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Abstract. Phylogenetic networks are rooted directed acyclic graphs
used to depict the evolution of a set of species in the presence of reticulate
events. Reconstructing these networks from molecular data is challeng-
ing and current algorithms fail to scale up to genome-wide data. In this
paper, we introduce a new width measure intended to help design faster
parameterized algorithms for this task. We study its relation with other
width measures and problems in graph theory and finally prove that
deciding it is NP-complete, even for very restricted classes of networks.

1 Introduction

Phylogenetic networks are rooted directed acyclic graphs used to depict the evo-
lution of a set of species in the presence of reticulate events such as hybridiza-
tions, where two species combine their genetic material to create a new species
(see nodes H1 and H2 in Fig. 1(left)) [9]. Herein, leaves represent the studied
species and the root their most recent common ancestor, from which time flows
away (as indicated by the direction of the arcs). Internal vertices represent either
speciation events (a single parent) or reticulation events (several parents). Each
arc represents the evolution of a species in time, during which each gene in the
species genome can change due to mutations, allowing different forms of a gene
(alleles) to appear among species, and even among individuals within the same
species. Though the species history is modeled by a network, the evolution of a
single non-recombinant gene can always be depicted by a tree, see Fig. 1(center),
embedded in the species network, see Fig. 1(right).

Usually, a species network is inferred from a DNA dataset S = {S1, . . . , SL}
composed of L genes sequenced from the genome of one or several individuals
for each studied species [16]. To find the best phylogenetic network explaining
S, a possibility is to sample many different networks N and compute the prob-
ability P (S|N) of each N given S. Without giving all details here (they can be
found for instance in [16]), P (S|N) can be computed from the individual prob-
abilities P (Gi|N) of gene trees G1, . . . , GL for the L loci given N . In turn, each
P (Gi|N) can be computed from the probabilities of all possible embeddings of Gi

in N , weighted by their respective probability depending on Si, i.e. P (Gi|N,Si).
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Fig. 1. Left: A phylogenetic network N depicting the evolutionary history of species
A, B, and C. Center: An evolution scenario for a gene, given the sequences of one
individual from species A, one from C and two from B, where different alleles (boxes)
are observed: gray for A and for one individual from B, and white for the other indi-
viduals. The arc containing the mutation from the white to the gray allele is marked.
Right: An embedding (gray arcs) in N of this gene evolution scenario.

See Fig. 1(center) for a gene tree and Fig. 1(right) for one of its possible embed-
dings within the network. Thus, heavy computations are needed to obtain
P (S|N) and current algorithms fail to scale to genome-wide data. To design
faster algorithms, it is possible to integrate out the possible gene trees and
embeddings, as done in [4]. To apply this technique to network inference we
designed new partial likelihood formulae to compute P (S|N) and stumbled on a
new width parameter for DAGs that clearly puts into evidence why our approach
is faster than existing ones, allowing us to handle several real-world datasets
within minutes instead of weeks [13]. In this paper, we introduce this new param-
eter, which we call scanwidth, we study its relation with other parameters and
problems in graph theory and finally prove that deciding it is NP-hard. A com-
mon and intuitive idea when working with phylogenetic networks is to exploit the
observation that reticulation should be rare in practice to design algorithms that
are fast for only mildly reticulate networks. This tree-likeness is often measured
by the tree-width of the input. However, tree decompositions are in no way obli-
gated to follow the leaf-to-root structure that phylogenies naturally impose and
this makes dynamic programming on decomposition trees unnecessarily compli-
cated. The scanwidth remedies this problem by forcing the leaves of the network
to correspond to the leaves of the decomposition tree, yielding a form of tree-like
cutwidth. Thus, our work broadens the arsenal of width measures that can be –
and recently have been – used to attack hard problems in phylogenetics [5,8,12].
To get an intuition, imagine a (possibly red) scanner line traversing a network
from the leaves to the root; at any moment, its width is the number of arcs it
cuts. As the line moves up, it traverses nodes, changing the set of arcs it cuts
and, hence its width. The cutwidth of the network is the largest width achieved
by such a traversing line. Now, consider multiple independent scanner lines, each
one scanning an arc incoming to a different leaf of the network. Whenever a node
could be passed by two different lines, they are merged to form a single one. This
naturally generalizes the cutwidth to a stronger (that is, smaller) width measure
that we call scanwidth. As with the cutwidth, different orders in which the nodes
are passed imply different values of the final width and the goal is to minimize
it. In many optimization approaches for phylogenetic networks, a network is
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traversed from the leaves up to its root, while computing some quantities. For
some applications, computations on tree-parts can be done independently for
each arc but, when meeting a reticulation node, computations on both arcs
entering the node have to be considered jointly. This inter-dependence makes
computing the required quantities more time consuming. In such cases, one really
wants to process the network while minimizing the numbers of arcs considered
jointly. This is captured by the scanwidth parameter.

