
The Maximum Equality-Free String
Factorization Problem: Gaps vs. No Gaps

Radu Stefan Mincu1(B) and Alexandru Popa1,2

1 Department of Computer Science, University of Bucharest, Bucharest, Romania
{mincu.radu,alexandru.popa}@fmi.unibuc.ro

2 National Institute for Research and Development in Informatics,
Bucharest, Romania

Abstract. A factorization of a string w is a partition of w into sub-
strings u1, . . . , uk such that w = u1u2 · · ·uk. Such a partition is called
equality-free if no two factors are equal: ui �= uj , ∀i, j with i �= j. The
maximum equality-free factorization problem is to decide, for a given
string w and integer k, whether w admits an equality-free factorization
with k factors.

Equality-free factorizations have lately received attention because of
their application in DNA self-assembly. Condon et al. (CPM 2012) study
a version of the problem and show that it is NP-complete to decide if
there exists an equality-free factorization with an upper bound on the
length of the factors. At STACS 2015, Fernau et al. show that the maxi-
mum equality-free factorization problem with a lower bound on the num-
ber of factors is NP-complete. Shortly after, Schmid (CiE 2015) presents
results concerning the Fixed Parameter Tractability of the problems.

In this paper we approach equality free factorizations from a practical
point of view i.e. we wish to obtain good solutions on given instances.
To this end, we provide approximation algorithms, heuristics, Integer
Programming models, an improved FPT algorithm and we also conduct
experiments to analyze the performance of our proposed algorithms.

Additionally, we study a relaxed version of the problem where gaps
are allowed between factors and we design a constant factor approxi-
mation algorithm for this case. Surprisingly, after extensive experiments
we conjecture that the relaxed problem has the same optimum as the
original.

Keywords: String factorization · Equality-free · String algorithms ·
Heuristics

1 Introduction

To factorize a string (or word) means to obtain a partitioning of non-overlapping
substrings that reconstitute the original string when concatenated in order. More

This work was supported by project PN19370401 “New solutions for complex problems
in current ICT research fields based on modelling and optimization”, funded by the
Romanian Core Program of the Ministry of Research and Innovation (MCI), 2019–2022.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 531–543, 2020.
https://doi.org/10.1007/978-3-030-38919-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_43&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_43

532 R. S. Mincu and A. Popa

exactly, a factorization of a string w is a tuple of strings (u1, u2, . . . , uk) such
that w = u1u2 · · · uk.

Despite its simple definition, word factorization has a wide number of appli-
cations. For instance, finding an occurrence of a string v in a text t can be
formulated as t admitting a factorization t = uvw. A string v is a prefix of
another string t if t = vw and it is a suffix of t if t = uv. Moreover, many string
problems can be seen as word factorization problems [5] such as: Shortest
Common Superstring, Longest Common Subsequence and Shortest
Common Supersequence, to name a few. Another example of word factor-
ization problem is the Minimum Common String Partition [1], a problem
concerned with identifying factorizations for two strings such that the sequence
of factors for one word is the permutation of the other’s.

In this paper we focus on the equality-free factorization, a special case of
word factorization in which all factors are distinct. The problem is motivated by
an application in DNA synthesis [3]. More specifically, it is possible to produce
short DNA fragments that will self-assemble into the wanted DNA structure.
However, to obtain the desired structure, it is required that no two fragments
are identical. Since the fragments must be short, one approach is to split the
target DNA sequence into as many distinct pieces as possible.

Previous work. The equality-free factorization problem was first introduced
by Condon, Maňuch and Thachuk [3] where it was presented as the string par-
titioning problem. The string partitioning problem asks for a factorization into
distinct factors such that each factor is at most of a certain length. The problem
was studied in a more general setting where the measure of collision between
two factors is either equality or one is a prefix/suffix of the other. Condon et
al. showed that these variants are NP-complete. More recently, Fernau, Manea,
Mercaş and Schmid [4] presented a similar problem that imposes a lower bound
on the number of factors instead of an upper bound on factor length. Fernau et
al. showed that this variant is also NP-complete. Afterwards, Schmid [5] stud-
ied the Fixed-Parameter Tractability of the two problems. Henceforth, we use
the notation of Schmid and refer to the problem variant with a lower bound
on the number of factors as Maximum Equality-Free Factorization Size
(MaxEFF-s).

