
Faster STR-EC-LCS Computation

Kohei Yamada1(B), Yuto Nakashima1, Shunsuke Inenaga1,2, Hideo Bannai1,
and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{kohei.yamada,yuto.nakashima,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

2 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

Abstract. The longest common subsequence (LCS) problem is a central
problem in stringology that finds the longest common subsequence of
given two strings A and B. More recently, a set of four constrained LCS
problems (called generalized constrained LCS problem) were proposed by
Chen and Chao [J. Comb. Optim, 2011]. In this paper, we consider the
substring-excluding constrained LCS (STR-EC-LCS) problem. A string
Z is said to be an STR-EC-LCS of two given strings A and B excluding P
if, Z is one of the longest common subsequences of A and B that does not
contain P as a substring. Wang et al. proposed a dynamic programming
solution which computes an STR-EC-LCS in O(mnr) time and space
where m = |A|, n = |B|, r = |P | [Inf. Process. Lett., 2013]. In this paper,
we show a new solution for the STR-EC-LCS problem. Our algorithm
computes an STR-EC-LCS in O(n|Σ|+(L+1)(m−L+1)r) time where
|Σ| ≤ min{m, n} denotes the set of distinct characters occurring in both
A and B, and L is the length of the STR-EC-LCS. This algorithm is faster
than the O(mnr)-time algorithm for short/long STR-EC-LCS (namely,
L ∈ O(1) or m−L ∈ O(1)), and is at least as efficient as the O(mnr)-time
algorithm for all cases.

1 Introduction

The longest common subsequence (LCS) problem of finding an LCS of given two
strings, is a classical and important problem in Theoretical Computer Science.
Given two strings A and B of respective lengths m and n, it is well known that
the LCS of A and B can be computed by a standard dynamic programming
technique [13]. Since LCS is one of the most fundamental similarity measures
for string comparison, there are a number of studies on faster computation of
LCS and its applications [2,3,11,14]. It is also known that there is a conditional
lower bound which states that the LCS of two strings of length n each cannot
be computed in O(n2−ε) time for any constant ε > 0, unless the famous popular
Strong Exponential Time Hypothesis (SETH) fails [1]. Thus, it is highly likely
that one needs to use almost quadratic time for computing LCS in the worst case.
Still, it is possible to design algorithms for computing LCS whose running time
depends on other parameters. One of such algorithms was proposed by Nakatsu
et al. [10], which finds an LCS of given two strings A and B in O(n(m − l))
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 125–135, 2020.
https://doi.org/10.1007/978-3-030-38919-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_11

126 K. Yamada et al.

time and space, where l is the length of the LCS of the two given strings. This
algorithm is efficient when l is large, namely, A and B are very similar.

Of a variety of extensions to LCS that have been extensively studied, this
paper focuses on a class of problems called the constrained LCS problems, first
considered by Tsai [12]. We are given strings A,B and constraint string P of
length r, and the CLCS problem is to find a longest subsequence common to A
and B, such that the subsequence has P as a subsequence. He also presented
a dynamic programming algorithm which solves the problem in O(m2n2r) time
and space. The motivation for introducing constraints is to reflect some a-priori
knowledge (e.g., biological knowledge) to the solutions. Later, the generalized
constrained LCS (GC-LCS) problems were introduced by Chen et al. [4]. GC-
LCS consists of four variants of the constrained LCS problem, which are respec-
tively called SEQ-IC-LCS, SEQ-EC-LCS, STR-IC-LCS, and STR-EC-LCS. For
given strings A,B and P , the problem is to find a longest subsequence com-
mon to A and B such that the subsequence includes/excludes/includes/excludes
P as a subsequence/subsequence/substring/substring, respectively for SEQ-IC-
LCS/SEQ-EC-LCS/STR-IC-LCS/STR-EC-LCS. We remark that CLCS is the
same as SEQ-IC-LCS. The best known results for these problems were proposed
in [4–6,15].

