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Abstract. Let b ∈ N
+. Synthesis of pure b-bounded (m, n)-T-systems

((m,n)-Synthesis, for short) consists in deciding whether there exists
for an input (A, m, n) of transition system A and integers m, n ∈ N a
pure b-bounded Petri net N as follows: N ’s reachability graph is iso-
morphic to A, and each of N ’s places has at most m incoming and at
most n outgoing transitions. In the event of a positive decision, N should
be constructed. The problem is known to be NP-complete, and (m,n)-
Synthesis parameterized by m + n is in XP [14]. In this paper, we
enhance our understanding of (m,n)-Synthesis from the viewpoint of
parameterized complexity by showing that it is W [1]-hard when param-
eterized by m + n.

1 Introduction

Petri net synthesis consists in deciding whether there is a Petri net (PN, for
short) that implements a given behavioral specification and in constructing such
a net if it exists. Valid synthesis methods yield implementations that are correct
by design. The possibility of finding effective or even efficient synthesis algo-
rithms crucially depends on the specification and the searched net. This has
been subject of research for many years: It is undecidable whether there is a
P/T net implementing a pushdown- or a HMSC-language or whether there is
a (pure) bounded P/T net implementing a modal transition systems (MTS, for
short) [9,11]. If the specification is a deterministic pushdown-language or -graph,
and the search net is a P/T-net, synthesis is decidable [4]. It is also decidable
whether there is a b-bounded Petri net that implements an MTS [12]. If the
specification is a transition system (TS, for short), and the searched net is a
1-bounded PN, synthesis is NP-complete [2], even if the TS is strongly restricted
[15,16]. The synthesis of b-bounded PNs from TSs is NP-complete, even if the
searched net is strongly restricted [13,14]. If the bound b is not fixed in advance,
the synthesis of bounded PN from TSs is polynomial [1]. If the PN is additionally
to be choice-free or a marked graph, even better procedures exist [5,7].

In this paper, we investigate an instance of PN synthesis that is called (m,n)-
Synthesis. It consists in deciding whether there exists for an input (A,m, n) of
TS A and integers m,n ∈ N a pure b-bounded Petri net N as follows: N ’s reach-
ability graph is isomorphic to A, and each of N ’s places has at most m incoming
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and at most n outgoing transitions. The b-bounded (m,n)-T-systems generalize
the notion of (weighted) T-systems [6,10] and adapt it to b-bounded PN. In [14],
we have shown that (m,n)-Synthesis is NP-complete. We have also argued that
(m,n)-Synthesis parameterized by m + n belongs to the complexity class XP.
Thus, the question arises whether this parameterization makes the problem fixed
parameter tractable. In this paper, we answer this question negatively and show
that (m,n)-Synthesis parameterized by m+n is W [1]-hard. The proof presents
a parameterized reduction from regular independent set, which restricts the
canonical W [1]-hard problem to regular graphs [8], to (m,n)-Synthesis. This
paper is organized as follows. Section 2 introduces necessary preliminary notions,
Sect. 3 presents the W [1]-hardness result and Sect. 4 closes the paper.

2 Preliminaries

We assume that the reader is familiar with the concepts relating to fixed-
parameter tractability, the standard notions relating to graphs and Regu-
lar Independent Set, the canonical W [1]-hard problem restricted to regu-
lar graphs. Due to space restrictions, we omit some formal definitions and some
proofs. See [8] for the definitions of relevant notions in parameterized complexity
theory. In the remainder of this paper, if not stated explicitly otherwise, then
b ∈ N

+ is assumed to be arbitrary but fixed.

Transition Systems. A transition system (TS, for short) A = (S,E, δ, ι) con-
sists of a finite disjoint set S of states, E of events, a partial transition function
δ : S × E → S and an initial state ι ∈ S. A TS A is interpreted as edge-
labeled directed graph, and every triple δ(s, e) = s′ is considered an e-labeled
edge s e s′, called transition. An event e occurs at state s, denoted by s e ,
if δ(s, e) = s′ for some state s′. This notation is extended to words w′ = we,

w ∈ E∗, e ∈ E, by inductively defining s ε s for all s ∈ S and s w‘ s′′ if and
only if there is a state s′ ∈ S satisfying s w s′ and s′ e s′′. If w ∈ E∗, then
s w denotes that there is a state s′ ∈ S such that s w s′. If e ∈ E, then by

