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Abstract. Traditional verbatim browsers give back information linearly
according to a ranking performed by a search engine that may not be
optimal for the surfer. The latter may need to assess the pertinence of
the information retrieved, particularly when s·he wants to explore other
facets of a multi-facetted information space. Simultaneous facet visu-
alisation can help to gain insights into the information retrieved and
call for further refined searches. Facets are potentially heterogeneous co-
occurrence networks, built choosing at least one reference type, and mod-
eled by HyperBag-Graphs—families of multisets on a given universe. Ref-
erences allow to navigate inside the dataset and perform visual queries.
The approach is illustrated on Arxiv scientific pre-prints searches.
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1 Introduction

When browsing a textual database, traditional verbatim browsers give back lin-
ear information in the form of ranked list of short reference description. To
increase the pertinence of this information, the surfer has often to perform addi-
tional searches either by refining the original search terms s·he used or by using
other pertinent queries that can help her·him to refine the retrieved information.

In an information space, meaningful information can be regrouped by hierar-
chical classification or—non exclusive—by semantically cohesive categories that
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are combined to express concepts, called facets [1]. Those facets are linked by
the physical entities contained in the search output. Choosing a type of reference
linked to these entities enables the construction of a co-occurrence network per
facet and enhance navigation in the information space. For instance, in scientific
publications different information are linked in an article: the article reference,
the authors, the main keywords... All this metadata can potentially give insights
into the information space and can be chosen as reference to build co-occurrences.
Choosing as reference for instance the article id, facets depict co-occurrence net-
works, either of homogeneous type, such as co-authors or co-keywords, or of
heterogeneous types, i.e. combining multiple types together. Co-occurrences can
potentially contain repetitions or require an individual weighting: modeling it
requires multisets instead of sets.

We propose in this article a new way to explore an information space by
using hyper-bag-graphs (hb-graphs for short)—families of multisets on a uni-
verse called the vertex set—a mathematical structure we introduced in [2]. Hb-
graphs are a separate mathematical category from the one of hypergraphs. This
is an important difference as hb-graphs store extra-information that can not be
kept with hypergraphs and have different algebra operations. Moreover, we have
shown in [3] that hb-graphs enhance exchange-based diffusion over co-occurrence
networks, providing a fine vertex and hb-edge ranking.

We propose four extensions of the hypergraph framework of [4]. First, the
visualisation part is extended to support hb-graphs: it is an important mathe-
matical generalization that supports redundancy and hb-edge based weighting
of vertices that requires multiset families (hb-graphs) instead of subset fami-
lies (hypergraphs). Second, the new framework supports navigation of heteroge-
neous co-occurrence networks; in the former framework only homogeneous co-
occurrences where allowed. Third, multi-references for building co-occurrences is
tackled. Fourth, an application is given with Arxiv search, by the implementation
of a 2.5D interface to perform visual queries and visualize the Arxiv information
space.

Section 2 lists the related work and the mathematical background. Section 3
presents the hb-graph framework. Section 4 gives results and Sect. 5 concludes.

2 Related Work and Mathematical Background

2.1 Information Space Discovery

Discovering knowledge in an information space requires to gather meaningful
information, either hierarchically or semantically. Semantics provide support to
the definition of facets within an information space [1].

Navigation and visualisation of the information space facets have been
achieved previously in many different ways. [5] uses a pivot to stroll between three
facets; the approach, based on a tripartite graph, is limited to the visualisation
of a small amount of pivots at the same time. In [6], an interactive exploration
of implicit and explicit relations in faceted datasets is proposed. The space of
visualisation is shared between different metadata with cross findings between
metadata, partitioning the space in categories. [7] proposes a visual analytics
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graph-based framework for exploring an information space. The labeled graph
representing the dataset is explored by retrieving paths with same type vertices
going through reference vertices. Visualisation facets are navigable graphs of
pairwise collaborations.