In this work, we show that deciding the scanwidth of a network relates to
an old problem in program optimization called Register Sufficiency (PO1
of Garey and Johnson [7]). Our proof comprises a non-trivial adaptation of an
NP-hardness proof [14] for the latter problem to a very restricted class of rooted
DAGs, on which Register Sufficiency coincides with deciding the cutwidth
and the scanwidth (offset by 1). This hardness proof, as well as the scanwidth
parameter itself, may be of independent interest to the design of algorithms for
other problems on DAGs.

Note that computing the scanwidth and using it as a parameter for other
algorithms are two different pairs of shoes and, though a parameterized algorithm
may require a tree extension (see Sect. 2) to be given, there is still hope that the
scanwidth can be approximated efficiently. Thus, in analogy with other highly
successful (width) parameters such as the treewidth, the hybridization number
or the hybridization level [2,3,11,15], we point out that being NP-complete to
compute does not hurt the practical usefulness of the scanwidth.

We defer some proofs to a long version of this paper.

2 Preliminaries

Phylogenetic Networks. Let G be a leaf-labelled, directed, acyclic graph with a
single source (which is called “root”). The in-degree of a vertex v in G is deg−

G(v)
and its out-degree is deg+G(v), the sum of those being the degree of v. If all
vertices of G have either in-degree one and out-degree zero (leaves), in-degree at
most one and out-degree at least two (tree-vertices), and in-degree at least two
and out-degree one (reticulation), then G is called rooted phylogenetic network
(henceforth network). Note that the root is a special tree-vertex. We denote the
set of leaves of G by L(G), the set of vertices by V (G) and the tree-vertices by
VT (G). If the root has degree two, the internal vertices have degree three, and
the leaves have degree one, then G is called binary. If G contains a u-v-path for
vertices u and v, we say that u is an ancestor of v (and v is a descendant of u)
and we write v <G u.

Vertex Orderings. A linear ordering σ of a subset V ′ of the vertices of a network
G is called G-respecting if u <G v ⇒ u <σ v for all u, v ∈ V ′. A G-respecting
ordering σ over V (G) is called an extension (or “reverse topological order”) of G,
see Fig. 2. We call a tree Γ on V (G) a tree extension for G if x <G y ⇒ x <Γ y
for all x, y ∈ V (G). We denote the vertex at position i in σ by σ(i) and σ−1(u)
returns the position of the vertex u in sigma. Since positions and vertices are in
bijection, we sometimes use vertices to represent their positions. A position i of
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Fig. 2. Left: For an extension σ each position i induces a cut through G separating
the vertices in σ[1..i] (below gray line) from σ[i+1..] (above gray line). Right: G with
vertices linearly arranged according to σ.

σ is called a milestone if σ(i) is a tree-vertex and σ is called stable if all maxima
(wrt. ≤G) in σ[1..i] for any milestone i are tree-vertices (that is, each reticulation
in σ[1..i] has a parent in σ[1..i]). We denote the sub-order of σ restricted to the
elements of a set U by σ[U ] and we abbreviate σ[{σ(i), σ(i + 1), . . . , σ(j)}] =:
σ[i..j]. For disjoint orders σ and π let σ ◦ π denote the concatenation of σ with
π (that is, σ followed by π). For a set X, we let (X) denote any order on the
elements of X. Further, for distinct vertices or disjoint vertex sets X1,X2, . . .,
we abbreviate (X1) ◦ (X2) ◦ . . . =: (X1,X2, . . .).