si
(e)b

si+b we denote that there are distinct states si, si+1, . . . , si+b−1, si+b ∈ S

such that si
a si+1 . . . si+b−1

a si+b. We assume all TSs to be reachable:
∀s ∈ S,∃w ∈ E∗ : s0

w s.
b-Bounded Petri Nets. A b-bounded Petri net (b-net, for short) N =

(P, T, f,M0) consists of finite and disjoint sets of places P and transitions
T , a (total) flow function f : P × T → {0, . . . , b}2 and an initial marking
M0 : P → {0, . . . , b}. If f(p, t) = (m,n), then f−(p, t) = m and f+(p, t) = n
define the consuming and the producing effect of t on p, respectively. The preset
of a place p is defined by •p = {t ∈ T | f+(p, t) > 0} (transitions produc-
ing on p) and its postset is defined by p• = {t ∈ T | f−(p, t) > 0} (transi-
tions consuming from p). Accordingly, the preset of a transition t is defined by
•t = {p ∈ P | f−(p, t) > 0} (places from which t consumes) and its postset by
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t• = {p ∈ P | f+(p, t) > 0} (places on which t produces). A b-net N is pure if
∀(p, t) ∈ P × T : f−(p, t) = 0 or f+(p, t) = 0, that is, ∀p ∈ P : •p ∩ p• = ∅. Let
m,n ∈ N. A b-net N is an (m,n)-T-system if ∀p ∈ P : |•p| ≤ m, |p•| ≤ n.
The firing rule of b-nets defines their behavior: A transition t ∈ T can fire or
occur in a marking M : P → {0, . . . , b}, denoted by M t , if M(p) ≥ f−(p, t)
and M(p)−f−(p, t)+f+(p, t) ≤ b for all places p ∈ P . The firing of t in marking
M leads to the marking M ′ if M ′(p) = M(p) − f−(p, t) + f+(p, t) for all p ∈ P .

This is denoted by M t M ′. Again, this notation extends to sequences σ ∈ T ∗,
and the reachability set RS(N) = {M | ∃σ ∈ T ∗ : M0

σ M} contains N ’s
reachable markings. The firing rule preserves N ’s b-boundedness by definition:
M(p) ≤ b for all p ∈ P and all M ∈ RS(N). The reachability graph of N is the
TS AN = (RS(N), T, δ,M0), such that for all M,M ′ ∈ RS(N) and all t ∈ T we

define δ(M, t) = M ′ if and only if M t M ′.
b-Bounded Regions. To find a b-net N implementing a TS A, we want to

synthesize N ’s components purely from the input A. Since A and AN are to
be isomorphic, A’s events correspond to N ’s transitions. However, the notion
of a place is not known for TSs. A b-bounded region R (region, for short) of a
TS A = (S,E, δ, s0) is a pair R = (sp, sg) of support sp : S → {0, . . . , b} and
signature sg : E → {0, . . . , b}2 such that for every edge s e s′ of A holds sp(s) ≥
sg−(e) and sp(s′) = sp(s) − sg−(e) + sg+(e). If sg(e) = (m,n), then sg−(e) =
m and sg+(e) = n define e’s consuming and producing effect (concerning R),
respectively.

A region (sp, sg) models a place p and the corresponding part of the flow
function f : sg+(e) models f+(e), sg−(e) models f−(e) and sp(s) models M(p)
in the marking M ∈ RS(N) corresponding to s ∈ S(A). The preset of R is
defined by the producing events •R = {e ∈ E | sg+(e) > 0} and its postset
by the consuming events R• = {e ∈ E | sg−(e) > 0}. If sg(e) = (0, 0), then
e is called neutral. The region R is pure if •R ∩ R• = ∅. Let R be a set of
regions of A, and let e ∈ E. By •eR = {(sp, sg) ∈ R | sg−(e) > 0} and e•

R =
{(sp, sg) ∈ R | sg+(e) > 0} we define the preset and postset of e (concerning R),
respectively. The set R defines the synthesized b-net NR

A = (R, E, f,M0) with
flow function f((sp, sg), e) = sg(e) and initial marking M0((sp, sg)) = sp(s0) for
all (sp, sg) ∈ R, e ∈ E. We emphasize again that a region R of R is a place of
NR

A with the preset •R and the postset R•; every event e ∈ E is a transition of
NR

A with preset •e = •eR and postset e• = eR•. It is well known that ANR
A

and
A are isomorphic if and only if R’s regions solve certain separation atoms [3], to
be introduced next.

A pair (s, s′) of distinct states of A defines a state separation atom (SSP
atom, for short). A region R = (sp, sg) solves (s, s′) if sp(s) 	= sp(s′). The region
R is to ensure that NR

A contains at least one place R such that M(R) 	= M ′(R)
for the markings M and M ′ corresponding to s and s′, respectively. If there is a
b-region that solves (s, s′), then s and s′ are called b-solvable (solvable, for short).
If every SSP atom of A is solvable, then A has the b-state separation property
(SSP for short). If e ∈ E and s ∈ S such that e does not occur at s (¬s e ), then
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the pair (e, s) is an event state separation atom (ESSP atom, for short). A b-
region R = (sp, sg) solves (e, s) if sg−(e) > sp(s) or sp(s)−sg−(e)+sg+(e) > b.
The meaning of R is to ensure that there is at least one place R in NR

A such that
¬M e for the marking M corresponding to s. If there is a region that solves
(e, s), then e and s are called b-solvable; we also say e is solvable at s. If every
ESSP atom of A is b-solvable, then A has the b-event state separation property
(ESSP, for short).