2.2 Co-occurrence Networks

Data mining is only one step in the knowledge discovery processing chain. If
numerical data allows rich statistics on the instances, non numerical data min-
ing consists often in summarizing data as occurrences. Alternately, techniques
using data instance similarities such as k-nearest neighbors can be used to link
different occurrences: however in high dimensionality, they are limited by the
curse of dimensionality, even if some techniques limit its effect [8]. Retrieving
links through the dataset itself is another way of detecting co-occurrences.

If the dataset reflects existing links—as group of friends in social networks—
the job is easier since an inherent co-occurrence/collaboration network can be
built through the data instances. Nonetheless, links are often neither direct nor
tangible: thus co-occurrences need to be built or processed from the dataset.

A dataset can be a set of physical references, stored as rows in traditional rela-
tional databases. Each physical reference has metadata instances attached to it.
Metadata instance types can be either interesting for visualisation or processing
additional information. The set of physical references and metadata instances
used for visualisation provide the types of the network, each type being seen
either as a reference or a facet of the information space. This allows—as it will
be explained in the next section—the retrieval of co-occurrences in one facet,
based on one reference type—which can differ from the physical reference.

2.3 Multisets and Hb-Graphs

Co-occurrences seen as collaborations are m-adic relationships of occurrences,
often modeled as hypergraphs, i.e. families of subsets of a given vertex set. But
hypergraphs, as they are subsets, do not support neither hyperedge-based repe-
tition nor hyperedge-based weighting of vertices. Hb-graphs—introduced newly
in [2]—as multiset families naturally allow them.

Multisets—also known as bags or msets—have been used for a long time
in many domains such as text representation and image. Multisets support the
individual weighting of their elements by using a multiplicity function on
a set called the universe. The elements that have non-zero multiplicity value
belong to the support of the multiset. A natural multiset occurs when the
multiplicity function has its range in the non-negative integers1.

More information on hypergraphs and multisets, with additional references,
can be found in [3].

1 We denote Am = {xmi
i : i ∈ [[n]]} where mi = m (xi) a mset Am = (A,m) of universe

A = {xi : i ∈ [[n]]} , of multiplicity function m and of support A�
m = {xi : mi �= 0} .
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Table 1. Synthesis of the framework
M
E
T
A
D
A
T
A

Schema hypergraph
↓

Related to database
structure

HSch = (VSch, ESch)

Extended schema
hypergraph

↓

Store possible
additional processings

HSch = VSch, ESch

)

Extracted extended schema
hypergraph

↓

U : set of metadata of
interest (visualisation

and reference)

HX = (VX , EX) where VX = U ,
EX =

{
e ∩ U : e ∈ ESch

}

Reachability hypergraph
↙↓↘

Hyperedges are
connected components
Ecc (⊂ VX) of HX

HR = (VR, ER)
VR = VX

ER = {Ecc : Ecc c.c. of HX}
Navigation hypergraph

↓
Choose: er ∈ ER

references Rref ⊂ er

HN = (VN , EN )
VN = VR\Rref

EN = {er\R : R ⊆ Rref ∧ R 
= ∅}

D
A
T
A

Facet visualisation
hb-graphs

Co-occurrence
networks as hb-graphs

Following [2], a hb-graph H = (V,E)2 is a family of multisets called hb-
edges E = (ei)i∈[[p]] having the same universe V = {v1, ..., vn} called the vertex
set. Each hb-edge ei ∈ E has its own multiplicity function: mei

: V → W

where W ⊂ R
+. A hb-edge can be seen as a dependent weighted system of

vertices. A hb-graph with only natural multisets as hb-edges is said natural.
A hypergraph appears as a particular case of natural hb-graph with a binary
value—0 or 1—for each hb-edge multiplicity.

The support hypergraph H = (V,E) of a hb-graph H = (V,E) is the
hypergraph of same vertex set V and of hyperedges E = (e�i )i∈[[p]] . The support
hypergraph is unique for a given hb-graph. But reconstructing the hb-graph from
a support hypergraph generates an infinite number of hb-graphs, showing that
the information contained in a hb-graph is denser than in a hypergraph.

