
46th International Conference on Current Trends
in Theory and Practice of Informatics, SOFSEM 2020
Limassol, Cyprus, January 20–24, 2020, Proceedings

SOFSEM 2020:
Theory and Practice
of Computer ScienceLN

CS
 1

20
11

AR
Co

SS
Alexander Chatzigeorgiou · Riccardo Dondi ·
Herodotos Herodotou · Christos Kapoutsis ·
Yannis Manolopoulos · George A. Papadopoulos ·
Florian Sikora (Eds.)

Lecture Notes in Computer Science 12011

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen, Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexander Chatzigeorgiou • Riccardo Dondi •

Herodotos Herodotou • Christos Kapoutsis •

Yannis Manolopoulos • George A. Papadopoulos •

Florian Sikora (Eds.)

SOFSEM 2020:
Theory and Practice
of Computer Science
46th International Conference on Current Trends
in Theory and Practice of Informatics, SOFSEM 2020
Limassol, Cyprus, January 20–24, 2020
Proceedings

123

Editors
Alexander Chatzigeorgiou
University of Macedonia
Thessaloniki, Greece

Riccardo Dondi
University of Bergamo
Bergamo, Italy

Herodotos Herodotou
Cyprus University of Technology
Limassol, Cyprus

Christos Kapoutsis
Carnegie Mellon University Qatar
Doha, Qatar

Yannis Manolopoulos
Open University of Cyprus
Nicosia, Cyprus

George A. Papadopoulos
University of Cyprus
Nicosia, Cyprus

Florian Sikora
Paris Dauphine University
Paris, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-38918-5 ISBN 978-3-030-38919-2 (eBook)
https://doi.org/10.1007/978-3-030-38919-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5381-8418
https://orcid.org/0000-0002-6124-2965
https://orcid.org/0000-0002-8717-1691
https://orcid.org/0000-0001-8963-9326
https://orcid.org/0000-0003-4026-4329
https://orcid.org/0000-0001-9250-4916
https://orcid.org/0000-0003-2670-6258
https://doi.org/10.1007/978-3-030-38919-2

Preface

This volume contains the invited and contributed papers selected for presentation at
SOFSEM 2020, the 46th International Conference on Current Trends in Theory and
Practice of Computer Science, which was held during January 20–24, 2020, in
Limassol, Cyprus.

SOFSEM (originally SOFtware SEMinar) is an annual international winter con-
ference devoted to the theory and practice of computer science. Its aim is to present the
latest developments in research for professionals from academia and industry working
in leading areas of computer science. While being a well-established and fully inter-
national conference, SOFSEM also maintains the best of its original Winter School
aspects, such as a high number of invited talks, in-depth coverage of selected research
areas, and ample opportunity to discuss and exchange new ideas. SOFSEM 2020 is
organized around the following four tracks:

– Foundations of Computer Science (chair: Christos Kapoutsis)
– Foundations of Data Science and Engineering (chair: Herodotos Herodotou)
– Foundations of Software Engineering (chair: Alexander Chatzigeorgiou)
– Foundations of Algorithmic Computational Biology (chairs: Ricardo Dondi and

Florian Sikora)

Notably, the fourth track of the above takes place for the first time in the framework
of SOFSEM and it is expected to be continued over the next years. With these tracks,
SOFSEM 2020 covered the latest advances in both theoretical and applied research in
leading areas of computer science.

An integral part of SOFSEM 2020 is the traditional Student Research Forum (chair:
Theodoros Tzouramanis) organized with the aim of giving students feedback on both
the originality of their scientific results and on their work in progress. The papers
presented at the Student Research Forum will be available at the CEUR website
(http://ceur-ws.org).

The SOFSEM 2020 Program Committee (PC) consisted of 95 international experts
from 35 countries, representing the track areas with outstanding expertise. Another 72
external reviewers contributed as well. The committee undertook the task of assem-
bling a scientific program for the SOFSEM audience by selecting from 125 submis-
sions from 40 countries entered in the EasyChair system in response to the call for
papers. The submissions were carefully reviewed with 2.9 reviews/paper, and thor-
oughly discussed. Following strict criteria of quality and originality, 40 papers were
accepted for presentation as regular research papers, as well as 17 papers for presen-
tation as short papers. These 57 papers were contributed by authors from 26 countries.
Thus, the acceptance ratio for regular papers was 32%, plus another 14% for short
papers. Additionally, based on the recommendation of the chair of the Student
Research Forum, 9 papers were accepted for presentation in the Student Research
Forum.

http://ceur-ws.org

As editors of these proceedings, we are grateful to everyone who contributed to the
scientific program of the conference. We would like to thank the invited speakers:

– Mikołaj Bojańczyk (University of Warsaw, Poland)
– Ernesto Damiani (Khalifa University, UAE)
– Erol Gelenbe (Polish Academy of Sciences, Poland)
– Gunnar Klau (Heinrich Heine University Düsseldorf, Germany)
– Elias Koutsoupias (University of Oxford, UK)

for presenting their work to the audience of SOFSEM 2020. We thank all authors who
submitted their papers for consideration. Many thanks are due to the PC members, and
to all external referees, for their precise and detailed reviewing of the submissions. The
work of the PC was carried out using the EasyChair system, and we gratefully
acknowledge this contribution.

Special thanks are due to the SOFSEM Steering Committee, headed by Július
Štuller, for its support throughout the preparation of the conference. Finally, we want to
thank Easyconferences.eu led by Petros Stratis, and the Deputy Ministry of Tourism of
Cyprus, for their services and support.

January 2020 Alexander Chatzigeorgiou
Riccardo Dondi

Herodotos Herodotou
Christos Kapoutsis

Yannis Manolopoulos
George A. Papadopoulos

Florian Sikora

vi Preface

Organization

General Chairs

Yannis Manolopoulos Open University of Cyprus, Cyprus
George-Angelos

Papadopoulos
University of Cyprus, Cyprus

Program Committee Chairs

Alexander Chatzigeorgiou University of Macedonia, Greece
Riccardo Dondi University of Bergamo, Italy
Herodotos Herodotou Cyprus University of Technology, Cyprus
Christos Kapoutsis Carnegie Mellon University in Qatar, Qatar
Florian Sikora University of Paris-Dauphine, France

Student Research Forum Chair

Theodoros Tzouramanis University of Thessaly, Greece

Steering Committee

Barbara Catania University of Genoa, Italy
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Tiziana Margaria-Steffen University of Limerick, Ireland
Branislav Rovan Comenius University, Slovakia
Petr Šaloun Technical University of Ostrava, Czech Republic
Július Štuller (Chair) Academy of Sciences in Prague, Czech Republic
Jan van Leeuwen Utrecht University, The Netherlands

Program Committee

Andris Ambainis University of Latvia, Latvia
Fabio Anselmi Italian Institute of Technology, Italy
Mukul S. Bansal University of Connecticut, USA
Ladjel Bellatreche Poitiers University, France
Sadok Ben Yahia University of Tunis El Manar, Tunisia
Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia
Guillaume Blin University of Bordeaux, France
Hans-Joachim Böckenhauer ETH Zurich, Switzerland
Edouard Bonnet ENS Lyon, CNRS, France
Stephane Bressan National University of Singapore, Singapore

Francesco Buccafurri University of Reggio Calabria, Italy
Laurent Bulteau University of Paris-Est Marne-la-Vallée, CNRS, France
Cedric Chauve Simon Fraser University, Canada
Zhi-Zhong Chen Tokyo Denki University, Japan
Alfredo Cuzzocrea ICAR-CNR, University of Calabria, Italy
Peter Damaschke Chalmers University, Sweden
Bhaskar DasGupta University of Illinois at Chicago, USA
Volker Diekert University of Stuttgart, Germany
Martin Dietzfelbinger Technical University Ilmenau, Germany
Johann Eder Alpen Adria University of Klagenfurt, Austria
Mohammed El-Kebir University of Illinois at Urbana-Champaign, USA
Oliver Eulenstein Iowa State University, USA
Guillaume Fertin University of Nantes, France
Pierre Fraigniaud CNRS, Paris Diderot University, France
Johann Gamper Free University of Bozen-Bolzano, Italy
Loukas Georgiadis University of Ioannina, Greece
Pawel Gorecki University of Warsaw, Poland
Giovanna Guerrini University of Genova, Italy
Yo-Sub Han Yonsei University, South Korea
Theo Härder University of Kaiserslautern, Germany
Danny Hermelin Ben-Gurion University, Israel
Irena Holubova Charles University in Prague, Czech Republic
Markus Holzer University of Giessen, Germany
Kazuo Iwama Kyoto University, Japan
Jesper Jansson The Hong Kong Polytechnic University, Hong Kong,

China
Minghui Jiang Utah State University, USA
Mark Jones TU Delft, The Netherlands
Tomasz Jurdzinski University of Wroclaw, Poland
Iyad A. Kanj DePaul University, USA
Jarkko Kari University of Turku, Finland
Selma Khouri ESI, Algeria
Dennis Komm ETH Zurich, Switzerland
Christian Komusiewicz Philipps-University Marburg, Germany
Georgia Koutrika Athena Research Center, Greece
Rastislav Kralovic Comenius University, Slovakia
Evangelos Kranakis Carleton University, Canada
Manuel Lafond University of Sherbrooke, Canada
Michael Lampis University of Paris-Dauphine, France
Sebastian Link The University of Auckland, New Zealand
Zsuzsanna Lipták University of Verona, Italy
Beatrice Markhoff University of Tours, France
Giancarlo Mauri University of Milano-Bicocca, Italy
Neeldhara Misra Indian Institute of Technology, India
Elvira Mayordomo University of Zaragoza, Spain
Carlo Mereghetti University of Milan, Italy

viii Organization

Paolo Missier Newcastle University, UK
Luc Moreau King’s College London, UK
Nelma Moreira University of Porto, Portugal
Rim Moussa ENICarthage, Tunisia
Alexander Okhotin Saint Petersburg State University, Russia
Giovanni Pighizzini University of Milan, Italy
Nadia Pisanti University of Pisa, Italy
Alberto Policriti University of Udine, Italy
Alex Popa University of Bucharest, Romania
Andrei Popescu Middlesex University London, UK
Igor Potapov The University of Liverpool, UK
Eric Rivals University of Montpellier, CNRS, France
Raffaella Rizzi University of Milano-Bicocca, Italy
Gunter Saake Otto-von-Guericke-University Magdeburg, Germany
Sherif Sakr University of Tartu, Estonia
Kai Salomaa Queen’s University, Canada
Cem Say Bogazici University, Turkey
Eike Schallehn Otto von Guericke University Magdeburg, Germany
Marinella Sciortino University of Palermo, Italy
Celine Scornavacca University of Montpellier, CNRS, France
Shinnosuke Seki The University of Electro-Communications, Japan
Ayumi Shinohara Tohoku University, Japan
Ernest Teniente Technical University of Catalonia, Spain
Olivier Teste University of Toulouse, France
Martin Theobald University of Luxemburg, Luxembourg
Eleftherios Tiakas Aristotle University of Thessaloniki, Greece
Farouk Toumani Blaise Pascal University, France
Gabriel Valiente Technical University of Catalonia, Spain
Athena Vakali Aristotle University of Thessaloniki, Greece
Stephane Vialette University Paris-Est Marne-la-Vallée, CNRS, France
Peter Van Emde Boas University of Amsterdam, The Netherlands
Leo Van Iersel University of Twente, The Netherlands
Panos Vassiliadis University of Ioannina, Greece
Mathias Weller University Paris-Est Marne-la-Vallée, CNRS, France
Abuzer Yakaryilmaz University of Latvia, Latvia
Tomoyuki Yamakami University of Fukui, Japan
Christos Zaroliagis CTI, University of Patras, Greece
Meirav Zehavi Ben-Gurion University, Israel
Thomas Zeugmann Hokkaido University, Japan
Louxin Zhang National University of Singapore, Singapore

Organization ix

Additional Reviewers

Patrizio Angelini
Marcella Anselmo
Elvira-Maria Arvanitou
Christel Baier
Luca Bernardinello
Nicolas Bonichon
Sabine Broda
Elisabet Burjons
Cezar Campeanu
Costanza Catalano
Michele Chiari
Sarah Christensen
Ferdinando Cicalese
Maxime Crochemore
Federico Dassereto
Gianluca De Marco
Holger Dell
Emilio Di Giacomo
Mike Domaratzki
Gabriele Fici
Johannes Fischer
Marco Franceschetti
Fabian Frei
Janosch Fuchs
Esther Galbrun
Paweł Garncarek
Paweł Gawrychowski
Konstantinos Giannis
Szymon Grabowski
Massimiliano Goldwurm
Spyros Halkidis
Artur Jeż
Chris Keeler
Vasilios Kelefouras
Hwee Kim
Jetty Kleijn

Sang-Ki Ko
Athanasios Konstantinidis
Julius Köpke
Lukasz Kowalik
Tomas Kulik
Martin Kutrib
Markus Lohrey
Andreas Maletti
Florin Manea
Wim Martens
Radu-Stefan Mincu
Tobias Mömke
František Mráz
Reino Niskanen
Charis Papadopoulos
Matthew Patitz
Ilaria Pigazzini
Luca Prigioniero
Daniel Prusa
Simon Puglisi
Karol Rástočný
Rogério Reis
Traian Florin Serbanuta
Michiel Smid
Taylor Smith
Ana Paula Tomás
Spyridon Tzimas
Walter Unger
Diego Valota
Sergey Verlan
Christina Volioti
Kunihiro Wasa
David Wehner
Sebastian Wild
Petra Wolf
Viktor Zamaraev

x Organization

Contents

Invited Papers

Certified Machine-Learning Models. 3
Ernesto Damiani and Claudio A. Ardagna

The Lost Recipes from the Four Schools of Amathus:
Invited Talk Extended Abstract . 16

Gunnar W. Klau

Sharing Energy for Optimal Edge Performance . 24
Erol Gelenbe and Yunxiao Zhang

Foundations of Computer Science – Regular Papers

A Characterization of the Context-Free Languages by Stateless
Ordered Restart-Delete Automata . 39

Friedrich Otto

A Constructive Arboricity Approximation Scheme 51
Markus Blumenstock and Frank Fischer

A Game of Cops and Robbers on Graphs with Periodic
Edge-Connectivity. 64

Thomas Erlebach and Jakob T. Spooner

Approximating Shortest Connected Graph Transformation for Trees 76
Nicolas Bousquet and Alice Joffard

Approximating Weighted Completion Time for Order Scheduling
with Setup Times . 88

Alexander Mäcker, Friedhelm Meyer auf der Heide, and Simon Pukrop

Bounds for the Number of Tests in Non-adaptive Randomized
Algorithms for Group Testing. 101

Nader H. Bshouty, George Haddad, and Catherine A. Haddad-Zaknoon

Burning Two Worlds: Algorithms for Burning Dense
and Tree-Like Graphs . 113

Shahin Kamali, Avery Miller, and Kenny Zhang

Faster STR-EC-LCS Computation . 125
Kohei Yamada, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai,
and Masayuki Takeda

Kernels of Sub-classes of Context-Free Languages 136
Martin Kutrib

Minimal Unique Substrings and Minimal Absent Words
in a Sliding Window . 148

Takuya Mieno, Yuki Kuhara, Tooru Akagi, Yuta Fujishige,
Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai,
and Masayuki Takeda

On Synthesis of Specifications with Arithmetic. 161
Rachel Faran and Orna Kupferman

On the Average State Complexity of Partial Derivative Transducers 174
Stavros Konstantinidis, António Machiavelo, Nelma Moreira,
and Rogério Reis

On the Difference Between Finite-State and Pushdown Depth. 187
Liam Jordon and Philippe Moser

Online Scheduling with Machine Cost and a Quadratic
Objective Function . 199

J. Csirik, Gy. Dósa, and D. Kószó

Parallel Duel-and-Sweep Algorithm for the Order-Preserving
Pattern Matching. 211

Davaajav Jargalsaikhan, Diptarama Hendrian, Ryo Yoshinaka,
and Ayumi Shinohara

Parameterized Complexity of Synthesizing b-Bounded (m, n)-T-Systems 223
Ronny Tredup

Parameterized Dynamic Variants of Red-Blue Dominating Set 236
Faisal N. Abu-Khzam, Cristina Bazgan, and Henning Fernau

Refined Parameterizations for Computing Colored Cuts
in Edge-Colored Graphs. 248

Nils Morawietz, Niels Grüttemeier, Christian Komusiewicz,
and Frank Sommer

Simple Distributed Spanners in Dense Congest Networks. 260
Leonid Barenboim and Tzalik Maimon

The Order Type of Scattered Context-Free Orderings of Rank
One Is Computable . 273

Kitti Gelle and Szabolcs Iván

Up-to Techniques for Branching Bisimilarity . 285
Rick Erkens, Jurriaan Rot, and Bas Luttik

xii Contents

Foundations of Data Science and Engineering – Regular Papers

Crowd Detection for Drone Safe Landing Through Fully-Convolutional
Neural Networks . 301

Giovanna Castellano, Ciro Castiello, Corrado Mencar,
and Gennaro Vessio

Explaining Single Predictions: A Faster Method . 313
Gabriel Ferrettini, Julien Aligon, and Chantal Soulé-Dupuy

Inferring Deterministic Regular Expression with Unorder 325
Xiaofan Wang and Haiming Chen

POI Recommendation Based on Locality-Specific Seasonality
and Long-Term Trends . 338

Elena Stefancova and Ivan Srba

Selection of a Green Logical Data Warehouse Schema
by Anti-monotonicity Constraint . 350

Issam Ghabri, Ladjel Bellatreche, and Sadok Ben Yahia

The HyperBagGraph DataEdron: An Enriched Browsing Experience
of Datasets: Track: Foundation of Data Science and Engineering 362

Xavier Ouvrard, Jean-Marie Le Goff, and Stéphane Marchand-Maillet

Towards the Named Entity Recognition Methods in Biomedical Field 375
Anna Śniegula, Aneta Poniszewska-Marańda, and Łukasz Chomątek

Vietnamese Punctuation Prediction Using Deep Neural Networks 388
Thuy Pham, Nhu Nguyen, Quang Pham, Han Cao, and Binh Nguyen

Foundations of Software Engineering – Regular Papers

A Light-Weight Tool for the Self-assessment of Security Compliance
in Software Development – An Industry Case. 403

Fabiola Moyón, Christoph Bayr, Daniel Mendez, Sebastian Dännart,
and Kristian Beckers

A Novel Hybrid Genetic Algorithm for the Two-Stage Transportation
Problem with Fixed Charges Associated to the Routes 417

Ovidiu Cosma, Petrica C. Pop, and Cosmin Sabo

Do People Use Naming Conventions in SQL Programming? 429
Aggelos Papamichail, Apostolos V. Zarras, and Panos Vassiliadis

Employing Costs in Multiagent Systems with Timed Migration
and Timed Communication . 441

Bogdan Aman and Gabriel Ciobanu

Contents xiii

Maintainability of Automatic Acceptance Tests for Web
Applications—A Case Study Comparing Two Approaches
to Organizing Code of Test Cases . 454

Aleksander Sadaj, Mirosław Ochodek, Sylwia Kopczyńska,
and Jerzy Nawrocki

Recommending Trips in the Archipelago of Refactorings 467
Theofanis Vartziotis, Apostolos V. Zarras, Anastasios Tsimakis,
and Panos Vassiliadis

String Representations of Java Objects: An Empirical Study. 479
Matúš Sulír

Foundations of Algorithmic Computational Biology – Regular Papers

Fast Indexes for Gapped Pattern Matching . 493
Manuel Cáceres, Simon J. Puglisi, and Bella Zhukova

Linearizing Genomes: Exact Methods and Local Search. 505
Tom Davot, Annie Chateau, Rodolphe Giroudeau, and Mathias Weller

Scanning Phylogenetic Networks Is NP-hard . 519
Vincent Berry, Celine Scornavacca, and Mathias Weller

The Maximum Equality-Free String Factorization Problem:
Gaps vs. No Gaps . 531

Radu Stefan Mincu and Alexandru Popa

Foundations of Computer Science – Short Papers

A Calculus for Language Transformations . 547
Benjamin Mourad and Matteo Cimini

Computing Directed Steiner Path Covers for Directed Co-graphs
(Extended Abstract) . 556

Frank Gurski, Stefan Hoffmann, Dominique Komander, Carolin Rehs,
Jochen Rethmann, and Egon Wanke

Counting Infinitely by Oritatami Co-transcriptional Folding 566
Kohei Maruyama and Shinnosuke Seki

On Synchronizing Tree Automata and Their Work–Optimal Parallel Run,
Usable for Parallel Tree Pattern Matching . 576

Štěpán Plachý and Jan Janoušek

xiv Contents

On the Hardness of Energy Minimisation for Crystal Structure Prediction . . . 587
Duncan Adamson, Argyrios Deligkas, Vladimir V. Gusev,
and Igor Potapov

Practical Implementation of a Quantum Backtracking Algorithm 597
Simon Martiel and Maxime Remaud

Simplified Emanation Graphs: A Sparse Plane Spanner
with Steiner Points . 607

Bardia Hamedmohseni, Zahed Rahmati, and Debajyoti Mondal

Simultaneous FPQ-Ordering and Hybrid Planarity Testing 617
Giuseppe Liotta, Ignaz Rutter, and Alessandra Tappini

Two-Player Competitive Diffusion Game: Graph Classes
and the Existence of a Nash Equilibrium . 627

Naoka Fukuzono, Tesshu Hanaka, Hironori Kiya, Hirotaka Ono,
and Ryogo Yamaguchi

Foundations of Data Science and Engineering – Short Papers

Automatic Text Generation in Slovak Language . 639
Dominik Vasko, Samuel Pecar, and Marian Simko

Connecting Galaxies: Bridging the Gap Between Databases
and Applications . 648

Henrietta Dombrovskaya, Jeff Czaplewski, and Boris Novikov

GRaCe: A Relaxed Approach for Graph Query Caching 657
Francesco De Fino, Barbara Catania, and Giovanna Guerrini

Modelling of the Fake Posting Recognition in On-Line Media
Using Machine Learning . 667

Kristína Machová, Marián Mach, and Gabriela Demková

Two-Step Memory Networks for Deep Semantic Parsing
of Geometry Word Problems . 676

Ishadi Jayasinghe and Surangika Ranathunga

Foundations of Software Engineering – Short Papers

A Case Study on a Hybrid Approach to Assessing the Maturity
of Requirements Engineering Practices in Agile Projects (REMMA) 689

Mirosław Ochodek, Sylwia Kopczyńska, and Jerzy Nawrocki

Does Live Regression Testing Help? . 699
Marek Bruchatý and Karol Rástočný

Contents xv

Foundations of Algorithmic Computational Biology – Short Paper

Dense Subgraphs in Biological Networks . 711
Mohammad Mehdi Hosseinzadeh

Author Index . 721

xvi Contents

Invited Papers

Certified Machine-Learning Models

Ernesto Damiani1,2(B) and Claudio A. Ardagna2

1 Center on Cyber-Physical Systems, Khalifa University, Abu Dhabi, UAE
2 Computer Science Department, Università degli Studi di Milano, Milan, Italy

{ernesto.damiani,claudio.ardagna}@unimi.it

Abstract. The massive adoption of Machine Learning (ML) has deeply changed
the internal structure, the design and the operation of software systems. ML has
shifted the focus from code to data, especially in application areaswhere it is easier
to collect samples that embody correct solutions to individual instances of a prob-
lem, than to design and code a deterministic algorithm solving it for all instances.
There is an increasing awareness of the need to verify key non-functional prop-
erties of ML-based software applications like fairness and privacy. However, the
traditional approach trying to verify these properties by code inspection is point-
less, since ML models’ behavior mostly depends on the data and parameters used
to train them. Classic software certification techniques cannot solve the issue as
well. The Artificial Intelligence (AI) community has been working on the idea
of preventing undesired behavior by controlling a priori the ML models’ train-
ing sets and parameters. In this paper, we take a different, online approach to
ML verification, where novel behavioral monitoring techniques based on statis-
tical testing are used to support a dynamic certification framework enforcing the
desired properties on black-box ML models in operation. Our aim is to deliver
a novel framework suitable for practical certification of distributed ML-powered
applications in heavily regulated domains like transport, energy, healthcare, even
when the certifying authority is not privy to the model training. To achieve this
goal, we rely on three key ideas: (i) use test suites to define desired non-functional
properties of ML models, (ii) Use statistical monitoring of ML models’ behavior
at inference time to check that the desired behavioral properties are achieved, and
(iii) composemonitors’ outcomewithin dynamic, virtual certificates for composite
software applications.

Keywords: Intelligent systems · Machine Learning · Certification

1 Introduction

Some time ago, TESLA’s Artificial Intelligence (AI) Director Andrej Karpathy came
up with an effective metaphor: “Machine Learning models are eating software from
within”. Indeed, Machine Learning (ML) has deeply changed the internal structure and
operation of software systems. It has shifted the balance from code to data, especially
for applications where it is easier to collect samples that embody correct solutions to
instances of a problem than to design and code a deterministic algorithm solving it.
Natural Language Processing (NLP) provides a good example of how support for the

© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-38919-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_1&domain=pdf
http://orcid.org/0000-0002-9557-6496
http://orcid.org/0000-0001-7426-4795
https://doi.org/10.1007/978-3-030-38919-2_1

4 E. Damiani and C. A. Ardagna

properties of an algorithm can move from code to data. Solving backward references
(anaphora), that is, mapping pronouns to the noun they refer to in sentences like “Sally
was in the house when Alice arrived, but nobody saw her” is a key functionality for
automatic translation or text input prediction. The problem has been deeply researched
for the English language [1]. Traditional algorithms used for English rely on distance
tempered by context parsing. For instance, an algorithm could map a pronoun to the
closest noun encountered going backward, but only if it refers to a person name whose
gender matches the pronoun (to avoid classic mistakes that occur using distance only
with sentences like “Sally was in the house when the cat arrived, but nobody saw her”
or “Sally was in the house when Bill arrived, but nobody saw her”). The behavior of
a traditional anaphora resolution algorithm based on context parsing and distance is
hard-wired in the program code and can be analyzed via testing or formal modelling.
Unfortunately, this is no longer the case. In their victorious Jeopardy! challenge in 2011,
IBM managed to handle subtle anaphora that are frequent in Jeopardy! questions by
using anMLmodel trained on the entire set of questions ever used in the game. The high
accuracy of IBMML-based anaphora solver was mostly due to its training set selection
[2]. In terms of our example, an ML model for anaphora is fed via a training set like the
one in Table 1.

Table 1. Feeding for ML model for anaphora.

Sentence Anaphora

Sally was in the house when Alice arrived, but nobody saw her Alice

Sally was in the house when the cat arrived, but nobody saw her Sally

Sally was in the house when Bill arrived, but nobody saw her Bill

The point that we are trying to make is that substituting the traditional algorithmwith
an ML model may improve accuracy but makes it harder to verify the properties of the
anaphora solver. As an example, let us assume we want to verify a functional property:
the solver’s capability to use presupposition to generate exceptions to the closest distance
rule (e.g. mapping the adjective his to Robert rather than John in the sentence “Robert’s
three children are with him; if Robert would argue loudly with John, his children could
get frightened”). Checking whether the presupposition property holds is straightforward
if presupposition support (if any) is hard-wired in the algorithm’s implementation code
and verifiable via testing or formal modelling. However, this is clearly not the case when
presupposition has been (or has not been) learnt from examples. Today, the capability to
support presupposition of ML-based anaphora solvers depends on the solver’s training
dataset rather than on its code.

The paper is structured as follows. Section 2 presents the relevant related work.
Section 3 presents our methodology for certified machine learning models. Section 4
describes a sample scenario on differential privacy. Section 5 gives our conclusions.

Certified Machine-Learning Models 5

2 State of the Art

We now briefly discuss the state of the art in three main areas of interest for our research:
AI Governance, AI Ethics by Design and Software Certification.

2.1 Governance of AI/ML Systems

Nowadays, industry and government agencies worldwide consider ML as the “next big
thing” in applications and are keen on replacing the development and implementation
of algorithms with ML models implemented using standard libraries. Large companies
have quickly seen the interest of industrial-strengthML libraries, and mostML-powered
applications use some stable, trustworthy open-source ML library (developed and man-
aged by a large community) rather than relying on proprietary code. Consequently, many
software developers no longer write code in the traditional way; rather, they build AI
pipelines that include trained ML models. As discussed above, training ML models
instead of implementing algorithms does not remove applications’ behavioral variabil-
ity. Rather, such variability is due to training data and to the circumstances of training.
Randomization in the training process (e.g., neuron drop-off) and training data selection
affect the behavior of ML models much more than their code.

The software engineering research community has started to realize that asMLmod-
els increasingly make key decisions for humans, the need arises for a new governance of
MLmodels, allowing users to understand where and when (if not how) an ML inference
came to be. The research agenda for AI governance is still under discussion [3], but
it is centered around establishing policies regulating the use of AI and specifying the
desired properties of AI systems. System properties come in many flavors [4], the three
main traditional categories being architectural properties (how the system is structured),
functional properties (what the system can do), and non-functional properties (how the
system operates, e.g. in a fair or privacy-preserving way). Frameworks have been pro-
posed to represent AI pipelines’ architectural properties via symbolic representation [5,
6]. Recently, IEEE has launched an initiative aimed to foster standardization in Big Data
management. The IEEE Big Data Governance and Metadata Management (BDGMM)
group aims to control datasets consistency and provenance. Our own recent work on the
TOREADOR platform for Big Data analytics [7] has led to a symbolic representation of
AI pipelines using OWL/S [8] that can be used to reason about them. Recently, we have
put forward the idea of using ML models together with symbolic reasoning to optimize
the very structure of AI pipelines (“AI designing AI”) [9].

Here, wewant to discuss assessing the behavior of anML-powered system by check-
ing the functional and non-functional properties emerging by the ML model’s training
set and by other parameters of its training. A priori reasoning on architectural properties
cannot guarantee that an ML-powered software system will hold some non-functional
properties at run-time, including the key one of being harmless to its users or to third
parties. In principle, we could think of generating a symbolic representation of the ML
model and use it to prove the properties of interest, or to test the properties on the trained
ML model.

Unfortunately, automatic reasoning on formal representations ofMLmodels is still in
its infancy [10], and we argue that no general approach to testingMLmodels’ functional

6 E. Damiani and C. A. Ardagna

and non-functional properties is available, apart from testing robustness with respect to
adversarial perturbations [11].

2.2 AI Ethics by Design

In the AI community, the debate on how AI can be made to behave ethically has initially
focused on principles rather than on practices [12]. According to a recent paper by
Morley, Floridi et al. [13], “the AI community’s ability to take action to mitigate […]
risks is still at its infancy”.We understand that excellent AI research has been done and is
being done on methodologies for hardwiring non-functional properties into ML models
at training time, especially by training set filtering [14, 15] and by bias shaping [16,
17]. From our standpoint, these approaches are the equivalent of trying to educate ML
models toward the desired non-functional properties. Education requires enforcement
authorities to be privy to the training process and to have access to the training sets.
In this paper, we take an entirely different approach, investigating a direct monitoring
mechanism to police black-box ML models to enforce the non-functional properties we
want, even when the enforcing authority is not privy to theMLmodel training. We claim
that enforcement can deliver ethical behavior as defined by the ethics initiative created
in April 2016 by IEEE Standards Association, with the aim of embedding ethics into the
design of processes for all AI and autonomous systems [18]. In our vision, education
and enforcement will play a complementary role in defining and controlling AI behavior
as they do for humans.

2.3 Software Certification

The software certification process “demonstrates the non-functional properties of soft-
ware systems so that they can be checked by an independent authority with minimal
trust in the techniques and tools used in the certification process itself ” [19]. The result
of certification process are software certificates, composed of assertions signed by the
authority and stating the non-functional properties of the software component or service
they refer to (Target-of-Certification or ToC). Certificates also contain (or point to) the
evidence on which each assertion is based, usually in the digital form of a verification
proof or of (static or dynamic) test results. Dynamic verification procedures can gen-
erate (and revoke) digital certificates at run time [20]. The book in [21] has introduced
the notion of automatically selecting existing test cases based on the non-functional
property one wants to validate. The notion of compositional certifications for systems
composed ofmultiple ToCs (including cloud-based distributed application [22]) has been
introduced and successfully tackled the problem of automatically composing certificates
independently awarded to individual ToCs to asserting overall properties of composite
systems. This approach identifies virtual active test cases to support system-wide “vir-
tual certificates” based on certified properties of individual components [23]. It has been
shown to scale nicely to the security certification of large software systems, including
entire cloud stacks. Virtual certification can also be based on formal-proof evidence [24,
25]. There are several practical proof-based certification techniques [26–29] that provide
a higher level of trust (corresponding to the highest level in the Common Criteria stan-
dard [30]) than the test-based ones. Using proof-based evidence for dynamic, composite

Certified Machine-Learning Models 7

application is currently a challenging and open research problem. As we have seen,
we cannot directly apply existing software certification techniques to the new genera-
tion of ML-powered applications. Adopting ML models as building blocks of certified
software applications challenges a key assumption of classic verification and testing
“applications’ business logic, or at least its design, will be stable at verification time”
[21].

3 Methodology

In our quest for a way to enforce the desired non-functional properties ofMLmodels, we
do not start from scratch. Neuroscience has been using for decades statistical analysis
of behavior to characterize the human decision-making process [5]. In the software
engineering domain, techniques for statistics-based active testing of services can tell
the tester (in a code-independent way) if variations in an application affect the users’
experience or some other metrics [31].

Multi-Armed Bandit (MAB) problems [32] consist of K unknown probability distri-
butions, D1, …, Dk, with expected values μ1,…, μK. These distributions are classically
binary, modelling wins or losses (1 or 0) from various arms of slot machines (hence
the name); in the active testing scenario the outcomes represent “success measures” of
runs of different implementations of an algorithm, where the difference is some fea-
ture or variation in the application code. In our context, scores can be any (bounded)
user-defined function.

A statistics test showing that μi �= μj (or Di �= Dj) can tell us if and how a difference
in implementation makes (or does not make) a difference in success scores.

In a MAB test, the tester “pulls arms”, that is, considers multiple variations to the
module and tries to maximize a score function (Fig. 1). The foundation of MAB is
Bayesian updating. Usually, each module is modelled as a Bernoulli process.

Fig. 1. The MAB experiment setting

The probability of success is unknown and ismodelled by a Beta probability distribu-
tion. Each module receives input flows and the Beta distribution is updated accordingly.
Modules are selected via Thompson sampling, a greedy method that always chooses the
arm that maximizes expected reward.

8 E. Damiani and C. A. Ardagna

In each iteration of the MAB experiment, Thompson sampling draws a sample score
from each arm’s Beta distribution and assign the next input to the arm with the highest
score. In MAB, Thompson sampling and Bayesian update work together. If one of the
modules is performing well, its Beta distribution parameters are updated to remember
this, and Thompson sampling is more likely to draw a high score from it. In other words,
the MAB setting permits testers to preferentially feed test cases to the best performing
instances of a system: throughout the test, high-performing arms are rewarded withmore
inputs, whereas under-performing arms are punished with fewer inputs.

3.1 Using MAB to Test Behavior of ML Models: A Meta-Learning Process

Our key idea is using statistical active testing to explore ML model space at run-time,
finding the variation that will keep a score function of interest in an acceptable area.
Statistics has always played an important role in ML models’ comparative assessment
[33]. When comparing two binary ML models differing in their training sets, a simple
Student t-test can be used to verify whether the difference in the training set translates in
a statistically significant difference in the outputs [34].More complex tests are often used
to compare multi-category classifiers. ANOVA tests can point out significant differences
among data grouped by classifiers, but do not report exactly where those differences lie.
For instance, the Tukeys Honest Significant Difference (HSD) post-hoc test and its
non-parametric equivalent, the Friedman-Nemenyi test, are often used to complement
ANOVA for achieving a more detailed comparison between classifiers.

We rely on MAB to compare the behavior of an ML system to one or more desired
properties. We argue that MAB is more suitable than statistical tests for supporting
dynamic verification of non-functional properties of ML models. This is because, in
principle, MAB can handle scenarios where the meta-learning process has competing
objectives to the ones of the learning, as it often happenswhen an application’s regulatory
goals conflict with its commercial ones.We argue that ourMAB-based line of attack will
preserve classic duality between proof- and test-based certification, as the behavior of
MLmodels can be enforced via dynamic testing or via formal verification.When applied
to the verification of MLmodels, MAB techniques try out variations of the models. This
way, the tester can tuneMLmodels’ parameters (including their training sets) to follow a
gradient in theMLmodel’s score function, giving rise to a sort of meta-learning process.
Meta-learning, or learning to learn, is the science of observing how different MLmodels
perform on a range of input values, and then use these observations to tune the models
so they get more accurate or learn new tasks faster than before [35].

In practice, we cannot assume to have access to training sets or parameters. So,
we rely on MAB monitors to continuously compute the scores of a pool of pre-trained
ML models and output the inference of the pool member having the best score. The
connection with meta-learning lies in the idea that the choice strategy can itself be
learnt. The model pool plays the role of a grid in the model space. If no score from
the pool is satisfactory, it can be (lazily) updated by requesting new variations from
the model supplier. We envision that model pools, that is, sets of pre-trained ML model
variations, can be supplied by ML model developers, who generate them via novel
options of industrial ML model compilers or other software development environments.
For designing and implementing execution time support, we can take advantage from

Certified Machine-Learning Models 9

approaches to the efficient simultaneous operation of multiple representations of models
from FPGA to software platforms [36, 37]. Monitors work by applying a strategy for
selecting within the available model pool the model likely to provide the best score.
Monitored ML models whose score is unsatisfactory do not contribute to the inference;
if all models in the pool are unsatisfactory for a while, a pool extension by adding new
variations is triggered. Ideally, the selection strategy “keeps up” the score, minimizing
the inevitable score loss from playing non-optimally in the ML model training, which
is after all aimed to achieve accuracy. It is important to remark that we will be able to
evaluate the quality of our solutions against theoretical bounds, as lower bound to this
loss have been established already in the Eighties [38].

3.2 Open Issues

Our methodology faces four main issue briefly summarized below.

Develop Representation of Non-functional Properties using Score Functions. A
key issue is how to express non-functional properties of interest in terms of a score
function on the ML model’s output. Let us consider an ML model estimating, say, the
amount of bail to be posted by a crime suspect based on the suspect’s ethnicity, gender,
and age group [37]. As a high bail should be an incentive not to violate the correspond-
ing restriction, the goal of the model is the resulting violations to bail restrictions. This
suggests a game-theoretical definition for the effective behavior of the ML model as the
one that minimizes such violations. However, this definition would probably make a bad
score function, because it has high latency with respect to model output and requires
costly large-scale monitoring [39]. Heuristics can be used to express the model’s “fair-
ness” quantitatively, for instance, as the ratio between output values corresponding to
different inputs. Heuristics also guarantees low latency in the score computation. For
example, we could argue that the ML model is fair if total amount of bails BS requested
to any ethnicity, gender, or age group S (say, “people under 30”) does not exceed xS,T

times the amount requested to a benchmark group T (say, “Asian people over 50”). What
is the right value of xS,T ? Intuition suggests linking xS,T to the group cardinalities, xS,T

= |S|/|T|, which corresponds to imposing no calibration bias. At every estimate, one can
compute the fairness score of each model in the grid. A lower bounded sub-optimality
in meeting bail conditions can be tolerated to achieve an ethically acceptable proportion
in the bail amounts requested to the different ethnic groups. This way, the model space
can be explored byMAB testing to control the distance from the desired “fair” behavior.

In our approach, we define properties by example. Publicly available, shared exam-
ples of desired inferences could provide an operational consensus-based definition of
properties easy to understand and acceptable for the community (“I cannot say what
fairness is, but I know it when I see it”).

A set of sample inferences can be used to define a score function, for instance as the
distance (square error) between these inferences and the one performed by a ML model
on the same inputs. Figure 2 hints to a more sophisticated definition of a property as the
acceptable confusion matrix on the set of sample inferences.

10 E. Damiani and C. A. Ardagna

Fig. 2. Definition of a property via confusion matrix on a set of sample cases

Develop, Test and Validate Property-Dependent Choice Strategies for the MAB.
The non-triviality of theMAB problem in our case lies in the fact that the agent operating
the choice in the ML model pool cannot access the underlying probability distributions.
Its strategy needs to be driven by trial-and-error only. So, the problem becomes, how can
we design a MAB choice strategy that can adapt to the score functions expressing the
properties of interest? Our first answer to this question is to include in the score function
definition an exploratory budget ε that can be used to correct the “greediness” of the
MAB basic greedy strategy, thus obtaining a “ε-greedy” strategy. We remark that how to
spend this budget during the monitor operation (i.e., when to make a non-greedy choice,
selecting a model in the pool that does not provide the best score) can itself be learnt, by
supervised learning or by classical reinforcement learning should reward/penalties for
holding/not holding the property be available.

Efficient Design and Implementation of the MAB Strategy. Executing the choice
strategy at each inference can be time and resource consuming. Today’s practice of
using Monte Carlo simulation can be adopted to check termination of MAB experi-
ments. The Monte Carlo procedure randomly draws samples from each of the K arms
multiple times and computes how often each of the arms wins (highest score). If the
winning arm is beating the second arm by a large enough margin, the procedure declares
a winner and stops. More advanced criteria can be investigated, developing on the notion
of residual value. Google Analytics made a first step in this direction by introducing the
concept of “value remaining in experiment” [40]. In each Monte Carlo simulation, the
remaining value is computed. The experiment terminates when 95% of the samples in
a Monte Carlo simulation have a remaining value of less than 1% of the winning arm’s
value.

Build Trusted MAB Monitor. AMAB monitor (Fig. 3) and its ML model pool need
to be digitally signed and certifiably tamper-proof (e.g., using tamper-proof probes for
system assurance [41]). Any trusted implementation must rely on a chain of trust, where
the root-of-trust is in a tamper-resistant hardware co-processor. The trusted hardware
checks a part of the for integrity a part of the monitor that in turn checks other parts.
Our system detects illegal modifications to monitors, loadable ML models and user
applications.

Certified Machine-Learning Models 11

Fig. 3. A MAB monitor handling a ML model pool.

3.3 Ecosystem

Figure 4 provides a high-level view of the actors and of the complete eco-system. The
definition of non-functional properties of interest (directly via suitable score functions
or, as discussed above, via sets of desired inferences) can be carried out as an interactive
process involving the entire community and the regulatory agencies interested in con-
trolling ML models behavior in any given domain. Public property definitions, signed
by the authority who released them, are made available to any platform (implemented
as software, firmware or even hardware) capable of hosting MAB monitors. Suppliers
of ML models use development environments capable of generating model pools and
deploy them in environments suitable for monitoring. User organizations that run their
ML models (e.g. for making healthcare, transport, telecommunication or FinTech deci-
sions) exhibit to their own customers and all stakeholders the digital certificates asserting
the properties of the output flow.

Fig. 4. Actors and eco-system

12 E. Damiani and C. A. Ardagna

4 Certifying Differential Privacy

Some crucial and widely studied non-functional properties like differential privacy
preservation [42], which are usually enforced a priori by randomizing input distribu-
tions Din on the training set, could be obtained via randomization of the ML model
output. In the a priori (non-interactive) case, given a privacy budget E and an ([I],O)
entry of the ML model’s training set ([I] being a randomized version of the determinis-
tic input I), it is possible to compute the Laplacian probability distribution of [I] centered
around I, that will deliver a probability (1-E) for an attacker of correctly guessing the
output O’ corresponding to I based on O. If E = 0, no randomization is present, and
O can be obtained with certainty by feeding the model with I and reading the output;
if E = 1, the output value O’ is entirely random. The budget notion can be useful for
establishing at run-time (interactively) the value of xS,T in the bail example introduced
above; if the budget for xS,T is large, any output distribution (all the ML models in the
pool) will satisfy the constraint. If we enforce the “fair” value xS,T = |S|/|T|, fewer models
in the pool will provide a high score. The budget is used to instantiate the choice strategy
of the MAB monitor as discussed in the sample scenario below.

Background. Alice has decided to have her genome sequenced by an online service to
explore her family tree. The ancestry service is free but requires Alice’s consensus to
contribute her genomic data and some of her phenotypic traits to support the research
being done at a medical school, which will perform the DNA extraction. Research at the
medical school is funded by a software company who runs a software pipeline where
user genomics data are first stripped of personal data and then used to train anMLmodel
on the company’s premises.

The trained model is deployed as a cloud-based service for hospitals to use. After
some time, Alice discovers that the local hospital where she is treated has started to use
the ML model developed by the medical school for predicting phenotypic traits. She is
worried that the hospital staff – knowing her healthcare information and her traits - might
identify her as a contributor to the model’s training set. The country where the software
resides mandates privacy certification, so a certification authority is called in to monitor
the software system in production and award it with a dynamic privacy certificate that
will reassure users likeAlice. Let us see how this certificate can be generated via dynamic
monitoring. For the sake of simplicity, let us assume that phenotypic traits are predicted
based on markers within genotypes.

Marker1 − . . . − Markern → V alue − of − T rait

In general, training theMLmodelmeans to feed it with [Marker1−. . .− Markern],
compute the candidate outputValue-of-Trait, and then, based on the error,modify the pre-
dictor’s parameters (for example themodel’sweights). DeepLearningmodels likeCNNs
are widely used for this type of predictor as they can learn hidden variables that represent
features emerging from joint occurrences of genotypicmarkers, and employ convolution,
sampling and dropout strategies to reduce the complexity of high-dimensional marker
data. For the sake of simplicity, let us consider a simple Voronoi model (also called
Nearest-Neighbor), where the Voronoi grid coincides with the training set. When the

Certified Machine-Learning Models 13

model is fed with a vector of markers, the model provides the Value-of-Trait of the
closest element on the grid, according to a suitable distance function.

The Four Steps. The software house’s development environment deploys a model pool
of n reduced Voronoi models, each missing some points in the Voronoi grid (Step 1). At
each step, the MAB monitor chooses the model whose Voronoi grid excludes enough
points to ensure that each point’s contribution to the sequence of inferences made until
that moment lies within budget E. In the simplest case, say E= 0.2, theMABmonitor will
ensure that the model omitting Alice’s point will be used at least 20% of the times. Any
observer looking at the inference flow will not be able to assert with certainty Alice’s
data presence in the training dataset.

The MAB monitor publishes a signed digital certificate with the value of E (Step 2).
Composing this certificate with the certificates of other pipeline stages (e.g., about

the stripping of personal data) the hospital generates a virtual privacy certificate for
the entire system (Step 3). The certificate is dynamic: if the monitor cannot deliver the
budget E (for instance due to insufficient pool size), it will immediately invalidate it.
The certificate is also virtual, being a machine-readable artefact valid while the software
pipeline instance is in operation.

The certificate is periodically re-generated and signed to be checked by users like
Alice (Step 4).

5 Conclusions

We put forward the notion of a novel certification framework for ML models based on
three ideas: (i) define the desired behavioral properties of ML models as score functions
on the models’ output; (ii) use statistical monitoring of ML models’ behavior at infer-
ence time to efficiently compute scores and check that the desired behavioral properties
are achieved; (iii) compose monitors’ outcome within dynamic virtual certificates for
composite AI software applications.

Acknowledgements. Research supported, in parts, by EC H2020 Project CONCORDIA GA
830927 and Università degli Studi di Milano under the program “Piano sostegno alla ricerca
2018”.

References

1. Mitkov, R.: Anaphora resolution: the state of the art. School of Languages and European
Studies, University of Wolverhampton, pp. 1–34 (1999)

2. Lewis, B.: In the game: the interface betweenWatson and Jeopardy! IBM J. Res. Dev. 56(34),
171–176 (2012)

3. Dafoe, A.: AI Governance: A Research Agenda. Governance of AI Program, Future of
Humanity Institute, University of Oxford, Oxford, UK (2018)

4. Guizzardi, R., Li, F.-L., Borgida, A., Mylopoulos, J.: An ontological interpretation of non-
functional requirements. In: Frontiers in Artificial Intelligence and Applications, Proceedings
of the 8th InternationalConference onFormalOntology in InformationSystems (FOIS) (2014)

14 E. Damiani and C. A. Ardagna

5. Kesner, R.P., Gilbert, P.E., Wallenstein, G.V.: Testing neural network models of memory with
behavioral experiments. Curr. Opin. Neurobiol. 10(2), 260–265 (2000)

6. Schelter, S., Böse, J.-H., Kirschnick, J., Klein, T., Seufert, S.: Automatically tracking meta-
data and provenance of machine learning experiments. In: Proceedings of Workshop on ML
Systems at NIPS 2017, Long Beach, CA, USA (2017)

7. Ardagna,C.A., Bellandi,V., Bezzi,M., Ceravolo, P., Damiani, E.,Hebert, C.:Model-based big
data analytics-as-a-service. Take Big Data to the Next Level. IEEE Transactions on Services
Computing (Early Access) (2018)

8. Redavid, D., et al.: Semantic support for model based big data analytics-as-a-service
(MBDAaaS). In: Proceedings of 12th International Conference on Complex, Intelligent, and
Software Intensive Systems (CISIS-2018), pp. 1012–1021, Matsue, Japan (2018)

9. Di Martino, B., Esposito, A., Damiani, E.: Towards AI-powered multiple cloud management.
IEEE Internet Comput. 23(1), 64–71 (2019)

10. Khosravi, P., Liang, Y., Choi, Y., Van den Broeck, G.: What to expect of classifiers? reasoning
about logistic regression with missing features. In: Proceedings of the ICML Workshop on
Tractable Probabilistic Modeling (TPM), pp. 2716–2724, Macao, China (2019)

11. Biggio, B., Roli, F.: Wild patterns: Ten years after the rise of adversarial machine learning.
Pattern Recogn. 84, 317–331 (2018)

12. Bryson, J., Winfield, A.: Standardizing ethical design for artificial intelligence and
autonomous systems. Computer 50(5), 116–119 (2017)

13. Morley, J., Floridi, L., Kinsey, L., Elhalal, A.: From What to How: An Overview of AI
Ethics Tools, Methods and Research to Translate Principles into Practices (2019). arXiv:
1905.06876v1

14. McNamara, D., Soon Ong, C., Williamson, R.C.: Costs and benefits of fair representation
learning. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society,
pp. 263–270, ACM, Honolulu, HI, USA (2019)

15. Adel, T., Valera, I., Ghahramani, Z., Weller, A.: One-network adversarial fairness. In:
Proceedings of 33rd AAAI Conference on Artificial Intelligence, Honolulu, HI, USA (2019)

16. Raff, E., Sylvester, J.,Mills, S.: Fair forests: regularized tree induction tominimizemodel bias.
In: Proceedings of the 2018 AAAI/ACMConference on AI, Ethics, and Society, pp. 243–250,
ACM, New Orleans, LA (2018)

17. Madras, D., Creager, E., Pitassi, T., Zemel, R.: Fairness through causal awareness: learning
causal latent-variable models for biased data. In: Proceedings of the ACM Conference on
Fairness, Accountability, and Transparency, pp. 349–358, ACM, Atlanta, GA (2019)

18. Rafael, Y., et al.: Four ethical priorities for neurotechnologies and AI. Nat. News 551(7679),
159 (2017)

19. Morris, J., Lee, G., Parker, K., Bundell, G.A., Lam, C.P.: Software component certification.
Computer 34(9), 30–36 (2001)

20. Damiani, E., Manã, A.: Toward ws-certificate. In: Proceedings of the 2009 ACM Workshop
on Secure Web Services, pp. 1–2, ACM, Chicago, IS, USA (2009)

21. Damiani, E., Ardagna, C.A., El Ioini, N.: Open Source Systems Security Certification.
Springer, Berlin (2009). https://doi.org/10.1007/978-0-387-77324-7

22. Spanoudakis, G., Damiani, E., Maña, A.: Certifying services in cloud: the case for a hybrid,
incremental and multi-layer approach. In: Proceedings of IEEE 14th International Sympo-
sium on High-Assurance Systems Engineering (HASE 2012), pp. 175–176, IEEE, Singapore
(2012)

23. Anisetti, M., Ardagna, C.A., Damiani, E., Polegri, G.: Test-based security certification of
composite services. ACM Trans. Web (TWEB) 13(1), 3 (2019)

24. Méry, D., Kumar Singh, N.: Trustable formal specification for software certification. In:
Proceedings of Symposium on Leveraging Applications of Formal Methods, Verification and
Validation, 2010. Lecture Notes in Computer Science, vol. 6416, pp. 312–326 (2010)

http://arxiv.org/abs/1905.06876v1
https://doi.org/10.1007/978-0-387-77324-7

Certified Machine-Learning Models 15

25. Denney, E., Pai, G.: Evidence arguments for using formalmethods in software certification. In:
Proceedings of IEEE Symposium on Software Reliability Engineering (ISSRE), pp. 375–380,
IEEE, Pasadena, CA, USA (2013)

26. Armando, A., et al.: The AVISPA tool for the automated validation of internet security proto-
cols and applications. In: Proceedings of CAV 2005: Computer Aided Verification. Lecture
Notes in Computer Science, vol. 3576, pp. 281–285 (2005)

27. Clarkson,M.R., Schneider, F.B.:Hyperproperties. J. Comput. Secur. 18(6), 1157–1210 (2010)
28. Datta, A., Franklin, J., Garg, D., Jia, L., Kaynar, D.: On adversary models and compositional

security. IEEE Secur. Priv. 9(3), 26–32 (2011)
29. Fuchs, A., Gürgens, S.: Preserving confidentiality in component compositions. In: Proceed-

ings of International Conference on Software Composition. Lecture Notes in Computer
Science, vol. 8088, pp. 33–48 (2013)

30. Mellado, D., Fernández-Medina, E., Piattini, M.: A common criteria based security require-
ments engineering process for the development of secure information systems. Comput. Stan.
Interfaces 29(2), 244–253 (2007)

31. Scott, S.L.: Multi-armed bandit experiments in the online service economy. Appl. Stochast.
Models Bus. Ind. 31, 37–49 (2015)

32. Leite, R., Pavel, B., Vanschoren, J,: Selecting classification algorithms with active testing. In:
Proceedings of MLDM 2012: Machine Learning and Data Mining in Pattern Recognition.
Lecture Notes in Computer Science, vol. 7376, pp. 117–131 (2012)

33. Antos, A., Grover, V., Szepesvári, C.: Active learning in multi-armed bandits. In: Freund, Y.,
Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 287–302.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87987-9_25

34. Menke, J., Martinez, T.R.: Using permutations instead of student’s t distribution for p-values
in paired-difference algorithm comparisons. In: Proceedings of 2004 IEEE International Joint
Conference on Neural Networks, vol. 2, pp. 1331–1335, IEEE, Budapest, Hungary (2004)

35. Vanschoren, J.: Meta-learning: A survey (2018). arXiv:1810.03548
36. Damiani, E., Tettamanzi, A., Liberali, V.: On-line evolution of FPGA-based circuits: a case

study on hash functions. In: Proceedings of the First NASA/DoD Workshop on Evolvable
Hardware, pp. 26–33, IEEE, Pasadena, CA, USA (1999)

37. Brennet, T., Dieterich, W., Ehret, B.: Evaluating the predictive validity of the COMPAS risk
and needs assessment system. Crim. Justice Behav. 36(1), 21–40 (2008)

38. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math.
6(1), 4–22 (1985)

39. Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic decision making
and the cost of fairness. In: Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 797–806, ACM, Halifax, NS, Canada (2017)

40. Scott, S.L.: Applied stochastic models in business and industry. Appl. Stoch. Models Bus.
Ind. 26, 639–658 (2010)

41. Anisetti, M., Ardagna, C.A., Gaudenzi, F., Damiani, E., Diomede, N., Tufarolo, P.: Moon
cloud: a cloud platform for ICT security governance. In: Proceedings of IEEE Global
Communications Conference (GLOBECOM 2018), pp. 1–7, IEEE, Abu Dhabi, UAE (2018)

42. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private
data analysis. TCC 2006: Theory of Cryptography. Lecture Notes in Computer Science, vol.
3876, pp. 265–284 (2006)

https://doi.org/10.1007/978-3-540-87987-9_25
http://arxiv.org/abs/1810.03548

The Lost Recipes from the Four Schools
of Amathus

Invited Talk Extended Abstract

Gunnar W. Klau(B)

Department of Computer Science, Algorithmic Bioinformatics group, Heinrich Heine
University Düsseldorf, Düsseldorf, Germany

gunnar.klau@hhu.de

Abstract. This paper tells the story of the Four Schools of Amathus and
the lost recipes for a legendary dish that attracted many people to the
ancient royal city. Deciphering the recipes from snippets of the ancient
scrolls that have been found recently seems to be an impossible task.
Fortunately, the problem bears a strong resemblance to the haplotype
phasing problem, which has been studied in more recent times. We point
out the similarities between these problems, how they can be formulated
as optimization problems and survey different solution strategies.

Keywords: Amathus · Haplotype phasing · Polyploid species

1 The Four Schools of Amathus

Amathus was an ancient royal city on the beautiful island of Cyprus. Its remains
are located on the southern coast of the island, close to the present city of
Limassol. Amathus is known as one of main centres of worship of Aphrodite, the
goddess of love and beauty in Greek mythology. Also, according to one of the
many versions of the Ariadne myth, it is the place where pregnant Ariadne was
abandoned by Theseus and then died during childbirth. What many people do
not know, however, is that the city was also famous for a delicious dish, called
Amathubrosia. The story of this dish is related to the Four Schools of Amathus
and the subject of many legends.

Here is what happened, according to the legends: Each year in midsummer,
during Aphrodisia, the main festival to worship the goddess Aphrodite, the four
famous chefs Athena, Barnabas, Charalambos, and Daphne met in the Temple
of Aphrodite to create Amathubrosia in honor of the goddess. This attracted
people from all over the Mediterranean Sea who came to Amathus to taste their
creation. Although the four chefs had slightly different ideas on how to prepare
Amathubrosia, they always found a compromise and agreed on a common recipe
according to which they prepared the dish.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– 395192176.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 16–23, 2020.
https://doi.org/10.1007/978-3-030-38919-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_2&domain=pdf
http://orcid.org/0000-0002-6340-0090
https://doi.org/10.1007/978-3-030-38919-2_2

The Lost Recipes from the Four Schools of Amathus 17

One year, however, the four chefs did not agree anymore and had a terrible
argument. What used to be cooperation became competition, and everybody
kept their recipe as a secret. Each chef founded a school, which, together, became
to be known as the Four Schools of Amathus. See Fig. 1 for an illustration. The
four chefs wrote down their recipes for Amathubrosia on scrolls, which were kept
in sacred rooms in the corresponding schools. The four schools even added to
the fame of Amathus, and more and more people came to visit the Aphrodisia
festival each year to find out which of the four Amathubrosia variants they
liked best. Preparing these dishes became a quite profitable business, and, as a
consequence, many more chefs were needed.

Fig. 1. The founders of the Four Schools of Amathus. From left to right: Athena,
Barnabas, Charalambos and Daphne.

To accommodate the increased demand, the schools took on apprentice chefs,
who were taught the basics of preparing food by the four famous heads of the
schools. Whenever an apprentice chef passed the final cooking exam, they were
allowed to enter the secret room of their school where the original recipe of
Athena, Barnabas, Charalambos or Daphne was kept. The apprentices were
allowed to make a copy for themselves, which they had to keep as a secret
as long as they lived. Because they did not have much time to copy the recipe
and because the rooms were rather dark, they all made a number of errors when
copying the recipes.

Whenever a chef died, it was tradition that his or her copy of the school’s
recipe was ripped to many small pieces and buried along the chef in a cave in a
sacred grove close to Amathus, which was the traditional burying ground of all
chefs of the four schools.

Unfortunately, when Amathus was destroyed, the Four Schools of Amathus
were destroyed as well and the tradition of preparing the tasty dish was lost.
People still try to prepare Amathubrosia these days, but the result lacks the
small changes added by the famous four chefs and just tastes boring. Luckily,

18 G. W. Klau

the cave was rediscovered recently and archaeologists got hold of the bones of
the ancient chefs and the snippets of their recipes.

As the snippets are all mixed together and the many copies of recipes from
the different schools all bear individual errors made by the chefs who copied the
recipe it seems an impossible task to reconstruct the original recipes from the
Four Schools of Amathus. How this can be done and how this task is related to
a more modern problem is the topic of the remainder of this paper.

2 Deciphering the Scrolls

Now that the knowledge on how to prepare the delicious dish has reappeared,
it seems an obvious idea to decipher the four ancient recipes in order to prepare
the original dishes. This is, however, not so easy as it may seem. What we have
at hand is a large number of snippets, which, as explained above, are a mixture
of small fragments of recipes from different cooks of the four different schools.
One strategy to get to the original four recipes would be to compare the snippets
to the only reference we have today, which is the recipe for the boring nowadays
version of Amathubrosia, which can be found in the library of Limassol. We can
map all fragments to this recipe and can thus discover locations of the recipe
where the four variants differ. This information can be characterized by an n×m
fragment matrix F , where n is the number of positions in the reference recipe
where differences occur and m is the number of snippets. Each entry Fi,j in
the matrix tells us how snippet i looks at position j of the reference recipe. We
either have Fi,j = ‘−’ if the snippet does not carry any information at all for
this position or Fi,j ∈ {0, 1, 2, 3}, where the differences are numbered arbitrarily
but consistently for each position.

In principle, we now seek a four-partition of the snippets, where each partition
gives us the original recipe of the corresponding school. The problem, however,
is that the snippets not only contain the differences of the recipes of the Four
Schools, but also the individual errors each apprentice made when copying from
the master scrolls.

Should we ever want to prepare an Amathubrosia dish as delicious as the
ones created by Athena, Barnabas, Charalambos, or Daphne, we have to find a
way to distinguish between the important differences of the four variants of the
dish and the individual errors.

3 Computational Genomics and Read-Based Haplotype
Phasing

Fortunately, computational genomics, a seemingly distant area of research, may
help us with the recovery of the four ancient recipes. The young field of genomics
already has a major impact on individuals and society and will do so much more
in the near future. Recent advances in sequencing technology are transforming
medical and fundamental research: Large genotype-phenotype studies are now

The Lost Recipes from the Four Schools of Amathus 19

being carried out routinely and yield new insights about the genetic basis of
disease and drug response. These advances in medical genomics enable precision-
medicine approaches for the treatment of patients, which are becoming more
and more widespread and successful. Other fields, such as population genomics,
benefit from the possibility to study millions of genetic loci in large populations.

In most species, the genome of individual cells is organized in a number of
chromosomes. Each chromosome exists in k copies, which are usually inherited
from mother and father. The parameter k is called the ploidy of the genome.
Many species, for example humans, are diploid, that is k = 2. However, organisms
of higher ploidy exist such as many plant species including important food crops
like potato, wheat or maize.

One way to study individual genomes is on the level of genotypes. Geno-
typing refers to determining the alleles inherited from the parents present at a
particular genetic locus and can be achieved using various technologies including
microarrays and short-read sequencing. Using genotype-level genomics it remains
unknown, however, on which of the k chromosome copies such a variant resides,
which makes the information passed on to down-stream analyses incomplete.
The full sequences of the chromosomal copies are known as haplotypes. In con-
trast to genotyping, haplotyping aims to reconstruct the full sequences of all k
haplotypes. Moving from genotypes to haplotypes is known as phasing.

Most work for read-based haplotype phasing has been presented for the
diploid case (k = 2), where the most popular model is the Minimum Error
Correction (MEC) model [4]. The survey [3] is a guided tour of computational
haplotyping and focuses on the characteristics of problem instances resulting
from different present day technologies and a survey of relevant techniques. The
following presentation is an extension of the notation used in [3] and [8].

As the key challenge in molecular haplotyping is to distinguish true genetic
variability from sequencing errors, the MEC model asks for a minimum cost
correction of the sequencing data to allow a conflict-free partition of the reads
to k chromosomal copies.

The input for MEC is a fragment matrix F ∈ {0, 1, . . . , t−1, ‘−’}m×n, where
the rows 1 ≤ i ≤ m correspond to the fragments and the columns 1 ≤ j ≤ n
correspond to the variant positions and t is the maximum number of alleles
considered. A non-gap entry F (i, j) �= ‘−’ specifies that read i covers variant
j and gives evidence for one of the t possible alleles at this position. Typical
genomic analyses consider only a major and a minor allele at each position, that
is t = 2. In any case, t is bounded by the ploidy k.

Two rows i1 and i2 of F are in conflict if there is a position j such that
F (i1, j) �= ‘−’ and F (i2, j) �= ‘−’ but F (i1, j) �= F (i2, j). A set of rows is
conflict-free if it does not contain conflicting row pairs.

A fragment matrix F is k-feasible if a partition (I0, . . . , Ik−1) of its rows exists
such that all parts I0, . . . , Ik−1 are conflict-free. Such a partition determines the
k haplotypes hl with l ∈ {0, . . . , k − 1} in the following, natural way:

hl(j) = F (i, j) for some i ∈ Il.

20 G. W. Klau

In practice, the entries in a fragment matrix are associated with ‘phred-
scaled’ base qualities Q ∈ N

m×n that correspond to the estimated probabilities
of 10−Q(i,j)/10 that entry F (i, j) has been wrongly sequenced. These phred scores
serve as costs of flipping entries and allow less confident base calls to be corrected
at lower cost compared to high confidence ones. The error distance of two frag-
ment matrices F and F ′ is

dQ(F, F ′) =
m∑

i=1

n∑

j=1

{
0 F (i, j) = F ′(i, j)
Q(i, j) F (i, j) �= F ′(i, j).

We can now state the weighted Minimum Error Correction problem in the k-
ploid case formally as follows: Given ploidy k, a fragment matrix F and a quality
matrix Q, find a k-feasible fragment matrix F ′ with minimum error distance
dQ(F, F ′).

As most existing approaches focus on the important diploid special case, we
first summarize the contributions we made for k = 2 before we move on the more
challenging task to phase polyploid genomes.

Diploid Phasing

Diploid phasing in the MEC model is NP-hard [4] and even hard to approximate
within a constant factor [8]. The problem remains hard even in the gapless case,
that is, if all non-gap entries in the fragment matrix appear in consecutive order
[2]. In the binary case, that is, if no gaps exist at all, it is an open problem
whether the problem is hard.

For phasing diploid genomes, we presented WhatsHap [7], which is a dynamic
programming algorithm that solves the weighted MEC model for k = 2 to prov-
able optimality. The algorithm is linear in the number of variants and thus in
the size of the genome, but exponential in the maximum coverage of a posi-
tion. By enumerating read bipartitions in Gray code order, WhatsHap achieves
a runtime of O(2cn), where c is the maximum coverage across all columns. In
particular, the running time of the DP does not depend on the read length,
which is beneficial for long-read sequencing data.

Later, Pirola et al. [8] considered a restricted variant of MEC, in which up to
k corrections are allowed per position, and presented an FPT algorithm that
runs in time O(ckLn), where L is the maximal number of variants covered by
any read.

These DP-based algorithms work well for maximum coverage values up to
25. Instances with higher coverage cannot be solved to optimality in reasonable
computing time with these methods. However, a clever read sampling strategy
as described in [5] leads to excellent results in practice.

Polyploid Phasing

Phasing diploid genomes has become a fast routine step where solutions based
on the MEC model as described above provide excellent solutions, whose quality

The Lost Recipes from the Four Schools of Amathus 21

depends more on the quality of the read data than on the underlying algorithmic
approach.

Polyploid phasing, however, presents a bigger challenge. As for diploid phas-
ing most work has been based on the MEC model, in which the higher ploidy
of course increases the size of the solution space and makes the solution compu-
tationally even more challenging. Clearly, as the diploid MEC is a special case,
most theoretical results also hold for the polyploid case, see also [1]. Interestingly,
the binary MEC, in which no gaps appear in the input, is NP-hard for k ≥ 3 [2],
but the question whether the problem is approximable within a constant factor
is still open. Regarding practical algorithms, the problem is still considered to be
largely unsolved. The authors of a recent survey concluded diplomatically that
there is “clearly room for improvement in polyploid haplotyping algorithms” [6].

In our current work [9], we identify the MEC model as one of the reasons
why current polyploid phasing algorithms do not work well in practice. Poly-
ploid genomes usually exhibit large regions of two or more identical haplotypes.
For the MEC model there is no benefit in assigning conflict-free reads to the
same haplotype. Instead, the model favors collapsing regions of locally identical
haplotypes into one partition and uses the free partitions for noisy reads in order
to reduce the MEC score. Consequently, MEC-based approaches for polyploid
phasing struggle in such regions.

We therefore propose a new model that differs from the limited MEC
paradigm. The key assumption is that each haplotype should be covered by
a uniformly divided share of reads. We take the coverage into account within a
newly established threading step, in which the haplotypes are threaded through
clusters of reads that are likely to belong to the same haplotype or to iden-
tical haplotypes. This enables us to detect and properly phase regions where
multiple haplotypes coincide. We also introduce cuts within the haplotypes at
positions with increased phasing uncertainty and thereby output phased blocks
that ensure high accuracy within the fragments. We provide a sensible way to
compute these block boundaries at varying, user-defined degrees of strictness.
This way, we enable a configurable trade-off between longer blocks that poten-
tially contain errors and shorter but highly accurate blocks. We show that our
method returns results that are more accurate than those computed by the
state-of-the-art tools, especially in regions of identical haplotypes. The approach
scales to gigabase-sized genomes: we can, for example, phase an artificial human
tetraploid chromosome 1 in less than 3.5 h on a single core of a standard desktop.
See Fig. 2 for an illustration.

The exact model the algorithm is addressing is difficult to describe. What
comes close is the following formulation: Given ploidy k, a fragment matrix F
and a quality matrix Q, find a k-feasible fragment matrix F ′ with minimum
score

α dQ(F, F ′) + (1 − α)
n∑

j=1

k∑

l=1

w(cjl, cj , k),

where dQ(F, F ′) is the MEC error distance from above and w(cjl, cj , k) is a
term that penalizes haplotype l at position j depending on its coverage cjl in

22 G. W. Klau

Fig. 2. Overview of the new polyploid phasing model and algorithm. After parsing
the input and generating the allele matrix F , we compute a statistical score for each
read pair. This score is a first indication whether two reads should rather be assigned
to the same haplotype (or identical haplotypes) or to two different haplotypes. We
apply cluster editing, a graph-based clustering technique, to a read graph weighted
by these scores (grey round shapes). Subsequently, we take the coverage into account
by threading k haplotypes (colored lines) through the clusters (here k = 4). Here, we
can balance out violations of the coverage for each haplotype with costs for switching
between haplotypes. We can also incorporate genotype information at this point, if
available. The procedure results in k phased haplotypes, which are subdivided into
blocks (vertical lines).

relation to the total coverage cj at this position. Parameter α models the trade-
off between these possibly conflicting terms. Note that the coverage term can,
for example, be set according to a log likelihood model based on the binomial
distribution.

We encourage researchers to study this model from a theoretical perspective,
that is, to investigate computational complexity variants and special cases, to
establish approximation results and to analyze the fixed parameter tractability
of this model with respect to meaningful parameters. We also hope to stimulate
further algorithmic work addressing this model, which may lead to practically
efficient polyploid phasing tools.

4 Back to Amathus

Obviously, reconstructing the recipes can be cast and solved as a haplotype
phasing problem, where k = 4, and the number of alleles is t = 4. Since it
is conceivable that also in the recipes long stretches are similar—after all, the
chefs disagreed, but they did not disagree maximally on each detail—a strategy
as outlined at the end of Sect. 3 may lead to the four original recipes. Of course,
this depends also on the length of the fragments, the number of variants they
cover and the total number of fragments. This is not so much different for data
in computational genomics. Bon appetit!

Acknowledgments. I wish to thank all the co-authors of the various papers on hap-
lotype phasing mentioned in Sect. 3, especially Sven Schrinner and Tobias Marschall,
Jana Ebler and Rebecca Serra Mari for the nice collaboration on the polyploid phasing
problem. Thanks to Philipp Spohr for inspirations shaping the Amathus story and to
Nguyen Khoa Tran for providing the beautiful drawing of Athena, Barnabas, Char-
alambos and Daphne.

The Lost Recipes from the Four Schools of Amathus 23

References

1. Bonizzoni, P., Dondi, R., Klau, G.W., Pirola, Y., Pisanti, N., Zaccaria, S.: On the
minimum error correction problem for haplotype assembly in diploid and polyploid
genomes. J. Comput. Biol. 23(9), 718–736 (2016)

2. Cilibrasi, R., van Iersel, L., Kelk, S., Tromp, J.: On the complexity of several hap-
lotyping problems. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS, vol. 3692,
pp. 128–139. Springer, Heidelberg (2005). https://doi.org/10.1007/11557067 11

3. Klau, G.W., Marschall, T.: A guided tour to computational haplotyping. In: Kari,
J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 50–63. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58741-7 6

4. Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single
nucleotide polymorphism haplotype assembly problem. Briefings Bioinf. 3(1), 23–31
(2002)

5. Martin, M., et al.: WhatsHap: fast and accurate read-based phasing. bioRxiv (2016).
https://doi.org/10.1101/085050, https://www.biorxiv.org/content/early/2016/11/
14/085050

6. Motazedi, E., Finkers, R., Maliepaard, C., de Ridder, D.: Exploiting next genera-
tion sequencing to solve the haplotyping puzzle in polyploids: a simulation study.
Briefings Bioinf. 19(3), 387–403 (2018)

7. Patterson, M., et al.: WhatsHap: weighted haplotype assembly for future-generation
sequencing reads. J. Comput. Biol. 22(6), 498–509 (2015)

8. Pirola, Y., Zaccaria, S., Dondi, R., Klau, G.W., Pisanti, N., Bonizzoni, P.: HapCol:
accurate and memory-efficient haplotype assembly from long reads. Bioinformatics
32(11), 1610–1617 (2015). (Oxford, England)

9. Schrinner, S.D., et al.: Haplotype threading: accurate polyploid phasing from long
reads (2019, in preparation)

https://doi.org/10.1007/11557067_11
https://doi.org/10.1007/978-3-319-58741-7_6
https://doi.org/10.1101/085050
https://www.biorxiv.org/content/early/2016/11/14/085050
https://www.biorxiv.org/content/early/2016/11/14/085050

Sharing Energy for Optimal Edge
Performance

Erol Gelenbe1,2(B) and Yunxiao Zhang2,3

1 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,
ul. Baltycka 5, 44100 Gliwice, Poland

gelenbe.erol@orange.fr
2 Laboratoire I3S, Université Côte d’Azur, 06108 Cedex2, Nice, France

yunxiao.zhang15@imperial.ac.uk
3 Imperial College, London, UK

Abstract. Using the Energy Packet Network (EPN) model, we show
how energy can be shared between heterogenous servers at the edge
to minimize the overall average response time of jobs. The system is
modeled as a probabilistic network where energy and jobs are being
dispatched to the edge servers using G-Networks with a product-form
solution for the equilibrium probability distribution of system state. The
approach can also be used to design energy dispatching systems when
renewable energy is used to improve the sustainability of edge computing.

1 Introduction

Heterogeneous sensors, other digital devices and computer servers or worksta-
tions (WS) are being incorporated into the Internet of Things (IoT) [3,7,28,33,
41] to manage cities, services and industry [44] with applications in practically
all areas of social activity [1,4,26], creating massive energy requirements that
can benefit from energy harvesting from wind, fluid flows, photovoltaic, and
electromagnetic fields, with energy stores (ES) such as batteries to buffer the
effect of intermittent energy sources [5,36,40]. Harvested energy can contribute
to the sustainability of information and computer technology (ICT) [19,39], but
it raises new questions. Research is needed to understand how system Quality
of Service (QoS) can be maintained in the presence of intermittent harvested
energy [6,10,17,30,34,42], including optimal network routing for energy savings
[31,35], data transmission for scheduling for energy usage optimization [2], and
greater energy efficiency in data centers [32] needed to process the massive data
from the IoT.

Recentwork on the EnergyPacketNetwork (EPN) paradigm [9,14–16] has pro-
posed a discrete state-space modeling approach to evaluate the QoS and energy
consumption in systems where computer jobs, data packets, and energy packets
(EPs), interact in complex interconnected information processing and data trans-
mission systems. EPNs were recently applied to backhaul networks operating with
renewable energy sources [18]. Other work has suggested hardware schemes for
simultaneously forwarding both data packets and energy [37,38].
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 24–36, 2020.
https://doi.org/10.1007/978-3-030-38919-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_3

Sharing Energy for Optimal Edge Performance 25

Previous work [25], discussed some optimization algorithms based on qenue-
ing networks for dispatching network packets so as to minimize a composite cost
function that combines overall network energy consumption and QoS. In [20],
the EPN model has been used to study architectures which interconnect energy
prosumer systems, so that energy consumption and leakage, and the response
time to service requests, are minimized. In [21] a utility function, which is a
linear combination of the throughput and the probability that the system does
not run out of energy, maximized. The EPN paradigm has recently generated
interest and further work [9,24,29,43] to model and optimize sensor networks
and servers that operate with harvested energy.

In this paper we consider servers or workstations (WS), each of which is
powered by a battery or energy store (ES) which is charged from a source of
intermittent energy such as wind or photovoltaic. We assume that the energy is
represented by discretized EPs, where one EP is the amount of energy needed to
process one or more jobs depending on the different jobs being considered; this
approach generalizes previous work where one EP corresponds to the amount of
energy needed to process exactly one job or forward on data packet. EPs can
also circulate in the system so that an ES can process transfer them to other
WSs. Energy in batteries may be lost through leakage at a rate that depends on
the particular EB.

Based on these assumptions, we assume that neither EPs nor jobs may be
moved are not moved between WSs, and that the system receives a total fixed
power rate, expressed in EPs per second. We are given a fixed distribution for
the number of jobs that a single EP can process at any given WS, but this
distribution may be different at the different WSs. The problem is then to select
the fraction of jobs that we send to each of the WSs so as to minimize the
overall average response time W of jobs. The case where we move a fraction Di

of the jobs at node i to some other server j according to a probability matrix
M = [Mij] is discussed in [27].

In Sect. 2, we briefly discuss G-Networks, and relate the EPN model to this
more general quenueing network model. We present the EPN model parameters
in Sect. 3. Then we detail the optimization problem and a numerical example.
We present conclusions and suggestions for further work in Sect. 4.

2 EPN and Its G-Network Representation

The EPN system considered is schematically presented in Fig. 1. In the approach
taken in this paper, jobs or tasks that need to be executed in the system are
modelled as ordinary customers in a queueing network. They arrive to any one
of N WSs which are represented as queues. Jobs first arrive to a given WS, call
it Wi, at rate λi jobs/sec. Each Wi has an energy storage battery denoted Ei, so
that there are a total of N ESs. EPs arrive from an external intermittent energy
source at rate γi EPs/sec to Ei which can be viewed as a “queue of EPs”. We
denote the number of jobs at WS Wi at time t by Ki(t), while Bi(t) denotes the
number of EPs at Ei. EPs at the Ei are expended (locally consumed) or moved
in the following manner:

26 E. Gelenbe and Y. Zhang

– If Bi(t) > 0 then Ei will leak energy at some rate δi ≥ 0 EPs/sec. Thus when
Bi(t) > 0, after a time of average value δ−1

i , we will have one less EP at ES
i due to energy leakage.

– ES Si provides EPs at rate wi when Bi(t) > 0. With probability Mij an EP is
moved to another other Ej so that Bi(t+) = Bi(t)−1, and Bj(t+) = Bj(t)+1.
Such transfers may be made to share energy with other ESs which are being
depleted more rapidly.

– Or with probability di = 1 − ∑N
j=1 Pij the EP is forwarded to Wi and with

probability 1 ≥ Di ≥ 0, one EP is expended to serve a batch of up to bi

jobs at the WS. If Ki(t) > 0 then the EP will serve max[Ki(t), bi] jobs in
one step and after service we end up with Ki(t+) = Ki(t) − max[Ki(t), bi].
Since different jobs may have different energy requirements when running at
a given Wi, we assume that bi (i.e., the number of jobs that are processed
with a single EP at Wi), is a random variable with probability distribution
πis = Pr[bi = s], s = 1, 2,

– With probability 1 − Di, if Ki(t) > 0 one EP will be used to serve just one
job, and then forward that job to another Wj according to the transition
probability matrix M = [Mij]. As a result we will have Ki(t+) = Ki(t) − 1,
Kj(t+) = Kj(t) + 1.

– If an EP arrives to a WS i and Ki(t) = 0, then the EP will just be expended
to keep the WS in working order, and no jobs will be processed or moved.

2.1 The G-Network Model

The EP is a special case of G-Networks [8,11,12] which are queueing networks
that have the remarkable “product form solution” which simplifies their com-
putational structure. An EPN is a multi-class G-Network with Batch Removal
[13,23]. This is an open queueing network with v of service stations or WSs. The
EPN “jobs” can be computer programs that need to be executed, or data packets
that need to be transmitted, and belong to one of C classes. Each ach customer
class has distinct arrival rates to the network, and distinct routing probabilities
in the network. Customer also belong to three Types, of “positive” and “neg-
ative” customers, or “triggers”. Other types of customers include “resets” [22]
and “adders” [8].

Positive customers are the normal queueing network customers which request
and obtain service at the queues, and belong to one of the C classes. At all of
the v queues, positive customers have i.i.d. exponential service times of rate
r(1), . . . , r(v) which are identical for all classes of customers. After completing
service and leaving a node i, a positive customer of class c can change into a pos-
itive customer of class c′ at node j with probability Π+

c,i,c′,j , the corresponding
transition probability matrix is Π+ = [Π+

c,i,c′,j], or the positive customer leaves
the network with probability lc,i, or it changes into a negative customer of class c′

and join node j with probability Π−
c,i,c′,j , in which case it will remove, or “instan-

taneously serve”, a batch of positive customers of class c′, and the batch is of

Sharing Energy for Optimal Edge Performance 27

Fig. 1. A EPN system with N WSs and ESs. EPs are accumulated in the ESs denoted
Ei, and jobs queue at the WSs denote Wi. The EPs can be forwarded to the corre-
sponding Wi or moved to other ESs. Jobs in the Wi can finish processing locally or
they may be forwarded to other WSs for further processing.

maximum size Bj,c′,j at queue j, where Bc′,j is a random variable with probabil-
ity distribution πc′,j,s = Pr[Bc′,j = s] ≥ 0, s ≥ 1. If a negative customer of class
c at node i arrives to queue j as a class c′ customer at time t, and the number
positive customers of class c′ at j is Kc′,j(t), then a total of max [Kc′,j(t), Bc′,j]
positive customers of class c′ will be instantaneously removed from the queue
at j so that Kc′,j(t+) = 0 if B,c′,j ≥ Kc′,j(t), and Kc′,j(t+) = Kc′,j − Bc′,j if
Bc′,j < Kc′,j(t), and the negative customer disappears at time t+. If Kc′,j(t) = 0
then the negative customer disappears and no customer is removed from queue
j. The positive customer of class c leaving queue i can become a “trigger” of class
c′ at queue j with probability ΠT

c,i,c′,j , in which case it will move a class c′ cus-
tomer from queue j to queue l, and that customer becomes a class c′′ customer
at queue l, with probability Qc′,j,c′′,l ≥ 0. If queue j does not contain a class c′

customer when the trigger arrives to queue j, then no customer is transferred

28 E. Gelenbe and Y. Zhang

from j to l, and the trigger disappears. These probabilities that we have satisfy:

1 = lc,i +
C,v∑

c′=1,j=1

[Π+
c,i,c′,j + Π−

c,i,c′,j + ΠT
c,i,c′,j],

1 =
C,v∑

c′′=1,l=1

Qc′,j,c′′,l, and 1 =
∞∑

s=1

πc′,j,s, for all c′, j.

The effect of a negative customer and of a trigger are instantaneous: they occur
in zero time; i.e. the effect of a negative customer or trigger arriving to a queue
at time t will modify the queue’s state at time t+. Furthermore, both a neg-
ative customer and a trigger will themselves disappear after they have visited
queue j. Queues also have external positive, negative and trigger arrivals of rates
λ+

c,i, λ−
c,i, λT

c,i which can differ for each class c and queue i, according to inde-
pendent Poison processes at each of the queues. Furthermore, externally arriving
customers will have exactly the same effect at a queue as the ones that arrive
from another queue.

Let Λ+
c,i, Λ−

c,i, ΛT
c,i denote the total arrival rate to queue i of class c customers

that are of positive, negative and of trigger type, respectively. Then the “traffic
equations” for the system are given by:

Λ+
c,i = λ+

c,i +
|C|,v,v∑

c′,j,l

r(c′, j)qc′,j [ΠT
c′,j,c′′,lqc′′,lQc′′,l,c,i + Π+

c′,j,c,i],

Λ−
c,i = λ−

c,i +
|C|,v∑

c′,j

r(c′, j)qc′,jΠ
−
c′,j,c,i, ΛT

c,iλ
T
c,i +

|C|,v∑

c′,j

r(c′, j)qc′,jΠ
T
c′,j,c,i,

where qc,i =
Λ+

c,i

r(c, i) + ΛT
c,i + Λ−

c,i .[
1−∑∞

s=1 qs
c,iπc,i,s

1−qc,i
]
. (1)

In the sequel we will assume that at any queue i only positive, negative cus-
tomers, and triggers of a single class ci can arrive. Thus for a specific ci we
have ΛT

c,i = Λ−
c,i = Λ+

c,i = 0, if c �= ci, ΛT
ci,i

≥ 0, Λ−
ci,i

≥ 0, Λ+
ci,i

≥ 0. Also
we assume that service rates are the same for all classes of positive customers
r(c′, i) = r(c, i) = r(i). As a consequence we have:

qci,i =
Λ+

ci,i

r(i) + ΛT
ci,i

+ Λ−
ci,i

.[
1−∑∞

s=1 qs
ci,i

πci,i,s

1−qci,i
]
. (2)

With these assumptions, the following result follows from previous work [13,23]:

Result. Let K(t) = (K1(t), ... ,Kv(t)). If the Eq. (1) have an unique solution
such that all the 0 < qc,i < 1, for 1 ≤ i ≤ v and 1 ≤ c ≤ C, then denoting by
qi = qci,i, the following result holds:

lim
t→∞ Pr[K(t) = (k1, ... , kv)] =

v∏

i=1

qki
i (1 − qi). (3)

Sharing Energy for Optimal Edge Performance 29

Directly following from the above PFS, we can show that the marginal queue
length probability distribution for any queue j is given by:

lim
t→∞ Pr[Kj(t) = kj]

=
v∑

i=1,i �=j

v∑

ki=1, i �=j

[
v∏

i=1

qki
i (1 − qi)]

= q
kj

j (1 − qj). (4)

3 The EPN System

The EPN of Fig. 1 can be represented by a G-Network with v = 2N queues,
where the WSs are represented by the queues 1, . . . , N , while the ESs are repre-
sented by the queues N + 1, . . . , 2N .

With regard to the notation in Sects. 2 and 2.1, the network has C = 2, i.e.
two classes of customers where Class 1 refers to the jobs, while Class 2 refers to
the EPs, and negative customers and triggers cannot arrive to any of the queues
from the outside world, i.e. λ−

c,i = λT
c,i = 0 for c = 1, 2 and i ∈ {1, . . . , 2N}.

Class 1 customers are “positive customers” representing jobs being served at the
WSs with λ+

1,i = λi, and λ+
2,i = λ−

1,i = λ−
2,i = 0 for i = 1, . . . , N . Furthermore

jobs at the WSs are only removed, or moved to another WS, under the effect of
EPs, i.e. r(i) = 0 and l1,i = l2,i = 0 for i = 1, . . . , N .

Class 2 customers are EPs acting as positive customers at the storage units
or ESs, represented by queues N + 1, ... , 2N . Hence for i, j ∈ {N + 1, . . . 2N}:
λ+
2,i = γi, λ−

2,i = 0, λ+
1,i = λ−

1,i = 0, and r(i) = wi + δi. Also Π+
2,i,2,j = Pij , and

Π−
2,i,2,j = 0; note that l2,i = δi

δi+wi
. EPs become negative customers or triggers

when they arrive with probability dj .
wj

δj+wj
to a queue i from a queue j = N + i,

i ∈ {1, . . . , N}. With probability Di an EP becomes a negative customer with
batch removal, so that the EP is used to process one or more jobs at a WS and
the probability distribution of the size of the batch of jobs that can are served is
π1,i,s = Pr[B1,i = s], and Π−

2,j,1,i = Di.dj .
wj

δj+wj
, with j ∈ {N + 1, . . . 2N} and

i = j − N .
With probability 1 − Di an EP becomes a trigger, so that ΠT

2,j,1,i = (1 −
Di)dj .

wj

δj+wj
, and q1,i,1,m = Mim, for j ∈ {N + 1, . . . 2N}, i = j − N , 1 ≤ m ≤

N . Note that ΠT
2,j,2,i = ΠT

1,j,2,i = ΠT
1,j,1,i = 0 for all i, j ∈ {1, . . . , 2N}, and

ΠT
2,j,1,i = 0 if i �= j − N for N + 1 ≤ j ≤ 2N . Also, P+

1,i,1,j = (1 − Di)Mij ,
P+
1,i,1,j = (1 − Di)Pij , P+

1,i,2,j = 0, P+
2,i,1,j = 0, l1,i = 0, for i, j ∈ {1, . . . N}.

Furthermore l1,i = 0, l2i = 0 for i = 1, . . . , N , and l1i = 0, l2,i = δi
δi+wi

for

i = N +1, . . . , 2N . Finally 1−di =
∑N

j=1 Pij for i = 1, . . . , N , and
∑N

j=1 Mij = 1
for i = 1, . . . , N .

30 E. Gelenbe and Y. Zhang

Regarding to (2) in the G-Network Model, in the EPN model, the two classes
have two utilization equations:

q1,i =
Λ+
1,i

q2,i+Nwidi[(1 − Di) + Di
1−∑∞

s=1 qs
1,sπ1,i,s

1−q1,i
]
, (5)

where Λ+
1,i = λi +

∑N
j=1 q1,j(1 − Dj)djwjMjiq2,j+N and

q2,i+N =
γi +

∑N
j=1 wjq2,j+NPji

wi + δi
. (6)

According to G-Network Theory outlined in the Sect. 2.1, the following expres-
sion holds:

lim
t→∞ Pr[K(t) = (k1,1, ... , k1,N , k2,N+1, ... , k2,2N)] = (7)

N∏

i=1

q
k1,i
1,i (1 − q1,i)q

k2,i+N

2,i+N (1 − q2,i+N).

if (5) and (6) have an unique solution such that all the 0 < qc,i < 1 for 1 ≤ i ≤ 2N
and 1 ≤ c ≤ 2. The marginal probability of the queue length for the queue i and
class c is

lim
t→∞ Pr[Kc,i(t) = kc,i] = q

kc,i

c,i (1 − qc,i) (8)

3.1 Cost Function, Parameters and Optimization

G-networks were proposed to control energy consumption in packet networks
[25], and the model was used in [20] to determine the best architecture, dis-
tributed or centralized, for storing and dispatching harvested energy. In [21] the
EPN model is used under the assumption that one EP is the amount of energy
needed to process a job. Here will address two related optimization problems
that are outlined below. The objective is to minimize the average response time
for jobs that come into the system, where the jobs arrive from the outside world
to WS i at a given rate λi. Furthermore, the total arrival rate of EPs is fixed at
some value γ and each of the ESs has a transfer rate of EPs to the corresponding
WS given by wi and a local energy leakage rate δi, for i = 1, ... , N .

In order to obtain an intuitively appealing result, we will assume that π1,i,s =
(1−ui)u

s
i

u(i) where 0 < ui < 1 is a real number and
∑∞

s=1(1 − ui)us−1
i = 1.

