
Fast Indexes for Gapped Pattern
Matching

Manuel Cáceres1, Simon J. Puglisi2, and Bella Zhukova2(B)

1 Department of Computer Science, University of Chile, Santiago, Chile
mcaceres@dcc.uchile.cl

2 Department of Computer Science, University of Helsinki, Helsinki Institute
for Information Technology (HIIT), Helsinki, Finland

{puglisi,bzhukova}@cs.helsinki.fi

Abstract. We describe indexes for searching large data sets for variable-
length-gapped (VLG) patterns. VLG patterns are composed of two
or more subpatterns, between each adjacent pair of which is a gap-
constraint specifying upper and lower bounds on the distance allowed
between subpatterns. VLG patterns have numerous applications in com-
putational biology (motif search), information retrieval (e.g., for lan-
guage models, snippet generation, machine translation) and capture a
useful subclass of the regular expressions commonly used in practice for
searching source code. Our best approach provides search speeds several
times faster than prior art across a broad range of patterns and texts.

1 Introduction

In the classic pattern matching problem, we are given a string P (the pattern
or query) and asked to report all the positions where it occures in another
(longer) string T (the text). This problem has been very heavily studied and has
applications throughout computer science.

In this paper we consider a variant on the classic pattern matching problem,
called variable length gap (VLG) pattern matching. In VLG matching, the query
P is not a single string but is composed of k ≥ 2 strings (subpatterns) that must
occur in order in the text. Between each subpattern, a number of characters may
be allowed to occur, an upper and lower bound on which is specified as part of
the query. Formally, our problem is as follows.

Definition 1 (Variable Length Gap (VLG) Pattern Matching [4]). Let
T be a string of n symbols drawn from alphabet Σ and P be a pattern consisting
of k ≥ 2 subpatterns (i.e. strings) p0, . . . , pk−1, each consisting of symbols also
drawn from Σ, and having lengths m0, . . . , mk−1, and k − 1 gap constraints
C0, . . . , Ck−2, such that Ci = 〈δi,Δi〉 with 0 ≤ δi ≤ Δi < n specifies the smallest
(δi) and largest (Δi) allowable distance between a match of pi and pi+1 in T. Find
all matches—reported as k-tuples i0, . . . , ik−1 where ij is the starting position for
subpattern pj in T—such that all gap constraints are satisfied.

This research is supported by Academy of Finland through grant 319454.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 493–504, 2020.
https://doi.org/10.1007/978-3-030-38919-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_40&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_40

494 M. Cáceres et al.

In computational biology, VLG matching is used in the discovery of and
search for motifs— i.e. conserved features—in sets of DNA and protein sequences
(see, e.g., [18,20]). For example, the following is a protein motif from the rice
genome (see [18]) expressed as a VLG pattern:

MT[115, 136]MTNTAYGG[121, 151]GTNGAYGAY.

A similar motif concept in music information retrieval means VLG matching
also finds applications in mining and searching for characteristic melodies [7]
and other musical structures [8,9] in sequences of musical notes expressed in
chromatic or diatonic notation. Bader et al. [1] point out several more applica-
tions of VLG matching in information retrieval and related fields such as natural
language processing (NLP) and machine translation. For example, Metzler and
Croft [17] define a language model in which query terms occuring within as cer-
tain window of each other must be found (in NLP, such terms are said to be
colocated). Locating tight windows of a document containing the set of words
contained in a search engine query is the problem of query-biased snippet gener-
ation [22]. In machine translation, VLG matching is used to derive rule sets from
text collections to boost effectiveness of automated translation systems [15].

VLG matching has a big parameter space and it is easy to think of patho-
logical combinations of pattern and text that lead to an exponential number
of matches. Fortunately, however, in practice the problem gets naturally con-
strained in important ways. The gap constraints are always bound the length of
documents under consideration, which in the case of source code or web pages
means that usually δi and Δi (and so their difference) are in (at most) the
tens-of-kilobytes range. In genomics and proteomics maximum gaps tend to be
around 100 characters or so (see, e.g., [18,20]).