Hb-graph unnormalized extra-node representation is obtained by adding an
extra-node per hb-edge linked to each hb-edge support vertex with a link thick-
ness proportional to the vertex multiplicity. Figure 2.b(ii) shows an example.

3 Hb-Graph Framework

3.1 Enhancing Navigation

For the sake of clarity, we briefly summarize in Table 1 the enhancement of navi-
gation of [4], achieved by defining different hypergraphs at the metadata level. We
take as thumbnail an example based on a publication dataset. Possible metadata
types are: publication id, title, abstract, authors, affiliations, addresses, author
keywords, publication categories, countries, organizations, and eventually some

2 We use fraktur font for multisets and hb-graphs: A : A, e : e,E : E,H : H.
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Fig. 1. Schema hypergraph, extended schema hypergraph, Extracted extended schema
hypergraph: exploded view shown on an example of publication dataset

processed metadata types such as processed keywords, continent, ...3 Enhanc-
ing navigation supposes first to define the schema hypergraph reflecting the
relationships between the database metadata instances. We give the possibility
to extend it into an extended schema hypergraph to store potential addi-
tional processings. Out of the latter an extracted extended schema hyper-
graph HX = (VX , EX) is enhanced that keeps metadata instances of interest to
build the co-occurrences and to be visualized; it might require some intermediate
hyperedge bundling. Figure 1 shows the different hypergraphs.

The reachability hypergraph HR = (VR, ER) reflects the connected com-
ponents of HX , with VR = VX : its hb-edges do not intersect. Hence, if HR has
only one hyperedge, the whole dataset is navigable. We assume that in each
hyperedge of the reachability hypergraph, there is at least one metadata type
or a combination of metadata types that can be chosen as the physical refer-
ence. The data instance related to this reference is supposed to be unique. For
instance, in a publication dataset the physical reference is the publication id of
the publication itself. In the example, the extracted hypergraph has only one
component {publication id, authors, processed keywords, subject categories}.

Each hyperedge er ∈ ER of HR leads to one new navigation hypergraph
HN = (VN , EN ) by choosing a non-empty subset Rref of er of possible reference
types of interest. The choice of a subset R of Rref allows to consider the remaining
vertices of er\R as visualisation vertex types, that will be used to generate the
facet visualisation hb-graphs and are called the visualisation types. Hence: EN =
{er\R : R ⊆ Rref ∧ R �= ∅} . When there is only one reference of interest selected
at a time in Rref we denote EN/1 for EN . In the publication database example,
many navigation hyperedges are possible; the navigation hyperedge choosing as
reference publication ids is {authors, publication categories, processed keywords}
while using processed keywords as reference is: {authors, publication category,
publication ids}.

3 Metadata of interest for visualisation or referencing are in italic.
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3.2 Facet Visualisation Hb-Graphs

In [4], we use sets to store co-occurrences. Nonetheless in many cases, it is
worth storing additional information by joining a multiplicity—with nonneg-
ative integer or real values—to the elements of co-occurrences. A small example
emphasizes the interest of moving towards multisets: we consider the publication
network of Fig. 2. In this example, building co-occurrences accounting the occur-
rence multiplicity induces not only a refined visualisation, with distinguishable
hb-edges in between some of the vertices (augmented reality and 3D) but also
yields to refined rankings of both vertices and hb-edges, as mentioned in [3]. As
some parts relies on a mathematic description they have been put in Appendice.
The reader can always refer to Fig. 2 for an illustration of the concepts where
we choose the keywords as reference.

a. Simplified network b.(i) Support hypergraph b.(ii) Hb-graph

b. Co-occurrences of organizations
with keyword as reference

scene recon-

struction

{{
Org 11,Org 21

}}

computer

vision

{{
Org11,Org21,Org 31,Org 41

}}

augmented

reality

{{
Org 21,Org 33,Org 42,Org 51

}}

3D
{{

Org 21,Org 32,Org 41,Org 51
}}

Vertex weighted degree ranking:
1. Org 2;

