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Abstract. While the closure of a language family L under certain lan-
guage operations is the least family of languages which contains all mem-
bers of L and is closed under all of the operations, a kernel of L is a
greatest family of languages which is a subfamily of L and is closed
under all of the operations. Here we investigate properties of kernels of
general language families and operations defined thereon as well as ker-
nels of (deterministic) (linear) context-free languages with a focus on
Boolean operations. While the closures of language families usually are
unique, this uniqueness is not obvious for kernels. We consider properties
of language families and operations that yield unique and non-unique,
that is a set, of kernels. For the latter case, the question whether the
union of all kernels coincides with the language family, or whether there
are languages that do not belong to any kernel is addressed. Further-
more, the intersection of all kernels with respect to certain operations is
studied in order to identify sets of languages that belong to all of these
kernels.

1 Introduction

Classical and well-developed concepts to represent (formal) languages are, for
example, grammars, language equations, or accepting automata. Similarly, fam-
ilies of languages can be represented in several ways. For example, a language
family can be defined to be the family of all languages represented by a certain
type of grammar, automaton model, language equation, or by applying appro-
priate operations on other language families. From a practical point of view,
there is often a considerable interest in language families that are robust with
respect to language operations, that is, the families are preferably closed under
the operations, and/or in language families that admit efficient recognizers. A
good example are context-free languages, that are one of the most important and
most developed area of formal language theory. However, the family is not closed
under the two Boolean operations complementation and intersection. Moreover,
the known upper bound on the time complexity for context-free language recog-
nition still exceeds O(n2). As an approach to characterize language families hav-
ing strong closure properties and efficient recognizers but decrease the expressive
capacity only slightly, closures of sub-classes of the context-free languages have
been investigated.
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The Boolean closure of the linear context-free languages offers a significant
increase in expressive capacity compared with the linear context-free languages
itself. In addition, it preserves the attractively efficient recognition algorithm
taking O(n2) time and O(n) space [11]. In [12], a characterization of deterministic
real-time one-way cellular automata by so-called linear conjunctive grammars
has been shown. Linear conjunctive grammars are basically linear context-free
grammars augmented with an explicit intersection operation, where the number
of intersections is, in some sense, not bounded as in a Boolean formula. The
systematic investigation of the Boolean closures of arbitrary and deterministic
context-free languages started in [14–16], in particular, motivated by the question
“How much more powerful is nondeterminism than determinism?” The closure
of deterministic languages under the regular operations is studied in [1], while
the regular closure of the linear context-free languages is considered in [10].

Here we are interested in language families with strong closure properties
obtained by looking into a given family instead of closing and, thus, extending
the family. To this end, we study the notion of kernels of language families.
Basically, a kernel of some family L with respect to some language operations
defined on L is a greatest sub-family of L that is closed under the operations.
For example, the family of linear context-free languages is not closed under
complementation. Its complementation kernel consists of all linear context-free
languages whose complement is also linear context free. This kernel is also known
as the family of strongly linear context-free languages that is considered in [8]
with respect to its expressive capacity and closure properties. Another question
that motivates the concept is as follows. Given a language such that also its
complement belongs to the same family, the description of which of both is more
economic [8]? For example, it is known that a nondeterministic finite automaton
can require 2n states to accept the complement of a language accepted by an
n-state nondeterministic finite automaton [9]. So, a representation of the com-
plement by the n-state automaton together with a bit that says that actually
the complement of the language accepted is meant is much more economic from
the descriptional complexity point of view. A machine characterization of the
complementation kernel of the context-free languages in terms of self-verifying
pushdown automata is obtained in [2].

Another well-understood kernel is the family of recursive languages. It is the
complementation kernel of the recursively enumerable languages.