(Directed) Cutwidth. For an extension σ of a DAG G and a position i, we will
use Ci(σ) to denote the set of arcs from a vertex in σ[i+1..] to a vertex in σ[1..i]
and cwi(σ) := |Ci(σ)| is called the cutwidth of σ at position i. The cutwidth of
σ is cw(σ) := maxi cwi(σ) and the cutwidth of G, denoted cw(G), is the mini-
mum of cw(σ) over all extensions σ of G. We allow i to be a vertex instead of a
position, as σ is a bijection between the two.

(Directed) Register width. For an extension σ of G and a position i, we will use
RWi(σ) to denote the set of vertices in σ[1..i] that have a parent in σ[i + 1..]
and rwi(σ) := |RWi(σ)| is called the register width (also known as “vertex cut”
or “separation” [6]) of σ at position i (again, we allow i to be a vertex instead
of a position, as σ is a bijection between the two). The register width of σ
is rw(σ) := maxi rwi(σ) and the register width of G, denoted rw(G), is the
minimum over all extensions σ for G of rw(σ).

Theorem 1. For all binary networks G, we have cw(G) = rw(G) + 1.

Scanwidth. Let σ be an extension for G and let i ∈ N. We define SWi(σ) as
the set of all arcs uv ∈ Ci(σ) for which v and σ(i) are weakly connected in
G[σ[1..i]] (see Fig. 3(left)). swi(σ) is defined as |SWi(σ)|, while the scanwidth
of σ is sw(σ) := maxi swi(σ) and the scanwidth of G, denoted by sw(G), is the
minimum of sw(σ) over all extensions σ for G. Again, in our notations we allow
i to be a vertex instead of a position, as σ is a bijection between the two.

Alternatively, sw(G) can be defined as follows. For a tree extension Γ for G,
we define GWv(Γ ) as the set of arcs (x, y) ∈ E(G) with x >Γ v ≥Γ y. Further,
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Fig. 3. Illustration of the two definitions of scanwidth. Left: Lower part of a graph
G where gray zones represent the weakly connected components induced by σ[1..i] for
σ = (a, b, c, x, y, z, v, w, . . .) and i ≤ 8. Here, SWv(σ) = {rx, uv, wy} since x, y, and v
are weakly connected in G[a, b, c, x, y, z, v]. Middle: table indicating SWi(σ) for i ≤ 8
corresponding to σ. Right: part of a tree Γ with GWσ(i)(Γ ) = SWi(σ) for all i ≤ 8.
For the extension π = (c, a, z, b, y, x, v, w, . . .), we also have GWπ(i)(Γ ) = SWi(π) for
all i ≤ 8.

we let γw(Γ ) := maxv |GWv(Γ )| and γw(G) := minΓ γw(Γ ). Although a tree
extension is defined independently of a (full) extension for G, there is a link
between the two notions. Indeed, the sets GWv(Γ ) in an optimal tree extension
correspond to the sets SWv(σ) in one or several optimal extensions σ (see Fig. 3).

Proposition 1. For any network G, (a) γw(G) = sw(G). Further, (b) if G
has only one leaf, then sw(G) = cw(G). (c) If G is also binary, then sw(G) =
rw(G) + 1.

Observe that the scanwidth differs largely from the directed path-width [1],
which is always zero for DAGs. To relate the scanwidth to established param-
eters, let us mention that the scanwidth of any level-k network cannot exceed
k + 1 but it might even be constant. Regarding width-measures, the scanwidth
is bounded by the cutwidth from below and the treewidth (of the underlying
undirected graph) from above.