A set R of regions of A is called b-admissible if for every of A’s (E)SSP atoms
there is a region R in R that solves it. The following lemma, borrowed from
[3, p. 163], summarizes the connection between b-admissible sets of A and syn-
thesis:

Lemma 1 ([3]). A b-net N has a reachability graph isomorphic to a given TS
A if and only if there is a b-admissible set R of A such that N = NR

A .

We say a b-net N solves A if AN and A are isomorphic. By Lemma 1,
searching for a restricted b-net reduces to finding a b-admissible set of accordingly
restricted regions. The following example illustrates this fact.

Example 1. Let m,n ∈ N, A be a TS and R be a b-admissible set of pure
regions of A. If every region R ∈ R satisfies |•R| ≤ m and |R•| ≤ n, then
NR

A is a pure (m,n)-T-system solving A. In particular, if b = 2, then the TS
A = s0

e1 s1
e2 s2 has the following pure regions:

i spi(s1) spi(s2) spi(s3) sgi(e1) sgi(e2) i spi(s1) spi(s2) spi(s3) sgi(e1) sgi(e2)
1 2 0 0 (2, 0) (0, 0) 3 0 2 0 (0, 2) (2, 0)
2 0 2 0 (0, 2) (2, 0) 4 0 1 2 (0, 1) (0, 1)

The set R = {(spi, sgi) | 1 ≤ i ≤ 4} is 2-admissible. Since •(sp4, sg4) =
{e1, e2}, the solving 2-net NR

A is not a (1, 1)-T-system. However, the set R′ =
{(spi, sigi) | 1 ≤ i ≤ 3} is 2-admissible, and NR′

A is a (1, 1)-T-system solving A.

3 W [1]-Hardness Parameterized by m + n

This section is dedicated to the proof of our main result:

Theorem 1. (m,n)-Synthesis parameterized by m + n is W [1]-hard.

The proof of Theorem 1 consists of a parameterized reduction of Regular
Independent Set to (m,n)-Synthesis. Let (G, k) be an instance of Regular
Independent Set. That is, G = (V (G), E(G)) is a graph with set of nodes
V (G) = {v1, . . . , vn}, set of edges E(G) = {a1, . . . , am}, and there is an integer
r ∈ N such that for every node v ∈ V (G) holds |{e ∈ E(G) | v ∈ e}| = r, and
k is a positive integer. We reduce (G, k) to an instance (A, 2rk + 20, 2rk + 20)
of (m,n)-Synthesis, parameterized by m+n, such that G has a k-independent
set if and only if A is solvable by a (2rk + 20, 2rk + 20)-T-system.

To represent G, the TS A has for every edge ai = {vi,1, vi,2}, i ∈ {1, . . . , m},
the following gadget Gi, which uses ai, vi,1 and vi,2 as events:
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gi,1 gi,2 gi,3 gi,b+3 gi,b+4 gi,2b+4 gi,2b+5 gi,2b+6

gi,2b+7

α1

δ1i ζ1i,1 (vi,1)b ζ1i,2 (vi,2)b ζ1i,3 ai

Let i ∈ {1, . . . , m}. The proof of the if -direction bases on the idea to ensure that
if A is solvable, then there is a pure region R = (sp, sg) that satisfies the follow-
ing conditions. Firstly, sg(α1) = (b, 0), which implies sp(gi,2) = b. Secondly, the
producing effect of the node events is zero, that is, sg+(vi,1) = sg+(vi,2) = 0.
Thirdly, the ζ-events are neutral, that is, sg(ζ1i,1) = sg(ζ1i,2) = sg(ζ1i,3) = (0, 0).
As a result, the support value of gi,2b+5 is given by sp(gi,2b+5) = b − b ·
(sg−(vi,1) + sg−(vi,2)). Moreover, if sp(gi,2b+5) < b, then there is exactly one
e ∈ {vi,1, vi,2} such that sig−(e) > 0. Otherwise we would have the contradic-
tion sp(gi,2b+5) < 0. Furthermore, the region R ensures that there are exactly
rk edge events with a positive producing effect. That is, there are exactly rk
indices i1, . . . , irk ∈ {1, . . . , m} such that sg+(aij

) > 0 for all j ∈ {1, . . . , rk}.
Since R is pure, this implies sg−(aij

) = 0 for all j ∈ {1, . . . , rk}. Moreover, by
gij ,2b+5

aij gij ,2b+6, we obtain sup(gij ,2b+6) = sup(gij ,2b+5) + sig+(aij
). This

requires sp(gij ,2b+5) < b, and exactly one of vij ,1 and vij ,2 has a positive
consuming effect. The region R ensures that there are exactly k node events
v�1 , . . . , v�k

with a positive consuming effect. Recall, for every node v ∈ V (G)
holds |{e ∈ E(G) | v ∈ e}| = r. Thus, if v�1 , . . . , v�k

are not independent,
then the number of edges which are adjacent to a node of v�1 , . . . , v�k

is at
most rk − 1. Since rk edge events have a positive producing effect, and each
of it needs a consuming node, this is a contradiction. Consequently, the set
I = {v ∈ V (G) | sg−(v) > 0} defines a k-independent set of G.