The quadratic bound for STR-IC-LCS seems to be very difficult to improve,
since STR-IC-LCS is a special case of LCS (recall the afore-mentioned condi-
tional lower bound for LCS). Since the other three variants require cubic time,
it is important to discover more efficient solutions for these problems. There
exist faster dynamic programming solutions for SEQ-IC-LCS and STR-IC-LCS
which are based on run-length encodings [8,9]. However, no faster solutions to
STR-EC-LCS than the one with O(mnr) running time [15] are known to date.

In this paper, we revisit the STR-EC-LCS problem. More formally, we say
that a string Z is an STR-EC-LCS of two given strings A and B excluding
P if, Z is one of the longest common subsequences of A and B that does not
contain P as a substring. We show a new dynamic programming solution for
the STR-EC-LCS problem which runs in O(n|Σ| + (L + 1)(m − L + 1)r) time
and space, where Σ is the set of distinct characters occurring in both A and
B, and L is the length of the solution. Note that |Σ| ≤ min{m,n} always
holds. Our algorithm is built on Nakatsu et al.s’ method for the (original) LCS
problem [10]. Assume w.l.o.g. that m ≤ n. When the length of STR-EC-LCS is
quite short or long (namely, L ∈ O(1) or m−L ∈ O(1)), our algorithm runs only
in O(n|Σ| + mr) = O((n + r)m) = O(nm) time and space, since r ≤ n. Even
in the worst case where L ∈ Θ(m) and m − L ∈ Θ(m), which happens when
L = cm for any constant 0 < c < 1, our algorithm is still as efficient as O(mnr)
since |Σ| ≤ min{m,n}.

This paper is organized as follows; we will give notations which we use in
this paper in Sect. 2, we will propose our dynamic programming solution for the
STR-EC-LCS problem in Sect. 3, finally, we will explain our algorithm for the
STR-EC-LCS in Sect. 4.

Faster STR-EC-LCS Computation 127

2 Preliminaries

2.1 Strings

Let Σ be an integer alphabet. An element of Σ∗ is called a string. The length of a
string w is denoted by |w|. The empty string ε is a string of length 0. For a string
w = xyz, x, y and z are called a prefix, substring, and suffix of w, respectively.
The i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a
string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w
that begins at position i and ends at position j. For convenience, let w[i..j] = ε
when i > j.

A string Z is a subsequence of A if Z can be obtained from A by removing
zero or more characters. In this paper, we consider common subsequences of two
strings A and B of respective lengths m and n. For this sake, we can perform
a standard preprocessing on A and B that removes every character that occurs
only in either A or B, because such a character is never contained in any common
subsequences of A and B. Assuming n ≥ m, this preprocessing can be done in
O(n log n) time with O(n) space for general ordered alphabets, and in O(n)
time and space for integer alphabets of polynomial size in n (c.f. [7]). In what
follows, we consider the latter case of integer alphabets, and assume that A and
B have been preprocessed as above. In the sequel, let Σ denote the set of distinct
characters that occur in both A and B. Note that |Σ| ≤ min{m,n} = m holds.

2.2 STR-EC-LCS

Let A,B and P be strings. A string Z is said to be an STR-EC-LCS of two
given strings A and B excluding P if, Z is one of the longest common subse-
quences of A and B that does not contain P as a substring. For instance, bcaac,
bcaba, acaac, acaba, abaac and ababa are STR-EC-LCS of A = abcabac and
B = acbcaacbaa excluding P = abc. Although abcaba and abcaac are longest
common subsequences of A and B, they are not STR-EC-LCS of the same strings
(since they have P as a substring).

In Sect. 3, we revisit the STR-EC-LCS problem defined as follows.

Problem 1 (STR-EC-LCS problem [4]). Given strings A,B, and P , compute an
STR-EC-LCS (and/or its length) of given strings.

In the rest of the paper, m,n, and r respectively denote the length of A,B
and P . It is easy to see that STR-EC-LCS problem is the same as LCS problem
when r > min{m,n}. We assume that r ≤ m ≤ n without loss of generality.