2. Org 3; Org 4;
4: Org 5; Org 1.

Hyperedge weighted cardinality
ranking:

1. CV, AR, 3D; 2. SR

Vertex weighted m-degree ranking:
1. Org 3;

2. Org 2; Org 4;
4: Org 5; Org 1.

Hb-edge weighted m-cardinality
ranking:

1. AR; 2: 3D; 3: CV; 4: SR

Fig. 2. A simplified publication network with publication id, organizations, keywords.

Each physical entity d of a dataset D corresponds to a unique physical ref-
erence r. d is described by a set of data instances of different types that are in
α ∈ VSch. We write I the set of data instances in D, and t the type application
that gives the type of an instance.

Hb-graphs requires a common universe taken as vertex set. We consider for
each type α, its instance set Uα = {i : i ∈ I ∧ t (i) = α} of instances of D of type
α. The common universe for the visualisation hb-graph depends on the search.

We write Aα,r = (Uα,mα,r) the multiset of universe Uα, of the values of
type α—possibly none—that are attached to d, the physical entity of reference
r. The support of Aα,r is A�

α,r =
{
ai1 , ..., aikr

}
. Hence, we abusively write:

Aα,r =
{

a
mα,r(ai1)
i1

, ..., a
mα,r(aikr

)
ikr

}
omitting the elements of Uα that have a

zero multiplicity in Aα,r.
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d is entirely described by its reference r and the family of multisets, corre-
sponding to homogeneous co-occurrences of the different types α in VSch linked
to the physical reference, i.e.

(
r, (Aα,r)α∈VSch

)
.

In Fig. 2, the publication id is the physical reference. Taking as reference
the publication id, the co-occurences for the Publication A of organisations are:{
Org 21,Org 31,Org 41

}
and of keywords are:

{
3D1, augmented reality1

}
. The

example in Fig. 2.b shows a reference that is not the physical reference.
Type heterogeneity in co-occurrences can enable simultaneous view of dif-

ferent types in a single facet. To allow type heterogeneity in co-occurrences,
we consider a partition Γ of the different types in VSch. Each type belong-
ing to an element ν of the partition Γ will be visualized simultaneously in a
co-occurrence: it enriches the navigation process, allowing heterogeneous co-
occurrences. An interesting case is when ν has a semantic meaning and ele-
ments of ν appear as an “is a” relationship. For instance in a publication
database organizations regroups “institute” and “company”. Also, we consider
Aν,r

Δ= (Uν ,mν,r), where Uν
Δ=

⋃

α∈ν
Uα, of support A�

ν,r
Δ=

⋃

α∈ν
A�

α,r such that

mν,r (a) Δ=

{
mt(a),r (a) if a ∈ A�

ν,r

0 otherwise
.

d is entirely described in the case of heterogeneous co-occurrences by(
r, (Aν,r)ν∈Γ

)
. The homogeneous co-occurrences are retrieved when all ν ∈ Γ

are singletons.
Performing a search on the dataset retrieves a set S of physical references r. In

the single-reference-restricted navigation hypergraph, each hyperedge eN ∈ EN/1

describes accessible facets relatively to a chosen reference type ρ ∈ VN\eN . Given
a partition γ ∈ ΓN , where ΓN

Δ= {ν ∩ eN : ν ∈ Γ} is the induced partition of eN

related to the partition Γ of VSch, the associated facet shows the visualisation hb-
graph Hγ/ρ,S where the hb-edges are the heterogeneous co-occurrences of types
in γ relatively to reference instances of type ρ (γ/ρ as short) retrieved from the
different references in S.