For the only-if -direction we show that if G has a k-independent set then
there is a b-admissible set of regions R such that |•R|, |R•| ≤ 2rk + 20 for all
R ∈ R. The major challenge here is to keep the number of consuming and
producing events of solving regions smaller than the parameter. To do so, we
exploit G’s regularity and the δ- and ζ-events. In what follows, we prove the
following lemma:

Lemma 2. 1. If A is solvable, then there is a region (sp, sg) such that the fol-
lowing conditions are true:
(a) sg(α1) = (b, 0) and sg(ζ1i,1) = · · · = sg(ζ1i,3) = (0, 0) for all i ∈ {1, . . . , m}.
(b) If e ∈ {a1, . . . , am} then sg−(e) = 0 and there are exactly rk events

ai1 , . . . , airk
∈ {a1, . . . , am} with sg+(aij

) > 0, where j ∈ {1, . . . , rk}.
(c) If e ∈ {v1, . . . , vn} then sg+(e) = 0. Furthermore, there are exactly k

events vi1 , . . . , vik
∈ {v1, . . . , vn} with sg−(vij

) > 0 for all j ∈ {1, . . . , k}.
2. If G has an independent set of size k then there is a b-admissible set R of A

such that |•R|, |R•| ≤ 2rk + 20 for all R ∈ R.

3.1 The Proof of Lemma 2.1

This section introduces the gadgets that ensure Lemma 2.1. For now, we refrain
from explaining in which way they are actually conjunct to build A. This
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conjunction is postponed to Sect. 3.2, which is dedicated to Lemma 2.2.. We
let events e ∈ E(A) occur b times in row to restrict their possible signature in
advance:

Lemma 3. Let A be a TS, and let e ∈ E(A) be an event that occurs b times in

a row: s1
(e)b

sb+1 ∈ A. For any pure region (sp, sg) of A with sg+(e) 	= sg−(e)
holds either sg(e) = (1, 0), sp(s1) = b and sp(sb+1) = 0 or sg(e) = (0, 1),
sp(s1) = 0 and sp(sb+1) = b.

Proof. The claim follows by b ≥ sp(sb+1) = sp(s1) + b · (sg+(e) − sg−(e)) ≥ 0.

The TS A has for i ∈ {1, 2, 3} the following w-maker gadget Xi:

xi,1 xi,2 xi,b+2 xi,b+3 xi,b+4 xi,2b+4

δ10i (α)b ζ wi (α)b

If A is solvable, then there is a region R = (sp, sg) that solves the atom
(α, x1,b+3), that is, sg−(α) > sp(x1,b+3) or sp(x1,b+3) − sg−(α) + sg+(α) > b.
This implies sg(α) 	= (0, 0). Thus, by Lemma 3, we have sg(α) ∈ {(1, 0), (0, 1)}.
Since our arguments are symmetrically true for the case sg(α) = (0, 1), we
assume sg(α) = (1, 0) and show that this implies a k-independent set of G.

Since R solves (α, xi,b+3), by sg(α) = (1, 0), we conclude sg−(α) >
sp(xi,b+3) = 0. Moreover, by Lemma 3, we obtain sp(xi,b+2) = 0 and sp(xi,b+4) =
b for all i ∈ {1, 2, 3}. Furthermore, by sp(x1,b+2) = sp(x1,b+3) = 0, we get
sg(ζ) = (0, 0). By sp(xi,b+2) = 0, this implies sp(xi,b+3) = 0 for all i ∈ {2, 3}.
Finally, by sp(xi,b+3) = 0 and sp(xi,b+4) = b for all i ∈ {1, 2, 3}, we get the three
producing w-events w1, w2, w3: sg(w1) = sg(w2) = sg(w3) = (0, b).

The TS A has for i ∈ {1, . . . , 9} a so called α-maker Yi that uses w1 and w2 to
manipulate the support of some states and provides the consuming α-event αi:

yi,1 yi,2 yi,3 yi,4 yi,5

δ11i w1 αi w2

By sg(w1) = sg(w2) = (0, b), we have sp(yi,3) = b and sp(yi,4) = 0. This implies
sg(αi) = (b, 0) for i ∈ {1, . . . , 9}. The events α1, . . . , α9 are applied to manipulate
the support of some states. For example, by sg(α1) = (b, 0) and gi,2

α1 , we have
sp(gi,2) = b for all i ∈ {1, . . . ,m} as discussed before. The following β-makers
also exemplify the functionality of the α-events.