3 NP-completeness

+
∗

a+
∗

bc x

To compute the value of a given algebraic expression such as
(cx+b)x+a using a computer, we need to store the values of a, b,
c, and x in registers which can then be processed by the CPU. As
registers can be overwritten, expressions involving more variables
than the number of available registers can be evaluated. The
problem of deciding whether a given expression can be evaluated
on a CPU with k registers (without recomputing sub-expressions
or relying on the costly spilling technique) is called Register Sufficiency.
We suppose that the input expression is given as a rooted DAG of necessary
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computations. For example, to compute (cx+b)x+a, we need to compute cx+b,
for which we need to compute cx (see figure on the right).

Register Sufficiency [PO1 in [7]] (RS)
Input: a rooted DAG G of an expression to be computed, k ∈ N

Question: Can G be computed using at most k registers?

Register Sufficiency can be interpreted as a game played on G, where the
player has k stones that have to be placed progressively on all vertices, using
the following operations [14]:

1. remove a stone from any vertex
2. for a vertex p whose every child contains a stone,

2a. place an available stone on p or
2b. move a stone from a child of p to p,

so that each vertex receives a stone exactly once during these operations.
Stones represent registers and putting a stone on a vertex of the graph cor-

responds to computing the vertex and storing the result in that register (this is
why we need stones on all children of a vertex when computing it). Removing
a stone from a vertex corresponds to forgetting the value of the vertex, which
should then be done only if we do not need it in other computations (as vertices
cannot be recomputed), i.e. when all its parent vertices have already received a
stone.

Winning the game means successfully computing the algebraic expression
encoded in the graph while using at most k registers. In this context, an exten-
sion σ for a graph G indicates in which order the vertices receive stones. Note
that the first stone enters G via applying Rule 2a to a leaf of G. Then, solving the
optimization problem associated to Register Sufficiency can be seen as find-
ing an extension of G that minimizes the number k of stones (registers) needed
to win the game (compute the expression). As suggested by our formulation, this
number equals the previously introduced “register width”, rw(G).

Proposition 2. A DAG G can be computed using ≤ k registers if and only if
rw(G) ≤ k.

With Proposition 2, the Register Sufficiency problem can be formulated
as: given a rooted DAG G and some integer k, decide if rw(G) ≤ k. Following
Sethi [14], we will use a special, “initial” vertex in our reduction.

Definition 1. Let (G, k) be an instance of Register Sufficiency such that
G has k leaves and all leaves have a common parent ψ. Then, we say that ψ is
an initial vertex and that (G, k) has the initial vertex property.

Lemma 1 (See [14]). Let (G, k) be a yes-instance of Register Sufficiency
with an initial vertex ψ. Let σ be an extension of G with rw(σ) ≤ k. Then,
σ(k + 1) = ψ and σ[1..k] contains the k leaves of G in any order. Moreover,
there is a leaf whose only parent is ψ.
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A corollary of Lemma 1 is that, in a yes-instance (G, k) with the initial vertex
property, all children of the initial vertex are leaves. Thus, rwk(σ) = k for all
extensions σ with rw(σ) ≤ k and, thus, rw(G) = k for such yes-instances. Note
that 3-SAT reduces to instances (G, k) of Register Sufficiency that have the
initial vertex property [14].

Theorem 2 ([14]). It is NP-hard to decide Register Sufficiency for
instances (G, k) that have the initial vertex property.

Below, we reduce Register Sufficiency on instances with the initial vertex
property to Register Sufficiency on rooted, binary, single-leaf DAGs. To this
end, we reduce from Weighted 2-Satisfiability instead of 3-Satisfiability
and modify parts of the reduction in order to obtain a network that is already
bifurcating in some crucial spots. Then, we present a number of polynomial-time
executable transformation rules that take one such instance (G, k) of Register
Sufficiency having the initial vertex property and replace all remaining high-
degree vertices with binary ones without changing the answer for the instance.
Finally, a reduction rule is given to ensure that the resulting DAG has a single
leaf.