Because of the interesting and useful applications outlined above, VLG
matching has received a great deal of attention in the past 20 years. The vast
majority of previous work deals with the online version of the problem in which
both the pattern P and the text T are previously unseen and cannot be pre-
processed [2,4,5,9,12,18,21]. Our concern in this paper is the offline version
of the problem, where T is known in advance and can be preprocessed and
an index structure built and stored to later support fast search for previously
unseen VLG patterns (the stream of which is assumed to be large, practically
infinite). Almost all work on the offline problem is of theoretical interest [3,14].
The exception is the recent work of Bader, Gog, and Petri [1], who develop
methods for the offline setting that use a combination of suffix arrays [16] and
wavelet trees [11,19]. Bader et al. show that their index is an order of magnitude
faster at VLG matching than are online methods, and several times faster than
q-gram-based indexes, the likes of which were behind Google Code Search [6].

Contribution. Our main contribution in the paper is to show that in practice,
on a broad range of inputs typical in real applications of VLG matching, sim-
ple algorithms based on intersecting ranges of the suffix array corresponding

Fast Indexes for Gapped Pattern Matching 495

to subpattern occurrences can be made very fast in practice, and comfortably
outperform state-of-the-art methods based on wavelet trees.

We emphasise that none of our new approaches are particularly exotic. They
are, however, very fast, and so represent non-trivial baselines by which future
(possibly more exotic) indexes for VLG pattern matching and related problems
(such as regex matching) can be meaningfully measured.

Roadmap. The remainder of this paper is as follows. Section 2 then looks at a
simple method for solving VLG matching that works by sorting and intersect-
ing ranges of the suffix array that contain the occurrences of subpatterns of the
VLG pattern. Sections 3 and 4 evolve this basic idea, presenting the results of
small illustrative experiments along the way. In Sect. 5 we compare our best per-
forming method to the recent wavelet-tree-based approach of Bader et al., which
represents the current state-of-the-art for indexed pattern matching (details of
our test machine and data sets can also be found in Sect. 5). Reflections and
directions for future work are then offered in Sect. 6.

2 VLG Matching via Sorting and Scanning Suffix Array
Intervals

Essential to the methods for VLG matching we will consider in this and later
sections is the suffix array [16] data structure. The suffix array of T, |T| = n,
denoted SA, is an array SA[0..n−1], which contains a permutation of the integers
0..n such that T[SA[0]..n − 1] < T[SA[1]..n − 1] < · · · < T[SA[n]..n − 1]. In other
words, SA[j] = i iff T[i..n] is the jth suffix of T in ascending lexicographical
order. Because of the lexicographic ordering, all the suffixes starting with a given
substring p of T form an interval SA[s..e], which can be determined by binary
search in O(|p| log n) time. Clearly the integers in SA[s..e] correspond precisely
to the distinct positions of occurrence of p in T and once s and e are located it
is straightforward to enumerate them in time O(e − s).

The starting point for our approaches is a baseline algorithm from the study
by Bader et al. called SA-scan, which makes use of the suffix array of T. A
pseudo-C++ fragment adapted from Bader et al.’s codebase capturing the main
thrust of SA-scan is shown in Fig. 1. For ease of reading the code here assumes
two subpatterns, but is easy to generalize for k > 2.

The operation of SA-scan can be summarized as follows. First, search for
each of the k subpatterns using SA to arrive at k ranges of the SA containing the
subpattern occurrences (in the code listing this is acheived by the two search
method calls). Next, for each range, allocate a memory buffer equal to the range’s
size and copy the contents of the range from SA to the newly allocated memory
and sort the contents of the buffer (positions of subpattern occurrence) into
ascending order. Finally, intersect the positions for subpatterns p0 and p1 with
respect to the gap constraints. Experimenting with SA-scan we observed the
time taken to find the ranges of subpattern occurrences in SA constituted less
than 1% of the overall runtime, with the vast majority of time spent sorting.

496 M. Cáceres et al.

SA-scan(string type p1, string type p2, int min gap, int max gap){

//1:find intervals of SA containing subpattern occurrences

std::pair<int,int> interval1 = search(p1,T,SA);

std::pair<int,int> interval2 = search(p2,T,SA);

//2: copy positions of subpattern occurrence from SA and sort

int m1 = interval1.second-interval1.first+1;

int m2 = interval2.second-interval2.first+1;

int *A = new int[m1];

int *B = new int[m2];

std::memcpy(A,SA+interval1.first,m1);

std::memcpy(B,SA+interval2.first,m2);

std::sort(A,A+m1);

std::sort(B,B+m2);

//3: intersect according to gap constraints

for(int i=0,j=0; i<m1 && j<m2; i++){

while(B[j] < (A[i] + min gap) && j < m2) j++;

while(j < m2 && B[j] <= (A[i] + max gap)){

result.push back(B[j]);
j++;

}

}

}

Fig. 1. A basic C++ implementation of the SA-scan VLG matching algorithm suitable
for k = 2 subpatterns.