3 Dynamic Programming Solution for the STR-EC-LCS
Problem

Our aim of this section is to show our dynamic programming solution for the
STR-EC-LCS problem. We first give short descriptions of a dynamic program-
ming solution for the LCS problem proposed by Nakatsu et al. [10], and a

128 K. Yamada et al.

Fig. 1. This is an example for table e of given strings A = aabacab and B = baabbcaa.
For the sake of visibility, the value n + 1 = 9 is replaced by asterisk (∗). The last row
in the table which has a value smaller than n + 1 is 5; that is, the length of an LCS of
A and B is 5.

dynamic programming solution for the STR-EC-LCS problem proposed by Wang
et al. [15].

3.1 Solution for LCS by Nakatsu et al.

Nakatsu et al. proposed a dynamic programming solution for computing an LCS
of given strings A and B. Here, we give a slightly modified description of their
solution in order to describe our algorithm. For any 0 ≤ i, s ≤ m, let e(i, s) be
the length of the shortest prefix B[1..e(i, s)] of B such that the length of the
longest common subsequence of A[1..i] and B[1..e(i, s)] is s. For convenience,
e(i, s) = n + 1 if no such prefix exists or if s > i holds. The values e(i, s)
will be computed using dynamic programming, where i represents the column
number, and s represents the row number. Let s̃ be the largest value such that
e(i, s) < n + 1 for some i, i.e, s̃ is the last row in the table of e, which has a
value smaller than n + 1. We can see that the length of the longest common
subsequence of A and B is s̃. We give an example in Fig. 1.

Now we explain how to compute e efficiently. Assume that e(i − 1, s) and
e(i − 1, s − 1) have already been computed. We consider e(i, s). It is easy to see
that e(i, s) ≤ e(i − 1, s). If e(i, s) < e(i − 1, s), an LCS of A[1..i] and B[1..e(i, s)]
must use the character A[i] as the last character. Then, we can see that e(i, s)
is the index of the leftmost occurrence of A[i] in B[e(i − 1, s − 1) + 1..n]. Let ji,s

be the the index of the leftmost occurrence of A[i] in B[e(i − 1, s − 1) + 1..n].
From these facts, the following recurrence formula holds for e:

e(i, s) = min{e(i − 1, s), ji,s}.

If we add more information, we can backtrack on the table in order to com-
pute an LCS (as a string), and not just its length.

Faster STR-EC-LCS Computation 129

3.2 Solution for STR-EC-LCS by Wang et al.

Wang et al. proposed a dynamic programming solution for STR-EC-LCS prob-
lem of given strings A,B and P . Here, we describe a key idea of their solution.

Definition 1. For any string S, σ(S) is the length of the longest prefix of P
which is a suffix of S.

By using this notation, they considered a table f defined as follows: let
f(i, j, k) be the length of the longest common subsequence Z of A[1..i] and
B[1..j] such that Z does not have P as a substring and σ(Z) = k. They also
showed a recurrence formula for f . By the definition of f , the length of an
STR-EC-LCS is max{f(m,n, t) | 0 ≤ t < r}.

3.3 Our Solution for STR-EC-LCS

Our solution is based on the idea of Sect. 3.1. We maintain occurrences of a
prefix of P as a suffix of a common subsequence by using the idea of Sect. 3.2.

For convenience, we introduce the following notation.

Definition 2. A string Z is said to satisfy Property(i, s, k) if

– Z is a subsequence of A[1..i],
– Z does not have P as a substring,
– |Z| = s, and
– σ(Z) = k.

Thanks to the above notation, we can simply introduce our table d for com-
puting STR-EC-LCS as follows. Let d be a 3-dimensional table where d(i, s, k)
is the length of the shortest prefix B[1..d(i, s, k)] of B such that there exists a
subsequence which satisfies Property(i, s, k) (if no such subsequence exists, then
d(i, s, k) = n + 1 for convenience).

We can obtain the following observation about the length of an STR-EC-
LCS by the definition of d.

Observation 1. Let s̃ be the largest 1 ≤ s ≤ m such that d(i, s, k) < n + 1 for
some i and k. s̃ is the length of an STR-EC-LCS by the definition of d.

We give an example of a table in Fig. 2.
The next lemma shows a recurrence formula for d. We use this lemma for

computing the length of a STR-EC-LCS.