3.1 An Adaptation of a Known NP-hardness Proof

We strengthen the construction presented by Sethi [14] to construct a binary
DAG with a single leaf and without degree-two vertices. Our modifications to
Sethi’s construction come in two stages. First, instead of 3-SAT, we will reduce a
2-SAT variant called Monotone Weighted 2-Satisfiability (also known as
Vertex Cover), which is also NP-hard [10]. In this variant, all variables occur
non-negated in the instance formula ϕ, each variable is used at least once, and
we ask for an assignment that satisfies ϕ while setting at most k variables to
true. Second, we show how to “binarize” all remaining polytomies and establish
a single leaf.

Construction 1 (See Fig. 4). Given a formula ϕ in monotone 2-CNF on
variables x1, . . . , xn and clauses C1, . . . , Cm, let yi,j denote the jth literal in Ci.
Construct the instance (G, k′), where k′ = 8n + 3m + k + 2 and G is a rooted
DAG on the vertex set A′ � B′ � C � F ′ � H � P � P ′ � R′ � S′ � T ′ � U �
W � X � X ′ � X∗ � Z ′ � {α,ψ, d, ρ}} where R′ :=

⋃
i∈[n] R

′i, S′ :=
⋃

i∈[n] S
′i,

T ′ :=
⋃

i∈[n] T
′i and

A
′
= {ai | i ∈ [2n + 1 + k]} C = {ci | i ∈ [m]} F

′
= {fi,1, fi,2 | i ∈ [m]}

B
′
= {bi | i ∈ [3n − m]} W = {wi | i ∈ [n]} R

′i
= {ri,j | j ∈ [2n − 2i + 2 + k]}

U = {ui,1, ui,2, ui,3 | i ∈ [n]} X
′
= {x

′
i | i ∈ [n]} S

′i
= {si,j | j ∈ [2n − 2i + 1 + k]}

X = {xi, xi | i ∈ [n]} X
∗
= {x

∗
i | i ∈ [n]} T

′i
= {ti,j | j ∈ [2n − 2i + 1 + k]}

H = {hi,1, hi,2 | i ∈ [m]} P = {pi | i ∈ [m]} P
′
= {p

′
i, p

′′
i , p

′′′
i | i ∈ [m]}

Z
′
= {zi | i ∈ [n + 1]}
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and the arc set is the union of the following sets:

E′
1 = {ψv | v ∈ A′ � B′ � F ′ � U � H � {α}} E5 = {wiui,1, wiui,2 | i ∈ [n]}

E′
2 = {vψ | v ∈ R′i � S′i � T ′i} E′

7,1 = {zi+1wi, zi+1zi | i ∈ [n]}
E4 = {xizi, xizi, xiui,1, xiui,2, x′

iui,3 | i ∈ [n]} E′
7,2 = {cizn+1 | i ∈ [m]}

E12 = {ri,jri,j+1| j ∈ [2n − 2i + k + 1], i ∈ [n]} E′
9 = {dv | v ∈ B′ � C}

E13 = {si,jsi,j+1, ti,jti,j+1| j ∈ [2n − 2i + k], i ∈ [n]} E11 = {x∗
i x′

i, x
′
ixi | i ∈ [n]}

E′
3 = {ρv | v ∈ W � X � Z′ � {ψ, d} � X∗ � {p′

i, p
′′′
i | i ∈ [m]} � {ui,3 | i ∈ [n]} � {zn+1}}

E′
6 = {ziri,j , xisi,j , xiti,j | ri,j ∈ R′i, si,j ∈ S′i, ti,j ∈ T ′i, i ∈ [n]}

E′
8 = {cipi, pifi,1, pifi,2, p′′′

i fi,2, p′′′
i p′′

i , p′′
i p′

i, p
′′
i hi,2, p′

ihi,1 | i ∈ [m]}
E′

10 = {x∗
i,1fi,1, x∗

i,2hi,2, xi,1hi,1 | i ∈ [m]}

where xi,j denotes the jth variable in Ci and xi,j the negation of xi,j (and their
corresponding vertices with the same names) and x∗

i,j the vertex in X∗ such that
x∗

i,jxi,j ∈ E11.