Bader et al. use SA-scan as a baseline from which to measure the success of
their wavelet-tree-based method. SA-scan is natural enough, to be sure, but it
does look suspiciously like a straw man. To start with, is std::sort really the
best we can do for sorting those arrays of integers? We replaced the std::sort
call with a call to an LSD radix sort of our own implementation (using a radix of
256) and replicated an experiment from Bader et al.’s paper, searching several
text collections (including web data, source code, DNA, and proteins—see Sect. 5
for more details) for 20 VLG patterns (k = 2, δi,Δi = 〈100, 110〉), composed
of very frequent subpatterns drawn from the 200 most common substrings of
length 3 in each data set.

Figure 2 shows the results obtained on our test machine (see Sect. 5 for speci-
fications). Using radix sort instead of std::sort, SA-scan becomes at least two
times faster on the Kernel and Proteins datasets, almost twice as fast on CC, and
more than 30% faster on Para. A large if algorithmically-somewhat-unexciting
leap forward—but further improvements are possible1.

1 It is possible that further improvements from sorting alone are possible, using a more
heavily engineered sort function that our hand-rolled LSD radix sort. Our point here
is that sorting is an important dimension along which SA-scan can be optimized.

Fast Indexes for Gapped Pattern Matching 497

CC Kernel Para Proteins

Radix sort std::sort Radix sort std::sort Radix sort std::sort Radix sort std::sort

1k

10k

100k

1M
Q
ue

ry
ti
m
e
[µ
s]

Fig. 2. Time to search a 2GiB subset of the Common Crawl web collection
(commoncrawl.org). for 20 VLG patterns (k = 2, δi, Δi = 〈100, 110〉), composed of
very frequent subpatterns drawn from the 200 most common substrings of length 3 in
the collection.

3 Filter, Filter, Sort, Scan

Our first serious embellishment to SA-scan aims to avoid sorting the full set
of subpattern occurrences by filtering out some of the candidate positions that
cannot possibly lead to matches. Specifically, we allocate a bitvector F of n/b
bits initially all set to 0. We refer to b as the block size of the filter. Logically,
each bit represents a block of b contiguous positions in the input text, with the
ith bit corresponding to the positions ib..i(b + 1) − 1. In describing the use of
the filter we assume two subpatterns p1 and p2 (with occurrences in SA[s1..e1]
and SA[s2..e2], respectively), but the technique is easy to generalize for k > 2.

Having allocated F , we scan the interval SA[s1..e1] containing the occur-
rences of subpattern p1 and for each element i = SA[j] encountered, we set bits
F [(i + δ)/b..(i + Δ)/b] to 1 to indicate that an occurrence of p2 in any of the
corresponding blocks of the input is a potential match. During the scan we also
copy elements of the interval to an array A1 of size m1 = e1 − s1 + 1. We then
scan the interval SA[s2..e2] containing the occurrences of the second subpattern
and for each position i encountered we check F [i/b]. If F [i/b] = 0 then i cannot
possibly be part of a match and can be discarded. Otherwise (F [i/b] = 1) we add
i to a vector A2 of candidates. We then sort A1 and A2 and intersect them with
respect to the gap constraints, the same as in the original SA-scan algorithm.
The hope is that |A2| is much less than e2 −s2 +1, and so the time spent sorting
prior to intersection will be reduced.

There are two straightforward refinements to this approach. The first is to
make the initial scan not necessarily over SA[s1..e1], but instead over the smaller
of intervals SA[s1..e1] and SA[s2..e2]. The only difference is that if the interval for
p2 (the second subpattern) happens to be smaller (i.e. p2 has less occurrences in T
than p1) then we set bits F [(i−δ)/b..(i−Δ)/b] (rather than F [(i+δ)/b..(i+Δ)/b])

http://commoncrawl.org

498 M. Cáceres et al.

to 1. Assuming p1 is in fact more frequent than p2, the second refinement is to
perform a second round of filtering using the contents of A2. More precisely,
having obtained A2, we clear F (setting all bits to 0) and scan A2 settings bits
F [(i − δ)/b..(i − Δ)/b] to 1 for each i ∈ A2. We then scan A1 and discard any
element i for which F [i/b] now equals 0. Obviously it only makes sense to employ
this heuristic if the initial filtering reduced the number of candidates, |A2|, of
the second subpattern significantly below m1. In practice we found m2 < m1/2
led to a consistent speedup.