Lemma 1.

d(i, s, k) = min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r})

holds, where jt is the smallest position j in B[d(i − 1, s − 1, t) + 1..n] such that
A[i] = B[j], and there exists a string Z which satisfies Property(i − 1, s − 1, t)
and σ(ZA[i]) = k (if no such Z exists for t, then jt = n + 1).

130 K. Yamada et al.

Fig. 2. This is our table d for given strings A = aabacab, B = baabbcaa, and P = aab.
In this figure, the value n + 1 = 9 is replaced by asterisk (∗) for convenience. The
lowest row which has a value smaller than n + 1 = 9 is s̃ = 4. Thus, the length of a
STR-EC-LCS is 4.

Proof. We show the following inequations to prove this lemma;

1. d(i, s, k) ≤ min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r}),
2. d(i, s, k) ≥ min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r}).

We start from proving the first inequation. By the definition of d, d(i, s, k) ≤
d(i − 1, s, k) always holds. If {jt | 0 ≤ t < r} = ∅, then the first inequation
holds. We assume that {jt | 0 ≤ t < r} �= ∅, and jt1 is in the set (0 ≤ t1 < r).
Then, there exists a subsequence Z1 of B[1..d(i − 1, s − 1, t1)] which satisfies
Property(i− 1, s− 1, t1). Since A[i] = B[jt1] and jt1 > d(i− 1, s− 1, t1), Z1A[i] is
a subsequence of B[1..jt1] that satisfies Property(i, s, k) and σ(Z1A[i]) = k. This
implies that d(i, s, k) ≤ jt1 . Thus, the first inequation holds.

Suppose that the second inequation does not hold, namely,

d(i, s, k) < min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r}) (1)

holds. If d(i, s, k) = n+1, then the above inequation does not hold. Now we con-
sider the case d(i, s, k) < n+1. By the definition of d, there exists a subsequence
Z2 of B[1..d(i, s, k)] that satisfies Property(i, s, k). Let Z ′

2 = Z2[1..|Z2|−1]. Then,
Z ′
2 is a length s−1 subsequence of A[1..i−1] which does not have P as a substring.

Since Z ′
2 satisfies Property(i − 1, s − 1, σ(Z ′

2)), d(i − 1, s − 1, σ(Z ′
2)) < d(i, s, k)

holds. Moreover, σ(Z ′
2B [d(i , s, k)]) = k holds. If A[i] = B[d(i, s, k)], then,

jσ(Z ′
2)

≤ d(i, s, k) holds. This fact contradicts Inequation (1). Now we can
assume that A[i] �= B[d(i, s, k)]. This implies that Z2 is a common subsequence
of A[1..i] and B[1..d(i, s, k) − 1], or a common subsequence of A[1..i − 1] and
B[1..d(i, s, k)]. The first case implies a contradiction by the definition of d.
The second case implies that d(i, s, k) = d(i − 1, s, k), a contradiction. Thus,
d(i, s, k) ≥ min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r}) holds. �	

Faster STR-EC-LCS Computation 131

Fig. 3. This figure shows the order of computation for table d. For each table (i.e., for
each k), we do not need to compute the lower left part (satisfying s > i). We start from
computing values on the leftmost arrow for each table. In each step (i, s), we compute
d(i, s, k) for all tables (for instance, squared values in the figure will be computed in
the same step).

4 Algorithm

In this section, we show how to compute STR-EC-LCS by using Lemma 1. We
mainly explain our algorithm to compute the length of an STR-EC-LCS (we will
explain how to compute an STR-EC-LCS at the end of this section).

To use Lemma 1, we need d(i−1, s, k) and d(i−1, s−1, t) for all 0 ≤ t < r for
computing d(i, s, k). We compute our table for every diagonal line from upper
left to lower right in left-to-right order. In each step of our algorithm, we will fix
0 ≤ i, s ≤ m (we use (i, s) to denote the step for fixed i and s). Then we compute
d(i, s, k) for any 0 ≤ k < r in the step. We can see from a simple observation
that d(i, s, k) = n+1 holds for any input strings if i < s (since no STR-EC-LCS
of length s exists). Thus, we do not compute d(i, s, k) explicitly such that i < s.
We also describe this strategy in Fig. 3.