The paper is organized as follows. After presenting the basic definitions and
notions in the next section, Sect. 3 deals with the uniqueness of kernels. The
underlying results are as general as possible while clarifying examples often deal
with sub-classes of context-free languages. The question whether any language of
a family belongs to some kernel based on given operations is dealt with in Sect. 4.
More precisely, we are interested in the question whether the union of all kernels
coincides with the language family. The intersection of all of these kernels and its
related questions are considered in Sect. 5. Finally, we discuss some interesting
untouched problems and questions for further research in Sect. 6.
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2 Preliminaries

We write Σ∗ for the set of all words over a finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \{λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. Set inclusion is denoted by ⊆ and
strict set inclusion by ⊂.

A subset of Σ∗ is called a (formal) language over Σ. A language operation is
an operation whose finite number of parameters are languages, and whose result
is a language. For example, the complement of a language is defined with respect
to the underlying alphabet Σ. For a language L ⊆ Σ∗, the complement L of L
is {w ∈ Σ∗ | w /∈ L }. For all k ≥ 1, a kary language operation ◦ is said to be
idempotent if ◦(L,L, . . . , L) = L, for all L in the domain of ◦. For easier writing,
here we call even a unary language operation ◦ with the property ◦(L) = L
idempotent (so we do not require ◦(◦(L)) = ◦(L)).

Let Ω be an infinite enumerable set of letters. The set L is a family of
languages over Ω if for each L ∈ L there is a finite subset Σ ⊂ Ω such that
L ⊆ Σ∗. In the sequel we tacitly omit Ω when it is understood. For a family of
languages L , the family of complements CO-L is defined to be {L | L ∈ L }.

Let L be a family of languages and op1, op2, . . . , opk, k ≥ 1, be a finite
number of operations defined on L .

1. Then Γop1,op2,...,opk
(L ) denotes the (op1, op2, . . . , opk) closure of L . That is,

the least family of languages which contains all members of L and is closed
under op1, op2, . . . , opk. In other words, there exists no language family L ′

that is closed under op1, op2, . . . , opk such that L ⊆ L ′ ⊂ Γop1,op2,...,opk
(L ).

2. By γop1,op2,...,opk
(L ) we denote the set of (op1, op2, . . . , opk) kernels of L .

That is, the set of greatest families of languages which are subfamilies of L
and are closed under op1, op2, . . . , opk. In other words, for all kernels κ ∈
γop1,op2,...,opk

(L ) there exists no language family L ′ that is closed under
op1, op2, . . . , opk such that κ ⊂ L ′ ⊆ L .

In particular, we consider the operations complementation (∼), union (∪),
and intersection (∩), which are called Boolean operations. Accordingly, we write
ΓBOOL for Γ∼,∪,∩ and γBOOL forγ∼,∪,∩.

Since special attention is paid to sub-classes of context-free languages, we
recall briefly the notion of a context-free grammar and refer to the literature, for
example to [7], for detailed definitions of the characterizing automata models.

A context-free grammar is a system G = 〈N,T, S, P 〉, where N and T are the
disjoint alphabets of nonterminals and terminals, S ∈ N is the axiom, and P is
the finite set of productions of the form A → u, where A ∈ N and u ∈ (N ∪T )∗.
A context-free grammar is said to be linear if and only if for all productions the
right-hand side u contains at most one nonterminal, that is, u ∈ (T ∗NT ∗) ∪ T ∗.
A linear grammar is said to be left-linear if and only if a nonterminal may only
appear as leftmost symbol at the right-hand side of the productions, that is,
u ∈ (NT ∗) ∪ T ∗.

The language generated by G is the set {w ∈ T ∗ | S ⇒∗ w },
where ⇒∗ denotes the reflexive, transitive closure of the derivation relation ⇒.
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The families of languages that can be generated by context-free, linear, and left-
linear grammars are called context-free (CFL), linear (LIN), and regular (REG)
languages. The automaton model for the recognition of context-free languages
is the nondeterministic pushdown automaton. Its deterministic variant charac-
terizes the deterministic context-free languages (DCFL). As for DCFL there is
an automaton model for linear languages. Restricting a pushdown automaton
such that it may switch from increasing the height of its pushdown to decreasing
it only once, thus performing only one turn, leads to the definition of one-turn
pushdown automata [5]. It is known that nondeterministic one-turn pushdown
automata characterize the linear languages and deterministic one-turn pushdown
automata define the deterministic linear languages (DLIN).