Of course, these techniques generalize easily to k > 2 subpatterns. The idea
is that the output of the intersection of the first two subpatterns then becomes
an input interval to be intersected with the third subpattern, and so on.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
·107

log b

T
ot
al

ti
m
e
[µ
s]

CS

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
·107

log b

CM

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
·107

log b

CL

CC Filter Kernel Filter Para Filter Proteins Filter
CC Radix Kernel Radix Para Radix Proteins Radix

Fig. 3. Effect of filter granularity on search time. Ordinate is runtime in microseconds
and mantissa is the logarithm (base 2) of the filter block size. Dashed lines show the
time required by SA-scan (using radix sort) without any filter. Each plot corresponds
to a different set of 20 synthetically generated VLG patterns. All patterns contain 2 of
the 200 most frequent subpatterns in each data set. We fixed the gap constraints Ci =
〈δi, Δi〉 between subpatterns to small (CS = 〈100, 110〉), medium (CM = 〈1000, 1100〉),
or large (CL = 〈10000, 11000〉). Section 5 gives more details of data sets and pattern
sets.

As Fig. 3 shows, employing F can reduce runtime immensely, but the
improvement varies greatly with b. A good choice for b depends on a number
of factors. For each occurrence of p1, we set �Δ−δ

b � bits in F . Accesses to F
while setting these bits are essentially random (determined by the order of the
positions of p1, which are the lexicographic order of the corresponding suffixes
of T), and so it helps greatly if b is chosen so that F , which has size n/b bits,
fits in cache. This can be seen in Fig. 3, particularly clearly for the CC, Kernel,
and Protein data sets, where performance improves sharply with increasing b
until F fits in cache (30 MiB on our test machine) where it quickly stablizes (at
log b = 3 for CC and Kernel, and log b = 2 for Protein). Runtimes then remain
relatively fast and stable until b becomes so large that the filter lacks specificity,
from which point performance gradually degrades. Para has the same trend,
though it is not immediately obvious—because the data set is smaller (409MB)

Fast Indexes for Gapped Pattern Matching 499

F already fits in L3 cache when b = 2. Section 5 gives more details of data sets
and pattern sets.

For the large-gap pattern set (CL), where Δ − δ = 1000 the optimal choice
of b for all data sets is much higher—b = 1024 in all cases (b = 512 has very
similar performance). Here we are seeing the effect of the time needed to set bits
in the filter. For example, for Kernel, F already fits in L3 cache when b = 8, but
at that setting �Δ−δ

b � = 1000/8 = 125 bits must be set in F per occurrence of
p1. With b = 1024 or 512, the number of bits set in F per occurrence of p1 is
just 1 or 2, the same as it is at the optimal setting for the small-gap (CS) and
middle-gap (CM) pattern sets. This effect can probably be largely alleviated by
employing two levels of filters or, alternatively, by implementing a method for
setting a word of 1s at a time (effectively reducing the time to set bits from
�Δ−δ

b � to �Δ−δ
b·w �, where w is the word size).

4 Direct Text Checking

The filtering ideas described in the previous section can drastically reduce the
amount of time spent per subpattern occurrence, but the overall runtime is still
Ω(occ1 + occ2), because both subpattern intervals are scanned in full. When the
number of occurrences of the less frequent subpattern, say p1, are significantly
less than those of p2, it is possible to get below that bound by scanning over
only the occurrences of p1, and for each occurrence, i, checking directly in the
substring of text T[i + δ..i + Δ] for any occurrences of p2, each of which cor-
responds to a match (or valid candidate match in the case k > 2). If we use
a linear time pattern matching algorithm such as that by Knuth, Morris, and
Pratt [13] to search for the occurrences of p2, runtime (for two subpatterns)
becomes Θ(occ1 · (Δ − δ)).

Employed by itself, this kind of text checking can lead to terrible perfor-
mance when both occ1 and occ2 are large. However, when employed in concert
with a filter, it can lead to significant performance gains, particularly in later
rounds of intersection when k > 2. Figure 4 illustrates this for k = 2, along with
the performance of the other versions of SA-scan (Filter and Radix) we have
decribed in previous sections. In sum, SA-scan has been sped up by more than
an order of magnitude on some data sets. In Fig. 5 we see that the text checking
heuristic makes an even bigger improvement when the number of subpatterns
increases (from k = 2 to k = 4) because it is employed more often.

