm. Further observation, we can find that there are two peaks between 1000
and 2000 Hz, which are the frequency difference between the original signal of the
current channel and the received signal of the remaining channels. These signals
do not interfere with our measurements. To reduce the amount of computation,
we can choose not to filter. In the middle of 5000 to 10000 Hz, there are three
bright bands that are inversely related to the original signal. The reason for
these signals is that at a sampling rate of 48 kHz, the frequency of the original
signal and the received signal is greater than the maximum frequency that can
be sampled. The frequency is 48 kHz − (α + β) [2].

Therefore, we only need to multiply the original signal of each channel and
measure the frequency corresponding to the peak value of B/2, so that the
distance from the node to the sound source corresponding to the channel can be
measured.

478 S. Li et al.

4 Experiment and Evaluation

4.1 Environment

Hardware: We validated our prototype system with five microphones and two
separate speakers. Both the microphone and the speakers are connected to the
PC via a USB sound card. The microphone uses an electric microphone. The USB
sound card uses a VENTION sound card. The speaker is the Philips SPA5270.

Environment Setting: Our programming environment is python3.6.0 on win-
dows 10. We also use the Pyaudio library in python. It allows simultaneous calls
to multiple microphones and speakers. The experimental site was selected in a
laboratory with a large table in the middle of 5 * 6 m2. We choose the sound
speed as 343 m/s.

4.2 Experiment Setup and Evaluation of Results

In this subsection, we will conduct a series of experiments to verify the feasibility
and accuracy of our prototype system.

Distance Measurement. This experiment is mainly to verify the accuracy
of distance measurement in our system. In this experiment, we only used one
microphone and speaker. And the modulated signal is played using a single
channel. We set T = 5000, B = 1000, f0 = 19500.

0 1 2 3 4 5 6 7 8 9 10
Time/s

0

20

40

60

80

D
is

ta
nc

e/
cm

0 1 2 3 4 5 6 7 8 9 10
Time/s

0

20

40

60

80

D
is

ta
nc

e/
cm

(4.8,5)

(2.2,60)

Fig. 10. The picture above is the
distance measured by our approach.
After passing the sliding window fil-
tering algorithm, the following figure is
obtained.

0 5 10 15 20 25 30
X-axis/cm

0

5

10

15

20

25

30

Y
-a

xi
s/

cm

Start

End
GroundTruth
Our approach

Fig. 11. The result of 2D trajectory track-
ing.

The results of the first experiment are shown in Fig. 10. The above figure
shows the distance measured by our approach. It can be seen that the distance

Ultragloves: Lowcost Finger-Level Interaction System for VR-Applications 479

measurement is not smooth. Therefore, we perform sliding window filtering on
the obtained distance. As we can see from the figure, the node starts at a position
15 cm from the sound source position. At 2.2 s, it moves to 60 cm. Then it closes
to the sound source, 4 cm away from the sound source to the position of 5 cm.
And it keeps away from the sound source and moves to 35 cm. Finally it moves
to 20 cm.

2D Trajectory Tracking. Then, we set T = 5000, B = 1000, f0 = 18000, f1 =
19500 in order to further verify that our method can accurately obtain the
position of the node on the 2D plane. In this experiment, we wore nodes and
moved along the trajectory printed on the grid paper.

In the 2D tracking experiment, the results are shown in Fig. 11. According
to the experimental requirements, we follow the circular motion prepared in
advance. In the experiment, the maximum error measured was 2.5 cm.

3D Position Measurement. We then verified the accuracy and robustness
of the 3D position measurement. Single-node and multi-speaker with multi-
channels were used in the experiment. We set T = 5000, B = 1000, f0 = 18000,
f1 = 19500, f2 = 21000. And we place a single microphone node in a pre-known
position in space, as shown in Fig. 12, comparing the measured value of that
position with the location of the exact value. The nodes we prepared in advance
have a total of 4 × 4 × 4 points.(From 5 cm to 35 cm, one point per 10 cm).

0
Speaker1

10

0

20

30

Speaker2

Z-
ax

is
/c

m

40

50

20 Speaker3

Y-axis/cm

40

X-axis/cm

05101560 20253035404550

Fig. 12. The ground-truth of the third
experiment.

0

10

Speaker1

0

20

30

Z-
ax

is
/c

m

40
Speaker2

50

20

Y-axis/cm

Speaker3

40

X-axis/cm

05101520253035404550

Fig. 13. The measurement position of the
third experiment.

In the third experiment, after we opened the playback system, we placed
the node at the coordinate position of the previously known position as shown
in Fig. 13. Then we start measuring the position. The maximum error of the
coordinate position we measured from the real coordinate is 3.2 cm.

3D Moving Tracking. We further increase the difficulty of the experiment.
We want to draw in the three-dimensional space around the sound source and
track the motion of the nodes.

480 S. Li et al.

In our experiments, after playing the preset modulation sound on multiple
speakers, the node is initialized, and then the wearing node moves in space. The
results of the experiment are shown in Fig. 14. In the experiment, during the
initialization phase, we wore the node at the initial coordinate position (10, 10, 0).
Then we drew a circle in the space. As shown in the figure, it can be clearly seen
that a circular motion trajectory starting from the coordinate position (10, 10, 0).

Speaker2

Speaker3
start

Speaker1

00
20

X-axis/cm
0

10Z-
ax

is
/c

m 20

30

10
Y-axis/cm

20 4030

Fig. 14. The result of 3D
trajectory tracking.

0 10 20 30
X-axis/cm

0

5

10

15

20

25

30

Y
-a

xi
s/

cm Start

Start

End

End finger-1

finger-2

End
End

30

Start
Start0

5

0

10

15

20

20

25

Y-axis/cm
10

X-axis/cm
1020 30 0

finger-1

finger-2

Fig. 15. The trajectory of two fingers moving
in 3D space. The left figure is a top view and
the right figure is a 3D view.

Muti-node Tracking. In order to verify the performance of multiple fingers
gesture tracking and if it will affect our processing time and feedback frequency,
we designed following experiments. We wear all the nodes, starting from the
initial position and moving in space. Then, we compare the time spent on multi-
node processing threads with the time spent on a single node. In the experiment,
we wore a prototype system and moved in space. In order to calculate the average
processing time, we collected runtime data for multiple experiments. The pro-
cessing time of experiment is shown in Table. 1. In the experiment, the motion
trajectory of the two nodes is shown in Fig. 15. From the top view, the experi-
menter wears a node to do the spiral motion. From the 3D view, the hand moves
continuously upward in the Z-axis direction.

Table 1. Time to process with 5000 points duration.

Initialization time Processing time

Fast Fourier transform Distance calculation Moving average Total

2.2144 s 8.40ms 1.22ms 0.35ms 9.97ms

Through statistics, the initialization phase takes about 2.2 s. After the ini-
tialization phase, our average processing time is stable at about 10 ms. We have
5, 000 points per time. At a sampling rate of 48 kHz, it is approximately 104.2 ms.
We can track the movement of the finger at the feedback frequency of 10 times
per second by prioritizing the principle of processing the latest data. With our
rate matching design, even on devices with insufficient computation, we will only
sacrifice the recognition frequency without causing much delay.

Ultragloves: Lowcost Finger-Level Interaction System for VR-Applications 481

5 Conclusion

In order to enrich the VR input method, we proposed wearable VR gloves, Ultra-
graves. This is a prototype system capable of active acoustic sensing for multiple
finger tracking based on ultrasonic signals. The prototype system consists of a
plurality of microphone nodes with a plurality of sound sources and a processing
unit. The system plays the FM signal of different frequency bands through the
sound source and records the signal through the microphone node. At the same
time, the processing unit performs parallel processing. We verified the feasibility
and performance of the prototype system. In our experiments, the error was
about 2 cm at rest. When moving, the error is about 3.2 cm. The frequency of
measurement is approximately 5 times per second. Therefore, we believe that
we can provide a low-overhead and low-cost VR interaction method for smart-
phones. In the future, if higher sampling rates are supported with better devices,
our accuracy will be further improved.

References

1. Chen, H., Li, F., Wang, Y.: EchoTrack: acoustic device-free hand tracking on smart
phones. In: Proceedings of IEEE INFOCOM, pp. 1–9. IEEE (2017)

2. Chen, Y., Wei, G., Liu, J., Yong, C.: Fine-grained ultrasound range finding for
mobile devices: sensing way beyond the 24 khz limit of built-in microphones. In:
Computer Communications Workshops (2017)

3. Leap: Leapmotion (2019). https://www.leapmotion.com/
4. Ling, K., Dai, H., Liu, Y., Liu, A.X.: Ultragesture: fine-grained gesture sensing and

recognition. In: Proceedings of IEEE SECON. IEEE (2018)
5. Nandakumar, R., Iyer, V., Tan, D., Gollakota, S.: FingerIO: using active sonar

for fine-grained finger tracking. In: Proceedings of the ACM CHI, pp. 1515–1525.
ACM (2016)

6. Sun, K., Wang, W., X. Liu, A., Dai, H.: Depth aware finger tapping on virtual
displays, pp. 283–295, June 2018. https://doi.org/10.1145/3210240.3210315

7. Discuz! Techology: Synertial (2019). http://www.disonde.com/
8. Venkatnarayan, R.H., Page, G., Shahzad, M.: Multi-user gesture recognition using

WiFi. In: Proceedings of ACM Mobisys, pp. 401–413. ACM (2018)
9. Wang, W., Liu, A.X., Sun, K.: Device-free gesture tracking using acoustic signals.

In: Proceedings of ACM Mobicom, pp. 82–94. ACM (2016)
10. Yu, N., Wang, W., Liu, A.X., Kong, L.: QGesture: quantifying gesture distance

and direction with WiFi signals. Proc. ACM Ubicomp 2(1), 51 (2018)
11. Yun, S., Chen, Y.C., Zheng, H., Qiu, L., Mao, W.: Strata: fine-grained acoustic-

based device-free tracking. In: Proceedings of the 15th Annual International Con-
ference on Mobile Systems, Applications, and Services, pp. 15–28. ACM (2017)

12. Zhang, C., et al.: Soundtrak: continuous 3D tracking of a finger using active acous-
tics. Proc. ACM Ubicomp 1(2), 30 (2017)

https://www.leapmotion.com/
https://doi.org/10.1145/3210240.3210315
http://www.disonde.com/

Adaptive Detection Method for Packet-In
Message Injection Attack in SDN

Xinyu Zhan1,2, Mingsong Chen1,2, Shui Yu3, and Yue Zhang1,2(&)

1 Shanghai Key Laboratory for Trustworthy Computing,
East China Normal University, Room 308, Math Building, No. 3663,

North Zhongshan Rd., Shanghai 200062, China
51174500153@stu.ecnu.edu.cn,

{mschen,yzhang}@sei.ecnu.edu.cn
2 Software/Hardware Co-design Engineering Research Center of MOE,

East China Normal University, Shanghai, China
3 School of Computer Science, University of Technology, Sydney, Australia

shuiyu@uts.edu.au

Abstract. Packet-In message injection attack is severe in Software Defined
Network (SDN), which will cause a single point of failure of the centralized
controller and the crash of the entire network. Nowadays, there are many
detection methods for it, including entropy detection and so on. We propose an
adaptive detection method to proactively defend against this attack. We establish
a Poisson probability distribution detection model to find the attack and use the
flow table filter to mitigate it. We also use the EWMA method to update the
expectation value of the model to adapt the actual network conditions. Our
method has no need to send additional packets to request the switch information.
The experiment results show that there is 92% true positive rate in case of attack
with random destination IP packets injected, and true positive rate is 98.2%
under the attack with random source IP packets injected.

Keywords: Software-Defined Network � Packet-In message injection attack �
Controller security � Adaptive detection

1 Introduction

Software-Defined Networking (SDN) is a new type of network architecture that pro-
vides flexible network management with the separation of the data and control planes.
SDN is flexible, programmable and maintainable, so that it has been widely studied for
its applications in backbone networks, data centers, enterprise networks, access net-
works, wireless networks, and etc. [1, 19]. The wide variety of use cases makes SDN
security a serious concern [2, 17, 18]. Several main potential security issues have been
presented in Kreutz’s [3] research, such as attacks on the vulnerabilities in controllers,
attacks on control plane communications, forged or faked traffic flows, and so on. After
the controller is attacked, due to its centralized characteristics, it will cause different
degrees of defects in the controller, switch, attacked host, and the entire network.

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 482–495, 2020.
https://doi.org/10.1007/978-3-030-38961-1_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_42&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_42

In the communication process of SDN, the OpenFlow protocol is responsible for
maintaining communication through a secure channel. When a new flow occurs on the
network, the switch cannot find a match entry in the flow table, and then sends a
Packet-In message to query the controller for the related forwarding policy. The
controller needs to process the Packet-In message sent by the switch. If the attacker
injects a large amount of malicious data packets, the switch cannot find a match of
these new packets, and then sends Packet-In messages to the controller, thereby trig-
gering the Packet-In message injection attack. A massive injections of such new
packets to the network will quickly choke the processing of the controllers [22]. If the
attack continues, it will lead to topology spoofing, controller overload, etc., so that the
controller can’t handle normal packets. A single point of failure, even the embarrass-
ment of the upper application probably occurs. Based on the analysis, the Packet-In
message injection attack is concluded with two important features: burst large traffic
rate and traffic rate deviation [5].

To solve to these problems, this paper proposes a Packet-In message Security
Method (PSM) that combines the advantages of multiple methods to detect and defend
against Packet-In message Injection attack.

The rest of the paper is structured as follows. Section 2 presents the related survey
that includes the defenses for controller. Our proposed method to detect and mitigate
the Packet-In message injection attack, is described, in detail, in Sect. 3. Section 4
shows the results of experiment of our proposed method. Finally, Sect. 5 concludes the
paper with future enhancements.

2 Related Work

With the security defense research for controllers, detection and defense methods for
various vulnerabilities and attacks are proposed. Packet-In message injection attack can
be triggered by multiple vulnerabilities, such as topology spoofing, packet flooding,
and DDoS attacks.

The controller has a host tracking function that relies on Packet-In messages and
does not require any verification. The attacker sends a malicious message to the switch,
spoofing the controller that the host has moved to a physical location which controlled
by the attacker. It’s called topology spoofing. To defend against this attack, the
TopoGuard [6] tool was proposed to verify the authenticity of the host migration by
verifying whether the Port Down signal is present. However, this method can’t handle
the case of a large number of Packet-In message flooding.

For packet flooding attacks, PacketChecker [7] is proposed. It’s a defense strategy
based on Packet-In message legality detection. According to the whitelist, the method
can verify the legality of a Packet-In message and determine whether the message
should be forwarded to the controller. However, this method does not consider the case
where an attacker sends messages with forged IP address.

Among the current security problems, one of the most urgent and hardest security
issues is Distributed Denial of Service (DDoS) [8, 10, 15]. It is easy to start, hard to
defend and trace [4, 9]. Many attack detection methods have been proposed for DDoS
attacks. Methods based on statistics and threshold detection have also been proposed.

Adaptive Detection Method for Packet-In Message Injection Attack 483

For example, a method [16] calculates the entropy value of the target IP and sets the
threshold to judge whether the stream characteristics in the network are normal, then
achieves early detection of the attack. This method cannot simultaneously target
topology attacks and flooding attacks, and does not propose related mitigation strate-
gies. More targeted detection methods [11–13], are to collect the flow information and
extract the relevant features, then calculate the corresponding entropy value and per-
form threshold detection. They also release the mitigation strategy. However, the
methods usually require a large amount of information to be collected, which is
expensive. With the development of machine learning, some methods combined with it
also have certain reference. A method [5], which a controller uses Bayesian networks to
classify switches to identify switches with potential attack risks. Use a special flow
table when mitigating attacks. This method is susceptible to the complexity of the
topology.

3 PSM Method

The specific module of the PSM method mainly consists of four parts: a model-building
module, a message-filtering module, a detection module, and a defense module. In the
PSM, firstly establish a probability detection model and set a threshold. The controller
models the historical sample according to the number of Packet-In messages, combined
with the set parameters, and then sets a whitelist filtering forged IP/MAC address
message. The new Packet-In messages are detected based on the model. Finally, if the
detection result is an attack, the statistical sorting method is used to find the attack
source and defend, and the whitelist and the threshold are dynamically updated. Fig-
ure 1 is a specific detection flow chart of the PSM Method. The details of each part are
described in Sects. 3.1, 3.2, 3.3 and 3.4.

Fig. 1. Flowchart of the detection and defense in PSM method.

484 X. Zhan et al.

3.1 Model-Building Module

The model-building module is configured to establish a probability detection model
based on historical data, set a threshold, and then receive new sampling data sent by the
detecting module to update the model parameters. There is a lot of valuable information
in the historical data [20, 21], and threshold detection is a common method in attack
detection. Compared with the simple threshold detection method, this module can
update the parameters according to the actual changes of the network, and has the
advantage of self-adaptation.

First, the module obtains historical data of the normal flow, and sampling according
to the set window size. Then the expectation of the sample is calculated by the moment
estimation method. The calculation method is as shown in Eq. (1).

m ¼
Xn

i¼1

mi

n
ð1Þ

mi is the number of samples in the ith window, and n is the number of sample
windows. The sample mean calculated using the moment estimation method is the
overall expectation.

Then this module establishes a probability detection model. In the actual network
environment, the Packet-In message arrival rate satisfies the Poisson distribution [14]
P kð Þ, where k[20. The PSM is modeled using a Poisson distribution probability
model. According to the nature of the Poisson distribution, we use probability formula
of the normal distribution N k; kð Þ to caculate. In this way, a Poisson distribution
detection model under normal flow is established. Its probability density function is
shown in Eq. (2).

f mð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2pm

p ð2Þ

Thirdly, the administer sets the threshold a, the size of which ranges from 0 to 1. The
specific value should be weighed according to the false alarm rate and the false negative
rate. The smaller the network can bear the attack, the larger the value of a can be set.

However, in actual networks, the number of Packet-In messages may change. This
change is softer and is not the same as a sudden change in a sudden attack, but it can
still result in a change in parameters. Therefore, a self-learning mechanism for adap-
tively updating parameters is needed. Since the exponentially weighted moving aver-
age method can increase the weight of the latest sampled data, this method can be
utilized to effectively adapt to such changes in the network. As shown in Fig. 1, after
receiving the sampled value of the normal window, the exponential weighted moving
average method is used to update the value of the expectation parameter. The specific
calculation method is as shown in Eq. (3),

EWMAt ¼ kyt þ 1� kð ÞEWMAt�1; t ¼ 1; 2; 3; . . .; n ð3Þ

where EWMAt is the estimated value at time t, yt is the measured value at time t, k is the
fading factor, indicating theweighting coefficient of EWMA for historical measurements,

Adaptive Detection Method for Packet-In Message Injection Attack 485

and n is the number of observations tracked by the EWMA model. The new normal
sample value takes a greater weight to adaptively satisfy the soft flow changes in the
network.

3.2 Message-Filtering Module

The message-filtering module mainly establishes a whitelist filtering forged IP/MAC
message, and collects the attack source information of the defense module to update the
whitelist in real time. The method of filtering forged IP/MAC messages can reduce the
load on the controller, and defend against attacks such as topology explosions and
broadcast storms. The way of the real-time update of the whitelist can also adapt to
network changes and enhance security.

When a whitelist is established, the four fields of the DPID, IN_PORT, source IP
address, and source MAC address combine into one entry, and the port fields DPID and
IN_PORT are key values. Since the port field (DPID and IN_PORT fields) can
uniquely identify a host, it is possible to determine a forged IP/MAC address message
attack by recording the port field and the corresponding source IP and source MAC
address. When a new host joins the network, the new packet sent by it does not match
the flow entry in the switch, so the switch sends a Packet-In message to the controller.
When a host leaves the network, the switch sends a Port-Status message to the con-
troller and sets the PORT-DOWN field in the message to indicate that the host on the
port leaves the network. We can use this mechanism to get real-time changes to the
network and update the whitelist entries.

As shown in Fig. 1, the message-filtering module in the controller listens to and
receives an OpenFlow message from the switch (here specifically referred to as a
Packet-In message and a Port-Status message). The message-filtering module deter-
mines the type of the received message and performs the corresponding operation. The
details of this filtering algorithm are shown as Table 1.

If the PORT-DOWN field of the Port-Status message is set, the host corresponding
to the key value in the message leaves the network. In this case, the whitelist needs to
be updated to delete related entries. When the source IP address and the source MAC
address field in the Packet-In message are different from the existing corresponding
entries, the message is invalid, and it is determined that a pseudo IP/MAC address
message attack occurs, and the host corresponding to the message port is Attack the
host. At this point, the key value of the attack source is sent to the sdefense module.
Otherwise, the message is valid, there is no pseudo IP/MAC address message attack,
and the message is forwarded to the detection module.

486 X. Zhan et al.

3.3 Detection Module

The detecting module is configured to, firstly sample the Packet-In message, then
calculate the probability density and determine the attack detection result, and finally
send the normal sampling data to the model-building module. The method of this
module has a small amount of calculation and can quickly and sensitively obtain the
detection result.

A large number of Packet-In message injections will inevitably lead to an abnormal
distribution of the number of messages received by the controller, which will deviate
from the Poisson distribution under normal conditions. Based on this principle, the
Poisson distribution model under the normal network can be used for attack detection.

When a large number of Packet-In message injection attacks occur, the distribution
of the number of messages received by the controller must be abnormal, which may
cause a certain degree of deviation from the Poisson distribution under normal con-
ditions. Based on this principle, the Poisson distribution model under the normal
network can be used for attack detection.

Table 1. Filtering algorithm to the OpenFlow messages

Algorithm 1 Filtering the OpenFlow messages

Input: PS (Port-Status messages), PI (Packet-In messages), W (White-

list)

Output: D (send message to Detection Module), A (send to Defense Mod-

ule)

if PS then
if PS.PORT_DOWN then

del W [(PS.dpid, PS.in_port)]

return
end if

end if
if PI then

if (PI.dpid, PI.in_port) W

if W [(PI.dpid, PI.in_port)] ≠ (PI.srcIP, PI.srcMAC)

return A (PI.dpid, PI.in_port)

else
W [(PI.dpid, PI.in_port)] = (PI.srcIP, PI.srcMAC)

return D
end if

else
W [(PI.dpid, PI.in_port)] = (PI.srcIP, PI.srcMAC)

return D
end if

end if

Adaptive Detection Method for Packet-In Message Injection Attack 487

In the detection module, firstly, the received normal Packet-In message is sampled
by the window counter, and the probability density of the current window is calculated,
and the specific calculation method is shown in the formula (4).

f mtð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2pm

p e�
mt�mð Þ2

2m ð4Þ

Where mt is the number of Packet-In messages collected in the window, and m
represents the expected parameters of the detection model.

The ratio f mtð Þ
f mð Þ of f mtð Þ to f mð Þ is calculated, where f mð Þ represents the probability

density of the Poisson distribution detection model and is compared with the threshold
a. The details of the detection algorithm are shown as Table 2.

In the algorithm, if the ratio is not less than the threshold a, there is no attack and
the EWMA is used to update the desired parameters. But when the ratio is smaller than
the threshold a, it is determined to be a suspected attack, and the sample record of the
window is saved. At the same time, the window counter is reset to zero, a new window
is sampled and the ratio of probability density is calculated. If the ratio of the new
window is not less than the threshold a, it is determined that a burst flow occurs, there
is no attack, and the number of samples is sent to the model building module for
parameter update. Otherwise, the ratio of the new window is still less than the threshold
a, it is determined that an attack has occurred, and the defense module is started.

Table 2. Detection algorithm to the packet-in message injection attack

Algorithm 2 Detection the Packet-In message Injection Attack

Input: r (the ratio of), r_new (the ratio of α (threshold)

Output: M (send sampling number to Model-Building Module), A (start up

Defense Module)

if r < α then
if r_new < α then

return A

else
return M

else
return M

end if

488 X. Zhan et al.

3.4 Defense Module

When the attack occurs, the defense module starts up. This module searches for the
attack source and sends a defense message to the switch, and sends the attack source
information to the message-filtering module. The method of sorting and finding attack
sources can find multiple attack sources at one time and improve the defense effect.

First, the module separately counts the number of packet incoming messages sent
by different source IPs, and sorts the number of incoming packets corresponding to
each source IP address in descending order. After the corresponding highest number of
entries are sequentially removed in this order, the remaining packets - the probability
density of the total number of messages - are compared and compared with the
detection model until the ratio of the number of remaining messages is not greater than
the threshold. The key value of the switch port corresponding to the deleted entry is the
attack source.

Then, the module records the key value of the attack source, constructs and sends a
Flow_Mod message to the switch, and adds a flow table entry with the key value of the
attack source as the matching keyword in the flow table, and the ACTION is
DROP. When the packet port field received by the switch matches the attack source, a
discard operation is performed to discard all the packets sent by the port. Because the
attack source sends malicious packets in a large amount at a high speed, the idle time is
set for the specific flow entry. After the attack stops, the switch automatically deletes
the flow entry without affecting normal communication.

Finally, the module sends the key value of the attack source to the message-filtering
module, deletes the related records in the whitelist, and updates the whitelist in real
time to further defend against attacks on the port.

4 Experiments

In this section, we first describe the attack model and the configuration of the key
parameters of our experiment. Then we examine the validity of our proposed method.
Finally, we evaluate the effectiveness of mitigating Packet-In message injection attacks.

4.1 Attack Model

A schematic diagram of an attack model for the Packet-In injection attack, as shown in
Fig. 2, including a controller, a switch network, an attacker, and a normal host.

The normal host sends normal packets to the switch for normal communication. An
attacker could be an external attacker, or an attacker who invades an internal host,
sending a large number of malicious packets, such as forged IP/MAC messages, or
injecting malicious packets into the controller.

Adaptive Detection Method for Packet-In Message Injection Attack 489

The switch network receives a new packet from the host or the attacker and cannot
find a match in the flow table. Therefore, the Packet-In message is sent to the controller
to query the forwarding path.

The controller receives a large number of Packet-In packets and cannot determine
its authenticity. It may send a large number of broadcasts to the non-existent port for
pseudo IP/MAC messages, or add the forged host to the network topology, causing
waste of resources and topology explosion. A large number of Packet-In packets are
injected, which requires a lot of resources to process, resulting in reduced processing
power of the controller, failure to process normal data packets, and even single-point
failures, upper-layer application crashes, and network flaws.

4.2 Experiment Environment

The experimental development environment is Ubuntu 14.04, Python 2.7. We use
Mininet [24] as a network simulation tool. The specific detection method runs on the
Floodlight [25] controller, which is a Java-based open source controller. Among them,
we use Scapy [23] to simulate injected malicious packets, which is a packet generation
tool. In this Experiment, we use the Mininet to build a network including 3 layers,
including 7 switches (s1–s7) and 8 hosts (h1–h8).

Fig. 2. Packet-In messages injection attack

490 X. Zhan et al.

The other parameters used in our experiment are as shown in Table 3.

4.3 Results Analysis

As shown in Fig. 3, because of the process of the topology discovery, it occurs a burst
flow in the beginning, then, a normal burst flow is shown. When they last for only 1
period, so our method dose not start the defense module.

At the 24th period, we inject the malicious packets, which have random destination
IP address. This attack triggers low speed Packet-In messages, but last for a long time.
Our Method successfully detect the attack, and in the 26th period, the number of
Packet-In messages starts to decrease to the normal level. But without our method, the
attack still continues, wastes the resources of the controller.

Our method has 92% true positive rate, and 5% false alarm rate.

Table 3. Parameters used in the experiment

Parameter Definition Value

a Threshold 0.000006
p Detection period 4(s)
m Expectation value 90
ATTACK1 Random dst IP Packets 100
ATTACK2 Random src IP Packets 100

Fig. 3. Numbers of Packet-In messages of ATTACK1.

Adaptive Detection Method for Packet-In Message Injection Attack 491

As shown in Fig. 4, in case of ATTACK2, we send massive packets with the
source IP of host3. It is clear that the Packet-In message number is rapidly increase.
Our method detects the attack and starts up the defense module. Then it starts to
decrease. The Packet-In messages are filtered by the defense entry in the flow table.
Compared to that, the situation without our method still bear the severe attack, it may
cause the controller crush.

In this situation, the method has 98.2% true positive rate, and the false alarm rate is
8.9% (Fig. 5).

Fig. 4. Numbers of Packet-In messages of ATTACK2

Fig. 5. The adaptive change trend of m with EWMA

492 X. Zhan et al.

During the experiment, we use the scapy tool to simulate network packets. In the
initial phase of the network, we do not inject other packets into the network, except for
packets that were automatically generated when the SDN network was initialized. At
the period of 24th, we began to inject TCP, UDP, ICMP, and packets generated by the
iperf and iperfudp commands into the network. As the number of data packets in the
network grows, the change of m with EWMA shows the smooth growth. EWMA can
also reduce the impact of burst data on overall expectation value, makes the detection
model more accurate.

PacketChecker is a lightweight Packet-In injection message detection mechanism
with high efficiency, accuracy and low resource occupancy. However, this method can
only detect the attack with forged MAC address packets and cannot detect attack with
forged IP address packets.

As shown in Table 4, compared with the PacketChecker method, we can find that
in the attack of forged MAC address packets, our method PSM has a true position rate
of 98.8%, which is close to PacketChecker; With the attack of forged IP address
packets, PacketChecker cannot detect malicious packets, but PSM has a true position
rate of 96.4%. Forged IP address packet attacks can also trigger a large amount of
Packet-In message injection. Obviously, PacketChecker is still poisoned by this attack.

5 Conclusion

In this paper, we propose an adaptive detection method for Packet-In injection attacks
in SDN environment. The method is designed according to the Poisson distribution of
the arrival of Packet-In messages. It enables the controller to obtain efficient detection
and defense of Packet-in Injection attack results with low overhead. Due to the limi-
tations of the experiment environment, the topological structures may have effects on
threshold settings and experiment results.

In the future work, we will try to combine the programmability of the switch to
relieve the defense pressure of the controller, and to improve the efficiency of detection
and defense.

Acknowledgments. This paper is finished under the support of Key Program of the National Key
Research and Development Program of China (No. 2018YFB2101300, No. 2018YFB2101301);
Open Project Fund of Shanghai Key Lab for Trustworthy Computing (No. 07dz22304201607);
National Nature Science Foundation of China (No. 61772034, No. 61872147); Natural Science
Foundation of Anhui Province (1808085MF172).

Table 4. True position rate of different methods in different attacks

Method (Attack) True position rate

PacketChecker (Forged MAC Packets Attack) 100%
PSM (Forged MAC Packets Attack) 98.8%
PacketChecker (Forged IP Packets Attack) 0%
PSM (Forged IP Packets Attack) 96.4%

Adaptive Detection Method for Packet-In Message Injection Attack 493

References

1. Cui, Y., et al.: SD-Anti-DDoS: fast and efficient DDoS defense in software-defined
networks. J. Netw. Comput. Appl. 68, 65–79 (2016)

2. Akhunzada, A., Ahmed, E., Gani, A.: Securing software defined networks: taxonomy,
requirements, and open issues. IEEE Commun. Mag. 53(4), 36–44 (2015)

3. Kreutz, D., Ramos, F., Verissimo, P.: Towards secure and dependable software-defined
networks. In: Proceedings of the Second Workshop on Hot Topics in Software Defined
Networking (HotSDNb12), pp. 55–60 (2013)

4. Yu, S., Tian, Y., Guo, S., Wu, D.O.: Can we beat DDoS attacks in clouds? IEEE Trans.
Parallel Distrib. Syst. 25(9), 2245–2254 (2014)

5. Gao, D., Liu, Z., Liu, Y., Heng, C., Ting, F., Chao, Z.H.: Defending against Packet-In
messages flooding attack under SDN context. Soft. Comput. 22(20), 6797–6809 (2018)

6. Hong, S., Xu, L., Wang, H., Gu, G.: Poisoning network visibility in software-defined
networks: new attacks and countermeasures. In: Internet Society (2015)

7. Deng, S., Gao, X., Lu, Z., Gao, X.: Packet injection attack and its defense in software-
defined networks. IEEE Trans. Inf. Forensics Secur. 13(3), 695–705 (2018)

8. You, X., Feng, Y., Sakurai, K.: Packet in message based DDoS attack detection in SDN
network using OpenFlow. In: International Symposium on Computing & Networking. IEEE
Computer Society (2017)

9. Sunny, B., Krishan, K., Monika, S.: Discriminating flash events from DDoS attacks: a
comprehensive review. Int. J. Netw. Secur. 19(5), 734–741 (2017)

10. Shui, Y., Zhou, W., Guo, S., Guo, M.: A feasible IP traceback framework through dynamic
deterministic packet marking. IEEE Trans. Comput. 65(5), 1418–1427 (2016)

11. Kalkan, K., Altay, L., Gur, G., Alagoz, F.: JESS: joint entropy based DDoS defense scheme
in SDN. IEEE J. Sel. Areas Commun. 36, 2358–2372 (2018)

12. Kumar, P., Tripathi, M., Nehra, A., Conti, M., Lal, C.: Safety: early detection and mitigation
of TCP SYN flood utilizing entropy in SDN. IEEE Trans. Netw. Serv. Manag. 15, 1545–
1559 (2018)

13. Yu, S., Zhou, W., Doss, R., Jia, W.: Traceback DDoS attacks using entropy variations. IEEE
Trans. Parallel Distrib. Syst. 22(3), 412–425 (2011)

14. La-Lin, J., Xia, P., Bing, X.: Performance evaluation of SDN controllers based on hybrid
queuing model. Computer Engineering Science (2017)

15. Yu, S., Zhou, W., Jia, W., Guo, S., Xiang, Y., Tang, F.: Discrim-inating DDoS attacks from
flash crowds using flow correlation coefficient. IEEE Trans. Parallel Distrib. Syst. 23(6),
1073–1080 (2012)

16. Mousavi, S.M., St-Hilaire, M.: Early detection of DDoS attacks against SDN controllers. In:
2015 International Conference on Computing, Networking and Communications (ICNC).
IEEE Computer Society (2015)

17. Yu, S., Guo, S., Stojmenovic, I.: Fool me if you can: mimicking attacks and anti-attacks in
cyberspace. IEEE Trans. Comput. 64(1), 139–151 (2015). (Spotlight paper of the issue)

18. Yu, S., Wang, G., Zhou, W.: Modeling malicious activities in cyber space. IEEE Netw. 29
(6), 83–87 (2015)

19. Feng, B., Zhang, H., Zhou, H., Yu, S.: Locator/identifier split networking: a promising future
internet architecture. IEEE Commun. Surv. Tutor. 19(4), 2927–2948 (2017). (Impact factor
17.2)

20. Chen, J., et al.: A parallel random forest algorithm for big data in a spark cloud computing
environment. IEEE Trans. Parallel Distrib. Syst. 28(4), 919–933 (2017)

494 X. Zhan et al.

21. Yu, S., Liu, M., Dou, W., Liu, X., Zhou, S.: Networking for big data: a survey. IEEE
Commun. Surv. Tutor. 19(1), 531–549 (2017). (Impact factor 17.2)

22. Mousavi, S.-M., St-Hilaire, M.: Early detection of DDoS attacks against SDN controllers. In:
International Conference on Computing, Networking and Communications, pp. 77–81,
(2015)

23. Scapy. http://www.secdev.org/projects/scapy/. Accessed 2018
24. Mininet. http://mininet.org/. Accessed 2019
25. Floodlight. http://www.projectfloodlight.org/. Accessed 2019

Adaptive Detection Method for Packet-In Message Injection Attack 495

http://www.secdev.org/projects/scapy/
http://mininet.org/
http://www.projectfloodlight.org/

PMRS: A Privacy-Preserving
Multi-keyword Ranked Search
over Encrypted Cloud Data

Jingjing Bao1, Hua Dai1,2(B), Maohu Yang1, Xun Yi3, Geng Yang1,2,
and Liang Liu4

1 Nanjing University of Posts and Telecommunications, Nanjing 210023, China
jing874444051@163.com, {daihua,yangg}@njupt.edu.cn, yangmh1234@163.com

2 Jiangsu Security and Intelligent Processing Lab of Big Data, Nanjing 210023, China
3 Royal Melbourne Institute of Technology University, Melbourne 3001, Australia

xun.yi@rmit.edu.au
4 Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

liangliu@nuaa.edu.cn

Abstract. In cloud computing, data owners outsource their data to
clouds for saving cost of data storage and computation. However, while
enjoying the benefits of cloud computing, users have to face the risk
that sensitive outsourced data could be leaked. This paper proposes a
privacy-preserving multi-keyword ranked search scheme over encrypted
cloud data, which adopts a novel two-layer complete binary tree index
structure. The upper layer index is used to filter the candidate documents
while the lower layer index is used to prune those unqualified documents,
and then the search result is efficiently determined. Security analysis is
presented which indicates that the proposed scheme is capable of pre-
serving the privacy of outsourced data. Experiment results show that the
proposed scheme has good performance in terms of search time cost.

Keywords: Cloud computing · Searchable encryption · Multi-keyword
search · Top-k · Two-layer complete binary tree index

1 Introduction

With the maturity and popularity of cloud computing [1], more and more enter-
prises and individuals tend to outsource their storage, computing, and other
resources to the cloud server provider (CSP) for easy access and cost savings.
However, while enjoying the large-scale and efficient services provided by cloud
server (CS), users are also at risk of leaking sensitive information of outsourced

Supported by the National Natural Science Foundation of China under the grant Nos.
61872197, 61972209, 61572263, 61672297 and 61872193; the Postdoctoral Science Foun-
dation of China under the Grand No. 2019M651919; the Natural Research Foundation
of NJUPT under the grand No. NY217119.

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 496–511, 2020.
https://doi.org/10.1007/978-3-030-38961-1_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_43&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_43

PMRS 497

data. To decrease the risk of leaking sensitive information of the outsourced
data, data encryption before outsourcing seems to be a feasible countermeasure.
However, the encrypted data is hard and costly to be utilized to perform com-
prehensive computations, such as ranked search, etc. It is a challenge to perform
an efficient ranked search over encrypted cloud data.

In the last decade, searchable encryptions (SE) [2] is an important way to
realize the safety of keywords search in the cloud environment. At present, more
mature solutions are based on TF-IDF algorithm and vector space model which
abstracting keywords into points in multi-dimensional space. The correlation
between documents and search keywords is described by a secure inner product
between the vectors. Of course, it is obviously a waste of time and resources to
simply calculate the safe inner product between the search vector and all the
document vectors. To balance the privacy and practicability of the data, various
solutions are provided [3–18].

Song et al. [3] proposed the first SE scheme. Although its security has been
proved, no security model has been given. Goh et al. [4] first defined the security
model of searchable symmetric encryption index and proposed a new scheme
based on Bloom filter. Curtmola et al. [5] used inverted index for the first time
to construct a searchable symmetric encryption scheme, which greatly improved
the search efficiency. The above work is for the single keyword search, but in
fact, multi-keyword search is more in line with the user’s needs. In 2011, Cao
et al. [6] first proposed the multi-keyword ranked search scheme (MRSE). In
this scheme, documents are represented as vectors by using space vector model.
Then, the vectors are encrypted by security KNN [7], [8] to solve the security
problem of index. Later, Cao et al. [9] optimized the MRSE and adopted the TF-
IDF algorithm to improve the accuracy of search, but the scheme is still linear
time cost and inefficient. Xia et al. [10] proposed a multi-keyword search scheme
based on balanced binary tree (DMRS), which can reduce the large inner product
calculation by pruning function. In the same year, Chen et al. [11]proposed an
efficient index scheme based on hierarchical clustering (MRSE-HCI), which can
achieve linear time complexity with the exponential growth of the document set.

To improve the search efficiency, in this paper, we propose a privacy-
preserving multi-keyword ranked search scheme (PMRS) over encrypted cloud
data, which is based on the two-layer complete binary tree index (TCBT-index).
The TCBT-index is composed of two layers of complete binary trees and it is
the key structure for improving search efficiency. The upper layer has one com-
plete binary tree and it is used to filter the candidate documents. While the lower
layer has multiple complete binary trees whose roots are the nodes of upper layer
tree, and they are used to prune those unqualified documents. Security analysis
indicates that our proposed scheme PMRS is able to prevent the privacy of the
search keywords, the outsourced encrypted documents, and index. Experiment
results show that PMRS has good performance in terms of search time cost.

The contributions of this paper are: (1) We present the ε-posting partition
vector model, which conceals the “hot words” and “cold words” into vectors.
On the basis of such model, the two-layer complete binary tree index (TCBT-

498 J. Bao et al.

index) is proposed. (2) By adopting the TCBT-index, we propose an efficient
privacy-preserving ranked search algorithm over encrypted cloud data. (3) We
analyze the security and evaluate the search performance. The result shows that
the proposed scheme can achieve efficient search while preserving data privacy.

2 Notations and Preliminaries

– DS : The document set, DS = {d1, d2, ..., dn}. ˜DS is the encrypted form.
– W : The keyword dictionary including m keywords, W = {w1, w2, ..., wm}.
– Q : The set of search keywords, Q = {w1, w2, ..., wq}.
– DS(wi) : The set of documents containing the keyword wi.
– V Di : The document vector of di. ˜V Di is the encrypted form.
– Pi,j : The posting corresponding to the document dj containing keyword wi,

Pi,j = <id(dj), V Dj>. ˜Pi,j is the encrypted form.
– PLi : The posting list corresponding to the keyword wi.
– ε : The posting list partition parameter.
– PAR(PLi) : The set of ε-partitions after partitioning PLi.
– PLi,j : The jth ε-partition of PLi.
– H : The ε-partition set corresponding to all posting lists.
– V Pi,j : The partition vector of PLi,j and ˜V P i,j is its encrypted form.
– PV S(wi) : The partition vector set corresponding to the keyword wi.
– V FQ : The query filter vector of Q and ˜V FQ is its encrypted form.
– Ψ : The set of KPV-pairs (see Definition 6).
– Γ : The set of PVP-pairs (see Definition 7).
– U : The plaintext two-layer complete binary tree index and ˜U is its encrypted

form.
– V Q : The vector of search keywords and ˜V Q is its encrypted form.
– TD : The trapdoor of a ranked search.

Vector Space Model (VSM) and TF-IDF Model. The VSM and TF-IDF
can transform the processing of text into operations on vectors in vector space,
and use spatial similarity to express relevance on text. The term frequency (TF)
refers to the number of times a given keyword or term appears in documents,
while the inverse document frequency (IDF) is equal to the total number of
documents in the set divided by the number of documents containing a given
keyword. VSM is used to convert a given document di into a vector V Di, or
search keywords set Q into vectors V Q, which are shown in the following formu-
las:

V Di[j] = TFdi,wj
/

√

∑

wj∈di∧di∈DS

(TFdi,wj
)2 (1)

V Q[j] = IDFwj
/

√

∑

wj∈Q

(IDFwj
)2 (2)

PMRS 499

where TFdi,wj
, and IDFwj

represent TF and IDF values of wj , respectively. The
relevance score between di and Q are calculated as:

Score(V Di, V Q) = V Di · V Q =
m

∑

j=1

V Di[j] × V Q[j] (3)

Secure Inner Product Operation. This scheme uses the secure inner prod-
uct operation to calculate the inner product of two encrypted vectors without
knowing the plaintext value. The basic idea of this is as follows. Assuming that
p and q are two n-dimensional vectors and M is a random n × n-dimensional
invertible matrix. M is treated as the secure key. The encrypted form of p and
q are denoted as p̃ and q̃ respectively, where p̃ = pM−1 and q̃ = qMT . Then we
have p̃ · q̃ = (pM−1) · (qMT) = pM−1(qMT)T = pM−1Mq = p ·q, i.e. p̃ · q̃ = p ·q.
Therefore, we have that the inner product of two encrypted vectors equals the
inner product of the corresponding two plaintext vectors.

Inverted Index. The inverted index is a kind of indexing method for quickly
finding a list of documents containing a certain keyword [5]. As shown in Fig. 1, it
consists of dictionary and inverted files. The dictionary represents a collection of
all the keywords that have appeared in the files of DS. Each keyword corresponds
to a posting list. The posting list records a list of all documents in which a
specified keyword appears. The element of a posting list is called a posting
which includes the information of a document.

Fig. 1. Inverted Index Fig. 2. System Model

3 Models and Problem Formulation

3.1 System Model

This paper adopts the same system model as [9–11]. As shown in Fig. 2, the
system mainly includes three types of entities, namely Data Owner (DO), Data
User (DU) and Cloud Server (CS). Their collaboration mode is as follows: (1)
DO is in charge of preprocessing the original data and then uploading the pre-
processed data (encrypted documents and indexes) to CS. (2) CS provides data
storage and computation service to DU. When a search request is submitted,

500 J. Bao et al.

CS performs the search and returns the corresponding result. (3) DU generates
a trapdoor corresponding to the queried keywords and then submits it to CS as
a search command. After that, DU waits the final search result.

3.2 Problem Statement

Given a set of q queried keywords Q = {w1, w2, ..., wq}, a multi-keyword ranked
search is to retrieve the k ranked documents that have the k highest relevance
scores to Q. Formally, we define the multi-keyword ranked search as Query =
(DS,Q, k) where k is the number of requested documents and k << n generally.
For simplicity, we use Q to represent a search.

The threat model in this paper adopts the same “honest but curious” model
as in [9–11]. It assumes that CS follows the pre-established protocols to perform
ranked searches honestly, but it is curious of sniff the private information from
the outsourced data through analysis and deduction.

In order to achieve the multi-keyword ranked search over encrypted data, it
is inevitable for CS to know some information such as search mode and results.
Here, we adopt the same security definition as Curtmola et al. [5] for security
analysis in our proposed scheme, which has three aspects as follows:

– History: Each interaction between DU and CS becomes a history, including
the corresponding documents, index, and search keywords.

– View: The contents can be seen for CS, including the encrypted document
set, index, and trapdoor.

– Trace: The sensitive information can be obtained by CS, such as search results
and mode. In this scheme, CS can generate a search mode by recording the
trapdoor uploaded by DU and the search results.

The proposed scheme PMRS should satisfy two goals. First, the contents
directly seen by CS only include encrypted documents, indexes and trapdoors.
It means that the confidentiality of documents, indexes, and trapdoors cannot
be leaked. Second, PMRS is designed to ensure the comprehensive performance
of search efficiency, that is, the search process should be concise and efficient.

4 ε-Posting Partition Vector Model

To describe the multi-keyword ranked search scheme, we redefine the posting
and posting list.

Definition 1. Posting and Posting List. Given a keyword wi, a posting of wi

is a document access structure which is denoted as a pair (docID, docV ec),
where docID points to a document having wi and docV ec is the vector of the
document. Let DS(wi) = {d1, d2, ..., dg}, the posting list of wi is denoted as
PLi = {Pi,1, Pi,2, ..., Pi,g}, where Pi,j is one of the postings of wi.

PMRS 501

Definition 2. ε-partition. Given a partition parameter ε and a keyword wi, the
posting list PLi of wi is randomly divided into ti partitions by ε. A generated
partition is denoted as a ε-partition that is a sub-posting list of PLi. The set of
generated partitions is PAR (PLi) = {PLi,1, PLi,2, . . . , PLi,ti} which satisfies
Eqs. (4) and (5).

|PLi,1| = |PLi,2| = ... = |PLi,ti−1| = ε, 1 ≤ |PLi,ti | ≤ ε (4)

PLi = PLi,1 ∪ PLi,2 ∪ . . . ∪ PLi,ti , (5)

where ti =
⌈

|PLi|
ε

⌉

, |X| is the number of items in X.

Definition 3. ε-partition dictionary. For the keyword dictionary W , the ε-
partition dictionary, denoted as H, is the list of ε-partitions that are generated
by partitioning the posting lists of w1, w2,... and wm according to Definition 2.

H = PAR (PL1) ∪ PAR (PL2) ∪ . . . ∪ PAR (PLm) (6)

According to Definitions 1 and 2, a given keyword corresponds to a posting
list and multiple ε-partitions. Definition 3 indicats that, for the dictionary W =
{w1, w2, . . . , wm}, there are

∑m
i=1 |PAR (PLi)| generated ε-partitions in H, i.e.

|H| =
∑m

i=1 |PAR (PLi)|. We use H[i] to represent the ith ε-partition of H.

Definition 4. Partition Vector. Given an ε-partition PLi,j ∈ H, the partition
vector of PLi,j is denoted as V Pi,j which is a |H|-dimensional bit vector. The
calculation of V Pi,j is given in Eq. (7) where v = 1, 2, . . . , |H|.

V Pi,j [v] =
{

1 H[v] = PLi,j

0 otherwise (7)

According to Definition 4, the dimensions of a partition vector equal to the
total number of the posting partitions of all keywords in the dictionary and only
one bit of a partition vector is 1 while others are all 0.

Definition 5. Query Filter Vector. Given a query Q with multiple keywords,
the query filter vector of Q is denoted as V FQ which is also a |H|-dimensional
bit vector. The calculation of V FQ is given in Eq.(8) where v = 1, 2, . . . , |H|.

V FQ[v] =
{

1 ∃PLi,j (wi ∈ Q ∧ PLi,j ∈ PAR (PLi) ∧ H[v] = PLi,j)
0 otherwise (8)

Definition 6. Keyword and Partition Vectors Pair (KPV-pair). Given a key-
word wi ∈ W , the KPV-pair for wi is denoted as < wi, PV S(wi) >. Here,
PV S(wi) = {V Pi,1, V Pi,2, ..., V Pi,ti} is the set of vectors of the ε-partitions cor-
responding to wi, where ti is the number of the ε-partitions. We denote Ψ as the
set of KPV-pairs for all keywords in W , then we have

Ψ = {< wi, PV S (wi) > |wi ∈ W} . (9)

502 J. Bao et al.

Fig. 3. An Example of ε-Posting Partition Vector Model

Definition 7. Partition Vector and ε-Partition Pair (PVP-pair). A PVP-pair
is composed of a partition vector and its corresponding ε-partition. We denote
Γ as the set of PVP-pairs for all ε-Partitions in H, then we have

Γ = {< V Pi,j , PLi,j > |PLi,j ∈ H} . (10)

We take an example to explain the above definitions. We assume DS =
{di|i = 1, .., 10} and W = {w1, w2, w3}. According to Definition 1, DS(w1) =
{d2, d3, d4, d5, d7, d8, d10} and PL1 = {P1,2, P1,3, P1,4, P1,5, P1,7, P1,8, P1,10}.
Then, PL1 is randomly divided into three sublists by using partition parameter
ε = 3, namely PL1,1 = {P1,2, P1,7, P1,10}, PL1,2 = {P1,3, P1,5, P1,8} and PL1,3 =
{P1,4}. All ε-partitions generated by PL1 are recorded as PAR(PL1) = {PL1,1,
PL1,2, PL1,3}. Similarly, the posting lists of w2 and w3 are treated the
same way to generate ε-partition dictionary H = {PL1,1, PL1,2, PL1,3, PL2,1,
PL3,1, PL3,2}. For each ε-partition Pi,j ∈ H, the corresponding partition vector
following Definition 4 is shown in Fig. 3. On the basis of partition vectors, KPV-
pairs and PVP-pairs are generated according to Definitions 6 and 7 and they are
also shown in Fig. 3. Assuming that the search keywords are Q = {w1, w3},
the corresponding query filter vector is V FQ = (1, 1, 1, 0, 1, 1) according to
Definition 5.

5 Two-Layer Complete Binary Tree Index

The two-layer complete binary tree index (TCBT-index) is composed of an
upper-layer complete binary tree and multiple lower-layer complete binary trees.
According to [19], we know that an array is an appropriate structure to store a
complete binary tree. Assuming that the array A represents a complete binary
tree, then we have that: for the node A[i], if i = 1, A[i] is the root; if i > 1, the
parent node of A[i] is A[�i/2�]; if the left and right child nodes of A[i] are A[2i]
and A[2i + 1] respectively if they exist.

Adopting the array-based complete binary tree description, we give the def-
initions of the upper-layer and lower-layer complete binary trees of the TCBT-
index.

Definition 8. Upper-layer Complete Binary Tree (UCB-tree). Assuming that
the corresponding array of the UCB-tree is U [1, 2, ..., |H|]. A node of the

PMRS 503

UCB-tree, U [i], represents an ε-partition of H and it is a three-element tuple:
U [i] =< parV ec, pruV ec,L >, where U [i].parV ec is the partition vector,
U [i].pruV ec is the pruning vector, and U [i].L points to the lower-layer complete
binary tree corresponding to the ε-partition.

Definition 9. Lower-layer Complete Binary Tree (LCB-tree). The lower layer
of the TCBT-index consists of multiple LCB-trees. Each LCB-tree represents an
ε-partition and corresponds to a node of UCB-tree. Assuming that a LCB-tree
corresponds to the ε-partition H[i] and its corresponding array is L[1, 2, ..., |H[i]|]
where |H[i]| is the number of postings in H[i]. A node of the LCB-tree, L[j], is
also a three-element tuple: L[j] = <docV ec, pruV ec, docID>, where L[j].docV ec
and L[j].pruV ec are the document vector and pruning vector, and L[j].docID
is the identity of a document.

According to Definitions 8 and 9, the LCB-trees are embedded in the UCB-
tree and the latter tree can be treated as the entrance of the TCBT-index.
Therefore, for simplicity, we use U to represents the TCBT-index.

Fig. 4. An example of TCBT-index

Figure 4 shows an example of TCBT-index. There are an UCB-tree in the
upper layer while several LCB-trees in the lower layer. Each node of the UCB-
tree corresponds to a LCB-tree.

6 The Proposed Scheme

6.1 Framework

We first present the framework of the proposed scheme PMRS as shown in Fig. 5.
It consists of six modules: GenKey, Setup, BuildIndex, Encrypt, GenTrapdoor,
and Search.

– Genkey: DO generates a set of keys K for encryption and share it with DU.
– Setup: DO preprocesses the original document set DS to generate the KPV-

pair set Ψ and the PVP-pair set Γ .
– BuildIndex: DO constructs the plaintext TCBT-index U .
– Encrypt: DO uses K to encrypt DS and U into ˜DS and ˜U , respectively.
– GenTrapdoor: DU generates the trapdoor for the search keywords.
– Search: CS performs the ranked search by using the trapdoor and ˜U , and

then returns the search result to DU.

504 J. Bao et al.

Fig. 5. Framework of PMRS

6.2 Data Preprocessing and Outsourcing

K ← GenKey (1λ, u, m): DO generates a secret key set K, including a
random λ-bit key sk, a random |H|-bit vector S1, a random m-bit vector S2,
two |H| × |H| invertible matrices M11 and M12, and two m × m invertible
matrices M21 and M22, where m is the number of keywords. Thus, we denote
that K = (sk, S1, S2,M11,M12,M21,M22).

(Ψ, Γ) ← Setup (DS, W): The Setup has three steps. First, for each wi ∈ W ,
DO constructs the corresponding posting list PLi according to Definition 1. The
document vector in each posting is generated according to VSM and TF-IDF
model (see Sect. 2). Second, DO partitions the posting lists and generates ε-
partition dictionary according to Definitions 2 and 3. After that, DO computes
partition vectors for every ε-partition. Finally, KPV-pair set Ψ and PVP-pair
set Γ are generated according to Definitions 6 and 7.

U ← BuildIndex (Γ): Based on the definition of the two-layer complete
binary tree index, we give the TCBT-index construction algorithm as in Algo-
rithm 1. The DO can generate the TCBT-index U according to the PVP-pair
set Γ . In Algorithm 1, lines 5-13 are the process of constructing the LCB-tree,
and the rest are used to describe the construction process of the UCB-tree. The
time complexity of Algorithm 1 is O(|Γ | × ε).

(˜DS, ˜U) ← Encrypt (DS, U , K): The document set DS and TCBT-
index U are respectively encrypted into ˜DS and ˜U . The encryption of DS
is to use the key sk to symmetrically encrypt each document in DS. While
the encryption of the U has two steps. We give the vector encryption algo-
rithm EncV ec(V, S,M1,M2, f lag) as in Algorithm 2 according to the refer-
ences [10,11]. First, using {S1,M11,M12} in K to encrypt each node U [i] in
the UCB-tree to generate the encrypted form ˜U [i]. That is to say, EncV ec
(U [i].parV ec, S1,M11,M12, true) and EncV ec(U [i].pruV ec, S1,M11,M12, true)
are executed respectively. Then, for each node ˜U [i].L[j] in the LCB-tree
corresponding to node ˜U [i], EncV ec(˜U [i].L[j].docV ec, S2,M21,M22, true) and
EncV ec(˜U [i].L[j].pruV ec, S2,M21,M22, true) are used to encrypt this node into
˜U [i]. ˜L[j].

PMRS 505

Algorithm 1. BuildIndex(Γ)
1 i = 1;
2 Create an array U [1, 2, ..., |Γ |] to store UCB-tree nodes;
3 for each < v, p >∈ Γ where p is an ε-partition and v is its partition vector do
4 U [i].parV ec = U [i].pruV ec = v;
5 j = 1;
6 Create an array U [i].L[1, 2, ..., |p|] to store LCB-tree nodes;
7 for each < id(dx), V Dx >∈ p do
8 U [i].L[j].docV ec = U [i].L[j].pruV ec = V Dx;
9 j + +;

10 end
11 for j = �(|p| − 1)/2� to 1 do
12 U [i].L[j].pruV ec = max{U [i].L[j].docV ec, U [i].L[2j].pruV ec,

U [i].L[2j + 1].pruV ec};

13 end
14 i + +;

15 end
16 for i = �(|Γ | − 1)/2� to 1 do
17 U [i].pruV ec = max{U [i].parV ec, U [2i].pruV ec, U [2i + 1].pruV ec};
18 end
19 return U

Algorithm 2. EncV ec(V, S,M1,M2, f lag)
1 Split V into two random vectors V ′ and V ′′ according to the vector S;
2 if flag=true then

3

{
V ′[j] = V ′′[j] = V [j] S[j] = 0
V ′[j] + V ′′[j] = V [j] S[j] = 1

;

4 return Ṽ =
(
MT

1 V ′, MT
2 V ′′)

5 end
6 else if flag=false then

7

{
V ′[j] + V ′′[j] = V [j] S[j] = 0
V ′[j] = V ′′[j] = V [j] S[j] = 1

;

8 return Ṽ =
(
M−1

1 V ′, M−1
2 V ′′)

9 end

6.3 Multi-keyword Ranked Search

TD ← GenTrapdoor (K, Q, k, Ψ): The process of DU generating
TD=(˜V FQ, ˜V Q, k) based on search keywords Q is as follows:

(1) The generation of ˜V FQ. According to Definition 5, the query filter vector
V FQ of Q can be constructed by the KPV-pairs set Ψ . Then, the V FQ is
reconstructed according to the follow formula, where rand() is a random
number generator. Finally, use the key {S1,M11,M12} in K to generate the
V F ′s encrypted form ˜V F , ie ˜V F = EncV ec(V F, S1,M11,M12, false).

506 J. Bao et al.

V FQ[i] =
{

rand() V FQ[i] = 1
0 V FQ[i] = 0 (11)

(2) The generation of ˜V Q. The search vector V Q is constructed according to Q.
For any wi ∈ W , if wi ∈ Q, the IDF value of wi is stored in V Q[i], otherwise
the value of V Q[i] is 0. Then use the key {S2,M21,M22} in K to generate
the V Q′s encrypted form ˜V Q, ie ˜V Q = EncV ec(V Q, S2,M21,M22, false).

RS ← Search (˜U , TD): CS receives the trapdoor TD, it performs the ranked
search on the basis of the encrypted index ˜U , and then returns the search results
RS. The search process consists of three algorithms. Algorithm 3 is the entry
to the search. Algorithm 4 and 5 are two recursive algorithms. In the UCB-
tree, Algorithm 4 uses the query filter vector TD.˜V FQ, the pruning vector
˜U [i].pruV ec, and the partition vector ˜U [i].parV ec to determine whether the par-
tition ˜U [i]. ˜L corresponding to the root of the current subtree ˜U [i] is related to
the search keywords Q. If the current partition ˜U [i]. ˜L is related to the search
keywords Q, Algorithm 5 is invoked. And the currently most relevant k docu-
ments are found based on a “dynamic depth-first” algorithm using the search
vector TD.˜V Q, the pruning vector ˜U [i]. ˜L[j].pruV ec and the document vector
˜U [i]. ˜L[j].docV ec in the LCB-tree.