Problem definitions. In this paper we consider the optimization version of the
MaxEFF-s problem. Additionally, we consider a relaxed variant of the problem
in which the factors do not necessarily cover the entire word, a so-called gapped
factorization, that can be said to emerge from generalized patterns [2].

A gapped factorization of a string w over some alphabet Σ is a tuple of
strings (u1, u2, . . . , uk) such that w = α0u1α1u2α2 · · · αk−1ukαk with ui ∈ Σ+

(non-empty substrings) and αi ∈ Σ∗ (possibly empty substrings).
First, let us go over the base definitions:

1. factorization of w is a tuple of strings (u1, u2, . . . , uk) s.t. w = u1u2 · · · uk.
2. equality-free factorization is a factorization with all distinct factors.
3. gapped factorization of string w over alphabet Σ is a tuple (u1, u2, . . . , uk)

such that w = α0u1α1u2α2 · · · αk−1ukαk, with ui ∈ Σ+ and αi ∈ Σ∗.

Heuristics for the Maximum Equality-Free String Factorization Problem 533

4. size of a factorization represents the number of factors.
5. width of a factorization represents the length of the longest factor.

Let us define the decision problem MaxEFF-s and its optimization version:

Problem 1 (Maximum Equality-Free Factorization Size - Decision). Does a
given string admit an equality-free factorization of size at least k?

Problem 2 (Maximum Equality-Free Factorization Size - Optimization). For a
given string w find the largest integer k, such that w admits an equality-free
factorization of size k.

In the rest of the paper we refer to Problem 2 as OptEFF-s.
In the relaxed variant we allow gaps between the factors of the string.

Problem 3 (Maximum Gapped Equality-Free Factorization Size - Decision).
Does a given string admit a gapped equality-free factorization of size at least k?

Problem 4 (Maximum Gapped Equality-Free Factorization Size - Optimization).
For a given string w find the largest integer k, such that w admits a gapped

equality-free factorization of size k.

To the best of our knowledge, the gapped version of the equality-free factor-
ization problem has not been studied previously.

In the rest of the paper we refer to Problem 4 as OptGEFF-s.

Our results. We provide heuristic algorithms for computing equality-free fac-
torizations and we also give an approximation ratio guarantee. Additionally, in
order to understand how well the algorithms perform it is necessary to compare
the solutions of our algorithms with optimum solutions. For this purpose, we
choose to build ILP models for OptEFF-s and OptGEFF-s, which we use with
the state-of-the-art Gurobi solver to obtain optimum solutions on moderate sized
instances.

The paper is organized as follows. In Sect. 2 we introduce our notations and
present some observations. One such observation is used to improve the previ-
ously known best FPT algorithm for MaxEFF-s (see Sect. 3). Following that, we
design a 1

2 -approximation algorithm for OptGEFF-s in Sect. 4. We would have
liked to extend this result for OptEFF-s, since we conjecture that the optimum
of the two problems is the same. In Sect. 5 we provide an ILP model for both
OptEFF-s and OptGEFF-s that was successfully used to give optimum solutions
using the Gurobi solver. It is with this model that we have discovered the same
optimum for the two problems on each of nearly 300000 instances, leading to the
conjecture that their optimum is the same. The design of our proposed heuris-
tic algorithms (dubbed Greedyk) is presented in Sect. 6. We prove a

√
OPT

approximation factor for Greedy1 and we give an example where Greedy1 has
an approximation factor greater than log n. We study the behavior of our algo-
rithms on genomic data in Subsect. 6.3.