3 Uniqueness of Kernels

While the closures of language families under all of the usually considered oper-
ations are unique language families, this uniqueness is not obvious for kernels.
In fact, it does not always hold. On the other hand, if the kernels are based on
unary operations then they are unique, that is, the corresponding set of kernels γ
is a singleton.

Proposition 1. Let L be a family of languages and ◦ be a unary operation
defined on L . Then the set γ◦(L ) is a singleton.

Proof. For any language L from L , the application of ◦, that is ◦(L), either does
belong to L or not. Now we consider the iterated application of ◦ to L ∈ L
and define ◦1 = ◦ and, for 1 ≤ i,

◦i+1(L) =

{
◦(◦i(L)) if ◦i (L) ∈ L

undefined else
.

So, the iterated application of ◦ to languages from L induces a finite or infinite
sequence of (not necessarily different) languages.

If this sequence is finite for some L ∈ L then language L does not belong to
any ◦ kernel of L , since otherwise the kernel would not be closed under ◦.

If this sequence is infinite then language L does belong to all ◦ kernels of L .
If not, all languages L, ◦1(L), ◦2(L), . . . could be added to the kernel without
affecting its closure under ◦ or its containment in L , a contradiction to the
maximality of the kernel.

We conclude that any language from L either belongs to all ◦ kernels or to
none ◦ kernel. So, the kernel is uniquely determined. ��

In general, the uniqueness is lost for kary operations if k ≥ 2.

Theorem 2. Let L be a family of languages, k ≥ 2, and ◦ be a kary idempotent
operation defined on L . Then the set γ◦(L ) includes more than one kernel if
and only if L is not closed under ◦.
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Proof. If L is closed under ◦, it is its own ◦ kernel and, thus, γ◦(L ) is a
singleton.

Now assume that L is not closed under ◦ and let L1, L2, . . . , Lk ∈ L be
witnesses for the non-closure. That is, ◦(L1, L2, . . . , Lk) /∈ L . First, we argue
that any of the witness languages, say Li, belongs to a ◦ kernel of L . To this end,
it suffices to consider the set {Li} which is a subset of L . Since ◦ is idempotent
the set {Li} is closed under ◦. So, either it is a kernel or it is a subset of some
kernel.

Now it remains to be concluded that not all of the languages L1, L2, . . . , Lk

can belong to the same kernel, since this would violate the closure under ◦. So,
there are at least two different kernels in γ◦(L ). ��

So far, we obtained that the ◦ kernel of some language family is unique if ◦
is a unary operation or if the family is closed under ◦, and that there are more
than one kernels if ◦ is a kary idempotent operation, for k ≥ 2, and L is not
closed under ◦. The following examples reveal that a finite as well as an infinite
number of kernels may exist.

Example 3. Let L be defined as union of CFL with {Lexpo}, where Lexpo is the
non-context-free unary language { a2n | n ≥ 0 }. Family L is not closed under
the idempotent operation union since, for example, Lexpo ∪{aaa} is not context
free and, thus, does not belong to L . By Theorem 2, γ∪(L ) includes more than
one kernel. In particular, CFL is included in γ∪(L ), since CFL is closed under
union. This is the only union kernel of L that does not include Lexpo.

On the other hand, there must exist a kernel in γ∪(L ) having {Lexpo} as
subset, since {Lexpo} is closed under union and a subset of L . We show that
there is exactly one union kernel of L that includes Lexpo.