Algorithm 3. Search(˜U , TD)
1 Initial the query result RS = null;

2 UpperSearch(Ũ , 1, TD, RS);
3 return RS;

Algorithm 4. UpperSearch(˜U , i, TD,RS)

1 if Score(Ũ [i].pruV ec, TD.Ṽ FQ) �= 0 then

2 if Score(Ũ [i].parV ec, TD.Ṽ FQ) �= 0 then

3 LowerSearch(Ũ [i].L̃, 1, TD, RS);
4 end

5 if Ũ [2i] �= null then

6 UpperSearch(Ũ , 2i, TD, RS);
7 end

8 if Ũ [2i + 1] �= null then

9 UpperSearch(Ũ , 2i + 1, TD, RS);
10 end

11 end

PMRS 507

7 Security Analysis

In the PMRS scheme, we record history as H = (U ,DS,Q), that is, the
interaction between DU and CS only involves the index U , the document
set DS and the search keywords Q = {w1, w2, ..., wq}. The view is recorded
as V (H) = (˜U , ˜DS, TD), that is, CS only get the encrypted index ˜U , the
encrypted document set ˜DS and trapdoor TD. The trace is recorded as T (H) =
{T (w1), T (w2), ..., T (wq)}, where T (wi) = {(dj , scorei,j), 1 ≤ j ≤ |DS|}, and
scorei,j is the relevance score of keywords wi and document dj . Thus, the sen-
sitive data that CS can obtain include the relevance score between wi and dj .
Specific security analysis are as follows:

Theorem 1. This scheme is secure in the case of known ciphertext attack.

Proof. Under the known ciphertext attack, V (H) and V (H ′) can be generated
respectively according to two sets of history with the same trace. If CS cannot
distinguish the two views, it can be proved that CS cannot obtain information
other than the search result and the search mode, and the scheme is safe under
the known ciphertext attack. Suppose the simulator can generate an H ′ that
CS cannot distinguish V (H) from V (H ′). The simulator needs to construct U ′,
DS′, Q′ and the key K ′ = (sk′, S1

′, S2
′,M11

′,M12
′,M21

′,M22
′). Then ˜U ′, ˜DS

′
,

and TD′ need to be constructed on this basis. Even if the constructed V (H ′)
has the same trace as the V (H), the CS cannot distinguish between ˜DS and
˜DS

′
without the key sk. Besides, ˜U ′ and TD′ are encrypted by the secure KNN

algorithm. The CS cannot recover the plaintext form of ˜U ′ and TD′ without the
key K. In summary, CS cannot distinguish between V (H) and V (H ′), so the
scheme is safe under the known ciphertext attack.

Theorem 2. This scheme is secure in the case of known partial plaintext attack.

Proof. Under the known partial plaintext attack, the trace that CS can obtain
includes the plaintext form of partition vectors and document vectors in addition
to the relevance score of the documents. Suppose that the number of plaintext
partition vectors is a. The partition vector V Pi,j is randomly divided into V P ′

i,j

and V P ′′
i,j . Then according to the encryption method, two linear equations as

shown in the following formula are obtained:
{

V P ′
ij · M−1

11 = ˜V P
′
i,j

V P ′′
i,j · M−1

12 = ˜V P
′′
i,j

(12)

In this system of equations, M11 and M12 each contain m2 unknown numbers,
so there are 2 m2 unknown numbers need to be solved in total. However, there are
only 2|H| equations in the equation system. Because the number of equations
is far less than the number of unknown numbers, it is impossible to find the
true values of M11 and M12. Similarly, it is difficult to obtain M21 and M22.
Therefore, the scheme is safe under the known partial plaintext attack.

508 J. Bao et al.

Algorithm 5. LowerSearch(˜L, j, TD,RS)
1 if |RS| < TD.k then

2 Add the node L̃[j] into RS;
3 end
4 else

5 if Score(L̃[j].pruV ec, TD.Ṽ Q) > minScore(RS) then
6 // minScore(RS) is the minimum value of the relevance score in the

current result RS;
7 if Score(L̃[j].docV ec, TD.Ṽ Q) > minScore(RS) then
8 Delete the node from RS, whose relevance score is the lowest;

9 Add the node L̃[j] into RS;

10 end

11 if L̃[2j] �= null then

12 LowerSearch(L̃, 2j, TD, RS)
13 end

14 if L̃[2j + 1] �= null then

15 LowerSearch(L̃, 2j + 1, TD, RS)
16 end

17 end

18 end

Theorem 3. This scheme has trapdoor unlinkability.

Proof. In this scheme, the trapdoor TD=(˜V FQ, ˜V Q, k). Each bit of V FQ is
a randomly generated value, even if the value generated for the same search
request is different, so it is unique. And ˜V FQ is the encrypted form of V FQ

encrypted by matrix M11 and M12 and vector S1. V Q is also encrypted by
matrix M21 and M22 and vector S2, where S2 can randomly divide V Q into
V Q′ and V Q′′, and the divide results are different each time. So ˜V Q is also
unique, even if it’s constructed from the same search keywords Q. Thus, the
confidentiality of the TD can be well protected. However, the CS can track the
relevance scores corresponding to the partition vector and the document vector
to analyze whether the search keywords are the same. For this problem, several
random values can be added to the V F and V Q to ensure that the relevance
score is different, thereby ensuring trapdoor unlinkability.

8 Performance Evaluation

In this section, we implement the PMRS scheme proposed in this paper and
compare the search time cost with DMSR scheme [10]. The test data set used
in the experiment is New York Times Dataset [20]. The experimental hardware

PMRS 509

environment is 2.5 GHz 2 core CPU, 8G memory, 256G solid state hard disk;
the software environment is 64 bit Windows 10 operating system and some Java
development tools. Default parameters are n = 50, 000, |Q| = 5, k = 15, and
ε = 500 which are the number of documents, search keywords, search documents
and partition parameter.

In the following experiments, we evaluate the time cost of searches where
one of the parameters n, k, and |Q| changes and the other parameters adopt the
default values. The results are shown in Figs. 6, 7 and 8.

Figures 6, 7 and 8 all show that the proposed PMRS outperforms DMSR
in the time cost of ranked searches, and the former saves at least 65.2% of the
time cost compared with the latter. The reason is that both PMRS and DMSR
are based on the tree structure, and the more documents there are, the more
nodes there are in the tree. As the number of documents increases, so does
the number of extracted keywords. Then, the dimension of document vector
and search vector will also increase, which will consume more time to calculate
relevance score. In PMRS, through the calculation of the query filter vector
and pruning vector in the UCB-tree, a large number of documents unrelated
to the search keyword can be quickly filtered out, and the “dynamic depth-
first” algorithm is used in the LCB-tree to continuously prune to obtain search
results. While DMSR only performs the pruning operation in the tree composed
of the entire document set, which is not as efficient as PMRS. In addition, as the
number of search keywords increases, the relevance score between the pruning
vector and the search vector is higher, and the minScore(RS)’s pruning effect
is less obvious. And as the number of search documents increases, the value of
minScore(RS) decreases, and the pruning effect is also not obvious. Thus, the
efficiency of performing pruning on the entire tree in DMSR is less than that of
PMRS, which first filter the candidate documents and then performs a “dynamic
depth-first” search algorithm for them.

Fig. 6. The impact of n (×104) Fig. 7. The impact of k

510 J. Bao et al.

Fig. 8. The impact of |Q|

9 Conclusion

Under the “honest but curious” threat model, this paper proposes a privacy-
preserving multi-keyword ranked search over encrypted cloud data scheme based
on two-layer complete binary tree index. In this scheme, the two-layer complete
binary tree index is designed, which can be used for efficient search. On the
basis of such index, a “dynamic depth-first” search algorithms are proposed.
Security analysis and experiment evaluation show that the PMRS scheme is
privacy-preserving and efficient.

References

1. Linthicum, D.S.: Approaching cloud computing performance. IEEE Cloud Com-
put. 5(2), 33–36 (2018)

2. Bösch, C., Hartel, P.H., Jonker, W., Peter, A.: A survey of provably secure search-
able encryption. ACM Comput. Surv. 47(2), 18:1–18:51 (2014)

3. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on
encrypted data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley,
California, USA, 14–17 May 2000, pp. 44–55 (2000)

4. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)
5. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric

encryption: improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

6. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: 30th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Computer and Com-
munications Societies, INFOCOM 2011, 10–15 April 2011, pp. 829–837, Shanghai
(2011)

7. Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure KNN computation on
encrypted databases. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, 29
June–2 July 2009, pp. 139–152 (2009)

8. Cheruku, H., Subhashini, P.: Ranked search over encrypted cloud data in Azure
using secure K-NN. In: Aggarwal, V.B., Bhatnagar, V., Mishra, D.K. (eds.) Big
Data Analytics. AISC, vol. 654, pp. 341–350. Springer, Singapore (2018). https://
doi.org/10.1007/978-981-10-6620-7 33

https://doi.org/10.1007/978-981-10-6620-7_33
https://doi.org/10.1007/978-981-10-6620-7_33

PMRS 511

9. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1),
222–233 (2014)

10. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked
search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2),
340–352 (2016)

11. Chen, C., et al.: An efficient privacy-preserving ranked keyword search method.
IEEE Trans. Parallel Distrib. Syst. 27(4), 951–963 (2016)

12. Zhu, X., Liu, Q., Wang, G.: A novel verifiable and dynamic fuzzy keyword
search scheme over encrypted data in cloud computing. In: 2016 IEEE Trust-
com/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016, pp. 845–851 (2016)

13. Deepa, N., Vijayakumar, P., Rawal, B.S., Balamurugan, B.: An extensive review
and possible attack on the privacy preserving ranked multi-keyword search for
multiple data owners in cloud computing. In: 2017 IEEE International Conference
on Smart Cloud, SmartCloud 2017, New York City, NY, USA, 3–5 November 2017,
pp. 149–154 (2017)

14. Guo, Z., Zhang, H., Sun, C., Wen, Q., Li, W.: Secure multi-keyword ranked search
over encrypted cloud data for multiple data owners. J. Syst. Softw. 137, 380–395
(2018)

15. Yao, X., Lin, Y., Liu, Q., Zhang, J.: Privacy-preserving search over encrypted
personal health record in multi-source cloud. IEEE Access 6, 3809–3823 (2018)

16. Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over
encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Dis-
trib. Syst. 27(9), 2546–2559 (2016)

17. Sun, W., et al.: Verifiable privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking. IEEE Trans. Parallel Distrib. Syst. 25(11),
3025–3035 (2014)

18. Wan, Z., Deng, R.H.: VPSearch: achieving verifiability for privacy-preserving multi-
keyword search over encrypted cloud data. IEEE Trans. Dependable Secure Com-
put. 15(6), 1083–1095 (2018)

19. Bulut, M.: ReducedCBT and superCBT, two new and improved complete binary
tree structures, CoRR, vol. abs/1401.7741 (2014)

20. B.D.: New York times dataset [db/ol] (2018). http://developer.nytimes.com/docs

http://developer.nytimes.com/docs

Privacy-Preserving Fine-Grained
Outsourcing PHR with Efficient

Policy Updating

Zuobin Ying1,2(B), Wenjie Jiang1, Ximeng Liu3,4, and Maode Ma2

1 School of Computer Science and Technology, Anhui University, Hefei 230601, China
yingzb@ahu.edu.cn, wenjie941105@gmail.com

2 School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798, Singapore

EMDMa@ntu.edu.sg
3 College of Mathematics and Computer Science, Fuzhou University,

Fuzhou 350108, China
snbnix@gmail.com

4 Key Lab of Information Security of Network System (Fuzhou University),

Fuzhou 350108, Fujian, China

Abstract. Personal Health Record (PHR) is a novel way of managing
individual health. With the help of cloud computing and Ciphertext-
Policy Attribute-Based Encryption (CP-ABE), the fine-grained access
control, as well as authenticated sharing, can be realized. However, the
importance of policy preserving has emerged to be a major security risk
in the PHR cloud sharing scenario. Besides, cloud-assist policy updating,
as a practical functionality of the PHR system, should also be taken into
consideration. In this paper, we present an integrated policy preserving
PHR scheme with efficient policy updating. The scheme is proved to
be selectively secure under q-BDHE assumption. The evaluation result
indicates that our scheme can reach a balanced trade-off in terms of
privacy and efficiency.

Keywords: Personal Health Record · Policy preserving · Policy
updating · Attribute-Based Encryption

1 Introduction

Noncommunicable diseases (NCDs), including cardiovascular diseases, cancer,
diabetes, chronic respiratory diseases, and mental disorders, have become the
top health hazards worldwide. Collectively, cancer, diabetes, lung and heart dis-
eases kill 41 million people annually, accounting for 71% of all deaths globally
according to the statistics from the world health organization (WHO). NCDs
tend to be of long duration and are the result of a combination of genetic, physi-
ological, environmental and behavioral factors. Tobacco use, physical inactivity,

Supported by Anhui University.

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 512–520, 2020.
https://doi.org/10.1007/978-3-030-38961-1_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_44&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_44

Privacy-Preserving Fine-Grained Outsourcing PHR 513

the harmful use of alcohol and unhealthy diets all increase the risk of dying from
an NCD. Detection, screening, and treatment of NCDs, as well as palliative
care, are key components of the response to NCDs [1]. Although the advanced
medical treatment can provide with more precise therapies. Whereas, NCDs
require long-term treatment as well as daily self-monitoring and detailed life-
style recording. Therefore, a patient-centric record management pattern became
widely prevalent, namely, Personal Health Record (PHR). PHR is a derivation
of Electronic Medical Record (EMR), which integrates the patient-generated
health data (PGHD). Through applying of PHR, patients could update their
daily health conditions and activities online after discharge, the medical institu-
tions could also keep abreast of the patient’s current situation and give appro-
priate advice remotely. Meanwhile, the development of cloud computing makes
sharing more convenient. PHR owners could share their documents with other
patients who have the same symptoms. Nowadays, more and more commercial
medical service providers are committed to providing users with more convenient
cloud outsourcing personal health record solutions.

However, since the PHR contains more health-related privacy information
than any other documents. Thus, the PHR is more preferred to malicious users.
For instance, in July 2018, Singapore Health Group (SingHealth) health data
was hacked and 1.5 million people’s personal information was illegally obtained.
Obviously, without any effective protection, the outsourced PHR will suffer from
various kinds of security threats in the cloud. In the past few years, Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) has been widely studied and
adopted in the cloud outsourcing scenario [2–10], CP-ABE can realize one-
to-many fine-grained access control by formulating the proper access policies.
Users have the corresponding attributes are able to get access to the ciphertext.
For example, if an outsourced file is encrypted by using the policy formed as
((“School of Computer Science” AND “Graduate Student”) OR “Supervisor”).
It means that all of the graduate students from the school of computer science
or the supervisors can correctly decrypt the file.

First of all, the policy in traditional CP-ABE schemes is in plaintext form.
Imagine a scenario of new employees’ physical examination. The results will be
recorded in the PHR, encrypted by using CP-ABE and then uploaded to the
cloud server. Assume that there exists a policy expressed like ((“Cardiology”
AND “Age < 25” AND “Male”) OR “ICU”), then it can be inferred that this
young man may have serious heart disease. Combined with some background
knowledge, the specific individual can be identified easily. As we can see, privacy
remains leaked while the ciphertext is protected well. Secondly, for ease of use,
PHR owners prefer to store their medical records in the cloud, and it became
cumbersome when the data owner wants to update the policy. The simplest
way is to retrieve and decrypt the PHR ciphertext, re-encrypt it by using the
new policy, and then outsource it to the cloud again. However, this approach
will result in a significant computation and communication cost to the resource
constraint end side. Thus, updating ciphertext in the cloud turns into an essential
function of a mature cloud assistant PHR system. Motivate by solving these two

514 Z. Ying et al.

problems in one integrated scheme. We present the Privacy-Preserving Policy
Updating (3PU) scheme. Our main contribution can be summarized as follows:

(1) We are the first to consider solving the problem of policy updating under
the premise of policy hidden. It is noteworthy that we are not just simply
add these two functions together, we try to make a dynamic integration so
as to realize usability in the outsourcing PHR environment.

(2) To enhance the security of previously proposed ACF scheme. We design a
lightweight encryption mechanism, thus, only the authenticated users can
recover the corresponding attributes.

(3) The scheme is constructed on the prime order group, we proved the security
of our scheme, and the experiment result shows that our scheme has an
equilibrium in both security and efficiency.

2 System Model

Our proposed scheme has five entities as shown in Fig. 1. We briefly describe the
function of each entity.

Fig. 1. Proposed 3PU system model and the different entities

(1) Attribute Authority (AA) is responsible to distribute attributes to the
authenticated users. Besides, AA generates the public parameter and the
master secret key. It also issues private keys to the PHR users according to
their attributes.

(2) Cloud Service Provider CSP provides with resource infinit computing, mass
storage and other services to the users. CSP will follow the instructions
issued by all the users (include the malicious users).

Privacy-Preserving Fine-Grained Outsourcing PHR 515

(3) PHR Owner (PHRO) create their own health records, formulate the access
policy to decide who has the right to access to their files.

(4) PHR User (PHRU) could be patients, clinicians, assurance company employ-
ees, health-care institutes, etc. PHRU can obtain the encrypted PHR from
CSP. They can proceed decryption only when their own attributes could
satisfy the access policy formulate by the PHRO.

(5) Malicious User (MU) in our proposed scheme have the polynomial time
capacity. They always want to mine privacy from the PHR outsourcing to
the cloud.

3 Privacy Preserving Policy Updating Scheme

Recently, we have proposed a new algorithm called ACF to protect the pivacy
of the policy [8]. We improve the security of the attributes stored in the ACF
in the ACF Create sub-routine, then in the ACF Updating algorithm, we will
detail the privacy policy updating.

(1) Setup AA initials the Setup algorithm. Let G and GT be two multiplicative
cyclic groups of prime order p. e : G×G → GT is a bilinear map. AA selects
a generator g ∈ G and N random group elements h1, . . . , hN ∈ G associated
with the N attributes in the system. Select α, a ∈ Zp at random. Denote
Latt and Lrnum to be the maximum bit length of the attributes as well as
the maximum bit length of row numbers of the LSSS matrix respectively.
Let Hf be the collision-resistent hash functions of generating fingerprint of
an element. Let He be the collision-resistent hash function which maps an
element to an entry in the ACF buckets.

The public parameter is formed as:

pk = 〈 g, e(g, g)α, ga, h1, . . . , hN , Latt, Lrnum,Hf ,He 〉.
The master secret key is set to be msk = gα.

(2) KeyGen To get access to the encrypted PHR in the cloud, users queries
secret key from AA. AA distributes the attributes S according to the user’s
characteristic. AA also generates the corresponding secret key for the users.
It takes the input as pk, msk and S, randomly chooses t,m ∈ Zp, then
computes

E = gαgat, I = gt,K1 = gαgam,K2 = g−m, {Ex = ht
x}x∈S .

Then the secret key is set to be:

sk = 〈 E, I,K1,K2, {Ex}x∈S ,S 〉.

It should be noted that K1,K2 are the secret key component designed for
the micro encryption algorithm to get the attributes stored in the ACF.

516 Z. Ying et al.

(3) Encryption This algorithm contains two subroutines, namely, Enc and
ACF Create. At first, Enc takes as input the public parameter pk, the plain-
text M and the access matrix (M, ρ). M is an l×n matrix by using function ρ
to map attributes to rows of M. This subroutine randomly chooses a vector
v = (s, y2, . . . , yn) ∈ Z

n
p , where y2, . . . , yn are used to share the encryption

secret s, a d ∈ Zp. For i = 1 to l, it calculates λi = Mi · v, in which Mi is
the vector related to the ith row of M. In addition, the algorithm chooses
random r1, . . . , rl ∈ Zp. Then it outputs the ciphertext:

CT = 〈C = Me(g, g)αs,ACF, C′ = gs, C1 = gd,

C2 = gad, {Ci = gaλih−ri
ρ(i), Di = gri}i=1,...,l〉.

(1)

Here, C1, C2 are also for the protection of attributes in the ACF.
The next subroutine is to embed the access policy into the ACF to realize

policy hidden. In our previous work [8], we have proposed a prototype of ACF
on the basis of the Cuckoo Filter. Here, we briefly introduce the main idea of the
original ACF and then detailed the improvement we have made in this scheme.

ACF Create subroutine takes as input the access policy (M, ρ). It concate-
nate the attributes with the relevant row number in the access matrix M and
generate a set of elements S = {(i‖attx)}i∈[1,l], in which the i-th row of the access
matrix maps to the attribute attx = ρ(i). Afterwards, the algorithm create the
ACF by taking the S as a input. When we have to insert a new element x in the
set S to the ACF, the algorithm first calculate the fingerprint Hf (x) of x, which
we denote as F . In the original ACF, the tuple stored in the ACF is formed
as 〈F, F ⊕ x〉. Although it can achieve the policy hidden function, however, the
malicious user can launch a brute force violence crack to get the value of x.
Therefore, we made some modifications, the new element stored in the ACF is
formed as 〈F, x · e(g, g)αd〉. Later in the decryption phase, only the user who
matches the fingerprint can get the valid value by initial the micro encryption
algorithm.

(4) Decryption When the user wants to get access to the encrypted PHR in
the cloud, the access control is triggered to check if the user has the proper
attributes. Since the access policy is hidden in the ACF, an ACF Check
subroutine will be initialed to find out which attributes of the user is in the
access matrix.

ACF Check takes pk, the attribute set S of the user and ACF as the input.
For each attribute att in the set S, the algorithm first computes He and Hf

to locate the candidate buckets. If either bucket have the fingerprint, then the
algorithm obtains the element x in the ACF as follows:

θ = e(C1,K1) · e(C2,K2) = e(gd, gαgam) · e(gad, g−m) = e(g, g)αd

The element x can then be recovered by using x = Cx ⊕ θ, where Cx =
x ⊕ e(g, g)αd ∈ ACF. Element x is formed as x = {i‖attx}. The algorithm

Privacy-Preserving Fine-Grained Outsourcing PHR 517

(a) ACF Creation. (b) Policy Update.

Fig. 2. Performance evaluation of policy hidden & policy updating

will automatically remove the zero bits to the left of the string Latt to get
the attribute attx, then the same operation to obtain the row number i from
Lrnum. Otherwise, the attribute att does not exit in the access policy if att is
not the same as attx, Finally, the new attribute mapping function ρ′ will be
reconstructed as: ρ′ = {rnum, att}att∈S . Then the row number in the matrix M

will be determined. When the access policy (M, ρ′) is obtained. The final decryp-
tion algorithm can proceed just the same as in the original CP-ABE scheme.

(5) Update The updating process consists of two parts, UPKeyGen and CTUpdate.
The UPKeyGen is executed on local side, while CTUpdate is executed on the
cloud.
Note that at the end of the Encryption procedure, we store the EM as:

EM = ((M, ρ),v = (s, y2, . . . , yn), e(g, g)αd). (2)

These components will be used to sustain the creation of new ciphertext
and ACF.

UPKeyGen After generating the new access structure (M′, ρ′), the algorithm
will compare (M, ρ) with (M′, ρ′) and generate the update access structure
(̂M, ρ̂).

For convenience of description. We divide the attributes that need to be
updated into three sets Sinsert, Sdelete and Salter. If the number of columns in ̂M

is more than the dimension of v, the dimension of v need to be raised. For
example, if the number of columns is n + m and the v = (s, y2, . . . , yn), then
we set w = (s, y2, . . . , yn, yn+1, . . . , yn+m) where yn+1, . . . , yn+m ∈ Zp. In the
following description, we assume that the number of columns in ̂M is more than
the dimension of v. For att ∈ Sinsert, it calculates ̂λi = w · ̂Mi, where ρ̂(i) = att,
and ̂Mi is the vector corresponding to the ith row of ̂M. Suppose there are L
attributes in Sinsert. The algorithm chooses random r′

1, . . . , r
′
L ∈ Zp and computes

UKvalue =

〈〈rnum, ̂Ci = gâλih
−r′

j

ρ̂(i) ,
̂Di = gr′

j 〉, 〈f,ACFf = (i||att) ⊕ e(g, g)αd)〉〉 (3)

518 Z. Ying et al.

where rnum = i, f = Hf (att), j ∈ 1, 2, . . . ,L. Then, the algorithm sets the
UKtype = “insert”, and lets UKi = 〈UKtype,UKvalue〉.

For att ∈ Sdelete, the UKvalue = 〈rnum, f〉, where rnum ∈ ρ̂, f = Hf (att), and
the UKtype = “delete”. The UKi is defined as 〈UKtype,UKvalue〉.

For att ∈ Salter, computes

UKi = 〈UKtype = “alter”,UKvalue = 〈rnum, ˜Ci = ga˜λi〉〉 (4)

where ˜λi = ̂Mi · w − Mi · v, rnum = i.
At the end, the UPKeyGen sub-algorithm outputs the update keys as

{UKi|ρ̂(i) = att, att ∈ Sinsert ∨ Sdelete ∨ Salter}.
CTUpdate After receiving the update keys {UKi}, the cloud server updates

the ciphertext CT and ACF. If the UKtype = “insert”, the cloud updates the
ciphertext based on the 〈 ̂Ci, ̂Di,ACFf 〉 ∈ UKvalue. If the UKtype = “delete”, the
cloud deletes the components form the CT and ACF as per the 〈rnum, f〉 ∈
UKvalue, otherwise the cloud alters the ciphertext.

(a) Modification on AND structure. (b) Modification on AND structure.

Fig. 3. Performance evaluation of policy updating in the cloud

4 Performance Analysis

We deploy the experiment environment on the Ubuntu Linux Desktop 64-bit
system with an Intel Core i7 CPU at 3.4 GHz and 8.00 GB RAM. The code
utilizes the charm library version 0.50.2 and an asymmetric elliptic curve, where
the base field size is 512-bit and the embedding degree is 2. All the experimental
results are the mean of 100 trails.

Figure 2(a) presents the time cost of the generation of ACF as well as encryp-
tion, decryption of the micro encryption algorithm. The encryption and decryp-
tion phase in this micro algorithm is not related to the attributes. The decryption
performs two pairing computations in GT group, while the encryption performs
one pairing computation in GT group. Figure 2(b) shows the policy updating
costs. The updating mode is divided into three types, delete, insert and alter.

Privacy-Preserving Fine-Grained Outsourcing PHR 519

Deletion only needs to find the corresponding element in the bucket of the ACF,
the location tracing is realized by using traversing fingerprints in the access pol-
icy tree. Alter attribute in the ACF needs to locate the bucket first. Then replace
the Cx with the new element C ′

x. It is correlated with the attributes. Insert new
attributes is just the same as in the ACF creation phase. The cost will also be
related to the number of attributes.

We also evaluate the computation cost of the policy updating in the cloud.
Note that in this scheme, we concentrate on the monotone policy only. In this
case, we can consider the following two structures in the policy updating, namely,
the “AND” structure and the “OR” structure. Figure 3(a) and (b) express these
two situations separately.

5 Conclusion

We proposed an outsourcing PHR scheme with policy preserving and cloud-
assist policy updating. We are the first to consider the integration of both func-
tions. Besides, to protect the security of the attributes in the ACF, we designed
a lightweight tiny encryption algorithm. The performance evaluation, as well
as security analysis, indicated that our scheme could achieve an ideal balance
between efficiency and privacy.

Acknowledgment. This work is supported by the key project of Anhui provincial
department of education (Grant No. KJ2018A0031), the National Natural Science
Foundation of China under Grant Nos. U1804263 and 61702105.

References

1. Heron, M.: Deaths: leading causes for 2016. Natl. Vital Stat. Rep. Cent. Dis. Con-
trol Prev. Natl. Cent. Health Stat. Natl. Vital Stat. Syst. 67(6), 1 (2018)

2. Lin, G., Ying, C., Tan, S., et al.: ARP-CP-ABE: toward efficient, secure and flexible
access control for personal health record systems. In: 2018 IEEE 16th International
Conference on Dependable, Autonomic and Secure Computing, 16th International
Conference on Pervasive Intelligence and Computing, 4th International Confer-
ence on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 54–61. IEEE (2018)

3. Liu, X., Xia, Y., Yang, W., et al.: Secure and efficient querying over personal health
records in cloud computing. Neurocomputing 274, 99–105 (2018)

4. Yeh, L.Y., Chiang, P.Y., Tsai, Y.L., et al.: Cloud-based fine-grained health infor-
mation access control framework for lightweight IoT devices with dynamic auditing
and attribute revocation. IEEE Trans. Cloud Comput. 6(2), 532–544 (2018)

5. Xue, K., Chen, W., Li, W., et al.: Combining data owner-side and cloud-side access
control for encrypted cloud storage. IEEE Trans. Inf. Forensics Secur. 13(8), 2062–
2074 (2018)

6. Li, J., Chen, X., Chow, S.S.M., et al.: Multi-authority fine-grained access control
with accountability and its application in cloud. J. Netw. Comput. Appl. 112,
89–96 (2018)

520 Z. Ying et al.

7. Zhang, Y., Zheng, D., Deng, R.H.: Security and privacy in smart health: efficient
policy-hiding attribute-based access control. IEEE Internet Things J. 5(3), 2130–
2145 (2018)

8. Ying, Z., Wei, L., Li, Q., et al.: A lightweight policy preserving EHR Sharing
scheme in the cloud. IEEE Access 6, 53698–53708 (2018)

9. Ying, Z., Li, H., Ma, J., et al.: Adaptively secure ciphertext-policy attribute-based
encryption with dynamic policy updating. Sci. China Inf. Sci. 59(4), 042701 (2016)

10. Ying, Z., Jang, W., Cao, S., et al.: A lightweight cloud sharing PHR system with
access policy updating. IEEE Access 6, 64611–64621 (2018)

Lightweight Outsourced
Privacy-Preserving Heart Failure

Prediction Based on GRU

Zuobin Ying1,2(B), Shuanglong Cao2, Peng Zhou2, Shun Zhang2,
and Ximeng Liu3,4

1 School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798, Singapore

2 School of Computer Science and Technology, Anhui University, Hefei 230601, China
yingzb@ahu.edu.cn

3 College of Mathematics and Computer Science, Fuzhou University,
Fuzhou 350108, China

4 Key Lab of Information Security of Network System (Fuzhou University),
Fuzhou 350108, Fujian, China

Abstract. The medical service provider establishes a heart failure pre-
diction model with deep learning technology to provide remote users with
real-time and accurate heart failure prediction services. Remote users
provide their health data to the health care provider for heart failure pre-
diction through the network, thereby effectively avoiding the damage or
death of vital organs of the patient due to the onset of acute heart failure.
Obviously, sharing personal health data in the exposed data sharing envi-
ronment would lead to serious privacy leakage. Therefore, in this paper,
we propose a privacy-preserving heart failure prediction (PHFP) system
based on Secure Multiparty Computation (SMC) and Gated Recurrent
Unit (GRU). To meet the real-time requirements of the PHFP system, we
designed a series of data interaction protocols based on additional secret
sharing to achieve lightweight outsourcing computing. Through these
protocols, we can protect the user’s health data privacy while ensuring
the efficiency of the heart failure prediction model. At the same time, to
provide high-quality heart failure prediction services, we also use the new
mathematical fitting method to directly construct the safety activation
function, which reduces the number of calls to the security protocol and
optimizes the accuracy and efficiency of the system. Besides, we built a
security model and analyzed the security of the system. The experimen-
tal results show that PHFP takes into account the safety, accuracy, and
efficiency in the application of heart failure prediction.

Keywords: Secure Multiparty Computation · Privacy-preserving ·
Heart failure prediction · Gated Recurrent Unit

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 521–536, 2020.
https://doi.org/10.1007/978-3-030-38961-1_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_45&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_45

522 Z. Ying et al.

1 Introduction

Heart Failure (HF) is a complex clinical symptom cluster and a severe stage
of various heart diseases with high morbidity and mortality. According to the
European Society of Cardiology (ESC), 26 million adults worldwide are diag-
nosed with heart failure, and 3.6 million people are newly diagnosed each year.
About 20% heart failure patients die within one year after diagnosis, and about
50% decease in five years once have been diagnosed [1]. To effectively reduce
the incidence and mortality of heart failure, early accurate prediction of heart
attack episodes is indispensable. It is difficult for the traditional clinical meth-
ods to diagnose the occult acute heart failure at an early stage, so usually, the
patient diagnosed after being admitted to the emergency department. If the
essential organs of some patients not diagnosed in time, irreversible damage or
death may occur [2]. Therefore, it is essential to provide an early and accurate
heart failure prediction service. In recent years, with the development of deep
learning, medical research institutions have trained high-precision heart failure
prediction models by acquiring patient health data to provide users with high-
quality heart failure prediction services. Among them, Edward Choi et al. [3]
used a GRU neural network to establish a time series model the records related
to EMR and realized much accurate prediction at an early stage of heart fail-
ure. Moreover, the Area Under the Curve (AUC) of the model reaches 0.777,
compared to the traditional clinical diagnostic (correct rate of 0.513) has better
accuracy. Using this result, healthcare providers can establish a heart failure
pre-diagnosis model to provide real-time, accurate, and convenient heart failure
prediction services to remote users. As a result, more and more users are provid-
ing their personal health data to medical service providers via the Internet for
the purpose of obtaining real-time, accurate heart failure prediction services.

However, in the actual scenario, it is necessary to comprehensively consider
the privacy of personal health data and the security of the heart failure prediction
model provided by the medical service provider. In general, there are two ways to
predict data sharing for heart failure. One way is that the user provides personal
health data to the medical provider through the network, and then the medical
service provider performs heart failure prediction and returns the result to the
user locally. However, the medical service provider may disclose the user’s health
data during the process, which will lead to the leakage and abuse of the user’s
personal health data privacy. Another way is for the medical service provider to
send the heart failure model to the user, and heart failure prediction is made
by the user locally. Due to the high commercial value attached to this kind of
prediction, the leakage of the model will bring economic losses to the medical
service provider. Therefore, how to design a heart failure prediction system that
can protect data privacy has become a vital issue to be solved. Furthermore,
considering that the sudden onset of acute heart failure is often life-threatening
and requires urgent rescue measures, this requires us to balance the timeliness
and accuracy of the PHFP system.

Lightweight Outsourced Privacy-Preserving Heart Failure Prediction 523

In recent years, researchers have proposed a variety of technologies to protect
medical privacy, such as anonymous technology and homomorphic encryption, in
response to data privacy breaches in telemedicine scenarios. Nevertheless, anony-
mous technology [4] only protects the privacy of users to a certain extent, which
makes it easy to lose valuable information, and then its prediction accuracy will
be affected. And, studies have shown that anonymous techniques are not suffi-
cient to resist re-identification attacks [5]. Moreover, current frameworks based
on homomorphic encryption [6] are time-consuming and memory-intensive, and
its computational overhead is enormous, which is not suitable for real-time heart
failure prediction scenarios. None of the current work takes into account the bal-
ance between efficiency and precision. Therefore, when constructing a privacy-
preventing heart failure prediction system, we must realize privacy protection in
the premise of system accuracy and efficiency.

To achieve the above objectives, we propose a PHFP system. Our main con-
tributions can be summarized as follows:

– We are first design a lightweight system to protect privacy data and service
provider model parameters for the medical user heart failure prediction. The
system is based on the addition of secret sharing technology in secure multi-
party computing, which transfers intricate work to the edge server, reducing
the cost of medical users. Moreover, the system avoids the interaction between
the medical user terminal and the server, with the results that the overall
efficiency of the system is improved.

– PHFP use a new mathematical method to directly construct the secure Sig-
moid function and the Tanh function, which avoids the time overhead caused
by the system calling too many security components during the running pro-
cess. At the same time, system solve the problem of low function fitting pre-
cision within a specific interval caused by the local fitting of the Taylor series.
Compared with the existing additive secret sharing scheme, our system has
significantly improved in terms of computational overhead and precision.

– We conduct a comprehensive experimental evaluation to measure the per-
formance of our program. The experimental results show that the system is
superior to the previous work in terms of computational overhead, communi-
cation overhead, and computational accuracy while protecting the privacy of
heart failure prediction data.

The remaining part of this paper is organized as follows. We formulate the
problem and present the system model and security model in Sect. 2. In Sect. 3,
the primitives about GRU and secure multiparty computation are briefly intro-
duced followed by problem analysis and model presentation. Then the building
blocks that support efficient, secure computation based on secret sharing tech-
niques are provided in Sect. 4. On the basis of that, we propose the details of
our system in Sect. 5. And Sects. 6 and 7 covers the theoretical analysis and
experimental results respectively. Finally, related conclusion is stated Sect. 8.

524 Z. Ying et al.

2 Problem Formulation

In this section, we formalize the system model, security model and identify our
design goal.

2.1 System Model

In our system model, we focus on how users with sensitive medical data can
obtain accurate and privacy-preserving real-time heart failure prediction services
from cloud service providers. Precisely, the system consists of five parts: (1) smart
wearable device (SWD); (2) the Medical User (MU); (3) the Edge Servers (ESs);
(4) the Medical Service Provider (MSP); (5) Trusted Third Party (TTP). As
shown in Fig. 1.

Fig. 1. System model under consideration

– SWD is used to collect various health data of healthy users. The collected
data has a total of 279 feature dimensions, such as heart rate, blood pressure,
body temperature, etc. And it sends the collected health data to the medical
user.

– MU wants to know its future heart failure attack risk coefficient, and it will
preprocess its heart failure data on the phone to form the heart failure eigen-
vector, which is randomly divided into the different secret values and sent
to different ESs. Besides, MU was able to accept the feedback results from
ESs and combines the feedback results to obtain the final correct prediction
results of heart failure.

Lightweight Outsourced Privacy-Preserving Heart Failure Prediction 525

– ESs can be a cloud service provider that assists healthcare providers in col-
lecting data related to heart failure prediction and training new data. At the
same time, ESs can return the correct heart failure prediction result to the
user, and promote the user to provide more data sets.

– MSP, such as pharmaceutical companies or hospitals, can provide real-time
heart failure risk prediction services. Individually, with the help of ESs, MSP
can obtain the latest training parameters of GRU recurrent neural network.
Considering the benefits of ESs, MSP is also willing to commission ESs to
effectively predict the risk of heart failure and return the results to MU.

– TTP is only responsible for generating random numbers, which means that
TTP doesn’t require a lot of computing power. It can be replaced by a light
server or even a personal computer.

2.2 Security Model

In the security model, we use the standard semi-honest security model [7], which
is also perceived as passive or honest-but-curious. In this security model, each
edge server enforces the protocol as required by the contract. But out of curiosity,
they can try to get as much information as they can from the data they receive
and the data they process.

Also, we assume that the two edge servers ES1 and ES2 are independent of
each other, and there is no collusion between them. This means that the data
acquired by each of the edge servers will not be revealed. In this way, even if each
edge server has durable computing power, they can only get some split medical
or intermediate interaction data and model parameters. In other words, real raw
medical data and model parameters cannot be recovered.

It is worth noting that TTP is merely responsible for generating random
numbers, and it is honest and trustworthy. Last but not least, we also assume
that medical users and service providers are honest and a secure channel for
communication exists between the entities.

3 Preliminaries

3.1 Features of GRU

GRU neural network is a variant of Long Short Term Memory (LSTM), besides,
GRU maintains the effect of LSTM while making the structure simpler. It’s a
very popular neural network. The mathematical expression is shown below:

zt = σ(Wz · [ht−1, xt] + bz)
rt = σ(Wr · [ht−1, xt] + br)

h̃t = tanh(Wh̃ · [rt � ht−1, xt] + bh̃)

ht = zt � ht−1 + (1 − zt) � h̃t

It is worth noting that in GRU, the value of hidden layer ht−1 at time step
t − 1 and the input value at time step t doesnt directly change the value of ht.

526 Z. Ying et al.

The value of ht is determined by updating gate zt, resetting gate rt, and interme-
diate storage cell h̃t. In short, reset gates allow the hidden layer to remove any
information that is not useful for future prediction, while update gates determine
how much information from the previous hidden layer should be retained by the
current hidden layer.

3.2 Additive Secret Sharing Protocols

Secret sharing protocol is mainly used for secure multiply party computing
(SMC) and privacy protection. The encryption protocol based on secret sharing
has good performance and can be used to design an efficient privacy protection
computing model [8]. The secret sharing protocol can be thought of as consist-
ing of a large number of “components” through which we can build a larger and
equally secure system.

Lemma 1. If all the sub-protocols of a protocol are fully emulated, then the
protocol is fully emulated [9].

– Random Bit Protocol. The RanBits(·) protocol [10] can be thought of simply
as a random number generator. It doesn’t need any input to generate any
bit sequence (r0, · · · , rl). At the same time, a hex random number r can be
calculated by

r =
l∑

i=0

ri · 2i.

– Secure Addition and Subtraction Protocol. The SecAdd(·) and SecSub(·) pro-
tocol [10] can calculate f(u, v) = u ± v. Since u ± v = (u1 + u2) ± (u1 +
v2) = (u1 ± v1) + (u2 ± v2), it’s easy to see that the protocol can perform
secure additions and subtractions locally without the need for interaction
between servers. After the computation, each participating party will output
fi = ui ± vi. Obviously, we have f1 + f2 = u ± v.

– Secure Multiplication Protocol. The SecMul(·) protocol [10] is based on the
Beaver’s triplet [11]. Given an input binary group (u, v), the protocol outputs
another binary group (f1, f2) to the two participants, where f = f1 + f2 =
u · v. In this process, a trusted third party is required to generate a random
triple (x, y, z) and z = x · y. It is worth noting that the Participants will not
be informed of each other’s input.

– Secure Comparison Protocol. The SecCmp(·) protocol [10] can be achieved in
the comparison of the size of two inputs u and v, the input of both sides will
not be leaked. And, if u < v, SecCmp(·) outputs 1, otherwise outputs 0.

– Secure Vector Concatenation Protocol. The SecCon(·) protocol [12] is to con-
nect two short vectors into one long vector. That is (Table 1),

[u,v] = [(u0,u1,u2, ...), (v0,v1,v2, ...)]
= (u0,u1,u2, ...,v0,v1,v2, ...).

Lightweight Outsourced Privacy-Preserving Heart Failure Prediction 527

Table 1. Variables and their description

Variables Description

zt The update gate at timestep t

rt The reset gate at timestep t

˜ht The intermediate memory unit at timestep t

ht The hidden layer at timestep t

W The weight matrix

b The bias term

� Hadamard product

σsec(.) Secure sigmoid function

tanhsec(.) Secure tanh function

Wih, Wix The split matrixes of Wi

σ The sigmoid function

δt The error vector at time

∇ The symbol of gradient

4 Secret Sharing Based Functions

4.1 Nonlinear Function Fitting Method

The GRU has at least one activation function deployed in each gate. These acti-
vation functions are nonlinear functions such as the Sigmoid function and the
Tanh function. According to Lemma 1, we can use some of the security protocols
mentioned in Sect. 3 to build a secure nonlinear function protocol. However, non-
linear functions need to include not only addition and multiplication operations,
but also complex operations, such as exponents and reciprocals. It is impossible
to construct safe nonlinear functions directly with the security protocols men-
tioned before. Therefore, we need to fit the nonlinear numbers in the GRU gates
with polynomials that only contain multiplication and addition.

Scheme I: Taylor Series [13]. At present, a useful tool for solving nonlinear
problems is the Taylor series. By using Taylor expansion multi-order approxima-

(a) (b)

Fig. 2. Taylor series and least squares approximations for Sigmoid and Tanh function

528 Z. Ying et al.

tion, nonlinear problems can be linearised, which makes calculation and under-
standing more conveniently. The literature [12] uses the Taylor series to construct
a secure exponential function with base e and Newton iteration method to build a
secure reciprocal function. Then the security sigmoid and the secure tanh func-
tion are further built by invoking the security exponential and the reciprocal
function, but this will make the overhead of the two edge servers more massive.
Also, each invoke to the security function will result in a loss of precision, and
too many invokes to the safety function will result in more loss of accuracy. It
is not suitable for high-precision and high-efficiency scenarios like heart failure
prediction. Hence, in our scheme I, we borrowed homomorphic encryption [14]
to direct fit Sigmoid and Tanh using Taylor series directly and then build the
addition secret sharing protocol.

Scheme II: Least Square Method. Although in scheme I, direct fitting of
the sigmoid and tanh functions using Taylor series can reduce the overhead and
precision loss of the edge server, this method still has a defect. As shown in the
Fig. 2(a)–(b), the basic idea of the Taylor series is to approximate a function in
the neighborhood of a point. For points that are not included in the neighbor-
hood, the approximation error is much larger than the point contained within
the area. To avoid the problem of the local fitting function in scheme I, we addi-
tionally consider the method of fitting the function by least squares [15], which
finds the best function matching of the activation function by minimizing the
sum of the squares of the errors. Its expression is as follows,

Emin =
n∑

i=1

(p(xi) − yi)2.

Where yi is the function value of the activation function to be fitted, and
p(xi) is the function value of the polynomial to be constructed. Next, we will give
the process of fitting the Sigmoid function σ(x) by the least squares method, as
shown below.

1. Let the least squares fit the polynomial as follows,

p(x) = a0 + a1x+, · · · ,+amxm. (1)

2. The expression of the sum of squares of deviations is as follows,

E =
n∑

i=1

(a0 + a1xi+, · · · ,+amxm
i − σ(xi))2. (2)

3. To find the aj value satisfying the minimum value of E, it is necessary to
derive the partial derivative of Eq. (2) on the right side of aj .

∂E

∂aj
=

n∑

i=1

2 · (a0, a1xi+, · · · , amxm
i − σ(xi))x

j
i . (3)

Lightweight Outsourced Privacy-Preserving Heart Failure Prediction 529

4. By sorting out, we can get the following equations.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

na0 + (
∑n

i=1 xi)a1+, · · · ,+(
∑n

i=1 xm
i)am =

∑n
i=1 yi

(
∑n

i=1 xi)a0 + (
∑n

i=1 x2
i)a1+, · · · ,+(

∑n
i=1 xm+1

i)am

=
∑n

i=1 xiσ(xi)
· · · · · ·
(
∑n

i=1 xm
i)a0 + (

∑n
i=1 xm+1

i)a1+, · · · ,+(
∑n

i=1 x2m
i)am

=
∑n

i=1 xm
i σ(xi).

Finally, by solving the equations, we can get the values of (a1, a2, · · · , am)
and get the least squares fit polynomial p(x) of σ(x). Therefore, σ(x) ≈ p(x).

4.2 Secure Sigmoid Function.

We use the least squares method to fit the Sigmoid function, Let x denote
the input, the polynomial of the least squares fitting of the sigmoid function
is expressed as follows,

f(x) = σ(x) =
1

1 + e(−x)
≈

∞∑

i=0

Cix
i.

Where Ci represents the coefficient of the least squares polynomial and i
represents the order of the least squares polynomial.

Initialization. ES1 and ES2 respectively get random values x1 and x2, sat-
isfying x = x1 + x2. In the process of initialization, ES1 need to compute
f ′
0 ← C0 + C1x1, ES2 calculation f ′′

0 ← C1x2. According to the polynomial
exponent value, the iterative process shown below.

Iteration. In the process of iteration, we are mainly implemented by alter-
natively invoking SecAdd(·) and SecMul(·). First of all, ES1 and ES2 com-
mon computing (g′

0, g
′′
0) ← SecMul(C2x1, C2x2, x1, x2) and f1 ← SecAdd(f0, g0).

Subsequently, gi can be calculated iteratively by similar calculation methods.
And invoke the secure comparison function SecCmp(i, n) to determine whether
to achieve the required polynomial index. If the required polynomial order is
reached, terminate the iteration and output f ′

i and f ′′
i . Otherwise, invoke the

secure addition function to compute SecAdd(fi−1, gi−1).

4.3 Secure Tanh Function

Tanh is a hyperbolic tangent function, and the curves of the Tanh function and
the Sigmoid function are relatively similar. The only difference is the output
interval. The Tanh output interval is between (−1, 1) and the full function
center at 0. Therefore, we can also fit the Tanh function by least squares. Let x
be a function input, and the polynomial of the least squares fit of the tanhsec(x)
function is expressed as follows.

530 Z. Ying et al.

f(x) = tanh(x) =
ex − e(−x)

ex + e(−x)
≈

∞∑

i=0

Hix
i.

Also, since the Initialization and Iteration process of tanhsec is similar to
that of σsec, these processes are not repeated.

5 Lightweight Privacy-Preserving GRU for Encrypted
HF Data

5.1 Secure Forward Propagation of GRU

Due to all the necessary security “components” have been constructed, the fol-
lowing work for the secure forward propagation of GRU is simply combining
these security “components” appropriately to design a secure interactive sub-
protocol between the two edge servers ES1 and ES2. Note that in the following
sections [[i]] stands for ‘′’ and ‘′′’.

Reset Gate. The reset gate allows the hidden layer to delete any information
that is not useful for future prediction. To achieve this, the input vector xi and
information about the previous timestep ht−1 are put into the sigmoid function
after a series of linear operations. And, the final output will be between 0 and
1. Because matrixed weight Wr and bias br for the reset gate is not publicly
known, at timestep t, ES1 and ES2 compute separately,

r
[[i]]
t ← σsec(W [[i]]

r · [h[[i]]
t−1, x

[[i]]
t] + b[[i]]r).

h̃
[[i]]
t ← tanh[[i]]

sec(W
[[i]]

h̃
· [r[[i]]t � h

[[i]]
t−1, x

[[i]]
t] + b

[[i]]

h̃
).

Update Gate. The update gate determines how much information from the
previous time step and the current timestep needs to be transmitted. Given the
input weight matrix Wz, input bias bz and timestep t, ES1 and ES2 consociation
calculations,

z
[[i]]
t ← σsec(W [[i]]

z · [h[[i]]
t−1, x

[[i]]
t] + b[[i]]z).

The final output by invoking the secure multiplication function and the secure
addition function. We let ES1 and ES2 respectively compute,

h
[[i]]
t ← z

[[i]]
t � h

[[i]]
t−1 + (1 − z

[[i]]
t) � h̃

[[i]]
t .

Both h′
t and h′′

t are then sent to MU as feedback. And MU can decrypt the
ciphertext by simply adding them together, ht = h′

t + h′′
t .

5.2 Back Propagation Based Training of GRU

It is assumed that the iterative forward propagation of the privacy protection
GRU has been completed. Let δt−1 represents the error term at time t−1. It can
be calculated by the partial derivative function of the output ht at the timestep
t. ES1 and ES2 combine calculates,

Lightweight Outsourced Privacy-Preserving Heart Failure Prediction 531

δ
[[i]]
t−1 ← δ

[[i]]
r,t · W

[[i]]
rh + δ

[[i]]
z,t · W

[[i]]
zh +

δ
[[i]]

h̃,t
· W

[[i]]

h̃h
� r

[[i]]
t + δ

[[i]]
h,t � (1 − z

[[i]]
t).

Respectively, δr,t, δz,t, δh̃,t and δh,t denote the derivative with respect to
ht−1. Here, we present a calculation formula based on the addition secret shar-
ing protocol. During this time, the values of rt, zt, and h̃t can be obtained by
forwarding propagation.

δ
[[i]]
r,t ←δ

[[i]]
t � z

[[i]]
t �[1 − (h̃[[i]]

t)2]� W
[[i]]

h̃h
�h

[[i]]
t−1�r

[[i]]
t �(1 − r

[[i]]
t),

δ
[[i]]
z,t ← δ

[[i]]
t � (h̃[[i]]

t − h
[[i]]
t−1) � z

[[i]]
t � (1 − z

[[i]]
t),

δ
[[i]]

h̃,t
← δ

[[i]]
t � z

[[i]]
t � [1 − (h̃[[i]]

t)2],

δ
[[i]]
h,t ← δ

[[i]]
t .

For the entire sample, its error is the sum of the errors at all times, and
the gradient of the weights associated with the previous moment is equal to the
amount of the gradients at all times, and the other weights do not have to be
accumulated. Let γ ∈ {r, z, h̃}. We have,

∇W
[[i]]
γ,h ←

T∑

t=1

SecMul(δ[[i]]γ,t, h
[[i]]
t−1),

∇W [[i]]
γ,x ← SecMul(δ[[i]]γ,t, x

[[i]]
t),

∇b[[i]]γ ←
T∑

t=1

δ
[[i]]
γ,t.

Let α denote the learning rate of the gradient drop, and α is public. Then
we can use the following formula to update the weight matrix and bias.

W [[i]]
new,γ ← W

[[i]]
old,γ − α � ∇W [[i]]

γ ,

b[[i]]new,γ ← b
[[i]]
old,γ − α � ∇b[[i]]γ .

Unlike forward propagation, after the backpropagation training complete, all
updated encryption parameters are sent to the MSP instead of the MU. And
MSP can decrypt the ciphertext by simply adding them together, Wnew,γ =
W ′

new,γ + W ′′
new,γ , and .bnew,γ = b′

new,γ + b′′
new,γ .

6 Theoretical Analysis

6.1 Correctness

Before the medical user uploads the heart failure specific data, the feature data
H is divided into H = H1 + H2. Then, under our security protocol built on the
addition of secret sharing, a large number of linear and nonlinear operations are
performed on H. Strictly speaking, the final output prediction result F and the

532 Z. Ying et al.

model parameter NP may not be equal to the value of the original unencrypted
algorithm. Here, we demonstrate through the theoretical derivation that the
value of the output of our system is highly close to the original value.

First, some of the protocols [10] mentioned in Sect. 3.2 have been proven,
and their output is still accurate no matter how many times they are invoked.
Secondly, the security functions we construct are all approximated by polyno-
mial. The operations used in these functions are only addition and multiplica-
tion. Therefore, in theory, as long as the edge server computing power is strong
enough, we can achieve arbitrary calculation accuracy. As long as the accuracy
reaches the precision required by GRU, it can be said that our proposed func-
tion is additive and correct as of the original function. In addition, since the
activation function is composed of a combination of polynomials containing only
addition and multiplication. This means that their output ξ satisfies ξ = ξ1 + ξ2.
Finally, we can draw some conclusions and give an arbitrary function �. We
have � = �1 + �2 if and only if � = f(ζ1, ζ2, · · ·), where ζi(i = 1, 2, · · ·) is a
random linear mapping function and xi can be any of the security functions in
this paper. Thus, based on the inference, we can ensure that F = F1 + F2 and
NP = NP1 + NP2, because both forward and backward propagation can be
considered as �.

6.2 Security

In this section, we analyse the safety of the proposed PHFP system. To prove the
security of the system in this paper, we first need to define what is semi-honest
security [9] formally.

Definition 1. We say that a protocol s secure if there exists a probabilistic
polynomial-time simulator S that can generate a view for the adversary A in
the real world and the view is computationally indistinguishable from its rear
view.

In addition to the Lemma1 mentioned in Sect. 3, also need the following lemmas.

Lemma 2 [9]. If a random element r is uniformly distributed on Zn and inde-
pendent from any variable x ∈ Zn, then r ± x is also uniformly random and
independent from x.

Lemma 3 [10,12]. The protocols SecAdd, SecMul, SecCmp and SecCon are
secure in the semi-honest model.

According to Lemma 3, we only need to verify the safety of other protocols.
The protocols σsec and tanhsec are secure in the semi-honest model.

Proof. In σsec, given the order of the polynomial n, what ES1 holds is receiver
Rec1 = (u1, G

′
1, F

′
1, α

′), where G′
1 = g′

0, g
′
1, · · · , g′

n and F ′
1 = f ′

0, f
′
1, · · · , f ′

n−1.
And g′

i and f ′
i are respectively the outputs of SecMul and SecAdd. In the mean-

time, with u1, they also compose the inputs of the next iteration. According to
Lemma 3, it is guaranteed that G′

1 and F ′
1 are sets of uniformly random values.

Lightweight Outsourced Privacy-Preserving Heart Failure Prediction 533

So they can all be correctly simulated by simulator ES1, and are unable to dis-
tinguish by the adversary A in polynomial time. Similarly, ES2 can also hold
Rec2 which is simulatable and distinguishable. In addition, tanhsec protocols are
implemented by a similar polynomial composed of protocols and can be proved
to be secure.

7 Performance Evaluation

To implement our framework, we utilise NumPy for parallel computation of
matrixes in Python 3. All the data is encrypted on a personal computer with
an Intel(R) Core (TM) i7-6700 CPU @3.40 GHz and 8.00 GB of RAM. Then,
the ciphertexts respectively sent to two edge servers for privacy-preserving GRU
training and pre-trained heart failure prediction. Each server is equipped with
an Intel(R) Core (TM) i7-7700HQ CPU @2.80 GHz and 8.00 GB of RAM.
Also, to obtain the correct pre-diagnosis results in the above evaluation envi-
ronment, we considered a real data set from the UCI machine learning library
called Arrhythmia to evaluate the accuracy and efficiency of our solution. The
selected Arrhythmia dataset contains 452 instances, each of which includes 279
attributes (such as age, weight, gender, heart rate, QRS duration, P-R interval,
Q-T interval, T interval, P interval, etc.)

7.1 Performance of Secure Sigmoid and Tanh Function

In the PHFP system, we tried two approaches to approximate the activation
function in the GRU neural network. To avoid the local fitting problem of Taylor
series, we finally use the least squares method to construct high-order polyno-
mials to approximate the Sigmoid and Tanh functions. Since each hidden unit
of the GRU contains two Sigmoid functions and one Tanh function, when our
PHFP system has multiple hidden units, the secure Sigmoid and Tanh func-
tions are invoked multiple times. Therefore, we evaluated the performance of
the scheme II security function under different number of calls, and we also
compared it with scheme I and OPSR scheme [12], as shown in Fig. 3(a)–(d).
From the figure, we can see that scheme II is both accurate and efficient. It is
better than the other two programs. The reasons summarise as follows: Firstly,
since scheme II uses the least squares method to fit the activation function, the
local fitting problem of the Taylor series is avoided, and the accuracy is improved
to some extent. Secondly, scheme II adopts a scheme of directly constructing a
security function, which prevents the time overhead caused by multiple invokes
of security components. To sum up, scheme II is more suitable for our heart
failure prediction system in terms of accuracy and efficiency.

7.2 Performance of PHFP

Accuracy Evaluation. To further evaluate the performance of the PHFP, we
deployed the constructed safety components to our system to assess the accu-
racy of the system’s forward propagation calculations. At the same time, we also

534 Z. Ying et al.

(a) Caculation errors of Sigmoid function (b) Caculation errors of Tanh function

(c) Run times of Sigmoid function (d) Run times of Tanh function

Fig. 3. Performance of secure Sigmoid and Tanh function

deployed the components built by [12] into our GRU neural network and used the
same data set to evaluate the computational error of forwarding propagation. As
shown in Fig. 4(a)–(b), since the numerical range of our dataset is not entirely
concentrated on a certain point, the error of the scheme II we constructed in
forwarding propagation is significantly better than the other two schemes. This
benefit from the nature of the global fit of the least squares method. It is notewor-
thy that when medical users predict heart failure, only the process of forwarding
propagation is needed, while the calculation error of forwarding propagation is
controlled within 10−5, which can be neglected in actual heart failure prediction.

Efficiency Evaluation. In PHFP, the primary function of ESs is to calculate
the user’s data and train the model provided by the medical service provider.
Both secure forward propagation and secure backpropagation are involved in
training the model. However, the number of features of medical data, the num-
ber of medical instances and the number of GRU hidden layers have an essential
impact on the computing cost of ESs. Accordingly, we first tested the computa-
tional overhead of ESs with a different number of features and a different number
of medical cases. Here, we default the number of hidden layers of GRU to 20,
and we compare scheme I and scheme II with OPSR. As shown in Fig. 4(c)–(d),
since we adopted the idea of directly constructing sigmoid and tanh functions,
and avoiding the overhead caused by repeated calls to multiple components, our
two schemes are significantly better than the OPSR scheme in terms of compu-
tational cost. Besides, we noticed that in the scheme II adopted by the PHFP

Lightweight Outsourced Privacy-Preserving Heart Failure Prediction 535

(a) FP calculation error of ESs (b) FP calculation error of ESs

(c) FP calculation overhead for ES (d) FP calculation overhead for ES

Fig. 4. ESs efficiency evaluation

system, although we let the ES perform the forward propagation calculation of
250 medical cases with 250 features, its calculation time is less than one second.
At the same time, we also evaluated the computational overhead of backpropa-
gation ESs.

8 Conclusion

In this paper, we proposed a privacy-preserving heart failure prediction system
based on Secure Multiparty Computation and Gated Recurrent Unit, named
PHFP. The PHFP system was adopted to protect the privacy of users’ heart
failure prediction data and the security of neural network parameters of medical
service providers with high accuracy and low computing cost. Accurately, the
program randomly split the heart failure prediction data and neural network
parameters into secret sharing, and the edge server calculated the user data in
the state of ciphertext. Therefore, the medical service provider cannot obtain the
user’s private data, and the user cannot receive any neural network parameter
information of the medical service provider. Finally, we use a large number of
experiments to prove the effectiveness of the system.