5 Experimental Evaluation

In this section we compare the practical performance of our version of SA-scan
to the wavelet-tree-based method of Bader et al., which is called WT. We use
a variety of texts and patterns, which are detailed below (most of these have
appeared in experiments described in previous sections). Our methodology in
this section closely follows that of [1].

500 M. Cáceres et al.

CC Kernel Para Proteins
Q
ue

ry
ti
m
e
[µ
s]

F+TC Filter Radix F+TC Filter Radix F+TC Filter Radix F+TC Filter Radix

100

1k

10k

100k

1M

Fig. 4. Direct text checking improves search times further (k = 2).

Test Machine and Environment. We used a 2.10 GHz Intel Xeon E7-4830 v3
CPU equipped with 30 MiB L3 cache and 1.5 TiB of main memory. The machine
had no other significant CPU tasks running and only a single thread of execution
was used. The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.10.0-38-
generic. Programs were compiled using g++ version 5.4.0.

Texts. We use five datasets from different application domains:

– CC is a 2 GiB prefix of a recent 145TiB web crawl from commoncrawl.org.
– Kernel is a 2 GiB file consisting of source code of all (332) Linux kernel

versions 2.2.X, 2.4.X.Y and 2.6.X.Y downloaded from kernel.org. The data
set is very repetitive as only minor changes exist between subsequent versions.

– Para is a 410 MiB, which contains 36 sequences of Saccharomyces Paradoxus,
is provided by the Saccharomyces Genome Resequencing Project. There are
four bases {A,C,G, T}, but some characters denote an unknown choice among
the four bases in which case N is used.

– Proteins is a 1.2 GiB sequence of newline-separated protein sequences
(without descriptions, just the bare proteins) obtained from the
Swissprot database. Each of the 20 amino acids is coded as one letter.

Patterns. As in [4], patterns were generated synthetically for each data set.
We fixed the gap constraints Ci = δi,Δi between subpatterns to small (CS =
〈100, 110〉), medium (CM = 〈1000, 1100〉), or large (CL = 〈10000, 11000〉).
VLG patterns were generated by extracting the 200 most common substrings
of lengths 3, 5, and 7, which are then used as subpatterns. We then form 20
VLG patterns for each dataset, k (i.e. number of subpatterns), and gap con-
straint by selecting from the set of 200 subpatterns. We emphasise that the
generated patterns, while not specifically designed to be pathological, do repre-
sent relatively hard instances for SA-scan because of the high frequency of each
subpattern.

http://commoncrawl.org
http://kernel.org
http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release_compressed/uniprot_sprot.dat.gz

Fast Indexes for Gapped Pattern Matching 501

CC Kernel Para Proteins

F+TC Filter Radix F+TC Filter Radix F+TC Filter Radix F+TC Filter Radix

100

1k

10k

100k

1M

Q
ue

ry
ti
m
e
[µ
s]

Fig. 5. Direct text checking improves search times further (k = 4).

Matching Performance for Different Gap Constraint Bands. Our first experi-
ment aims to elucidate the impact of gap constraint size on query time. We
fix the subpattern length |pi| = mi = 3. Table 1 shows the results from VLG
patterns consisting of k = 21, . . . , 25 subpatterns. Our method, marked Fil-
ter+TC, is always faster than WT, with the exception of the large-gap CL

pattern sets, where on some data sets it yields to WT (most likely due to the
text-checking heuristic being less effective on CL).

Table 1. Total query time in milliseconds on all data sets for fixed mi = 3 and gap
constraints CS = 〈100, 110〉, CM = 〈1000, 1100〉, and CL = 〈10000, 11000〉.