Consider the case where the EPs cannot moved between ESs so that Mji = 0
and di = 1. Also assume that jobs cannot be moved between WSs, i.e. Di = 1.
In this case, assume that the total renewable energy flow into WS i is γi = pi.γ.

The cost function that needs to be minimized represents the overall average
job response time:

W =
1

∑N
i=1 λi

N∑

i=1

q1,i

1 − q1,i
. (9)

Sharing Energy for Optimal Edge Performance 31

Regarding Eqs. (5) and (6) with the specific restrictions for this case with di =
1, Di = 1, for 1 ≤ i ≤ N , we have:

q1,i =
λi

q2,iwi[
1−∑∞

s=1 qs
1,i . π1,i,s

1−q1,i
]
, (10)

q2,i+N =
γpi

wi + δi
. (11)

Our problem is then to choose p = (p1, ... , pN) so as to minimize W for a given
value of γ and for given energy leakage rate δi at each ES i.

Using Little’s Formula we can write:

W =
1

λ+

N∑

i=1

q1,i

1 − q1,i
, where λ+ =

N∑

i=1

λi. (12)

Note that Λ+
1,i = λi when Di = 1 for all i = 1, . . . , N . Substituting (1−ui)u

s
i

ui
into

(10), we have

q1,i =
λi

q2,i+Nwi
× [1 − ∑∞

s=1
(1−ui)u

s
i

ui
qs
1,i

1 − q1,i

]−1 =
λi

uiλi + q2,i+Nwi
. (13)

Substituting (13) into the cost function W , we get:

W =
1

λ+

N∑

i=1

λi

σiγpi + λi(ui − 1)
, with σi =

wi

wi + δi
. (14)

where σi is the energy efficiency with regard to leakage, of i − th ES node.
Choosing the pi ≥ 0 so as to minimize W is an optimization problem subject

to the constraint
∑N

i=i pi = 1. Therefore we apply the method of Lagrange
multipliers and choose the Lagrangian

L = W + β(
N∑

i=1

pi − 1), (15)

where the Lagrange multiplier β is a real number. Suppose p∗ is a local solution
of the optimization problem. Then the necessary Kuhn-Tucker conditions are:

∇pL(p∗, β∗) = 0, and
N∑

i=1

p∗
i − 1 = 0, (16)

from which we derive

∂W

∂pi
=

−λiσiγ

λ+
[
σiγpi + λ(ui − 1)

]2 = −β. (17)

32 E. Gelenbe and Y. Zhang

Then rearranging (17), the solution p∗
i is

p∗
i =

λi(1 − ui)
σiγ

+

√
λi

λ+σiγβ
. (18)

Moreover, the second necessary condition

N∑

i=1

(
λi(1 − ui)

σiγ
+

√
λi

λ+σiγβ

)

= 1, (19)

also must hold. Solving (18) and (19) simultaneously, we see that the optimal
solution must be:

p∗
i =

λi(1 − ui)
σiγ

+

√
λi

σi

∑N
i=1

√
λi

σi

(

1 −
N∑

i=1

λi(1 − ui)
σiγ

)

. (20)

However, the sufficient condition that there exists an optimum solution p∗ also
needs to be examined. To guarantee the existence of the strict constrained local
minimum, the Hessian ∇ppL must be positive definite. Notice that ∇ppL is a
diagonal matrix with diagonal entries:

∂2L(p∗, β∗)
∂p2i

=
∂2W

∂p2i
=

2λiσ
2
i γ2

λ+
[
σiγp∗

i + λi(ui − 1)
]3 . (21)

Thus the sufficient condition holds if the inequality

σiγp∗
i > λi(1 − ui), (22)

is satisfied for all i = 1, . . . , N . Substituting p∗
i into (22), we see that the inequal-

ity is equivalent to:

γ >

N∑

i=1

λi

σi
(1 − ui). (23)

This condition is physically meaningful since it implies that the total rate of
harvested EPs has to be sufficiently large so as to provide enough energy so as
to power the WSs despite the energy leakage that also will occur.

3.2 An Example

In order to illustrate the optimal solution, consider a system with three WSs
and ESs with parameters given in Table 1.

The sufficient condition (22) allows us to determine the range of p1, p2 and p3
that guarantee that every ES can provide sufficient power to its corresponding
WS:

0.2933 < p1 < 1, 0.1760 < p2 < 1, 0.0597 < p3 < 1,

Sharing Energy for Optimal Edge Performance 33

Table 1. Parameters for the system with three WSs and ESs

Parameters Values

γ 150 EPs/sec

λ1, λ2, λ3 50, 30, 10 jobs/sec

D1, D2, D3 1, 1, 1

w1, w2, w3 100, 80, 50 EPs/sec

u1, u2, u3 0.2, 0.2, 0.2

Mij for all i, j 0

Mij for all i, j 0

δ1, δ2, δ3 10, 8, 6 EPs/sec

d1, d2, d3 1, 1, 1

with the constraint p1 +p2 +p3 = 1. The resulting values of W for all (p1, p2, p3)
are shown in Figs. 2 and 3 where the x and y axes are p1 and p2, and p3 =
1 − p1 − p2. From (20) we obtain the optimum operating point which minimizes
the total average response time as being (p∗

1, p
∗
2, p

∗
3) = (0.5049, 0.3399, 0.1552)

with the minimum value W ∗ = 42.9 ms.

0.8

0.60

p1

0.7

1

0.6 0.40.5

p2

2

d
e
la

y
 i
n
 s

e
c
o
n
d
s

0.4 0.3

3

0.2 0.20.1

4

Fig. 2. Average response time with all
(p1, p2) pairs. The red dot is the opti-
mal solution of Eq. (20). The range of
the values pi is not [0, 1] due to the
constraint and the sufficient conditions,
and the curve is not convex.

0.8

0.6

p1

0.04
0.40.7

0.042

0.6

p2

0.5

0.044

0.4

d
e
la

y
 i
n
 s

e
c
o
n
d
s

0.046

0.3 0.20.2

0.048

0.1

0.05

Fig. 3. The neighbourhood of the opti-
mum point at a much smaller scale of
W along the z-axis.

34 E. Gelenbe and Y. Zhang

4 Conclusions

We have considered an EPN model where jobs and energy packets cannot be
transferred to other workstations, so that each workstation executes locally
the jobs that it receives, using energy from its own energy storage unit. We
have derived a key result where a common flow of energy is distributed opti-
mally among the workstations so that the average response time of jobs can
be minimized. The problem has been solved analytically for the geometrically
distributed number of jobs processed with one energy packet. In other work [27]
the average response time has been minimized when jobs can be moved among
WSs according to a given probability transition matrix, but each station decides
locally whether to move a job or not. Future work will investigate the minimiza-
tion of a cost function that combines the average response time of jobs, and
the energy wastage through leakage or due to idle workstations which consume
energy when they do not process jobs.

Acknowledgements. This research was supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 780572, through
the SKK4ED project which aims to minimize the cost, development time and com-
plexity of low-energy software development processes, by providing tools for automatic
optimization of multiple quality requirements, such as technical debt, energy efficiency,
dependability and performance.

References

1. Al-Ali, A., Aburukba, R.: Role of Internet of Things in the smart grid technology.
J. Comput. Commun. 3(05), 229 (2015)

2. Antepli, M.A., Uysal-Biyikoglu, E., Erkal, H.: Optimal packet scheduling on an
energy harvesting broadcast link. IEEE J. Sel. Areas Commun. 29(8), 1712–1731
(2011)

3. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. netw.
54(15), 2787–2805 (2010)

4. Bi, H., Abdelrahman, O.H.: Energy-aware navigation in large-scale evacuation
using g-networks. Probab. Eng. Inf. Sci. 1, 1–13 (2016)

5. Black, M., Strbac, G.: Value of bulk energy storage for managing wind power
fluctuations. IEEE Trans. Energy Convers. 22(1), 197–205 (2007)

6. Coskun, C.C., Davaslioglu, K., Ayanoglu, E.: An energy-efficient resource alloca-
tion algorithm with QOS constraints for heterogeneous networks. In: 2015 IEEE
on Global Communications Conference (GLOBECOM), pp. 1–7. IEEE, December
2015

7. Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans.
Ind. Inform. 10(4), 2233–2243 (2014)

8. Fourneau, J.M., Gelenbe, E.: G-networks with adders. Fut. Internet 9(3), 34 (2017).
https://doi.org/10.3390/fi9030034

9. Fourneau, J., Marin, A., Balsamo, S.: Modeling energy packets networks in the
presence of failures. In: 24th IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, MASCOTS 2016,
London, United Kingdom, 19–21 September 2016, pp. 144–153 (2016). https://doi.
org/10.1109/MASCOTS.2016.44

https://doi.org/10.3390/fi9030034
https://doi.org/10.1109/MASCOTS.2016.44
https://doi.org/10.1109/MASCOTS.2016.44

Sharing Energy for Optimal Edge Performance 35

10. Gatzianas, M., Georgiadis, L., Tassiulas, L.: Control of wireless networks with
rechargeable batteries. IEEE Trans. Wireless Commun. 9(2), 581–593 (2010).
https://doi.org/10.1109/TWC.2010.080903

11. Gelenbe, E.: Réseaux neuronaux aléatoires stables. Comptes rendus de l’Académie
des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences
de la Terre 310(3), 177–180 (1990)

12. Gelenbe, E.: G-networks by triggered customer movement. J. Appl. Probab. 30(3),
742–748 (1993)

13. Gelenbe, E.: G-networks with signals and batch removal. Probab. Eng. Inf. Sci.
7(3), 335–342 (1993). https://doi.org/10.1017/S0269964800002953

14. Gelenbe, E.: Energy packet networks: ICT based energy allocation and storage. In:
Rodrigues, J.J.P.C., Zhou, L., Chen, M., Kailas, A. (eds.) GreeNets 2011. LNICST,
vol. 51, pp. 186–195. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33368-2 16

15. Gelenbe, E.: Energy packet networks: adaptive energy management for the cloud.
In: CloudCP 2012 Proceedings of the 2nd International Workshop on Cloud Com-
puting Platforms, p. 1. ACM (2012). https://doi.org/10.1145/2168697.2168698

16. Gelenbe, E.: Energy packet networks: smart electricity storage to meet surges in
demand. In: Proceedings of the 5th International ICST Conference on Simulation
Tools and Techniques, pp. 1–7. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering) (2012)

17. Gelenbe, E.: A sensor node with energy harvesting. ACM SIGMETRICS Perform.
Eval. Rev. 42(2), 37–39 (2014)

18. Gelenbe, E., Abdelrahman, O.H.: An energy packet network model for mobile
networks with energy harvesting. Nonlinear Theor. Appl. IEICE 9(3), 1–15 (2018).
https://doi.org/10.1587/nolta.9.1

19. Gelenbe, E., Caseau, Y.: The impact of information technology on energy con-
sumption and carbon emissions. Ubiquity 2015, 1 (2015)

20. Gelenbe, E., Ceran, E.T.: Central or distributed energy storage for processors with
energy harvesting. In: Sustainable Internet and ICT for Sustainability (SustainIT),
2015, pp. 1–3. IEEE (2015)

21. Gelenbe, E., Ceran, E.T.: Energy packet networks with energy harvesting. IEEE
Access 4, 1321–1331 (2016)

22. Gelenbe, E., Fourneau, J.M.: G-networks with resets. Perform. Eval. 49(1), 179–
191 (2002)

23. Gelenbe, E., Labed, A.: G-networks with multiple classes of signals and positive
customers. Eur. J. Oper. Res. 108, 293–305 (1998)

24. Gelenbe, E., Marin, A.: Interconnected wireless sensors with energy harvesting. In:
Gribaudo, M., Manini, D., Remke, A. (eds.) ASMTA 2015. LNCS, vol. 9081, pp.
87–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18579-8 7

25. Gelenbe, E., Morfopoulou, C.: A framework for energy-aware routing in packet
networks. Comput. J. 54(6), 850–859 (2010)

26. Gelenbe, E., Wu, F.J.: Future research on cyber-physical emergency management
systems. Fut. Internet 5(3), 336–354 (2013)

27. Gelenbe, E., Zhang, Y.: Performance optimization with energy packets. IEEE Syst.
J. 13(4), 2770–2780 (2019)

28. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a
vision, architectural elements, and future directions. Fut. Gener. Comput. Syst.
29(7), 1645–1660 (2013)

29. Kadioglu, Y.M.: Finite capacity energy packet networks. Probab. Eng. Inf. Sci.
31(4), 477–504 (2017)

https://doi.org/10.1109/TWC.2010.080903
https://doi.org/10.1017/S0269964800002953
https://doi.org/10.1007/978-3-642-33368-2_16
https://doi.org/10.1007/978-3-642-33368-2_16
https://doi.org/10.1145/2168697.2168698
https://doi.org/10.1587/nolta.9.1
https://doi.org/10.1007/978-3-319-18579-8_7

36 E. Gelenbe and Y. Zhang

30. Kadioglu, Y.M., Gelenbe, E.: Product form solution for cascade networks with
intermittent energy. IEEE Systems Journal (2018, accepted for publication)

31. Mao, Z., Koksal, C.E., Shroff, N.B.: Near optimal power and rate control of multi-
hop sensor networks with energy replenishment: Basic limitations with finite energy
and data storage. IEEE Trans. Autom. Control 57(4), 815–829 (2012). https://doi.
org/10.1109/TAC.2011.2166310

32. Newcombe, L.: Data centre energy efficiency metrics: existing and proposed met-
rics to provide effective understanding and reporting of data centre energy. BCS:
British Computer Society (2008). http://www.bcs.org/upload/pdf/data-centre-
energy.pdf

33. Perera, C., Liu, C.H., Jayawardena, S., Chen, M.: A survey on internet of things
from industrial market perspective. IEEE Access 2, 1660–1679 (2014). https://doi.
org/10.1109/ACCESS.2015.2389854

34. Rahimi, A., Zorlu, Ö., Muhtaroglu, A., Kulah, H.: Fully self-powered electromag-
netic energy harvesting system with highly efficient dual rail output. IEEE Sens.
J. 12(6), 2287–2298 (2012)

35. Sarkar, S., Khouzani, M.H.R., Kar, K.: Optimal routing and scheduling in multihop
wireless renewable energy networks. IEEE Trans. Autom. Control 58(7), 1792–1798
(2013). https://doi.org/10.1109/TAC.2013.2250074

36. Shaikh, F.K., Zeadally, S., Exposito, E.: Enabling technologies for green Internet
of Things. IEEE Syst. J. 11(2), 983–994 (2017). https://doi.org/10.1109/JSYST.
2015.2415194

37. Takahashi, R., Azuma, S.I., Tashiro, K., Hikihara, T.: Design and experimental
verification of power packet generation system for power packet dispatching system.
In: American Control Conference (ACC), 2013, pp. 4368–4373. IEEE (2013)

38. Takahashi, R., Takuno, T., Hikihara, T.: Estimation of power packet transfer prop-
erties on indoor power line channel. Energies 5(7), 2141–2149 (2012)

39. Van Heddeghem, W., Lambert, S., Lannoo, B., Colle, D., Pickavet, M., Demeester,
P.: Trends in worldwide ict electricity consumption from 2007 to 2012. Comput.
Commun. 50, 64–76 (2014)

40. Wade, N.S., Taylor, P., Lang, P., Jones, P.: Evaluating the benefits of an electrical
energy storage system in a future smart grid. Energy Policy 38(11), 7180–7188
(2010)

41. Whitmore, A., Agarwal, A., Da Xu, L.: The Internet of Things: a survey of topics
and trends. Inf. Syst. Front. 17(2), 261–274 (2015)

42. Yang, J., Ulukus, S.: Optimal packet scheduling in an energy harvesting commu-
nication system. IEEE Trans. Commun. 60(1), 220–230 (2012)

43. Yin, Y.: Optimum energy for energy packet networks. Probab. Eng. Inf. Sci. 31(4),
516–539 (2017)

44. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for
smart cities. IEEE Internet of Things J. 1(1), 22–32 (2014)

https://doi.org/10.1109/TAC.2011.2166310
https://doi.org/10.1109/TAC.2011.2166310
http://www.bcs.org/upload/pdf/data-centre-energy.pdf
http://www.bcs.org/upload/pdf/data-centre-energy.pdf
https://doi.org/10.1109/ACCESS.2015.2389854
https://doi.org/10.1109/ACCESS.2015.2389854
https://doi.org/10.1109/TAC.2013.2250074
https://doi.org/10.1109/JSYST.2015.2415194
https://doi.org/10.1109/JSYST.2015.2415194

Foundations of Computer Science –

Regular Papers

A Characterization of the Context-Free
Languages by Stateless Ordered

Restart-Delete Automata

Friedrich Otto(B)

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
f.otto@uni-kassel.de

Abstract. We consider stateless ordered restart-delete automata, which
are actually just stateless ordered restarting automata (stl-ORWW-
automata) that have an additional delete operation. While the stl-
ORWW-automata just accept the regular languages, we show that the
context-free languages are characterized by the swift stateless ordered
restart-delete automaton, that is, by the stateless ordered restart-delete
automaton that can move its window to any position after performing a
restart.

Keywords: Restarting automaton · Ordered rewriting · Context-free
language

1 Introduction

The restarting automaton was introduced in [5] to model the linguistic technique
of analysis by reduction (see, e.g., [7]). Despite its linguistic motivation many
classical classes of formal languages have been characterized by various types of
restarting automata (for a survey see, e.g., [10]). A particularly simple type of
restarting automaton is the ordered restarting automaton (ORWW-automaton,
for short) that has been introduced in [9] in relation with the processing of
picture languages.

An ORWW-automaton consists of a finite-state control, a tape with end-
markers, a read-write window of size three, and a (partial) ordering on its
tape alphabet. Based on the actual state and window contents, the automa-
ton can move its window one position to the right and change its state, or
it can replace the letter in the middle of the window by a smaller letter and
restart, or it can accept. During a restart, the window is moved back to the left
end of the tape, and the finite-state control is reset to the initial state. In [11],
it is shown that deterministic ORWW-automata (det-ORWW-automata) don’t
need states and that they characterize the class of regular languages. On the
other hand, the nondeterministic ORWW-automata yield an abstract family of
languages that is incomparable to the (deterministic) context-free languages,
the Church-Rosser languages, and the growing context-sensitive languages with
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 39–50, 2020.
https://doi.org/10.1007/978-3-030-38919-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_4

40 F. Otto

respect to inclusion [6]. However, stateless nondeterministic ORWW-automata
(stl-ORWW-automata) are just as expressive as det-ORWW-automata, that is,
they yield another characterization for the regular languages.

In [12] (see, also [13]), the det-ORWW-automaton was extended by an addi-
tional delete/restart operation that allows to delete the symbol from the mid-
dle of the window and to restart, obtaining the deterministic ordered restart-
delete automaton (or det-ORD-automaton, for short). It turned out that these
automata don’t need states, and that the class of languages they accept properly
includes the class of deterministic context-free languages, while it is contained
in the intersection of the (unambiguous) context-free languages and the Church-
Rosser languages.

Here we turn to the nondeterministic variant of the ordered restart-delete
automaton. As this model extends both, the det-ORD-automaton as well as
the ORWW-automaton, it is immediate that the resulting language class is
quite large. In particular, it contains languages that are not even growing
context-sensitive. Therefore, we restrict our attention to the stateless variant
of these automata, the stateless ordered restart-delete automaton (or stl-ORD-
automaton, for short). In fact, we concentrate on a restricted variant called swift
stl-ORD-automaton that can always perform move-right steps unless its window
is already at the right end of its tape. While the stl-ORWW-automaton just
accepts the regular languages, we will see that the swift stl-ORD-automaton
yields another characterization for the class of context-free languages.

This paper is structured as follows. In Sect. 2, we define the stl-ORD-
automaton and we illustrate it by a detailed example. In the next section,
we prove that each swift stl-ORD-automaton can be simulated by a push-
down automaton (PDA), showing that all languages accepted by swift stl-ORD-
automata are necessarily context-free. Finally, in Sect. 4, we show conversely
that each context-free language is accepted by some swift stl-ORD-automaton
by providing a simulation of a PDA by a swift stl-ORD-automaton, therewith
completing the proof of our main result. In the concluding section, we relate the
swift stl-ORD-automaton to the 1-context rewriting systems of [3] and state a
number of open problems.

2 The Stateless Ordered Restart-Delete Automaton

An alphabet Σ is a finite set of letters. For all n ≥ 0, Σn is the set of words
over Σ of length n, Σ+ is the set of non-empty words, and Σ∗ = Σ+ ∪ {λ},
where λ denotes the empty word. For w ∈ Σ∗, |w| denotes the length of w. A
language over Σ is any subset of Σ∗. Of particular interest are the classes REG,
DCFL, CFL, CRL, and GCSL of regular, deterministic context-free, context-
free, Church-Rosser [8], and growing context-sensitive languages [2,4]. Further,
for any type of automaton X, L(X) will denote the class of languages that are
accepted by automata of that type.

Definition 1. A stateless ordered restart-delete automaton (stl-ORD-automa-
ton) has a flexible tape with endmarkers and a read/write window of size 3. It is

A Characterization of the Context-Free Languages 41

defined by a 6-tuple M = (Σ,Γ,�,�, δ, >), where Σ is a finite input alphabet, Γ
is a finite tape alphabet such that Σ ⊆ Γ , the symbols �,� �∈ Γ , called sentinels,
serve as markers for the left and right border of the work space, respectively, >
is a partial ordering on Γ , and

δ : (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��}) → 2Γ ∪ {λ,MVR} ∪ {Accept}
is the transition relation that describes four types of transition steps:

(1) A move-right step has the form MVR ∈ δ(a1a2a3), where a1 ∈ Γ ∪ {�} and
a2, a3 ∈ Γ . It causes M to shift the window one position to the right.

(2) A rewrite/restart step has the form b ∈ δ(a1a2a3), where a1 ∈ Γ ∪ {�},
a2, b ∈ Γ , and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes M to replace
the symbol a2 in the middle of its window by b and to restart (see above).
Observe that this operation requires that the newly written letter b is smaller
than the letter a2 being replaced with respect to the partial ordering >.

(3) A delete/restart step has the form λ ∈ δ(a1a2a3), where a1 ∈ Γ ∪ {�},
a2 ∈ Γ , and a3 ∈ Γ ∪{�}. It causes M to delete the symbol a2 in the middle
of its window and to restart. Through this step, the tape field that contains
a2 is also removed, that is, the length of the tape is reduced.

(4) An accept step has the form δ(a1a2a3) = Accept, where a1 ∈ Γ ∪ {�},
a2 ∈ Γ , and a3 ∈ Γ ∪ {�}. It causes M to halt and accept. In addition, we
allow an accept step of the form δ(��) = Accept.

If δ(u) is undefined for some word u, then M necessarily halts, when its
window contains the word u, and we say that M rejects in this situation. Further,
the letters in Γ � Σ are called auxiliary symbols.

A configuration of a stl-ORD-automaton M is a word α ∈ {�} · Γ ∗ · {�}
in which a factor of length three (or all of α if |α| < 3) is underlined. Here it
is understood that α is the current contents of the tape and that the window
contains the underlined factor. A restarting configuration has the form �w �,
where the prefix of length three is underlined; if w ∈ Σ∗, then this restart-
ing configuration is also called an initial configuration. A configuration that is
reached by an accept step is an accepting configuration, denoted by Accept, and
a configuration of the form α such that δ(β) is undefined, where β is the under-
lined factor of length three, is a rejecting configuration. A halting configuration is
either an accepting or a rejecting configuration. By �M we denote the single-step
computation relation that M induces on its set of configurations, and �∗

M , its
reflexive and transitive closure, is the computation relation of M .

Any computation of a stl-ORD-automaton M consists of certain phases. A
phase, called a cycle, starts in a restarting configuration, the window is moved
along the tape by MVR steps until a rewrite/restart or a delete/restart step
is performed and thus, a new restarting configuration is reached. If no further
rewrite or delete operation is performed, any computation necessarily finishes
in a halting configuration – such a phase is called a tail. By �c

M we denote the
execution of a complete cycle, and �c∗

M is the reflexive transitive closure of �c
M .

It is the reduction relation that M induces on its set of restarting configurations.

42 F. Otto

An input w ∈ Σ∗ is accepted by M , if there exists a computation of M which
starts with the initial configuration �w � and ends with an accept step. The
language consisting of all words that are accepted by M is denoted by L(M).

As each cycle ends with a rewrite operation, which replaces a symbol a by
a symbol b that is strictly smaller than a with respect to the given ordering >,
or with a delete operation, we see that each computation of M on an input of
length n consists of at most |Γ | ·n many cycles. Each cycle can be simulated by a
nondeterministic Turing machine in linear time, and hence, M can be simulated
by a nondeterministic Turing machine in time O(n2).

As each det-ORD-automaton can be simulated by a stateless det-ORD-
automaton [12], we obtain the following inclusion.

Proposition 2. L(det-ORD) ⊆ L(stl-ORD).

The following example illustrates how stl-ORD-automata work.

Example 3. Let L = { anbn | n ≥ 0 } ∪ { anb2n | n ≥ 0 }. It is well-known that
L is a context-free language that is not deterministic context-free. Further, this
language is not accepted by any ORWW-automaton [6]. However, L is accepted
by the stl-ORD-automaton M = (Σ,Γ,�,�, δ, >) that is defined by taking
Σ = {a, b} and Γ = Σ ∪ { a1, e, e1, f, f1, f2}, by choosing the partial ordering
> such that a > a1, b > e > e1, and b > f > f1 > f2, and by defining the
transition relation δ as follows:

(0) δ(xyz) � MVR for all x ∈ Γ ∪ {�} and y, z ∈ Γ,
(1) δ(��) = Accept,
(2) δ(ab�) = {e}, (10) δ(a1ee) � e1, (18) δ(a1ff) � f1,
(3) δ(bb�) = {e, f}, (11) δ(a1e�) � e1, (19) δ(f1ff) � f2,
(4) δ(bbe) � e, (12) δ(aa1e1) � λ, (20) δ(f1f�) � f2,
(5) δ(abe) � e, (13) δ(�a1e1) � λ, (21) δ(a1f1f2) � λ,
(6) δ(bbf) � f, (14) δ(ae1e) � λ, (22) δ(aa1f2) � λ,
(7) δ(abf) � f, (15) δ(�e1�) � λ, (23) δ(�a1f2) � λ,
(8) δ(aae) � a1, (16) δ(aaf) � a1, (24) δ(af2f) � λ,
(9) δ(�ae) � a1, (17) δ(�af) � a1, (25) δ(�f2�) � λ.

For an input of the form ambn, first the factor bn is rewritten, from right to
left, into en or into fn using instructions (2) to (7). In the former case, it is then
checked whether m = n by alternatingly rewriting the last letter a into a1, the
first letter e into e1 and then deleting a1 and e1 using instructions (8) to (15).
In the latter case, it is checked whether n = 2m by alternatingly rewriting the
last letter a into a1 and the first factor ff into f1f2 and then deleting f1, a1

and f2 using instructions (16) to (25). For example, given w = aabbbb as input,
M can execute the following computation (Recall that we underline the letters
inside the window):

�aabbbb � �5
(0) �aabbbb� �(3) �aabbbf� �4

(0) �aabbbf� �(6) �aabbff�
�∗ �aaffff� �(0) �aaffff� �(16) �aa1ffff� �2

(0) �aa1ffff�
�(18) �aa1f1fff� �3

(0) �aa1f1ff� �(19) �aa1f1f2ff� �2
(0) �aa1f1f2ff�

�(21) �aa1f2ff� �(0) �aa1f2ff� �(22) �af2ff� �(0) �af2ff�
�(24) �aff� �∗ �f2� �(25) �� �(1) Accept.

It follows that L(M) = L.

A Characterization of the Context-Free Languages 43

3 Swift Stl-ORD-Automata Only Accept Context-Free
Languages

We want to show that each language that is accepted by a stl-ORD-automaton
is necessarily context-free. To prove this result, we would like to simulate the
accepting computations of a stl-ORD-automaton by a (nondeterministic) PDA.
For this simulation, we would like to use an extension of the one that is given
in [12] for simulating a stl-det-ORD-automaton by a PDA. Unfortunately, this
approach leads to a serious problem. We will then overcome this problem by
restricting our attention to just a subclass of stl-ORD-automata, the swift stl-
ORD-automata.

We first present a simple example in order to describe the data structure
that will be used for the simulation. As the purpose of this example is simply
to illustrate the dynamics of the simulation, the language accepted by the given
automaton is of no importance.

Example 4. Let M be the stl-ORD-automaton on the input alphabet Σ =
{a1, a2, a3, a4, a5}, the tape alphabet Γ = Σ ∪{b1, b2, b3, b4, c1} and the ordering
ai > bi > c1 (1 ≤ i ≤ 4), where the transition relation is given by the following
table:

δ(�a1a2) = {MVR, b1}, δ(a1a2a3) = {MVR}, δ(a2a3a4) = {b3},
δ(a1a2b3) = {b2}, δ(�a1b2) = {MVR}, δ(a1b2b3) = {λ},
δ(�a1b3) = {MVR, b1}, δ(b1b3a4) = {MVR}, δ(b3a4a5) = {MVR, b4},
δ(a4a5�) = {λ}, δ(b3a4�) = {b4}, δ(b3b4�) = {λ},
δ(�b1b3) = {MVR, c1}, δ(b1b3b4) = {MVR}, δ(b1b3�) = Accept.

Given the word w = a1a2a3a4a5 as input, M can execute the following
accepting computation:

�a1a2a3a4a5� �M �a1a2a3a4a5� �M �a1a2a3a4a5� �M �a1a2b3a4a5�
�M �a1a2b3a4a5� �M �a1b2b3a4a5� �M �a1b2b3a4a5�
�M �a1b3a4a5� �M �b1b3a4a5� �M �b1b3a4a5�
�M �b1b3a4a5� �M �b1b3a4a5� �M �b1b3a4�
�M �b1b3a4� �M �b1b3a4� �M �b1b3b4�
�M �b1b3b4� �M �b1b3b4� �M �b1b3�
�M �b1b3� �M Accept.

To encode this computation in a compact way, we introduce a 3-tuple of
vectors Ti = (Li,Wi, Ri) for each letter wi of w, 1 ≤ i ≤ |w|, where

– Wi is a sequence (x1, x2, . . . , xr) over Γ ∪{λ} such that wi = x1 > x2 > · · · >
xr−1 and (xr ∈ Γ and xr−1 > xr) or xr = λ,

– Li is a sequence of letters (y1, y2, . . . , yr−1) over Γ ∪ {�}, and
– Ri is a sequence of letters (z1, z2, . . . , zr−1) over Γ ∪{�} such that δ(yjxjzj) =

xj+1 holds for all j = 1, 2, . . . , r − 1.

44 F. Otto

The idea is that Wi encodes the sequence of letters that are produced by M
in an accepting computation for a particular field, and Li and Ri encode the
information on the neighboring letters to the left and to the right that are used
to perform the corresponding rewrite steps. For example, the triple (y1, x1, z1) ∈
(Li,Wi, Ri) means that x1 is rewritten into x2, while the left neighboring field
contains the letter y1 and the right neighboring field contains the letter z1. In
particular, if xr = λ, then the instruction λ ∈ δ(yr−1xr−1zr−1) was used to
delete the letter xr−1. For the above computation, we obtain thus the following
sequence of triples:

L1 W1 R1

� a1 b3
b1

L2 W2 R2

a1 a2 b3
a1 b2 b3

λ

L3 W3 R3

a2 a3 a4

b3

L4 W4 R4

b3 a4 �
b3 b4 �

λ

L5 W5 R5

a4 a5 �
λ

The triple (L2, W2, R2) =
a1 a2 b3
a1 b2 b3

λ
expresses the fact that the rewrite oper-

ation b2 ∈ δ(a1a2b3) has been applied in the above computation to replace the
letter a2 by b2, and the delete operation λ ∈ δ(a1b2b3) has been used to delete
the letter b2. However, from R2 = (b3, b3) we see that these operations have been
applied only after the letter a3 has been rewritten into b3.

Conversely, if (Li,Wi, Ri)i=1,2,...,n is sequence of triples that describe an
accepting computation of M on input w = w1w2 · · · wn, then we can extract
the sequence of rewrite and delete operations of M from this sequence. Indeed,
from the above sequence we see that w = a1a2a3a4a5. Further, from the first

triple (L1, W1, R1) =
� a1 b3

b1
, we see that M only executes the rewrite step

b1 ∈ δ(�a1b3) at position 1. As this is the first position, we know that the left
neighboring field contains the left sentinel �, that is, with respect to the left,
this sequence of reductions is correct.

Now we consider the second triple (L2, W2, R2) =
a1 a2 b3
a1 b2 b3

λ
. Thus, at posi-

tion 2, M executes the sequence of rewrite steps b2 ∈ δ(a1a2b3) and λ ∈
δ(a1b2b3). As initially field 1 contains the letter a1, we see that these steps
are correct with respect to the left.

At position 3, M only executes the rewrite step b3 ∈ δ(a2a3a4). As the initial
letter at position 2 is a2, we see that this rewrite step is correct with respect
to the left. Now that a3 has been rewritten into b3, we see that the rewrite and
delete steps at position 2 are correct with respect to the right. Thus, all rewrite
and delete steps at position 2 have been verified, and as W2 ends with λ, we can
remove the triple (L2,W2, R2). But then the triple (L3,W3, R3) becomes the
right neighbor of (L1,W1, R1), which shows now that the rewrite at position 1
is also correct with respect to the right.

At position 4, M executes the rewrite step b4 ∈ δ(b3a4�) and the delete step
λ ∈ δ(b3b4�). As this position initially contains the letter a4, we conclude that

A Characterization of the Context-Free Languages 45

the rewrite at position 3 is correct with respect to the right, which then shows
that the steps at position 4 are correct with respect to the left.

Finally, at position 5, M only executes the delete step λ ∈ δ(a4a5�), which
is correct with respect to the left and with respect to the right. Thus, we can
remove the triple (L5,W5, R5), which means that the right sentinel � is now
the new right neighbor of position 4. This in turn implies that the rewrite and
delete steps at position 4 are correct with respect to the right, and hence, we can
remove the triple (L4,W4, R4) as well. Finally, as Accept ∈ δ(b1b3�), we see that
the above sequence of triples does indeed describe an accepting computation of
M on input a1a2a3a4a5, provided M can always move to the required position
by a sequence of move-right steps.
�

In the case of stl-ORWW-automata, that is, when no letter can be deleted, the
required MVR-steps can easily be inferred from the sequence of triples considered
above, and so, by checking the transition relation of M , it can be verified whether
they are actually possible. However, for stl-ORD-automata, that is, when delete
operations are used, this is not at all clear, as particular move-right steps may
or may not use letters at positions that are at some point deleted. Therefore, in
order to turn our idea into a correct simulation of a stl-ORD-automaton by a
PDA, we turn to a restricted class of stl-ORD-automata.

Definition 5. A stl-ORD-automaton M = (Σ,Γ,�,�, δ, >) is called swift if
MVR ∈ δ(a1a2a3) for all a1 ∈ Γ ∪ {�} and all a2, a3 ∈ Γ . By swift-ORD we
denote the class of all swift stl-ORD-automata.

Thus, from a restart configuration �w�, a swift-ORD-automaton M can
move its window to any position on the tape. Thus, a computation of M cannot
be blocked by a factor across which M cannot move its window. The stl-ORD-
automaton M of Example 3 is actually a swift-ORD-automaton. As M performs
its rewrite and delete steps strictly from right to left, it is easily seen that this
ability to freely move to any position on the tape does not lead to the acceptance
of any words that do not belong to the language L = { anbn | n ≥ 0 } ∪ { anb2n |
n ≥ 0 }.

Based on the discussion in Example 4, we can now formulate the following
theorem.

Theorem 6. L(swift-ORD) ⊆ CFL.

Proof. Let M be a swift-ORD-automaton, where we assume that M only accepts
at the right sentinel, and let P be the PDA that proceeds as follows given a
word w ∈ Σ∗ as input. Each time P reads an input letter a ∈ Σ, it guesses a
triple of the form (L,W,R) as described in the above example. The first such
triple should have either L = Λ (that is, no rewrite or delete step is executed
at position 1) or L = (�,�, . . . ,�), otherwise, P rejects immediately. Then P
verifies that all rewrite steps encoded in this triple are correct with respect to the
transition relation of M and stores the triple on its pushdown. On reading the
next input letter, P guesses the next triple (L,W,R), verifies that all its lines

46 F. Otto

correspond to transition steps of M , and compares this triple to the topmost
triple, say (L′,W ′, R′), on its pushdown. Using these two triples it determines
which of the transitions of the triple (L′,W ′, R′) are correct with respect to the
right and which of the transitions of the triple (L,W,R) are correct with respect
to the left. If an incorrect transition is detected, then P rejects immediately,
otherwise it marks the transitions verified. If a contradiction is detected, then P
halts without acceptance. Otherwise, if all transitions of (L′,W ′, R′) have been
verified completely, and if W ′ ends with the entry λ, then the triple (L′,W ′, R′)
is popped from the pushdown. In the latter case, the triple (L,W,R) is compared
to the now topmost triple on the pushdown in order to verify the correctness
of further rewrite steps. Finally, once it has been verified that all transitions
of (L,W,R) are correct with respect to the left, then this triple is pushed onto
the pushdown and the next input letter is read. This process continues until the
input has been read completely. As M accepts at the right sentinel, P must also
check that the transition relation of M contains the corresponding accept step.
If all these tests are positive, then P accepts.

As the sequences of triples describe accepting computations of M in such a
way that from a sequence the correctness of the corresponding computation can
be checked, we see that P has an accepting computation for input w ∈ Σ∗ if
and only if w ∈ L(M). Hence, it follows that L(P) = L(M), which means that
L(M) is indeed a context-free language.
�

4 Each Context-Free Language Is Accepted by a
Swift-ORD-Automaton

Here we prove that each context-free language is accepted by a swift-ORD-
automaton.

Theorem 7. CFL ⊆ L(swift-ORD).

Proof. Let L ⊆ Σ∗ be a context-free language. There is a context-free grammar
G = (V,Σ, S, P) in quadratic Greibach normal form for the language L�{λ} [14],
that is, each production (A → r) ∈ P satisfies the restriction that r ∈ Σ · (V 2 ∪
V ∪ {λ}). From this grammar, a PDA A = (Q,Σ,ΔA, q, S, δA) can be obtained
such that N(A) = L, that is, L is the language accepted by A with empty
pushdown. Here we can require that A only has a single state, that it does
not execute any λ-transitions, and that, in each step, it replaces the topmost
symbol on its pushdown by a word of length at most two, that is, Q = {q},
ΔA = V , and (q, αR) ∈ δA(q, a,B) iff (B → aα) ∈ P , where a ∈ Σ, B ∈ V , and
α ∈ (V 2 ∪ V ∪ {λ}). In our encoding below, the bottom (top) of the pushdown
will always be on the left (right).

We now construct a swift-ORD-automaton M = (Σ,Γ,�,�, δ, >) for L that
simulates the PDA A. Essentially, it works as the automaton in Example 3,
that is, it determines the transition of A that is to be applied next, it marks

A Characterization of the Context-Free Languages 47

the letters that are to be rewritten, and then it replaces (or deletes) the corre-
sponding letters. Notice that the simulation of A can be performed in a non-
length-increasing fashion using an appropriate encoding of the pushdown. The
swift-ORD-automaton M is defined as follows:

– Γ = Σ ∪ { a′, a′′ | a ∈ Σ } ∪ { [α] | α ∈ ΔA ∪ Δ2
A } ∪ {[q, λ]}∪

{ [q, α], [q, α]′′ | α ∈ ΔA ∪ Δ2
A } ∪ { [q, α]a | α ∈ ΔA ∪ Δ2

A, a ∈ Σ },

– for all a, b ∈ Σ, α ∈ Δ+
A, and x ∈ ΔA,

a > a′ > a′′ > [αx] > [q, αx]′′ > [q, αx] > [q, αx]b > [α] > [q, λ],

– and the transition relation δ is defined through the following table, where
a, b ∈ Σ, c ∈ Σ ∪ {�}, α, γ ∈ Δ∗

A, α1 ∈ Δ+
A, X ∈ {�} ∪ { [α] | 1 ≤ |α| ≤ 2 },

and x ∈ ΔA:

(0) δ(XY Z) � MVR for all X ∈ Γ ∪ {�} and Y,Z ∈ Γ,
(1) δ(�a�) = Accept for all a ∈ L ∩ (Σ ∪ {λ}),
(2) δ(�ab) � [q, α], if δA(q, a, S) � (q, α),
(3) δ([q, αx]ac) � a′, if δA(q, a, x) � (q, γ),
(4) δ(X[q, αx]a′) � [q, αx]a, if δA(q, a, x) � (q, γ),
(5) δ([q, αx]aa′c) � [q, γ]′′, if δA(q, a, x) � (q, γ), γ �= λ,
(6) δ(X[q, αx]a[q, γ]′′) � [α], if δA(q, a, x) � (q, γ), γ �= λ, and α �= λ,
(7) δ(X[q, x]a[q, γ]′′) � λ, if δA(q, a, x) � (q, γ), γ �= λ,
(8) δ(X[q, γ]′′c) � [q, γ],
(9) δ([q, αx]aa′c) � a′′, if δA(q, a, x) � (q, λ),

(10) δ(X[q, αx]aa′′) � [q, α], if δA(q, a, x) � (q, λ) and α �= λ,
(11) δ([q, α]a′′c) � λ,
(12) δ([α1][q, x]aa′′) � λ, if δA(q, a, x) � (q, λ),
(13) δ(X[α1]a′′) � [q, α1],
(14) δ(�[q, x]aa′′) � [q, λ], if δA(q, a, x) � (q, λ),
(15) δ(�[q, λ]�) = Accept.

In order to illustrate this definition, we consider a simple example. Let A =
({q}, {a, b}, {S,B,C}, q, S, δA), where δA only contains the following transitions:

δA(q, a, S) = {(q,BC), (q,B)},
δA(q, b, B) = {(q, λ)},
δA(q, a, C) = {(q,BC), (q,B)}.

Then the language N(A) that is accepted by A with empty pushdown is the lan-
guage { anbn | n ≥ 1 }, and, for example, A can execute the following accepting
computation:

(q, aaabbb, S) �A (q, aabbb,BC) �A (q, abbb,BBC) �A (q, bbb,BBB)
�A (q, bb, BB) �A (q, b, B) �A (q, λ, λ).

This computation is now simulated by the corresponding swift-ORD-automa-
ton M as follows:

�aaabbb� �(2) �[q,BC]aabbb� �(0) �[q,BC]aabbb�
�(3) �[q,BC]a′abbb� �(4) �[q,BC]aa′abbb�

48 F. Otto

�(0) �[q,BC]aa′abbb� �(5) �[q,BC]a[q,BC]′′abbb�
�(6) �[B][q,BC]′′abbb� �(0) �[B][q,BC]′′abbb�
�(8) �[B][q,BC]abbb� �2

(0) �[B][q,BC]abbb�
�(3) �[B][q,BC]a′bbb� �(0) �[B][q,BC]a′bbb�
�(4) �[B][q,BC]aa′bbb� �2

(0) �[B][q,BC]aa′bbb�
�(5) �[B][q,BC]a[q,B]′′bbb� �(0) �[B][q,BC]a[q,B]′′bbb�
�(6) �[B][B][q,B]′′bbb� �2

(0) �[B][B][q,B]′′bbb�
�(8) �[B][B][q,B]bbb� �3

(0) �[B][B][q,B]bbb�
�(3) �[B][B][q,B]b′bb� �2

(0) �[B][B][q,B]b′bb�
�(4) �[B][B][q,B]bb′bb� �3

(0) �[B][B][q,B]bb′bb�
�(9) �[B][B][q,B]bb′′bb� �2

(0) �[B][B][q,B]bb′′bb�
�(12) �[B][B]b′′bb� �(0) �[B][B]b′′bb�
�(13) �[B][q,B]b′′bb� �2

(0) �[B][q,B]b′′bb�
�(11) �[B][q,B]bb� �2

(0) �[B][q,B]bb�
�(3) �[B][q,B]b′b� �(0) �[B][q,B]b′b�
�(4) �[B][q,B]bb′b� �2

(0) �[B][q,B]bb′b�
�(9) �[B][q,B]bb′′b� �(0) �[B][q,B]bb′′b�
�(12) �[B]b′′b� �(13) �[q,B]b′′b�
�(0) �[q,B]b′′b� �(11) �[q,B]b�
�(0) �[q,B]b� �(3) �[q,B]b′�
�(4) �[q,B]bb′� �(0) �[q,B]bb′�
�(9) �[q,B]bb′′� �(14) �[q, λ]b′′�
�(0) �[q, λ]b′′� �(11) �[q, λ]�
�(15) Accept.

Let w = a1a2 · · · an ∈ Σ+. Starting from the initial configuration �w �, M
repeatedly reaches configurations of the form

� [α1][α2] · · · [αr−1][q, αr]asas+1 · · · an �,

where α1α2 · · · αr encodes the contents of the pushdown of A and asas+1 · · · an

is the part of the input w that has not yet been read by A. Using the marked
letters of the form a′

s, [q, αr]as
, a′′

s , and [q, γ]′′, M can now simulate the next
step of A. Thus, by induction on the length of an accepting computation of A,
it can be shown that N(A) ⊆ L(M). Further, based on the way in which the
marked letters are used, it can be seen that all rewrite and delete steps of M
are executed at the border between the prefix ending with [q, αr] and the suffix
starting with as. A sequence of move-right steps that takes the window of M
further to the right will not lead to any rewrite or delete step, that is, such a
sequence will result in an unsuccessful computation. Finally, it can be seen that
each accepting computation of M is a simulation of an accepting computation
of A. Thus, L(M) = N(A) = L follows.
�

Thus, we have derived the following characterization.

Corollary 8. L(swift-ORD) = CFL.

A Characterization of the Context-Free Languages 49

5 Conclusion

By introducing an additional delete/restart operation, we have extended the stl-
ORWW-automaton to the stl-ORD-automaton. While the former just accepts
the regular languages, we have seen that the latter accepts all context-free lan-
guages. In fact, by restricting the stl-ORD-automaton to its swift variant, we
obtained a characterization for the class of context-free languages. However, it
still remains open whether stl-ORD-automata that are not swift can accept any
languages that are not context-free. Further, the descriptional complexity of
swift stl-ORD-automata has not yet been studied.

After a restart, a swift stl-ORD-automaton M can move its window to any
position on the tape. Hence, M can be described by a string-rewriting system

SM = { a1a2a3 → a1ba3 | b ∈ δ(a1a2a3) } ∪ { a1a2a3 → a1a3 | λ ∈ δ(a1a2a3) }.

By using an additional auxiliary symbol #, we can modify M in such a way
that instead of simply accepting at some point, it writes the letter #, and then
in subsequent cycles, it deletes all other letters. Then L(M) = {w ∈ Σ∗ |
�w � �∗

M �#� }, and so L(M) = {w ∈ Σ∗ | �w � ⇒∗
SM

�#� }, where ⇒∗
SM

denotes the rewrite relation that is induced by SM (see, e.g., [1]).
In [3], P. Černo and F. Mráz study so-called context rewriting systems. For

any k ≥ 1, a k-context rewriting system is a system R = (Σ,Γ, I), where Σ is an
input alphabet, Γ is a working alphabet that contains Σ but not the sentinels
� and �, and I is a finite set of instructions of the form (x, z → t, y), where
x ∈ Γ k ∪ � · Γ≤k−1 is called the left context, y ∈ Γ k ∪ Γ≤k−1 · � is called the
right context, and z → t, z, t ∈ Γ ∗, is called a rule. A word w = �uzv � can
be rewritten into �utv � (denoted as �uzv � →R �utv �) if and only if there
exists an instruction i = (x, z → t, y) ∈ I such that x is a suffix of �u and y is
a prefix of v�.

The reduction language associated with R is defined as

L−(R) = {w ∈ Σ∗ | �w� →∗
R �� },

where →∗
R is the reflexive and transitive closure of →R. Observe that the empty

word λ always belongs to the language L−(R). The string-rewriting system SM

obtained from a swift stl-ORD-automaton M can easily be interpreted as a 1-
context rewriting system. For each of the resulting instructions i = (x, z → t, y),
we have |x| = |z| = |y| = 1 and |t| ≤ 1. In addition, if |t| = 1, then z > t with
respect to the partial ordering > on Γ that is provided by M . In [3], P. Černo and
F. Mráz introduce the clearing restarting automaton which is a context rewriting
system such that |z| ≥ 1 and t = λ for each instruction i = (x, z → t, y). They
show that 1-clearing restarting automata only accept a proper subclass of the
context-free languages, while already 2-clearing restarting automata accept some
non-context-free languages. Furthermore, they show that there are context-free
languages that are not accepted by any clearing restarting automaton.

Accordingly, they extend their study to Δ-clearing restarting automata. Here
Δ is an additional symbol, and such an automaton admits instructions of the

50 F. Otto

form i = (x, z → t, y), where z ∈ Γ+ and t = λ or t = Δ. These automata
accept some context-free languages that are not accepted by clearing restart-
ing automata, but it remains open whether all context-free languages can be
accepted by them. The 1-context rewriting systems of the form SM that we
obtain from the swift stl-ORD-automata can be interpreted as a generalization
of the 1-Δ-clearing restarting automata. Thus, the difference in the rewrite oper-
ations of swift stl-ORD-automata and the rewrite instructions of 1-Δ-clearing
restarting automata illustrates the gap that is to be bridged in order to show
that 1-Δ-clearing restarting automata accept all context-free languages.

References

1. Book, R., Otto, F.: String-Rewriting Systems. Springer, New York (1993). https://
doi.org/10.1007/978-1-4613-9771-7 3

2. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser
languages. Inf. Comput. 141, 1–36 (1998)

3. Černo, P., Mráz, F.: Clearing restarting automata. Fund. Inform. 104, 17–54 (2010)
4. Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars

is polynomial. J. Comput. Syst. Sci. 33, 456–472 (1986)
5. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.

(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60249-6 60

6. Kwee, K., Otto, F.: On the effects of nondeterminism on ordered restarting
automata. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS,
vol. 9587, pp. 369–380. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49192-8 30

7. Lopatková, M., Plátek, M., Sgall, P.: Towards a formal model for functional gen-
erative description: analysis by reduction and restarting automata. Prague Bull.
Math. Linguist. 87, 7–26 (2007)

8. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal
languages. J. ACM 35, 324–344 (1988)

9. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431–442. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
04298-5 38

10. Otto, F.: Restarting automata. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications, Studies in Computational
Intelligence, vol. 25, pp. 269–303. Springer, Berlin (2006)

11. Otto, F.: On the descriptional complexity of deterministic ordered restarting
automata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 318–329. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09704-6 28

12. Otto, F.: On deterministic ordered restart-delete automata. In: Hoshi, M., Seki, S.
(eds.) DLT 2018. LNCS, vol. 11088, pp. 529–540. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98654-8 43

13. Otto, F.: On deterministic ordered restart-delete automata. Theor. Comp. Sci.
795, 257–274 (2019)

14. Rosenkrantz, D.J.: Matrix equations and normal forms for context-free grammars.
J. ACM 14, 501–507 (1967)

https://doi.org/10.1007/978-1-4613-9771-7_3
https://doi.org/10.1007/978-1-4613-9771-7_3
https://doi.org/10.1007/3-540-60249-6_60
https://doi.org/10.1007/3-540-60249-6_60
https://doi.org/10.1007/978-3-662-49192-8_30
https://doi.org/10.1007/978-3-662-49192-8_30
https://doi.org/10.1007/978-3-319-04298-5_38
https://doi.org/10.1007/978-3-319-04298-5_38
https://doi.org/10.1007/978-3-319-09704-6_28
https://doi.org/10.1007/978-3-319-09704-6_28
https://doi.org/10.1007/978-3-319-98654-8_43
https://doi.org/10.1007/978-3-319-98654-8_43

A Constructive Arboricity Approximation
Scheme

Markus Blumenstock(B) and Frank Fischer

Institute of Computer Science, Johannes Gutenberg University Mainz,
Mainz, Germany

{mablumen,frank.fischer}@uni-mainz.de

Abstract. The arboricity Γ of a graph is the minimum number of
forests its edge set can be partitioned into. Previous approximation
schemes were nonconstructive, i.e., they approximate the arboricity as a
value without computing a corresponding forest partition. This is because
they operate on pseudoforest partitions or the dual problem of finding
dense subgraphs.

We propose an algorithm for converting a partition of k pseudoforests
into a partition of k + 1 forests in O(mk log k + m log n) time with a
data structure by Brodal and Fagerberg that stores graphs of arboricity
k. A slightly better bound can be given if perfect hashing is used. When
applied to a pseudoforest partition obtained from Kowalik’s approxima-
tion scheme, our conversion implies a constructive (1+ ε)-approximation
algorithm for the arboricity with runtime O(m log n log Γ ε−1) for every
ε > 0. For fixed ε, the runtime can be reduced to O(m log n).

Moreover, our conversion implies a near-exact algorithm that com-
putes a partition into at most Γ + 2 forests in O(m log n Γ log∗ Γ) time.
It might also pave the way to faster exact arboricity algorithms.

Keywords: Approximation algorithms · Matroid partitioning

1 Introduction

Given a simple graph G = (V,E) with n vertices and m edges, the arboricity
Γ (G) is the minimum number of forests on V that the edge set E can be parti-
tioned into. Such a partition can be computed in polynomial time [11,16,17,26],
and a linear-time 2-approximation algorithm is known [3,12]. In graphs of
bounded arboricity, some NP-hard problems become tractable [2,13], and for
several algorithms, it is possible to show better runtime estimates [10,13,19] or
approximation factors [5]. There are distributed algorithms that operate directly
on forest partitions for the maximal independent set problem [6] and the mini-
mum dominating set problem [22].

An interesting relationship of the arboricity and dense subgraphs becomes
apparent by the classic Nash-Williams formula [25]

Γ (G) = �γ(G)�, where γ(G) := max
(VH ,EH)⊆G

|VH |≥2

|EH |
|VH | − 1

(1)

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 51–63, 2020.
https://doi.org/10.1007/978-3-030-38919-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_5&domain=pdf
http://orcid.org/0000-0003-3862-5922
http://orcid.org/0000-0002-5154-6594
https://doi.org/10.1007/978-3-030-38919-2_5

52 M. Blumenstock and F. Fischer

is called the fractional arboricity. A recent approximation scheme by Worou and
Galtier [28] approximates γ (and hence, Γ) by constructing a subgraph of high
density, but it does not construct a forest partition.

A pseudoforest is a graph in which each connected component contains at
most one cycle. The pseudoarboricity p(G) is defined analogously, and a similar
formula holds [26]:

p(G) = �d∗(G)�, where d∗(G) := max
(VH ,EH)⊆G

|EH |
|VH | (2)

is called the maximum density. It is evident from (1) and (2) that Γ and p must
be very close.

Theorem 1 ([26]). For a simple graph G, we have p(G) ≤ Γ (G) ≤ p(G) + 1.

Thus, if we compute a pseudoforest partition approximating p, we directly know
an approximation of the value Γ . Kowalik’s approximation scheme [20] com-
putes a partition of K ≤ �(1 + ε)d∗� pseudoforests in time O(m log n log p ε−1).
However, the algorithm in [17] for converting a partition of K pseudoforests into
a partition of K or (K +1) forests takes O(mn log K) time. Kowalik thus raised
the question whether a faster (approximate) conversion exists.

The main result of this paper is a fast conversion of k pseudoforests into k+1
forests (in particular, a new proof of Theorem 1), which implies a fast construc-
tive approximation scheme for the arboricity: We divide the K pseudoforests
obtained from the pseudoarboricity approximation scheme into k-tuples. Each
k-tuple is converted into k + 1 forests. The number k is chosen minimally such
that (k + 1)/k ≤ 1 + ε for the given ε.

Our conversion uses the notion of a surplus graph: By removing one edge on
every cycle in each of the pseudoforests P1, . . . , Pk we obtain forests F1, . . . , Fk

and a surplus set M of edges. The edges in M inherit the index (color) of the
pseudoforest they were removed from. We then make H = (V,M) acyclic by
applying a sequence of two procedures: The first procedure moves edges from M
to the k forests such that each connected component of H has at most one edge
of each color. It uses color swap operations in H and a certain union-find data
structure [1] for representing the Fi. The second procedure exchanges edges in
H with edges in the forests in order to remove all cycles in H. It uses link-cut
trees [27] and adjacency queries in F1 ∪ · · ·∪Fk. For the queries, perfect hashing
[15] or a data structure for storing graphs of arboricity at most k [9] is used.

2 Paper Outline and Contributions

Section 3 gives a literature review of the arboricity and pseudoarboricity prob-
lems. Notation and definitions are introduced in Sect. 4. In Sects. 5, 6 and
7, we show the conversion of k pseudoforests into k + 1 forests in time
O(mk log k + m log n), or alternatively in time O(mk + m log n) when a per-
fect hash function is constructed beforehand in O(m) expected time. Applying
it to a pseudoforest partition obtained from Kowalik’s approximation scheme
yields the following main theorem.

A Constructive Arboricity Approximation Scheme 53

Theorem 2. For every ε > 0, a simple graph can be partitioned into at most
�(1 + ε) · �(1 + ε)d∗�� forests in time O(m log n log Γ ε−1). Furthermore, if ε is
fixed, the runtime can be bounded as O(m log n).

The ‘furthermore’-part follows from a small modification that terminates the
binary search of Kowalik’s scheme once the ratio of the upper and lower bound
falls below 1+ ε. This eliminates the factor log Γ in the runtime and is described
in the arXiv version of this paper.1 Therein, we add some minor results and
correct a few mistakes in the literature. Our conversion also implies a near-exact
arboricity algorithm whose runtime scales with Γ , which is shown in Sect. 8:

Theorem 3. A simple graph can be partitioned into at most Γ + 2 forests in
O(m log nΓ log∗ Γ) time.

Here, log∗ denotes the iterated binary logarithm.

3 Related Work

Both the set of forests and the set of pseudoforests on a graph are matroids, thus
the arboricity and pseudoarboricity can be computed with Edmonds’ matroid
partitioning algorithm [11] in polynomial time. Picard and Queyranne [26] reduce
the problems to 0–1 fractional programming problems that can be solved with
O(n) and O(log n) maximum flow computations, respectively. Gabow and West-
ermann [17] describe matroid partitioning algorithms specialized to these two
matroids. Gabow’s algorithm [16], which uses Newton’s method for fractional
optimization and flow algorithms, is the fastest known exact arboricity algo-
rithm with a runtime of O(m3/2 log(n2/m)).

To the best of our knowledge, no constructive arboricity algorithm with an
approximation factor 1 < c < 2 is known in general graphs. The linear-time
greedy algorithm [3,12] is constructive. It computes an acyclic orientation that
minimizes the maximum indegree among all acyclic orientations [8]. This inde-
gree equals the degeneracy of the graph [24] and is at most 2Γ − 1 [12]. An
acyclic k-orientation can be converted into a forest k-partition (implicit in [20]).
Cyclic orientations cannot be used in this manner directly, so the approach is
exhausted.

The approximation scheme of Worou and Galtier [28] computes for ε > 0 a
1/(1+ε)-approximation of the fractional arboricity γ in O(m log2(n) log(mn) ε−2)
time. It constructs a subgraph that attains this density in the sense of the right-
hand side of (1), but apparently no forest partition is computed.

A pseudoforest k-partition can be converted into a k-orientation, and vice
versa, in linear time [20]. Hence the pseudoarboricity problem is equivalent to
finding an orientation where the maximum indegree (or outdegree) is minimized.
Dinitz’ algorithm, which has a runtime of O(m min(

√
m,n2/3)) on unit capacity

networks [14], can be employed to find a k-orientation in the same runtime, if

1 https://arxiv.org/abs/1811.06803.

https://arxiv.org/abs/1811.06803

54 M. Blumenstock and F. Fischer

it exists [4,7,20] (see also the related [18]). Recently, faster flow algorithms for
unit capacities were given with runtimes Õ(|E|10/7) [23] and Õ(|E|√|V |) [21].

A binary search for the minimum k introduces a factor of O(log p) in the
runtime. The total runtime of the approach based on Dinitz’ algorithm can be
reduced to O(m min(

√
m log p, (n log p)2/3)) using the balanced binary search

technique of Gabow and Westermann [17]. Blumenstock [7] improves the first
bound to O(m3/2

√
log log p) by employing a pseudoarboricity approximation

scheme [20] to shrink the interval for the search beforehand.2

Kowalik’s approximation scheme [20] works by terminating Dinitz’ algorithm
early. It computes a �(1 + ε)d∗�-orientation in time O(m log n log p ε−1). A par-
tition of k pseudoforests can be converted into a partition of k +1 forests, and k
if possible, in O(mn log k) time. This is implicit in [17]. (We claim in the arXiv
version that the runtime bound O(m2/k log k) in [17] is incorrect).

4 Notation and Preliminaries

We consider finite simple graphs G = (V,E), i.e., G is undirected and has no
loops. We follow the standard graph-theoretic terminology. For technical reasons
we assume n ≥ 2 and m ≥ n for the input graphs. If every vertex in a (sub-)graph
has degree zero or one, the edge set is called a matching.

In an orientation of a simple graph G, every edge of G is present once,
directed in one of the two possible directions. If all indegrees in the orientation
are at most k, it is called a k-orientation.

An acyclic simple graph is called a forest. Its connected components are called
trees. A tree of n vertices has exactly n − 1 edges. We denote the disjoint union
of sets by ∪̇. If E is partitioned as E = F1 ∪̇ · · · ∪̇ Fk where (V, Fi) is a forest
for all i = 1, . . . , k, we call (F1, . . . , Fk) a forest k-partition. The arboricity Γ (G)
is the smallest integer k such that a forest k-partition of G exists.

If a graph has at most one cycle per connected component, it is called a
pseudoforest. Its connected components are called pseudotrees. A component
that is a pseudotree but not a tree is said to be unicyclic. We define pseudoforest
k-partitions (P1, . . . , Pk) and the pseudoarboricity p(G) analogously. A basic
property of a unicyclic component is that removing an arbitrary edge on its
cycle leaves a tree. Note that connecting two different trees by an edge results
in a single tree, but this does not carry over to pseudotrees.

Let (V, P) be a pseudoforest. For every cycle C ⊆ P , select one edge eC ∈ C
arbitrarily. The set M of all these selected edges is a matching. We call this kind
of matching M a P -matching. The following lemma is obvious.

Lemma 1. A pseudoforest (V, P) can be partitioned into a forest and a P -
matching in linear time.

2 We note that this algorithm can be formulated in terms of flows entirely without
any knowledge of matroid theory. While not explicitly stated in [7], within the same
runtime an ‘almost densest subgraph’ of density greater �d∗� − 1 can be determined
using the network of [18] once for parameter p − 1 = �d∗� − 1.

A Constructive Arboricity Approximation Scheme 55

u v w
Swap

u v w

(a)

u v w
Swap

u v w

(b)

Fig. 1. (a) Situation 1. of Lemma 2. The colors i (red, thick) and j (blue, thin) of the
edges (u, v) ∈ Mi and (v, w) ∈ Mj are swapped. Dotted edges represent the forests Fi

and Fj . (b) Situation 2. of Lemma 2. v and w are in different trees of forest Fi (red,
thick, dotted), hence the edge (v, w) can be inserted into Fi after swapping colors.
(Color figure online)

In the following sections, we will describe a conversion of a pseudoforest k-
partition into a forest (k + 1)-partition using P -matchings within a reasonable
runtime. In the arXiv version, we show how to obtain linear time for k ∈ {2, 3}.

5 The Surplus Graph

We maintain the edges E of the graph as a partition E = F ∪̇ M , where
F = F1 ∪̇ · · · ∪̇ Fk for forests F1, . . . , Fk and M = M1 ∪̇ · · · ∪̇ Mk such that
Fi ∪ Mi = Pi is a pseudoforest and Mi is a Pi-matching for i = 1, . . . , k. We call
(F,M) a valid partition of the graph. Initially, a valid partition is obtained by
applying Lemma 1 to each Pi of a given pseudoforest k-partition. Edges in both
Fi and Mi are considered to have color i. The graph H = (V,M) is called the
surplus graph. Note that any two adjacent edges of H must have different colors.

Turning H into a forest while keeping (F,M) valid yields a constructive proof
of Theorem 1. The following lemma provides a swap operation that will be used
to move edges from H to the forests F1, . . . , Fk. It is illustrated in Fig. 1.

Lemma 2. Let (F,M) be a valid partition of a simple graph G, and let H =
(V,M) be its surplus graph. Let (u, v) ∈ M with color i and (v, w) ∈ M with
color j
= i. Then one of the following applies.

1. We may swap the colors of (u, v) and (v, w) in H, i.e., modify

Mi ← Mi \ {(u, v)} ∪ {(v, w)} and Mj ← Mj \ {(v, w)} ∪ {(u, v)}
such that (F,M) is still valid.

56 M. Blumenstock and F. Fischer

2. We may assign color j to (u, v) in H and insert (v, w) into Fi, i.e., modify

Mj ← Mj \ {(v, w)} ∪ {(u, v)} and Fi ← Fi ∪ {(v, w)}
such that (F,M) is still valid.

3. Symmetrically to 2., we may assign color i to (v, w) in H and insert (u, v)
into Fj such that (F,M) is still valid.

4. We may insert (v, w) into Fi and (u, v) into Fj such that (F,M) is still valid.

Furthermore, if there is an edge (w, x) ∈ M of color i, then 2. or 4. applies.

Proof. Since (F,M) is valid, u and v are in the same tree in Fi and v and w
are in the same tree in Fj . Let us swap the colors of (u, v) and (v, w) in H, i.e.,
modify Mi and Mj accordingly. We distinguish several cases:

1. If u and v are in the same tree of Fj , and v and w are in the same tree of Fi,
then after swapping the colors of (u, v) and (v, w), Mi and Mj are still Pi-
and Pj-matchings, respectively. This is illustrated in Fig. 1a.

2. If v and w are in different trees in Fi, then Fi ∪{(v, w)} is a forest. If u and v
are in the same tree in Fj , change the color of (u, v) to j, now no edge in Mi

exists whose endpoints are both in the tree of Fi that v is contained in. Since
(F,M) had been valid, there is at most one edge in Mi whose endpoints are
both in the tree of Fi that w is contained in. Hence after inserting (v, w) into
Fi, there is still at most one such edge for the joined tree. This is illustrated
in Fig. 1b.

3. If v and w are in the same tree in Fi, and u and v are in different trees in Fj ,
we have a case that is symmetric to 2.

4. If v and w are in different trees in Fi, and u and v are in different trees in
Fj , then we can insert (v, w) into Fi and (u, v) into Fi. (F,M) is easily seen
to be valid.

For the ‘furthermore’-claim, we observe that if (w, x) ∈ Mi, then v and w must
be in different trees of Fi because (F,M) is valid. �
We can implement swap operations with k union-find data structures that keep
track of the vertex sets of the connected components in each Fi. An edge (u, v) ∈
M connects two different trees in Fi if and only if the vertex sets Su = findi(u)
and Sv = findi(v) returned by the union-find structure of Fi are different. To
insert (u, v) with Su
= Sv into Fi, unioni(Su, Sv) is called, which merges Su and
Sv into a single set.

Since we will be performing O(mk) find operations, but only O(m) union
operations, we use the union-find data structure of [1] that has a total runtime
of O(f + n log n) for a sequence of f find and up to n − 1 union operations.
Note that this does not imply a time bound of O(f + m′ log n) for m′ < m
union operations dispersed among the k union-find structures. In order to achieve
this, we first contract every connected component of an Fi into a ‘super-vertex’.
These are then handled by the union-find structure instead. A table of size kn
is constructed that allows constant-time look-up of the super-vertex containing
a v ∈ V in Fi. We omit the details.

A Constructive Arboricity Approximation Scheme 57

Lemma 3. Let a path in the surplus graph H be given by edges (e1, . . . , el)
where e1, el ∈ Mi for the same color i. Then we can modify (F,M) such that the
cardinality of M decreases while maintaining validity.

Proof. We can move the color i from e1 towards el in a sequence of swaps using
Lemma 2, i.e., swap the colors of et and et+1 for t = 1, . . . until one of the
cases 2.–4. of Lemma 2 applies. This happens at the latest when el−2 has color
i, because then we are in the ‘furthermore’-part of Lemma 2. Thus we can move
some edge on the path from M to F while maintaining validity. �
An application of Lemma 3 does not necessarily remove an edge of the duplicate
color in question, but possibly an edge of some other color along the path.
Irrespective of this, we will charge the entire cost including finding the duplicate
color to the removed edge. There are at most m removals.

A connected component of the surplus graph H is called colorful if every color
appears at most once in it. A surplus graph is called colorful if all its connected
components are colorful. Note that each component in a colorful surplus graph
has at most k edges, a fact that we will later exploit for our runtime analyses.

Lemma 4. A colorful surplus graph can be obtained in O(mk + m log n) time.

Proof. Obtain an arbitrary surplus graph H in linear time. We can initially
build union-find structures for all (contracted) forests F1, . . . , Fk in total time
O(nk + m) from the connected components of each Fi.

A duplicate color in a connected component of H can be identified by per-
forming a depth-first search in it: Record the colors encountered in the search in
a Boolean array of length k. If there is a duplicate color i, we will encounter one
such color and recognize it after at most k + 1 steps of the DFS (not counting
backtracking steps). Otherwise, the search is unsuccessful and the component
already is colorful. The number of unsuccessful searches is at most n.

We can now apply Lemma 3 to a path of length at most k + 1 from the edge
of color i encountered first to the edge of color i encountered second. We charge
the costs of the O(k) find and at most two union operations to some edge that
was removed in the swap sequence and start the next search. We perform the
searches in each connected component of H until all duplicate colors have been
eliminated. Note that components may disconnect during the algorithm. There
are at most m successful searches. The total cost is thus O(mk + m log n). �

The union-find structures do not store the edges that we insert. Thus, we store
them and their colors separately in a list so we can reconstruct the Fi later on.

6 Exchanging Edges on Cycles

In order to remove cycles from a colorful surplus graph H, we want to replace
an edge e in H that is on some cycle in a connected component C with an edge
from some Fi that goes to a vertex outside of C. This reduces the number of
edges that are on at least one cycle in H. After at most m such operations, H

58 M. Blumenstock and F. Fischer

will be a forest. To do so, we will insert e into a carefully chosen Fi and exchange
it with an adjacent edge on the resulting cycle. We call this the cycle exchange.

First, we store the forests F1, . . . , Fk in k link-cut tree data structures [27]
in total time O(nk + m log n). In these structures, each tree is considered to
be a rooted tree (which is stored in a compressed way) with all edges oriented
towards the root, and the root of the tree containing vertex u can be accessed
via root(u). There is an operation evert(u) that makes u the root of its tree. The
operation cut(u) deletes the parent edge of u and thereby splits the tree. There is
an operation link(u,v), where u is a root and v is in a different tree than u, that
makes u point to v. All these operations can be performed in O(log n) amortized
(in fact, even worst-case) time [27]. There will be O(m) such operations in total.

We will also maintain the union-find structures. The reason for this is that
the vertex sets of the connected components of an Fi do not change in the cycle
exchange. Thus, the union-find structures still work correctly. We will perform
O(mk) find operations, but O(m) union and link-cut tree operations, so it is
advantageous to simultaneously keep the union-find structure for the faster find
runtime.

An edge suitable for the cycle exchange always exists if H is cyclic. How to
determine this edge fast will be shown in the next section.

Lemma 5. Let C = (VC , EC) be a colorful cyclic connected component of a
surplus graph. For any v ∈ VC , there is a color i such that there is an edge of
color i in EC , and v has no neighbors in Fi that are in VC .

Proof. Since C is colorful, exactly |EC | different colors c1, . . . , c|EC | appear in C.
As C is cyclic, we have |EC | ≥ |VC |. If v had a neighbor among the vertices VC

in every Fi, i = c1, . . . , c|EC |, then v would have at least |VC | neighbors among
VC in G, a contradiction. �
Lemma 6. Let H be a colorful surplus graph. If for a vertex v on a cycle in H
a color i as in Lemma 5 can be determined in time T (k, n,m) with P (k, n,m)
preprocessing time, then we can obtain an acyclic colorful surplus graph in time
O(mT (k, n,m) + mk + m log n + P (k, n,m)).

Proof. We start from a colorful surplus graph H. We can determine if a con-
nected component C of H is cyclic in time O(k) with DFS. If it is, let (u, v) be
an edge on this cycle. Determine the color i as in Lemma 5 in time T (k, n,m).

Determine a path from the edge of color i in C to v. As in the proof of
Lemma 4, move i towards (u, v) in a sequence of color swaps. If an edge is
removed from H by this, we charge the costs including the O(k) find and at
most two union operations to the removed edge. We then start looking for cycles
again. There can be at most m such removals in H in total.

If no edge is removed from H, then v is now incident to an edge (u, v) of color
i in H. Since (F,M) is valid, we know that inserting (u, v) into Fi would create
a cycle. Make u the root of its link-cut tree in Fi by calling evert (u), i.e., the
link-cut tree represents the tree where all edges are directed towards u. If (u, v)
were to be inserted into this tree, then it would create a cycle passing through u

A Constructive Arboricity Approximation Scheme 59

and v. Call parent (v) to obtain an edge (v, w) on this cycle incident with v. By
the choice of i, w /∈ VC , i.e., this edge must leave C in H and can hence not be
on a cycle. Call cut (v) to remove the edge from the link-cut tree, which breaks
it into a tree rooted at u and the subtree rooted at v. Call link (u, v) to insert the
edge (u, v) into the link-cut tree. As remarked earlier, the union-find structure
still represents the trees of Fi after these changes. The number of edges in H
that are on at least one cycle decreases, which may happen at most m times, so
the costs for all cycle exchanges amount to O(m log n) in total.

C \ {(u, v)} is joined to another colorful connected component of H via
(v, w). Duplicate colors in the resulting component of size O(k) are detected
and removed as in the proof of Lemma 4 in order to keep H colorful. Here, we
must charge costs to the decrease of |M | because an edge may re-enter M in
cycle exchanges. The costs of O(k) of an unsuccessful search are charged to the
cycle exchange. �

We have now obtained an alternative and algorithmic proof of Theorem 1.
In addition, each connected component of H has at most k edges.

7 Finding the Exchange Edge Fast

We next describe two ways of finding the exchange edge with a runtime that
does not depend on n. The first approach uses the data structure of Brodal and
Fagerberg [9, Section 4], which stores a graph of arboricity at most k and hence
can be used for F1∪· · ·∪Fk. It allows querying whether two vertices are adjacent
in time O(log k), inserting an edge in O(log k) amortized time, and deleting an
edge in O(log n) amortized time. The structure can initially be built for a given
graph in O(m log k + n) time (with a little effort, O(m + n) is possible).

The representation used by the data structure is an orientation of the graph
such that every vertex has indegree at most 4k. Every edge is stored only once,
namely in the adjacency list/balanced search tree of the vertex it points to.
Hence the size of each list/search tree is O(k). We can store the current color of
each edge with it without affecting the runtimes.

Lemma 7. In the situation of Lemma 5, we can determine the exchange edge
in time T (k, n,m) ∈ O(k log k) using the data structure of Brodal and Fagerberg
with preprocessing time P (k, n,m) ∈ O(m + n) . All other operations have the
same asymptotic complexity as in Lemma 6.

Proof. Create the data structure for F1 ∪ · · · ∪ Fk in time O(m + n). When
looking for a cycle in a component C = (VC , EC) of the colorful surplus graph
(with |VC | ≤ k + 1), we use a Boolean array of size k to mark the colors of the
component and remember the respective edges. When some vertex v on a cycle
has been determined, we test for each u ∈ VC \ {v} whether (u, v) ∈ E \ M in
O(log k) with the color-augmented Brodal-Fagerberg data structure. If the edge
is present in some Fi, then we obtain color i from the data structure and unmark
it in the Boolean array. Once all u ∈ VC \ {u} have been tested, search for a

60 M. Blumenstock and F. Fischer

color i that is still marked: the attached edge is the one we were looking for, i.e.,
v has no neighbors in VC in Fi. All these operations cost O(k log k) in total.

During the cycle exchange algorithm in Lemma 6, at most m edges are
inserted into the forests F1, . . . , Fk. An edge is only deleted in a cycle exchange,
which happens at most m times. Thus, these cost amount to O(m) insertions and
deletions in the data structure, and each such operation costs O(log n) amortized
time. Hence the runtime of Lemma 6 can indeed be achieved. �
We now prove the main theorem.

Proof (Theorem 2). We can obtain a partition into K ≤ �(1 + ε)d∗� pseudo-
forests in time O(m log n log p ε−1) with Kowalik’s approximation scheme [20].
For fixed ε, the factor log p can be removed (see the arXiv version).

We can assume that ε ≥ 1/K. Let k ≤ K be the smallest integer such that
(k + 1)/k ≤ 1 + ε. Note that k ∈ O(ε−1) and log k ∈ O(log n). Divide the K
pseudoforests evenly into k-tuples of pseudoforests, if possible, otherwise l ≤ k−1
pseudoforests remain. Convert each k-tuple into k + 1 forests and the remaining
l pseudoforests into l + 1 forests with Lemmas 6 and 7. �

The second approach uses perfect hashing: For the set E of m edges from
the universe V × V , we construct a perfect hash function and maintain the
set E \ M = F in a hash table and store the current color information of each
edge with it. The perfect hashing scheme of Fredman et al. [15] allows worst-case
constant runtimes for querying, insertion, and deletion. Constructing the perfect
hash function is possible in O(m) expected time (deterministic construction is
possible in O(n2m)). The following lemma is proved analogously to Lemma 7.

Lemma 8. In the situation of Lemma 5, we can determine the exchange edge
in O(k) time with O(m) expected time for preprocessing using perfect hashing.
All other operations have the same asymptotic complexity as in Lemma 6.

While Lemma 8 has the downside of being randomized, it may be useful for
the development of an exact randomized algorithm for arboricity.

8 (Near-)Exact Arboricity Algorithms

Gabow’s exact arboricity algorithm has a runtime of O(m3/2 log(n2/m)) [16].
Note that p ≤ Γ ∈ O(

√
m) [7,10,17]. Hence, even in the worst case we can

convert p pseudoforests into p+1 forests in time O(m3/2) with Lemmas 6 and 8
after the perfect hash function has been constructed. Since algorithms for pseu-
doarboricity are known that run in time O(m3/2

√
log log p) [7] and even O(m3/2)

with recent flow algorithms [23], we would obtain a faster exact (randomized)
algorithm if we can insert all edges of the constructed (k + 1)-th forest into
F1, . . . , Fk fast enough if this is feasible. By (1), an infeasibility certificate would
be a set S ⊆ V for which Fi[S] is a tree for every i = 1, . . . , k, and an additional
edge whose end vertices are both in S.

We are able to give a near-exact algorithm whose runtime scales with Γ .

A Constructive Arboricity Approximation Scheme 61

Proof (Theorem 3). Compute a 2-approximation of d∗ in linear time (see Sect. 3)
in order to set ε � 1/d∗. Compute a partition into at most �(1 + 1/d∗)d∗� = p+1
pseudoforests in O(m log n p log p) time using Kowalik’s approximation scheme.
The runtime bound can be improved to O(m log n p log∗ p) using the iterated
interval shrinking technique of [7].

Using Lemmas 6 and 7, we convert this partition into a partition of at most
p + 2 ≤ Γ + 2 forests in O(mp log p + m log n) time. The claim follows. �

9 Conclusion and Outlook

We presented a fast conversion of k pseudoforests into k+1 forests. This implies a
constructive approximation scheme for the arboricity. It remains to investigated
how a constant number of forests can be inserted into a forest k-partition fast
(if feasible), say with a runtime of O(mk+m log n). Our conversions would then
imply an exact randomized algorithm with runtime O(m3/2), being slightly faster
than Gabow’s, and an exact algorithm with runtime O(m log nΓ log∗ Γ).

A related open question is whether Kowalik’s approximation scheme for pseu-
doarboricity can be used to determine a 1/(1 + ε)-approximation to the densest
subgraph (by (2), it approximates the value d∗). As it has inversely linear depen-
dence on ε, it would be preferable to the approximation scheme in [28] (for the
slightly different measure γ) that has an inversely quadratic dependence.

Acknowledgements. The authors thank �Lukasz Kowalik for discussions and Ernst
Althaus for simplifying the algorithm that eliminates duplicate colors.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed
size in degenerated graphs. Algorithmica 54(4), 544 (2008). https://doi.org/10.
1007/s00453-008-9204-0

3. Arikati, S.R., Maheshwari, A., Zaroliagis, C.D.: Efficient computation of implicit
representations of sparse graphs. Discret. Appl. Math. 78(1–3), 1–16 (1997).
https://doi.org/10.1016/S0166-218X(97)00007-3

4. Asahiro, Y., Miyano, E., Ono, H., Zenmyo, K.: Graph orientation algorithms to
minimize the maximum outdegree. Int. J. Found. Comput. Sci. 18(02), 197–215
(2007). https://doi.org/10.1142/S0129054107004644

5. Bansal, N., Umboh, S.W.: Tight approximation bounds for dominating set on
graphs of bounded arboricity. Inf. Process. Lett. 122, 21–24 (2017). https://doi.
org/10.1016/j.ipl.2017.01.011

6. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distrib. Comput. 22(5), 363–379
(2010). https://doi.org/10.1007/s00446-009-0088-2

7. Blumenstock, M.: Fast algorithms for pseudoarboricity. In: Proceedings of the Eigh-
teenth Workshop on Algorithm Engineering and Experiments, ALENEX 2016,
Arlington, Virginia, USA, 10 January 2016, pp. 113–126 (2016). https://doi.org/
10.1137/1.9781611974317.10

https://doi.org/10.1007/s00453-008-9204-0
https://doi.org/10.1007/s00453-008-9204-0
https://doi.org/10.1016/S0166-218X(97)00007-3
https://doi.org/10.1142/S0129054107004644
https://doi.org/10.1016/j.ipl.2017.01.011
https://doi.org/10.1016/j.ipl.2017.01.011
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1137/1.9781611974317.10
https://doi.org/10.1137/1.9781611974317.10

62 M. Blumenstock and F. Fischer

8. Borradaile, G., Iglesias, J., Migler, T., Ochoa, A., Wilfong, G., Zhang, L.: Egalitar-
ian graph orientations. J. Graph Algorithms Appl. 21(4), 687–708 (2017). https://
doi.org/10.7155/jgaa.00435

9. Brodal, G.S., Fagerberg, R.: Dynamic representations of sparse graphs. In: Dehne,
F., Sack, J.-R., Gupta, A., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
342–351. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48447-7 34

10. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1), 210–223 (1985). https://doi.org/10.1137/0214017

11. Edmonds, J.: Minimum partition of a matroid into independent subsets. J. Res.
Nat. Bur. Stand. Sect. B 69B, 67–72 (1965)

12. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Inf. Process.
Lett. 51(4), 207–211 (1994). https://doi.org/10.1016/0020-0190(94)90121-X

13. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques inlarge sparse
real-world graphs. ACM J. Exp. Algorithmics 18 (2013). https://doi.org/10.1145/
2543629

14. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J.
Comput. 4(4), 507–518 (1975). https://doi.org/10.1137/0204043

15. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with o(1) worst
case access time. J. ACM 31(3), 538–544 (1984). https://doi.org/10.1145/828.1884

16. Gabow, H.N.: Algorithms for graphic polymatroids and parametric s̄-sets. J. Algo-
rithms 26(1), 48–86 (1998). https://doi.org/10.1006/jagm.1997.0904

17. Gabow, H.N., Westermann, H.H.: Forests, frames, and games: algorithms for
matroid sums and applications. Algorithmica 7(1–6), 465–497 (1992). https://doi.
org/10.1007/BF01758774

18. Goldberg, A.V.: Finding a maximum density subgraph. Technical report, Univer-
sity of California at Berkeley, Berkeley, CA, USA (1984)

19. Golovach, P.A., Villanger, Y.: Parameterized complexity for domination problems
on degenerate graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma,
D. (eds.) WG 2008. LNCS, vol. 5344, pp. 195–205. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-92248-3 18

20. Kowalik, �L.: Approximation scheme for lowest outdegree orientation and graph
density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566.
Springer, Heidelberg (2006). https://doi.org/10.1007/11940128 56

21. Lee, Y.T., Sidford, A.: Path finding methods for linear programming: solving linear
programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In: 2014

IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 424–433,
October 2014. https://doi.org/10.1109/FOCS.2014.52

22. Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of
bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 510–524. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15763-9 48

23. M ↪adry, A.: Navigating central path with electrical flows: from flows to matchings,
and back. In: 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, Berkeley, CA, USA, 26–29 October 2013, pp. 253–262. IEEE Computer
Society (2013). https://doi.org/10.1109/FOCS.2013.35

24. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983). https://doi.org/10.1145/2402.322385

25. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. London
Math. Soc. 39(1), 12 (1964). https://doi.org/10.1112/jlms/s1-39.1.12

https://doi.org/10.7155/jgaa.00435
https://doi.org/10.7155/jgaa.00435
https://doi.org/10.1007/3-540-48447-7_34
https://doi.org/10.1137/0214017
https://doi.org/10.1016/0020-0190(94)90121-X
https://doi.org/10.1145/2543629
https://doi.org/10.1145/2543629
https://doi.org/10.1137/0204043
https://doi.org/10.1145/828.1884
https://doi.org/10.1006/jagm.1997.0904
https://doi.org/10.1007/BF01758774
https://doi.org/10.1007/BF01758774
https://doi.org/10.1007/978-3-540-92248-3_18
https://doi.org/10.1007/11940128_56
https://doi.org/10.1109/FOCS.2014.52
https://doi.org/10.1007/978-3-642-15763-9_48
https://doi.org/10.1007/978-3-642-15763-9_48
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1145/2402.322385
https://doi.org/10.1112/jlms/s1-39.1.12

A Constructive Arboricity Approximation Scheme 63

26. Picard, J.C., Queyranne, M.: A network flow solution to some nonlinear 0-1 pro-
gramming problems, with applications to graph theory. Networks 12(2), 141–159
(1982). https://doi.org/10.1002/net.3230120206

27. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983). https://doi.org/10.1016/0022-0000(83)90006-5

28. Worou, B.M.T., Galtier, J.: Fast approximation for computing the fractional
arboricity and extraction of communities of a graph. Discret. Appl. Math. 213,
179–195 (2016). https://doi.org/10.1016/j.dam.2014.10.023

https://doi.org/10.1002/net.3230120206
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/j.dam.2014.10.023

A Game of Cops and Robbers on Graphs
with Periodic Edge-Connectivity

Thomas Erlebach and Jakob T. Spooner(B)

School of Informatics, University of Leicester, Leicester, England
{te17,jts21}@leicester.ac.uk

Abstract. This paper considers a game in which a single cop and a
single robber take turns moving along the edges of a given graph G.
If there exists a strategy for the cop which enables it to be positioned
at the same vertex as the robber eventually, then G is called cop-win,
and robber-win otherwise. In contrast to previous work, we study this
classical combinatorial game on edge-periodic graphs. These are graphs
with an infinite lifetime comprised of discrete time steps such that each
edge e is assigned a bit pattern of length le, with a 1 in the i-th position
of the pattern indicating the presence of edge e in the i-th step of each
consecutive block of le steps. Utilising the known framework of reach-
ability games, we obtain an O(LCM(L) · n3) time algorithm to decide
if a given n-vertex edge-periodic graph Gτ is cop-win or robber-win as
well as compute a strategy for the winning player (here, L is the set
of all edge pattern lengths le, and LCM(L) denotes the least common
multiple of the set L). For the special case of edge-periodic cycles, we
prove an upper bound of 2 · l · LCM(L) on the minimum length required
of any edge-periodic cycle to ensure that it is robber-win, where l = 1
if LCM(L) ≥ 2 · maxL, and l = 2 otherwise. Furthermore, we provide
constructions of edge-periodic cycles that are cop-win and have length
1.5 · LCM(L) in the l = 1 case and length 3 · LCM(L) in the l = 2 case.

1 Introduction

Pursuit-evasion games are games played between two teams of players, who take
turns moving within the confines of some abstract arena. Typically, one team –
the pursuers – are tasked with catching the members of the other team – the
evaders – whose task it is to evade capture indefinitely. The study of such games
has led to their application in a number of real-world scenarios, one widely-
studied example of which would be their application to the problem of guiding
robots through real-world environments [8]. From a theoretical standpoint, other
variants of the game have been studied for their intrinsic links to important graph
parameters; for example, in one particular variant in which each pursuer can, in
a single turn, move to an arbitrary vertex of the given graph G, it is well known
that establishing the minimum number of pursuers it takes to catch one evader
also establishes the treewidth of G [20].

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 64–75, 2020.
https://doi.org/10.1007/978-3-030-38919-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_6&domain=pdf
http://orcid.org/0000-0002-4470-5868
http://orcid.org/0000-0003-3816-6308
https://doi.org/10.1007/978-3-030-38919-2_6

A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity 65

The variant most closely resembled by the one considered in this paper was
first studied separately by Quilliot [18], and by Nowakowski and Winkler [15], as
the discrete Cops and Robbers game: One cop (pursuer) and one robber (evader)
take turns moving across an edge (or remaining at their current vertex) in a given
graph G, with the cop aiming to catch the robber, and the robber attempting to
avoid capture. (By ‘catching the robber’ we mean that the cop occupies the same
vertex as the robber.) In this paper, we consider a variant of this game where the
game arena is an edge-periodic graph [7]. We call this game Edge-Periodic Cops
and Robbers, or EPCR for short. Such graphs can be thought of as traditional
static graphs equipped with an additional function mapping each edge e to a
pattern of length le that dictates in which time steps e is present within each
consecutive period of le steps. Formal definitions of edge-periodic graphs, which
can be seen as a subclass of temporal graphs [14], and EPCR are given in Sect. 2.
As far as we are aware, pursuit-evasion games have not yet been studied in the
context of temporal graphs.

Paper Outline and Our Results. The remainder of this section discusses related
work. Section 2 gives preliminaries. In Sect. 3, we consider the problem of decid-
ing, given an edge-periodic graph Gτ , whether a game of edge-periodic cops and
robbers played on Gτ is won by the cop or won by the robber. We exploit the con-
nection (which was previously noted, e.g., in [11]) between the game of cops and
robbers and reachability games to solve the one cop, one robber variant of cops
and robbers on edge-periodic graphs. Our algorithm runs in polynomial-time
whenever the lowest common multiple of the lengths of each edges appearance-
pattern is n and max L; we remark, however, that the algorithms has exponential
running-time in the worst-case (more in Sect. 5). In Sect. 4, we consider edge-
periodic graphs whose underlying graph is a cycle. We prove an upper bound of
2 · l · LCM(L) on the length required of any such cycle Cτ in order to guarantee
that it is robber-win, where l = 1 if LCM(L) ≥ 2 · max L, and l = 2 otherwise.
Here, L is the set of the lengths of the bit patterns assigned to the edges of
the cycle, and LCM(L) their least common multiple. We also give lower bound
constructions showing that there exist cop-win edge-periodic cycles of length
3
2 · LCM(L) and 3 · LCM(L) in the l = 1 and l = 2 case, respectively. Section 5
concludes the paper.