Acknowledgment. This research is supported by the key project of Anhui provin-
cial department of education (Grant No. KJ2018A0031), the National Natural Science
Foundation of China under Grant Nos. U1804263 and 61702105.

536 Z. Ying et al.

References

1. Tripoliti, E.E., Papadopoulos, T.G., Karanasiou, G.S., Naka, K.K., Fotiadis, D.I.:
Heart failure: diagnosis, severity estimation and prediction of adverse events
through machine learning techniques. Comput. Struct. Biotechnol. J. 15, 26–47
(2017)

2. Shoaib, A., et al.: Mode of presentation and mortality amongst patients hospital-
ized with heart failure? A report from the first euro heart failure survey. Clin. Res.
Cardiol. 108(5), 510–519 (2019)

3. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network
models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 24(2),
361–370 (2016)

4. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. In: 22nd International Conference on Data Engineer-
ing (ICDE 2006), pp. 24–24. IEEE (2006)

5. Narayanan, A., Shmatikov, V.: Myths and fallacies of “personally identifiable infor-
mation”. Commun. ACM 53(6), 24–26 (2010)

6. Liu, X., Zhu, H., Lu, R., Li, H.: Efficient privacy-preserving online medical primary
diagnosis scheme on Naive Bayesian classification. Peer-to-Peer Network. Appl.
11(2), 334–347 (2018)

7. Ning, J., Xu, J., Liang, K., Zhang, F., Chang, E.-C.: Passive attacks against search-
able encryption. IEEE Trans. Inf. Forensics Secur. 14(3), 789–802 (2018)

8. Pullonen, P., Matulevičius, R., Bogdanov, D.: PE-BPMN: privacy-enhanced busi-
ness process model and notation. In: Carmona, J., Engels, G., Kumar, A. (eds.)
BPM 2017. LNCS, vol. 10445, pp. 40–56. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-65000-5 3

9. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

10. Huang, K., Liu, X., Fu, S., Guo, D., Xu, M.: A lightweight privacy-preserving CNN
feature extraction framework for mobile sensing. IEEE Trans. Dependable Secure
Comput. (2019)

11. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

12. Ma, Z., Liu, Y., Liu, X., Ma, J., Li, F.: Privacy-preserving outsourced speech
recognition for smart IoT devices. IEEE Internet Things J. 6, 8406–8420 (2019)

13. Greenspan, D.: Numerical Analysis. CRC Press, Boca Raton (2018)
14. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-

ical data. J. Biomed. Inform. 50, 234–243 (2014)
15. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer, Hei-

delberg (2013)

https://doi.org/10.1007/978-3-319-65000-5_3
https://doi.org/10.1007/978-3-319-65000-5_3
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/3-540-46766-1_34

DAPS: A Decentralized Anonymous
Payment Scheme with Supervision

Zhaoyang Wang1(B), Qingqi Pei1,2(B), Xuefeng Liui1,2, Lichuan Ma1,2,
Huizhong Li3, and Shui Yu4

1 The State Key Laboratory of Integrated Services Networks, Xidian University,
Xi’an, China

xd.zywang@gmail.com
2 Shaanxi Key Laboratory of Blockchain and Secure Computing, Xi’an, China

{qqpei,liuxf}@mail.xidian.edu.cn, lcma@xidian.edu.cn
3 Webank, Shenzhen, China

wheatli@webank.com
4 School of Software, University of Technology Sydney, Sydney, Australia

Shui.Yu@uts.edu.au

Abstract. With the emergence of blockchain-based multi-party trading
scenarios, such as finance, government work, and supply chain manage-
ment. Information on the blockchain poses a serious threat to users’
privacy, and anonymous transactions become the most urgent need. At
present, solutions to the realization of anonymous transactions can only
achieve a certain degree of trader identity privacy and transaction con-
tent privacy, so we introduce zero knowledge proof to achieve complete
privacy. At the same time, unconditional privacy provides conditions for
cybercrime. Due to the great application potential of the blockchain in
many fields, supporting privacy protection and supervision simultane-
ously in the blockchain is a bottleneck, and existing works can not solve
the problem of coexistence of privacy protection and supervision.

This paper takes the lead in studying the privacy and supervision in
multi-party anonymous transactions, and proposes a distributed anony-
mous payment scheme with supervision (DAPS) based on zk-SNARK,
signature, commitment and elliptic curve cryptography, which enables
users to be anonymous under supervision in transactions. The advantages
of DAPS are twofold: enhanced privacy and additional supervision. We
formally discussed the security of the whole system framework provided
by the zero-knowledge proof, and verified its feasibility and practicability
in the open source blockchain framework BCOS.

Keywords: Blockchain · Zero-knowledge proof · Privacy protection ·
Supervision

1 Introduction

Blockchain is an integrated application for distributed digital storage, peer-to-
peer transmission, consensus mechanisms and encryption algorithms, and is
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 537–550, 2020.
https://doi.org/10.1007/978-3-030-38961-1_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_46&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_46

538 Z. Wang et al.

considered to be the fifth revolutionary computing paradigm after large com-
puters, personal computers, the Internet and mobile social networks. Now it has
been widely used in finance, the Internet of Things, supply chain management,
medicine, public welfare and other fields.

With the increasing number of one-to-one, many-to-one, many-to-many
block-chain-based trading scenarios, the accompanying privacy leaks are becom-
ing more and more prominent and must be fully valued [1–3]. Since different
nodes need to perform the same verification on the same data, the data on the
blockchain must be public. This increases data transparency and credibility, but
it brings a new question: how to protect privacy of these data. If users’ public
transaction information is maliciously exploited and utilized, it will pose a seri-
ous threat to users’ privacy. Therefore, privacy leaks must be addressed before
the blockchain moves to be practical. Nakamoto et al. [4,5] can only achieve
incomplete identity privacy; Monero Research Lab [6] can achieve full identity
privacy but cannot guarantee content privacy; Sasson et al. [7] can achieve iden-
tity and content privacy simultaneously, but inefficiently. We propose to use
zero-knowledge proof to achieve complete privacy.

After addressing the issues of privacy disclosure, unconditional privacy will
also become a natural hotbed of cybercrime [8]. According to statistics, bitcoins
money laundering funds amount to billions of dollars. Therefore, in addition to
administrative means, it is necessary to study targeted regulatory techniques to
check and control illegal activities. There are many companies and research insti-
tutes specializing in blockchain monitoring techniques, such as Chainalysis [9],
Elliptic [10], and Blockchain Intelligence Group [11]. It can be seen that the great
application potential of the blockchain in the financial field has made it urgent
to support privacy protection and supervision. There is no solution to achieving
privacy and supervision simultaneously. Therefore, it remains for researchers to
design an effective digital trading system with privacy and supervision and solve
the limitations of previous works.

In this paper, we solve the preceding challenging task by proposing a novel
scheme, named DAPS, which combines zero-knowledge proof, asymmetric cryp-
tography and other cryptographic primitives. Specifically, every user’s identity
is committed and associated cryptographically one-to-one with the currency he
owns, making all identities and currency legal and valid; every party encrypts the
transaction content, attaches the corresponding zero-knowledge proof and then
publish it, so that other parties can verify the correctness of the transaction
content without obtaining real content. Thereby, we achieve complete privacy
of the transaction party’s identity and transaction content. At the same time,
the combination of zero-knowledge proof and asymmetric cryptography enables
the transaction to be transparent to the supervisor, thus adding the supervi-
sion function. The final experiment results further confirm the feasibility of our
scheme.

As a consequence, our scheme overcomes all privacy limitations in previous
works, and outperforms these solutions in terms of supervision. A high-level

DAPS: A Decentralized Anonymous Payment Scheme with Supervision 539

comparison between our scheme and previous solutions is described in Table 1.
The main contributions of our scheme are summarized as below:

• We propose a new multi-party digital trading system for realizing verifi-
able full privacy under supervision management by masterly combining zero-
knowledge proof with public key cryptography. Our scheme can achieve per-
fect identify and transaction privacy for all users except the specific supervi-
sor.

• To the best of our knowledge, our proposed DAPS scheme is the first digi-
tal trading system with supervision management, which supports regulatory
authorities’ supervision and prevents crimes resulting from unconditional pri-
vacy.

• We theoretically define and demonstrate the privacy guarantee that zero-
knowledge proof brings to the entire system framework, and test the feasi-
bility of our scheme in BlockChain OpenSource (BCOS) [12] to confirm its
feasibility.

Table 1. The comparison among previous schemes and ours

Scheme Identity privacy Content privacy Supervision

[4] Imperfect privacy No privacy No

[5] Imperfect privacy Imperfect privacy No

[6] Privacy Privacy No

[7] Perfect privacy Perfect privacy No

Ours Perfect privacy Perfect privacy Yes

2 Related Work

Privacy in blockchains falls into two categories, namely identity privacy and
content privacy.

Identity Privacy: Bitcoin [4] is the first application of the blockchain technol-
ogy in the field of digital currency with “mix” mainly used. This defense method
is widely used in digital currency fields, such as Bitlaunder [13], Bitcoin Fog [14]
and Blockchain.info [15]. However, due to the need for third-party nodes to pro-
vide “hybrid”, there are obvious shortcomings in identity privacy protection,
and attackers can obtain identity privacy in a variety of ways. Many improved
methods have emerged for these deficiencies. Bonneau et al. [16] proposed an
improved centralized hybrid solution mixcoin. Based on mixcoin, Valenta and
Rowan [17] further optimized the centralized hybrid scheme using the blind sig-
nature technology to ensure that third-party nodes can provide mixed services
normally, but cannot map output addresses and input addresses simultaneously.

540 Z. Wang et al.

ShenTu and Yu [18] proposed a blind signature hybrid scheme based on elliptic
curve, which can improve computational efficiency on the basis of guaranteeing
anonymity. The anonymous digital currency Dash (DASH) [5] launched in 2015
is the first digital currency to protect privacy. The core technology is Darksend,
an upgraded version of CoinJoin. It effectively avoids instability caused by the
third-party and makes it impossible to track transactions. Monero (XMR) [6]
uses ring signatures and stealth addresses to obfuscate the origins and destina-
tions of all transactions, ensuring that all transactions remain fully irrelevant and
untrackable. Zcash [7] designs the relationship of the user’s public key to his pri-
vate key, commitment of the trader’s identity and corresponding zero-knowledge
proof accompanied. So that other users can only verify that the trader’s iden-
tity is legal but cannot obtain any information about his identity. In this way
complete identity privacy is achieved.

Content Privacy: In the early blockchain digital currency applications, trans-
action contents were usually public and did not have any additional protections.
Currently, there are two methods to achieve a certain degree of content pri-
vacy: data confusion and data encryption. There are two schemes that can truly
achieve content privacy. Monero (XMR) [6] uses Ring CT [19,20] to obfuscate
transaction contents; Zcash [7] uses a commitment function to encapsulate the
contents of each transaction into a number of parameters and proves transactions
using zero-knowledge proof technique—zk-SNARKs [21]. The proof process does
not disclose any relevant information, so it can hide transaction contents.

Among all of the above work, only Zcash can simultaneously achieve iden-
tity and content privacy we expect, but the process of generating proof using
zk-SNARKs is very long, making efficiency a bottleneck. And none has the super-
vision function.

3 Problem Statement

3.1 System Model

As we can see from Fig. 1, the system model of our scheme includes a currency
issuer, a supervisor, and users making transactions. The issuer is used to convert
users’ money into tokens in the system and is fully-trusted. The user wants to
conduct a transaction with somebody, but isn’t willing to reveal both parties’
identifies and transaction contents to others except the supervisor. Meanwhile,
there should be a party playing a role as the supervisor, who has the right to
view all the operations in this system. There are also two Merkle trees, one
being users’ public keys tree to store address public keys of all users who have
registered into the system, and another being a commitment tree used to store all
commitments of tokens that have been converted (Commitment will introduce
detailally in Digital currency). Registration transactions, purchase transactions,
and transfer transactions are published by the supervisor, currency issuers and
users respectively, and publicly verified and recorded on the blockchain by all
miners.

DAPS: A Decentralized Anonymous Payment Scheme with Supervision 541

Fig. 1. System model.

3.2 Data Structure

Digital Currency

In this section, we will introduce the structure of the digital currency we designed
and how to verify.

• Structure
A digital currency in Fig. 2 owned by a user consists of four elements: denomina-
tion, serial number, commitment, and random number. These four elements are
closely bound, inseparable, and can only be generated by the currency owner.

Commitment Serial Number Random Number

The same
denomina�on

The same
random number

Uniquely ownes Generates

Digital Currency

User

Denomina�on

Random
Number

Address
Public-key Denomina�onAddress

Private-key
Random
Number

Random
NumberDenomina�on

Fig. 2. System currency structure.

Commitment: It consists of the user’s address public key, denomination and
a random number, and is used to describe the binding relationship between the

542 Z. Wang et al.

user’s address public key and denomination. The structure of commitment is
CM = COMM(k, g(v+ρ), ρ), where COMM is a statistically-hiding commitment
scheme, k = H256(Uapk

||ρ||v), Uapk
is the user’s address public key, ρ is a random

number with 256 bits, and v is the casting 64bits denomination of the digital
currency. Once the currency is purchased, its corresponding commitment will be
deposited into the system commitment tree.

Serial Number: It is the identifier of the user who effectively owns a digital
currency. It is a hash value of the user’s address public key and the random
number. Its structure is SN = H256(Uask

||ρ), where Uask
is user’s address private

key, and ρ is a random number equal to the random number in commitment.
Once the currency is spent, its corresponding serial number will be placed on
the blockchain ledger L for everyone to query.

• Verification
A digital currency can be spent depends mainly on two aspects:

(a) Whether its commitment is in the system’s commitment tree, and if not, the
digital currency is considered nonexistent.
(b) Whether its serial number is already recorded on the blockchain ledger, if
so, it means that the digital currency has been spent and cannot be spent any
more. This is a way to solve double spending.

4 Our Construction

In this section, we describe the proposed decentralized anonymous payment
scheme with supervision, named DAPS, which leverages a combination of five
steps.

4.1 Overview

Our scheme proposes to introduce supervision on the basis of privacy protection,
in view of various criminal activities in the current digital currency trading
market resulting from the lack of supervision. In our design, a user must first
registers with the supervisor, provides his own address public key and identity
information. Then he purchases the digital currency from the issuer before
transferring the transaction. Transaction contents are verified and recorded
by miners.

4.2 Scheme Details

Here, we outline our construction in five incremental steps: register, purchase,
transfer, receive and verify. We introduce our solution by taking one-to-one
anonymous transactions as an example. Many-to-one, many-to-many anonymous
transactions can be extended. Figure 3 gives the detail of each step.

DAPS: A Decentralized Anonymous Payment Scheme with Supervision 543

– Setup(1λ):
INPUT: security parameter λ
OUTPUT: public parameters pp
1)Construct: Ctrans for TRANS-
FER at security λ;
2)Compute:
(pktr, vktr) ← KeyGen(1λ; Ctrans);
3) Compute:
ppenc ← Genc(1λ);
4) Compute: ppsig ← Gsig(1λ);
5) Set pp = (pktr; vktr; ppenc; ppsig);
6) Output pp.

– CreatAddress:
INPUT: public parameters pp
OUTPUT: public address pair:
(addrpk, addrsk)
1) Compute
(epk; esk) ← Kenc(ppenc);
2) Randomly sample a seed ask;
3) Compute apk ← H256(ask, 0);
4) Set addrpk = (apk; epk);
5) Set addrsk = (ask; esk);
6) Output public address pair:
(addrpk, addrsk).

– Register:
INPUT:
· public parameters: apk;
· user’s real identify information.
OUTPUT: register transaction
MSGreg.
1) Compute the hash of the user’s
address public key
Hpk ← H256(ρ, apk);
2) Sign σG ← SigGsk (ρ, Hpk);
3) Construct
MSGreg = (IDreg, T ypereg, σG,
Hpk, rtpk);
4) Output MSGreg.

– Purchase:
INPUT:
· public parameters:pp;
· coin value:v;
· destination address public key

addrpk.
OUTPUT: coin c and purchase
transaction MSGpur

1) Parse addrpk as (apk; epk);
2) Randomly sample a number ρ;
3) Compute k ← H256(apk, ρ, v);
4) Compute
CMpur ← COMM(k, gv+ρ, ρ);
5) Compute SN ← H256(ask, ρ);
6) Set c = (v; ρ, apk, CMpur, SN);
7) Compute πp;
8) Set
MSGpur = (IDp, T ypep, CMpur, σI ,
EG, πp, rtcm);
8) Output c and MSGpur.

– Transfer:
INPUT:
· public parameters:pp;
· coin value:v
· destination address public key
addrpk

OUTPUT: coin c and transfer
transaction MSGtrans

1) For each i ∈ {S, R},
a. Query SNold and CMold

S from
old coin;
b. Query rtcm, rtpk;
c. Randomly sample ρnew

S , ρnew
R ;

d. Compute
knew

i ← H256(Unew
pk , ρnew

i , v);
e. Compute
CMnew

i ← (knew
i , gvnew

i +ρnew
i , ρnew

i);
f. Set cnew

i as (vnew
i , ρnew

i , Unew
pk ,

CMnew
i , SNnew

i);
2) Compute
G ← EncGpk (vR, Sapk , Rapk);
3) Set ER ← EncRepk

(vnew
R , ρnew

R);
4) Compute πt;
5) Set
MSGtrans = (IDtr, T ypetr, CMnew

S ,
CMnew

R , SNold, G, ER, πt, rtcm);
6) Output cnew

1 , cnew
2 , MSGtrans.

Fig. 3. Construction of our DAPS scheme (part I)

544 Z. Wang et al.

Step1: Register
When registering, the user first submits his address public key and identity
information to the supervisor, and the supervisor records the information in the
user information database maintained by the supervisor. Then the supervisor
samples a random number r, calculates the hash of user’s public key Hpk, signs
σG = SigGpk

(ρ,Hpk), constructs and posts the register transaction information
MSGreg = (IDreg, T ypereg, σG,Hpk, rtpk), where rtpk is root of public key tree.

Step2: Purchase system tokens
A user U samples a random number ρ and uses denomination v he wants to buy
to generate a commitment CMpur = COMM(k, g(v+ρ), ρ), and a proof πp, prov-
ing that Uapk

== H256(Uask
). The message UMSGpur = (Uapk, CMpur, πp, v, ρ)

is then generated and sent to issuer. The issuer retrieves user’s purchase denom-
ination v’ according to the his address public key Uapk

, and verifies that:

– v
′ ≥ v (after the transaction is successful, the user’s purchase denomination

is v
′ − v);

– CMpur is correctly calculated;
– πp can pass verification to prove that the user who calculated commitment

is the user who has the correct private key corresponding to the public key
Uapk

.

Then, issuer constructs and posts the purchase transaction information
MSGpur = (IDp, T ypep, CMpur, σI , ES).

Step3: Transfer. A sender S transfers money to receiver R. S uses a currency
with denomination of vold (old coin) to pay R vR, and the change’s denomination
is vS (two new coins). The corn component of transfer transaction is proof πt

generated by S, as what follows:

• The formats of the old currency and the new currency commitment is com-
plete. That is, CMx

y = COMM(kx
y , g(vx+ρx), ρx), where x = (new, old), y =

(S, R).
• The real identity information of S corresponds to his address. That is,

Sapk
== H256(Sask

);
• The old currency’s serial number is calculated correctly. That is, SNold ==

H256(Sask
||ρold);

• The commitment of old currency belongs to commitment tree. That is, the
node corresponding to CMold

R can be found on the tree by recalculating root
value rt

′
with rt

′
== rtcm.

• The hash of address public keys of S and R belongs to user public key tree,
similarly by calculating rt

′
with rt

′
== rtpk.

• The sum of old currency amounts equals to the sum of new currency amounts:
vold == vR + vS .

• The address public key and amount encrypted with the supervisor’s pub-
lic key is indeed address public key of S and R and payment amount:
EncGpk

(vR, Sapk
, Rapk

) == G.

DAPS: A Decentralized Anonymous Payment Scheme with Supervision 545

– Receive:
INPUT:
· public parameters:pp;
· recipient address key pair:
Rapk , Rask ;
· the current ledger L.
OUTPUT: set of received coins.
1) Decrypt ER, get vR and ρR;
2) Compute
CM

′ ← COMM(kR, g(vR+ρR), ρR);
3) Verify whether
CM

′
== CMnew

R ;
4) Verify whether vR is the amount
that the payer S should pay to
payee R;
5) Compute
SNR ← H256(Rask , ρR);
6) Store CMnew

R , vR, ρR, SNR into
R’s wallet.

– Verify:
INPUT:
· public parameters:pp;
· a transaction message MSG;
· the current ledger L.
OUTPUT: bit b, equals 1 iff the
transaction is valid.
1.Register Transaction
1) Parse MSGreg as
(IDreg, T ypereg, σG, Hpk, rtpk);
2) If σG appears on L, output b=0;
3) Compute σ

′
G = SigGpk ;

4) If σ
′
G �= σG, output b=0;

5) Add Hpk into the users’public

key tree, update every value of the
nodes in the tree;
6) Record the root value of the pub-
lic key tree rtpk and MSGreg into
blockchain L.
2.Purchase Transaction
1) Parse MSGpur as
(IDp, T ypep, CMpur, σI , EG, πp,
rtcm);
2) Set CM

′ ← H256(v, k);
3) If CM

′ �= CMpur, output b=0;
4) If σI appears on L, output b=0;
5) Compute
σ

′
I = SigIpk (IDp, CMpur);

6) If σ
′
I �= σI , output b=0;

7) Add the hash of CMpur, HCMpur

into commitment tree, update every
value of nodes in the tree;
8) Record the root value of the com-
mitment tree rtcm and MSGpur

into ledger L.
3.Transfer Transaction
1) Parse MSGtrans as
(IDtr, T ypetr, CMnew

S , CMnew
R ,

SNold, G, ER, πt, rtcm);
2) If SNold appears on L, output
b=0;
3) If rtcm appears on L, output
b=0;
4) Verify πt.
5) Record the root value of the com-
mitment tree rtcm and MSGtrans

into blockchain L

Fig. 4. Construction of our DAPS scheme (part II)

Step4: Reiceive. The payee R receives MSGtrans and decrypts ER with
its own private key Resk

to obtain vR, ρR. Then he calculates CM
′

=
H256(kR, g(vR+ρR), ρR) and compares CM

′
with CM. If it is equal, it further

confirms that the received amount vR is indeed the amount that should be paid.
Otherwise, R terminate the operation. Finally, R calculates serial number SNR

of received cion with its own private key Rask
and ρR previously obtained. And

R will put CMnew
R , vR, ρR, SNR into his wallet.

546 Z. Wang et al.

Step5: Verify
Verification includes verification of three kinds of public transaction (register,
purchase, and transfer) information by all miners. Specific details are shown in
Fig. 4.

5 Security Definitions and Analyses

In this section, we analyze the security properties of our proposed scheme and
show that it achieves the defined security goals.

5.1 Formal Security Definitions

We define the following security games between a challenger C and an adversary
A. Definition 1: (Indistinguishability). A DAPS scheme in Fig. 3 satisfies
ledger indistinguishability if for any no bounded adversary A, the probability
of successfully distinguishing between two ledgers L0 and L1, constructed by A
using queries to two DAPS scheme oracles is negligible. Setup: A challenger
samples a random bit b and initializes two DAPS scheme oracles ODAPS

0 and
ODAPS

1 , maintaining ledgers L0 and L1.
Query: An adversary issues queries in pairs of the matching query type.

There are four types that A can request: CreatAddress, Purchase, Transfer and
Receive. If query type is CreateAddress, then the same address is generated at
both oracles. If it is to Purchase, Transfer or Receive, then Q is forwarded to
L0 and to L1. The adversary’s queries are restricted in the sense that they must
maintain the public consistency of the two ledgers. Challenge: The challenger
provides the adversary with the view of both ledgers, but in randomized order:
Lst := Lb and Lnd := L1−b.

Guess: A takes a guess b
′
of b.

A wins when he can distinguish whether the view he sees corresponds to b
= 0 or to b = 1. Ledger indistinguishability requires that A wins with proba-
bility at most negligibly greater than 1/2. Definition 2: (Transaction non-
malleability). A DAPS scheme in Fig. 3 satisfies transaction non-malleability
if for any no bounded adversary A, the probability of successfully modifying
others’ transactions before they are added to the ledger is negligible.

Adversary A wins the game if the result of interaction between A and scheme
oracle ODAPS manages to modify some previous transfer transaction to spend
the same coin in a different way. Transaction non-malleability requires that A
wins with only negligible probability. More specifically, A adaptively interacts
with a DAPS scheme oracle ODAPS and then outputs a transfer transaction tx

′
.

Letting T denote the set of transfer transactions returned by ODAPS , and L
denote the final ledger, A wins the game if there exists tx ∈ T, such that (i)
tx

′
= tx; (ii) tx

′
reveals a serial number contained in tx; and (iii) both tx and

tx
′

are valid with respect to the ledger L containing all transactions preceding
tx on L.

DAPS: A Decentralized Anonymous Payment Scheme with Supervision 547

5.2 Security Analyses

The use of zero-knowledge proof ensures that the user must follow all established
principles when trading, including the legality of the parties of the transaction,
the legality of the transaction currency, the total amount before and after the
transaction, the transaction process in accordance with the system rules, etc. As
long as there is a false behavior, the corresponding Zero-knowledge proof cannot
be verified in the subsequent public validation phase.

Our scheme adds public key encryption to the NP statements based on zk-
snark, and inherits the security of zk-snark and Zcash. For the proof of the first
two properties, refer to the Zcash extended vision [22].

6 Performance Evaluation and Analyses

In this section, we use the experiment results to demonstrate the performance of
our proposed scheme. We ran our scheme with the C language on a Linux server,
selected BCOS [12] as the blockchain framework and evaluated its performance
by running Ubuntu 16.04 with the Intel Core i7-7700 CPU. The PBC library and
OpenSSL are leveraged for encryption and decryption involved in the scheme;
gadgetlib1 in libsnark [23] which is developed by the SCIPR-Lab project is used
to implement zero-knowledge proof.

To measure the performance of our scheme, we ran several experiments.
Table 2 reports performance characteristics of the resulting zk-SNARK for πt

which had a single-thread performed on a desktop machine.

Table 2. Performance of our zk-SNARK for transfer transaction

KeyGen Time 5min32 s

Proving key 251Mb

Verification key 1023b

Prove Time 3min11 s

Proof 1609b

Verify Time 59ms

Our KeyGen time depends on the number of tree layers and the number of
hashes. The number of tree layers can be set by the user and we temporarily set
it as 32 here. The final time of KeyGen is 5 min32 s, which is shorter than that
of Zcash (7 min48 s). The reasons are that Zcash uses a full circuit, the number
of hashes of the tree is more than 30 and there are other operations. Our Proof
time is 3 min11 s, which is slightly longer than that of Zcash (2 min55 s), because
we introduce zero- knowledge proof of elliptic curve encryption in πt. But our
scheme focuses mainly on adding supervision to distributed anonymous payment
environments, so this time gap can be compromised in the face of new supervision

548 Z. Wang et al.

Table 3. Performance of our zk-SNARK for transfer transaction

Intel Core i7-7700 CPU 3.60 GHZ with 4 GB of RAM

Setup Time 5 min3 s

PP 251 Mb

Register Time 21 ms

U-apk 256b

U-ask 256b

MSGreg 68b

Purchase Time 40 s

Coin c 148b

MSGpur 1906b

Transfer Time 3 min2 s

MSGtran 1028b

Verify Time 59 ms

Receive Time 27 ms

features. Our Verify time is 59 ms, which is determined to some degree by the
equipment we used, and this time is still acceptable in practical payment.

In Table 3, we report performance characteristics for each of the six DAPS
scheme algorithms in our scheme. Note that these values do not include the
costs of maintaining the Merkle tree, because it’s not the responsibility of these
algorithms. Moreover, for Verify Transaction, we report the cost of verifying
purchase and that of transfer transactions separately. Finally, for the case of
Receive, we report the cost to process a given transfer transaction in L.

As we can see in Table 3, the Setup, Purchase and Transfer times are slightly
longer, because there is a construction of proving and verifying the key pair in
Setup and a construction of zk-SNARK in the last two steps, which involves the
conversion of the calculation program to the arithmetic circuit, the construction
of the constraint system and so on. In addition to the Register and Verify steps,
other steps take a very short time to meet practical requirements.

7 Conclusion

To improve privacy protection in multi-party transfer scenarios based on the
blockchain, we have developed a DAPS scheme by taking advantages of commit-
ment, zero knowledge proof and asymmetric cryptography. By our scheme, we
can achieve perfect identity and content privacy, and achieve supervision at the
same time without losing privacy. Through theoretical analysis and experiments
on BCOS, we demonstrate that our scheme can protect users’ privacy and work
efficiently. We also performed it and plan to improve its performance as our
future work.

DAPS: A Decentralized Anonymous Payment Scheme with Supervision 549

Acknowledgment. This work is supported by the Key Program of NSFC-Tongyong
Union Foundation under Grant U1636209, the National Natural Science Foundation of
China under Grant 61902292, the Key Research and Development Programs of Shaanxi
under Grants 2019ZDLGY13-07 and 2019ZDLGY13-04.

References

1. Zyskind, G., Nathan, O.: Decentralizing privacy: using blockchain to protect per-
sonal data. In: Security and Privacy Workshops (SPW), pp. 180–184. IEEE (2015)

2. Kosba, A., Miller, A., Shi, E., et al.: Hawk: the blockchain model of cryptography
and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security
and Privacy (SP), pp. 839–858. IEEE (2016)

3. Lazarovich, A.: Invisible Ink: blockchain for data privacy. Massachusetts Institute
of Technology (2015)

4. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://
bitcoin.org/bitcoin.pdf

5. Duffield, E., Diaz, D.: Dash: a privacy-centric crypto-currency. https://en.
wikipedia.org/wiki/Dash (cryptocurrency)

6. Monero: https://www.mendeley.com/catalogue/cryptonote--v--20/
7. Sasson, E.B., Chiesa, A., Garman, C., et al.: Zerocash: Decentralized Anonymous

Payments from Bitcoin. In: Security and Privacy. IEEE (2014)
8. Wright, A., De Filippi, P.: Decentralized blockchain technology and the rise of lex

cryptographia (2015)
9. Chainalysis: https://www.chainalysis.com/

10. Elliptic: https://www.elliptic.co/
11. Blockchain Intelligence Group: https://blockchaingroup.io/
12. BCOS: http://www.bcos.net.cn
13. Kaminsky, D.: Black Ops of TCP/IP 2011. https://dankaminsky.com/2011/08/

05/bo2k11/
14. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-

coin P2P network. In: ACM SIGSAC Conference on Computer & Communications
Security. ACM (2014)

15. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks, pp. 197–223. Springer, New York (2011). https://doi.
org/10.1007/978-1-4614-4139-7 10

16. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 31

17. Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for bitcoin. In: Bren-
ner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp.
112–126. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-
9 9

18. ShenTu, Q., Yu, J.: A blind-mixing scheme for Bitcoin based on an elliptic curve
cryptography blind digital signature algorithm. arXiv preprint arXiv: 1510.05833,
October 2015. https://arxiv.org/abs/1510.05833

19. Ring CT: https://eprint.iacr.org/2015/1098.pdf
20. Shen-Noether MRL. Ring CT for MONERO. https://pdfs.semanticscholar.org/

b9a3/8373a2fe3f224451b07ff3d7664e1b18b2b4.pdf

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://en.wikipedia.org/wiki/Dash_(cryptocurrency)
https://en.wikipedia.org/wiki/Dash_(cryptocurrency)
https://www.mendeley.com/catalogue/cryptonote--v--20/
https://www.chainalysis.com/
https://www.elliptic.co/
https://blockchaingroup.io/
http://www.bcos.net.cn
https://dankaminsky.com/2011 /08/05/bo2k11/
https://dankaminsky.com/2011 /08/05/bo2k11/
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1007/978-3-662-48051-9_9
https://doi.org/10.1007/978-3-662-48051-9_9
http://arxiv.org/abs/1510.05833
https://arxiv.org/abs/1510.05833
https://eprint.iacr.org/2015/1098.pdf
https://pdfs.semanticscholar.org/b9a3/8373a2fe3f224451b07ff3d7664e1b18b2b4.pdf
https://pdfs.semanticscholar.org/b9a3/8373a2fe3f224451b07ff3d7664e1b18b2b4.pdf

550 Z. Wang et al.

21. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

22. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin
(extended version). Cryptology ePrint Archive (2014)

23. Libsnark: https://github.com/scipr-lab/libsnark

https://doi.org/10.1007/978-3-642-40084-1_6
https://github.com/scipr-lab/libsnark

An Approach of Secure Two-Way-Pegged
Multi-sidechain

Jinnan Guo1, Keke Gai2(B), Liehuang Zhu2, and Zijian Zhang2,3

1 School of Information and Electronics, Beijing Institute of Technology,
Beijing, China

1120162383@bit.edu.cn
2 School of Computer Science and Technology, Beijing Institute of Technology,

Beijing, China
{gaikeke,liehuangz}@bit.edu.cn

3 School of Computer Science, University of Auckland, Auckland, New Zealand
zhang.alex@auckland.ac.nz

Abstract. As a temper-resistant ledger, blockchain ensures integrity of
transaction information among trust-less participants in peer to peer
network. Thus, blockchain has attracted enormous research interests in
the past decade due to its prior application in cryptocurrency, financial
auditing, supply chain management, etc. However, blockchain scalability
limitations has impeded blockchain technology from large scale commer-
cial applications. Since blockchain is low in throughput, blockchain in
incapable of handling large scale asset transfer. To tackle this problem,
in this paper, we propose a secure multi-sidechain system. The proposed
approach can transfer assets simultaneously to increase throughput. In
addition, security of assets during transfer was also ensured by imple-
menting firewall property. Detailed adversarial analysis shows this pro-
posed approach can (1) prevent double spending and transaction order-
ing dependence attacks during asset transfer, (2) protect mainchain from
sidechain’s catastrophic failure, (3) apply multi-sidechain model with dif-
ferent functions in each sidechain.

Keywords: Blockchain · Sidechain protocol · Scalability · High
throughput · Global consensus

1 Introduction

Blockchain is a distributed, temper-resistant and jointly maintained ledger that
is constructed in a decentralized manner. In the blockchain network, trust-less
participants can transfer assets securely without trusted parties as long as the
majority of participants are well-behaved. Thus, blockchain could eliminate the
threat of single point failure, such as compromised central controller that dis-
abled the whole system. In addition, incentive mechanisms are introduced to
encourage miners in maintaining the distributed ledgers. Reward to miners, e.g.
Bitcoin [1], leads to the emergence of the cryptocurrency market.
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 551–564, 2020.
https://doi.org/10.1007/978-3-030-38961-1_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_47&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_47

552 J. Guo et al.

Bitcoin was invented by Nakamoto [1] in 2008 as the first widely used appli-
cation of blockchain technology. Since then, blockchain-based cryptocurrency
market has been explosively developed. Even one Bitcoin’s value exceeded $1000
in the mid-2019. According to Morgan’s technical report [2], the peak value of
the whole cryptocurrency market has reached near $ 800 billion, with $ 2 trillion
potential market. Attracted by the high-rewarding cryptocurrency, both Face-
book and Morgan have participated in the cryptocurrency market [3].

The executable script i.e., smart contract, is a developer defined protocol
that attaches to blockchain with computational capability. This breakthrough
enables blockchain to possess the capability of handling complicated computa-
tional applications other than cryptocurrency. For example, in the field of data
provenance [4–6], blockchain is applied to create temper-resistant operation log
files without trusted auditors. In the payment management for outsourced ser-
vices [7,8], blockchain ensures the fairness between service providers and users.
Blockchain also has priori performance in edge computing [9], energy trading
[10], voting [11], etc., due to its decentralized and trust-less property.

Despite numerous research interests in academia, blockchain rarely has large-
scale applications as industrial products due to lack of scalability. Blockchain-
related applications can hardly offer services to large scale of users. Blockchain’s
scalability issue has becoming a big drawback that impedes the blockchain from
further development [12]. Two scalability issues are involved at current stage.
The first challenge is the restriction of the low throughput considering high
efficiency in demands of contemporary networking services [13]. Low through-
put bottleneck limits blockchain’s ability to simultaneously process asset trans-
fers among large scale of users. Bitcoin network’s throughput is 7 transactions
per second (TPS), and Ethereum’s throughput is around 50 TPS. However,
the widely used visa system needs to process 50000 TPS. It implies that the
blockchain’s throughput is far behind the requirement to construct commercial
payment system. The other challenge is the storage burden. The size of Bitcoin
network has approached 210,557 MB in the beginning of the 2019 and its size has
been continuously increasing as long as the Bitcoin is still working. Full nodes
for verifying transactions need to store a complete copy of data in the Bitcoin
network. It also implies that Bitcoin users who run the full nodes are encoun-
tering a severe storage challenge. One of the negative consequences is causing
centralization when the storage burden discourages PC miners to participate in
mining and results in the decrease of PC miners.

To address the scalability challenges of blockchain, in this paper, we intro-
duce a secure multi-sidechain architecture. By this method, blockchain could
dealing with different transactions in different sidechains in parallel to increase
the throughput. Each node in this blockchain system only needs to store the
block data generated by a few transactions on the specific blockchain. By this
effort, the storage overhead is greatly reduced. In addition, different user groups
manage transactions on their own sidechain. Since transactions are opened and
transparent for all member in blockchain, using sidechain could mitigate the risk
of privacy leakage since the sidechain is a permissioned chain. Meanwhile, some

An Approach of Secure Two-Way-Pegged Multi-sidechain 553

security issues emerge in the multiple sidechain system. In this work, we focus
on securing the multi-sidechain model. Highlights of this work include:

1. This work proposes a secure asset transfer method to prevent double spend-
ing during the asset transfer between chains and protect parent chain from
catastrophic failure of sidechain.

2. The proposed mechanism Implements a secure asset withdraw protocol to
prevent transaction ordering dependence (TOD) attacks and denial of service
(DOS) attack by selfish users in multi-sidechain system.

3. We have designed a novel multi-sidechain architecture. Transactions are
processed in these sidechains in parallel to increase throughput. Different
sidechains provide variable functions. Using permissioned sidechains can also
ensure user’s privacy.

Paper Organization. Section 2 briefly reviews related works to improve block-
chain scalability. Section 3 provides the system design, while Sect. 4 explains the
asset transfer algorithms. In Sect. 5 we do both simulation experiments and the
security analysis to our proposed system. Finally, in Sect. 6, we draw conclusions
of this work.

2 Related Work

In this section we reviewed previous approaches that aimed to tackle scalability
challenge of blockchain.

Solutions to extend blockchain could be divided into two categories: extend
on-chain and off-chain. In the on-chain extension, blockchain protocols, such
as block structures or consensus mechanisms, were modified to increase the
blockchain throughput. One simple way to improve scalable performance was to
increase the size of the block. By doing so, more transactions can be processed
in a given period of time. For example, Bitcoin SV applied dynamic 64MB size
of block to increase throughput. BTC and BCH forked because BCH decided
to improve scalability by increasing block size [14]. However, large block size
leads to high costs in running full nodes. Thus, it sacrificed decentralization [15].
Sharding [16] was proposed in a divide-and-conquer manner to improve scala-
bility. Luu et al. [16] introduced ELASTICO, a sharding protocol that could
tolerate a quarter of Byzantine nodes in the network with 40 TPS. To further
increase the throughput, Rapidchain et al. [17] used could tolerate 1/3 abnormal
nodes with 7300 TPS.

Off-chain extension didn’t modify blockchain protocols. By this method,
majority of transactions were carried out off-chain. Sidechain technology was
an important method to perform off-chain extension. Sidechain was explored by
Back [15] in 2014. In this work, sidechain was realized by a two-way pegged
method. In the pegged method, simplified verification proof was used to verify
existence of certain transaction. To secure the coin transfer between sidechain
and parent chain, conformation period and contest period were performed to

554 J. Guo et al.

lock the coin for a while in case of the potential threat such as DDoS attack and
double spending.

BTC relay [18] applied one way peg technology to connect Bitcoin and
Ethereum network. In this method, Ethereum was designed as the sidechain of
Bitcoin. Relayers in this project relayed block headers in Bitcoin to smart con-
tract in Ethereum. However, this project could not work due to the lack of relay-
ers. Similarly, Teutsch et al. [19] built a dogethereum bridge to connect Ethereum
and Dogecoin. Dogethereum bridge could make DOGE in Dogecoin and WOW
token in Ethereum became interoperable. In the follow up study, Gazi et al. [20]
proposed a proof-of-stake two way pegged sidechain based on Ouroboros consen-
sus and Cardano blockchain. In this work, mainchain was used as the settlement
layer. This layer was featureless to securely deposit money. Sidechain was the
computation layer that used to run scripts to do complex computational work,
such as executing smart contract. This work mathematically defined firewall
property for the sidechain.

Another off-chain approach was implemented by state channel technology.
State channel originated from the idea of payment channel in the Lighting Net-
work [21]. In lighting network, both sides could finish their transaction off-chain
via pre-defined payment channel. As a result, system TPS was increased by
off-chain payment. State channel technology [22] could execute smart contract
off-chain to further increase the blockchain scalability. However, our paper was
based on two-way pegged sidechain technology. Discussions about state channel
were out-of-scope in this paper. In this work, we focused on the two-way-pegged
sidechain technology. We extended previous two-way-pegged single sidechain to
multiple sidechain configuration.

3 System Design

In this section, we introduce our multi-sidechain model. We first define related
terms in this multi-sidechain model. We then introduce the design purpose of
this multi-sidechain system. In the third subsection we represent main phases in
detail.

3.1 Definitions

Definition 1 (User set and user group). U = {U1, U2, ..., Ui, ..., Un}, i ∈ [1, n]
is the total user set in this blockchain system. n is the total amount of users.
User group UGj ⊆ U, j ∈ [1,m] is the users on the jth blockchain.

Definition 2 (Mainchain-sidechain relationship). In a two way pegged block-
chain system, mainchain is the blockchain that can spontaneously and directly
transfer assets to another blockchain that is called sidechain. In other word,
mainchain could start the asset transfer between blockchains, while sidechain
can only transfer asset back to mainchain after receive mainchain’s asset. Set
C = {C1, C2, ..., Cm} is the blockchain set in this multi-sidechain system. We
define C1 is the mainchain, and Cj , j ∈ (1,m] is the sidechain.

An Approach of Secure Two-Way-Pegged Multi-sidechain 555

Definition 3 (Conformation period). Conformation period Tcomf is the asset
freeze period on the mainchain before the asset is sent to sidechain. Conforma-
tion time is the time duration of asset freezing on MC before transfer to SC.
During conformation period, MC to SC transactions on the MC are verified
by miners before payment. Thus, conformation period could ensure the asset
is truly transferred to the locked output. We define the conformation period
Tcomf = Kconf × Tblock, where Kconf is the conformation parameter set by user
and Tblock is the average block generation time. For example, in Bitcoin, Kconf

can be set to 6.

Definition 4 (Contest period). Contest period Tcont is the asset locked time
after assets arrived sidechain. During this period, newly arrived assets cannot be
spent and delivered to other accounts in this sidechain. The reason we use the
contest period is to avoid the risk of double spending that is caused by reorga-
nization. Kcons is the contest parameter. Tcons = Kconf × Tblock. Higher Kcont

and Kcons can lessen the risk of double spending. However, system’s efficiency is
lower. Thus, trade-offs between system efficiency and security should be carefully
considered.

Definition 5 (Firewall). Firewall property means failure in the sidechain can-
not be a threaten to the mainchain. It is because the pegged multi-sidechain sys-
tem is a central hub configuration. Failure of mainchain can leads to the subse-
quent failure of other sidechain that connect to this mainchain. In this work, we
applied the firewall property in [20]. To protect mainchain assets value, we define
the total money from sidechain (SC) back to mainchain (MC) cannot exceed the
money from MC to SC. Thus, for ∀t, asset transfers between MC and SC should
satisfy Eq. (1).

x=t∫

x=0

assetMC→SCdx ≥
x=t∫

x=0

assetSC→MCdx. (1)

3.2 System Description

In our multi-sidechain system, we apply multiple sidechains to process trans-
actions in parallel to maximum the throughput. Mainchain and sidechains
are configured in a star topology since one mainchain is connect to multiple
sidechains. Figure 1 briefly shows the architecture of our multi-sidechain system.
All blockchains in this system apply proof-of-work consensus [1].

This multi-sidechain system is composed of a single mainchain and multi-
ple sidechains. Sidechains are all connected to the mainchain and form a star
topology. Mainchain is responsible in asset deposit and transfer between all users
in this system. Computational works such as running executable scripts cannot
perform on mainchain. Such functional limitations can protect mainchain from
adversarial attack against potential vulnerabilities in smart contract. Computa-
tional task can be finished on sidechain. Each sidechain is applied to perform

556 J. Guo et al.

Fig. 1. System configuration.

specific function. For example, in Fig. 1, sidechain 1 is used to deal with power
trading, sidechain 2 is applied for supply chain managing, and sidechain 3 and
4 responsible in running DApps.

It is worth noticing that each sidechain is also a permission chain. Only
related stakeholders can access the transaction data on each sidechain. Thus,
blockchain data privacy is protected by limiting data access from other honest
but curious users that is not participate in this sidechain. Besides, multiple
sidechain can process different tasks in parallel. Congestion in one sidechain
cannot influence others. From the perspective of mainchain, computational works
are offloaded to sidechains. This design can minimized the security risk on the
mainchain. Firewall property ensures the failure from sidechain cannot affect
mainchain. Thus, single sidechain failure cannot malfunction other parts in this
system. In general, our multi-sidechain design makes the system robust, secure
and high efficiency.

3.3 Threat Model

In our multi-sidechain system, we assume that majority of the miners on the
mainchain are honest, i.e., dishonest miners cannot manage to launch 51% attack
on the mainchain. We also assume that communications between blockchains are
secure. Proof of proof-of-work informations cannot be tempered during the data
packet transmission. Threats in this model can be categorized in three types:
double spending attack, transaction ordering attack and sidechain 51% attack.

First, double spending attack can be launched on both mainchain and
sidechain. In this model, attack is originated from the malicious asset sender
who is dishonest about the transaction status after reorganization. By this effort,
this sender sends money to the receiver while keep his money on the other chain.
Thus, the transferred asset can be spent on both side of blockchain.

An Approach of Secure Two-Way-Pegged Multi-sidechain 557

Second, transaction ordering dependence (TOD) [23] attack can also threat
this multi-sidechain model. TOD attack is a race condition attack that hap-
pens during the asset withdraw process. One user start to withdraw assets
from sidechain to mainchain by sending transaction. After discern this process,
wealthy but malicious user withdraw high amount of asset that the sum of two
withdraw asset amount is higher than the maximum amount of assets that can
be unlocked on mainchain contract. Then malicious user call the withdraw func-
tion with a higher gas price to make sure its transaction can be executed before
Alice’s transaction. By doing so, Alice’s withdraw action is failed. Thus, wealthy
user can disable other users withdraw function by launching TOD attack.

Third, sidechain is under the threat of 51% attack. It is because as a subsys-
tem, sidechain sometimes cannot obtain enough computation power to maintain
its ledger. Thus, risk of 51% attacks on the sidechain is high. Under 51% attack,
transactions can be counterfeit. So assets on 51% attacked sidechain is no longer
valuable.

3.4 Main Phases

System Initialization. First, the system should be initialized. User accounts
in this multi-sidechain system is generated and according addresses is obtained.
Next, smart contracts are submitted by the transactions. During the smart con-
tract establishment, we do the initial asset distribution to the contract account.
All externally owned account as well as mainchain lock contract accounts do not
have initial deposit. Sidechain deposit contracts are offered an initial deposit D.
This initial deposits is the highest net asset transfer amount from mainchain
to the jth sidechain. Then, mining process is activated and we can obtain the
contract address after it is successfully written into blocks.

Transfer from Mainchain to Sidechain. After initialization, mainchain and
sidechains are stepped into mining and block packaging process. Transfer assets
from mainchain to sidechain contains three steps. Assume user Ui with mainchain
address AddSi is going to transfer ai amount of assets to Ui’s sidechain account
with address AddRi. Asset lock addresses are mainchain deposit smart contract
address for jth sidechain and jth sidechain’s deposit smart contract address.
Note that we only discuss interactions between mainchain and one sidechain
since such interactions are occurred in parallel.

First, user Ui transfer its assets ai to the smart contract address on the
mainchain by invoking the contract as a send transaction manner. So a trans-
action Tx is generated on the mainchain and broadcast to nodes in mainchain.
The presence of this transaction in the blockchain is important to us to pre-
vent double spending attacks. The contract deposits these assets after receiving
them. Meanwhile, Ui account on the sidechain interacting with the contract in
the sidechain to inform it of the details of transaction.

Second, after the transaction is launched, the asset is locked for a conforma-
tion period. By doing so, we can make sure that assets are successfully transfered
to the contract address by the aid of conformations in the following blocks.

558 J. Guo et al.

Third, block headers on the mainchain are relayed from the mainchain to
sidechain smart contract. Then the sidechain smart contract checks the validity
of the transaction to make sure it is covered with enough proof-of-works. How-
ever, to make sure the relay information is still valid, any users on the mainchain
are encouraged to send contest proofs during the Tcont period. If the verifica-
tion is valid, then the sidechain smart contract send the amount of ai assets to
the final destination address. At this point, assets successfully transfered from
mainchain to sidechain.

Transfer from Sidechain to Mainchain. Transfer assets from sidechain back
to mainchain is reverse procedure of steps mentioned in the above section. In this
work, we especially focused in this process since insecure withdraw process can
threaten the mainchain by TOD attack. To prevent TOD attack, before the asset
transfer from sidechain to mainchain, user should first send a lock requirement
to lock the two-way-pegged channel. Then the user can successfully implement
the withdraw function without the threat of TOD attack. To implement this
function, we deploy a control contract on the mainchain to realize the asset
withdraw protocol.

However, abuse lock operation can impede withdraw process of other users.
To tackle this issue, lock request should be sent with a collateral that cannot
below the minimum requirement. A valid lock request can make sure only the
request user can do the withdraw operation. If the user haven’t start taking
money from mainchain deposit contract after challenge time, other users are
motivated to call the challenge function to unlock the withdraw channel. It is
because a successful challenge can make user earn all initial deposit that send
along with the lock request.

User who successfully withdraw money from sidechain can also get its initial
deposit back. Then the channel is unlocked. In addition, to prevent one user
continuously occupy the withdraw channel, we define that one user cannot lock
the channel again within freeze time seconds.

4 Algorithms

4.1 Channel Lock and Challenge Algorithm

In this algorithm, we focus on the withdraw process i.e., transfer money from
sidechain back to mainchain. In our proposed multi-sidechain model, different
users might withdraw from the same deposit address. Hence the system is vulner-
able to the TOD attacks. To prevent this, users can lock the withdraw channel.
This algorithm is realized on the control contract in the mainchain in order to
provide locking service to minimize the risk of transaction ordering attack.

The channel lock algorithm is activated during the interaction between exter-
nal accounts and the control contract. To use this function, the external account
that wants to lock the channel send a transaction to the control contract with
collateral.

An Approach of Secure Two-Way-Pegged Multi-sidechain 559

Algorithm 4.1. Channel Lock and Challenge Algorithm
Require: Sender Address msg.sender, collateral msg.value, current lock user

hold, last lock user lasthold,minimum value of the collateral coll require,
freeze time freeze time, lock start time lock start

Ensure: Current lock user hold, last lock user lasthold, lock start time
lock start.

1: function lockrequest()
2: if (hold! = address(0)) ∨ (msg.value < coll require) then
3: revert();
4: end if
5: if (lasthold == msg.sender) ∧ (now <= lock start + freeze time) then
6: revert();
7: end if
8: collateral collateral ← msg.value;
9: lock the channel hold ← msg.sender;

10: lock start time lock start ← now;
11: end function
Require: Sender Address msg.sender, collateral collateral, current lock user

hold, last lock user lasthold, challenge time challenge time, lock start time
lock start.

Ensure: Current lock user hold, last lock user lasthold, collateral collateral.
12: function challenge()
13: if (hold == msg.sender) ∨ (now < lock start + challenge time) then
14: revert();
15: end if
16: lasthold ← hold;
17: hold ← address(0);
18: add ← msg.sender;
19: add.transfer(collateral);
20: collateral ← 0;
21: end function

The algorithm firstly check the status of the current holder. If one user has
already locked the channel, other users cannot lock the channel. Meanwhile, it
checks the collateral carried along with the lock request. Lock requests with
insufficient collateral is not valid.

Next, if the transaction sender account is the same as the last account that
send lock request, the algorithm checks whether the time between two requests
meets the freeze time requirement. A lock request transaction that meets all
requirements above is a valid lock request. So contract record the new initial
deposit value collateral, new user who lock the channel and the lock start time.

If the user lock channel, but not complete the withdraw process in time, other
users call the challenge function to unlock the channel in case of the malicious
channel occupying. First, the function checks if the time has entered the challenge

560 J. Guo et al.

Algorithm 4.2. Withdraw Algorithm
Require: Sender Address msg.sender, current lock user hold, last lock user

lasthold, collateral amount collateral, lock start time lock start, deposit
contract address depo, withdraw amount amount.

Ensure: Current lock user hold, last lock user lasthold, initial deposit value
collateral.

1: function takeback(depo,amount)
2: if (hold! = msg.sender) then
3: revert();
4: end if
5: depo.withdraw(amount, hold)
6: // function withdraw(unit amount, address hold)
7: // if (control.address == msg.sender) then
8: // hold.transfer(amount);
9: // else revert();

10: hold.transfer(collateral);
11: last lock user lasthold ← hold;
12: unlock system hold ← address(0);
13: collateral collateral ← 0;
14: end function

period. Then, all other users can send transaction to unlock the channel. These
users are motivated to do so because they can not only get the collateral, but
also release the channel.

4.2 Withdraw Algorithm

After the lock request is valid and funds are available to unlock, the user can
then call the withdraw function to take his money back. As we can see from the
algorithm, only current lock holder can use the withdraw function. After funds
and the collateral are successfully send to the message sender, the system will
be unlocked.

In this withdraw process, control contract called the function in the deposit
contract to send asset back to the user. It is because the assets are stored in the
deposit contract. Before asset transfer, deposit contract firstly check whether the
function call is originated from the control contract.

5 Evaluations and Analysis

5.1 Experiment Evaluations

In this subsection we introduce our experiment environments and settings. We
simulate the two algorithms and three functions proposed in the previous section.
In this work, the experiment is carried out in a personal computer with Windows

An Approach of Secure Two-Way-Pegged Multi-sidechain 561

10 operating system, a Intel Core i7-7500U CPU and a 8G RAM. We code and
compile the smart contract on the Remix website. From the remix, we can get the
gas cost of each function. Five times average gas cost when successfully executing
three functions are shown the Sect. 4 is list as follows. In this simulation test, we
set challege time = 50 s and freeze time = 100 s (Table 1).

Table 1. Functions gas cost

Function Transaction cost (gas) Execution cost (gas)

Lockrequest() 47357 38085
Challenge() 30618 39346
Takeback() 60468 52532

Then, we deploy the complied contract on the geth console. By sending trans-
actions to interact with our contracts, we can test functions of our algorithm.
We check account status during the interactions, and the result shows our algo-
rithm works well. From the perspective of average gas cost, we can see that
the lockrequest() and takeback() function costs high amount of gas. Function
challenge() costs smallest amount of gases. Such low gas cost of the challenge
process is positive because users can be more motivated to challenge and unlock
the system with lower cost. However, this takeback() function do not conclude
SPV verification function, which will cause high amount of gas cost.

5.2 Security Analysis

Double Spending Attack. Double spending attacks could be launched by
a malicious user. This kind of malicious user aims to find vulnerabilities in
the transfer protocol in order to double spend money on both mainchain and
sidechain. To prevent double spending attack, SPV proof as well as conformation
and contest period is introduced. Assets are locked on the sender chain during
conformation period, which can help the transaction get more conformations
from other users in peer to peer network. This approach can increase the validity
of the transactions on the mainchain. SPV proof checks the transaction validity
after conformation period. However, reorganization on the sendchain can also in
invalid the transaction. To avoid double spending cause by reorganization, asset
is locked during contest period before circulating in receiver blockchain. Then,
validity of transaction will be checked again under the governance of all miners
in the mainchain during contest period.

Transaction Ordering Dependence Attack. Malicious users launch TOD
attack by providing highest gasprice to make sure its withdraw transaction can
be execute before others. By doing so, malicious user makes the amount of rest

562 J. Guo et al.

asset that can be unlocked insufficient to invalid other user’s withdraw process.
In our model, when user wants to withdraw money, they should firstly send a lock
request to the control contract. During this process, malicious user cannot get
the withdraw amount of others. Thus, they cannot get an accurate estimate of
their withdraw value to successfully launch the attack. As a result, the possibility
of TOD attack can be reduced significantly.

51% Attack on Sidechain. Since sidechain has fewer participants compared
to mainchain, 51% attack on sidechain need to be considered. 51% attack can
cause catastrophic failure on the sidechain. Attacker create arbitrary amount
of assets on sidechain by 51% attack. As a result, sidechain asset depreciated
significantly. However, under such failure, value of assets on mainchain is still
under protected. It is because the firewall mechanism limit the amount of assets
transferred from sidechain to mainchain. So mainchain assets will not be deval-
ued by the monetary high caused by 51% attack on sidechain. In addition, since
assets are not circulating between sidechains, catastrophic failure of one sidechain
cannot affect any other blockchains in this system. Star topology and firewall
property helps to segregated collapsed sidechain from others.

DoS Attack. As we discussed above, selfish users may continuously withdraw-
ing small amount of asset to occupy the withdraw channel. Such actions severely
infected the asset circulation between chains. From the view of most users, this
two-way pegged system is degenerated to one-way peg since they cannot access
to the withdraw service. In our model, after the successful lock request to the
control contract, the deposit contract cannot access the control contract’s service
in the freezing period. This design eliminates the DoS attacks during withdraw
process. In addition, malicious users might also lock the system by send lock
request, but they do not unlock them. In addition, channel lock mechanism can
also leads to DOS attack by malicious users. To prevent this DoS attack, user
have to pay the collateral when they request to lock the channel. If user lock
the channel but have no intention to unlock it (i.e., have not call the takeback()
within challenge time), other users can send challenge messages to earn the
collateral and unlock the system. By doing so, malicious user is punished.

6 Conclusions

In this work, we proposed a secure multi-sidechain system. This multi-sidechain
system realized different functions in separate sidechains to increase system
throughout. To secure this system, we carefully designed asset transfer protocols.
We then realize some of these protocols on the Ethereum platform. Exhaustive
security analysis proved that our proposed multi-sidechain system can prevent
four kinds of potential threats. In our future work, we will finish the construction
of the whole multi-sidechain system on the Ethereum.

An Approach of Secure Two-Way-Pegged Multi-sidechain 563

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China (grant # 61972034).