Now we consider how to compute d(i, s, k) for any 0 ≤ k < r. Let Z(i, s, k)
be a subsequence of B[1..d(i−1, s−1, k)] satisfying Property(i−1, s−1, k). Due
to Lemma 1, string Z(i, s, k)A[i] is a witness for value d(i, s, σ(Z (i , s, k)A[i])) if
a (leftmost) position j in B[d(i − 1, s − 1, k) + 1..n] such that A[i] = B[j] exists.
For any i, s, k, let J(i, s, k) denote the position j described above. Thus, we can
compute d(i, s, k) for any k in step (i, s) as follows.

1. Set d(i − 1, s, k) as the initial value for d(i, s, k) for each k.
2. Compute J(i, s, k) and σ(Z (i , s, k)A[i]) for each k.
3. If J(i, s, k) < d(i, s, σ(Z (i , s, k)A[i])), then update d(i, s, σ(Z (i , s, k)A[i])) to

J(i, s, k).

132 K. Yamada et al.

Lemma 1 and the above discussion ensure the correctness of this algorithm.
Next we show how to do these operations efficiently. We use the following two
data structures.

Definition 3. For any position j in B (i.e., j ∈ [1, n]) and any character α ∈ Σ,

nextB (j, α) = min{q | B[q] = α, q ≥ j}.

Definition 4. For any position t in P (i.e., t ∈ [0, r − 1]) and any character
α ∈ Σ,

nextσ(t, α) = σ(P [1 ..t]α).

At the second operation, we need to compute J(i, s, k). J(i, s, k) is the index
of the leftmost occurrence of A[i] in B[d(i−1, s−1, k)+1..n]. We can compute the
occurrence by using nextB , namely, J(i, s, k) = nextB (d(i − 1, s − 1, k) + 1, A[i]).

Moreover, we need to compute σ(Z (i , s, k)A[i]). We know that σ(Z (i , s, k)) =
k, namely, Z(i, s, k) has P [1..k] as a suffix. By the definition of σ(·), σ(S) + 1 ≥
σ(Sα) holds for any string S and α ∈ Σ. This implies that σ(Z (i , s, k)A[i]) =
σ(P [1 ..t]A[i]). Thus, we can compute σ(Z (i , s, k)A[i]) by using nextσ(·), namely,
σ(Z (i , s, k)A[i]) = σ(P [1 ..t]A[i]) = nextσ(t, A[i]).

We can easily compute nextB in linear time and space (we give a pseudo-code
in Algorithm 1). nextσ was introduced in [15] (as table λ). They also showed that
this table can be computed in linear time and space (we give a pseudo-code in
Algorithm 2).

Algorithm 1: Construction for nextB
Input: String B of length n, Alphabet Σ
Output: nextB

1 foreach character α ∈ Σ do nextB (n, α) = n + 1;
2 for j = n − 1 to 0 do
3 foreach α ∈ Σ do
4 if α = B[j + 1] then nextB (j, α) = j + 1;
5 else nextB (j, α) = nextB (j + 1, α);

6 return nextB

We have finished describing how to compute d. This algorithm computes
O(m2r) values (i.e., the size of the table d). We can see that every operation can
be done in constant time. Thus, this algorithm takes O(n|Σ| + m2r) time and
space. This complexity is similar to Wang et al.s’ result (algorithm described in
Sect. 3.2). We can modify our algorithm to compute d more efficiently by using
the following two observations.