534 R. S. Mincu and A. Popa

2 Preliminaries

We commonly use the notation S = s1s2 . . . sn for a string of length n over some
alphabet Σ. A substring of S is identified by S[i..j] = si . . . sj and has length
j − i + 1.

Let there be a string w for which we are given an equality-free factorization
of size k. Then, we can construct an equality-free factorization of size k − 1 by
concatenating one of the longest factors with one of its neighbors. This leads us
to the following observation:

Observation 1. If a string w admits an equality-free factorization of size k,
then w admits equality-free factorizations of size i, ∀i ∈ {1, . . . , k}.

One of the implications of the previous observation is that, obtaining the
solution of the optimization problem OptEFF-s for a given instance, provides
the solutions for the decision problem MaxEFF-s on that respective instance and
for all sizes.

Observation 2. OptEFF-s(w) ≤ OptGEFF-s(w): For any input string w, an
equality-free factorization of size k gives is also a solution for a gapped factor-
ization of size k.

Indeed, for w = α0u1α1u2α2 · · · αk−1ukαk, if we consider all the gaps αi to be
the empty string ε then all equality-free factorizations of size k are also gapped
factorizations of size k.

Observation 3. In a string of length n there exists an equality-free factorization
of maximum size with width (i.e. length of the longest factor) at most �√2n�.

The previous observation follows from the fact that, in the worst case, all the
factors have different length: 1, 2, . . . , �. This brings us to the well-known finite
sum n = �(�+1)/2. Solving for � shows that width ≤ �(√1 + 8n−1)/2� ≤ �√2n�.
We bring to the attention of the reader that this result is important for two rea-
sons. First, we can use it to reduce the number of variables in our proposed ILP
model in Sect. 5 from O(n2) to O(n

√
n), drastically improving solver computing

speed. The second reason is that this result improves the previously known best
FPT algorithm for MaxEFF-s.

3 A Better FPT Algorithm for MaxEFF-S

In [5] Schmid shows an FPT algorithm for deciding if a string of length n has
an equality-free factorization with k factors with complexity O((k2+k

2 − 1)k). In
this section we design another algorithm with running time O((k2 + k)

k
2). The

algorithm is similar to the one of Schmid, but uses Observation 3.
By Observation 3, there exists an optimum solution with width at most

�√2n�. Thus, instead of an O(nk) algorithm to verify if a string of length n has a

Heuristics for the Maximum Equality-Free String Factorization Problem 535

factorization with k factors, we obtain an algorithm with complexity O((2n)
k−1
2),

by trying all the possible starting points of the k−1 factors (notice that the first
factor always starts at position 1).

Finally, the running time of the FPT algorithm follows from the following
observation:

Observation 4. When n ≥ k(k+1)/2, there always exists a factorization, which
means that the problem has a trivial polynomial kernel.

4 A 1
2
-Approximation Algorithm for OptGEFF-s

In this section we show that there exists a natural reduction from OptGEFF-s to
the problem JISPk (the so-called Job Interval Selection Problem with k intervals
per job). Moreover, this problem admits a 1

2 -approximation [6].
An instance of JISPk is a set of n k-tuples (also called jobs), containing

time intervals. The intervals are of the form [a, b) with a, b integers. Two time
intervals [a, b) and [c, d) are said to intersect if [a, b) ∩ [c, d)
= ∅.

Problem 5 (JISPk). Given n jobs containing k time intervals each, find the max-
imum number of intervals that can be selected such that (i) no two intervals
intersect and (ii) at most one time interval is selected per job.

Theorem 1. An instance of OptGEFF-s can be transformed into an instance
of JISPn, with the same optimum solution.

Proof. We proceed to construct an instance of JISPn containing O(n2) jobs from
a string w of length n.