We then build the co-occurrences γ/ρ by considering the set of all values of
type ρ attached to all the references r ∈ S: Σρ

Δ=
⋃

r∈S
A�

ρ,r. Each element s of Σρ

is mapped to a set of physical references Rs
Δ=

{
r : s ∈ A�

ρ,r

} ∈ P (S) in which
they appear: we write rρ the mapping. The multiset of values eγ,s of types α ∈ γ

relatively to the reference instance s is eγ,s
Δ=

⊎

r∈Rs

Aγ,r.

The raw visualisation hb-graph for the facet of heterogeneous
co-occurrences γ/ρ attached to the search S is defined as:

Hγ/ρ,S
Δ=

(
⋃

r∈S
A�

γ,r, (eγ,s)s∈Σρ

)
. Fig. 2.b(ii) gives an example of such a raw

visualisation hb-graph.
Since some hb-edges can possibly point to the same sub-mset of vertices,

we build a reduced visualisation weighted hb-graph from the raw visualisation
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hb-graph. To achieve it we define: gγ : s 
→ eγ,s and R the equivalence relation
such that: ∀s1 ∈ Σρ, ∀s2 ∈ Σρ : s1Rs2 ⇔ gγ (s1) = gγ (s2) .

Considering a quotient class s ∈ Σρ

/R4, we write eγ,s
Δ= gα (s0) where s0 ∈ s.

Eγ
Δ=

{
eγ,s : s ∈ Σρ

/R}
is the support set of the multiset {{eγ,s : s ∈ Σρ}}:

eγ,s ∈ Eγ is of multiplicity wγ (eγ,s) = |s| in this multiset.

It yields: {{eγ,s : s ∈ Σρ}} =
{
eγ,s

wγ(eγ,s) : s ∈ Sρ

/R
}

.

Let g̃γ : s ∈ Σρ

/R 
→ e ∈ Eγ , then g̃γ is bijective. g̃γ
−1 allows to retrieve

the class associated to a given hb-edge; hence the associated values of Σρ to
this class—which will be important for navigation. The references associated to
e ∈ Eγ are

⋃

s∈g̃γ
−1(e)

rρ (s) . The reduced visualisation weighted hb-graph

for the search S is defined as Hγ/ρ,wγ ,S
Δ=

(
⋃

r∈S
A�

γ,r, Eγ , wγ

)
.

Fig. 3. Navigating between facets of the information space

Using the support hypergraph of the visualisation hb-graphs retrieves the
results given in the case of homogeneous co-occurrences in [4]: hence [4] appears
as a particular case of the new hb-graph framework.

3.3 Navigability Through Facets

As for a given search S and a given reference ρ, the sets Σρ and Rs, s ∈ Σρ are
fixed, the navigability can be ensured between the different facets. We consider
a group of types γ, its visualisation hb-graph Hγ/ρ,wγ

and a subset A of the
vertex set of Hγ/ρ,wγ

. We target another group of types γ′ of heterogeneous co-
occurrences referring to ρ for visualisation. Figure 3 illustrates the navigation.

We suppose that the user selects elements of A as vertices of interest from
which s·he wants to switch facet. Hb-edges of Eγ which contain at least one

element of A are gathered in Eγ

∣
∣
A

Δ=
{
e : e ∈ Eγ ∧ (∃x ∈ e : x ∈ A)

}
. Using

the application g̃γ
−1 we retrieve the corresponding class of references of type ρ

associated to the elements of Eγ

∣
∣
A
, to build the set of references V

∣
∣
A

of type ρ

involved in the building of co-occurrences of type γ′. Each of the classes in V
∣
∣
A

4 Σρ

/R is the quotient set of Σρ by R.
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contains instances of type ρ that are gathered in a set Vρ,A. Each element of
Vρ,A is linked to a set of physical references by rρ. Hence we obtain the physical

reference set involving elements of A: SA
Δ=

⋃

s∈νρ,A

Rs.