Let U = {L | L is finite subset of Lexpo } be the set of finite languages
whose words belong to Lexpo, and let R = {L ∈ CFL | (L∪Lexpo)∩a∗ ∈ REG }
be the set of context-free languages whose unary words from a∗ form a regular
language when joint with Lexpo. We claim that κ = U ∪ R ∪ {Lexpo} is the sole
union kernel of L that includes Lexpo.

Clearly, we have the inclusion κ ⊂ L . To show that κ is closed under union,
let u, u′ ∈ U and r, r′ ∈ R. We obtain u ∪ Lexpo = Lexpo ∈ κ, u ∪ u′ ∈ U ⊂ κ,
and u∪ r ∈ CFL, (u∪ r ∪Lexpo)∩ a∗ = (r ∪Lexpo)∩ a∗ and, thus u∪ r ∈ R ⊂ κ.
Further, we have r ∪Lexpo ∪Lexpo = r ∪Lexpo and, therefore, r ∪Lexpo ∈ R ⊂ κ,
and (r ∪ r′ ∪ Lexpo) ∩ a∗ =

(
(r ∪ Lexpo) ∩ a∗) ∪ (

(r′ ∪ Lexpo) ∩ a∗) ∈ REG and,
thus r ∪ r′ ∈ R ⊂ κ. We conclude that κ is closed under union.

Finally, it remains to be shown that none of the languages L \ κ can belong
to any union kernel of L that includes Lexpo. This implies that κ is maximal
and therefore, in fact, a kernel, and that it is the unique.

So, let L ∈ L \ κ. If L includes at least one word that is not of the form a∗,
the union L ∪ Lexpo is not equal to Lexpo. Since L does not belong to R, we
have that (L ∪ Lexpo) ∩ a∗ is unary but not regular. So, it is not context free
either. Since context-free languages are closed under intersection with regular
languages, L ∪ Lexpo is not context free. It follows that no union kernel of L
that includes Lexpo includes L.
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Next, assume that all words in L are of the form a∗. Since L does not belong
to R we now from the previous case that (L ∪ Lexpo) ∩ a∗ = L ∪ Lexpo is not
context free. So, if L belongs to the kernel, L ∪ Lexpo has to be equal to Lexpo.
This implies L ⊆ Lexpo. Since L /∈ κ the inclusion is proper: L ⊂ Lexpo. Since
any infinite subset of Lexpo is not context free and any finite subset does belong
to U ∈ κ, we obtain the contradiction that L cannot belong to L \ κ.

So, we have shown that the set γ∪(L ) consists of exactly two kernels, one
includes Lexpo and the other does not. �

Example 4. The family DLIN is not closed under intersection. We consider
the number of kernels in γ∩(DLIN). To this end, for k ≥ 2, define language
Lk = { an($a∗)k−2$an($a∗)∗ | n ≥ 0 } that belongs to DLIN. However, for all
2 ≤ i < j, the intersection Li ∩ Lj is language

{ an($a∗)i−2$an($a∗)j−i−1$an($a∗)∗ | n ≥ 0 }
which is not even context free. We conclude that for 2 ≤ i, j the languages Li

and Lj do not belong to the same kernel if i �= j. On the other hand, for 2 ≤ k,
there must exist a kernel in γ∩(DLIN) having {Lk} as subset, since it is closed
under intersection and a subset of DLIN. So, the set γ∩(DLIN) includes infinitely
many kernels. �

4 Union of Kernels

Next we turn to the question whether any language of a family belongs to some
kernel based on given operations. Or are there languages that do not belong to
any of such kernels. More precisely, we are interested in the question whether
the union of all kernels coincides with the language family.

Theorem 5. Let L be a family of languages and op1, op2, . . . , opk, k ≥ 1, be a
finite number of idempotent operations defined on L . Then

{L | L ∈ κ for some κ ∈ γop1,op2,...,opk
(L ) } = L .

Proof. The inclusion in L is trivial. So, it remains to be shown that any language
from L does belong to some (op1, op2, . . . , opk) kernel of L .