Related Work. The introduction of pursuit-evasion type combinatorial games
is most often attributed to Parsons, who studied a problem in which a team
of rescuers search for a lost spelunker in a circular cave system [16]. By repre-
senting the cave as a cycle graph, he showed that one rescuer is not enough to
guarantee that the spelunker is found, but that two are. In a similar vein, the
Cop and Robber problem, in which one cop attempts to catch a robber in a given
graph G, was introduced independently by Quilliot [18], and by Nowakowski and
Winkler [15]. Their papers characterise precisely those graphs for which one cop
is enough to guarantee that the robber is caught. Aigner and Fromme [1] consid-
ered a generalised variant of the game, in which k cops attempt to catch a single

66 T. Erlebach and J. T. Spooner

robber; their paper introduced the notion of the cop-number of a graph, i.e., the
minimum number of cops required to guarantee that the robber is caught.

Reductions from the standard game of cops and robbers to a game played
on a directed graph, and algorithms that can decide, for a given graph, whether
cop or robber wins, were given in [2,4,10]. Kehagias and Konstantinidis [11]
note a connection between these approaches and reachability games. Reacha-
bility games are a well-studied class of 2-player token-pushing games, in which
two players push a token along the edges of a directed graph in turn – one
with the aim to push the token to some vertex belonging to a prespecified sub-
set of the graph’s vertex set, and the other with the aim to ensure the token
never reaches such a vertex [9]. The winner of a reachability game played on a
given directed graph G can be established in polynomial time [3,9]. For more
information regarding cops and robbers/pursuit-evasion games, as well as their
connection to reachability games, we refer the reader to [3,5,8,9,11,12,17].

In this paper, we consider the game of cops and robbers within the context of
temporal graphs. Temporal graphs are a relatively new object of interest, and incor-
porate an aspect of time-variance into the combinatorial structure of traditional
static graphs [14]. One previously considered way of viewing a temporal graph G
is as a sequence of L subgraphs of a given underlying graph G (where L is the life-
time of the graph) [13], with each subgraph indexed by the time steps t ∈ [L]. For
problems within this model, it is often natural to assume that each subgraph Gt

in all time steps t ∈ [L] is connected [13]. The edge-periodic graphs considered in
this paper differ in that this connectivity assumption is dropped – similar graphs
were introduced in [7]. For further related work on temporal graphs, we refer the
reader to, e.g., [6,13,14].

2 Graph Model and Game Rules

For any positive integer k we write [k] for the set {0, 1, . . . , k − 1}.

Definition 1 (Edge-periodic graph Gτ). An edge-periodic graph Gτ =
(V,E, τ) is a temporal graph with underlying (directed or undirected) graph
G = (V,E) and infinite lifetime, and an additional function τ : E → {0, 1}∗

that maps each edge e ∈ E to a pattern τ(e) = be(0)be(1) · · · be(le − 1) of length
le > 0. Each τ(e) consists of le Boolean values, such that e is present in a time
step t ≥ 0 if and only if be(t mod le) = 1. We can assume that for any edge
e ∈ E(Gτ), be(i) = 1 for at least one i ∈ [le], so that every edge e is present at
least once in any period of le time steps.

For a given temporal graph Gτ = (V,E, τ), we refer to the length le of the
bit pattern assigned to edge e as the period of e. Furthermore, we use L = {le :
e ∈ E} to denote the set of all edge periods and LCM(L) to denote the least
common multiple of the elements in L. When the set L is clear from the context,
we omit it from the notation, writing LCM in place of LCM(L).

We consider a game of cops and robbers identical in its rule set to the one
introduced in [18] and [15] (in particular, the variant with 1 cop and 1 robber),

A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity 67

but with edge-periodic graphs as the game arenas. We call the resulting game
edge-periodic cop(s) and robber(s), or EPCR for short. In this paper we only
consider the undirected case, but all results translate to the directed case easily.

Rules of EPCR. Initially, the two players (cop C and robber R) each select a
start vertex on a given edge-periodic graph Gτ . C chooses first, followed by R,
whose choice is made in full knowledge of C’s choice. After the start vertices
have been chosen, in each time step t ≥ 0, players take alternating turns moving
over an edge in the graph that is incident to their current vertex or choosing to
remain at their current vertex, following the convention that in any particular
time step, C moves first, in full knowledge of R’s position, followed by R; again,
R’s move is made with full knowledge of the move that C just made. Whenever
C or R are situated at a vertex v ∈ V (Gτ) during some time step t and it
is their turn to make a move, they may only traverse those edges {v, u} with
b{v,u}(t mod l{v,u}) = 1. The game terminates only when, at the end of either
player’s move, C and R are situated at the same vertex in Gτ . If there exists a
strategy for C that ensures that the game terminates, we say that Gτ is cop-win.
Otherwise, there must exist a strategy for R that enables infinite evasion of C;
in this case we call Gτ robber-win.

3 Determining the Winner of a Game of EPCR

In this section, we prove the following theorem:

Theorem 1. Let Gτ be an edge-periodic graph with n nodes, and let L = {le :
e ∈ E(Gτ)}. Then, it can be decided in O(LCM ·n3) time whether Gτ is cop-win
or robber-win. A winning strategy for the winning player can be computed in the
same time bound.

The proof mainly uses a transformation from a given edge-periodic graph Gτ

to a finite directed graph G′. The transformation is such that the playing of an
instance of EPCR on Gτ is essentially equivalent to the playing of a reachability
game on G′. For this, we need a way of translating a particular state of an
instance of EPCR played on Gτ to a corresponding state in the reachability game
played on G′. The following definition introduces the notion of a position that
represents the current state in a game of EPCR on an edge-periodic graph Gτ .

Definition 2 (Position in Gτ). A position of a game of EPCR played on an
edge-periodic graph Gτ is a 4-tuple P = (cP , rP , sP , tP), where cP ∈ V (Gτ) is
C’s current vertex, rP ∈ V (Gτ) is R’s current vertex, sP ∈ {C,R} is the player
whose turn it is to move next, and tP is the current time step.

We call any position P such that cP = rP a terminating position, since this
indicates that both players are situated on the same vertex and hence C has
won. Next, we formally introduce reachability games [9]:

Definition 3 (Reachability game G′). A reachability game is a directed graph
G′, given as a 3-tuple

G′ = (V0 ∪ V1, E
′, F),

68 T. Erlebach and J. T. Spooner

where V0 ∪ V1 is a partition of the node set V ′ (also referred to as the state set);
E′ ⊆ V ′ × V ′ is a set of directed edges; and F ⊆ V ′ is a set of final states.

The game is played by two opposing players, Player 0 and Player 1; V0 and V1

are the (disjoint) sets of Player 0/Player 1 owned nodes, respectively. A token is
placed at some initial vertex v0 at the start of the game. Depending on whether
v0 ∈ V0 or v0 ∈ V1, the corresponding player then selects one of the outgoing
edges of v0 and pushes the token along that edge. When the token arrives at the
next vertex, the player who owns that vertex then selects an outgoing edge and
pushes the token along it. This process continues, and such a sequence of moves
constitutes a play of the reachability game on G′. Formally, a play φ = v0, v1, ...
is a (possibly infinite) sequence of vertices in V ′, such that (vi, vi+1) ∈ E′ for all
i ≥ 0. We say that a play φ is won by Player 0 if there exists some i such that
vi ∈ F . Otherwise, φ is of infinite length and for no i is vi ∈ F , and φ is won by
Player 1.

3.1 Transformation

We now detail our transformation from a given edge-periodic graph Gτ to a
reachability game G′ = (V ′, E′, F).

State Set V ′. We define the state set (i.e., vertex set) of the directed graph
G′ to be a set of 4-tuples, each corresponding to a position in the game of EPCR
on Gτ as follows:

V ′ = {(c, r, s, t) : c, r ∈ V (Gτ), s ∈ {C,R}, t ∈ [LCM]}.

Let V0 = {(c, r, s, t) ∈ V ′ : s = C} and V1 = {(c, r, s, t) ∈ V ′ : s = R} be the sets
of Player 0 (or C) owned nodes, and Player 1 (or R) owned nodes, respectively.
We can restrict the range of t to [LCM] without losing information because all
edge periods divide LCM and hence the set of edges present at any time t is the
same as the set of edges present at time t mod LCM.

Edge Set E′. In order to construct the edge set E′ ⊆ (V0 × V1) ∪ (V1 × V0) we
include the edge (S, S′) for S = (c, r, s, t) and S′ = (c′, r′, s′, t′) in E′ if and only
if the following conditions are satisfied:

(1) s = C =⇒ (
c = c′ ∨ ({c, c′} ∈ E(Gτ) and b{c,c′}(t mod l{c,c′}) = 1)

)

∧ (r = r′) ∧ (t′ = t) ∧ (s′ = R),
(2) s = R =⇒ (

r = r′ ∨ ({r, r′} ∈ E(Gτ) and b{r,r′}(t mod l{r,r′}) = 1)
)

∧ (
c = c′) ∧ (

t′ = (t + 1) mod LCM
) ∧ (s′ = C).

Condition (1) ensures that C can only stay at a vertex or move over an
adjacent edge that is present in every time step t′′ with t′′ mod LCM = t, and
that the next state will be a state in the same time step where R has to move.
Condition (2) is the analogous condition for R, but the next state will be in the
following time step (modulo LCM) and C will have to move next.

Set of Final States F . Let F = {(c, r, s, t) ∈ V ′ : c = r}, so that the set of
final states consists of all states that correspond to a position in Gτ where C is
positioned on the same vertex as R (i.e., where C has won the game).

A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity 69

3.2 Proof of Theorem 1

We first introduce the elements of the theory of reachability games that are
required for the proof of Theorem1, starting with the definition of the attractor
set :

Definition 4 (Attractor set Attr(F) [3]). The sequence (Attri(F))i≥0 is
recursively defined as follows:

Attr0(F) = F

Attri+1(F) = Attri(F) ∪ {v ∈ V0 | ∃(v, u) ∈ E′ : u ∈ Attri(F)} ∪
{v ∈ V1 | ∀(v, u) ∈ E′ : u ∈ Attri(F)}

The sets Attri(F) are a sequence of subsets of V ′ that is monotone with respect
to set-inclusion. Let

Attr(F) =
⋃

i≥0

Attri(F).

Since G′ is finite, Attr(F) is the least fixed point of the sequence (Attri(F))i≥0.

Intuitively, the states in Attr(F) are the states from which Player 0 can win
the game. For x ∈ {0, 1}, a memoryless strategy of Player x is a partial function
σx : Vx → V ′ that specifies for each state in Vx (except states in Vx ∩ F) the
state to which Player x pushes the token from that state. The strategy is called
memoryless because the move a player selects only depends on the current state,
not on the history of the game. A winning strategy of Player 0 from any state in
Attr(F) consists of selecting for each state u in (Attri+1(F)\Attri(F))∩V0, for
any i ≥ 0, an arbitrary outgoing edge leading to a state in Attri(F). The states
in Attri(F), for any i ≥ 0, have the property that Player 0 wins the game after
at most i further moves (in total for both players) when following that strategy.
Similarly, V ′ \Attr(F) is the set of states from which Player 1 can win the game.
The winning strategy for Player 1 from any such state consists of selecting for
each state u in V1 \ Attr(F) an arbitrary outgoing edge leading to a state that
is not in Attr(F). These winning strategies are memoryless.

Theorem 2 (Berwanger [3], Grädel et al. [9]). In a given reachability game
G′ = (V ′, E′, F), Player 0 has a winning strategy from any state S ∈ Attr(F),
and Player 1 has a winning strategy from any state S ∈ V ′ \ Attr(F). There
exists an algorithm which computes the set Attr(F) and a memoryless winning
strategy for the winning player in time O(|V ′| + |E′|).

Our transformation produces, from a given edge-periodic graph Gτ , a
directed graph G′ = (V ′, E′, F) such that there is a correspondence between
positions in the game of EPCR on Gτ and states in V ′. Let Attr(F) be the
attractor set for G′. Winning strategies for G′ translate directly into winning
strategies for EPCR on Gτ from any winning position by moving according to
the outgoing edges chosen by the winning strategy in G′. Using the notation SP

to refer to the state in V ′ that corresponds to the position P in the game of
EPCR on Gτ , Theorem 2 then implies the following:

70 T. Erlebach and J. T. Spooner

Lemma 1. C can force a win from a position P if and only if the state SP ∈ V ′

satisfies SP ∈ Attr(F). Starting from a position P such that SP /∈ Attr(F),
R can force the sequence of moves to never reach any state S ∈ F , and, as such,
the EPCR game can be won by R.

Lemma 2. An edge-periodic graph Gτ is cop-win if and only if there exists a
vertex v ∈ V (Gτ) such that (v, r,C, 0) ∈ Attr(F) for all r ∈ V (Gτ).

Proof. (⇒) Assume not, so that Gτ is cop-win but there exists no vertex v ∈
V (Gτ) such that (v, r,C, 0) ∈ Attr(F) for all r ∈ V (Gτ). Then for every start
vertex c that C can choose, there exists at least one vertex u such that the state
(c, u,C, 0) /∈ Attr(F). Let R choose such a vertex u as its start vertex. Since R
chooses u in full knowledge of C’s choice of c, it follows that R can force the
equivalent reachability game on G′ to begin from a state S(c,u,C,0) /∈ Attr(F),
hence winning the reachability game regardless of C’s choice of c. This is a
contradiction since, by assumption, Gτ is cop-win.

(⇐) If C chooses a vertex v with the stated property as its initial vertex, the
resulting position P will correspond to a state SP ∈ Attr(F) no matter which
vertex R chooses as its initial vertex, and by Lemma 1 C has a winning strategy.��
Proof (of Theorem 1). Since n = |V (Gτ)|, our transformation produces, given
an edge-periodic graph Gτ , a directed graph G′ = (V ′, E′, F), such that |V ′| =
O(LCM · n2). This is because V ′ contains tuples (c, r, s, t) for n choices of c,
n choices of r, two choices of s, and LCM choices of t. Next, note that each state
SP ∈ V ′ has at most n outgoing edges because the player whose turn it is can
only stay at its vertex or move to one of at most n − 1 neighbouring vertices. It
follows that |E′| = O(LCM · n3). Furthermore, the transformation can be done
in O(|V ′| + |E′|) = O(LCM · n3) time.

By Theorem 2, the attractor set Attr(F) of G′ can be computed in time
O(LCM · n3). By Lemma 2, we can then determine whether Gτ is cop-win by
checking if there exists at least one vertex c ∈ V (Gτ) such that (c, r,C, 0) ∈
Attr(F) for all r ∈ V (Gτ): if such a c exists, Gτ is cop-win, otherwise it is
robber-win. This check can be done in O(n2) time.

By Theorem 2, we also obtain a memoryless winning strategy σ0 for Player 0
from all states in Attr(F), and a memoryless winning strategy σ1 for Player 1
from all states in V ′ \ Attr(F), in O(|V ′| + |E′|) time. If Gτ is cop-win, we
obtain a winning-strategy for C by letting C choose as its initial vertex any
vertex satisfying the condition of Lemma2 and then behave in line with σ0:
When it is C′s turn in a current position P = (cP , rP ,C, tP), C constructs from
it the state SP , looks up the state σ0(SP) = (c′, r′,R, tP mod LCM), and moves
to c′ (or stays at cP if cP = c′). Similarly, if Gτ is robber-win, we obtain a
winning-strategy for R by letting R choose its initial vertex r (in response to C’s
choice of its initial vertex c) in such a way that SP /∈ Attr(F) for P = (c, r,C, 0)
and then behave in line with σ1. ��

We remark that, as long as LCM is polynomial in n and max L, the winner of
EPCR on a given graph Gτ can be determined in polynomial time. In particular,

A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity 71

if the periods le are bounded by some constant for all e ∈ E(Gτ), the winner
can be determined in O(n3) time.

Finally, we note that Theorem1 can be generalised to a setting with k cops at
the expense of increasing the algorithm’s running time to O(LCM ·k ·nk+2). The
idea is to fix an arbitrary ordering of the cops and create k + 1 layers of states
during every time step t ∈ [LCM] (one for each of the k cops’ moves, followed
finally by the robber’s move). By allowing the players to play their moves in each
time step in this serialised fashion the resulting game graph requires O(LCM · k)
layers with nk+1 states in each, with at most n edges leading from every state
to states in the following layer.

4 An Upper Bound on the Length Required to Ensure
an Edge-Periodic Cycle Is Robber-Win

In this section, we consider edge-periodic cycles, a restricted subclass of edge-
periodic graphs where the underlying graph is a cycle. We are interested in how
long (in terms of number of edges) the cycle needs to be to ensure that the robber
can escape the cop indefinitely. First, we show that any edge-periodic infinite
path for which the set L of its edge periods is finite is robber-win. After this, we
show how the strategy for such infinite paths can be adapted to the cycle case.
Let the given edge periodic cycle be Cτ = (V,E, τ), and let L = {le : e ∈ E}
denote the set of edge periods. In the remainder of this section, we write LCM
as short-hand for LCM.

We first consider infinite paths, which will later allow us to handle the case
in which the cop chases the robber around the cycle in a fixed direction.

Lemma 3. Let P be an infinite edge-periodic path, L = {le : e ∈ E(P)}, and
assume that |L| is finite. Then, starting from any time step t, there exists a
winning strategy for R from any vertex with distance at least 2 · LCM from C’s
start vertex if LCM = max L, and with distance at least LCM otherwise.

Proof. First, notice that since we assume that |L| is finite, so must be LCM.
Let C’s vertex at the start of time step t be ct ∈ P . Denote R’s initial vertex
by rt, and assume without loss of generality that rt is a vertex in P that lies
to the right of ct. Assume from now onward that P is a path starting at ct and
extending infinitely to the right, and that C moves right whenever possible (it is
clear that this is the best strategy for capturing R).

Consider the set L and its constituent elements. Either (1) there exists x ∈ L
such that max L is not a multiple of x – then LCM ≥ 2 ·max L, since it cannot be
the case that LCM = j ·max L for any j < 2; or (2) for every x ∈ L, max L = x · i
for some integer i ≥ 1; then LCM = max L. With this in mind, define B = LCM
if (1) holds and B = 2 · LCM if (2) holds. Now, let us define the strips Si (i ≥ 1)
to be finite subpaths of P , such that for all edges e ∈ Si, e is first traversed by
C in some time step te ∈ [t + (i − 1)B, t + iB − 1] (assuming that C moves right
whenever it can). Note that B ≥ 2·max L and hence each Si must contain at least
two edges. By convention, we call the leftmost and rightmost edges (vertices)

72 T. Erlebach and J. T. Spooner

of any Si its first and last edges (vertices), respectively. Note also that the last
vertex of Si and the first vertex of Si+1 are one and the same, for all i ≥ 1.

Note that the first vertex of S2 is at most B edges away from ct. By the
condition of the lemma, R is located at least B edges away from ct. For the
remainder of the analysis, we assume that R is located at the first vertex of S2

and moves right whenever possible. If R can escape C indefinitely under this
assumption, it is clear that R can also do so if it starts further to the right.

We now demonstrate that R wins the game. Note that the set of edges that
are present in each step repeats every B time steps as LCM divides B. Thus,
we have that C and R traverse strips in a synchronised fashion: For any i ≥ 1,
during the interval [t + (i − 1)B, t + iB − 1] of time steps, C traverses Si and R
traverses Si+1. The only possibility for C to catch R would be for C to reach the
last vertex of Si before R leaves the first vertex of Si+1. However, C reaches the
last vertex of Si in a time step t′ = t + iB − j for some 1 ≤ j ≤ max L, as the
last edge of Si is available at least once in max L consecutive time steps. On the
other hand, R leaves the first vertex of Si+1 in a time step t′′ = t + (i − 1)B + j′

for some 0 ≤ j′ < max L. As B ≥ 2max L, it follows that t′ > t′′, showing that
C cannot catch R. ��
Theorem 3. Let Cτ = (V,E, τ) be an edge-periodic cycle on n vertices and
L = {le : e ∈ E}. If n ≥ 2 · l · LCM(L), then Cτ is robber-win (where l = 1 if
LCM(L) ≥ 2 · max L, and l = 2 otherwise).

Proof. For any t ≥ 0, we let ct and rt denote the vertex at which C and R
are positioned at the start of time step t, respectively. Consider now some edge
e ∈ E(Cτ) and classify its vertices as a ‘left’ and ‘right’ vertex arbitrarily; let
the left vertex of each edge be the right vertex of the following edge in the cycle.
We proceed by specifying a strategy for R. Initially, let C choose c0; R chooses r0
to be the vertex antipodal to c0 in Cτ . (If n is odd then R selects r0 to be either
of the two vertices that are furthest away from c0; we will refer to both these
vertices as antipodal to c0, and treat vertices in all steps t ≥ 0 in the same way.)
We now distinguish between two modes of play, Hide and Escape, and specify
R’s strategy in each of them.

Hide Mode: A Hide period begins in step 0 and in any step t ≥ 2 such that ct

and rt are antipodal, but ct−1 and rt−1 were not. Note that any game in which R
follows our strategy begins in a Hide period. The Hide period beginning at step
t is the interval [t, t + x] such that ct′ and rt′ are antipodal for all t′ ∈ [t, t + x],
but ct+x+1 and rt+x+1 are not. (If no such step t + x + 1 exists, the Hide period
is [t,∞).) Any Hide period (except if it is of the form [t,∞)) is followed directly
by an Escape period, which will start in step t + x + 1.

R’s Hide Strategy: If the game is in a Hide period during step t, R observes C’s
choice of ct+1 and tries to move to (or stay at) a vertex antipodal to it. Clearly,
R cannot be caught in any step belonging to a Hide period, as regardless of
whether LCM = max L or LCM ≥ 2 · max L, we have that n ≥ 4 · max L ≥ 4. As
a result, antipodal vertices in Cτ are at least distance 2 from one another.

A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity 73

Escape Mode: An Escape period always begins in a step t such that step t − 1
was the last step of some Hide period. As such, an Escape period is an interval
[t, t + x] such that ct′ and rt′ are not antipodal for any t′ ∈ [t, t + x], but ct+x+1

and rt+x+1 are. The last step of the Escape period is then t + x, and the first
step of the next Hide period is t + x + 1. If there is no step t + x + 1 in which
ct+x+1 and rt+x+1 are antipodal, the Escape period is [t,∞).

R’s Escape Strategy: Assume that some Escape period starts in step t. Then,
at the start of step t−1, ct−1 and rt−1 were antipodal to one another, and during
step t − 1, we had a situation in which C was able to move towards R in some
direction, but the edge incident to rt−1 leading in the same direction was not
present. Now, recall that if l = 2, so that LCM = max L, then n ≥ 4 · LCM; and
if l = 1, so that LCM ≥ 2 · max L, then n ≥ 2 · LCM. Therefore, since ct−1 and
rt−1 are antipodal in Cτ , if l = 2 holds we have that the distance between them
is at least 2 ·LCM and if l = 1 holds, the distance between them is at least LCM.
Observe now that we are able to view any edge-periodic cycle of finite length as
an infinite path whose edge patterns repeat infinitely often. We can thus view
the Escape period as an instance of the game on an infinite edge-periodic path
starting at time step t−1, to which Lemma 3 applies. Hence, R can evade C until
the Escape period ends (or indefinitely, in case the Escape period never ends).

Since every step t belongs to either a Hide period or an Escape period, we
have shown that C can never catch R, and the proof is complete. ��

We now give lower bounds on the length required of a strictly edge-periodic
cycle to ensure that it is robber-win.

Theorem 4. There exists an edge-periodic cycle of length 3 · LCM with edge
pattern lengths in the set L that is both cop-win and satisfies LCM = max L.

Proof. Let M > 1 be an integer and consider an edge-periodic cycle C with 3M
edges and with edge pattern lengths in L = {1,M}. Let two consecutive edges
have patterns 0...01 of length M , and all 3M −2 remaining edges have pattern 1.
We refer to the subpath of C consisting of the two edges with period M as the
M -path, and the subpath with edges labelled with 1 as the 1-path.

We now specify a strategy for C and show that it is in fact a winning strategy:
Let C position itself initially at either of the two vertices belonging to the 1-path
that are distance M − 1 from one extreme point of the M -path, and 2M − 1
from the opposite extreme point (where distance is taken to mean the length
of the path to that extreme point that avoids the edges of the M -path). Call
that chosen vertex c0, and notice that it splits the 1-path into two subpaths that
intersect only in c0 – one of length M − 1 which we will call P−, the other of
length 2M − 1 which we call P+. If R chooses its initial position to be some
vertex lying on P−, then C can move along all edges of P− in the first M − 1
steps and catch R. If R chooses its initial position as some vertex lying on P+,
then in the first 2M −1 steps C can traverse all edges of P+. The only way for R
to leave P+ without encountering C is via the M -path. R can traverse only one
edge of the M -path (in the M -th step) and will be stuck at the middle vertex of

74 T. Erlebach and J. T. Spooner

the M -path until the 2M -th step (i.e., until time step 2M − 1). In step 2M − 1,
C will be positioned at the vertex that lies on both the M -path and P+. C will
move first and catch R. It remains to be shown that R will be caught if it chooses
the middle vertex of the M -path as its start vertex: here, R will not be able to
move until step M − 1, so C can traverse all edges of P− in the first M − 1 steps
and then, in step M − 1, catch R before R can make its move. ��

A small amount of modification to the construction in the proof of Theorem4
yields the following lower bound for the case when LCM ≥ 2 · max L:

Theorem 5. There exists an edge-periodic cycle of length 1.5 · LCM with edge
periods in the set L that is both cop-win and satisfies LCM ≥ 2 · max L.

Proof. Perform the construction from the proof of Theorem4, taking M > 1
to be odd. Again let C select one of the vertices that has distance M − 1 and
2M−1 from opposite ends of the M -path as its start vertex, calling that vertex x.
Consider the strategy from the proof of Theorem4 and observe that there are
two edges that C may cross in the second step. Select either one of these edges
and replace its pattern of 1 with the pattern 01 (with period 2). C can now
follow the strategy in the proof of Theorem4 – this works since the edge with
pattern 01 has been selected so that it is present whenever C’s strategy crosses
that edge. Since M is odd, we have that LCM = 2M . Since the constructed cycle
has length 3M , the theorem follows. ��

5 Conclusion

We have introduced a cops and robbers game on edge-periodic graphs and shown
that there exists an algorithm with running time O(LCM · n3) that decides
whether the cop or robber wins and computes a winning strategy for the winning
player. The running-time of the algorithm is polynomial if LCM(L) is polynomial
in n and max L. A natural open question is: What is the complexity of deciding
whether cop or robber wins when the least common multiple of the edge periods
is exponential in the size of the input? We note that LCM({1, ..., n}) = eφ(n),
where φ(n) ∈ Θ(n) is Chebyshev’s function [19], and thus there are edge-periodic
graphs where the running-time of our algorithm is exponential. It would be inter-
esting to establish whether there exists a better algorithm or whether the prob-
lem is NP -hard for this case. More generally, one could also examine the cops
and robbers game within the context of other temporal graph models. It would
also be interesting to reduce the gap between our upper and lower bounds on
the minimum length required of an edge-periodic cycle to be guaranteed to be
robber-win.

Acknowledgements. The authors would like to thank Maciej Gazda for helpful dis-
cussions regarding reachability games, as well as an anonymous reviewer for a sugges-
tion leading to the running-time for the variant with k cops mentioned at the end of
Sect. 3.

A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity 75

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discret. Appl. Math. 8(1),
1–12 (1984). https://doi.org/10.1016/0166-218X(84)90073-8

2. Berarducci, A., Intrigila, B.: On the cop number of a graph. Adv. Appl. Math.
14(4), 389–403 (1993). https://doi.org/10.1006/aama.1993.1019

3. Berwanger, D.: Graph games with perfect information. arXiv:1407.1647 (2013)
4. Bonato, A., MacGillivray, G.: A general framework for discrete-time pursuit games

(2015). Unpublished manuscript
5. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs, Student

Mathematical Library, vol. 61. American Mathematical Society, Providence (2011).
https://doi.org/10.1090/stml/061

6. Casteigts, A.: A Journey Through Dynamic Networks (with Excursions). Habil-
itation à diriger des recherches, University of Bordeaux, June 2018. https://tel.
archives-ouvertes.fr/tel-01883384

7. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW
2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22450-8 27

8. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile
robotics. Auton. Robot. 31(4), 299–316 (2011). https://doi.org/10.1007/s10514-
011-9241-4

9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A
Guide to Current Research. Springer, New York (2002). https://doi.org/10.1007/
3-540-36387-4

10. Hahn, G., MacGillivray, G.: A note on k-cop, l-robber games on graphs. Discret.
Math. 306(19), 2492–2497 (2006). https://doi.org/10.1016/j.disc.2005.12.038. Cre-
ation and Recreation: A Tribute to the Memory of Claude Berge

11. Kehagias, A., Konstantinidis, G.: Cops and robbers, game theory and Zermelo’s
early results. arXiv:1407.1647 (2014)

12. Kehagias, A., Mitsche, D., Pralat, P.: The role of visibility in pursuit/evasion
games. Robotics 4, 371–399 (2014)

13. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016). https://doi.org/10.1080/15427951.2016.1177801

14. Michail, O., Spirakis, P.G.: Elements of the theory of dynamic networks. Commun.
ACM 61(2), 72–72 (2018). https://doi.org/10.1145/3156693

15. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math.
43(2), 235–239 (1983). https://doi.org/10.1016/0012-365X(83)90160-7

16. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory
and Applications of Graphs, pp. 426–441. Springer, Heidelberg (1978). https://doi.
org/10.1007/BFb0070400

17. Patsko, V., Kumkov, S., Turova, V.: Pursuit-evasion games. In: Basar, T., Zaccour,
G. (eds.) Handbook of Dynamic Game Theory, pp. 1–87. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-319-27335-8-30-1

18. Quilliot, A.: Jeux et pointes fixes sur les graphes. Ph.D. thesis, University of Paris
VI (1978)

19. Rankin, B.A.: Ramanujan: Twelve lectures on subjects suggested by his
life and work. Math. Gaz. 45(352), 166 (1961). https://doi.org/10.1017/
S0025557200044892

20. Seymour, P., Thomas, R.: Graph searching and a min-max theorem for tree-width.
J. Comb. Theory Ser. B 58(1), 22–33 (1993). https://doi.org/10.1006/jctb.1993.
1027

https://doi.org/10.1016/0166-218X(84)90073-8
https://doi.org/10.1006/aama.1993.1019
http://arxiv.org/abs/1407.1647
https://doi.org/10.1090/stml/061
https://tel.archives-ouvertes.fr/tel-01883384
https://tel.archives-ouvertes.fr/tel-01883384
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/s10514-011-9241-4
https://doi.org/10.1007/s10514-011-9241-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1016/j.disc.2005.12.038
http://arxiv.org/abs/1407.1647
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1145/3156693
https://doi.org/10.1016/0012-365X(83)90160-7
https://doi.org/10.1007/BFb0070400
https://doi.org/10.1007/BFb0070400
https://doi.org/10.1007/978-3-319-27335-8-30-1
https://doi.org/10.1017/S0025557200044892
https://doi.org/10.1017/S0025557200044892
https://doi.org/10.1006/jctb.1993.1027
https://doi.org/10.1006/jctb.1993.1027

Approximating Shortest Connected
Graph Transformation for Trees

Nicolas Bousquet1 and Alice Joffard2(B)

1 Univ. Grenoble Alpes, CNRS, Laboratoire G-SCOP, Grenoble-INP,
Grenoble, France

nicolas.bousquet@grenoble-inp.fr
2 LIRIS, Université Claude Bernard, Lyon, France

alice.joffard@liris.cnrs.fr

Abstract. Let G, H be two connected graphs with the same degree
sequence. The aim of this paper is to find a transformation from G to H
via a sequence of flips maintaining connectivity. A flip of G is an opera-
tion consisting in replacing two existing edges uv, xy of G by ux and vy.

Taylor showed that there always exists a sequence of flips that trans-
forms G into H maintaining connectivity. Bousquet and Mary proved
that there exists a 4-approximation algorithm of a shortest transforma-
tion. In this paper, we show that there exists a 2.5-approximation algo-
rithm running in polynomial time. We also discuss the tightness of the
lower bound and show that, in order to drastically improve the approxi-
mation ratio, we need to improve the best known lower bounds.

1 Introduction

Sorting by reversals problem. The problem of sorting by reversals has been widely
studied in the last twenty years in genomics. The reversal of a sequence of DNA
is a common mutation of a genome, that can lead to major evolutionary events.
It consists, given a DNA sequence that can be represented as a labelled path
x1, . . . , xn on n vertices, in turning around a part of it. More formally, a reversal
is a transformation that, given two integers 1 ≤ i < j ≤ n, transforms the
path x1, . . . , xn into x1, . . . , xi−1, xj , xj−1, . . . , xi, xj+1, . . . , xn. It is easy to prove
that, given two paths on the same vertex set (and with the same leaves), there
exists a sequence of reversals that transforms the first into the second. Biologists
want to find the minimum number of reversals needed to transform a genome
(i.e. a path) into another in order to compute the evolutionary distance between
different species.

An input of the Sorting by Reversals problem consists of two paths
P, P ′ with the same vertex set (and the same leaves) and an integer k. The
output is positive if and only if there exists a sequence of at most k reversals
that transforms P into P ′. Capraca proved that the Sorting by Reversals

problem is NP-complete [4]. Kececioglu and Sankoff first proposed an algorithm

This work was supported by ANR project GrR (ANR-18-CE40-0032).
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 76–87, 2020.
https://doi.org/10.1007/978-3-030-38919-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_7

Approximating Shortest Connected Graph Transformation for Trees 77

that computes a sequence of reversals of size at most twice the length of an
optimal solution in polynomial time [10]. Then, Christie improved it into a 3/2-
approximation algorithm [5]. The best polynomial time algorithm known so far
is a 1.375-approximation due to Berman et al. [2].

A reversal can be equivalently defined as follows: given a path P and two
edges ab and cd, a reversal consists in the deletion of the edges ab and cd and
the addition of ac and bd that keeps the connectivity of the graph. Indeed, when
we transform x1, . . . , xn into x1, . . . , xi−1, xj , xj−1, . . . , xi, xj+1, . . . , xn, we have
deleted the edges xi−1xi and xjxj+1 and have created the edges xi−1xj and
xixj+1. In this paper, we study the generalization of the Sorting by Reversals

problem for trees and general graphs that has also been extensively studied in
the last decades.

Shortest Connected Graph Transformation problem. Let G = (V,E) be
a graph where V denotes the set of vertices and E the set of edges. For basic
definitions on graphs, the reader is referred to [6]. All along the paper, the graphs
are loop-free but may admit multiple edges. A tree is a connected graph which
does not contain any cycle (a multi-edge being considered as a cycle).

The degree sequence of a graph G is the sequence of the degrees of its ver-
tices in non-increasing order. Given a non-increasing sequence of integers S =
{d1, . . . , dn}, a graph G = (V,E) whose vertices are labeled as V = {v1, . . . , vn}
realizes S if d(vi) = di for all i ≤ n. Senior [12] gave necessary and sufficient
conditions to guarantee that, given a sequence of integers S = {d1, . . . , dn}, there
exists a connected multigraph realizing S. Hakimi [7] then proposed a polyno-
mial time algorithm that outputs a connected (multi)graph realizing S if such a
graph exists or returns no otherwise.

A flip σ (also called swap or switch in the literature) on two edges ab and
cd consists in deleting the edges ab and cd and creating the edges ac and bd (or
ad and bc)1. The flip operation that transforms the edges ab and cd into the
edges ac and bd is denoted (ab, cd) → (ac, bd). When the target edges are not
important we will simply say that we flip the edges ab and cd.

Let S = {d1, . . . , dn} be a non-increasing sequence and let G and H be two
graphs on n vertices v1, . . . , vn realizing S. The graph G can be transformed into
H if there is a sequence (σ1, . . . , σk) of flips that transforms G into H. Note that
since flips do not modify the degree sequence, all the intermediate graphs also
realize S. Let G(S) be the graph whose vertices are the loop-free multigraphs
realizing S and where two vertices G and H of G(S) are adjacent if G can be
transformed into H via a single flip. Since the flip operation is reversible, the
graph G(S) is an undirected graph called the reconfiguration graph of S. Note
that there exists a sequence of flips between any pair of graphs realizing S if
and only if the graph G(S) is connected. Hakimi [8] proved that, for any non-
increasing sequence S, if the graph G(S) is not empty then it is connected.

One can wonder if the reconfiguration graph is still connected when we
restrict to graphs with stronger properties. For a graph property Π, let us denote
1 In the case of multigraphs, we simply decrease by one the multiplicities of ab and cd

and increase by one the ones of ac and bd.

78 N. Bousquet and A. Joffard

by G(S,Π) the subgraph of G(S) induced by the graphs realizing S that have the
property Π. If we respectively denote by C and S the property of being con-
nected and simple, Taylor proved in [13] that G(S,C), G(S,S) and G(S,C ∧S)
are connected (where ∧ stands for “and”). Let G,H be two graphs of G(S,Π). A
sequence of flips transforms G into H in G(S,Π) if the sequence of flips trans-
forms G into H and all the intermediate graphs also have the property Π. In
other words, a sequence of flips that transforms G into H in G(S,Π) is a path
between G and H in G(S,Π). Since [13] ensures that G(S,Π) is connected, one
can ask what is the minimum length of such a transformation between G and H.
This problem is known to be NP-hard, see e.g. [4]. In this paper we will study
the following problem:

Shortest Connected Graph Transformation

Input: Two connected multigraphs G,H with the same degree sequence.
Output: The minimum number of flips needed to transform G into H in G(S,C).

Note that Shortest Connected Graph Transformationis a general-
ization of Sorting by Reversals since, when the degree sequence consists
of n − 2 vertices of degree 2 and two vertices of degree 1, we simply want to
find a sequence of reversals of minimum length between two paths. Bousquet
and Mary [3] proposed a 4-approximation algorithm for Shortest Connected

Graph Transformation. Our main result is the following:

Theorem 1. Shortest Connected Graph Transformation admits a 2.5-
approximation algorithm.

Section 3 is devoted to the proof of Theorem 1. In order to prove it, we will
mainly focus on the Shortest Tree Transformation problem which is
the same as Shortest Connected Graph Transformationexcept that the
input consists of trees with the same degree sequence. Informally speaking, it is
due to the fact that if an edge of the symmetric difference appears in some cycle,
then we can reduce the size of the symmetric difference in one flip, as observed
in [3].

When we desire to give some explicit bound on the quality of a solution, we
need to compare it with the length of an optimal transformation. When we do
not want to keep connectivity, Will [14] gives an explicit formula of the number
of steps in a minimum transformation. When we want to keep connectivity,
no such formula is known. Our 5/2-approximation algorithm is obtained by
comparing it to the formula of Will (which is a lower bound when we want to
keep connectivity). In Sect. 4, we discuss the tightness of this lower bound. We
exhibit two graphs G and H such that the length of a shortest transformation
between G and H is at least 1.5 times larger than the bound given by [14], and
even twice longer under some assumptions on the set of possible flips. In order to
prove this result, we generalize some notions introduced for sorting by reversals
in [5] to general graphs.

Approximating Shortest Connected Graph Transformation for Trees 79

This example ensures that if we want to find an approximation algorithm with
a ratio better than 1.5, we might have to improve the algorithm, but overall, we
need to improve the lower bound. The formal point and the two graphs G and
H can be found in Sect. 4.

Related Works

Mass Spectrometry. Mass spectrometry is a technique used by chemists in order
to obtain the formula of a molecule. It provides the mass-to-charge (m/z) ratio
spectrum of the molecule from which we can deduce how many atoms of each
element the molecule has. With this formula, we would like to find out the nature
of the molecule, i.e. the bonds between the different atoms. But the existence
of structural isomers points out that there could exist several solutions for this
problem. Thus, we would like to find all of them. Since the valence of each
atom is known, this problem actually consists in finding all the connected loop-
free multigraphs whose degree sequence is the sequence of the valences of those
atoms. The reconfiguration problem we are studying here can be a tool for an
enumeration algorithm consisting in visiting the reconfiguration graph.

Flips and Reconfiguration. The Shortest Connected Graph Transfor-

mationproblem belongs to the class of reconfiguration problems that received
a considerable attention in the last few years. Reconfiguration problems con-
sist, given two solutions of the same problem, in transforming the first solution
into the second via a sequence of “elementary” transformations (such as flips)
maintaining some properties all along. For more information on reconfiguration
problems, the reader is referred for instance to [11].

2 Preliminaries

2.1 Symmetric Difference

Unless specified otherwise, we consider unoriented loop-free multigraphs. Let
G = (V (G), E(G)) be a graph where V (G) is the set of vertices of G and E(G)
is its set of edges. The intersection of two graphs G and H on the same set of
vertices V is the graph G ∩ H with vertex set V , and such that e ∈ E(G ∩ H),
with multiplicity m, if the minimum multiplicity of e in both graphs is m. Their
union, G ∪ H, has vertex set V , and e ∈ E(G ∪ H), with multiplicity m, if and
only if the maximum multiplicity of e in G and H is m. Finally, the difference
G − H has vertex set V and e ∈ E(G − H) with multiplicity m if and only if
the difference between its multiplicities in G and H is m > 0. The symmetric
difference of G and H is Δ(G,H) = (G − H)∪ (H − G). We denote by δ(G,H)
the number of edges of Δ(G,H).

Let G,H be two graphs with the same degree sequence. An edge e of G is
good if it is in G ∩ H and is bad otherwise. Note that since G and H have the
same degree sequence, the graph Δ(G,H) has even degree on each vertex and
the number of edges of G incident to v is equal to the number of edges of H
incident to v.

80 N. Bousquet and A. Joffard

Each flip removes at most 4 edges of the symmetric difference. Therefore,
the length of a transformation from G to H is at least δ(G,H)/4. In fact, it is
possible to obtain a slightly better bound on the length of the transformation.
A cycle C in Δ(G,H) is alternating if edges of G and H alternate in C. Since
the number of edges of G incident to v is equal to the number of edge of H
incident to v in Δ(G,H), the graph Δ(G,H) can be partitioned into a collection
of alternating cycles. We denote by mnc(G,H) the maximal number of cycles in
a partition C of Δ(G,H) into alternating cycles. Will [14] proved the following:

Theorem 2 (Will [14]). Let G,H be two graphs with the same degree sequence.
A shortest sequence of flips that transforms G into H (that does not necessarily
maintain the connectivity of the intermediate graphs) has length exactly δ(G,H)

2 −
mnc(G,H).

Note that Theorem 2 indeed provides a lower bound for a transformation of
Shortest Connected Graph Transformation.

2.2 Basic Facts Concerning Flips

Let G = (V,E) be an unoriented graph and v ∈ V (G). The set NG(v) of neigh-
bours of v in G is the set of vertices u such that uv ∈ E(G). Let D be a directed
graph and v ∈ V (D). The set N−

D (v) of in-neighbours of v in D is the set of
vertices u such that uv is an arc of D, and the set N+

D (v) of out-neighbours of
v in D is the set of vertices u such that vu is an arc of D. When G and D are
obvious from the context we will simply write N(v), N−(v), N+(v).

The inverse σ−1 of a flip σ is the flip such that σ ◦ σ−1 = id, i.e. applying σ
and then σ−1 leaves the initial graph. The opposite −σ of a flip σ is the unique
other flip that can be applied to the two edges of σ. If we consider a flip σ =
(ab, cd) → (ac, bd), then σ−1 = (ac, bd) → (ab, cd) and −σ = (ab, cd) → (ad, bc).
Note that −σ is a flip deleting the same edges as σ while σ−1 cancels the flip σ.
When we transform a graph G into another graph H, we can flip the edges of G
or the edges of H. Indeed, applying the sequence of flips (σ1, . . . , σi) to transform
G into a graph K, and the sequence of flips (τ1, . . . , τj) to transform H into K
is equivalent to applying the sequence (σ1, . . . , σi, τ

−1
j , . . . , τ−1

1) to transform G
into H.

Let G = (V,E) be a connected graph and let H be a graph with the degree
sequence of G. A flip is good if it flips bad edges and creates at least one good
edge. It is bad otherwise. A connected flip is a flip such that its resulting graph
is connected. Otherwise, it is disconnected. A path from a ∈ V to b ∈ V is
a sequence of vertices (v1, . . . , vk) such that a = v1, b = vk, for every integer
i ∈ [k −1], vivi+1 ∈ E(G) and there is no repetition of vertices. Similarly, a path
from e to f with e, f ∈ E(G) is a path from an endpoint of e to an endpoint of f
that does not contain the other endpoint of e and of f . A path between x and y
(vertices or edges) is a path from x to y or a path from y to x. The content of a
path is its set of vertices. We say that an edge e belongs to (or is on) a path P if
both endpoints of e appear consecutively in P . The intersection P1 ∩ P2 of two

Approximating Shortest Connected Graph Transformation for Trees 81

paths P1 and P2 is the intersection of their contents. The vertices of a sequence
(v1, . . . , vk) are aligned in G if there exists a path P which is the concatenation
of k − 1 paths P1P2 . . . Pk−1 where Pi is a path from vi to vi+1 for i ∈ [k − 1].
Note that we might have vi = vi+1 and then Pi = vi.

Note that, for every connected graph G, if ab, cd ∈ E(G), ab 	= cd, then
(a, b, c, d), (a, b, d, c), (b, a, c, d), or (b, a, d, c) are aligned. Moreover, if G is a tree,
exactly one of them is aligned. Let G be a connected graph and a, b, c, d ∈ V (G)
such that (a, b, c, d) are aligned. The in-area of the two edges ab and cd is the
connected component of G \ {ab, cd} containing the vertices b and c. The other
components are called out-areas. The following lemma links the connectivity of
a flip and the alignment of its vertices:

Lemma 1. (�) Let G be a connected graph and ab, cd ∈ E(G) where a, b, c and
d are pairwise distinct vertices of G. If (a, b, c, d) or (b, a, d, c) are aligned in G,
then the flip (ab, cd) → (ac, bd) is connected. If G is a tree, then it is also a
necessary condition.

The proofs of all the statements marked with a � are not included in this
extended abstract. Lemma 1 ensures that, for trees, exactly one of the two flips
σ and −σ is connected.

Let e and f be two vertex-disjoint edges of a tree T , and let σ2 be a flip in
T that does not flip e nor f . The flip σ2 depends on e and f if applying the
connected flip on e and f changes the connectivity of σ2. By abuse of notation,
for any two flips σ1 and σ2 on pairwise disjoint edges, σ2 depends on σ1 if σ2

depends on the edges of σ1. The flip σ1 sees σ2 if exactly one of the edges of σ2

is on the path linking the two edges of σ1 in G.
The following lemma links the dependency of two flips and the position of

their edges in a tree:

Lemma 2. (�) Let T be a tree and σ1 and σ2 be two flips on T , whose edges
are pairwise distinct. The three following points are equivalent:

1. σ2 depends on σ1,
2. σ1 depends on σ2,
3. σ2 sees σ1 and σ1 sees σ2.

We now give two consequences of applying a connected flip.

Lemma 3. (�) Let T be a tree and σ1 and σ2 be two flips on T with pairwise
disjoint edges, where σ1 is connected. Let T ′ be the tree obtained after applying
σ1 to T . The flip σ−1

1 sees σ2 in T ′ if and only if σ1 sees σ2 in T . And σ2 sees
σ−1
1 in T ′ if and only if σ2 sees σ1 in T .

Lemma 4. (�) Let T be a tree and σ1, σ2 and σ3 be three flips on T whose edges
are pairwise disjoint and such that σ1 sees σ2, σ2 sees σ3, and σ2 is connected.
Let T ′ be the tree obtained by applying the flip σ2 to T . The flip σ1 sees σ3 in T
if and only if σ1 does not see σ3 in T ′.

82 N. Bousquet and A. Joffard

3 Upper Bound

Let us recall a result of [3].

Lemma 5. Let G,H be two connected graphs with the same degree sequence.
There exists a sequence of at most two flips that decreases δ(G,H) by at least
2. Moreover, if there is an alternating C4 in Δ(G,H), it can be removed in at
most 2 steps, without modifying the rest of the graph.

Lemma 5 immediately implies the following:

Corollary 1. Shortest Connected Graph Transformation admits a
polynomial time 4-approximation algorithm.

The goal of the rest of this section is to improve the approximation ratio.
The crucial lemma is the following:

Lemma 6. Let G,H be two trees with the same degree sequence. There exists a
sequence of at most 3 flips that decreases δ(G,H) by at least 4. Moreover, this
sequence only flips bad edges.

Proof. Let G′ be the graph whose vertices are the connected components of
G∩H and where two vertices S1 and S2 of G′ are incident if there exists an edge
in G between a vertex of S1 and a vertex of S2. In other words, G′ is obtained
from G by contracting every connected component of G∩H into a single vertex.
Note that the edges of G′ are the edges of G − H. Moreover, as G is a tree, G′

also is. We can similarly define H ′. Note that G′ and H ′ have the same degree
sequence.

Let S1 be a leaf of G′ and S2 be its parent in G′. Let us show that S2 is
not a leaf of G′. Indeed, otherwise G′ would be reduced to a single edge. In
particular, E(G−H) would contain only one edge. Since the degree sequence of
G − H and H − G are the same, the edge of H − G would have to be the same,
a contradiction. Thus, we can assume that S2 is not a leaf. Let u1u2 be the edge
of G − H between u1 ∈ S1 and u2 ∈ S2. Since G − H and H − G have the same
degree sequence and S1 is a leaf of G′, there exists a unique vertex v1 such that
u1v1 ∈ E(H −G). Moreover there exists a vertex v2 such that u2v2 ∈ E(H −G).

Let us first assume that v1 = v2. Then there exists a vertex w distinct from
u1 and u2 such that v1w ∈ E(G − H) since v1 has degree at least 2 in H − G.
Since S1 is a leaf of G′, w /∈ S1 and either (u1, u2, v1, w) or (u1, u2, w, v1) are
aligned in G. If (u1, u2, v1, w) are aligned then the flip (u1u2, v1w) → (u1v1, u2w)
in G is connected and creates the edge u1v1. If (u1, u2, w, v1) are aligned then
(u1u2, v1w) → (u1w, u2v1) is connected and creates the edge u2v1 = u2v2. In
both cases, we reduce the size of the symmetric difference by at least 2 in one
flip, and we can conclude with Lemma 5.

From now on, we assume that v1 	= v2. We focus on the alignment of u1, v1, u2

and v2 in H. Since S1 is a leaf of G′, it is also a leaf of H ′. Thus, v1 is on the
path from u1 to u2 and either (u1, v1, u2, v2) or (u1, v1, v2, u2) are aligned. If
(u1, v1, u2, v2) are aligned then Lemma 1 ensures that (u1v1, u2v2) → (u1u2, v1v2)

Approximating Shortest Connected Graph Transformation for Trees 83

is connected in H and reduces the size of the symmetric difference by at least
2. We can conclude with Lemma 5. Thus, we can assume that (u1, v1, v2, u2) are
aligned in H (see Fig. 1 for an illustration).

Let us first remark that if u2 has degree at least 2 in H − G (or equivalently
in G − H), then we are done. Indeed, if there exists w 	= v2 such that u2w ∈
E(H−G) then, since (u1, v1, v2, u2) are aligned, (u1, v1, u2, w) have to be aligned.
Indeed, v2u2 is the only edge of H − G on the path from v1 to u2 incident to
u2. Thus the flip (u1v1, u2w) → (u1u2, v1w) is connected in H. Since it reduces
δ(G,H) by at least 2, we can conclude with Lemma 5.

From now on, we will assume that u2 has degree 1 in H − G. Let H3 (resp.
H4) be the connected component of v1 and v2 (resp. u2) in H \ {u1v1, u2v2},
which exists since (u1, v1, v2, u2) are aligned. Note that the third component of
H \ {u1v1, u2v2} is reduced to S1. By definition, H3 is the in-area of u1v1 and
u2v2.

We now show that there exists an edge u3u4 ∈ E(G − H), with u3 ∈ H3,
u4 ∈ H4, and such that the connected component S4 of G ∩ H containing u4 is
not a leaf of G′. Indeed, since G is connected, there exists a path P from v1 to
u2 in G. Since u1u2 is the only edge of G − H that has an endpoint in S1, this
path does not contain any vertex of S1. Thus, it necessarily contains an edge
u3u4 between a vertex u3 of H3 and a vertex u4 of H4. Since H3 and H4 are
anticomplete in G ∩ H, u3u4 ∈ E(G − H). Moreover, the connected component
S4 of G ∩ H containing u4 is not a leaf of G′, as it is either S2 which is not a
leaf, or P has to leave S4 at some point with an edge of G − H since P ends in
u2 ∈ S2.

Since u3 and u4 have the same degree in G−H and H −G, there exist v3, v4
such that u3v3, u4v4 ∈ E(H − G). Moreover, since S4 is not a leaf of G′ (and
thus of H ′), there exists an edge of H −G between a vertex u5 ∈ S4 and a vertex
v5 ∈ V \ S4 where u5v5 	= u4v4.

Let us prove that u3, v3, u4 and v4 are pairwise distinct. By definition, we
have u3 	= v3, u4 	= v4 and u3 	= u4. Moreover, since u3u4 ∈ E(G − H), u3 	= v4
and u4 	= v3. Thus, the only vertices that can be identical are v3 and v4. If
v3 = v4, since u3 ∈ H3, u4 ∈ H4, and v2u2 is the only edge of H − G from H3

to H4, then either v3 = v4 = v2 or v3 = v4 = u2. In the first case, u4 = u2 since
v2u2 is the only edge of H − G from H3 to H4. Thus, u2 is the endpoint of both
u1u2 and u2u3 in G − H. In the second case, u2 is the endpoint of both u2u3

and u2u4 in H − G. Thus, in both cases, u2 has degree at least 2 in H − G, a
contradiction.

We now focus on the alignment of u3, u4, v3 and v4 in H. If (v3, u3, v4, u4)
or (u3, v3, u4, v4) are aligned, then the flip (u3v3, u4v4) → (u3u4, v3v4) is con-
nected in H and reduces the size of the symmetric difference by at least 2, since
u3u4 ∈ E(G − H). Note that the flip is well-defined since all the vertices are
distinct. Thus, we can conclude with Lemma 5. Therefore, we can assume that
(u3, v3, v4, u4) or (v3, u3, u4, v4) are aligned in H.

We give, in each case, a sequence of three flips that decreases the size of
the symmetric difference by at least 4. Due to space restriction, the proof that

84 N. Bousquet and A. Joffard

those flips can be applied and maintain the connectivity are not included in this
extended abstract.
Case 1. (u3, v3, v4, u4) are aligned. (See Fig. 1 for an illustration).
We successively apply the flips σ1 : (u2v2, u5v5) → (u2v5, u5v2), σ2 :
(u3x, u4v4) → (u3u4, xv4) where x = u5 if u3 = v2 and v3 = u2, and x = v3 oth-
erwise, and σ3 : (u1v1, u2v5) → (u1u2, v1v5) in H. Since u1u2, u3u4 ∈ E(G−H),
this sequence of flips indeed reduces δ(G,H) by at least 4.
Case 2. (v3, u3, u4, v4) are aligned.
We apply σ1 : (u2v2, u4v4) → (u2v4, u4v2), σ2 : (u3v3, u4v2) → (u3u4, v2v3) then
σ3 : (u1v1, u2v4) → (u1u2, v1v4) to H. Again, u1u2, u3u4 ∈ E(G − H) and it
reduces δ(G,H) by at least 4.

u1
v1

v3

u3

v2
u2

v4

u4

u5

v5

S1

S2

S4

H3 H4

u1
v1

v3

u3

v2
u5

u4

v4
v5

u2

S1

S2

S4

u1

v1

v3

v4

v2
u5

u4

u3v5

u2

S1

S2

S4

v5
v1

v3

v4

v2
u5

u4

u3u1

u2
S1

S2

S4

σ1

σ2

σ3

Fig. 1. The three flips σ1 : (u2v2, u5v5) → (u2v5, u5v2), σ2 : (u3v3, u4v4) →
(u3u4, v3v4) and σ3 : (u1v1, u2v5) → (u1u2, v1v5) applied to the graph H where
(u3, v3, v4, u4) are aligned. The blue full edges are in E(H − G) and the red dashed
edges are in E(G − H). (Color figure online)

Therefore, in all the cases, we have found a sequence of three flips whose
edges are in the symmetric difference and that reduce δ(G,H) by at least 4.
Moreover, the proof immediately provides a polynomial time algorithm to find
such a sequence.
�

Note that Lemma6 allows to obtain a 3-approximation algorithm for Short-
est Connected Graph Transformation. Indeed, as shown in the proof of

Approximating Shortest Connected Graph Transformation for Trees 85

Lemma 1 in [3], as long as there exists an edge of the symmetric difference in
a cycle of G, one can reduce the size of the symmetric difference by 2 in one
step. Afterwards, we can assume that the remaining graphs G − H and H − G
are trees. By Lemma6, in three flips, the symmetric difference of the optimal
solution decreases by at most 12 while our algorithm decreases it by at least 4.
(Note that free to try all the flips, finding these flips is indeed polynomial). But
we can actually improve the approximation ratio. The idea consists in treating
differently short cycles. A short cycle is a C4, a long cycle is a cycle of length at
least 6. We now give the main result of this section.

Theorem 3. Shortest Connected Graph Transformation admits a
5/2-approximation algorithm running in polynomial time. It becomes a 9/4-
approximation algorithm if Δ(G,H) does not contain any short cycle.

Proof. Let C be an optimal partition of Δ(G,H) into alternating cycles, i.e. a
partition with mnc(G,H) cycles. Let c be the number of short cycles in C. Bereg
and Ito [1] provide a polynomial time algorithm to find a partition of Δ(G,H)
into alternating cycles having at least c

2 short cycles. Lemma 5 ensures that we
can remove their 2c edges from the symmetric difference in at most c flips. If an
edge of the symmetric difference is in a cycle of G or H, then in one step we can
reduce the symmetric difference by 2 [3]. Otherwise, by Lemma 6, we can remove
the remaining δ(G,H)− 2c edges using at most 3(δ(G,H)−2c)

4 flips in polynomial
time. Therefore, we can transform G into H with at most c+ 3(δ(G,H)−2c)

4 flips.
Let us now provide a lower bound on the length of a shortest transformation

from G to H. By definition, C contains c short cycles. Theorem 2 ensures that
we need at least c steps to remove the short cycles, plus � − 1 flips to remove
each cycle of length 2�. Therefore, we need at least δ(G,H)−4c

3 flips to remove the
δ(G,H) − 4c remaining edges from the symmetric difference.

The ratio between the upper bound and the lower bound is

f(c) :=
c + 3δ(G,H)−6c

4

c + δ(G,H)−4c
3

=
3(3δ(G,H) − 2c)
4(δ(G,H) − c)

.

The function f being increasing and since the number of short cycles in C can-
not exceed δ(G,H)

4 , we have f(c) ≤ f(δ(G,H)
4) = 5

2 . It gives a 5
2 -approximation in

polynomial time. Moreover, when there is no alternating short cycle in Δ(G,H),
c = 0. Since f(0) = 9

4 , we obtain a 9
4 -approximation.
�

4 Discussion on the Tightness of the Lower Bound

In this section, we discuss the quality of the lower bound of Theorem 2. We
first prove that if we only flip bad edges of the same cycle of the symmetric
difference then the length of a shortest transformation can be almost twice longer
than the one given by the lower bound of Theorem 2. In order to prove it, we
generalize several techniques and results of Christie [5], proved for the Sorting

by Reversals problem.

86 N. Bousquet and A. Joffard

Note that the result of Hannenhalli and Pevzner [9] actually proves that in
the case of paths, when the symmetric difference only contains vertex-disjoint
short cycles, it is not necessarily optimal to only flip edges of the same cycle.
However, studying this restriction gives us a better understanding of the general
problem.

We also prove that, if we only flip bad edges (which are not necessarily
in the same cycle of the symmetric difference), then the length of a shortest
transformation can be almost 3/2 times longer than the one given by the lower
bound. Note that all the existing approximation algorithms for Sorting by

Reversals and Shortest Connected Graph Transformationonly flip
bad edges. But again no formal proof guarantees that there always exists a
shortest transformation where we only flip bad edges.

c v1,1 v1,2

v1,3 v1,4v3,1v3,2

v3,3v3,4

v4,1

v4,2

v4,3

v4,4

v2,1

v2,2

v2,3

v2,4

Fig. 2. The graphs G4 and H4. The black thick edges are in E(G4 ∩H4), the blue thin
edges are in E(G4 − H4) and the red dashed edges are in E(H4 − G4). (Color figure
online)

Both results (whose proofs are not included in this extended abstract) are
obtained with the same graphs Gk and Hk represented in Fig. 2 for k = 4. For
any k ≥ 2, let Gk = (Vk, E(Gk)) and Hk = (Vk, E(Hk)) be the graphs with Vk =
{vi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ 4} ∪ {c}, E(Gk) =

⋃
i∈[k]{cvi,1, vi,1vi,2, vi,2vi,3, vi,3vi,4},

and E(Hk) =
⋃

i∈[k]{cvi,1, vi,1vi+1,3, vi,2vi,3, vi,2vi+1,4}, where the additions are
defined modulo k. One can easily check that, in this construction, both Gk

and Hk are the subdivisions of a star where each branch has 4 vertices. Note
that Δ(G,H) is the disjoint union of k short cycles. Moreover, the partition of
Δ(G,H) into alternating cycles is unique.

Approximating Shortest Connected Graph Transformation for Trees 87

The proof of Lemma 5 ensures that there is a transformation from Gk to Hk in
at most 2k steps where we only flip bad edges in the same cycle of the symmetric
difference. So our first result is tight with our assumptions. We conjecture that
the length of a shortest transformation from Gk to Hk is at least 2k − 1 without
any assumption on the set of possible flips.

References

1. Bereg, S., Ito, H.: Transforming graphs with the same graphic sequence. J. Inf.
Process. 25, 627–633 (2017)

2. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for
sorting by reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461,
pp. 200–210. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-
6_21

3. Bousquet, N., Mary, A.: Reconfiguration of graphs with connectivity constraints.
In: Epstein, L., Erlebach, T. (eds.) WAOA 2018. LNCS, vol. 11312, pp. 295–309.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04693-4_18

4. Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the First Annual
International Conference on Computational Molecular Biology, RECOMB 1997,
pp. 75–83. ACM (1997)

5. Christie, D.A.: A 3/2-approximation algorithm for sorting by reversals. In: Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 1998, pp. 244–252 (1998)

6. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 3rd edn.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-662-53622-3

7. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a
linear graph. i. J. Soc. Ind. Appl. Math. 10(3), 496–506 (1962)

8. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a
linear graph ii. Uniqueness. J. Soc. Ind. Appl. Math. 11(1), 135–147 (1963)

9. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. J. ACM (JACM) 46(1), 1–27
(1999)

10. Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica 13(1/2), 180–
210 (1995)

11. Nishimura, N.: Introduction to reconfiguration (2017, preprint)
12. Senior, J.: Partitions and their representative graphs. Am. J. Math. 73(3), 663–689

(1951)
13. Taylor, R.: Contrained switchings in graphs. In: McAvaney, K.L. (ed.) Combinato-

rial Mathematics VIII. LNM, vol. 884, pp. 314–336. Springer, Heidelberg (1981).
https://doi.org/10.1007/BFb0091828

14. Will, T.G.: Switching distance between graphs with the same degrees. SIAM J.
Discrete Math. 12(3), 298–306 (1999)

https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/978-3-030-04693-4_18
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/BFb0091828

Approximating Weighted Completion
Time for Order Scheduling with Setup

Times

Alexander Mäcker, Friedhelm Meyer auf der Heide, and Simon Pukrop(B)

Heinz Nixdorf Institute and Computer Science Department, Paderborn University,
Fürstenallee 11, 33102 Paderborn, Germany

{amaecker,fmadh,simonjp}@mail.uni-paderborn.de

Abstract. Consider a scheduling problem in which jobs need to be pro-
cessed on a single machine. Each job has a weight and is composed of
several operations belonging to different families. The machine needs to
perform a setup between the processing of operations of different fami-
lies. A job is completed when its latest operation completes and the goal
is to minimize the total weighted completion time of all jobs.

We study this problem from the perspective of approximability and
provide constant factor approximations as well as an inapproximability
result. Prior to this work, only the NP-hardness of the unweighted case
and the polynomial solvability of a certain special case were known.

Keywords: Order scheduling · Multioperation jobs · Total completion
time · Approximation · Setup times

1 Introduction

Many models for scheduling problems assume jobs to be atomic. There are,
however, numerous natural situations where it is more suitable to model jobs
as compositions and consider the problem as an order scheduling formulation:
In this case a job is called order and is assumed to be composed of a set of
operations, which are requests for products. A job is considered to be finished as
soon as all its operations are finished and a natural objective is the minimization
of the sum of completion times of all jobs.

Another important aspect in such scenarios can be the consideration of setup
times that may occur due to the change of tools on a machine, the reconfigu-
ration of hardware, cleaning activities or any other preparation work [1–3]. We
model this aspect by assuming the set of operations to be partitioned into sev-
eral families. The machine needs to perform a setup whenever it switches from

This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Centre “On-The-Fly Computing” under the project number
160364472—SFB 901/3.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 88–100, 2020.
https://doi.org/10.1007/978-3-030-38919-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_8

Approximating Completion Time for Order Scheduling with Setup Times 89

processing an operation belonging to one family to an operation of a different
family. No setup is required between operations of the same family.

This kind of order scheduling (with setups) has several applications, which
have been reported in the literature and we name a few of them here: It can
model situations in a food manufacturing environment [9]. Several base ingre-
dients need to be produced on a single machine and then assembled, setup
times effectively occur due to cleaning activities between producing different
base ingredients. Another example [9] are customer orders where each order
requests several products, which need to be produced by a single machine, and
an order can be shipped to the customer only as soon as all products have been
produced. Finally, our primary motivation for considering multioperation jobs
comes from its applicability within our project on “On-The-Fly Computing”
[11]. The main idea is that IT-services are (automatically) composed of several
small, elementary services that together provide the desired functionality. Setup
times occur due to the reconfiguration of hardware or for the provisioning of data
that is required, depending on the type of elementary service to be executed.
Due to space constraints, some of the proofs in this work have been moved to
the full version of this paper [17].

1.1 Contribution and Results

We consider the aforementioned problem, which is formally introduced in Sect. 2
and which in the survey [16] by Leung et al. was termed fully flexible case of
order scheduling with arbitrary setup times, for the case of a single machine.
Because it is known that the problem is NP-hard as mentioned in Sect. 3 where
we summarize relevant related work, we study the problem with respect to its
approximability. The key ingredient of our approach is based on the following
idea. We define a simplified variant of the considered problem, in which we
only require that, before any operation of a given family is processed, a setup
for this family is performed once at some (arbitrary) earlier time. Solutions to
this simplified variant already carry a lot of information for solving the original
problem. We show that they can be transformed into (1 +

√
2)-approximate

solutions for our original problem in polynomial time in Sect. 4. We then provide
an algorithm that solves the simplified variant optimally leading to a (1 +

√
2)-

approximation for the original problem in Sect. 5. The runtime of the approach,
however, is O(poly(n) · K!), where K denotes the number of families, and n is
the number of operations. Thus, it is only polynomial for a constant number of
families, which turns out to be no coincidence as we also observe that solving
the simplified variant optimally for non-constant K is NP-hard. We show how
an algorithm by Hall et al. [10] can be combined with our approach from Sect. 4
to obtain a runtime of O(poly(n,K)) while worsening the approximation factor
to 2(1 +

√
2) in Sect. 6. We complement this result by a hardness result for

approximations with a factor less than 2 assuming a certain variant of the Unique
Games Conjecture.

90 A. Mäcker et al.

2 Model

We consider a scheduling problem in which a set J = {j1, . . . , jn} of n jobs
needs to be processed by a single machine. Each job j has a weight w(j) ∈
R≥0 and consists of a set of operations j = {oj

1, o
j
2, . . .}. Each operation oj

i is
characterized by a processing time p(oj

i) ∈ R≥0 and belongs to a family f(oj
i) ∈

F = {f1, . . . , fK}. If the schedule starts with an operation of family f and
whenever the machine switches from processing operations of one family f ′ to an
operation of another family f , a setup taking s(f) ∈ R≥0 time needs to take place
first. Given this setting, the goal is to compute a schedule that minimizes the
weighted sum of job completion times, where a job is considered to be completed
as soon as all its operations are completed. More formally, a schedule is implicitly
given by a permutation π on

⋃n
i=1 ji and the completion time of an operation o

is given by the accumulated setup times and processing times of jobs preceding
operation o. That is, for π = (o1, o2, . . .) the completion time of operation oi

is given by Cπ
oi

=
∑i

k=1 p(ok) +
∑i

k=1 I(f(ok−1), f(ok))s(f(ok)), where I is an
indicator being 0 if and only if its arguments are the same and 1 otherwise.
Then, the completion time of a job j is given by Cπ

j = maxo∈j Cπ
o and the goal

is to minimize the total weighted completion time given by Cπ =
∑

j∈J w(j)Cπ
j .

Using the classical three-field notation for scheduling problems and following
Gerodimos et al. [9], we denote the problem by 1|sf , assembly|∑ wjCj . We
study this problem in terms of its approximability. A polynomial-time algorithm
A has an approximation factor of α if, on any instance, Cπ ≤ α · COpt, where
Cπ and COpt denotes the total weighted completion time of A and an optimal
solution, respectively.

3 Related Work

The problem 1|sf , assembly|∑ wjCj , and the more general version with multi-
ple machines, are also known as order scheduling. More precisely, it was termed
order scheduling in the flexible case with setup times in the survey [16] by Leung
et al. As previously mentioned, it is known that this problem is already NP-hard
for the unweighted case and a single machine as proven by Ng et al. [19]. Besides
this hardness result, only one single positive result is known. Due to Gerodimos
et al. [9], a special case can be solved optimally in time O(nK+1). This spe-
cial case requires that the jobs can be renamed so that job ji+1 contains, for
each operation o ∈ ji, an operation o′ such that f(o) = f(o′) and p(o′) > p(o).
A related positive result is due to Divakaran and Saks [8]. They designed a
2-approximation algorithm for our problem in case all jobs consist of a single
operation. Monma and Potts worked on algorithms for the same model with
a variety of objective functions. One result is an optimal algorithm for total
weighted completion time with the constraint that the number of families is
constant [18]. Their approach however relies on the fact that there is a trivial
order inside each family, and the problem only arises in interleaving the families.
Since we are dealing with multioperation jobs we cannot assume such an order.

Approximating Completion Time for Order Scheduling with Setup Times 91

Taking a broader perspective of the problem, it can be seen as a generalization
of the classical problem of minimizing the total (weighted) completion time when
there are no setups and all jobs are atomic (i.e., we only have single-operation
jobs). It is well-known that sequencing all jobs in the order of non-decreasing
processing times (shortest processing time ordering, SPT) minimizes the total
completion time on a single machine [15]. In case jobs have weights and the
objective is to minimize the total weighted completion time, a popular result is
due to Smith [20]. He showed that weighted shortest processing time (WSPT),
that is, sort the jobs non-decreasingly with respect to their ratio of processing
time and weight, is optimal for this objective. Besides these two results, the
problem has been studied quite a lot and in different variants with respect to the
number of machines, potential precedences between jobs, the existence of release
times and even more. For a single machine it was shown by Lenstra and Kan
[15] and independently by Lawler [14] that adding precedences among jobs to the
(unweighted) problem makes it NP-hard. In their paper, Hall et al. [10] analyzed
algorithms based on different linear programming formulations and obtained
constant factor approximations for several variants including the minimization
of the total weighted completion time on a single machine with precedences.
Particularly, they obtained a 2-approximation for this problem, which we will
later make use of for our approximation algorithm for non-constant K. Actually,
the factor 2 they achieve is essentially optimal, as Bansal and Khot [4] were able
to show that a (2 − ε)-approximation is impossible for any ε > 0 assuming a
stronger version of the Unique Games Conjecture.

More loosely related is a model due to Correa et al. [7] in which jobs can
be split into arbitrary parts (that can be processed in parallel) and where each
part requires a setup time to start working on it. They proposed a constant
factor approximation for weighted total completion time on parallel machines.
Recently, some approximation results for the minimization of the makespan for
single operation jobs have been achieved for different machine environments with
setup times [6,12,13]. Finally, scheduling with setup times in general is a large
field of research, primarily with respect to heuristics and exact algorithms, and
the interested reader is referred to the three exhaustive surveys due to Allahverdi
et al. [1–3].

4 The One-Time Setup Problem

In this section, we introduce a relaxation of 1|sf , assembly|∑ wjCj and show
how solutions to this relaxation can be transformed into solutions to the original
problem by losing a small constant factor. The one-time setup problem (1|ot-sf ,
assembly|∑ wjCj) is a relaxation of 1|sf , assembly|∑ wjCj in which setups
are not required on each change to operations of a different family. Instead we
only require that, for any family f , a setup for f is performed once at some
time before any operation belonging to f is processed. Formally, we introduce
a new (setup) operation os

f for each family f with p(os
f) = s(f), w(os

f) = 0
and a precedence relation between os

f and each operation belonging to f that

92 A. Mäcker et al.

ensures that os
f is processed before the respective operations. A schedule π is

then implicitly given by a permutation on all operations (those belonging to
jobs as well as those representing setups). We only consider those permutations
which adhere to the precedence constraints. The completion time of an operation
oi under schedule π = (o1, o2, . . .) is given by Cπ

oi
=

∑i
k=1 p(ok). The remaining

definitions such as the completion time of a job and total weighted completion
time remain unchanged. Note that this problem is indeed a relaxation of our
original problem in the sense that the total weighted completion time cannot
increase when only requiring one-time setups.

Before we turn to our approach to transform solutions to 1|ot-sf , assembly|∑
wjCj into feasible solutions for 1|sf , assembly|∑ wjCj , we first give a simple

observation. It shows that we can, intuitively speaking, glue all operations of a
job together and focus on determining the order of such glued jobs. Formally,
given a schedule π, a job is glued if all of j’s operations are processed consecu-
tively without other operations in between. We have the following lemma.

Lemma 1. Every schedule can be transformed into one in which all jobs are
glued without increasing the total weighted completion time.

Due to the previous result, we assume in the rest of the paper that each job
j in an instance of 1|ot-sf , assembly|∑ wjCj only consists of a single operation
oj . This operation has a processing time p(oj) =

∑
o∈j p(o) =: p(j) and the

precedence relation is extended so that each setup operation with a precedence
to some o ∈ j now has a precedence to oj .

4.1 Transforming One-Time Setup Solutions

In this section, we present our algorithm Transform to transform a solution π
for the one-time setup problem 1|ot-sf , assembly|∑ wjCj into a solution πout

for our original problem 1|sf , assembly|∑ wjCj . Initially, πout is the sequence
of operations as implied by the solution π after splitting the glued jobs into
its original operations again and not including setup operations. A batch is a
(maximal) subsequence of consecutive (non-setup) operations of the same family.
Intuitively, the schedule implied by πout probably already has a useful order for
the jobs but is missing a good batching of operations of the same family. This
would lead to way too many setups to obtain a good schedule. Therefore, the
main idea of Transform is to keep the general ordering of the schedule but to
make sure that each setup is “worth it”, i.e., that each batch is sufficiently large
to justify a setup. We will achieve that by filling up each batch with operations
of the same family scheduled later until the next operation would increase the
length of the batch too much. More precisely, let B1, B2, . . . be the batches in
πout (in this order). We iterate over the batches Bi in the order of increasing i
and for each batch Bi of family f do the following: Move as many operations

Approximating Completion Time for Order Scheduling with Setup Times 93

of family f from the closest batches Bi′ , i′ > i, to Bi as possible while ensuring
that p(Bi) < β · s(f), where β (we call it the pull factor) is some fixed constant
and p(Bi) :=

∑
j∈Bi

p(j). If a batch gets empty before being considered, it is
removed from πout (and hence, not considered in later iterations). We show the
following theorem on the quality of Transform.

Theorem 1. If Cπ ≤ c · COpt, then Cπout ≤ (1 + β) · c · COpt, for any β ≥ √
2.

Proof. We only need to show that Cπout ≤ (1 + β) · Cπ. For the analysis we will
compare the completion time of each operation o in π to the one in πout (in their
respective cost model). We denote by π(. . . o) the schedule π up to and including
operation o and by f ∈ π(. . . o) that some operation in π(. . . o) is of family f .
We have

Cπ
o =

∑

f∈F|f∈π(...o)

⎛

⎝p(os
f) +

∑

o′∈⋃
j∈J j|o′∈π(...o)∧f(o′)=f

p(o′)

⎞

⎠

︸ ︷︷ ︸
=:(Cπ

o)f

.

We will now analyze the contribution (Cπout
o)f of some family f to the completion

time of o in πout. We have

(Cπout
o)f ≤ (Cπ

o)f −s(f)
︸ ︷︷ ︸

removed os
f

+ β · s(f)
︸ ︷︷ ︸

added operations

+

(⌈
(Cπ

o)f − s(f)
β
2 s(f)

⌉

· s(f)

)

︸ ︷︷ ︸
cost of setups

due to the following reasoning. The first three summands describe the contribu-
tion of class f ’s jobs to the completion time of o in πout. Compared to (Cπ

o)f ,
we move operations of length at most β · s(f) belonging to family f in front of
o (recall that empty batches are removed in the process of Transform; only
the last batch of some family f before o pulls operations from behind o in front
of o) and we do not consider the one-time setup operation. The last summand
represents the contribution due to setups for family f . We need to do at most⌈
(Cπ

o)f −s(f)
β
2 s(f)

⌉
many setups for operations of family f that contribute to the com-

pletion time of o in πout. This is true because of the following reasoning. From
our construction we know that for two batches of the same family, with no other
batches of the same family in between, the processing time of those batches
combined has to be at least β · s(f), otherwise they would have been combined.
If there is an odd number of batches we cannot say anything about the last
batch, except that it has a nonzero processing time. This factor is captured by

94 A. Mäcker et al.

the rounding. Therefore we obtain

(Cπout
o)f ≤ (Cπ

o)f + (β − 1)s(f) +

(⌈
(Cπ

o)f − s(f)
β
2 s(f)

⌉

· s(f)

)

≤ (Cπ
o)f + β · s(f) +

(
(Cπ

o)f

β
2 s(f)

· s(f)

)

− 2
β

s(f)

≤ (Cπ
o)f + (β − 2

β
) · s(f) +

2(Cπ
o)f

β

≤ (1 +
2
β

)(Cπ
o)f + (β − 2

β
) · s(f)

β≥√
2

< (1 + β)(Cπ
o)f ,

where the last inequality holds because a family f can only contribute to the
completion time of o in πout if it contributed to the completion of o in π and
in this case (Cπ

o)f ≥ s(f) by definition. (If o itself got moved to the front there
might be a family that contributed to Cπ

o but does not to Cπout
o .) Since each

operation’s completion time in πout is at most (1+β) times as big as in π, we
know that for each job j ∈ J , Cπout

j ≤ (1 + β) · Cπ
j . ��

Actually, one can show that there are instances in which Cπout ≥ (1+β) ·Cπ

and therefore, that the analysis of Transform is indeed tight (cf. full version
[17]). However, it is also worth mentioning that these instances are rather “arti-
ficial” as the jobs’ processing times (and even their sum) are negligible while
setup operations essentially dominate the completion times. In less nastily con-
structed instances, we would expect that even for moderate values β >

√
2,

(1 + 2
β)(Cπ

o)f significantly dominates (β − 2
β) · s(f) for most of the operations

o as (Cπ
o)f grows the later o is scheduled while s(f) stays constant. This would

then lead to Cπout ≈ 1 + 2
β . This observation is also discussed and supported by

our simulations (cf. full version [17]).

5 Approximations for Constant Number of Families

In this section, we study approximations for the problem 1|sf , assembly|∑
wjCj and a fixed number of families K. The general idea is to first solve the

1|ot-sf , assembly|∑ wjCj problem optimally and then to use the Transform

algorithm as described in the previous section, leading to (1 +
√

2)-approximate
solutions for instances of 1|sf , assembly|∑ wjCj . To solve the problem 1|ot-sf ,
assembly|∑ wjCj optimally, we describe a two-step algorithm and two possible
approaches for its second step. The first one is a direct application of a known
approach by Lawler [14]. We also propose a new, alternative approach, which is
much simpler as it is specifically tailored to our problem.

To solve 1|ot-sf , assembly|∑ wjCj optimally, in the first step, we exhaus-
tively enumerate all possible permutations of setups. In the second step, we then
find, for each permutation, the optimal schedule under the assumption that the
order of setup operations is fixed according to the permutation. After we have

Approximating Completion Time for Order Scheduling with Setup Times 95

performed both of these steps, we can simply select the best result, which is the
optimal solution to the 1|ot-sf , assembly|∑ wjCj problem.

5.1 Series Parallel Digraph and Lawler’s Algorithm

Lawler [14] proposed an algorithm that optimally solves 1|prec|∑ wjCj in poly-
nomial time under the condition that the precedences can be described by a
series parallel digraph. To solve 1|ot-sf , assembly|∑ wjCj , the general idea is
to modify the precedence graph of a given 1|ot-sf , assembly|∑ wjCj instance
so that it becomes series parallel and then apply Lawler’s algorithm. We create
a series parallel digraph that represents both the jobs reliance on setups as well
as the predetermined order of setup operations as follows. Given a permutation
τ = (os

f ′
1
, os

f ′
2
, . . .) of setup operations, we create a precedence chain of nodes

os
f ′
1

→ os
f ′
2

→ Then for each operation oj , we add an edge from os
f ′

i
to oj

such that i is the smallest value for which all operations in j belong to a family
in {f ′

1, f
′
2, . . . , f

′
i}. Intuitively, since we have fixed the order of setups for each

operation, we can easily see which setup operation is the last one that is nec-
essary to process the operation. We do not care about the other precedences
because they became redundant after fixing the setup order.

Having done this we have a 1|prec|∑ wjCj problem with a series parallel
digraph that is equivalent to the 1|ot-sf , assembly|∑ wjCj problem. At this
point we can use the result by Lawler [14] to solve this in polynomial time.

5.2 Simple Local Search Algorithm

In this section, we propose a simple algorithm to solve 1|ot-sf , assembly|∑
wjCj optimally in polynomial time given that K is fixed. Since our algo-

rithm is tailored to this specific problem, it is a lot simpler and works with
less overhead which justifies introducing it here alongside the aforementioned
solution.

We first show that we can assume optimal schedules to fulfill a natural gen-
eralization of the weighted SPT-order to the setting with setup times. We define
this notion for our original problem as follows: A schedule π is in generalized
weighted SPT-order if the following is true: For every ji, jk with p(ji)

w(ji)
< p(jk)

w(jk)
,

ji is scheduled before jk or jk is scheduled at a position where ji cannot be
scheduled (because precedences would be violated). If p(ji)

w(ji)
= p(jk)

w(jk)
, j� is sched-

uled before j⊕ or j⊕ is scheduled at a position where j� cannot be scheduled,
where
 = min{i, k} and ⊕ = max{i, k}.

Lemma 2. Any schedule π with total weighted completion time COpt can be
transformed into one in generalized weighted SPT-order without increasing the
total weighted completion time.

Proof. If there are two jobs ji, jk with p(ji)
w(ji)

< p(jk)
w(jk)

that do not fulfill the
desired property, π cannot be optimal due to the following reasoning. Let J be

96 A. Mäcker et al.

the set of operations scheduled after ji and before jk. Let p(J) =
∑

o∈J p(o)
and w(J) =

∑
o∈J w(o) denote the processing time of all jobs and setups and all

weights in J , respectively. We show that moving jk directly behind ji (move1)
or moving ji directly before jk (move2) reduces the total weighted completion
time of π.

The change of the total weighted completion time due to move1 is given
by Δ1 = −w(J)p(jk) + p(J)w(jk) − w(ji)p(jk) + w(jk)p(ji). If Δ1 < 0, move1
decreases the total weighted completion time and we are done.

Otherwise, if Δ1 ≥ 0, we show that move2 leads to a decrease. Since p(ji)
w(ji)

<
p(jk)
w(jk)

we know that −w(ji)p(jk) + w(jk)p(ji) < 0. Therefore, −w(J)p(jk) +
p(J)w(jk) > 0. The change in total weighted completion time Δ2 of move2
is given by Δ2 = −(−w(J)p(ji) + p(J)w(ji)) − w(ji)p(jk) + w(jk)p(ji). Since
p(ji)
w(ji)

< p(jk)
w(jk)

there exist x, y ∈ R
+ with p(ji) = x·p(jk) and w(ji) = x·w(jk)+y.

Plugging those in we get

Δ2 = −(−w(J)p(ji) + p(J)w(ji)) − w(ji)p(jk) + w(jk)p(ji)
= −(−w(J)xp(jk) + p(J)xw(jk) + p(J)y) − w(ji)p(jk) + w(jk)p(ji)
= −x · (−w(J)p(jk) + p(J)w(jk))

︸ ︷︷ ︸
<0

−p(J)y
︸ ︷︷ ︸

<0

−w(ji)p(jk) + w(jk)p(ji)
︸ ︷︷ ︸

<0

< 0.

Therefore, in both cases we get a contradiction to the optimality of π and hence,
no such jobs ji and jk can exist.

It remains to argue about pairs of jobs ji and jk such that p(ji)
w(ji)

= p(jk)
w(jk)

(case
works analogously to the previous one, refer to the full version [17]). Repeated
application of this process leads to a schedule with the desired properties. ��

Due to the previous lemma, we will restrict ourselves to schedules that are in
generalized weighted SPT-order. We call the (possibly empty) sequence of jobs
between two consecutive setup operations in a schedule a block. We therefore
particularly require that in any schedule we consider, the jobs within a block are
ordered according to the weighted SPT-order.

We execute a local search algorithm started on the initial schedule πinit
τ given

by the input setup operation order τ followed by all jobs in weighted SPT-order
(ties are broken in favor of jobs with lower index). An optimal schedule is then
computed by iteratively improving this schedule by a local search algorithm.
Given a schedule π, a move of job j is given by the block into which j is placed
subject to the constraint that the resulting schedule remains feasible. Note that
due to our assumption that we only consider schedules in generalized weighted
SPT-order, a schedule π and a move of a job j uniquely determine a new feasible
schedule. A move of job j is called a Greedy move if it improves the total
weighted completion time and among all moves of j, no other move leads to
a larger improvement. Among all greedy moves for job j we call the one that
places j closest to the beginning of π Greedy+ move. Our local search algorithm
iteratively applies, in weighted SPT-order, one single Greedy+ move for each
job. For ease of presentation, we assume in the following that we have guessed

Approximating Completion Time for Order Scheduling with Setup Times 97

the permutation τ of setup operations correctly and that in the following the
initial schedule in all considerations is always assumed to be πinit

τ .

Lemma 3. Each schedule π in generalized weighted SPT-order can be reached
by applying, in weighted SPT-order, a single move for each job. Additionally,
each intermediate schedule is in generalized weighted SPT-order.

Due to the previous lemma, from now on we assume the following. A sequence
〈σ1, . . . , σi〉 of moves defines the schedule obtained by applying the moves
σ1, . . . , σi (in this order) to the respective first i jobs in weighted SPT-order
to the initial schedule πinit

τ . Our next step is to show that an optimal schedule
can be found by Greedy moves.

Lemma 4. Suppose there is a sequence 〈σ1, . . . , σn〉 of moves such that the
resulting schedule π has total weighted completion time COpt. Then all moves
are Greedy moves.

The next corollary follows by the previous three lemmas.

Corollary 1. There is an optimal schedule that can be reached by applying, in
weighted SPT-order, a single Greedy move per job.

Using similar arguments as in the proof of the previous lemma, we can finally
show that our tie breaker (by which Greedy and Greedy+ moves differ) does
not do any harm when searching for an optimal solution.

Lemma 5. Applying, in weighted SPT-order, a Greedy+ move for each job,
leads to an optimal schedule.

By the previous lemma, we have the final theorem of this section.

Theorem 2. The local search algorithm computes optimal solutions for the one-
time setup problem in time O(n · log(n) · K!). In combination with the Trans-
form algorithm from Sect. 4, this yields an approximation algorithm with approx-
imation factor 1 +

√
2 for our original problem.

6 Arbitrary Number of Families

In the previous section, we have seen that 1|sf , assembly|∑ wjCj can be solved
in time O(n·log(n)·K!), which is polynomial for a fixed number K of families. At
this point, one might ask whether there are approximation algorithms running
in time poly(n,K), and whether the non-polynomial dependence on K is inher-
ent to 1|ot-sf , assembly|∑ wjCj . The latter is indeed true because Woeginger
has shown in his paper [21] that different special cases of the 1|prec|∑ wjCj

model, including one being equivalent to our (glued) 1|ot-sf , assembly|∑ wjCj

with the restriction that all job weights are 1, are equally hard to approximate.
Therefore, optimally solving the one-time setup problem is indeed NP-hard for
non-constant K. On the positive side, we show how 1|sf , assembly|∑ wjCj

98 A. Mäcker et al.

problems can be approximated in time poly(n,K) in Sect. 6.1. This approach,
however, worsens the approximation by a factor of 2 from (1+

√
2) to 2(1+

√
2).

Lastly we show that 1|sf , assembly|∑ wjCj is inapproximable within factor
2 − ε, assuming a version of the Unique Games Conjecture, by applying results
from Woeginger [21] and Bansal and Khot [4].

6.1 Approximation Algorithm

The general idea of our approximation algorithm is the same as for the case of
a constant K: We first solve 1|ot-sf , assembly|∑ wjCj and then use Trans-
form from Sect. 4.1 to obtain a feasible schedule for our original 1|sf , assembly|∑

wjCj problem. Recall that 1|ot-sf , assembly|∑ wjCj is a special case of
1|prec|∑ wjCj . As this problem has been studied a lot, there are different
approximation algorithms in the literature and, for example, [5,10] provide
2-approximation algorithms. Therefore, we conclude with the following theorem.

Theorem 3. 1|sf , assembly|∑ wjCj can be approximated with an approxima-
tion factor of 2(1 +

√
2) in polynomial time.

6.2 Lower Bound on the Approximability

Theorem 4. Assuming a stronger version of the Unique Games Conjecture [4],
1|sf , assembly|∑ wjCj is inapproximable within 2 − ε for any ε > 0.

Proof. Woeginger [21] showed that the general 1|prec|∑ wjCj and some special
cases of the problem have the same approximability threshold. Bansal and Khot
[4] could prove that, assuming a stronger version of the Unique Games Conjec-
ture, 1|prec|∑ wjCj , and therefore also the special cases in [21], are inapprox-
imable within 2 − ε for any ε > 0. The special case we are interested in was
defined by Woeginger as: [the] special case where every job has either pj = 0 and
wj = 1, or pj = 1 and wj = 0, and where the existence of a precedence constraint
Ji → Jj implies that pi = 1 and wi = 0, and that pj = 0 and wj = 1 [21]. It
is easy to see that an α-approximation for 1|sf , assembly|∑ wjCj also yields
an α-approximation for the stated special case by transforming an instance of
the special case in the following way: For every job i with wi = 0 add a fam-
ily fi with s(fi) = 1. For every job l with wl = 1 add a job jl with wjl

= 1.
For every precedence Ji → Jl add an operation oi,l to jl with f(oi,l) = fi and
p(oi,l) = 0. It is easy to see that the optimal solutions of both problems have
the same weight. In both representations the difficult part is to decide the order
of weight 0 jobs or setups, respectively. All jobs or operations with processing
time 0 can be scheduled as early as possible in an optimal solution.