The TS A has for every i ∈ {1, . . . , 5} the following β-maker Zi that uses the
events α7 and α8 to provide the producing β-event βi:

zi,1 zi,2 zi,3 zi,4 zi,5

δ12i α7 βi α8

In particular, by sg(α7) = sg(α8) = (b, 0), we get sp(zi,3) = 0 and sp(zi,4) = b.
This implies sg(βi) = (0, b) for all i ∈ {1, . . . , 5}. Just like the α-events, the
β-events serve to manipulate the support of some states.
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In the remainder of this section, we first introduce the gadgets ensuring that
R = (sp, sg) selects exactly rk edge events ai1 , . . . , airk

such that sig+(aij
) > 0

for all j ∈ {1, . . . , rk}. Secondly, we introduce the gadgets that ensure that
there are exactly k node events v�1 , . . . , v�k

such that sig−(v�j
) > 0 for all j ∈

{1, . . . , k}. Similar to the already presented gadgets G1, . . . , Gm, these gadgets
apply ζ-events, that is, elements of the set Z = {ζi

j,� | i, j, 	 ∈ N}. For the region
R, corresponding to Lemma 2.1, these events have to be neutral. For the proof of
Lemma 2.2. they allow solving regions with small preset- and postset-cardinality.
If ζi

j,� ∈ Z ∩ E(A), that is, ζi
j,� actually occurs in A, then A has the following

ζ-makers ⊖i
j,� (left) and

⊕i
j,� (right). These gadgets ensure ζi

j,�’s neutrality:


i
j,�,1 
i

j,�,2


i
j,�,3


i
j,�,4δ13i,j,�

w3

ζi
j,�

⊕i
j,�,1 ⊕i

j,�,2

⊕i
j,�,3

⊕i
j,�,4δ14i,j,�

α9

ζi
j,�

By sg(w3) = (0, b) and sg(α9) = (b, 0), we get sp(
i
j,�,2) = 0 and sp(⊕i

j,�,2) = b.
Moreover, by 0 = sp(
i

j,�,2) ≥ sg−(ζi
j,�), we obtain sg−(ζi

j,�) = 0. Finally, by
b ≥ sp(⊕i

j,�,4) = sp(⊕i
j,�,2) − sg−(ζi

j,�) + sg+(ζi
j,�), implying b ≥ b + sg+(ζi

j,�), we
get sg+(ζi

j,�) = 0.
So far, we have introduced A’s gadgets that yield us the α-, β- and ζ-events

with the following behavior: If s α , then sp(s) = b; if s β , then sp(s) = 0;

if s ζ s′, then sp(s) = sp(s′). These events are applied in the subsequently
introduced gadgets, which collaborate to provide the announced behavior of A.

The TS A has for every edge event ai, i ∈ {1, . . . , m}, exactly rk edge copies
(e-copies, for short) a1

i , . . . , a
rk
i . These copies are used to enable the announced

selection of rk edge events ai1 , . . . , airk
. To achieve this goal, it is necessary that

edge events do not consume and e-copies do not produce. The TS A has for
every i ∈ {1, . . . , m} an edge noCon Ci. This gadget ensures that ai does not
consume. Moreover, for all i ∈ {1, . . . , m} and all j ∈ {1, . . . , rk} it has an e-copy
noPro Di,j . This gadget guarantees that aj

i does not produce.

ci,1 ci,2 ci,3 ci,4

ci,5

β1

δ2i ζ2i,1 ai

The edge noCon Ci.

di,j,1 di,j,2 di,j,3 di,j,4

di,j,5

α2

δ3i,j ζ3i,j aj
i

The e-copy noPro Di,j .

By sg(β1) = (0, b) and sg(ζ2i,1) = (0, 0), we have sp(ci,3) = 0. Since sp(ci,3) ≥
sg−(ai), this implies sg−(ai) = 0. Similarly, by sg(α2) = (b, 0) and sg(ζ3i,j) =
(0, 0), we obtain sp(di,j,3) = b. The region R is pure. Thus, if sg+(aj

i ) > 0 then
sg−(aj

i ) = 0. This implies sp(di,j,4) = b + sg+(aj
i ) > b, a contradiction. Hence,

sg+(aj
i ) = 0 is true.

The region R selects for every j ∈ {1, . . . , rk} exactly one i ∈ {1, . . . , m}
such that the e-copy aj

i has a positive consuming effect, that is, sig−(aj
i ) > 0.
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The other e-copies remain neutral. To achieve this, the TS A uses for every
j ∈ {1, . . . , rk} the edge selector Fj . The gadget Fj applies the events aj

1, . . . , a
j
m,

that is, the j-th copy of every edge event a1, . . . , am. On Fj , every aj
i occurs b

times consecutively. Separated by ζ-events, these occurrences (aj
1)

b, . . . , (aj
m)b

are placed in a sequence. We abridge 	 = (m − 1)(b + 1) and define Fj :

fj,1 fj,2 fj,3 fj,b+3 . . . fj,� fj,�+1 fj,m(b+1)+2 fj,m(b+1)+3

fj,m(b+1)+4fj,m(b+1)+5

α3

δ4j ζ4j,1 (aj
1)

b ζ4j,m (aj
m)b ζ4j,m

β2

By sg(α3) = (b, 0), we have sp(fj,2) = b and, by sg(β2) = (0, b), we have
sp(fj,m(b+1)+3) = 0. The ζ-events are neutral, and sg+(aj

i ) = 0 for all i ∈
{1, . . . , m}. Thus, we obtain 0 =

∑m
i=1 b · sg−(aj

i ) < b. Consequently, there
is an i ∈ {1, . . . , m} such that sg−(aj

i ) = 1, and sg−(aj
i′) = 0 for all i′ ∈

{1, . . . , m} ∖ {i}. The following edge connectors complete the set of A’s gadgets
that allow the selection of rk edges ai1 , . . . , airk