Consider the factors in a gapped equality-free factorization of a string w
of length n. They are a set of non-overlapping and distinct substrings of w.
For each distinct substring of w (which is a possible factor) we create a job
in the corresponding JISPn instance. For each job created from a substring s,
we add as time intervals [a, b) the start and end indices of all the occurrences
s = w[a . . . b − 1] of s in w. At this moment, we have created a set of jobs that
are not n-tuples and therefore cannot be said to be a JISPn instance.

To obtain a JISPn instance, we simply pad each tuple by adding an appro-
priate number of duplicate intervals. This operation constructs an equivalent
instance due to the observation that a JISP(n + t) instance with the same opti-
mum as a JISPn instance can be created by adding t duplicates of an arbitrarily
selected interval within every job.

Since there are at most n occurrences of a substring in a string and there
exist O(n2) distinct substrings in any given string, we have shown that we can
construct a JISPn instance with O(n2) jobs, from any string of length n.

Moreover, a solution for the JISPn instance that is constructed in the manner
described above immediately gives us a solution for OptGEFF-s. Each interval
selected from a job corresponds to the occurrence of a factor in the initial string.
The intervals are not allowed to intersect and thus the factors are not allowed

536 R. S. Mincu and A. Popa

to overlap. Only one interval may be selected per job and therefore only distinct
factors may be selected because the jobs correspond to distinct substrings. As
such, we conclude that we can reduce OptGEFF-s to JISPn. �

It is known that JISPn has the following greedy 1
2 -approximation algorithm

[6]: at each step, select the time interval with the lowest end time that does not
intersect already selected intervals. Using Theorem 1 we have shown that:

Theorem 2. OptGEFF-s has a 1
2 -approximation algorithm.

With the above results, we may now present a more tidy version of the greedy
approximation algorithm for the OptGEFF-s: for each position j = 1, 2, . . . , n in
a string w of length n, select as a factor (if possible) any substring s of w that
ends on position j such that (i) s does not overlap the previously selected factor
and (ii) s is not equal to any previously selected factor.

5 ILP Formulations for OptEFF-S and OptGEFF-S

We define an ILP model for the problems and then explain the notations:

max
n∑

i=1

n−i+1∑

j=1

xij subject to: (1a)

n−i+1∑

j=1

xij ≤ 1,∀i = 1, 2, . . . , n (1b)

xij + xk� ≤ 1,∀i = 1, 2, . . . , n − 1,∀j = 1, 2, . . . , n − i + 1 (1c)
∀k = i + 1, i + 2, . . . , i + j − 1 and k ≤ n,∀� = 1, 2, . . . , n − k + 1

xi� + xk� ≤ 1,∀i, k, �, where S[i..i + �] = S[k..k + �] (1d)

xij −
n−i−j+1∑

�=1

x(i+j)� ≤ 0,∀i = 1, 2, . . . , n − 1,∀j = 1, 2, . . . , n − i + 1 (1e)

n∑

�=1

x1� ≥ 1 and
n∑

i=1

xi(n−i+1) ≥ 1 (1f)

xij ∈ {0, 1},∀i = 1, 2, . . . , n − 1,∀j = 1, 2, . . . , n − i + 1 (1g)

1. The binary variables xij (see 1g) represent the choice for a factor starting on
position i of length j.

2. We need to maximize the number of factors i.e. sum of xij (see 1a).
3. Only one factor (regardless of length) may begin on any position (see 1b).
4. Factors cannot overlap i.e. begin inside each other (see 1c).
5. Distinct factors: only one of the occurrences of a factor may be selected (1d).

If we want an equality-free gapped factorization, conditions 1–5 are enough. To
enforce factorizations without gaps, we add:

Heuristics for the Maximum Equality-Free String Factorization Problem 537

Algorithm Greedy1: reads the input string w left-to-right and builds an equality-free
factorization F by greedily adding the next shortest factor not yet present in F .
input: string w[1..n]; output: equality-free factorization F ;
1: last ← 1, F ← ∅;
2: for i ← 1, n step 1 do
3: if w[last..i] /∈ F then
4: F ← F ∪ {w[last..i]}, last ← i + 1;

5: if last �= n + 1 then
6: F ← (F \ {F [−1]}) ∪ {F [−1] · w[last..n]};

7: return F ;

1. If a factor ut is selected, then a factor ut+1 of any length that begins imme-
diately after ut ends must be selected (see 1e).