Method CC Kernel Para Proteins

CS CM CL CS CM CL CS CM CL CS CM CL

k = 2

Filter+TC 1110 1261 2106 739 823 1023 2372 4696 2335 393 523 1000

WT 14748 18066 41101 7763 8685 26982 14760 57026 99730 8812 11435 24922

k = 4

Filter+TC 1420 1627 5941 420 1105 4341 5022 12742 16012 418 598 1589

WT 6458 6758 10582 1290 3821 5026 6578 48254 160223 8525 9463 15816

k = 8

Filter+TC 1109 2857 5705 978 1107 1640 8708 16237 18845 400 597 2070

WT 4641 4358 5439 1255 520 1937 234 357 86996 12708 12866 14054

k = 16

Filter+TC 1344 1989 4666 1581 1080 1646 3497 4802 13503 547 607 2313

WT 4410 5083 6224 527 513 326 262 260 253 20970 21731 23894

k = 32

Filter+TC 1344 2176 5835 706 762 1749 6218 6171 18233 393 604 2335

WT 4532 6727 5722 491 668 568 500 540 527 45984 47297 50376

Matching Performance for Different Subpattern Lengths. In our second exper-
iment, we examine the impact of subpattern lengths on query time, fixing the
gap constraint to CS = 100, 110. Table 2 shows the results. Larger subpattern

502 M. Cáceres et al.

lengths tend to result in smaller SA ranges. Consequently, SA-scan outperforms
WT by an even wider margin.

Table 2. Total query time in milliseconds for fixed gap constraint CS = 〈100, 110〉 for
different subpattern lengths mi ∈ {3, 5, 7} and different data sets.

Method CC Kernel Para Proteins

3 5 7 3 5 7 3 5 7 3 5 7

k = 2

Filter+TC 1110 756 654 740 178 46 2372 641 78 393 32 22

WT 14748 8576 6158 7763 1731 93 14760 10176 2502 8812 441 182

k = 4

Filter+TC 1420 362 310 420 159 53 5022 778 71 417 30 26

WT 6458 1477 637 1290 2182 30 6578 10882 2457 8525 97 67

k = 8

Filter+TC 1109 683 230 978 206 196 8708 767 153 400 30 23

WT 4641 1380 464 1255 156 47 234 16558 3602 12708 51 33

k = 16

Filter+TC 1344 541 679 1581 276 164 3497 836 77 547 31 32

WT 4410 922 412 527 155 81 262 29226 6317 20970 83 62

k = 32

Filter+TC 1344 457 257 706 225 90 6218 730 234 393 33 61

WT 4532 1492 540 491 324 171 500 64070 13813 45984 177 128

Overall Runtime Performance. In a final experiment we explored the whole
parameter space (i.e. k ∈ {21, . . . , 25}, mi ∈ {3, 5, 7}, C ∈ {CS , CM , CL}). The
results are summarized in Fig. 6. Overall out SA-scan-based method is faster
on average than the wavelet-tree-based one, usually by a wide margin.

CC Kernel Para Proteins

Filter+TC WT Filter+TC WT Filter+TC WT Filter+TC WT

100k

1M

Q
ue

ry
ti
m
e
[µ
s]

Fig. 6. Overall runtime performance of both methods, accumulating the performance
for all mi ∈ {3, 5, 7} and CS , CM , and CL.

Fast Indexes for Gapped Pattern Matching 503

6 Concluding Remarks

We have described a number of simple but highly effective improvements to the
SA-scan VLG matching algorithm that, according to our experiments, elevate it
to be the state-of-the-art approach for the indexed version of problem. We believe
better indexing methods for VLG matching can be found, but that our version
of SA-scan, which makes judicious use of filters, text checking, and subpattern
processing order, represents a strong baseline against which the performance of
more exotic methods should be measured.

Numerous avenues for continued work on VLG matching exist, perhaps the
most interesting of which is to reduce index size. Currently, SA-scan uses
n log n + n log σ bits of space for a text of length n on alphabet σ for the suffix
array and text, respectively (the WT approach of Bader et al., uses slightly
more). Because our methods consist (mostly) of simple scans of SA ranges or
scans of the underlying text, they are easily translated to make use of recent
results on Burrows-Wheeler-based compressed indexes [10] that allow fast access
to elements of the suffix array from a compressed representation of it. Via this
observation we derive the first compressed indexes for VLG matching. These
indexes use O(r log n) bits of space, where r is the number of runs in the Burrows-
Wheeler transform, a quantity that decreases with text compressibility. On our
2 GiB Kernel data set, for example, the compressed index takes around 20 MiB
in practice, and can still support VLG matching in times competitive with the
indexes of Bader et al. We plan to explore this in more depth in future work.

Acknowledgments. Our thanks go to Tania Starikovskaya for suggesting the problem
of indexing for regular-expression matching to us. We also thank Matthias Petri and
Simon Gog for prompt answers to questions about their article and code and the
anonymous reviewers for helpful comments. This work was funded by the Academy of
Finland via grant 319454 and by EU’s Horizon 2020 research and innovation programme
under Marie Sk�lodowska-Curie grant agreement No. 690941 (BIRDS).