Therefore we can conclude that 1|sf , assembly|∑ wjCj has at least an
equally high appoximability threshold as 1|prec|∑ wjCj . ��

Approximating Completion Time for Order Scheduling with Setup Times 99

7 Future Work

It might be interesting whether there is a better algorithm for transforming
solutions for the one-time setup problem to their respective original problem.
One could also try to improve the approximation factor by designing algorithms
that directly solve our original problem without the detour via the one-time setup
problem. Another interesting direction for the future is the question whether our
lower bound can be increased. For the special case with a constant number of
families, the question whether that problem is already NP-hard also remains
open.

References

1. Allahverdi, A.: The third comprehensive survey on scheduling problems with setup
times/costs. Eur. J. Oper. Res. 246(2), 345–378 (2015)

2. Allahverdi, A., Gupta, J.N., Aldowaisan, T.: A review of scheduling research involv-
ing setup considerations. Omega 27(2), 219–239 (1999)

3. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling
problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

4. Bansal, N., Khot, S.: Optimal long code test with one free bit. In: Proceedings of
the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 453–462. IEEE (2009)

5. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of
weighted completion times on a single machine. Discrete Appl. Math. 98(1–2),
29–38 (1999)

6. Correa, J.R., et al.: Strong LP formulations for scheduling splittable jobs on unre-
lated machines. Math. Program. 154(1–2), 305–328 (2015)

7. Correa, J.R., Verdugo, V., Verschae, J.: Splitting versus setup trade-offs for
scheduling to minimize weighted completion time. Oper. Res. Lett. 44(4), 469–
473 (2016)

8. Divakaran, S., Saks, M.E.: Approximation algorithms for problems in scheduling
with set-ups. Discrete Appl. Math. 156(5), 719–729 (2008)

9. Gerodimos, A.E., Glass, C.A., Potts, C.N., Tautenhahn, T.: Scheduling multi-
operation jobs on a single machine. Ann. OR 92, 87–105 (1999)

10. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average
completion time: off-line and on-line approximation algorithms. Math. Oper. Res.
22(3), 513–544 (1997)

11. Happe, M., Meyer auf der Heide, F., Kling, P., Platzner, M., Plessl, C.: On-the-
fly computing: a novel paradigm for individualized IT services. In: Proceedings of
the 16th IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), pp. 1–10. IEEE Computer Society
(2013)

12. Jansen, K., Klein, K., Maack, M., Rau, M.: Empowering the configuration-IP-
new PTAS results for scheduling with setups times. In: Proceedings of the 10th
Innovations in Theoretical Computer Science Conference (ITCS). LIPIcs, vol. 124,
pp. 1–19. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019)

13. Jansen, K., Maack, M., Mäcker, A.: Scheduling on (un-)related machines with setup
times. In: Proceedings of the 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 145–154. IEEE Computer Society (2019)

100 A. Mäcker et al.

14. Lawler, E.L.: Sequencing jobs to minimize total weighted completion time subject
to precedence constraints. Ann. Discrete Math. 2, 75–90 (1978)

15. Lenstra, J.K., Kan, A.H.G.R.: Complexity of scheduling under precedence con-
straints. Oper. Res. 26(1), 22–35 (1978)

16. Leung, J.Y., Li, H., Pinedo, M.: Order scheduling models: an overview. In: Kendall,
G., Burke, E.K., Petrovic, S., Gendreau, M. (eds.) Multidisciplinary Scheduling:
Theory and Applications, pp. 37–53. Springer, Boston (2005). https://doi.org/10.
1007/0-387-27744-7 3

17. Mäcker, A., Meyer auf der Heide, F., Pukrop, S.: Approximating weighted comple-
tion time for order scheduling with setup times. arXiv e-prints arXiv:1910.08360,
October 2019

18. Monma, C.L., Potts, C.N.: On the complexity of scheduling with batch setup times.
Oper. Res. 37(5), 798–804 (1989)

19. Ng, C.T., Cheng, T.C.E., Yuan, J.J.: Strong NP-hardness of the single machine
multi-operation jobs total completion time scheduling problem. Inf. Process. Lett.
82(4), 187–191 (2002)

20. Smith, W.E.: Various optimizers for single-stage production. Naval Res. Logistics
Q. 3(1–2), 59–66 (1956)

21. Woeginger, G.J.: On the approximability of average completion time scheduling
under precedence constraints. Discrete Appl. Math. 131(1), 237–252 (2003)

https://doi.org/10.1007/0-387-27744-7_3
https://doi.org/10.1007/0-387-27744-7_3
http://arxiv.org/abs/1910.08360

Bounds for the Number of Tests
in Non-adaptive Randomized Algorithms

for Group Testing

Nader H. Bshouty1, George Haddad2, and Catherine A. Haddad-Zaknoon1(B)

1 Technion, Haifa, Israel
{bshouty,catherine}@cs.technion.ac.il

2 The Orthodox Arab College, Grade 11, Haifa, Israel
haddadgeorge9@gmail.com

Abstract. We study the group testing problem with non-adaptive ran-
domized algorithms. Several models have been discussed in the litera-
ture to determine how to randomly choose the tests. For a model M, let
mM(n, d) be the minimum number of tests required to detect at most
d defectives within n items, with success probability at least 1 − δ, for
some constant δ. In this paper, we study the measures

cM(d) = lim
n→∞

mM(n, d)

ln n
and cM = lim

d→∞
cM(d)

d
.

In the literature, the analyses of such models only give upper bounds
for cM(d) and cM, and for some of them, the bounds are not tight. We
give new analyses that yield tight bounds for cM(d) and cM for all the
known models M.

Keywords: Group testing · Randomized algorithms · Non-adaptive
algorithms

1 Introduction

Group testing is a strategy to identify d defective items from a pile of n elements
by testing groups of items rather than testing each one individually. A group test
is identified by a subset of items. The test response is positive if it includes at
least one defective item, and negative otherwise. The problem of group testing
is the task of identifying all the d items with a minimum number of group tests.

Formally, let S = [n] := {1, 2, . . . , n} be the set of the n items and let I ⊆ S
be the set of defective items. Suppose that we know that the number of defective
items, |I|, is bounded by some integer d. A test is a set J ⊂ S. The answer to
the test is T (I, J) = 1 if I ∩ J �= Ø and 0 otherwise. The problem is to find the
defective items with a minimum number of tests.

Although the group testing scheme was originally introduced as a potential
solution for an economical mass blood testing during WWII [9], many researchers

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 101–112, 2020.
https://doi.org/10.1007/978-3-030-38919-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_9

102 N. H. Bshouty et al.

have suggested applying this approach in a variety of practical problems. Du and
Hwang [11], for example, outline a wide range of applications in DNA screening
that involve group testing. On the other hand, Wolf [26] presents an applicable
group testing generalization to the random access communications problem. For
a brief history and other applications, the reader is referred to [2,6,7,10,11,14,
15,20,21,23].

Generally, the algorithm operates in stages or rounds. In each round, the
tests are defined in advance and are tested in a single parallel step. Tests in
some round might depend on the answers of the previous rounds. An algorithm
that includes only one stage is called a non-adaptive algorithm, while a multi-
stage algorithm is called an adaptive algorithm.

Since tests might be time consuming, in most practical applications, per-
forming the tests simultaneously is highly required. Therefore, non-adaptive
algorithms are extremely desirable in practice. It is well known, however, that
any non-adaptive deterministic algorithm must do at least Ω(d2 log n/ log d)
tests [1,13,22,24]. This is O(d/ log d) times more than the number of tests of
the folklore non-adaptive randomized algorithm that does only O(d log n) tests.
Due to their reduced number of tests, randomized non-adaptive algorithms for
group testing have drawn the attention of researchers for the past few decades,
and many algorithms have been proposed [3,4,11,12,16,17].

The set of tests in any non-adaptive deterministic (resp. randomized) algo-
rithm can be identified with a binary (resp. random) m × n test matrix
M (also called pool design). Each row in M corresponds to an assignment
a = (a1, · · · , an) ∈ {0, 1}n where ai = 1 if and only if i ∈ J or equivalently,
the ith item participates in the test defined by the subset J . For random algo-
rithms, the following models are studied in the literature for constructing an
m × n random test matrix M .

1. Random incidence design (RID algorithms). The entries in M are chosen
randomly and independently to be 0 with probability p and 1 with probability
1 − p.

2. Random r-size design (RrSD algorithms). The rows in M are chosen randomly
and independently from the set of all vectors {0, 1}n of weight r.

3. Random s-set design (RsSD algorithms). The columns in M are chosen ran-
domly and independently from the set of all vectors {0, 1}m of weight s.

4. Uniform Transversal Design with alphabet of size q (UTDq algorithms) A
design matrix M is called transversal if the rows of M can be divided into
disjoint families, where each family is a partition of all items [11]. A well
known method for constructing transversal designs is using a q-ary matrix.
A q-ary matrix M ′ is a matrix over the alphabet Σ = {1, . . . , q}, for some
fixed 2 ≤ q ∈ [n]. Transforming a q-ary matrix M ′ to a binary matrix M is
as follows. Each row r in M ′ is translated to q binary rows in M . For each
σ ∈ Σ, replace each entry that is equal to σ by 1 and the others convert to 0.
Therefore, if the matrix M ′ is of dimension m′ ×n, then M is an m×n binary
matrix where m = qm′. We say that a q−ary matrix M ′ (UTDq algorithms) is
a uniform random matrix if its entries are chosen randomly and independently

Bounds for the Number of Tests in Non-adaptive Randomized Algorithms 103

to be any symbol of the alphabet with probability 1/q. We say that M is a
q- transversal random matrix, if there is a uniform random q−ary matrix M ′

such that M is derived from M ′ according to the previous procedure.

One advantage of RID and RrSD algorithms over RsSD and UTDq algorithms
is that, in parallel machines, the tests can be generated by different processors
(or laboratories) without any communication between them. In those models all
the machines use the same distribution, draw a sample and perform the test.
Those algorithms are called strong non-adaptive in the sense that the rows of
the matrix M can also be non-adaptively generated in one parallel step.

For a model M, let mM(n, d) be the minimum number of tests of n items
with at most d defective items that is required in order to ensure success (finding
the defective items) with probability at least 1 − δ, for some constant δ. In this
paper, we study the constant cM for each model M, where cM is defined as
follows:

cM(d) = lim
n→∞

mM(n, d)
ln n

and cM = lim
d→∞

cM(d)
d

.

To the best of our knowledge, there has been little discussion about any non-
trivial lower bound on the number of tests required in a non-adaptive randomized
algorithm for group testing [8]. Moreover, the analyses of the previous models
known in the literature give only upper bounds for cM(d) and cM, and some of
these bounds are not tight. For some models, the used techniques do not even
lead to an upper bound, and other relaxed measures are examined, such as the
expected number of non-defective items that are eliminated after each test.

The objective of this paper is to establish lower and upper bounds on the
number of tests required for a non-adaptive randomized algorithm to identify d
defectives among n items with a success probability at least 1−δ. We develop new
techniques that give tight bounds for cM(d) and cM over the models: M = RID,
RrSD, RsSD and UTDq.

1.1 Old and New Results

Let M be an m × n test matrix. Let I ⊆ S = [n], |I| ≤ d be the set of defective
items. Let T (I,M) denote the vector of answers to the tests (rows of M), that
is, T (I,M) := ∨i∈IM

(i) where ∨ is bit-wise “or” and M (i) is the ith column of
M . A matrix M is called (n, I)-separable if for every J ⊆ [n], |J | ≤ d and J �= I,
we have T (J,M) �= T (I,M). That is, the only set J of up to d items that is
consistent with the answers of the tests ∨i∈IM

(i) is I.
While the separability property is obviously sufficient to guarantee identifying

the defectives successfully, unfortunately, the analysis of such property seems to
be very involved [5]. Therefore, a more relaxed property is required. A matrix M
is called (n, I)-disjunct with respect to some subset I ⊂ [n], |I| ≤ d, if for each
i �∈ I, there is a test that contains it but does not contain any of the defective
items. Formally, for any i �∈ I, there is a row t ∈ [m] such that Mt,i = 1 and
for all j ∈ I, Mt,j = 0. Since no defective item participates in such test, the

104 N. H. Bshouty et al.

response of the oracle on it will be negative (0) and hence, is a witness for the
fact that the item i is not defective.

If the test matrix M is (n, I)-disjunct, the decoding algorithm reveals the
defective items according to the following procedure. It starts with a set X = S.
After making all the tests defined by M , for every negative answer of a row a in
M , it removes from X all the items i where ai = 1. Since M is (n, I)-disjunct,
all the non-defective items are guaranteed to have a test that eliminates them
from X. Therefore, X will eventually contain the defective items only. This can
be done in linear time in the size of M .

The folklore non-adaptive randomized algorithm randomly chooses M such
that, for any set of at most d defective items I, with probability at least 1 − δ,
M is (n, I)-disjunct, and then applies the previous algorithm to identify the
defective items. This is why the property of disjunction is well studied in the
literature [3,4,11,16–19]. It is well known (and very easy to see) that if M is
(n, I)-disjunct then M is (n, I)-separable.

Let δ be some constant. For a model M, let mD
M(n, d) be the minimum

number of tests that is required in order to ensure that for any set of at most d
defective items I, with probability at least 1−δ, the test matrix is (n, I)-disjunct.
We define,

cD
M(d) = lim

n→∞
mD

M(n, d)
ln n

and cD
M = lim

d→∞
cD
M(d)

d
.

Since an (n, I)-disjunct matrix is (n, I)-separable, for every model M, we have

cM(d) ≤ cD
M(d). (1)

Consider mM(n, d+1) random tests in the model M and their corresponding
matrix M . Let I be any set of size d. Then, with probability at least 1− δ, M is
(n, I)-separable and therefore for any j �∈ I we have ∨i∈I∪{j}M (i) �= ∨i∈IM

(i).
Notice that ∨i∈I∪{j}M (i) �= ∨i∈IM

(i) implies that there is a row a of M that
satisfies ai = 0 for all i ∈ I and aj = 1. Therefore, with probability at least 1−δ,
M is (n, I)-disjunct. Thus, mD

M(n, d) ≤ mM(n, d + 1) and

cM(d + 1) ≥ cD
M(d). (2)

Since cM(d), cD
M(d) = O(d) and from (1) and (2) it follows that cM = cD

M.
The best lower bound for cM is cM ≥ 1/ ln 2 and cM(d), cD

M(d) ≥ d/ ln 2.
This bound follows from the trivial information-theoretic lower bound d log n =
(d/ ln 2) ln n.

Sebö, [25], studies the RID model for the simple case when the number of
defective items is exactly d. He shows that the best probability for the random
test matrix (i.e., that gives a minimum number of tests) is p = 1 − 1/21/d and,
in this case, the number of tests meets the information-theoretic lower bound.

The general case is studied in [3–5,11,12,16,17]. The technique used in most
of the studies relies on obtaining the probability that maximizes the expected
number of items eliminated in one test. In [3], it is shown that for the RID

Bounds for the Number of Tests in Non-adaptive Randomized Algorithms 105

model this probability is p = 1− 1/(d+1). Moreover, it is shown that using this
probability cD

RID(d) ≤ ed+(e − 1)/2+O (1/d) and therefore cRID = cD
RID ≤ e. [3,5].

In their work, Bshouty et. al. [5] study the separability property and show that
cRID(d) ≤ ed − (e + 1)/2 + O (1/d) .

In this paper we give lower and upper bounds on the number of tests required
by any non-adaptive randomized group testing algorithm when tests are chosen
according to the RID, RrSD, RsSD and UTDq models. For random designs
selected according to the RID model, we show that

cD
RID(d) = ed, and therefore, cRID = e = 2.718.

The optimal probability that derives this result is p = e−1/d. This, in particular,
shows that finding the probability that maximizes the expected number of items
that are eliminated in one test does not necessarily give the probability that
minimizes the total number of tests. Considering the RrSD model, we prove
that

cD
RrSD(d) = cD

RID(d) = ed, and cRrSD = cRID = e = 2.718.

Moreover, for the RsSD model, we show that

cD
RsSD(d) =

1

(ln 2)max0<α≤1

(
H(α) − βH

(
α
β

)) and cRsSD =
1

(ln 2)2
= 2.081

where β = 1 − (1 − α)d. Regarding the UTDq model, we prove that

cD
UTDq(d) = min

q

q

− ln Pq,d
and cUTDq =

1
(ln 2)2

,

where

Pq,d =

(
d∏

i=1

(
i

q

)Rq,d,i
)1/qd

,

and Rq,d,i is the number of strings in [q]d that contains exactly i symbols.
In addition, for small d, Table 1 outlines the values of cD

M(d)/d across the
above four models.

2 The RID Model

In this section, we study the Random Incidence Design (RID algorithms). We
recall that in this model, the entries in M are chosen randomly and independently
to be 0 with probability p, and 1 with probability 1 − p. We prove:

Theorem 1. We have, cD
RID(d) = ed and cRID = e.

In Lemma 1, by choosing p = e− 1
d , we develop an upper bound on the number

of queries required for the group testing problem when M is designed according
to the RID model. For this choice of p, we establish, in Lemma 2, a lower bound
that shows that this choice of p gives the minimum number of tests in this model.

As in the introduction, let the set I denote defective items set. We say that
a row i in M is a good row if for every j ∈ I, we have Mi,j = 0.

106 N. H. Bshouty et al.

Table 1. Leading constant of d ln(n) for small d and n → ∞ for RID, RrSD, RsSD,
and UTDq models.

d RID RrSD RsSD UTDq

2 2.718 2.718 1.95 2.417

3 2.718 2.718 1.96 2.31

4 2.718 2.718 1.992 2.225

5 2.718 2.718 2.01 2.221

6 2.718 2.718 2.02 2.198

7 2.718 2.718 2.03 2.182

8 2.718 2.718 2.04 2.17

9 2.718 2.718 2.044 2.16

10 2.718 2.718 2.05 2.152

→ ∞ e = 2.718 e = 2.718 1
ln2 2

= 2.081 1
ln2 2

= 2.081

Lemma 1. Let M be an m × n RID matrix with p = e− 1
d where

m −
√

2em ln
2
δ

= ed ln
2n

δ
. (3)

Then, for any I of size at most d, with probability at least 1 − δ, M is an
(n, I)-disjunct matrix. In particular,

m = ed ln
2n

δ
+ Θ

(√
d ln

n

δ
ln

1
δ

)
, cD

RID(d) ≤ ed and cRID ≤ e.

Proof. For any 1 ≤ i ≤ m, let Xi be a random variable that is equal to 1 if the
row i in M is a good row and 0 otherwise. The probability that a row i in M
is a good row is (e−1/d)d = e−1. Let X = X1 + · · · + Xm, be the number of the
good rows in M . Then, E[Xi] = Pr[Xi = 1] = e−1 and μ := E[X] = e−1m. Let
m′ = ed ln(2n/δ). Let A be the event indicating that the number of the good
rows in M is less than m′pd = m′/e. Let T ⊆ [m] be the set of the good row
indexes in M . That is, for each row t ∈ T , Mt,j = 0 for all j ∈ I. Let B be the
event indicating that there is a column j /∈ I in M such that Mt,j = 0 for all
t ∈ T , and therefore, M is not (n, I)-disjunct. Then we can say that,

Pr[B|A] ≤ (n − d)pm′pd ≤ ne− m′
ed =

δ

2
. (4)

Using Chernoff bound, for m as specified in (3) and since μ = e−1m we can
conclude,

Pr[A] = Pr
[
X <

m′

e

]
= Pr

[
X <

(
1 −

(
1 − m′

m

))
μ

]
≤ e− (1− m′

m
)2m

2e =
δ

2
.

(5)

Bounds for the Number of Tests in Non-adaptive Randomized Algorithms 107

Using (4) and (5) we get,

Pr[B] = Pr[B|A] Pr[A] + Pr[B|A] Pr[A] ≤ Pr[A] + Pr[B|A] ≤ δ.
�
Lemma 2. Let M be an m × n RID matrix with probability 0 ≤ p ≤ 1. If

m = ed ln n − e3
√

3m,

then with probability at least 1/3, M is not (n, I)-disjunct.
In particular, to have success probability at least 1/3, we must have

m ≥ ed ln n − Θ(
√

d ln n).

Therefore,
cD
RID(d) ≥ ed and cRID ≥ e.

Proof. Consider c = d ln(1/p). Then p = e−c/d. Let m′ = ed ln n and w =
e3

√
3m. Then m = m′ − w. Let X be a random variable that is equal to the

number of good rows in M . Then μ := E[X] = e−cm. Let F be the event that M
is not (n, I)-disjunct. The probability that M is (n, I)-disjunct is the probability
that in every column that corresponds to a non-defective item, not all the entries
of the good rows are zero. Therefore, given that X = x, it is easy to see that
Pr[F |X = x] = (1−px)n−|I|. We distinguish between two cases: c ≥ 6 and c ≤ 6.

Case I. c ≤ 6. By Chernoff bound, and since ce1−c ≤ 1 for every c ≤ 6,

Pr[F] ≥ Pr[F ∧ X ≤ e−cm′] = Pr[F | X ≤ e−cm′] · Pr[X ≤ e−cm′]

≥
(

1 −
(
1 − pe−cm′)n−d

)(
1 − Pr

[
X ≥ e−cm′])

≥
(

1 −
(
1 − n−ce1−c

)n−d
) (

1 − Pr
[
X ≥ e−cm

(
1 +

w

m

)])

≥
(

1 −
(
1 − n−ce1−c

)n−d
) (

1 − e− e−cw2
3m

)

≥
(

1 −
(

1 − 1
n

)n−d
)

(
1 − e−1

)
=

(
1 − e−1+o(1)

) (
1 − e−1

)
>

1
3
,

where the last inequality is correct due to the fact that d = o(n).

Case II. c ≥ 6. By Markov bound, since m ≤ ed ln n and 2ce1−c < 0.1, then
for c ≥ 6 and d = o(n) we have,

Pr[F] ≥ Pr[F ∧ X ≤ 2e−cm] = Pr[F | X ≤ 2e−cm] · (1 − Pr[X ≥ 2e−cm])

≥
(

1 −
(
1 − p2e−cm

)n−d
)

· 1
2

≥ 1
2

(
1 −

(
1 − p2e−ced lnn

)n−d
)

≥ 1
2

·
(

1 −
(
1 − n−2ce1−c

)n−d
)

≥ 1
2

·
(

1 −
(

1 − 1
n0.1

)n−d
)

>
1
3
.
�

108 N. H. Bshouty et al.

3 The RrSD Model

In this section we study the Random r-Size Design (RrSD algorithms). As defined
previously, in this model, the rows in M are chosen randomly and independently
from the set of all vectors {0, 1}n of weight r.

Theorem 2. We have, cD
RrSD(d) = ed and cRrSD = e.

In Lemma 3, we give an upper bound using r = (1 − e− 1
d)n. In Lemma 4,

we establish a lower bound that shows that this choice of r gives the minimum
number of tests for this model. The proof of both lemmas is very similar to the
upper and lower bound proofs of the RID model, and are given in details in the
full version of the paper.

Lemma 3. Let M be an m × n RrSD matrix with r = (1 − p)(n − d + 1), where
p = e− 1

d and

m −
√

2em ln
2
δ

= ed ln
2n

δ
.

Then, for any I of size at most d, with probability at least 1 − δ, M is an
(n, I)-disjunct matrix. In particular,

m = ed ln
2n

δ
+ Θ

(√
d ln

n

δ
ln

1
δ

)
, cD

RrSD(d) ≤ ed and cRrSD ≤ e.

Lemma 4. Let M be an m × n RrSD matrix where 0 ≤ r ≤ n and d <
n1/2/ ln3 n. If

m = ed ln(n/e) − e3
√

3m,

then, with probability at least 1/3, M is not (n, I)-disjunct. In particular, to have
success probability at least 1/3, we must have

m ≥ ed ln n − Θ(d +
√

d ln n).

And therefore,
cD
RrSD(d) ≥ ed and cRrSD ≥ e.

4 The RsSD Model

In this section we study the Random s-Set Design (RsSD algorithms). We recall
that in this model, the columns of M are chosen randomly and independently
from the set of all vectors {0, 1}m of weight s.

We prove,

Theorem 3. We have,

cD
RsSD(d) =

1

(ln 2)max0<x≤d

(
H(α) − βH

(
α
β

)) and cRsSD =
1

(ln 2)2

where α = x/d and β = 1 − (1 − α)d.

Bounds for the Number of Tests in Non-adaptive Randomized Algorithms 109

An upper bound for this model is established in Lemma 5 using s = ln 2 · m/d.
Moreover, in Lemma 6, a lower bound is developed indicating that this choice of
s gives the minimum number of tests for this model. For detailed proof of both
lemmas, the reader is referred to the full version of the paper.

Lemma 5. Let M be an m×n RsSD matrix with α = s
m = x

d and β = 1− (1−
α)d where 0 < x ≤ d is any real number. Let

m′ =
ln n + ln 3

δ + 1
2 ln

(
β(1−α)

β−α

)

(ln 2)
(
H(α) − βH

(
α
β

)) ,

and λ = 2√
δ(1−α)dm

< 1. Then, for m = (1+λ)m′, with probability at least 1−δ,

M is an (n, I)-disjunct matrix. In particular

cD
RsSD(d) ≤ 1

(ln 2)max0<x≤d

(
H(α) − βH

(
α
β

)) and cRsSD ≤ 1
(ln 2)2

.

The lower bound for this model is given in the following lemma.

Lemma 6. Let M be an m × n RsSD matrix with α = s/m = x
d for any real

number 0 < x ≤ d, and let β = 1 − (1 + λ)(1 − α)d, where λ < 1/10 is any small
constant. If

m =
ln n + ln 2 + 1

2 ln
(

β(1−α)
β−α

)
(
H(α) − βH

(
α
β

))
ln 2

,

then, with probability at least 3λ/16, M is not (n, I)-disjunct. In particular

cD
RsSD(d) ≥ 1

(ln 2)max0<x≤d

(
H(α) − βH

(
α
β

)) and cRsSD ≥ 1
(ln 2)2

.

5 Random Uniform Transversal Design Model

In this section we develop bounds for the UTDq design. For ease of the analysis,
we assume that d ≤ q. In the full paper, we show that all the results are also
true for any q ≥ 1. For d ≤ q, we define

Pq,d =

(
d∏

i=1

(
i

q

)Rq,d,i
)1/qd

,

where Rq,d,i is the number of strings in [q]d that contains exactly i symbols. It
is easy to see that

Rq,d,i =
(

q

i

)
Nd,i,

where Nd,i is the number of strings of length d over the alphabet Σi :=
{1, 2, . . . , i} that contains all the symbols in Σi.

110 N. H. Bshouty et al.

In this section we prove

Theorem 4. We have

cD
UTDq(d) = min

q

q

− ln Pq,d
and cUTDq =

1
(ln 2)2

.

For any set K ⊆ [n], let Si,K(M) = {Mi,t|t ∈ K} be the set of the symbols
that appear in the entries that correspond to the row i and the columns of K.
Throughout this section, we will assume, w.l.o.g., that the set of the defective
item is I = [d]. The following lemmas are proved in the full version of the paper.
We start with:

Lemma 7. Let M be an m × n q-transversal random matrix. The probability
that M is not (n, [d])-disjunct is

1 −
⎛
⎝1 −

m′∏
i=1

|Si,[d](M ′)|
q

⎞
⎠

n−d

.

The following lemma provides an upper bound on cD
UTDq(d).

Lemma 8. Let M be an m × n q-transversal random matrix where

m =
1

(1 − λ)
q ln(2n/δ)
− ln Pq,d

=
q ln(2n/δ)
− ln Pq,d

+ o(ln n), (6)

and λ =
√

(2qd+1/m) ln(2qd/δ). Then, with probability at least 1 − δ, M is
(n, [d])−disjunct. Therefore,

cD
UTDq(d) ≤ min

q

q

− ln Pq,d
.

We now prove a lower bound on cD
UTDq(d).

Lemma 9. Let M be an m × n q-transversal random matrix. Let

m =
1

(1 + λ)
q ln(8(n − d))

− ln Pq,d
=

q ln n

− ln Pq,d
+ o(ln n) (7)

where λ =
√

(3qd+1/m) ln(16qd). Then, with probability at least 3/4, M is not
(n, [d])−disjunct. Therefore,

cD
UTDq(d) ≥ min

q

q

− ln Pq,d
.

It is not clear, however, how to compute the cD
UTDq(d)/d when d → ∞ in order to

get cUTDq. The following two lemmas give a different analysis that enables us to
approximate cD

UTDq(d), and then to compute cUTDq. The proofs of both lemmas
are given in details in the full version of the paper.

Bounds for the Number of Tests in Non-adaptive Randomized Algorithms 111

Lemma 10. Let M be an m × n q-transversal random matrix where

m =
q ln(n/δ)

− ln
(

1 −
(
1 − 1

q

)d
) . (8)

Then, with probability at least 1 − δ, M is an (n, [d])-disjunct matrix. In partic-
ular,

cD
UTDq(d) ≤ min

q

q

− ln
(

1 −
(
1 − 1

q

)d
) and cUTDq ≤ 1

(ln 2)2
.

In the following Lemma 11, we prove a tight lower bound for cUTDq.

Lemma 11. Let be an m × n q-transversal random matrix where

m =
q ln((n − d)/2)

− ln
(

1 −
(
1 − 1

q

)d

− O(q−1/3)
) .

Then, with probability at least 1/4, the matrix M is not (n, [d])-disjunct.
In particular, we have

cUTDq ≥ 1
ln2(2)

.

References

1. Rykov, V.V., D’yachkov, A.G.: Bounds on the length of disjunctive codes. Probl.
Peredachi Inf. 18, 7–13 (1982)

2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)
3. Balding, D.J., Bruno, W.J., Torney, D.C., Knill, E.: A comparative survey of non-

adaptive pooling designs. In: Speed, T., Waterman, M.S. (eds.) Genetic Mapping
and DNA Sequencing. IMA, vol. 81, pp. 133–154. Springer, New York (1996).
https://doi.org/10.1007/978-1-4612-0751-1 8

4. Bruno, W.J., et al.: Efficient pooling designs for library screening. Genomics 26(1),
21–30 (1995)

5. Bshouty, N.H., Diab, N., Kawar, S.R., Shahla, R.J.: Non-adaptive randomized
algorithm for group testing. In International Conference on Algorithmic Learning
Theory, ALT 2017, 15–17 October 2017, Kyoto University, Kyoto, Japan, pp. 109–
128 (2017)

6. Cicalese, F.: Group testing. Fault-Tolerant Search Algorithms. MTCSAES, pp.
139–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17327-
1 7

7. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

8. Damaschke, P., Muhammad, A.S.: Randomized group testing both query-optimal
and minimal adaptive. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser,
S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 214–225. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27660-6 18

https://doi.org/10.1007/978-1-4612-0751-1_8
https://doi.org/10.1007/978-3-642-17327-1_7
https://doi.org/10.1007/978-3-642-17327-1_7
https://doi.org/10.1007/978-3-642-27660-6_18

112 N. H. Bshouty et al.

9. Dorfman, R.: The detection of defective members of large populations. Ann. Math.
Stat. 14(4), 436–440 (1943)

10. Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World
Scientfic Publishing, Singapore (1993)

11. Du, D.-Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing: Impor-
tant Tools for DNA Sequencing. World Scientfic Publishing, Singapore (2006)

12. Erdös, P., Rényi, A.: On two problems of information theory, pp. 241–254 (1963).
Publications of the Mathematical Institute of the Hungarian Academy of Sciences

13. Füredi, Z.: On r-cover-free families. J. Comb. Theory Ser. A 73(1), 172–173 (1996)
14. Hong, E.S., Ladner, R.E.: Group testing for image compression. IEEE Trans. Image

Process. 11(8), 901–911 (2002)
15. Hwang, F.K.: A method for detecting all defective members in a population by

group testing. J. Am. Stat. Assoc. 67(339), 605–608 (1972)
16. Hwang, F.K.: Random k-set pool designs with distinct columns. Probab. Eng. Inf.

Sci. 14(1), 49–56 (2000)
17. Hwang, F.K., Liu, Y.C.: The expected numbers of unresolved positive clones for

various random pool designs. Probab. Eng. Inf. Sci. 15(1), 57–68 (2001)
18. Hwang, F.K., Liu, Y.C.: A general approach to compute the probabilities of unre-

solved clones in random pooling designs. Probab. Eng. Inf. Sci. 18(2), 161–183
(2004)

19. Hwang, F.K., Liu, Y.: Random pooling designs under various structures. J. Comb.
Optim. 7, 339–352 (2003)

20. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans.
Inf. Theory 10(4), 363–377 (1964)

21. Macula, A.J., Popyack, L.J.: A group testing method for finding patterns in data.
Discrete Appl. Math. 144(1), 149–157 (2004). Discrete Mathematics and Data
Mining

22. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing
schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)

23. Ngo, H.Q., Du, D.-Z.: A survey on combinatorial group testing algorithms with
applications to DNA library screening. Discrete Math. Theor. Comput. Sci. 55,
171–182 (2000). DIMACS Series

24. Ruszinkó, M.: On the upper bound of the size of the r-cover-free families. J. Comb.
Theory Ser. A 66(2), 302–310 (1994)

25. Sebö, A.: On two random search problems. J. Stat. Plan. Inference 11(1), 23–31
(1985)

26. Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf.
Theory 31(2), 185–191 (1985)

Burning Two Worlds

Algorithms for Burning Dense and Tree-Like Graphs

Shahin Kamali, Avery Miller(B), and Kenny Zhang

University of Manitoba, Winnipeg, MB, Canada
{shahin.kamali,avery.miller}@umanitoba.ca,

zhangyt3@myumanitoba.ca

Abstract. Graph burning is a model for the spread of social influence in
networks. The objective is to measure how quickly a fire (e.g., a piece of
fake news) can be spread in a network. The burning process takes place in
discrete rounds. In each round, a new fire breaks out at a selected vertex
and burns it. Meanwhile, the old fires extend to their adjacent vertices
and burn them. A burning schedule selects where the new fire breaks out
in each round, and the burning problem asks for a schedule that burns
all vertices in a minimum number of rounds, termed the burning number
of the graph. The burning problem is known to be NP-hard even when
the graph is a tree or a disjoint set of paths. For connected graphs, it
has been conjectured [3] that burning takes at most �√n � rounds.

In this paper, we approach the algorithmic study of graph burning
from two directions. First, we consider connected n-vertex graphs with
minimum degree δ. We present an algorithm that burns any such graph

in at most
√

24n
δ+1

rounds. In particular, for graphs with δ ∈ Θ(n), all

vertices are burned in a constant number of rounds. More interestingly,
even when δ is a constant that is independent of n, our algorithm answers
the graph-burning conjecture in the affirmative by burning the graph in
at most �√n� rounds. Then, we consider burning connected graphs with
bounded pathlength or treelength. This includes many graph families,
e.g., interval graphs (pathlength 1) and chordal graphs (treelength 1).
We show that any connected graph with pathlength pl and diameter
d can be burned in �√d − 1� + pl rounds. Our algorithm ensures an
approximation ratio of 1 + o(1) for graphs of bounded pathlength. We
also give an algorithm that achieves an approximation ratio of 2 + o(1)
for burning connected graphs of bounded treelength. Our approximation
factors are better than the best known approximation factor of 3 for
burning general graphs.

Keywords: Graph algorithms · Approximation algorithms · Graph
burning problem · Social contagion · Pathlength · Treelength

1 Introduction

With the recent rapid growth of social networks, numerous approaches have been
proposed to study social influence in these networks [7,11,16,17]. These studies
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 113–124, 2020.
https://doi.org/10.1007/978-3-030-38919-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_10

114 S. Kamali et al.

focus on how fast a contagion can spread in a network. A contagion can be an
emotional state or a piece of data such a political opinion, a piece of fake news,
or gossip. Interestingly, the spread of a contagion does not require point-to-point
communication. For example, an experimental study on Facebook suggests that
users can experience different emotional states after being exposed to other users’
posts, e.g., without direct communication and without their awareness [17].

Given the fact that a contagion is distributed without the active involvement
and awareness of users, one can argue that it is merely defined by the structure
of the underlying network [3]. A graph’s burning number has been suggested as
a parameter that measures how prone a social network is to the spread of a con-
tagion, which is modeled via a set of fires. Given an undirected and unweighted
graph that models a social network, the fires spread in the network in syn-
chronous rounds in the following way. In round 1, a fire is initiated at a vertex;
a vertex at which a fire is started is called an activator. In each round that fol-
lows, two events take place. First, all existing fires spread to their neighboring
vertices, e.g., in round 2, the neighboring vertices of the first activator will be
burned (i.e., they are now on fire). Second, a new fire can be started elsewhere
in the network: a new vertex is selected as an activator at which a new fire is
initiated. This continues until the first round in which all vertices are on fire, at
which time we say the burning ‘completes’. The choice of activators affects how
quickly the burning process completes. A burning schedule specifies a burning
sequence of vertices: the i’th vertex in the sequence is the activator in round i
(Fig. 1).

The burning number of a graph G, denoted by bn(G), is the minimum number
of rounds required to complete the burning of G. The graph burning problem
asks for a burning schedule that completes in bn(G) rounds. Unfortunately, this
problem is NP-hard even for simple graphs such as trees or disjoint sets of paths
[1]. So, the focus of this paper is on algorithms that provide close-to-optimal
solutions, that is, algorithms that burn graphs in a small (but not necessarily
an optimal) number of rounds.

3
1

2
3

2

2

3

3 3
a

c

b

2

33

3
3

Fig. 1. Burning a graph using burning schedule 〈a, b, c〉. The number at each vertex x
indicates the round at which the fire starts at x. The burning completes in 3 rounds.

Previous Work

The graph burning problem was introduced by Bonato et al. [3,4] as a way to
model the spread of a contagion in social networks. Bonato et al. [3] proved
that the burning number of any connected graph is at most 2�√n� − 1, and

Burning Two Worlds 115

conjectured that it is always at most �√n�. Land and Lu improved the upper
bound to

√
6
2

√
n [18]. The conjecture, known as graph burning conjecture, is

still open but verified for basic graph families [6,9]. Bessy et al. [1] showed
that the burning problem is NP-complete, and it remains NP-hard for simple
graph families such as graphs with maximum degree three, spider graphs, and
path forests. Recently, several heuristics were experimentally studied [28]. Bon-
ato and Kamali [5] studied approximation algorithms for the problem. Using
a simple algorithm inspired by the k-center problem (see, for example, [27]),
they showed that there is a polynomial time algorithm that burns any graph
G in at most 3bn(G) rounds. They also provided a 2-approximation algorithm
for trees and a polynomial time approximate scheme (PTAS) for path-forests. A
line of research has been focused on characterizing the burning number for differ-
ent graph families. This includes grid graphs [2,23], Cartesian products and the
strong products of graphs [22,23], binomial random graphs [22], random geomet-
ric graphs [22], spider graphs [1,6,9], path-forests [1,5,6], generalized Petersen
graphs [26], and Theta graphs [20].

Our Contributions

In this paper, we approach the algorithmic study of graph burning from two
directions. In Sect. 2, we consider dense connected graphs, i.e., graphs with lower
bound δ on the minimum degree. We provide an algorithm that burns such
graphs on n vertices in at most

√
24n
δ+1 rounds. In particular, for dense graphs

with δ ∈ Θ(n), all vertices are burned in a constant number of rounds. More
interestingly, even when δ is a sufficiently large constant that is independent of
the graph size, our algorithm answers the graph-burning conjecture of Bonato
et al. [3] in the affirmative by burning the graph in at most �√n � rounds.

In Sect. 3, we provide parameterized algorithms for burning connected graphs
with small pathlength and treelength. A graph has pathlength at most pl (respec-
tively treelength at most tl), if there is a Robertson-Seymour path decomposi-
tion (respectively tree decomposition) of G such that the distance between any
two vertices in the same bag of the decomposition is at most pl (respectively
tl). Intuitively speaking, these are graphs that can be transformed into a path
(respectively tree) by contracting groups of vertices that are all at close to each
other. A formal definition can be found in Sect. 3. Graphs with small pathlength
or treelength span several well-known families of graphs. For example, a graph is
an interval graph if and only if its pathlength is at most 1 [13,19], and a chordal
graph if and only if its treelength is at most 1 [12,19].

We provide algorithms that burn connected graphs of bounded pathlength
and treelength. First, we observe that if the diameter is bounded by a con-
stant, an optimal burning schedule can be computed in polynomial time using
an exhaustive approach. So, we focus on a more interesting asymptotic setting
where the diameter of the graph is asymptotically large. We show that any con-
nected graph G of diameter d and pathlength at most pl can be burned in at
most �

√
d − 1� + pl ≤ �√n� + pl rounds. Since �

√
d� is a lower bound for the

116 S. Kamali et al.

burning number, our algorithm achieves 1 + o(1) approximation factor for con-
nected graphs of bounded pathlength. In particular, our algorithm achieves an
nearly-optimal solution for burning connected interval graphs. We also present
an approximation algorithm for burning connected graphs of small treelength.
For a graph with treelength at most tl, our algorithm has an approximation
factor of at most 2 + (4tl + 1)/d, which is 2 + o(1) for graphs of bounded tree-
length (e.g., chordal graphs). Our approximation factors are improvements over
the best known approximation ratio of 3 for arbitrary graphs [5]. Due to space
constraints, the full proofs appear in [15].

2 Dense Graphs

For any graph G, the degree of a vertex is the number of edges incident to v. In
this section, we present an algorithm that constructs a burning schedule whose
length is parameterized by the minimum degree of the graph, which is defined as
the minimum vertex degree taken over all of its vertices. As expected, increasing
the minimum degree of the graph will decrease the number of rounds needed to
burn all of the vertices, and our result sheds light on the nature of this tradeoff.
An interesting consequence of our algorithm is that we make progress towards
resolving the conjecture from [3] that every connected graph on n vertices can
be burned in at most �√n� rounds. We prove that the conjecture holds for all
graphs with minimum degree at least 23.

To describe and analyze our algorithm, we denote by d(v, w) the length of
the shortest path between v and w in G, i.e., the distance between v and w. We
denote by Nr(v) the set of vertices whose distance from v is at most r. For any
vertex v ∈ G, let ecc(v) denote the eccentricity of v, i.e., the maximum distance
between v and any other vertex of G. Let rad(G) denote the radius of G, i.e.,
the minimum eccentricity taken over all vertices in G.

The algorithms works as follows: for a well-chosen even integer 2r (to be
specified later), our algorithm picks a maximal set of vertices such that the
distance between every pair is greater than 2r. This can be done efficiently in
a greedy manner: pick any vertex v, add v to A, remove N2r(v) from G, and
repeat the above until G is empty.

To analyze the algorithm, we start by finding an upper bound on |A| with
respect to r. This bound will rely on the following fact that a lower bound on
the degree implies a lower bound on the size of Nr(v) for any v ∈ G.

Proposition 1. Consider any connected graph G that has minimum degree δ.
For any vertex v ∈ G and any r ∈ {1, . . . , ecc(v)}, we have that Nr(v) ≥
� r+2

3 	(δ + 1).

Proof. Let v be an arbitrary vertex in G. Define Li = {w | d(v, w) = i}, i.e., Li

is the set of vertices whose distance from v in G is exactly i. Define S0 = L0∪L1,
i.e., S0 consists of v and its neighbors. Note that |S0| ≥ δ+1 since v has degree at
least δ. Next, for each j ∈ {1, . . . , � r+2

3 	−1}, define Sj = L3j−1∪L3j∪L3j+1. Note
that, for all j ∈ {1, . . . , � r+2

3 	−1}, we have 3j+1 ≤ 3(� r+2
3 	−1)+1 ≤ r ≤ ecc(v).

Burning Two Worlds 117

The fact that 3j + 1 ≤ r means that all vertices in L3j−1 ∪ L3j ∪ L3j+1 are
within distance r from v, i.e., Sj ∈ Nr(v) for each j ∈ {1, . . . , � r+2

3 	 − 1}.
Moreover, the fact that 3j + 1 ≤ ecc(v) means that each of L3j−1, L3j , and
L3j+1 is non-empty. In particular, we can pick an arbitrary vertex in L3j , which
by assumption has at least δ neighbors, and each of these neighbors must be in
one of L3j−1, L3j , or L3j+1 (i.e., in Sj), which implies that |Sj | ≥ δ + 1 for all
j ∈ {1, . . . , � r+2

3 	−1}. Finally, by construction, Sj ∩Sj′ = ∅ for any two distinct

j, j′ ∈ {0, . . . , � r+2
3 	 − 1}. So |Nr(v)| ≥

∑� r+2
3 �−1

j=0 |Sj | ≥ � r+2
3 	(δ + 1). �

We apply the preceding lower bound to Nr(v) for each v ∈ A, and then use the
fact that these neighborhoods are disjoint to find an upper bound on |A|.

Lemma 1. Consider any n-vertex connected graph G with minimum degree
δ. Suppose that A is a subset of the vertices of G such that, for some r ∈
{1, . . . , rad(G)}, the distance between each pair of vertices in A is greater than
2r. Then |A| ≤ 3n

r(δ+1) .

Proof. Denote by v1, . . . , v|A| the vertices in A. Since the distance between each
pair of these vertices is greater than 2r, the sets Nr(v1), . . . , Nr(v|A|) are disjoint,
so n ≥

∑|A|
i=1 |Nr(vi)|. As r ≤ rad(G), it follows that r ≤ ecc(vi) for each i ∈

{1, . . . , |A|}, so, by Proposition 1, we know that |Nr(vi)| ≥ � r+2
3 	(δ+1) ≥ r(δ+1)

3 .
Therefore, n ≥

∑|A|
i=1 |Nr(vi)| ≥ |A| r(δ+1)

3 , which implies the desired result. �

As A is a maximal set of vertices with pairwise distance greater than 2r, each
vertex in G is within distance 2r from some vertex in A. Burning one activator
from A in each of the first |A| rounds, the fire then spreads and burns all vertices
within an additional 2r rounds. We find the value for r such that |A| + 2r is
minimized, which leads to the following bound on burning time.

Theorem 1. For any connected graph G on n vertices that has minimum degree
δ, our algorithm produces a burning sequence that burns G within

⌈√
24n
δ+1

⌉

rounds.

Corollary 1. For any connected graph G on n vertices with minimum degree
δ ≥ 23, the burning number is at most �√n �.

3 Graphs of Small Pathlength or Treelength

In this section, we provide efficient algorithms for burning connected graphs
of small pathlength or treelength. Our algorithms achieve good approximation
ratios when the diameter of the input graph is asymptotically large. For graphs
of small diameter, the problem can be optimally solved using brute force, as
given by the following theorem.

Theorem 2. The burning problem can be optimally solved in polynomial time
if the diameter of the input graph is bounded by a constant.

118 S. Kamali et al.

3.1 Preliminaries

The concepts of path decomposition and tree decomposition [14,24] were initially
intended to measure, via the pathwidth and treewidth parameters, how close a
graph is to a path and a tree, respectively. Pathlength and treelength are related
parameters that are also based on the same definition of path decomposition.

Definition 1 (Decompositions, treelength, pathlength).

– A tree decomposition T of a graph G is a tree whose vertex set is a finite set
of bags {Bi | 1 ≤ i ≤ ξ ∈ N}, where: each bag is a subset of the vertices
of G; for every edge {v, w}, at least one bag contains both v and w; and, for
every vertex v of G, the set of bags containing v forms a connected subtree of
T . When T is a path, then the decomposition is called a path decomposition
of G.

– A rooted tree decomposition is a tree decomposition with a designated root
bag, and parent/child relationships between bags are defined in the usual way.
For any bag B in a rooted decomposition T , we denote by TB the subtree of
the decomposition rooted at B.

– The length of a decomposition is the maximum distance between two ver-
tices in the same bag, i.e., max1≤i≤ξ{d(x, y) | x, y ∈ Bi}. The treelength
of G, denoted by tl, is defined to be the minimum length taken over all tree
decompositions of G. The pathlength of G, denoted by pl, is defined to be the
minimum length taken over all path decompositions of G.

Figure 2 illustrates the concepts of pathlength and treelength. We always
refer to vertices of T as bags to distinguish them from vertices of G. We also
assume that the input graph is connected. For any graph G, the pathlength of G
cannot be smaller than its treelength, that is, the family of graphs with bounded
treelength includes graphs with bounded pathlength as a sub-family. It is known
that a graph has pathlength 1 if and only if it is an interval graph [13], and tree-
length 1 if and only if it is a chordal graph [12]. So, the path/tree decomposition
of these graphs can be computed in linear time using the algorithm of Booth
and Lueke [8] for interval graphs, and a lexicographic breadth-first search [25]
for chordal graphs. However, we cannot extend these algorithms to larger values
of pathlength or treelength: it is known that the problem of determining whether
a given graph has treelength at most k is NP-hard for any k ≥ 2 [21]. On the
positive side, there are algorithms with approximation factor 2 for computing
pathlength [19], and approximation factor 3 for computing treelength [10]. Given
these results, it is safe to assume a path/tree decomposition of a given graph is
provided together with the graph (otherwise, we use these algorithms to achieve
decompositions that are a constant factor away from the optimal decomposition).

In the remainder of the paper, every rooted tree decomposition T is assumed
to be trimmed, in the sense that if there is a bag B such that the set of all
vertices in bags of TB is a subset of B’s parent bag, we remove the entire subtree
rooted at B from T . This does not change the length of the decomposition.

Burning Two Worlds 119

a

b

c

e f

g

h i k

d j

a, b, c c, d, e d, e, f d, f, g d, f,
h, m

h,i i, j, k

m

a, b, c c, d, e d, e, f d, f, h h,i i, j, k

f, g h, m

(a)

(b)

(c)

Fig. 2. (a) A graph G (b) A path decomposition of G with pathlength 3. Note that
the distance between d and g in the highlighted bag is 3. (c) A tree decomposition of
G with treelength 2. Each highlighted bag contains a pair of vertices with distance 2.

Observation 1. For any connected graph G and any rooted tree decomposition
T ′, there is a trimmed rooted tree decomposition T of G of same length as T ′.

The following result establishes a useful structural property about rooted
tree decompositions that will be used in the remainder of the paper.

Lemma 2. Consider any rooted tree decomposition or any path decomposition
T = {Bi | 1 ≤ i ≤ ξ ∈ N} of a connected graph G. Let u and v be any two
distinct vertices in G, let Bu be any bag of T that contains u, and let Bv be any
bag of T that contains v. If P is a shortest path between u and v in G, then each
bag in the shortest path between Bu and Bv in T contains a vertex of P .

3.2 Burning Graphs of Small Pathlength

The following theorem shows that a graph of bounded pathlength can be burned
in a nearly-optimal number of rounds.

Theorem 3. Given a connected graph G of diameter d ≥ 1 and a path decom-
position of G with pathlength pl, it is possible to burn G in �

√
d − 1 �+pl rounds.

Proof. Consider a path decomposition T = {Bi | 1 ≤ i ≤ ξ ∈ N} of G such
that the bags are indexed in increasing order from one leaf to the other. Further,
assume that T has the following form: the first bag B1 contains a vertex x that
is absent in B2, and the last bag Bξ contains a vertex y that is absent in bag
Bξ−1. For any path decomposition of G that is not of this form, at least one of
B1 ⊆ B2 or Bξ ⊆ Bξ−1 holds. If B1 ⊆ B2, we can remove B1 to get another path
decomposition of G, and if Bξ ⊆ Bξ−1, we can remove Bξ to get another path
decomposition of G. If T consists of one bag B1, then the diameter of G is pl, so
G can be burned within pl rounds by choosing any vertices of G as activators.
So we proceed under the assumption that ξ ≥ 2.

Since T is a valid path decomposition, each neighbor x′ of x must appear
together with x in at least one bag, and this must be B1: as we assumed that x
is in B1 and not B2, we know that x does not appear in any bag Bi with i ≥ 2
as the bags containing x must form a connected subgraph of T . Similarly, each

120 S. Kamali et al.

neighbor y′ of y must appear together with y in Bξ. Thus, the shortest path
between x and y in G starts with an edge {x, x′} such that x′ ∈ B1 and ends
with an edge {y′, y} such that y′ ∈ Bξ. Let S denote the shortest path between
x′ and y′ in G; note that S has length at most d − 2. It is known that any
path of length m can be burned in �

√
m + 1� rounds [4], so we use a schedule

that burns all vertices of S within �
√

d − 1� rounds. By Lemma 2, each bag in
{B2, B3, . . . , Bξ−1} contains at least one vertex of S, and recall that x′ ∈ S is in
B1 and y′ ∈ S is in Bξ. So, within the �

√
d − 1� rounds that it takes to burn the

vertices of S, at least one vertex in each bag of the decomposition is burned. In
the pl rounds that follow, all vertices will be burned since the distance between
any two vertices in each bag is at most pl. �

The study of pathlength is relatively new, and its relationship with other
graph families is not fully discovered yet. Regardless, we can still use Theorem 3
to state the following two corollaries about grids and interval graphs.

Corollary 2. Consider a grid graph G of size n = n1 × n2 and n1 ≤ n2. It is
possible to burn G in

√
n + o(

√
n) rounds.

Corollary 3. Any connected interval graph G of diameter d and size n can be
burned within �

√
d � + 1 ≤ �√n � + 1 rounds.

Finally, we show that the algorithm used to prove Theorem 3 guarantees a
1 + o(1)-approximation factor.

Corollary 4. Given any connected graph G of bounded pathlength, there is an
algorithm with approximation factor 1 + o(1).

Proof. First, if the diameter d of G is bounded by a constant, use Theorem 2 to
optimally burn G. Next, assume G has asymptotically large diameter. Given a
path decomposition, we apply Theorem 3 to burn G in �

√
d − 1 � + pl rounds.

An optimal burning schedule requires at least �
√

d + 1 � rounds to burn G [4].
So, our algorithm achieves an approximation ratio of �

√
d−1	+pl

�
√

d+1	 < 1 + pl/
√

d,
which is 1+ o(1) as pl is bounded by a constant and d is asymptotically large. �

3.3 Burning Graphs of Small Treelength

In this section, we consider the burning problem in connected graphs of bounded
treelength. This class includes trees, as trees have treelength 1 since they are
chordal. For trees, there is a known algorithm with approximation factor 2 [5].
Our algorithm can be seen as an extension to all graphs of bounded treelength.

We first define a procedure named BurnGuess which takes as input a graph
G and a positive integer g. A rooted tree decomposition T of G is given, and we
pick an arbitrary vertex in the root bag called the “origin” vertex, denoted by o.
The output of BurnGuess is either: (I) no-schedule, indicating that there does
not exist a schedule such that the burning process completes within g rounds,
or, (II) a schedule such that all vertices are burned within 2g + 4tl + 1 rounds.

Burning Two Worlds 121

Procedure BurnGuess works by marking the vertices of G in iterations. Ini-
tially, no vertex is marked. At the beginning of each iteration i ≥ 1, an arbitrary
unmarked vertex at maximum distance in G from the origin o is selected and
called terminal ti. Let Bi be a bag of T with minimum depth (distance from the
root) that contains ti. We traverse T starting from Bi towards the root of T until
we find a bag B′

i such that all vertices in B′
i are at distance at least g from ti in

G. If there is no such B′
i, the root of T is chosen as B′

i. We select an arbitrary
vertex in B′

i as the ith activator and denote it by ci. After selecting ci, all vertices
in G that are within distance (2g − i+1)+4tl from ci are marked, and iteration
i ends. The above process continues until all vertices in T are marked or when
the number of iterations exceeds g + 1. Figure 3 illustrates the algorithm.

ABD

ABC

CI

AED

FED

AEL

AML

NML AMP

FGD FEJ

HGD

B

D

H

G

F
E

J

A

I

C

P

M

L

N

U

NU

V

UVZ

K

IK

X

Y

VXY

Z
T

XYT

R

S

KRS

Q

VQ

O

t1

t2

Br

B’1
B’2

c2

c1
B1

B2

W

RW

Fig. 3. An illustration of BurnGuess with g = 2 on chordal graph G (left). On the right,
a tree decomposition of length tl = 1 is rooted at bag Br; vertex A ∈ Br is chosen
as origin o. In iteration i = 1, the furthest unmarked vertex from A is vertex T ; so
t1 = T and B1 = {X, Y, T}. From B1, the first ancestor bag in which all vertices have
distance at least g = 2 from T in G is B′

1 = {U, V, Z}. A vertex from B′
1 is selected as

an activator, say, c1 = V . All vertices at distance (2g − i + 1) + 4tl = 8 from V in G
are marked. Only W remains unmarked, so it is selected as t2 in the next iteration.

We now establish the following lemma that provides an upper bound on the
burning time of any burning schedule returned by BurnGuess. The idea is that
an activator ci chosen in iteration i will be burned in round i, and all nodes
marked in iteration i will burn within the next (2g − i + 1) + 4tl rounds.

Lemma 3. If BurnGuess on input G returns a burning schedule A, then the
burning process corresponding to schedule A completes within 2g+4tl+1 rounds.

Our next goal is to establish a lower bound for the burning number of graph
G in the case that BurnGuess returns no-schedule on input G. To this end, we
first provide the following technical lemma.

Lemma 4. For any connected graph G, after each iteration i of BurnGuess on
input G, each vertex in B′

i is within distance g + 2tl − 1 of ti in G.

Lemma 5. If the BurnGuess procedure returns no-schedule for inputs G, g,
then there is no burning schedule such that the corresponding burning process
burns all vertices of G in fewer than g rounds.

122 S. Kamali et al.

Proof. From the definition of BurnGuess, the value no-schedule is returned
when g + 1 iterations have been completed and there exists an unmarked vertex
in G. For any iteration i, Lemma 4 ensures that the distance between ci and ti is
at most g +2tl − 1. In iteration i, all vertices within distance (2g − i+1)+4tl ≥
g+2tl−1 from ci in G are marked, so vertex ti is marked by the end of iteration i.
As a result, the g+1 iterations involve g+1 different terminal vertices t1, . . . , tg+1.

Let S be the set consisting of the terminal vertices t1, . . . , tg+1, excluding
the terminal tk whose corresponding activator ck is located in the root bag Br

of T , if such a terminal exists. Note that there are at least g vertices in S. The
following claim gives a useful fact about the bags that contain terminals from S.

Claim 1: For all ti, tj ∈ S with i < j, terminal tj appears in a bag of T \ TB′
i
.

To prove the claim, we assume, for the sake of contradiction, that all bags
containing tj appear in the subtree of T rooted at B′

i. Since the bags that contain
tj are in the subtree rooted at B′

i, Lemma 2 implies that the shortest path
between tj and the origin o passes through a vertex xj ∈ B′

i, that is d(tj , o) =
d(tj , xj) + d(xj , o). Since ti has the maximum distance from the origin among
unmarked vertices when it is selected as the ith terminal, we have d(ti, o) ≥
d(tj , o). So d(ti, o) ≥ d(tj , xj) + d(xj , o). The triangle inequality implies that
d(ti, ci) + d(ci, o) ≥ d(ti, o), so d(ti, ci) + d(ci, o) ≥ d(tj , xj) + d(xj , o). The
triangle inequality also implies that d(tj , xj) ≥ d(tj , ci)−d(xj , ci) and d(xj , o) ≥
d(ci, o)−d(ci, xj), so d(ti, ci)+d(ci, o) ≥ (d(tj , ci)−d(xj , ci))+(d(ci, o)−d(ci, xj)).
Simplifying this inequality, we get d(ti, ci) ≥ d(tj , ci) − 2d(ci, xj). As ci and xj

are both in B′
i, we get d(ci, xj) ≤ tl, so d(ti, ci) ≥ d(tj , ci)−2tl. Lemma 4 implies

that d(ti, ci) ≤ g + 2tl − 1, so g + 2tl − 1 ≥ d(tj , ci) − 2tl, and it follows that
d(tj , ci) ≤ g + 4tl − 1. However, this means that tj is marked in iteration i of
BurnGuess, which contradicts that tj was chosen as a terminal from unmarked
vertices in iteration j > i. This completes the proof of Claim 1.

Using Claim 1, we prove that any two terminals in S are far apart in G.

Claim 2: For any two terminals ti, tj ∈ S, d(ti, tj) ≥ 2g in G.

To prove the claim, assume, without loss of generality, that i < j. As B′
i is

an ancestor of Bi, Claim 1 implies that the shortest path in T between bags Bi

and Bj passes through B′
i. By Lemma 2, it follows that B′

i contains a vertex x
on the shortest path between ti and tj in G. As x is on a shortest path, we can
write d(ti, tj) = d(ti, x)+ d(tj , x). By the triangle inequality, d(ti, x)+ d(tj , x) is
at least (d(ti, ci) − d(x, ci)) + (d(tj , ci) − d(x, ci)), which simplifies to d(ti, ci) +
d(tj , ci)−2d(x, ci). Since x and ci both appear in B′

i, it follows that d(x, ci) ≤ tl,
so d(ti, ci) + d(tj , ci) − 2d(x, ci) ≥ d(ti, ci) + d(tj , ci) − 2tl. By definition, all
vertices in B′

i, e.g., ci, are at distance at least g from ti, e.g., d(ti, ci) ≥ g, so
d(ti, ci) + d(tj , ci) − 2tl ≥ g + d(tj , ci) − 2tl. Since terminals are chosen from
unmarked vertices, and tj is chosen in iteration j > i, it follows that tj was
unmarked at the end of iteration i, which means d(tj , ci) > (2g − i + 1) + 4tl ≥
g +4tl. Thus, g + d(tj , ci)− 2tl > g +(g +4tl)− 2tl > 2g. Hence, we have shown
that d(ti, tj) > 2g, which completes the proof of Claim 2.

Burning Two Worlds 123

To complete the proof of the lemma, assume, for the sake of contradiction,
that there is a burning schedule A that burns G in t ≤ g − 1 rounds. It follows
that A specifies at most t ≤ g − 1 activators. In a burning process that lasts t
rounds, a vertex v is burned only if v is within distance g − 1 from at least one
activator. So, if every vertex of G is burned, then each terminal is within distance
g −1 from at least one activator. However, no two terminals ti, tj ∈ S are within
distance g − 1 from the same activator, since, by Claim 2, d(ti, tj) is at least 2g.
This implies that A contains at least |S| = g activators, a contradiction. �

Theorem 4. Given a connected graph G of bounded treelength, and a tree
decomposition T of G with bounded length tl, there is a polynomial-time algo-
rithm for burning G that achieves an approximation factor of 2 + o(1).

Proof. If the diameter d of G is bounded, use Theorem 2 to burn it optimally
in polynomial time. Otherwise, repeatedly apply BurnGuess to find the smallest
parameter g∗ for which the algorithm returns a schedule A. By Lemma 3, sched-
ule A burns the graph within 2g∗ + 4tl + 1 rounds. Meanwhile, by Lemma 5,
no schedule can burn all vertices of G within g∗ − 1 rounds. The approximation
ratio of the algorithm will be 2g∗+4tl+1

g∗ = 2 + (4tl + 1)/g∗, which is 2 + o(1) as
the diameter of G, and hence g∗, is asymptotically large.

With respect to the time complexity, we can find g∗ using binary search on
the range [1, d], i.e., calling BurnGuess O(log d) times. Each call to BurnGuess
with parameter g has at most g + 1 ≤ d + 1 iterations. In each iteration i, the
distance calculations can be performed using Dijkstra’s algorithm in O(n2) time,
and marking all vertices within distance (2g−i+1)+4tl from ci can be done in a
Breadth-First manner in O(n2) time. So, the complexity of BurnGuess is O(dn2),
and the algorithm’s overall time complexity is O(n2d log d) ∈ O(n3 log n). �

References

1. Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Burning a
graph is hard. Discrete Appl. Math. 232, 73–87 (2017)

2. Bonato, A., Gunderson, K., Shaw, A.: Burning the plane: densities of the infinite
cartesian grid. Preprint (2018)

3. Bonato, A., Janssen, J.C.M., Roshanbin, E.: Burning a graph as a model of social
contagion. In: Workshop of Workshop on Algorithms and Models for the Web
Graph, pp. 13–22 (2014)

4. Bonato, A., Janssen, J.C.M., Roshanbin, E.: How to burn a graph. Internet Math.
12(1–2), 85–100 (2016)

5. Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Theory
and Applications of Models of Computation Conference (TAMC), pp. 74–92 (2019)

6. Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-
forests. ArXiv e-prints, July 2017

7. Bond, R.M., et al.: A 61-million-person experiment in social influence and political
mobilization. Nature 489(7415), 295–298 (2012)

8. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976)

124 S. Kamali et al.

9. Das, S., Dev, S.R., Sadhukhan, A., Sahoo, U., Sen, S.: Burning spiders. In:
Panda, B.S., Goswami, P.P. (eds.) CALDAM 2018. LNCS, vol. 10743, pp. 155–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74180-2 13

10. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter.
Discrete Math. 307(16), 2008–2029 (2007)

11. Fajardo, D., Gardner, L.M.: Inferring contagion patterns in social contact networks
with limited infection data. Netw. Spat. Econ. 13(4), 399–426 (2013)

12. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)

13. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of
interval graphs. Can. J. Math. 16, 539–548 (1964)

14. Halin, R.: S-functions for graphs. J. Geom. 8(1–2), 171–186 (1976)
15. Kamali, S., Miller, A., Zhang, K.: Burning two worlds: Algorithms for burning

dense and tree-like graphs. CoRR abs/1909.00530 (2019). http://arxiv.org/abs/
1909.00530

16. Kramer, A.D.I.: The spread of emotion via facebook. In: CHI Conference on Human
Factors in Computing Systems, (CHI), pp. 767–770 (2012)

17. Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-
scale emotional contagion through social networks. In: Proceedings of the National
Academy of Sciences, pp. 8788–8790 (2014)

18. Land, M.R., Lu, L.: An upper bound on the burning number of graphs. In: Pro-
ceedings of Workshop on Algorithms and Models for the Web Graph, pp. 1–8
(2016)

19. Leitert, A.: Tree-Breadth of Graphs with Variants and Applications. Ph.D. thesis,
Kent State University, College of Arts and Sciences, Department of Computer
Science (2017)

20. Liu, H., Zhang, R., Hu, X.: Burning number of theta graphs. Appl. Math. Comput.
361, 246–257 (2019)

21. Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math.
158(7), 820–827 (2010). third Workshop on GraphClasses, Optimization, and
Width Parameters Eugene, Oregon, USA, October 2007

22. Mitsche, D., Pralat, P., Roshanbin, E.: Burning graphs: a probabilistic perspective.
Graphs and Combinatorics 33(2), 449–471 (2017)

23. Mitsche, D., Pralat, P., Roshanbin, E.: Burning number of graph products. Theor.
Comput. Sci. 746, 124–135 (2018)

24. Robertson, N., Seymour, P.D.: Graph minors iii planar tree-width. J. Comb. The-
ory Ser. B 36(1), 49–64 (1984)

25. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

26. Sim, K.A., Tan, T.S., Wong, K.B.: On the burning number of generalized Petersen
graphs. Bull. Malays. Math. Sci. Soc. 6, 1–14 (2017)

27. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-662-04565-7

28. Šimon, M., Huraj, L., Dirgova Luptáková, I., Pospichal, J.: Heuristics for spreading
alarm throughout a network. Appl. Sci. 9(16), 3269 (2019). https://doi.org/10.
3390/app9163269

https://doi.org/10.1007/978-3-319-74180-2_13
http://arxiv.org/abs/1909.00530
http://arxiv.org/abs/1909.00530
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.3390/app9163269
https://doi.org/10.3390/app9163269

Faster STR-EC-LCS Computation

Kohei Yamada1(B), Yuto Nakashima1, Shunsuke Inenaga1,2, Hideo Bannai1,
and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{kohei.yamada,yuto.nakashima,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

2 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

Abstract. The longest common subsequence (LCS) problem is a central
problem in stringology that finds the longest common subsequence of
given two strings A and B. More recently, a set of four constrained LCS
problems (called generalized constrained LCS problem) were proposed by
Chen and Chao [J. Comb. Optim, 2011]. In this paper, we consider the
substring-excluding constrained LCS (STR-EC-LCS) problem. A string
Z is said to be an STR-EC-LCS of two given strings A and B excluding P
if, Z is one of the longest common subsequences of A and B that does not
contain P as a substring. Wang et al. proposed a dynamic programming
solution which computes an STR-EC-LCS in O(mnr) time and space
where m = |A|, n = |B|, r = |P | [Inf. Process. Lett., 2013]. In this paper,
we show a new solution for the STR-EC-LCS problem. Our algorithm
computes an STR-EC-LCS in O(n|Σ|+(L+1)(m−L+1)r) time where
|Σ| ≤ min{m, n} denotes the set of distinct characters occurring in both
A and B, and L is the length of the STR-EC-LCS. This algorithm is faster
than the O(mnr)-time algorithm for short/long STR-EC-LCS (namely,
L ∈ O(1) or m−L ∈ O(1)), and is at least as efficient as the O(mnr)-time
algorithm for all cases.

1 Introduction

The longest common subsequence (LCS) problem of finding an LCS of given two
strings, is a classical and important problem in Theoretical Computer Science.
Given two strings A and B of respective lengths m and n, it is well known that
the LCS of A and B can be computed by a standard dynamic programming
technique [13]. Since LCS is one of the most fundamental similarity measures
for string comparison, there are a number of studies on faster computation of
LCS and its applications [2,3,11,14]. It is also known that there is a conditional
lower bound which states that the LCS of two strings of length n each cannot
be computed in O(n2−ε) time for any constant ε > 0, unless the famous popular
Strong Exponential Time Hypothesis (SETH) fails [1]. Thus, it is highly likely
that one needs to use almost quadratic time for computing LCS in the worst case.
Still, it is possible to design algorithms for computing LCS whose running time
depends on other parameters. One of such algorithms was proposed by Nakatsu
et al. [10], which finds an LCS of given two strings A and B in O(n(m − l))
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 125–135, 2020.
https://doi.org/10.1007/978-3-030-38919-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_11

126 K. Yamada et al.

time and space, where l is the length of the LCS of the two given strings. This
algorithm is efficient when l is large, namely, A and B are very similar.

Of a variety of extensions to LCS that have been extensively studied, this
paper focuses on a class of problems called the constrained LCS problems, first
considered by Tsai [12]. We are given strings A,B and constraint string P of
length r, and the CLCS problem is to find a longest subsequence common to A
and B, such that the subsequence has P as a subsequence. He also presented
a dynamic programming algorithm which solves the problem in O(m2n2r) time
and space. The motivation for introducing constraints is to reflect some a-priori
knowledge (e.g., biological knowledge) to the solutions. Later, the generalized
constrained LCS (GC-LCS) problems were introduced by Chen et al. [4]. GC-
LCS consists of four variants of the constrained LCS problem, which are respec-
tively called SEQ-IC-LCS, SEQ-EC-LCS, STR-IC-LCS, and STR-EC-LCS. For
given strings A,B and P , the problem is to find a longest subsequence com-
mon to A and B such that the subsequence includes/excludes/includes/excludes
P as a subsequence/subsequence/substring/substring, respectively for SEQ-IC-
LCS/SEQ-EC-LCS/STR-IC-LCS/STR-EC-LCS. We remark that CLCS is the
same as SEQ-IC-LCS. The best known results for these problems were proposed
in [4–6,15].

The quadratic bound for STR-IC-LCS seems to be very difficult to improve,
since STR-IC-LCS is a special case of LCS (recall the afore-mentioned condi-
tional lower bound for LCS). Since the other three variants require cubic time,
it is important to discover more efficient solutions for these problems. There
exist faster dynamic programming solutions for SEQ-IC-LCS and STR-IC-LCS
which are based on run-length encodings [8,9]. However, no faster solutions to
STR-EC-LCS than the one with O(mnr) running time [15] are known to date.

In this paper, we revisit the STR-EC-LCS problem. More formally, we say
that a string Z is an STR-EC-LCS of two given strings A and B excluding
P if, Z is one of the longest common subsequences of A and B that does not
contain P as a substring. We show a new dynamic programming solution for
the STR-EC-LCS problem which runs in O(n|Σ| + (L + 1)(m − L + 1)r) time
and space, where Σ is the set of distinct characters occurring in both A and
B, and L is the length of the solution. Note that |Σ| ≤ min{m,n} always
holds. Our algorithm is built on Nakatsu et al.s’ method for the (original) LCS
problem [10]. Assume w.l.o.g. that m ≤ n. When the length of STR-EC-LCS is
quite short or long (namely, L ∈ O(1) or m−L ∈ O(1)), our algorithm runs only
in O(n|Σ| + mr) = O((n + r)m) = O(nm) time and space, since r ≤ n. Even
in the worst case where L ∈ Θ(m) and m − L ∈ Θ(m), which happens when
L = cm for any constant 0 < c < 1, our algorithm is still as efficient as O(mnr)
since |Σ| ≤ min{m,n}.

This paper is organized as follows; we will give notations which we use in
this paper in Sect. 2, we will propose our dynamic programming solution for the
STR-EC-LCS problem in Sect. 3, finally, we will explain our algorithm for the
STR-EC-LCS in Sect. 4.

Faster STR-EC-LCS Computation 127

2 Preliminaries

2.1 Strings

Let Σ be an integer alphabet. An element of Σ∗ is called a string. The length of a
string w is denoted by |w|. The empty string ε is a string of length 0. For a string
w = xyz, x, y and z are called a prefix, substring, and suffix of w, respectively.
The i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a
string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w
that begins at position i and ends at position j. For convenience, let w[i..j] = ε
when i > j.

A string Z is a subsequence of A if Z can be obtained from A by removing
zero or more characters. In this paper, we consider common subsequences of two
strings A and B of respective lengths m and n. For this sake, we can perform
a standard preprocessing on A and B that removes every character that occurs
only in either A or B, because such a character is never contained in any common
subsequences of A and B. Assuming n ≥ m, this preprocessing can be done in
O(n log n) time with O(n) space for general ordered alphabets, and in O(n)
time and space for integer alphabets of polynomial size in n (c.f. [7]). In what
follows, we consider the latter case of integer alphabets, and assume that A and
B have been preprocessed as above. In the sequel, let Σ denote the set of distinct
characters that occur in both A and B. Note that |Σ| ≤ min{m,n} = m holds.

2.2 STR-EC-LCS

Let A,B and P be strings. A string Z is said to be an STR-EC-LCS of two
given strings A and B excluding P if, Z is one of the longest common subse-
quences of A and B that does not contain P as a substring. For instance, bcaac,
bcaba, acaac, acaba, abaac and ababa are STR-EC-LCS of A = abcabac and
B = acbcaacbaa excluding P = abc. Although abcaba and abcaac are longest
common subsequences of A and B, they are not STR-EC-LCS of the same strings
(since they have P as a substring).

In Sect. 3, we revisit the STR-EC-LCS problem defined as follows.

Problem 1 (STR-EC-LCS problem [4]). Given strings A,B, and P , compute an
STR-EC-LCS (and/or its length) of given strings.

In the rest of the paper, m,n, and r respectively denote the length of A,B
and P . It is easy to see that STR-EC-LCS problem is the same as LCS problem
when r > min{m,n}. We assume that r ≤ m ≤ n without loss of generality.

3 Dynamic Programming Solution for the STR-EC-LCS
Problem

Our aim of this section is to show our dynamic programming solution for the
STR-EC-LCS problem. We first give short descriptions of a dynamic program-
ming solution for the LCS problem proposed by Nakatsu et al. [10], and a

128 K. Yamada et al.

Fig. 1. This is an example for table e of given strings A = aabacab and B = baabbcaa.
For the sake of visibility, the value n + 1 = 9 is replaced by asterisk (∗). The last row
in the table which has a value smaller than n + 1 is 5; that is, the length of an LCS of
A and B is 5.

dynamic programming solution for the STR-EC-LCS problem proposed by Wang
et al. [15].

3.1 Solution for LCS by Nakatsu et al.

Nakatsu et al. proposed a dynamic programming solution for computing an LCS
of given strings A and B. Here, we give a slightly modified description of their
solution in order to describe our algorithm. For any 0 ≤ i, s ≤ m, let e(i, s) be
the length of the shortest prefix B[1..e(i, s)] of B such that the length of the
longest common subsequence of A[1..i] and B[1..e(i, s)] is s. For convenience,
e(i, s) = n + 1 if no such prefix exists or if s > i holds. The values e(i, s)
will be computed using dynamic programming, where i represents the column
number, and s represents the row number. Let s̃ be the largest value such that
e(i, s) < n + 1 for some i, i.e, s̃ is the last row in the table of e, which has a
value smaller than n + 1. We can see that the length of the longest common
subsequence of A and B is s̃. We give an example in Fig. 1.

Now we explain how to compute e efficiently. Assume that e(i − 1, s) and
e(i − 1, s − 1) have already been computed. We consider e(i, s). It is easy to see
that e(i, s) ≤ e(i − 1, s). If e(i, s) < e(i − 1, s), an LCS of A[1..i] and B[1..e(i, s)]
must use the character A[i] as the last character. Then, we can see that e(i, s)
is the index of the leftmost occurrence of A[i] in B[e(i − 1, s − 1) + 1..n]. Let ji,s

be the the index of the leftmost occurrence of A[i] in B[e(i − 1, s − 1) + 1..n].
From these facts, the following recurrence formula holds for e:

e(i, s) = min{e(i − 1, s), ji,s}.

If we add more information, we can backtrack on the table in order to com-
pute an LCS (as a string), and not just its length.

Faster STR-EC-LCS Computation 129

3.2 Solution for STR-EC-LCS by Wang et al.

Wang et al. proposed a dynamic programming solution for STR-EC-LCS prob-
lem of given strings A,B and P . Here, we describe a key idea of their solution.

Definition 1. For any string S, σ(S) is the length of the longest prefix of P
which is a suffix of S.

By using this notation, they considered a table f defined as follows: let
f(i, j, k) be the length of the longest common subsequence Z of A[1..i] and
B[1..j] such that Z does not have P as a substring and σ(Z) = k. They also
showed a recurrence formula for f . By the definition of f , the length of an
STR-EC-LCS is max{f(m,n, t) | 0 ≤ t < r}.

3.3 Our Solution for STR-EC-LCS

Our solution is based on the idea of Sect. 3.1. We maintain occurrences of a
prefix of P as a suffix of a common subsequence by using the idea of Sect. 3.2.

For convenience, we introduce the following notation.

Definition 2. A string Z is said to satisfy Property(i, s, k) if

– Z is a subsequence of A[1..i],
– Z does not have P as a substring,
– |Z| = s, and
– σ(Z) = k.

Thanks to the above notation, we can simply introduce our table d for com-
puting STR-EC-LCS as follows. Let d be a 3-dimensional table where d(i, s, k)
is the length of the shortest prefix B[1..d(i, s, k)] of B such that there exists a
subsequence which satisfies Property(i, s, k) (if no such subsequence exists, then
d(i, s, k) = n + 1 for convenience).

We can obtain the following observation about the length of an STR-EC-
LCS by the definition of d.

Observation 1. Let s̃ be the largest 1 ≤ s ≤ m such that d(i, s, k) < n + 1 for
some i and k. s̃ is the length of an STR-EC-LCS by the definition of d.

We give an example of a table in Fig. 2.
The next lemma shows a recurrence formula for d. We use this lemma for

computing the length of a STR-EC-LCS.

Lemma 1.

d(i, s, k) = min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r})

holds, where jt is the smallest position j in B[d(i − 1, s − 1, t) + 1..n] such that
A[i] = B[j], and there exists a string Z which satisfies Property(i − 1, s − 1, t)
and σ(ZA[i]) = k (if no such Z exists for t, then jt = n + 1).

130 K. Yamada et al.

Fig. 2. This is our table d for given strings A = aabacab, B = baabbcaa, and P = aab.
In this figure, the value n + 1 = 9 is replaced by asterisk (∗) for convenience. The
lowest row which has a value smaller than n + 1 = 9 is s̃ = 4. Thus, the length of a
STR-EC-LCS is 4.

Proof. We show the following inequations to prove this lemma;

1. d(i, s, k) ≤ min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r}),
2. d(i, s, k) ≥ min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r}).

We start from proving the first inequation. By the definition of d, d(i, s, k) ≤
d(i − 1, s, k) always holds. If {jt | 0 ≤ t < r} = ∅, then the first inequation
holds. We assume that {jt | 0 ≤ t < r} �= ∅, and jt1 is in the set (0 ≤ t1 < r).
Then, there exists a subsequence Z1 of B[1..d(i − 1, s − 1, t1)] which satisfies
Property(i− 1, s− 1, t1). Since A[i] = B[jt1] and jt1 > d(i− 1, s− 1, t1), Z1A[i] is
a subsequence of B[1..jt1] that satisfies Property(i, s, k) and σ(Z1A[i]) = k. This
implies that d(i, s, k) ≤ jt1 . Thus, the first inequation holds.

Suppose that the second inequation does not hold, namely,

d(i, s, k) < min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r}) (1)

holds. If d(i, s, k) = n+1, then the above inequation does not hold. Now we con-
sider the case d(i, s, k) < n+1. By the definition of d, there exists a subsequence
Z2 of B[1..d(i, s, k)] that satisfies Property(i, s, k). Let Z ′

2 = Z2[1..|Z2|−1]. Then,
Z ′
2 is a length s−1 subsequence of A[1..i−1] which does not have P as a substring.

Since Z ′
2 satisfies Property(i − 1, s − 1, σ(Z ′

2)), d(i − 1, s − 1, σ(Z ′
2)) < d(i, s, k)

holds. Moreover, σ(Z ′
2B [d(i , s, k)]) = k holds. If A[i] = B[d(i, s, k)], then,

jσ(Z ′
2)

≤ d(i, s, k) holds. This fact contradicts Inequation (1). Now we can
assume that A[i] �= B[d(i, s, k)]. This implies that Z2 is a common subsequence
of A[1..i] and B[1..d(i, s, k) − 1], or a common subsequence of A[1..i − 1] and
B[1..d(i, s, k)]. The first case implies a contradiction by the definition of d.
The second case implies that d(i, s, k) = d(i − 1, s, k), a contradiction. Thus,
d(i, s, k) ≥ min({d(i − 1, s, k)} ∪ {jt | 0 ≤ t < r}) holds. �	

Faster STR-EC-LCS Computation 131

Fig. 3. This figure shows the order of computation for table d. For each table (i.e., for
each k), we do not need to compute the lower left part (satisfying s > i). We start from
computing values on the leftmost arrow for each table. In each step (i, s), we compute
d(i, s, k) for all tables (for instance, squared values in the figure will be computed in
the same step).

4 Algorithm

In this section, we show how to compute STR-EC-LCS by using Lemma 1. We
mainly explain our algorithm to compute the length of an STR-EC-LCS (we will
explain how to compute an STR-EC-LCS at the end of this section).

To use Lemma 1, we need d(i−1, s, k) and d(i−1, s−1, t) for all 0 ≤ t < r for
computing d(i, s, k). We compute our table for every diagonal line from upper
left to lower right in left-to-right order. In each step of our algorithm, we will fix
0 ≤ i, s ≤ m (we use (i, s) to denote the step for fixed i and s). Then we compute
d(i, s, k) for any 0 ≤ k < r in the step. We can see from a simple observation
that d(i, s, k) = n+1 holds for any input strings if i < s (since no STR-EC-LCS
of length s exists). Thus, we do not compute d(i, s, k) explicitly such that i < s.
We also describe this strategy in Fig. 3.

Now we consider how to compute d(i, s, k) for any 0 ≤ k < r. Let Z(i, s, k)
be a subsequence of B[1..d(i−1, s−1, k)] satisfying Property(i−1, s−1, k). Due
to Lemma 1, string Z(i, s, k)A[i] is a witness for value d(i, s, σ(Z (i , s, k)A[i])) if
a (leftmost) position j in B[d(i − 1, s − 1, k) + 1..n] such that A[i] = B[j] exists.
For any i, s, k, let J(i, s, k) denote the position j described above. Thus, we can
compute d(i, s, k) for any k in step (i, s) as follows.

1. Set d(i − 1, s, k) as the initial value for d(i, s, k) for each k.
2. Compute J(i, s, k) and σ(Z (i , s, k)A[i]) for each k.
3. If J(i, s, k) < d(i, s, σ(Z (i , s, k)A[i])), then update d(i, s, σ(Z (i , s, k)A[i])) to

J(i, s, k).

132 K. Yamada et al.

Lemma 1 and the above discussion ensure the correctness of this algorithm.
Next we show how to do these operations efficiently. We use the following two
data structures.

Definition 3. For any position j in B (i.e., j ∈ [1, n]) and any character α ∈ Σ,

nextB (j, α) = min{q | B[q] = α, q ≥ j}.

Definition 4. For any position t in P (i.e., t ∈ [0, r − 1]) and any character
α ∈ Σ,

nextσ(t, α) = σ(P [1 ..t]α).

At the second operation, we need to compute J(i, s, k). J(i, s, k) is the index
of the leftmost occurrence of A[i] in B[d(i−1, s−1, k)+1..n]. We can compute the
occurrence by using nextB , namely, J(i, s, k) = nextB (d(i − 1, s − 1, k) + 1, A[i]).

Moreover, we need to compute σ(Z (i , s, k)A[i]). We know that σ(Z (i , s, k)) =
k, namely, Z(i, s, k) has P [1..k] as a suffix. By the definition of σ(·), σ(S) + 1 ≥
σ(Sα) holds for any string S and α ∈ Σ. This implies that σ(Z (i , s, k)A[i]) =
σ(P [1 ..t]A[i]). Thus, we can compute σ(Z (i , s, k)A[i]) by using nextσ(·), namely,
σ(Z (i , s, k)A[i]) = σ(P [1 ..t]A[i]) = nextσ(t, A[i]).

We can easily compute nextB in linear time and space (we give a pseudo-code
in Algorithm 1). nextσ was introduced in [15] (as table λ). They also showed that
this table can be computed in linear time and space (we give a pseudo-code in
Algorithm 2).

Algorithm 1: Construction for nextB
Input: String B of length n, Alphabet Σ
Output: nextB

1 foreach character α ∈ Σ do nextB (n, α) = n + 1;
2 for j = n − 1 to 0 do
3 foreach α ∈ Σ do
4 if α = B[j + 1] then nextB (j, α) = j + 1;
5 else nextB (j, α) = nextB (j + 1, α);

6 return nextB

We have finished describing how to compute d. This algorithm computes
O(m2r) values (i.e., the size of the table d). We can see that every operation can
be done in constant time. Thus, this algorithm takes O(n|Σ| + m2r) time and
space. This complexity is similar to Wang et al.s’ result (algorithm described in
Sect. 3.2). We can modify our algorithm to compute d more efficiently by using
the following two observations.

Observation 2. Assume that we have already computed table d until the i-th
diagonal line (i.e., the diagonal line which has d(i, 0, ·)). Let s′ be the lowest row

Faster STR-EC-LCS Computation 133

Algorithm 2: Construction for nextσ
Input: String P of length r, Alphabet Σ
Output: nextσ

1 kmp(0) ← −1;
2 kmp(1) ← 0;
3 k ← 0;
4 for i = 2 to r do
5 while k ≥ 0 and P [k + 1] �= P [i] do k ← kmp(k);
6 k ← k + 1;
7 kmp(i) ← k;

8 nextσ(0, P [1]) ← 1;
9 foreach α ∈ Σ − {P [1]} do

10 nextσ(0, α) ← 0;

11 for k = 1 to r − 1 do
12 foreach α ∈ Σ do if α = P [k + 1] then nextσ(k, α) ← k + 1;
13 else nextσ(k, α) ← nextσ(kmp(k), α);

14 return nextσ

which has a value smaller than n + 1. Then, we do not need to compute the last
s′ +1 diagonal lines since these diagonal lines do not make better candidates for
STR-EC-LCS.

Observation 3. If d(i, s, k) = n + 1 for all k, then d(i + 1, s + 1, k) = . . . =
d(i + (m − i), s + (m − i), k) = n + 1 holds for any k.

Thanks to the above observations, the number of values which we need to
compute is O((L + 1)(m − L + 1)r) where L is the length of STR-EC-LCS (see
also Fig. 4).

Finally, we discuss how to store d. We consider computing the i-th diagonal
line (i.e., d(i, 0, k), . . . , d(i + (m − i),m − i, k)). Suppose that d(i, 0, k), . . . , d(i +
t − 1, t − 1, k) have already been computed. Then, we store these values by
using an array of size 2�log t�. If the array filled with values for the line (i.e.,
d(i + 2�log t� − 1, 2�log t� − 1, k) < n + 1 for some k), we make new array of
size 2�log t�+1 for values d(i, 0, k), . . . , d(i + 2�log t�+1 − 1, 2�log t�+1 − 1, k) on the
line. By Observation 3, we will compute at most L + 2 values for each line,
the total length of arrays for each line is O(L), where L is the length of an
STR-EC-LCS. Therefore, we can compute the length of an STR-EC-LCS in
O(n|Σ| + (L + 1)(m − L + 1)r) time and space.
Computing an STR-EC-LCS. If we want to compute an STR-EC-LCS, we
store a pair (s′, k′) for every d(i, s, k). The pair (s′, k′) represents that d(i, s, k)
was given by d(i − 1, s′, k′). By using these information, we can compute an
STR-EC-LCS from right to left. We show an example in Fig. 5.

Since we can store (s′, k′) in constant time and space for each d(i, s, k), and
compute an STR-EC-LCS in O(m) time, we can get the following main result.

134 K. Yamada et al.

Fig. 4. This is a table for some k. Due to Observations 2 and 3, we do not need to
compute values in white part (there might exist positions which do not need their
values). The maximum number of values which we need to compute (namely, the total
area of the r gray parts) is O((L + 1)(m − L + 1)r).

Fig. 5. In this figure, an arrow represents additional information for backtracking. For
instance, d(6, 4, 1) = 7 was given by d(5, 3, 0) = 6 while computing d. We can get an
STR-EC-LCS abca of A = aabacab, B = baabbcaa, and P = aab.

Theorem 1. For given strings A,B and P , we can compute an STR-EC-LCS
in O(n|Σ| + (L + 1)(m − L + 1)r) time and space where m,n, r and L are the
length of A,B, P and the STR-EC-LCS, respectively.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP18K18002 (YN), JP17H01697 (SI), JP16H02783 (HB), JP18H04098 (MT), and by
JST PRESTO Grant Number JPMJPR1922 (SI).