2. A factor starting on position 1 must be selected; a factor ending on the last
position must be selected (see 1f).

Recall that by using Observation 3 we may reduce the number of variables in
the formulation to O(n

√
n) by discarding xij with j > �√2n�.

6 Heuristic and Approximation Algorithms for OptEFF-S

In this section we present a family of heuristic greedy-based algorithms for the
OptEFF-s problem. We begin with presenting the outline for the algorithms and
then we evaluate the performance of the algorithms on datasets composed of
randomly generated strings.

The proposed algorithms are based on building a factorization by reading
the input left-to-right and greedily adding words to the incumbent solution.

6.1 Description of Greedy1

To illustrate the most basic strategy, consider starting “at the left” and adding
the next shortest substring (distinct from the already selected factors) to the
incumbent factorization at each step of the algorithm (see Algorithm Greedy1).
The only issue is to define the behavior of the algorithm at the end of the string,
where we may have a remainder that is already present as a factor in the working
solution. We choose to simply concatenate this remainder to the last factor. We
mention here that this algorithm is essentially identical to the well-known LZ’78
factorization procedure [7], excepting the handling of the last factor. To prove
the correctness of our algorithm, the following property of Greedy1 is of interest:

Property 1 (Prefix property). Let there be two factors ui and uj in a factorization
w = u1u2 · · · un computed by Algorithm Greedy1. If ui is a prefix of uj then
i < j. In other words, for any factor constructed by Greedy1, its prefixes precede
it in the factorization.

Theorem 3. Greedy1 yields an equality-free factorization in O(n) time.

538 R. S. Mincu and A. Popa

Proof. By adding the next distinct substring at each step, the equality-free con-
dition of the factorization is satisfied. The only question is if the behavior of the
algorithm at the end of the string is correct or may yield a duplicate factor. If
there is a remainder r at the end of the sequence of operations, then it has a
duplicate in the factorization. Concatenating this remainder to the last factor v
always produces the equality-free factor vr. To prove this we use Property 1: the
resulting factor vr must have a duplicate preceding v in the factorization for the
procedure to be incorrect. However, v is a prefix of vr and must appear before
vr, a contradiction. Therefore the factorization is equality-free.

In the implementation of Greedy1, if the incumbent factorization is a list of
starting/ending positions of factors and we use a hash set structure to check for
collisions, the average running time is O(nt), with t being the average factor
length t = n

OPT and OPT being the size of the optimum. This is because we
compute a linear time string hash function n times (i.e. for each /∈ operation; see
Algorithm Greedy1, line 3). We can optimize by changing the way we compute
the hash function (by not discarding previous partial results) or by using a
modified insertion in a trie structure instead of using hash sets in order to bring
the time down to O(n). �
Theorem 4. The Greedy1 algorithm is a

√
OPT approximation for OptEFF-s.

Proof. A string with n characters can be factorized in at most n factors. The
Greedy1 algorithm produces at least

√
n factors—the case when all the factors

have different length. �
In the following paragraphs we focus on the tightness of Greedy1 as an

approximation algorithm. In practice Greedy1 can offer very good solutions as
can be seen in Fig. 1 from Subsect. 6.3. However, we show that there exists an
instance for which the ratio between Greedy1 and OPT is Ω(log n). Therefore,
in order to obtain a constant factor approximation for OptEFF-s we need to
design a different algorithm.

Theorem 5. Let there be an alphabet Σ = {x1, x2, . . . , xn}. We build a string
s = X1 · X2 · · · Xn by concatenating in order strings Xi = x1x2 · · · xi. There
exists a factorization of s with Ω(n log n) factors.