To this end, let L ∈ L be an arbitrary language from the family. We
consider the set ν = {L}. Since it contains only one language and all opera-
tions op1, op2, . . . , opk are idempotent, it is closed under op1, op2, . . . , opk. So,
either ν is itself a (op1, op2, . . . , opk) kernel of L , or there exist a kernel in
γop1,op2,...,opk

(L ) having ν as subset. ��
Example 6. Consider the families DLIN, LIN, DCFL, as well as CFL and the
idempotent operations union and intersection. Theorem 5 says that any language
from one of the families belongs to some (∪,∩) kernel of that family. That is,

{L | L ∈ κ for some κ ∈ γ∪,∩(L ) } = L ,

for L ∈ {DLIN,LIN,DCFL,CFL}. �
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Theorem 5 reveals in particular that idempotent operations do not prevent
languages from belonging to a kernel. Let us discuss the role played by the
requirement that the operations have to be idempotent. If a unary operation
is idempotent, any language family is closed under this operation (in fact, the
operation is the identity). However, if at least one unary operation under which
the family is not closed is in the list, the situation changes.

Proposition 7. Let L be a family of languages not closed under the unary
operation ◦, and op1, op2, . . . , opk, k ≥ 0, be a finite number of further operations
defined on L . Then {L | L ∈ κ for some κ ∈ γ◦,op1,op2,...,opk

(L ) } ⊂ L .

Proof. The inclusion claimed is trivial. So, it remains to be shown that the
inclusion is strict.

Since L is not closed under ◦, there is a language L ∈ L such that ◦(L) /∈ L .
So, L cannot belong to any (◦, op1, op2, . . . , opk) kernel of L , since the contain-
ment would violate the closure of the kernel under ◦. ��
Example 8. It is well-known that the family CFL is not closed under complemen-
tation. Applying Proposition 7 shows that not all context-free languages belong
to some Boolean kernel. That is, {L | L ∈ κ for some κ ∈ γBOOL(CFL) } ⊂
CFL. �

In general, the condition of Proposition 7, namely that the family L has
not to be closed under the unary operation, cannot be relaxed. The following
proposition shows this fact. It is in contrast to Example 8.

Proposition 9. Any deterministic context-free language belongs to some kernel
κ ∈ γBOOL(DCFL).

Proof. Let L ∈ DCFL be some language over the alphabet Σ. We consider the
set ν = {L,L,Σ∗, ∅} which is clearly closed under complementation, union, and
intersection.

Since DCFL is closed under complementation and includes the regular lan-
guages Σ∗ and ∅, either ν is itself a Boolean kernel of DCFL, or there exists a
kernel in γBOOL(DCFL) having ν, and thus {L}, as subset. ��

In order to continue the discussion of the requirement that the operations
have to be idempotent, we present a further example considering the binary
non-idempotent operation of marked concatenation.

Example 10. The family LIN is not closed under the binary non-idempotent
operation of marked concatenation (•). In fact, it has been shown in [6] that the
marked concatenation of two linear context-free languages is linear context free
if and only if at least one of the languages is regular.

We consider γ•(LIN). Since the family REG is closed under marked concate-
nation, there must be some κ ∈ γ•(LIN) such that REG ⊆ κ. On the other
hand, let L ∈ LIN \ REG be an arbitrary linear context-free language that is
not regular. Then L cannot belong to any kernel in γ•(LIN) since L • L is not
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linear context free due to [6]. Therefore, REG is the sole marked concatenation
kernel of LIN. That is, γ•(LIN) = {REG} and, thus, the marked concatenation
kernel of LIN is unique. Moreover, {L | L ∈ κ for some κ ∈ γ•(LIN) } ⊂ LIN. �

It is worth mentioning that literally Example 10 also applies to the family
DLIN.

5 Intersection of Kernels

We now turn to the question which languages belong to all kernels based on
given operations. So, we consider the intersection of all of these kernels.