Observation 2. Assume that we have already computed table d until the i-th
diagonal line (i.e., the diagonal line which has d(i, 0, ·)). Let s′ be the lowest row

Faster STR-EC-LCS Computation 133

Algorithm 2: Construction for nextσ
Input: String P of length r, Alphabet Σ
Output: nextσ

1 kmp(0) ← −1;
2 kmp(1) ← 0;
3 k ← 0;
4 for i = 2 to r do
5 while k ≥ 0 and P [k + 1] �= P [i] do k ← kmp(k);
6 k ← k + 1;
7 kmp(i) ← k;

8 nextσ(0, P [1]) ← 1;
9 foreach α ∈ Σ − {P [1]} do

10 nextσ(0, α) ← 0;

11 for k = 1 to r − 1 do
12 foreach α ∈ Σ do if α = P [k + 1] then nextσ(k, α) ← k + 1;
13 else nextσ(k, α) ← nextσ(kmp(k), α);

14 return nextσ

which has a value smaller than n + 1. Then, we do not need to compute the last
s′ +1 diagonal lines since these diagonal lines do not make better candidates for
STR-EC-LCS.

Observation 3. If d(i, s, k) = n + 1 for all k, then d(i + 1, s + 1, k) = . . . =
d(i + (m − i), s + (m − i), k) = n + 1 holds for any k.

Thanks to the above observations, the number of values which we need to
compute is O((L + 1)(m − L + 1)r) where L is the length of STR-EC-LCS (see
also Fig. 4).

Finally, we discuss how to store d. We consider computing the i-th diagonal
line (i.e., d(i, 0, k), . . . , d(i + (m − i),m − i, k)). Suppose that d(i, 0, k), . . . , d(i +
t − 1, t − 1, k) have already been computed. Then, we store these values by
using an array of size 2�log t�. If the array filled with values for the line (i.e.,
d(i + 2�log t� − 1, 2�log t� − 1, k) < n + 1 for some k), we make new array of
size 2�log t�+1 for values d(i, 0, k), . . . , d(i + 2�log t�+1 − 1, 2�log t�+1 − 1, k) on the
line. By Observation 3, we will compute at most L + 2 values for each line,
the total length of arrays for each line is O(L), where L is the length of an
STR-EC-LCS. Therefore, we can compute the length of an STR-EC-LCS in
O(n|Σ| + (L + 1)(m − L + 1)r) time and space.
Computing an STR-EC-LCS. If we want to compute an STR-EC-LCS, we
store a pair (s′, k′) for every d(i, s, k). The pair (s′, k′) represents that d(i, s, k)
was given by d(i − 1, s′, k′). By using these information, we can compute an
STR-EC-LCS from right to left. We show an example in Fig. 5.

Since we can store (s′, k′) in constant time and space for each d(i, s, k), and
compute an STR-EC-LCS in O(m) time, we can get the following main result.

134 K. Yamada et al.

Fig. 4. This is a table for some k. Due to Observations 2 and 3, we do not need to
compute values in white part (there might exist positions which do not need their
values). The maximum number of values which we need to compute (namely, the total
area of the r gray parts) is O((L + 1)(m − L + 1)r).

Fig. 5. In this figure, an arrow represents additional information for backtracking. For
instance, d(6, 4, 1) = 7 was given by d(5, 3, 0) = 6 while computing d. We can get an
STR-EC-LCS abca of A = aabacab, B = baabbcaa, and P = aab.

Theorem 1. For given strings A,B and P , we can compute an STR-EC-LCS
in O(n|Σ| + (L + 1)(m − L + 1)r) time and space where m,n, r and L are the
length of A,B, P and the STR-EC-LCS, respectively.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP18K18002 (YN), JP17H01697 (SI), JP16H02783 (HB), JP18H04098 (MT), and by
JST PRESTO Grant Number JPMJPR1922 (SI).

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. FOCS 2015, 59–78 (2015)

2. Ahsan, S.B., Aziz, S.P., Rahman, M.S.: Longest common subsequence problem for
run-length-encoded strings. In: 2012 15th International Conference on Computer
and Information Technology (ICCIT), pp. 36–41, December 2012

Faster STR-EC-LCS Computation 135

3. Bunke, H., Csirik, J.: An improved algorithm for computing the edit dis-
tance of run-length coded strings. Inf. Process. Lett. 54(2), 93–96 (1995).
http://www.sciencedirect.com/science/article/pii/002001909500005W

4. Chen, Y.C., Chao, K.M.: On the generalized constrained longest common sub-
sequence problems. J. Comb. Optim. 21(3), 383–392 (2011). https://doi.org/10.
1007/s10878-009-9262-5