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
2. Morgan, J.P.: The next step for blockchain (2019). https://www.jpmorgan.com/

global/research/blockchain-next-steps
3. Facebook. Libra write paper (2019). https://libra.org/en-US/white-paper/
4. Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: Provchain:

a blockchain-based data provenance architecture in cloud environment with
enhanced privacy and availability. In: Proceedings of the 17th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, pp. 468–477. IEEE
Press (2017)

5. Xia, Q., Sifah, E., Asamoah, K., Gao, J., Du, X., Guizani, M.: MeDShare: trust-less
medical data sharing among cloud service providers via blockchain. IEEE Access
5, 14757–14767 (2017)

6. Gai, K., Qiu, M.: Blend arithmetic operations on tensor-based fully homomorphic
encryption over real numbers. IEEE Trans. Ind. Inf. 14(8), 3590–3598 (2017)

7. Choudhuri, A., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: fair multiparty computation from public bulletin boards. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 719–728. ACM (2017)

8. Hu, S., Cai, C., Wang, Q., Wang, C., Luo, X., Ren, K.: Searching an encrypted
cloud meets blockchain: a decentralized, reliable and fair realization. In: IEEE
Conference on Computer Communications (INFOCOM), pp. 792–800. IEEE (2018)

9. Gai, K., Wu, Y., Zhu, L., Xu, L., Zhang, Y.: Permissioned blockchain and edge com-
puting empowered privacy-preserving smart grid networks. IEEE Internet Things
J. 15(6), 3548–3558 (2019)

10. Gai, K., Wu, Y., Zhu, L., Qiu, M., Shen, M.: Privacy-preserving energy trading
using consortium blockchain in smart grid. IEEE Trans. Ind. Inf. (2019)

11. Zhu, L., Wu, Y., Gai, K., Choo, K.: Controllable and trustworthy blockchain-based
cloud data management. Future Gener. Comput. Syst. 91, 527–535 (2019)

12. Karame, G.: On the security and scalability of bitcoin’s blockchain. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1861–1862. ACM (2016)

13. Gai, K., Qiu, M., Zhao, H.: Energy-aware task assignment for mobile cyber-enabled
applications in heterogeneous cloud computing. J. Parallel Distrib. Comput. 111,
126–135 (2018)

14. Kwon, Y., Kim, H., Shin, J., Kim, Y.: Bitcoin vs. bitcoin cash: coexistence or
downfall of bitcoin cash? In: Proceedings of the 2019 IEEE Symposium on Security
and Privacy, pp. 1290–1306. IEEE Computer Society (2019)

15. Back, A., et al.: Enabling blockchain innovations with pegged sidechains. http://
www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-
pegged-sidechains, p. 72 (2014)

16. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

https://www.jpmorgan.com/global/research/blockchain-next-steps
https://www.jpmorgan.com/global/research/blockchain-next-steps
https://libra.org/en-US/white-paper/
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains

564 J. Guo et al.

17. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 931–948. ACM (2018)

18. Chow, J.: BTC relay (2016). https://github.com/ethereum/btcrelay
19. Teutsch, J., Straka, M., Boneh, D.: Retrofitting a two-way peg between blockchains.

Technical report (2018). https://people.cs.uchicago.edu
20. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: Proceedings of the

2019 IEEE Symposium on Security and Privacy, pp. 677–694. IEEE Computer
Society (2019)

21. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016)

22. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 949–966. ACM (2018)

23. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

https://github.com/ethereum/btcrelay
https://people.cs.uchicago.edu

IoT and CPS Computing

DCRRDT: A Method for Deployment
and Control of RFID Sensors Under

Digital Twin-Driven for Indoor
Supervision

Siye Wang1,2,4(B), Mengnan Cai1,2(B), Qinxuan Wu3, Yijia Jin5,
Xinling Shen1,2, and Yanfang Zhang1,2

1 Institute of Information Engineering, Chineses Academy of Sciences, Beijing, China
{wangsiye,caimengnan,shenxinling,zhangyanfang}@iie.ac.cn

2 School of Cyber Security, University of Chineses Academy of Sciences,
Beijing, China

3 School of Computer Science and Technology, Zhejiang University, Hangzhou, China
wuqinxuan@zju.edu.cn

4 School of Computer and Information Technology, Beijing Jiaotong University,
Beijing, China

5 The Boeing Company, Seattle, USA

Abstract. In the field of indoor supervision based on RFID, the quality
of monitoring is affected by how many and where the RFID sensors are
deployed. Due to the limitation of time and workforce, It is a key prob-
lem to improve efficiency and to reduce the complexity of deployment.
We propose a deployment & control scheme of RFID sensors based on
digital-twin technology. The constructed digital-twin model can simulate
the state, the performance, and the activity of physical entities. In this
paper, we predict and analyze based on digital-twin technology to solve
the problems of re-design & re-deployment. We further achieve the goal
of saving deployment time & workforce through the intuition and virtual
simulation of digital-twin. We take three problem scenarios to demon-
strate the proposed RFID sensor deployment & control scheme is highly
efficient and resource-saving.

Keywords: Indoor supervision · RFID sensors · Deployment
& control · Digital-twin

1 Introduction

Sensor deployment & control schemes of indoor space have received extensive
attention in the research field in the past two decades. The schemes achieve
indoor monitoring by analyzing mass data collected through RFID, Bluetooth,
WLAN, and ZigBee [1]. At present, researchers in the community mostly use

S. Wang and M. Cai—Both the authors were co-first author.

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 567–576, 2020.
https://doi.org/10.1007/978-3-030-38961-1_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_48&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_48

568 S. Wang et al.

RFID which is suitable for the complex indoor environments to collect the loca-
tion information in indoor space [2]. Researchers analyze the moving targets by
the large-scale deployment of RFID sensors and accurate positioning technology.

The current researches mainly aim to achieve full regional coverage and high
economic feasibility of deployment [3]. However, little researches considered the
impact of indoor maps which are the basic element of sensor deployment. In
the efficient sensor deployment & control scheme, the actual goals are to save
time, save the workforce, and reduce the difficulty of deployment as much as
possible. Due to the limitations of space requirements and other factors, most
of the previous schemes are usually designed based on interior sketches provided
by designers. The inconsistencies between the current actual situation and the
design sketches affect the efficiency and complexity of deployment.

In our paper, we adopt digital-twin technology which can make the digital
space and physical space co-evolve accurately. The accurate mapping function
in digital-twin improve the inconsistencies between sketches and practical situ-
ations. The problems in current sensor deployment & control schemes, such as
ambitious, laborious, unintuitive, and repeated construction are also solved. At
the same time, every step in sensor deployment & control processes is monitored
in real time. This strategy saves time and resources by making corrections at
the end of each step rather than waiting until the whole deployment processes
are finished.

Our contributions in this paper are summarized as follows:
(a) We formally define the problems in the actual RFID sensor deployment

process within labile road network and sketches constraints.
(b) We design an appropriate scheme which solves the time-consuming and labo-

rious problems using digital-twin technology.
(c) We propose a solution to control the life-cycle of physical entities by using

digital-twin.
(d) We put forward a digital-twin-based sensor deployment algorithm which

makes the comparison times and auxiliary monitoring nodes as small as
possible.

(e) We conduct an empirical evaluation using fail-over scenarios, which proves
the time-shorten effects and confirms the practicability, superiority, and effi-
ciency of our proposed scheme.

The rest of the paper is organized as follows. In Sect. 2, we describe the related
work of indoor RFID sensor deployment & control and digital-twin technology.
In Sect. 3, we describe the proposed framework, including problem definitions,
sensor deployment, and our framework. In Sect. 4, we do the demonstration and
give out the evaluation results. Finally, we conclude in Sect. 5.

2 Background and Related Work

In the whole process of deployment & control strategy, digital-twin dynamically
detects the logic problems and sensors states further to save deployment time
and workforce. In this section, we introduce the relevant background of indoor
RFID sensor deployment & control and digital-twin respectively.

DCRRDT 569

2.1 Indoor RFID Sensor Deployment and Control

As for the deployment of indoor RFID sensors, various algorithms were proposed
to maximize the coverage of monitoring areas by sensors [4]. Based on maximiz-
ing coverage, algorithms for the minimum sensor number were proposed. Various
methods such as biological method [5] and novel normalization method [6] were
used.

Most of the studies consider whether the coverage, the performance, and
the number of deployed sensors are reasonable. However, few schemes take the
complexity of the deployment, as well as the consumption of human resources
and deploy-time into account. The site conditions and resource constraints in a
real deployment environment are also needed to be considered. How to deploy
the sensors reasonably and efficiently is a problem that needs to be solved.

2.2 Digital-Twin

The concept of digital-twin was first proposed by Professor Grieves in 2003 [7].
Researchers carried out many theoretical researches and practical explorations
on how to achieve the interaction and integration of the physical world and
information world [8,9]. Digital-twin played the role of predictive maintenance
in the industry [10].

At present, studies based on digital-twin have made some progress in produc-
tion and application. But few researches study on the control & supervision of
interior space. We hold the point that the advantages of digital-twin technology
in accurate mapping, real-time simulation, and digital debugging make it have
great potential in the life-cycle management of physical entities.

3 The Proposed Framework

In this section, we first define the problems in most deployment sites. Next,
we put forward our scheme to deploy sensors. Then, we propose our framework
which is based on digital-twin technology. After that, we demonstrate the details
of modules in the framework. The proposed deployment & control scheme of
RFID sensors under digital twin-driven is called DCRRDT in our paper.

3.1 Problem Definitions

Our experience of deploying RFID sensors in large indoor venues suggests that
the following unreasonable problems often exist in the actual sensor deployment
process:

(a) The blind spots and logic problems in the thinking process when designing
road network structure. That would result in irrational deployment schemes
which are helpless for the monitoring areas and emergency response.

(b) The frequent changes in road network structure caused by the movements of
objects. The locations of obstacles are often changed due to unpredictable
factors. The changes lead to the variation of indoor monitoring areas and
the need for the redeployment of sensors.

570 S. Wang et al.

(c) The signal shielding areas or high-aesthetic areas are not allowed to deploy
sensors. However, the areas are usually not known in advance through inte-
rior renderings.

(d) The deployed sensors are accidentally knocked off or damaged by moving
targets or dropped the wire due to network ports and electrical ports are
ill-contacted.

(e) The remote network ports and electric ports are ill-suited for sensor deploy-
ment in the actual site. However, since the construction of the indoor site
has been completed, the locations of the power ports are disabled to be
changed.

For these reasons, a flexible, intuitive, variable, and efficient scheme needs to
be carried out. In our paper, the digital-twin is combined with indoor environ-
mental characteristics to solve the unreasonable problems.

3.2 Schematic Diagram of Indoor RFID Sensor Deployment Based
on Digital-Twin

We aim to create a deployment & control strategy of RFID sensors based on
digital-twin. The goal of the strategy is to address the problems identified in
Section Problem Definitions. The schematic diagram of indoor RFID sensor
deployment & control based on digital-twin is called SDDDT for short in our
paper, as shown in Fig. 1. In SDDDT, paths are firstly extracted from the actual
deployment environment. The upper and lower boundaries of the path range
are mainly extracted. Next, the path inflection points and the planned sensors
are mapped. Then, the coverage of the planned sensors is indicated according
to power values. Whether the coverage includes the upper and lower boundaries
of all the paths is also ensured. Finally, the positions of power ports and the
distance between ports and sensors are indicated.

When the road network changes due to movements of obstacles or some
temporary situations, digital-twin will re-map the current road network in the

Fig. 1. Schematic diagram of indoor RFID sensor deployment & control based on
digital-twin technology (Color figure online)

DCRRDT 571

SDDDT. All the status will be re-checked. When RFID sensors are disconnected,
the position of the sensors and sensor coverage will light red warning. When
the distance between sensors and network ports or electrical ports exceeds a
threshold value, the indicating distance will also light red warning, as shown in
Fig. 1. The red light warns to modify deployment plans in time.

3.3 Sensor Deployment

After extracting the road network in SDDDT, the problem to be solved is how
to deploy the sensors on the road network in SDDDT. In our paper, sensor nodes
are divided into monitoring nodes and auxiliary monitoring nodes.

Monitoring nodes and auxiliary monitoring nodes are defined as follows:

Algorithm 1. Adjacent Monitoring Points
Input: The topological map G (V, E, M, NM).
Output: (a) All the adjacent monitor nodes of each monitor node. (b) Paths between

each adjacent monitor nodes.
1: V: The nodes set.
2: E: The edges set.
3: M: The monitoring points set.
4: NM: The non-monitoring points set.
5: for var i = 0; i < M.length; i + + do
6: Stack push (M(i));
7: visited [M[i]] = 1;
8: while Stack! = null do
9: a= the top of Stack;

10: for varj = 0; j < adj[a].length; j + + do
11: if V isited[adj[a][j]] == 0 then
12: Visited[[a][j]]=1;
13: Stack push (adj[a][j]);
14: if adj[a][j] is monitor node then
15: push adj[a][j] to the array of M[i] adjacent monitor nodes;
16: push M[i] to the array of adj[a][j] adjacent monitor nodes;
17: push all nodes in stack to PathM [i]−>adj[a][j], Pathadj[a][j]−>M [i];
18: Stack pop ();
19: end if
20: end if
21: if j >= adj[a].length then
22: Stack pop ();
23: end if
24: end for
25: end while
26: for var k = 0; k < V.length; k + + do
27: Visited[k]=0;
28: end for
29: end for

572 S. Wang et al.

Definition 1. For the road network graph G = (V, E) extracted according to
SDDDT, V is the set of points and E is the set of edges. When monitoring nodes
are added to SDDDT, paths can be distinguished. After the auxiliary monitoring
points are added, it can still be ensured that the paths between the auxiliary
monitoring points and the monitoring points in G can be distinguished.

Monitoring nodes are mainly selected according to actual needs. The nodes
usually locate at the vital indoor monitoring locations such as intersections and
doorways [11]. Steps to select auxiliary monitoring nodes are as follows:

(a) Acquire path information between all adjacent monitoring points.
(b) Randomly select from a group of adjacent nodes as the first group of points.
(c) Calculate the occurrence frequency of other nodes in the paths except the

monitoring points.
(d) Select the node whose occurrence frequency is close to half of the number

of paths to dichotomize the path. The indistinguishable paths are divided
into two groups of paths, one with the node and the other one without the
node.

(e) Calculate the frequency of the nodes in two groups of paths respectively.
(f) Carry out the dichotomy on this group of indistinguishable paths, until the

path between two adjacent monitoring points can be distinguished.

The nodes used in the above process to distinguish paths are selected as
auxiliary monitoring points. In the deployment scheme, we obtain all the paths
between any adjacent monitoring points firstly. Then we store the adjacent moni-
toring points which are next to monitoring points and the paths between adjacent
monitoring points and monitoring points through Algorithm1. Next, we execute
from Step (b) to Step (f) in order.

In our paper, auxiliary monitoring points are selected for the indistinguish-
able path group between each pair of adjacent monitoring points. The selection of
auxiliary monitoring points in the previous group of adjacent monitoring points
affects the selection in a later group. In this paper, the idea of selecting the
intermediate nodes makes the comparison less and is used to select less auxiliary
monitoring points. This way of selection makes the number of deployed sensors
is small.

3.4 Our Proposed Framework

Our proposed framework contains three layers which are responsible for different
functions. The layers are: Framework Layer, Engine Layer, and Actual Layer.
DCRRDT executes the designing, modeling, and simulation in Framework Layer.
The results from Framework Layer are applied to deploy and adjust the equip-
ment in Engine Layer. The intuitive monitoring interface can be observed in
Actual Layer. Meanwhile, the three layers are constantly interacting with each
other. The equipment in the Engine Layer collects the changing information
from the Actual Layer, then passes the data to the Framework Layer to re-
design, re-model, and re-simulate. The results are then applied to other layers in

DCRRDT 573

a cycle. The Framework Layer includes four components: Modeling & Designing,
Simulation, Maintenance & Control, and Visualization.

The module Modeling & Designing, Simulation and Maintenance & Control
in Framework Layer will be repeated to evaluate when the road network, obsta-
cles, locations of equipment, etc. change. Our digital-twin model helps workers
to implement parallel processing of abnormal problems in the whole processes.
This essential advantage reduces the time of re-design, re-deploy, and re-manage
greatly. In chapter 4, we verify the effectiveness and efficiency of our scheme.

4 Demonstration

The requirement in the demonstration is that only one worker is allowed to
operate during one process. The worker is not allowed to perform other steps
before completing the current step. Processes in different areas can be performed
simultaneously. In each step, we first select the current task-free worker with the
shortest completion time to execute.

In the demonstration, the basic scenario is as follows: Four workers need to
execute the work and three divided deployment regions need to be controlled.
According to the general sensor deployment & control strategy, each sensor needs
to be carried out three processes: Design, Install, and Maintain (called D, I, M
for short). When any problem occurs in the step of deployment & control, the
corresponding repair step needs to be performed. In our paper, the correspond-
ing repair steps are Dr, Ir, Mr. The time of each process is different to each
worker, which is listed as in Table 1. The 1st column refers to the index of sen-
sor region; The 2nd column refers to the index of the process; The 3rd to the
6th column is the processing time related to different workers. The angular mn
in the process label represents the n-th step in area m, such as M23 represents
process 3 (maintain process) in area 2.

Table 1. Case for DCRRDT.

Sensor area Process Worker 1 Worker 2 Worker 3 Worker 4

1 D11 2 3 1 3

I12 1 1 2 2

M13 2 2 1 1

2 D21 3 2 2 1

I22 1 2 1 2

M23 2 2 2 2

3 D31 2 1 2 2

I32 2 1 2 1

M33 3 1 2 2

Three scenes are provided to simulate the possible problems and the solution
time. These three problematic scenes are shown in Table 2. The 1st column refers

574 S. Wang et al.

to the index of problem scene; The 2nd column refers to the index of the process
in question which needs to re-work. The 3rd to the 6th column is the process
of time related to different workers. The time to complete sensor deployment &
control in normal circumstance is shown in Fig. 2. The respective time of sensor
deployment & control in three problematic scenarios is shown in Fig. 3, 4 and 5.

Table 2. Case for problematic scene.

Scene Part Worker 1 Worker 2 Worker 3 Worker 4

1 I22r 2 1 3 3

D31r 1 2 3 2

2 D21r 3 2 4 1

I22r 4 3 3 2

M33r 3 4 3 3

3 I12r 4 2 3 4

M13r 2 2 2 3

M23r 2 4 3 4

D32r 2 2 3 3

Fig. 2. Gantt chart for normal completion. The normal time without any emergency
is four-time units under the condition in the demonstration.

Fig. 3. Gantt chart in Scene 1. The scheme without DCRRDT takes five-time units.
The scheme with DCRRDT takes four-time units.

We take scenario 3 as an example. In scene 3, problems happen in process I12,
M13, M23, and D32, as shown in Table 2. Therefore, the repair process I12r, M13r,
M23r, and D32r need to be carried out after the above four steps. In the scheme
without-DCRRDT, process D, I and M can only be carried out after Dr, Ir, and
Mr. As shown in Fig. 5(a), process D32r, M13r, and I12r can be performed after

DCRRDT 575

(a) Scheme without DCRRDT in Scene 2. (b) Scheme with DCRRDT in Scene 2.

Fig. 4. Gantt chart in Scene 2. The scheme without DCRRDT takes six-time units.
The scheme with DCRRDT takes six-time units.

process M13 and M33 are completed. After completing step M23, process M23r can
be proceeded. At this point, the scheme without-DCRRDT requires seven-time
units. In the scheme DCRRDT, there is no need to wait for all the completion
of process D, I, and M. Because different steps can be performed simultaneously.
As shown in Fig. 5(b), process I12, I22, I32, and D21r can be performed after
process D21, D11, and D31 are completed. After completing process I12, I22, I32,
and D21r, process M13, M23, M33, and I12r can be carried out. After process M33

is finished, process M33r can be carried out. At this point, the DCRRDT scheme
requires six units of time.

(a) Scheme without DCRRDT in Scene 3. (b) Scheme with DCRRDT in Scene 3.

Fig. 5. Gantt chart in Scene 3. The scheme without DCRRDT takes seven-time units.
The scheme with DCRRDT takes six-time units.

5 Conclusion

We integrated an emerging digital-twin technology into the scheme of deploy-
ment & control of RFID sensors which is called DCRRDT. The proposed DCR-
RDT scheme improved the inconsistencies and saved the time & labor by its
remarkable functions. Meanwhile, because of the intuition and synchronous sim-
ulation function of DCRRDT, we had no need to check & repair after all the
steps in deployment & control were completed as in previous schemes. DCRRDT
allowed us to find problems directly and to repair in every phase of processing
timely. We also proposed an algorithm to reduce the number of deployed sen-
sors based on full area coverage on our SDDDT. Our DCRRDT scheme effec-
tively solved the unreasonable problems in sensor deployment schemes. DCR-
RDT reduced the complexity of deployment and improved deployment efficiency.
Excellent results showed that the DCRRDT-based scheme effectively saved the
deployment & control time and had stable & reliable effectiveness. Digital-twin
technology provides a new idea and method for the research of indoor space
sensor deployment & control.

576 S. Wang et al.

Acknowledgment. This work was supported by the National Key Research and
Development Program (No. 61601459).

References

1. Yilmaz, H., Nacar, O., Sezgin, Ö., Bostanci, E., Güzel, M.S., Sev́ınç, Ö.: Custom
RFID location simulator. In: 2018 2nd International Symposium on Multidisci-
plinary Studies and Innovative Technologies (ISMSIT), pp. 1–7, Ankara (2018)

2. Sharma, V., Malhotra, S., Hashmi, M.: An emerging application centric RFID
framework based on new web technology. In: 2018 IEEE International Conference
on RFID Technology & Application (RFID-TA), pp. 1–6, Macau (2018)

3. Zahran, E.G., Arafa, A.A., Saleh, H.I., Dessouky, M.I.: Biogeography based opti-
mization algorithm for efficient RFID reader deployment. In: 2018 13th Interna-
tional Conference on Computer Engineering and Systems (ICCES), pp. 454–459,
Cairo, Egypt. (2018)

4. Dhillon, S.S., Chakrabarty, K.: Sensor placement for effective coverage and surveil-
lance in distributed sensor networks. In: Proceedings Wireless Communication Net-
working Conference, New Orleans, LA, pp. 1609–1614 (2003)

5. Zhang, S., McCullagh, P., Zhou, H., Wen, Z., Xu, Z.: RFID network deployment
approaches for indoor localisation. In: 2015 IEEE 12th International Conference
on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–6, Cambridge,
MA (2015). https://doi.org/10.1109/BSN.2015.7299361

6. Yoon, Y., Kim, Y.H.: An efficient genetic algorithm for maximum coverage deploy-
ment in wireless sensor networks. IIEEE Trans. Cybern. 43, 1473–1483 (2013)

7. Grieves, M.: Digital twin: manufacturing excellence through virtual factory repli-
cation. In: Melbourne: U.S. Florida Institute of Technology (2015)

8. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven
product design, manufacturing and service with big data. Int. J. Adv. Manuf.
Technol. 94, 3563–3576 (2018)

9. Qi, Q., Tao, F.: Digital twin and big data towards smart manufacturing and Indus-
try 4.0: 360 degree comparison. IEEE Access 6, 3585–3593 (2018)

10. Liu, Z., Meyendorf, N., Mrad, N.: The role of data fusion in predictive maintenance
using Digital Twin. In: AIP Conference Proceedings, pp. 020023-1–020023-6 (2018)

11. Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. In: Tenth Inter-
national Conference on Mobile Data Management: Systems, Services and Middle-
ware, pp. 122–131 (2009)

https://doi.org/10.1109/BSN.2015.7299361

A Binary Code Sequence Based Tracking
Algorithm in Wireless Sensor Networks

Yang Zhang1,2, Qianqian Ren1,3(&), Yu Pan3, and Jinbao Li1,2,3(&)

1 Key Laboratory of Database and Parallel Computing of Heilongjiang Province,
Heilongjiang University, Harbin, China

{renqianqian,jbli}@hlju.edu.cn
2 Key Laboratory of Electronic Engineering Colleges of Heilongjiang Province,

Heilongjiang University, Harbin, China
3 School of Computer Science and Technology, Heilongjiang University,

Harbin, China

Abstract. This paper proposes a binary code sequence based tracking algo-
rithm in wireless sensor network. The proposed algorithm can release the
influence of sensed data on localization results via building the map between
target’s occurrence region and a binary code sequence. To solve the ambiguity
problem existing in occurrence region determination, the paper further gives a
Voronoi diagram based location refinement algorithm. The simulation results
show the tracking results under difference trajectories.

Keywords: Target localization � RSSI � Voronoi

1 Introduction

Target tracking is widely applied in many applications such as intelligent transporta-
tion, battlefield surveillance and intrusion detection [1, 2]. In these applications, the
target’s location information need to report accurately and timely. However, the limits
of wireless sensor networks including energy supply, computation capacity and storage
capacity propose challenges for it. Considering theses limits, many research works
have been done to solve the problem of target tracking and localization in wireless
sensor networks. Received Signal Strength Indication (RSSI) is a popular technique
and has been widely used in distance based localization as its simplicity and low cost
[3–5]. However, the existence of obstacles, noise, signal fluctuation and environmental
influence make it difficult to obtain accurate localization results. Xue et al. gave a
selected RSSI mean value based localization algorithm, the given algorithm can solve
the problem of signal instability existing in the traditional RSSI based localization
technology [6]. Gao et al. proposed a RSSI quantization method based on Genetic
Algorithm, which can reduce the amount of computation in the localization process
effectively [7]. Fu et al. first constructed a feature scale model and then used continuous
weight to assist localization [8]. Barsocchi et al. used the RSSI value obtained by fixed
sensor nodes to estimate the distance to the target, and chose weighted RSSI values
according to the intensity of RSSI measurements to locate the target [9]. Zafari et al.
presented a particle filter and extended kalman filter based localization algorithm to

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 577–583, 2020.
https://doi.org/10.1007/978-3-030-38961-1_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_49&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_49

release the influence of environmental noise on RSSI [10]. Mizmizi et al. proposed a
RSSI quantitation based method to reduce the computation cost during the localization
procedure [11].

In this paper, we propose a binary code sequence based target tracking and
localization algorithm. Instead of using RSSI value to estimate the distance between the
target and sensors, we build the map between the target’s occurrence region and a
binary code sequence. According to RSSI value and the given threshold, we assign a
binary code for each involved sensor, the sequence of binary codes from multiple
sensors can determine the target’s resident region. To validate the performance of the
given algorithm, we construct a simulation environment and evaluate the tracking
results under different trajectories.

The rest of this paper is organized as follows. Section 2 gives the sensing model
used in this paper. Section 3 describes the algorithm in detail. Section 4 presents the
simulation results. The conclusion is given in the last section.

2 Sensing Model

In most tracking applications, sensor nodes can estimate the distance from the target by
measuring the received signal strength of the target. We assume that signal strength
emitted by the target is S, which attenuates as distance increases. The signal strength a
sensor samples can be defined as:

si ¼ S � f ðdiÞ ð1Þ

Where di is the distance from a sensor to the target, f(�) is a signal decay function,
which is a decreasing function satisfying f 0ð Þ ¼ 1, f ð1Þ ¼ 0, and f xð Þ ¼ H x�b

� �
.

Loss exponent b is constant, it normally ranges from 2 to 5 [12].
Given a threshold gj, sensor i compares its sensed data with gj, the result can be

denoted as a bit as following:

qi ¼ 0 if si\gj;
1 otherwise

�
ð2Þ

According to the quantization strategies in [7], we can set multiple thresholds. Let’s
take 3 thresholds as an example. The sensing disk of sensor i is divided into 4 sub
regions, the results can be denoted as a series of binary code, such as:

qi ¼
00;
01;
10;
11;

8
>><

>>:

si 2 ½0; g1�
si 2 ½g1; g2�
si 2 ½0; g3�
si 2 ½g3; S�

ð3Þ

Each binary code is corresponding to a sub-region, which is the region the target
resides, and the target’s estimated location can be represented as the centroid of the sub

578 Y. Zhang et al.

region. In order to shrink the residence area of the target to get more accurate local-
ization result, the overlapping of sub regions from multiple sensors is utilized.

3 RSSI Threshold Based Localization Algorithm

This section gives the description of Binary Code Sequence based localization algo-
rithm. In the rest of this section, sensor nodes are assumed to be deployed randomly
and have unique IDs. Sensor nodes are further assumed to know their positions. The
sensing area of each sensor node is a disk.

3.1 Approach Overview

Let N ¼ fn1; n2; . . .; nmg be a set of sensor nodes in a two dimensional plane. Figure 1
gives an overview of the approach. The yellow star denotes the target. After the
deployment of sensor nodes and the choosing of thresholds, the map of the area under
surveillance can be divided into a series of small regions. For a sensor nodes ni, let
g ¼ g1; g2; g3f g be the given thresholds set, which divides the sensing disk of each
sensor node into four sub regions, denoted as Ai1; Ai2; Ai3 and Ai4, respectively. Ai1 is a
disk centered ni with the radius equals to f�1ðg3S Þ. Ai2 is a ring centered at ni with inner
radius equals to f�1ðg3S Þ and outer radius equals to f�1ðg2S Þ, respectively. Ai3 is a ring
centered at ni with inner radius equals to f�1ðg2S Þ and outer radius equals to f�1ðg1S Þ,
respectively. Ai4 is the area exclusive the circle centered ni with the radius f�1ðg1S Þ.

When a mobile target enters into the monitored area, sensor nodes detect certain
forms of physical signals emitted from the target. According to formula (2), the sensed
data at each sensor node is converted into a binary code. The binary codes from
multiple sensors gives us a sequence of binary code called binary code sequence, or for
short code sequence. For simplicity, the code sequence is the combination of binary
codes from sensors with the order of ascending sensor IDs. One fact about code
sequence is that each sub region is corresponding to an unique code sequence.
Therefore, with the pre-computed sensing disk division and a code sequence, the
resident region of the target can be specified. For example, if code sequence is 0101(the
binary code of ni and nj(i < j) is 01 and 01, respectively), we can conclude that the
target is in the shadow area. Table 1 is the table of the map between a binary code and a
sub region.

Table 1. Binary Code Map.

Area Binary code of ni Area Binary code of ni
Ai1 11 Aj1 11
Ai2 10 Aj2 10
Ai3 01 Aj3 01
Ai4 00 Aj4 00

A Binary Code Sequence Based Tracking Algorithm 579

3.2 Voronoi Diagram Based Location Refinement

In the ideal case, a code sequence should be identical with one sub region. Let us
consider the example shown in Fig. 1, where ni and nj are two neighbor nodes. If the
code sequence is 0101, the target must be in the area Ai3 \Aj3, that’s the two shadow
regions in the figure. In this situation, the localization result is considered ambiguous.
To overcome this problem, we further give a Voronoi diagram based location refine-
ment algorithm.

The feature of Voronoi diagram makes it a good choice for our localization. Ini-
tially, the Voronoi diagram of a collection of sensor nodes divide the map into a lot of
polygons. The target in a given polygon is closer to the sensor nodes in this polygon
than to any other sensor nodes outside the polygon. Figure 1 is an example of Voronoi
polygons of sensor node ni. We will present our algorithm from two steps: that’s
Vornio Diagram Construction and target Location Refinement.

1. Vornio Diagram Construction
Initially, we construct the Voronoi polygons as the method in [13], that’s each node
first calculates the bisector of its neighbors and itself. All bisectors can form several
polygons. Among these polygons, the smallest one enclosing the sensor node is its
Voronoi polygon. In Fig. 1, Gi is the Voronoi polygon of sensor node ni, the set of
Voronoi neighbor of ni can be denoted as NNi ¼ fni0; ni1; ni2; ni3; ni4g.

2. Target Location Refinement
By geometry, the target in one polygon is closer to the sensor inside this polygon
than the sensor nodes positioned outside the polygon. Therefore, we can specify the
polygon the target resides via comparing the distance of the target and involved
sensor nodes. Let’s take Fig. 1 as an example to describe the procedure of refining
the target’s resident region as following:

• At time t, the target enters a certain area of the network. The code sequence
formed by involved sensor nodes ni and nj is 0101, then we can conclude that the
target is in the shadow region, denoted as Ai3 \Aj3. In order to shrink the
resident region and increase the localization accuracy, we go to the next step.

• All the sensors locate in Voronoi polygons that overlap with the shadow area
report the distance to the target. As shown in Fig. 2, the polygons of sensor

Aj1
Ai2

Ai4
Aj4

Ai1

Aj2

Ai3
Aj3

Gi

Fig. 1. An example of localization algorithm (Color figure online)

580 Y. Zhang et al.

nodes ni, ni1 and ni2 overlap with the shadow area. Then we compute the
distance between the target and ni; ni1; ni2 respectively, the ascending order of
distance value is denoted as D ¼ fdi; di1; di2g. Thus, the target’s resident area is
reduced to Ai3 \Aj3 \Gi, that’s area 3 in the figure is the target’s resident region.

4 Simulation and Evaluation

In order to validate the performance of the given algorithms, we construct a simulation
platform via Matlab. In the simulations, 64 sensor nodes are deployed in the monitoring
region. The sensing range and transmitting range are assumed to be the same among all
nodes. We evaluate the tracking and locating results under different trajectories. The
moving direction of the target are not known in advance. Figures 3 and 4 show the
tracking results under curve trajectory and line trajectory, respectively. The horizontal
and vertical coordinates represent the physical coordinates of the target position. We
can conclude that the given algorithm can track the target efficiently, and the tracking
results are stable.

Gi
di

di1

di2

Fig. 2. Target’s location refinement

Fig. 3. Tracking results under curve trajectory

A Binary Code Sequence Based Tracking Algorithm 581

5 Conclusion

In this paper, we present a range free localization algorithm. Instead of using RSSI
value to estimate the distance between the target and sensors, we first compare it with
given thresholds and encode the comparison results. Then we determine the target’s
resident region using the encoding results from multiple sensor nodes. To solve of
problem of ambiguity existed in target’s resident region determination, we further
design a Vornio diagram based target location refinement algorithm. The tracking
results under different trajectories are investigated under a simulation platform.

Acknowledgment. The work was supported in part by the Provincial Natural Science Foun-
dation of Heilongjiang under Grant No. F2017022, the Fundamental Research Foundation of
Universities in Heilongjiang Province for Youth Innovation Team under Grant
No. RCYJTD201805, the Fundamental Research Foundation of Universities in Heilongjiang
Province No. KJCX201815 and the Youth Reserve Talents Project of Harbin under Grant
No. 2017RAQXJ131.

References

1. Zheng, K., et al.: Energy-efficient localization and tracking of mobile devices in wireless
sensor networks. IEEE Trans. Veh. Technol. 66(3), 2714–2726 (2017)

2. Ahmadi, H., Viani, F., Bouallegue, R.: An accurate prediction method for moving target
localization and tracking in wireless sensor networks. Ad Hoc Netw. 70, 14–22 (2018)

3. Li, T., Chen, Y., Zhang, R., Zhang, Y., Hedgpeth, T.: Secure crowdsourced indoor
positioning systems. In: IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, pp. 1034–1042. IEEE (2018)

4. Chriki, A., Touati, H., Snoussi, H.: SVM-based indoor localization in wireless sensor
networks. In: 2017 13th International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 1144–1149. IEEE (2017)

Fig. 4. Tracking results under line trajectory

582 Y. Zhang et al.

5. Yiu, S., Dashti, M., Claussen, H., Perez-Cruz, F.: Wireless RSSI fingerprinting localization.
Sig. Process. 131, 235–244 (2017)

6. Xue, W., Qiu, W., Hua, X., Yu, K.: Improved Wi-Fi RSSI measurement for indoor
localization. IEEE Sens. J. 17, 2224–2230 (2017)

7. Gao, W., Nikolaidis, I., Harms, J.: RSSI quantization for indoor localization services. In:
2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pp. 1–7. IEEE (2017)

8. Fu, Y., Chen, P., Yang, S., Tang, J.: An indoor localization algorithm based on continuous
feature scaling and outlier deleting. IEEE Internet Things J. 5, 1108–1115 (2018)

9. Barsocchi, P., Lenzi, S., Chessa, S., Giunta, G.: A novel approach to indoor RSSI
localization by automatic calibration of the wireless propagation model. In: VTC Spring
2009 - IEEE 69th Vehicular Technology Conference, pp. 1–5. IEEE (2009)

10. Zafari, F., Papapanagiotou, I., Hacker, T.: A novel Bayesian filtering based algorithm for
RSSI-based indoor localization. In: 2018 IEEE International Conference on Communica-
tions (ICC), pp. 1–7. IEEE (2018)

11. Mizmizi, M., Reggiani, L.: Design of RSSI based fingerprinting with reduced quantization
measures. In: 2016 International Conference on Indoor Positioning and Indoor Navigation
(IPIN), pp. 1–6. IEEE (2016)

12. Xing, G., Tan, R., Liu, B., Wang, J., Jia, X., Yi, C.-W.: Data fusion improves the coverage
of wireless sensor networks. In: Proceedings of the 15th Annual International Conference on
Mobile Computing and Networking, pp. 157–168. ACM (2009)

13. Wang, G., Cao, G., La Porta, T.F.: Movement assisted sensor deployment. IEEE Trans.
Mob. Comput. 5(6), 640–652 (2006)

A Binary Code Sequence Based Tracking Algorithm 583

Sampling Based Katz Centrality
Estimation for Large-Scale Social

Networks

Mingkai Lin1, Wenzhong Li1,2(B) , Cam-tu Nguyen3, Xiaoliang Wang1,
and Sanglu Lu1,2(B)

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, China

mingkai@smail.nju.edu.cn, {lwz,waxili,sanglu}@nju.edu.cn
2 Sino-German Institutes of Social Computing, Nanjing University, Nanjing, China

3 Software Institute, Nanjing University, Nanjing, China
ncamtu@nju.edu.cn

Abstract. Katz centrality is a fundamental concept to measure the
influence of a vertex in a social network. However, existing approaches
to calculating Katz centrality in a large-scale network is unpractical and
computationally expensive. In this paper, we propose a novel method
to estimate Katz centrality based on graph sampling techniques. Specifi-
cally, we develop an unbiased estimator for Katz centrality using a multi-
round sampling approach. We further propose SAKE, a Sampling based
Algorithm for fast Katz centrality Estimation. We prove that the esti-
mator calculated by SAKE is probabilistically guaranteed to be within
an additive error from the exact value. The computational complexity
of SAKE is much lower than the state-of-the-arts. Extensive evaluation
experiments based on four real world networks show that the proposed
algorithm achieves low mean relative error with low sampling rate, and
it works well in identifying high influence vertices in social networks.

Keywords: Social network · Katz centrality · Graph sampling

1 Introduction

With the rapid development of social network platforms such as Facebook and
Twitter, there is a growing interest in network analysis and its applications in
social networks [7]. One of important concepts in network analysis is the Katz
centrality [12], which measures the “influence” of a vertex in a social network by
recursively assessing the importance of its neighbors. Katz centrality has been
used in a wide range of AI applications such as finding the most influential users
in a social network [13], forming the word-of-mouth effect, promoting the adop-
tion of innovation, widening the spread of public opinion, and viral marketing.

Katz centrality computes the relative influence of a vertex by measuring the
number of routes from the vertex to the other vertices in the network multiplied
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 584–598, 2020.
https://doi.org/10.1007/978-3-030-38961-1_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_50&domain=pdf
http://orcid.org/0000-0002-9199-3655
https://doi.org/10.1007/978-3-030-38961-1_50

Sampling Based Katz Centrality Estimation for Large-Scale Social Networks 585

by an attenuation factor. Mathematically, Katz centrality of a vertex i can be
formulated as:

Ckatz(i) =
∞∑

k=1

n∑

j=1

αk(Ak)ij , (1)

where A is the adjacency matrix of the network and α ∈ (0, 1) is the attenuation
factor.

Computation of Katz centrality is non-trivial. According to the definition,
the computation involves matrix multiplication. For a graph with n nodes, the
adjacency matrix A is a n × n matrix, and the computational complexity of the
exact Katz centrality is O(n3). A more efficient approach is to solve a linear sys-
tem using Cholesky decomposition, which costs O(n2) [19]. Some approximation
algorithms [6,9,18] were developed based on iterative methods that generally
cost O(m), where m is the number of edges in the graph and m ∈ O(n2) in the
worst case. Unfortunately, for large scale network where the number of vertex
n can be as large as millions or billions, even these approximation methods are
still computationally expensive.

In this paper, we propose a novel sampling based method for Katz centrality
estimation. Specifically, we sample a small subset of vertices and edges from the
social network, and use the sampled data to estimate Katz centrality with limited
walks d (see Eq. 2), and tuning d to achieve different level of approximation to
the original Katz centrality. Since the estimation is based on a very small subset
of the original network, the proposed method is computationally efficient and
practical for large-scale networks.

We firstly develop a theoretical estimator for Katz centrality based on a multi-
round graph sampling approach. Using the Horvitz-Thompson theory [11], we
prove that the proposed estimator is an unbiased estimator of the Katz centrality
(Theorem 1). We further propose SAKE, a Sampling based Algorithm for Katz
centrality Estimation. The main idea of SAKE is to use a random node sampling
design, and compute the Katz centrality estimator by counting the number of
routes in the sampled subgraph. We prove that the estimated Katz centrality
computed by SAKE is probabilistically guaranteed to be upper-bounded by
an additive error from the exact value (Theorems 3 and 4). Moreover, we show
that the computational complexity of SAKE is O(l(d − 1) r2

n2 m + lr), where
r is the size of the sampled subset and l, d are small constants, which is more
efficient than the state-of-the-arts. We conduct extensive evaluation experiments
based on four datasets collected from real world social networks, which show that
SAKE achieves low mean relative error, and it is efficient in identifying high
influence vertices in social networks.

The contributions of the paper are summarized as follows.

– We are the first to propose the idea of sampling based Katz centrality esti-
mation. To the best of our knowledge, using a sampled subgraph to infer the
Katz centrality in the original graph has not been found in the literature, and
our work address the fundamental problem of inferring vertex centrality via

586 M. Lin et al.

graph sampling theory, which has important implications in large-scale social
networks.

– We propose an efficient algorithm called SAKE for Katz centrality estima-
tion based on a multi-round sampling approach. The proposed algorithm
has several advantages: (1) The proposed estimator is proved to be unbiased
(Theorem 1); (2) The estimation error is guaranteed by a provable bound with
high probability (Theorems 3 and 4); and (3) The computational complexity
is O(l(d − 1) r2

n2 m + lr), where r is the size of the sampled subset and l, d are
small constants, which is more efficient than the state-of-the-arts.

– The efficiency and feasibility of the proposed algorithm is verified by extensive
experiments based on four real world social networks.

2 Related Work

2.1 Computation of Katz Centrality

Katz centrality was introduced by Leo Katz in 1953 to measure the relative
influence of a vertex in a network [12]. A few axioms for Eigenvector and Katz
centralities had been proposed in [5,24]. Katz centrality had been shown to be
useful in ranking users in social networks [19] and searching disease genes from
gene expression and protein interaction networks [25].

For a graph with size n, Katz centrality can be calculated exactly by solv-
ing a linear system. In this case the expression

−→
C katz = ((I − αAT)−1 − I)

−→
I

can be used to obtain Katz centrality where the complexity is O(n3). Later an
approximate approach to calculating Katz centrality based on Cholesky decom-
position costing O(n2) [19] was proposed. But in real world we usually observe
that graphs of interest like Facebook are usually very large and sparse. Under
such circumstances n2 is much larger than m where m is the number of edges
in the graph. Thus Foster et al. [9] presented a vertex-centric heuristic for Katz
centrality by computing the recurrence

−→
C new

katz = αA(
−→
C katz +

−→
I) until reach-

ing some specific condition. The algorithm performs well and is widely used in
many toolkits for complex network. Furthermore, another algorithm [18] also
used iterative method to approximate a personalized variant of Katz centrality
with cost of O(m).

However, the existing approximation algorithms operated on the adjacency
matrix A of the whole network, which are prohibitively computationally expen-
sive for large networks with billions of vertices.

2.2 Social Network Sampling Techniques

Social network sampling techniques aim to obtain a smaller graph which can
well represent the original network. There had been a rich literature in statis-
tics, data mining, and physics on estimating graph properties using a small
subsamples [2,16]. The works of [2,14,16] provided excellent surveys to graph
sampling techniques. The study of [23] showed that different network sampling

Sampling Based Katz Centrality Estimation for Large-Scale Social Networks 587

techniques are highly sensitive with regard to capturing the centrality measure-
ment of nodes.

Several works adopted sampling techniques to infer different network charac-
teristics. For instance, [4] presented a sampling algorithm to estimate the similar-
ity matrix resulting from a bipartite graph stream projection. The fast approxi-
mations of Betweenness centrality using VC-dimension theory and Rademacher
complexity were proposed in [20,21]. Approximation approach for degree distri-
bution estimation using sublinear graph samples was further discussed in [8].

To the best of our knowledge, estimation of Katz centrality via sampling has
not been addressed in the literature. Our work makes the first attempt to develop
a sampling based method to achieve unbiased Katz centrality estimation.

3 Notations and Definitions

In this section we introduce the notations and definitions that will be used for
analysis throughout the paper.

Let G = (V,E) be a graph, where V is the set of n vertices and E is the set
of m edges. Denote the n × n adjacency matrix A of G with entries Aij = 1 if
there exits an edge from vertex i to j, and 0 otherwise.

We define Katz centrality with limited walks d as:

Ckatz(i) =
d∑

k=1

n∑

j=1

αk(Ak)ij (2)

where d is the upper limit of the number of walks between a pair of vertices in
the network. When d → ∞, the above definition approaches the original Katz
centrality.

Katz centrality quantifies the ability of a vertex to initiate walks around the
network. The number of walks of length k from vertex i to j is (Ak)ij . Katz
centrality of vertex i counts the number of closed walks beginning at vertex i,
while penalizing long walks by multiplying a fixed attenuation factor α ∈ (0, 1)
for distant route. Unlike the conventional definition of Katz centrality that counts
infinity walks, we consider Katz centrality with limited walks d, which is more
practical and computable in real large-scale networks.

We denote Dk
i (G) (k = 1, 2, · · · , d) as the set of all routes in graph G begin-

ning from i with the length of walks k. Note that the number of walks of length
k from vertex i to j equals (Ak)ij . Formally we can represent the Katz centrality
of vertex i with limited walks d as:

Katz(i) =
d∑

k=1

αk
∣∣Dk

i (G)
∣∣, (3)

where
∣∣Dk

i (G)
∣∣ is the cardinality of Dk

i (G) that can be calculated by:
∣∣Dk

i (G)
∣∣ =

∑

j∈V

(Ak)ij =
∑

v1∈V

∑

v2∈V

· · ·
∑

vk∈V

Aiv1Av1v2 · · · Avk−1vk
(4)

588 M. Lin et al.

The term Aiv1Av1v2 · · · Avk−1vk
in the right part of the above equation is

a 0–1 indicator representing whether there exists a route from vertex i to vk

with length k. According to the definition of adjacency matrix, if the route
i → v1 → v2 → · · · → vk exists, Aiv1Av1v2 · · · Avk−1vk

equals 1, and otherwise 0.
In this paper, we focus on computing a (ε, δ)-approximation of Katz(i) with

the following definition.

Definition 1 ((ε, δ)-approximation). Given ε, δ ∈ (0, 1), the estimator
̂Katz(i) is a (ε, δ)-approximation of Katz(i) if it satisfies:

Pr(| ̂Katz(i) − Katz(i)| ≤ ε) ≥ 1 − δ. (5)

4 Katz Centrality Estimation

In this section, we propose the sampling approach and estimation algorithm for
Katz centrality estimation.

4.1 Sampling and Estimation Method

According to the definitions in Eqs. (3) and (4), to calculate
∣∣Dk

i (G)
∣∣, it needs

to compute the d-th power of the n×n adjacency matrix A, which complexity is
O(dn3). In this paper, we explore the method of Katz centrality estimation based
on sampling technique. The basic idea is to sample a small subset of vertices and
edges from G, and based on which we can form an unbias estimation of Katz
centrality for an objective vertex. The tool we use to estimate Katz centrality is
Horvitz-Thompson estimator, which is introduced in the following.

The Horvitz-Thompson estimator [11] is a method for estimating the total
and mean of a population from sampling. Suppose we have a population U =
{1, 2, · · · , Nu} of Nu units, and with each unit j ∈ U there is an associated value
yj . Let τ =

∑
j yj be the total value of y’s in the population. Let Us ⊂ U be an

independent sample of ns distinct units from U . We observe yj for each j ∈ Us,
and suppose under the given sampling design each unit j ∈ U has probability
πj being included in Us. The Horvitz-Thompson estimator gives an unbiased
estimation of the total τ by τ̂ =

∑
j∈Us

yj

πj
.

Inspired by the Horvitz-Thompson estimator, we derive an unbiased estima-
tor for

∣∣Dk
i (G)

∣∣ as follows. The key of deriving
∣∣Dk

i (G)
∣∣ is to estimate the number

of routes from i with length k. To achieve that, we adopt a k-round sampling
design. We denote R(i) as the successors of vertex i and in this k-round sam-
pling design, we sample a set of vertices S1 from R(i) in the first round and
Sj (j = 2, · · · , k) from V in the later rounds without replacement.

Let π
Sj
v be the probability that a vertex v is included in Sj (v ∈ R(i) for S1

and v ∈ V for the others) during the sampling process. The value of
∣∣Dk

i (G)
∣∣

can be estimated by

̂

∣∣Dk
i (G)

∣∣ =
∑

v1∈S1

∑

v2∈S2

· · ·
∑

vk∈Sk

Aiv1Av1v2 · · · Avk−1vk

πS1
v1 πS2

v2 · · · πSk
vk

. (6)

Sampling Based Katz Centrality Estimation for Large-Scale Social Networks 589

The numerator Aiv1Av1v2 · · · Avk−1vk
in the right part of Eq. (6) indicates the

existence of a route from vertex i to vk with length k in the sampling nodes,
and the denominator πS1

v1
πS2

v2
· · · πSk

vk
is used for correcting the bias according to

Horvitz-Thompson estimation. For the reason that the successors of objective
vertex are easy to obtain and there is no need to estimate it, thus when k = 1,
we have ̂|D1

i (G)| =
∑

v1∈S1

Aiv1

π
S1
v1

= |S1|
π
S1
v1

= |R(i)| =
∣∣D1

i (G)
∣∣ which is a constant.

Based on the k-round sampling design, for Katz centrality with limited walks d,
the estimator of Katz(i) can be derived by

̂Katz(i) = α|R(i)| +
∑

v1∈S1

∑

v2∈S2

α2Aiv1Av1v2

πS1
v1 πS2

v2

+ · · · +

∑

v1∈S1

∑

v2∈S2

· · ·
∑

vd∈Sd

αdAiv1Av1v2 · · · Avd−1vd

πS1
v1 πS2

v2 · · · πSd
vd

=
d∑

k=1

αk ̂

∣∣Dk
i (G)

∣∣.

(7)

The following theorem shows that ̂Katz(i) is an unbias estimation of Katz(i).

Theorem 1. To estimate Katz centrality with limited walks d, if we adopt the
d-rounds independent sampling process S1, S2, · · · , Sd to construct the estimator
̂Katz(i) as Eq. (7), then we have E(̂Katz(i)) = Katz(i).

Proof. Firstly, we prove that ̂

∣∣Dk
i (G)

∣∣ is an unbias estimator of
∣∣Dk

i (G)
∣∣. We

introduce an 0–1 indicator to represent whether a vertex is included in the sam-
pled set Sj :

I(v ∈ Sj) =
{

1, if vertex v is included in Sj

0, otherwise
(8)

Since the d-round sampling processes are independent, we have

E(̂

∣∣Dk
i (G)

∣∣) = E(
∑

v1∈S1

∑

v2∈S2

· · ·
∑

vk∈Sk

Aiv1Av1v2 · · · Avk−1vk

πS1
v1 πS2

v2 · · · πSk
vk

)

= E(
∑

v1∈R(i)

∑

v2∈V

· · ·
∑

vk∈V

Aiv1Av1v2 · · · Avk−1vk

πS1
v1 πS2

v2 · · · πSk
vk

·
k∏

j=1

I(vj ∈ Sj))

=
∑

v1∈R(i)

∑

v2∈V

· · ·
∑

vk∈V

Aiv1Av1v2 · · · Avk−1vk

πS1
v1 πS2

v2 · · · πSk
vk

· E(
k∏

j=1

I(vj ∈ Sj))

=
∑

v1∈R(i)

∑

v2∈V

· · ·
∑

vk∈V

Aiv1Av1v2 · · · Avk−1vk

πS1
v1 πS2

v2 · · · πSk
vk

·
k∏

j=1

E(I(vj ∈ Sj))

590 M. Lin et al.

=
∑

v1∈R(i)

∑

v2∈V

· · ·
∑

vk∈V

Aiv1Av1v2 · · · Avk−1vk

=
∣∣Dk

i (G)
∣∣ .

Applying Eqs. (7) and (3), we have

E(̂Katz(i)) = E(
d∑

k=1

αk ̂

∣∣Dk
i (G)

∣∣) =
d∑

k=1

αkE(̂

∣∣Dk
i (G)

∣∣)

=
d∑

k=1

αk
∣∣Dk

i (G)
∣∣ = Katz(i),

4.2 Sampling Based Katz Computation

We in this paper propose an approximation algorithm named SAKE, a
Sampling based Algorithm for Katz centrality Estimation. It computes the Katz
centralities for a set of vertices in batch based on the estimator derived in The-
orem 1.

Assume N0 = {v
(0)
1 } is the objective vertex that we want to estimate its

Katz centrality. To explore the network connectivity condition up to d hops, we
conduct d rounds of sampling and computation as follows. In the j-th sampling
procedure, we generate a set of vertices N1 = {v

(1)
1 , v

(1)
2 , · · · , v

(1)
|N1|} sampling

from R(i)(j = 1) and Nj = {v
(j)
1 , v

(j)
2 , · · · , v

(j)
|Nj |} (j = 2, · · · , d) by sampling

from V with probabilities Pj = {π
(j)
1 , π

(j)
2 , · · · , π

(j)
|Nj |} (j = 1, · · · , d), where π

(j)
·

is the probability that the corresponding vertex is included in Nj according to the
sampling method. In each round, we construct an adjacency matrix B(j) based
on Nj−1 and Nj (j = 1, · · · , d), where the element B

(j)
xy (x ∈ Nj−1, y ∈ Nj) is 1 if

there is an edge from x to y in the graph G, and 0 otherwise. We further replace
each number 1 in B

(j)
xy (x ∈ Nj−1, y ∈ Nj) with number 1/π

(j)
y for the reason of

correcting bias. In this way, we can get d matrices B(j) (j = 1, 2, · · · , d).
We define B[k] =

∏k
j=1 B(j) as the product of the first k adjacency matrices.

As illustrated in Fig. 1, B[k] is a |N0| × |Nk| matrix, where each row in the matrix
represents the number of routes from the objective vertex in N0 to the vertices
in Nk. We define b[k] as the row sum of B[k], where the value bk =

∑|Nk|
x=1 B

[k]
x

equals the estimator of Eq. (6) representing the total number of routes from i
to all vertices in Nk with length k. According to Theorem 1, the Katz centrality
estimators of the vertex i can be calculated by α|R(i)| +

∑d
k=2 αkb[k].

In the above analysis, we do not make any restriction on the sampling meth-
ods. Theoretically, all the sampling methods can fit the proposed Katz centrality
estimator. However, in practice we prefer the random node sampling method over
the others due to the fact that the SAKE algorithm relies on Pj , the inclusion
probabilities of the sampling nodes. In the other graph sampling methods, the

Sampling Based Katz Centrality Estimation for Large-Scale Social Networks 591

Fig. 1. Illustration of adjacency matrices in k-round sampling.

derivation of the inclusion probability for the sampled node is rather difficult.
Therefore random node sampling is the chosen sampling method for the proposed
algorithm.

To improve the computational efficiency, we make two simplifications in the
sampling process: (1) We adopt the node sampling method and fix the sampling
probability for each node. (2) We fix the number of sampled nodes in each round
to r (in the first sampling round the number is min{r, |R(i)|}). In this way the
inclusion probability of each vertex can be represented by π′ = min{r,|R(i)|}

|R(i)| for
the first sampling round, and π = r

|V | for the later sampling rounds. In this case,

the computation of the Katz estimator ̂Katz(i) can be simplified greatly.
We further adopt a repeat estimation approach to improve the estimation

accuracy. According to Theorem 1, the mean of the Katz centrality estimator
approaches to its true value, therefore we can repeat the estimation process for
several times and take the mean as the estimation value. Assuming the estimation
process is repeated for l times, we will show in theory that by carefully choosing
the value of l, the estimation error can be bounded within an extent with high
probability.

From the analysis we can find that the basic algorithm runs for l loops, and
in each loop, it computes the multiplication of two matrices (with sizes |N0| ∗ r
and r ∗ r) for d times. Therefore the total computation is O(ld |N0| r2). Since
l and d are small constants and |N0| is the number of objective vertices that
is fixed, the computational complexity is O(r2). But sometimes the complexity
O(r2) is also larger than O(m) when the number of edges is small. Thus denoting−→
Ii as |N (i)| × 1 vector of all 1s and according to the process in Fig. 1, we can
reformulate ̂Katz(i) as:

592 M. Lin et al.

̂Katz(i) = αb[1] + α2b[2] + · · · + αkb[k]

= αB[1]−→I1 + α2B[2]−→I2 + · · · + αkB[k]−→Ik

= αB(1)−→I1 + α2B(1)B(2)−→I2 + · · · + αkB(1)B(2) · · · B(k)−→Ik

= αB(1)(αB(2)(αB(3)(· · · (αB(k)−→Ik) + · · · +
−→
I3) +

−→
I2) +

−→
I1)

(9)

From the equation, we can find that for the estimation of Katz centrality,
we just need to each time calculate the product of a matrix and a vector which
costs O(r2). What’s more when using the CSR matrix data to represent B(·),
the complex for the first d − 1 product processes can be further reduced to
O(l(d−1) r2

n2 m) for the reason that we sample vertices randomly from the whole
network. However the last product process costs O(lr) for we get N1 by sam-
pling from successors of the objective vertex. As the consequence, we have the
final complexity of O(l(d−1) r2

n2 m+ lr) for the algorithm. The method to reduce
complexity can be viewed as a variant of the method from [9], where Foster et al.
estimate Katz centrality iteratively by computing partial sums with aggregating
Katz values from the successors of vertices. The pseudo-code of SAKE is illus-
trated in Algorithm1. Given the fact that r 	 n is the size of sampled vertex set,
the proposed SAKE algorithm reduces the computational complexity of Katz
centrality dramatically. Even though the algorithm above only examines starting
at a single vertex, our algorithm can be easily adapted to the case starting at

Algorithm 1. SAKE(G, r, d, α,N0)
Input:
G : The original network
r : Number of vertices to be sampled in each process
d : The maximum number of walks
α : The attenuation factor
i : The objective vertex to estimate Katz centrality
Output:
Katz(i): The estimated Katz centrality

1: Let l be the number of loops needed to obtain the desired error bound
2: for t = 1, 2 · · · , l do
3: Let N0 = {i}
4: Randomly sample min{r, |R(i)|} nodes from R(i) with probability π′ to form

N1.
5: for j = 2, 3 · · · , d do
6: Randomly sample r nodes from V with probability π to form Nj

7: ̂Katz[t] =
−→
0 |Nd|

8: for j = d, d − 1 · · · , 1 do
9: Construct matrices B(j) based on Nj−1 and Nj

10: Compute ̂Katz[t] = αB(j)(̂Katz[t] +
−→
Ij)

11: Let Katz(i) =
∑l

t=1
̂Katz[t]

l

12: return Katz(i)

Sampling Based Katz Centrality Estimation for Large-Scale Social Networks 593

multiple vertices. Instead of repeating the process of the algorithm SAKE for
times independently to evaluate Katz Centralities of multiple objective vertices,
we can construct the matrics B(3), B(4), · · · , B(k) only once and reuse them in
each process.

Next we show that the estimation error of SAKE can be bounded to some
extent by carefully choosing the number of loops l.

Theorem 2 (Hoeffding bound [10]). If x1, x2, · · · , xk are independent ran-
dom variables, where at ≤ xt ≤ bt (1 ≤ t ≤ k), and μ = E[

∑
t xt/k] is the

expected mean, then for ξ > 0

Pr{
∣∣∣∣∣

∑k
t=1 xt

k
− μ

∣∣∣∣∣ ≥ ξ} ≤ 2e−2k2ξ2/
∑k

t=1 (bt−at)
2
.

The Hoeffding bound provides a probabilistic bound for the mean of inde-
pendent random variables, which can be applied to compute the error bound of
the proposed SAKE algorithm as in Theorem 3.

Theorem 3. Given a graph G with n vertices. Assume the SAKE algorithm

runs l loops to estimate Katz centrality by Katz(i) =
∑l

t=1
̂Katz(i)t
l , where

̂Katz(i)t is the Katz estimator in the t-th loop. Let Δ be the maximum Katz
centrality value of the vertices in the sampled graph, and ns be the size of a sam-
pled graph. Let ξ = ηΔ for ∀η > 0. If the number of loops l ∈ Ω(log ns

η2), then the
estimation error |Katz(i) − Katz(i)| ≤ ξ with high probability.

Proof. Since Δ is the maximum Katz centrality value of the vertices in the
sampled graph, the observed Katz centralities from the sampled graph satisfy
0 ≤ ̂Katz(i)t ≤ Δ (t = 1, 2, · · · , l) for all loops. Taking the l estimators as
random variables, we can apply the Hoeffding’s bound with xt = ̂Katz(i)t,
μ = Katz(i), at = 0, and bt = Δ.

Theorem 1 has proved that E(̂Katz(i)) = Katz(i). Thus the probability of
the difference between the estimated Katz centrality Katz(i) and the actual
Katz centrality Katz(i) larger than ξ is:

Pr{|Katz(i) − Katz(i)| ≥ ξ} ≤ 2e−2l2ξ2/
∑l

t=1 (bt−at)
2

= 2e−2lξ2/Δ2
.