Proof. A factorization of s is as follows. We begin with Xn and factorize it into n
factors: x1|x2| · · · |xn. At each iteration 1 ≤ i ≤ �n/2� we factorize Xn−i+1 into
�(n − i + 1)/i� factors of length i in left-to-right order: x1 · · · xi|xi+1 · · · x2i| · · · .
If Xn−i+1 is not a multiple of i, then we concatenate the remainder of length
< i to the last factor. All of the factors added at iteration i are distinct, but a
question remains about the correctness of the algorithm regarding the concate-
nated factor. Correctness is ensured because the new factor constructed in this
manner contains xn−i+1, symbol that cannot appear in subsequent iterations.
In the end, the prefix X1X2 · · · X�n/2� is transformed into one factor.

The number of factors in this solution is n+�(n−1)/2�+�(n−2)/3�+ · · ·+1
which is Ω(n+(n/2−1)+(n/3−1)+ · · ·+1) = Ω(n(1+1/2+1/3+ · · ·+1/n)) =
Ω(n log n). �

Heuristics for the Maximum Equality-Free String Factorization Problem 539

On string s, Greedy1 produces n factors, i.e. the output factorization is
X1|X2| · · · |Xn. Using Theorem 5 we conclude that:

Corollary 1. The approximation ratio of Greedy1 is Ω(log n).

6.2 Description of Greedyk

We generalize Algorithm Greedy1 into the family Greedyk in the following way:
instead of adding the next distinct substring to the incumbent factorization
we consider adding k factors at the same time. In other words, we select the
shortest substring that follows such that this substring admits a partition into
k distinct factors that have not yet been selected (see Algorithms Greedyk and
Factorization). Again, the behavior of the algorithm needs to be defined when
it is no longer possible to split a remaining substring into k factors and now it
is a little more complicated because Greedyk does not benefit from Property 1:

1. Greedyk will first attempt to partition the remainder r into t distinct and
not yet selected factors with t = k − 1, . . . , 1.

2. If this is not possible, then we try to discard the last k factors in the factoriza-
tion ui, ui−1, . . . , ui−k+1 and re-partition the entire substring ui−k+1 · · · uir
into t valid factors, t = k, k − 1, . . . , 1. This step is added to the algorithm
to ensure that Greedyk will always produce an optimum solution when the
optimum is known to be k.

3. Finally, if the above steps fail, we append the remainder r to the last factor
and proceed to concatenate the last two factors in the solution until duplicates
no longer exist.

Function Factorization(T,F,start,end,w,k): returns a factorization F with exactly
k factors of the substring w[start..end], or null if no such factorization is possible.
Moreover, the factors in F must not already appear in the incumbent factorization T .
input: factorizations T , F (pre-initialized), string w[1..n], int start, int end, int k;
output: factorization F (modified from the input F);
1: if end − start + 1 < k then
2: return null;

3: if k = 1 and w[start..end] /∈ T and w[start..end] /∈ F then
4: F ← F ∪ {w[start..end]};
5: return F ;

6: for i ← start, end − 1 step 1 do
7: if w[start..i] /∈ T and w[start..i] /∈ F then
8: solution ← Factorization(T, F ∪ {w[start..i]}, i + 1, end, w, k − 1);
9: if solution �= null then

10: return solution
11: return null;

Theorem 6. The Factorization(T,F,start,end,w,k) recursive function obtains a
factorization of size k, if it exists in the specified substring of length �, in time
O(�k).

540 R. S. Mincu and A. Popa

Proof. If we denote the length of the substring as � = end − start + 1, we can
observe that we test all of the

(
�−1
k−1

)
= O(�k−1) partitions. The time necessary for

the /∈ operation depends on the structure used to check for substring collisions.
Whether we employ a hash set and compute a hash function or use a trie, the
time required is O(�) i.e. linear in substring size. Observe that when k = 1 the
function takes O(�) time and that by increasing k by 1, the time is multiplied
by O(�). By simple induction, the time complexity of the function is O(�k). �
Theorem 7. Greedyk is correct and runs in O((n + k)�k) average time, with
� = k n

OPT and OPT being the value of the optimum solution.