5. Chin, F.Y., Santis, A.D., Ferrara, A.L., Ho, N., Kim, S.: A simple algorithm
for the constrained sequence problems. Inf. Process. Lett. 90(4), 175–179 (2004).
http://www.sciencedirect.com/science/article/pii/S0020019004000614

6. Deorowicz, S.: Quadratic-time algorithm for a string constrained lcs prob-
lem. Inf. Process. Lett. 112(11), 423–426 (2012). http://www.sciencedirect.com/
science/article/pii/S0020019012000567

7. Inenaga, S., Hyyrö, H.: A hardness result and new algorithm for the longest com-
mon palindromic subsequence problem. Inf. Process. Lett. 129, 11–15 (2018)

8. Kuboi, K., Fujishige, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster STR-IC-
LCS computation via RLE. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.)
28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, 4–6 July
2017, Warsaw, Poland. LIPIcs, vol. 78, pp. 20:1–20:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.20

9. Liu, J.J., Wang, Y.L., Chiu, Y.S.: Constrained longest common subsequences with
run-length-encoded strings. Comput. J. 58(5), 1074–1084 (2014). https://doi.org/
10.1093/comjnl/bxu012

10. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Inf. 18, 171–179 (1982). https://doi.
org/10.1007/BF00264437

11. Stern, H., Shmueli, M., Berman, S.: Most discriminating segment - longest com-
mon subsequence (MDSLCS) algorithm for dynamic hand gesture classification.
Pattern Recogn. Lett. 34(15), 1980–1989 (2013). http://www.sciencedirect.com/
science/article/pii/S0167865513000512, smart Approaches for Human Action
Recognition

12. Tsai, Y.T.: The constrained longest common subsequence problem. Inf.
Process. Lett. 88(4), 173–176 (2003). http://www.sciencedirect.com/science/
article/pii/S002001900300406X

13. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168–173 (1974). https://doi.org/10.1145/321796.321811

14. Wang, C., Zhang, D.: A novel compression tool for efficient storage of genome
resequencing data. Nucleic Acids Res. 39(7), e45 (2011). https://doi.org/10.1093/
nar/gkr009

15. Wang, L., Wang, X., Wu, Y., Zhu, D.: A dynamic programming solution to a
generalized LCS problem. Inf. Process. Lett. 113(19–21), 723–728 (2013). https://
doi.org/10.1016/j.ipl.2013.07.005

http://www.sciencedirect.com/science/article/pii/002001909500005W
https://doi.org/10.1007/s10878-009-9262-5
https://doi.org/10.1007/s10878-009-9262-5
http://www.sciencedirect.com/science/article/pii/S0020019004000614
http://www.sciencedirect.com/science/article/pii/S0020019012000567
http://www.sciencedirect.com/science/article/pii/S0020019012000567
https://doi.org/10.4230/LIPIcs.CPM.2017.20
https://doi.org/10.1093/comjnl/bxu012
https://doi.org/10.1093/comjnl/bxu012
https://doi.org/10.1007/BF00264437
https://doi.org/10.1007/BF00264437
http://www.sciencedirect.com/science/article/pii/S0167865513000512
http://www.sciencedirect.com/science/article/pii/S0167865513000512
http://www.sciencedirect.com/science/article/pii/S002001900300406X
http://www.sciencedirect.com/science/article/pii/S002001900300406X
https://doi.org/10.1145/321796.321811
https://doi.org/10.1093/nar/gkr009
https://doi.org/10.1093/nar/gkr009
https://doi.org/10.1016/j.ipl.2013.07.005
https://doi.org/10.1016/j.ipl.2013.07.005

	Faster STR-EC-LCS Computation
	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 STR-EC-LCS

	3 Dynamic Programming Solution for the STR-EC-LCS Problem
	3.1 Solution for LCS by Nakatsu et al.
	3.2 Solution for STR-EC-LCS by Wang et al.
	3.3 Our Solution for STR-EC-LCS

	4 Algorithm
	References