For ξ = ηΔ, if the number of loops l = log ns

2η2 , then

Pr{|Katz(i) − Katz(i)| ≥ ξ} ≤ 2
ns

.

Therefore, if l ∈ Ω(log ns

2η2), the estimation error is less than ξ with probability
1 − 2

ns
. For a graph with large number of vertices or with higher sampling ratio,

the probability approaches 1 when ns increases. This proofs the theorem.

By letting ε = ξ and δ = 2
ns

, it is easy to verify the following theorem.

Theorem 4. The estimator ̂Katz(i) computed by the SAKE algorithm is a
(ε, δ)-approximation of Katz(i).

594 M. Lin et al.

Table 1. Statistics of datasets

Name Type Nodes Edges

Livemocha [1] Undirected 104,103 2,193,083

Pokec [22] Directed 1,632,803 30,622,564

Livejournal [15] Undirected 5,204,176 49,174,464

Wikipedia [3] Directed 18,268,992 172,183,984

5 Performance Evaluation

5.1 Datasets

The experiments are conducted on four real world networks: (1) Livemocha [1]:
social network of an online language learning community where nodes represent
users and edges represent friendships. (2) Pokec [22]: Pokec is the most popular
online social network in Slovakia where nodes represent users and edges repre-
sent relationship. (3) Livejournal [15]: This is the social network of LiveJournal
users and their connections where nodes represent users and edges represent con-
nections. (4) Wikipedia [3]: The network is the hyperlink network of Wikipedia,
as extracted in DBpedia. Nodes are pages and edges correspond to hyperlinks.
Before applying these graphs we remove all self-loops in the networks.

What’s more we drop all isolated nodes for the reason that their Katz cen-
tralities are always 0. The statistics of these networks after data cleaning are
summarized in Table 1.

5.2 Experimental Setup

We present the setup of default system parameters. The number of walks is set
to d = 6 by default. The attenuation factor α = 0.85

‖A‖2
according to the literature

[18] where ‖A‖2 denotes the the 2-norm of matrix A. The number of loops in
Algorithm 1 is set to l = 20, which is an empirical value from the experiments.
The default sampling ratio (the inclusion probability of a vertex) is set to 0.01,
that is, only 1% of the total vertices are used for Katz centrality estimation. In
each configuration, the experiments are repeated for 20 times to obtain the mean
value and error bars. We apply Algorithm1 to estimate the Katz centralities of
a set of random vertices in the networks.

5.3 Numerical Results

Estimation Performance. We show the estimation performance in Fig. 2.
Figure 2(a) compares the deviation between the estimated value and the ground
truth in a normalized scale (0, 1). It shows that all points are in or near the
diagonal line, which means that the estimation is relatively accurate. Figure 2(b)
shows the MRE s varying with the number of walks d. From the figure, when

Sampling Based Katz Centrality Estimation for Large-Scale Social Networks 595

(a) Estimation Deviation (b) MRE vs. Number of Walks

(c) MREs of four datasets (d) Runtime Performance

Fig. 2. Estimation performance for random vertices.

the walks increases, the MRE decreases dramatically, which means increasing d
can improve the estimation accuracy significantly. Figure 2(c) compares the Mean
Relative Error (MRE) of estimation in different datasets. It shows that the MRE
values are below 0.05 for all datasets. The datasets Livejournal has lower MRE s
less than 0.01. According to the error bars in Fig. 2(c), the deviations of errors
are small for all datasets. In Fig. 2(d) we report the computational efficiency
of our algorithm in these four datasets. The algorithm Foster we compare with
comes from [9] which is widely used in many complex network toolkits such
as networkx. In the experiment, the running time of our algorithm is taken as
baseline and the running time of the algorithm Foster is reported relative to this
baseline. Figure 2(d) shows that our algorithm outperforms Foster and in some
networks like Pokec and Livejournal, our algorithm saves nearly half the time.
Note that sampling vertices and constructing matrices cost most of the time in
the algorithm SAKE. Hence our algorithm will outperform more greatly without
such prepared work.

Influence of the Parameters. We here evaluate the algorithm performance
under various system parameters. Figure 3(a). shows the MRE s when varying
the number of loops l in Algorithm 1 from 1 to 20, With the increasing of loops,
the MRE s of all datasets declines gradually. It is shown that when l ≥ 5, the
downtrend becomes slow, which implies the algorithm converges. The sampling
ratio (the inclusion probability of a vertex in the sampled subset) is an important

596 M. Lin et al.

(a) MRE varies with loops. (b) MRE varies with sampling ratios.

Fig. 3. Influence of parameters for random vertices.

parameter to influence the estimation accuracy. Figure 3(b) shows the estimation
accuracy under different sampling ratios from 0.001 to 0.02. When the sampling
ratio increases, the value of MRE declines gradually at the beginning, and then
decreases slowly for sampling ratio larger than 0.005. This implies that sampling
these vertices from the original network yields good approximation result. For
larger sampling ratio, some datasets achieve very low MRE smaller than 0.03.

Ability of Preserving Vertex Rankings. We further explore the ability
of the proposed algorithm to preserve the vertex rankings, i.e., whether the
ranking orders of vertices’ Katz centralities are preserved in sampling based
estimation. Table 2 compares Jaccard, Precision, MAP, and nDCG, which are
well-known performance metrics in recommendation system [17]. It is shown
that the vertices’ Katz centrality rankings for top 100 are well preserved with
the proposed algorithm. The precision is higher than 97% for all dataset, which
means more than 97% high Katz centrality vertices are correctly identified in
the top 100 results.

Table 2. The ability of preserving vertex rankings (top 100).

Dataset Jaccard Precision MAP nDCG

Livemocha 0.970 0.985 0.997 0.997

Pokec 0.980 0.995 0.998 0.998

Livejournal 0.990 1.000 0.998 0.999

Wikipedia 0.951 0.975 0.992 0.992

6 Conclusion

Katz centrality is an important concept to measure the influence of a vertex in a
social network. In this paper, we combined sampling technique with approxima-
tion analysis to develop an algorithm SAKE, which can estimate Katz centrality

Sampling Based Katz Centrality Estimation for Large-Scale Social Networks 597

based on a small set of samples from the network. The estimation was proved
to be unbiased, and the estimation error could be bounded with high proba-
bility. Extensive experiments based on four real social networks showed that
SAKE achieved low estimation error and low complexity, and it performed well
in identifying the most influential vertices in social networks.

Acknowledgment. This work was partially supported by the National Key R&D
Program of China (Grant No. 2018YFB1004704), the National Natural Science Foun-
dation of China (Grant Nos. 61972196, 61672278, 61832008, 61832005), the Key R&D
Program of Jiangsu Province, China (Grant No. BE2018116), the science and tech-
nology project from State Grid Corporation of China (Contract No. SGSNXT00YJJS-
1800031), the Collaborative Innovation Center of Novel Software Technology and Indus-
trialization, and the Sino-German Institutes of Social Computing.

References

1. Livemocha network dataset - KONECT, April 2017. http://konect.uni-koblenz.de/
networks/livemocha

2. Ahmed, N.K., Neville, J., Kompella, R.: Network sampling: from static to stream-
ing graphs. ACM Trans. Knowl. Discov. Data (TKDD 2014) 8(2), 7 (2014)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

4. Balkanski, E., Singer, Y.: Approximation guarantees for adaptive sampling. In:
International Conference on Machine Learning (ICML 2018), pp. 393–402 (2018)

5. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014)
6. Bonchi, F., Esfandiar, P., Gleich, D.F., Greif, C., Lakshmanan, L.V.: Fast matrix

computations for pairwise and columnwise commute times and Katz scores. Inter-
net Math. 8(1–2), 73–112 (2012)

7. David, E., Jon, K.: Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, New York (2010)

8. Eden, T., Jain, S., Pinar, A., Ron, D., Seshadhri, C.: Provable and practical approx-
imations for the degree distribution using sublinear graph samples. In: Proceedings
of the 27th International Conference on World Wide Web (WWW 2018), pp. 449–
458 (2018)

9. Foster, K.C., Muth, S.Q., Potterat, J.J., Rothenberg, R.B.: A faster Katz status
score algorithm. Comput. Math. Organ. Theory 7(4), 275–285 (2001)

10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

11. Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement
from a finite universe. J. Am. Stat. Assoc. 47(260), 663–685 (1952)

12. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39–43 (1953)

13. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD 2003), pp. 137–146 (2003)

14. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the
12th International Conference on Knowledge Discovery and Data Mining (KDD
2006), pp. 631–636. ACM (2006)

http://konect.uni-koblenz.de/networks/livemocha
http://konect.uni-koblenz.de/networks/livemocha
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52

598 M. Lin et al.

15. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of
community structure in large social and information networks. In: Proceedings of
the 17th International Conference on World Wide Web, pp. 695–704. ACM (2008)

16. Maiya, A.S., Berger-Wolf, T.Y.: Benefits of bias: towards better characterization of
network sampling. In: Proceedings of the 17th International Conference on Knowl-
edge Discovery and Data Mining (KDD 2011), pp. 105–113. ACM (2011)

17. Manning, C., Raghavan, P., Schütze, H.: Introduction to information retrieval. Nat.
Lang. Eng. 16(1), 100–103 (2010)

18. Nathan, E., Bader, D.A.: Approximating personalized Katz centrality in dynamic
graphs. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10777, pp. 290–302. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78024-5 26

19. Nathan, E., Sanders, G., Fairbanks, J., Bader, D.A., et al.: Graph ranking guaran-
tees for numerical approximations to Katz centrality. Procedia Comput. Sci. 108,
68–78 (2017)

20. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality
through sampling. Data Min. Knowl. Discov. 30(2), 438–475 (2016)

21. Riondato, M., Upfal, E.: ABRA: approximating betweenness centrality in static
and dynamic graphs with Rademacher averages. ACM Trans. Knowl. Discov. Data
(TKDD 2018) 12(5), 61 (2018)

22. Takac, L., Zabovsky, M.: Data analysis in public social networks. In: International
Scientific Conference and International Workshop Present Day Trends of Innova-
tions, vol. 1 (2012)

23. Wagner, C., Singer, P., Karimi, F., Pfeffer, J., Strohmaier, M.: Sampling from social
networks with attributes. In: Proceedings of the 26th International Conference on
World Wide Web (WWW 2017), pp. 1181–1190 (2017)

24. Was, T., Skibski, O.: An axiomatization of the eigenvector and Katz centralities.
In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI
2018) (2018)

25. Zhao, J., Yang, T.H., Huang, Y., Holme, P.: Ranking candidate disease genes from
gene expression and protein interaction: a Katz-centrality based approach. PLoS
ONE 6(9), e24306 (2011)

https://doi.org/10.1007/978-3-319-78024-5_26
https://doi.org/10.1007/978-3-319-78024-5_26

Location Prediction for Social Media
Users Based on Information Fusion

Gaolei Fei(B) , Yang Liu , Yong Cheng , Fucai Yu, and Guangmin Hu

University of Electronic Science and Technology of China, Chengdu 611731, China
fgl@uestc.edu.cn , liuy@std.uestc.edu.cn

Abstract. The real locations of social media users have always been a
hot spot for people. However, considering personal privacy and other
factors, most locations provided by users are ambiguous, missing or
wrong. In order to get users’ real location, we collect various types of
geographic related information from users in social networks and pro-
pose an information fusion network model to organize the information
efficiently. After that, we take advantage of the iterative-based informa-
tion fusion method to process the geographical related information in the
information fusion network and the outputs are used as users’ geograph-
ical location. Finally, the experimental results show that our research
method can greatly improve the prediction accuracy and reduce the cor-
responding distance error.

Keywords: Information fusion · Social media · User location ·
Relationship strength

1 Introduction

The rapid development of online social media such as Twitter, LinkedIn, and
Facebook has brought great convenience to people’s interaction and information
sharing. In social media, an account is the main part for its owner to carry out
network activities, so we can analyse accounts in the social media to obtain infor-
mation of users who own these accounts. Location prediction for social media
users is the process of identifying the geographical location of a person by means
of obtaining and analyzing registration, publishing and friendship information
in its social media account. Geographical locations can be used in many areas
such as regional event detection, virus propagation tracking and group language
analysis. Hence, location prediction for social media users plays an important
role in the control, management and optimization of social networks.

Location prediction for social media users is one of the important contents
which belong to social network data mining research. The previous methods can
be mainly divided into the following categories. The first type is modeled by the
distance and the probability of becoming a friend. Backstrom et al. [1] proposed
a method for calculating the probability of a user at a specific location by using
this idea, which estimates the location with the greatest probability as the user’s
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 599–612, 2020.
https://doi.org/10.1007/978-3-030-38961-1_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_51&domain=pdf
http://orcid.org/0000-0001-6529-3666
http://orcid.org/0000-0003-3351-9944
http://orcid.org/0000-0003-4748-8413
https://doi.org/10.1007/978-3-030-38961-1_51

600 G. Fei et al.

location. The work of Kong et al. [2] is extremely relevant to Backstrom’s. On
the basis of their work, Kong et al. regard social relationships as a continuous
feature and introduce the concept of social intimacy. Through the relationship
between social intimacy and geographical distance, the estimation is significantly
improved. In the second category, only the plain text content is used to obtain
the user’s city-level estimation model. For example, Chandra et al. [3] construct
a probability framework from word distribution in plain text content to predict
the city-level location of a Twitter user and give a way to estimate the top K
possible cities of a user. Cheng et al. [4] also used a plain text to construct a
city-level estimation model. The difference is that they used geography-related
words in the tweet as features and used classification methods to obtain city-
level geographic locations. In addition, some scholars [5–7] use the topic model
in machine learning methods to mine potential geographic location information.

Most existing methods used to predict locations for social media users only
model with a single or a few types of information. However, social media infor-
mation usually has a lot of noise, and a single or a few types of information can’t
accurately describe the user’s location, resulting in a low accuracy of user loca-
tion prediction. In fact, there are a variety of information about a user’s location
in social media. For example, tweets published by users, personal descriptions,
registered locations, etc. may contain the user’s location information. If we con-
duct a fusion analysis of this information, we can effectively improve the accuracy
of our prediction.

Aiming at the above problems, this paper proposes a method for predicting
social media users’ locations based on information fusion. Firstly, we mine and
process a variety of information related to users’ location as input data for infor-
mation fusion. Because this information is interrelated, we need to quantitatively
describe the relationship in social media. Therefore, we use the social relation-
ship between users to build a network analysis model, mapping input data to the
corresponding location of the model. After that, we propose an iterative-based
fusion geolocation algorithm to fuse multiple input data in the network analysis
model and finally output the main active area of the user. Experiments show
that, through our method, the correct rate of 60% and 80% can be achieved
under the two levels of city and state.

2 Problem Definition and Data Description

2.1 Problem Definition

In order to better understand our research, we firstly define the problem target.
We use U to represent a set of geo-related information published by users and
their friends. For example, the location information filled in when the user reg-
isters and the geographic information contained in the user description can be
used as elements in the set U . As we all know, the analysis and processing of
any data is inseparable from the specific environmental background. For the set
U , we use the graph G<V,E> to indicate the social network environment in
which it is located. Finally, we choose a suitable information fusion geolocation

Location Prediction for Social Media Users Based on Information Fusion 601

algorithm F , taking the set U and the graph G<V,E> as input parameters,
then the problem target can be expressed as:

D = F (U,G<V,E>),

where D represents the main active area of the user. According to different
partition granularity, the city or state level can be used to describe the user’s
main activity area.

2.2 Data for Geolocation

Users’ raw data collected in social media is the basis for geolocation. Twitter
which is one of the top ten websites with the largest Internet traffic in the world
contains rich social information. In addition, the reliable and stable API allows
us to easily access it. This paper takes Twitter as an example to study the
geolocation for social media users, but the method is not limited to Twitter and
can be extended to other social media. There are lots of information used for
geolocation in Twitter. In general, it can be divided into two aspects: background
attribute information and social relationship information.

Background Attribute Information. The background attribute information
refers to a geographically relevant information set published by the user or his
friends. Background attribute information can be divided into two categories,
one is direct location information which directly describes the user’s location or
the place where the tweet is published. For instance, location information filled
in by the user when registering and GPS information when posting a tweet are
direct location information. The direct location information in Twitter is shown
in Table 1. Another is status description information describing the user’s past
or current status. Some of it includes geographic information, which cannot be
ignored for geolocation. The description information and the text information
below exactly belong to state description information.

Table 1. Direct location information in Twitter

Information tag Descriptions

Location The geographical location information filled in by
the user in the user profile

Geo The tag has been deprecated and replaced by the
Coordinates

Coordinates The tag indicates the GPS coordinates of the tweet,
which is automatically added by Twitter

Place The tag indicates the details of the tweet location,
Including the location name, administrative level
and the location boundary

602 G. Fei et al.

We tried to predict the users geographic location only with the information
in Table 1, but the data analysis shows the missing rate of it is very high. The
statistical results are shown in Fig. 1.

coordinates place location
0%

20%

40%

60%

80%

100%

Th
e

ra
tio

99%

1%

95%

5%

62%

38%

Missing
Not Missing

Fig. 1. Missing status of direct location information

Both coordinates and place are automatically filled in based on GPS infor-
mation, so they have a high degree of credibility. However, the missing ratio of
the two kinds of information is over 95%. Therefore it is impossible to predict
the user’s location by them. Although the proportion of location not missing is
38%, this part is freely filled by users. According to statistics, the error rate of
location is 23%. So the correct rate is roughly 29% using location directly via
calculation, which does not meet the accuracy we expect. However, this informa-
tion is still valuable and the correct rate can be used as a reference for judging
other methods.

Considering that there is less direct location information available, we intro-
duce two types of status descriptions information as follows:

– description: The tag filled in by the user describes the user background and
may involve the information about the surrounding environment.

– text: The tag represents tweet contents and some topics in it involve geo-
graphic location information.

Through statistical analysis of the description and text, we find as long as
geographical location information appears in the description, this information is
closely related to the user’s place of birth, learning and working environment,
and is highly correlated with our problem target. In addition, a user account
can correspond to a large number of tweets. Although the proportion of texts
with geographic information is low, because of the large base, the geographic
information that the text can provide is still rich.

Location Prediction for Social Media Users Based on Information Fusion 603

Social Relationship Information. In addition to the background attribute
information, there is also a piece of information describing the social relationships
between users in social media, and we call them social relationship information.
While we would like to believe that our social options are endless, human rela-
tionships are constrained in many ways [1]. Considering time, energy and money,
people are more inclined to choose long-term stable social friendships with people
who are close to their geographical location. Therefore, social relationship infor-
mation is actually highly correlated with geographic location. This is also the
basis for us to build a network and organize different types of geographic location
information by social relationship information. We divide the social relationship
information into two categories: information flow and intrinsic relationship. The
process of referring and replying between users can be used to indicate the infor-
mation flow. And intrinsic relationship can be reflected in the users friends and
followers.

3 Modeling

In order to use the social relationship information to associate background
attribute information, we need to establish a suitable network analysis model.
The main relationship network and the information fusion network are two types
of network analysis model which we will introduce in the following.

3.1 Main Relationship Network

A good network relationship model should meet the following conditions. On
the one hand, it can accurately describe the differences in relationships between
users. On the other hand, it needs good anti-noise performance and convergence.
The main relationship network is a network that meets the above conditions.

Model Description. The main relationship network (MRN) is an undirected
weighted hierarchical graph G′(V ′, E′) where V ′ represents the set of the user
and his friends and the weight of E′ indicates the strength of the relationship
between users. Besides, in the network, we remove the weak links and the edges
that would cause the results to oscillate, so the main relationship network retains
the research user’s trunk friendship and has strong anti-noise performance.

The right subgraph in Fig. 2 is a main relationship network where the vertices
are numbered hierarchically. The node x in the ith layer and the node y in
the (i + 1)th layer constitute a node pair Pi(x, y). For example, the V3 in the
1th layer and the V2 in the 3th layer constitute the node pair P1(3, 2). The
direction of information flow between the node pair will be hidden. However, the
information interaction and intrinsic relationship between the node pair Pi(x, y)
will be reflected in the way of the weight w′

i(x, y). So it can be used to measure
the strength of the relationship between user x and user y.

604 G. Fei et al.

Network Construction. From the above, we can see that in the main relation-
ship network, the information interaction and intrinsic relationship are uniformly
mapped on the edge weight. What’s more, the weak connections and the edges
that would cause the data to oscillate are deleted. Therefore, for the construction
of the main relationship network, it can be divided into three parts: solving edge
weight, extracting main relationship and optimizing network.

(a) Solving Edge Weight. We make Oi
x, Oi

xy respectively represent the amount
of all information flowing out by the node x in the ith layer and the amount
of information flowing out from the node x in the ith layer to the node y in
(i + 1)th layer. In Twitter, the flow of information between nodes we consider
is mainly the process of mentioning and replying between users. We use |atixy|,
|replyixy| respectively to indicate the times node x refers to and replies to node
y, then {

Oi
xy = |atixy| + |replyixy|

Oi
x =

∑
j |atixj | + |replyixj |,

where j ∈ V ′ and j �= x. The frequency of information interaction between x
and y can be expressed as

freqi(x, y) =
min(Oi

xy, O
i
yx)√

Oi
x × Oi

y

. (1)

In addition to the frequency of information, the intrinsic relationship is also
an important consideration. Through intrinsic relationship, we can find out
whether the relationship networks between two users are similar, and the rela-
tionship between users with high similarity networks will be closer. Next, we
quantify this friendship similarity.

fsi(x, y) =
|F i

x

⋂
F i
y|√

|F i
x| × |F i

y|
, (2)

where F i
j represents a set of friends who are fans with each other for the user

j in ith layer, |F i
j | indicates the number of elements in the F i

j . After that, we
need to unify the (1) and (2) to get the normalized formula of w∗

i (x, y):

w∗
i (x, y) =

freqi(x, y) + fsi(x, y)∑
j(freqi(x, y) + fsi(x, y))

.

(b) Extracting Main Relationship. w∗
i (x, y) reflects the degree of intimacy

between x and y. The higher the intimacy is, the closer the geographical loca-
tion between them may be. Using the meaning of w∗

i (x, y), we can remove some
weakly connected edges to further simplify the network. Here we think that for
node x, the edges that satisfy the following inequality will be deleted.

w∗
i (x, y) <

1
N

(
∑
j

w∗
i (x, j) +

∑
k

w∗
i−1(k, x)),

Location Prediction for Social Media Users Based on Information Fusion 605

where N is the number of all edges ei(x, j) satisfying w∗
i (x, j) �= 0 and edges

ei−1(k, x) satisfying w∗
i−1(k, x) �= 0.

(c) Optimizing Network. In addition to the extraction of the main relationship
by deleting the weakly connected edges, we also need to remove the edges that
cause the data to oscillate to optimize the network. We introduce the idea of
the layered graph to solve it. The layered graph is based on the original graph,
deleting the edges between the same layer nodes and the edges from the upper
layer to the lower layers.

V1

V1 V2 V3

V1 V2

Layer 0

Layer 1

Layer 2

Research node
Friend node

V4

W0*(1,1)

V1

V1 V2 V3

V1 V2

W0*(1,2) W0*(1,3)
W0*(1,4)

W1*(1,1)

W1*(2,1)W1*(3,1)

W1*(3,2)

W0'(1,1)
W0'(1,2)

W0'(1,3)

W1'(1,1)
W1'(2,1)

W1'(3,2)

Fig. 2. Construction of the main relationship network (Color figure online)

The red solid edges in Fig. 2 belong to the weakly connected edges. And the
red dashed edges represent the same layer edges. We choose to delete the two
types of edges because the weakly connected edges will bring lots of noise users
and the same layer edges will bring data convergence. Then we normalize the
weight again and get the main relationship network.

3.2 Information Fusion Network

With the main relationship network, we have been able to describe the strength
of the relationship between users. However, due to the simplification of the net-
work, users will have fewer friends around them. At this time, it is very limited to
predict the geographic location of users from surrounding friends. Therefore, we
need to integrate additional information into the existing network and propose
the information fusion network model.

Model Description. The information fusion network (IFN) is an undirected
weighted layered graph based on the main relationship network which can adapt
to the input of multiple types of information and we use G∗(V ∗, E∗) to indicate
it. In the information fusion network, in addition to the immanent friends, the

606 G. Fei et al.

rest of the valuable information is regarded as friends into the network. As shown
in Fig. 3, the triangle node is a friend derived from the node directly connected
to it, and their essence is the set R with valuable information around the directly
connected node.

V4

V1

V1 V2 V3

V1 V2

Layer 0

Layer 1

V3 V4 V5Layer 2

W0(1,1)
W0(1,2) W0(1,3)

W0(1,4)

W1(1,1)
W1(2,1)

W1(2,3)

W1(2,4)
W1(3,2) W1(3,5)

Research node
Friend node
Fusion node

Fig. 3. Information fusion network

Network Construction. The information fusion network is built on the basis
of the main relationship network by adding fusion nodes and corresponding
edges. Therefore, adding fusion nodes and adjusting edge weight become two
important parts of building network.

(a) Adding Fusion Nodes. Adding a fusion node needs to meet certain rules.
Before introducing the rules, we need to introduce the concepts of non-edge
nodes and edge nodes. In the main relationship network, for node x in the ith
layer. If there exists the node y in the (i + 1)th layer which makes w′

i(x, y) �= 0,
then we call x the non-edge node in the ith layer. The non-edge nodes of all
layers in the graph form a set Vc, and the remaining nodes constitute the edge
node set Ve = CV ′Vc. In other words, edge node set is the complement set of
Vc in full set V ′. In fact, the fusion nodes derived from the main relationship
network are also edge nodes in essence. Therefore, we do not mount any fusion
nodes for the original edge nodes in the main relationship network.

(b) Adjusting Edge Weight. In addition to adding fusion nodes, the information
fusion network adds corresponding edge to form a new undirected weighted graph
G∗(V ∗, E∗). Therefore, the weight of the information fusion network needs to be
adjusted accordingly. Considering that the fusion node is not a true friend, the
weight should not be personalized. Also, the relative value of the weight between

Location Prediction for Social Media Users Based on Information Fusion 607

the original nodes should not be changed. We follow the following principles to
adjust network weights.

In the main relationship network, for node x in the ith layer. Then we express
its directly connected node set in the (i + 1)th layer with V ′

ix. If the number of
elements in V ′

ix is |V ′
ix| = n, from the weight relationship of the main relationship

network, it is not difficult to get
∑n

y=1 w
′
i(x, y) = 1. When evolving from the

main relationship network to the information fusion network, the set of fusion
nodes derived from the node x is represented by Rix and |Rix| = m. Then, the
weight update formula of the network is as follows.

wi(x, y) =

{
w′(x,y)
1+m

n
, y ∈ V ′

ix

1
n × 1

1+m
n
, y ∈ Rix.

So far, we have completed the evolution from the main relationship network
to the information fusion network.

4 Information Fusion Geolocation Method

With the background attribute information as the input data set U and the
information fusion network G∗(V ∗, E∗) as our network analysis model, we need
to choose a suitable fusion algorithm F to finally predict the user location. Con-
sidering that our information fusion network is a hierarchical structure, there
is an obvious iterative relationship between the upper user and the lower user.
And the hierarchical iterative process is also a layer-by-layer denoising process,
which can greatly improve the accuracy of the prediction. Therefore, we use
an iterative-based information fusion geolocation algorithm to fuse the user’s
surrounding friends’ information to the research node layer by layer. The whole
algorithm contains the following three important components, and the final algo-
rithmic process will be given in Algorithm 1.

4.1 Network Initialization

The initialization of the network is actually the initialization of the algorithm
input. The initialization object is a node with the edge feature, and refers to the
original edge node and the fusion node in the information fusion network.

– For the original edge node, we check in turn whether the values of GPS
(coordinates or place), location and the highest frequency place in the text
are missing. Then we take the first information that is not empty and convert
it into latitude and longitude. If the above three candidate information are
all empty, we mark the node as a missing status and assign it to NULL.

– For the fusion node, we extract the set of place names in description and text,
and also convert it into latitude and longitude. Then we initialize the fusion
node with the latitude and longitude.

608 G. Fei et al.

4.2 DBSCAN Density Clustering

Clustering is the process of fusing the geographic information of the user’s friends
to the user and removing noise information. DBSCAN is chosen because the
number of categories of user friends is unknown. DBSCAN does not need the
number of categories and can find clusters with arbitrary shapes. Moreover, the
number of friends of the user is small, and this paper has a fixed parameter
selection. Our main goal is not to pay attention to the quality of the whole
clustering effect, but to find the cluster that meets the parameter requirements
perfectly. Even if the density difference is large, it will not affect the results
seriously. The iterative use of DBSCAN can finally integrate the multi-layer
network information into the research node to predict the user location.

4.3 Select the Target Cluster

After density clustering, we need to select the appropriate cluster as the target
cluster Cd. The quality of the target cluster will directly affect our final result.
The most intuitive idea is to use the cluster with the largest number of mem-
bers as the target cluster. When the number of members in multiple clusters is
the same, the most dense cluster is the optimal solution we think. In order to
quantitatively describe the intensity of a cluster, we first introduce the concept
of a regional center. We assume that the latitude and longitude set in the cluster
Ci is {(lat1, lng1), (lat2, lng2), · · · , (latn, lngn)}, then the regional center can be
expressed as:

center = (latc =
1
n

×
n∑

i+1

lati, lngn =
1
n

×
n∑

i+1

lngi).

We use the average spherical distance d̄ of all the points in the set to the
center of the area (latc, lngc) as an indicator to measure the cluster density. The
smaller the d̄, the denser the cluster. When the geographic location information
distribution is too scattered, the clustering will be a series of clusters with only
a single member. At this time, it is impossible to judge with the intensity of
the cluster. And we select the single cluster that is most closely related to the
current user as the target cluster:{

y′ = max
y

wi(x, y)

Cd = {(laty′ , lngy′)}.
However, when there are other auxiliary information, we can use it to correct

some of the wrong target clusters. TopK auxiliary judgment is a method which
can correct some of the wrong target clusters using the Location information
and the idea is as follows.

Step 1: We assume that there are N clusters after clustering. Sort in descending
order according to the number of members in the cluster to get the sequence
{C1, C2, · · · , Cn}.

Location Prediction for Social Media Users Based on Information Fusion 609

Step 2: Only retain the front �N/K� cluster and we take K = 3 by default. If
the latitude and longitude of the place in the Location is within the range of the
cluster Ci, we output Ci as the target cluster, otherwise C1 will be the target
cluster.

As we can see, the high accuracy of the location information can weaken the
decisive influence of the number of members, and the number of members can
in turn suppress the noise of the Location information.

Algorithm 1 indicates that we firstly initialize the elements in the edge node
set Ve and the fusion node set R in the network. After that, we use density
clustering layer by layer from bottom to top, each node will correspond to a set
L′ composed of a series of clusters. We obtain the target cluster of the node
according to the TopK auxiliary judgment and two special clusters. Then, we
use the regional center of the target cluster as the initialization information of
the next density cluster, and iterate until obtain C0

d1 which is the target cluster
of the node in layer 0. Finally, we map the regional center (lat01, lng

0
1) of C0

d1

into the user’s main active area D according to the accuracy requirement.

Algorithm 1. Infomation Fusion Geolocation Algorithm
Input: Network initialization data, Network depth H
Output: The user’s main activity area D

1: for node in {Ve, R} do
2: Initialization(node);

3: L = {}
4: for i = H − 1 to 0 do
5: for x = 1 to |V ′

i | do
6: for y = 1 to |V ′

i+1| do
7: if wi(x, y) �= 0 then
8: L.append((lati+1

y , lngi+1
y))

9: L′ = DBSCAN(L)
10: L = {}
11: if Locationi

x �= NULL then
12: Ci

dx = TopK(L′,Locationi
x)

13: else
14: Ci

dx = select(L′)

15: (latix, lng
i
x) = Center(Ci

dx)

16: (lat01, lng
0
1) → D

17: return D

5 Simulation and Analysis

5.1 Simulation Data and Environment

For data collection, we use Twitter’s official API to get 10000 Twitter users’
information. We filter out the spammers, celebrities, and officially authenticated

610 G. Fei et al.

users among them. Because our target users should be the ordinary users. In
addition to filtering the above users, we also need to filter out users whose
the most frequently occurring GPS information is less than 3. Because we take
the GPS information as the true value of the user’s geographic location, GPS
information with high frequency of occurrence is highly reliable. In the end, we
have a total of 1046 Twitter users. Considering the factors of computing and
storage resource, we only got their second-level friendship.

For experimental tools and parameter settings, we use the named entity
recognition extracting place names from text sequences. For the conversion
between place names and latitude and longitude, the Google Maps API is used.
For the parameter setting of DBSCAN, according to the literature [4], it is found
that the location of two friends is more likely to be within 10 km. So we regard
the two geographical locations not more than 10 km as the same geographical
area, and divide them into the same classes. Besides, the least number of classes
can contain only one geographic location.

5.2 Experimental Results and Analysis

For the experimental results, we analyze the two aspects of correct rate and
distance error. According to the different granularity, we can have the correct
rate under three kinds of granularity: city-level accuracy, state-level accuracy and
Acc@161 [8]. Acc@161 is a good accuracy indicator which means if the predicted
place is within the radius of 161 km of the real place, then the prediction is
considered correct. The results of the three indicators in the four experimental
categories are shown in Table 2.

Table 2. Three indicators in the four experimental categories

Category City-level accuracy State-level accuracy Acc@161

MRN 52.39% 75.05% 66.83%

MRN+TopK 59.27% 81.93% 75.14%

IFN 55.26% 78.49% 70.75%

IFN+TopK 60.33% 82.89% 75.62%

It is not difficult to find that the information fusion network has a 3% to 4%
improvement in overall performance over the main relationship network, which
is the result of IFN containing more abundant network information. The TopK
auxiliary judgment increases the overall accuracy of the two networks by about
5%. The combination of IFN and TopK achieves the accuracy of 60% and 80%
at the city and state levels respectively.

From the perspective of accuracy, we have an overall understanding of the
experimental results of the four methods. Next, we need to understand them
more specifically from the perspective of the distance error distribution. In Fig. 4,

Location Prediction for Social Media Users Based on Information Fusion 611

[0,
20

)

[20
,40

)

[40
,60

)

[60
,80

)

[80
,10

0)

[10
0,1

20
)

[12
0,1

40
)

[14
0,1

60
)

[16
0,1

80
)

[18
0,2

00
)

[20
0,I

NF)

Distance error interval /km

0

100

200

300

400

500

600

700

800

Th
e

nu
m

be
r o

f u
se

rs

MRN
MRN+TopK
IFN
IFN+TopK

Fig. 4. Distance error distribution

we can see that the user error is mainly distributed within 20 km. Among them,
the IFN+TopK has the best effect, and the number of people with low error seg-
ments (≤100 Km) is more than the number of the other three methods, especially
within the 20 km error, the number exceeds 700.

6 Conclusion

In this paper, we extract and analyze the information of Twitter users and
their friends, construct corresponding network analysis models that link the
acquired data, and finally predict the main activity areas of users through means
of information fusion. After our final experiments, it is proved that information
fusion network and the auxiliary decision method can predict the user position
with high accuracy, and can effectively reduce the distance error.

References

1. Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical
prediction with social and spatial proximity. In: International Conference on World
Wide Web (2010)

2. Kong, L., Liu, Z., Huang, Y.: Spot: locating social media users based on social
network context. Proc. VLDB Endow. 7(13), 1681–1684 (2014)

3. Chandra, S., Khan, L., Muhaya, F.B.: Estimating Twitter user location using social
interactions-a content based approach. In: IEEE Third International Conference on
Privacy (2012)

4. Cheng, Z., Caverlee, J., Lee, K.: You are where you Tweet: a content-based approach
to geo-locating Twitter users. Cikm 19(4), 759–768 (2010)

612 G. Fei et al.

5. Hao, Q.: Equip tourists with knowledge mined from travelogues. In: International
Conference on World Wide Web (2010)

6. Hong, L.: Discovering geographical topics in the Twitter stream. In: International
Conference on World Wide Web (2012)

7. Mei, Q.: A probabilistic approach to spatiotemporal theme pattern mining on
weblogs. In: International Conference on World Wide Web ACM (2006)

8. Rahimi, A., Vu, D., Cohn, T.: Exploiting text and network context for geolocation
of social media users (2015)

Performance Modelling and Evaluation

Concurrent Software Fine-Coarse-Grained
Automatic Modeling Method for Algorithm

Error Detection

Tao Sun(&), Jing Zhang, and Wenjie Zhong

College of Computer Science, Inner Mongolia University,
Hohhot, Inner Mongolia, China

cssunt@imu.edu.cn, Zhangj_vi@163.com,

zhongwenjie@mail.imu.edu.cn

Abstract. Concurrent software state space explodes, which makes algorithm
error detection difficult. This paper proposes a fine-coarse-grained automatic
modeling method. Based on the JAVA concurrent program, we generate the
HCPN (Hierarchical Coloured Petri Net) fine-coarse-grained model that in
accordance with the behavior of the source program automatically. The goal is
to detect the algorithm errors in the program through the model checking
technology. We complete the modeling of interactive, property-related and
specific structure statements through fine-grained method and complete the
modeling of other statements through coarse-grained method. Avoid the state
space explosion effectively under the premise of retaining the interaction
behavior and the property-related behavior execution path. This paper verifies
the effect of fine-coarse-grained automatic modeling method by comparing and
analyzing the experimental results.

Keywords: HCPN � Concurrent software � Coarse-grained modeling �
Algorithm error detection

1 Introduction

Software defect detection is an indispensable part in software development. The con-
current behavior in concurrent software has led the execution of program become more
complicate, and increased the difficulty of algorithm error detection. Software model
checking [1] is a technology for detecting defects in a program. The main idea is to
convert the source program into a model, then search the counter-example that not
satisfied this property in the full state space of model. If a counter-example is found,
there is a defect in source program. Due to the model checking technology needs to be
performed in a finite state space, so the state space explosion problem has always been
an important part of the research in the field of model detection.

Currently, most software model checkers are implemented through the method of
Abstract-Verification-Abstract Refinement, such as SLAM [2], MAGIC [3], and
BLAST [4], etc. These tools are used to verify the safety properties of C/C++ program.
They convert the source program into a smaller abstract model by using the predicate
abstraction technique, and then search a counter-example by verify the abstract model.

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 615–623, 2020.
https://doi.org/10.1007/978-3-030-38961-1_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_52&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_52

Abstract technique reduces the size of model and state space effectively, but the
abstract model lacks partial information relative to the source program, which may lead
to some invalid counterexamples. In this case, the abstract part of the model needs to be
refined to eliminate invalid counterexamples, and then verify the model whether sat-
isfies the properties again. The above three tools reduce the state space in different
degrees through abstraction technology, but the invalid counter-example caused by
abstraction still need to perform multiple abstraction and verification operations on the
program, which requires a lot of time and resources.

Literature [5] proposed the fine-grained automatic modeling method based on
HCPN (Hierarchical Coloured Petri Net). HCPN is a high-level Petri net. It realized
hierarchical model on the basis of CPN (Coloured Petri Net), which can describe the
complex systems with call relationships more efficiently. This method is different from
the above tools, it does not use the abstraction, and that is, the execution of each
statement in the program remains in the model. So the modeling and verification
process only needs to be done once and does not lead to invalid counter-examples.
However, this method lead to too many transitions in the model, and the state space is
too large that need to be simplified for carry out model checking.

Only the property-related parts in the HCPN model are concerned when performs
model checking. This paper proposes the fine-coarse-grained automatic modeling
method. Use the fine-grained modeling method retains the execution path of the
interactive statements and the property-related statements related to model checking;
use the coarse-grained modeling method reduces the generation of the information
about other unrelated statements. Thereby reducing the size of the model and state
space and ensuring that model checking results is not affected. Finally, the HCPN
model is verified to determine if there is a corresponding algorithm error in the pro-
gram. We divide the fine-coarse-grained automatic modeling method into two parts:
Source program labeling and storage and Construct model. They are detailed in
Sects. 2 and 3 respectively.

2 Source Program Labeling and Storage

The fine-coarse-grained modeling methods are based on HCPN, so the definitions of
CPN and HCPN are given here:

Definition 1. A non-hierarchical Coloured Petri Net is a nine-tuple CPN = (P, T, A,P
, V, C, G, E, I) [6].
P: set of places; T: set of transitions; A: set of arcs;

P
: set of colour sets; V: set of

variables; C: colour set function (assigns colour sets to places); G: guard function
(assigns guards to transitions); E: arc expression function (assigns arc expressions to
arcs); I: initialisation function (assigns initial markings to places).

Definition 2. A hierarchical Coloured Petri Net Module is a four-tuple HCPN = (CPN,
Tsub, Pport, PT) [7].

CPN = (P, T, A,
P

, V, C, G, E, I) is a non-hierarchical Coloured Petri Net.

616 T. Sun et al.

Tsub � T is a set of substitution transitions. Each substitution transition designates
a subpage that gives more precise and detailed description of the activity represented by
the substituted transition.

Ports are the interface at which the subpage is plugged into the upper level.
PT: Pport ! {IN, OUT, I/O} is a port type function that assigns a port type to each

port place. The surrounding places of a substitution transition are called socket places
represented by Psock (t).

The algorithm error in this paper means the property descriptions that can be
expressed by the ASK_CTL property formula. We assume that the program contains
the following statements: order statements (assignments, inputs, etc.), branch state-
ments, loop statements, object-oriented and multi-threading. Meanwhile, the JAVA
program has been passed the compiler, because compile-time errors are not included in
the algorithm errors defined in this article. We want to convert the source program to a
model that is as small as possible and does not affect model checking. Therefore, we
label the source program to find out the relevant statements that need to be retained, and
the remaining statements are coarse-grained modeling to reduce the useless informa-
tion. At the same time, it is necessary to ensure the logical relationship in the model as
same as the source program. So we use the class table and the statement binary tree to
store the logical relationship between the classes and the statements respectively. The
source program needs to be processed in the following three steps:

Label Program: In this article, we use the ASK_CTL formula to describe property,
ASK_CTL consist of the information of place or transition in HCPN model and the
temporal operators. In order to perform model checking successfully, the places and
transitions involved in ASK_CTL formula must exist in the model. These places and
transitions correspond to some statements (these statements are called property-related
statement, the rest of the statements are called property-unrelated statement) in the
program. We need to find these property-related statements in order to construct a small
model accurately without deleting the necessary places and transitions.

Construct Class Table: The information stored in the class table is divided into three
categories: member variable Var; member function Fun (function declaration) and
static variable Svar. Construct class tables have two advantages. Firstly, class table
record the corresponding model fragment after the conversion of functions or variables.
If the function or static variable is called multiple times, the model fragment generated
by the first time is recorded in the class table, and it can be read directly from the class
table without re-conversion when the next call. Secondly, class table can be used to
distinguish homonymous functions in different classes. Homonymous functions are
converted into different model fragments and recorded in different class tables. When
calling homonymous functions in different classes, reading the corresponding class
tables.

Construct Statement Binary Tree: In addition to using the class table to store the
member information of the class, we also use the statement binary tree to store the
statements in the function. Each function corresponds to a statement binary tree, and
the left and right children of the statement binary tree respectively representing the
nested relationship and the non-nested relationship between the statements, which can

Concurrent Software Fine-Coarse-Grained Automatic Modeling Method 617

facilitate the conversion process. We need to set the Type and the conversion gran-
ularity of each node during construct the statement binary tree. Type is statement type,
for example, if, else, declarations, etc. Conversion granularity is divided into two
types: fine and coarse. The granularity setting principles are as follows:

(1) For property-related statement, it must be set to fine-grained.
(2) Nodes are set to fine-grained which corresponding the statements that include

inter-process interaction or object-oriented, such as shared variables, creating
objects, etc. Coarse-grained conversion converts multiple statements into a
complex arc expression, while HCPN only supports partial type statements, and
the rest of the statements need to be represented by model elements (fine-grained
conversion).

(3) Node n1 with coarse-grained, then the granularity of the node n2 in its left subtree
must be coarse-grained. If n2 is fine-grained, then the node n1 should be reset to
fine-grained.

(4) Node n1 with fine-grained and n1 corresponds to a branch statement, then the
node corresponding to a statement that matching this branch statement should be
set to fine-grained. The setting of rule (3), (4) is because the coarse-grained
modeling is converted in units of multiple lines of statement (code segments), that
is, all the statement in the code segment must be coarse-grained.

3 Construct Model

We consider the execution of the statement in program to be the ignition of the
transition in the model. That is to say, the value of the variable before/after the exe-
cution of a line of statement (or a statement segment) in the program corresponds to the
value of the variable before/after the ignition of a certain transition in the model, and
the statement (or a statement segment) can be converted into an model fragment (or an
arc expression of the arc that connecting the transition and place). The difference is
that, each variable is allocated a storage space in the program, but in HCPN model,
there is no memory for storing variables. So the value of a variable is stored by a token
in HCPN, and the circulation of token is treated as a transmission of a variable value.
The color set of the place is determined by the declared variable.

The construction process is: preorder traversal the statement binary tree and judge
the granularity of the node. If it is fine-grained, use the fine-grained modeling method,
the conversion unit is a single statement; if it is coarse-grained, the coarse-grained
modeling method is used, and the conversion unit is multiple statements (code seg-
ment). In general, there are four structures in the program: ① branch ② loop ③ order
(Ordinary) ④ order (Object-oriented). There are multiple types of statements in each
structure. Type ① ② ③ can use both coarse-grained and fine-grained modeling
methods, while type ④ can only use fine-grained modeling methods due to its par-
ticularity (Sect. 2).

Fine-Grained Conversion: Fine-grained modeling method have been described in
literature [5], and briefly introduced here. The conversion unit of fine-grained is a single

618 T. Sun et al.

statement; each statement is converted into different model fragments, and finally
connected according to the relationship between the statements to form a complete
structure. As shown in Fig. 1, (a) is a branch structure, output transitions (T1, …, Tn)
of place (P1) are used to represent N branches. For the loop structure, we can use the
ring structure in (b) to represent. The two output transitions T1, T3 after place P1
represent entering loop and exiting loop respectively. Other statements except branch
and loop statements are order statements. Such as multi-threading and function calls
statements, Fig. 1(c), (d) are the model fragments of them respectively.

Coarse-Grained Conversion: Coarse-grained modeling converts in units of a code
segment. The code segment contains the combination of the above-mentioned struc-
tures (order (ordinary), branch and loop). When modeling, each structure is converted
into a function, the order in which the function is called is the order of execution in the
code segment. The result of the function call is consistent with the result of the code
segment execution. Finally, the code segment is converted into a function expression.
As shown in Fig. 1(e), Fun is the function expression, and the expression as an arc
expression for an arc connecting the transition T1 and the place P2 in the model. Since
the color set of the place must be indicated at each place, the color set of the place is
determined according to the arc expression of the arc that connected the place. If the arc
expression is a function, the color set at that place is the composition of the variable
returned by the function. If the arc expression only passes the variable, the color set of
the place is constructed by the variable in the arc expression.

To facilitate understanding, we present the definition of “NEXT” here. During
conversion, NEXT is used to construct the function. Whether the function will generate
the next calling function or generate a variable tuple that returns the current value is
determined by the NEXT of a statement:

Definition 3. NEXT: NEXT is used to describe the next step that needs to be per-
formed after a certain statement in the code segment is executed. It can be a tuple
consisting of multiple variables or a function. When it is a tuple, means that it needs to
return the current value of variables. When it is a function, means that the next step is to
executing the next structure.

Fig. 1. Model fragments

Concurrent Software Fine-Coarse-Grained Automatic Modeling Method 619

In coarse-grained conversion, multiple statements are converted into a complex arc
expression. The algorithm for building the complex arc expressions is given in Fig. 2.
In a statement binary tree, the left child of the node indicates nested, so we judges
whether the statement has a nested by judging whether the node has a left child or not.
If there is a nest, create a new function and call it. If there is no nested, research NEXT
as the next step of this statement. cfun represents the function currently being con-
verted, addExp adds the type and expression of the current statement to cfun, indicates
that the statement is recorded in the function being converted. Function order_con-
version (Fig. 2 right) is used to process order structure, use different conversion
methods depending on the type of statement. According to whether there are other
structures after an order structures, we divided into two types of the end flag of order
structures, indicating that the current function is processed. The algorithm handles the
two flags differently.

CPN Tools Standard Model File: The information such as place, transition and arc
generated during the conversion are recorded in the corresponding table. When con-
verted to an XML file, the information is read from the table and converted into
corresponding tags in the XML file. The XML file can be opened with the CPN Tools.
Model checker takes the HCPN model and the ASK_CTL formula as inputs. If the
output is true, the model satisfies the property, and the program does not have the

Fig. 2. Algorithm of arc expression construction

620 T. Sun et al.

algorithm error; If the output is false, the model does not satisfy the property, there is an
algorithm error in the program.

4 Application

In this section, we compare the fine-grained and the fine-coarse-grained modeling
method with an example of Producer & Consumer. The JAVA program is shown in
Fig. 3.

There are two threads (Producer, Consumer) in this program. The products pro-
duced are put into a buffer (variable count), and the Consumers take the products from
the buffer. The property to be verification is the number of products produced by
Producer is equal to the sum of the number of products consumed by Consumer and the
number of products remaining in the buffer (sum(Consumer) + count = sum(Pro-
ducer)). Firstly, we model the program using the fine-coarse-grained modeling method,
and we get a fine-coarse-grained model that including 32 places and 22 transitions. It
has 110444 states pace nodes. Then we using the fine-grained modeling method in
literature [5] to model the program, and obtain the fine-grained model that includes 40
places and 28 transitions. It has 154630 states pace nodes. The state space reduction
rate of fine-coarse-grained method is 28.58% compared with the fine-grained method.
Finally, we use CPN Tools own tool to verify the two models. The results are shown in
Fig. 4(a), (b) are the model checking result of fine-coarse-grained model and fine-
grained model respectively, and the results of are the same (both true), indicate that the
program satisfies the property.

Fig. 3. Producer & Consumer

Concurrent Software Fine-Coarse-Grained Automatic Modeling Method 621

5 Conclusion

Algorithm error detection of concurrent software is difficult. Convert the program to a
model and perform model checking in model can detect the algorithm error in program.
Base on the state space explosion problem in fine-grained modeling methods, this paper
proposes a fine-coarse-grained automatic modeling method for algorithm error detec-
tion. Reduce the scale of state space of the model without affecting the results of the
model test. The experiment shows that use fine-coarse-grained modeling method is
significantly reduced the size of model and state space than use fine-grained modeling
method, and improves the efficiency of model checking. We would like to research the
model checking method in the future. For example, generate state space on-the-fly and
search it by heuristic method, thereby improving the efficiency of model checking.

Acknowledgement. This work was supported by National Natural Science Foundation of China
under Grant No. 61562064 and No. 61661041.

References

1. Holzmann, G.J., Smith, M.H.: Software model checking. In: Wu, J., Chanson, S.T., Gao, Q.
(eds.) Formal Methods for Protocol Engineering and Distributed Systems. IAICT, vol. 28,
pp. 481–497. Springer, Boston, MA (1999). https://doi.org/10.1007/978-0-387-35578-8_28

2. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with SLAM.
Commun. ACM 54(7), 68–76 (2011)

3. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. IEEE Trans. Softw. Eng. 30(6), 388–402 (2004)

4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker BLAST:
applications to software engineering. Int. J. Softw. Tools Technol. Transf. 9(5), 505–525
(2007)

5. Sun, T., Liu, Y.Y.: A hierarchical CPN model automatically generating method aiming at
multithreading program algorithm error detection. In: 17th IEEE International Symposium
on Parallel and Distributed Processing with Applications. IEEE, Melbourne (2018)

6. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent
Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

Fig. 4. Result of model checking.

622 T. Sun et al.

https://doi.org/10.1007/978-0-387-35578-8_28
https://doi.org/10.1007/b95112

7. Jensen, K., Kristensen, L.M.: Formal definition of hierarchical coloured petri nets. In:
Jensen, K., Kristensen, L.M. (eds.) Coloured Petri Nets, pp. 127–149. Springer, Heidelberg
(2009). https://doi.org/10.1007/b95112_6

8. Huang, W., Hong, M., Yang, Q.H., et al.: C/C++ program memory leaked detection based
on bounded model checking. Appl. Res. Comput. 33(06), 1762–1766 (2016)

9. Wei, O., Shi, Y.F., Xu, B.F., Huang, Z.Q., Chen, Z.: Abstract modeling formalisms in
software model checking. J. Comp. Res. Dev. 52(7), 1580–1603 (2015)

10. Fehnker, A., Huuck, R.: Model checking driven static analysis for the real world: designing
and tuning large scale bug detection. Innov. Syst. Softw. Eng. 9(1), 45–56 (2013)

11. Wang, B., Wu, T.W., Hu, P.P.: Research on software defect classification and analysis.
Comput. Sci. 40(9), 16–20 (2013)

Concurrent Software Fine-Coarse-Grained Automatic Modeling Method 623

https://doi.org/10.1007/b95112_6

EC-ARR: Using Active Reconstruction
to Optimize SSD Read Performance

Shuo Li1, Mingzhu Deng2, Fang Liu3(&), Zhiguang Chen3,
and Nong Xiao1

1 College of Computer, National University of Defense Technology,
Changsha, China

lishuo17@nudt.edu.cn
2 College of International Studies, National University of Defense Technology,

Nanjing, China
dk_nudt@126.com

3 School of Data and Computer Science, SUN YAT-SEN University,
Guangzhou, China

liufang25@mail.sysu.edu.cn

Abstract. Solid State Drive (SSD) has been becoming mainstream storage for
its high performance, affordability proportional to its growing storage capacity.
However, some inborn characteristics still limit its widespread application: (1) It
wears out easily with increasing times of being written/erased. Therefore, SSDs
are generally equipped with dedicated Erasure Coding (EC) modules for relia-
bility concerns. However, the EC modules are only statically useful in the sheer
scenarios of data loss. In other words, the EC module is never exploited in the
regular access situations of dominating frequency, where data is unharmed and
intact. (2) Huge latency differences exist among its three basic operations of
reading, writing, and erasing, which could lead to performance degradation if
there is no proper I/O scheduling. (3) SSD has excellent internal parallelism,
which offers a strong possibility to further boost I/O performance if exploited
properly.
Therefore, this paper proposes EC-ARR (Active-Reconstruction-Read),

which exploits in a broader sense both its EC module and channel-level par-
allelism in combination to achieve better read performance. It is able to not only
guard against data loss but also assist in normal data reads where data is intact,
with active use of data reconstruction of the EC module. Additionally, to further
this active reconstruction method in terms of channel-level parallelism, the static
stripe with a length smaller than the number of channels and the data placement
scheme with channel-wear-aware are adopted.
Simulation experiment based on SSDsim [1] shows that compared with

conventional channel-RAID5 SSD, ARR-enabled SSD can increase the read
performance by up to 18.5% without significant write performance degradation
or storage overhead.

Keywords: Erasure code � NAND-flash SSD � Active-Reconstruction-Read �
Load balance � Read latency

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 624–641, 2020.
https://doi.org/10.1007/978-3-030-38961-1_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_53&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_53&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_53&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_53

1 Introduction

In recent years, with the rapid development of semiconductor technology, the cost
performance of SSD has been significantly improved, which makes SSD more widely
used in the supercomputer, data center, and even PC [2–4]. More users can work
directly on computers with SSDs equipped.

To ensure data reliability, SSDs are generally equipped with specialized EC
modules. Unfortunately, these powerful EC modules are only used passively when
there are data errors, which leads to a huge waste of resources. In this paper, we argue
that this insufficient use of EC modules can be improved with an idea of additional
active usage of EC modules in normal data reads, where there are no data errors and
data is unharmed.

Abundant internal parallelism is another important feature of SSD [5]. There are
four different parallelism levels in SSD: channel-level (see Fig. 1), chip-level, die-level,
and plane-level [6]. Yang Hu has demonstrated experimentally that channel-level
parallelism is the most efficient way of the four levels of parallelism. Although many
pieces of research in this area have been carried out, there is still space and value for
further investigation. For example, how to utilize the channel-level parallelism in terms
of active reconstruction of an EC module has not been studied yet.

The performance of SSD is also limited by its media characteristics of NAND flash.
The time taken of three basic operations in NAND flash varies widely when processing
the same quantity of data. Taking Micron 256 Gb NAND Flash as an example, the
delay of reading a page is about 50 ls, the delay of writing a page is 900 ls, and the
block erasing time is up to 3 ms. Therefore, random small writes and garbage col-
lections, which including lots of write/erase operations, can seriously affect the read
performance of SSD.

D7P1D4

D0

D5 D6

D3'

D1 D2

P0'

D3 P0

Controller

channel1 channel2 channel3 channel4 channel5

SSD

Fig. 1. Channel-level parallelism inside SSD, and the updating of the conventional RAID5.
D represents data and P represents parity. The new data D3’ and the new parity P0’ are written
back to the channels where the old data D3 and the old parity P0 located.

EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance 625

To sum up, we argue in this paper the three main problems regarding SSD include:
(1) EC module is under-exploited, specifically in normal data-reading scenarios.
(2) Although some work has taken advantage of channel-level parallelism, there is still
room for better utilization. (3) It is vital to do targeted scheduling for the three basic
operations of flash to achieve better read performance.

Therefore, this paper proposes an ARR (Active-Reconstruction-Read)-enabled
SSD, which exploits in a broader sense both its EC module and channel-level paral-
lelism in combination to achieve better read performance. It is able to not only guard
against data loss but also assist in data read when data is intact by serving data access
with active use of data reconstruction of the EC module. Further, to make this new
scheme of active adoption of EC module use of more channel-level parallelism, fixed
stripe length that smaller than channel numbers and data placement scheme with
channel-wear-aware are adopted.

This paper considers SSD with conventional channel-level RAID5 as a baseline
approach. ARR-enabled SSD and channel-level-RAID5 SSD are both simulated by
SSDsim which is a popular open-sourced SSD simulator in academia. Experimental
results with real-world traces indicate ARR-enabled SSD achieves better read perfor-
mance in general, as compared to the channel-level-RAID5 SSD. In the best case,
ARR-enabled SSD can increase the read performance by up to 18.5% without sig-
nificant write performance degradation or storage overhead. We also use synthesized
workloads to explore the impact of different configuration parameters on ARR-enabled
SSD.

Our contributions can be summarized as follows:

1. An idea of the active use of data reconstruction of the EC module in SSD to
serve regular read requests is proposed. Different from the current practices, in
which the EC module is used passively only as there are data errors, this paper
proposes an idea of using the EC module actively to serve the regular read requests.
It can avoid resources wasted while significantly improve read performance.

2. A hybrid Active-Reconstruction-Read (ARR) scheme with dynamic judgment
is put forward to accommodate read requests with different lengths and states.
Different from traditional direct read (DR) without active reconstruction (DR for all)
or taking active reconstruction read for all requests (ARR for all), this scheme can
dynamically judge and take the most time-saving solution for each read request
according to its current state (DR or ARR).

3. A setting of static stripe length that is smaller than the number of channels is
adopted. In most existing systems, the update is written back to the same channel
(see Fig. 1), because the stripe length is set to the number of channels. This fixed-
channel-update increases the times of garbage collection and erasing operation,
which degrades SSD’s performance. Dynamic stripe length can be used to update in
a non-fixed-channel way. However, the shorter the stripe is, the lower the degree of
parallelism in reading will be, which will fail to provide good reading parallelism
for ARR. Different from both above, our setup can maintain non-fixed-channel-
update while guarantee the maximum reading parallelism.

4. A channel-wear-aware data placement strategy is proposed. Different from the
simple round-robin data layout algorithm that popular in modern storage systems,

626 S. Li et al.

under our channel-wear-aware data placement strategy, data is always preferred to
be placed in the channel that has the least number of writes, which as a way to
optimize channel-level wear leveling.

The remainder of this paper is structured as follows: Sect. 2 introduces the moti-
vation of this work. Section 3 describes the detailed design of EC-ARR. Section 4
evaluates the EC-ARR and Sect. 5 concludes this paper.

2 Motivation

In this chapter, we will introduce the research motivations of this work. It includes the
opportunities presented by the current technological developments in SSDs, as well as
the inadequacies of previous research works.

2.1 Opportunities

The Importance of Read Performance. Users are much more sensitive to the read
delay than write delay. The reason is that, for write operations, the users hand over
instructions and data into computers, and disregard of when the data will be written
back to the storage device; while for read operations, the response time determines
when the users can proceed the next step. Therefore, this article is dedicated to
improving read performance in SSD.