Proof. The equality-free condition of the factorization is satisfied when k distinct
factors are added at each step (lines 2–5 in the pseudocode). When it is no longer
possible, a substring r may remain:

1. First we try to split r into fewer than k factors (see lines 7–10). If we are suc-
cessful, then the resulting factorization is equality-free and covers the entire
string and is therefore correct.

2. Secondly, we try to discard the last k factors and refactorize the entire remain-
ing substring into k factors or less (see lines 11–14). If we are successful, the
resulting factorization is correct.

Algorithm Greedyk: reads the input string w from left to right and builds a Fac-
torization F by greedily adding k distinct, not yet selected factors at each step. We
use the notations newEmptyFactorization to denote creation of a new factorization
structure and F [−1] to refer to the last factor inside the factorization structure F .
input: string w[1..n], int k; output: Factorization F ;

1: prev ← 1, last ← 1, F ← ∅, solution ← ∅, lastsol ← ∅, sol2 ← ∅;
2: for i ← 1, n step 1 do
3: solution ← Factorization(F, newEmptyFactorization, last, i, w, k);
4: if solution �= null then
5: F ← F ∪ solution, prev ← last, last ← i + 1, lastsol ← solution;

6: if last �= n + 1 then
7: for j ← k − 1, 1 step −1 do
8: solution ← Factorization(F, newEmptyFactorization, last, n, w, j);
9: if solution �= null then

10: return F ∪ solution;

11: for j ← k, 1 step −1 do
12: sol2 ← Factorization(F \ lastsol, newEmptyFactorization, prev, n, w, j);
13: if sol2 �= null then
14: return (F \ lastsol) ∪ sol2;

15: lastFactor ← F [−1], F ← F \ {F [−1]}, lastFactor ← lastFactor · w[last..n];
16: while lastFactor ∈ F do
17: lastFactor ← F [−1] · lastFactor;
18: F ← F \ {F [−1]};

19: F ← F ∪ {lastFactor};

20: return F ;

Heuristics for the Maximum Equality-Free String Factorization Problem 541

3. Thirdly we employ a fallback where we append the remainder r to the last
factor and keep concatenating the last two factors until the factorization is
equality-free (see lines 15–19).

In the implementation of Greedyk, we traverse the string and attempt to partition
a substring of length � into k valid factors. This operation takes O(�k) time (see
Theorem 6). There are O(n + k) calls to the partitioning function, therefore the
average running time for the algorithm is boundedbyO((n+k)�k),with � = k n

OPT .

6.3 Experimental Results

First, we want to determine the solution quality given by the Greedyk algorithms
in practice. The dataset we have selected for this experiment is the RNA string
of Saccharomyces cerevisiae narnavirus 23S (obtained from yeastgenome.org).

The methodology for the experiment is as follows. For each integer � ∈
{4, . . . , 512} we randomly select 10 substrings of length � from the input RNA
string (whose length is 2891). We compute the optimum solution for each sub-
string using the ILP formulations in Sect. 5 and the Gurobi solver. We proceed
to compute the value of the 1

2 -approximation algorithm for OptGEFF-s from
Sect. 4, as well as Greedy{1, . . . , 8}. Following that, we average the results among
the 10 substrings for each length � and plot the fractions

1
2 -approximation

OPT , Greedy1
OPT

and max({Greedy1,...,Greedy8})
OPT in Fig. 1.