References

1. Bader, J., Gog, S., Petri, M.: Practical variable length gap pattern matching.
In: Goldberg, A.V., Kulikov, A.S. (eds.) SEA 2016. LNCS, vol. 9685, pp. 1–16.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38851-9 1

2. Bille, P., Farach-Colton, M.: Fast and compact regular expression matching. Theor.
Comput. Sci. 409(3), 486–496 (2008)

3. Bille, P., Gørtz, I.L.: Substring range reporting. Algorithmica 69(2), 384–396
(2014)

4. Bille, P., Gørtz, I.L., Vildhøj, H.W., Wind, D.K.: String matching with variable
length gaps. Theor. Comput. Sci. 443, 25–34 (2012)

5. Bille, P., Thorup, M.: Regular expression matching with multi-strings and intervals.
In: Proceedings of SODA, pp. 1297–1308. ACM-SIAM (2010)

6. Cox, R.: Regular expression matching with a trigram index or how Google code
search worked (2012). https://swtch.com/∼rsc/regexp/regexp4.html

https://doi.org/10.1007/978-3-319-38851-9_1
https://swtch.com/~rsc/regexp/regexp4.html

504 M. Cáceres et al.

7. Crawford, T., Iliopoulos, C.S., Raman, R.: String matching techniques for musical
similarity and melodic recognition. Comput. Musicol. 11, 73–100 (1998)

8. Crochemore, M., Iliopoulos, C.S., Makris, C., Rytter, W., Tsakalidis, A.K., Tsich-
las, T.: Approximate string matching with gaps. N. J. Comput. 9(1), 54–65 (2002)

9. Fredriksson, K., Grabowski, S.: Efficient algorithms for pattern matching with
general gaps, character classes, and transposition invariance. Inf. Retr. 11(4), 335–
357 (2008)

10. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proceedings of SODA, pp. 1459–1477. ACM-SIAM (2018)

11. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proceedings of the SODA, pp. 841–850. ACM-SIAM (2003)

12. Haapasalo, T., Silvasti, P., Sippu, S., Soisalon-Soininen, E.: Online dictionary
matching with variable-length gaps. In: Pardalos, P.M., Rebennack, S. (eds.) SEA
2011. LNCS, vol. 6630, pp. 76–87. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20662-7 7

13. Knuth, D., Morris, J.H., Pratt, V.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

14. Lewenstein, M.: Indexing with gaps. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 135–143. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24583-1 14

15. Lopez, A.: Hierarchical phrase-based translation with suffix arrays. In: Proceedings
of the EMNLP-CoNLL 2007, pp. 976–985. ACL (2007)

16. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

17. Metzler, D., Croft, W.B.: A markov random field model for term dependencies. In:
Proceedings of the SIGIR, pp. 472–479. ACM (2005)

18. Morgante, M., Policriti, A., Vitacolonna, N., Zuccolo, A.: Structured motifs search.
J. Comput. Biol. 12(8), 1065–1082 (2005)

19. Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2–20 (2014)
20. Pissis, S.P.: MoTeX-II: structured MoTif eXtraction from large-scale datasets.

BMC Bioinform. 15(235), 1–12 (2014)
21. Saikkonen, R., Sippu, S., Soisalon-Soininen, E.: Experimental analysis of an online

dictionary matching algorithm for regular expressions with gaps. In: Bampis, E.
(ed.) SEA 2015. LNCS, vol. 9125, pp. 327–338. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20086-6 25

22. Turpin, A., Tsegay, Y., Hawking, D., Williams, H.E.: Fast generation of result
snippets in web search. In: Proceedings of the SIGIR 2007, pp. 127–134. ACM
(2007)

https://doi.org/10.1007/978-3-642-20662-7_7
https://doi.org/10.1007/978-3-642-20662-7_7
https://doi.org/10.1007/978-3-642-24583-1_14
https://doi.org/10.1007/978-3-319-20086-6_25
https://doi.org/10.1007/978-3-319-20086-6_25

	Fast Indexes for Gapped Pattern Matching
	1 Introduction
	2 VLG Matching via Sorting and Scanning Suffix Array Intervals
	3 Filter, Filter, Sort, Scan
	4 Direct Text Checking
	5 Experimental Evaluation
	6 Concluding Remarks
	References