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. FOCS 2015, 59–78 (2015)

2. Ahsan, S.B., Aziz, S.P., Rahman, M.S.: Longest common subsequence problem for
run-length-encoded strings. In: 2012 15th International Conference on Computer
and Information Technology (ICCIT), pp. 36–41, December 2012

Faster STR-EC-LCS Computation 135

3. Bunke, H., Csirik, J.: An improved algorithm for computing the edit dis-
tance of run-length coded strings. Inf. Process. Lett. 54(2), 93–96 (1995).
http://www.sciencedirect.com/science/article/pii/002001909500005W

4. Chen, Y.C., Chao, K.M.: On the generalized constrained longest common sub-
sequence problems. J. Comb. Optim. 21(3), 383–392 (2011). https://doi.org/10.
1007/s10878-009-9262-5

5. Chin, F.Y., Santis, A.D., Ferrara, A.L., Ho, N., Kim, S.: A simple algorithm
for the constrained sequence problems. Inf. Process. Lett. 90(4), 175–179 (2004).
http://www.sciencedirect.com/science/article/pii/S0020019004000614

6. Deorowicz, S.: Quadratic-time algorithm for a string constrained lcs prob-
lem. Inf. Process. Lett. 112(11), 423–426 (2012). http://www.sciencedirect.com/
science/article/pii/S0020019012000567

7. Inenaga, S., Hyyrö, H.: A hardness result and new algorithm for the longest com-
mon palindromic subsequence problem. Inf. Process. Lett. 129, 11–15 (2018)

8. Kuboi, K., Fujishige, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster STR-IC-
LCS computation via RLE. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.)
28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, 4–6 July
2017, Warsaw, Poland. LIPIcs, vol. 78, pp. 20:1–20:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.20

9. Liu, J.J., Wang, Y.L., Chiu, Y.S.: Constrained longest common subsequences with
run-length-encoded strings. Comput. J. 58(5), 1074–1084 (2014). https://doi.org/
10.1093/comjnl/bxu012

10. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Inf. 18, 171–179 (1982). https://doi.
org/10.1007/BF00264437

11. Stern, H., Shmueli, M., Berman, S.: Most discriminating segment - longest com-
mon subsequence (MDSLCS) algorithm for dynamic hand gesture classification.
Pattern Recogn. Lett. 34(15), 1980–1989 (2013). http://www.sciencedirect.com/
science/article/pii/S0167865513000512, smart Approaches for Human Action
Recognition

12. Tsai, Y.T.: The constrained longest common subsequence problem. Inf.
Process. Lett. 88(4), 173–176 (2003). http://www.sciencedirect.com/science/
article/pii/S002001900300406X

13. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168–173 (1974). https://doi.org/10.1145/321796.321811

14. Wang, C., Zhang, D.: A novel compression tool for efficient storage of genome
resequencing data. Nucleic Acids Res. 39(7), e45 (2011). https://doi.org/10.1093/
nar/gkr009

15. Wang, L., Wang, X., Wu, Y., Zhu, D.: A dynamic programming solution to a
generalized LCS problem. Inf. Process. Lett. 113(19–21), 723–728 (2013). https://
doi.org/10.1016/j.ipl.2013.07.005

http://www.sciencedirect.com/science/article/pii/002001909500005W
https://doi.org/10.1007/s10878-009-9262-5
https://doi.org/10.1007/s10878-009-9262-5
http://www.sciencedirect.com/science/article/pii/S0020019004000614
http://www.sciencedirect.com/science/article/pii/S0020019012000567
http://www.sciencedirect.com/science/article/pii/S0020019012000567
https://doi.org/10.4230/LIPIcs.CPM.2017.20
https://doi.org/10.1093/comjnl/bxu012
https://doi.org/10.1093/comjnl/bxu012
https://doi.org/10.1007/BF00264437
https://doi.org/10.1007/BF00264437
http://www.sciencedirect.com/science/article/pii/S0167865513000512
http://www.sciencedirect.com/science/article/pii/S0167865513000512
http://www.sciencedirect.com/science/article/pii/S002001900300406X
http://www.sciencedirect.com/science/article/pii/S002001900300406X
https://doi.org/10.1145/321796.321811
https://doi.org/10.1093/nar/gkr009
https://doi.org/10.1093/nar/gkr009
https://doi.org/10.1016/j.ipl.2013.07.005
https://doi.org/10.1016/j.ipl.2013.07.005

Kernels of Sub-classes of Context-Free
Languages

Martin Kutrib(B)

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Abstract. While the closure of a language family L under certain lan-
guage operations is the least family of languages which contains all mem-
bers of L and is closed under all of the operations, a kernel of L is a
greatest family of languages which is a subfamily of L and is closed
under all of the operations. Here we investigate properties of kernels of
general language families and operations defined thereon as well as ker-
nels of (deterministic) (linear) context-free languages with a focus on
Boolean operations. While the closures of language families usually are
unique, this uniqueness is not obvious for kernels. We consider properties
of language families and operations that yield unique and non-unique,
that is a set, of kernels. For the latter case, the question whether the
union of all kernels coincides with the language family, or whether there
are languages that do not belong to any kernel is addressed. Further-
more, the intersection of all kernels with respect to certain operations is
studied in order to identify sets of languages that belong to all of these
kernels.

1 Introduction

Classical and well-developed concepts to represent (formal) languages are, for
example, grammars, language equations, or accepting automata. Similarly, fam-
ilies of languages can be represented in several ways. For example, a language
family can be defined to be the family of all languages represented by a certain
type of grammar, automaton model, language equation, or by applying appro-
priate operations on other language families. From a practical point of view,
there is often a considerable interest in language families that are robust with
respect to language operations, that is, the families are preferably closed under
the operations, and/or in language families that admit efficient recognizers. A
good example are context-free languages, that are one of the most important and
most developed area of formal language theory. However, the family is not closed
under the two Boolean operations complementation and intersection. Moreover,
the known upper bound on the time complexity for context-free language recog-
nition still exceeds O(n2). As an approach to characterize language families hav-
ing strong closure properties and efficient recognizers but decrease the expressive
capacity only slightly, closures of sub-classes of the context-free languages have
been investigated.
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 136–147, 2020.
https://doi.org/10.1007/978-3-030-38919-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_12

Kernels of Sub-classes of Context-Free Languages 137

The Boolean closure of the linear context-free languages offers a significant
increase in expressive capacity compared with the linear context-free languages
itself. In addition, it preserves the attractively efficient recognition algorithm
taking O(n2) time and O(n) space [11]. In [12], a characterization of deterministic
real-time one-way cellular automata by so-called linear conjunctive grammars
has been shown. Linear conjunctive grammars are basically linear context-free
grammars augmented with an explicit intersection operation, where the number
of intersections is, in some sense, not bounded as in a Boolean formula. The
systematic investigation of the Boolean closures of arbitrary and deterministic
context-free languages started in [14–16], in particular, motivated by the question
“How much more powerful is nondeterminism than determinism?” The closure
of deterministic languages under the regular operations is studied in [1], while
the regular closure of the linear context-free languages is considered in [10].

Here we are interested in language families with strong closure properties
obtained by looking into a given family instead of closing and, thus, extending
the family. To this end, we study the notion of kernels of language families.
Basically, a kernel of some family L with respect to some language operations
defined on L is a greatest sub-family of L that is closed under the operations.
For example, the family of linear context-free languages is not closed under
complementation. Its complementation kernel consists of all linear context-free
languages whose complement is also linear context free. This kernel is also known
as the family of strongly linear context-free languages that is considered in [8]
with respect to its expressive capacity and closure properties. Another question
that motivates the concept is as follows. Given a language such that also its
complement belongs to the same family, the description of which of both is more
economic [8]? For example, it is known that a nondeterministic finite automaton
can require 2n states to accept the complement of a language accepted by an
n-state nondeterministic finite automaton [9]. So, a representation of the com-
plement by the n-state automaton together with a bit that says that actually
the complement of the language accepted is meant is much more economic from
the descriptional complexity point of view. A machine characterization of the
complementation kernel of the context-free languages in terms of self-verifying
pushdown automata is obtained in [2].

Another well-understood kernel is the family of recursive languages. It is the
complementation kernel of the recursively enumerable languages.

The paper is organized as follows. After presenting the basic definitions and
notions in the next section, Sect. 3 deals with the uniqueness of kernels. The
underlying results are as general as possible while clarifying examples often deal
with sub-classes of context-free languages. The question whether any language of
a family belongs to some kernel based on given operations is dealt with in Sect. 4.
More precisely, we are interested in the question whether the union of all kernels
coincides with the language family. The intersection of all of these kernels and its
related questions are considered in Sect. 5. Finally, we discuss some interesting
untouched problems and questions for further research in Sect. 6.

138 M. Kutrib

2 Preliminaries

We write Σ∗ for the set of all words over a finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \{λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. Set inclusion is denoted by ⊆ and
strict set inclusion by ⊂.

A subset of Σ∗ is called a (formal) language over Σ. A language operation is
an operation whose finite number of parameters are languages, and whose result
is a language. For example, the complement of a language is defined with respect
to the underlying alphabet Σ. For a language L ⊆ Σ∗, the complement L of L
is {w ∈ Σ∗ | w /∈ L }. For all k ≥ 1, a kary language operation ◦ is said to be
idempotent if ◦(L,L, . . . , L) = L, for all L in the domain of ◦. For easier writing,
here we call even a unary language operation ◦ with the property ◦(L) = L
idempotent (so we do not require ◦(◦(L)) = ◦(L)).

Let Ω be an infinite enumerable set of letters. The set L is a family of
languages over Ω if for each L ∈ L there is a finite subset Σ ⊂ Ω such that
L ⊆ Σ∗. In the sequel we tacitly omit Ω when it is understood. For a family of
languages L , the family of complements CO-L is defined to be {L | L ∈ L }.

Let L be a family of languages and op1, op2, . . . , opk, k ≥ 1, be a finite
number of operations defined on L .

1. Then Γop1,op2,...,opk
(L) denotes the (op1, op2, . . . , opk) closure of L . That is,

the least family of languages which contains all members of L and is closed
under op1, op2, . . . , opk. In other words, there exists no language family L ′

that is closed under op1, op2, . . . , opk such that L ⊆ L ′ ⊂ Γop1,op2,...,opk
(L).

2. By γop1,op2,...,opk
(L) we denote the set of (op1, op2, . . . , opk) kernels of L .

That is, the set of greatest families of languages which are subfamilies of L
and are closed under op1, op2, . . . , opk. In other words, for all kernels κ ∈
γop1,op2,...,opk

(L) there exists no language family L ′ that is closed under
op1, op2, . . . , opk such that κ ⊂ L ′ ⊆ L .

In particular, we consider the operations complementation (∼), union (∪),
and intersection (∩), which are called Boolean operations. Accordingly, we write
ΓBOOL for Γ∼,∪,∩ and γBOOL forγ∼,∪,∩.

Since special attention is paid to sub-classes of context-free languages, we
recall briefly the notion of a context-free grammar and refer to the literature, for
example to [7], for detailed definitions of the characterizing automata models.

A context-free grammar is a system G = 〈N,T, S, P 〉, where N and T are the
disjoint alphabets of nonterminals and terminals, S ∈ N is the axiom, and P is
the finite set of productions of the form A → u, where A ∈ N and u ∈ (N ∪T)∗.
A context-free grammar is said to be linear if and only if for all productions the
right-hand side u contains at most one nonterminal, that is, u ∈ (T ∗NT ∗) ∪ T ∗.
A linear grammar is said to be left-linear if and only if a nonterminal may only
appear as leftmost symbol at the right-hand side of the productions, that is,
u ∈ (NT ∗) ∪ T ∗.

The language generated by G is the set {w ∈ T ∗ | S ⇒∗ w },
where ⇒∗ denotes the reflexive, transitive closure of the derivation relation ⇒.

Kernels of Sub-classes of Context-Free Languages 139

The families of languages that can be generated by context-free, linear, and left-
linear grammars are called context-free (CFL), linear (LIN), and regular (REG)
languages. The automaton model for the recognition of context-free languages
is the nondeterministic pushdown automaton. Its deterministic variant charac-
terizes the deterministic context-free languages (DCFL). As for DCFL there is
an automaton model for linear languages. Restricting a pushdown automaton
such that it may switch from increasing the height of its pushdown to decreasing
it only once, thus performing only one turn, leads to the definition of one-turn
pushdown automata [5]. It is known that nondeterministic one-turn pushdown
automata characterize the linear languages and deterministic one-turn pushdown
automata define the deterministic linear languages (DLIN).

3 Uniqueness of Kernels

While the closures of language families under all of the usually considered oper-
ations are unique language families, this uniqueness is not obvious for kernels.
In fact, it does not always hold. On the other hand, if the kernels are based on
unary operations then they are unique, that is, the corresponding set of kernels γ
is a singleton.

Proposition 1. Let L be a family of languages and ◦ be a unary operation
defined on L . Then the set γ◦(L) is a singleton.

Proof. For any language L from L , the application of ◦, that is ◦(L), either does
belong to L or not. Now we consider the iterated application of ◦ to L ∈ L
and define ◦1 = ◦ and, for 1 ≤ i,

◦i+1(L) =

{
◦(◦i(L)) if ◦i (L) ∈ L

undefined else
.

So, the iterated application of ◦ to languages from L induces a finite or infinite
sequence of (not necessarily different) languages.

If this sequence is finite for some L ∈ L then language L does not belong to
any ◦ kernel of L , since otherwise the kernel would not be closed under ◦.

If this sequence is infinite then language L does belong to all ◦ kernels of L .
If not, all languages L, ◦1(L), ◦2(L), . . . could be added to the kernel without
affecting its closure under ◦ or its containment in L , a contradiction to the
maximality of the kernel.

We conclude that any language from L either belongs to all ◦ kernels or to
none ◦ kernel. So, the kernel is uniquely determined. ��

In general, the uniqueness is lost for kary operations if k ≥ 2.

Theorem 2. Let L be a family of languages, k ≥ 2, and ◦ be a kary idempotent
operation defined on L . Then the set γ◦(L) includes more than one kernel if
and only if L is not closed under ◦.

140 M. Kutrib

Proof. If L is closed under ◦, it is its own ◦ kernel and, thus, γ◦(L) is a
singleton.

Now assume that L is not closed under ◦ and let L1, L2, . . . , Lk ∈ L be
witnesses for the non-closure. That is, ◦(L1, L2, . . . , Lk) /∈ L . First, we argue
that any of the witness languages, say Li, belongs to a ◦ kernel of L . To this end,
it suffices to consider the set {Li} which is a subset of L . Since ◦ is idempotent
the set {Li} is closed under ◦. So, either it is a kernel or it is a subset of some
kernel.

Now it remains to be concluded that not all of the languages L1, L2, . . . , Lk

can belong to the same kernel, since this would violate the closure under ◦. So,
there are at least two different kernels in γ◦(L). ��

So far, we obtained that the ◦ kernel of some language family is unique if ◦
is a unary operation or if the family is closed under ◦, and that there are more
than one kernels if ◦ is a kary idempotent operation, for k ≥ 2, and L is not
closed under ◦. The following examples reveal that a finite as well as an infinite
number of kernels may exist.

Example 3. Let L be defined as union of CFL with {Lexpo}, where Lexpo is the
non-context-free unary language { a2n | n ≥ 0 }. Family L is not closed under
the idempotent operation union since, for example, Lexpo ∪{aaa} is not context
free and, thus, does not belong to L . By Theorem 2, γ∪(L) includes more than
one kernel. In particular, CFL is included in γ∪(L), since CFL is closed under
union. This is the only union kernel of L that does not include Lexpo.

On the other hand, there must exist a kernel in γ∪(L) having {Lexpo} as
subset, since {Lexpo} is closed under union and a subset of L . We show that
there is exactly one union kernel of L that includes Lexpo.

Let U = {L | L is finite subset of Lexpo } be the set of finite languages
whose words belong to Lexpo, and let R = {L ∈ CFL | (L∪Lexpo)∩a∗ ∈ REG }
be the set of context-free languages whose unary words from a∗ form a regular
language when joint with Lexpo. We claim that κ = U ∪ R ∪ {Lexpo} is the sole
union kernel of L that includes Lexpo.

Clearly, we have the inclusion κ ⊂ L . To show that κ is closed under union,
let u, u′ ∈ U and r, r′ ∈ R. We obtain u ∪ Lexpo = Lexpo ∈ κ, u ∪ u′ ∈ U ⊂ κ,
and u∪ r ∈ CFL, (u∪ r ∪Lexpo)∩ a∗ = (r ∪Lexpo)∩ a∗ and, thus u∪ r ∈ R ⊂ κ.
Further, we have r ∪Lexpo ∪Lexpo = r ∪Lexpo and, therefore, r ∪Lexpo ∈ R ⊂ κ,
and (r ∪ r′ ∪ Lexpo) ∩ a∗ =

(
(r ∪ Lexpo) ∩ a∗) ∪ (

(r′ ∪ Lexpo) ∩ a∗) ∈ REG and,
thus r ∪ r′ ∈ R ⊂ κ. We conclude that κ is closed under union.

Finally, it remains to be shown that none of the languages L \ κ can belong
to any union kernel of L that includes Lexpo. This implies that κ is maximal
and therefore, in fact, a kernel, and that it is the unique.

So, let L ∈ L \ κ. If L includes at least one word that is not of the form a∗,
the union L ∪ Lexpo is not equal to Lexpo. Since L does not belong to R, we
have that (L ∪ Lexpo) ∩ a∗ is unary but not regular. So, it is not context free
either. Since context-free languages are closed under intersection with regular
languages, L ∪ Lexpo is not context free. It follows that no union kernel of L
that includes Lexpo includes L.

Kernels of Sub-classes of Context-Free Languages 141

Next, assume that all words in L are of the form a∗. Since L does not belong
to R we now from the previous case that (L ∪ Lexpo) ∩ a∗ = L ∪ Lexpo is not
context free. So, if L belongs to the kernel, L ∪ Lexpo has to be equal to Lexpo.
This implies L ⊆ Lexpo. Since L /∈ κ the inclusion is proper: L ⊂ Lexpo. Since
any infinite subset of Lexpo is not context free and any finite subset does belong
to U ∈ κ, we obtain the contradiction that L cannot belong to L \ κ.

So, we have shown that the set γ∪(L) consists of exactly two kernels, one
includes Lexpo and the other does not. �

Example 4. The family DLIN is not closed under intersection. We consider
the number of kernels in γ∩(DLIN). To this end, for k ≥ 2, define language
Lk = { an($a∗)k−2$an($a∗)∗ | n ≥ 0 } that belongs to DLIN. However, for all
2 ≤ i < j, the intersection Li ∩ Lj is language

{ an($a∗)i−2$an($a∗)j−i−1$an($a∗)∗ | n ≥ 0 }
which is not even context free. We conclude that for 2 ≤ i, j the languages Li

and Lj do not belong to the same kernel if i �= j. On the other hand, for 2 ≤ k,
there must exist a kernel in γ∩(DLIN) having {Lk} as subset, since it is closed
under intersection and a subset of DLIN. So, the set γ∩(DLIN) includes infinitely
many kernels. �

4 Union of Kernels

Next we turn to the question whether any language of a family belongs to some
kernel based on given operations. Or are there languages that do not belong to
any of such kernels. More precisely, we are interested in the question whether
the union of all kernels coincides with the language family.

Theorem 5. Let L be a family of languages and op1, op2, . . . , opk, k ≥ 1, be a
finite number of idempotent operations defined on L . Then

{L | L ∈ κ for some κ ∈ γop1,op2,...,opk
(L) } = L .

Proof. The inclusion in L is trivial. So, it remains to be shown that any language
from L does belong to some (op1, op2, . . . , opk) kernel of L .

To this end, let L ∈ L be an arbitrary language from the family. We
consider the set ν = {L}. Since it contains only one language and all opera-
tions op1, op2, . . . , opk are idempotent, it is closed under op1, op2, . . . , opk. So,
either ν is itself a (op1, op2, . . . , opk) kernel of L , or there exist a kernel in
γop1,op2,...,opk

(L) having ν as subset. ��
Example 6. Consider the families DLIN, LIN, DCFL, as well as CFL and the
idempotent operations union and intersection. Theorem 5 says that any language
from one of the families belongs to some (∪,∩) kernel of that family. That is,

{L | L ∈ κ for some κ ∈ γ∪,∩(L) } = L ,

for L ∈ {DLIN,LIN,DCFL,CFL}. �

142 M. Kutrib

Theorem 5 reveals in particular that idempotent operations do not prevent
languages from belonging to a kernel. Let us discuss the role played by the
requirement that the operations have to be idempotent. If a unary operation
is idempotent, any language family is closed under this operation (in fact, the
operation is the identity). However, if at least one unary operation under which
the family is not closed is in the list, the situation changes.

Proposition 7. Let L be a family of languages not closed under the unary
operation ◦, and op1, op2, . . . , opk, k ≥ 0, be a finite number of further operations
defined on L . Then {L | L ∈ κ for some κ ∈ γ◦,op1,op2,...,opk

(L) } ⊂ L .

Proof. The inclusion claimed is trivial. So, it remains to be shown that the
inclusion is strict.

Since L is not closed under ◦, there is a language L ∈ L such that ◦(L) /∈ L .
So, L cannot belong to any (◦, op1, op2, . . . , opk) kernel of L , since the contain-
ment would violate the closure of the kernel under ◦. ��
Example 8. It is well-known that the family CFL is not closed under complemen-
tation. Applying Proposition 7 shows that not all context-free languages belong
to some Boolean kernel. That is, {L | L ∈ κ for some κ ∈ γBOOL(CFL) } ⊂
CFL. �

In general, the condition of Proposition 7, namely that the family L has
not to be closed under the unary operation, cannot be relaxed. The following
proposition shows this fact. It is in contrast to Example 8.

Proposition 9. Any deterministic context-free language belongs to some kernel
κ ∈ γBOOL(DCFL).

Proof. Let L ∈ DCFL be some language over the alphabet Σ. We consider the
set ν = {L,L,Σ∗, ∅} which is clearly closed under complementation, union, and
intersection.

Since DCFL is closed under complementation and includes the regular lan-
guages Σ∗ and ∅, either ν is itself a Boolean kernel of DCFL, or there exists a
kernel in γBOOL(DCFL) having ν, and thus {L}, as subset. ��

In order to continue the discussion of the requirement that the operations
have to be idempotent, we present a further example considering the binary
non-idempotent operation of marked concatenation.

Example 10. The family LIN is not closed under the binary non-idempotent
operation of marked concatenation (•). In fact, it has been shown in [6] that the
marked concatenation of two linear context-free languages is linear context free
if and only if at least one of the languages is regular.

We consider γ•(LIN). Since the family REG is closed under marked concate-
nation, there must be some κ ∈ γ•(LIN) such that REG ⊆ κ. On the other
hand, let L ∈ LIN \ REG be an arbitrary linear context-free language that is
not regular. Then L cannot belong to any kernel in γ•(LIN) since L • L is not

Kernels of Sub-classes of Context-Free Languages 143

linear context free due to [6]. Therefore, REG is the sole marked concatenation
kernel of LIN. That is, γ•(LIN) = {REG} and, thus, the marked concatenation
kernel of LIN is unique. Moreover, {L | L ∈ κ for some κ ∈ γ•(LIN) } ⊂ LIN. �

It is worth mentioning that literally Example 10 also applies to the family
DLIN.

5 Intersection of Kernels

We now turn to the question which languages belong to all kernels based on
given operations. So, we consider the intersection of all of these kernels.

Proposition 11. Let L ∈ {CFL,LIN,DCFL,DLIN}. All intersection kernels
and union kernels of L include REG.

Proof. In contrast to the assertion assume that there is a kernel ν ∈ γ∩(L) such
that REG �⊆ ν.

In order to obtain a contradiction we show that ν is strictly included in a
kernel from γ∩(L) and, thus, cannot be an intersection kernel of L at all. To
this end, we join ν with REG and build the intersection closure of the union.
That is, we consider κ = Γ∩(ν ∪ REG).

Any language L ∈ κ has a representation of the form K, R, or K ∩ R, where
K ∈ ν and R ∈ REG. Since L includes the regular languages and is closed
under intersection with regular languages, language L belongs to L . So, we
have Γ∩(ν ∪ REG) ⊆ L . This shows the assertion for intersection kernels.

Since L is closed under union with regular languages as well, the argumen-
tation for union kernels follows by replacing intersection with union. ��

Of particular interest are the languages that belong to all Boolean kernels.

Theorem 12. Let L ⊇ T be two families of languages. If L is closed under
union and under intersection with languages from T , and T is closed under the
Boolean operations then T ⊆ κ for all κ ∈ γBOOL(L).

Proof. In contrast to the assertion assume that there is a kernel ν ∈ γBOOL(L)
such that T �⊆ ν.

In order to obtain a contradiction we show that ν is strictly included in a
kernel from γBOOL(L) and, thus, cannot be a Boolean kernel of L at all. To
this end, we join ν with T and build the Boolean closure of the union. That is,
we consider κ = ΓBOOL(ν ∪ T). We show that κ is included in L .

Let L ∈ κ. Then, for some m, l1, l2, . . . , lm ≥ 0, language L has a representa-
tion

⋃
1≤i≤m

⋂
1≤j≤li

Li,j such that Li,j ∈ (ν ∪T) or Li,j ∈ CO-(ν ∪T). Since ν
as well as T are closed under complementation, we have (ν ∪T) = CO-(ν ∪T),
and may safely assume that Li,j ∈ (ν ∪ T).

Now, for 1 ≤ i ≤ m, let Li = Li,1 ∩ Li,2 ∩ · · · ∩ Li,li . Since ν as well as T are
closed under intersection, we have Li = Ki ∩ Ti or Li = Ki or Li = Ti, for some

144 M. Kutrib

Ki ∈ ν and Ti ∈ T . Moreover, since ν and T are sub-families of L , and L is
closed under intersection with languages from T , language Li belongs to L .

Finally, L =
⋃

1≤i≤m Li and the closure of L under union implies that L
belongs to L . Therefore, κ is included in L . ��
Corollary 13. Let L ⊇ T be two families of languages. If L is closed under
intersection and under union with languages from T , and T is closed under the
Boolean operations then T ⊆ κ for all κ ∈ γBOOL(L).

Proof. The corollary can be shown almost literally as Theorem 12, where the
representation of language L ∈ κ is given as

⋂
1≤i≤m

⋃
1≤j≤li

Li,j , and by inter-
changing union and intersection in the reasoning. ��
Example 14. The families CFL and LIN are closed under union and under inter-
section with regular languages. The family of regular languages is closed under
the Boolean operations. So, by applying Theorem 12 we obtain that all Boolean
kernels of CFL and LIN include REG.

Moreover, applying Corollary 13 shows that all Boolean kernels of CO-CFL
and CO-LIN include REG. �

Since any intersection, union, and complementation kernel of CFL, LIN,
CO-CFL, and CO-LIN includes a Boolean kernel which, in turn, includes REG,
all of these kernels include REG as well. Moreover, for all unary operations
◦ under which the family of regular languages is closed, the unique ◦ kernel of
CFL, LIN, CO-CFL, and CO-LIN includes REG (see Proposition 1). This imme-
diately raises the question whether these kernels are characterized by REG. Or
are there certain non-regular languages that belong to all kernels of a certain
type. Example 10 shows that REG is the sole marked concatenation kernel of
LIN and, thus, characterizes the kernel. However, in the following we turn to
show that there are non-regular languages belonging to the intersection of all
Boolean kernels of CFL, LIN, CO-CFL, and CO-LIN.

To this end, we recall the notion of semilinear languages. Consider, for some
fixed positive integer m, the vectors in N

m. A set of the form

{ v0 + x1v1 + x2v2 + · · · + xkvk | xi ≥ 0, 1 ≤ i ≤ k },

where v0, v1, . . . , vk ∈ N
m, is said to be linear. A semilinear set is a finite

union of linear sets. It is known that the family of semilinear subsets of N
m

is closed under union, intersection, and complementation [3]. For an alpha-
bet Σ = {a1, a2, . . . , am} the Parikh mapping Ψ : Σ∗ → N

m is defined by
Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|am

), where |w|ai
denotes the number of occurrences

of ai in the word w. In [13] a fundamental result concerning the distribution of
symbols in the words of a context-free language has been shown. It says that
for any context-free language L, the Parikh image Ψ(L) = {Ψ(w) | w ∈ L } is
semilinear.

In the following we consider semilinear languages that are subsets of a∗b∗,
where the number of b’s depends linearly on the number of a’s. The dependency

Kernels of Sub-classes of Context-Free Languages 145

is given by linear functions ϕ : N → N with ϕ(n) = c1 ·n+c0, for some c0, c1 ≥ 0.
So, we define Lϕ = { anbϕ(n) | n ≥ 0 }. Note that there are functions ϕ such
that Lϕ is context free but not regular (for example ϕ(n) = n, ϕ(n) = 2n,
etc.), or Lϕ is regular (for example ϕ(n) is constant). However, the linearity of ϕ

implies that Lϕ is a semilinear language, where Ψ(Lϕ) =
{ (

0
c0

)
+ x

(
1
c1

)∣∣∣ x ≥ 0
}

.

Theorem 15. Let ϕ : N → N be a linear function. For an arbitrary context-free
language L, the intersection L ∩ Lϕ belongs to DLIN.

Proof. We consider the Parikh image

S = Ψ(L ∩ Lϕ) = Ψ((L ∩ a∗b∗) ∩ Lϕ) = Ψ(L ∩ a∗b∗) ∩ Ψ(Lϕ).

The set S is semilinear since L ∩ a∗b∗ is context free and, thus, semilinear [13],
language Lϕ is semilinear, and semilinear sets are closed under intersection [3].

Let π1 : N2 → N be the canonical projection on the first factor. Then π1(S)
is semilinear. So, the language U = { an | n ≥ 0, anbϕ(n) ∈ L } = Ψ−1(π1(S)) is
regular since it is unary and semilinear.

Now, let M be a deterministic finite automaton accepting U . From M one
can easily construct a deterministic one-turn pushdown automaton accepting
{ anbϕ(n) | n ≥ 0, an ∈ U } = L ∩ Lϕ. So, the theorem follows. ��
Example 16. Let ϕ : N → N be a linear function. Then, for all families L from
{CFL,LIN,DCFL,DLIN}, all intersection kernels of L include all, even non-
regular, languages Lϕ.

Similar as above we obtain a contradiction when we assume that there is an
intersection kernel ν ∈ γ∩(L) such that there is Lϕ /∈ ν.

Consider κ = Γ∩(ν ∪ {Lϕ}). Each language L ∈ κ has a representation
as K, Lϕ, or K ∩ Lϕ, where K ∈ ν.

Since Lϕ belongs to L , K ∩ Lϕ ∈ DLIN ⊆ L by Theorem 15, and ν ⊆ L ,
the closure Γ∩(ν ∪ {Lϕ}) is included in L , which gives a contradiction to the
maximality of ν. �

The situation changes when in Theorem 15 the language Lϕ is replaced by its
complement Lϕ. It is an immediate observation that in this case the determinism
is not generally achieved. However, we can show that the property of being
context free or linear context free can be preserved. To this end, we first provide
the next lemma.

It has already been shown in [4] that a language L ⊆ a∗b∗ is context free if
and only if it is semilinear. We turn to strengthen this result to linear context-free
languages. Basically, it shows that there are no non-linear context-free languages
L ⊆ a∗b∗ at all.

Proposition 17. A language L ⊆ a∗b∗ is linear context free if and only if it is
semilinear.

146 M. Kutrib

Proof. If language L is linear context free, it is semilinear. So, it is sufficient to
show the converse. To this end, let L ⊆ a∗b∗ be semilinear. A semilinear subset S
of N2 determines uniquely a language Ψ−1(S) whose words are of the form a∗b∗,
that is L = Ψ−1(Ψ(L)). Now let the Parikh image Ψ(L) be given by a finite
union of sets of the form{ (

u0

v0

)
+ x1

(
u1

v1

)
+ x2

(
u2

v2

)
+ · · · + xk

(
uk

vk

)∣∣∣∣ xi ≥ 0, 1 ≤ i ≤ k

}
,

where u0, v0, u1, v1, . . . , uk, vk ∈ N.
For each of these sets, say set S′, we construct a linear context-free grammar

that generates Ψ−1(S′). Since the family of linear context-free languages is closed
under union, this shows the lemma.

The linear context-free grammar for S′ is G = 〈N,T,A, P 〉, where N = {A},
T = {a, b}, and P = {A → auiAbvi | 1 ≤ i ≤ k } ∪ {A → au0bv0}. ��
Theorem 18. Let ϕ : N → N be a linear function, L ∈ {CFL,LIN}, and L ∈ L
be arbitrary. Then the intersection L ∩ Lϕ belongs to L .

Proof. The intersection L ∩ Lϕ consists of all words from L that are not of the
form a∗b∗, and all words from L of the form a∗b∗ where the number of b’s is
different from ϕ applied to the number of a’s. So, we have the representation
L ∩ Lϕ = (L \ a∗b∗) ∪ ((L ∩ a∗b∗) \ Lϕ).

Since L is closed under set difference with regular languages, L\a∗b∗ belongs
to L . Since L is closed under intersection with regular languages, L ∩ a∗b∗

belongs to L and, thus, is semilinear. Further, Lϕ is semilinear. The family of
semilinear languages is closed under set difference [3]. Therefore, (L∩ a∗b∗) \Lϕ

is a semilinear language which, in turn, is linear context free by Proposition 17
and, thus, belongs to L as well.

Since L is closed under union, the intersection L ∩ Lϕ belongs to L . ��
Now we are prepared to show that there are non-regular languages belonging

to the intersection of all Boolean kernels of CFL, LIN, CO-CFL, and CO-LIN.

Theorem 19. Let ϕ : N → N be a linear function. Then, for all families L
from {CFL,LIN,CO-CFL,CO-LIN}, all Boolean kernels of L include all, even
non-regular, languages Lϕ.

6 Untouched Questions

We have started to study the properties of kernels of general language families
and operations defined thereon systematically as well as kernels of (deterministic)
(linear) context-free languages with a focus on Boolean operations.

Since only less is known about kernels a bunch of questions and problems
remain open or untouched. Exemplarily, we mention four of them: (1) The non-
trivial closure properties of kernels themselves are of natural interest. (2) Are

Kernels of Sub-classes of Context-Free Languages 147

there hierarchies of kernels? (3) A machine characterization of the complemen-
tation kernel of the context-free languages in terms of self-verifying pushdown
automata is known [2]. Basically, the characterization is given by a machine for
the underlying language family, where the acceptance condition is modified. Are
there machine characterizations of other kernels?

Acknowledgment. The author would like to thank Henning Fernau for fruitful dis-
cussions at an early stage of the paper.

References

1. Bertsch, E., Nederhof, M.J.: Regular closure of deterministic languages. SIAM J.
Comput. 29, 81–102 (1999)

2. Fernau, H., Kutrib, M., Wendlandt, M.: Self-verifying pushdown automata. In:
Non-Classical Models of Automata and Applications (NCMA 2017), vol. 329, pp.
103–117. Austrian Computer Society, Vienna (2017). books@ocg.at

3. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw Hill,
New York (1966)

4. Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. Trans. Am. Math.
Soc. 113, 333–368 (1964)

5. Ginsburg, S., Spanier, E.H.: Finite-turn pushdown automata. SIAM J. Contr. 4,
429–453 (1966)

6. Greibach, S.A.: The unsolvability of the recognition of linear context-free lan-
guages. J. ACM 13, 582–587 (1966)

7. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

8. Ilie, L., Păun, G., Rozenberg, G., Salomaa, A.: On strongly context-free languages.
Discrete Appl. Math. 103, 158–165 (2000)

9. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330, 287–298 (2005)

10. Kutrib, M., Malcher, A.: Finite turns and the regular closure of linear context-free
languages. Discrete Appl. Math. 155, 2152–2164 (2007)

11. Kutrib, M., Malcher, A., Wotschke, D.: The Boolean closure of linear context-free
languages. Acta Inform. 45, 177–191 (2008)

12. Okhotin, A.: Automaton representation of linear conjunctive languages. In: Ito, M.,
Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 393–404. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-45005-X 35

13. Parikh, R.J.: On context-free languages. J. ACM 13, 570–581 (1966)
14. Wotschke, D.: Nondeterminism and Boolean operations in PDA’s. J. Comput. Syst.

Sci. 16, 456–461 (1978)
15. Wotschke, D.: The Boolean closures of the deterministic and nondeterministic

context-free languages. In: Brauer, W. (ed.) GI 1973. LNCS, vol. 1, pp. 113–121.
Springer, Heidelberg (1973). https://doi.org/10.1007/3-540-06473-7 11

16. Wotschke, D.: Degree-languages: a new concept of acceptance. J. Comput. Syst.
Sci. 14(2), 187–209 (1977)

https://doi.org/10.1007/3-540-45005-X_35
https://doi.org/10.1007/3-540-06473-7_11

Minimal Unique Substrings and Minimal
Absent Words in a Sliding Window

Takuya Mieno1(B), Yuki Kuhara1, Tooru Akagi1, Yuta Fujishige1,2,
Yuto Nakashima1, Shunsuke Inenaga1,3, Hideo Bannai1, and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{takuya.mieno,yuki.kuhara,toru.akagi,yuta.fujishige,yuto.nakashima,

inenaga,bannai,takeda}@inf.kyushu-u.ac.jp
2 Japan Society for Promotion of Science, Tokyo, Japan

3 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

Abstract. A substring u of a string T is called a minimal unique sub-
string (MUS) of T if u occurs exactly once in T and any proper substring
of u occurs at least twice in T . A string w is called a minimal absent
word (MAW) of T if w does not occur in T and any proper substring
of w occurs in T . In this paper, we study the problems of computing
MUSs and MAWs in a sliding window over a given string T . We first
show how the set of MUSs can change in a sliding window over T , and
present an O(n log σ)-time and O(d)-space algorithm to compute MUSs
in a sliding window of width d over T , where σ is the maximum number
of distinct characters in every window. We then give tight upper and
lower bounds on the maximum number of changes in the set of MAWs
in a sliding window over T . Our bounds improve on the previous results
in Crochemore et al. (2017).

1 Introduction

Processing massive string data is a classical and important task in theoretical
computer science, with a variety of applications such as data compression, bioin-
formatics, and text data mining. It is natural and common to assume that such
a massive string is given in an online fashion, one character at a time from left to
right, and that the memory usage is limited to some pre-determined space. This
is a so-called sliding window model, where the task is to process all substrings
T [i..i + d − 1] of pre-fixed length d in a string T of length n in an incremental
fashion, for increasing i = 1, . . . , n−d+1. Usually the window size d is set to be
much smaller than the string length n, and thus the challenge here is to design
efficient algorithms that processes all such substrings using only O(d) working
space. A typical application to the sliding window model is data compression;
examples are the famous Lempel-Ziv 77 (the original version) [16] and PPM [2].

In this paper, we study the following classes of strings in the sliding win-
dow model: Minimal Unique Substrings (MUSs) and Minimal Absent Words

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 148–160, 2020.
https://doi.org/10.1007/978-3-030-38919-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_13

Minimal Unique Substrings and Minimal Absent Words 149

(MAWs). MUSs have been heavily utilized for solving the Shortest Unique Sub-
string (SUS) problem [6,8,11,14], and MAWs have applications to data compres-
sion based on anti-dictionaries [3,10]. However, despite the fact that there is a
common application field to MUSs and MAWs such as bioinformatics [1,5,11,13],
to our knowledge, these two objects were considered to be quite different and
were studied separately. This paper is the first that brings a light to their sim-
ilarities by observing that a string w is a MUS (resp. MAW) of a string S if
the number of occurrences of w in S is one (resp. zero), and the number of
occurrences of any proper substring of w is at least two (resp. at least one).

We begin with combinatorial results on MUSs in a sliding window. Namely,
we show that the number of MUSs that are added or deleted by one slide of
the window is always O(1) (Sect. 3). We then present the first efficient algorithm
that maintains the set of MUSs for a sliding window of length d over a string of
length n in a total of O(n log σ) time and O(d) working space (Sect. 4). Our main
algorithmic tool is the suffix tree for a sliding window that requires O(d) space
and can be maintained in O(n log σ) time [7,12]. Our algorithm for computing
MUSs in a sliding window is built on our combinatorial results, and it keeps
track of three different loci over the suffix tree, all of which can be maintained
in O(log σ) amortized time per each sliding step.

MAWs in a sliding window have already been studied by Crochemore
et al. [4]. They studied the number of MAWs to be added/deleted when the
current window is shifted, and we improve some of these results (Sect. 5):
For any string T over an alphabet of size σ, let MAW(T [i..j]) be the set
of all MAWs in the substring T [i..j]. Crochemore et al. [4] showed that
|MAW(T [i..i + d]) \ MAW(T [i..i + d − 1])| ≤ (si − sα)(σ − 1) + σ + 1 and
|MAW(T [i − 1..i + d − 1]) \ MAW(T [i..i + d − 1])| ≤ (pi − pβ)(σ − 1) + σ + 1,
where si, sα, pi, and pβ are the lengths of the longest repeating suffix of
T [i..i + d − 1], of the longest suffix of T [i..i + d − 1] having an internal occur-
rence immediately followed by α = T [i + d], of the longest repeating prefix
of T [i..i + d − 1], and of the longest prefix of T [i..i + d − 1] having an inter-
nal occurrence immediately preceded by β = T [i − 1]. Since both si − sα and
pi − pβ are in Θ(d) in the worst case, it leads to an O(σd) upper bound. We
improve this by showing that both |MAW(T [i..i+d]) \MAW(T [i..i+d− 1])| and
|MAW(T [i−1..i+d−1])\MAW(T [i..i+d−1])| are at most d+σ′ +1, where σ′ is
the number of distinct characters in T [i..i+ d− 1]. Since σ′ ≤ d, this leads to an
improved O(d) upper bound. We also show that this is tight. Crochemore et al. [4]
also showed that

∑n−d
i=1 |MAW(T [i..i + d − 1]) �MAW(T [i + 1..i + d])| ∈ O(σn).

We give an improved upper bound O(min{σ, d}n) and show that this is tight.
All proofs omitted due to lack of space can be found in a full version [9].

2 Preliminaries

Strings. Let Σ be an alphabet. An element of Σ is called a character. An
element of Σ∗ is called a string. The length of a string T is denoted by |T |.
The empty string ε is the string of length 0. If T = xyz, then x, y, and z are

150 T. Mieno et al.

called a prefix, substring, and suffix of T , respectively. They are called a proper
prefix, proper substring, and proper suffix of T if x �= T , y �= T , and z �= T ,
respectively. If a string b is a prefix of T and is a suffix of T , b is called a
border of T . For any 1 ≤ i ≤ |T |, the i-th character of T is denoted by T [i].
For any 1 ≤ i ≤ j ≤ |T |, T [i..j] denote the substring of T starting at i and
ending at j. For convenience, T [i′..j′] = ε for i′ > j′. For any 1 ≤ i ≤ |T |, let
T [..i] = T [1..i] and T [i..] = T [i..|T |]. For a string w, the set of beginning positions
of occurrences of w in T is denoted by occT (w) = {i | T [i..i + |w| − 1] = w}. Let
#occT (w) = |occT (w)|. For convenience, let #occT (ε) = |T |+1. In what follows,
we consider an arbitrarily fixed string T of length n ≥ 1 over an alphabet Σ of
size σ ≥ 2.

Minimal Unique Substrings and Minimal Absent Words. Any string w is
said to be absent from T if #occT (w) = 0, and present in T if #occT (w) ≥ 1. For
any substring w of T , w is called unique in T if #occT (w) = 1, quasi-unique in
T if 1 ≤ #occT (w) ≤ 2, and repeating in T if #occT (w) ≥ 2. A unique substring
w of T is called a minimal unique substring of T if any proper substring of w
is repeating in T . Since a unique substring w of T has exactly one occurrence
in T , it can be identified with a unique interval [s, t] such that 1 ≤ s ≤ t ≤ n
and w = T [s..t]. We denote by MUS(T) = {[s, t] | T [s..t] is a MUS of T} the set
of intervals corresponding to the MUSs of T . From the definition of MUSs, it is
clear that [s, t] ∈ MUS(T) if (a) T [s..t] is unique in T , (b) T [s+1..t] is repeating
in T , and (c) T [s..t − 1] is repeating in T .

An absent string w from T is called a minimal absent word of T if any proper
substring of w is present in T . We denote by MAW(T) the set of all MAWs of T .
From the definition of MAWs, it is clear that w ∈ MAW(T) if (A) w is absent
from T , (B) w[2..] is present in T , and (C) w[..|w| − 1] is present in T .

This paper deals with the problems of computing MUSs/MAWs in a sliding
window of fixed length d over a given string T , formalized as follows:

Input: String T of length n and positive integer d (< n).
Output for the MUS problem: MUS(T [i..i+d−1]) for all 1 ≤ i ≤ n−d+1.
Output for the MAW problem: MAW(T [i..i+d−1]) for all 1 ≤ i ≤ n−d+1.

Suffix Trees. The suffix tree of a string T , denoted STreeT , is a compacted
trie that represents all suffixes of T . We consider a version of suffix trees a.k.a.
Ukkonen trees [15]: Namely, STreeT is a rooted tree such that (1) each edge
is labeled by a non-empty substring of T , (2) each internal node has at least
two children, (3) the out-going edges of each node begin with mutually distinct
characters, (4) the suffixes of T that are unique in T are represented by paths
from the root to the leaves, and the other suffixes of T that are repeating in T
are represented by paths from the root that end either on internal nodes or on
edges. To simplify the description of our algorithm, we assume that there is an
auxiliary node ⊥ which is the parent of only the root node. The out-going edge
of ⊥ is labeled with Σ; This means that we can go down from ⊥ by reading any
character in Σ.

Minimal Unique Substrings and Minimal Absent Words 151

For each node v in STreeT , par(v) denotes the parent of v, str(v) denotes
the path string from the root to v, depth(v) denotes the string depth of v (i.e.
depth(v) = |str(v)|), and subtree(v) denotes the subtree of STreeT rooted at v.
For each leaf � in STreeT , start(�) denotes the starting position of str(�) in T .
For each non-empty substring w of T , hed(w) = v denotes the highest explicit
descendant where w is a prefix of str(v) and depth(par(v)) < |w| ≤ depth(v). For
each substring w of T , locus(w) = (u, h) represents the locus in STreeT where
the path that spells out w from the root terminates, such that u = hed(w) and
h = depth(u) − |w| ≥ 0. We say that a substring w of T with locus(w) = (u, h)
is represented by an explicit node if h = 0, and by an implicit node if h ≥ 1. We
remark that in the Ukkonen tree STreeT of a string T , some repeating suffixes
may be represented by implicit nodes. An implicit node which represents a suffix
of T is called an implicit suffix node. For any non-empty substring w that is
represented by an explicit node v, the suffix link of v is a reversed edge from
v to the explicit node that represents w[2..]. The suffix link of the root that
represents ε points to ⊥.

3 Combinatorial Results on MUSs in a Sliding Window

Throughout this section, we consider positions i, j (1 ≤ i ≤ j ≤ n) such that
T [i..j] denotes the sliding window for the i-th position over the input string T .
The following arguments hold for any values of i and j, and hence, they will be
useful for sliding windows of any length d.

Let lrsi,j be the longest repeating suffix of T [i..j], sqsi,j be the shortest quasi-
unique suffix of T [i..j], and sqpi,j be the shortest quasi-unique prefix of T [i..j].
Note that lrsi,j can be the empty string, and that both sqsi,j and sqpi,j are
always non-empty strings.

The next lemmas are useful for analyzing combinatorial properties on MUSs
and for designing an efficient algorithm for computing them in a sliding window.

Lemma 1. The following three statements are equivalent: (1) |lrsi,j | ≥ |sqsi,j |;
(2) #occT [i..j](lrsi,j) = 2; (3) #occT [i..j](sqsi,j) = 2.

Lemma 2. |lrsi,j+1| ≤ |lrsi,j | + 1.

3.1 Changes to MUSs When Appending a Character to the Right

In this subsection, we consider an operation that slides the right-end of the
current window T [i..j] with one character by appending the next character T [j+
1] to T [i..j]. We use the following observation.

Observation 1. For each non-empty substring s of T [i..j], #occT [i..j+1](s) ≤
#occT [i..j](s) + 1. Also, #occT [i..j+1](s) = #occT [i..j](s) + 1 if and only if s is a
suffix of T [i..j + 1].

152 T. Mieno et al.

MUSs to Be Deleted When Appending a Character to the Right. Due
to Observation 1, we obtain Lemma 3 which describes MUSs to be deleted when
a new character T [j + 1] is appended to the current window T [i..j].

Lemma 3. For any [s, t] with i ≤ s < t ≤ j, [s, t] ∈ MUS(T [i..j]) and [s, t] �∈
MUS(T [i..j + 1]) if and only if T [s..t] = sqsi,j+1 and #occT [i..j+1](sqsi,j+1) = 2.

Proof. (⇒) Let w = T [s..t]. Since [s, t] ∈ MUS(T [i..j]) and [s, t] �∈ MUS(T [i..j +
1]), #occT [i..j](w) = 1 and #occT [i..j+1](w) ≥ 2. It follows from Observation 1
that #occT [i..j+1](w) = 2 and w is a suffix of T [i..j +1]. If we assume that w is a
proper suffix of sqsi,j+1, then #occT [i..j+1](w) ≥ 3 by the definition of sqsi,j+1,
but this contradicts with #occT [i..j+1](w) = 2. If we assume that sqsi,j+1 is a
proper suffix of w, then #occT [i..j](sqsi,j+1) ≥ #occT [i..j](T [s + 1..t]) ≥ 2. Also,
#occT [i..j+1](sqsi,j+1) = #occT [i..j](sqsi,j+1) + 1 ≥ 3 by Observation 1, but this
contradicts with the definition of sqsi,j+1. Therefore, we obtain w = sqsi,j+1.
Moreover, #occT [i..j+1](sqsi,j+1) = 2 since w = sqsi,j+1 is a substring of T [i..j].
(⇐) Since w = T [s..t] is a suffix of T [i..j + 1] and #occT [i..j+1](w) = 2, w is
unique in T [i..j]. By the definition of sqsj+1, a proper suffix w[2..] = T [s+1..t] of
w = sqsi,j+1 occurs at least three times in T [i..j + 1], i.e. T [s + 1..t] is repeating
in T [i..j]. Also, a prefix w[..|w| − 1] = T [s..t − 1] of w = sqsi,j+1 is clearly
repeating in T [i..j]. Therefore, w = T [s..t] is a MUS of T [i..j] and is not a MUS
of T [i..j + 1].
�

By Lemma 3, at most one MUS can be deleted when appending T [j + 1] to
the current window T [i..j], and such a deleted MUS must be sqsi,j+1.

MUSs to Be Added When Appending a Character to the Right. First,
we consider a MUS to be added when appending T [j + 1] to T [i..j], which is a
suffix of T [i..j + 1]. The next observation follows from the definition of lrsi,j :

Observation 2. If [s, j] ∈ MUS(T [i..j]), then s = j − |lrsi,j |. Namely, if there
is a MUS of T [i..j] that is a suffix of T [i..j], then it must be the suffix of T [i..j]
that is exactly one character longer than lrsi,j .

Lemma 4. [j+1−k, j+1] ∈ MUS(T [i..j+1]) if and only if T [j+1−k..j+1] =
αk+1 or k ≤ |lrsi,j |, where k = |lrsi,j+1| and α = T [j + 1].

Proof. (⇒) Assume on the contrary that T [j + 1 − k..j + 1] �= αk+1 and k >
|lrsi,j |. By the assumptions and Lemma 2, |lrsi,j | = k − 1, and thus, T [j −
|lrsi,j |..j] = T [j + 1 − k..j]. Since T [j + 1 − k..j + 1] is a MUS of T [i..j + 1],
T [j + 1 − k..j] = T [j − |lrsi,j |..j] occurs at least twice in T [i..j + 1]. On the
other hand, T [j − |lrsi,j |..j] is unique in T [i..j] by the definition of lrsi,j , hence
T [j−|lrsi,j |..j] occurs in T [i..j+1] as a suffix of T [i..j+1]. Consequently, we have
T [j−|lrsi,j |..j] = T [j+1−|lrsi,j |..j+1], i.e. T [j−k..j+1] = T [j+1−k..j+1] =
αk+1 with α = T [j + 1], a contradiction.
(⇐) By definition, T [j + 2 − k..j + 1] = lrsi,j+1 is repeating in T [i..j + 1] and
T [j +1−k..j +1] is unique in T [i..j +1]. Now it suffices to show T [j +1−k..j] is

Minimal Unique Substrings and Minimal Absent Words 153

repeating in T [i..j+1]. If T [j+1−k..j+1] = αk+1, then clearly T [j+1−k..j] = αk

is repeating in T [i..j + 1]. If k ≤ |lrsi,j |, then T [j + 1 − k..j] is a suffix of
T [j+1−|lrsi,j |..j]. Thus #occT [i..j+1](T [j+1−k..j]) ≥ #occT [i..j](T [j+1−k..j])
≥ #occT [i..j](T [j + 1 − |lrsi,j |..j]) ≥ 2.
�
Next, we consider MUSs to be added when appending T [j + 1] to T [i..j], which
are not suffixes of T [i..j + 1].

Lemma 5. For each [s, t] ∈ MUS(T [i..j + 1]) with t �= j + 1, if [s, t] �∈
MUS(T [i..j]) then #occT [i..j+1](sqsi,j+1) = 2 and sqsi,j+1 is a proper substring
of T [s..t].

Proof. Since t �= j +1, T [s..t] is not a suffix of T [i..j +1]. Moreover, since [s, t] ∈
MUS(T [i..j +1]), T [s..t] is unique in T [i..j]. Since T [s..t] is not a MUS of T [i..j],
there exists a MUS u of T [i..j] which is a proper substring of T [s..t]. Assume
on the contrary that #occT [i..j+1](sqsi,j+1) = 1 or u �= sqsi,j+1. Then, it follows
from Lemma 3 that u is a MUS of T [i..j + 1]. However, this contradicts with
[s, t] ∈ MUS(T [i..j + 1]). Therefore, #occT [i..j+1](sqsi,j+1) = 2 and u = sqsi,j+1

is a proper substring of T [s..t].
�
Namely, a MUS which is not a suffix is added by appending one character only
if there is a MUS to be deleted by the same operation. Moreover, such added
MUSs must contain the deleted MUS.

Lemma 6. If #occT [i..j+1](sqsi,j+1) = 2, then there are three integers pl, ps, q
such that i ≤ pl ≤ ps ≤ q < j + 1 and T [ps..q] = sqsi,j+1 and T [pl..q] = lrsi,j+1.
Also, the following propositions hold:

(a) If there is no MUS of T [i..j] ending at q+1, then [ps, q+1] ∈ MUS(T [i..j+1]).
(b) If there is no MUS of T [i..j] starting at pl−1 and pl ≥ i+1, then [pl−1, q] ∈

MUS(T [i..j + 1]).

Now we have the main result of this subsection:

Theorem 1. For any 1 ≤ i ≤ j < n, |MUS(T [i..j + 1]) � MUS(T [i..j])| ≤ 4
and −1 ≤ |MUS(T [i..j + 1])| − |MUS(T [i..j])| ≤ 2. Furthermore, these bounds
are tight for any σ, i, j with σ ≥ 3, 1 ≤ i ≤ j < n, and j − i + 1 ≥ 5.

3.2 Changes to MUSs When Deleting the Leftmost Character

In this subsection, we consider an operation that deletes the leftmost character
T [i − 1] from T [i − 1..j]. Basically, we can use symmetric arguments to the
previous subsection where we considered appending a character to the right
of the window. We omit the details here in the case of deleting the leftmost
character, but all necessary observations and lemmas are available in the full
version of this paper [9].

The main result of this subsection is the following:

154 T. Mieno et al.

Theorem 2. For any 1 < i ≤ j ≤ n, |MUS(T [i − 1..j]) � MUS(T [i..j])| ≤ 4
and −1 ≤ |MUS(T [i − 1..j])| − |MUS(T [i..j])| ≤ 2. Furthermore, these bounds
are tight for any σ, i, j with σ ≥ 3, 1 < i ≤ j ≤ n, and j − i + 1 ≥ 5.

The next corollary is immediate from Theorems 1 and 2.

Corollary 1. Given a positive integer d < n. For every i with 1 ≤ i ≤ n − d,
|MUS(T [i..i + d − 1]) � MUS(T [i + 1..i + d])| ∈ O(1).

4 Algorithm for Computing MUSs in a Sliding Window

This section presents our algorithm for computing MUSs in a sliding window.

4.1 Updating a Suffix Tree and Three Loci in a Suffix Tree

First, we introduce some additional notions. Since we use Ukkonen’s algo-
rithm [15] for updating the suffix tree when a new character T [j+1] is appended
to the right end of the window T [i..j], we maintain the locus for lrsi,j as in [15].
Also, in order to compute the changes of MUSs, we can use sqsi,j . (c.f. Lemmas 3
and 6). Thus, we also maintain the locus for sqsi,j .

The locus for lrsi,j (resp. sqsi,j) in STreeT [i..j] is called the primary active
point (resp. the secondary active point) and is denoted by ppi,j (resp. spi,j).
Additionally, in order to maintain spi,j efficiently, we also maintain the locus for
the longest suffix of T [i..j] which occurs at least three times in T [i..j]. We call
this locus the tertiary active point that is denoted by tpi,j .

Appending One Character. When T [i..j] is the empty string (the base case,
where i = 1 and j = 0), we set all the three active points (root , 0). Then we
increase j, and the suffix tree grows in an online manner until j = d using
Ukkonen’s algorithm. Then, for each j > d, we also increase i each time j
increases, so that the sliding window is shifted to the right, by using sliding
window algorithm for the suffix tree [7,12].

When T [j + 1] is appended to the right end of T [i..j], we first update the
suffix tree to STreeT [i,,j+1] and compute ppi,j+1. Since ppi,j+1 coincides with the
active point, ppi,j+1 can be found in amortized O(log σ) time [7,12,15].

After updating the suffix tree, we can compute tpi,j+1 and spi,j+1 as follows:

1. Traverse character T [j + 1] from tpi,j , and set w ← str(tpi,j)T [i + 1] which
is the suffix of T [i..j + 1] that is one character longer than tpi,j . Then, w
corresponds to a candidate for tpi,j+1.

2. While #occT [i..j+1](w) < 3, set w ← w[2..] and search for the locus for w by
using suffix links in STreeT [i..j+1]. This w is a new candidate for tpi,j+1.

3. After breaking the while-loop, obtain tpi,j+1 = locus(w) since w is the longest
suffix of T [i..j + 1] which occurs more than twice in T [i..j + 1].

4. Also, spi,j+1 equals the locus which is the very previous candidate for tpi,j+1.

Minimal Unique Substrings and Minimal Absent Words 155

As is described in the above algorithm, we can locate tpi,j+1 using suffix link, in
as similar manner to the active point ppi,j+1. Thus, the cost for locating tpi,j+1

for each increasing j is amortized O(log σ) time, again by a similar argument
to the active point (ppi,j+1). What remains is, for each candidate w for tpi,j+1,
how to quickly determine whether #occT [i..j+1](w) < 3 or not. In what follows,
we show that it can be checked in O(1) time for each candidate.

Observation 3. For each suffix s of a string T [i..j + 1], let locus(s) = (u, h).

Case 1. If u is an internal node, s occurs at least three times in T [i..j + 1].
Case 2. If u is a leaf and h = 0, s occurs exactly once in T [i..j + 1].
Case 3. If u is a leaf and h �= 0,

Case 3.1. if there is a suffix s′ of T [i..j + 1] with hed(s′) = hed(s) which is
longer than s, s occurs at least three times in T [i..j + 1].

Case 3.2. otherwise, s occurs exactly twice in T [i..j + 1].

For any suffix s of T [i..j + 1], if we are given locus(s) = (u, h), then we can
obviously determine in constant time whether s occurs at least three times in
T [i..j + 1] or not, except Case 3. The next lemma allows us to determine it in
constant time in Case 3.

Lemma 7. Suppose the locus ppi,j+1 in STreeT [i..j+1] is already computed.
Given a leaf � of STreeT [i..j+1], it can be determined in O(1) time whether there
is an implicit suffix node on the edge (par(�), �) and if so, the locus of the lowest
implicit suffix node on (par(�), �) can be computed in O(1) time.

Deleting the Leftmost Character. When the leftmost character T [i − 1]
is deleted from T [i − 1..j], we first update the suffix tree and compute ppi,j by
using the sliding window algorithm for the suffix tree [7,12]. Each pair of position
pointers for the edge-labels of the suffix tree can be maintained in amortized O(1)
time so that these pointers always refer to positions within the current sliding
window, by a simple batch update technique (see [12] for details). After that, we
compute tpi,j and spi,j in a similar way to the case of appending a new character
shown previously.

It follows from the above arguments in this subsection that we can update
the suffix tree and the three active points in amortized O(log σ) time, each time
the window is shifted by one character.

4.2 Computing sqpi−1,j

In order to compute the changes of MUSs when the leftmost character T [i−1] is
deleted from T [i−1, j], we can use sqpi−1,j before updating the suffix tree. Thus,
we present an efficient algorithm for computing sqpi−1,j . First, we consider the
following cases, where � is the leaf corresponding to T [i − 1..j]:

Case A. hed(lrsi−1,j) = �.
Case B. hed(lrsi−1,j) �= � and subtree(par(�)) has more than two leaves.
Case C. hed(lrsi−1,j) �= � and subtree(par(�)) has exactly two leaves.

156 T. Mieno et al.

For Case A, the next lemma holds:

Lemma 8. Given STreeT [i−1..j] and ppi−1,j. Let � be the leaf corresponding to
T [i − 1..j]. If ppi−1,j is on the edge (par(�), �), the following propositions hold:

(a) occT [i−1..j](sqpi−1,j) = {i − 1, j − |lrsi−1,j | + 1}.
(b) If there is exactly one implicit suffix node on (par(�), �), sqpi−1,j = T [i −

1..i − 1 + depth(par(�))].
(c) If there are more than one implicit suffix node on (par(�), �), then |lrsi−1,j | >

(j − i + 2)/2� and sqpi−1,j = T [i − 1..j − 2h + 1], where ppi−1,j = (�, h).

Proof. Let ppi−1,j = (�, h) and L = |lrsi−1,j |.
(a) Since ppi−1,j is on the edge (par(�), �), sqpi−1,j is a prefix of lrsi−1,j , and

#occT [i−1..j](lrsi−1,j) = #occT [i−1..j](sqpi−1,j) = 2. Therefore, we obtain
that occT [i−1..j](sqpi−1,j) = occT [i−1..j](lrsi−1,j) = {i − 1, j − L + 1}.

(b) In this case, it is clear that sqpi−1,j = T [i − 1..i − 1 + depth(par(�))].
(c) Let (�, h′) be the locus of the implicit suffix node which is the lowest on the

edge (par(�), �) except ppi−1,j . Also, let x be the string corresponding to the
locus (�, h′). In this case, x occurs exactly three times in T [i−1..j]. Also, x is
the longest border of lrsi−1,j . Assume on the contrary that L ≤ (j−i+2)/2�.
Then, two occurrences of lrsi−1,j in T [i − 1..j] are not overlapping, and
thus #occT [i−1..j](x) ≥ 2 × #occT [i−1..j](lrsi−1,j) = 4, it is a contradiction.
Therefore, L > (j − i + 2)/2�.
Next, we consider a relation between h and h′. By the definition, h = |T [i−
1..j]|−L = j−i+2−L. Since L > (j−i+2)/2�, x matches the intersection
of two occurrences of lrsi−1,j , i.e. x = T [j − L + 1..i + L − 2]. Thus, h′ =
|T [i − 1..j]| − |x| = j − i + 2 − (2L − j + i − 2) = 2(j − i + 2 − L) = 2h.
Therefore sqpi−1,j = T [i − 1..j − h′ + 1] = T [i − 1..j − 2h + 1].
�
In Case B, it is clear that sqpi−1,j = T [i − 1..i − 1 + depth(p)] since str(p)

occurs at least three times in T [i − 1..j].
For Case C, the next lemma holds:

Lemma 9. Given STreeT [i−1..j] and ppi−1,j. Let � be the leaf corresponding to
T [i − 1..j], p = par(�), and q = par(p). If subtree(p) has exactly two leaves
and there are no implicit suffix nodes on any edges in subtree(p), then it can
be determined in O(1) time whether there is an implicit suffix node on (q, p). If
such an implicit node exists, then the locus of the lowest implicit suffix node on
(q, p) can be computed in O(1) time.

We can design an algorithm for computing sqpi−1,j by using the above lem-
mas, as follows. Let � be the leaf corresponding to T [i − 1..j], p = par(�) and
q = par(p).

In Case A. sqpi−1,j is computed by Lemma 8.
In Case B. sqpi−1,j = T [i− 1..i− 1+depth(p)] and #occT [i−1..j](sqpi−1,j) = 1.
In Case C. We divide this case into some subcases by the existence of an

implicit suffix node on edges (p, �′) and (q, p) where �′ is the sibling of �. We
first determine the existence of an implicit suffix node on (p, �′) (by Lemma 7).

Minimal Unique Substrings and Minimal Absent Words 157

– If there is an implicit suffix node on (p, �′), then sqpi−1,j = T [i − 1..i −
1 + depth(p)] and #occT [i−1..j](sqpi−1,j) = 1.

– If there is no implicit suffix node on both (p, �) and (p, �′), we can
determine in constant time the existence of an implicit suffix node on
(q, p) (by Lemma 9). If there is an implicit suffix node on (q, p), sqpi−1,j =
T [i − 1..depth(p) − h + 1] and occT [i−1..j](sqpi−1,j) = {i − 1, start(�′)}.
Otherwise, sqpi−1,j = T [i − 1..depth(q) + 1] and occT [i.−1.j](sqpi−1,j) =
{i − 1, start(�′)}.

It follows from the above arguments in this subsection that sqpi−1,j can be
computed in O(1) time by using the suffix tree and the (primary) active point.

4.3 Detecting MUSs to Be Added/Deleted

By using the afore-mentioned lemmas in this section, we can design an efficient
algorithm for detecting MUSs to be added/deleted. The details of our algorithm
can be found in the full version [9].

The main result of this section is the following:

Theorem 3. We can maintain the set of MUSs in a sliding window of length
d on a string T of length n over an alphabet of size σ, in a total of O(n log σ)
time and O(d) working space.

Corollary 2. There exists an online algorithm to compute all MUSs in a string
T of length n over an alphabet of size σ in a total of O(n log σ) time with O(n)
working space.

5 Combinatorial Results on MAWs in a Sliding Window

5.1 Changes to MAWs When Appending Character to the Right

We consider the number of changes of MAWs when appending T [j+1] to T [i..j].
For the number of deleted MAWs, the next lemma is known:

Lemma 10 ([4]). For any 1 ≤ i ≤ j < n, |MAW(T [i..j])\MAW(T [i..j+1])| = 1.

Next, we consider the number of added MAWs. We classify each MAW w
in MAW(T [i..j + 1]) \ MAW(T [i..j]) to the following three types1. Let σ′ be the
number of distinct characters occurring in T [i..j].

Type 1. w[2..] and w[..|w| − 1] are both absent from T [i..j].
Type 2. w[2..] is present in T [i..j] and w[..|w| − 1] is absent from T [i..j].
Type 3. w[2..] is absent from T [i..j] and w[..|w| − 1] is present in T [i..j].

We denote by M1, M2, and M3 the set of MAWs of Type 1, Type 2 and Type
3, respectively. The next lemma holds:
1 At least one of w[2..] and w[..|w| − 1] is absent from T [i..j], because w �∈ MAW

(T [i..j]).

158 T. Mieno et al.

Lemma 11. For any 1 ≤ i ≤ j < n, |MAW(T [i..j +1])\MAW(T [i..j])| ≤ σ′ +d,
where d = j − i + 1.

Proof. In [4], it is shown that |M1| ≤ 1. It is also shown in [4] that the last
characters of all MAWs in M2 are all different. Furthermore, by the definition
of M2, the last character of each MAW in M2 occurs in T [i..j]. Thus, |M2| ≤ σ′.
In the rest of the proof, we show that the number of MAWs of Type 3 is at most
d−1. We show that there is an injection f : M3 → [i, j−1] that maps each MAW
w ∈ M3 to the ending position of the leftmost occurrence of w[..|w|−1] in T [i..j].
By the definition of M3, w is absent from T [i..j + 1] and w[|w|] = T [j + 1] for
each w ∈ M3, and thus, no occurrence of w[..|w| − 1] in T [i..j] ends at position
j. Hence, the range of f does not contain the position j, i.e. it is [i..j − 1].
Next, for the sake of contradiction, we assume that f is not an injection, i.e.
there are two distinct MAWs w1, w2 ∈ M3 such that f(w1) = f(w2). W.l.o.g.,
assume |w1| ≥ |w2|. Since w1[|w1|] = w2[|w2|] = T [j + 1] and f(w1) = f(w2),
w2 is a suffix of w1. If |w1| = |w2|, then w1 = w2 and it contradicts with
w1 �= w2. If |w1| > |w2|, then w2 is a proper suffix of w1, and it contradicts
with the fact that w2 is absent from T [i..j + 1]. Therefore, f is an injection and
|M3| ≤ j − 1 − i + 1 = d − 1.
�

The next lemma follows from Lemmas 10 and 11.

Lemma 12. For any 1 ≤ i ≤ j < n, |MAW(T [i..j + 1]) � MAW(T [i..j])| ≤
σ′ + d + 1, where d = j − i + 1. The upper bound is tight when σ ≥ 3 and
σ′ + 1 ≤ σ.

5.2 Changes to MAWs When Deleting the Leftmost Character

Next, we analyze the number of changes of MAWs when deleting the leftmost
character from a string. By a symmetric argument to Lemma 12, we obtain the
next lemma:

Lemma 13. For any 1 < i ≤ j ≤ n, |MAW(T [i..j]) � MAW(T [i − 1..j])| ≤
σ′ + d + 1 where d = j − i + 1 and σ′ is the number of distinct characters occurs
in T [i..j]. Also, the upper bound is tight when σ ≥ 3, and σ′ + 1 ≤ σ.

Finally, by combining Lemmas 12 and 13, we obtain the next corollary:

Corollary 3. Let d be the window length. For a string T of length n > d and
each integer i with 1 ≤ i ≤ n−d, |MAW(T [i..i+d−1])�MAW(T [i+1..i+d])| ∈
O(d). Also, there exists a string T ′ which satisfies |MAW(T ′[j..j + d − 1]) �
MAW(T ′[j + 1..j + d])| ∈ Ω(d) for some j with 1 ≤ j ≤ |T ′| − d.

5.3 Total Changes of MAWs When Sliding the Window on a String

In this subsection, we consider the total number of changes of MAWs when
sliding the window of length d from the beginning of T to the end of T . We
denote the total number of changes of MAWs by S(T, d) =

∑n−d
i=1 |MAW(T [i..i+

d − 1]) � MAW(T [i + 1..i + d])|. The following lemma is known:

Minimal Unique Substrings and Minimal Absent Words 159

Lemma 14 ([4]). For a string T of length n > d over an alphabet Σ of size σ,
S(T, d) ∈ O(σn).

The aim of this subsection is to give a more rigorous bound for S(T, d). We
first show that the above bound is tight under some conditions.

Lemma 15. The upper bound of Lemma 14 is tight when σ ≤ d and n − d ∈
Ω(n).

Next, we consider the case where σ ≥ d + 1.

Lemma 16. For a string T of length n > d over an alphabet Σ of size σ,
S(T, d) ∈ O(d(n − d)), and this upper bound is tight when σ ≥ d + 1.

The main result of this section follows from the above lemmas:

Theorem 4. For a string T of length n > d over an alphabet Σ of size σ,
S(T, d) ∈ O(min{d, σ}n). This upper bound is tight when n − d ∈ Ω(n).

We remark that n−d ∈ Ω(n) covers most interesting cases for the window length
d, since the value of d can range from O(1) to cn for any 0 < c < 1.

References

1. Chairungsee, S., Crochemore, M.: Using minimal absent words to build phylogeny.
Theor. Comput. Sci. 450, 109–116 (2012)

2. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial
string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)

3. Crochemore, M., Mignosi, F., Restivo, A., Salemi, S.: Data compression using
antidictionaries. Proc. IEEE 88(11), 1756–1768 (2000)

4. Crochemore, M., Héliou, A., Kucherov, G., Mouchard, L., Pissis, S.P., Ramusat,
Y.: Minimal absent words in a sliding window and applications to on-line pattern
matching. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp.
164–176. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-
8 14

5. Gräf, S.: Optimized design and assessment of whole genome tiling arrays. Bioin-
formatics 23(13), i195–i204 (2007)

6. Hu, X., Pei, J., Tao, Y.: Shortest unique queries on strings. In: Moura, E.,
Crochemore, M. (eds.) SPIRE 2014. LNCS, vol. 8799, pp. 161–172. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11918-2 16

7. Larsson, N.J.: Extended application of suffix trees to data compression. In: DCC
1996, pp. 190–199 (1996)

8. Mieno, T., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substring queries
on run-length encoded strings. In: MFCS 2016, pp. 69:1–69:11 (2016)

9. Mieno, T., et al.: Minimal unique substrings and minimal absent words in a sliding
window. CoRR abs/1909.02804 (2019)

10. Ota, T., Fukae, H., Morita, H.: Dynamic construction of an antidictionary with
linear complexity. Theor. Comput. Sci. 526, 108–119 (2014)

11. Pei, J., Wu, W.C., Yeh, M.: On shortest unique substring queries. In: ICDE 2013,
pp. 937–948 (2013)

https://doi.org/10.1007/978-3-662-55751-8_14
https://doi.org/10.1007/978-3-662-55751-8_14
https://doi.org/10.1007/978-3-319-11918-2_16

160 T. Mieno et al.

12. Senft, M.: Suffix tree for a sliding window: an overview. In: WDS, vol. 5, pp. 41–46
(2005)

13. Silva, R.M., Pratas, D., Castro, L., Pinho, A.J., Ferreira, P.J.S.G.: Three minimal
sequences found in Ebola virus genomes and absent from human DNA. Bioinfor-
matics 31(15), 2421–2425 (2015)

14. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings
queries in optimal time. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 503–513. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04298-5 44

15. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

16. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory IT–23(3), 337–349 (1977)

https://doi.org/10.1007/978-3-319-04298-5_44

On Synthesis of Specifications with Arithmetic

Rachel Faran(B) and Orna Kupferman

The Hebrew University of Jerusalem, Jerusalem, Israel
{rachelmi,orna}@cs.huji.ac.il

Abstract. Variable automata with arithmetic enable the specification of reac-
tive systems with variables over an infinite domain of numeric values and whose
operation involves arithmetic manipulation of these values [9]. We study the syn-
thesis problem for such specifications. While the problem is in general undecid-
able, we define a fragment, namely semantically deterministic variable automata
with arithmetic, for which the problem is decidable. Essentially, an automaton is
semantically deterministic if the restrictions on the possible assignments to the
variables that are accumulated along its runs resolve its nondeterministic choices.
We show that semantically deterministic automata can specify many interesting
behaviors – many more than deterministic ones, and that the synthesis problem
for them can be reduced to a solution of a two-player game. For automata with
simple guards, the game has a finite state space, and the synthesis problem can be
solved in time polynomial in the automaton and exponential in the number of its
variables.

1 Introduction

Synthesis is the automated construction of systems from their specifications [5,18]. The
specification is typically given by a temporal-logic formula or an automaton, and it
distinguishes between outputs, generated by the system, and inputs, generated by its
environment. The system should realize the specification, namely satisfy it against all
possible environments. Since its introduction, synthesis has been one of the most stud-
ied problems in formal methods, with extensive research on wider settings, heuristics,
and applications [1].

Until recently, all studies of the synthesis problem considered finite-state trans-
ducers that realize specifications given by temporal-logic formulas over a finite set
of Boolean propositions or by finite-state automata over finite alphabets. Many real-
life systems, however, have an infinite state space. One class of infinite-state systems,
motivating this work, consists of systems in which the control is finite and the source
of infinity is the domain of the variables in the systems. This includes, for example,
software with integer parameters [3], datalog systems with infinite data domain [22],
and many more [4,6]. Lifting automata-based methods to the setting of such systems
requires the introduction of automata with infinite alphabets. The latter include regis-
ters [21], pebbles [16], variables [10], and data [2] automata. These formalisms refer to
the infinite values by comparing them to each other. Thus, the exact value is abstracted:
one can specify, for example, that each value received as input is generated as an output
at least once during the next 10 transitions, but cannot specify, for example, that if a
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 161–173, 2020.
https://doi.org/10.1007/978-3-030-38919-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_14

162 R. Faran and O. Kupferman

value x ∈ Q is received as input then the next 10 transitions include only outputs of
values in [x − 5, x + 5].

In [9], we introduced automata with arithmetic, which do support specifications as
the latter. Here, we consider nondeterministic looping word automata with arithmetic
(NLWAs, for short), which define languages over alphabets of the form Σ×Q, for some
finite set Σ. Each NLWA has a finite set X of variables over Q. The transitions of an
NLWA are labeled by both letters from Σ and guards involving values inQ, variables in
X , and the symbol �, which refers to theQ-value of the letter read. A wordw is accepted
by an NLWA A if there is an assignment to the variables that appear in A such that
there is an infinite run of A on w. In particular, all the guards along the run are satisfied.
The looping acceptance condition is a special case of the Büchi condition. It captures
safety properties, and we use it here in order to circumvent technical challenges that are
irrelevant for the challenge of handling arithmetic. It is shown in [9] that many decision
problems on NLWAs are decidable, essentially by replacing queries about reachability
via runs by queries about the satisfaction of guards accumulated during runs.

Recent work on synthesis shows that while the synthesis problem for regis-
ter automata is undecidable [7], the register-bounded synthesis problem is decid-
able [8,12,13]. There, the number of registers of the system and/or the environment
is bounded, which enables an abstraction of the exact values stored in the registers. The
abstraction, however, strongly depends on the fact that the only operation that regis-
ter automata apply to the stored values is comparison. As discussed above, such com-
parisons cannot handle specifications that refer to the values, in particular ones with
arithmetic.

We study the synthesis problem for NLWAs and point to a decidable fragment. In
the setting of finite alphabets, the specifications are over an alphabet 2I∪O, for finite
sets I and O of input and output signals. The synthesis problem for specifications given
by deterministic automata is solvable by a reduction to a two-player game [1]. The
positions of the game are the states of the automaton. In each round of the game, the
environment player provides an input in 2I , the system player responds with an output
in 2O, and the game transits to the corresponding successor state. The system wins the
game if, no matter which inputs the environment provides, the run generated along the
interaction between the players is accepting. When the automaton is nondeterministic,
the system responds not only with an output, but also with a transition that should
be taken. This is problematic, as this choice of a transition should accommodate all
possible future choices of the environment. In particular, if different future choices of
the environment induce computations that are all in the language of the automaton yet
require different nondeterministic choices, the system cannot win.

The need to work with deterministic automata is a known barrier for synthesis in
practice: algorithms involve complicated determinization constructions [19] or acrobat-
ics for circumventing determinization [15]. In the case of automata with arithmetic, the
challenge is bigger: First, even when the automata are deterministic, the strategies of the
players depend on values inQ, thus the game has infinitelymany configurations. Second,
determinism significantly reduces the expressive power of NLWAs. Indeed, it requires
that for every state q and letter σ ∈ Σ, at most one guard in all the σ-transitions from q is
satisfiable. For example, we cannot have two σ-transitions from q, one guarded by x > 8

On Synthesis of Specifications with Arithmetic 163

and the second by x ≤ 5. We suggest to distinguish between three levels of determin-
ism in an NLWA A. In addition to the standard definition, by which A is deterministic
(DLWA) if every state has at most one satisfiable transition for every input, we say that
A is deterministic per assignment (DPA-NLWA) if for every assignment to the variables
inX , there is at most one run ofA on every word. Then, A is semantically deterministic
(SD-NLWA) if the restrictions on the possible assignments to the variables in X that are
accumulated along the run resolve its nondeterministic choices. In the example above, if
every run that leads to the state q is such that at most one of γ∧(x > 8) or γ∧(x ≤ 5) is
satisfiable, where γ is the conjunction of guards accumulated during the run, then there
is no real choice to make when σ is read in state q.

We show that while DPA-NLWAs are as expressive as NLWAs, they are not use-
ful in synthesis. Indeed, the assignment to the variables in X in the different runs on
A is not known in advance to the system and the environment, and may be differ-
ent for the different computations they generate. On the other hand, SD-NLWAs can
be soundly used in the synthesis game. Intuitively, as has been the case with good for
games (GFG) automata [11,14], SD-NLWAs can resolve their nondeterministic choices
in a way that only depends on the past. While in GFG automata, resolving of nonde-
terminism concerns the limit behavior of the run, in SD-NLWAs it also concerns the
restrictions on the possible assignment to the variables in X . Consequently, while GFG
automata with an acceptance condition γ (e.g., Büchi) are as expressive as deterministic
γ automata [14,17], SD-NLWAs are strictly more expressive than DLWAs. Moreover,
we argue that natural NLWAs are semantically deterministic. Indeed, in a typical speci-
fication, one first assigns values into the variables in the specification and then resolves
guards that depend on the assignments.

We solve the synthesis problem for SD-NLWAs by reducing it to a two-player game.
While semantic determinism handles the nondeterminism, there is also the challenge of
the infinite variable domain. In order to obtain a finite game, we show that when the
guards of the SD-NLWA are simple, namely each term refers to at most one variable or
to �, then we can exploit the density ofQ and abstract the infinitely many values inQ by
finitely many partitions ofQ and orders on X induced by the guards in the SD-NLWAs.
The transducers induced by a winning strategy use the same set X of variables, and are
also semantically deterministic, in the sense that guards over the input values are used
to resolve nondeterminism. The game, and hence also the synthesis problem, can be
solved in time polynomial in the SD-NLWA and exponential in X .

Due to lack of space, some examples and proofs are omitted, and can be found in
the full version, in the authors’ URLs.

2 Preliminaries

For a finite set X of variables, the set of terms over X , denoted ΘX , is defined induc-
tively as follows.

– m, x, and �, for m ∈ Q, x ∈ X , and the symbol �.
– t1 + t2 and t1 − t2, for t1, t2 ∈ ΘX .

A term is simple if it contains at most one element in X ∪{�}. For a number k ∈ Q and
an assignment f : X → Q, let fk : X ∪ {�} → Q be an extension of f where for all

164 R. Faran and O. Kupferman

x ∈ X , we have fk(x) = f(x), and for the symbol � we have fk(�) = k. Given k and
f , we can extend fk to terms over X in the expected way; for example, fk : ΘX → Q

is such that fk(t1 + t2) = fk(t1) + fk(t2).
The set of guards over X , denoted GX , is defined inductively as follows.

– t1 < t2 and t1 = t2, for t1, t2 ∈ ΘX ,
– ¬γ1 and γ1 ∧ γ2, for γ1, γ2 ∈ GX .

For k ∈ Q, an assignment f : X → Q, and a guard γ ∈ GX , we define when k satisfies
γ under f , denoted k |=f γ, by induction on the structure of γ as follows.

– For two terms t1, t2 ∈ ΘX , we have that k |=f (t1 < t2) iff fk(t1) < fk(t2), and
k |=f (t1 = t2) iff fk(t1) = fk(t2).

– For guards γ1, γ2 ∈ GX , we have that k |=f ¬γ if k �|=f γ, and k |=f γ1 ∧ γ2 if
k |=f γ1 and k |=f γ2.

Using Boolean operations, we can compare terms also by the ≤, ≥, and > relations.
We refer to guards of the form t1 ∼ t2, for ∼ ∈ {≤,≥,=, <,>} as atomic guards. As
it is useless to have � in both t1 and t2, we assume that when an atomic guard includes
�, then � appears only in t1. A guard is simple if all its terms are simple. For example,
x1 ≤ x2 + 5 and � = x1 are simple, whereas x1 + x2 ≤ 5 is not.

We are interested in languages of infinite words in (Σ × Q)ω . A nondetermin-
istic looping word automaton with arithmetic (NLWA, for short) is a tuple A =
〈Σ,X,Q,Q0,Δ〉, where Σ is an alphabet, X is a set of variables, Q is a set of states,
Q0 ⊆ Q is a set of initial states, and Δ ⊆ Q×Σ×GX ×Q is a transition relation. Thus,
each transition is labeled by both a letter in Σ and a guard in GX . A run of A on an
infinite word 〈σ0, k0〉, 〈σ1, k1〉, . . . over Σ×Q is a sequence of states q0, q1, . . . , where
q0 ∈ Q0, and there is an assignment f : X → Q such that for every position i ≥ 0,
there is a transition 〈qi, σi, γ, qi+1〉 ∈ Δ such that ki |=f γ. Note that the assignment f
is fixed throughout the run, and that all the runs are infinite. The language of A, denoted
L(A), is the set of all words w ∈ (Σ × Q)ω such that there is a run of A on w. For
example, the NLWA below accepts all the words in which all the letters agree on the
Q-component, possibly only until the Σ-component is start and the Q-component is
increased by 1.

q0 q1
〈start , � = x + 1〉

〈true, � = x〉 〈true, true〉

We turn to define determinism for NLWAs. Consider an NLWA A =
〈Σ,X,Q,Q0,Δ〉. We say that A is deterministic per assignment (DPA-NLWA, for
short) if |Q0| = 1, and for every function f : X → Q, state q ∈ Q, and letter
〈σ, k〉 ∈ Σ × Q, there is at most one transition 〈q, σ, γ, q′〉 ∈ Δ such that k |=f γ.
In other words, A is deterministic per assignment if for every assignment to X , there
is at most one run of A on every word in (Σ × Q)ω . We say that A is deterministic
(DLWA) if the choice of the transition does not depend on the assignment to X . For-
mally, we have that A is deterministic if |Q0| = 1, and for every state q ∈ Q and letter
〈σ, k〉 ∈ Σ × Q, there is at most one transition 〈q, σ, γ, q′〉 ∈ Δ such that there exists
f : X → Q for which k |=f γ.

On Synthesis of Specifications with Arithmetic 165

Finally, an NLWA is semantically deterministic (SD-NLWA, for short) if for every
state q and every run r that reaches q, the restrictions on the variable values accu-
mulated throughout r resolve the nondeterminism in q. Formally, for a finite word
w = 〈σ0, k0〉, . . . 〈σt, kt〉 ∈ (Σ×Q)∗, let r = q0, q1, q2, . . . , qt+1 be a run onw, and let
γi be the guard that labels the σi-transition from qi to qi+1. We denote γr =

∧
1≤i≤t γi.

We say that A is semantically deterministic if |Q0| = 1, and for every state q ∈ Q,
every run r from q0 to q, and every letter 〈σ, k〉 ∈ Σ ×Q, there is at most one transition
〈q, σ, γ, q′〉 ∈ Δ such that there exists f : X → Q for which k |=f γ ∧ γr.

In the context of open systems, we define automata over Σ = 2I∪O for finite sets
I and O of input and output signals, respectively. Also, rather than a single value in
Q, we let each position in the computation include two such values – input and output.
Thus, a computation is π = 〈σ0, k

I
0 , k

O
0 〉, 〈σ1, k

I
1 , k

O
1 〉, · · · ∈ (2I∪O × Q × Q)ω . In

order to indicate whether a guard refers to the input or output value, we use a variant of
NLWAs, termed NLWAsIO, in which the � in the guards is parameterized by the letters
I and O. Thus, the atomic guards in an NLWAIO with variables in X include �I ∼ t
and �O ∼ t, for a term t ∈ ΘX and ∼ ∈ {≤,≥,=, <,>}. Then, for a pair of numbers
〈kI , kO〉 ∈ Q×Q, we have that 〈kI , kO〉 satisfies �I ∼ t iff kI ∼ t. Likewise, 〈kI , kO〉
satisfies �O ∼ t iff kO ∼ t. The semantics of NLWAsIO is similar to that of NLWAs,
except that for γ ∈ GX , an assignment f : X → Q and a position j ≥ 0, we have that
(π, j) |=f γ iff 〈kI

j , kO
j 〉 |=f γ. Note that the notions of determinism, determinism

per assignment and semantic determinism can be easily extended to NLWAsIO.
For finite sets I and O of input and output signals, respectively, a finite-state I/O

transducer over Q is T = 〈I,O, S, s0,GI ,GO, ρ, τ〉, where S is a finite set of states,
s0 ∈ S is an initial state, GI ,GO ⊂ GX are finite sets of atomic guards that may
include �I and �O, respectively, ρ : S × 2I × GI → S is a transition function, and
τ : S → 2O × GO is a labelling function on the states. Note that T abstracts the
concrete input and output values, and partitions the infinitely many values according to
satisfaction of guards in GI and GO.

Intuitively, T models the interaction of an environment that generates at each
moment in time a letter in 2I and a value in Q with a system that responds with a
letters in 2O and a value in Q. Let F = {F : F ⊆ Q

X}, and consider an input
word w = 〈i0, kI

0〉 · 〈i1, kI
1〉 · · · ∈ (2I × Q)ω . A run of T on w is a sequence

in (S × 2O × Q × F)ω, where the S-components describe the states visited along
the run, the 2O- and Q-components describe the outputs, and the F-components
describe the set of possible assignments to X that are consistent with the restric-
tions accumulated during the run – restrictions imposed by both the guards along the
transitions and their combination with the values of the inputs and the assignments
guards in the states and their combination with the values of the outputs. Accordingly,
F0 = Q

X , and for all j ≥ 0, we have that sj+1 = ρ(sj , ij , γ
I
j) for γI

j such that
kI

j |=f γI
j for some f ∈ Fj , τ(sj) = 〈oj , γ

O
j 〉 for γO

j such that kI
j |=f γI

j for
some f ∈ Fj ∩ {f ∈ Q

X : kI
j |=f γI

j }, and Fj+1 = Fj ∩ {f ∈ Q
X : kI

j |=f

γI
j } ∩ {f ∈ Q

X : kO
j |=f γO

j }. We require ρ to be receptive and deterministic,
in the sense that for every input word w = 〈i0, kI

0〉 · 〈i1, kI
1〉 · · · ∈ (2I × Q)ω and

j ≥ 0, there is exactly one state sj+1 = ρ(sj , ij , γ
I
j) such that kI

j |=f γI
j for some

f ∈ Fj . An output of T on w is 〈o1, kO
1 〉 · 〈o2, kO

2 〉 · · · ∈ (2O × Q)ω such that

166 R. Faran and O. Kupferman

there is a run 〈s0, o0, kO
0 , F0〉, 〈s1, o1, kO

1 , F1〉, 〈s2, o2, kO
2 , F2〉 . . . of T on w. Note

that the first output assignment is that of s1, thus τ(s0) is ignored. This reflects the
fact that the environment initiates the interaction. A computation of T on w is then
T (w) = 〈i0 ∪ o1, k

I
0 , k

O
1 〉, 〈i1 ∪ o2, k

I
1 , k

O
2 〉, . . . ∈ (2I∪O × Q × Q)ω .

For an NLWAIO A, we say that T realizes L(A) if for every input word w ∈
(2I × Q)ω , all the computations of T on w are in L(A). The synthesis problem for
NLWAIO is then to decide, given an NLWAIO A, whether L(A) is realizable, and if
so, to return an I/O-transducer that realizes it.

3 Different Levels of Nondeterminism in NLWAs

In this section we study the different levels of nondeterminism in NLWAs. We start
with the expressive power of DPA-NLWAs and SD-NLWAs, with respect to NLWAs,
DLWAs, and each other, and continue to the problem of deciding the nondeterminism
level of a given automaton.

We first prove that determinism per assignment does not restrict the expressive
power of NLWAs. Thus, DPA-NLWAs are as expressive as NLWA. The proof is con-
structive and the idea is based on an elaboration of the subset construction. There, given
a nondeterministic automaton A with state space Q, a deterministic equivalent automa-
ton A′ has state space 2Q, and the transitions are defined so that A′ visits a state S ∈ 2Q

after reading a prefix w if S is the set of states that A may reach in at least one run
after reading w. Since the path traversed by A when it reads w is not important (recall
we consider looping automata), the subset construction maintains all the information
needed. In the case of NLWAs, the paths traversed are important – they induce restric-
tions on possible assignments to X . Accordingly, an adoption of the subset construction
to DPA-NLWAs involves a duplication of the set of variables – one copy for each transi-
tion. Then, the state space of the equivalent DPA-NLWA consists of subsets of Q along
with an indication, for each x ∈ X , which copies of x should be assigned the same
value. The detailed construction appears in the full version.

Theorem 1. DPA-NLWAs are as expressive as NLWAs.

Theorem 1 is quite surprising, but is of no real help in the context of synthesis.
Indeed (see formal proof in Lemma 1), determinization per assignment is not useful
when we run the automaton simultaneously on all the computations of a transducer,
as different computations may be accepted with different assignments. Accordingly,
we turn to focus on semantically-deterministic NLWAs. As we show in Lemma 2, this
model of determinism is useful for solving the synthesis problem.