We are pleased to report Greedy1 situating within 91% of the optimum
(alongside the 1

2 -approximation) and max({Greedy1, . . . ,Greedy8}) placing
within 93% of the optimum. All solutions are within 94% of the optimum on
lengths 350–512. In Fig. 2 we also display the running time of Greedyk on longer
strings (using whole genomes from yeastgenome.org including Saccharomyces
bayanus and Saccharomyces cerevisiae). The experiments demonstrate that the
Greedyk algorithms are fit for practical usage.

Fig. 1. Plot describing the values of the 1
2
-approximation algorithm for OptGEFF-s,

Greedy1, and max({Greedy1, . . . ,Greedy8}) for all integer string lengths ∈ {4, . . . , 512}.
All y-axis values are averages of 10 instances per x-axis point, as well as being divided by
the average of the optima of the 10 instances.

https://www.yeastgenome.org/
https://www.yeastgenome.org/

542 R. S. Mincu and A. Popa

Fig. 2. The running time of Greedy{1, 2, 4, 8}. The x-axis is logarithmic scaled.

During our testing, we have computed exact solutions using our ILP model
for both OptEFF-s and OptGEFF-s on each test instance. We hypothesized
that OptGEFF-s would have a higher value solution than OptEFF-s. However,
after having evaluated some 300.000 random instances (using various lengths and
alphabet size), we observed no difference between the two problems regarding
the size of the exact solutions on the same instance. Thus, we believe that the
two problems share the same optimum.

7 Conclusions and Open Problems

We have presented heuristic and approximation algorithms for the OptEFF-s
and OptGEFF-s problems. Moreover, our experiments show insights into the
nature of the problem and provide high quality solutions.

We leave as open problems the following conjectures:

Conjecture 1 (Gaps = No Gaps). OptGEFF-s(w) = OptEFF-s(w), ∀w.

We strongly believe that the optimum for the two problems OptGEFF-s and
OptEFF-s is one and the same. This result can be achieved if one of the following
statements is proven:

1. Given a string, it is possible to transform an equality-free gapped factorization
of maximum size into one without gaps and of the same size.

2. The number of factors in the maximum size equality-free factorization for an
instance does not decrease if we insert a symbol anywhere in the string.

Conjecture 2 (Greedy1 approximation ratio is tight). There exists an instance
for which the ratio between Greedy1 and OPT is Θ(

√
n).

We conjecture that the analysis of the Greedy1 algorithm is tight. Neverthe-
less, we leave this as an open problem.

Heuristics for the Maximum Equality-Free String Factorization Problem 543

References

1. Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algorith-
mics for NP-hard string problems. Bull. EATCS 114, 295–301 (2014)

2. Clifford, R., Harrow, A.W., Popa, A., Sach, B.: Generalised matching. In: Karlgren,
J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 295–301. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03784-9 29

3. Condon, A., Maňuch, J., Thachuk, C.: The complexity of string partitioning. J.
Discrete Algorithms 32, 24–43 (2015)

4. Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Pattern matching with variables:
fast algorithms and new hardness results. In: 32nd International Symposium on
Theoretical Aspects of Computer Science, 4–7 March 2015, Garching, Germany, pp.
302–315 (2015)

5. Schmid, M.L.: Computing equality-free and repetitive string factorisations. Theor.
Comput. Sci. 618, 42–51 (2016)

6. Spieksma, F.: On the approximability of an interval scheduling problem. J. Sched.
2(5), 215–227 (1999)

7. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24, 530–536 (1978)

https://doi.org/10.1007/978-3-642-03784-9_29

	The Maximum Equality-Free String Factorization Problem: Gaps vs. No Gaps
	1 Introduction
	2 Preliminaries
	3 A Better FPT Algorithm for MaxEFF-S
	4 A 12-Approximation Algorithm for OptGEFF-s
	5 ILP Formulations for OptEFF-S and OptGEFF-S
	6 Heuristic and Approximation Algorithms for OptEFF-S
	6.1 Description of Greedy1
	6.2 Description of Greedyk
	6.3 Experimental Results

	7 Conclusions and Open Problems
	References