.
The TS A has for all i ∈ {1, . . . , m} a so called edge connector Hi whose

purpose is twofold. On the one hand, it ensures that the edge selectors never
choose two consuming copies of the same edge event, that is, if j 	= j′, sg−(aj

i ) >

0 and sg−(aj′
i′ ) > 0, then i 	= i′. On the other hand, sg+(ai) > 0 if and only

if there is a j ∈ {1, . . . , rk} such that sg−(aj
i ) > 0. Since F1, . . . , Frk select

rk consuming edge copies, this picks out exactly rk edges ai1 , . . . , airk
with a

positive producing effect. The gadget Hi applies the event ai and its rk copies.
Separated by ζ-events, two sequences of ai’s copies a1

i , . . . , a
rk
i , each of if it

occurring b times consecutively, embrace the event ai. For readability, we abridge
	 = (b + 1)rk + 2 and define Hi as follows:

hi,1 hi,2 hi,3 hi,b+3 . . . hi,�−2 hi,�−1 hi,� hi,�+1

hi,�+2hi,�+3hi,�+b+3. . .hi,2�+3hi,2�+4hi,2�+5hi,2�+6

δ5i ζ5i,1 (a1
i )

b ζ5i,rk (ark
i )b ζ5i,rk+1

ai

ζ5i,rk+2(a1
i )

bζ5i,2rk+2(ark
i )b

α4

By sg(α4) = (b, 0) it is sp(hi,2) = b. The ζ-events are neutral, and sg+(aj
i ) = 0

for all j ∈ {1, . . . , rk}. Thus, it is sp(h(b+1)rk+3) = b − ∑rk
j=1 b · sg−(aj

i ), and,
by sp(h(b+1)rk+3) ≥ 0, there is at most one j ∈ {1, . . . , rk} such that sg−(aj

i ) >
0. Consequently, two copies of the same edge event are never selected by the
edge selectors. By Lemma 3, if sg−(aj

i ) > 0, then sg−(aj
i ) = 1. This implies

sp(h(b+1)rk+3) = 0. Furthermore, aj
i occurs again b times in a row “after” the

occurrence of ai at hi,(rk+j−1)(b+1)+5. This implies sp(hi,(rk+j−1)(b+1)+5) = b.
Since no edge copy produces, sg(ai) = (0, b) is immediately implied. Conversely,
if sg+(ai) > 0, then sp(h(b+1)rk+3) < b. Thus, by sp(h(b+1)rk+3) = b − ∑rk

j=1 b ·
sg−(aj

i ), there is a consuming copy of ai. Consequently, sg+(ai) > 0 if and only
if sg(ai) = (0, b) and there is exactly one j ∈ {1, . . . , rk} such that sg−(aj

i ) = 1.
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So far we have argued that there are exactly rk distinct indices i1, . . . , irk ∈
{1, . . . , m} such that sg(ai1) = · · · = sg(airk

) = (0, b). Moreover, sg(ai) = (0, 0)
for all i ∈ {1, . . . , m} ∖ {i1, . . . , irk}. It remains to argue that these rk “edges”
ai1 , . . . , airk

are covered by exactly k “nodes”. To achieve this goal, the TS A uses
gadgets that work symmetrically to the ones used for the selection of the edges.
So called node noPros ensure that the node events v1, . . . , vn do not produce.
Moreover, the TS A applies for all i ∈ {1, . . . , n} k node-copies v1

i , . . . , vk
i and

uses n-copy noCons to prevent them from consuming. Furthermore, node selec-
tors force exactly k node copies to have a producing signature. The node connec-
tors ensure that two copies of the same node are never selected and connects a
producing node copy vj

i with its, then consuming, node event vi. Finally, exactly
k nodes v�1 , . . . , v�k

consume. Since these gadgets work symmetrically to the
ones for the edges, we only briefly prove their functionality.