Theorem 2. SD-NLWAs are strictly less expressive than NLWAs.

Proof. The NLWA A in the left of Fig. 1 accepts all the words in which the projection
on the Σ-component is in aω + a∗ · bω , where in the second case the first b comes
after two letters that agree on their Q-component. In the full version, we show that A
does not have an equivalent SD-NLWA. Intuitively, it follows from the fact that the
nondeterministic choice between aω and a∗ · bω should be taken before x is assigned a
value. ��

On Synthesis of Specifications with Arithmetic 167

Theorem 3. SD-NLWAs are strictly more expressive than DLWAs.

Proof. Consider the NLWA A in the right of Fig. 1. It is easy to see that A is an SD-
NLWA. Indeed, when a run reaches q1, the variable x is already assigned a value, thus
the nondeterminism in q1 can be resolved. In the full version, we show that A does not
have an equivalent DLWA. ��

q0 q1 q2
〈a, � = x〉 〈a, � = x〉

〈a, true〉 〈b, true〉

q0 q1

q2

q3

〈true, � = x〉

〈true, � = x〉

〈true, � �= x〉

〈a, true〉

〈b, true〉

Fig. 1. An NLWA with no equivalent SD-NLWA, and an SD-NLWA with no equivalent DLWA.

We turn to discuss the problem of deciding the type of a given automaton. Note that
we consider the syntactic questions, namely whether the given automaton is determin-
istic per assignment or semantically deterministic, and not the semantic one, namely
whether it has an equivalent DPA-NLWA or SD-NLWA.

Theorem 4. The problems of deciding whether a given NLWA is a DPA-NLWA or is an
SD-NLWA are co-NP-complete.

Proof. Given an NLWA A = 〈Σ,X,Q,Q0,Δ〉, a nondeterministic Turing machine
can decide in polynomial time that A is not a DPA-NLWA by guessing a reachable state
q ∈ Q, a letter 〈σ, k〉 ∈ Σ ×Q, and two transitions 〈q, σ, γ1, q

′〉, 〈q, σ, γ2, q
′′〉 such that

k |=f γ1 ∧ γ2 for some f : X → Q. Deciding that A is not an SD-NLWA can be done
by guessing, in addition, two assignments f1, f2 : X → Q, a finite word w ∈ (Σ×Q)∗,
and a run r on it from the initial state q0 to q, where all the guards throughout r are
satisfiable by the corresponding letters in w under both f1 and f2. Then, the letter
〈σ, k〉 and the transitions 〈q, σ, γ1, q

′〉, 〈q, σ, γ2, q
′′〉 should be such that k |=f1 γ1

and k |=f2 γ2. In the full version, we show that these guesses are polynomial, which
implies, by [20], the desired upper bounds.

For the lower bounds, consider a Boolean formula ϕ over a set X = {x1, . . . , xn}
of variables and the NLWA A described in Fig. 2. Note that the only state in A in which
nondeterminism may appear is qn, and that ϕ is satisfiable iff both of the edges that
leave qn are satisfiable. Thus, A is a DPA-NLWA iff ϕ is not satisfiable. Since every
path from q0 to qn induces an assignment f : X → {0, 1}, we also have that A is an
SD-NLWA iff ϕ is not satisfiable, and the lower bounds follow. ��

q0 q1 q2 qn. . .

〈a, x1 = 0〉

〈b, x1 = 1〉

〈a, x2 = 0〉

〈b, x2 = 1〉

〈a, ϕ〉

〈a, true〉

〈a, true〉

〈a, true〉

Fig. 2. The NLWA A is an SD-NLWA and a DPA-NLWA iff ϕ is not satisfiable.

168 R. Faran and O. Kupferman

4 Synthesis

Recall that in synthesis, the goal is to decide, given an automaton A over 2I∪O, whether
L(A) is realizable, and if so, to return an I/O-transducer that realizes it. As described in
Sect. 1, the synthesis problem is reduced to deciding the winner in a two-player game
that is played over A. For finite-state deterministic automata, the game is finite and
can be decided in polynomial time. In this section we study the synthesis problem for
NLWAsIO. We first define the synthesis game for them, then show that it is not helpful
for synthesis of DPA-NLWAsIO, but is helpful for SD-NLWAsIO. We then describe an
algorithm for solving the synthesis game induced by SD-NLWAsIO all whose guards
are simple. The complexity of the algorithm is polynomial in the state space of the
automaton and exponential in the number of variables. Therefore, the synthesis problem
for SD-NLWAsIO with simple guards is decidable with the above complexity.

4.1 The Synthesis Game

Consider a NLWAIO A = 〈2I∪O,X,Q, q0,Δ〉. The players in the synthesis game GA

are OR (the system) and AND (the environment), its possible locations are Q∪{⊥}, and
its initial location is q0. Let qj be the location of the game at the start of the j-th round.
The j-th round of a play consists of two parts: first, AND chooses a letter 〈ij , kI

j 〉 ∈
2I ×Q. Then, OR chooses a letter 〈oj , k

O
j 〉 ∈ 2O ×Q and a state qj+1 such that there is

a transition 〈qj , ij ∪ oj , γj , qj+1〉 ∈ Δ for some γj ∈ GX , and there exists f : X → Q

such that 〈kI
t , kO

t 〉 |=f γt for all 0 ≤ t ≤ j. If no such state exists, or if qj = ⊥, then
OR chooses qj+1 = ⊥. The successive location of the game is qj+1. That is, in every
round, every player chooses in its turn a letter, and Player OR chooses a transition that
respects all the choices made so far. If no such transition exists, then the game moves
to the location ⊥. If qj+1 is ⊥, then AND wins. Otherwise, the game continues forever
and OR wins. Indeed, then, the word 〈σ0, k

I
0 , k

O
0 〉, 〈σ1, k

I
1 , k

O
1 〉, · · · ∈ (2I∪O ×Q×Q)ω

that AND and OR generate during an infinite play is accepted by A.
Note that a position of GA includes more information than its location. Namely, it

maintains the guards on the transitions and the numbers that were chosen by Players
AND and OR during previous rounds. However, this amounts an unbounded informa-
tion. Thus, a graph that describes the positions of GA has an infinite state space. Below
we show how to represent this graph symbolically, for NLWAsIO with simple guards.
Essentially, rather than maintaining the values accumulated so far, the graph only main-
tains restrictions they induce. Before we solve the game, we examine its usefulness.

Lemma 1. There is a realizable DPA-NLWAIO A, such that OR does not win GA.

Proof. Consider the DPA-NLWA A in Fig. 3, over a single variable x and I = {i}.
It is easy to see that A is DPA-NLWA and that L(A) = (2I × Q)ω . Indeed, the run
q0 · q1 · q3

ω is an accepting run on words in which the second letter is i, and the run
q0 · q2 · q4

ω is an accepting run on words in which the second letter is ¬i. Hence, A
is realizable. However, in the synthesis game GA, choosing a transition that leaves q0
amounts to guessing whether the next input is i or ¬i, thus OR looses GA. ��

Lemma 2. For every SD-NLWAIO A, we have that OR wins GA iff A is realizable.

On Synthesis of Specifications with Arithmetic 169

q0

q1

q2

q3

q4

〈true, �I > x〉

〈true, �I < x〉

〈i, true〉

〈¬i, true〉

〈true, true〉

〈true, true〉

Fig. 3. A realizable DPA-NLWAIO for which OR looses the synthesis game.

Proof. Consider an SD-NLWAIO A. It is easy to see that a winning strategy for OR in
GA induces a transducer that realizes A. We prove the second direction. Assume that
A is realizable. Thus, there is a function f : (2I × Q)∗ → (2O × Q) such that for
every wI = 〈i0, kI

0〉 · 〈i1, kI
1〉 · · · ∈ (2I × Q)ω , we have that wI ⊕ f(wI) ∈ L(A),

where f(wI) = f(〈i0, kI
0〉) · f(〈i0, kI

0〉 · 〈i1, kI
1〉) · · · ∈ (2O × Q)ω and wI ⊕ f(wI)

is the infinite word over 2I∪O × Q × Q combined from wI and f(wI). We describe
a winning strategy for OR in GA. For j ≥ 0, let wj

I = 〈i1, kI
1〉, . . . , 〈ij , kI

j 〉 be the
sequence of letters that AND chose until the j-th round. In the j-th round, if the location
of the game is q, then a winning strategy for OR is to move to the only state q′ such that
q′ ∈ δ(q, wj

I ⊕ f(wj
I)). Since A is semantically deterministic, there is exactly one such

q′, and by the definition of f , this strategy is winning for OR. ��

4.2 Solving the Synthesis Game

In this section we solve the synthesis game for SD-NLWAsIO with simple guards. As
stated in Lemma 2, semantic determinization guarantees that the game captures the syn-
thesis problem, and we are left with the challenge of handling the infinite state space.
We first need some definitions and notations.

For a set of variables X , we say that a set of brackets BX ⊂ {#x : x ∈ X,# ∈
{(,), [,]}} is legal if it includes exactly one right and one left bracket for every variable.
For example, for X = {x, y}, the set {(x,]x, [y,]y} is legal, and the set {(x,]x, [y} is
not. An interval set is N ∪ {−∞,∞} ∪ BX , where N ⊂ Q is a set of numbers and
BX is a legal set of brackets. Consider an interval set I = N ∪ {−∞,∞} ∪ BX , and
let � be a total order relation on the elements of I. We say that 〈I,�〉 is an interval
description (ID, for short) if the following hold.

– k1 � k2 iff k1 ≤ k2 for all k1, k2 ∈ N ∪ {−∞,∞},
– −∞ � b and ∞ � b for all b ∈ BX . If b � −∞, then b ∈ {(x: x ∈ X}, and if

b � ∞, then b ∈ {)x : x ∈ X},
– b1 � b2 for all x ∈ X and b1 ∈ {(x, [x}, b2 ∈ {)x,]x}. If b2 � b1, then b1 = [x and

b2 =]x.

As an example, consider I = {0, 1}∪{−∞,∞}∪{(x,]x, [y,)y}, and an order relation
� such that −∞ = (x≺ [y≺ 0 ≺]x ≺ 1 =)y ≺ ∞. Then, 〈I,�〉 is the ID illustrated
in Fig. 4a. Intuitively, an ID describes intervals of possible values for variables in X ,
relatively to each other and to the numbers in N . The tuple 〈I,�〉 indicates that −∞ <
x ≤ k1 for some 0 < k1 < 1 and that k2 ≤ y < 1, for some k2 < 0.

170 R. Faran and O. Kupferman

−∞ ∞
0 1

(]x
[)

y

−∞ ∞
0 1

(]x

�

[)
y

−∞ ∞
0 1

|
x
()
y

−∞ ∞
0 1

x, y
|

x, y
|

(a) (b) (c) (d)

Fig. 4. Example of an interval description, a positioning description, and their updates. (Color
figure online)

A positioning description (PD, for short) is a pair 〈I�,�〉, where I� = I ∪ {�},
and � is a total order relation on I� that satisfies all the conditions as for IDs, and
in addition, � � −∞ and � ≺ ∞. Let �′ be the order relation obtained from � by
reducing � to the elements in I. We then say that 〈I�,�〉 is obtained from 〈I,�′〉.
Note that different PDs can be obtained from a single ID. Intuitively, a PD abstracts a
choice of a number by denoting it with � and describing its position with respect to the
intervals of possible values for the variables.

Given a PD 〈I�,�〉 and a simple guard γ ∈ GX , one can compute the set
update(〈I�, �〉, γ) of all IDs that combine the restrictions in γ with the interval-
restrictions in 〈I�,�〉. As an example, consider the PD 〈I�,�〉 that is illustrated in
Fig. 4b, namely −∞ = (x≺ [y≺ 0 ≺]x = � ≺ 1 =)y ≺ ∞. Figure 4c illus-
trates the (single) ID in update(〈I�,�〉, (� = x) ∧ (� < y)), namely −∞ ≺ 0 ≺
[x =]x = (y≺ 1 =)y ≺ ∞. Figure 4d illustrates, in red and in blue, two IDs in
update(〈I�,�〉, (x = y)). Note that the guard may contradict the restrictions in the
positioning vector. For example, update(〈I�,�〉, (� < x)) = ∅.

Note that we define the updating only for simple guards, that is, ones in which
each term refers to at most one member in X ∪ {�}. For example, we do not aim to
express the restrictions imposed by 〈I�,�〉 and the guard � ≥ x−y+1 via an intervals
vector. In addition, as we demonstrated above, there might be several ways to combine
restrictions in a positioning vector with a guard. This multiplicity may derive either
from the fact that the guard does not refer to � (as in the example above), or from
disjunctions in the guard. Finally, note that one may handle atomic guards of the form
� ∼ x + m and y ∼ x + m, for ∼ ∈ {≤,≥,=, <,>}, x, y ∈ X , and m ∈ Q, by
adding {#x+m : # ∈ {(,), [,]}} to the brackets set. This requires a prior knowledge
of which atomic guards we may have to handle. However, as we show below, when we
solve synthesis, the information about possible guards is available.

Theorem 5. Let A = 〈Σ,X,Q,Q0,Δ〉 be a simple NLWAIO. The synthesis game GA

is solvable in time polynomial in |Q| and exponential in |X|.

Proof. Given an NLWAIO A, we model GA by an and-or graph 〈VAND, VOR, E〉. Every
vertex in this graph abstracts a position of GA, indicating whose is the current turn of
the play, the location of the game, the letters and numbers AND and OR choose in the
current round, and OR’s commitments regarding the values of the variables, induced
by previous transitions he chose. These commitments are expressed via IDs, and the
Q-choices of the players are expressed via PDs. We maintain a single PD with two �-s,
abbreviated with I and O to indicate whose choice they are. We extend the notion of
PDs accordingly, so that they include both �I and �O.

On Synthesis of Specifications with Arithmetic 171

Formally, let A be an NLWAIO over a set of variables X , and let N ⊂ Q be the
set of constants that appear in the guards of A. We denote by Î the set of all interval
sets N ∪ {−∞,∞} ∪ BX for legal BX , and define P = {〈I,�〉 : I ∈ Î and 〈I,�
〉 is an ID}. In addition, let P�I

and P�I ,�O
be the set of all PDs obtained from IDs in P

by adding to them the symbols �I and �I , �O, respectively.
We define VAND = Q × P and VOR = (Q × 2I × P�I

) ∪ (Q × 2I∪O × P�I ,�O
).

Let V = VAND ∪ VOR. Then, E ⊆ V × V , is the transition relation that consists of the
following transitions, for every q ∈ Q, i ∈ 2I and o ∈ 2O:

– (〈q, 〈I,�〉〉, 〈q, i, 〈I�I
,�′〉〉), where 〈I�I

,�′〉 ∈ P�I
is a PD obtained from the ID

〈I,�〉 ∈ P ,
– (〈q, i, 〈I�I

,�〉〉, 〈q, i ∪ o, 〈I�I ,�O
,�′〉〉), where 〈I�I ,�O

,�′〉 ∈ P�I ,�O
is a PD

obtained from the PD 〈I�I
,�〉 ∈ P�I

, and
– (〈q, i ∪ o, 〈I�I ,�O

,�〉〉, 〈q′, 〈I,�′〉〉), where there is a transition 〈q, i ∪ o, γ, q′〉 in
A, and 〈I,�′〉 ∈ update(〈I�I ,�O

,�〉, γ).

Note that vertices in Q × 2I∪O × P�I ,�O
might not have a successor, for example, if q

does not have an (i ∪ o)-successor, or if update(〈I�I ,�O
,�〉, γ) = ∅.

Finally, we define v0 = 〈q0, 〈I0,�0〉〉, where I0 = N ∪ {−∞,∞} ∪ {(x: x ∈
X} ∪ {)x : x ∈ X}, and �0 is the only possible order relation on the elements in I0.

The players generate a play over 〈VAND, VOR, E〉, where in every round, if the cur-
rent position is v ∈ Vj , for j ∈ {AND, OR}, then player j chooses a successor v′

of v, and the play proceeds to position v′. Recall that V = VOR ∪ VAND. A strategy
for a player j ∈ {AND, OR} is a function fj : V ∗ × Vj → V such that for every
u ∈ V ∗ and v ∈ Vj , we have that 〈v, fj(u, v)〉 ∈ E. Thus, a strategy for Player j
maps the history of the game, when it ends in a position v owned by player j, to
a successor of v. Two strategies fAND, fOR and the initial position v0 induce a play
π = v0, v1, v2 · · · ∈ V ω , where for every i ≥ 0, if vi ∈ Vj for j ∈ {AND, OR},
then vi+1 = fj((v0, . . . , vi−1), vi). We say that π is the outcome of fOR, fAND and v0,
and denote π = outcome(fOR, fAND, v0). A play π is winning for OR if it is infinite. A
position v ∈ V is winning for OR if there exists a strategy fOR such that for every strat-
egy fAND, we have that outcome(fOR, fAND, v) is winning for OR. Then, deciding who
wins GA reduces to deciding whether the vertex that abstracts the initial position of the
game is winning for AND.

It is not hard to see that the game 〈VAND, VOR, E〉 models the synthesis game. A
winning strategy for OR in this graph induces a transducer that realizes L(A). Indeed, a
PD essentially abstracts the Q-choices of the environment and the system. The former
can be described using guards over X and �I that label the transitions that leave the
according state in the transducer. The later induces a guard over X and �O that labels
the according state in the transducer. Finally, since the graph is finite and every infinite
play is winning, the problem of deciding whether v0 is winning for Player OR reduces
to the problem of reachability in and-or graphs, which can be solved in time polynomial
in the size of the graph. It is not hard to see that the size of the graph is polynomial in
|Q| and in |P ∪ P�I

∪ P�I ,�O
|, and that the later is exponential in |X|. Therefore, one

can decide who wins GA in time polynomial in |Q| and exponential in |X|. ��

Together with Lemma 2, Theorem 5 implies the following.

172 R. Faran and O. Kupferman

Corollary 1. The synthesis problem for a simple SD-NLWAIO over a setX of variables
with a set Q of states can be is solved in time polynomial in |Q| and exponential in |X|.

Note that while for model checking, a framework that handles Q is more general
than one that handlesN, for synthesis this is not the case. That is, there are specifications
that are realizable over Q, but not over N. For example, a specification in which the
system has to choose a number between two numbers given by the environment. In
particular, the abstraction in our synthesis algorithm exploits the density ofQ. We leave
the question of solving synthesis for NLWAs over Σ × N open.

References

1. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis. In: Clarke,
E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 921–962.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 27

2. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees
and XML reasoning. J. ACM 56(3), 1–48 (2009)

3. Bouajjani, A., Habermehl, P., Mayr, R.R.: Automatic verification of recursive procedures
with one integer parameter. TCS 295, 85–106 (2003)

4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco (2002)

5. Church, A.: Logic, arithmetics, and automata. In: Proceedings of the International Congress
of Mathematicians, 1962, pp. 23–35. Institut Mittag-Leffler (1963)

6. Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verification of broadcast networks
of register automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp.
109–121. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41036-9 11

7. Ehlers, R., Seshia, S.A., Kress-Gazit, H.: Synthesis with identifiers. In: McMillan, K.L.,
Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 415–433. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54013-4 23

8. Exibard, L., Filiot, E., Reynier, P.-A.: Synthesis of data word transducers. In: Proceedings of
the 30th CONCUR (2019)

9. Faran, R., Kupferman, O.: LTL with arithmetic and its applications in reasoning about hier-
archical systems. In: Proceedings of the 22nd LPAR. EPiC, vol. 57, pp. 343–362 (2018)

10. Grumberg, O., Kupferman, O., Sheinvald, S.: An automata-theoretic approach to reasoning
about parameterized systems and specifications. In: Van Hung, D., Ogawa, M. (eds.) ATVA
2013. LNCS, vol. 8172, pp. 397–411. Springer, Cham (2013). https://doi.org/10.1007/978-
3-319-02444-8 28

11. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik, Z. (ed.)
CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006). https://doi.org/10.
1007/11874683 26

12. Khalimov, A., Kupferman, O.: Register bounded synthesis. In: Proceedings of the 30th CON-
CUR (2019)

13. Khalimov, A., Maderbacher, B., Bloem, R.: Bounded synthesis of register transducers. In:
Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 494–510. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01090-4 29

14. Kupferman, O., Safra, S., Vardi, M.Y.: Relating word and tree automata. Ann. Pure Appl.
Logic 138(1–3), 126–146 (2006)

15. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of the 46th
FoCS, pp. 531–540 (2005)

https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.1007/978-3-319-02444-8_28
https://doi.org/10.1007/978-3-319-02444-8_28
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/978-3-030-01090-4_29

On Synthesis of Specifications with Arithmetic 173

16. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alphabets. In:
Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 560–572. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4 49

17. Niwiński, D., Walukiewicz, I.: Relating hierarchies of word and tree automata. In: Morvan,
M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 320–331. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0028571

18. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the 16th
POPL, pp. 179–190 (1989)

19. Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th FoCS, pp. 319–327
(1988)

20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. Wiley, Hoboken (1999)

21. Shemesh, Y., Francez, N.: Finite-state unification automata and relational languages. Inf.
Comput. 114, 192–213 (1994)

22. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: ICDT 2009,
pp. 1–13 (2009)

https://doi.org/10.1007/3-540-44683-4_49
https://doi.org/10.1007/BFb0028571

On the Average State Complexity
of Partial Derivative Transducers

Stavros Konstantinidis1, António Machiavelo2, Nelma Moreira3,
and Rogério Reis3(B)

1 Saint Mary’s University, Halifax, NS, Canada
s.konstantinidis@smu.ca

2 CMUP & DM, Faculdade de Ciências da Universidade do Porto,
Porto, Portugal

ajmachia@fc.up.pt
3 CMUP & DCC, Faculdade de Ciências da Universidade do Porto,

Porto, Portugal
{nam,rvr}@dcc.fc.up.pt

Abstract. 2D regular expressions represent rational relations over two
alphabets. In this paper we study the average state complexity of partial
derivative standard transducers (TPD) that can be defined for (general)
2D expressions where basic terms are pairs of ordinary regular expres-
sions (1D). While in the worst case the number of states of TPD can
be O(n2), where n is the size of the expression, asymptotically and on

average that value is bounded from above by O(n
3
2). Moreover, asymp-

totically and on average the alphabetic size of a 2D expression is half of
the size of that expression. All results are obtained in the framework of
analytic combinatorics considering generating functions of parametrised
combinatorial classes defined implicitly by algebraic curves. In particu-
lar, we generalise the methods developed in previous work to a broad
class of analytic functions.

1 Introduction

We consider 2D expressions that represent rational relations over two alpha-
bets. Expressions and transducers with labels over finitely generated monoids
were studied by Konstantinidis et al. [11,12], and also by Demaille [7]. Partial
derivative methods have become a standard method to manipulate several kinds
of expressions [1,2,5–7,14], not only because they are in general more succinct
than other equivalent constructions, but for some operators they are easier to
define (e.g. for intersection [2]). For regular languages, the average complexity of
partial derivative automata (APD), considering different sets of operations, has
been studied [2,3,5]. Using the framework of analytic combinatorics, for ordi-
nary (1D) regular expressions of (tree-)size n (with concatenation, union and
Kleene star) it was shown that, asymptotically and on average, the number of

This work was partially supported by NSERC, Canada and CMUP (UID/MAT/
00144/2019), which is funded by FCT, FEDER, and PT2020.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 174–186, 2020.
https://doi.org/10.1007/978-3-030-38919-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_15

Average State Complexity of Partial Derivative Transducers 175

states of APD is 1
4n, (being the worst-case O(n2)) while for expressions with

intersection of (tree-)size n that number is upper bounded by (1.056 + o(1))n

(being the worst-case O(2n)) [2–4]. In this paper we consider general 2D expres-
sions where basic terms are pairs of 1D regular expressions. We define a partial
derivative standard transducer construction (TPD) from these expressions, and
study its average state complexity. The analytic combinatorial methods used
for ordinary 1D regular expressions could not be applied for 2D expressions.
In particular, to get explicit expressions for the generating functions involved
would be unmanageable. So, generating functions implicitly defined by algebraic
curves must be used, and in previous work it was shown how to get the required
information for the asymptotic estimates with an indirect use of the existence
of Puiseux expansions at singularities [6]. In this paper, as the involved alge-
braic curves are more intricate, we needed to refine the methods described in
the literature, and use Puiseux expansions together with the Newton’s polygon
technique to find the estimates for the asymptotic behaviours of parametrised
families of combinatorial classes. This new, more refined, method is introduced
in Sect. 4. Section 2 reviews the partial derivative construction for ordinary 1D
regular expressions. In Sect. 3 we define 2D expressions, and present the corre-
sponding construction of partial derivative transducers (TPD). Section 5 presents
the average complexity results obtained using the framework of Sect. 4. We show
that for general 2D expressions, while in the worst case the number of states
of TPD can be O(n2), where n is the size of the expression, asymptotically and
on average, that value is bounded from above by O(n

3
2). Restricting to pairs of

1D expressions, the previous bound is already reached, showing that these kind
of expressions are responsible for the increasing of complexity. Furthermore, the
same bounds apply to sums or concatenations of pairs of 1D expressions, i.e.,
regular relations.

2 Preliminares

A nondeterministic finite automaton (NFA) is a five-tuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. The size of an NFA is its number of states. The transition function can
be extended to words and to sets of states in the natural way. When I = {q0}, we
use I = q0. The language accepted by A is L(A) = {w ∈ Σ� | δ(I, w) ∩ F �= ∅}.
Given an alphabet Σ, the set RE of (1D) regular expressions, r, over Σ contains
∅ and the expressions defined by the following grammar:

r := ε | σ ∈ Σ | (r + r) | (r · r) | (r�), (1)

where the operator · (concatenation) and the outermost parentheses are often
omitted. The language associated to r is denoted by L(r) and defined as usual
(with ε representing the empty word). Two expressions r1 and r2 are equivalent,
r1 ∼ r2 if L(r1) = L(r2). If S ⊆ RE, L(S) = ∪r∈SL(r). The (tree-)size |r| of
r ∈ RE is the number of symbols in r (disregarding parentheses). The alphabetic

176 S. Konstantinidis et al.

size |r|Σ is the number of letters occurring in r. We define the constant part
of r, c(r), by c(r) = ε if ε ∈ L(r), and c(r) = ∅ otherwise. This function is
extended to sets of expressions by c(S) = ε if and only if exists r ∈ S such
that c(r) = ε. In the case of a singleton {s} we write it simply as s. Given
L ⊆ Σ� and σ ∈ Σ, let σ−1L = {w | σw ∈ L}. This notion can be extended to
words and languages. The partial derivative automaton of a regular expression
was introduced independently by Mirkin [15] and Antimirov [1]. For a regular
expression r ∈ RE, let the linear form of r, n : RE → 2Σ×RE, be inductively
defined by

n(∅) = n(ε) = ∅,
n(σ) = {(σ, ε)},

n(r + r′) = n(r) ∪ n(r′),
n(rr′) = n(r)r′ ∪ c(r)n(r′),
n(r�) = n(r)r�,

(2)

where for any S ⊆ Σ × RE, we define S∅ = ∅S = ∅, Sε = εS = S, and
Sr′ = { (σ, rr′) | (σ, r) ∈ S ∧ r �= ε } ∪ { (σ, r′) | ∃(σ, ε) ∈ S } if r′ �= ∅, ε (and
analogously for r′S).

Proposition 1 ([1]). For all r ∈ RE, r ∼
⋃

(σ,r′)∈n(r) σr′ ∪ c(r).

For a regular expression r ∈ RE and a symbol σ ∈ Σ, the set of partial
derivatives of r w.r.t. σ is defined by ∂σ(r) = { r′ | (σ, r′) ∈ n(r) }. We have
L(∂σ(r)) = σ−1L(r). Partial derivatives can be extended w.r.t words and set of
partial derivatives of an expression r can be defined by iterating the linear form.
Let π0(r) =↓2 (n(r)), where ↓2 (s, t) = t is the standard second projection on
pairs of objects and naturally extended to sets of pairs. Iteratively applying the
operator π0 we have, πi(r) = π0(πi−1(r)), for i ∈ N, and π(r) =

⋃
i∈N0

πi(r).
The set PD(r) = π(r) ∪ {r} is the set of partial derivatives of r and π(r) is the
support1.

Proposition 2 ([15]). The support π(r) is inductively defined by

π(∅) = ∅,
π(ε) = ∅,
π(σ) = {ε},

π(r + r′) = π(r) ∪ π(r′),
π(rr′) = π(r)r′ ∪ π(r′),
π(r�) = π(r)r�,

where, for any S ⊆ RE, we define S∅ = ∅S = ∅, Sε = εS = S, and Sr′ = { rr′ |
r ∈ S ∧ r �= ε } ∪ { r′ | ∃ε ∈ S } if r′ �= ∅, ε (and analogously for r′S).

Proposition 3 ([1,15]). |π(r)| ≤ |r|Σ and |PD(r)| ≤ |r|Σ + 1.

The partial derivative automaton of r is APD(r) = 〈PD(r), Σ, δPD, r, F 〉,
where F = { r1 ∈ PD(r) | c(r1) = ε }, and δPD = { (r1, σ, r′) | r1 ∈ PD(r) ∧
(σ, r′) ∈ n(r1) }.

Proposition 4 ([1,15]). For all r ∈ RE, L(APD(r)) = L(r).

1 Extending partial derivatives w.r.t. words, one could also define PD(r) =⋃
w∈Σ� ∂w(r).

Average State Complexity of Partial Derivative Transducers 177

3 2D Expressions

Let Σ and Δ be two alphabets. A relation R is any subset of Σ� × Δ�. The
concatenation of two relations R and S is the relation RS = {(u1u2, v1v2) |
(u1, v1) ∈ R ∧ (u2, v2) ∈ S}. The Kleene closure of the relation R is the relation
R� =

⋃
n≥0 Rn. The monoid Σ� × Δ� has the identity (ε, ε), and the following

set of generators {(σ, ε), (ε, τ) | σ ∈ Σ ∧ τ ∈ Δ} with the set of equations

{ (σ, ε)(ε, τ) .= (σ, τ), (ε, τ)(σ, ε) .= (σ, τ) | σ ∈ Σ ∧ τ ∈ Δ }. (3)

For a relation R ⊆ Σ� × Δ�, the quotient of R by a symbol is defined as before,
but one needs to take into account the above equations. For instance, for σ ∈ Σ
and τ ∈ Δ, (σ, ε)−1

R = { (ε, τ)w | (σ, τ)w ∈ R} and (ε, τ)−1
R = { (σ, ε)w |

(σ, τ)w ∈ R}. The set of rational relations is the smallest set of relations that
contains the finite relations and is closed under union, concatenation and Kleene
closure. Rational relations are accepted by transducers. A finite transducer in
standard-form (SFT) over two alphabets Σ and Δ is defined as an NFA, except
that the transition function is δ : Q × (Σε × Δε) → 2Q, where for a set X, Xε =
X ∪ {ε}. The relation realised by an SFT t is denoted by R(t). In this section
we consider 2D expressions that represent rational relations. The notions of
linear form, of partial derivative and of partial derivative transducers are extend
to 2D expressions. In Sect. 5 we study the average state complexity of these
transducers. Recently, Demaille [7] defined derivative automata for multitape
weighted regular expressions. The expressions and transducers studied in this
paper are restrictions of those models to two tapes and the Boolean semiring.

To represent rational relations one could just consider 1D expressions where
basic terms are the generators of Σ� ×Δ�. Those expressions are called standard
2D regular expressions (S2D-RE) and are a particular case of the ones considered
in [11]. For standard 2D regular expressions, and using the same methods, it can
be shown that the asymptotic bounds for partial derivative transducers are the
same as for partial derivative automata (for 1D expressions) [3].

A (general) 2D regular expression (2D-RE) over Σ and Δ, where Σ is the
input alphabet and Δ the output alphabet, is an expression that is either ∅, or
can be defined by the following grammar

g := r/r′ | (g + g) | (g · g) | (g�), (4)

where r ∈ RE over Σ and r′ ∈ RE over Δ. The relation R(g) ⊆ Σ� ×Δ� realised
by a 2D-RE g is defined inductively as follows R(r/r′) = L(r)×L(r′), R(g·g′) =
R(g)R(g′), and R(g�) = (R(g))�. Two expressions g,g′ are equivalent, g ∼ g′, if
R(g) = R(g′). A relation is rational if and only if it is represented by a 2D-RE2.
The constant part of a 2D-RE expression g is given by c : 2D-RE −→ {∅, ε/ε}
such that c(g) = ε/ε if (ε, ε) ∈ R(g), and c(g) = ∅, otherwise. For S ⊆ 2D-RE or
S ⊆ (Σε ×Δε) × 2D-RE and an expression g, we adopt the same conventions as
for 1D expressions regarding gS and Sg. In particular, we let (ε/ε)S = S(ε/ε) =
S (and also Sε = εS = S).
2 This follows from the definition above.

178 S. Konstantinidis et al.

For the linear form of an expression g ∈ 2D-RE, n : 2D-RE →
2(Σε×Δε)×2D-RE, one only needs to extend the definition for expressions of the
form r1/r2, being the remaining cases as in Eq. (2), considering expressions g ∈
2D-RE. We note that one possibility was to consider n(r1/r2) = {(r1/r2, ε/ε)}
(see [11]), but then one could not construct directly an SFT. Here we define

n(r1/r2) = (n(r1)||n(r2)) ∪ c(r2)(n(r1)||{(ε, ε)}) (5)
∪ c(r1)({(ε, ε)}||n(r2)),

where for N ⊆ Σε × RE and M ⊆ Δε × RE,

N ||M = { ((γ, γ′) , r/r′) | (γ, r) ∈ N ∧ (γ′, r′) ∈ M }.

The correctness of the previous definition is given by the following proposition.

Proposition 5. For all r1, r2 ∈ RE, r1/r2 ∼
⋃

((γ,γ′),g′)∈n(r1/r2)

(γ/γ′)g′∪

c(r1/r2).

Then, we have

Proposition 6. For all g ∈ 2D-RE, g ∼
⋃

((γ,γ′),g′)∈n(g)

(γ/γ′)g′ ∪ c(g).

As before, one can obtain the support of an expression g, π(g), by iterating the
linear form. Only the base case differs from the ones in Proposition 2.

Proposition 7. For all r1, r2 ∈ RE,

π(r1/r2) ⊆ π(r1)||π(r2) ∪ π(r1)||{ε} ∪ {ε}||π(r2),

where for S, T ⊆ RE, S||T = { r/r′ | r ∈ S ∧ r′ ∈ T }.
Note that the inclusion in Proposition 7 can be strict, as π(ab/abc) = {b/bc, ε/c,
ε/ε}, π(ab) = {ε, b}, π(abc) = {ε, bc, c} and c(ab) = c(abc) = ∅. Proposition 7
and Proposition 2 ensure that for every g ∈ 2D-RE, the support π(g) is finite
and in the worst-case of size O(n2), where n is the size of g. The quadratic
blow-up is achieved if one considers rn = (a�)n, n ≥ 1, and the 2D-RE rn/rn.

Corollary 8. For all g ∈ 2D-RE, |π(g)| ≤ (|g|Σ∪Δ)2, where |g|Σ∪Δ is the
alphabetic size of g.

The partial derivative transducer of g is TPD(g) = 〈π(g) ∪ {g}, Σ,Δ, δPD,
g, F 〉, where F = {g1 ∈ π(g)∪{g} | c(g1) = ε/ε }, and δPD = { (g1, (γ, γ′) ,g′) |
g1 ∈ π(g) ∪ {g} ∧ ((γ, γ′) ,g′) ∈ n(g1) }.

Proposition 9. For all g ∈ 2D-RE, R(TPD(g)) = R(g).

An upper bound of the number of states of TPD(g) is obtained if one assumes
that

π(r1/r2) = π(r1)||π(r2) ∪ π(r1)||{ε} ∪ {ε}||π(r2)

always holds, and as usual π(g + g′) = π(g) ∪ π(g′), π(gg′) = π(g)g′ ∪ π(g′),
and π(g�) = π(g)g�. These equalities are used in Sect. 5 to obtain an upper
bound for the average case size of partial derivative transducers. In the next
section we set up the analytic combinatorics framework that allows to obtain
those estimates.

Average State Complexity of Partial Derivative Transducers 179

4 The Analytic Combinatorics Framework

Given some measure of the objects of a combinatorial class, A, for each n ∈ N0 let
an be the sum of the values of this measure for all objects of size n. Let A(z) =∑

n anzn be the corresponding generating function (cf. [8]). We will use the
notation [zn]A(z) for an. The generating function A(z) can be seen as a complex
analytic function, and the study of its behaviour around its dominant singularity
ρ, when unique, gives us access to the asymptotic form of its coefficients. In
particular, if A(z) is analytic in some indented disc neighbourhood of ρ, then
one has the following [4,8]:

Theorem 10. The coefficients of the series expansion of the complex function

f(z) = (1 − z)α,

where α ∈ C \ N0, have the following asymptotic approximation:

[zn]f(z) =
n−α−1

Γ(−α)
+ o

(
n−α−1

)
.

Here Γ is Euler’s gamma function.

The combinatorial classes that we deal with in the present paper give rise to
generating functions implicitly defined by algebraic curves that are quite a bit
more convoluted than those previously described in the literature. We, therefore,
needed to refine the method to pursue these calculations, and we will expound
that, in some detail, here. Generically, from an unambiguous generating gram-
mar, one obtains a set of polynomial equations involving the generating functions
for the objects corresponding to the variables of the grammar, in particular the
one whose coefficients we want to asymptotically estimate. Computing a Gröbner
basis for the ideal generated by those polynomials, one gets an algebraic equation
for that generating function w = w(z), i.e., an equation of the form

G(z, w) = 0,

where G(z, w) is a polynomial in Z[z][w] of which w(z) is a root.
Since w(z) is the generating function of a combinatorial class, thus a series

with non-negative integer coefficients which is not a polynomial, it must have, by
Pringsheim’s Theorem (cf. [8], Thm IV.6), a real positive singularity, ρ, smaller
than or equal to 1. In all that follows we will assume that there is no other
singularity with that norm, which is the case of all generating functions dealt
with in this paper, as we will see. At this singularity, ρ, two cases may occur:

Case I: limz→ρ w(z) = a, where a is a positive real number.
Case II: limz→ρ w(z) = +∞.

In the first case the curve defined by G has a shape similar to the one depicted
in Fig. 1, on the left, and

∂G

∂w
(ρ, a) = 0. (6)

180 S. Konstantinidis et al.

Fig. 1. Generic shape of G(z, w) near its dominant singularity (cases I and II).

This, together with the fact that G(ρ, a) = 0, shows that ρ is a root of the
resultant, resw(G(z, w), ∂G

∂w (z, w)), of G(z, w) and ∂G
∂w (z, w) with respect to w

(cf. [13, p. 204]). With the help of a numerical solver and drawing the relevant
part of the algebraic curve G(z, w) = 0, one can, by an elimination process, find
out the minimum polynomial, in Q[z], of ρ. We will denote this polynomial by
m(z). Using now the resz(G(z, w), ∂

∂wG(z, w)) one can get, in a similar fashion,
an irreducible polynomial that has a as a root.

In Case II, the irreducible polynomial for ρ is a factor of the leading coefficient
of G(z, w), seen as a polynomial in w (cf [10], Th. 12.2.1).

In Case I, after making the change of variable s = 1 − z/ρ, one knows that
w = w(s) has a Puiseux series expansion at the singularity s = 0, i.e., there
exists a slit neighbourhood of that point in which w(s) has a representation as
a power series with fractional powers (cf. [10], Chap. 12). In particular, w must
have the form

w(s) = a − g(s)sα, (7)

for some α ∈ Q
+, the first positive exponent of that expansion, and where g(s)

is such that g(s) = b + h(s)sβ , h(0) �= 0, β ∈ Q
+, and b ∈ R

�.
The value of α can be obtained by looking at the Taylor expansion of G(z, w)

at (ρ, a),

G(z, w) =
∑

i,j≥0

1
i!j!

∂i+jG

∂ziwj

∣
∣
∣
∣ z=ρ

w=a

(z − ρ)i(w − a)j .

Noticing that z = ρ − ρs, and using Eq. (7), one has

G(ρ − ρs, a − g(s)sα) =
∑

i,j≥0

(−1)i+j

i!j!
∂i+jG

∂ziwj

∣
∣
∣
∣ z=ρ

w=a

ρig(s)jsi+jα. (8)

Using that G(z, w(z)) = 0, G(ρ, a) = 0, and (6), and dividing it through by sα,
one gets

0 =
∑

i,j≥0
(i,j)/∈{(0,0),(0,1)}

(−1)i+j

i!j!
∂i+jG

∂ziwj

∣
∣
∣
∣ z=ρ

w=a

ρig(s)jsi+(j−1)α. (9)

Average State Complexity of Partial Derivative Transducers 181

One can now compute pij(z) = resw

(

G(z, w),
∂i+jG

∂ziwj

)

, and gcd(pij(z),m(z)) to

see which derivatives are non-zero at ρ. Then, one can use the Newton’s polygon
technique to find α [9,17,18]. The points of Newton polygon that lead to the
value of α correspond to the terms of (9) with the lowest exponent, that must
cancel out together. This conduces, after setting s = 0, to a polynomial equation
for the value b defined in the sentence containing (7). One then uses this value
in Theorem 10 to get the desired asymptotic approximation. In conclusion, for
the case where limz→ρ w(z) = a, one has

[zn]w(z) ∼ −b

Γ(−α)
ρ−nn−α−1. (10)

In Case II, the one where limz→ρ w(z) = +∞, making v = 1
w one concludes

as above that v = csα − g(s)sα+β , for some 0 < α < 1, β > 0, and for some
Puiseux series g(s), with non-negative exponents. Denoting by m the degree of
G relative to w, the polynomial satisfied by v is then

H(z, v) = vmG

(

z,
1
v

)

, (11)

which is the reciprocal polynomial of G(z, w) with respect to the variable w. In
this case the equation that corresponds to Eq. (8) is:

H(ρ − ρs, csα − g(s)sα+β) =
∑

i,j≥0

(−1)i

i!j!
∂i+jH

∂ziwj

∣
∣
∣
∣ z=ρ

w=0

ρi(c − g(s)β)jsi+jα. (12)

Using the same procedure as above, one computes ρ, and then the value of
c. Since

w =
1

csα − g(s)sα+β
=

1
c
s−α 1

1 − g(s)
c sβ

=
1
c
s−α

(

1 +
g(s)
c

sβ +
g(s)2

c2
s2β + · · ·

)

,

one sees, using again Theorem 10, that

[zn]w(z) ∼ 1
cΓ(α)

ρ−nnα−1. (13)

Summing up, we have the following.

Theorem 11. With the notations and in the conditions above described, one
has

[zn]w(z) ∼
{ −b

Γ(−α)ρ
−nn−α−1, if limz→ρ w(z) = a,

1
c Γ(α)ρ

−nnα−1, if limz→ρ w(z) = +∞,

where b, c, ρ and α can be computed as above described.

182 S. Konstantinidis et al.

5 Average Descriptional Complexity Results

Using the framework just described, we obtain asymptotic estimates for an upper
bound of the average state complexity of partial derivative transducer for 2D
expressions of size n ≥ 0. Those estimates depend on the size of the alphabets
Σ and Δ, which we assume both to be equal to some integer k > 0. Moreover
we denote by REk the set of 1D expressions over an alphabet of size k.

5.1 Average State Complexity of TPD for 2D-RE

The generating function Gk(z) associated with g ∈ 2D-RE is the following3,
where Rk(z) is the generating function of regular expressions r ∈ REk [4].

Gk(z) = zRk(z)2 + zGk(z) + 2zGk(z)2, (14)
Rk(z) = (k + 1)z + zRk(z) + 2zRk(z)2. (15)

Considering Proposition 2, let p(r) be the size of the support of an expression
r ∈ REk which is defined by p(ε) = 0, p(σ) = 1, p(s+s′) = p(s ·s′) = p(s)+p(s′),
and p(s�) = p(s). An upper bound for the size of the support π(g), q(g), is
defined by q(r/r′) = p(r)p(r′) + p(r) + p(r′), q(g+ g′) = q(g · g′) = q(g) + q(g′),
and q(g�) = q(g). Thus, the generating function Qk(z) =

∑
g q(g)z|g| for π(g)

satisfies the following equation,

Qk(z) = zQk(z) + 4zQk(z)Gk(z) + 2zPk(z)Rk(z) + zPk(z)2, (16)

where Pk(z) is the generating function for the support of regular expressions in
REk, which satisfy

Pk(z) = kz + zPk(z) + 4zRk(z)Pk(z). (17)

From Eqs. (15), (17), (14) and (16), using Gröbner basis, one obtains algebraic
equations for Gk(z) and Qk(z):

CG(z, w) = 16z3w4 + 16(z3 − z2)w3 − g2(z)w2 + g1(z)w + (1 + k)2z3 = 0, (18)

where g2(z) = 2z((1 + 4k)z2 + 6z − 3) and g1(z) = (1 − z)((3 + 4k)z2 + 2z − 1)
and

CQ(z, w) = p(z)4q4(z)w4 − k2z2p(z)2q2(z)w2 + k4z8q0(z)2 = 0, (19)

where

p(z) = (8k + 7)z2 + 2z − 1

q4(z) = (16k2 + 40k + 23)z4 − 4(4k + 3)z3 + (8k + 2)z2 + 4z − 1

q2(z) = (200k3 + 544k2 + 474k + 133)z6 − (48k2 + 24k − 10)z5

+ (24k2 − 44k − 41)z4 + 28(2k + 1)z3 + (3 − 14k)z2 − 6z + 1

q0(z) = (25k2 + 37k + 14)z2 + (6k + 4)z − (3k + 2).

3 I.e. [zn]Gk(z) gives the number of expressions g of size n.

Average State Complexity of Partial Derivative Transducers 183

Fig. 2. Possible values for
(ρk, ak).

For Gk(z), we conclude to be in Case I. The
irreducible polynomial that implicitly defines the
singularity ρk of Gk(z) is, computed using the
resultant resw(CG(z, w), ∂CG

∂w (z, w)). In this case we
obtain two candidates for the minimal polynomial
mG(z) of the singularity ρk, each one having only
one root in]0, 1[. Using a computer algebra sys-
tem, one can show that those roots are only equal
for k = −1. This implies, by continuity (in k),
that they always keep their relative position, for
all k > −1. Now, resz(CG(z, w), ∂CG

∂w (z, w)) factors
into three irreducible polynomials, one of which has
ak as a root. These three polynomials have, among
them, four positive roots, which a computer algebra system can find, as a func-
tion of k. Then, one can check which pairs (ρ′

k, a′
k), where ρ′

k is a candidate
for ρk, and a′

k a candidate for ak, belong to the curve CG, and their relative
location (Fig. 2). By a simple topological argument, one then can conclude that
mG(z) = (8k + 7)z2 + 2z − 1, ρk = 1

1+
√

8k+8
, and ak =

√
2−1
2

√
k + 1. One then

checks that
∂CG

∂z
(ρk, ak) and

∂2CG

∂w2
(ρk, ak) are both non-zero, for all k, which

entails that α = 1
2 . The value for bk can then be computed, and bk ∼

√
k
2 .

As for Qk(z), one sees that Case II applies, and that the minimal polynomial
is either p(z) or q4(z). It turns out that each of these polynomials has exactly
one positive real root, ρk and ζk. One can then check that these roots coincide
only for k = −1, and so that one of them is always bigger than the other for all
positive values of k, namely ρk. One then can check that the curve CQ crosses
the vertical line z = ζk exactly once above the z-axis, which makes clear that the
singularity for Qk(z) is ρk, thus the same as for Gk(z). In this case, the Newton
polygon analysis shows that α = 1 and that the polynomial satisfied by c, as
explained after (9), and noticing that here we make use of inversion explained
in (11), is given by

∂4H

∂v4

∣
∣
∣
∣ z=ρ

v=0

c4 + 6
∂4H

∂z2v2

∣
∣
∣
∣ z=ρ

v=0

ρ2 c2 +
∂4H

∂z4

∣
∣
∣
∣ z=ρ

v=0

ρ4 = 0.

This is a quadratic equation in c2, whose discriminant can be seen to be zero.
One gets

c2
k = −3ρ2

k

(
∂4H

∂z2∂v2

∣
∣
∣
∣ z=ρ

v=0

)/ (
∂4H

∂v4

∣
∣
∣
∣ z=ρ

v=0

)

. (20)

From all this, it follows that

184 S. Konstantinidis et al.

Theorem 12. With the notations above introduced, the ratio of the total number
of states in the partial derivative transducer TPD(g) of expressions of size n to
the total number of expressions of the same size is given by

[zn]Qk(z)
[zn]Gk(z)

∼
−Γ(− 1

2)
bkck

n
3
2 , for all k, and lim

k→∞
−Γ(− 1

2)
bkck

=
√

π

8
√

2
.

5.2 Average State Complexity of TPD for Pairs of REs

If we consider only 2D-expressions of the form r/r′, the generating function
for these expressions is G′

k(z) = 2zRk(z) and for the support π is, following
Proposition 7, Q′

k(z) = 2zPk(z)Rk(z) + zP 2
k (z). From these, one can deduce the

following algebraic equations for G′
k(z) and Q′

k(z):

CG′(z, w) = w2 + (z − 1)w + 2(k + 1)z2 = 0, (21)

and
CQ′(z, w) = p(z)2w2 + kzg′

1(z)w + k2z4g′
0(z) = 0, (22)

where p(z) is as above, and

g′
1(z) = (80k2 + 126k + 49)z4 + 4(9k + 7)z3 − 2(9k + 5)z2 − 4z + 1,

g′
0(z) = (25k2 + 37k + 14)z2 + (6k + 4)z − 3k − 2.

Let us first deal with G′
k(z). We easily conclude that we are in Case I. The

irreducible polynomial that implicitly defines the singularity ρk of G′
k(z) is com-

puted using resw(CG′(z, w), ∂CG′
∂w (z, w)). In this case we obtain a single candidate

for the minimal polynomial, mG′(z), of the singularity, ρk, namely

mG′(z) = (8k + 7)z2 + 2z − 1,

and thus ρk = 1
1+

√
8k+8

. One has

resw(CG′(z, w),
∂CG′

∂w
(z, w)) = (7 + 8k)w2 − 8(1 + k)w + 2(1 + k),

from which one gets ak = 4(1+k)−
√

2(1+k)

7+8k , where ak = G′
k(ρk).

Using now the Newton’s polygon method, one gets that α = 1
2 , and

bk =

√
√
√
√2ρk

∂CG′
∂z (ρk, ak)

∂2CG′
∂w2 (ρk, ak)

∼ 1√
2
.

As for Q′
k, one sees that one is in Case II, and that the dominant singularity

is the same as for G′
k. Using the methods expounded above, one gets that α = 1,

and that ck is a zero of the equation

∂2H

∂v2
(ρk, 0)c2

k − 2ρk
∂2H

∂z∂v
(ρk, 0)ck + ρ2

k

∂2H

∂z2
(ρk, 0) = 0,

Average State Complexity of Partial Derivative Transducers 185

where H(z, v) = v2GQ′(z, 1
v). It turns out that this equation has a single solution,

namely ck = 4
k2

(
8 + 8k + (9 + 8k)

√
2 + 2k

)
∼ 32

√
2
k . Therefore, in this case an

upper bound of the average state complexity of TPD(r/r′) is,

Theorem 13. With the notations above introduced, one has

[zn]Q′
k(z)

[zn]G′
k(z)

∼
−Γ(− 1

2)
bkck

n
3
2 ∼

√
π

16

√
k n

3
2 .

6 Conclusions

We defined partial derivative transducers for 2D regular expressions over pairs
of 1D regular expressions. For studying the average state complexity, and given
the intricacy of the resulting generating functions, we refine known methods.
In Sect. 5, we conclude that for 2D expressions of size n, both general and
restricted, asymptotically and on average, the state complexity of the partial
derivative transducers is bounded from above by O(n

3
2). For ordinary 1D regu-

lar expressions, the number of letters in an expression is, asymptotically and on
average, 1

2n [3,16]. The same holds for general 2D expressions.

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

2. Bastos, R., Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average com-
plexity of partial derivative automata for semi-extended expressions. J. Autom.
Lang. Comb. 22(1–3), 5–28 (2017)

3. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity
of partial derivative automata: an analytic combinatorics approach. Int. J. Found.
Comput. Sci. 22(7), 1593–1606 (2011)

4. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: A Hitchhiker’s Guide to descrip-
tional complexity through analytic combinatorics. Theoret. Comput. Sci. 528, 85–
100 (2014)

5. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for regular expressions
with shuffle. Inf. Comput. 259(2), 162–173 (2018)

6. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On average behaviour of regular
expressions in strong star normal form. Int. J. Found. Comput. Sci. 30(6–7), 899–
920 (2019)

7. Demaille, A.: Derived-term automata of multitape expressions with composition.
Sci. Ann. Comput. Sci. 27(2), 137–176 (2017)

8. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2008)

9. Ghys, É.: A Singular Mathematical Promenade. ENS Éditions, Lyon (2017)
10. Hille, E.: Analytic Function Theory, vol. 2. Blaisdell Publishing Company, New

York (1962)

186 S. Konstantinidis et al.

11. Konstantinidis, S., Moreira, N., Pires, J., Reis, R.: Partial derivatives of regu-
lar expressions over alphabet-invariant and user-defined labels. In: Hospodár, M.,
Jirásková, G. (eds.) CIAA 2019. LNCS, vol. 11601, pp. 184–196. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23679-3 15

12. Konstantinidis, S., Moreira, N., Reis, R., Young, J.: Regular expressions and trans-
ducers over alphabet-invariant and user-defined labels. In: Câmpeanu, C. (ed.)
CIAA 2018. LNCS, vol. 10977, pp. 4–27. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94812-6 2

13. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer,
New York (2002). https://doi.org/10.1007/978-1-4613-0041-0

14. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
Theor. Comput. Sci. 332(1–3), 141–177 (2005)

15. Mirkin, B.G.: An algorithm for constructing a base in a language of regular expres-
sions. Eng. Cybern. 5, 51–57 (1966)

16. Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 626–637. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00982-2 53

17. Walker, R.J.: Algebraic Curves. Princeton University Press, Princeton (1950)
18. Wall, C.T.C.: Singular Points of Plane Curves. No. 63 in London Mathematical

Society Student Texts. Cambridge University Press, Cambridge (2004)

https://doi.org/10.1007/978-3-030-23679-3_15
https://doi.org/10.1007/978-3-319-94812-6_2
https://doi.org/10.1007/978-3-319-94812-6_2
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-3-642-00982-2_53

On the Difference Between Finite-State
and Pushdown Depth

Liam Jordon(B) and Philippe Moser(B)

Computer Science Department, National University of Ireland Maynooth,
Maynooth, Co Kildare, Ireland

liam.jordon@mu.ie, pmoser@cs.nuim.ie

Abstract. This paper expands upon existing and introduces new for-
mulations of Bennett’s logical depth. A new notion based on pushdown
compressors is developed. A pushdown deep sequence is constructed.
The separation of (previously published) finite-state based and pushdown
based depth is shown. The previously published finite state depth notion
is extended to an almost everywhere (a.e.) version. An a.e. finite-state
deep sequence is shown to exist along with a sequence that is infinitely
often (i.o.) but not a.e. finite-state deep. For both finite-state and push-
down, easy and random sequences with respect to each notion are shown
to be non-deep, and that a slow growth law holds for pushdown depth.

Keywords: Algorithmic information theory · Kolmogorov
complexity · Bennett’s logical depth

1 Introduction

In a seminal paper [2], Bennett introduced a new method to measure the useful
information contained in a piece of data; called logical depth. Logical depth
is different from classical information theory in the following sense. Consider
a random binary sequence. According to classical information theory, such a
random sequence contains a large amount of information because it cannot be
significantly compressed while logical depth says that this information is not
of much value. Contrast this with a 10-day weather forecast; from the classical
information point of view it contains little information (namely no more than
the differential equations from which it was originally simulated), but it contains
useful information according to logical depth.

Logical depth helps to formalise the difference between complex and non-
complex structures. Deep structures can be thought of as structures that contain
an underlying patterns which are extremely difficult to find. Given more and
more time and resources, an algorithm could spot these patterns and exploit
them (such as to compress a sequence).

L. Jordon—Supported by a postgraduate scholarship from the Irish Research Council,
Government of Ireland.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 187–198, 2020.
https://doi.org/10.1007/978-3-030-38919-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_16

188 L. Jordon and P. Moser

Bennett’s original notion is based on Kolmogorov complexity [2], and inter-
acts nicely with fundamental notions of computability theory as shown in [12].1

Due to the uncomputability of Kolmogorov complexity, several researchers have
attempted to adapt Bennett’s notion to lower complexity levels, aka feasible
depth. Most of these notions are centered around polynomial time computations
[1,10,11] and finite-state machines [6]. Due to the intrinsic limitations of polyno-
mial time (resp. finite state) algorithms, none can match all the nice properties of
Bennett’s original, i.e. each feasible notion studied represents a trade-off between
advantages and limitations.

Similarly to randomness, there is no absolute notion of logical depth, and
all variants mentioned above can be seen as variations of a same theme [11],
based on the compression framework. However most notions satisfy some basic
properties that could be seen as fundamental. These are:

– Random sequences are not deep (for the appropriate randomness notion).
– Computable sequences are not deep (for the appropriate computability

notion).
– A slow growth law: deep sequences cannot be quickly computed from shallow

ones.
– Some deep sequence exists.

In this paper, we continue the study of depth at the finite-state level. In sum-
mary, we construct a new depth notion (called ILPDC-depth), based on infor-
mation lossless pushdown compressors (see [9] for definitions and a comparison
with other compressors). We show our notion satisfies the fundamental depth
properties mentioned above. We compare ILPDC-depth to finite-state depth [6],
and show the two notions are different. This is somehow surprising as pushdown
machines are strictly more capable than finite state machines. This shows that
although pushdown machines are strictly stronger than finite state machines,
stronger does not necessarily mean better.

We also extend the finite-state notion of [6], by introducing an a.e. version
(the original [6] is an i.o. version), and show the two notions differ.

Let us explain our results in more details. In the first part of this paper we
introduce a notion of pushdown depth. As observed in [11], most depth notions
can be expressed in the compression framework, i.e. fix a compressor type T
(e.g. finite state, polynomial time, etc.). A sequence S is T -deep, if for every
compressor C of type T , there exists a compressor C ′ of type T (think of C ′

as being more powerful than C) such that C ′ compresses almost every prefix
of S, better than C. The meaning of “better” will vary with the corresponding
depth notion (and actually has consequences on the computational power of

1 We acknowledge that logical depth was originally defined as depending on both com-
putational complexity and Kolmogorov complexity, which is a descriptional complex-
ity. The new notions in this paper are focused purely on a descriptional complexity
lengths, specifically the ratio between the length of the input and the length of the
output to restricted classes of transducers. However we continue to call these depth
notions to be consistent with previous literature in [6,11].

On the Difference Between Finite-State and Pushdown Depth 189

the sequence, as shown in [10,12]), but for most notions, bounds considered
are O(1), O(log n) and O(n). From the work in [6], it seems linear bounds are
appropriate at the finite state level, and thus we also use linear bounds.

We say a sequence is T -deep if for every compressor C of type T , there exists
a compressor C ′ of type T such that on almost every prefix of S (with length
denoted n), C ′ compresses it at least by αn more bits than C, for some constant
α. We define ILPDC-depth by setting type T to be information lossless push-
down compressors (ILPDC). Intuitively, an ILPDC is a pushdown transducer
such that when run the transducer on input x, the output y and final state q
uniquely determines the input x, hence the name information lossless. Contrary
to finite state information lossless transducers, it is not known whether this auto-
matically yields a pushdown decompressor (in the finite state model, the finite
state decompressor comes for free [7,8]).

We show ILPDC-depth satisfies all fundamental depth properties highlighted
above, i.e. both random and easy sequences are not deep, ILPDC-depth satisfies
a slow growth law, and there exists a PD-deep sequence.

Next we compare ILPDC-depth to finite state depth [6] (called i.o. FS-depth),
and show the two notions are different: we prove there exists a sequence S which
is i.o. FS-deep but not ILPDC-deep.

Most notions of depth, measure the compression difference on almost all
prefixes of the sequences. Notable exceptions include the original finite state
notion [6] (see [12] for further i.o. notions), where the difference is only required
be large on infinitely many prefixes of the sequence. Such depth notions are
called i.o. depth. In the second part of this paper, we extend the original i.o.
FS-depth of [6], to an almost everywhere notion, called a.e. FS-depth. We show
there exists an a.e. FS-depth sequence. We also show a.e. FS-depth is a stronger
requirement than i.o. FS-depth, by constructing a sequence that is i.o. FS-deep
but not a.e. FS-deep.

Due to lack of space, most proofs are omitted. A final journal version of this
paper is in preparation.

2 Preliminaries

N denotes the set of all non-negative integers. A finite binary string is an element
of {0, 1}∗. A binary sequence is an element of {0, 1}ω. The length of a string x
is denoted by |x|. λ denotes the empty string (the string of length 0). For all
n ∈ N, {0, 1}n denotes the set of binary strings of length n. For a string (or
sequence) S and i, j ∈ N, S[i . . . j] denotes the ith through jth bits of S with the
convention that if i > j then S[i . . . j] = λ. S � j denotes S[0 . . . j − 1], the first
j bits of S. For a string x and a string (or sequence) y, xy denotes the string
(or sequence) composed of x concatenated with y. For a string x and n ∈ N,
xn denotes x concatenated with itself n times. For strings x, y, z ∈ {0, 1}∗, if
w = xyz, we say y is a substring of w. For a string x, and a string (or sequence)
y, we say x is a prefix of y, written as x � y, if x = y[0 . . . |x| − 1]. In particular
we occasionally write x ≺ y if x is a prefix of y and |x| < |y|. The lexicographic

190 L. Jordon and P. Moser

ordering of {0, 1}∗ is defined by saying for two strings x, y, x is less than y if
either |x| < |y| or else |x| = |y| with x[n] = 0 and y[n] = 1 for the least n such
that x[n] �= y[n]. For a string x, x−1 denotes x written in reverse. By intervals
of N we mean closed intervals of N in the normal sense. All logarithms are taken
to be in base 2.

3 Models of Computation

3.1 Finite-State Transducers

We use the standard finite-state transducer model.

Definition 1. A finite-state transducer (FST) is a 4-tuple T = (Q, q0, δ, ν),
where

– Q is a nonempty, finite set of states,
– q0 ∈ Q is the initial state.
– δ : Q × {0, 1} → Q is the transition function,
– ν : Q × {0, 1}∗ → {0, 1}∗ is the output function,

For all x ∈ {0, 1}∗ and b ∈ {0, 1}, the extended transition function ̂δ :
{0, 1}∗ → Q, and the transducer output T : {0, 1}∗ → {0, 1}∗ is defined by
the usual recursion.

An FST is information lossless (IL) if the function x �→ (T (x), ̂δ(x)) is 1–1;
i.e. the output and final state of T on input x uniquely identify x. We call an
FST that is IL an ILFST. By the identity FST, we mean the ILFST IFS that
on every input x ∈ {0, 1}∗, IFS(x) = x. We write FST to denote the set of all
FSTs.

A map f : {0, 1}ω → {0, 1}ω is said to be FS computable (ILFS computable)
if there is an FST (ILFST) T such that for all S ∈ {0, 1}ω, lim

n→∞ |T (S � n)| = ∞
and for all n ∈ N, T (S � n) � f(S). In this case we say T (S) = f(S).

It is well known [7,8] that any function computed by an ILFST can be
inverted to be approximately computed by another ILFST.

Theorem 1. For any ILFST T , there exists an ILFST T−1 and a constant
c ∈ N such that for all x ∈ {0, 1}∗, x � (|x| − c) � T−1(T (x)) � x.

Corollary 1. For any ILFST T , there exists an ILFST T−1 such that for all
S ∈ {0, 1}ω, T−1(T (S)) = S.

3.2 Pushdown Compressors

The model of pushdown compressors we use is the same pushdown compressor
model as used in [9]. Note that to keep the model feasible, there is a bound on
how long the compressor can empty its stack before it needs to output a symbol.

A pushdown compressor (PDC) is an 8-tuple C = (Q,Σ, Γ, δ, ν, q0, z0, c)
where

On the Difference Between Finite-State and Pushdown Depth 191

1. Q is a non-empty finite set of states,
2. Σ is the finite input alphabet,
3. Γ is the finite stack alphabet,
4. δ : Q × (Σ ∪ {λ}) × Γ → Q × Γ ∗ is the transition function,
5. ν : Q × (Σ ∪ {λ}) × Γ → Σ∗ is the output function,
6. q0 ∈ Q is the start state,
7. z0 ∈ Γ is the special bottom of stack symbol,
8. c ∈ N is an upper bound on the number of λ-rules per input bit.

We fix Σ = {0, 1} and Γ = {0, 1, z0}. We assume every state in Q is reachable
from q0. We write δ = (δQ, δΓ ∗). The transition function δ accepts λ as an input
in addition to {0, 1}. This means C has the option of altering its stack while not
reading an input character. We call this a λ-rule. In this case δ(q, λ, a) = (q′, λ),
that is, we pop the top symbol from the top of the stack. To enforce determinism
we require that at least one of the following hold for all q ∈ Q and a ∈ Γ :

1. δ(q, λ, a) = ⊥
2. δ(q, b, a) = ⊥ for all b ∈ {0, 1}.

δ is restricted so that z0 cannot be popped off of the stack. That is, for every
q ∈ Q, b ∈ {0, 1} ∪ {λ}, either δ(q, b, z0) = ⊥, or δ(q, b, z0) = (q′, vz0) where
q′ ∈ Q and v ∈ Γ ∗.

The extended transition function δ∗ : Q × Σ∗ × Γ+ → Q × Γ ∗ is defined
recursively as usual.

δ∗ is abbreviated to δ, and δ(q0, w, z0) to δ(w). The output from state q on
input w ∈ {0, 1}∗ with z ∈ Γ ∗ on the top of the stack is defined by the recursion
ν(q, λ, z) = λ,

ν(q, wb, z) = ν(q, w, z)ν(δQ(q, w, z), b, δΓ ∗(q, w, z)).

The output of the compressor C on input w ∈ {0, 1}∗ is the string C(w) =
ν(q0, q, z0). For a string xy, we write ν̄(y) as shorthand for |C(xy)| − |C(y)|, i.e.
the output of C on y after already reading x. It should be clear from context
what x is each time this notation is used.

A PDC is said to be information lossless (IL) if the function

w �→ (C(w), δQ(w))

is 1–1. A PDC that is IL is called an ILPDC. We write (IL)PDC to be the set of
all (IL)PDCs. By the identity PDC IPD we mean the ILPDC that on any input
x ∈ {0, 1}∗, IPD outputs x without using its stack.

4 Pushdown Depth

Lemma 1 demonstrates the existence of strings that an ILPDC compresses poorly
on and is used in proofs throughout this section.

192 L. Jordon and P. Moser

Lemma 1. Let d,m ∈ N. Then for all C ∈ ILPDC with at most d states and
for all x ∈ {0, 1}∗, there exists a string y of length m such that

|C(xy)| − |C(x)| ≥ m − log(d) − 1.

The following general depth definition says that S is a.e. T-deep if for every
compressor of type T there is a (better) compressor of type T such that the
difference of compression, on almost every prefix of S, exceeds some linear bound.
More precisely,

Definition 2. Let S be a sequence. Fix a compressor type T. S is a.e. T-deep
(resp. i.o. T-deep) if

(∀C ∈ T)(∃α > 0)(∃C ′ ∈ T)(Qn ∈ N) [|C(S � n)| − |C ′(S � n)| ≥ αn],

where Q is ∀∞ (resp. ∃∞).

Observe if S is a.e. T-deep, it is also i.o. T-deep.
To measure how well a compressor compresses a sequence, we use the follow-

ing compression ratios.

Definition 3. Let S ∈ {0, 1}ω. Let T be a family of compressor types.

1. The best-case compression ratio of type T of S is defined as

ρT (S) = inf{lim inf
n→∞

|C(S � n)|
n

: C ∈ T}.

2. The worst-case compression ratio of type T of S is defined as

RT (S) = inf{lim sup
n→∞

|C(S � n)|
n

: C ∈ T}.

We define pushdown depth to be a.e. ILPDC-depth.
The following results show that pushdown depth satisfies the basic depth

properties, in the sense that both easy and random sequences cannot be deep.

Theorem 2. Let S ∈ {0, 1}ω.

1. If ρILPDC(S) = 1, then S is not a.e. ILPDC-deep.
2. If RILPDC(S) = 0, then S is not a.e. ILPDC-deep.

The following result shows that pushdown depth satisfies a slow growth law.

Theorem 3 (Slow Growth Law). Let S be any sequence, let f : {0, 1}ω →
{0, 1}ω be ILFS computable and let S′ = f(S). If S′ is a.e. ILPDC-deep then S
is a.e. ILPDC-deep.

Remark 1. Theorems 2 and 3 also hold true for i.o. ILPDC-depth.

On the Difference Between Finite-State and Pushdown Depth 193

The following result constructs a pushdown deep sequence S. The sequence
is a sequence of blocks, where each block is devoted to some pair of compressors
C,C ′. On such a block, C compresses poorly, while C ′ compresses very well.
This is achieved by having C ′ simulate C to find strings it cannot compress.
The first found string describes the next bit of the block, and so C ′ is able to
compress the block. In blocks not devoted to him, C ′ simply simulates C. This
ensures that C ′ never compresses S worse than C, and on blocks devoted to
it, C ′ compresses much better. C ′ detects whether the current block is devoted
to him by signal flags interleaved throughout the sequence. To keep C ′ IL, as
soon as C ′ makes a wrong prediction, it simply outputs what C does from then
on onward. To guarantee an a.e. result, blocks devoted to the same pair repeat
every constant number of blocks.

A full construction of C ′ is omitted for space.

Theorem 4. There exists an a.e. ILPDC-deep sequence.

5 Finite-State Depth

The finite-depth in [6] is based on finite-state decompression. However, before
we begin examining depth, we first must choose a binary representation of all
finite-state transducers.

Definition 4. A binary representation of finite-state transducers σT is a par-
tially computable map σT : {0, 1}∗ → FST, such that for every FST T , there
exists some x ∈ {0, 1}∗ such that σT (x) fully describes T . We say |T |σT

=
min{|x| : σT (x) = T}.

For a binary representation of FSTs σT , for all k ∈ N, define

FST≤k
σT

= {T ∈ FST : |T |σT
≤ k}.

For all k ∈ N and x ∈ {0, 1}∗, the k-finite-state decompression complexity of
x with respect to binary representation σT is defined as

Dk
σT

(x) = min
π∈{0,1}∗

{

|π| : T ∈ FST≤k
σT

& T (π) = x
}

.

Here π is the shortest program that gives x as an output when inputted into
an FST of size k or less with respect to the binary representation σT . T can be
thought of as the FST that can decompress π to reproduce x.

For the purpose of this paper, we fix the following binary representation of
finite-state transducers σT . Let T = (Q, q0, δ, ν) be an FST. We define the func-
tion the function Δ : Q × {0, 1} → Q × {0, 1}∗, where Δ(q, b) = (δ(q, b), ν(q, b)).
This function Δ completely describes the state transitions and outputs of T . In
[3], different encoding schemes are presented to represent each transducer via an
encoding of this function Δ.

194 L. Jordon and P. Moser

The binary representation σT we fix in this paper is as follows. For a trans-
ducer T , if Q = {q1, q2, . . . , qn} and q0 = qi, for 1 ≤ i ≤ n, we encode T by the
string

d(bin(i))01ρ

where d(bin(i)) is the binary encoding of i which acts as a pointer to the start
state of T but with every bit doubled and ρ is an encoding of Δ as seen in [3].

We fix this binary representation σT as it is needed to prove Lemma 2 which
in turn is needed for Theorem7, Theorem 8 and Theorem 9. However, we later
show that if a sequence S is deep with respect to one depth notion, it is deep
with respect to every depth notion. Henceforth, we will drop the σT notation and
instead write |T | for |T |σT

, FST≤k for FST≤k
σT

and Dk
FS(x) instead of Dk

σT
(x).

All other definitions and results hold and can be proved regardless of the binary
representation being used.

To measure the randomness density of a sequence, the following notions are
useful. For any sequence S,

1. The finite-state dimension of S [5] is defined to be

dimFS(S) = lim
k→∞

lim inf
n→∞

Dk
FS(S � n)

n
,

2. The strong finite-state dimension of S is defined to be

DimFS(S) = lim
k→∞

lim sup
n→∞

Dk
FS(S � n)

n
.

In [6] a notion2 of depth based on finite-state transducers is introduced called
i.o. finite-state depth.

Definition 5. A sequence S is infinitely often (i.o.) finite-state deep if

(∀k ∈ N)(∃α > 0)(∃k′ ∈ N)(∃∞n ∈ N)Dk
FS(S � n) − Dk′

FS(S � n) ≥ αn,

and DimFS(S) �= 0.

We introduce an a.e. version of the original finite-state notion [6] called almost
everywhere (a.e) finite-state depth.

Definition 6. A sequence S is almost everywhere (a.e.) finite-state deep if

(∀k ∈ N)(∃α > 0)(∃k′ ∈ N)(∀∞n ∈ N)Dk
FS(S � n) − Dk′

FS(S � n) ≥ αn,

and DimFS(S) �= 0.

Remark 2. The condition that DimFS(S) �= 0 is required as otherwise 0ω would
be considered deep.

2 Actually two notions were introduced, which differ only by the order of quantifiers.

On the Difference Between Finite-State and Pushdown Depth 195

The following result shows that sequences that appear random to finite-state
transducers, cannot be finite-state deep. Further study of sequences that appear
random to finite-state transducers can be found in [4].

Theorem 5. Let S ∈ {0, 1}ω.
If dimFS(S) = 1, then S is not a.e. finite-state deep.

Remark 3. We originally hoped to include a version of a slow growth law for a.e.
FS-depth. However an adequate notion nor proof has not been found as of yet.

The following theorem demonstrates that if a sequence S is a.e. FS-deep
when the size of finite-state transducers are viewed with respect to one binary
representation, then it is a.e. FS-deep regardless of what binary representation
is used.

Theorem 6. Let πT be a binary representation of FSTs. Let S be an a.e. FS-
deep sequence when the size of the finite-state transducers are viewed with respect
to a binary representation πT . Then S is a.e. FS-deep when the size of the finite-
state transducers are viewed with respect to any other binary representation.

To prove the existence of an a.e. FS-deep sequence we need he following two
lemmas.

Lemma 2. For our fixed binary representation σT , we have that for k ≥ 4,
∀n ∈ N,∀x, y, z ∈ {0, 1}∗,

Dk
FS(xynz) ≥ D3k

FS(x) + nD3k
FS(y) + D3k

FS(z).

Lemma 3. ∀ε > 0,∀k ∈ N,∃k′ ∈ N,∀x, y,∈ {0, 1}∗, whenever Dk
FS(x) is suffi-

ciently large
Dk′

FS(xy) ≤ (1 + ε)Dk
FS(x) + Dk

FS(y) + 2.

In the following result we construct an a.e. finite-state deep sequence. The
sequence is constructed in consecutive blocks, each block is devoted to some
pair k, k′. On such a block, transducers of size k do poorly, while some larger
transducer of size k′ does very well. The key difference with the proof in [6],
is that blocks devoted to the same pair k, k′ repeat every constant number of
blocks. This ensures an a.e. finite-state deep sequence, as opposed to a mere i.o.
finite-state deep sequence.

Theorem 7. There exists an a.e. finite-state deep sequence.

Remark 4. If S ∈ {0, 1}ω is a.e. finite-state deep then it is i.o. finite-state deep.

The following result shows that being i.o. FS-deep is a weaker requirement
than being a.e. FS-deep.

Theorem 8. There exists a sequence S that is i.o. FS-deep but not a.e. FS-deep.

196 L. Jordon and P. Moser

5.1 Separation from ILPDC-depth

We next demonstrate a difference between i.o finite state depth [6] to our a.e.
pushdown depth notion by constructing a sequence that is i.o. finite-state deep
but not a.e. pushdown deep.

Theorem 9. There exists a sequence S such that S is i.o. finite-state deep, but
S is not a.e. ILPDC deep.

Proof. Fix some ε > 0 small. Split N into intervals I1, I2, I3, . . . such that |I1| =
2a for the smallest constant a such that 2a > 1

ε , and |Ij | = 2|I1|+···+|Ij−1| for
j ≥ 2. Define mj = min(Ij) and Mj = max(Ij). We construct the sequence
S = S1S2 · · · in stages, with Sj ∈ {0, 1}|Ij | for all j ∈ N. So Sj = S[mj . . . Mj].

For Sj , if j is even, Sj is devoted to some FST description bound length
k ∈ N (what occurs for j odd is discussed later in the proof.) Specifically for
each k, k is devoted to every substring Sj where for all n ≥ 0, j = 2k + n2k+1.
k = 1 is first devoted to S2 and every 4th substring after that. k = 2 is devoted
to S4 and every 8th interval after that, and so on.

Consider description length k. Let rk be a string of length |I2k | such that rk

is 3k-FS random in the sense that D3k
FS(rk) ≥ |rk| − 4k. Such a string exists as

there are at most |FST≤3k| · 2|rk|−4k < 2|rk| strings contradicting this. If Sj is

devoted to k, we set Sj = r

|Ij |
|rk|
k .

First we show S is i.o. FS-deep by examining prefixes of the form S1S2 · · · Sj ,
for j even. Let k ≥ 4 and suppose k is devoted to Sj . Then by Lemma 2

Dk
FS(S1S2 · · · Sj) ≥ D3k

FS(S1S2 · · · Sj−1) +
|Sj |
|rk|D

3k
FS(rk) ≥ |Sj |

|rk| (|rk| − 4k).

For all r ∈ {0, 1}∗, define the single state FST Tr = ({q0}, q0, δ, ν), where for
b ∈ {0, 1}, ν(q0, b) = r. Let k′ be large enough so that IFS, Trk

∈ FST≤k′
. Hence

Dk′
FS(Sj) ≤ |Sj |

|rk| and Dk′
FS(S1 · · · Sj−1) ≤ |S1 · · · Sj−1|. Let k̂ be from Lemma 3

such that

Dk̂
FS(S1S2 · · · Sj) ≤ 2Dk′

FS(S1 · · · Sj−1)+Dk′
FS(Sj)+2 ≤ 2|S1S2 · · · Sj−1|+ |Sj |

|rk| +2.

Therefore for infinitely many prefixes of the form S1S2 · · · Sj where Sj is
devoted to k

Dk
FS(S1S2 · · · Sj) − Dk̂

FS(S1S2 · · · Sj) ≥ |Sj |
|rk| (|rk| − 4k − 1)

− 2|S1S2 · · · Sj | − 2

= |Sj |(1 − 4k

|rk| − 1
|rk|) − 2 log |Sj | − 2

≥ |Sj |(1 − δ) (δ > 17ε)
≥ |S1S2 · · · Sj |(1 − α) (α > δ)

On the Difference Between Finite-State and Pushdown Depth 197

as 4k
|rk| is maximum for k = 4.

For 0 ≤ k ≤ 3, the above result follows from the fact that D0
FS(S � m) ≥

. . . ≥ D3
FS(S � m) ≥ D4

FS(S � m), when we take S � m = S1 · · · Sj to be such
that Sj is devoted to k = 4.

Furthermore S has a non-zero finite-state strong dimension as for k ≥ 4,
there exists infinitely many prefixes of the form S � m = S1 · · · Sj such that

Dk
FS(S � m) ≥ |Sj |(1 − 4k

|rk|) ≥ |Sj |(1 − 16ε) = (m − log |Sj |)(1 − 8ε) ≥ m(1 − ε̂),

where ε̂ > 16ε for j large. Therefore S is i.o. finite-state deep.
Next we show S is not a.e. ILPDC-deep.
Let C1, C2, . . . be an enumeration of all ILPDCs such that for a pair of

ILPDCs Cp, Cq, if p ≤ q, Cq has at least as many states as Cp. As the number
of machines with k states is bigger than k, we can say that Ck has at most k
states.

Henceforth we assume j is odd and examine Sj . Each odd j can be written
in the form 2k − 1 + n2k+1. Then for ILPDC Ck, Ck is devoted to every interval
of the form 2k − 1 + n2k+1, n ≥ 0.

If Sj is devoted to Ck, we set Sj to be a string y of length |Ij | from Lemma 1
that satisfies

|Ck(S1 · · · Sj)| − |Ck(S1 · · · Sj−1)| ≥ |Sj | − log k − 1.

Say S � m = S1 · · · Sj . Hence we have that for β1, β2 > 0, for j large

|Ck(S � m)| ≥ |Sj | − log k − 1 > |Sj |(1 − β1)
= (m − O(log m))(1 − β1) = m(1 − β2).

Hence for all k, for j large and for infinitely many prefixes of the form S1 · · · Sj

we have

|IPD(S1 · · · Sj)|− |Ck(S1 · · · Sj)| < |S1 · · · Sj |− |S1 · · · Sj |(1−β2) = |S1 · · · Sj |β2.

As β1, β2 can be made arbitrarily small, S is not a.e. ILPDC-deep.
��

6 Final Remarks

We introduced pushdown depth and showed our notion is a well behaved depth
notion that satisfies all basic depth properties. We showed that is different from
i.o. finite-state depth [6]. This gives more weight to the thesis that there is no
perfect depth notion, but rather a “best for the job” notion.

It would be interesting to see whether a converse can be proven, i.e. a sequence
that is ILPDC-deep but not i.o. finite state deep.

Acknowledgements. The authors would like to thank the anonymous referees for
their useful comments, specifically to explore how the chosen binary representations of
FSTs affects FS-depth.

198 L. Jordon and P. Moser

References

1. Antunes, L., Fortnow, L., van Melkebeek, D., Vinodchandran, N.: Computational
depth: concept and applications. Theoret. Comput. Sci. 354, 391–404 (2006)

2. Bennett, C.H.: Logical depth and physical complexity. In: Bennett, C. (ed.) The
Universal Turing Machine, A Half-Century Survey, pp. 227–257. Oxford University
Press, New York (1988)

3. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theoret. Com-
put. Sci. 412(41), 5668–5677 (2011)

4. Calude, C.S., Staiger, L., Stephan, F.: Finite state incompressible infinite
sequences. Inf. Comput. 247, 23–36 (2016)

5. Dai, J., Lathrop, J., Lutz, J., Mayordomo, E.: Finite-state dimension. Theoret.
Comput. Sci. 310, 1–33 (2004)

6. Doty, D., Moser, P.: Feasible depth. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.)
CiE 2007. LNCS, vol. 4497, pp. 228–237. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-73001-9 24

7. Huffman, D.A.: Canonical forms for information-lossless finite-state logical
machines. IRE Trans. Circ. Theory CT-6 (Special Supplement) 5(5), 41–59 (1959)

8. Kohavi, Z.: Switching and Finite Automata Theory, 2nd edn. McGraw-Hill,
New York (1978)

9. Mayordomo, E., Moser, P., Perifel, S.: Polylog space compression, pushdown com-
pression, and Lempel-Ziv are incomparable. Theory Comput. Syst. 48(4), 731–766
(2011)

10. Moser, P.: Polynomial depth, highness and lowness for E. Inf. Comput. (2019,
accepted)

11. Moser, P.: On the polynomial depth of various sets of random strings. Theor.
Comput. Sci. 477, 96–108 (2013)

12. Moser, P., Stephan, F.: Depth, highness and DNR degrees. Discrete Math. Theor.
Comput. Sci. 19(4) (2017)

https://doi.org/10.1007/978-3-540-73001-9_24
https://doi.org/10.1007/978-3-540-73001-9_24

Online Scheduling with Machine Cost
and a Quadratic Objective Function

J. Csirik1(B), Gy. Dósa2, and D. Kószó1

1 Department of Informatics, University of Szeged,
Árpád tér 2, Szeged 6720, Hungary

jcsirik@gmail.com
2 Department of Mathematics, University of Pannonia,

Egyetem u. 10, Veszprém 8200, Hungary

Abstract. We will consider a quadratic variant of online scheduling with
machine cost. Here, we have a sequence of independent jobs with positive
sizes. Jobs come one by one and we have to assign them irrevocably to a
machine without any knowledge about additional jobs that may follow
later on. Owing to this, the algorithm has no machine at first. When
a job arrives, we have the option to purchase a new machine and the
cost of purchasing a machine is a fixed constant. In previous studies, the
objective was to minimize the sum of the makespan and the cost of the
purchased machines. Now, we minimize the sum of squares of loads of the
machines and the cost paid to purchase them and we will prove that 4/3
is a general lower bound. After this, we will present a 4/3-competitive
algorithm with a detailed competitive analysis.

Keywords: Scheduling · Online algorithms · Analysis of algorithms

1 Introduction

Online scheduling with machine cost is a kind of decision making. In some dis-
ciplines it plays a key role. Decision making requires allocating resources to
activities which can appear in various forms. To make the best decision, we will
optimize one or more performance measures.

In this paper, we will consider a quadratic variant. The model we use was
first mentioned in [8]. Let us suppose we have a sequence of independent jobs.
They come one by one and each of them has a positive size. We will assign
them irrevocably to a machine without prior knowledge about other jobs that
may come later on. We have no machine at first. Then, when a job arrives, we
have the option to buy a new machine. The cost of purchasing a machine is a
fixed constant. In previous studies, the objective was to minimize the sum of the
makespan and the cost of purchased machines. Now, in our case, the objective
is to minimize the sum of squares of loads of the machines and the total sum
needed to purchase all the machines. Formally: Let A be an algorithm and J
be an input. Then the machines of A with respect to J , denoted by MA,J , is a
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 199–210, 2020.
https://doi.org/10.1007/978-3-030-38919-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_17

200 J. Csirik et al.

linearly ordered set of machines, used by the algorithm to schedule input J . The
total cost of A on J is defined by

A(J) =
∑

m∈MA,J

ld(m)2 + |MA,J |,

where |B| denotes the cardinality of a finite set B, i.e., the number of elements
of B and ld(m) is the sum of job sizes of machine m.

In this way, we would like to achieve a uniform loading of the machines. The
quadratic cost function was first introduced for single machine problems in [11]
and [10].

We will evaluate the quality of an online algorithm by using a competitive
analysis. Here, the standard is the optimal offline algorithm. In our case the value
of the optimum is well defined but the optimal solution is not unique so we may
have different optimal solutions with different number of machines. Now, let us
introduce some notations. We will denote an online algorithm by A, and one of
the optimal offline by OPT . Let J be a sequence of jobs. Next, let A(J) be the
total cost of an online algorithm A on a given sequence J . Similarly, let OPT (J)
denote the optimal offline cost. We will call an A online algorithm C-competitive
if A(J) ≤ C · OPT (J) for all J .

In [8], it was proved that the competitiveness of each online algorithm is at
least 4/3 with the original objective function. Moreover, a (1 +

√
5/2) ≈ 1.618-

competitive algorithm is given. In [1], an improved algorithm was presented with
a competitive ratio of (2

√
6+3)/5 ≈ 1.5798. In [4], it was shown that

√
2−ε is a

lower bound of the problem. A (2 +
√

7/3) ≈ 1.5486-competitive algorithm was
also introduced. In addition, it was shown that by applying the lower bounds
on the optimal objective value introduced earlier, no algorithm can be proven to
be C-competitive with any C ≤ 1.5. Also, some other variants of the problem
were studied in [2,5,6,9]. In [7], the original model was extended with a more
general machine cost function. In [3], another possible modification of the model
was considered.

The structure of the paper is as follows. In Sect. 2, we will introduce the
notations used in this study. In Sect. 3, we will present a general lower bound of
4/3. Lastly, in Sect. 4, we will give a 4/3-competitive algorithm and we will also
prove its competitiveness.

2 Preliminaries

Here, we will use the following notations. We shall denote the ith job by ji and
its size by pi (also known as the processing time). And here when we speak about
a job size, we will use size and processing time interchangeably.

Let q be
√

2/2 ≈ 0.707. We will consider three different types of jobs. We
will call a job small if pi ≤ q, medium if q < pi ≤ 2q, and big if 2q < pi. We will
denote the total load by P (= P (J)) =

∑
ji∈J pi and the total load of all small

jobs by Ps(= Ps(J)) =
∑

pi is small pi. Note that P ≥ Ps.

Online Scheduling with Machine Cost and a Quadratic Objective Function 201

In our algorithm, we will use two types of machines. The first type is called
SM, which can receive only small and medium jobs, and its maximum possible
load is 2q. The second type is called B, which can process only big jobs (big
machines). In the proof we further divide the SM machines into those that
process only small jobs called small machines (S) and the remaining machines
from SM are called medium machines (M).

3 Lower Bound

Proposition 1. Consider two machines with loads l1 ≥ l2. If we reschedule any
job with size x < l2 from the second machine to the first one, then the cost will
grow.

Proof. Evidently, l21 + l22 < (l1 + x)2 + (l2 − x)2 = l21 + l22 + 2x(l1 − l2 + x), as
2x(l1 − l2 + x) > 0 since x > 0 and l1 ≥ l2. ��
Proposition 2. 2P is a lower bound of the cost of the optimal schedule.

Proof. We will suppose that OPT can distribute P equally among the m
machines. In this case f(m) = m · (P/m)2 + m gives the total cost of OPT .
This function has its minimum at m = P . So, if we replace m by P , then we
will get the optimal value of 2P . If we cannot distribute the loads equally on the
machines, because of the previous proposition the cost will be larger. ��
Lemma 1. An online algorithm which never purchases a second machine is not
constant competitive.

Proof. We prove our statement by contradiction. Let A be a C-competitive
online algorithm such that it uses one machine for each input I. Let J be an
input having k jobs, each of size 1. Then the optimum will use one machine for
each job and so it has a cost of 2k. Algorithm A will use only one machine and
so it will have a cost of 1 + k2. But then A(J)/OPT (J) = k/2 + 1/(2k), which
is larger than C if k is large enough. This leads to contradiction. ��
Proposition 3. Let J be a finite sequence of arbitrarily small ε jobs, having an
even k number of jobs. Then OPT purchases at least two machines if

√
2 ≤ P .

Proof. To prove our statement, we have to check whether the cost of having two
machines is smaller than having only one. If k is even, this means that

2 · (P/2)2 + 2 ≤ P 2 + 1, (1)

which is exactly valid if
√

2 ≤ P . ��
Theorem 1. No online algorithm has a competitive ratio smaller than 4/3.

Proof. Let A be an online algorithm and J be a finite sequence of arbitrarily
small ε jobs. The sequence terminates depending on the situation where A pur-
chases the second machine. If at the moment of purchasing the second machine

202 J. Csirik et al.

the number of jobs in J is even then we stop. If the number of jobs is odd at this
moment then the input will get one more small job. The best possible algorithm
A will schedule this last job to the second machine. (Clearly, A will purchase
a second machine since A is constant competitive and because of Lemma 1).
We now have an even number of jobs in our input so by Proposition 3, OPT
purchases at least two machines if

√
2 ≤ P . We will only describe in detail the

case where the second machine of A has one small job - the other case can be
handled similarly.

Thus, we consider the following two cases with respect to P .

1. If P ≤ √
2, then we have

lim
ε→0+

A(J)
OPT (J)

= lim
ε→0+

(P − ε)2 + ε2 + 2
P 2 + 1

=
P 2 + 2
P 2 + 1

≥ 4/3 .