Proposition 11. Let L ∈ {CFL,LIN,DCFL,DLIN}. All intersection kernels
and union kernels of L include REG.

Proof. In contrast to the assertion assume that there is a kernel ν ∈ γ∩(L ) such
that REG �⊆ ν.

In order to obtain a contradiction we show that ν is strictly included in a
kernel from γ∩(L ) and, thus, cannot be an intersection kernel of L at all. To
this end, we join ν with REG and build the intersection closure of the union.
That is, we consider κ = Γ∩(ν ∪ REG).

Any language L ∈ κ has a representation of the form K, R, or K ∩ R, where
K ∈ ν and R ∈ REG. Since L includes the regular languages and is closed
under intersection with regular languages, language L belongs to L . So, we
have Γ∩(ν ∪ REG) ⊆ L . This shows the assertion for intersection kernels.

Since L is closed under union with regular languages as well, the argumen-
tation for union kernels follows by replacing intersection with union. ��

Of particular interest are the languages that belong to all Boolean kernels.

Theorem 12. Let L ⊇ T be two families of languages. If L is closed under
union and under intersection with languages from T , and T is closed under the
Boolean operations then T ⊆ κ for all κ ∈ γBOOL(L ).

Proof. In contrast to the assertion assume that there is a kernel ν ∈ γBOOL(L )
such that T �⊆ ν.

In order to obtain a contradiction we show that ν is strictly included in a
kernel from γBOOL(L ) and, thus, cannot be a Boolean kernel of L at all. To
this end, we join ν with T and build the Boolean closure of the union. That is,
we consider κ = ΓBOOL(ν ∪ T ). We show that κ is included in L .

Let L ∈ κ. Then, for some m, l1, l2, . . . , lm ≥ 0, language L has a representa-
tion

⋃
1≤i≤m

⋂
1≤j≤li

Li,j such that Li,j ∈ (ν ∪T ) or Li,j ∈ CO-(ν ∪T ). Since ν
as well as T are closed under complementation, we have (ν ∪T ) = CO-(ν ∪T ),
and may safely assume that Li,j ∈ (ν ∪ T ).

Now, for 1 ≤ i ≤ m, let Li = Li,1 ∩ Li,2 ∩ · · · ∩ Li,li . Since ν as well as T are
closed under intersection, we have Li = Ki ∩ Ti or Li = Ki or Li = Ti, for some
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Ki ∈ ν and Ti ∈ T . Moreover, since ν and T are sub-families of L , and L is
closed under intersection with languages from T , language Li belongs to L .

Finally, L =
⋃

1≤i≤m Li and the closure of L under union implies that L
belongs to L . Therefore, κ is included in L . ��
Corollary 13. Let L ⊇ T be two families of languages. If L is closed under
intersection and under union with languages from T , and T is closed under the
Boolean operations then T ⊆ κ for all κ ∈ γBOOL(L ).

Proof. The corollary can be shown almost literally as Theorem 12, where the
representation of language L ∈ κ is given as

⋂
1≤i≤m

⋃
1≤j≤li

Li,j , and by inter-
changing union and intersection in the reasoning. ��
Example 14. The families CFL and LIN are closed under union and under inter-
section with regular languages. The family of regular languages is closed under
the Boolean operations. So, by applying Theorem 12 we obtain that all Boolean
kernels of CFL and LIN include REG.

Moreover, applying Corollary 13 shows that all Boolean kernels of CO-CFL
and CO-LIN include REG. �

Since any intersection, union, and complementation kernel of CFL, LIN,
CO-CFL, and CO-LIN includes a Boolean kernel which, in turn, includes REG,
all of these kernels include REG as well. Moreover, for all unary operations
◦ under which the family of regular languages is closed, the unique ◦ kernel of
CFL, LIN, CO-CFL, and CO-LIN includes REG (see Proposition 1). This imme-
diately raises the question whether these kernels are characterized by REG. Or
are there certain non-regular languages that belong to all kernels of a certain
type. Example 10 shows that REG is the sole marked concatenation kernel of
LIN and, thus, characterizes the kernel. However, in the following we turn to
show that there are non-regular languages belonging to the intersection of all
Boolean kernels of CFL, LIN, CO-CFL, and CO-LIN.