The TS A has for i ∈ {1, . . . , n} the so called node noPro Pi (left hand side)
and for i ∈ {1, . . . , n} and j ∈ {1, . . . , k} the so called n-copy antiCon Qi,j (right
hand side) which are defined as follows:

pi,1 pi,2 pi,3 pi,4

pi,5

α5

δ6i ζ6i,1 vi
qi,j,1 qi,j,2 qi,j,3 qi,j,4

qi,j,5

β3

δ7i,j ζ7i,j vj
i

By sg(α5) = (b, 0) and sg(ζ6i,1) = (0, 0), we get sp(pi,3) = b which implies
sg+(vi) = 0. Moreover, by sg(β3) = (0, b) and sg(ζ7i,j) = (0, 0), we get sp(qi,j,3) =
0 which implies sg−(vj

i ) = 0.
The TS A has for every j ∈ {1, . . . , k} a node selector Tj . On Tj , separated

by ζ-events, the j-th copy of every node event v1, . . . , vn occurs b times in a row.
We abridge 	 = (n − 1)(b + 1) + 2 and define Tj as follows:

tj,1 tj,2 tj,3 tj,b+3 . . . tj,� tj,�+1 tj,n(b+1)+2 tj,n(b+1)+3

tj,n(b+1)+4tj,n(b+1)+5

β4

δ8j ζ8j,1 (vj
1)

b ζ8j,n (vj
n)b ζ8j,n+1

α6

By sg(β4) = (0, b), sg(α6) = (b, 0), the neutrality of the ζ-events and sg−(vj
1) =

· · · = sg−(vj
n) = 0, we have b = sp(tj,n(b+1)+3) =

∑n
i=1 b ·sg+(vj

i ) > sp(tj,3) = 0.
Thus, there is exactly one producing j-th copy produces and others are neutral.

Finally, the TS A has for every i ∈ {1, . . . , n} a so called node connector Ui

that, among others, applies the β-event β5, the k copies v1
i , . . . , vk

i of vi and the
event vi. We abridge 	 = (k − 1)(b + 1) + 2 and define Ui as follows:

ui,1 ui,2 ui,3 ui,b+3 . . . ui,� ui,�+1 ui,k(b+1)+2 ui,k(b+1)+3

ui,k(b+1)+4

ui,k(b+1)+5

δ9i ζ9i,1 (v1
i )b ζ9i,k (vk

i )b ζ9i,k+1

vi
β5
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By sg(β5) = (0, b), the neutrality of the ζ-events and sg−(vj
i ) = 0 for all j ∈

{1, . . . , k}, it holds b ≥ sp(uj,k(b+1)+3) =
∑k

j=1 b · sg+(vj
i ). Thus, at most one

node-copy vj
i , j ∈ {0, . . . , k}, of vi is not neutral. In particular, two copies of the

same node are never selected by the node selectors. Moreover, if sg−(vi) > 0,
then sp(uj,k(b+1)+3) > 0. Consequently, if vi consumes, then there is a producing
copy vj

i . Since there are at most k producing node copies, there are at most k
consuming nodes v�1 , . . . , v�k

. Thus, the rk producing events ai1 , . . . , airk
are

“covered” by exactly k consuming events v�1 , . . . , v�k
. Altogether, this proves

that I = {v ∈ V (G) | sg−(v) > 0} defines an independent set of size k of G.

3.2 The Proof of Lemma 2.2

Table 1. The gadgets of A and their corresponding γ-events.

Gadget Gi Ci Di,j Fj Hi Pi Qi,j Tj Ui Xi Yi Zi

⊕i
j,� ⊖

i
j,�

γ-event γ1
i γ2

i γ3
i,j γ4

j γ5
i γ6

i γ7
i,j γ8

j γ9
i γ10

i γ11
i γ12

i γ13
i,j,� γ14

i,j,�

The reduction merges the introduced gadgets to a directed labelled binary tree
with initial state ι = g1,1. The resulting TS A consists of 14 blocks, cf. Figure 1.
The TS A has for each of its gadgets a γ-event in accordance to Table 1. Using
these events, the joining connects the “initial states” of the gadgets as follows:

g1,1 . . . gm,1 c1,1 . . . cm,1 d1,1,1 . . . d1,rk,1 d2,1,1

. . .dm,rk,1f1,1. . .
9
n,k,1
9

n,k+1,1

γ1
1 γ1

m−1 γ1
m γ2

1 γ2
m−1 γ2

m
γ3
1,1 γ3

1,rk−1 γ3
1,rk

γ3
2,1

γ3
m,rk−1γ3

m,rkγ4
1,1γ9

n,k−1γ9
n,k

The γ-events γh
i,j,�, where indices that are 0 are omitted, occur “lexicograph-

ically” ordered by hij	 in accordance to the canonical order on the natural
numbers. This defines also an order on the gadgets and makes the conjunction
unambiguous.

Due to space restrictions, most of the proof of Lemma 2.2. is omitted. How-
ever, the following lemma states the solvability of α and v1, . . . , vn and exempli-
fies in which way A allows regions that respect the parameter.

Lemma 4. If (G, k) is a yes-instance of Regular Independent Set then
the events α and v1, . . . , vn are solvable by regions that respect the parameter
4rk + 40.