2. If
√

2 < P , then we have

lim
ε→0+

A(J)
OPT (J)

≥ lim
ε→0+

(P − ε)2 + ε2 + 2
2 · (P

2)2 + 2

=
2 · P 2 + 4
P 2 + 4

≥ 4/3 .

��
Lemma 2. Let r, s, t1 and t2 be positive values with 4/3 < r/s, t1 ≤ (4/3)t2 < r
and s > t2. Then 4/3 < (r − t1)/(s − t2).

Proof. We will prove this by contradiction. Let us suppose that

(r − t1)/(s − t2) ≤ 4/3.

Then from the conditions

(r − (4/3)t2)/(s − t2) ≤ (r − t1)/(s − t2)

or equivalently 3r − 4t2 ≤ 4s − 4t2, i.e. r/s ≤ 4/3, we arrive at a contradiction. ��

4 Algorithm

4.1 Description

We will denote the following algorithm by ALG. Algorithm ALG applies the
bin packing algorithm First Fit (FF for short) as a slave algorithm. In the bin
packing problem we are given items with positive sizes and unit capacity bins;
and we would like to pack the items into as few bins as possible, but the bin
capacity cannot be exceeded. Hence, in any bin the total size of items is at most
one unit. The FF algorithm packs the items one by one, and the next item is
always packed into the first bin it fits. If it does not fit into any bin, we open a
new bin for it and pack the item into this new bin.

Online Scheduling with Machine Cost and a Quadratic Objective Function 203

Algorithm ALG

1. If a small or a medium job arrives, then we will use an SM machine (its
maximum possible load is 2q). We will apply the FirstFit algorithm to decide
which machine gets the job. (If there is no SM machine that has enough free
space, then we will purchase a new one.)

2. If a big job comes, then we will schedule this to a B machine. We will not
schedule any other job to this machine.

We will suppose that ALG uses a small, b medium and c big machines.
In the rest of the paper, we will use the following relaxed problem to estimate

OPT (J). We will permit preemption for every small job, but not for any medium
or big job. Preemption means that the execution of a job can be divided into non-
overlapping time slots, and these parts can be executed by different machines.

We will denote the optimal solution of the relaxed problem by OPTR(J) for
every J and we will call it the relaxed optimum. We know that OPTR(J) ≤
OPT (J).

Theorem 2. ALG(J)/OPT (J) ≤ 4/3 for every input J .

Proof. It is enough to prove that ALG(J)/OPTR(J) ≤ 4/3 for every input J .
First, let us suppose that the opposite is true. Take the case ALG(J)/OPTR(J) >
4/3 for an input J . Input J may contain small, medium and big jobs. If input J
contains a big job, and we can leave out one of the big jobs so that for the remaining
J ALG(J)/OPTR(J) > 4/3 is still valid, then we will leave out this job and we
will repeat this step. It is possible that not all big jobs can be removed. Now, we
may suppose that J is the minimal counterexample in the sense of not having a
removable big job.

The general flow of our proof will be the following. In the next subsection
we will prove some properties of the relaxed optimum and the ALG algorithm.
Next, we will give some reduction steps which can be used to modify the minimal
counterexample so that its structure is simpler, but it remains a counterexample.
In the last subsection we will show that the final reduced example cannot be a
counterexample and so the proof is completed.

4.2 Properties of the Relaxed Optimum and Algorithm ALG

First we will prove some properties of the relaxed optimum.

Lemma 3. Consider the (relaxed) optimal scheduling of a minimal counterex-
ample J . In this case, there is no big job which uses a machine on its own.

Proof. Suppose a big job X with size x uses a machine alone. This job is also
alone in ALG. Let J ′ = J \ {X}. It follows from Lemma 2 that

ALG(J ′)
OPT (J ′)

=
ALG(J) − 1 − x2

OPT (J) − 1 − x2
> 4/3,

which contradicts the fact that J is a minimal counterexample. ��

204 J. Csirik et al.

Lemma 4. Consider the (relaxed) optimal schedule of J . In this case, there is
no machine whose jobs can be distributed into two sets and the load of each set
is greater than q.

Proof. Suppose the load of a machine can be distributed into sets S1 and S2

with loads x1, x2 > q. The total cost of this machine is 1 + (x1 + x2)2. If we
schedule S1 to a new machine and S2 to a second new machine, then the total
cost of the two machines is 2+x2

1+x2
2, which is obviously less than 1+(x1+x2)2,

and hence it is a contradiction. ��
The following corollary is a consequence of Lemma 4.

Corollary 1. In the case of a relaxed optimal schedule:

(i) Any two big or medium jobs are scheduled to two different machines;
(ii) If a machine processes a big or a medium job, then the rest load is at most

q, which can come from only small jobs;
(iii) If a machine processes only small jobs, then its total load is at most 2q.

Proof. Item (i) and item (ii) are immediate consequences of Lemma 4. To prove
item (iii) we can use the preemption possibilities of small jobs: if the total load
is larger then 2q then we can split this up into two parts where each of them is
larger than q and then we can use Lemma 4. ��
Proposition 4. In the case of a relaxed optimal schedule there are no two
machines, each with a load less than q.

Proof. Suppose we have two machines with loads x1, x2 < q. Then the cost of
these two machines is 2 + x2

1 + x2
2, which is obviously more than 1 + (x1 + x2)2

and hence there is a contradiction. ��
Next we will prove some properties of ALG.

Lemma 5. Consider any three small machines of ALG, each having at least
two jobs. In this case, the total load of the three small machines is greater than
or equal to 4q and at most one of the machines can have a load <(4/3)q.

Proof. Consider the last machine of the three. We will suppose that this machine
has a load of <(4/3)q, and let this load be (4/3)q − 2x for some 0 < x < (2/3)q.
Then, the size of the smallest job is at most (2/3)q − x on this machine. Next,
the load of each of the first two machines is at least (4/3)q +x since the smallest
job of the third machine does not fit into the first two machines as we apply
First Fit packing and the load of these machines cannot be larger then 2q. So in
this case the total load is bigger than 4q and only the third machine has a load
of <(4/3)q.

After this we assume that the load of the third machine is at least (4/3)q.
Now we suppose that the load of the second machine is <(4/3)q. Let this

load be (4/3)q − 2x for some 0 < x < (2/3)q. Then, the size of the smallest
job is at most (2/3)q − x on this machine and this does not fit into the first

Online Scheduling with Machine Cost and a Quadratic Objective Function 205

machine, so the first machine has a load of at least (4/3)q + x. The load of the
third machine is at least (4/3)q + 4x, because there are two jobs and they do
not fit into the second machine. So the total load of the three machines is >4q
and only the second machine has a load of <(4/3)q.

After this we assume that the load of the second and the third machine is at
least (4/3)q.

If the load of the first machine is less than (4/3)q, then let this load be
(4/3)q − 2x for some 0 < x < (2/3)q. Then the load of the second and the third
machine is at least (4/3)q + 4x, because there are two jobs and they do not fit
into the second machine. So the total load of the three machines is >4q and only
the first machine has a load of <(4/3)q. ��
Lemma 6. Take the schedule of ALG. If a ≥ 2, then Ps ≥ 2q + (4q/3) · (a− 2).

Proof. If a = 2, then the Lemma is clearly true as we start the second small
machine when the load of the first small machine and the next small job together
is larger than 2q.

Let us suppose that a = 3. If any of the three small machines has at least
two jobs, the assertion follows from Lemma 5. Suppose there is a machine with
only one job. There can be only one such machine as the total load of any two
small machines is bigger than 2q, but the size of any small job is at most q. This
is clearly the third (latest) machine. Now let us take the first two machines of
three. If one of them has a load ≥(4/3)q, then we are done because the other
and the third machine have altogether a load of >2q. If the first two machines
have a load <(4/3)q then the second machine has a load of <(4/3)q, and let this
load be (4/3)q − 2x for some 0 < x < (2/3)q. Then, the size of the smallest job
is at most (2/3)q − x on this machine. Next, the load of the first machine is at
least (4/3)q + x since the smallest job of the second machine does not fit into
the first machine as we use First Fit packing and the schedule of these machines
cannot be larger then 2q. So the first machine has a load of >(4/3)q and we are
done.

Now we will suppose that a ≥ 4. If every small machine has at least two jobs
then the total load is at least (4/3)q · a, which is more than what we need in
the lemma. Otherwise there is a small machine with one job, but the load of
any other small machine is greater than (4/3)q. Now the total load of the small
machine with one job and any other small machine is bigger than 2q, and the
load of any other small machine is bigger than (4/3)q. Hence, we are done. ��

4.3 Modifying the Two Schedules

We will suppose that ALG(J)/OPTR(J) > 4/3 for a fixed minimal counterex-
ample J . We will reduce and modify some jobs in J . We shall rename ALG to
A0 and OPTR to O0. Clearly, A0/O0 > 4/3. We also know that every machine
has at most one medium job or a big job: in the relaxed optimal packing because
of Corollary 1; and in the ALG because of the scheduling rule.

Now we will modify A0 and O0 in several simple steps. After each step their
ratio will remain larger than 4/3.

206 J. Csirik et al.

Step 1: We apply this reduction step only if there is at least one big job,
otherwise we go directly to Step 2. Therefore suppose there is a big job. We
will reduce the size of every big job to 2q =

√
2 in both A0 and O0. We will

denote the new (reduced) schedules by A1 and O1. We know that A1 ≤ A0 and
O1 ≤ O0. We also note that A0 − A1 ≤ O0 − O1. To show this, let us consider a
big job with size 2q+x with x > 0. In O0, the machine processing this particular
job has a load 2q + x + y with y > 0 because a big machine of O0 contains small
job(s)s as well. After reducing the job size the load of this particular machine
will be 2q + y. In A1, the new load is 2q instead of 2q + x. The difference of
squares in A1 is 4qx+x2. In O1, (2q +x+ y)2 becomes (2q + y)2 with difference
2(2q + y)x + x2. Then we get from Lemma 2 that A1/O1 > 4/3.

Step 2: We will decrease the total cost of O1 by using 2P instead of the
actual cost of O1. Since 2P ≤ O1 by Proposition 2, clearly A1/(2P) > 4/3. Thus
let O2 = 2P . We do not change in this step A1, hence we let A2 = A1.

Step 3: In A2, we will reduce the load of every medium machine to q by
decreasing the size of the medium job to exactly q and deleting the small job(s)
here if they exist. We will call it A3. Due to Lemma 2, A3/O3 > 4/3 where
O3 = 2P . To show this, let us consider a medium machine. Its total load is
(q + x) with 0 < x ≤ q. After the reduction, it is only q. So the difference
in cost is 2qx + x2. 2P is then decreased by 2x. To use Lemma 2 we need
2qx + x2 ≤ (4/3) · 2x, i.e. 2q + x ≤ 8/3, which is true, because x ≤ q. After this
step on all medium machines in A3, we will have one medium size job of size q.

Step 4: Now, we will change the loads of small machines of A3. Let the
new schedule be A4. Next, A4 ≥ A3, but P is not changed. Let us consider two
small machines of A3. We will move some loads from one to the other, until one
machine has a load 2q or the other one has a load of 0. We notice that here
we can use a relaxation regarding small jobs, as it will only increase the cost of
ALG. The total cost will then increase. Now, in A4, except at most one, every
small machine has a load of exactly 2q or 0. If we have the small machine with
a load different from 0 and 2q, then we will denote its load by x. Note that we
keep the machines with load 0, because the cost of purchasing these machines is
included in the total cost. According to the lower bound of Lemma 6,

– if a = 3k + 2, then we have at least 2k + 1 machines with load of 2q,
– if a = 3k + 3, then we have at least 2k + 1 machines with load of 2q. If there

are exactly 2k + 1 machines with this load, then at least one further machine
has load of at least (4/3)q,

– if a = 3k + 1, k ≥ 1, then we have at least 2k machines with load of 2q. If
there are exactly 2k machines with this load, then at least one other machine
has a load of at least (2/3)q.

Step 5: In the last step, we will change the load of those small machines
whose load is greater than the lower bound of Lemma 6. From A4, we will get
A5 and from O4 we will get O5.

This means that

– if a = 3k + 2 then we keep 2k + 1 machines with load of 2q and we set the
size of all other jobs to zero;

Online Scheduling with Machine Cost and a Quadratic Objective Function 207

– if a = 3k + 3 then we keep 2k + 1 machines with load of 2q and one machine
with load of q and we set all other sizes to zero;

– if a = 3k+1, k ≥ 1 then we keep 2k machines with load of 2q and one machine
with load of (2/3)q and we set all other sizes to zero.

First we note that it may happen that more machines will have a full load
of 2q than we need in the proof (whose total load is provided by Lemma 6). In
this case we will delete the jobs of these small machines as follows.

– Some load of 0 ≤ x ≤ 2q is reduced to zero. In this case the cost of A4 will
decrease by x2 and the lower bound of the optimal algorithm will decrease
by 2x.

– The load is (4/3)q ≤ x ≤ 2q and it is decreased to q, or the load is (2/3)q ≤
x ≤ 2q and it is decreased to (2/3)q.

It is easy to see that in both cases Lemma 2 can be applied and A5/O5 > 4/3
still holds.

4.4 Competitivness

So we reduced and modified our minimal counterexample. We proved that the
input after Step 5 is still a counterexample. Now we will prove that it cannot be
a counterexample.

After the reduction we have a ≥ 0 small machines. Among them, there a1

such machines where the load of a machine is exactly 2q, and a2 machines with
load 0. Moreover, we have at most one additional small machine; and if it exists
then its load is denoted by x (2q ≥ x ≥ 0), and according to the subcase above,
here x = q or x = (2/3)q.

We also know that in the A5 schedule the load of the medium machines is
exactly q, and the load of the big machines is exactly 2q (where q = 1/

√
2). To

get the contradiction, we have to prove the following inequality:

a + b + c + a1 · (2q)2 + x2 + b · q2 + c · (2q)2 ≤ 4
3

· 2(a1 · 2q + x + b · q + c · 2q),

where on the right hand side we used the 2P lower bound of the optimum value
from Proposition 2, which is actually the same as O5. This inequality (using
q2 = 1/2) leads after simplification to

a + 2a1 + x2 +
3
2
(b + 2c) ≤ 4

√
2

3
(2a1) +

8
3

· x +
4
√

2
3

(b + 2c). (2)

Here the coefficient of (b + 2c) is 4
√
2

3 ≈ 1.8856 on the right hand side, while
it is (only) 1.5 on the left hand side. This means that if the inequality is valid for
an input with certain (b + 2c) value, then it is also valid for the modified input
where the small machines are the same (after the reduction) but the value of
(b+2c) is bigger. Hence we will consider our main inequality (2) only if b+2c ≤ 1.
If the inequality is valid even for b + 2c = 0, then we are done (as it is also valid
for bigger values of b+2c). Otherwise we will consider the case where b+2c = 1.

208 J. Csirik et al.

Now we will consider three cases according to the remainder of a divided
by three. Several small cases will remain, and these remaining cases will be
considered so that instead of the lower bound of the optimum value (i.e. 2P)
sometimes it will be easier to compare the objective value of the algorithm with
the objective value of the optimum.

Case 1, a = 3k + 2; moreover k ≥ 1 or b + 2c ≥ 1. In this case according to
the reduction Step 5 we get that a1 = 2k +1 so among the small machines there
are 2k +1 machines with load 2q and there are k +1 machines with 0 load (here
x = 0). The total load of the small machines (after the reduction) is (2k+1) ·2q.
In the case b = c = 0, (2) looks like

3k + 2 + 2(2k + 1) ≤ 8
√

2
3

· (2k + 1)

7k + 4 ≤ 16
√

2
3

k +
8
√

2
3

.

If k = 1, the inequality looks like 11 ≤ 8
√

2 ≈ 11.314, and since the coefficient
of k on the right hand side is 16

√
2

3 ≈ 7.5425 > 7, the inequality holds for any
k ≥ 1. If k = 0 then we may assume that b + 2c = 1, so (as we saw above) it
suffices to show that 4 + 3/2 ≤ 8

√
2

3 + 4
√
2

3 = 5.6569. As this holds once again,
we are done.

Case 2, a = 3k + 3, where k ≥ 0. We suppose that b = c = 0. In this case
after the reduction we have a1 = 2k + 1 and x = q. Then (2) looks like the
following:

(3k + 3) + 2(2k + 1) +
1
2

≤ 4
√

2
3

(4k + 2) + (4/3)(
√

2),

which is

7k + 5.5 ≤ 16
√

2
3

k + 4
√

2

and for k = 0 it means 5.5 < 4
√

2 = 5.656, which is true.
Case 3, a = 3k + 1, where k ≥ 1. We suppose that b = c = 0. After the

reduction Step 5 we have 2k machines with load 2q, one machine with load 2
3q,

and k machines with load 0. We need to show that

(3k + 1) + 2 · (2k) +
2
9

≤ 4
√

2
3

(4k) +
8
9

·
√

2

i.e.

7k + 11/9 ≤ 16
√

2
3

k +
8
√

2
9

,

where it is enough to examine the case k = 1. Here, the inequality looks like
8.222 ≈ 7 + 11/9 ≤ 16

√
2

3 + 8
√
2

9 = 8.799, which is true.
At this point we have seen that the algorithm is at most (4/3)-competitive

in the above cases. Below, we will continue with the cases not yet covered. First,
let us see what cases have already been investigated, and what remain:

Online Scheduling with Machine Cost and a Quadratic Objective Function 209

Covered Remain

Case 1: a = 3k + 2; where k ≥ 1 or b+ 2c > 0 k = 0 and b = c = 0

Case 2: a = 3k + 3, where k ≥ 0 –

Case 3: a = 3k + 1, where k ≥ 1 k = 0

We realize that two cases remain. One possibility is that there are two small
machines, and no other machine (first row in the table, Case R1 below). The
only other possibility is that there is exactly one small machine, and there are
possibly several medium and/or big machines (last row in the table, Case R2
below). If there is no medium and no big machine the schedule is optimal; so we
can assume that there is also at least one machine which is not small.

Case R1, there are two small machines and no other machine. Let us consider
the moment when the first job is assigned to the second (small) machine by the
algorithm. At that moment the sum of the loads of the machines is bigger than
2q. After applying the reduction let the loads of the two machines be 2q and
x, respectively. Here 0 < x ≤ 2q =

√
2. The objective value of the algorithm is

2 + x2 + (2q)2 = 4 + x2.
Suppose that in the optimal solution the jobs are assigned to one machine.

Then OPT = 1 + (x + 2q)2 ≥ 1 + 2 + x2 = 3 + x2, and we are done. If they are
assigned to two machines then OPT ≥ 2 + (2q+x)2

2 = 2 + 2+4qx+x2

2 = 3 + x2/2 +
2qx ≥ 3+x2 and we are done again. If they are assigned to three machines, then
OPT ≥ 3+ (2q+x)2

3 , thus 4
3OPT ≥ 4+ 4

9 (2+4qx+x2) > 4+ 4
9 (2x·x+x2) > 4+x2.

It is easy to see that the optimal solution will not use four or more machines.
Case R2, a = 1 and b+c > 0. After simple calculation we get that our main

inequality (2) is valid if b + 2c ≥ 3. Thus it remains for us to consider the case
where b + 2c ≤ 2. Within this we will distinguish three subcases, and compare
the objective value of the algorithm to the optimum value (instead of its lower
bound) as follows.

Subcase R2.1. a = 1, b = 0, c = 1. Because the reduction, the size of the big
job is y =

√
2. The total size of the small jobs is x for some 0 < x ≤ 2q =

√
2.

The objective value of the algorithm is 2 + x2 + y2 = 4 + x2. Suppose that
in the optimal solution the jobs are assigned to one machine. Then OPT =
1+(x+ y)2 ≥ 1+x2 + y2 = 3+x2, and we are done. If they are assigned to two
machines then the schedule of the algorithm is optimal.

Subcase R2.2. a = 1, b = 2, c = 0. In this case the reduction should be
applied in a different way. Note that the total load of any two machines is more
than 2q using the algorithmic rule. Hence let us perform the reduction so that we
decrease the load of some machine, and at the same time increase the load of one
other machine. During this time, the load of some machine will reach 2q. After
this we perform another reduction to make the loads of the two other machines as
unbalanced as possible. The next two cases can happen after the reduction.

a, The loads are 0, 2q and q + x with some 0 < x ≤ q.
b, The loads are x, 2q and 2q with some 0 < x ≤ 2q.

210 J. Csirik et al.

Note that in the optimal solution the two medium jobs are assigned to dif-
ferent machines. We make the calculations in these cases one by one.

Case a: The objective value of the algorithm is 3 + 2 + x2 = 5 + x2 ≤ 5.5.
Let us see the optimal value. If the jobs are assigned to two machines then
OPT ≥ 2 + (3q+x)2

2 = 2 + (9/2+6qx+x2)
2 = 17/4 + x2/2 + 3qx, thus 4

3OPT ≥
17/3+ 2

3x2+4qx > 5+x2. If they are assigned to three machines, then 4
3OPT ≥

4
3 (3 + 9/2

3) = 6. Optimum will certainly not use four or more machines.
Case b: The objective value of the algorithm is 3 + 2 + 2 + x2 = 7 + x2 ≤ 9.

Let us see the optimal value. If the jobs are assigned to two machines then
OPT ≥ 2+ (4q+x)2

2 = 2+ (8+8qx+x2)
2 = 6+x2/2+4qx, similarly as before, we are

done. If they are assigned to three machines, then 4
3OPT ≥ 4

3 (3 + 8+8qx+x2

3) =
4
9x2+ 32

9 qx+ 68
9 , we are done. If they are assigned to four machines, then 4

3OPT ≥
4
3 (4 + 8+8qx+x2

4) = 1
3x2 + 8

3qx + 8 which is enough. Optimum will certainly not
use five or more machines.

Subcase R2.3. a = 1, b = 1, c = 0. In this case the reduction is similar
to that of performed in case R1, namely we decrease the load of the small
machine and increase the load of the medium machine. The load of the medium
machine will grow to reach 2q. Let the load of the small machine be x for some
0 < x ≤ 2q =

√
2. Then we have that the value of the objective is 4 + x2, and

from this point the proof is the same.

References

1. Dósa, Gy., He, Y.: Better online algorithms for scheduling with machine cost. SIAM
J. Comput. 33(5), 1035–1051 (2004)

2. Dósa, Gy., He, Y.: Scheduling with machine cost and rejection. J. Comb. Optim.
12(4), 337–350 (2006)

3. Dósa, Gy., Imreh, Cs.: The generalization of scheduling with machine cost. Theoret.
Comput. Sci. 510, 102–110 (2013)

4. Dósa, Gy., Tan, Z.: New upper and lower bounds for online scheduling with machine
cost. Discrete Optim. 7(3), 125–135 (2010)

5. Han, S., Jiang, Y., Hu, J.: Online algorithms for scheduling with machine activation
cost on two uniform machines. J. Zhejiang Univ.-Sci. A 8(1), 127–133 (2007)

6. He, Y., Cai, S.: Semi-online scheduling with machine cost. J. Comput. Sci. Technol.
17(6), 781–787 (2002)

7. Imreh, Cs.: Online scheduling with general machine cost functions. Discrete Appl.
Math. 157(9), 2070–2077 (2009)

8. Imreh, C., Noga, J.: Scheduling with machine cost. In: Hochbaum, D.S., Jansen, K.,
Rolim, J.D.P., Sinclair, A. (eds.) APPROX/RANDOM -1999. LNCS, vol. 1671, pp.
168–176. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48413-
4 18

9. Nagy-György, J., Imreh, Cs.: Online scheduling with machine cost and rejection.
Discrete Appl. Math. 155(18), 2546–2554 (2007)

10. Szwarc, W., Mukhopadhyay, S.K.: Minimizing a quadratic cost function of waiting
times in single-machine scheduling. J. Oper. Res. Soc. 46(6), 753–761 (1995)

11. Townsend, W.: The single machine problem with quadratic penalty function of
completion times: a branch-and-bound solution. Manage. Sci. 24(5), 530–534
(1978)

https://doi.org/10.1007/978-3-540-48413-4_18
https://doi.org/10.1007/978-3-540-48413-4_18

Parallel Duel-and-Sweep Algorithm
for the Order-Preserving

Pattern Matching

Davaajav Jargalsaikhan(B), Diptarama Hendrian, Ryo Yoshinaka,
and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University, Sendai, Japan
davaajav@ecei.tohoku.ac.jp, {diptarama,ryoshinaka,ayumis}@tohoku.ac.jp

Abstract. Given a text and a pattern over an alphabet, the classic exact
matching problem searches for all occurrences of pattern P in text T .
Unlike the exact matching problem, order-preserving pattern matching
considers the relative order of elements, rather than their exact values.
In this paper, we propose the first parallel algorithm for the OPPM
problem. Our algorithm is based on the “duel-and-sweep” algorithm.
For a pattern of length m and a text of length n, our algorithm runs in
O(log3 m) time and O(n log3 m) work on the Priority CRCW PRAM.

Keywords: String matching · Order-preserving pattern matching ·
Parallel algorithm

1 Introduction

Given a text and a pattern, the exact matching problem searches for all occur-
rence positions of the pattern in the text. Unlike the exact matching problem, the
order-preserving pattern matching (OPPM) problem [5,6] considers the relative
order of elements, rather than their real values. For instance, for exact matching
(12, 35, 5) �= (25, 30, 21). However, for OPPM, (12, 35, 5) matches (25, 30, 21),
since the relative order of the elements is same. Namely, the first element is the
second smallest, the second element is the largest and the third element is the
smallest among (12, 35, 5), (25, 30, 21), respectively. Order-preserving matching
has gained much interest in recent years, due to its applicability in problems
where the relative order matters, such as share prices in stock markets, weather
data or musical notes.

There are several serial OPPM algorithms proposed in recent years.
Kubica et al. [6] and Kim et al. [5] independently proposed a solution for the
OPPM problem based on the KMP algorithm. Cho et al. [1] brought forward
another algorithm based on the Horspool algorithm that uses q-grams. Jargal-
saikhan et al. [4] proposed a duel-and-sweep algorithm for the OPPM problem.

Actually, duel-and-sweep is a technique developed for parallel pattern match-
ing algorithms. The first duel-and-sweep algorithm was proposed by Vishkin [8]

This research was partially supported by JSPS KAKENHI Grant Numbers JP15H05-
706 and JP19K20208.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 211–222, 2020.
https://doi.org/10.1007/978-3-030-38919-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_18

212 D. Jargalsaikhan et al.

as a parallel algorithm for exact pattern matching. The goal of this paper is to
propose a parallel algorithm for the OPPM problem based on those algorithms
by Jargalsaikhan et al. [4] and Vishkin [8].

Adapting an exact matching algorithm to OPPM is no trivial task. The
difficulty of OPPM mainly comes from the fact that we cannot determine the
isomorphism by comparing the symbols in the text and the pattern on each
position independently; instead, we have to consider their respective relative
orders in the pattern and in the text. For instance, consider strings S1, S2, T1,
T2 of equal length. Suppose that S1 matches T1 and S2 matches T2. In exact
matching, the concatenation of S1 and S2 will match that of T1 and T2. In
OPPM, the two concatenations will not necessarily match each other.

We choose the Priority Concurrent Read Concurrent Write Parallel Random-
Access Machines (P-CRCW PRAM) [3] to model the parallel algorithm. Given
the text of length n and the pattern of length m, our algorithm runs in O(log3 m)
time using O(n log3 m) work on the P-CRCW PRAM. To the best of our knowl-
edge, this is the first parallel algorithm for solving the OPPM problem.

2 Preliminaries

We use Σ to denote an alphabet of integer symbols such that the comparison
of any two symbols can be done in constant time. Σ∗ denotes the set of strings
over Σ. For a string S ∈ Σ∗, we denote the i-th element of S by S[i] and the
substring of S that starts at the location i and ends at j by S[i :j]. We say that
two strings S and S′ of equal length are order-isomorphic, written S ≈ S′, if

S[i] ≤ S[j] ⇐⇒ S′[i] ≤ S′[j] for all 1 ≤ i, j ≤ |S|.

For instance, (12, 35, 5) ≈ (25, 30, 21) �≈ (11, 13, 20). If S �≈ S′, then, there must
exist a pair 〈i, j〉 of locations (i < j) such that the condition above does not hold.
We call such 〈i, j〉 a mismatch location pair for S and S′. We say that a mismatch
location pair 〈i, j〉 is tight if S[1 :j − 1] ≈ S′[1 :j − 1] and S[1 :j] �≈ S′[1 :j].

Given a text and a pattern, in the OPPM problem, we find all positions of
substrings of the text that are order-isomorphic to the pattern.

Definition 1 (OPPM problem).

Input: A text T ∈ Σ∗ of length n and a pattern P ∈ Σ∗ of length m ≤ n.
Output: All positions j of the text such that T [j :j + m − 1] ≈ P .

In the remainder of this paper, we fix a text T of length n and a pattern P of
length m. For an integer x with 1 ≤ x ≤ n − m + 1, a candidate is the substring
of T starting from x of length m, i.e., Tx = T [x :x+m−1]. When a candidate Tx

is order-isomorphic to the pattern, we call x an occurrence of the pattern inside
the text.

Definition 2 (Block-based period). Given a string S of length n, an integer
p is called a block-based period of S, if

S[1 :p] ≈ S[kp + 1:kp + p] for k ∈ {1, . . . ,
n/p� − 1} and,
S[1 :r] ≈ S[n − r + 1:n] for r = n mod p.

Parallel Duel-and-Sweep Algorithm 213

String S of length n is block-periodic, if there exists a block-based period p ≥ 2
of S such that n ≥ 2p. Otherwise, it is block-aperiodic.

Definition 3 (Border-based period). Given a string S of length n, an inte-
ger p is called a border-based period of S if S[1 :n − p] ≈ S[p + 1:n].

If p is a border-based period of S, then p is also a block-based period
of S [7]. The reverse does not necessarily hold true. For instance, S =
(13, 7, 10, 21, 14, 18, 22, 15, 20, 28, 11, 25) has a block-based period 3, since S[1 :
3] ≈ S[4 : 6] ≈ S[7 : 9] ≈ S[10 : 12]. However, S does not have a border-based
period 3, since S[1 : 9] �≈ S[4 : 12], for which 〈1, 5〉 and 〈3, 5〉 are tight mismatch
location pairs.

Lemma 1. If p > 0 is a border-based period of S, then all multiples of p are
also border-based periods of S.

We use LmaxP and LminP arrays for the pattern defined by Kubica et al. [6].
Using LmaxP and LminP , the order-isomorphism check between P and some
other string S can be performed in O(m) time in serial.

LmaxP [i] = j (j < i) if P [j] = max
k<i

{P [k] | P [k] ≤ P [i]},

LminP [i] = j (j < i) if P [j] = min
k<i

{P [k] | P [k] ≥ P [i]}.

If there are more than one such j, any of them can be taken. If there is no such
j then we denote it as LminP [i] = 0 and LmaxP [i] = 0.

In this paper, we choose the P-CRCW PRAM to model the parallel algo-
rithm. The P-CRCW PRAM allows simultaneous reads and writes into the same
memory location, and on the occasion of multiple writes, the processor with the
smallest index succeeds. We also assume that n = 2 m. Larger texts can be cut
into overlapping pieces of length 2 m and processed independently.

3 Parallel Duel-and-Sweep Algorithm for the OPPM
Problem

First, we will give the general description of the duel-and-sweep algorithm for
OPPM. The descriptions given in the beginning of this section are applicable
to both serial and parallel versions of the algorithm. Then, in the following
subsections we will explain our parallel algorithm.

The duel-and-sweep algorithm screens all candidates in two stages, called
the dueling and sweeping stages. The dueling stage prunes the candidates, until
the remaining candidates are pairwise consistent. The sweeping stage “sweeps”
through the remaining candidates to determine pattern occurrences. Taking
advantage of the fact that the remaining candidates are pairwise consistent,
the sweeping stage can be done efficiently.

Definition 4 (Candidate consistency for OPPM). Two candidates Tx and
Tx+a are consistent, for 0 ≤ a < m/2 if P [a+1:m] ≈ P [1 :m−a], and a ≥ m/2.
Otherwise we say that Tx and Tx+a are not consistent.

214 D. Jargalsaikhan et al.

Algorithm 1. Dueling between x and y w.r.t. S, assuming that x < y

1 Function Dueling(x, y, S) // returns the surviving candidate

2 〈w1, w2〉 = W [y − x];
3 if 〈w1, w2〉 = 〈0, 0〉 then return 0;
4 if P [w1] = P [w2] then
5 if S[y + w1] = S[y + w2] then return y else return x;

6 if P [w1] < P [w2] then
7 if S[y + w1] < S[y + w2] then return y else return x;

8 if P [w1] > P [w2] then
9 if S[y + w1] > S[y + w2] then return y else return x;

The candidate consistency comes from the following observation. Consider
two overlapping candidates Tx and Tx+a, whose overlapping region is T [x + a :
x+m−1]. If Tx ≈ P and Tx+a ≈ P , we can conclude that T [x+a :x+m−1] ≈
P [a + 1 : m] ≈ P [1 : m − a]. In other words, P [a + 1 : m] ≈ P [1 : m − a] is a
necessary condition for Tx ≈ P ∧ Tx+a ≈ P .

To speed up the dueling stage, the pattern is preprocessed, so that the order-
isomorphism checks of type P [a + 1 :m] ≈ P [1 :m − a] can be performed using
constant work. Specifically, the algorithm constructs the witness table W [0 :
m/2 − 1], where W [a] = 〈0, 0〉 if P [a + 1 : m] ≈ P [1 : m − a], and otherwise
W [a] �= 〈0, 0〉 and W [a] stores a witness for offset a. (Hereinafter, we will refer
to 〈0, 0〉 as a zero.)

Definition 5 (Witness for OPPM [4]). If P [a + 1 :m] �≈ P [1 :m − a], there
must exist at least one mismatch location pair. We call such a mismatch location
pair a witness for offset a.

We denote by WP (a) the set of all witnesses for the offset a. Obviously,
WP (a) = ∅ for a = 0,m− 1, and m. Note that WP (a) is empty, iff a is a border-
based period of P . We say that a witness 〈w1, w2〉 ∈ WP (a) is tight, if 〈w1, w2〉
is a tight mismatch location pair for P [1 :m − a] �≈ P [a + 1:m].

Next, we will define the process called dueling between offsets x and x + a
w.r.t. the text. The procedure for dueling is described in Algorithm 1. Suppose
that 〈w1, w2〉 ∈ WP (a) satisfies P [w1] < P [w2] and P [w1 + a] ≥ P [w2 + a]
(Line 6 of Algorithm 1). If T [x + a + w1] < T [x + a + w2], it yields Tx �≈ P since
P [w1+a] ≥ P [w2+a]. Otherwise, Tx+a+1 �≈ P since P [w1] < P [w2]. Thus in any
case, we can safely eliminate either candidate Tx+1 or Tx+a+1 without looking
into other locations. We can perform this process similarly for the other cases.

Dueling can also be performed between two offsets w.r.t. the pattern. Suppose
that 〈w1, w2〉 ∈ WP (a). Consider overlapping P on itself with offsets x and x+a.
If x + a + w2 ≤ m, in other words, if the witness pair lies within the overlap
region, we can say the following.

(1) If the offset x survives the duel, then 〈w1, w2〉 ∈ WP (x + a).
(2) If the offset x + a survives the duel, then 〈w1 + a,w2 + a〉 ∈ WP (x).

Parallel Duel-and-Sweep Algorithm 215

3.1 Pattern Preprocessing

The goal of the pattern preprocessing is to construct the witness table. The
preprocessing in the serial OPPM [4] uses the Z-array [2] modified for OPPM. If
ZS is the modified Z-array for a string S, ZS [i] stores the length of the longest
substring of S that starts at position i and is order-isomorphic to some prefix
of S. To obtain the linear construction time, the algorithm uses information in
ZS [1 : i − 1] to obtain ZS [i]. The prefix-dependent approach cannot be applied
to a parallel algorithm.

Vishkin’s exact matching parallel algorithm [8] is based on the following idea.
To build the witness table it suffices to find the smallest block-based period of the
pattern and locate witnesses for offsets less than the smallest block-based period.
Assuming that p is the smallest block-based period of P , when i mod p = 0,
Wexact(i) = ∅. Vishkin’s algorithm sets Wexact [i] = Wexact [i mod p] for all offsets
i ∈ {1, . . . , m/2 − 1}.

For OPPM, when the pattern is block-aperiodic, we follow Vishkin’s algo-
rithm. When the pattern is block-periodic, we need different ideas. Suppose
that p is the smallest block-based period for OPPM. Border-based period
is a multiple of the smallest block-based period p, but not every multi-
ple of p is a border-based period of P . Consider the example string S =
(13, 7, 10, 21, 14, 18, 22, 15, 20, 28, 11, 25). S has block-based periods 3, 6, 9, but
it only has a single border-based period 9. WP (9) = ∅, but WP (3) �= ∅ and
WP (6) �= ∅.

Naively checking all multiples of the smallest block-based period will take
O(m2) work on the P-CRCW PRAM, assuming that LmaxP and LminP arrays
has been already computed. Our preprocessing algorithm uses O(log2 m) time
and O(m log2 m) work on the P-CRCW PRAM. Our preprocessing algorithm
calls the modified Vishkin’s algorithm (Algorithm 5) as a subroutine. The rest
of the subsection will describe our preprocessing algorithm.

First, we construct LmaxP , LminP arrays. It is straightforward to paral-
lelize Kubica et al. [6] algorithm for constructing LmaxP and LminP in serial,
using existing sorting algorithms. LmaxP and LminP arrays can be computed
in O(log m) time and O(m log m) work on the P-CRCW PRAM.

Order-isomorphism check between the pattern P and a string S can be per-
formed in O(1) time and O(m) work on the P-CRCW PRAM, given LmaxP and
LminP by Lemma 2.

Lemma 2. For a string of length m, assume that S[1 : b − 1] ≈ P [1 : b − 1].
Given LmaxP and LminP arrays, CheckOrderIsomorphismS, b, e in Algorithm 2
returns a tight mismatch location pair if S[1 :e] �≈ P [1 :e], and otherwise returns
〈0, 0〉, in O(1) time and O(m) work on the P-CRCW PRAM.

Next, we show how to construct the witness table on the P-CRCW PRAM.
The procedure for constructing witness table is shown in Algorithm 3. All entries
of W are initialized to 〈0, 0〉, and each entry is updated at most once. We will
define the following properties.

• witness certainty property (WCP) for W [b :e]. For i ∈ {b, . . . , e} W [i] �= 〈0, 0〉
implies W [i] ∈ WP (i).

216 D. Jargalsaikhan et al.

Algorithm 2. Checks order-isomorphism of S and P [b :e]
1 Function CheckOrderIsomorphism(S, b, e)
2 〈m1,m2〉 = 〈0, 0〉;
3 for i ∈ {b, . . . , e} do in parallel
4 imin = LminP [i]; imax = LmaxP [i];
5 if imax = 0 and imin = 0 then
6 continue;

7 if imax = 0 and S[imin] ≤ S[i] then 〈m1,m2〉 = 〈imin , i〉;
8 else if imin = 0 and S[imax] ≥ S[i] then 〈m1,m2〉 = 〈imax , i〉;
9 else if (P [imin] = P [i] and S[imin] �= S[i])

10 or (P [imin] > P [i] and S[imin] ≤ S[i]) then 〈m1,m2〉 = 〈imin , i〉;
11 else if P [imax] < P [i] and S[imax] ≥ S[i] then 〈m1,m2〉 = 〈imax , i〉;
12 return 〈m1,m2〉;

Algorithm 3. Preprocessing for pattern P

1 Initialize all values in W [0 :m/2 − 1] to 〈0, 0〉;
2 e = m/2 − 1; p = 1;
3 while there are some zeros in W [1 :e] do
4 W [p] = 〈w1, w2〉 = CheckOrderIsomorphism(P [p + 1:m], 1,m − p);
5 if 〈w1, w2〉 = 〈0, 0〉 then return;

6 r = (�m−w2
p

	 + 1) · p;
7 if r ≤ e then
8 RightSubroutine(r, e, p); // Algorithm 4
9 e = r − p;

10 LeftSubroutine(e, p); // Algorithm 5
11 p = min{i | i ≥ 1,W [i] = 〈0, 0〉};

• zero certainty property (ZCP) for W [b : e]. For i ∈ {b, . . . , e} W [i] = 〈0, 0〉
implies WP (i) = ∅.

The preprocessing algorithm constructs the witness table from right to left.
The suffix of W that satisfies the ZCP becomes longer with each iteration. Once
the suffix satisfies the ZCP, we do not need to look into it any further. The prefix
satisfies the WCP, and the zeros are located equal distance apart from each other.
Suppose that W [0 :e] is the prefix, the algorithm needs to satisfy the ZCP of. The
prefix and the suffix of W [0 :e] are processed independently, using Algorithm 5
(LeftSubroutine) and Algorithm 4 (RightSubroutine) respectively. Putting it
formally, we have Lemma 3.

Lemma 3. After each iteration of the while loop of Algorithm 3, W [e + 1 :
m/2 − 1] satisfies the ZCP and the WCP, W [0 : e] satisfies the WCP, and for
i ∈ {0, . . . , e}, W [i] = 〈0, 0〉 iff i mod p = 0.

The reason behind dividing W [0 : e] into two comes from the following
observation.

Parallel Duel-and-Sweep Algorithm 217

Algorithm 4. Algorithm for processing W [r :e]
1 Function RightSubroutine(r, e, p0)
2 if CheckOrderIsomorphism(P [r + 1:m], 1,m − r) = 〈0, 0〉 then return;
3 if CheckOrderIsomorphism(P [e + 1:m], 1,m − e) �= 〈0, 0〉 then b = e;
4 else
5 lo = 0; hi = e/p0;
6 while lo < hi do
7 mid = lo + �(hi − lo)/2	;
8 if CheckOrderIsomorphism(P [mid · p0 + 1:m], 1,m − mid · p0) = 〈0, 0〉

then hi = mid ; else lo = mid + 1;

9 b = (lo − 1) · p0;
10 〈w1, w2〉 = CheckOrderIsomorphism(P [b + 1:m], 1,m − b);
11 for i ∈ {r, . . . , b} do in parallel
12 if W [i] = 〈0, 0〉 then W [i] = 〈w1 + (b − i), w2 + (b − i)〉;

Lemma 4. Suppose that WP (p) is not empty and let 〈w1, w2〉 be a tight witness
for the offset p. If qp and q′p are two offsets such that m < qp + w2 < q′p + w2,
then P [(q′ − q)p + 1:m − qp] ≈ P [1 :m − q′p].

Consider overlapping the pattern on itself with offsets qp and q′p as indicated by
Lemma 4. The overlap regions of the copies are P [1 :m − qp] and P [1 :m − q′p],
respectively. Lemma 4 claims that the overlap regions of P [1 : m − qp] and
P [1 : m − q′p] are order-isomorphic. As a consequence of Lemma 4, we cannot
perform a duel between qp and q′p for the pattern.

At the beginning of an iteration, all zeros in W [0 : e] are located p distance
apart from each other. We want to update as many zeros in W [1 :e] as possible.
Let 〈w1, w2〉 be a tight witness for the offset p. Let e′ be the largest multiple
of p such that 0 < e′ ≤ e and e′ + w2 ≤ m. By Lemma 4, we cannot perform
duels for the pattern between offsets that are greater than e′. Thus, we divide
W [0 :e] into two parts W [1 :e′] and W [e′+1:e], and process them using different
algorithms LeftSubroutine and RightSubroutine. LeftSubroutine relies on
the duels for the pattern to verify zeros in W [0 : e′], while RightSubroutine
uses Lemma 4 to satisfy the ZCP of W [e′ + 1:e].

First, we will explain RightSubroutine(r, e, p), where r = e′ + p. Consider
overlapping the pattern on itself with offset r. If P [1 : m − r] ≈ P [r + 1 : m],
then for all offsets i ∈ {r, · · · , e}, WP (i) = ∅ by Lemma 4. Also, if for some
offset j ∈ {r, . . . , e}, WP (j) �= ∅, then for all offsets i ∈ {r, . . . , j}, WP (i) �= ∅.
Based on this observation, RightSubroutine uses binary search to find an offset
b ∈ {r, . . . , e} such that for i ∈ {r, . . . , b} WP (i) �= ∅, and for i ∈ {b + p, . . . , e},
WP (i) = ∅.

Lemma 5. Assume that W [i] = 〈0, 0〉 for any i ∈ {2p0, . . . , e} satisfying i mod
p0 = 0. After running RightSubroutine(r, e, p0), W [i] = 〈0, 0〉 if WP (i) = ∅,
and W [i] ∈ WP (i) otherwise for any i ∈ {r, . . . , e}.

218 D. Jargalsaikhan et al.

Algorithm 5. Processing for W [0 :e].
1 Function LeftSubroutine(e, p0)
2 k = 0;
3 while k ≤ �log e	 do

4 l = 2k × p0; r = min{e, 2l − 1};
5 if there is a zero in W [l :r] then
6 p = location of the unique zero in W [l :r];
7 W [p] = CheckOrderIsomorphism(P [p + 1:4l], 1, 4l − p + 1);
8 if W [p] = 〈0, 0〉 then
9 c = CertaintySatisfiedUntil(p, k, e);

10 while k ≤ c − 1 do
11 SatisfySparsity(2l, e); k = k + 1;

12 k = c − 1;

13 else SatisfySparsity(2l, e); k = k + 1 ;

Algorithm 6. Updating W [0 :e] to satisfy l-sparsity
1 Function SatisfySparsity(l, e)
2 for each l-block B of W [0 :e] do in parallel
3 if there are two zeros in B then
4 Let j1 < j2 be the location of two zeros in B; a = j2 − j1;
5 surv = Dueling(j1, j2, P);
6 〈w1, w2〉 = W [a];
7 if surv = j1 then W [j2] = 〈w1, w2〉;
8 if surv = j2 then W [j1] = 〈w1 + a,w2 + a〉;

Now, we will explain LeftSubroutine(e, p0). For the sake of simplicity,
assume that p0 = 1 and e = m/2 − 1. Now, consider partitioning W [0 :m/2 − 1]
into blocks of size 2k. We will call each block a 2k-block, with the last 2k-block
possibly being shorter than 2k: W [i · 2k : min{m/2 − 1, (i + 1) × 2k − 1}] for
i = 0, . . . ,
 m

2k+1 �.

k-sparsity property. Each 2k-block of W [0 :m/2 − 1] contains at most one
zero. Note that since W [0] = 〈0, 0〉, W [1 :2k − 1] contains no zeros.
k-lookahead property. For all i ∈ {1, . . . , 2k − 1}, if W [i] = 〈w1, w2〉, then
i + w2 ≤ 2k+1.

The general policy for LeftSubroutine is to increase the length of the non-
zero substring W [1 :2k −1] and have zeros in the witness table to be increasingly
sparser with each round. The loop invariant of LeftSubroutine is as follows.

Lemma 6. After the round k of LeftSubroutine, the k-sparsity and the
k-lookahead properties hold.

After running LeftSubroutine, zeros in W [0 :e] become sparser. Putting it
formally, we have the following.

Parallel Duel-and-Sweep Algorithm 219

Algorithm 7. Finds integer c ≤ log e such that p is the block-based
period of P [0 :2c] but not of P [0 :2c+1].
1 Function CertaintySatisfiedUntil(p, k, e)
2 c = k + 2;
3 while c ≤ �log e	 + 1 do
4 r = min{e, 2c+1 − 1};
5 for q ∈ {2c, . . . , r} s.t. q mod p = 0 do in parallel
6 〈w1, w2〉 = CheckOrderIsomorphism(P [q + 1:r + 1], 1, r − p + 1);
7 if 〈w1, w2〉 �= 〈0, 0〉 then
8 for j ∈ {p, . . . , 2c − 1} s.t. j mod p = 0 do in parallel
9 if W [j] = 〈0, 0〉 then

10 W [j] = 〈w1 + q − j, w2 + q − j〉;
11 Break from the while loop;

12 c = c + 1;

13 for i ∈ {p, . . . , 2c − 2k+2 − 1} do in parallel
14 if W [i] = 〈0, 0〉 and i mod p �= 0 then W [i] = W [i mod p];

15 for the last four 2k-blocks B of W [0 :2c − 1] do in parallel
16 If there is a zero in B, let j′ be the location of zero in B;
17 W [j′] = CheckOrderIsomorphism(P [j′ + 1:r + 1], 1, r − j′ + 1);

18 return c;

Lemma 7. Assume that for i ∈ {0, . . . , e}, W [i] = 〈0, 0〉 iff i mod p0 = 0.
If WP (p0) is not empty, LeftSubroutine(e, p0) finds some p = q · p0 where
q > 1 and updates W in such a way that for i ∈ {0, . . . , e}, W [i] = 〈0, 0〉 iff
i mod p = 0.

Theorem 1. The pattern preprocessing runs in O(log2 m) time and O(m log2

m) work on the P-CRCW PRAM.

3.2 Pattern Searching

We define a Boolean array C [1 :m + 1] and initialize every entry of C to True.
During the dueling stage, candidates duel with others, until the surviving candi-
dates are pairwise consistent. If Ti remains after the dueling stage, it is indicated
by C [i] = True. The sweeping stage prunes the surviving candidates from the
dueling stage until all remaining candidates are order-isomorphic to the pattern.
After the sweeping stage, C [i] = True iff Ti ≈ P . Entries of C are updated at
most once during the dueling and sweeping stages. The dueling stage is described
in Algorithm 8. The sweeping stage is described in Algorithm 9.

When the pattern is aperiodic, we can use the same approach as Vishkin’s
parallel exact matching algorithm [8]. When the pattern is periodic, we cannot
follow Vishkin’s approach used in his parallel exact matching algorithm. Suppose
that the pattern is periodic with period p, then we can express it as P = ukv,
where u = P [1 :p]. Vishkin’s algorithm finds all occurrences of u2v, then counts

220 D. Jargalsaikhan et al.

continuous occurrences of u2v to find all occurrences of P . For OPPM we need
different ideas.

Dueling Stage. Suppose that the pattern is block-aperiodic. Analogously to
W , we define the k-sparsity property for C : for each 2k-block of C there is at
most one location j such that C [j] = True. The procedure for satisfying the
k-sparsity is same as in the pattern preprocessing except that duels are done
against T . During the round k, the algorithm satisfies the k-sparsity of C . Since
we have found witnesses for offsets i ≤ m/2 − 1, duels can be performed within
a m/2-block. Furthermore, since the pattern is block-aperiodic, W [i] �= 〈0, 0〉
for i ∈ {1, . . . , m/2 − 1}. Thus, for any two offsets within a m/2-block, we can
perform duels. After the round k = log m− 1, there are only three locations 1 ≤
a ≤ m/2, m/2+1 ≤ b ≤ m and m+1 such that C [a] = C [b] = C [m+1] = True.
The algorithm checks naively whether Ta, Tb and Tm+1 are pairwise-consistent.

When the pattern is block-periodic, let p = min{i | i ≥ 1, W [i] = 〈0, 0〉} and
k =
log p�. The algorithm satisfies the k-sparsity of C first, then start to merge
neighboring 2k-blocks so that the surviving candidates belonging to the same
2k+1-block are pairwise consistent. For each 2k+1-block the surviving candidates
are pairwise-consistent.

Consider two neighboring 2k-blocks C [q·2k+1:(q+1)·2k] and C [(q+1)·2k+1:
(q + 2) · 2k] that are about to be merged. Let T1 = {i | q · 2k + 1 ≤ i ≤ (q + 1) ·
2k, C [i] = True} and T2 = {i | (q + 1) · 2k + 1 ≤ i ≤ (q + 2) · 2k, C [i] = True}.
If i1, j1 ∈ T1, then Ti1 is consistent with Tj1 . Similarly, if i2, j2 ∈ T2, then Ti2

is consistent with Tj2 . Suppose that i1 < j1, i2 < j2. If Ti1 is consistent with
Tj1 and Tj1 is consistent with Tj2 , then Tj1 is consistent with Ti2 . Using the
following lemma we can merge the two 2k-blocks.

Lemma 8. Suppose that j1 is the largest element in T1 and j2 is the smallest
element in T2 such that Tj1 and Tj2 are consistent. Let T be the set consisting
of elements i from T1 such that i ≤ j1 and elements i from T2 such that i ≥ j2.
Then, if i, j ∈ T then Ti and Tj are consistent.

The while loop invariant of Algorithm 8 is as follows. After each round k,
for every 2k-block of C , if i and j are two locations in the 2k-block such that
C [i] = C [j] = True, then Ti is consistent with Tj .

Sweeping Stage. The sweeping stage updates C until C [i] = True iff Ti is
an pattern occurrence. Let T = {i | 1 ≤ i ≤ m + 1, C [i] = True}. After the
dueling stage for i, j ∈ T , Ti is consistent with Tj . Now suppose one processor
is attached to each entry of T . Then using Lemma 9 the sweeping stage can be
performed in O(log m) time and O(n log m) work on the P-CRCW PRAM.

Lemma 9. Let T be a set of locations such that if i, j ∈ T then Ti is consistent
with Tj. For any x ∈ T , let T<x = {i ∈ T | i < x} and T>x = {i ∈ T | i > x}.

(1) If Tx ≈ P , then for i ∈ T>x, P [(x − i) + 1:m] ≈ Ti[1 :m − (x − i)].

Parallel Duel-and-Sweep Algorithm 221

Algorithm 8. Algorithm for the dueling stage
1 Initialize array C of length m + 1 to True;
2 Let p be the smallest integer s.t. W [p + 1] = 〈0, 0〉;
3 Satisfy �log p	-sparsity of C in several iterations;
4 Round k = �log p	 + 1;
5 while k ≤ logm do

6 for every 2k-block B of C do in parallel
7 Let s and e be the starting and ending indexes of B;

8 l1 = s; r1 = l1 + 2k−1 − 1;
9 l2 = r1 + 1; r2 = e;

10 while l1 < r1 and l2 < r2 do
11 while l2 < r2 do
12 m1 = l1 + �(r1 − l1)/2	; m2 = l2 + �(r2 − l2)/2	;
13 if Tm1 is consistent with Tm2 then r2 = m2;
14 else
15 if Tm1 survives the duel then
16 C [i] = False for all i ≤ m2 in the second half of B;
17 l2 = m2;

18 else
19 C [i] = False for all i ≥ m1 in the first half of B;
20 r1 = m1;

21 r2 = e;
22 l1 = l1 + �(r1 − l1)/2	;

23 k = k + 1;

(2) If Tx �≈ P , let 〈m1,m2〉 be a tight mismatch locations. Then for i ∈ T<x such
that i + m ≥ x + m2, Ti �≈ P and for i ∈ T>x, P [(x − i) + 1:m2 − 1] ≈ Ti[1 :
(m2 − 1) − (x − i)].

Theorem 2. The pattern searching runs in O(log3 m) time and O(n log3 m)
work on the P-CRCW PRAM.

4 Discussion

We have proposed a parallel algorithm for the OPPM problem which based
on the duel-and-sweep paradigm [8]. This is the first parallel algorithm for the
OPPM problem. Given the text of length n and the pattern of length m, our
algorithm runs in O(log3 m) depth using O(m log3 m) work on the P-CRCW
PRAM. If the pattern is block-aperiodic, the preprocessing runs in O(log m)
time and O(m log m) and the pattern searching runs in O(log m) time and O(n)
work. If the pattern is block-aperiodic, both preprocessing and pattern searching
algorithms are work-optimal, that is the work required on the P-CRCW PRAM
is same as the time complexity of the fastest serial algorithms [4–6].

222 D. Jargalsaikhan et al.

Algorithm 9. Algorithm for the sweeping stage
1 Function SweepRecursive(r, T)

2 if T = ∅ then return;
3 Let x ∈ T such that roughly half of elements T is less than x;
4 T1 = {i ∈ T | i < x}, T2 = {i ∈ T | i > x};
5 if r = x0 then
6 〈m1,m2〉 = CheckOrderIsomorphism(T [x :x + m − 1], 1,m);
7 else
8 〈m1,m2〉 = CheckOrderIsomorphism(T [r :x + m − 1], r − x + 1,m);

9 if 〈m1,m2〉 = 〈0, 0〉 then
10 do in parallel
11 SweepRecursive(x0, T1); SweepRecursive(x + m, T2);

12 else
13 C [x] = False;
14 for i ∈ {i ∈ T1 | i + m ≥ x + m2} do in parallel
15 C [i] = False; Remove i from T1;

16 do in parallel
17 SweepRecursive(x0, T1); SweepRecursive(x + m2, T2);

18 Function SweepingStage()

19 T = {i | 1 ≤ i ≤ m + 1, C [i] = True};
20 x0 = min{T };
21 SweepRecursive(x0, T);

References

1. Cho, S., Na, J.C., Park, K., Sim, J.S.: A fast algorithm for order-preserving pattern
matching. Inf. Process. Lett. 115(2), 397–402 (2015)

2. Hasan, M.M., Islam, A.S., Rahman, M.S., Rahman, M.S.: Order preserving pattern
matching revisited. Pattern Recogn. Lett. 55, 15–21 (2015)

3. JáJá, J.: An Introduction to Parallel Algorithms, vol. 17. Addison-Wesley, Reading
(1992)

4. Jargalsaikhan, D., Diptarama, Ueki, Y., Yoshinaka, R., Shinohara, A.: Duel and
sweep algorithm for order-preserving pattern matching. In: Tjoa, A., Bellatreche,
L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol.
10706, pp. 624–635. Edizioni della Normale, Cham (2018). https://doi.org/10.1007/
978-3-319-73117-9 44

5. Kim, J., et al.: Order-preserving matching. Theoret. Comput. Sci. 525, 68–79 (2014)
6. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A linear

time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.
113(12), 430–433 (2013)

7. Matsuoka, Y., Aoki, T., Inenaga, S., Bannai, H., Takeda, M.: Generalized pattern
matching and periodicity under substring consistent equivalence relations. Theoret.
Comput. Sci. 656, 225–233 (2016)

8. Vishkin, U.: Optimal parallel pattern matching in strings. In: Brauer, W. (ed.)
ICALP 1985. LNCS, vol. 194, pp. 497–508. Springer, Heidelberg (1985). https://
doi.org/10.1007/BFb0015775

https://doi.org/10.1007/978-3-319-73117-9_44
https://doi.org/10.1007/978-3-319-73117-9_44
https://doi.org/10.1007/BFb0015775
https://doi.org/10.1007/BFb0015775

Parameterized Complexity
of Synthesizing b-Bounded

(m,n)-T-Systems

Ronny Tredup(B)

Universität Rostock, Institut für Informatik, Theoretische Informatik,
Albert-Einstein-Straße 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de

Abstract. Let b ∈ N
+. Synthesis of pure b-bounded (m, n)-T-systems

((m,n)-Synthesis, for short) consists in deciding whether there exists
for an input (A, m, n) of transition system A and integers m, n ∈ N a
pure b-bounded Petri net N as follows: N ’s reachability graph is iso-
morphic to A, and each of N ’s places has at most m incoming and at
most n outgoing transitions. In the event of a positive decision, N should
be constructed. The problem is known to be NP-complete, and (m,n)-
Synthesis parameterized by m + n is in XP [14]. In this paper, we
enhance our understanding of (m,n)-Synthesis from the viewpoint of
parameterized complexity by showing that it is W [1]-hard when param-
eterized by m + n.

1 Introduction

Petri net synthesis consists in deciding whether there is a Petri net (PN, for
short) that implements a given behavioral specification and in constructing such
a net if it exists. Valid synthesis methods yield implementations that are correct
by design. The possibility of finding effective or even efficient synthesis algo-
rithms crucially depends on the specification and the searched net. This has
been subject of research for many years: It is undecidable whether there is a
P/T net implementing a pushdown- or a HMSC-language or whether there is
a (pure) bounded P/T net implementing a modal transition systems (MTS, for
short) [9,11]. If the specification is a deterministic pushdown-language or -graph,
and the search net is a P/T-net, synthesis is decidable [4]. It is also decidable
whether there is a b-bounded Petri net that implements an MTS [12]. If the
specification is a transition system (TS, for short), and the searched net is a
1-bounded PN, synthesis is NP-complete [2], even if the TS is strongly restricted
[15,16]. The synthesis of b-bounded PNs from TSs is NP-complete, even if the
searched net is strongly restricted [13,14]. If the bound b is not fixed in advance,
the synthesis of bounded PN from TSs is polynomial [1]. If the PN is additionally
to be choice-free or a marked graph, even better procedures exist [5,7].

In this paper, we investigate an instance of PN synthesis that is called (m,n)-
Synthesis. It consists in deciding whether there exists for an input (A,m, n) of
TS A and integers m,n ∈ N a pure b-bounded Petri net N as follows: N ’s reach-
ability graph is isomorphic to A, and each of N ’s places has at most m incoming
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 223–235, 2020.
https://doi.org/10.1007/978-3-030-38919-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_19

224 R. Tredup

and at most n outgoing transitions. The b-bounded (m,n)-T-systems generalize
the notion of (weighted) T-systems [6,10] and adapt it to b-bounded PN. In [14],
we have shown that (m,n)-Synthesis is NP-complete. We have also argued that
(m,n)-Synthesis parameterized by m + n belongs to the complexity class XP.
Thus, the question arises whether this parameterization makes the problem fixed
parameter tractable. In this paper, we answer this question negatively and show
that (m,n)-Synthesis parameterized by m+n is W [1]-hard. The proof presents
a parameterized reduction from regular independent set, which restricts the
canonical W [1]-hard problem to regular graphs [8], to (m,n)-Synthesis. This
paper is organized as follows. Section 2 introduces necessary preliminary notions,
Sect. 3 presents the W [1]-hardness result and Sect. 4 closes the paper.

2 Preliminaries

We assume that the reader is familiar with the concepts relating to fixed-
parameter tractability, the standard notions relating to graphs and Regu-
lar Independent Set, the canonical W [1]-hard problem restricted to regu-
lar graphs. Due to space restrictions, we omit some formal definitions and some
proofs. See [8] for the definitions of relevant notions in parameterized complexity
theory. In the remainder of this paper, if not stated explicitly otherwise, then
b ∈ N

+ is assumed to be arbitrary but fixed.

Transition Systems. A transition system (TS, for short) A = (S,E, δ, ι) con-
sists of a finite disjoint set S of states, E of events, a partial transition function
δ : S × E → S and an initial state ι ∈ S. A TS A is interpreted as edge-
labeled directed graph, and every triple δ(s, e) = s′ is considered an e-labeled
edge s e s′, called transition. An event e occurs at state s, denoted by s e ,
if δ(s, e) = s′ for some state s′. This notation is extended to words w′ = we,

w ∈ E∗, e ∈ E, by inductively defining s ε s for all s ∈ S and s w‘ s′′ if and
only if there is a state s′ ∈ S satisfying s w s′ and s′ e s′′. If w ∈ E∗, then
s w denotes that there is a state s′ ∈ S such that s w s′. If e ∈ E, then by

si
(e)b

si+b we denote that there are distinct states si, si+1, . . . , si+b−1, si+b ∈ S

such that si
a si+1 . . . si+b−1

a si+b. We assume all TSs to be reachable:
∀s ∈ S,∃w ∈ E∗ : s0

w s.
b-Bounded Petri Nets. A b-bounded Petri net (b-net, for short) N =

(P, T, f,M0) consists of finite and disjoint sets of places P and transitions
T , a (total) flow function f : P × T → {0, . . . , b}2 and an initial marking
M0 : P → {0, . . . , b}. If f(p, t) = (m,n), then f−(p, t) = m and f+(p, t) = n
define the consuming and the producing effect of t on p, respectively. The preset
of a place p is defined by •p = {t ∈ T | f+(p, t) > 0} (transitions produc-
ing on p) and its postset is defined by p• = {t ∈ T | f−(p, t) > 0} (transi-
tions consuming from p). Accordingly, the preset of a transition t is defined by
•t = {p ∈ P | f−(p, t) > 0} (places from which t consumes) and its postset by

Parameterized Complexity of Synthesizing b-Bounded (m, n)-T-Systems 225

t• = {p ∈ P | f+(p, t) > 0} (places on which t produces). A b-net N is pure if
∀(p, t) ∈ P × T : f−(p, t) = 0 or f+(p, t) = 0, that is, ∀p ∈ P : •p ∩ p• = ∅. Let
m,n ∈ N. A b-net N is an (m,n)-T-system if ∀p ∈ P : |•p| ≤ m, |p•| ≤ n.
The firing rule of b-nets defines their behavior: A transition t ∈ T can fire or
occur in a marking M : P → {0, . . . , b}, denoted by M t , if M(p) ≥ f−(p, t)
and M(p)−f−(p, t)+f+(p, t) ≤ b for all places p ∈ P . The firing of t in marking
M leads to the marking M ′ if M ′(p) = M(p) − f−(p, t) + f+(p, t) for all p ∈ P .

This is denoted by M t M ′. Again, this notation extends to sequences σ ∈ T ∗,
and the reachability set RS(N) = {M | ∃σ ∈ T ∗ : M0

σ M} contains N ’s
reachable markings. The firing rule preserves N ’s b-boundedness by definition:
M(p) ≤ b for all p ∈ P and all M ∈ RS(N). The reachability graph of N is the
TS AN = (RS(N), T, δ,M0), such that for all M,M ′ ∈ RS(N) and all t ∈ T we

define δ(M, t) = M ′ if and only if M t M ′.
b-Bounded Regions. To find a b-net N implementing a TS A, we want to

synthesize N ’s components purely from the input A. Since A and AN are to
be isomorphic, A’s events correspond to N ’s transitions. However, the notion
of a place is not known for TSs. A b-bounded region R (region, for short) of a
TS A = (S,E, δ, s0) is a pair R = (sp, sg) of support sp : S → {0, . . . , b} and
signature sg : E → {0, . . . , b}2 such that for every edge s e s′ of A holds sp(s) ≥
sg−(e) and sp(s′) = sp(s) − sg−(e) + sg+(e). If sg(e) = (m,n), then sg−(e) =
m and sg+(e) = n define e’s consuming and producing effect (concerning R),
respectively.

A region (sp, sg) models a place p and the corresponding part of the flow
function f : sg+(e) models f+(e), sg−(e) models f−(e) and sp(s) models M(p)
in the marking M ∈ RS(N) corresponding to s ∈ S(A). The preset of R is
defined by the producing events •R = {e ∈ E | sg+(e) > 0} and its postset
by the consuming events R• = {e ∈ E | sg−(e) > 0}. If sg(e) = (0, 0), then
e is called neutral. The region R is pure if •R ∩ R• = ∅. Let R be a set of
regions of A, and let e ∈ E. By •eR = {(sp, sg) ∈ R | sg−(e) > 0} and e•

R =
{(sp, sg) ∈ R | sg+(e) > 0} we define the preset and postset of e (concerning R),
respectively. The set R defines the synthesized b-net NR

A = (R, E, f,M0) with
flow function f((sp, sg), e) = sg(e) and initial marking M0((sp, sg)) = sp(s0) for
all (sp, sg) ∈ R, e ∈ E. We emphasize again that a region R of R is a place of
NR

A with the preset •R and the postset R•; every event e ∈ E is a transition of
NR

A with preset •e = •eR and postset e• = eR•. It is well known that ANR
A

and
A are isomorphic if and only if R’s regions solve certain separation atoms [3], to
be introduced next.

A pair (s, s′) of distinct states of A defines a state separation atom (SSP
atom, for short). A region R = (sp, sg) solves (s, s′) if sp(s) 	= sp(s′). The region
R is to ensure that NR

A contains at least one place R such that M(R) 	= M ′(R)
for the markings M and M ′ corresponding to s and s′, respectively. If there is a
b-region that solves (s, s′), then s and s′ are called b-solvable (solvable, for short).
If every SSP atom of A is solvable, then A has the b-state separation property
(SSP for short). If e ∈ E and s ∈ S such that e does not occur at s (¬s e), then

226 R. Tredup

the pair (e, s) is an event state separation atom (ESSP atom, for short). A b-
region R = (sp, sg) solves (e, s) if sg−(e) > sp(s) or sp(s)−sg−(e)+sg+(e) > b.
The meaning of R is to ensure that there is at least one place R in NR

A such that
¬M e for the marking M corresponding to s. If there is a region that solves
(e, s), then e and s are called b-solvable; we also say e is solvable at s. If every
ESSP atom of A is b-solvable, then A has the b-event state separation property
(ESSP, for short).

A set R of regions of A is called b-admissible if for every of A’s (E)SSP atoms
there is a region R in R that solves it. The following lemma, borrowed from
[3, p. 163], summarizes the connection between b-admissible sets of A and syn-
thesis:

Lemma 1 ([3]). A b-net N has a reachability graph isomorphic to a given TS
A if and only if there is a b-admissible set R of A such that N = NR

A .

We say a b-net N solves A if AN and A are isomorphic. By Lemma 1,
searching for a restricted b-net reduces to finding a b-admissible set of accordingly
restricted regions. The following example illustrates this fact.

Example 1. Let m,n ∈ N, A be a TS and R be a b-admissible set of pure
regions of A. If every region R ∈ R satisfies |•R| ≤ m and |R•| ≤ n, then
NR

A is a pure (m,n)-T-system solving A. In particular, if b = 2, then the TS
A = s0

e1 s1
e2 s2 has the following pure regions:

i spi(s1) spi(s2) spi(s3) sgi(e1) sgi(e2) i spi(s1) spi(s2) spi(s3) sgi(e1) sgi(e2)
1 2 0 0 (2, 0) (0, 0) 3 0 2 0 (0, 2) (2, 0)
2 0 2 0 (0, 2) (2, 0) 4 0 1 2 (0, 1) (0, 1)

The set R = {(spi, sgi) | 1 ≤ i ≤ 4} is 2-admissible. Since •(sp4, sg4) =
{e1, e2}, the solving 2-net NR

A is not a (1, 1)-T-system. However, the set R′ =
{(spi, sigi) | 1 ≤ i ≤ 3} is 2-admissible, and NR′

A is a (1, 1)-T-system solving A.

3 W [1]-Hardness Parameterized by m + n

This section is dedicated to the proof of our main result:

Theorem 1. (m,n)-Synthesis parameterized by m + n is W [1]-hard.

The proof of Theorem 1 consists of a parameterized reduction of Regular
Independent Set to (m,n)-Synthesis. Let (G, k) be an instance of Regular
Independent Set. That is, G = (V (G), E(G)) is a graph with set of nodes
V (G) = {v1, . . . , vn}, set of edges E(G) = {a1, . . . , am}, and there is an integer
r ∈ N such that for every node v ∈ V (G) holds |{e ∈ E(G) | v ∈ e}| = r, and
k is a positive integer. We reduce (G, k) to an instance (A, 2rk + 20, 2rk + 20)
of (m,n)-Synthesis, parameterized by m+n, such that G has a k-independent
set if and only if A is solvable by a (2rk + 20, 2rk + 20)-T-system.

To represent G, the TS A has for every edge ai = {vi,1, vi,2}, i ∈ {1, . . . , m},
the following gadget Gi, which uses ai, vi,1 and vi,2 as events:

Parameterized Complexity of Synthesizing b-Bounded (m, n)-T-Systems 227

gi,1 gi,2 gi,3 gi,b+3 gi,b+4 gi,2b+4 gi,2b+5 gi,2b+6

gi,2b+7

α1

δ1i ζ1i,1 (vi,1)b ζ1i,2 (vi,2)b ζ1i,3 ai

Let i ∈ {1, . . . , m}. The proof of the if -direction bases on the idea to ensure that
if A is solvable, then there is a pure region R = (sp, sg) that satisfies the follow-
ing conditions. Firstly, sg(α1) = (b, 0), which implies sp(gi,2) = b. Secondly, the
producing effect of the node events is zero, that is, sg+(vi,1) = sg+(vi,2) = 0.
Thirdly, the ζ-events are neutral, that is, sg(ζ1i,1) = sg(ζ1i,2) = sg(ζ1i,3) = (0, 0).
As a result, the support value of gi,2b+5 is given by sp(gi,2b+5) = b − b ·
(sg−(vi,1) + sg−(vi,2)). Moreover, if sp(gi,2b+5) < b, then there is exactly one
e ∈ {vi,1, vi,2} such that sig−(e) > 0. Otherwise we would have the contradic-
tion sp(gi,2b+5) < 0. Furthermore, the region R ensures that there are exactly
rk edge events with a positive producing effect. That is, there are exactly rk
indices i1, . . . , irk ∈ {1, . . . , m} such that sg+(aij

) > 0 for all j ∈ {1, . . . , rk}.
Since R is pure, this implies sg−(aij

) = 0 for all j ∈ {1, . . . , rk}. Moreover, by
gij ,2b+5

aij gij ,2b+6, we obtain sup(gij ,2b+6) = sup(gij ,2b+5) + sig+(aij
). This

requires sp(gij ,2b+5) < b, and exactly one of vij ,1 and vij ,2 has a positive
consuming effect. The region R ensures that there are exactly k node events
v�1 , . . . , v�k

with a positive consuming effect. Recall, for every node v ∈ V (G)
holds |{e ∈ E(G) | v ∈ e}| = r. Thus, if v�1 , . . . , v�k

are not independent,
then the number of edges which are adjacent to a node of v�1 , . . . , v�k

is at
most rk − 1. Since rk edge events have a positive producing effect, and each
of it needs a consuming node, this is a contradiction. Consequently, the set
I = {v ∈ V (G) | sg−(v) > 0} defines a k-independent set of G.

For the only-if -direction we show that if G has a k-independent set then
there is a b-admissible set of regions R such that |•R|, |R•| ≤ 2rk + 20 for all
R ∈ R. The major challenge here is to keep the number of consuming and
producing events of solving regions smaller than the parameter. To do so, we
exploit G’s regularity and the δ- and ζ-events. In what follows, we prove the
following lemma:

Lemma 2. 1. If A is solvable, then there is a region (sp, sg) such that the fol-
lowing conditions are true:
(a) sg(α1) = (b, 0) and sg(ζ1i,1) = · · · = sg(ζ1i,3) = (0, 0) for all i ∈ {1, . . . , m}.
(b) If e ∈ {a1, . . . , am} then sg−(e) = 0 and there are exactly rk events

ai1 , . . . , airk
∈ {a1, . . . , am} with sg+(aij

) > 0, where j ∈ {1, . . . , rk}.
(c) If e ∈ {v1, . . . , vn} then sg+(e) = 0. Furthermore, there are exactly k

events vi1 , . . . , vik
∈ {v1, . . . , vn} with sg−(vij

) > 0 for all j ∈ {1, . . . , k}.
2. If G has an independent set of size k then there is a b-admissible set R of A

such that |•R|, |R•| ≤ 2rk + 20 for all R ∈ R.

3.1 The Proof of Lemma 2.1

This section introduces the gadgets that ensure Lemma 2.1. For now, we refrain
from explaining in which way they are actually conjunct to build A. This

228 R. Tredup

conjunction is postponed to Sect. 3.2, which is dedicated to Lemma 2.2.. We
let events e ∈ E(A) occur b times in row to restrict their possible signature in
advance:

Lemma 3. Let A be a TS, and let e ∈ E(A) be an event that occurs b times in

a row: s1
(e)b

sb+1 ∈ A. For any pure region (sp, sg) of A with sg+(e) 	= sg−(e)
holds either sg(e) = (1, 0), sp(s1) = b and sp(sb+1) = 0 or sg(e) = (0, 1),
sp(s1) = 0 and sp(sb+1) = b.

Proof. The claim follows by b ≥ sp(sb+1) = sp(s1) + b · (sg+(e) − sg−(e)) ≥ 0.

The TS A has for i ∈ {1, 2, 3} the following w-maker gadget Xi:

xi,1 xi,2 xi,b+2 xi,b+3 xi,b+4 xi,2b+4

δ10i (α)b ζ wi (α)b

If A is solvable, then there is a region R = (sp, sg) that solves the atom
(α, x1,b+3), that is, sg−(α) > sp(x1,b+3) or sp(x1,b+3) − sg−(α) + sg+(α) > b.
This implies sg(α) 	= (0, 0). Thus, by Lemma 3, we have sg(α) ∈ {(1, 0), (0, 1)}.
Since our arguments are symmetrically true for the case sg(α) = (0, 1), we
assume sg(α) = (1, 0) and show that this implies a k-independent set of G.

Since R solves (α, xi,b+3), by sg(α) = (1, 0), we conclude sg−(α) >
sp(xi,b+3) = 0. Moreover, by Lemma 3, we obtain sp(xi,b+2) = 0 and sp(xi,b+4) =
b for all i ∈ {1, 2, 3}. Furthermore, by sp(x1,b+2) = sp(x1,b+3) = 0, we get
sg(ζ) = (0, 0). By sp(xi,b+2) = 0, this implies sp(xi,b+3) = 0 for all i ∈ {2, 3}.
Finally, by sp(xi,b+3) = 0 and sp(xi,b+4) = b for all i ∈ {1, 2, 3}, we get the three
producing w-events w1, w2, w3: sg(w1) = sg(w2) = sg(w3) = (0, b).

The TS A has for i ∈ {1, . . . , 9} a so called α-maker Yi that uses w1 and w2 to
manipulate the support of some states and provides the consuming α-event αi:

yi,1 yi,2 yi,3 yi,4 yi,5

δ11i w1 αi w2

By sg(w1) = sg(w2) = (0, b), we have sp(yi,3) = b and sp(yi,4) = 0. This implies
sg(αi) = (b, 0) for i ∈ {1, . . . , 9}. The events α1, . . . , α9 are applied to manipulate
the support of some states. For example, by sg(α1) = (b, 0) and gi,2

α1 , we have
sp(gi,2) = b for all i ∈ {1, . . . ,m} as discussed before. The following β-makers
also exemplify the functionality of the α-events.

The TS A has for every i ∈ {1, . . . , 5} the following β-maker Zi that uses the
events α7 and α8 to provide the producing β-event βi:

zi,1 zi,2 zi,3 zi,4 zi,5

δ12i α7 βi α8

In particular, by sg(α7) = sg(α8) = (b, 0), we get sp(zi,3) = 0 and sp(zi,4) = b.
This implies sg(βi) = (0, b) for all i ∈ {1, . . . , 5}. Just like the α-events, the
β-events serve to manipulate the support of some states.

Parameterized Complexity of Synthesizing b-Bounded (m, n)-T-Systems 229

In the remainder of this section, we first introduce the gadgets ensuring that
R = (sp, sg) selects exactly rk edge events ai1 , . . . , airk

such that sig+(aij
) > 0

for all j ∈ {1, . . . , rk}. Secondly, we introduce the gadgets that ensure that
there are exactly k node events v�1 , . . . , v�k

such that sig−(v�j
) > 0 for all j ∈

{1, . . . , k}. Similar to the already presented gadgets G1, . . . , Gm, these gadgets
apply ζ-events, that is, elements of the set Z = {ζi

j,� | i, j, 	 ∈ N}. For the region
R, corresponding to Lemma 2.1, these events have to be neutral. For the proof of
Lemma 2.2. they allow solving regions with small preset- and postset-cardinality.
If ζi

j,� ∈ Z ∩ E(A), that is, ζi
j,� actually occurs in A, then A has the following

ζ-makers ⊖i
j,� (left) and

⊕i
j,� (right). These gadgets ensure ζi

j,�’s neutrality:

i
j,�,1
i

j,�,2

i
j,�,3

i
j,�,4δ13i,j,�

w3

ζi
j,�

⊕i
j,�,1 ⊕i

j,�,2

⊕i
j,�,3

⊕i
j,�,4δ14i,j,�

α9

ζi
j,�

By sg(w3) = (0, b) and sg(α9) = (b, 0), we get sp(
i
j,�,2) = 0 and sp(⊕i

j,�,2) = b.
Moreover, by 0 = sp(
i

j,�,2) ≥ sg−(ζi
j,�), we obtain sg−(ζi

j,�) = 0. Finally, by
b ≥ sp(⊕i

j,�,4) = sp(⊕i
j,�,2) − sg−(ζi

j,�) + sg+(ζi
j,�), implying b ≥ b + sg+(ζi

j,�), we
get sg+(ζi

j,�) = 0.
So far, we have introduced A’s gadgets that yield us the α-, β- and ζ-events

with the following behavior: If s α , then sp(s) = b; if s β , then sp(s) = 0;

if s ζ s′, then sp(s) = sp(s′). These events are applied in the subsequently
introduced gadgets, which collaborate to provide the announced behavior of A.

The TS A has for every edge event ai, i ∈ {1, . . . , m}, exactly rk edge copies
(e-copies, for short) a1

i , . . . , a
rk
i . These copies are used to enable the announced

selection of rk edge events ai1 , . . . , airk
. To achieve this goal, it is necessary that

edge events do not consume and e-copies do not produce. The TS A has for
every i ∈ {1, . . . , m} an edge noCon Ci. This gadget ensures that ai does not
consume. Moreover, for all i ∈ {1, . . . , m} and all j ∈ {1, . . . , rk} it has an e-copy
noPro Di,j . This gadget guarantees that aj

i does not produce.

ci,1 ci,2 ci,3 ci,4

ci,5

β1

δ2i ζ2i,1 ai

The edge noCon Ci.

di,j,1 di,j,2 di,j,3 di,j,4

di,j,5

α2

δ3i,j ζ3i,j aj
i

The e-copy noPro Di,j .

By sg(β1) = (0, b) and sg(ζ2i,1) = (0, 0), we have sp(ci,3) = 0. Since sp(ci,3) ≥
sg−(ai), this implies sg−(ai) = 0. Similarly, by sg(α2) = (b, 0) and sg(ζ3i,j) =
(0, 0), we obtain sp(di,j,3) = b. The region R is pure. Thus, if sg+(aj

i) > 0 then
sg−(aj

i) = 0. This implies sp(di,j,4) = b + sg+(aj
i) > b, a contradiction. Hence,

sg+(aj
i) = 0 is true.

The region R selects for every j ∈ {1, . . . , rk} exactly one i ∈ {1, . . . , m}
such that the e-copy aj

i has a positive consuming effect, that is, sig−(aj
i) > 0.

230 R. Tredup

The other e-copies remain neutral. To achieve this, the TS A uses for every
j ∈ {1, . . . , rk} the edge selector Fj . The gadget Fj applies the events aj

1, . . . , a
j
m,

that is, the j-th copy of every edge event a1, . . . , am. On Fj , every aj
i occurs b

times consecutively. Separated by ζ-events, these occurrences (aj
1)

b, . . . , (aj
m)b

are placed in a sequence. We abridge 	 = (m − 1)(b + 1) and define Fj :

fj,1 fj,2 fj,3 fj,b+3 . . . fj,� fj,�+1 fj,m(b+1)+2 fj,m(b+1)+3

fj,m(b+1)+4fj,m(b+1)+5

α3

δ4j ζ4j,1 (aj
1)

b ζ4j,m (aj
m)b ζ4j,m

β2

By sg(α3) = (b, 0), we have sp(fj,2) = b and, by sg(β2) = (0, b), we have
sp(fj,m(b+1)+3) = 0. The ζ-events are neutral, and sg+(aj

i) = 0 for all i ∈
{1, . . . , m}. Thus, we obtain 0 =

∑m
i=1 b · sg−(aj

i) < b. Consequently, there
is an i ∈ {1, . . . , m} such that sg−(aj

i) = 1, and sg−(aj
i′) = 0 for all i′ ∈

{1, . . . , m} ∖ {i}. The following edge connectors complete the set of A’s gadgets
that allow the selection of rk edges ai1 , . . . , airk

.
The TS A has for all i ∈ {1, . . . , m} a so called edge connector Hi whose

purpose is twofold. On the one hand, it ensures that the edge selectors never
choose two consuming copies of the same edge event, that is, if j 	= j′, sg−(aj

i) >

0 and sg−(aj′
i′) > 0, then i 	= i′. On the other hand, sg+(ai) > 0 if and only

if there is a j ∈ {1, . . . , rk} such that sg−(aj
i) > 0. Since F1, . . . , Frk select

rk consuming edge copies, this picks out exactly rk edges ai1 , . . . , airk
with a

positive producing effect. The gadget Hi applies the event ai and its rk copies.
Separated by ζ-events, two sequences of ai’s copies a1

i , . . . , a
rk
i , each of if it

occurring b times consecutively, embrace the event ai. For readability, we abridge
	 = (b + 1)rk + 2 and define Hi as follows:

hi,1 hi,2 hi,3 hi,b+3 . . . hi,�−2 hi,�−1 hi,� hi,�+1

hi,�+2hi,�+3hi,�+b+3. . .hi,2�+3hi,2�+4hi,2�+5hi,2�+6

δ5i ζ5i,1 (a1
i)

b ζ5i,rk (ark
i)b ζ5i,rk+1

ai

ζ5i,rk+2(a1
i)

bζ5i,2rk+2(ark
i)b

α4

By sg(α4) = (b, 0) it is sp(hi,2) = b. The ζ-events are neutral, and sg+(aj
i) = 0

for all j ∈ {1, . . . , rk}. Thus, it is sp(h(b+1)rk+3) = b − ∑rk
j=1 b · sg−(aj

i), and,
by sp(h(b+1)rk+3) ≥ 0, there is at most one j ∈ {1, . . . , rk} such that sg−(aj

i) >
0. Consequently, two copies of the same edge event are never selected by the
edge selectors. By Lemma 3, if sg−(aj

i) > 0, then sg−(aj
i) = 1. This implies

sp(h(b+1)rk+3) = 0. Furthermore, aj
i occurs again b times in a row “after” the

occurrence of ai at hi,(rk+j−1)(b+1)+5. This implies sp(hi,(rk+j−1)(b+1)+5) = b.
Since no edge copy produces, sg(ai) = (0, b) is immediately implied. Conversely,
if sg+(ai) > 0, then sp(h(b+1)rk+3) < b. Thus, by sp(h(b+1)rk+3) = b − ∑rk

j=1 b ·
sg−(aj

i), there is a consuming copy of ai. Consequently, sg+(ai) > 0 if and only
if sg(ai) = (0, b) and there is exactly one j ∈ {1, . . . , rk} such that sg−(aj

i) = 1.

Parameterized Complexity of Synthesizing b-Bounded (m, n)-T-Systems 231

So far we have argued that there are exactly rk distinct indices i1, . . . , irk ∈
{1, . . . , m} such that sg(ai1) = · · · = sg(airk

) = (0, b). Moreover, sg(ai) = (0, 0)
for all i ∈ {1, . . . , m} ∖ {i1, . . . , irk}. It remains to argue that these rk “edges”
ai1 , . . . , airk

are covered by exactly k “nodes”. To achieve this goal, the TS A uses
gadgets that work symmetrically to the ones used for the selection of the edges.
So called node noPros ensure that the node events v1, . . . , vn do not produce.
Moreover, the TS A applies for all i ∈ {1, . . . , n} k node-copies v1

i , . . . , vk
i and

uses n-copy noCons to prevent them from consuming. Furthermore, node selec-
tors force exactly k node copies to have a producing signature. The node connec-
tors ensure that two copies of the same node are never selected and connects a
producing node copy vj

i with its, then consuming, node event vi. Finally, exactly
k nodes v�1 , . . . , v�k

consume. Since these gadgets work symmetrically to the
ones for the edges, we only briefly prove their functionality.

The TS A has for i ∈ {1, . . . , n} the so called node noPro Pi (left hand side)
and for i ∈ {1, . . . , n} and j ∈ {1, . . . , k} the so called n-copy antiCon Qi,j (right
hand side) which are defined as follows:

pi,1 pi,2 pi,3 pi,4

pi,5

α5

δ6i ζ6i,1 vi
qi,j,1 qi,j,2 qi,j,3 qi,j,4

qi,j,5

β3

δ7i,j ζ7i,j vj
i

By sg(α5) = (b, 0) and sg(ζ6i,1) = (0, 0), we get sp(pi,3) = b which implies
sg+(vi) = 0. Moreover, by sg(β3) = (0, b) and sg(ζ7i,j) = (0, 0), we get sp(qi,j,3) =
0 which implies sg−(vj

i) = 0.
The TS A has for every j ∈ {1, . . . , k} a node selector Tj . On Tj , separated

by ζ-events, the j-th copy of every node event v1, . . . , vn occurs b times in a row.
We abridge 	 = (n − 1)(b + 1) + 2 and define Tj as follows:

tj,1 tj,2 tj,3 tj,b+3 . . . tj,� tj,�+1 tj,n(b+1)+2 tj,n(b+1)+3

tj,n(b+1)+4tj,n(b+1)+5

β4

δ8j ζ8j,1 (vj
1)

b ζ8j,n (vj
n)b ζ8j,n+1

α6

By sg(β4) = (0, b), sg(α6) = (b, 0), the neutrality of the ζ-events and sg−(vj
1) =

· · · = sg−(vj
n) = 0, we have b = sp(tj,n(b+1)+3) =

∑n
i=1 b ·sg+(vj

i) > sp(tj,3) = 0.
Thus, there is exactly one producing j-th copy produces and others are neutral.

Finally, the TS A has for every i ∈ {1, . . . , n} a so called node connector Ui

that, among others, applies the β-event β5, the k copies v1
i , . . . , vk

i of vi and the
event vi. We abridge 	 = (k − 1)(b + 1) + 2 and define Ui as follows:

ui,1 ui,2 ui,3 ui,b+3 . . . ui,� ui,�+1 ui,k(b+1)+2 ui,k(b+1)+3

ui,k(b+1)+4

ui,k(b+1)+5

δ9i ζ9i,1 (v1
i)b ζ9i,k (vk

i)b ζ9i,k+1

vi
β5

232 R. Tredup

By sg(β5) = (0, b), the neutrality of the ζ-events and sg−(vj
i) = 0 for all j ∈

{1, . . . , k}, it holds b ≥ sp(uj,k(b+1)+3) =
∑k

j=1 b · sg+(vj
i). Thus, at most one

node-copy vj
i , j ∈ {0, . . . , k}, of vi is not neutral. In particular, two copies of the

same node are never selected by the node selectors. Moreover, if sg−(vi) > 0,
then sp(uj,k(b+1)+3) > 0. Consequently, if vi consumes, then there is a producing
copy vj

i . Since there are at most k producing node copies, there are at most k
consuming nodes v�1 , . . . , v�k

. Thus, the rk producing events ai1 , . . . , airk
are

“covered” by exactly k consuming events v�1 , . . . , v�k
. Altogether, this proves

that I = {v ∈ V (G) | sg−(v) > 0} defines an independent set of size k of G.

3.2 The Proof of Lemma 2.2

Table 1. The gadgets of A and their corresponding γ-events.

Gadget Gi Ci Di,j Fj Hi Pi Qi,j Tj Ui Xi Yi Zi

⊕i
j,� ⊖

i
j,�

γ-event γ1
i γ2

i γ3
i,j γ4

j γ5
i γ6

i γ7
i,j γ8

j γ9
i γ10

i γ11
i γ12

i γ13
i,j,� γ14

i,j,�

The reduction merges the introduced gadgets to a directed labelled binary tree
with initial state ι = g1,1. The resulting TS A consists of 14 blocks, cf. Figure 1.
The TS A has for each of its gadgets a γ-event in accordance to Table 1. Using
these events, the joining connects the “initial states” of the gadgets as follows:

g1,1 . . . gm,1 c1,1 . . . cm,1 d1,1,1 . . . d1,rk,1 d2,1,1

. . .dm,rk,1f1,1. . .
9
n,k,1
9

n,k+1,1

γ1
1 γ1

m−1 γ1
m γ2

1 γ2
m−1 γ2

m
γ3
1,1 γ3

1,rk−1 γ3
1,rk

γ3
2,1

γ3
m,rk−1γ3

m,rkγ4
1,1γ9

n,k−1γ9
n,k

The γ-events γh
i,j,�, where indices that are 0 are omitted, occur “lexicograph-

ically” ordered by hij	 in accordance to the canonical order on the natural
numbers. This defines also an order on the gadgets and makes the conjunction
unambiguous.