To this end, we recall the notion of semilinear languages. Consider, for some
fixed positive integer m, the vectors in N

m. A set of the form

{ v0 + x1v1 + x2v2 + · · · + xkvk | xi ≥ 0, 1 ≤ i ≤ k },

where v0, v1, . . . , vk ∈ N
m, is said to be linear. A semilinear set is a finite

union of linear sets. It is known that the family of semilinear subsets of N
m

is closed under union, intersection, and complementation [3]. For an alpha-
bet Σ = {a1, a2, . . . , am} the Parikh mapping Ψ : Σ∗ → N

m is defined by
Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|am

), where |w|ai
denotes the number of occurrences

of ai in the word w. In [13] a fundamental result concerning the distribution of
symbols in the words of a context-free language has been shown. It says that
for any context-free language L, the Parikh image Ψ(L) = {Ψ(w) | w ∈ L } is
semilinear.

In the following we consider semilinear languages that are subsets of a∗b∗,
where the number of b’s depends linearly on the number of a’s. The dependency
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is given by linear functions ϕ : N → N with ϕ(n) = c1 ·n+c0, for some c0, c1 ≥ 0.
So, we define Lϕ = { anbϕ(n) | n ≥ 0 }. Note that there are functions ϕ such
that Lϕ is context free but not regular (for example ϕ(n) = n, ϕ(n) = 2n,
etc.), or Lϕ is regular (for example ϕ(n) is constant). However, the linearity of ϕ

implies that Lϕ is a semilinear language, where Ψ(Lϕ) =
{ (

0
c0

)
+ x

(
1
c1

)∣∣∣ x ≥ 0
}

.

Theorem 15. Let ϕ : N → N be a linear function. For an arbitrary context-free
language L, the intersection L ∩ Lϕ belongs to DLIN.

Proof. We consider the Parikh image

S = Ψ(L ∩ Lϕ) = Ψ((L ∩ a∗b∗) ∩ Lϕ) = Ψ(L ∩ a∗b∗) ∩ Ψ(Lϕ).

The set S is semilinear since L ∩ a∗b∗ is context free and, thus, semilinear [13],
language Lϕ is semilinear, and semilinear sets are closed under intersection [3].

Let π1 : N2 → N be the canonical projection on the first factor. Then π1(S)
is semilinear. So, the language U = { an | n ≥ 0, anbϕ(n) ∈ L } = Ψ−1(π1(S)) is
regular since it is unary and semilinear.

Now, let M be a deterministic finite automaton accepting U . From M one
can easily construct a deterministic one-turn pushdown automaton accepting
{ anbϕ(n) | n ≥ 0, an ∈ U } = L ∩ Lϕ. So, the theorem follows. ��
Example 16. Let ϕ : N → N be a linear function. Then, for all families L from
{CFL,LIN,DCFL,DLIN}, all intersection kernels of L include all, even non-
regular, languages Lϕ.

Similar as above we obtain a contradiction when we assume that there is an
intersection kernel ν ∈ γ∩(L ) such that there is Lϕ /∈ ν.

Consider κ = Γ∩(ν ∪ {Lϕ}). Each language L ∈ κ has a representation
as K, Lϕ, or K ∩ Lϕ, where K ∈ ν.

Since Lϕ belongs to L , K ∩ Lϕ ∈ DLIN ⊆ L by Theorem 15, and ν ⊆ L ,
the closure Γ∩(ν ∪ {Lϕ}) is included in L , which gives a contradiction to the
maximality of ν. �

The situation changes when in Theorem 15 the language Lϕ is replaced by its
complement Lϕ. It is an immediate observation that in this case the determinism
is not generally achieved. However, we can show that the property of being
context free or linear context free can be preserved. To this end, we first provide
the next lemma.