The raw visualisation hb-graph Hγ′/ρ

∣
∣
A

Δ=

(
⋃

r∈SA

A�
γ′,r, (eγ′,s)s∈Vρ,A

)

in the

targeted facet is now enhanced using SA as search set instead of set S. To obtain
the reduced weighted version we use the same approach as above. The multiset
of co-occurrences retrieved includes all occurrences that have co-occurred with
the references attached to one of the elements of A selected in the first facet. Of
course if A = Aγ,S the reduced visualisation hb-graph contains all the instances
of type γ′ attached to physical entities of the search S.

In Fig. 2.b(ii), with A = {Org1} , allows to retrieve two hb-edges: computer
vision—attached to PubB and PubC—and scene reconstruction—PubB. Hence:
SA = {PubB,PubC} . Switching to the Publication facet and keeping as refer-
ence keywords, two hb-edges

{
PubB1,PubC1

}
and

{
PubB1

}
are retrieved. The

same with A = {Org1,Org2} retrieves all the co-occurences of Publications with
reference to keywords.

The reference type can always be shown in one of the faces as a visualisa-
tion hb-graph where all the hb-edges are constituted of the reference itself with
multiplicity the number of time the reference occurs in the hb-graph.

Ultimately, by building a multi-dimensional network organized around groups
of types, one can retrieve very valuable information from combined data sources.
This process can be extended to any number of data sources as long as they share
one or more types. Otherwise the reachability hypergraph is not connected and
only separated navigations are possible.

3.4 The Case of Multiple References

Extending co-occurrences to multiple references chosen in eR ∈ ER is not
straightforward. There are two ways of doing so: a disjunctive and a conjunctive
way. We consider the set R ⊂ eR of references and eN = eR\R the visualisation
types.

In the disjunctive way, each co-occurrence is built using the same app-
roach than before considering successively each type ρ ∈ R. This is particularly
adapted for types that are partitioning the physical references. It is the case
for instance in the aggregation of two databases on two different kind of phys-
ical data, such as publication and patent, and the co-occurrence of the chosen
navigation type is built referring in this case either to a publication or (non-
exclusive) to a patent. The hb-graphs obtained are built by extending the family
of hb-edges.

In the conjunctive approach, we start by building the cross product of
instances of the references and retrieve co-occurrences of elements for which
the data d is attached to the corresponding values of cross-reference instances.
Hence co-occurrences are restricted to the simultaneous presence of reference
instances attached to the physical entity.
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3.5 The DataHbEdron5

The DataHbEdron provides soft navigation between the different facets of the
information space. Each facet of the information space corresponding to a visu-
alisation type includes a visualisation hb-graph viewed in its 2D extra-node rep-
resentation with a normalised thickness on hb-edges [2]. The different facets are
embedded in a 2.5D representation called the DataHbEdron. The DataHbEdron
can be toggled between a cube with six faces—Figure 4—and a carousel shape
with n faces—not shown here due to the lack of space—to ease navigation
between facets. The reference face shows a traditional verbatim list of references
corresponding to the search output.

(a) Cube shape

(b) Performed search

Fig. 4. DataHbEdron: cube shape.

Individual faces of the DataHbEdron show different facets of the information
space: the underlying visualisation hb-graphs support the navigability through
facets. Hb-edges can be selected interactively between the different facets; since
each hb-edge is linked to a subset of the references, the corresponding references
can be used to highlight information in the different facets as well as in the face
containing the reference visualisation hb-graph.

4 Results, Evaluation and Conclusion

4.1 Use Case

We applied this framework to perform searches and visual queries on the Arxiv
database allowing simultaneous visualisation of the different facets of the infor-
mation space constituted by authors, extracted keywords and subject categories.
5 A video demo is available on: https://www.infos-informatique.net.

https://www.infos-informatique.net
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The tool developed is now part of the Collaboration Spotting family6. When per-
forming a search, the standard Arxiv API7 is used to query the Arxiv database.
The queries can be formulated either by a text entry or done interactively directly
using the visualisation: queries include single words or multiple words, with pos-
sible Boolean query operators—AND, OR and NOT—and parenthesis group-
ings. The querying history is stored and presented as an interactive hb-graph to
visualize the construction of complex queries including refinement of the queries
already performed. Each time a new query is formulated, the corresponding
metadata is retrieved by the Arxiv API.