Proof. For the sake of space restrictions, we implicitly define solving regions Ri =
(spi, sgi) by spi(ι) and sgi, to be seen in Table 2: The ι-column shows sp(ι). The
event sets occur in the column in accordance to the signature of their elements.
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For example, sp1(e) = (b, 0) for e ∈ {α1, . . . , α9}. Moreover, if e ∈ E(A) does not
occur in any presented set corresponding to Ri, then sgi(e) = (0, 0). In particular,
all signatures get along with (b, 0), (1, 0), (0, 0), (0, 1), (0, b). By spi(s′) = spi(s)−
sg−

i (e) + sp+i (e) for all s e s′ ∈ A, this defines Ri completely.
Solving α: Let r ∈ N

+ such that every node of G has degree r, and let
I = {v�1 , . . . , v�k

} be a k-independent set of G. The nodes v�1 , . . . , v�k
are inde-

pendent, and each of it has exactly r adjacent edges. Thus, there are exactly
rk edges ai1 , . . . , airk

∈ E(G) such that for all a ∈ E(G) the following is
true. If a ∈ EI = {ai1 , . . . , airk

}, then |a ∩ I| = 1 and otherwise |a ∩ I| = 0.
Using I and EI , we define region R1 in accordance to Table 2. If we follow the
arguments for the proof of Lemma 2.1, then it is easy to see that R1 is well
defined and solves α at xi,b+2, xi,b+3 and xi,2b+4 for all i ∈ {1, 2, 3}. Moreover,
|•R1| ≤ k(r + 1) + 13 and |R•

1| ≤ k(r + 1) + 11, cf. Table 2. Thus, the region R1

respects the parameter. Notice that the latter is possible by grouping “similar”
gadgets into blocks. For example, if the node noPros alternated with the node
selectors (P1, T1, . . . , Pn, Tn), then the number of consuming and producing γ-
events would depend on |V (G)| and would not respect the parameter. The region
R2 of Table 2 solves α at the remaining states of A and respects the parameter.

g1,1 . . .

graph

. . .gm,1

γ1
1

γ1
m 1

c1,1

e-noCon
cm,1

γ2
m

d1,1,1

e-cpy noPro
dm,rk

γ3
m

f1,1
e-selector

frk,1

γ3
m,rk

h1,1

e-connector
hm,1

γ4
rk

p1,1

node no Pro
pn,1

γ5
m

q1,1,1
n-cpy noCon

qn,k,1

γ6
n

t1,1
n-selector

tk,1

γ7
n,k

f1,1
n-connector

frk,1

γ8
k

x1,1

w-maker
x3,1

γ9
rk

y1,1

α-maker
y9,1

γ10
3

z1,1
β-maker

z5,5

γ11
9

1
1,1,1

9
n,k 1,1

γ12
5

1
1,1,1

9
n,k 1,1

γ13
9,n,k 1

Fig. 1. The gadgets’ conjunction to finally build A, consisting of “blocks” in accordance
to similar “gadget-types”. The red colored areas mark the gadgets whose initial states
are mapped to b by R1 (Table 2) solving (α, xi,b+2), (α, xi,b+3), (α, xi,2b+4) for all i ∈
{1, 2, 3}. (Color figure online)

Solving vi, i ∈ {1, . . . , n}: The Region R3 solves vi at all states except the
sinks of the affected ζ-events. The region R4 solves vi at these remaining sinks.
The event vi occurs in Gi1 , . . . , Gir

, Pi and Ui. Thus, |•R3| ≤ r + 2, |•R4| ≤ r,
|R•

3| and |R•
4| ≤ 1.
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Table 2. Implicitly defined regions of A that solve α and vi for all i ∈ {1, . . . , n}.

R ι (b, 0) (1, 0) (0, 1) (0, b)

R1 b {α1, . . . , α9},
{γ2

m, γ6
n, γ10

3 , γ13
9,n,k+1}

{α} ∪ I, {a�
i�

| 1 ≤ � ≤ rk} {vi
�i

| 1 ≤ i ≤ k} {w1, w2, w3, β1, . . . , β5},
EI , {γ3

m, γ9
rk, γ11

9 }
R2 0 {α} {ζ, δ101 , δ102 , δ103 }
R3 0 {vi} {e ∈ E(A) | e

s
vi }

R4 0 {vi} {δ1i1
, . . . , δ1ir

, δ6i , δ9i }

4 Conclusion

In this paper, we enhance our understanding of synthesizing (m,n)-T-systems
from the viewpoint of parameterized complexity. Although (m,n)-Synthesis
parameterized by m + n belongs to XP, we show that there is little hope that
this parameterization puts the problem into FPT. Future work might consider
the occupancy number oN of a searched net N a parameter. Let N = (P, T, f,M0)
be a pure b-net, and let RS be the set of N ’s reachable markings. The occupancy
number op of a place p ∈ P is defined by op = {M ∈ RS | M(p) > 0}, and
oN = max{op | p ∈ P} defines the occupancy number of N . At first glance, this
parameter seems promising, at least synthesis parameterized by oN is in XP.

Acknowledgements. I’m grateful to the reviewers for their helpful comments.
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