The idea behind Construction 1 is that the “variable-assignment phase” of
Sethi [14] still works as before (with k more stones in each step to account for the
k additional vertices we have in R′i, S′i, and T ′i). In more detail, this process is
as follows: in the beginning, all k′ stones have to go to all the leaves, at which
point ψ is computed using one stone of a vertex in A′, while the other k + 2n
stones of A′ are now free (unlike stones on other leaves still having other parents).
These k+2n stones need to go to R′1 (otherwise we will not have enough stones
later for these vertices), allowing to compute z1, who will keep one stone. The
k+2n− 1 other stones from R′1 are free to go to either S′1 allowing to compute
x1 or to T ′1 allowing to compute x1. The chosen literal allows exactly one stone
from U to move to w1 (e.g. u1,1 if x1 is chosen and u1,2, otherwise), who will
keep this stone. Thus, k +2n − 2 stones (from either S′1 or T ′1) are now free to
compute R′2, followed by z2. This process continues until wn receives a stone,
at which point we ended Sethi’s variable assignment phase. Now, the stone on
α moves to zn+1 and we are left with the k free stones, coming from either S′n

or T ′n, that we can spend on vertices x′
j ∈ X ′ (which then move to x∗

j ∈ X∗)
whose corresponding xj ∈ X has received a stone before.

Consider what happens if the described “variable assignment” phase chooses
k vertices in X satisfying the formula and the k corresponding vertices of X∗

receive a stone right after this phase. Consider the gadget corresponding to clause
Ci = (xj ∨ x�) and recall that fi,1, fi,2, hi,1, hi,2 already hold stones. In analogy
with Sethi [14], each ci receives a stone as follows:

– If Ci is satisfied by xj , then x∗
j holds a stone, so the stone on fi,1 can move

to pi (this is allowed since pi’s children all hold stones).
– Otherwise, both xj and x∗

� hold stones. The first one allows the stone on hi,1

to move to p′
i. The second one allows the stone on hi,2 to move to p′′

i and
then to p′′′

i , allowing the stone on fi,2 to move to pi.
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Fig. 4. Illustration of Construction 1; white vertices are children of the root ρ, triangles
are leaves and children of ψ. This allows us to omit drawing ψ and ρ. We also omit the
leaves in A′. Left: “variable-assignment” gadget (arcs of E′

2 omitted). Right: clause
gadget for the clause C7 = (x4 ∨x9). Note that all wi, pi, p′′

i , p′′′
i and ci are bifurcating.

Thus, in both cases pi gets a stone which it then passes to ci. Finally, when
all ci have received a stone, d receives a stone from one of them, freeing up
|B′| = 3n − m stones on the vertices in B′ and |C| − 1 = m − 1 stones on the
vertices in C. Since k ≤ n, these 3n − 1 stones can then be placed on T ′1 (if
x1 already holds a stone) or S′1 (if x1 already holds a stone) and one of them
can then move to x1 or x1, respectively. In this way, all 2n vertices xi and xi

progressively receive a stone. Since n of them already got stones in the variable
assignment phase, this leaves us with (3n−1)−n stones, n−k of which are then
put on the n − k remaining stoneless vertices of X ′ which immediately move to
the remaining vertices of X∗. At this point, all stones on all hi,1 and hi,2 move to
p′

i and p′′
i followed by p′′′

i if they did not already do so before. Finally, ρ receives
a stone from any of its children.
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Theorem 3. Let k ∈ N, let ϕ be a formula in monotone 2-CNF, and let (G, k′)
be an instance of Register Sufficiency constructed by Construction 1 on
input (ϕ, k). Then, ϕ has a satisfying assignment with ≤ k true variables if and
only if rw(G) ≤ k′.

Note that networks G created by Construction 1 contain non-binary vertices, as
well as many leaves. However, all non-binary vertices of G have nice properties
that allow us to “binarize” them using reduction rules that we present in Sect. 3.2.

Observation 1. Let (G′, k′) result from Construction 1 and let u ∈ V (G′).

(a) If u is a non-leaf with deg+(u) ≥ 3, then u has a child with in-degree 1.
(b) If u is a non-leaf with at least 3 parents, then the root ρ is a parent of u.
(c) If u is a leaf with at least 3 parents, then u has exactly 3 parents and ψ is

one of them.