When performing a search on Arxiv, the query is transformed into a vector
of words. Arxiv relies on Lucene’s built-in Vector Space Model of information
retrieval and the Boolean model. The most relevant documents are retrieved
based on a similarity measure between the query vector and the word vectors
associated to individual documents. The API returns the top n highest scored
document metadata associated to the document. Metadata, filled by authors
during their submission of a preprint, contains different information such as
authors, Arxiv categories and abstract.

The facets are shown on the DataHbEdron with additional faces: the first face
shows the Arxiv reference visualisation hb-graph with a layout similar to classical
textual search engines. The second face corresponds to the visualisation hb-graph
of co-authors. The third face depicts the visualisation hb-graph of co-keywords
extracted from the abstracts using classical natural language processing and TF-
IDF that is used as keyword multiplicity. The fourth face shows the hb-graph of
Arxiv categories. The fifth face shows past or reloaded queries of the session.

Any node on any face is interactive to highlight information from one face to
another showing the hb-edges that are mapped through the references. Queries
can be built using the vertices of the hb-graph, either isolated or in combination
with the current search using AND, OR and NOT. The first query is the only
one required to be typed in. Merging queries of different users is immediate
as they correspond to hb-edges of a hb-graph. Queries are evolving, gathered,
stored and re-executable months later. The surfer has the possibility to display
additional contextual information related to authors using DBLP, to keywords
using DuckDuckGo for disambiguation and Wikipedia.

4.2 Evaluation

The validity of our framework is asserted by the mathematical construction
completeness and robustness: we have achieved the possibility to navigate inside
the dataset by showing co-occurrences in a sufficient refined way to support all
the information extracted. As this model has been instantiated through a user
interface in the use case of Arxiv, but, also, as mentioned previously, on some
other sample data using csv files, its versatility is ensured. We have gathered in
Table 2 some of the non-exhaustive features that allows to compare our solution

6 http://collspotting.web.cern.ch/.
7 https://arxiv.org/help/api/index.

http://collspotting.web.cern.ch/
https://arxiv.org/help/api/index
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Table 2. Elements of comparison (see text for details)

Verbatim
browser

PivotPath [5] PivotSlice [6] CS core [7]
DataEdron

cube [4]
DataHbEdron

output linear
tripartite

graph
graph graph

linear &
hypergraph

linear &
hb-graph

#facets 1 3 many many 4 many

view per facet no no no yes yes yes

simultaneous facet
views

no yes yes no yes yes

heterogeneous
co-occurrences

x no no yes no yes

multiple references x no no disjunctive no
conjunctive,
disjunctive

zoom in data new query no yes yes no yes

filter data new query no yes yes no
by visual
queries

visual query no no
yes, restricted

to current
search

yes, restricted
to current

search
no

yes, even with
new search

redundancy in
co-occurrences

x no no no yes

information
extraction

limited pivot change
elaborated
questions

elaborated
questions

elaborated
questions

elaborated
questions

combination of
facets

no no yes yes yes yes

type of ranking
binary cosine

similarity
no

number of
references per

vertex

hyperedges
and vertices

hb-edges and
vertices

with others. The user interface uses a 2.5D approach, but it is out of the scope
of this article to make any claim on the quality of the interactions a user can
have with such an interface.

5 Future Work and Conclusion

The framework supports dataset visual queries, possibly contextual, that either
result from searches on related subjects or refine the current search: it enables full
navigability of the information space. It provides powerful insights into datasets
using simultaneous facet visualisation of the information space constructed from
the query results. This framework is versatile enough to enhance user insight
into many other datasets, particularly textual and multimedia ones.
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