It has already been shown in [4] that a language L ⊆ a∗b∗ is context free if
and only if it is semilinear. We turn to strengthen this result to linear context-free
languages. Basically, it shows that there are no non-linear context-free languages
L ⊆ a∗b∗ at all.

Proposition 17. A language L ⊆ a∗b∗ is linear context free if and only if it is
semilinear.
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Proof. If language L is linear context free, it is semilinear. So, it is sufficient to
show the converse. To this end, let L ⊆ a∗b∗ be semilinear. A semilinear subset S
of N2 determines uniquely a language Ψ−1(S) whose words are of the form a∗b∗,
that is L = Ψ−1(Ψ(L)). Now let the Parikh image Ψ(L) be given by a finite
union of sets of the form{ (

u0

v0

)
+ x1

(
u1

v1

)
+ x2

(
u2

v2

)
+ · · · + xk

(
uk

vk

)∣∣∣∣ xi ≥ 0, 1 ≤ i ≤ k

}
,

where u0, v0, u1, v1, . . . , uk, vk ∈ N.
For each of these sets, say set S′, we construct a linear context-free grammar

that generates Ψ−1(S′). Since the family of linear context-free languages is closed
under union, this shows the lemma.

The linear context-free grammar for S′ is G = 〈N,T,A, P 〉, where N = {A},
T = {a, b}, and P = {A → auiAbvi | 1 ≤ i ≤ k } ∪ {A → au0bv0}. ��
Theorem 18. Let ϕ : N → N be a linear function, L ∈ {CFL,LIN}, and L ∈ L
be arbitrary. Then the intersection L ∩ Lϕ belongs to L .

Proof. The intersection L ∩ Lϕ consists of all words from L that are not of the
form a∗b∗, and all words from L of the form a∗b∗ where the number of b’s is
different from ϕ applied to the number of a’s. So, we have the representation
L ∩ Lϕ = (L \ a∗b∗) ∪ ((L ∩ a∗b∗) \ Lϕ).

Since L is closed under set difference with regular languages, L\a∗b∗ belongs
to L . Since L is closed under intersection with regular languages, L ∩ a∗b∗

belongs to L and, thus, is semilinear. Further, Lϕ is semilinear. The family of
semilinear languages is closed under set difference [3]. Therefore, (L∩ a∗b∗) \Lϕ

is a semilinear language which, in turn, is linear context free by Proposition 17
and, thus, belongs to L as well.

Since L is closed under union, the intersection L ∩ Lϕ belongs to L . ��
Now we are prepared to show that there are non-regular languages belonging

to the intersection of all Boolean kernels of CFL, LIN, CO-CFL, and CO-LIN.

Theorem 19. Let ϕ : N → N be a linear function. Then, for all families L
from {CFL,LIN,CO-CFL,CO-LIN}, all Boolean kernels of L include all, even
non-regular, languages Lϕ.

6 Untouched Questions

We have started to study the properties of kernels of general language families
and operations defined thereon systematically as well as kernels of (deterministic)
(linear) context-free languages with a focus on Boolean operations.

Since only less is known about kernels a bunch of questions and problems
remain open or untouched. Exemplarily, we mention four of them: (1) The non-
trivial closure properties of kernels themselves are of natural interest. (2) Are
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there hierarchies of kernels? (3) A machine characterization of the complemen-
tation kernel of the context-free languages in terms of self-verifying pushdown
automata is known [2]. Basically, the characterization is given by a machine for
the underlying language family, where the acceptance condition is modified. Are
there machine characterizations of other kernels?

Acknowledgment. The author would like to thank Henning Fernau for fruitful dis-
cussions at an early stage of the paper.
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