3.2 Reducing Nice Polytomies and Leaves

The following reduction rule is used to turn all leaves binary since many leaves
constructed in Construction 1 have in-degree three.

Rule 1. Let (G, k) have an initial vertex ψ and let u
be a leaf in G with at least three parents, one of which
is ψ. Then, add a new parent v to u, add the arc vψ,
and replace all xu by xv except ψu.

u

ψ

u

v ψ

The next rule splits vertices of in- and out-degree at least two into a reticu-
lation and a tree-vertex.

Rule 2. Let u be a vertex of G, let P and C be its parents and children, respec-
tively, and let |P | > 1 and |C| > 1. Then, “split” u, i.e. add a new vertex v, add
the arc uv and, for all c ∈ C, replace the arc uc by the arc vc.

Rule 3 (See Fig. 5(left)). Let u be a vertex with at least three children, let x
and y be children of u such that y is a tree-vertex and x is either a tree-vertex or
x has a parent q 	= u that is comparable to u in G. Then, “split” u into ru (that
is, create a new parent r for u and make all parents of u parents of r instead),
subdivide ru with a new vertex r′, for all parents q of x with q >G u replace qx
with qr′, add the arc rx, subdivide uy with a new vertex w, remove the arc ux
and, unless x has a parent q <G u in G, add the arc wx.

Correctness proofs of Rules 1–3 are deferred to the full version of this paper.
Note that Rule 3 only increases deg−

G(x) if x has no parents q <G u in G. But
then, either x is a tree-vertex in G, in which case no new polytomies are created,
or x has a parent q >G u, in which case this parent becomes a parent of r′

instead. Further, although Rule 3 may introduce degree-two vertices, all of them
are parents of tree-vertices and can thus be removed using the following:

The following rule turns polytomous reticulations into binary ones. We make
use of the fact that G has a root and an initial vertex (see Definition 1).
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u

xy

⇒ u

xy

w
r′

r

u

p0 p1 pt
. . .

⇒
u

p0 p1 pt

v′

w

v

. . .

Fig. 5. Illustration of Rule 3 (left) and Rule 4 (right). Triangles are leaves and children
of the initial vertex ψ, white vertices are children of the root ρ. Note that, on the left,
u has a tree-vertex child before and after the modification.

Rule 4 (see Fig. 5, right). Let (G, k) have an initial vertex ψ, let ρ be the
root of G, let u be a non-leaf with parents p0, p1, . . . , pt, pt+1 = ρ (t ≥ 1). Then,
add a new leaf w, increase k by one, subdivide p0u with a vertex v, replace arc
ρu by ρv, add a new parent v′ of u, replace arc piu by piv

′ for all i ∈ [t+1], and
add the arcs ρv′, vw, ψw.

Note that Rule 4 effectively turns a vertex of in-degree t + 2 (for t ≥ 1) into a
vertex of in-degree t+1. Further, note that the instance (G′, k′) constructed by
Construction 1 has an initial vertex ψ.

Rule 5. Let (G, k) have an initial vertex ψ, let X be
the set of leaves of G and let Y ⊆ X contain the leaves
that have more than one incoming arc. Let Y 	= ∅ and
let x1, x2, . . . , xk be an arbitrary total order of X with
xk ∈ Y . Then, turn X into a path by adding the arc
xi+1xi for all i. Further, for all y ∈ Y −xk, subdivide ψy
with a new vertex z, and replace all arcs uy occurring
in G by uz.

ψ

ψ

Note that the graphs produced by Construction 1 satisfy ∅ � Y � X.
Note that Rule 5 destroys the initial vertex property, preventing any further use
of Rule 4 and Rule 5. However, Rule 5 does not create new polytomies and, for
turning ψ binary by applying Rule 3, it is sufficient that ψ is “primal” (a weaker
condition than being initial).

Theorem 4. Register Sufficiency is NP-complete on rooted, single-leaf
binary DAGs.
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