Opportunity in Erasure Code. In the field of storage, erasure codes are usually used
to ensure the reliability of data [7] until Rashmi [8] put forward EC-Cache in OSDI 16.
EC-Cache faces to the key-value store. During writes, the individual objects are split up
and erasure-coded. Wherein obtaining any k out of (k + r) splits of an object are
sufficient, during reads. EC-Cache demonstrates the effectiveness of erasure code for a
new setting – improving load balancing and latency characteristics.

Opportunity in Controller. The controller is the main component in SSD. Its primary
role is to command, calculate, and coordinate. The encoding/reconstruction of EC is
generally done on a separate EC module in the controller. With the development of
integrated circuit technology and firmware algorithms, the performance of current
controllers can guarantee the efficiency of encoding/reconstruction [9], which means
that in most normal cases, we do not have to worry about the impact of
encoding/reconstruction overhead on SSD’s productivity.

Opportunity in Parallelism. The rich parallel structure inside SSD is the key to
improve IO performance. Although many pieces of research in this area have been
carried out [10, 11], there is still a lot of space for further exploit.

2.2 Why not Other Schemes

CR5M [12] (Mirroring-Powered Channel-RAID5) is a RAID architecture proposed to
improve the performance of channel-level RAID5. It adds an extra chip to each channel

EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance 627

to store data of small writes as a mirroring chip. But obviously, it comes at the cost of
increased storage overhead. Meanwhile, erasure codes are still used passively and
inefficiently here.

Some scholars have come up with a self-balancing striping scheme [13]. The
striping system encodes a small piece of data when SSD is idle and calculates
redundancy in a 1:1 ratio. Then, during the reading, only the small part of data can be
read by reconstruction. In this scheme, not all data’s reliability can be guaranteed, the
ratio of redundant data is not cost-effective, the scheme does not tell that which data
should be encoded.

Many cache replacement strategies are proposed at the flash translation layer
(FTL) level to improve the read performance of SSD, such as the classical LRU, NRU
[14]. But no matter which schemes, the principle of temporal locality and spatial locality
are utilized. In the long run, due to cache capacity limitations, there is still a lot of data that
needs to be written back to or read from the storage devices. Therefore, the cache
replacement strategies can only minimize the number of unnecessary write back opera-
tions, but cannot solve the problem of reading delay caused by write operations radically.

3 EC-ARR Design

For the convenience of description, related concepts in this paper are listed in Table 1:

3.1 Overall Architecture

This section provides a high-level overview of EC-ARR’s architecture. EC-ARR is an
optimization I/O scheme to provide high read performance as well as data reliability in
SSD. It uses the EC module actively when data is intact, so it can achieve better read
performance based on advanced utilization of SSD internal parallelism. Figure 2
compares the (a) conventional SSD system without ARR (Active-Reconstruction-
Read) and (b) our SSD system with ARR. In (a), the EC module is only used passively
when there are data errors; in (b), the EC module is used actively during reading when
data is intact. As shown in the figure, EC-ARR is able to actively reconstruct the
original data required by read request through the unblocked data, thus avoiding
waiting for the blocked data.

Table 1. The illustration of several concepts.

Stripe length The number of channels involved in a stripe
Stripe depth The quantity of data carried by a stripe on one channel
Stripe size Stripe size = Stripe length * Stripe depth
Sub-request The data that added to the channel wait queues
Valid channel The channel where the valid data located
Original data Data contained in a read request
Requested stripe The stipe where original data located
Free page The pages without valid/invalid data

628 S. Li et al.

Implemented on SSD’s controller, the EC module is in charge of 3 jobs: (1) en-
coding during writes, (2) reading from splits, and (3) active reconstructing during reads.
FTL is responsible for address mapping. The controller also takes charge of the other
judgment, calculation, scheduling work.

3.2 Choice of Erasure Code

For simplicity, this article uses the classic Reed-Solomon code (RS) as an example. The
reason for this choice is RS has the property of MDS, it can recover the original data
from any k blocks in (k + r) blocks, which has minimal storage overhead, at the same
time makes us more flexible in avoiding blocked channels. And the RS calculation
module has been integrated into many existing controller chips so that we do not need
to worry about the delay caused by the encoding or reconstruction process. Other
erasure code with MDS properties can also be used, RS code is just used here as an
example.

SSD

Blocked

A B C D

Controller

A B C D

waiting

waiting

NAND flash

Read
Request:

SSD

Blocked

A B C D

Controller

A B C D

NAND flash

Read
Request:

EC
module

P

A B C D

Get

(a) Conventional system without ARR.
EC-module will not be used here because

there is no data error.

(b) EC-ARR system with ARR.
EC module will be used actively during

reading.

Fig. 2. The comparison between SSD without ARR and SSD with ARR. P is parity. The read
request needs data A, B, C, D which are stored in different channels. The channel where D is
located is blocked, the blocking may be due to the garbage collections or write operations.
Because there is no data error, EC-module will not be used in (a), so, the read request needs to
wait for data D. But in (b), EC-module is actively used in this reading process, the original data
will be get from the active reconstruction. Thus, the read request is able to be served without
waiting for the blocked data D.

EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance 629

3.3 Data Layout

Data has to be written before it can be read. Therefore, in this section, we will introduce
the data placement method. In order to make ARR (Active-Reconstruction-Read)
accelerate the reading better, we hope that the data placement scheme can achieve the
following two purposes: (1) increase read parallelism, and (2) balance the wear
between channels, thereby reducing the garbage collection times of the channel where
the hot data is located.

Here, we consider the I/O requests come in order. The stripes are organized based
on logical address. The parity will be calculated when all original data in the stripe are
arrived. The stripe width is set to 1 page. The stripe length is fixed and less than the
number of channels. Considering the storage overhead, we set the stripe length to: the
Number of Channel - 1.

The data/parity is placed into the channel according to the following three prin-
ciples (The priority of the three principles is: Principle 1 > Principle 2 > Principle 3):

Principle 1: To guarantee the maximum degree of parallelism while reading stripe,
data in the same stripe cannot appear on the same channel.
Principle 2: Considering channel-level wear leveling: Select the channel with the
largest number of free pages from remaining channels.
Principle 3: After the above two steps, if there are still multiple channels to be
selected, select the channel with a smallest index.

Case Study
As shown in Fig. 3, the 6-channel SSD, RS (5, 4) code is taken as an example. D0,

D1, D2, D3, and P0 are form stripe 0, which are sequentially written to the channels.

(1) When the data D4 arrives (index of the stripe where D4 located is 1), since no data
has been written in the stripe1, consider principle 2. Select channel 6 which with
the most quantity of free pages (other channels have already written a page).

(2) When D5 arrives (index of the stripe where D5 located is 1), consider principle 1,
channel 6 where D4 is located will be excluded first. After that, there are still
multiple alternative channels (all channels have the same number of free pages).

D1

D1'P1D5

D0

D6 D7

D2 D3 P0

channel1 channel2 channel3 channel4 channel5

P0'

D4

channel6

Stripe 0

Stripe 1

Update

Fig. 3. Data layout

630 S. Li et al.

Consider principle 3, select channel 1, which is the channel with the smallest
index number.

(3) When it is necessary to update D1, P0, the new data D1’and P0’ is sequentially
placed according to the above steps, and details are not described again. (After D1
is updated, the old data D1 becomes invalid data, but it still exists on the device
and has not been completely deleted, so the page where D1 is located is not a free
page).

3.4 Active Reconstruction Read

In this section, we introduce hybrid-ARR, a hybrid active-reconstruction-read scheme
with dynamic judgment. The scheme is mainly divided into the following two stages.

Preprocessing Stage
When a read request comes, all the data/parity in the requested stripe are added to the
tail of the waiting queue of the corresponding channel. Each data/parity becomes a sub-
request of the read request. If the sub-request already exists in the channel’s waiting
queue, it will not be added again. Also, if the requested data is in an incomplete stripe
or there is an update operation for the same data in the waiting queue, then use the
direct read for this read request to ensure data consistency. If the direct read is adopted,
the extra sub-request will not be added.

Processing Stage
Then, the sub-requests will be processed by the channel and returned to the SSD
controller. Each time the controller receives a sub-request, it will judge the current
situation of the sub-requests that already received according to the three steps given
below, until it can decide which way does the read request should take, direct read or
active reconstruction read?

Step 1: Have all the original data been received?

If yes, the direct read will be adopted. All the unserved sub-requests from the read
request are kicked out from the waiting queues, and the original data will be returned to
the host. The read request ends now.

If not, continue to step 2.

Step 2: Does the number of received data meet the reconstruction conditions?

If yes, ARR (active-reconstruction-read) will be adopted. All the unserved sub-
requests are kicked out from the waiting queue. At the same time, the controller
reconstructs the original data by received data and returns them to the host. The read
request ends now.

If not, continue to step 3.

Step 3: The controller will not make any decisions. When the next sub-request
arrives, the judgment process will be restarted.

EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance 631

Case Study
Still take 6-channel, RS (5, 4) code as an example. As shown in Fig. 4, this read

request needs data D4’, D5’, D6. And they belong to stripe1. D4’, D5’, D6, D7, and
P1’ of stripe1 are added to the request queue. R/W in the figure indicates sub-requests
that come from other requests earlier.

(1) The controller will first receive D6, D4’, P1’ as there are no other sub-requests in
the queue before them. Then we start to judge according to the above three steps.

(2) Original data D5’ has not been received, so go to step 2.
Here are only three chunks that have been received. Because (5,4) RS code needs
four chunks at least to reconstruct, the reconstruction cannot be carried out.

(3) Go to step 3: wait for the next sub-request.

Read Request

P0' D4' D5' P1'

Stripe 0

Stripe 1

Update

D1

D0'P1D5

D0

D6 D7

D2 D3 P0

channel1 channel2 channel3 channel4 channel5

D1'

D4

channel6

Sub-Request
Queues

R R

W

WRD6

RD7

RD4'

RD5'

RP1'

D4' D5' D6

Stripe1: D6 D7 D4' D5' P1'

Stripe1: D4' D5' D6 D7 P1'

Fig. 4. Hybrid-ARR (Active-Reconstruction-Read)

632 S. Li et al.

The next data that the controller receives is D7. The judgment process restart. At
this time, the controller has received four data: D6, D4’, P1’, and D7, which
satisfy the reconstruction condition. Therefore, ARR will be chosen. D5’, the sub-
request that hasn’t been served by channel will be kicked out from the waiting
queue. Then, the reconstruction will be performed. The original data D4’, D5’,
D6, will be returned to the host. Read request completed.

In this way, we avoid reading blocked data D5’, and complete the read request by
actively reconstructing D5’ through other data in the stripe. Therefore, the response
time of the read request is greatly reduced.

For read requests with a small number of original data, readers can deduce the ARR
process by yourself. For most requests, this method can always find the fastest way to
complete the read request.

4 Simulation and Evaluation

In this section, we first introduce our simulator, configuration, and then perform
experiments and analyze the results.

4.1 Simulator and Configuration

SSDsim is a simulation software for SSD which is developed by HUST [8]. It provides
a set of powerful verification tools that are able to emulate hardware structures and
software algorithms effectively. It has good plasticity and flexibility. A series of tests
can be performed with specific input parameters or files. Compared with other SSD
simulators, such as FlashSim [15] developed by PSU, the SSD extension for disksim
simulation environment developed by Microsoft Research [16], SSDsim is well
modularized and its simulation results are more accurate. In this paper, we choose
SSDsim for our experiments.

SSDsim implements the major components of FTL and many advanced commands.
As these advanced commands are irrelevant to our research object, they are not used in
this experiment. We modified SSDsim’s FTL module (including address allocation,
mapping table, and other related modules), and read/write request processing to achieve
the functions of EC-ARR. In addition, we also modified the pre-read module so that the
data can be pre-read according to the EC-ARR scheme.

This paper considers SSD with conventional channel-level RAID5 as the baseline
approach, in which EC module is only used passively when there is data error in SSD.
ARR-enabled SSD and channel-level-RAID5 SSD are both simulated by SSDsim.
Table 2 shows the configuration of the SSDsim in the experiments.

EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance 633

All experiments in this paper were performed on a Lenovo desktop computer
equipped with a 3.60 GHz Intel Core i7-7700 CPU, a 256G SATA SSD, and 16 GB
RAM. Its operating system is Ubuntu16.04.

Experiments are conducted with both real-world traces and synthesized workloads,
to investigate the efficacy of EC-ARR. All response time in this paper has been
standardized based on the results of the channel-RAID5 SSD.

4.2 Effectiveness

In this section, we evaluate the effectiveness of ARR-enabled SSD (for convenience,
hereinafter referred to as ARR). The baseline is channel-RAID5 SSD (for convenience,
hereinafter referred to as RAID5). The configuration parameters for both SSDs are
shown in Table 3. Table 4 shows the characteristics of the five workloads used in the
experiment. Among them, Financil1 and Financil2 are derived from the financial
server. PC1 and PC2 are collected from the PC of the NTFS file system using the
DiskMon tool. ATTO is generated through the test software ATTO.

Figures 5, 6 and 7 are the average response time of read requests, write requests
and all requests. As shown in the Fig. 5, ARR has an excellent performance in the first
four workloads, and it reduces the average read request response time by 9.8%, 8.2%,
13.3%, and 18.5%, respectively compared to RAID5. For read requests, the

Table 2. Parameter Configuration of SSDsim

Parameters Values Parameters Values Parameters Values

Page read 20 µs Page size 2 KB Blocks per plane 2048
Page write 200 µs Chips per channel 4 Planes per die 2
Block erase 1.5 ms Dies per chip 4 Encoding/Decoding 20 µs

Table 3. Two types of SSD

SSD Channel number Stripe length Parity number per stripe

Channel-level RAID5 SSD 12 12 1
ARR-enabled SSD 12 11 1

Table 4. The characteristics of workload

Trace name Read ratio Average size of read Average size of write

Financial 1 23% 2.25 KB 3.73 KB
Financial 2 82% 2.28 KB 2.92 KB
PC 1 39% 37.17 KB 9 KB
PC 2 46% 26.32 KB 2.28 KB
ATTO 51% 175 KB 220 KB

634 S. Li et al.

Fig. 5. Normalized average response time of READ requests

Fig. 6. Normalized average response time of WRITE requests

Fig. 7. Normalized average response time of all requests

EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance 635

performance on the workloads of PC is, in general slightly better than the Financial.
And in two PC workloads, PC2 has a lower read latency than PC1. As shown in Fig. 6
of write requests, the response time of ARR is slightly increased. Compared to RAID5,
the average response time of write requests of ARR increased by 3.97%, 5.15%,
1.73%, 0.018%, 0.72% under the five workloads, respectively. This is due to the extra
sub-requests that are added to the system. As shown in Fig. 7, Although the response
time for write requests is increased, the overall request response time for the system is
still decreased. Under PC2, the overall request response time was 17.9% lower than in
RAID5.

Read performance is improved because ARR can avoid congestion. Like the barrel
principle, for a read request, its response time depends on the last sub-request served.
When ARR is activated, originally otherwise straggling sub-requests are replaced with
some “unblocked” sub-requests to complete the request. This is equivalent to make the
response time of the last sub-request get early, thus boosting the response time of the
read request as a whole.

However, ARR does not always prevail, for example under ATTO. Compared to
RAID5, it shows an only 0.5% decrement in the average response time of read
requests, with a 0.72% increment in write requests. The overall average response time
was increased by 0.19%, which is clearly not worth the loss. This is because that most
of the IO requests generated by ATTO are large and sequential. This character
determines that there is almost no internal I/O performance degradation caused by
individual channel congestion. Under this situation, ARR is not only cannot take
advantage of the feature of avoiding congestion but also adds additional sub-requests to
the system. Therefore, ARR that encodes with MDS is not suitable for the workload
like ATTO.

4.3 Impact of Read Ratio

The synthetic workload is different from the real-world workload that collected from
the real system. It is usually generated by the synthetic workload generation tools
according to certain rules and parameters. Compared with the real-world workload, the
synthetic workload can control parameters precisely. Therefore, it is possible to explore
the relationship between system performance and a certain parameter by adjusting the
target parameter but keeping other parameters unchanged. For example, in this paper,
we explored the impact on EC-ARR of the ratio of read requests, the average size of
read requests, and the parity number.

This section uses 7 synthetic workloads to test the impact of the ratio of read
requests on ARR. The characteristics of the synthetic workloads are shown in Table 5.
The requests in these workloads are random, with an average read request size of
20 KB and an average write request size of 2 KB. The ratio of read request is 20%,
30%, 40%, 50%, 60%, 70%, and 80% respectively.

From Fig. 8, we can see that as the read ratio increases, there are both lightly
increasing tendencies in write latency and read latency. However, although ARR’s
latency is increased, it is still lower than RAID5’s latency. For example, when the pro-
portion of read request changes from 20% to 80%, the write delay increases from
1.0032 to 1.0298, the read delay increases from 0.8134 to 0.8401, and the overall

636 S. Li et al.

response delay increases from 0.8326 to 0.8744, but this is still less than 1 which is the
average request response time of RAID5 under the same conditions.

This increasing trend is attributed to extra sub-requests. In the active re-construction
process, we add all the data/parity belongs to one stripe to the waiting queue, thus, the
non-original data become the extra sub-requests. These extra sub-requests will degrade
the IO performance. The higher the percentage of read requests, the more additional sub-
requests in the system, and the longer the average response time we get.

So why is the overall read latency of ARR-SSD still lower than RAID5-SSD under
the existence of extra sub-requests? There are two reasons. One is that the latency
produced by extra sub-requests are less than the latency reduced by ARR, so the overall
performance is still increased; the other is that some of the unserved sub-requests will
be kicked out from the waiting queues (when the amount of unblocked data can meet
the reconstruction condition, the sub-requests in the waiting queues which still not be
served will be kicked out), so there are only a small part of the extra sub-requests
actually take up system time.

Table 5. Characteristics of synthetic workload

Workload Read
ratio

Average size
of reads

Average size
of writes

Workload 1 20% 20 KB 2 KB
Workload 2 30%
Workload 3 40%
Workload 4 50%
Workload 5 60%
Workload 6 70%
Workload 7 80%

Fig. 8. Impact of read ratio

EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance 637

4.4 Impact of Read Size

This section uses the synthetic workloads to explore the impact of the average size of
read request on ARR. The stripe length is 11. The stripe width is 1. The average size of
random writes in the synthetic workloads is controlled to 2 KB (1 page = 2 KB), and
the average size of read requests is set to 4 KB–48 KB. The read request ratio is 60%.
Figure 9 is the normalized average read/write response time.

As we can see in Fig. 9, read performance gains are highest when the read request
size is coupled to or is a multiple of the stripe size. For example, when the size of the
read request is 20 KB (in this section, the stripe length is 11 and the stripe size is
22 KB), the response time of the read request is the local minimum which is 0.82, and
when the size of the read request is 44 KB, the response time of the read request
reaches the global minimum which is 0.81. This is because that the number of extra
sub-requests is the fewest when the read request size is coupled to or is a multiple of the
stripe size.

4.5 Impact of Parity Number

In this section, we evaluate the impact of numbers of parity on ARR. We set 14
channels, and show the I/O response time in the case of 1 parity, 2 parity, 3 parity, and
4 parity.

As shown in Fig. 10, when there is one parity in ARR, the read response time can
be significantly reduced, but when the number of parity increases, it almost no longer
works and even hurts I/O performance. The response time of ARR with one parity is
0.86, but when there is 4 parity, the overall response time increases to 1.29 which is
even worse than RAID5.

Fig. 9. Impact of read size

638 S. Li et al.

This is because too much parity will increase the internal bandwidth of the SSD,
which will increase the congestion and take up too much CPU resource to compute for
encoding/decoding.

4.6 Summary

In most cases, EC-ARR is effective. And it has the best read-performance under the
workload with small random writes and large sequential reads without significant write
performance degradation or storage overhead. This is because EC-ARR is able to
reconstruct the original data required by read request actively through the unblocked
data, thus avoiding waiting for the blocked data. And EC-ARR performs best when
there is only one parity. As the parity number increases, the performance improvement
will be smaller and smaller. This is because too much parity will increase the internal
bandwidth of the SSD, which will increase the congestion and take up too much CPU
resource to compute for encoding/decoding. Although there are extra sub-requests that
are added to the system, the overall read latency of ARR-SSD is still better than
RAID5-SSD. This is because that the latency produced by extra sub-requests are less
than the latency reduced by ARR, and there is actually only a small part of extra sub-
requests taking up system time (there is a part of unserved sub-requests that are kicked
out from the waiting queues).

5 Conclusion and Future Work

This paper proposes EC-ARR, which utilizes ARR to improve the read performance of
SSD. This scheme takes advantage of Erasure-Code reconstruction and the parallelism
inside SSD, to ensure data reliability, balance read access load, reduce read latency, and

Fig. 10. Impact of parity number

EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance 639

optimize channel-level wear leveling. Experiments verified the effectiveness of EC-
ARR.

In the future, we will consider more coding methods to optimize for different types
of workloads. For example, a coding method with a smaller recovery bandwidth can be
used to adapt a sizeable sequential workload like ATTO. The subsequent work will
continue on the combination of cache replacement strategies and EC-ARR. The cache
replacement strategies can only minimize the number of unnecessary write back
operations, but not able to solve the problem of reading delay caused by writing
operations radically. However, the above experimental results have been able to fully
demonstrate that EC-ARR can reduces the read delay caused by writing. Therefore, we
have every reason to believe that SSDs will show better performance under the
combination of EC-ARR and the appropriate cache replacement strategies.

Acknowledgment. We appreciate all anonymous reviewers for valuable suggestions to improve
this paper. This work is supported by The National Key Research and Development Program of
China (2016YFB1000302), National Natural Science Foundation of China (61832020,
61702569), Natural Science Foundation of Guang Dong Province (2018B030312002), and Key-
Area Research and Development Program of Guang Dong Province (2019B010107001). NSFC:
61872392, U1611261 Supported by the Program for Guangdong Introducing Innovative and
Entrepreneurial Teams under Grant NO. 2016ZT06D211, and the Pearl River S & T Nova
Program of Guangzhou under Grant NO. 201906010008.

References

1. Hu, Y., Jiang, H., Feng, D., Tian, L., Luo, H., Ren, C.: Exploring and exploiting the
multilevel parallelism inside SSDs for improved performance and endurance. IEEE Trans.
Comput. 62, 1141–1155 (2012)

2. Ni, Y., Jiang, J., Jiang, D., Ma, X., Xiong, J., Wang, Y.: S-RAC: SSD friendly caching for
data center workloads. In: Proceedings of the 9th ACM International on Systems and Storage
Conference, p. 8. ACM (2016)

3. Narayanan, I., et al.: SSD failures in datacenters: What? When? and Why? In: Proceedings of
the 9th ACM International on Systems and Storage Conference, p. 7. ACM (2016)

4. Simon, W., Lauer, A., Wien, A.: FDTD simulations with 10 11 unknowns using AVX and
SSD on a consumer PC. In: Antennas and Propagation Society International Symposium
(2012)

5. Du, Y.-M., Xiao, N., Liu, F., Chen, Z.-G.: CSWL: cross-SSD wear-leveling method in SSD-
based RAID systems for system endurance and performance. J. Comput. Sci. Technol. 28,
28–41 (2013)

6. Hu, Y., Jiang, H., Feng, D., Tian, L., Luo, H., Zhang, S.: Performance impact and interplay
of SSD parallelism through advanced commands, allocation strategy and data granularity. In:
Proceedings of the International Conference on Supercomputing, pp. 96–107. ACM (2011)

7. Deng, M.-Z., Xiao, N., Yu, S.-P., Liu, F., Zhu, L., Chen, Z.-G.: RAID-6Plus: a comprised
methodology for extending RAID-6 codes. Mob. Inform. Syst. (2017)

8. Rashmi, K., Chowdhury, M., Kosaian, J., Stoica, I., Ramchandran, K.: EC-Cache: load-
balanced, low-latency cluster caching with online erasure coding. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 401–417
(2016)

640 S. Li et al.

9. Cheong, W., et al.: A flash memory controller for 15 ls ultra-low-latency SSD using high-
speed 3D NAND flash with 3 ls read time. In: 2018 IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 338–340. IEEE (2018)

10. Lin, Z., Zuo, S., Zhao, X., Zhang, Y., Wu, W.: SSD accelerated parallel out-of-core higher-
order method of moments and its large applications. Appl. Comput. Electromagn. Soc. J. 33
(2018)

11. Song, K., Kim, J., Lee, D., Park, S.: MultiPath MultiGet: an optimized multiget method
leveraging SSD internal parallelism. In: Lee, W., Choi, W., Jung, S., Song, M. (eds.)
Proceedings of the 7th International Conference on Emerging Databases. LNEE, vol. 461,
pp. 138–150. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6520-0_15

12. Wang, Y., Wang, W., Xie, T., Pan, W., Gao, Y., Ouyang, Y.: CR5M: a mirroring-powered
channel-RAID5 architecture for an SSD. In: 2014 30th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–10. IEEE (2014)

13. Chang, Y.-B., Chang, L.-P.: A self-balancing striping scheme for NAND-flash storage
systems. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1715–
1719. ACM (2008)

14. Zhou, J., Han, D., Wang, J., Zhou, X., Jiang, C.: A correlation-aware page-level FTL to
exploit semantic links in workloads. IEEE Trans. Parallel Distrib. Syst. 30, 723–737 (2019)

15. Kim, Y., Tauras, B., Gupta, A., Urgaonkar, B.: FlashSim: a simulator for nand flash-based
solid-state drives. In: 2009 First International Conference on Advances in System
Simulation, pp. 125–131. IEEE (2009)

16. Prabhakaran, V., Wobber, T.: SSD extension for DiskSim simulation environment.
Microsoft Reseach (2009)

EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance 641

https://doi.org/10.1007/978-981-10-6520-0_15

Research of Benchmarking
and Selection for TSDB

Feng Ye1,4(&), Zihao Liu2, Songjie Zhu1, Peng Zhang3,
and Yong Chen4

1 Hohai University, Nanjing 211100, Jiangsu, People’s Republic of China
yefeng1022@hhu.edu.cn

2 Jiangsu University of Science and Technology, Zhenjiang 212003,
Jiangsu, People’s Republic of China

3 Jiangsu Province Water Resources Department, Nanjing 210029,
Jiangsu, People’s Republic of China

4 Nanjing Longyuan Micro-Electronic Company, Nanjing 211106,
Jiangsu, People’s Republic of China

Abstract. With the increasing use of sensor and IoT technologies, sensor
stream data is generated and consumed at an unprecedented scale. Traditional
storage mechanisms represented by relational database systems become more
and more difficult to adapt to the store, query, update and other operations of
large-scale sensor stream data. This, in turn, has led to the emergence of a new
kind of complementary non-relational data store subsumed under the term time
series database (TSDB). However, the heterogeneity and diversity of numerous
TSDBs impede the well-informed comparison and selection for a given appli-
cation context. A thorough survey shows that current benchmarks for TSDBs
are few and they still need improvement in workload implementation based on
real business requirements, data generator based on real-world data and fine-
grained performance metrics. How to implement a benchmarking tool for
TSDBs according to different tradeoffs in IoT scenarios becomes a key chal-
lenge, which will be addressed in this paper. Firstly, we propose a benchmarking
platform TS_Store_Test, which integrates five well-known TSDBs using the
micro-services mechanism. Meanwhile, we integrated and extend Prometheus to
capture the performance metrics in a refined manner. Based on TS_Store_Test,
the execution efficiency of some workloads from technical and business per-
spectives is tested using the real hydrological sensor data. Experimental results
demonstrate the usability and scalability of TS_Store_Test, and also show the
performance differences of different TSDBs for sensor stream data. Finally,
TS_Store_Test is compared with other NoSQL benchmarking suits.

Keywords: Sensor stream data � Micro-services � Time series databases �
Benchmarking � Workload

1 Introduction

As the world gets more instrumented and connected, we are witnessing a flood of
digital data generated from sensors in the form of data streams. Real-time sensor stream
data are consumed at an unprecedented speed, serving environmental protection, flood

© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 642–655, 2020.
https://doi.org/10.1007/978-3-030-38961-1_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_54&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_54

prevention and other business scenarios. However, the traditional storage represented
by relational database is difficult to deal with large-scale sensor stream data effectively.
The disadvantages of traditional databases mainly manifest in the following aspects:
(1) There is more and more data in a single table schema, so it is inefficient in
processing them; (2) The evolution of relational databases is costly due to complex data
transformation/migration; (3) They do not parallelize well for heterogeneity of data and
are difficult to improve database performance by scaling up the machine clusters [1]. To
explore the value of big data, the first consideration is how to manage big data rea-
sonably. Nowadays, the fast-evolving time series databases (TSDBs) [2] provide a
referential solution, and often more characteristics apply such as schema-free, easy
query support, simple API, eventually consistent. As is known to all, some well-known
TSDBs have been adopted for big data applications in different fields, including IoTDB
[3], Druid [4], Riak TS [5] and so on. Moreover, different TSDBs usually have the
different characteristics [6]. However, it is still worth studying which time series
solution is more appropriate for large-scale sensors stream data in various scenarios [7,
8]. Especially, existing research [9–11] shows that current benchmarks for TSDBs are
few and they still need improvement in workload implementation based on real
business requirements, data generator based on real-world data and fine-grained per-
formance metrics.

In view of the problems above, at first, we proposed and implemented a bench-
marking platform [12] named TS_Store_Test that integrates multiple well-known
TSDBs using the micro-services mechanism [13] and Prometheus [14]. The purpose of
integrating and extending Prometheus is to measure the workloads of the cluster where
the TSDBs are located in a refined manner. Based on TS_Store_Test, the execution
efficiency of some workloads for hydrological data processing was tested using the real
hydrological sensor data acquired from the Chuhe River. Through comparative anal-
ysis, the result of the experiments shows that different TSDB varies greatly in different
scenarios and Druid performs better overall. Compared with other benchmarking tools,
TS_Store_Test has the advantage of supporting more types of TSDBs in an extensible
and comparable way and providing the system level monitoring of resources in an
integrated and a fine-grained manner.

The following contents are organized as follows: Sect. 2 discusses the research
work related to this paper; Sect. 3 introduces the framework and key components of the
proposed benchmarking platform TS_Store_Test. In Sect. 4, using the hydrological
sensor data from Chuhe river, the execution efficiency and workloads of operations of
different TSDBs are verified and compared experimentally on TS_Store_Test. In
Sect. 5, we further qualitatively compare TS_Store_Test with other benchmarking
suits. Finally, the summary and prospect are given.

2 Related Works

TSDBs belong to NoSQL databases and offer to store multiple time series such that
queries to retrieve data from one or a few time series for a particular time range are
particularly efficient. At present, according to db-engines.com, there are nearly thirty
different TSDBs.

Research of Benchmarking and Selection for TSDB 643

Different TSDBs have different characteristics and applicability, and it is hard to
grasp where they excel, where they fail or even where they differ, as implementation
details change quickly and feature sets evolve over time. Some literatures, such as [6–
8], discussed NoSQL databases from different perspectives, and surveyed a concise and
up-to-date comparison of NoSQL engines, identifying their most beneficial use case
scenarios. However, the above work is not specific to the introduction and comparison
of TSDBs. In [15], the authors presented a thorough analysis and classification of
TSDBs developed through academic or industrial research and documented through
publications. In [16], a short overview of time series storage and processing in a cloud
environment was provided. In [17], the authored aimed for a complete list of all
available TSDBs and a feature list of popular open source TSDBs, and then compared
twelve most prominent open source TSDBs. According to [15–17], we can see that due
to the lack of benchmarks for TSDBs, it is still a challenge for architects or designers
who want to select the most appropriate one for the applications.

Some researches focused on NoSQL stores from a quantitative comparison per-
spective. Some well-known benchmarks for NoSQL stores were summarized in [9],
such as YCSB [18, 19], YCSB++ [20], BG [21], CloudSuite [22] and BigDataBench
[23]. In [18, 19], YCSB was adopted as the benchmarking framework for HBase [24]
and MongoDB [25]. YCSB++ extended YCSB to evaluate the advanced features (e.g.
ingest speed-up techniques) of NoSQL stores. BG provided workloads to emulate
social network actions and can be used to compare NoSQL. CloudSuite provided
popular scale-out workloads to evaluate different NoSQL stores deployed in cloud
architectures. BigDataBench was an open-source big data and AI benchmark suite,
providing MongoDB and HBase implementations for NoSQL benchmarking. Unfor-
tunately, current benchmarks for TSDBs are few, and the benchmarks above still need
improvement in workload implementation based on real-world sensor data and fine-
grained performance metrics. For example, YCSB, YCSB++ and BG are not used for
realistic IoT applications, hence they are different to benchmark TSDBs. Moreover,
because they lack the ability to integrate performance metrics, system level monitoring
of resources has to be performed to identify bottleneck separately. Up till now,
although CloudSuite and BigDataBench have rich functions for benchmarking, none of
them provide real sensor datasets and workloads for benchmarking TSDBs. In general,
a large number of TSDBs have not yet been fully and fairly measured and compared.
Compared to the achievements of traditional relational database benchmark, there is
still a lot of room for improvement.

Other representative work is [26, 27]. In [26], the authors tested both collection
speed and aggregation speed for reasonable data streams of sensor data, and then used
relational databases, key-value stores, column stores, self-tuning databases, as well as
TSDB systems for performing the test. Their experiments confirmed that column stores
and key-value stores perform better than relational databases, while time-series data-
bases outperform all the others. However, the performance metrics of various NoSQL
stores are neglected in the benchmarking process, and the difference between different
TSDBs is not quantified. Shah [27] presented a framework and methodology for

644 F. Ye et al.

benchmarking NoSQL data stores in the context of large-scale modelling applications.
However, we think it is necessary to utilize real sensor dataset for benchmarking
various TSDBs.

To sum up, the main shortcomings of the work above lie in the following two
aspects: (1) There are few comprehensive and quantitative studies on which TSDB is
more appropriate for large-scale sensor stream data in real scenarios. (2) Current
benchmarks for TSDBs still need improvement in workload implementation based on
real business requirements, data generator based on real-world sensor data and fine-
grained performance metrics.

3 The Proposed Benchmarking Platform

3.1 The Framework of TS_Store_Test

The framework of the benchmarking platform TS_Store_Test adopts a hierarchical
model, which can be divided into five layers, namely infrastructure layer, data storage
layer, message transport layer, workloads implementation layer and user interface
layer. The framework of TS_Store_Test is shown in Fig. 1.

In infrastructure layer, the essence is a computer cluster or cloud computing
environment, and it provides the hardware foundation or virtual machine runtime
environment for TSDBs. Various TSDBs are installed or deployed on the cluster or
virtual machine cluster. For example, IoTDB only supports single machine mode, but
Druid can be deployed to the entire cluster. The configuration of virtual machines or
machines within a cluster is consistent, which ensures fairness for benchmarking
TSDBs at the infrastructure level. In addition, resource consumption of infrastructure
layer is also an indispensable part of benchmark, but it is still lacking in the present
research. We introduce Prometheus to realize resource monitoring of system hardware

Benchmarking Platform for Time Series Stores

Web User Interface
Delete

Operations
Query

Operations
Insert

Operations
Other Operations

Riak TS MongoDB HBaseMemcached

Message Transport Mechanism Kafka

Computer Cluster

IoTDB Druid

Time Series Databases Key-Value Stores Wide-column Stores

Metrics
Prometheus

CPU

Memory

Quasardb Axibase TimeScale

Micro-Services

Document Stores

CouchBase Redis Casandra

I/O

Pushgeteway

Pull metrics
Short-lived

Jobs

Metrics Visualization

PromQL

Fig. 1. The framework of the benchmarking platform for TSDBs

Research of Benchmarking and Selection for TSDB 645

which regularly pulls short-lived job from infrastructure layer and provided it on
Pushgateaway. The mechanism described above allows us to integrate our TS_Stor-
e_Test with metric in a uniform normalized format. Specific metric details are provided
in Sect. 3.2. Considering that Prometheus is a short-term job, the integration of Pro-
metheus has slight impact on hardware resources, so it was negligible. In this way,
fairness is guaranteed.

The data storage layer is composed of integrated TSDBs, and five well-known
TSDB instances have been integrated in TS_Store_Test including IoTDB, Riak TS,
Druid, QuasarDB [28], and TimeScale [29]. More TSDBs will be integrated later, such
as InfluxData [30], AXIBASE [31], OpenTSDB [32], kdb+ [33], KairosDB [34] and
SiteWhere [35]. Certainly, we have also successfully integrated other types of data-
bases, such as MongoDB and HBase.

The core is message transport layer. In order to implement the scalability for
different TSDBs, the key is adopting the micro-services mechanism. Using micro-
services approach is loosely coupled and can provide greater flexibility. Currently,
using message transport mechanism Kafka [36, 37] is a typical design pattern for
implementing micro-services, and they can also provide a rich feature for supporting
stream data processing, caching and transmission. If we need to extend the new con-
nection to new TSDBs or even other NoSQL databases, the method is to write a
corresponding service implementation according to standard interface method, thus
each TSDB has an interface with Kafka. In addition, more importantly, in order to
fairly perform the benchmarking of different TSDBs, we use the message transport
mechanism to simulate a variety of real sensor data stream scenarios. For example, we
can use and send hydrological sensor datasets with different distribution rules to var-
ious TSDBs in synchronous data transmission modes.

In workloads implementation layer, we design and implement multi-scenarios
setting according to the requirement of hydrological sensor data processing. These test
scenarios include: (1) Sensor data loading or data insertion with different data sizes;
(2) Querying the data of a selected sampling site according to a time interval;
(3) According to a certain time interval, querying the data of multiple sampling sites;
(4) Increasing the number of queries as sensor stream data is continuously injected into
the NoSQL stores; (5) Increasing the amount of data sampled by the sensors while
keeping the number of queries; (6) Querying the data of a sampling site according to
multiple time intervals; (7) Aggregation query using GroupBy; (8) Indexing query.

The user interface layer is mainly responsible for three aspects: (1) Based on the
navigation tree, users can choose TSDBs for benchmarking; (2) According to the
TSDBs selected by users, TS_Store_Test provides UI for listing the benchmarking
operations; (3) It shows the performance results and workloads of benchmarking
TSDBs. The presentation of user interface is shown in Fig. 2.

646 F. Ye et al.

3.2 Performance Metrics Acquisition Based on Prometheus

Existing tools for benchmarking like YCSB or YCSB++ require that you separately do
system level monitoring of resources to identify bottleneck. To acquiring the perfor-
mance metrics in a fine-grained way, we choose and extend Prometheus as the per-
formance metrics mechanism.

Specifically speaking, Prometheus is an open-source, scalable systems monitoring
and alerting toolkit. It fits both machine-centric monitoring as well as monitoring of
highly dynamic service-oriented architectures, because it uses carefully engineered data
structures and algorithms to achieve very low per-node overheads and high concurrency.
The implementation is robust, and has been ported to an extensive set of operating
systems and processor architectures. In view of the aforementioned advantages,
TS_Store_Test integrates Prometheus, and collects the performance metrics of various
TSDBs in different workloads in a refined manner. We also extend its API for more fine-
grained monitoring including different CPU indicators, memory indicators and so on.
For example, MySQL and Influxdb provide the corresponding plug-in, but RiakTS lacks
the corresponding tools to monitor. So, fairness is not guaranteed. For this, we adopt a
unified computing method to monitor resources. A series of functions provided by
Prometheus are used for calculation to obtain the metric needed indirectly. Table 1 lists
the corresponding calculation methods for CPU, memory, and network I/O.

Fig. 2. The web user interface of TS_Store_Test

Research of Benchmarking and Selection for TSDB 647

After configuring Prometheus, it collects metrics from monitored target machines
by scraping metrics HTTP endpoints using Node Exporter. The Node Exporter exposes
an extensive set of machine-level metrics on Linux and other Unix systems. Occa-
sionally, we need to monitor components which cannot be scrapped. The Prometheus
Pushgateway helps us to push time series from short-lived service-level batch jobs to an
intermediary job. Therefore, based on Prometheus, three important types of metrics are
collected including CPU, memory, and network bandwidth in TS_Store_Test.

3.3 The Execution Mode of TS_Store_Test

When the user starts performing the benchmark, she/he only needs three steps using
user interface. At first, she/he needs to select the TSDBs and sensor data generation
mode. There are two data generation modes: stream data generator and batch data
generator.

In order to generate highly simulated sensor data, we use the Max-Min classifi-
cation and Markov chain to obtain simulation model of sensor data by inputting seed
file. We select the first-row data in the sensor data as the starting data. After passing
through the simulation model, the data will not only be output, but also be used as the
next inputting data. This allows you to continuously generate an infinite flow of data
through a looping statement and write to the target database. User can control the
beginning and end of the stream generator. For batch data generation, we assume it as
an extension of stream data generation. In other words, the storage target is no longer
the database but the HDFS file system. When running the test, the database under test
will read the previously generated batch data from HDFS.

Before benchmarking, the selected TSDBs will be checked whether they can
execute the selected workload. If not, TS_Store_Test will give some prompts. Then,
she/he selects the specific workload and fills in the parameters required for the
workload. We designed eight workloads to simulate common operations in a database
based on the criteria of having or not having additional workloads.

Table 1. Monitoring metrics.

Metric Function Description

CPU 100 – (avg by (instance) (irate
(node_cpu {instance = “xxx”,
mode = “idle”} [5 s])) * 100)

Calculate the average CPU utilization
in 5 s. (xxx is the IP address)

Memory node_memory_MemTotal_bytes-
node_memory_Buffers_bytes-
node_memory_Cached_bytes-
node_memory_MemFree_bytes-
node_memory_Slab_bytes

The memory consumption is obtained
by subtracting the cache and free memory
usage from the total memory

Network sum(irate(node_network_transmit_
bytes_total[5 s]))

Calculates the total number of bytes
transferred over the network in 5 s

648 F. Ye et al.

Additional workload means that while the user performs an action, the database is
operated at the same time. For this, we designed two workloads. One is to increase the
number of queries while data is inserted. More specific, while Kafka writes data
streams to the database, the user continues to increase the number of queries. The other
is that the number of queries remains the same while the number of topics in Kafka
continues to increase.

For not having additional workload, they are pure database operations. The
included workloads are: (1) Data import operation; (2) Selecting station data according
to a time interval; (3) Selecting data from multiple stations according to a time interval;
(4) Selecting data from the same station according to multiple time intervals; (5) Down-
frequency aggregated query; (6) Index query.

At last, TS_Store_Test executes the logic for the workload, and then the user
interface layer shows the results through visual mechanisms. When the user clicks on
the different databases, the resource monitoring module below will also make corre-
sponding changes. Through the refresh button, the user can see the current resource
consumption of the selected database in real time.

4 Experiments and Result Analysis

4.1 Sensor Dataset and Experimental Setting

The data structure of the hydrological sensor data is shown in Table 2 below, which is
derived from the data of more than 70+ hydrological sensor sampling points in the Chuhe
river basin in the year of 2015–2017, with a total number of 30 million pieces of data.

According to the size of the sensor dataset, the whole benchmarking system
TS_Store_Test is deployed in a cluster using four PCs and the hardware environment is:
Intel(R) Xeon(R) E5645@2.40 GHz dual-core 24 CPU; Kingston DDR3 1333 MHz
8G, 500 GB SSD Flash memory. Operating system tools are Ubuntu 16.04 64-bit,
Kafka 2.20 and Linux 3.11.0 kernel. Certainly, to further verify different dataset and the
result, we can increase the cluster scale and input the data scale at any time.

Table 2. The structure of hydrological sensor data.

Field name Type and length isNull Field description

id int(11) No Primary key
stcd varchar(20) No Hydrological site
tm varchar(20) No Sampling time
rz varchar(20) No Water level
rfrom varchar(20) No Hydrological sensor

Research of Benchmarking and Selection for TSDB 649

In order to show the difference between TSDBs and functions of TS_Store_Test,
our experiments tested different five types of TSDBs respectively. The TSDBs used for
the result presentation are IoTDB 0.7.0, Riak TS 1.5.2, Druid 2.7.8, Timescale 1.2.2
and QuasarDB 2.7.0.

4.2 Experiments and Analysis

Experimental Scenario 1. Based on Kafka, we firstly create 70 topics to consume the
data from 70 hydrological sensor sampling points. Every topic produces sampling data
at the rate of 10 pieces per second, and the data is concurrently and continuously
injected into different TSDBs. In this process, we set the different number of query
requests, and then monitor the CPU or memory status in real-time manner.

Figure 3 shows the performance of time series NoSQL stores. We can obviously
see that in this scenario setting, the performance of TSDBs is different. When number
of query requests exceeds 100,000, the performance of Riak TS has deteriorated sig-
nificantly. IoTDB and Druid are suitable for such scenario from performance stand-
point, but Riak TS’s performance is greatly affected by the increasing the number of
queries.

Figure 4 shows the CPU monitoring results of different TSDBs. As the number of
requests increases, Druid and QuasarDB outperformed other TSDBs. Timescale and
Riak TS are even more affected. By comparison, we can have a deeper understanding
of the importance of choosing the right TSDBs. However, for memory utilization ratio,
the above TSDBs make little difference. Thus, based on TS_Store_Test, we can further
investigate the optimal use of memory of some TSDBs.

Fig. 3. The performance of TSDBs in scenario 1

650 F. Ye et al.

Experimental Scenarios 2. At first, we maintain 50,000 query requests for the latest
water level. Then, based on Kafka, we respectively create 500, 1000 and 5000 topics to
simulate increasing number of sensor sampling points. Every topic produces sampling
data at the rate of 10 pieces per second, and the data is concurrently and continuously
injected into different TSDBs. In this process, we observe and compare the perfor-
mance of different TSDBs and meanwhile monitor the CPU or memory situations in
real-time manner.

In Fig. 5, it shows the performance of TSDBs in scenarios 2. By comparison, in
this scenarios setting, the performance advantages of time series NoSQL stores are still
contrasting. Druid demonstrates good performance against increasing sensor stream
data. It’s worth noting that MongoDB also performs very well, and its performance is
similar to that of Druid.

Fig. 4. CPU utilization ratio monitoring results of different TSDBs in scenario 1

Fig. 5. The performance of TSDBs in scenario 2

Research of Benchmarking and Selection for TSDB 651

Figure 6 shows the memory utilization ratio monitoring results of different TSDBs
using TS_Store_Test in this scenario. As the number of sensor sampling points
increases, TSDBs are significantly better than other NoSQL databases at memory
utilization ratio.

Experimental Scenarios 3. Further, we select a certain time interval, then query the
data of multiple sampling sites from different TSDBs. The selected time intervals are
day, week, month and year. Figure 7 shows the result of querying the data of multiple
sampling sites. We can see that as the query size increases, the performance of Qua-
sarDB and TimeScale declines dramatically, and Druid demonstrates best performance.
When the time interval is year, Riak TS crashed because the query object is too large.

Fig. 6. Memory utilization ratio monitoring results of different TSDBs in scenario 2

Fig. 7. The result of querying the data from multiple sampling sites

652 F. Ye et al.

To sum up, compared with document database and key value database, TSDBs
have more performance advantages for sensor stream data in various application sce-
narios. In addition, different TSDB performance varies greatly in different scenarios
and Druid’s performance is the best overall. Thus, based on TS_Store_Test, we can
further investigate the availability enhancement mechanism of some TSDBs.

5 Comparison with YCSB and BigDataBench

As an open-source specification and program suite, YCSB is often used to compare
relative performance of NoSQL database management systems. It has been used in
scholarly or tutorial discussions, particularly for Apache HBase. Also, it has been used
for multiple-product comparisons by industry observers such as Cassandra, MongoDB,
Couchbase, Aerospike, OrientDB, Redis and Riak. BigDataBench is an open-source
big data and AI benchmark suite. Now it covers seven workload types including AI,
online services, offline analytics, graph analytics, data warehouse, NoSQL, and
streaming from important application domains.

Comparedwith the two representative benchmarkingplatforms above,we compare and
summarize Table 3 from seven aspects. From a software perspective, all three bench-
marking platforms have good extensibility and usability, but we think YCSB and Big-
DataBench aremoremature. From the perspective ofNoSQL support,YCSBnow supports
the largest number and types of NoSQL databases, but TS_Store_Test can support more
TSDBs, which became the highlight of our work. In terms of existing benchmarking
capabilities, YCSB andBigDataBench are very strong, and TS_Store_Test is still relatively
lacking. Certainly, we have submitted the tool and someof the data toGitHub. In particular,
we choose and utilize Prometheus as the performance metrics mechanism, thus we can
capture the performance metrics in a refined manner.

Table 3. The comparison for benchmarking tools.

Names YCSB BigdataBench TS_Store_Test

Extendibility High High High

Open source
Software
maturity
Usability

Yes
High
High

Yes
High
High

Yes
Common
High

Supported
NoSQL
databases

Key Value Stores
(Memcached/Redis/DynaoDB/Voldemort/Aerospike/Riak/
Tarantool/Voldemort/Aerospike/Tarantool/Riak)
Wide Column Stores (HBase/Cassandra/Hypertable)
Document Stores (MongoDB/Couchbase)
Multi-model Databases (OrientDB)
Cloud Database (Infinispan/GemFire)

Document
Stores
(MongoDB)
Wide Column
Stores (HBase)

Key Value Stores
(Redis/Memcached)
Wide Column Stores
(HBase/Cassandra)
Document Stores
(MogoDB/CouchBase)
TSDBs
(QusarDB/IoTDB/Riak
TS/Druid/TimeScale)

Bencmarks
Performance
metrics

Rich
Weak

Rich
Good

Abundant
Good

Research of Benchmarking and Selection for TSDB 653

6 Summary and Prospect

Each NoSQL technology is suited for specific use cases and data models. The
importance of selecting the correct TSDBs solution for the environment and the data is
often overlooked. The decision will have a huge impact on performance and supported
functionality for user’s environment. A standardized benchmark that can be used to
evaluate the performance of different TSDBs can greatly help organizations choose the
right solution. Therefore, we designed and implemented a benchmarking platform
integrating multiple well-known TSDBs. Based on the hydrological sensor data
obtained from Chuhe river, we tested and compared the execution efficiency of com-
mon operations of various time series mechanisms. Based on the results, the feasible
storage solutions in the field of water resources information are summarized.

In the future, we will focus on integrating more NoSQL storage mechanisms and
test sensor stream data storage and processing to accommodate more business sce-
narios. In addition, we will explore the elasticity and dependability of NoSQL stores.

References

1. Qin, X., Wang, H., Du, X., Wang, S.: Big data analysis-competition and symbiosis of
RDBMS and MapReduce. J. Softw. 23(1), 32–45 (2012)

2. Dunning, T., Friedman, E.: Time Series Databases-New Ways to Store and Access Data.
O’Reilly Media, Sebastopol (2015)

3. IoTDB Homepage. http://tsfile.cn/index. Accessed 21 Apr 2019
4. Druid Homepage. http://druid.io/. Accessed 21 Apr 2019
5. Riak TS Homepage. http://basho.com/products/riak-ts/. Accessed 21 Apr 2019
6. Davoudian, A., Chen, L., Liu, M.: Survey on NoSQL stores. ACM Comput. Surv. 51(2), 1–

43 (2018)
7. Gessert, F., Wingerath, W., Friedrich, S., Ritter, N.: NoSQL database systems: a survey and

decision guidance. Comput. Sci. Res. Dev. 32, 353–365 (2016)
8. Lourenço, J., Cabral, B., Carreiro, P., Vieira, M., Bernardino, J.: Choosing the right NoSQL

database for the job: a quality attribute evaluation. J. Big Data 2, 1–26 (2015)
9. Han, R., John, L.K., Zhan, J.: Benchmarking big data systems: a review. IEEE Trans. Serv.

Comput. 11(3), 580–595 (2018)
10. Zhou, X., Qin, X., Wang, Q.: Big data benchmarks: state-of-art and trends. J. Comput. Appl.

35(4), 1137–1142 (2015)
11. Qian, W., Xia, F., Zhou, M., Jin, C., Zhou, A.: Challenges and progress of big data

management system benchmarks. Big Data Res. 1, 1–15 (2015)
12. Gregg, B.: Systems Performance: Enterprise and the Cloud. Prentice Hall, Ann Arbor (2013)
13. Kai, J.: Research on reliable-oriented adapation on microservice system. Shanghai

University, Shanghai (2016)
14. Prometheus Homepage. https://prometheus.io/. Accessed 21 Apr 2019
15. Jensen, S.K., Pedersen, T.B., Thomsen, C.: Time series management systems: a survey.

IEEE Trans. Knowl. Data Eng. 29(11), 2581–2600 (2017)
16. Wlodarczyk, T.W.: Overview of time series storage and processing in a cloud environment.

In: 4th IEEE International Conference on Cloud Computing Technology and Science,
pp. 625–628. IEEE Computer Society, Taipei (2012)

654 F. Ye et al.

http://tsfile.cn/index
http://druid.io/
http://basho.com/products/riak-ts/
https://prometheus.io/

17. Bader, A., Kopp, O., Michael, F.: Survey and comparison of open source time series
databases. In: Mitschang, B., et al. (eds.) BTW 2017. LNI, pp. 249–268. Gesellschaft für
Informatik, Bonn (2017)

18. Gandini, A., Gribaudo, M., Knottenbelt, W.J., Osman, R., Piazzolla, P.: Performance
evaluation of NoSQL databases. In: Horváth, A., Wolter, K. (eds.) EPEW 2014. LNCS, vol.
8721, pp. 16–29. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10885-8_2

19. Matallah, H., Belalem, G., Bouamrane, K.: Experimental comparative study of NoSQL
databases: HBase versus MongoDB by YCSB. Comput. Syst. Sci. Eng. 32(4), 307–317
(2017)

20. Patil, S., et al.: YCSB++: benchmarking and performance de-bugging advanced features in
scalable table stores. In: SOCC 2011, Article No. 9. ACM, Cascais (2011)

21. Alabdulkarim, Y., Barahmand, S., Ghandeharizadeh, S.: BG: a scalable benchmark for
interactive social networking actions. Future Gener. Comput. Syst. 85, 29–38 (2018)

22. Ferdman, M., et al.: Clearing the clouds: a study of emerging scale-out workloads on modern
hardware. In: International Conference Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2012, pp. 37–48. ACM, London (2012)

23. Zhan, J.F., et al.: BigDataBench: an open-source big data benchmark suite. Chin. J. Comput.
39(1), 196–210 (2016)

24. MongoDB Homepage. https://www.mongodb.com/. Accessed 21 Apr 2019
25. HBase Homepage. https://hbase.apache.org/. Accessed 21 Apr 2019
26. Pungilă, C., Fortiş, T., Aritoni, O.: Benchmarking database systems for the requirements of

sensor readings. IETE Tech. Rev. 26(5), 342–349 (2009)
27. Shah, S.M., Wei, R., Kolovos, D.S., Rose, L.M., Paige, R.F., Barmpis, K.: A framework to

benchmark NoSQL data stores for large-scale model persistence. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 586–601.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11653-2_36

28. QuasarDB Homepage. https://www.quasardb.net/. Accessed 21 Apr 2019
29. Timescale Homepage. https://www.timescale.com/. Accessed 21 Apr 2019
30. InfluxData Homepage. https://www.influxdata.com/. Accessed 21 Apr 2019
31. AXIBASE Homepage. https://axibase.com/products/axibase-time-series-database/. Accessed

21 Apr 2019
32. OpenTSDB Homepage. http://opentsdb.net/. Accessed 21 Apr 2019
33. kdb+ Homepage. https://kx.com/. Accessed 21 Apr 2019
34. KairosDB Homepage. http://kairosdb.github.io/. Accessed 21 Apr 2019
35. SiteWhere Homepage. https://github.com/sitewhere/sitewhere. Accessed 21 Apr 2019
36. Dunning, T., Friedman, E.: Streaming Architecture: New Designs Using Apache Kafka and

MapR Streams. O’Reilly Media, Sebastopol (2016)
37. Lu, R., Wu, G., Xie, B., Hu, J.: Stream bench: towards benchmarking modern distributed

stream computing frameworks. In: IEEE/ACM 7th International Conference of Utility and
Cloud Computing, pp. 69–78. IEEE, London (2014)

Research of Benchmarking and Selection for TSDB 655

https://doi.org/10.1007/978-3-319-10885-8_2
https://www.mongodb.com/
https://hbase.apache.org/
https://doi.org/10.1007/978-3-319-11653-2_36
https://www.quasardb.net/
https://www.timescale.com/
https://www.influxdata.com/
https://axibase.com/products/axibase-time-series-database/
http://opentsdb.net/
https://kx.com/
http://kairosdb.github.io/
https://github.com/sitewhere/sitewhere

HDF5-Based I/O Optimization for
Extragalactic HI Data Pipeline of FAST

Yiming Ji1, Ce Yu1, Jian Xiao1(B), Shanjiang Tang1, Hao Wang1,
and Bo Zhang2

1 College of Intelligence and Computing, Tianjin University, Tianjin, China
{jiym,yuce,xiaojian,tashj,imwh}@tju.edu.cn

2 CAS Key Laboratory of FAST, NAOC, Chinese Academy of Sciences,
Beijing, China

zhangbo@nao.cas.cn

Abstract. The Five-hundred-meter Aperture Spherical Radio Tele-
scope (FAST), which is the largest single-dish radio telescope in the
world, has been producing a very large data volume with high speed.
So it requires a high performance data pipeline to covert the huge raw
observed data to science data product. However, the existing solutions
of pipelines widely used in radio data processing cannot tackle this sit-
uation efficiently. The paper proposes a pipeline architecture for FAST
based on HDF5 format and several I/O optimization strategies. First,
we design the workflow engine driving the various tasks efficiently in the
pipeline; second, we design a common radio data storage specification
on the top of HDF5 format, and also developed a fast converter to map
the original FITS format to the new HDF5 format; third, we apply sev-
eral concrete strategies to optimize the I/O operations, including chunks
storage, parallel reading/writing, on-demand dump, and stream process
etc. In the experiment of processing 700 GB of FAST data, the results
show that HDF5 based data structure without other optimizations was
1.7 times faster than original FITS format. If chunk storage and paral-
lel I/O optimization are applied, the overall performance can reach 4.5
times as the original one. Moreover, due to the good expansibility and
flexibility, our solution of FAST pipeline can be adapted to other radio
telescopes.

Keywords: FAST · FITS · HDF5 · Pipeline in parallel · High
performance I/O

1 Introduction

Data pipeline, a key procedure for modern observational astronomy, is to convert
the raw observed data to science product, which astronomers can use directly
to make new discoveries and theoretical testing. As the continuous improvement
of capacity and resolution of telescopes, the observed data volume explosively
increases. So the performance of astronomical data pipeline becomes one of the
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 656–672, 2020.
https://doi.org/10.1007/978-3-030-38961-1_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_55&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_55

HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 657

Fig. 1. The main steps of pipeline

biggest challenges for modern large telescopes. For example, the Five-hundred-
meter Aperture Spherical Radio Telescope (FAST) [15] in Guizhou, China, is
the largest single-dish radio telescope in the world. Currently, typical data rate
of FAST is as high as 3 GB/s. FAST will output about 10 TB of raw data
per hour. Its tasks include neutral hydrogen survey and pulsar detection, which
will record a huge amount of data. Meanwhile, the 19-beam receiver, the most
frequently used receiving system of FAST [23], will produce 19 times data size
as the single beam receiver. These observed data provides more opportunities
to new scientific discoveries, meanwhile it also brings unprecedented pressure to
the traditional solution of data pipeline.

Figure 1 shows a classical work flow of radio data pipeline. It is usually divided
into four levels. Level 1 is the data format conversion, converting the original
format to an inner format throughout the whole pipeline. Level 2 is the necessary
calibrations to eliminate the noise from the universe, the earth and the device
itself to a tolerable level, including flux calibration, bandpass correction, baseline
subtraction, and radio frequency interference (RFI) mitigation [8] etc. The main
purpose of level 3 is to generate the data cube for extracting signals [18]. Level 4
refers to publish the data product to astronomers for further research. For FAST,
the process flow is almost the same as Fig. 1. In terms of the overall architecture
of pipeline, data exchange between different steps is the efficiency bottleneck to
process data.

On the other hand, unlike optical telescopes, the radio telescope have a very
wide frequency coverage, so each radio telescope has its unique physical features,
though they can share a relative common process flow, but the details of each
steps may be quite different. Therefore, there is none existing universal solution

658 Y. Ji et al.

or mature software for various radio telescopes. For example, CASA [14] aims
to adapt all radio telescopes, but is used mainly by VLA and ALMA until now,
which both are radio array or similar structure instead of single dish. CLASS [21]
is designed for (sub-)millimeter single dishes. CLASS does not support parallel
processing because it only serves small and medium telescopes. Therefore, it is
not suitable for processing tasks with large amounts of data.

There are several research works aiming to improve the data pipeline effi-
ciency. Data Activated Liu Graph Engine (DALiuGE) is an execution framework
for processing large astronomical datasets at a scale required by the Square Kilo-
metre Array Phase 1 (SKA1) [27]. It can be considered as one representation of
next generation pipeline architectures, but is more like a task deployment and
scheduling tool, lack of consideration of data layout and exchange. In addition,
AST3 daemon [10,28] is a light-weight pipeline engine for Antarctic Schmidt
Telescopes, and it has been running in Antarctic dome A for 5 years normally.
While AST3 also lacks of support for cluster environment, which is necessary for
FAST.

At present, most of existing solutions still use FITS file as the default data
format during the data processing [16,26]. FITS is a traditional astronomical
data format with fixed format specifications and complex content packaging.
According to our experiment, FITS related I/O operations take roughly 25%–
30% of the whole process. Obviously the I/O efficiency has become one of bottle-
necks of the modern radio data pipelines. Faced with rapidly increasing volume
of data, the FITS performance seems to be inadequate. Motivated by data vol-
umes, Hierarchical Data Format version 5 (HDF5) [9] has been implemented
for the LOFAR radio telescope [1], the CCAT telescope [22], and the CHIME
pathfinder [13]. Compared with FITS format, HDF5 format has more concise
structure. So it’s possible to improve I/O efficiency by changing the layout of
data in HDF5 format. In addition, the pipeline has separate processing steps
and the intermediate results are saved frequently. The large volume of FAST’s
data makes I/O cost become a vital factor impacting the overall performance.
Therefore, reducing I/O time can improve efficiency significantly.

So in order to process FAST’s continuous huge output data with high speed
and accuracy, an end-to-end solution including parallel pipeline engine, fast inner
data exchange format, high speed I/O interface, and deeply optimized algorithm
of each steps is necessary. In this paper, we focus on the common aspects of
building the qualified pipeline for FAST, that is providing an optimized pipeline
framework with high performance I/O support. Various calibration algorithms,
RFI mitigation and data cube generation modules can be easily integrated into
the pipeline through the interface, and all of them can exchange data with high
efficiency within the pipeline. The work content of this paper is described as fol-
lows. We propose the data layout specification for pipeline on the top of HDF5
format, and also develop a fast converter to map the original FITS format to
the new HDF5 format. In addition, we apply several concrete strategies to opti-
mize the I/O operations, including chunks storage, parallel reading/writing, on-
demand dump, and stream process etc. Furthermore, we implement the FAST
pipeline engine, which supports concurrency, real-time monitoring and error

HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 659

reporting, in-memory execution, and asynchronous storage of resulting data. In
the experiment of processing 700 GB of FAST data, the results show that merely
HDF5-based data structure is 1.7 times faster than original FITS format. With
chunk storage and parallel I/O optimization, the overall performance can be 4.5
times as the original one. The key contributions are:

– We design a parallel data pipeline engine to tackle FAST huge data volume,
and it can efficiently drive the pipeline to process large intermediate result in
stream style.

– We define a general data layout for single dish radio data based on HDF5,
which is used for fast data exchange between various tasks of pipeline.

– We explore several optimization strategies such as chunks storage, parallel
I/O, etc. We also integrate main processing steps into the pipeline, and make
a comprehensive evaluation based on real observed data.

This article is organized as follows. In Sect. 2, we provide some related work,
including the characteristics of FITS and HDF5 file formats, the performance
of some radio telescope pipelines, and I/O method of pipelines. In Sect. 3, we
present a description of our overall work; we also present a mapping of FAST’s
raw data (FITS) into intermediate data (HDF5) and the details of the pipeline.
Section 4 gives the experimental results to verify the efficiency of our proposed
format and the concrete implementation of pipeline. Some general summaries,
practical applications for FAST and possible future extensions are given in
Sect. 5.

2 Related Work

In this section, we discuss related work from three aspects: the format of astro-
nomical data, the pipeline of radio telescopes and file I/O.

2.1 Data Format

FITS Model. The Flexible Image Transport System (FITS) has enjoyed sev-
eral decades of usage among the field of Astronomy [16], and it was stipulated

Table 1. Example of FITS HDU

Key = Value/comment

SIMPLE = T/File does confirm to FITS standard

BITPIX = 16/ Number of bits per data pixel

NAXIS = 2/Number of data axes

NAXIS1 = 320/Number of pixels along the fastest changing axis

NAXIS2 = 512/The number of pixels along the sub-fast changing axis

END

660 Y. Ji et al.

Fig. 2. Example of HDF5 object [17]

as the unified standard format for data transmission and exchange between dif-
ferent observatories established by the International Astronomical Union (IAU)
in 1982.

FITS file consists of a set of header data units (HDUs), which are ASCII head-
ers followed by consecutive blocks of data (binary or ASCII encoding). HDUs
contain some descriptive variables, whose format is “Key = Value/Comment”.
There are some indispensable keywords listed in Table 1, such as SIMPLE, BIT-
PIX, NAXIS, NAXISn and END. In general, there are other keywords indicating
related information of observation data, such as date, telescope, observer and so
on. In astronomy, FITS is a classical format for pictorial data and spectral data.

HDF5 Model. The hierarchical data format 5 (HDF5) is the latest among the
series. HDF5 consists of data format specification and library implementation.
Compared with the old version of HDF, Its related support has been extended.
In addition, its hierarchical structure and supported libraries can reflect the
advantages of storage, reading and writing [7].

HDF5 format file is organized in a hierarchical structure, which contains
three main elements: Dataset, Group and Attribute.

– Dataset: Multidimensional arrays of data elements and support for metadata.
– Group: The grouping structure contains instances of zero or more objects,

groups or datasets; it’s supported for metadata.
– Attribute: User-defined metadata information, which can be attached to

Datasets and Groups.

The Group is the root of HDF5 object. A separate HDF5 object can perform
as its substructure. The dataset mainly stores data array, whose dimensions can

HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 661

be set from 1 to N (any positive integer). At the same time, the attributes can be
linked to different nodes of HDF5 object. Attributes annotate temperature, time
and other information defined by users. Figure 2 shows hierarchical structure of
HDF5 object and relation of Groups, Datasets and Attributes.

2.2 Pipelines Introduction

Pipeline is one kind of dataflow computation model, which was initially pro-
posed [19] to express programs as Directed Acyclic Graphs (DAG), where the
vertices are the stateless computational tasks that compose the program, and
edges connect the output of one task with the input of another. In astronomy,
the pipeline implements the data processing algorithm in the order of dataflow.
Each step of the pipeline is independent. The output of the previous step will
flow into the next step.

At present, many telescopes all over the world have their own data processing
pipelines. Davis [5,6] proposed the ALMA prototype science pipeline in 2004.
As of 2014, it had already supported distributed processing. The shooting speed
of ALMA determines the pipeline speed to be 6M/s, which is not suitable for
massive data processing of FAST.

The Transients Key Science Project (TKP) [24] is developed for LOFAR and
can study all variable sources detected by LOFAR. Its functions include the study
of transient and variable low-frequency radio sources with an extremely broad
science case ranging from relativistic jet sources to pulsars, exoplanets, flare
stars, radio bursts at cosmological distances, the identification of gravitational
wave sources and even SETI. As Lofar and FAST have different research goals,
TKP’s approach cannot be transplanted into FAST’s supporting environment.

The Very Large Telescope (VLT) [3] is a collection of eleven instruments. For
each of them, European Southern Observatory (ESO) provides automatic data
reduction facilities in the form of instrument pipelines developed in collaboration
with the instrument consortia. The Multi Unit Spectroscopic Explorer (MUSE,
Bacon et al. [2]) is one of four second generation instruments being built for the
ESO VLT. MUSE can process 150 GB of raw data per night and support two
modes, online and offline. Online mode focuses on timeliness, while offline mode
tries to optimize results and minimize user interaction.

2.3 File I/O

At present, the data file performs as the I/O unit of FAST pipeline. To optimize
the I/O of FAST pipeline, this paper provides several studies that concentrate on
optimizing the parallel file-I/O performance of HPC applications. Y.Chen and
R.Thakur proposed libraries and parallel file systems respectively, and exploit
advancements in storage technologies [4,25]. This system has some constraints on
files. It require data to be stored in its own file system. The method is not suitable
for FAST pipeline because specific file systems or libraries are not suitable for
FAST neutral hydrogen data. Other optimization techniques include exploiting
access patterns to assist file system prefetching, data sieving, and caching [12],

662 Y. Ji et al.

overlapping computation with I/O [11], and employing asynchronous prefetching
[20]. FAST pipeline is a fixed process that does the same execution to each file
and the same file is not read repeatedly. Thus data sieving, caching, overlapping
computation and so on cannot provide FAST pipeline with improvement.

From preceding part of this section, both of the formats are used in the
astronomy field. By contrast, the simplicity and flexibility of the HDF5 format
show an advantage. With HDF5 being used as intermediate data format to
replace FITS in the pipeline, I/O overhead will be reduced. As a result, overall
efficiency is improved. In addition, concurrent processing of pipeline provides
favor to process massive FAST data. By the analysis of the existing work, no
method can fully satisfy the performance demand of FAST data processing.
Based on the technical environment, the paper proposes the implementation of
workflow engine and optimization strategy for FAST pipeline.

3 HDF5-Based I/O Optimization in Pipeline

The Fig. 3 shows the architecture of the FAST data pipeline with HDF5-based
I/O optimization. The whole solution includes a work flow engine to manage the
execution of pipeline, a highly optimized I/O interface to read/write intermediate
data during the process, the HDF5 data model of FAST, and a dedicated mapper
for converting raw data from FITS to HDF5 format.

The data produced by the FAST is recorded in FITS files. Since the FITS
format is a multi-layer encapsulated table structure, the process of parsing FITS
files takes much time. HDF5 format is chosen as the alternative to reduce the
overhead of parsing FITS. In order to maximize compatibility with existing astro-
nomical software and share data, we keep the archived raw files in FITS format
and use HDF5 format as an intermediate format to improve I/O performance.
HDF5 has two distinct characteristics: hierarchical structure and attributes.
Hierarchical structure highlights the hierarchy and ownership among different
parts. In our proposed HDF5 specification, the data is grouped according to
the scanning sequence or polarization number, which makes it easier for pro-
grammers and astronomers to clarify the data content. It’s straightforward to
determine the location of the target data according to the hierarchy. In addition,
the attributes is added to the specified parts of the HDF5 object. This combi-
nation determines its self-explanatory advantages for each grouping pair. By
adding attributes, it’s visual to specify the content of the object. There are some
descriptive variables like time, shooting equipment, shooting status and so on,
which need to be recorded as float or string variables. It’s unnecessary to create
new datasets. Attributes work in this situation, which indicate these variables
in the corresponding location. In this way, the efficiency has been saved and the
relationship has been described clearly. Compared with the traditional format
FITS, our proposed data layout based on HDF5 performs better structurally.

HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 663

Fig. 3. An overview of the design, divided into two parts – a and b

3.1 Transformation and Mapping from FITS to HDF5

For all the content contained in the FITS file, we design the transformation
and mapping from FITS to HDF5, showed in Fig. 4. In the raw FITS file, Pri-
maryHDU stores the descriptive information of FAST data, and the observed
content are independently stored in binTableHDUs. The size of binTableHDU
is 2048(rows) × 21(columns). Each row is the scanning serial number accord-
ing to time. The first 20 columns record the time, coordinates, external condi-
tions, etc. The 21st column named “DATA” is a two-dimensional array (65536
× 4). 65536 is the number of channels, and 4 is the polarization serial num-
ber. As shown in the Fig. 4, the entire HDF5 object contains only one group as
its root directory. The original FITS file’s PrimaryHDU is transformed into a
set of attributes directly connected to the root directory, which includes BIT-
PIX, NAXIS, EXTEND, ORIGIN, DATE. Then 2048 datasets are corresponding
to the “DATA” columns of FITS binTableHDUs. Each binTableHDU’s first 20
columns are turned into a set of attributes for each dataset. In the intermediate
data, attributes contain the following information: frequency of observation cen-
ter, bandwidth, number of spectral channels, start/end time of data recording
in the file, Angle of the telescope (azimuth Angle and zenith Angle) after the
correction of heliocentric system, and information about the definition standard
of coordinate reference system.

3.2 HDF5 Optimization Strategies

Outside of the transformation from FITS to HDF5, there are some improvement
on the underlying field. HDF5 data is stored linearly in memory by default, so

664 Y. Ji et al.

Fig. 4. The details of mapping FITS to HDF5

the reading process has to go through all the content to find the target. If a
smaller sub-block is the target, accessing parts outside the block is invalid. In
order to avoid these invalid operations, the high frequency accessed areas are
supposed to be obtained directly.

In the process of converting data from FITS to HDF5, we specify the dataset
as a two-dimensional float array. Each dataset in HDF5 data uses a type system
similar to the Numpy module in Python. At the time of reading and storing,
the concrete array is processed as the Numpy array, and the datatype has been
mapped to the dtype of Numpy.

Chunks Storage. A two-dimensional array has two dimensions in the mathe-
matical sense, but virtually all the dimensional data in the computer’s memory
is stored in a linear continuum. Sequential storage is suitable for reading all data
at one time. However, when we only need to read one or more blocks in many
cases, such as reading the sub-dataset [2048 : 8192, 0 : 2] from an array of 65536
× 4, the program will read from beginning to end under sequential storage. There
will be a lot of overhead outside the target region. It indicates that sequential
storage does not match most sub-block reading directly. By default, the HDF5
datasets are sequentially stored, which causes unnecessary I/O cost for pipeline.

For the datasets, the N-dimensional shape is specified in the chunks storge,
which fits the access mode best. When data needs to be written into disk, it will
be split into blocks of the specified shape and written into memory in blocks.
These blocks are stored in the file whose coordinates are indexed by a B-tree.
Because pipeline involves a large number of array readings, and the size of sub-
block is determined by the algorithm in the pipeline. The pipeline proposed in
this paper supports both the default size and manually specifying the size.

HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 665

In-memory Cache. Pipeline involves many times data reading and writing. If
each reading or writing is directly sent to disk, the overall running time will be
spent primarily on reading and writing rather than computing. To overcome this
disadvantage, the data file is kept in the memory until it is processed completely.
By this strategy, the pipeline can fetch target data from memory and every step
can exchange the data directly. As an HDF5 object is generated, new space
in memory will be created to maintain it. As the in-memory file is closed, its
contents are saved to disk. As long as the entire file is put into memory, the
pipeline process only needs to read and write to the disk once per process.
Subsequent data reading and writing, attributes creation, and other operations
needn’t occupy disk I/O at all.

Data Operation in Parallel. According to the above data specification, each
file contains 2048 datasets, and each dataset is an array of 65536 × 4. Parallel
I/O for data of this size is a great way to increase efficiency. Common parallel
operations are multi-threaded and multi-process. In our early exploration exper-
iments, thread-level concurrency for HDF5 object takes a lot of technical devel-
opment. This will shift the focus of our research and it’s uncertain whether we
can meet our expectations by this way. And using HDF5 in multi-threaded pro-
grams does not improve efficiency. If multi-process is used directly to manipulate
a single HDF5 file, it is easy to conflict with the process of the pipeline hierar-
chy and the structure appears redundant. Considering the above points, Message
Passing Interface (MPI) is a superior choice. In the MPI program environment,
one HDF5 object can be accessed by multiple processes. This method supports
frequent communication between processes and collection of final results. The
process created for each HDF5 file is coordinated by the MPI library and does
not conflict with the upper process. In the process, we specify the MPI driver
and an MPI communicator. The MPI communicator is responsible for commu-
nication between different processes. For example, the process keeping a single
data file creates 4 sub-processes. Each sub-process is responsible for calculating
one chunk of data, so that four sub-blocks are computed simultaneously. In the-
ory, the performance of this scheme is four times better than that of the serial
scheme with the same computing power.

3.3 The Implementation of FAST Pipeline

Our work is based on the real neutral hydrogen data of FAST. FAST pipeline in
parallel is implemented based on the proposed optimization details above. The
main function of the pipeline is to process FAST raw data and archive processed
data. The sub-systems of the pipeline can be described as follows:

– Data processing system: the pipeline starts a specified number of processes,
each responsible for one dataflow.

– Data I/O system: the pipeline’s data read-write system is responsible for
reading data files into memory and writing them to disk. When the raw data

666 Y. Ji et al.

files are read for the first time, they will be converted to the designed HDF5
specification.

– Fault-tolerant system: the pipeline’s fault-tolerant system logs all exceptions
occurring in the middle of the process and re-executes from this step.

– Interactive system: the pipeline’s interactive system displays the current total
amount of unprocessed tasks in real time, and the current task progress per-
centage of each process.

As showed in part a of Fig. 3, the result of FAST surveying is stored in FITS
files disk in real time. When the pipeline starts, it creates a certain number of
processes to monitor FITS files disk. If the processes are more than the files, the
existing files enter the corresponding number of processes, and other processes
are idle. Then the newly generated files enter the waiting processes. If the pro-
cesses are less than the files, all the processes start working and some files enter
the task queue. Processes in working mode are locked. The only access to the
processes is the exception handling and enforcement commands issued by the
interacting system. When the task is finished, the process will be unlocked and
load the next task.

In each independent process, flow calibration, bandpass correction, baseline
correction and RFI labeling are conducted in turn. When processed data files
reach to a certain amount, Gridding is executed. The input to the first step
is an in-memory HDF5 data file, and the input to the next step is the output
from the previous step. The pipeline’s data stream is executed entirely in mem-
ory. Typically, each data file requires only one time disk reading into memory,
and I/O of subsequent steps are memory-based. Since the size of a single HDF5
file is 2 GB, the total memory consumption of the pipeline is 2n GB when the
number of processes is n. This trade-off for time efficiency at the expense of phys-
ical memory consumption is reasonable in large scientific projects. According to
the requirements of FAST staff, the results of the intermediate steps should be
backed up and saved. The size and dimensions of the stored data files are the
same as the proposed HDF5 specification. After each step in the process ends,
saving the intermediate results and processing the next step data are executed
in parallel.

If an exception occurs in the pipeline, the exception information will be
written into the log file. And the pipeline will be re-executed from the appropriate
step. Supposing the same exception occurs three times in a row, the task of the
data file will be cleared from the process. Then it loads a new file from the task
queue.

During the execution of the pipeline, the interactive system can display the
total number of tasks in the queue and the schedule of all processes in real time.
At the same time, interactive systems support command operations, such as:
pause, terminate, increase or decrease the process and view the exception logs.

HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 667

3.4 Functional Module of the Pipeline

To be used for research, the raw files need to be processed. The pipeline imple-
ments four main FAST data processing algorithms, which are introduced in the
form of modules.

Spectral Data Flow Calibration. The raw data recorded by FAST is pre-
sented in the form of mechanical records, which does not have direct physical
significance. The purpose of flow calibration is to correspond mechanical records
to physical units so that one can measure the flow of celestial sources. There
are two steps among the transformation: first, the mechanical records are con-
verted into the source’s bright temperature Tsource (K), and then the bright
temperature is converted into the source’s physical flow (Jy) through the gain
coefficient.

Bandpass and Baseline Correction. The ultimate goal of spectral obser-
vation is to extract spectral signals from celestial bodies and to measure the
physical information of spectral lines. After the calibration mentioned previ-
ously, the observed data have been corresponded with the actual flow density
of the celestial body. But it have still not met the demand of spectral data
observation, which can be explained by two reasons. Firstly, even for ON/OFF
observations in tracking mode, the calibrated data will inevitably contain the
information of continuous spectrum radiation in the sky; secondly, the frequency
response and time evolution properties of the device itself need to be considered.
We can introduce two vital concepts, bandpass and baseline. Bandpass indicates
the frequency response of the observation instruments. Baseline is the influence
of background continuous spectrum. Correcting baseline and bandpass is to min-
imize the impact of these two factors.

RFI Labeling. Radio astronomical observation faces a huge challenge from
the ubiquitous radio frequency transmission in modern society, such as radio,
mobile communications, satellite signal raking, navigation, military/civilian, var-
ious daily electronic equipment and so on. These radio frequency radiation levels
are often much stronger than the celestial signals measured. Therefore, in order
to map the large-scale sky survey data accurately in the later stage, screen and
mark the radio frequency interference is of great importance during the pre-
processing period.

Gridding. As a data product obtained from sky survey, the three-dimensional
data cube (three dimensions are the right ascension, declination, and the fre-
quency or spectral line velocity) for final analysis needs to have uniform spacing
between the right longitude and the right latitude. Radio data processing process
usually requires Gridding to convert raw data from irregular sampling space to
regular grid space with uniform spacing, so as to carry out scientific research
using scanning data. In the process of FAST data pre-processing, it often needs
to accumulate multiple scans of data before Gridding. When the data can cover
a large area of sky, the Gridding will be carried out.

668 Y. Ji et al.

4 I/O Performance Evaluation

The experimental data was generated during the trial operation of FAST sky
survey on September 18, 2018. The total volume of data is 700 GB, and a single
data file is 2 GB. The experimental environment is a 4-core 8 GB Tencent Cloud
Server.

4.1 Efficient Data Format Conversion

The first step of our approach is transforming FAST raw data from FITS format
to HDF5 format. The size of a single Fast raw data file is 2 GB, and the converted
HDF5 file is 2 GB. The conversion time is 2.91 s, which accounts for a small
proportion in the whole pipeline. Thus the conversion step is assumed to have
no effect on overall efficiency.

4.2 FITS and HDF5 Reading-Writing Comparisons

This paper provides the results for the read-write performance with native FITS
and HDF5. FITS file contains 2048 arrays (65536, 4). The corresponding HDF5
file contains the 2048 datasets to store these arrays. Figure 5a shows the perfor-
mance of reading sub-blocks from it.

Fig. 5. FITS and HDF5 read-write comparisons without other optimizations

The horizontal axis denotes the size factor of the selected block and the
vertical axis denotes the time. The size factor is n, which denotes the actual size
of the array is (2048 × n, 4). As shown in Fig. 5a, when the size of the read
block is small(n < 9), the speed of FITS-based method is faster than that of
HDF5; when n = 9, the reading performance of both them is equal; when the
block is larger (n > 9), the HDF5-based method is faster. When the whole arrays
(65536 × 4) are read, the speed of HDF5-based method is 1.7 times as that of
FITS. HDF5 performs better than FITS in large arrays reading. FITS format

HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 669

encapsulates data in a more complex way. The tree structure of HDF5 format is
beneficial to the retrieval of intersection components.

Figure 5b shows the performance of writing 2048 different size arrays into
FITS and HDF5. The sizes of new arrays are (2048 × n, 4). The horizontal axis
denotes n and the vertical axis denotes time. As shown in Fig. 5a, HDF5-based
method consistently performs better than FITS-based when writing new arrays,
whose size is from (2048 × 4) to (65536 × 4). When the size is (65536 × 4), the
speed of HDF5-based method is 1.7 times as that of FITS.

4.3 HDF5 Performance with Different Chunks

Based on the data layout we specified, this paper studies the performance of
different chunks storage schemes with the file driver of HDF5. Figure 6 shows
the test results of reading different size of blocks under four chunks schemes. The
four schemes are respectively chunks-free, automatic chunks (chunks = TRUE),
chunks = (4096, 2), and chunks = (32768, 2). These four schemes set the size
of chunks of dataset in memory. It has been proved that in this experiment, the
scheme of automatic chunks splits the dataset into chunks of size (4096, 1).

When chunks of the dataset are not specified (the line marked with triangles
in the figure), the time of reading an array of (x, 4) is less than that of (x, 1),
(x, 2) or (x, 3). This is because the default sequential storage is on the basis
of row order. When chunks = True, the system automatically sets the chunks
of dataset to (4096, 1). Reading sub-blocks of (4096,1), (8192, 1), (32768, 1)
and (65536, 1) performs better than others. When chunks = (4096, 2), reading
sub-blocks of (4096, 2), (8192, 2) performs better than others. When chunks =
(32768,2), reading sub-blocks of (32768, 2) and (65536, 2) performs better than
others. Where chunks = (4096, 2) goes the same way as chunks = (32768, 2),
because (32768, 2) is an integer multiple of (4096, 2). When chunks are set up
largely, the performance of reading small sub-blocks will be sacrificed because it
needs to shred the whole chunk of storage. The scheme of chunks = (32768, 2)
performs worst in reading sub-blocks smaller than (32768, 1). The four columns
of FAST data respectively represent four polarizations. The relation between
the polarizations in calculation is lower than that of the rows, so the connection
between columns is not the main concern. Combining the curves of each scheme,
we choose the schemes of chunks = True as the best strategy.

4.4 HDF5 Performance with MPI

Selecting the most suitable chunks scheme, we apply it to three main algorithms
in pipeline for evaluation. The three algorithms are used for flow calibration,
bandpass correction and RFI marking. The RFI marking uses the classic algo-
rithm SumThreshold. Figure 7 shows the comparison results in FITS format,
HDF5 format, and MPI-based HDF5. It illustrates performance gaps among the
FITS-based method, HDF5-based method and parallel hdf5-based method.

670 Y. Ji et al.

Fig. 6. HDF5 reading performance for
different chunks storage strategies

Fig. 7. Performance comparisons of
different strategies applied to the three
algorithms

In three modes, three algorithms are implemented respectively to record the
time. The time of HDF5-based is slightly less than that of FITS in three algo-
rithms, but the extent of the improvement is not obvious. There was a significant
improvement with a data file is operated in parallel based on MPI. In the exper-
iment, there are 4 processes working simultaneously (all four cores of the CPU
in the experimental environment are fully operational). In flux calibration, the
speed of HDF5-based with MPI driver is 4.60 times faster than that of FITS-
based; in bandpass calibration, the speed of HDF5-based with MPI driver is 4.79
times faster than that of FITS-based; in Sumthreshold, the speed of HDF5-based
with MPI driver is 5.34 times faster than that of FITS-based. As experimental
environment configuration is limited, this paper only implements four processes
to work simultaneously. While the field environment will achieve a larger amount
of calculation. This paper shows that the performance has been improved in
existing experimental environment.

5 Conclusion and Future Work

In view of the problem that FITS format cannot meet the performance require-
ments of FAST neutral hydrogen data pipeline, this paper proposes the method
of using HDF5 as an intermediate format to optimize data I/O. We propose the
efficient file format conversion scheme, in which we use the dataset of HDF5
to store the data in FITS’s binTables, and use the attributes of HDF5 to store
FITS variables in form of 〈key, value〉. In addition, we implement the workflow
engine for extragalactic HI data pipeline of FAST. HDF5 format performs bet-
ter than FITS in the pipeline. Without any drivers, HDF5’s performance is 2.1
and 2.5 times as that of FITS in reading and writing respectively. Furthermore,
we improve the performance of HDF5 through chunks storage and MPI driver,
and improve the performance of flux calibration, bandpass correction and RFI
marking by 4 times, 5 times and 6 times respectively.

In addition, the strategies of converting FITS to HDF5 may also work well
with other telescope pipelines to improve I/O performance. At the same time,
the MPI driver of our approach can support the distributed system conveniently.

HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 671

Acknowledgement. This work is supported by the Joint Research Fund in Astron-
omy (U1731125, U1731243, 11903056) under cooperative agreement between the
National Natural Science Foundation of China (NSFC) and Chinese Academy of Sci-
ences (CAS), the National Natural Science Foundation of China (11573019). BZ is
supported by Open Project Program of the Key Laboratory of FAST, NAOC.

References

1. Anderson, K., Alexov, A., Baehren, L., Griessmeier, J.M., Renting, A.: LOFAR
and HDF5: toward a new radio data standard. Astron. Data Anal. Softw. Syst.
XX 442, 53–56 (2010)

2. Bacon, R., et al.: The second-generation VLT instrument muse: science drivers and
instrument design. In: Proceedings of SPIE - The International Society for Optical
Engineering, pp. 1145–1149 (2004)

3. Ballester, P., et al.: Data reduction pipelines for the very large telescope. Proc.
SPIE - Int. Soc. Opt. Eng. 22(2), 85–98 (2006)

4. Chen, Y., Winslett, M., Yong, C., Kuo, S.W.: Automatic parallel I/O performance
optimization in Panda. In: Proceedings of Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 108–118 (1998)

5. Davis, L.E.: An overview of the ALMA pipeline system. In: Astronomical Data
Analysis Software and Systems XVIII ASP Conference Series, vol. 411, p. 306
(2009)

6. Davis, L.E., Glendenning, B.E., Tody, D.: The ALMA prototype science pipeline.
Astron. Data Anal. Softw. Syst. XIII 314, 89 (2004)

7. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
HDF5 technology suite and its applications. In: EDBT/ICDT Workshop on Array
Databases, pp. 36–47 (2011)

8. Fridman, P.A., Baan, W.A.: RFI mitigation methods in radio astronomy. Astron.
Astrophys. 378, 327–344 (2001)

9. Group, H.: The board of trustees of the University of Illinois: “introduction to
HDF5” (2006). http://web.mit.edu/fwtools v3.1.0/www/H5.intro.html

10. Yan, J., et al.: Optimized data layout for spatio-temporal data in time domain
astronomy. In: Ibrahim, S., Choo, K.-K.R., Yan, Z., Pedrycz, W. (eds.) ICA3PP
2017. LNCS, vol. 10393, pp. 431–440. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-65482-9 30

11. Ma, X., Jiao, X., Campbell, M.T., Winslett, M.: Flexible and efficient parallel
I/O for large-scale multi-component simulations. In: International Parallel and
Distributed Processing Symposium (2003)

12. Madhyastha, T.M., Reed, D.A.: Exploiting Global Input/Output Access Pattern
Classification. In: Supercomputing, ACM/IEEE Conference (1997)

13. Masui, K., et al.: A compression scheme for radio data in high performance com-
puting. Astron. Comput. 12, 181–190 (2015)

14. McMullin, J.P., et al.: CASA architecture and applications. In: Astronomical Data
Analysis Software and Systems XVI, Vol. 376 (2007)

15. Nan, R.: Five hundred meter aperture spherical radio telescope (FAST). Sci. China
49(2), 129–148 (2006)

16. Pence, W.D., Chiappetti, L., Page, C.G., Shaw, R.A., Stobie, E.: Definition of the
flexible image transport system (FITS), version 3.0. Astron. Astrophys. 524, 10
(2010)

http://web.mit.edu/fwtools_v3.1.0/www/H5.intro.html
https://doi.org/10.1007/978-3-319-65482-9_30
https://doi.org/10.1007/978-3-319-65482-9_30

672 Y. Ji et al.

17. Price, D.C., Barsdell, B.R., Greenhill, L.J.: HDFITS: porting the FITS data model
to HDF5. Astron. Comput. 12, 212–220 (2015)

18. Luo, G., et al.: HyGrid: a CPU-GPU hybrid convolution-based gridding algorithm
in radio astronomy. In: Vaidya, J., Li, J. (eds.) ICA3PP 2018. LNCS, vol. 11334, pp.
621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05051-1 43

19. Rodrigues, J.E., Rodriguez Bezos, J.E.: A graph model for parallel computation.
Massachusetts Institute of Technology (1969)

20. Sanders, P.: Asynchronous scheduling of redundant disk array. IEEE Trans. Com-
put. 52(9), 1170–1184 (2000)

21. Bardeau, S., Pety, J.: CLASS: continuum and line analysis single-dish soft-
ware, a GILDAS software. https://www.iram.fr/IRAMFR/GILDAS/doc/html/
class-html/. Accessed 21 Nov 2006

22. Schaaf, R., Brazier, A., Jenness, T., Nikola, T., Shepherd, M.: A new HDF5 based
raw data model for CCAT. Eprint Arxiv (2014)

23. Smith, S., Dunning, A., Bowen, M., Hellicar, A.D.: Analysis of the five-hundred-
metre aperture spherical radio telescope with a 19-element multibeam feed. In:
IEEE International Symposium on Antennas and Propagation, pp. 383–384 (2016)

24. Swinbank, J.D., et al.: The lofar transients pipeline. Astron. Comput. 11, 25–48
(2015)

25. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective I/O in ROMIO. In:
Symposium on the Frontiers of Massively Parallel Computation (1999)

26. Wells, W.D., Greisen, E.W., Harten, R.H.: FITS-a flexible image transport system.
Astron. Astrophys. Suppl. Ser. 44, 363 (1981)

27. Wu, C., et al.: DALiuGE: a graph execution framework for harnessing the astro-
nomical data deluge. Astron. Comput. 20, 1–15 (2017)

28. Zichao, Y., et al.: An energy efficient storage system for astronomical observation
data on dome A. In: International Conference on Algorithms and Architectures for
Parallel Processing, pp. 33–46 (2015)

https://doi.org/10.1007/978-3-030-05051-1_43
https://www.iram.fr/IRAMFR/GILDAS/doc/html/class-html/
https://www.iram.fr/IRAMFR/GILDAS/doc/html/class-html/

Understanding the Resource Demand
Differences of Deep Neural Network

Training

Jiangsu Du(B), Xin Zhu, Nan Hu, and Yunfei Du

School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
dujs@mail2.sysu.edu.cn

Abstract. More deep neural networks (DNN) are deployed in the real
world, while the heavy computing demand becomes an obstacle. In this
paper, we analyze the resource demand differences of DNN training
and help understand its performance characteristic. In detail, we study
both shared-memory and message-passing behavior in distributed DNN
training from layer-level and model-level perspectives. From layer-level
perspective, we evaluate and compare basic layers’ resource demand.
From model-level perspective, we measure parallel training of represen-
tative models then explain the causes of performance differences based on
their structures. Experimental results reveal that different models vary
in resource demand and even a model can have very different resource
demand with different input sizes. Further, we give out some observations
and recommendations on performance improvement of on-chip training
and parallel training.

Keywords: Deep neural network training · Performance · Resource
demand differences

1 Introduction

Over the last few years, deep learning (DL) achieves great success in many
domains. New deep learning (DL) applications are constantly developed and
deployed to real-world utility [4]. New requirement that provides high perfor-
mance under limited budgets is emerged.

In this paper, we uncover resource demand differences of DNN models from
which people can understand the resource demand features of all kinds of mod-
els. In order to have a comprehensive understanding, we analyze models in a
divide-conquer style, from layer-level and model-level perspectives. From layer-
level perspective, we first abstract training process of DNN and measure the
floating point operands (FLOPs), memory consumption, and communication
amount of basic layers. Moreover, two metrics are designed to compare their
resource demand differences. From model-level perspective, we evaluate overall
throughput with different batch sizes and interconnection networks. Then an

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 673–681, 2020.
https://doi.org/10.1007/978-3-030-38961-1_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_56&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_56

674 J. Du et al.

analysis is given based on their structure. We provide readers a comprehensive
insight on DNN training, and make some important observations and recommen-
dations on performance improvement of DNN on-chip computing and parallel
computing.

2 Methodology

2.1 Training Simplification

Based on a careful technical survey and the node usage of a commercial V100
GPU cluster locating at national supercomputing center in Guangzhou, we
choose data parallelism, synchronous stochastic gradient descent (SGD), and
all-reduce methods as our experimental object since their effectiveness and pop-
ularity. Notably, our focus is the feature of models, and the simplification is to
make our analysis intuitive. As shown in Fig. 1(a), under the configuration above,
DNN training can be divided into on-chip computation and off-chip communi-
cation. In each iteration, each device has a complete model copy and runs both
feed-forward and back-propagation locally. After all devices complete computing,
updates will be aggregated for next iteration.

Update

Device0

Device0

Device3 Device2

Device1

Update

UpdateUpdate

On-chip Computation Communication

(a) Training Simplification

GPU3

GPU0 GPU1

GPU2

CPUPC
Ie

Sw

itc
h

(b) Topology of DGX Station

Fig. 1. Parallel Training and DGX Topology (Color figure online)

2.2 Layer-Level Perspective

The training of DNN includes two processes, feed-forward and back-propagation.
Generally, a DNN is made up by several different layers and the computing
process between upper and lower layers is independent. Thus, the next layer
cannot start operating until finishing the previous layer. Therefore, the overall
training process can be divided by layers and studied independently.

Basic layers mainly used today are Fully Connected Layer (FCL), Convolu-
tional Layer (CONVL) and Recurrent Layer (RCL). Their static structure can
be easily learned from online resources today. For RCL, the basic RCL and two
variants, LSTM and GRU are considered.

Understanding the Resource Demand Differences of DNN Training 675

Here we analyze runtime resource demand which is floating point unit, mem-
ory and interconnection. So we measure FLOPs, memory consumption, and
communication amount to reflect the demand. At first, we identify what
resource demand should be included for a layer. For FLOPs demand, it is easy
to distinguish. For memory demand, the boundary is not that clear. The memory
of a layer consists of input placeholder, newly requested memory by operations,
and weights. Input placeholder is also the output of the upper or lower layer,
so it is not counted in. In this way, we only include newly requested memory
and weights as a layer’s memory demand. Also it is common to reuse memory
requested in feed-forward for back-propagation, so here we don’t count twice.
Notably, the intermediate result produced by feed-forward is called feature map
and that of back-propagation is called gradient map. As for communication
demand, because almost all communication overhead comes from weight syn-
chronization, so we represent communication demand by weight amount.

We implement each basic layer in Tensorflow and evaluate using TFprofiler.
Because minibatch SGD can largely increase the concurrency in today’s multi-
core or many-core architecture, we evaluate the demand with different batch
sizes. Additionally, different configurations of layers are taken into account.

Moreover, two metrics are defined to compare resource demand. The first
metric is based on two facts. The first fact is that the memory access intensity of
dominant operations in these layers are similar. Second, because of the compute
dependency, the FLOPs can not directly determine the running time. However,
for RCL, the influence of dependency goes weaker as batch size becomes large.
The first metric is floating point operands per weight (FOPP). It can reflect how
sensitive is a model to interconnect performance. The mathematical expression
is as follows:

FOPP =
floating point operands

weights × batch size
(1)

The second metric is instant floating point operands per memory (IFOPM),
it reflects the demand ratio of floating point unit and memory size. As for RCL,
it should be additionally divided by time step since the FLOPs of different time
step cannot be computed simultaneously. The mathematical expression is as
follows:

IFOPM =
floating point operands

memory usage (×time step)
(2)

2.3 Model-Level Perspective

We analyze the resource demand differences of models selected through observ-
ing their performance change with different memory usage and interconnects.
Memory usage is achieved by setting different batch sizes. As for different inter-
connect, we switch between NvLink and PCIe. Figure 1(b) displays the topology
of DGX Station. It has 1 CPU and 4 GPUs. Each GPU can access other GPUs
by NvLink (green lines) or PCIe Gen3 ×16 (orange lines). According to our
measurement, the bandwidth of Nvlink is about 5× of PCIe and latency is only

676 J. Du et al.

1 eighth. Obviously, there is a great difference between these two interconnection
networks.

3 Evaluation and Analysis

3.1 Environmental Setup

The software we use: Ubuntu 16.04.4 LTS, CUDA 10, NCCL 2.4.2, cuDNN 7.4.2,
Tensorflow v1.11, Pytorch 1.0. DGX Station is equipped with a Intel Xeon E5-
2698 V4 CPU and 4 Tesla V100 (32 GB) with NVLink.

3.2 Basic Layer Result

Fully Connected Layer. We configure FCL with different batch size and
neuron number, and evaluate corresponding weight amount, FLOPs and mem-
ory usage. From the result, we can observe that FLOPs increase proportionally
with both layer size and batch size. The dominant operation in FCL is matrix
multiplication which accounts for more than 99%. For memory, it increases pro-
portionally with layer size and a little with batch size. Memory demand for
FCL is from memory newly requested by matrix multiplication and weights. For
matrix multiplication, it needs one copy of weight and only request new memory
for feature map in feed-forward. When using larger batch size, only feature map
will increase. However, the variable number of feature map is only equal to layer
size, so the memory consumed by weights is thousands of times larger than that
of feature map.

Insights: Weights occupy most memory demand in FCL training and it only
brings a little memory increase with larger batch size.

Convolutional Layer. We configure CONVL with different batch size and
kernel size, and evaluate corresponding weights, FLOPs and memory usage. Our
result presents that FLOPs and memory demand are almost proportional to
batch size. For FLOPs, the dominant operation is Conv2D which accounts for
more than 99.5%. For memory demand, feature map occupied most of newly
requested memory. Not like FCL, memory usage of feature map is much larger
than that of weights in CONVL.

Insights: Intermediate result occupies most memory demand in CONVL train-
ing. If memory size becomes a limitation for DNN training in GPU. CONVL
can be the primary structure to be considered when reducing memory demand
by re-calculating feature maps.

Recurrent Layer. We configure RCL with different batch size, neuron num-
ber and time step, and evaluate corresponding weights, FLOPs and memory
usage. It can be observed that different RCLs demonstrate very similar trends

Understanding the Resource Demand Differences of DNN Training 677

on FLOPS and memory. For weight number, they are only influenced by hidden
layer size. For FLOPs, matrix-related operations dominate the overall computa-
tional complexity and they occupy more than 99%. Notably, the weight amount
and FLOPs of these three RCLs are about 1:3:4. For memory, it is much more
complicated than FCL and CONVL. Memory is not mainly requested by a single
operation. In RCLs, newly requested memory comes from element-wise, matrix-
vector multiplication, and data movement operations. The increase of memory
is only proportional to time step and slower than a linear relation with hidden
layer size and batch size. Based on the profiling result, these implementations
will take three copies of weights. Even so, weights only contribute to a small
percentage of memory usage and the intermediate result is dominant.

Comparison. The comparison uses metrics, FOPP and IFOPM, raised above.
To make the result easy-observable, values are normalized.

For FOPP, FCL and CONVL fluctuate at a stable value. FCL is about 0.006
and CONVL is about 6. In terms of RCL, the metric of basic RCL, GRU, and
LSTM only change with time step. If we divide FOPP of RCL by time step,
they are similar with FCL at 0.006. As we investigate in complete applications,
time step is the length of human sentence in general, so FOPP of these layers:
FCL >> BasicRNN ≈ LSTM ≈ GRU >> CONV L.

Insights: FCL or RCL, especially FCL, usually contribute to more weights and
less computation comparing to CONVL.

For IFOPM, all these layers change in a wide range. We explore their range
based on evaluation and theoretical analysis. Firstly, variables of a FCL are input
size, output size, and batch size. As claimed above, both memory demand and
FLOPs are proportional to input size. FLOPs are proportional to output size and
memory demand is almost not related to output size. For batch size, it ranges
widely from 16 to 1024 or even larger. So, IFOPM of FCL is approximately
from 12 to 756 (even larger and mainly around 100). Secondly, variables of a
CONVL are kernel size, kernel number, batch size, input size. We can know
that input size, batch size, and kernel number only slightly influence this metric.
For kernel size, it is quadratic to FLOPs and only influence memory demand a
little. The biggest kernel size yet we know is 11 and it cannot be smaller than
2. Also, a kernel is sometimes 3 dimensions and IFOPM should be multiplied
with the channel number. So, IFOPM of CONVL is approximately from 2 to 183
(even larger). Thirdly, for RCL, IFOPM of three variants are similar and always
LSTM > GRU > BasicRCL when using same configuration. We consider
hidden layer size is from 16 to 1024, batch size is from 16 to 512, and time
step is from 5 to 40. Then, basic RCL is from 0.17 to 23, GRU is from 0.17 to
24.5, and LSTM is from 0.26 to 25.7. Comparing these three layer types, the
rank of IFOPM is FCL ≥ CONV L > LSTM > GRU > BasicRCL in most
circumstances.

Insights: A layer with different input size or configuration can vary in resource
demand. FCL has much more weights than CONVL, but the IFOPM of FCL

678 J. Du et al.

can be similar or even larger than CONVL, which is different to our initial
impression. Additionally, for a device, RCL occupies larger memory then it can
use up floating point unit.

3.3 Model Result

This part we evaluate representative models that achieve competitive accuracy
in their domains. Models are listed in Table 1.

Table 1. Domains, models, datasets, and frameworks

Domains Models Dominant layer Framework Dataset

Image classification AlexNet CONVL, FCL Tensorflow ImageNet-1k

Vgg16 CONVL, FCL Tensorflow ImageNet-1k

ResNet50 CONVL Tensorflow ImageNet-1k

InceptionV3 CONVL Tensorflow ImageNet-1k

Object detection SSD [2] CONVL Pytorch COCO

Recommendation NCF [1] FCL Pytorch MovieLens

Adversarial learning DCGAN [3] CONVL Pytorch LSUN

Machine translation Seq2Seq [5] (GRU) GRU Pytorch WMT16

Seq2Seq (LSTM) LSTM Pytorch WMT16

We display our results in Fig. 2 and further extract features in Fig. 3(a)
and Fig. 3(b). Figure 3(a) is the performance improvement rate when expanding
batch size. In other words, it is the ratio of performance with two neighborhood
batch size when using a single GPU. Figure 3(b) shows the performance ratio of
4 GPUs with different interconnection networks.

AlexNet, Vgg16, InceptionV3, ResNet50. We first compare the results of
image classification models. For AlexNet, it has 8 layers (5 convolutional layers
and 3 fully connected layers). After simple calculation, almost all the weights
come from fully connected layer. For Vgg16, it has 16 layers (3 FCLs) and most
of weights still come from fully connected layer. For ResNet50, only one fully
connected layer is used in ResNet. In this way, weights are not mainly contributed
by fully connected layer. For InceptionV3, it completely remove fully connected
layer.

Moving on to the evaluation, Fig. 2(a), (b), (c), and (d) show the result of
these four models. Initially, we focus on the on-chip performance with different
batch size. When batch size is small, the expansion of batch size can bring
considerable performance improvement, and it becomes weak when batch size
goes large. As for AlexNet, because of simplicity, it obtains good performance
improvement at beginning then declines quickly. The growing rate of other three
models is very limited, especially for Vgg16. From the evaluation, we can predict
there exist a saturation point of floating point unit and the performance will not
keep increasing with batch size. In other words, it uses up floating point unit.

Understanding the Resource Demand Differences of DNN Training 679

(a) AlexNet (b) Vgg16 (c) InceptionV3

(d) ResNet50 (e) DCGAN (f) SSD

(g) NCF (h) OpenNMT LSTM (i) OpenNMT GRU

Fig. 2. Model performance display

Moving on to multi-GPU training, we can observe that all these models
gain performance improvement when using large batch size, because the com-
munication frequency is relatively reduced. However, the batch size cannot be
increased infinitely since it will damage convergence speed. From Fig. 3(b), mod-
els show different sensitivity to interconnection. For AlexNet, it is influenced
largely switching to weak interconnection. For Vgg16, the influence of weak
interconnection is also huge (about 21%) but much better than AlexNet. For
InceptionV3 and ResNet50, the bad interconnection performance damages only
a little performance (about 1.4% and 7.6%). These ratio is calculated when using
4 GPUs and the largest batch size.

DCGAN. DCGAN uses two CNNs as the core of model. Although the training
process is more complicated than pure CNN models, its training can be simply
considered as the addition of two CNNs. The implementation uses four convolu-
tional layers as generator network and five convolutional layers as discriminator
network. It removes all fully connected layer and pooling layer. Figure 2(e) dis-
plays the evaluation result. For single GPU training, its performance improve-
ment rate is quite high at the beginning comparing with other CNN based models
since it is a very small model which can hardly consume much resource. Then the
improvement rate gradually reduces to a normal level. For multi-GPU training,

680 J. Du et al.

(a) On-chip Computation (b) Parallel Computation

Fig. 3. Performance change summary

it is not very sensitive to interconnect performance. It experiences about 11%
performance decline when using 4 GPUs at batch size 1024.

Single Shot MultiBox Detector. SSD can use ResNet, Vgg, and other clas-
sical CNN as its backbone. In our implementation, ResNet34 is used. Besides
ResNet34, there exists some other structure which contributes extra time.

Figure 2(f) displays the evaluation of SSD. Obviously, in Fig. 3(a) and (b), it
shows very similar trend with InceptionV3 and ResNet50.

Neural Collaborative Filtering. NCF can be divided into 4 layer types: input
layer, embedding layer, neural CF layer, and output layer. In our implementa-
tion, all these layer are substantially FCLs. For single GPU training, as is shown
by Fig. 3(a), it only improves a little, which can validate that FCL has very
high IFOPM. As for multi-GPU training, even using large batch size, it experi-
ences a 44.4% decline when switching interconnection. It is extremely sensitive
to interconnect since it is almost fully made up by FCLs.

Insights: All previous models use CONVL and FCL as their main structure.
FCL usually contributes most weights and CONVL contributes most FLOPs in
a CNN. For on-chip performance, they quickly occupy all floating point unit
when increasing batch size. For parallel performance, FCL hugely influences the
scalability of training and CONVL-dominant models show slight performance
decline when switching to weak interconnection. For FCL-dominant models, data
parallelism can gain even no improvement if only PCIe provided.

Seq2Seq (GRU), Seq2Seq (LSTM). These two models are dominated by
RCLs. Here we use the Seq2Seq demo provided officially by OpenNMT. The
demo uses 2 RCLs as encoder and another 2 RCLs as decoder (500 hidden size).
Also, users can choose RCL type, LSTM or GRU.

Figure 2(i), and (h) demonstrate the results. From Fig. 3(a), they occupy the
top 2 places. Although they experience a decline when batch size increases, the
improvement rate is still very high. In other words, they gain more improvement
when increasing batch size. In other words, it is difficult for RCLs to occupy
all floating point units with small batch size. For multi-GPU training, even

Understanding the Resource Demand Differences of DNN Training 681

with large batch size, weak interconnection still damage overall performance
a lot (20.8% for OpenNMT (GRU), 17.8% for OpenNMT (LSTM)). 3-GPU
training with Nvlink sometimes is even better than 4-GPU training with PCIe.
Additionally, comparing Seq2Seq(GRU) and Seq2Seq(LSTM), it validates that
LSTM consumes more resources than GRU.

Insights: For on-chip performance, RCL based model needs a large batch size
to occupy all floating point unit which leads to higher memory requirements.
For parallel performance, RNN heavily depends on interconnection performance.
Additionally, for all models, a frequently mentioned but very important insight
is that increasing batch size can largely improve the on-chip running time and
decrease communication frequency.

4 Conclusion

DNN training has stepped into a new stage, which raised new challenges on
improving performance and reducing cost. We try to uncover resource demand
differences of DNN training. The work focuses on both on-chip computation and
off-chip communication. To have an insight on the demand, we analyze from
layer-level and model-level perspectives. The results reveal that there exist huge
resource demand differences among models. In detail, FCL and RCL should
contribute to much more communication overhead. FCL has much more weights
than CONVL but it has similar or even larger FOPP. For RCL, because of com-
puting dependency, it will create more intermediate results and RCL needs larger
memory size to use up device’s floating point unit. Based on these results, we
make several important observations, which can provide guidance for designing
software and hardware or simply purchasing new hardware.

Acknowledgement. This research was supported by the Natural Science Foundation
of China under Grant NO. U1811464 and the Program for Guangdong Introducing
Innovative and Enterpreneurial Teams under Grant NO. 2016ZT06D211.

References

1. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filter-
ing. In: Proceedings of the 26th International Conference on World Wide Web, pp.
173–182. International World Wide Web Conferences Steering Committee (2017)

2. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

3. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

4. Ratner, A., et al.: SysML: the new frontier of machine learning systems. arXiv
preprint arXiv:1904.03257 (2019)

5. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1904.03257

Twitter Event Detection Under
Spatio-Temporal Constraints

Gaolei Fei(B) , Yong Cheng , Yang Liu , Zhuo Liu, and Guangmin Hu

University of Electronic Science and Technology of China, Chengdu 611731, China
fgl@uestc.edu.cn, chengyong@std.uestc.edu.cn

Abstract. Billions of data spread on Twitter every day, which carries
a lot of information. It is meaningful to mine the useful information and
make it valuable. The purpose of Twitter event detection is to detect
what happened in our real life from these unstructured data. We intro-
duce the spatio-temporal information of tweets into event detection. The
event detection can be divided into three steps in this paper. First, we use
the space difference between event words and noise words and introduce
the relationship between words, then we can build a model to separate
event words and noise words. Then we define the similarity between event
tweets from three different aspects, which make up for the shortcomings
of existing methods. Finally, we construct a graph based on the simi-
larity between tweets, and the graph can be divided into different event
clusters to complete the event detection. Our method has achieved good
results and can be applied to event detection in actual life.

Keywords: Twitter event detection · Noisy words identification ·
Spatio-temporal constraints · Condtional probability

1 Introduction

The number of active users in Twitter reaches 400 million, hundreds of million
tweets are sent every day. These tweets record the details of events at the first
moment. In these unstructured data, the goal of event detection is to find out
tweets which describing events and extract the information we need from these
event tweets, such as location, time and the key word of the event.

In the Twitter event detection, many researchers have proposed various meth-
ods. The general idea of these methods is to cluster the keywords or the text of
tweets so that each tweet cluster corresponds to an event. For example, Doulamis
et al. [1] uses tweet’s sending time and the influence of Twitter users to define the
similarity between words in tweets, and implements event detection by dividing
words into different events. Dong et al. [2] combines the time and space informa-
tion of tweets to get the similarity between tweets to complete event detection.
This paper follows their idea that noisy words should obey the homogeneous
Poisson process, and besides this, we establish a word network to extract noisy

c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 682–694, 2020.
https://doi.org/10.1007/978-3-030-38961-1_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_57&domain=pdf
http://orcid.org/0000-0001-6529-3666
http://orcid.org/0000-0003-4748-8413
http://orcid.org/0000-0003-3351-9944
https://doi.org/10.1007/978-3-030-38961-1_57

Twitter Event Detection Under Spatio-Temporal Constraints 683

words more accurately. Ifrim et al. [3] uses the length and structural character-
istics of tweets to cluster tweets. Caverlee et al. [4] regards the spatio-temporal
information about tweets as signal, analyzes the characteristics of these noise sig-
nals, and applies many noise filters to remove noisy tweets, which can improve
the quality of event detection.

However, the above methods base on text similarity and clustering can not
applied to actual social media event detection. There are some problems in these
methods.

First, in actual, more than 90% of tweets do not contain event information.
many tweets are used to record the user’s own life, express their own emotions
and so on. These “noisy tweets” will affect the event detection results if we do
not filter out them.

Second, there are a lot of tweets that do not contain event information, but
their text may be similar to the tweets that describe the event, and these tweets
may be clustered together with event tweets, which lead to a large number of
“noisy tweets” in the clustering result.

Third, there also have some tweets describe the same event, but they do not
contain common words and are considered completely different in their text.
For example, Tweet1 = “please do what you can to help the victims of the
campfire in Paradise”, Tweet2 = “It breaks my heart to hear about people and
animals losing their lives due to the California wildfires”, although they have
no common words, they all describe California fire events. However, existing
methods usually can not cluster these tweets together, which may cause the
mission of event information. How to solve this problem? We know that there
may exist some tweets that describe the same event and have common words
with Tweet1 and Tweet2, such as Tweet3 = “Paradise, CA #wildfire #campfire
@Paradise, California”. We can build a model to measure the similarity between
Tweet1 and Tweet2 through the intermediate tweet (Tweet3), the problem can
be solved in this way.

Aiming to solve these problems, we have proposed some methods. First, we
study the difference between noisy words and event words, and find that noisy
words are independent to each other and appear randomly in space. Using these
features, we can separate noise words and event words to achieve the purpose
of identifying noise tweets. Second, we use the spatiotemporal information of
tweets as an important constraint on the measurement of tweets similarity. In
this way, we can measure the similarity between tweets more comprehensively
and accurately, and solve the second problem. Finally, to measure the similarity
of tweets that are different in their text but belong to the same event, we intro-
duce the co-occurrence similarity, using the co-occurrence of different words to
measure the similarity of different tweets.

2 Problem Formulation

The input of Twitter event detection is tweet stream T = {T1, T2, ..., Tn}, where
Ti denotes one tweet. The purpose of event detection is to divide T into different

684 G. Fei et al.

clusters so that each tweet cluster can correspond to an event in actual life. The
idea of our method can be divided into three steps. First, filtering out “noisy
tweets” in T and remain “event tweets”. Secondly, We define the similarity
between “event tweets” from three different perspectives. Finally, we construct
a tweet similarity graph G = (V,E), where graph vertex V denotes tweet, graph
edge E denotes the similarity between tweets. By dividing this graph, the “event
tweet” can be divided into different clusters, and each cluster can correspond to
an event.

3 Noisy Words Identification

The first step in event detection is to remove noisy tweets. If all the words in
Ti are noise words, then Ti can be regarded as a noise tweet. Hence, we need to
identify noisy words first.

Noise words have two completely different characteristics from event words.
Firstly, the appearance of noise words in different tweets are independent of
each other. In contrast, the occurrence of words describing the same event is
interrelated. Secondly, noise words appear in different regions with the same
probability, that is, noisy words appear randomly in space. However, event words
concentrates on the place where the event occurs. Therefore, we deem that noise
words follow the homogeneous Poisson process in space, while event words do
not follow. In short, if a word follows the homogeneous Poisson process, then we
think this word is a noise word, and vice versa.

To measure whether a word wi follows the homogeneous Poisson process, we
can use Ripley’s K function [5] to quantify. The Ripley’s K function is as follows:

̂K(s) = V (A)
∑

i�=j

N(dij < s)/n2 (1)

Where s denotes the distance threshold between tweets, which is a experience
value and the setting of s will be elaborated in the experimental part. V (A)
denotes the size of area A where the tweet stream is located, dij represents the
Eucidean distance between two tweets that both contain wi, and n is the number
of tweets containing wi. If wi follows to the homogeneous Poisson process, then
the result calculated by Eq. (1) will be πs2. Because the result is related to s and

not easy to measure, so we use the standardized K-funcation: ̂L(s) =
√

̂K(s)/π−
s to standardize, and ̂L(s, wi) is approximately equal to 0 if wi follows the
homogeneous Poisson process approximately. Thus, the proximity of ̂L(s, wi) to
0 can be employed for evaluating how similar wi follows the homogeneous Poisson
process. We can define a threshold l and a tolerance limit β. If ̂L(s, wi) < l − β,
then wi follows the homogeneous Poisson process approximately and can be
regarded as a noisy word. If ̂L(s, wi) > l + β, then wi can be regarded as an
event word. Finally, we think we cannot judge wether wi is a noisy word or an
event word if l − β ≤ ̂L(s, wi) ≤ l + β.

Twitter Event Detection Under Spatio-Temporal Constraints 685

It is not enough to judge whether wi is a noise word by simply calculating
it’s standardized Replay’s K function value. In our experiment, we also find that
the selection of s value has some influence on the event word, but has little effect
on the noise word. In this case, some event words may be mistakenly judged as
noise words.

We know that words describing the same event are related to each other.
If an event word is misjudged as a noise word, this misjudgment can be saved
by other words that related to it. For a word wi, we can use the conditional
probability P (i, j) = P (wi|wj) as the correlation strength of wj to wi, where
P (i, j) means the occurrence probability of wi when wj appears. In this way,
we can create a graph Gw = (V,E) to show the relationship between words. In
graph Gw = (V,E), V is vertices collection and each vertex represents a word,
E is the edges between words and each edge denotes the correlation strength
P (i, j) between two words. In this way, Vi represents word wi, and we can use
Vi to judge wether wi is a noisy word. We set the initial value of each vertex Vi

to ̂L(s, wi), then we update Vi = Vi +
∑k

j=1 p(i, j) ∗ Vj , where Vj represents wj

related to wi. In this way, whether a word is a noise word is not only affected
by the ̂L(s, wi) value, but also by the word associated with it. The specific
algorithm is as follows. If wi is an event word, then words related to it are most

Algorithm 1. Word attribute division
1: input:

T = {T1, T2, ...}:tweet stream
Ti = {geo, words}:each tweet information
n:number of words (usually set to 3w-5w)

l, β:l is ̂L(s) value threshold, β is the fuzzy bound.
2: Take out the most frequently occurring n words and calculate the conditional

probability P (i, j) = P (wi|wj).
3: Take each word as a vertex ni, the weight between the vertices is P (i, j).

vertex initial value Vi = ̂L(ni, s)
4: If Vi ≥ l + β, set Vi = 1, indicating ni is an event word.

If Vi ≤ l − β, set Vi = −1, indicating ni is a noisy word.
Otherwise set Vi = 0, indicating ni is unable to judge.

5: Starting from one vertex ni, find all the vertexes {Nk} that connected to ni, update
Vi = Vi +

∑

p(i, k) ∗ Vk , repeat this process until all Vi value have been updated.
6: Find Vi ∈ [−1, 1] and continue with process 5 until all Vi /∈ [−1, 1].
7: output:

Vi(0 ≤ i ≤ n). Vi < −1 means ni is a noise word, otherwise ni is an event word.

likely event words that belong to the same event. Even if the ̂L(s) value of wi

“drop in” the scope of the noise word, according to the 5th step of Algorithm 1,
this misjudgment can be saved.

686 G. Fei et al.

4 Tweet Similarity

In Sect. 3, we can identify noisy words and event words. If Ti is all consisted
of noise words, we can confirm that Ti does not contain event information and
delete it, so that the remaining tweets are all event tweets. In this section, we
define the similarity between tweets by merging three similarities in different
aspects, that is the text similarity, the word time signal similarity under the
spatio-temporal constraints, and the co-occurrence similarity.

4.1 Text Similarity

When calculating the similarity of the tweet text, we use TF-IDF (Term
Frequency-Inverse Document Frequency) to assign weights to each word first,
then convert each tweet into a vector, and finally use the cosine similarity to
calculate the text similarity between tweets.

Supposing that two tweets Ti, Tj have a TF-IDF weight vector X,Y, then
the text similarity between them is

Stext(i, j) =
X · Y

|X| · |Y| =
∑

i xi · yi
√

∑

x2
i · √

∑

y2
i

(2)

4.2 Spatio-Temporal Similarity

Another situation is that although two tweets are similar in their text, they may
not belong to the same event. Just considering text similarity as tweet similarity
is not enough in this case. Tweets belonging to different events tend to have large
differences in time or space. Therefore, it is necessary to add spatio-temporal
constraints to the measurement of similarity between tweets.

First, we need to construct tweet words’ signal. For two tweets T1 and T2,
supposing that they have a common word wi. Respectively taking the two tweets
as the regional center and the event scope d as the radius, then counting the
frequency that wi appears in all the tweets in the two regions in each time period.
The length of the time period is the time resolution Δt. In this way, wi gets two
time signals series from two tweets. If the two tweets describe the same event,
then the two signals of wi should have some correlation. The coefficient r2 is used
to measure the similarity of the two signals, and the larger value of r2 indicates
the higher similarity between this two signals.

r2 =

(

∑n
i=1(xi − x)(yi − y)

√
∑n

i=1(xi − x)2(yi − y)2

)2

(3)

Secondly, we add the spatio-temporal constraints to the similarity measure-
ment. Assuming the distance between the two tweets is Δd. We connect Δd and
the time resolution Δt together by adjusting Δt with Δd. Specifically, if two
tweets are far from each other, then they should not belong to the same event,

Twitter Event Detection Under Spatio-Temporal Constraints 687

and the similarity between them should be as low as possible. We can reduce the
similarity between tweets by making Δt smaller. That is, the bigger Δd is, the
smaller Δt will be. In the same condition, the bigger the time resolution Δt is,
the higher of the similarity between tweets will be. As shown in Fig. 1, the statis-
tics “fire” and “lose” appear in 64 h. If resolution Δt = 1 h, then r2 = 0.345,
and if Δt = 4 h, r2 = 0.693. It can be seen that the time resolution Δt can
directly affect the similarity between word signals. In the same condition, the
similarity between word signals can be smaller by reducing the time resolution.
Therefore, the time resolution Δt can be adjusted by calculating the distance
between tweets, then we can achieve the purpose of adjusting the similarity.

Fig. 1. Frequency of words at different time resolutions Δt

We define Dmax as the maximum distance between two tweets in tweet
stream, define Tmax as the maximum time interval. According to the distance
between two tweet Δd, then the time resolution Δt can be defined as

Δt =
Tmax

6
/(log

Dmax
100

10 + 1 − log
Dmax

Δd
10) (4)

In Eq. (4), we set Δd = 100 m if Δd < 100 m. If Δd is the minimal value,
Δt = Tmax

6 , which means we can divide Tmax into 6 segments at least. The word
time signal contains at least 6 values, which guarantees the amount of basic
information. If Δd becomes larger, then Tmax is divided into more segments.
For example, assuming Dmax = 100000, Δd = 10000, Δt = Tmax

24 will divide
Tmax into 24 segments. In this way, the time resolution Δt is adjusted by the
space distance Δd.

688 G. Fei et al.

After adding spatio-temporal constraints to the similarity measure, we also
need to determine the value of event scope d. We are unable to get d without
knowing the current specific event. We set d = {100, 1000, 10000, · · · ,Dmax},
and traverse these values in turn to calculate similarity between word signals.
We take the biggest value as the similarity of two word signals. If the two tweets
describe the same event, then under this value, the similarity of the word signal
is the highest. The reason is that if the size of the statistics area is larger than
the event region, noise is added. If smaller, useful information is lost. So when
the similarity is the highest, d is the value closest to the real event scope.

The last problem is that when two tweets have many common words, we take
the highest similarity value as the similarity between the two tweets. The entire
algorithm and implementation details are shown in Algorithm 2.

Algorithm 2. Calculating tweet similarity under spatio-temporal constraints
1: input:

T = {T1, T2, ...}:tweet stream
Ti = {timestamp, geo}:time and location information for
each tweet

1: Calculate Dmax and Tmax.
2: Find out commonWords = {wi, i = 1, 2, · · · , wn} for every two tweets in T ,

calculate their distance Δd, then calculate Δt by equation (4).
3: For each common word wi, respectively taking the two tweets as the regional center

and the different event scope d = {100, 1000, · · · , Dmax} as the radius, counting the
frequency that wi appears on the time interval Δt, then we can get word signals in
different scopes. Take the value with the highest similarity as the time signal
similarity of wi.

4: Perform the operation shown in step 3 for all common words in turn, taking the
maximum value of the similarity as the similarity between the two tweets SwordSignal.

5: output:
Similarity between two pairs of tweets SwordSignal

4.3 Co-occurrence Similarity

The main disadvantage of above method is that the similarity is always 0 if two
tweets do not have a common word. That is to say, the calculation of similar-
ity by text similarity or spatio-temporal similarity will become invalid in this
situation. In fact, two tweets that are different in text may belong to the same
event. Aiming at solving this problem, we propose another similarity measure-
ment method called cooccurrence similarity—using the co-occurrence of different
words to measure the similarity of different tweets.

For all tweets, we can use conditional probability to represent the strength of
the association between two words. Let Ti words list be {wi, i = 1, 2, · · · ,m}, Tj

words list be {wj , j = 1, 2, · · · , n}. For all tweets, we calculate the P (wj |wi) and
P (wi|wj) respectively, where P (wj |wi) represents the occurrence probability of

Twitter Event Detection Under Spatio-Temporal Constraints 689

wj when wi appears, P (wi|wj) represents the occurrence probability of wi when
wj appears. The strength of association between wi and wj is the maximum value
of P (wj |wi) and P (wi|wj). With the strength of association between words, we
can define the similarity between Ti and Tj which have no common words as
Sprob

Sprob =
1

mn

m
∑

i=1

n
∑

j=1

max(P (wj |wi), P (wi|wj)) (5)

4.4 Comprehensive Measure of Tweet Similarity

In the above subsection, we have defined the tweet similarity measurements
model which is applicable to every condition from three parts—text similarity,
spatio-temporal similarity and co-occurrence similarity. Word signal similarity
is a supplement to text similarity, and mainly used to this situation that two
tweets are similar in their text but not belong to the same event. Therefore,
these two similarity measurements need to be combined, we use the word signal
similarity SwordSignal. as the weight coefficient of the text similarity Stext.

Co-occurrence similarity is another supplement. It applies in this condition
which the tweet text have no common words but they belong to the same event.
We take the maximum value of Stext ∗ SwordSignal and co-occurrence similarity
Sprob as the similarity between two tweets.

S = max(Stext ∗ SwordSignal, Sprob) (6)

5 Tweet Cluster Partition

In the above section, we have been able to calculate the similarity between
two tweets and complete the second step of event detection. After defining the
similarity between tweets, we can create a tweet similarity graph G = (V,E),
where V denotes tweets, E denotes the similarity between tweets. Using the
Louvain algorithm to divide G, we can cluster the tweets that describe the same
event.

Louvain is a community detection algorithm and it is very efficient. The time
complexity of Louvain is O(kN +E), where N is the number of vertices, E is the
number of edges We use Louvain algorithm to divide G into multiple clusters.
and each cluster is a description of an event. However, not all tweet clusters
represent an event we need, we also need to filter out the tweet cluster that do
not contain event information. First, if a cluster contain too few tweets (less than
3) should be deleted, because this is more likely to describe some small things or
noise tweets, not the object of interest. Second, most of the tweets in the tweet
cluster are sent from the same person should be deleted. In this case, it is likely
to be an advertisement.

690 G. Fei et al.

6 Simulation Results

6.1 Data Collection and Preprocessing

In order to evaluate the performance of our method, we use Twitter stream API
to collect a total of 284k tweets in three days from 2018-11-17 to 2018-11-20 in
California, USA. Each tweet is formed as Ti = {user id, text, user mentioned,
hashtag, timestamp, geo, words}, where user mentioned and hashtag are
extracted from the tweet text, geo is the latitude and longitude information
of the tweet sender, timestamp is the timestamp when the tweet is sent. words
is obtained by tweet text segmentation, lemmatization, and filtering out stop
words. We also need to remove some tweets that do not contain valid informa-
tion. The rules are as follows

– The number of words in words is less than 2, which means the available
information is too small.

– The words in words are all user mentioned words, then the tweet does not
describe the content of the event.

6.2 Filtering Out Noisy Words

we take the n(n = 30000) words with the highest frequency to analysis. For
each word wi, we need to take out all the geographic coordinates that wi

appears and calculate their distance in pairs. For two points A(LatA,LonA)
and B(LatB,LonB) on the earth, the distance between them is

d = 2R arcsin(
√

sin2(α) + cos(LatA) cos(LatB) sin2(β)) (7)

where α = (LatA − LatB)/2, β = (LonA − LonB)/2, R = 6371 km. For all
tweets containing the word wi, Eq. 7 can be used to calculate the distance dij
between two tweets.

The ̂L(s) value of the noise word is hardly affected by changing s, but the
event word will be affected. The reason is that the distribution of event words
is concentrated in the event occurrence area. The scope of event ranges from
a few hundred meters to several tens of kilometers. Therefore, we select a list
of s values, calculate ̂L(s) from 1 km to 36 km, and take the average value as
the ̂L(s) value of the word wi. Take California as an example, in Eq. (1), V (A)
denotes the area of California, V (A) = 411000 km2s = {1 km, 2 km, · · · , 36 km}.
For the noise words “love”, “night” and the event words “wildfire”, “death”, the
relationship between ̂L(s) and s is shown in the Fig. 2. There was a big wildfire
in California on November 17, so “wildfire”, “fire” are event words, and their
̂L(s) values are all above 0.8. The value of ̂L(s) fluctuated with the change of
s value. Conversely, “night”, “love” are “noisy words”, their ̂L(s) value is close
to zero, and their ̂L(s) values are almost unaffected by s value. In the algorithm
I, we set l = 0.6, β = 0.15, we can initially judge that “night” and “love” are
noise words, “wildfire” and “fire” are event words. In the actual situation, there
will be some words’ ̂L(s) value in the interval [l − β, l + β], and it is impossible

Twitter Event Detection Under Spatio-Temporal Constraints 691

Fig. 2. ̂L(s) value for different s values

to judge whether the word is a noise word or cause misjudgment. We take the
average of ̂Ls as the initial value of the word wi, and bring it in the algorithm
I to calculate the final value Vi of the word wi. After testing, algorithm I can
effectively save this misjudgment under normal circumstances.

The experimental results show that among the 30,000 words with the highest
frequency, only 1587 words are event words, and words over 94% are noise words.
After removing the tweet without any event words, the number of tweets is
reduced from 284k to 36k.

6.3 Tweet Similarity

First, we calculate the tweet text similarity Stext, we use the TF-IDF method in
sklearn to calculate the word weight, then bring the result into the Eq. (2) and
calculate the text similarity between two tweets.

Secondly, we measure the similarity SwordSignal between tweets by construct-
ing word signal sequence. The distance of the longest distance in the tweet stream
is Dmax = 989.9 km, and the longest time gap is Tmax = 72 h. For Ti, Tj , suppose
they have two common words wi, wj , the distance between them is Δd = 1000 m,
then the time resolution Δt = 6 h according to the equation (4). For one word
wi, dividing Tmax = 72 h into 12 segments, the event scope d = {0.1 km, 1 km,
10 km, 100 km, Dmax}. Respectively taking the two tweets as the regional center
and the event scope di as the radius, then counting the frequency that wi appears
in each time period Δt, finally we get time signal series of wi. The similarity of
these time series signals are calculated by the Eq. (3), and the maximum value
of similarity under different di is taken as the similarity value. Then we calculate

692 G. Fei et al.

the similarity of the word wj , and take the maximum value as the similarity of
Ti and Tj .

Thirdly, we use conditional probability to calculate tweet similarity. The key
point is to find out the probability of wj when the word wi appears. There are
two ways to achieve this, one is to complete the statistic by traversing each
tweet, and the speed is slow. The second is to use the idea of FP-growth to build
a tree structure, which is fast. Finally, the similarity between the two tweets is
determined by Eq. (6).

6.4 Tweet Partition and Event Extraction

The previous section achieve a measurement of similarity between two pairs of
tweets. After denoising, tweets stream remain only 36k tweets. With each tweet
as a vertex, the similarity between the tweets as the edge, and a tweet similarity
graph is constructed. We delete edges with a similarity less than 0.05, which not
only prevents the Louvain algorithm from combining the low-similar tweets, but
also effectively reduces the amount of computation. In this way we construct

Table 1. California Top 3 event (with denoising + three similarity measures)

event1 Time 2018-11-17 03:59

Location [−120.10, 35.14]

Key words fire, lose, paradise, california, wildfire, smoke, heart, forest, death,
burn, campfire, angeles

Key tweets 1. Pray for the citizens of California, Fires to the east and south
2. #SanFrancisco #california #airquality #campfire @ San
Francisco, California
3. It breaks my heart to hear about people losing their lives due to the
wildfires

event2 Time 2018-11-18 00:05

Location [−118.12, 34.00]

Key words celebrate, birthday, november, day, mickey, mouse, 90th, happen,
california, love, anniversary, great

Key tweets 1. Mickey Mouse turns 90 today! Happy Birthday Mickey!
2. Happy birthday Mickey! #mickey90 #happybirthdaymickey #mick-
eymouse #disney
3. Happy 90th Birthday Mickey Mouse! And Happy Birthday Minnie
Mouse!

event3 Time 2018-11-18 06:20

Location [121.81, 39.73]

Key words trump, california, californiafires, impact, woolseyfire, presidential,
visit, areas, diss, forest, management, again

Key tweets 1. PRESIDENTIAL VISIT: @realdonaldtrump toured areas impacted
by the #CampFire
2. Trump in California and he dissed forest management again lmao
3. #makeamericarakeagain #californiafires #rake #trump @
Paradise, California

Twitter Event Detection Under Spatio-Temporal Constraints 693

Table 2. California Top 3 event (without denoising+use text similarity only)

event1 Time 2018-11-17 04:41

Location [−119.56, 35.31]

Key words fire, lose, paradise, california, day, forget, return, ag, smoke, heart,
camp, air

Key tweets 1. Our hearts go out to those working to recover from the Woolsey Fire
2. This is what California calls...A Beautiful Disaster
3.A few shots from the former town of Paradise, wiped from existence
by fire last week

event2 Time 2018-11-18 07:38

Location [−118.26,34.51]

Key words celebrate, birthday, november, day, love, time, friend, mickey, night,
90th, happen, anniversary

Key tweets 1. Happy 90th Birthday Mickey! I’m so happy we could celebrate with
you today in disneyland
2. Had such a wonderful day with friends celebrating Mickey
3. Celebrated Mickeys 90th Birthday at Walts Barn!!

event3 Time 2018/11/17 3:59

Location [−118.28, 34.15]

Key words car, fire, right, lane, traffic, fairway, stop, delay, lose, ave, destroy,
center

Key tweets 1. Car fire on the right shoulder in #Lynwood on 105 EB at Long Beach
Blvd
2. !! sigalert !! the two right lanes are closed because of a car fire
3. Vehicle on fire in #Salida on Hwy 99 NB before Hammett Rd

a sparse graph of 36k nodes and 356k edges. Using the Louvain algorithm to
divide tweets into several tweet clusters, using the tweet cluster filtering and
event information extraction methods in Sect. 5, we can get the event detection
results as shown in Table 1. For comparison, Table 2 shows the results obtained
by not using tweets denoising and using only text similarity as a measure. Take
the largest top K tweet clusters as important events. Here we take the first three
clusters, extract the event information, and compare it with the real event. The
real events are

– On 2018.11.17, two vast wildfires ravaged parts of California, killing at least
66 people.

– 2018.11.18, the 90th birthday of Disney Mickey Mouse.
– US President Trump arrived in California on the afternoon of Saturday (17th)

to learn about the serious damage caused by wildfires.

From the results in the table, we can see that we can extract keywords more
accurately if we filter out noisy tweets and use three methods to measure tweets
similarity, and all three things are successfully detected. In Table 2, the event
detection result key words is mixed with a large number of words unrelated to
the current event because of lacking denoising. At the same time, because the

694 G. Fei et al.

lack of comprehensive measurement of the similarity between tweets, event3 puts
tweets that describe the traffic accidents together. In fact, these traffic accidents
are not the same event.

7 Conclusion

This article focus on Twitter event detection, and put forward our own ideas in
filtering out noise tweets and defining the similarity between tweets. In order to
remove noise words more accurately, we not only quote the Replay′sK function
to measure the spatial distribution of noise words, but also establish a word graph
to comprehensively judge word attributes by their related words, which greatly
reduces the probability of word misjudgment. In order to define the similarity
of tweets, we quantify the influence of the spatiotemporal information of tweets,
and propose how to measure the similarity between tweets when they have no
common words. These ideas have also achieved good results with less noises and
higher accuracy in practice.

References

1. Doulamis, N.D., Doulamis, A.D., Kokkinos, P., et al.: Event detection in Twitter
microblogging. IEEE Trans. Cybern. 46, 1–15 (2015)

2. Dong, X., Mavroeidis, D., Calabrese, F., et al.: Multiscale event detection in social
media. Data Min. Knowl. Discov. 29(5), 1374–1405 (2015)

3. Ifrim, G., Shi, B., Brigadir, I.: Event detection in Twitter using aggressive filtering
and hierarchical tweet clustering (2014)

4. Liang, Y., Caverlee, J., Cao, C.: A noise-filtering approach for spatio-temporal
event detection in social media. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N.
(eds.) ECIR 2015. LNCS, vol. 9022, pp. 233–244. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16354-3 25

5. Dixon, D.P.M.: Ripley’s K Function. Encyclopedia of Environmetrics (2006)
6. Patil, M., Chavan, H.K.: Event based sentiment analysis of Twitter data. In: IEEE

Conference Record #42656; IEEE Xplore ISBN 978-1-5386-3452-3
7. Sato, K., Wang, J., Cheng, Z.: Credibility evaluation of Twitter-based event detec-

tion by a mixing analysis of heterogeneous data. IEEE Access 7, 1095–1106 (2018).
https://doi.org/10.1109/ACCESS.2018.2886312

8. Shi, L.-L., Liu, L., Wu, Y., Jiang, L., Hardy, J.: Event detection and user interest
discovering in social media data streams. IEEE Access 5, 20953–20964 (2017)

9. Shi, L., Wu, Y., Liu, L., Sun, X., Jiang, L.: Event detection and identification of
influential spreaders in social media data streams. Big Data Min. Anal. 1(1), 34–46
(2018). ISSN 2096-0654 03/06

10. Kala, T.: Event detection from text data. Department of Cybernetics Faculty of
Electrical Engineering, Czech Technical University in Prague, May 2017

https://doi.org/10.1007/978-3-319-16354-3_25
https://doi.org/10.1007/978-3-319-16354-3_25
https://doi.org/10.1109/ACCESS.2018.2886312

Correction to: Reliability Enhancement
of Neural Networks via Neuron-Level

Vulnerability Quantization

Keyao Li, Jing Wang, Xin Fu, Xiufeng Sui, and Weigong Zhang

Correction to:
Chapter “Reliability Enhancement of Neural Networks
via Neuron-Level Vulnerability Quantization” in: S. Wen et al.
(Eds.): Algorithms and Architectures for Parallel Processing,
LNCS 11945, https://doi.org/10.1007/978-3-030-38961-1_24

In the version of this paper that was originally published the affiliation of the third
author “Xin Fu” was incorrect. This has now been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-38961-1_24

© Springer Nature Switzerland AG 2022
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, p. C1, 2022.
https://doi.org/10.1007/978-3-030-38961-1_58

https://doi.org/10.1007/978-3-030-38961-1_24
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_58&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_24
https://doi.org/10.1007/978-3-030-38961-1_58

Author Index

Alajali, Walaa II-365
Alhusaynat, Abdulrahman D. II-365
Aue, Axel I-33

Bai, Yu II-261
Bannow, Nico I-33
Bao, Jingjing II-496
Bareche, Imene II-339
Bellatreche, Ladjel II-97
Benamer, Amira Rayane II-229
Benkrid, Soumia II-97
Branch, Philip II-215

Cai, Mengnan II-567
Cao, E II-135
Cao, Shuanglong II-521
Chai, Heyan I-153
Chen, Guangsheng I-285
Chen, Junjun I-595
Chen, Linqiang II-427
Chen, Mingsong II-135, II-482
Chen, Peng I-655
Chen, Shuai II-313
Chen, Tianba II-3
Chen, Wenguang II-42
Chen, Wenzhi I-169
Chen, Yifeng I-75, II-167
Chen, Yiqun I-153
Chen, Yong II-642
Chen, Yuhao I-271
Chen, Yuxiang I-421, I-533
Chen, Zhiguang II-624
Cheng, Yong II-599, II-682
Cheng, Yongbo I-359
Cheng, Zhen I-345
Cui, Jie I-330

Dai, Bowei II-349
Dai, Hua I-271, II-496
Dai, Wenhao I-689
Dai, Yi I-3
De Giusti, Armando I-391
Deng, Mingzhu II-624

Ding, Hong II-391
Dong, Dezun I-3
Dong, Guishan I-421, I-533
Du, Hongchao II-68
Du, Jiangsu II-673
Du, Yunfei II-320, II-673
Duan, Chenjian II-391
Dun, Ming II-11

Edamatsu, Takuya I-60

Fan, Lingmin II-184
Fang, Houzhi II-313
Fei, Gaolei II-151, II-599, II-682
Froemmer, Jens I-33
Fu, Maomao I-689
Fu, Xin II-135, II-277

Gai, Keke II-551
Gan, Chunjing I-122
Gao, Longxing II-418
Gao, Shang II-365
Gao, Zhipeng II-245
Ge, Jingguo II-349
Gondal, Iqbal II-399
Gong, Lina II-184
Grimm, Christoph I-33
Groß, Julian I-223
Gu, Xiaozhuo I-689
Gunturi, Venkata M. V. I-201
Guo, Cheng I-454
Guo, Jinnan II-551
Guo, Lili II-82, II-383
Guo, Song I-122
Guo, Xin II-59

Hadj-Alouane, Nejib Ben II-229
Hamza, Rafik II-331
Han, Zhenzhen I-610
Han, Zhijie I-271
Hao, Yao I-421, I-533
Haq, Ikram Ul II-399
Hassan, Alzubair II-331

He, Jing II-313
He, Pengfei II-107, II-410
Ho, Stella II-418
Horschig, Siegfried I-89
Hou, Chaofeng I-75
Hu, Cong I-242
Hu, Guangmin II-151, II-599, II-682
Hu, Hangyu II-151
Hu, Nan II-673
Hu, Shengjie II-3
Huang, Hailong I-107
Huang, Haiping I-271
Huang, Hanyu II-175
Huang, Jianqiang II-42
Huang, Weiqing I-639
Huang, Yanhong II-305
Huegle, Johannes I-89

Janapareddi, Ranjith I-138
Ji, Yiming II-656
Ji, Yimu II-313
Jia, Zhiping II-68
Jiang, Jianguo I-624
Jiang, Mengting II-391
Jiang, Wenjie II-512
Jiang, Zoe L. I-153
Jiao, Tengyun I-439
Jin, Hai I-669
Jin, Jiong II-215
Jin, Yijia II-567
Jin, Zehui II-11
Jing, Weipeng I-285

Kang, Xiaoyu I-624
Köster, Marcel I-223
Krüger, Antonio I-223

Lai, Mingche I-3
Lei, Shengwei I-578
Li, Chong I-501
Li, Dagang I-17
Li, Dongsheng II-27
Li, Guoxi I-169
Li, Huizhong II-537
Li, Jianxin II-418
Li, Jin II-331
Li, Jinbao II-577
Li, Juan II-184
Li, Keqiu I-48

Li, Keyao II-277
Li, Kui II-313
Li, Liangxiong II-349
Li, Meng I-315
Li, Mingchu I-454
Li, Peng I-373
Li, Qi I-242
Li, Qing I-242
Li, Qiong I-3
Li, Shuo II-624
Li, Si II-467
Li, Wei II-3
Li, Wenzhong II-584
Li, Xiangxue I-468, II-456
Li, Xin I-359
Li, Xuejun I-315, II-184
Li, Ye II-82, II-383
Li, Yunchun II-3, II-11, II-200
Li, Zhong I-256
Li, Zhongwei I-373
Liao, Tingting I-550
Lin, Jingqiang I-689
Lin, Mingkai II-584
Lin, Wenhai I-169
Lin, Yingchun II-11
Linghu, Yuan I-468, II-456
Liu, Chengyong II-467
Liu, Chunxiao II-116
Liu, Donghai I-439
Liu, Dongshi I-373
Liu, Fang II-624
Liu, Feng I-315
Liu, Huai I-138
Liu, Huazhong I-122
Liu, Liang II-496
Liu, Qingkai I-404
Liu, Shangdong II-313
Liu, Song I-107
Liu, Tengyu II-349
Liu, Xiao I-138, II-184
Liu, Xiaochen I-256
Liu, Xiaoguang I-373
Liu, Ximeng II-512, II-521
Liu, Xiping I-271
Liu, Yang II-599, II-682
Liu, Yinglin II-107
Liu, Zhuo II-682
Liu, Zihao II-642
Liui, Xuefeng II-537

696 Author Index

Loulergue, Frédéric I-183
Lu, Sanglu II-584
Lu, Yang I-285
Luan, Zhongzhi II-11
Luo, Gang I-138
Luo, Hengyu I-153
Luo, Li I-610
Luo, Shoushan I-518
Lv, Jing I-484

Ma, Lichuan II-537
Ma, Maode II-512
Ma, Yuyin I-655
Marbach, Trent G. I-373
Meng, Meng II-128
Mo, Zijia II-245
Musa, Saira II-135

Nagumothu, Dinesh I-138
Naiouf, Marcelo I-391
Nguyen, Cam-tu II-584

Pan, Yu II-577
Patil, Akash Suresh II-331
Pei, Qingqi II-537
Peng, Haiyang I-421
Peng, Jintao I-404
Philippe, Jolan I-183
Pousa, Adrián I-391

Qi, Heng I-48
Qi, Pengnian II-269
Qi, Saiyu II-440
Qian, Depei II-11
Qian, Hongyan I-345
Qian, Shiyou I-122
Qiang, Weizhong I-669
Qin, Wei II-42
Qin, Xiaolin I-359
Qiu, Jianjun I-359
Qiu, Meikang II-135
Qiu, Rongfa II-410
Qu, Bin I-107
Qu, Youyang II-151, II-418

Rao, Xue I-484
Ren, Qianqian II-577
Ren, Yizhi II-391, II-427
Ruan, Li II-261

Sanz, Victoria I-391
Schmidt, Christopher I-89
Schneider, Klaus I-33
Shen, Sheng I-550, I-669
Shen, Xinling II-567
Shen, Zhaoyan II-68
Shi, Hongbin II-349
Shi, Jianqi II-305
Shi, Zhixin I-624
Singh, Jugdutt Jack II-215
Snytsar, Roman II-19
Stones, Rebecca J. I-373
Sui, Xiufeng II-277
Sun, Dawei II-116
Sun, Jiazhao II-200
Sun, Tao II-59, II-615
Sun, Yuanyuan II-82, II-383

Takahashi, Daisuke I-60
Tang, Shanjiang II-656
Tang, Yu II-27
Teng, Jian I-595
Teyeb, Hana II-229
Thudumu, Srikanth II-215
Tian, Zhuo II-167
Turakhia, Yatish II-19

Uflacker, Matthias I-89

Vamplew, Peter II-399
Vishwakarma, Kartik I-201

Wan, Xiaoyun II-59
Wang, Bei I-75
Wang, Bin I-122
Wang, Bo I-373
Wang, Di II-3
Wang, Futian I-315
Wang, Gang I-373
Wang, Haiyan I-359
Wang, Han I-689
Wang, Hao II-656
Wang, Huilin II-116
Wang, Jie I-17
Wang, Jing II-269, II-277
Wang, Junxiao I-48
Wang, Qian I-107, II-245
Wang, Rui II-68
Wang, Shizhao I-564, I-578

Author Index 697

Wang, Shu I-655
Wang, Siye I-639, II-567
Wang, Tianbo I-256, I-564, I-578
Wang, Xiaoliang II-584
Wang, Xiaoying II-42
Wang, Xinning I-501
Wang, Xuan I-153
Wang, Yanfeng II-116
Wang, Yongming II-82, II-383
Wang, Zhaoyang II-537
Wang, Zhen II-391
Wang, Zhi-Jie I-122
Wei, Hansheng II-305
Wei, Tongquan II-135
Wen, Jifei II-349
Wen, Sheng I-439
Wu, Bin I-518
Wu, Di I-345, I-595
Wu, Hao II-456
Wu, Junfang I-669
Wu, Ke I-3
Wu, Lei I-655
Wu, Qingtao II-128
Wu, Qinxuan II-567
Wu, Ting II-391
Wu, Weigang II-107, II-410
Wu, Weiguo I-107
Wu, Yulei II-349

Xi, Ning I-484
Xia, Chunhe I-256, I-564, I-578
Xia, Tianyu II-427
Xia, Ying II-175
Xia, Yunni I-655
Xiang, Mingrong I-345
Xiang, Yang I-439
Xiang, Yong II-418
Xiao, Jian II-656
Xiao, Junchao II-456
Xiao, Kaile II-245
Xiao, Limin II-261
Xiao, Nong II-624
Xie, Jinxing I-639
Xie, Xin I-48
Xu, Chuan I-610
Xu, Guokun I-624
Xu, Jia I-315, II-184
Xu, Lele II-82, II-383
Xu, Peng I-669

Xu, Rongbin I-138
Xu, Yan I-330
Xu, Zhiyu I-439

Yan, Hongyang II-331
Yan, Xiaodan I-518
Yang, Dingyu I-122
Yang, Geng II-496
Yang, Hailong II-11, II-200
Yang, Lin I-439
Yang, Maohu II-496
Yang, Mengmeng I-550
Yang, Shuqiang I-153
Yang, Zhang I-404
Yao, Haichang II-313
Yao, Zhongjiang II-349
Ye, Dayong I-550
Ye, Feng II-642
Ye, Xin II-305
Yi, Xun II-496
Yin, Jian I-122
Yin, Lujia II-27
Yin, Qilei I-624
Ying, Xia II-339
Ying, Zuobin II-512, II-521
You, Xin II-11
Yu, Ce II-656
Yu, Dunhui I-300
Yu, Fucai II-599
Yu, Shui I-421, I-533, I-595, II-482, II-537
Yuan, Haoran II-440
Yuan, Jiajun I-107
Yuan, Lifeng II-427

Zhai, Xuemeng II-151
Zhan, Xinyu II-482
Zhang, Bo II-656
Zhang, Chong II-184
Zhang, Fuyou II-440
Zhang, Huan I-518
Zhang, Jiale I-345, I-595
Zhang, Jianning II-135
Zhang, Jing II-615
Zhang, Junyang I-655
Zhang, Lei II-167
Zhang, Lingli I-300
Zhang, Meng II-440
Zhang, Mingchuan II-128
Zhang, Peng I-533, II-642

698 Author Index

Zhang, Shun II-521
Zhang, Ting II-59
Zhang, Weigong II-269, II-277
Zhang, Xiahao II-286
Zhang, Xiaoxiao I-300
Zhang, Xingsheng I-300
Zhang, Yanfang I-639, II-567
Zhang, Yang II-577
Zhang, Yue II-482
Zhang, Zhaolei I-421, I-533
Zhang, Zhaoning II-27
Zhang, Zhenlong I-468
Zhang, Zijian II-551
Zhao, Guofeng I-610
Zhao, Keyan I-48
Zhao, Yanan I-454
Zhao, Yanchao II-467
Zhao, Ying I-595
Zheng, Kangfeng I-518
Zheng, Ruijuan II-128
Zheng, Wanbo I-655
Zheng, Xi I-138

Zheng, Xinyue II-245
Zhong, Hong I-330
Zhong, Jiang I-242
Zhong, Wenjie II-59, II-615
Zhou, Jieying II-107, II-410
Zhou, Peng II-521
Zhou, Qi II-427
Zhou, Wanlei I-550, II-151
Zhou, Xiaobo I-48
Zhu, Erzhou I-315
Zhu, Junlong II-128
Zhu, Liehuang II-551
Zhu, Shaoyi I-639
Zhu, Songjie II-642
Zhu, Tianqing I-550, I-669
Zhu, Xiaoyan II-269
Zhu, Xin II-673
Zhu, Xing II-320
Zhuang, Er I-138
Zhuang, Yi II-286
Zou, JianZhong I-330
Zou, Weitao I-285

Author Index 699

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Parallel and Distributed Architectures
	SPM: Modeling Spark Task Execution Time from the Sub-stage Perspective
	Abstract
	1 Introduction
	2 Related Work
	3 Modeling Task-Level Execution Time
	3.1 Parameters for Prediction
	3.2 Prediction of Sub-stage Execution Time

	4 Experiments
	4.1 Experimental Setup and Data Acquisition
	4.2 Experimental Results

	5 Conclusion
	Acknowledgement
	References

	Improving the Parallelism of CESM on GPU
	1 Introduction
	2 Background
	2.1 CESM Overview
	2.2 The Atmosphere Component
	2.3 Parallelization of CESM

	3 Performance Optimization Strategies
	3.1 Bottleneck Analysis of CESM
	3.2 Solar Radiation Optimization
	3.3 Longwave Radiation Optimization
	3.4 Aerosol Masses Conversion Optimization

	4 Evaluation
	4.1 Experiment Setup
	4.2 Performance Analysis

	5 Related Work
	6 Conclusion
	References

	Parallel Approach to Sliding Window Sums
	1 Introduction
	1.1 Prefix Sum
	1.2 Sliding Window Sum
	1.3 The Seed-filter-extend Paradigm
	1.4 Seed Tables and Minimizers

	2 Methods
	2.1 Vector Algorithms

	3 Results
	4 Conclusion
	References

	Rise the Momentum: A Method for Reducing the Training Error on Multiple GPUs
	1 Introduction
	2 Related Work
	2.1 Parameter Server
	2.2 Stochastic Gradient Descent and Its Variants

	3 Multi-GPUs Training
	3.1 Linear Scaling Rule ch4linearstrategy
	3.2 Batch Normalization

	4 Experiments
	4.1 Experiment Setup
	4.2 SGD
	4.3 Adam
	4.4 NAG
	4.5 Warm-Up Strategy

	5 Conclusion
	A Appendix A
	B Appendix B
	References

	Pimiento: A Vertex-Centric Graph-Processing Framework on a Single Machine
	1 Introduction
	2 Disk-Based Graph Computation
	2.1 Maintaining Specification Integrity
	2.2 Computational Model
	2.3 Update Scheme
	2.4 Analysis of the I/O Costs

	3 System Design and Implementation
	3.1 I/O Thread Optimization
	3.2 Memory Resource Monitoring

	4 Experimental Evaluation
	4.1 Test Setup
	4.2 Comparison with Other Systems
	4.3 Optimization of the Update- and I/O Thread Proportions

	5 Related Work
	6 Conclusions
	References

	Software Systems and Programming Models
	Parallel Software Testing Sequence Generation Method Target at Full Covering Tested Behaviors
	Abstract
	1 Introduction
	2 Key Operations
	3 Testing Sequence Generation Algorithm
	4 Testing Example and Result Analysis
	5 Conclusion
	Acknowledgment
	References

	Accurate Network Flow Measurement with Deterministic Admission Policy
	1 Introduction
	2 Background and Motivation
	3 Architectural Overview
	3.1 Design of DAP
	3.2 Accuracy Analysis

	4 dL-DAP
	4.1 Hash Collision Resolution
	4.2 Design of dL-DAP

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Result

	6 Conclusion
	References

	A Comparison Study of VAE and GAN for Software Fault Prediction
	Abstract
	1 Introduction
	2 Background
	2.1 Variational Autoencoder (VAE)
	2.2 Generative Adversarial Networks (GAN)
	2.3 Synthetic Minority Over-Sampling Technique (SMOTE)

	3 Experimental Methodology
	3.1 Data Processing
	3.2 The Design of VAE
	3.3 The Design of GAN
	3.4 Evaluation

	4 The Results of Experiment
	5 Conclusion
	Acknowledgement
	References

	A Framework for Designing Autonomous Parallel Data Warehouses
	1 Introduction
	2 Background and Related Work
	3 Our Framework for Autonomous Parallel DW Design
	3.1 Workload Clustering
	3.2 Our Data Partitioning Algorithm

	4 Generating Allocation Schema
	5 Experimental Results
	6 Conclusion
	References

	Distributed and Parallel and Network-based Computing
	Stable Clustering Algorithm for Routing Establishment in Vehicular Ad-Hoc Networks
	Abstract
	1 Introduction
	2 Scenario of the Stable Clustering Algorithm
	3 Mechanism of the Stable Clustering Algorithm
	3.1 Clustering for the Similar Neighbor Nodes
	3.2 Selection of Preferred Cluster Head Node
	3.3 Selection of Alternative Cluster Head Node
	3.4 Maintenance of Neighbor Cluster

	4 Simulation and Result Analysis
	5 Conclusion
	Acknowledgment
	References

	Utility-Based Location Distribution Reverse Auction Incentive Mechanism for Mobile Crowd Sensing Network
	Abstract
	1 Introduction
	2 Sensing Model
	2.1 Release Task Stage
	2.2 Select Worker Stage
	2.3 Selecting the Winner Stage
	2.4 Submit Data and Payment Stage
	2.5 Evaluate the Data Stage
	2.6 ULDM Incentive Algorithm

	3 Experimental Analysis
	3.1 Simulation Environment and the Corresponding Parameter Settings
	3.2 Simulation Results Analysis

	4 Conclusion
	References

	Safeguarding Against Active Routing Attack via Online Learning
	1 Introduction
	2 Observation Resilience for the Prefix Interception Attacks
	3 Safeguarding Against the Prefix Interception Attack via Online Learning
	4 Simulation Tests
	5 Conclusion
	References

	Reliability Aware Cost Optimization for Memory Constrained Cloud Workflows
	1 Introduction
	2 Related Work
	3 Scheduling Model and Problem Definition
	3.1 Modeling of VM
	3.2 Modeling of Workflow
	3.3 Modeling of Tasks with Fault Tolerance
	3.4 Problem Definition

	4 Our Evolutionary Approach
	4.1 Encoding
	4.2 Fitness Function
	4.3 Crossover and Mutation
	4.4 Chromosome Modification

	5 Performance Evaluation
	5.1 Experimental Setting
	5.2 Results and Analysis

	6 Conclusions
	References

	Null Model and Community Structure in Heterogeneous Networks
	1 Introduction
	2 Related Work
	3 Null Model of Heterogeneous Networks
	3.1 Heterogeneous Networks and Heterogeneous Node Degree
	3.2 Null Model of the Heterogeneous Networks
	3.3 Random Walk on Heterogeneous Networks

	4 Modularity Function of Heterogeneous Networks
	5 Community Structure and the Fast Algorithm in Heterogeneous Networks
	6 Experiments
	7 Conclusion
	References

	Big Data and Its Applications
	An Asynchronous Algorithm to Reduce the Number of Data Exchanges
	1 Introduction
	2 Existing Parallel Models
	3 Asynchronous Algorithm
	3.1 Description of the Method

	4 The Optimization
	5 Implementation
	6 Performance Results and Analysis
	7 Conclusion
	References

	Two-Stage Clustering Hot Event Detection Model for Micro-blog on Spark
	1 Introduction
	2 Terminology Definition
	3 Two-Stage Clustering Hot Event Detection Model
	3.1 Text-Cluster Stage
	3.2 Semantic-Cluster Stage

	4 Parallel Computing Design and Implementation
	4.1 Updating Cluster-Center
	4.2 Spark Implementation

	5 Experiment and Analysis
	5.1 Experimental Preparation
	5.2 Accuracy Evaluation
	5.3 Running Time Comparison

	6 Summary
	References

	Mobility-Aware Workflow Offloading and Scheduling Strategy for Mobile Edge Computing
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Mobility-Aware Workflow Offloading and Scheduling Strategy
	3.1 Mobility-Aware Workflow Task Offloading Strategy
	3.2 PSO Based Task Scheduling Algorithm in the MEC Environment
	3.3 Mobility-Aware Task Migration Strategy

	4 Evaluation
	4.1 Experimental Settings
	4.2 Evaluation Results

	5 Conclusion and Future Work
	Acknowledgement
	References

	HSPP: Load-Balanced and Low-Latency File Partition and Placement Strategy on Distributed Heterogeneous Storage with Erasure Coding
	1 Introduction
	2 Background and Motivation
	2.1 Heterogeneity in Distributed Storage System
	2.2 Load Imbalance
	2.3 The (n,k) Fork-Join Queuing Model
	2.4 Motivation

	3 The Methodology of HSPP
	3.1 Partition with Erasure Coding
	3.2 Statistic Based Data Classification
	3.3 Adaptive Data Placement

	4 The Implementation of HSPP
	4.1 Dual-Way Service
	4.2 K-Hit Ratio

	5 Evaluation
	5.1 Experimental Setup
	5.2 Load Balance
	5.3 Mean and Tail Latency
	5.4 Scheduling Overhead

	6 Related Work
	7 Conclusion
	References

	Adaptive Clustering for Outlier Identification in High-Dimensional Data
	1 Introduction
	2 Related Work
	3 Proposed Algorithm
	4 Adaptive Clustering Framework
	4.1 Local Relevancy and Low-Dimensionality
	4.2 Candidate Subspaces
	4.3 Adaptive Clustering

	5 Experimental Evaluation
	5.1 Data Points Exclusion Using a Large ER
	5.2 Data Points Exclusion with Iterative ER
	5.3 Calculation of Occurrences for Fine-Grain Outliers

	6 Conclusion and Future Work
	References

	Penguin Search Aware Proactive Application Placement
	1 Introduction
	2 Related Work
	3 System Model
	3.1 IoT-Fog-Cloud Architecture
	3.2 IoT Application Model

	4 Studied Use Case
	5 Problem Formulation
	5.1 Exact Solution
	5.2 Penguins Search Metaheuristic
	5.3 Penguin Search Aware Application Resource Provisioning
	5.4 Allocation Repair Algorithm (ARA)

	6 Simulation and Experiments
	6.1 Exact Solution Vs PsAAP
	6.2 Simulations

	7 Conclusion and Future Work
	References

	A Data Uploading Strategy in Vehicular Ad-hoc Networks Targeted on Dynamic Topology: Clustering and Cooperation
	Abstract
	1 Introduction
	2 System Model
	2.1 Scenario Architecture
	2.2 Cluster Formation
	2.3 Cluster Head Selection
	2.4 Cluster Communication

	3 Clustering Strategy and Cooperative Uploading
	3.1 Adjacency Screening
	3.2 Cooperative Uploading

	4 Simulations and Analysis
	4.1 Basic Simulation Settings
	4.2 Performance Analysis

	5 Conclusion
	Acknowledgement
	References

	Cloud Server Load Turning Point Prediction Based on Feature Enhanced Multi-task LSTM
	1 Introduction
	2 Notation and Problem Definition for Workload Turning Point Prediction
	2.1 Definition for Workload Turning Point

	3 Workload Turning Point Prediction for Cloud Server
	3.1 Feature Enhanced Multi-task LSTM

	4 Experiments
	5 Conclusion
	References

	Distributed and Parallel Algorithms
	Neuron Fault Tolerance Capability Based Computation Reuse in DNNs
	Abstract
	1 Introduction
	2 Background
	2.1 Input Similarity Analysis
	2.2 Reuse Principle
	2.3 Neurons Criticality Analysis

	3 Mquans Reuse Schema
	3.1 Cluster-Wise Quantization
	3.2 Mquans Reuse Schema

	4 Experiment and Evaluation
	4.1 Experimental Setup
	4.2 Results Analysis

	5 Related Works
	6 Conclusion
	Acknowledgment
	References

	Reliability Enhancement of Neural Networks via Neuron-Level Vulnerability Quantization
	Abstract
	1 Introduction
	2 Background
	3 NVF: Neuronal Soft-Error Vulnerability Factor
	4 NVF-Guided Reliability Enhancements for the NNs System
	4.1 NVF-Guided Neuron Scheduling

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of Neurons Scheduling Scheme

	6 Conclusion
	Acknowledgment
	References

	A Fault Detection Algorithm for Cloud Computing Using QPSO-Based Weighted One-Class Support Vector Machine
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dimensionality Reduction
	3.2 Fault Detection and Identification Model
	3.3 Weight Allocation Strategy
	3.4 Parameter Optimization Algorithm Based on QPSO

	4 The QPSO-Based WOCSVM Fault Detection Algorithm
	5 Experiments and Analysis
	5.1 Experimental Setting
	5.2 Analysis of Experimental Results

	6 Conclusion
	Acknowledgements
	References

	ParaMoC: A Parallel Model Checker for Pushdown Systems
	1 Introduction
	2 Model Checking on Pushdown Systems
	3 Overview of ParaMoC
	3.1 Architecture and Implementation
	3.2 The Usage of ParaMoC

	4 Experiment
	4.1 Performance Evaluation
	4.2 Application

	5 Conclusions
	References

	FastDRC: Fast and Scalable Genome Compression Based on Distributed and Parallel Processing
	Abstract
	1 Introduction
	2 Problem Statement and Methodology
	3 Method
	3.1 Distributed Method
	3.2 Implementation Steps

	4 Experimental Environment and Data
	4.1 Experimental Results and Analysis

	5 Conclusion
	Acknowledgements
	Funding
	References

	A Parallel Approach to Advantage Actor Critic in Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Our ParaA2C Approach
	3.1 Coarse-Grained Parallelization
	3.2 Scalability

	4 Evaluation
	4.1 Learning Rate Study
	4.2 Performance Study

	5 Conclusions
	References

	Applications of Distributed and Parallel Computing
	Blockchain-PUF-Based Secure Authentication Protocol for Internet of Things
	1 Introduction
	2 Background and Related Works
	2.1 Physical Unclonable Function (PUF)
	2.2 Blockchain
	2.3 Challenges

	3 Proposed Framework Based on PUF Model
	3.1 System Architecture
	3.2 Enrollment Phase
	3.3 Verification Phase

	4 Analysis
	5 Conclusion
	References

	Selective Velocity Distributed Indexing for Continuously Moving Objects Model
	1 Introduction
	1.1 Contribution

	2 Background, Challenges and Related Works
	3 Proposed Indexing Technique Outline
	3.1 Index Structure
	3.2 CKNN Query Processing

	4 Conclusion
	References

	A New Bitcoin Address Association Method Using a Two-Level Learner Model
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Basic Feature Analysis and Extraction
	3.2 Clustering to Binary-Classification Transformation
	3.3 Model Stacking Architecture: A Two-Level Learner

	4 Experimental Results and Analysis
	4.1 Dataset
	4.2 Model Training
	4.3 Experimental Results

	5 Conclusion
	References

	Fog Computing Based Traffic and Car Parking Intelligent System
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Preliminaries
	3.2 Framework Description
	3.3 Proposed Prediction Method

	4 Experiments
	4.1 Dataset
	4.2 Discussion and Evaluation of Results

	5 Conclusion
	References

	Service Dependability and Security
	Semi-supervised Deep Learning for Network Anomaly Detection
	Abstract
	1 Introduction
	2 Experimental Methodology
	2.1 Dataset
	2.2 Data Processing

	3 Results of the Experiment
	4 Conclusion
	Acknowledgement
	References

	A Vulnerability Assessment Method for Network System Based on Cooperative Game Theory
	1 Introduction
	2 Related Work
	3 Model
	3.1 Network Environment
	3.2 Vulnerability Dependency Graph
	3.3 Shapley Value Based on VDG
	3.4 Weighted Shapley Value

	4 Algorithm
	5 Result
	5.1 Scalability Analysis
	5.2 Solution Quality Analysis

	6 Conclusions and Future Work
	References

	Enhancing Model Performance for Fraud Detection by Feature Engineering and Compact Unified Expressions
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Feature Engineering Techniques for Bank Dataset
	3.2 Situated Profile Models
	3.3 Challenges and Tokenizing a Feature Value
	3.4 Algorithms
	3.5 Unified Expressions Language
	3.6 Constructing a Feature

	4 Results
	4.1 Bank Datasets

	5 Conclusion
	References

	Network Intrusion Detection Framework Based on Embedded Tree Model
	Abstract
	1 Introduction
	2 Related Works
	3 Theory of Gradient Boosting Decision Tree
	4 The Proposed Framework
	5 Dataset and Evaluation
	5.1 UNSW-NB15 Dataset
	5.2 Testing Evaluation and Performance Measures

	6 Experiments and Results
	6.1 Result Comparison

	7 Conclusion
	Acknowledgment
	References

	Generative Adversarial Nets Enhanced Continual Data Release Using Differential Privacy
	1 Introduction
	2 Related Work
	3 System Modelling
	3.1 Preliminary
	3.2 Differential Privacy Identifier
	3.3 Differential Privacy Under Continual Observation

	4 Performance Evaluation
	5 Summary and Future Work
	References

	Data Poisoning Attacks on Graph Convolutional Matrix Completion
	1 Introduction
	2 Related Work
	2.1 Recommender System
	2.2 Graph Convolutional Network
	2.3 Adversarial Attacks to Recommender Systems
	2.4 Adversarial Attacks to GCN

	3 Problem Definition and Preliminary
	3.1 Victim Model
	3.2 Threat Model
	3.3 Attack Model

	4 Poisoning Attacks
	5 Experiments
	5.1 Experiments Setup
	5.2 Results

	6 Conclusion
	References

	Secure Data Deduplication with Resistance to Side-Channel Attacks via Fog Computing
	1 Introduction
	2 Background
	2.1 System Overview
	2.2 Threat Model and Design Goals
	2.3 Cryptography Primitives

	3 System Design
	3.1 Design Philosophy
	3.2 Encryption Scheme
	3.3 Design Details

	4 Security Analysis
	5 Implementation
	6 Evaluation
	6.1 Real-World Data
	6.2 Synthetic Data

	7 Related Work
	8 Conclusion
	References

	Practical IDS on In-vehicle Network Against Diversified Attack Models
	1 Introduction
	2 Related Work
	3 Can Bus Data and Attack Models
	4 Autoencoder and Feature Extraction
	5 Support Vector Machine Model and Abnormal State Detection
	6 Model Parameter Configuration
	7 Experiments and Evaluations
	References

	Ultragloves: Lowcost Finger-Level Interaction System for VR-Applications Based on Ultrasonic Movement Tracking
	1 Introduction
	1.1 Background
	1.2 Limitation of State-of-the-Art
	1.3 Challenges
	1.4 Our Approach and Contributions

	2 Modeling and Preliminaries
	2.1 Application Model
	2.2 One-Dimensional Positioning Model
	2.3 Three-Dimensional Positioning Model

	3 Technical Details
	3.1 System Overview
	3.2 Distance Measurement
	3.3 Parallel Acceleration for Multi-finger Signal
	3.4 3D Position Measurement

	4 Experiment and Evaluation
	4.1 Environment
	4.2 Experiment Setup and Evaluation of Results

	5 Conclusion
	References

	Adaptive Detection Method for Packet-In Message Injection Attack in SDN
	Abstract
	1 Introduction
	2 Related Work
	3 PSM Method
	3.1 Model-Building Module
	3.2 Message-Filtering Module
	3.3 Detection Module
	3.4 Defense Module

	4 Experiments
	4.1 Attack Model
	4.2 Experiment Environment
	4.3 Results Analysis

	5 Conclusion
	Acknowledgments
	References

	PMRS: A Privacy-Preserving Multi-keyword Ranked Searchpgover Encrypted Cloud Data
	1 Introduction
	2 Notations and Preliminaries
	3 Models and Problem Formulation
	3.1 System Model
	3.2 Problem Statement

	4 -Posting Partition Vector Model
	5 Two-Layer Complete Binary Tree Index
	6 The Proposed Scheme
	6.1 Framework
	6.2 Data Preprocessing and Outsourcing
	6.3 Multi-keyword Ranked Search

	7 Security Analysis
	8 Performance Evaluation
	9 Conclusion
	References

	Privacy-Preserving Fine-Grained Outsourcing PHR with Efficient Policy Updating
	1 Introduction
	2 System Model
	3 Privacy Preserving Policy Updating Scheme
	4 Performance Analysis
	5 Conclusion
	References

	Lightweight Outsourced Privacy-Preserving Heart Failure Prediction Based on GRU
	1 Introduction
	2 Problem Formulation
	2.1 System Model
	2.2 Security Model

	3 Preliminaries
	3.1 Features of GRU
	3.2 Additive Secret Sharing Protocols

	4 Secret Sharing Based Functions
	4.1 Nonlinear Function Fitting Method
	4.2 Secure Sigmoid Function.
	4.3 Secure Tanh Function

	5 Lightweight Privacy-Preserving GRU for Encrypted HF Data
	5.1 Secure Forward Propagation of GRU
	5.2 Back Propagation Based Training of GRU

	6 Theoretical Analysis
	6.1 Correctness
	6.2 Security

	7 Performance Evaluation
	7.1 Performance of Secure Sigmoid and Tanh Function
	7.2 Performance of PHFP

	8 Conclusion
	References

	DAPS: A Decentralized Anonymous Payment Scheme with Supervision
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 System Model
	3.2 Data Structure

	4 Our Construction
	4.1 Overview
	4.2 Scheme Details

	5 Security Definitions and Analyses
	5.1 Formal Security Definitions
	5.2 Security Analyses

	6 Performance Evaluation and Analyses
	7 Conclusion
	References

	An Approach of Secure Two-Way-Pegged Multi-sidechain
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Definitions
	3.2 System Description
	3.3 Threat Model
	3.4 Main Phases

	4 Algorithms
	4.1 Channel Lock and Challenge Algorithm
	4.2 Withdraw Algorithm

	5 Evaluations and Analysis
	5.1 Experiment Evaluations
	5.2 Security Analysis

	6 Conclusions
	References

	IoT and CPS Computing
	DCRRDT: A Method for Deployment and Control of RFID Sensors Under Digital Twin-Driven for Indoor Supervision
	1 Introduction
	2 Background and Related Work
	2.1 Indoor RFID Sensor Deployment and Control
	2.2 Digital-Twin

	3 The Proposed Framework
	3.1 Problem Definitions
	3.2 Schematic Diagram of Indoor RFID Sensor Deployment Based on Digital-Twin
	3.3 Sensor Deployment
	3.4 Our Proposed Framework

	4 Demonstration
	5 Conclusion
	References

	A Binary Code Sequence Based Tracking Algorithm in Wireless Sensor Networks
	Abstract
	1 Introduction
	2 Sensing Model
	3 RSSI Threshold Based Localization Algorithm
	3.1 Approach Overview
	3.2 Voronoi Diagram Based Location Refinement

	4 Simulation and Evaluation
	5 Conclusion
	Acknowledgment
	References

	Sampling Based Katz Centrality Estimation for Large-Scale Social Networks
	1 Introduction
	2 Related Work
	2.1 Computation of Katz Centrality
	2.2 Social Network Sampling Techniques

	3 Notations and Definitions
	4 Katz Centrality Estimation
	4.1 Sampling and Estimation Method
	4.2 Sampling Based Katz Computation

	5 Performance Evaluation
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Numerical Results

	6 Conclusion
	References

	Location Prediction for Social Media Users Based on Information Fusion
	1 Introduction
	2 Problem Definition and Data Description
	2.1 Problem Definition
	2.2 Data for Geolocation

	3 Modeling
	3.1 Main Relationship Network
	3.2 Information Fusion Network

	4 Information Fusion Geolocation Method
	4.1 Network Initialization
	4.2 DBSCAN Density Clustering
	4.3 Select the Target Cluster

	5 Simulation and Analysis
	5.1 Simulation Data and Environment
	5.2 Experimental Results and Analysis

	6 Conclusion
	References

	Performance Modelling and Evaluation
	Concurrent Software Fine-Coarse-Grained Automatic Modeling Method for Algorithm Error Detection
	Abstract
	1 Introduction
	2 Source Program Labeling and Storage
	3 Construct Model
	4 Application
	5 Conclusion
	Acknowledgement
	References

	EC-ARR: Using Active Reconstruction to Optimize SSD Read Performance
	Abstract
	1 Introduction
	2 Motivation
	2.1 Opportunities
	2.2 Why not Other Schemes

	3 EC-ARR Design
	3.1 Overall Architecture
	3.2 Choice of Erasure Code
	3.3 Data Layout
	3.4 Active Reconstruction Read

	4 Simulation and Evaluation
	4.1 Simulator and Configuration
	4.2 Effectiveness
	4.3 Impact of Read Ratio
	4.4 Impact of Read Size
	4.5 Impact of Parity Number
	4.6 Summary

	5 Conclusion and Future Work
	Acknowledgment
	References

	Research of Benchmarking and Selection for TSDB
	Abstract
	1 Introduction
	2 Related Works
	3 The Proposed Benchmarking Platform
	3.1 The Framework of TS_Store_Test
	3.2 Performance Metrics Acquisition Based on Prometheus
	3.3 The Execution Mode of TS_Store_Test

	4 Experiments and Result Analysis
	4.1 Sensor Dataset and Experimental Setting
	4.2 Experiments and Analysis

	5 Comparison with YCSB and BigDataBench
	6 Summary and Prospect
	References

	HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST
	1 Introduction
	2 Related Work
	2.1 Data Format
	2.2 Pipelines Introduction
	2.3 File I/O

	3 HDF5-Based I/O Optimization in Pipeline
	3.1 Transformation and Mapping from FITS to HDF5
	3.2 HDF5 Optimization Strategies
	3.3 The Implementation of FAST Pipeline
	3.4 Functional Module of the Pipeline

	4 I/O Performance Evaluation
	4.1 Efficient Data Format Conversion
	4.2 FITS and HDF5 Reading-Writing Comparisons
	4.3 HDF5 Performance with Different Chunks
	4.4 HDF5 Performance with MPI

	5 Conclusion and Future Work
	References

	Understanding the Resource Demand Differences of Deep Neural Network Training
	1 Introduction
	2 Methodology
	2.1 Training Simplification
	2.2 Layer-Level Perspective
	2.3 Model-Level Perspective

	3 Evaluation and Analysis
	3.1 Environmental Setup
	3.2 Basic Layer Result
	3.3 Model Result

	4 Conclusion
	References

	Twitter Event Detection Under Spatio-Temporal Constraints
	1 Introduction
	2 Problem Formulation
	3 Noisy Words Identification
	4 Tweet Similarity
	4.1 Text Similarity
	4.2 Spatio-Temporal Similarity
	4.3 Co-occurrence Similarity
	4.4 Comprehensive Measure of Tweet Similarity

	5 Tweet Cluster Partition
	6 Simulation Results
	6.1 Data Collection and Preprocessing
	6.2 Filtering Out Noisy Words
	6.3 Tweet Similarity
	6.4 Tweet Partition and Event Extraction

	7 Conclusion
	References

	Correction to: Reliability Enhancement of Neural Networks via Neuron-Level Vulnerability Quantization
	Correction to: Chapter “Reliability Enhancement of Neural Networks via Neuron-Level Vulnerability Quantization” in: S. Wen et al. (Eds.): Algorithms and Architectures for Parallel Processing, LNCS 11945, https://doi.org/10.1007/978-3-030-38961-1_24

	Author Index