Due to space restrictions, most of the proof of Lemma 2.2. is omitted. How-
ever, the following lemma states the solvability of α and v1, . . . , vn and exempli-
fies in which way A allows regions that respect the parameter.

Lemma 4. If (G, k) is a yes-instance of Regular Independent Set then
the events α and v1, . . . , vn are solvable by regions that respect the parameter
4rk + 40.

Proof. For the sake of space restrictions, we implicitly define solving regions Ri =
(spi, sgi) by spi(ι) and sgi, to be seen in Table 2: The ι-column shows sp(ι). The
event sets occur in the column in accordance to the signature of their elements.

Parameterized Complexity of Synthesizing b-Bounded (m, n)-T-Systems 233

For example, sp1(e) = (b, 0) for e ∈ {α1, . . . , α9}. Moreover, if e ∈ E(A) does not
occur in any presented set corresponding to Ri, then sgi(e) = (0, 0). In particular,
all signatures get along with (b, 0), (1, 0), (0, 0), (0, 1), (0, b). By spi(s′) = spi(s)−
sg−

i (e) + sp+i (e) for all s e s′ ∈ A, this defines Ri completely.
Solving α: Let r ∈ N

+ such that every node of G has degree r, and let
I = {v�1 , . . . , v�k

} be a k-independent set of G. The nodes v�1 , . . . , v�k
are inde-

pendent, and each of it has exactly r adjacent edges. Thus, there are exactly
rk edges ai1 , . . . , airk

∈ E(G) such that for all a ∈ E(G) the following is
true. If a ∈ EI = {ai1 , . . . , airk

}, then |a ∩ I| = 1 and otherwise |a ∩ I| = 0.
Using I and EI , we define region R1 in accordance to Table 2. If we follow the
arguments for the proof of Lemma 2.1, then it is easy to see that R1 is well
defined and solves α at xi,b+2, xi,b+3 and xi,2b+4 for all i ∈ {1, 2, 3}. Moreover,
|•R1| ≤ k(r + 1) + 13 and |R•

1| ≤ k(r + 1) + 11, cf. Table 2. Thus, the region R1

respects the parameter. Notice that the latter is possible by grouping “similar”
gadgets into blocks. For example, if the node noPros alternated with the node
selectors (P1, T1, . . . , Pn, Tn), then the number of consuming and producing γ-
events would depend on |V (G)| and would not respect the parameter. The region
R2 of Table 2 solves α at the remaining states of A and respects the parameter.

g1,1 . . .

graph

. . .gm,1

γ1
1

γ1
m 1

c1,1

e-noCon
cm,1

γ2
m

d1,1,1

e-cpy noPro
dm,rk

γ3
m

f1,1
e-selector

frk,1

γ3
m,rk

h1,1

e-connector
hm,1

γ4
rk

p1,1

node no Pro
pn,1

γ5
m

q1,1,1
n-cpy noCon

qn,k,1

γ6
n

t1,1
n-selector

tk,1

γ7
n,k

f1,1
n-connector

frk,1

γ8
k

x1,1

w-maker
x3,1

γ9
rk

y1,1

α-maker
y9,1

γ10
3

z1,1
β-maker

z5,5

γ11
9

1
1,1,1

9
n,k 1,1

γ12
5

1
1,1,1

9
n,k 1,1

γ13
9,n,k 1

Fig. 1. The gadgets’ conjunction to finally build A, consisting of “blocks” in accordance
to similar “gadget-types”. The red colored areas mark the gadgets whose initial states
are mapped to b by R1 (Table 2) solving (α, xi,b+2), (α, xi,b+3), (α, xi,2b+4) for all i ∈
{1, 2, 3}. (Color figure online)

Solving vi, i ∈ {1, . . . , n}: The Region R3 solves vi at all states except the
sinks of the affected ζ-events. The region R4 solves vi at these remaining sinks.
The event vi occurs in Gi1 , . . . , Gir

, Pi and Ui. Thus, |•R3| ≤ r + 2, |•R4| ≤ r,
|R•

3| and |R•
4| ≤ 1.

234 R. Tredup

Table 2. Implicitly defined regions of A that solve α and vi for all i ∈ {1, . . . , n}.

R ι (b, 0) (1, 0) (0, 1) (0, b)

R1 b {α1, . . . , α9},
{γ2

m, γ6
n, γ10

3 , γ13
9,n,k+1}

{α} ∪ I, {a�
i�

| 1 ≤ � ≤ rk} {vi
�i

| 1 ≤ i ≤ k} {w1, w2, w3, β1, . . . , β5},
EI , {γ3

m, γ9
rk, γ11

9 }
R2 0 {α} {ζ, δ101 , δ102 , δ103 }
R3 0 {vi} {e ∈ E(A) | e

s
vi }

R4 0 {vi} {δ1i1
, . . . , δ1ir

, δ6i , δ9i }

4 Conclusion

In this paper, we enhance our understanding of synthesizing (m,n)-T-systems
from the viewpoint of parameterized complexity. Although (m,n)-Synthesis
parameterized by m + n belongs to XP, we show that there is little hope that
this parameterization puts the problem into FPT. Future work might consider
the occupancy number oN of a searched net N a parameter. Let N = (P, T, f,M0)
be a pure b-net, and let RS be the set of N ’s reachable markings. The occupancy
number op of a place p ∈ P is defined by op = {M ∈ RS | M(p) > 0}, and
oN = max{op | p ∈ P} defines the occupancy number of N . At first glance, this
parameter seems promising, at least synthesis parameterized by oN is in XP.

Acknowledgements. I’m grateful to the reviewers for their helpful comments.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

2. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem forelemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

3. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

4. Badouel, E., Darondeau, P.: The synthesis of petri nets from path-automatic spec-
ifications. Inf. Comput. 193(2), 117–135 (2004). https://doi.org/10.1016/j.ic.2004.
04.004

5. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph petri nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-
L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04921-2 13

6. Best, E., Devillers, R.R.: State space axioms for T-systems. Acta Informatica 52(2–
3), 133–152 (2015). https://doi.org/10.1007/s00236-015-0219-0

7. Best, E., Devillers, R.R.: Synthesis of bounded choice-free petri nets. In: CONCUR.
LIPIcs, vol. 42, pp. 128–141. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015). https://doi.org/10.4230/LIPIcs.CONCUR.2015.128

8. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1016/S0304-3975(96)00219-8
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1016/j.ic.2004.04.004
https://doi.org/10.1016/j.ic.2004.04.004
https://doi.org/10.1007/978-3-319-04921-2_13
https://doi.org/10.1007/s00236-015-0219-0
https://doi.org/10.4230/LIPIcs.CONCUR.2015.128
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

Parameterized Complexity of Synthesizing b-Bounded (m, n)-T-Systems 235

9. Darondeau, P.: Unbounded petri net synthesis. In: Desel, J., Reisig, W., Rozenberg,
G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 413–438. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27755-2 11

10. Devillers, R., Hujsa, T.: Analysis and synthesis of weighted marked graph petri
nets. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877,
pp. 19–39. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4 2

11. Schlachter, U.: Bounded petri net synthesis from modal transition systems is
undecidable. In: CONCUR. LIPIcs, vol. 59, pp. 15:1–15:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.
CONCUR.2016.15

12. Schlachter, U., Wimmel, H.: k-bounded petri net synthesis from modal transition
systems. In: CONCUR. LIPIcs, vol. 85, pp. 6:1–6:15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.
CONCUR.2017.6

13. Tredup, R.: Hardness results for the synthesis of b-bounded petri nets. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 127–147.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 9

14. Tredup, R.: Synthesis of structurally restricted b-bounded petri nets: complexity
results. In: Filiot, E., Jungers, R., Potapov, I. (eds.) RP 2019. LNCS, vol. 11674, pp.
202–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30806-3 16

15. Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of synthesiz-
ing elementary net systems. In: CONCUR. LIPIcs, vol. 118, pp. 16:1–16:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.
4230/LIPIcs.CONCUR.2018.16

16. Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete
even for extremely simple inputs. In: Khomenko, V., Roux, O.H. (eds.) PETRI
NETS 2018. LNCS, vol. 10877, pp. 40–59. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91268-4 3

https://doi.org/10.1007/978-3-540-27755-2_11
https://doi.org/10.1007/978-3-319-91268-4_2
https://doi.org/10.4230/LIPIcs.CONCUR.2016.15
https://doi.org/10.4230/LIPIcs.CONCUR.2016.15
https://doi.org/10.4230/LIPIcs.CONCUR.2017.6
https://doi.org/10.4230/LIPIcs.CONCUR.2017.6
https://doi.org/10.1007/978-3-030-21571-2_9
https://doi.org/10.1007/978-3-030-30806-3_16
https://doi.org/10.4230/LIPIcs.CONCUR.2018.16
https://doi.org/10.4230/LIPIcs.CONCUR.2018.16
https://doi.org/10.1007/978-3-319-91268-4_3
https://doi.org/10.1007/978-3-319-91268-4_3

Parameterized Dynamic Variants
of Red-Blue Dominating Set

Faisal N. Abu-Khzam1 , Cristina Bazgan2 , and Henning Fernau3(B)

1 Department of Computer Science and Mathematics, Lebanese American University,
Beirut, Lebanon

faisal.abukhzam@lau.edu.lb
2 Université Paris-Dauphine, PSL University, CNRS, LAMSADE,

75016 Paris, France
cristina.bazgan@lamsade.dauphine.fr

3 Universität Trier,
Fachber. 4 – Abteilung Informatikwissenschaften, 54286 Trier, Germany

fernau@uni-trier.de

Abstract. We introduce a parameterized dynamic version of the Red-
Blue Dominating Set problem and its partial version. We prove the fixed-
parameter tractability of the dynamic versions with respect to the (so
called) edit-parameter while they remain W[2]-hard with respect to the
increment-parameter. We provide a complete study of the complexity of
the problem with respect to combinations of the various parameters.

Keywords: Dynamic problems · Reoptimization · Parameterized
complexity · Set cover · Hitting set

1 Introduction

In the Red-Blue Dominating Set problem (henceforth RBDS), we are given a
graph G = (R ∪ B,E) such that R ∩ B = ∅, together with an integer s ≥ 0,
and we are asked whether R contains a subset S of cardinality at most s such
that every element of B has at least one neighbor in S. In this case the elements
of R and B are called red and blue vertices respectively, and S is a red-blue
dominating set of G. We shall also refer to G as a red-blue graph. It is well-
known that RBDS is equivalent to Set Cover as well as to Hitting Set.1

In this paper we are interested in the parameterized complexity of dynamic
versions of RBDS and some of its variants. In such dynamic settings, originally
defined by Downey et al. in [12] in the context of the Dominating Set problem,
we assume the edges of the input graph G can appear or disappear with time, so
an initially feasible RBDS solution S (not necessarily optimal) may no longer
1 The problem should not be confused with Red-Blue Set Cover as studied in [7].

This work was supported by the bilateral research cooperation CEDRE between France
and Lebanon (grant number 40334SG).

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 236–247, 2020.
https://doi.org/10.1007/978-3-030-38919-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_20&domain=pdf
http://orcid.org/0000-0001-5221-8421
http://orcid.org/0000-0002-5460-6222
http://orcid.org/0000-0002-4444-3220
https://doi.org/10.1007/978-3-030-38919-2_20

Dynamic Red-Blue Dominating Set 237

dominate all of B and we want to construct another solution S′ so that the
Hamming distance between S and S′ is minimized. The problem is formally
defined as follows.

Dynamic Red-Blue Dominating Set (DRBDS)
Given: Two red-blue graphs G = (R∪B,E) and G′ = (R∪B,E′), a subset S of R
that is a red-blue dominating set of G, integers k and r such that dH(E,E′) ≤ k.
Question: Is there a subset S′ of R such that dH(S, S′) ≤ r and S′ is a red-blue
dominating set of G′?
By analogy to operations on characteristic vectors, the Hamming distance
between two sets (subsets of the same, mostly implicitly given ground set) refers
to the cardinality of the symmetric set difference, i.e., dH(S, S′) = |S Δ S′|.

Remark 1. Since r is a bound on the Hamming distance between S and S′, we are
not necessarily interested in deleting elements from S. Therefore we can always
assume S ⊆ S′ according to the formulation above. Then, dH(S, S′) = |S′|− |S|.
Hence, r is called the increment-parameter. Similarly, in view of the problem
at hand, it suffices to consider the special case when E′ ⊆ E, i.e., E′ resulted
from E by removing some edges. Then, dH(E,E′) = |E|−|E′|. More precisely, if
G = (R ∪ B,E), G′ = (R ∪ B,E′), S, k and r form an instance of DRBDS, then
also Ĝ = (R ∪ B,E ∪ (E′ \ E)), G′ = (R ∪ B,E′), S, k and r form an instance
of DRBDS as well, and S′ ⊆ R is (or is not) a red-blue dominating set of G′ in
both cases. We call k the edit-parameter.

Notice that DRBDS could be also viewed as a reoptimization variant of
Set Cover as defined in [3]. However, the more interesting approximation results
obtained in that paper rely on the given solution to be optimum, a condition that
is relaxed in this paper. So, we are following here the terminology introduced in
[1,12], which is not the same as later used in [2] under a similar name.

Motivation

In social networks, there is a growing interest in domination problems that can
model the search for influencers in the best way, in particular aiming at people
who can spread positive influence and participate in launching a global campaign
such as, for example, a non-smoking campaign. In such a context, the network
consists of two types of people: the set R of non-smokers (who are not to be
convinced but can help in convincing others) and the set B which consists of
those who are known to have the smoking habit. The natural social network of
friendship relations can be modeled as a graph.

Ideally one would seek a set of individuals S ⊆ R (to serve as influencers)
that are friends of all the elements of B. However, in real settings, the objective
would be to affect (or, in a more formal sense, to dominate) as many elements
of B as possible. This latter objective is modeled using the partial version of
RBDS, originally defined in [15] in the context of learning theory. Moreover,
it would be more realistic to assume someone is influenced by the non-smoking
campaign if there are at least a number, say q, of his or her friends who serve as

238 F. N. Abu-Khzam et al.

influencers. This gives rise to the q-RBDS problem which differs from RBDS
only in the domination condition requiring each element of B to have at least q
neighbors in S ⊆ R.2

We shall study the partial q-RBDS problem, among other variants, and focus
on its parameterized dynamic version to cope with settings where the network
is changing with time.

Another interesting scenario where dynamic RBDS could be useful is when
the red and blue vertices correspond to stores and customers, respectively, and
the links are based on credit card transactions: an edge uv means customer u
frequently purchases items from store v. In such a setting, it would be inter-
esting to have a smallest possible list of stores that are preferred by a large
number (or majority) of customers. Moreover, since data from credit card trans-
actions is dynamic, and the interests of customers change with time, some links in
the corresponding red-blue graph can appear or disappear, which might require
updating a previously computed (partial) RBDS solution. The so-called partial
DRBDS problem is obviously the right model in this case. In fact, the more
general partial (dynamic) q-RBDS problem could be of interest, as well. This is
another direction studied here.

Finally, let us mention another motivation for dynamic problems as consid-
ered in the paper: assume we have found (over time, with experience) a nice
solution to the problem that we are interested in. Here, nice does not necessar-
ily mean smallest or largest, but just satisfying a number of properties, out of
which some are formalized and are those we wish to keep up even if the situation
changes slightly. As the previous solution was nice, we do not want to change
it too much. This justifies the general assumption (important in the context of
Parameterized Complexity) that the two change parameters can be assumed to
be small.

Throughout this paper, we adopt common graph-theoretic terminology and
notations. Apart from the problems mentioned above, we will discuss quite a
number of auxiliary problems that might be of independent interest. The paper
is structured as follows. In the next section, we study the complexity of the
dynamic version of the Red-Blue Dominating Set problem. The partial version
is studied in Sect. 3, while the last section briefly addresses approximability but
focuses on open problems.

2 Complexity of Dynamic Red Blue Dominating Set

The fact that DRBDS is NP-hard is obvious. It follows immediately from the
NP-hardness of RBDS itself. To see this, let (G = (R∪B,E), s) be an instance
of RBDS; construct two graphs G1 and G2 as follows:3 G1 is obtained from G
by adding a special vertex w and joining it by |B| edges to each vertex of B.
2 In this model, possibly also the influence of smokers on their smoking friends should

be taken into account. This would lead to notions like alliances or monopolies as
discussed in [13]. We are not going into this direction in this paper.

3 We also refer to the general discussions of hardness for dynamic problems in [5].

Dynamic Red-Blue Dominating Set 239

G2 is obtained by deleting the k = |B| edges incident on w. Now set S = {w}
and r = s to obtain the dynamic RBDS instance. Obviously, any solution S′ is
equivalent to a solution to the given RBDS instance and vice versa.

We now define the Need-Based Red-Blue Dominating Set problem and use it
to obtain some algorithmic results which might be of independent interest.4

Need-Based Red-Blue Dominating Set (NB-RBDS)

Given: A red-blue graph G = (R ∪ B,E) together with integers s, q ≥ 0 and a
function η : B −→ {0, 1, . . . , q}.
Question: Does R contain a subset D of cardinality at most s such that every
element b of B has at least η(b) neighbors in D?

Notice that in approximation algorithms, this type of problems has been
studied as a special case of covering integer programs, see [22] as an example
reference. Namely, considering η as a |B|-dimensional vector and thinking of x as
a |R|-dimensional binary solution vector, as well as A as the |B|×|R|-biadjacency
matrix of the bipartite graph G, then NB-RBDS asks to find a solution vector x
with at most s one-entries that satisfies Ax ≥ η. This translation immediately
provides an O(|R|O(|R|))-algorithm based on Lenstra’s results [18]. We present an
alternative approach now, which is better roughly in the case when (q + 1)|B| <
|R||R|.

Notice that vertices with η(v) = 0 are trivially satisfied, so they can be
removed from the instance. Hence, we can (tacitly) assume η : B −→ {1, . . . , q}.

Theorem 1. NB-RBDS is fixed-parameter tractable with respect to |B| and q
as parameters.

Proof. Let R = {r1, . . . , rn}, B = {b1, . . . , bm} and q = max1≤i≤m{η(bi)}. We
show how to construct a solution S in time O((q + 1)|B|) by using dynamic
programming.

Consider the set of all functions from B to the set {0, 1, . . . , q}. There are
at most (q + 1)|B| many of them. A more precise upper-bound on their num-
ber is

∏
b∈B(η(b) + 1), as each such function can be represented by a vector

(x1, . . . , xm), where xi ∈ {0, 1, . . . , η(bi)} and m = |B|.
In the dynamic programming algorithm that we describe next, our target

vector is x = (x1, . . . , xm), where xi is the number of elements of R that are still
needed to (finally) cover bi with η(bi) elements of R. Let Rj = {r1, r2, . . . , rj}
and let C[x, j] be the minimum number of elements of Rj needed to be added
to S in order to cover each bi with xi elements from Rj . Hence, we initialize
C[0, 0] = 0 and C[x, 0] = ∞ for all x �= 0. Then we have the following recursion
for j > 0:

C[x, j] = min{C[x, j − 1], 1 + C[max{x − χN(rj),0}, j − 1]},

4 The notion of capacitated domination is related. Unfortunately, this notion is not
used consistently in the literature. While in [14], both capacities and demands are
associated to vertices, so that capacities equal to degrees and demands equal to needs
would be exactly a need-based variant of domination, in [6,11], there is no demand
function. However, we are not going into this direction here, also because for our
purposes, the need-based variation is rather an auxiliary problem.

240 F. N. Abu-Khzam et al.

where χN(rj) is the characteristic vector of N(rj) ⊆ B; the maximum operation
is understood component-wisely. So in the case where rj is in a smallest solution
from Rj we subtract 1 from each xi where bi ∈ N(rj). Obviously, the bottom
up dynamic programming approach would compute any target vector in time
O((q + 1)m|R|). This could be speed up by not considering target vectors with
components xi > η(bi). �

Observe that one could view our problem as a (very) special case of the
Hitting Set of Bundles problem considered in [10]. In fact, for each vertex b ∈ B,
we would introduce the set system S(b) of all η(b)-element subsets of N(b) and
the question would be to select a subset s(b) ∈ S(b) for each b ∈ B so that
the set

⋃
b∈B s(b) ⊆ R has cardinality at most s. Unfortunately, we arrive at a

very special case of Hitting Set of Bundles, so that the parameterized complexity
results known for that problem are not very helpful in our case. In particular,
the situation where Damaschke could prove W[1]-hardness, when the bundles
have size at most two, we would face the situation when q = 2 is a constant and
we parameterize by |B| and s, a situation covered (in a much stronger sense) by
the previous theorem, leading to an FPT result in our scenario.

Note that the solution size, s, was not treated as a parameter in the proof
above, so the dynamic programming algorithm finds a solution of minimum size
in R. We can (therefore) obtain the following result. Notice that we now fix q ≥ 1
as part of the problem definition.

Corollary 1. Dynamic q-RBDS is fixed-parameter tractable with respect to the
edit-parameter k.

Proof. Consider two red-blue graphs G = (R ∪ B,E) and G′ = (R ∪ B,E′), a
subset S of R that is a red-blue dominating set of G, integers k and r such that
dH(E,E′) ≤ k. By Remark 1, we can assume that E′ ⊆ E. Let B′ ⊆ B be the
set of elements of B that have less than q neighbors in S after the deletion of at
most k edges when moving from E to E′. Let B′ = {b1, b2, . . . , bk′}, k′ ≤ k (since
at most k edges are deleted). Let η(bi) = max{q − |NG′(bi) ∩ S|, 0}. In other
words, η(bi) is the number of elements of R that are still needed to dominate bi

with q (red) neighbors. Let q′ = max1≤i≤k′{η(bi)}. Obviously q′ ≤ k.
Now we are left with the instance (G = (R ∪ B′, E), r, η) of the NB-RBDS

problem, which is solvable in O((q′ + 1)|B′|). This proves our assertion, knowing
that both q′ and |B′| are bounded above by k. �

The following corollary follows immediately from the above; it corresponds
to the case q = 1.

Corollary 2. Dynamic RBDS is fixed-parameter tractable with respect to the
edit-parameter k.

Remark 2. More precisely, the proof of Corollary 1 shows that we can estimate
the running time as O∗(2k), as η : B′ → {0, 1}. Notice that algorithms of the
form O∗(2o(k)) are not to be expected under the Set Cover Conjecture, see [9],
because it is possible to formulate Set Cover as Dynamic RBDS. In essence, this
is also done in the proof of the next theorem, in an even more general setting.

Dynamic Red-Blue Dominating Set 241

Now we turn our attention to the increment-parameter, r. It was shown in
[1,12] that Dynamic Dominating Set is W[2]-hard when parameterized by the
increment-parameter r only. We show the same for q-RBDS.

Theorem 2. For any q ≥ 1, Dynamic q-RBDS is W[2]-hard with respect to the
increment-parameter r.

Proof. By reduction from the W[2]-hard RBDS problem. Let (G = (R∪B,E), r)
be an instance of RBDS. We construct an instance (G1, G2, S, k, r) of Dynamic
q-RBDS as follows.
G1 is obtained from G by adding q red vertices forming the set S that, together
with B, induces a complete bipartite subgraph. Let S = {w1, w2 . . . , wq}. Then
G1 = (R′ ∪B,E1) where R′ = R∪S and E1 = E ∪{vwi : v ∈ B, 1 ≤ i ≤ q}. Let
G2 = (R′ ∪ B,E2) where E2 = E1 \ {vw1 : v ∈ B} and k = |B|. In other words,
every element of B is dominated in G1 by the q vertices of S. However, in G2

every element of B is dominated by the q − 1 vertices of S \ {w1}. A solution S′

of this Dynamic q-RBDS instance must contain at most r vertices from R that
dominate B. �

Remark 3. It is not very difficult to design a multi-tape Turing machine that
solves Dynamic q-RBDS by first guessing the (at most) r vertices to be added
to the existing red-blue dominating set and then verifying this guess by using one
tape per vertex (better said neighborhood) in the spirit of [8]. The only difference
to the classical approach is that some head positions have to be individually set
by the reduction machine that constructs this Turing machine, based on the
information how the given set S already dominates other vertices.

Corollary 3. Dynamic RBDS is W[2]-complete with increment-parameter r.

3 The Partial Dynamic RBDS Set Problem

In the Partial Red-Blue Dominating Set problem, or Partial RBDS for short, we
are given an additional parameter t, the budget parameter, and the objective is
to find (whether there is) a subset S of R with |S| ≤ s that dominates at least t
elements of B. The dynamic version is defined as follows.

Dynamic Partial Red-Blue Dominating Set (PRBDS)
Given: Two red-blue graphs G = (R ∪ B,E) and G′ = (R ∪ B,E′); an integer
t ≥ 0; a subset S of R satisfying |NG(S)| ≥ t; integers k, r ≥ 0 such that
dH(E,E′) ≤ k.
Question: Is there a subset S′ of R such that dH(S, S′) ≤ r and |NG′(S′)| ≥ t?

Similar comments as collected in Remark 1 apply here as well: we may hence
assume that E′ ⊆ E and that S′ ⊇ S.

By enforcing t = |B|, it is not hard to see that the previously obtained
hardness results for the increment-parameter transfer (see Theorem 2).

242 F. N. Abu-Khzam et al.

Corollary 4. Dynamic PRBDS is W[2]-hard with increment-parameter r.

This observation lets us focus on the other two natural parameters of this
problem, the edit-parameter k and the target-parameter t.

The Partial RBDS problem is known to be fixed-parameter tractable with
respect to t. This was (equivalently) formulated in [4] in terms of Partial (Set)
Cover. The currently fastest algorithm runs in randomized time O∗(2t), using
polynomial space, as shown by Koutis and Williams [17] for the related Par-
tial Dominating Set problem. To keep the paper self-contained, we are going to
describe how this type of algorithm would look like for Partial RBDS next. The
key is a reduction to a problem that is based on the following algebraic set-
ting. Let X denote a set of variables. A monomial of degree d is a product of d
variables from X, with multiplication assumed to be commutative. A mono-
mial is called multilinear if no variable appears twice or more in the product.
A polynomial P (X) (over the semiring of nonnegative integers N) is a linear
combination of monomials with coefficients from N. Such polynomials, along
with addition and commutative multiplication, form a commutative semiring,
denoted by N[X]. The maximum degree among all monomials of P (X) is called
the degree of P (X). An arithmetic circuit over N and X is a directed acyclic
graph. Each node of in-degree zero is an input gate, which is labeled either with
an element from N or with a variable from X. The graph contains a single output
node of out-degree zero. Each other node is either an addition or a multiplica-
tion gate. Arithmetic circuits are representations for polynomials from N[X]. A
polynomial P (X) ∈ N[X] contains a certain monomial if the monomial appears
with a nonzero coefficient in the linear combination that constitutes P (X).
Multilinear Monomial Detection (MlD)

Given: An arithmetic circuit C representing a polynomial P (X) over N, an inte-
ger d ≥ 0.
Question: Does P (X), construed as a sum of monomials, contain a multilinear
monomial of degree at most d?

Koutis and Williams [17] showed that MlD, parameterized by the degree
parameter d, is fixed-parameter tractable, by providing a randomized algorithm
running in time O∗(2d), using polynomial space. They used this result to prove
that Partial Dominating Set can be solved in randomized FPT time O∗(2t).

To showcase this technique, we are first explaining how to derive an analogous
result for Partial RBDS. Let G = (R ∪ B,E) and k, t ≥ 0 form an instance of
Partial RBDS. We are going to construct a circuit C for the following polynomial.

Pk(X) :=

⎛

⎝
∑

r∈R

∏

b∈NG(r)

(1 + z · xb)

⎞

⎠

k

,

where the set of variables X consists of one variable xb for each vertex b ∈ B, as
well as one additional variable z. Now, Pk(X) contains a monomial of the form
ztxb1 · · · xbt for B′ := {b1, . . . , bt} forming a t-element subset of B if and only if

Dynamic Red-Blue Dominating Set 243

B′ is dominated by (at most) k elements from R. The intuition is the following:
By raising the sum-of-products to the kth power, any monomial is formed by
picking k of the product-terms. As the sum ranges over all red vertices, this
corresponds to selecting � ≤ k red vertices, forming R′ = {r1, . . . , r�}. Each
of these vertices from R′ will dominate the whole neighborhood. However, as
we need to only dominate t vertices, we may select t vertices (if possible) from
NG(R′), and moreover, each vertex bi from this chosen set B′ ⊆ NG(R′) selects
one vertex d(bi) ∈ R′ as its dominator. Consider the monomial

∏

rj∈R′

∏

b∈B′,rj=d(b)

z · xb

contained in Pk(X). It is obviously of the required form; in particular, it is
multilinear (with respect to X \ {z}) and contains zt but not zt+1.

Moreover, for any other monomial ztξ1 · · · ξt, formed in a different way, we
necessarily find 1 ≤ i < j ≤ t such that ξi = ξj , i.e., this monomial is not
multilinear. Observe that the size of C is polynomial in the size of G, because
the term of the sum-of-products need not be repeated in a circuit. Hence, one
could use the randomized MlD-algorithm to solve Partial RBDS in randomized
time O∗(2t) as claimed, where the parameter t becomes the degree parameter.

We show the same applies to the dynamic version, when parameterized by
the edit-parameter.

Theorem 3. Dynamic Partial RBDS is fixed-parameter tractable with respect to
the edit-parameter k.

Proof. Let (G,G′, S, k, r, t) be an instance of Dynamic Partial RBDS, as in the
definition above. Assume E′ ⊆ E and S′ ⊇ S. Observe that t − |NG′(S)| ≤ k,
since at most k elements of NG′(S) are affected by at most k edge deletions. So
it would be enough to dominate at most t − |NG′(S)| elements of B \ NG′(S).
We can hence use the presented FPT -algorithm for Partial RBDS, applied to
the red-blue subgraph induced by R ∪ (B \ NG′(S)), with t − |NG′(S)| (≤ k) as
a parameter. �

As we will see, the following seemingly easy generalization cannot be solved
by using this algebraic approach. This proves that a rather natural variation of
MlD cannot be solved in FPT -time. We are now turning our attention towards
Partial q-RBDS for arbitrary (fixed) q ≥ 1:
Given: A red-blue graph G = (R ∪ B,E), integers k, t, s ≥ 0.
Question: Is there a subset S ⊆ R, |S| ≤ s, and a subset N ⊆ B with |N | ≥ t
such that each element in N has at least q neighbors in S?

If q is part of the input, we speak of Partial General RBDS. As a natural
generalization, we again consider a need-based variation. We will return to the
whole family of problems Dynamic Partial q-RBDS below. First recall that in
the previous section, we used the (more general) Need-Based RBDS problem to
address the dynamic variant of q-RBDS and we showed it to be fixed-parameter
tractable. Unfortunately, this is more delicate here, as we will show now.

244 F. N. Abu-Khzam et al.

In the Need-Based Partial Red-Blue Dominating Set problem, we
are given an integer q and a function η : B −→ {0, 1, . . . q}, and we say that an
element v of B is dominated, or henceforth satisfied, by a subset D of R if it has
η(v) neighbors in D. A formal definition follows.

Need-Based Partial Red-Blue Dominating Set (NB-PRBDS)
Given: A red-blue graph G = (R ∪ B,E) together with integers s, t, q ≥ 0 and a
function η : B −→ {0, 1, . . . q}.
Question: Does R contain a subset D of cardinality at most s that satisfies at
least t elements of B?
Here, a subset D of R satisfies at least t elements of B if there is a set B′ ⊆ B
such that |B′| ≥ t and for all v ∈ B′, |N(v) ∩ D| ≥ η(v).

As in the previous section, we can tacitly assume that η(v) > 0 for all v ∈ B,
as otherwise we can easily satisfy v and hence remove v and decrement t.

It might be tempting to think that the ideas leading to FPT -algorithms in
Theorem 3 transfer to this case. We did try to work in this direction, but there
seems to be some difficulty because different individuals have different needs,
and this cannot be modeled while checking, at the same time, that at least t
blue vertices are dominated.

This difficulty can be backed with the following hardness result.

Theorem 4. NB-PRBDS is W[1]-hard with respect to t and q (and s) as param-
eters, even if the need function η is constant.

Proof. First, observe that if s = t = q and η being the constant function η = q,
NB-PRBDS asks about a biclique in the bipartite graph G = (R ∪ B,E) with
exactly s = q vertices in R (as q is a trivial lower bound on the size of any
solution) and (at least) t = q vertices in B. Rather recently, Lin proved that it
is W[1]-hard to find such a biclique Kt,t in a given bipartite graph, see [20] in
combination with [19, Lemma 3.1]. �

Corollary 5. Partial General RBDS is W[1]-hard, parameterized with t, q, or s.

Observe that usually, the partial variants of domination-like problems tend
to be in the class FPT . To the best of our knowledge, this is the first problem
variant where this question turns out to be hard. Yet, there is a catch in this
assertion, which can be seen by turning to the family of problems NB -q-PRBDS
whose definition coincides with that of NB -PRBDS, apart from the fact that q
is no longer part of the input here. We do not have a hardness result in this
case, nor do we know of algorithmic results, even not in the case when q = 2,
the case q = 1 having been dealt with (algorithmically) above. Rather, when we
look at Dynamic Partial General RBDS, where we have q as part of the input, we
can show the following result.

Corollary 6. Dynamic Partial General RBDS is W[1]-hard with respect to t or q
as parameters. W[1]-hardness even holds for the combined parameter (t, q, r, k).

Dynamic Red-Blue Dominating Set 245

Proof. As above, consider t = q. If G′ = (R ∪ B,E′) (together with t = q) is an
instance of NB-PRBDS, then we obtain G by adding a Kq,q, with s = q. The
edit-parameter is q2, the increment-parameter would be q. �

We are now proposing a generalization of MlD that we prove to be hard when
parameterized with the degree parameter. This result could be of independent
interest. As it is not central to the topic of the paper, we omit its proof.
Multilinear Monomial Detection with Partition (MlDwP)

Given: An arithmetic circuit C representing a polynomial P (X) over N, a par-
tition of X, an integer d ≥ 0.
Question: Does P (X), construed as a sum of monomials, contain a multilinear
monomial of degree at most d that contains, for each class of the partition, either
all variables in that class or no variable from that class?

Theorem 5. MlDwP, parameterized by the degree parameter, is W[1]-hard.

Remark 4. One could try to alternatively parameterize Partial RBDS by k and
k′ := |B| − t. In fact, the problem is easily seen to be W [2]-hard, when param-
eterized by k′, because the problem can then be re-formulated as follows (dis-
regarding isolated vertices): Given some red-blue graph G = (R ∪ B,E) and
integers k, k′ ≥ 0, find subsets R′ ⊆ R and B′ ⊆ B, with |R′| ≤ k and |B′| ≤ k′,
such that N(R′) = B \ B′ and N(B′) = R \ R′. Hence, if k = 0, the question
boils down to RBDS itself, with the roles of red and blue being exchanged.

Clearly, this tweak does not change the dynamic version of the problem at
all, it is equivalent to Dynamic Partial RBDS as studied above.

Remark 5. One could also think of changing the notion of a solution in the
dynamic partial setting. This would mean the following problem.

Dynamic Partial Red-Blue Dominating Set with Blue Focus (RBDSBF)
Given: Two red-blue graphs G = (R ∪ B,E) and G′ = (R ∪ B,E′); an integer
t ≥ 0; a subset T of B satisfying |T | ≥ t, dominated by S ⊆ R; integers k, r ≥ 0
such that dH(E,E′) ≤ k.
Question: Is there a subset T ′ of B, dominated by some S′ with |S′| ≤ |S|, such
that dH(T, T ′) ≤ r and |T ′| ≥ t?

NP-hardness of this variant is easily seen by starting from some RBDS
instance G′ = (R ∪ B,E′) and a bound s on the size of the red-blue domi-
nating set. Construct G from G′ by selecting a subset S ⊆ R with |S| = s and
adding |B| edges (to form E) so that S is a red-blue dominating set of G. With
t = k = |B| and r = 0, we have defined all ingredients of the equivalent Dynamic
RBDSBF instance. This also proves that the problem is para-NP-hard for the
increment-parameter r.

4 Concluding Remarks

In this paper, we undertook a multivariate analysis of Red-Blue Dominating Set.
Clearly, one could also consider further parameters, for instance the loss param-
eter, which is the difference between |N(S)| and |N(S′)|. As most of our results

246 F. N. Abu-Khzam et al.

are negative ones, there is surely a need for further parameterizations. Also, it
would be very helpful to know if NB-q-PRBDS belongs to FPT for any fixed
q > 1, as this would also help classify the dynamic variants of PRBS for fixed
q > 1. This is the most interesting open problem in that area in our opinion.

We completely neglected approximability issues so far. The more classical
DRBDS problem (as Set Cover reoptimization) was previously considered in
[3,21]. Let us at least mention one positive result, concerning the natural max-
imization variant of Red-Blue Dominating Set, which we call Budgeted Red-
Blue k-Dominating Set, following the tradition of the literature of these prob-
lems. Here, we search for a subset of k red vertices that dominate a maximum
number of blue vertices. Khuller et al. [16] considered the approximability of the
Budgeted Connected k-Dominating Set. In this problem there is a budget
k on the number of vertices we can select, and the goal is to dominate as many
vertices as possible with a connected set.

Theorem 6. Budgeted Red-Blue k-Dominating Set is polynomial-time
1
13 (1 − ε) approximable, for any ε > 0.

Proof. Given any instance G = (R ∪ B,E) (and k) of Budgeted Red-Blue
k-Dominating Set, we construct an instance of Budgeted Connected k-
Dominating Set by turning R into a clique. This results in a split graph G′

on which we can use the algorithm of Khuller et al. to compute an approximate
solution. In any solution containing a vertex b from B, b can be easily replaced by
any neighbor of b, so that we can assume that the solution S is a subset of R. This
is also true for an optimum solution. Hence, maximum solutions to the instance
(G, k) correspond to maximum solutions of (G′, k) and vice versa. Thus, the
approximation factor of 1

13 (1 − ε), shown in [16] for Budgeted Connected
k-Dominating Set on split graphs, also applies to our problem. �

References

1. Abu-Khzam, F.N., Egan, J., Fellows, M.R., Rosamond, F.A., Shaw, P.: On the
parameterized complexity of dynamic problems. Theoret. Comput. Sci. 607, 426–
434 (2015)

2. Alman, J., Mnich, M., Williams, V.V.: Dynamic parameterized problems and algo-
rithms. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP. LIPIcs,
vol. 80, pp. 41:1–41:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

3. Bilò, D., Widmayer, P., Zych, A.: Reoptimization of weighted graph and covering
problems. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp.
201–213. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-93980-
1 16

4. Bläser, M.: Computing small partial coverings. Inf. Process. Lett. 85(6), 327–331
(2003)

5. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of
reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77566-9 5

https://doi.org/10.1007/978-3-540-93980-1_16
https://doi.org/10.1007/978-3-540-93980-1_16
https://doi.org/10.1007/978-3-540-77566-9_5

Dynamic Red-Blue Dominating Set 247

6. Bodlaender, H.L., Lokshtanov, D., Penninkx, E.: Planar capacitated dominating
set is W [1]-hard. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917,
pp. 50–60. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-
0 4

7. Cai, Z., Miao, D., Li, Y.: Deletion propagation for multiple key preserving con-
junctive queries: approximations and complexity. In: International Conference on
Data Engineering, ICDE, pp. 506–517. IEEE (2019)

8. Cesati, M.: The turing way to parameterized complexity. J. Comput. Syst. Sci.
67(4), 654–685 (2003)

9. Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Algorithms
12(3), 41:1–41:24 (2016)

10. Damaschke, P.: Parameterizations of hitting set of bundles and inverse scope. J.
Comb. Optim. 29(4), 847–858 (2015)

11. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination
and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79723-4 9

12. Downey, R.G., Egan, J., Fellows, M.R., Rosamond, F.A., Shaw, P.: Dynamic dom-
inating set and turbo-charging greedy heuristics. Tsinghua Sci. Technol. 19(4),
329–337 (2014)

13. Fernau, H., Rodŕıguez-Velázquez, J.A.: A survey on alliances and related parame-
ters in graphs. Electron. J. Graph Theory Appl. 2(1), 70–86 (2014)

14. Kao, M., Chen, H., Lee, D.: Capacitated domination: problem complexity and
approximation algorithms. Algorithmica 72(1), 1–43 (2015)

15. Kearns, M.J.: Computational Complexity of Machine Learning. ACM Distin-
guished Dissertations. MIT Press, Cambridge (1990)

16. Khuller, S., Purohit, M., Sarpatwar, K.K.: Analyzing the optimal neighborhood:
algorithms for budgeted and partial connected dominating set problems. In: Sym-
posium on Discrete Algorithms (SODA), pp. 1702–1713. SIAM (2014)

17. Koutis, I., Williams, R.: Limits and applications of group algebras for parameter-
ized problems. ACM Trans. Algorithms 12(3), 31:1–31:18 (2016)

18. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

19. Lin, B.: The parameterized complexity of k-biclique. In: Symposium on Discrete
Algorithms (SODA), pp. 605–615. SIAM (2015)

20. Lin, B.: The parameterized complexity of the k-biclique problem. J. ACM 65(5),
34:1–34:23 (2018)

21. Mikhailyuk, V.A.: Reoptimization of set covering problems. Cybern. Syst. Anal.
46(6), 879–883 (2010)

22. Srinivasan, A.: Improved approximation guarantees for packing and covering inte-
ger programs. SIAM J. Comput. 29(2), 648–670 (1999)

https://doi.org/10.1007/978-3-642-11269-0_4
https://doi.org/10.1007/978-3-642-11269-0_4
https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1007/978-3-540-79723-4_9

Refined Parameterizations for Computing
Colored Cuts in Edge-Colored Graphs

Nils Morawietz(B), Niels Grüttemeier, Christian Komusiewicz ,
and Frank Sommer

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg,
Marburg, Germany

{morawietz,niegru,komusiewicz,fsommer}@informatik.uni-marburg.de

Abstract. In the Colored (s, t)-cut problem, the input is a graph G =
(V, E) together with an edge-coloring � : E → C, two vertices s and t,
and a number k. The question is whether there is a set S ⊆ C of at
most k colors, such that deleting every edge with a color from S destroys
all paths between s and t in G. We continue the study of the parame-
terized complexity of Colored (s, t)-cut. First, we consider parameters
related to the structure of G. For example, we study parameterization
by the number ξi of edge deletions that are needed to transform G into
a graph with maximum degree i. We show that Colored (s, t)-cut
is W[2]-hard when parameterized by ξ3, but fixed-parameter tractable
when parameterized by ξ2. Second, we consider parameters related to
the coloring �. We show fixed-parameter tractability for three param-
eters that are potentially smaller than the total number of colors |C|
and provide a linear-size problem kernel for a parameter related to the
number of edges with a rare edge color.

1 Introduction

The design of networks that are robust against failure of network components
is an important step in the quest for secure communication systems [9]. Since
current communication networks are in fact multilayer networks, it is important
to consider multiple failure scenarios where a failure of a single layer may affect
direct connections between many different nodes at once–even if these nodes
are spread widely throughout the network [1,5]. Thus, it has been proposed to
use edge-colored graphs consisting of a graph G = (V,E), a color set C, and
an edge-coloring � : E → C to model the layers. If a network layer fails, then
all edges with the corresponding color become unavailable for communication.
In other words, we may think of these edges as being removed from the graph.
One measure for the vulnerability of a network in this model is the number
of layers that have to fail in order to disconnect two given important nodes s
and t. To compute this vulnerability measure, one needs to solve the following
computational problem [1,5].

Some of the results of this work are also contained in the first author’s Master thesis.
F. Sommer—was supported by the DFG, project MAGZ (KO 3669/4-1).

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 248–259, 2020.
https://doi.org/10.1007/978-3-030-38919-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_21&domain=pdf
http://orcid.org/0000-0003-0829-7032
http://orcid.org/0000-0003-4034-525X
https://doi.org/10.1007/978-3-030-38919-2_21

Refined Parameterizations for Computing Colored Cuts 249

Colored (s, t)-cut
Input: An edge-colored graph (G = (V,E), C, �), two vertices s and t, and
a positive integer k.
Question: Is there a subset of colors S ⊆ C with |S| ≤ k such that s
and t are not in the same connected component in G′ := (V,E \ ES),
where ES := {e ∈ E | �(e) ∈ S}?

Colored (s, t)-cut is NP-hard [1,5]. Motivated by this hardness, we study the
parameterized complexity of the problem.

Known Results and Related Work. To our knowledge, Colored (s, t)-cut was
first introduced in a directed version in the context of the analysis of directed
attack graphs [7,10]. It was shown, by a reduction from Hitting Set, that
in this setting computing (s, t)-cuts with few colors is NP-hard [7,10]. While
the graph is directed in this case, the reduction can be easily adapted to show
NP-hardness of the undirected case by discarding all edge directions in the con-
structed graph G. Moreover, this reduction also implies that Colored (s, t)-cut
is W[2]-hard when parameterized by k. In later work, this reduction from Hit-
ting Set and the above-mentioned hardness results were also discovered directly
for Colored (s, t)-cut [6,8,11,12]. When the same reduction is from Vertex
Cover, the special case of Hitting Set where every hyperedge has size two,
then the resulting instance of Colored (s, t)-cut has a vertex cover of size
two [12] making the problem NP-hard even in this very restricted case. More-
over, Colored (s, t)-cut is NP-hard even if G is a complete graph [11].

On the positive side, by considering all possible choices for choosing the k col-
ors that shall be removed, Colored (s, t)-cut can be solved in nO(k) time. This
implies an nO(Δ)-time algorithm, where Δ is the maximum degree of G, since
instances with Δ ≤ k are trivial yes-instances. Moreover, Colored (s, t)-cut
can be solved in O(2c · (n + m)) time, where c := |C| is the number of colors.
Colored (s, t)-cut can be solved in polynomial time when each edge color
appears in at most two (s, t)-paths [8,11] and if every edge color has span one.
Herein, the span of a color is the number of connected components in the sub-
graph of G that contains only the edges of this color and their endpoints [1]. The
latter result was later extended to an algorithm with running time 2cspan · nO(1)

where cspan is the number of edge colors that have span at least two [2,8,11].
Colored (s, t)-cut is fixed-parameter tractable (FPT) with respect to the com-
bination of pmax and k where pmax is the number of edges of a longest simple
path between s and t [13]. Finally, Colored (s, t)-cut is FPT with respect to
the number of (s, t)-paths in G [8]. For all known nontrivial parameters that lead
to FPT algorithms, that is, for c, pmax + k, cspan, and for the number of (s, t)-
paths, Colored (s, t)-cut does presumably not admit a polynomial problem
kernel [8,11].

Our Results. Westudynewparameterizations forColored (s, t)-cut. Recall that
it is known that Colored (s, t)-cut is W[2]-hard for the budget parameter k and
that Colored (s, t)-cut is NP-hard even when G has a vertex cover of size two.
The latter result excludes tractability for most standard parameterizations

250 N. Morawietz et al.

Fig. 1. The parameterized complexity of Colored (s, t)-cut for structural graph
parameters; vc, fes, fvs, and tw denote the vertex cover number, feedback edge set num-
ber, feedback vertex set number, and treewidth, respectively. New results are marked
by an asterisk. An arrow a → b symbolizes that a ≥ g(b) for some function g in all
graphs. Note that ξ2 → fes holds only for connected graphs; for Colored (s, t)-cut
we assume that G is connected.

that are related to the structure of G, for example for the treewidth of G, the vertex
deletion distance to forests (known as feedback vertex set number), or the vertex
deletion distance to graphs with maximum degree i: the corresponding parameters
are never larger than the size of a smallest vertex cover of G. Thus, we first con-
sider parameters that are related to the edge deletion distance to tractable cases of
Colored (s, t)-cut. Our results are shown in Fig. 1.

Since Colored (s, t)-cut can be solved in polynomial time on graphs with
constant maximum degree Δ, we consider parameterization by ξi, the number
of edges that need to be deleted in order to transform G into a graph with
maximum degree i. We show that for all i ≥ 3, Colored (s, t)-cut is W[2]-
hard for ξi. This also implies W[2]-hardness for the parameter Δ: For a vertex
of degree Δ ≥ i, at least ξi incident edges have to be deleted to decrease its
degree to i. Hence, Δ ≤ ξi + i. Consequently, our result strengthens the W[2]-
hardness for the parameter k, as k ≤ Δ in all non-trivial instances. Hence, the
known nO(Δ)-time algorithm for graphs with constant maximum degree cannot
be improved to an algorithm with running time f(Δ) · nO(1). We then show
an FPT algorithm for parameterization by ξ2. This algorithm is obtained via
the FPT algorithm for the parameter “number p of simple (s, t)-paths in G”.
The latter algorithm also gives an FPT algorithm for parameterization by the
feedback edge set number of G, the number of edges that need to be removed
to transform G into a forest. We also observe that Colored (s, t)-cut does not
admit a polynomial kernel for ξ2 and for the feedback edge set number of G.

We then study parameterizations that are related to the edge-coloring � of G;
our results are shown in Fig. 2. Assume that C = {α1, . . . , αc} and there are at
least as many edges with color αi as with color αi+1 for all i < c. For any
number q, we let the parameter m>q := |{e ∈ E | �(e) = αj for j > q}| denote

Refined Parameterizations for Computing Colored Cuts 251

Fig. 2. An overview of the parameterized complexity of Colored (s, t)-cut for color-
related parameters as analyzed in Sects. 3 and 4. New results are marked by an asterisk.
An arrow a → b between two parameters a and b, symbolizes that a ≥ g(b) for some
function g in all instances.

the number of edges with a color that is not among the q most frequent colors.
Note that c ≤ m>q +q and m>q ≤ m. Hence, for constant q, the parameter m>q

is an intermediate parameter between c and m. We show that for all constant q,
Colored (s, t)-cut admits a problem kernel of size O(m>q).

We then provide a general framework to obtain FPT algorithms for parame-
ters that are potentially smaller than c, the number of colors. To formulate the
framework, we identify certain properties of color sets in the input instances that
directly give an FPT algorithm for the parameterization by the size of this color
set. We then provide four applications of this framework. The first application is
for cspan, the number of colors with span at least two. For this parameterization,
an FPT algorithm is already known [2,8,11], and an algorithm with the same
running time can be obtained by applying our framework. The second applica-
tion is for parameterization by the number cpath of colors that appear in at least
three (s, t)-paths. Using our framework, we extend the known polynomial-time
algorithm for cpath = 0, to an FPT algorithm with running time 2cpath · nO(1).
The third application is for the parameterization by cconf which we define as fol-
lows. Two colors i and j are in conflict if G contains some (s, t)-path containing i
and j. Then, cconf is the number of colors i that are in conflicts with at least three
other colors. We show by applying our framework, that Colored (s, t)-cut can
be solved in 2cconf · nO(1) time. Finally, we strengthen the latter two results by
showing an FPT algorithm for the parameter cpc counting the number of colors
which are in at least three paths and in at least three conflicts. The parameter
cpc can be seen as an “intersection” of cpath and cconf. We also show that Col-
ored (s, t)-cut is NP-hard even when every color has span one or occurs in at
most two paths, and NP-hard even when every color has span one or occurs in
at most two conflicts. Thus, an FPT algorithm is unlikely for the intersection
of cspan with cpath or cconf, denoted by csp and csc, respectively.

Preliminaries. An edge-colored graph is a triple H = (G = (V,E), C, � : E → C)
where G is an undirected graph, C is a set of colors and � : E → C is an edge
coloring. We extend the definition of � to edge sets E′ ⊆ E by defining �(E′) :=
{�(e) | e ∈ E′}. We let n and m denote the number of vertices and edges in G,

252 N. Morawietz et al.

respectively, and c the size of the color set C. We call |I| := m + n the size of
an instance I. We assume k < m and that all input graphs are connected, since
connected components containing neither s nor t may be removed.

In a graph G = (V,E), we call a sequence of vertices P = (v1, . . . , vk) ∈
V k, k ≥ 1, a path of length k − 1 if {vi, vi+1} ∈ E for all 1 ≤ i < k. If vi �= vj for
all 1 ≤ i < j ≤ k, then we call P vertex-simple. If not mentioned otherwise, we
only talk about vertex-simple paths. Furthermore, we say that a path (v1, . . . , vk)
is a (v1, vk)-path. We denote with V (P) := {vi | 1 ≤ i ≤ k} the vertices of P
and with E(P) := {{vi, vi+1} | 1 ≤ i < k} the edges of P . Hence, �(E(P))
denotes the set of colors of a path P in a colored graph (G = (V,E), C, �).
Given two paths P1 = (v1, . . . , vk) and P2 = (w1, . . . , wr) in G, we define
the concatenation as P1 · P2 := (v1, . . . , vk, w1, . . . , wr). Note that P1 · P2 is
a path if {vk, w1} ∈ E. Let H = (G,C, �) be a colored graph and let s, t ∈ V
be two vertices in G. We say that C̃ ⊆ C is a colored (s, t)-cut in G if for
every (s, t)-path P in G, �(E(P)) ∩ C̃ �= ∅. We denote by C(H) := {�(E(P)) |
P is an (s, t)-path in G} the collection of sets of colors of vertex simple (s, t)-
paths in G. Note that C̃ ⊆ C is a colored (s, t)-cut in G if and only if C̃ ∩C ′ �= ∅
for all C ′ ∈ C(H). The following lemma implies that we can efficiently compute
an “or”-composition of many Colored (s, t)-cut instances.

Lemma 1 ([11]). Let I1, I2, . . . , Ii be a set of Colored (s, t)-cut instances
with the same budget k. Then, we can compute in linear time an instance I ′ with
budget k such that I ′ is a yes-instance if and only if Ij is a yes-instance for at
least one j ∈ {1, . . . , i} and |I ′| ≤ ∑i

j=1 |Ii|.
For the standard notions on parameterized complexity, refer to [3,4]. Due to

lack of space, several proofs are deferred to the full version of this paper.

2 Structural Graph Parameters

As discussed above, Colored (s, t)-cut is unlikely to be FPT for vertex deletion
parameters. We thus consider edge deletion parameters.

Definition 1. Let G = (V,E) be a graph and i ≥ 0 be an integer. Further,
let ξi := min{|E′| | E′ ⊆ E,G − E′ has a maximum degree of i} be the edge
deletion distance to a maximum degree of i.

Since Colored (s, t)-cut can be solved in polynomial time for constant Δ,
the parameter ξi measures the distance to a trivial case. Since Δ ≤ ξi + i,
Colored (s, t)-cut parameterized by ξi is in XP when i is constant. The larger i,
the smaller the parameter value ξi will be in most instances. We now show that
even for small i, namely for i = 3, an FPT algorithm for ξi is unlikely.

Theorem 1. Colored (s, t)-cut parameterized by ξ3 is W[2]-hard even on
planar graphs.

We now show that this result is tight by showing an FPT algorithm for ξ2
which is obtained via an FPT algorithm for p, the number of (s, t)-paths in G.

Refined Parameterizations for Computing Colored Cuts 253

Proposition 1 ([8]). Colored (s, t)-cut is FPT parameterized by p and does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

For a graph G = (V,E), we call F ⊆ E a feedback edge set if G − F is a
forest. We define with fes := min{|F | | F is a feedback edge set} the feedback
edge set number. The following can be obtained by applying Proposition 1.

Proposition 2. Colored (s, t)-cut is FPT parameterized by fes or ξ2 does
not admit a polynomial kernel for fes +ξ2, unless NP ⊆ coNP/poly.

3 A Kernel for the Number of Edges with Rare Colors

In this section, we give a linear problem kernel for Colored (s, t)-cut parame-
terized by the number of edges whose color is not among the top-q most frequent
colors. More precisely, we define a family of parameters m>q for every q ∈ N as
follows. For a Colored (s, t)-cut-instance I with color set C, let (α1, α2, . . . , αc)
be an ordering of the colors in C such that the number of edges with color αi is
not smaller than the number of edges with color αi+1 for all i ∈ {1, . . . , c − 1}.
For a given constant q, let C̃ ⊆ C be the set of the q most frequent colors. We
then define m>q as the number of edges that are not assigned to a color in C̃.
In the following, we show a linear problem kernel for m>q for every q.

Informally, the kernel is based on the following idea: Since q is a constant,
we may try all possible partitions of {α1, . . . , αq} into a set of colors Cr that
we want to remove and a set of colors Cm that we want to keep. Fix one par-
tition (Cr, Cm). Under the assumption posed by this partition, we can sim-
plify the instance as follows. The edges of Cr can be deleted. Moreover, all
vertices that are connected by a path P in G, such that �(E(P)) ⊆ Cm can-
not be separated anymore under this assumption. Thus, all vertices of P can
be merged into one vertex. To formalize this merging, we give the follow-
ing definition. For a colored graph (G = (V,E), �) and a set Cm ⊆ C, we
define [v]Cm

:= {u ∈ V | ∃P = (v, . . . , u) in G : �(E(P)) ⊆ Cm} as the set
of vertices that are connected to v by a path only colored in Cm. If Cm is clear
from the context, we may only write [v]. The instance that can be built for
specific sets Cr and Cm is defined as follows.

Definition 2. Let I = (G,C, �, s, t, k) be a Colored (s, t)-cut instance and
let Cr, Cm ⊆ C with Cr ∩ Cm = ∅. The remove-merge-instance of I with
respect to (Cr, Cm) is rmi(I, Cr, Cm) := (G′ = (V ′, E′), C ′, �′, [s], [t], k − |Cr|),
where C ′ := C \ (Cr ∪ Cm), V ′ := V ′

1 ∪ V ′
2 , and

V ′
1 := {[v] | v ∈ V },

V ′
2 := {vα

{[u],[w]} | [u], [w] ∈ V ′
1 , α ∈ C ′, [u] �= [w],

∃u′ ∈ [u], w′ ∈ [w] : {u′, w′} ∈ E, �({u′, w′}) = α},

E′ := {{[w], vα
{[u],[w]}}, {[u], vα

{[u],[w]}} | vα
{[u],[w]} ∈ V ′

2}, and

�′({[u], vα
{[u],[w]}}) := α.

254 N. Morawietz et al.

The vertices of V ′
2 only exist to prevent G′ from having parallel edges. We first

show that a remove-merge-instance can be computed efficiently.

Proposition 3. Let I = (G = (V,E), C, �, s, t, k) be a Colored (s, t)-cut
instance, and let I ′ = rmi(I, Cr, Cm) be the remove-merge-instance of I for
some Cr, Cm ⊆ C such that Cr ∩ CM = ∅. Then, |I ′| ∈ O(|I|) and I ′ can be
computed in O((|Cr| + |Cm|) · m) time.

We now show that for any C̃ ⊆ C, we can solve the original instance by
creating and solving all possible remove-merge-instances for subsets of C̃.
Lemma 2. Let I := (G = (V,E), C, �, s, t, k) be a Colored (s, t)-cut instance
and let C̃ ⊆ C, then I is a yes-instance if and only if there is a subset Cr ⊆ C̃
such that the remove-merge-instance I ′ := rmi(I, Cr, C̃ \ Cr) is a yes-instance.

Theorem 2. For every constant q ∈ N, Colored (s, t)-cut admits a problem
kernel of size O(m>q) that can be computed in O(|I|) time.

Proof. Let I = (G = (V,E), C, �, s, t, k) be an instance of Colored (s, t)-cut
and let C̃ = {α1, α2, . . . , αq} ⊆ C be the set of the q most-frequent colors. We
first describe how to compute an equivalent instance I ′ from I in linear time and
afterwards we show that |I ′| ∈ O(m>q).

Construction of I ′. We start by computing the set I = {rmi(I, Cr, C̃\Cr) | Cr ⊆
C̃} containing for every Cr ⊆ C̃, the remove-merge instances of I with respect
to (Cr, C̃ \ Cr). Note that |I| = 2q ∈ O(1). We write I = {I1, I2, . . . , I2q}
and let Ii =: (Gi = (Vi, Ei), Ci, �i, [s]i, [t]i, ki) denote each instance Ii ∈ I.
By Proposition 3 we can compute every Ii ∈ I in O(q · |I|) = O(|I|) time.
Therefore, we can compute I in O(|I|) time. Note that maxi∈{1,...,2q} ki = k and
that Ci = C \ C̃ for every i ∈ {1, . . . , 2q}.

Next, we apply the algorithm of Lemma1 on all instances of I. Note that the
budgets ki of the instances Ii ∈ I might not be equal. Thus, in order to apply
Lemma 1 we transform every instance Ii ∈ I into an instance I∗

i by adding
auxiliary vertices v1, . . . , vk−ki

to Vi and auxiliary edges {[s]i, vj} and {[t]i, vj}
for every j ∈ {1, . . . , k−ki} to Ei. Let V ∗

i and E∗
i be the resulting sets. Finally, we

set k∗
i = k and �∗

i (e) = �i(e) if e ∈ Ei and �∗
i ({[s]i, vj}) = �∗

i ({[t]i, vj}) = αj for
every j ∈ {1, . . . , k−ki}. Note that we added at most k−ki vertices and 2(k−ki

edges to every instance Ii and that k−ki ≤ q. Since q is a constant, |I∗
i | ∈ O(|Ii|)

and I∗
i can be computed from Ii in O(|Ii|) time.

Let I∗ = {I∗
1 , . . . , I∗

2q} be the resulting set of instances. Note that the budget
is k in all instances in I∗. Therefore, we can apply Lemma 1 on the 2q instances
in I∗ and compute an instance I ′ in O(|I|) time, such that I ′ is a yes-instance
if and only if there exists some i ∈ {1, . . . , 2q} such that I∗

i is a yes-instance. We
defer the proof of the equivalence of I and I ′.

Size of I ′. It remains to give a bound for the size of I ′. By Definition 2 of
remove-merge-instances, every Ii ∈ I contains no edges with a color in C̃, and
subdivides every other edge of I. Therefore, every Ii ∈ I contains at most 2m>q

edges. Since |I∗
i | ∈ O(|Ii|) we conclude |I∗

i | ∈ O(m>q) for every I∗
i ∈ I. Finally,

by Lemma 1 it holds that |I ′| ≤ ∑2q

i=1 |I∗
i | ∈ O(m>q), since 2q ∈ O(1). �

Refined Parameterizations for Computing Colored Cuts 255

4 Parameterization by Color Subsets

In this section we present a general framework for color parameterizations of
Colored (s, t)-cut leading to an FPT algorithm. To apply our framework, one
has to check two properties of the parameterization.

Definition 3. A function π that maps every instance I = (G,C, �, s, t, k) of
Colored (s, t)-cut to a subset π(I) ⊆ C of the colors of I is called a color
parameterization. If for every Colored (s, t)-cut instance I, π(I) can be com-
puted in polynomial time and I can be solved in polynomial time if π(I) = ∅,
then π is called a polynomial color parameterization.

In the following, we will only deal with polynomial color parameterizations.
Next, we will use remove-merge-instances to transform an instance I of Col-
ored (s, t)-cut to a set I of remove-merge-instances of Colored (s, t)-cut
such that π(I ′) = ∅ for each I ′ ∈ I and I has size f(π(I)) for some computable
function f . Each I ′ can be solved in polynomial-time since π is polynomial
and π(I ′) = ∅. This leads to an FPT algorithm.

Definition 4. A color parameterization π has the strong remove-merge prop-
erty if for every Colored (s, t)-cut instance I, every C̃ and every Cr ⊆ C̃ it
holds that π(I ′) ⊆ π(I) where I ′ := rmi(I, Cr, C̃ \ Cr). Further, π has the weak
remove-merge property if for every Colored (s, t)-cut instance I and every
Cr ⊆ π(I) it holds that π(I ′) = ∅ where I ′ := rmi(I, Cr, π(I) \ Cr).

Lemma 3. If π has the strong remove-merge property, π also has the weak
remove-merge property.

Lemma 4. Let π be a polynomial color parameterization with the weak remove-
merge property. Then, any instance I of Colored (s, t)-cut can be solved
in 2|π(I)||I|O(1) time and Colored (s, t)-cut does not admit a polynomial ker-
nel for |π(I)|, unless NP ⊆ coNP/poly.

Proof. First, we present an FPT algorithm with the claimed running time. Let I
be an instance of Colored (s, t)-cut. We compute π(I) and the set I of all
remove-merge-instances for G with respect to π(I) and answer yes if and only
if there is some I ′ ∈ I such that I ′ is a yes-instance. This algorithm is cor-
rect due to Lemma 2. Since π is a polynomial color parameterization, we can
compute π(I) in polynomial time. Since |I| = 2|π(I)|, we can compute I in
2|π(I)||I|O(1) time. Since π is a polynomial color parameterization that has the
weak remove-merge property, we can solve each I ′ ∈ I in |I|O(1) time. Hence,
this algorithm runs in 2|π(I)||I|O(1) time. The kernel lower bound follows from
the fact that in every instance I of Colored (s, t)-cut it holds that |π(I)| ≤ c
and Colored (s, t)-cut admits no kernel when parameterized by c, unless NP ⊆
coNP/poly. �

Next, we apply Lemma 4 to three polynomial color parameterizations. The
proof for the parameterization by cspan is deferred to the full version.

256 N. Morawietz et al.

4.1 Number of Path-Frequent Colors

This parameter counts the number of colors occurring on many (s, t)-paths.

Definition 5. Let I = (G = (V,E), C, �, s, t, k) be a Colored (s, t)-cut
instance. A color α ∈ C is called path-frequent if there exist at least three
vertex-simple (s, t)-paths such that at least one edge on each path has color α.

By Cpath we denote the function that maps each Colored (s, t)-cut
instance I to the set of path-frequent colors of I. Further, for a fixed instance I,
let cpath := |Cpath(I)|. For a fixed color α one can test in polynomial time
whether α is path-frequent [11]. Further, an instance I of Colored (s, t)-cut
can be solved in polynomial time if Cpath(I) = ∅. [11]. Thus, the following holds.

Lemma 5. The function Cpath is a polynomial color parameterization. More-
over, for every α that is contained in at most two (s, t)-paths we can compute
all these (s, t)-paths in polynomial time.

Lemma 6. The function Cpath has the strong remove-merge property.

Proof. Let I = (G,C, �, s, t, k) be an instance of Colored (s, t)-cut, let C̃ ⊆ C,
let Cr ⊆ C̃ be the colors which will be removed and let I ′ = (G′, C ′, �′, [s], [t], k −
|Cr|) := rmi(I, Cr, C̃ \ Cr) be the resulting remove-merge-instance. We show
thatCpath(I ′) ⊆ Cpath(I).Assume towards a contradiction that there is a colorα ∈
Cpath(I ′) \ Cpath(I). Thus, there are three vertex-simple ([s], [t])-paths Pi for i =
{1, 2, 3} in G′ such that �′(E(Pi)) ⊆ C \ Cpath(I) and each path contains an
edge of color α. By construction of G′, we can assume without loss of general-
ity that Pi = ([v1], vα1

[v1],[v2]
, [v2], . . . , [vir]) for some ir ∈ N where s ∈ [v1]

and t ∈ [vir]. By definition of G′, it follows that there exists some vjin
i ∈ [vi]

and some vjout
i ∈ [vi+1] such that ej

i := {vjin
i , vjout

i } ∈ E with �(ej
i) = αi for

each j, 1 ≤ j < ir, where αi ∈ C \ C̃. Further, we set v1in
i = s and vjout

ir
= t, and

since vjin
i , vjout

i ∈ [vi], we can conclude that there is a path P j
i from vjin

i to vjout
i in G

such that �(E(P j
i)) ⊆ C̃ \Cr. Then P i := P 1

i ·P 2
i · . . . ·P ir

i is a vertex-simple (s, t)-
path in G such that �(E(P i)) ⊆ C \ Cr. Hence, there exist at least three paths
from s to t such that at least one edge has color α, a contradiction. �
Lemmas 4, 5, and 6 now give an FPT algorithm.

Theorem 3. Colored (s, t)-cut can be solved in O(2cpath |IO(1)|) time.

4.2 Number of Colors in at Least Three Conflicts

The next parameter concerns colors which occur on vertex-simple (s, t)-paths
with many different colors.

Definition 6. Let I = (G = (V,E), C, �, s, t, k) be a Colored (s, t)-cut
instance. Two colors α, β ∈ C form a conflict if there exists an (s, t)-path such
that at least one edge on this path has color α and at least one edge has color β.

Refined Parameterizations for Computing Colored Cuts 257

By Cconf we denote the function that maps an instance I of Col-
ored (s, t)-cut to the set of colors of I which are in conflict with at least
three different colors. Further, for a fixed instance I, let cconf := |Cconf(I)|.
Lemma 7. Let D ⊆ C be a color set of size at most three, then we can determine
in polynomial time if there is an (s, t)-path P on G such that D ⊆ �(E(P)).

Lemma 8. The function Cconf is a polynomial color parameterization.

Lemma 9. The function Cconf has the strong remove-merge property.

Proof. Let I = (G,C, �, s, t, k) be an instance of Colored (s, t)-cut, let C̃ ⊆ C,
let Cr ⊆ C̃ be the colors which will be removed and let I ′ = (G′, C ′, �′, [s], [t], k−
|Cr|) := rmi(I, Cr, C̃ \ Cr) be the resulting remove-merge-instance. We show
that Cconf(I ′) ⊆ Cconf(I). Assume towards a contradiction that there exist a
color α ∈ Cconf(I ′) such that α /∈ Cconf(I) and α forms conflicts with col-
ors β1, β2, β3. Let P = ([v1], vα1

[v1],[v2]
, [v2], . . . , [vx]) for some x ∈ N be a vertex-

simple (s, t)-path in G′ containing at least one edge of color α and at least one
edge of color βi for some i ∈ {1, 2, 3}, where s ∈ [v1] and t ∈ [vx]. By definition
of G′ it follows that there exist some vin

j ∈ [vj] and some vout
j ∈ [vi+1] such

that ej := {vin
j , vout

j } ∈ E with �(ej) = αj for each 1 ≤ j < x where αi ∈ C \ C̃.
Further, we set vin

1 = s and vout
x = t. Since vin

j , vout
j ∈ [vj] we can conclude

that there is a path Pj from vin
j to vout

j in G such that �(E(Pj)) ⊆ C̃ \ Cr.
Then P ∗ := P1 · P2 · . . . · Px is a vertex-simple (s, t)-path in G such that P ∗

contains at least one edge of color α and at least one edge of color βi. Hence,
color α forms conflicts with each βi, a contradiction. �

Lemmas 4, 8, and 9 now give an FPT algorithm.

Theorem 4. Colored (s, t)-cut can be solved in O(2cconf |I|O(1)) time.

4.3 Parameter Intersections

In the following we study Colored (s, t)-cut parameterized by the pairwise
intersection of all three parameters of the previous sections.

Theorem 5. Let I be an instance of Colored (s, t)-cut and let π, φ be color
parameterizations with the strong remove-merge property. Then the intersected
parameter ρ(I) := π(I) ∩ φ(I) also has the strong remove-merge property.

Proof. Fix a set C̃ ⊆ C, fix a set Cr ⊆ C̃ and let I ′ = rmi(I, Cr, C̃ \ Cr) be
the resulting remove-merge-instance. We have to show that ρ(I ′) ⊆ ρ(I). By
definition, ρ(I ′) = π(I ′) ∩ φ(I ′). Since π and φ are strong, we have π(I ′) ⊆ π(I)
and φ(I ′) ⊆ φ(I). Hence, ρ(I ′) ⊆ π(I) ∩ φ(I) = ρ(I). �

We now study the pairwise intersection of color parameterizations.

258 N. Morawietz et al.

Definition 7. Let Cpc(I) := Cpath(I) ∩ Cconf(I) denote the function that maps
an instance I of Colored (s, t)-cut to the set of colors of I which are path-
frequent and contained in at least three conflicts. Further, let cpc := |Cpc(I)|.
Theorem 6. Colored (s, t)-cut can be solved in O(2cpc |I|O(1)) time.

Proof. We will prove this theorem by applying Lemma4. First, we observe
that Cpc has the weak remove-merge property: Since Cpath and Cconf both have
the strong remove-merge property, Cpc also has the strong remove-merge prop-
erty due to Theorem 5.

Second, we show that Cpc is polynomial. According to Lemmas 5 and 8 it can
be determined in polynomial time whether a color α is in Cpath(I) or in Cconf(I).
Thus, Cpc(I) can be computed in polynomial time.

It remains to show that an instance I = (G = (V,E), C, �, s, t, k) can be
solved in polynomial time if Cpc(I) = ∅. Recall that C(I) := {�(E(P)) | P is a
vertex-simple (s, t)-path in G}. Without loss of generality we can assume that
each set D ∈ C(I) has size at least two. We first show that C(I) can be computed
in polynomial time when Cpc(I) = ∅. Let α ∈ C \ Cpath(I), then there exist at
most two paths containing an edge with color α. Both paths can be computed in
polynomial time according to Lemma 5. Let α ∈ C \ Cconf(I). In other words, α
forms conflicts with at most two other colors β and γ. The colors β and γ can
be computed according to Lemma 8. Hence, C(I) contains at most three sets
containing α. Each subset D ∈ C(I) can be computed as follows: If color α
forms a conflict only with one other color β, then {α, β} is the unique set in C(I)
containing α. This set can be computed in polynomial time. Now, assume color α
forms conflicts with colors β and γ. Next, test if T := {α, β1, β2} ∈ C(I). This can
be done in polynomial time due to Lemma7. If T /∈ C(I), {α, β1}, {α, β2} ∈ C(I)
and there is no other set D ∈ C(I) such that α ∈ D. If T ∈ C(I), then test
for each i ∈ {1, 2} whether s and t are connected in G[�−1({α, βi})]. If yes, the
set {α, βi} is contained in C(I).

From C(I), we now construct an instance I := (G = (V, E), C, �′, s, t, k)
of Colored (s, t)-cut as follows: For each D ∈ C(I) create an (s, t)-path P
with �′(P) = D. Note that S is a colored (s, t)-cut for G if and only if S is a
colored (s, t)-cut for G.

Now, we show that a colored (s, t)-cut S with |S| ≤ k can be computed in
polynomial time for I. Let α ∈ Cpath(I). Hence, α ∈ C \ Cconf(I). Hence, C(I)
contains exactly three sets T1 = {α, β1, β2}, T2 = {α, β1} and T3 = {α, β2}
containing color α. Note that if there is a fourth set D ∈ C(I) such that βj ∈ D
and D \ T1 �= ∅ for some j ∈ {1, 2}, then βj ∈ Cpath(I) ∩ Cconf(I), that is, βj

is in at least four paths in G and βj forms conflicts with at least three different
colors. This contradicts the assumption Cpc = ∅. Hence, such a set D ∈ C(I)
does not exist. In other words, there is no color γ such that γ forms a conflict
with βj for j ∈ {1, 2}. The only possible further set containing β1 or β2 can
be T4 := {β1, β2}. First, assume T4 ∈ C(I). Then each colored (s, t)-cut S of G
contains at least two of α, β1, and β2. Without loss of generality, add α and β1

to S. Second, if T4 /∈ C(I), adding α to S covers each Ti for i ∈ {1, 2, 3}.

Refined Parameterizations for Computing Colored Cuts 259

Afterwards, for each color α we have α /∈ Cpath(I ′) and we can apply
Lemma 5. Hence, if Cpc(I) = ∅, I can be solved in polynomial time. �

As in Definition 7, one can define Cps(I) := Cpath(I)∩Cspan(I) and Csc(I) :=
Cspan(I) ∩ Cconf(I). We show that both of them are not polynomial.

Proposition 4. Colored (s, t)-cut is NP-hard even for instances I where
Cps(I) = ∅ and Csc(I) = ∅.

References

1. Coudert, D., Datta, P., Perennes, S., Rivano, H., Voge, M.: Shared risk resource
group complexity and approximability issues. Parallel Process. Lett. 17(2), 169–
184 (2007)

2. Coudert, D., Pérennes, S., Rivano, H., Voge, M.: Combinatorial optimization in
networks with shared risk link groups. Discret. Math. Theor. C. 18(3) (2016)

3. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

4. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

5. Faragó, A.: A graph theoretic model for complex network failure scenarios. In:
Proceedings of the Eighth INFORMS Telecommunications Conference (2006)

6. Fellows, M.R., Guo, J., Kanj, I.A.: The parameterized complexity of some minimum
label problems. J. Comput. Syst. Sci. 76(8), 727–740 (2010)

7. Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Proceed-
ings of 15th IEEE Computer Security Foundations Workshop, pp. 49–63. IEEE
(2002)

8. Klein, S., Faria, L., Sau, I., Sucupira, R., Souza, U.: On colored edge cuts in graphs.
In: Sociedade Brasileira de Computaçao, Editor, Primeiro Encontro de Teoria da
Computaçao–ETC. CSBC (2016)

9. Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and
Computer Networks. Morgan Kaufmann, Burlington (2004)

10. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated gen-
eration and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on
Security and Privacy, pp. 273–284. IEEE Computer Society (2002)

11. Sucupira, R.A.: Problemas de cortes de arestas maximos e mı́nimos em grafos.
Ph.D. thesis, Universidade Federal do Rio de Janeiro (2017)

12. Wang, Y., Desmedt, Y.: Edge-colored graphs with applications to homogeneous
faults. Inf. Process. Lett. 111(13), 634–641 (2011)

13. Zhang, P., Fu, B.: The label cut problem with respect to path length and label
frequency. Theor. Comput. Sci. 648, 72–83 (2016)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1

Simple Distributed Spanners in Dense
Congest Networks

Leonid Barenboim1(B) and Tzalik Maimon2

1 The Open University of Israel, Raanana, Israel
leonidb@openu.ac.il

2 Ben-Gurion University of The Negev, Beer-Sheva, Israel
tzali.maimon@bgu.post.ac.il

Abstract. The problem of computing a sparse spanning subgraph is a
well-studied problem in the distributed setting, and a lot of research was
done in the direction of computing spanners or solving the more relaxed
problem of connectivity. Still, efficiently constructing a linear-size span-
ner deterministically remains a challenging open problem even in specific
topologies.

In this paper we provide several simple spanner constructions of linear
size, for various graph families. Our first result shows that the connec-
tivity problem can be solved deterministically using a linear size spanner
within constant running time on graphs with bounded neighborhood inde-
pendence. This is a very wide family of graphs that includes unit-disk
graphs, unit-ball graphs, line graphs, claw-free graphs and many others.
Moreover, our algorithm works in the CONGEST model. It also immedi-
ately leads to a constant time deterministic solution for the connectivity
problem in the Congested-Clique.

Our second result provides a linear size spanner in the CONGEST
model for graphs with bounded diversity. This is a subtype of graphs
with bounded neighborhood independence that captures various types
of networks, such as wireless networks and social networks. Here too
our result has constant running time and is deterministic. Moreover, the
latter result has an additional desired property of a small stretch.

Keywords: Spanners · Distributed computing · Diversity

1 Introduction and Related Work

In the distributed setting we have an input graph in which each vertex repre-
sents a processor and each edge is a communication line. In this setting there are
several models which are of interest. In the LOCAL model, the running time is
counted as the number of rounds one needs to perform in order to achieve some
task. The size of messages is not limited in this model and local computations
are not counted towards the running time. Another well-studied model is the
CONGEST model, which is much like the LOCAL model, but with a limit on

Research supported by ISF grant 724/15 and Open University of Israel research fund.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 260–272, 2020.
https://doi.org/10.1007/978-3-030-38919-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_22

Simple Distributed Spanners in Dense Congest Networks 261

the size of each message that can be passed on each edge in the graph. This
limit is usually considered to be O(log n) bits. Recently, single-hop congest net-
works have been intensively studied. Specifically, the Congested-Clique model,
which is sometimes referred to as all-to-all communication, is one where, like the
CONGEST model, the size of messages is limited, but each vertex is connected
with a communication line to all other vertices in the graph, thus forming a
clique. Sometimes the input in the Congested-Clique model is a subgraph of the
clique on which one wishes to solve a certain problem.

Given a connected input graph G = (V,E) and a subgraph G′ = (V,E′ ⊆ E),
the connectivity problem is to decide whether all pairs of vertices in V are
connected by paths in G′. The problem of spanning a graph is a well-studied
problem in the distributed setting, and a lot of research was done in the direction
of solving spanners or the more relaxed problem of connectivity [7,12,14–16,19,
21,23,25]. An (α, β)-spanner H of a graph G is one where the distance between
each two vertices v, u is such that dH(v, u) ≤ α · dG(v, u) + β, where dG is the
distance between two vertices in G. One can consider a spanner where α = 1,
called an additive spanner or one where β = 0, called a multiplicative spanner.
In this paper we discuss multiplicative spanners, and use the shorthand notation
k-spanner for spanners with dH(v, u) ≤ k · dG(v, u), for all (u, v) ∈ E.

Graph spanners were introduced by Peleg and Ullman [23] and Peleg and
Schaffer [21]. They proved that for an integer k ≥ 1, there is an O(k)-spanner
with O(n1+ 1

k)-edges. They showed the existence of a (4k − 1)-spanner of size
O(n1+ 1

k) edges, where 1 < k < log n. They also devised a polynomial time
algorithm for constructing such a spanner. Elkin and Peleg [12] showed that for
any constants ε, λ > 0, there exists a constant β = β(ε, λ) such that for every
n-vertex graph G there is an efficiently constructible (1 + ε, β)-spanner of size
O(n1+λ). Woodruff [25] showed that a (2k − 1)-additive spanner has a size of
Ω(n1+ 1

k).
Awerbuch, Berger, Cowen and Peleg work [1] provides a deterministic con-

struction of a 64k-multiplicative-spanner of size Õ(n1+ 1
k) within Õ(n1+ 1

k) time
in the CONGEST model. Grossman and Parter [13] devised another determinis-
tic construction of a (2k − 1)-spanner of size O(kn1+ 1

k) within O(2kn
1
2− 1

k) time
also in the CONGEST model. We elaborate on additional results in Sect. 1.3
below. As one can see, constructing a linear size spanner deterministically seems
to be a challenging task. Obtaining such spanners in various graph topologies is
the subject of the current paper. In particular, we consider graphs of bounded
neighborhood independence. In such graphs, each neighborhood contains at most
c independent vertices, for a parameter c. Notable examples of such graphs are
line graphs and claw-free graphs (for which c ≤ 2), and unit-disk graphs (for
which c ≤ 6). Various graphs that model wireless and social networks have
bounded neighborhood independence as well. Consequently, this graph family
is of great interest in the distributed computing field and has been extensively
studied [2,4,5,17,24].

In this paper we present three results. The first result is spanning the input
graph G within k communication rounds using a spanner of size of O(kn) edges,

262 L. Barenboim and T. Maimon

where k = c denotes the neighborhood independence of G (see Subsect. 1.1). For
graphs with k = O(1), this is a constant time algorithm that spans a graph using
a linear size spanner. To the best of our knowledge, this is the first linear size
spanner result with constant time, for any family of graphs. This is helpful in the
Congested-Clique model since one can send all the edges of such a spanner to a
centralized vertex in the clique using Lenzen’s routing scheme [18] and compute
a spanning tree locally, which is of independent interest.

The second result is a simple derivation for spanning graphs with bounded
diversity in the LOCAL model. Specifically, we notice that a 2-spanner of linear
size which terminates in a single communication round can be constructed for such
graphs. (See Sect. 1.1) In general, our result shows a simple spanner of size O(Dn)
andworks for any graphwithin a single round of communication.That is, the diver-
sity only affects the size of the spanner, as long as the message size is not bounded.
The running time is not affected and nor does the stretch of the spanner.

The third problem we address is where we wish to achieve a spanner of a
bounded stretch in congested networks. We show that an O(D)-multiplicative-
spanner of O(D2n) size can be computed deterministically within O(D2) running
time, where D denotes the diversity of the input graph. For graphs with constant
diversity D, this offers the first constant-time constant-stretch solution with
linear size, for any family of graphs.

1.1 On Diversity and Neighborhood Independence

Diversity is a relatively new graph parameter, introduced in [4] and was there
utilized for graph coloring problems. An exact definition of diversity can be
found in Sect. 2. Although the well-defined parameter was presented in that
paper, the concept was already known much earlier in the study of line-graphs
in graph theory. It is long known that if G is a line-graph then there exists a
clique cover of the vertices of G, such that each vertex belongs to at most 2
cliques. Recently, it was shown in [5] that it is also useful for solving maximal
matching and ruling-sets. Maximal matching is another core symmetry-breaking
problem in this setting. In this paper we add spanners to the list of problems
which bounded diversity helps resolve. Furthermore, we do so in the bandwidth-
restricted CONGEST model.

The number of independent vertices in each neighborhood of a graph with
diversity k is at most k, since each clique contains just one independent ver-
tex. Thus, graphs with bounded diversity have bounded neighborhood indepen-
dence. However, the family of graphs with bounded neighborhood independence
is wider. The study of distributed algorithms for graphs with bounded neigh-
borhood independence was initiated in 2013 by Barenboim and Elkin [2], who
devised coloring algorithms for these graphs. Very recently, improved coloring
algorithms for graphs with bounded neighborhood independence were obtained
by Kuhn [17].

1.2 Quick Review of Our Results

As mentioned above, in this paper we provide three results. We give a quick
intuitive description of each of them.

Simple Distributed Spanners in Dense Congest Networks 263

The first algorithm for computing a spanner with an unbounded stretch in the
CONGEST model spans a graph by choosing subsets of independent neighboring
vertices for each vertex v in the input graph G. This allows to choose a subset
of independent neighbors of v and connect v to them. The independent vertices
are chosen in a specific order, which guarantees that paths emanating from
neighbors will eventually meet. Consequently, all neighbors in the original graph
become connected in the solution. Thus, the solution is a spanner. For graphs
with bounded neighborhood independence k, this gives us a linear size spanner
within k rounds of communications.

The second algorithm is even simpler, and within one round of communica-
tion finds a linear size 2-spanner in graphs with bound diversity in the LOCAL
model. All vertices share their 1-hop neighborhood with all their neighbors. Then
a master for each maximal clique Q can be calculated internally in each vertex
which belongs to Q. Then each vertex connects to its masters in each of the
maximal cliques it belongs to.

The third algorithm computes a small stretch linear size spanner in the
CONGEST model and is provided in two stages. First, we show that in the
Congested-Clique model and for graphs with bounded diversity D, one can com-
pute a linear size spanner with a constant stretch in constant time. The algo-
rithm proceeds in phases. The number of phases is bounded by the diversity of
the input graph. In each phase each vertex handles one of the cliques it resides
on. This is done as follows. In each phase vertices select neighbors that have
not been handled yet. Each vertex identifies the subset of unhandled vertices
selected by its neighbors that also reside within its neighborhood. These subsets
provide certain information to vertices to allow each of them to handle a clique
it belongs to that has not been handled yet. Consequently, within D phases all
vertices handle all cliques they reside on. To this end, in each phase a certain
network structure is maintained. This is a subset of a spanner that extends in
each phase, until the desired spanner is achieved and the procedure terminates.
In the second stage, we extend our algorithm to work also in the more general
CONGEST model.

1.3 Related Work

The publication of Lenzen’s routing scheme [18] brought much focus to the
research of many problems in the Congested-Clique, among them the MST
problem. Later, Hegeman et al. [14] obtained reductions between the MST
problem and the connectivity problem in the congested clique, which result in
O(log log log n)-time randomized algorithms for these problems. Then, Korho-
nen [16] showed a deterministic variant to a randomized procedure used in [14].
However, due to certain assumptions required to employ this procedure, the
deterministic running time becomes O(log log n). This matches the time of the
deterministic MST algorithm for congested cliques of Lotker et al. [19]. But still,
to the best of our knowledge, no constant time deterministic algorithm exists for
solving the connectivity problem in the Congested-Clique model. When consid-
ering randomized solutions the situation is much better. In fact, a randomized

264 L. Barenboim and T. Maimon

constant time solution for the MST problem itself was recently published by
Jurdzinski and Nowicki [15], which constitutes an optimal randomized solution
in this model for both MST and connectivity. We note though that the problem
of a small stretch spanner remains open. And yet the best deterministic result
for MST (and connectivity) in the Congested-Clique is that of Lotker et al. [19].

Derbel et al. [7] devised a k-round algorithm for constructing (2k−1)-spanners
with optimal size. We note that all the mentioned deterministic results were
achieved using message of size O(n) or unbounded. The situation of determinis-
tic algorithms using small-sized messages is more complicated. Barenboim et al.
[3] showed a construction of an O(logk−1 n)-spanner of size O(n1+1/k) and run-
ning time of O(logk−1 n). Derbel, Mosbah and Zemmari [9] showed a (2k − 1)-
spanner of optimal size but in O(n1−1/k) time. These results use messages of small
size. Grossman and Parter [13] showed that a 3-multiplicative-spanner can be com-
puted in Õ(1) time in the CONGEST model with size O(n3/2) deterministically.
Their more generalized result is a (2k − 1)-spanner of size O(n1+ 1

k) with running
time of O(

√
n) for some constant k > 2 for the unweighted case. Much earlier,

Erdos [11] conjectured the same lower bound for the multiplicative spanner case
which by many is regarded to be true although still remains unproven. If indeed
the Erdos conjecture is correct, then this will also close the search for a linear size
small stretch multiplicative spanner for the general case making the existence of
such spanners in certain families of graphs much more interesting.

2 Preliminaries

An (α, β)-spanner is a subgraph H of the input graph G where for every two
vertices v and u we have dH(v, u) ≤ α · dG(v, u) + β.

The neighborhood independence of a vertex v is the size of the largest
independent subset of vertices one can choose from Γ (v) where Γ (v) is the 1-hop
neighborhood of v. Naturally, the neighborhood independence of a graph G is
the maximum between all neighborhood independences of all vertices of G.
The diversity1 of a vertex v is the number of maximal cliques v belongs to in
the input graph. The diversity of a graph G = (V,E) is defined as the maximum
between diversities of all vertices in V .

3 Spanning Graphs with Bounded Neighborhood
Independence in the CONGEST Model

Let G be a graph in the CONGEST model which one wants to span with a span-
ning forest, a tree for each connected component. For graphs with neighborhood
independence k we devise a deterministic k rounds algorithm for constructing

1 Diversity can be also defined with respect to a clique cover of a given graph. Then,
the diversity of a vertex is the number of maximal cliques in the cover that the
vertex belongs to. In this paper, however, we do not employ clique covers, and so
the diversity is defined as the number of maximal cliques in the input graph.

Simple Distributed Spanners in Dense Congest Networks 265

a spanning subgraph of size O(k · n). For graphs with constant neighborhood
independence, this gives a simple linear size spanner which can be used to solve
the connectivity problem in the Congested Clique.

Each vertex initializes a set of vertices Lv = Γ (v) and an empty set of edges
Êv = ∅. The sets Êv are going to be used for storing the solution. The algorithm
proceeds to executing k iterations. In each iteration, each vertex v chooses the
vertex with the highest ID, denoted as c(v), out of Lv and adds the edge (v, c(v))
to Êv. Then v sends ID(c(v)) to all of its neighbors. Each neighbor reports to v
if it is connected to c(v). For each neighbor u of v which is connected to c(v), v
removes u from Lv. The vertex v also removes c(v) from Lv. This concludes the
description of the algorithm. After k iterations, v returns Êv as the result.

Denote G′ as the subgraph induced by the subset of edges {∪Êv|v ∈ G}.
Since there are k iterations, each of which adds a single edge to Êv for each
v ∈ V , we obtain |G′| = O(kn). The following lemma shows that G′ spans G.

Lemma 1. G’ spans G.

Proof. Let (v, u) be an edge in G. Denote v = v0, u = u0. If for some iteration
c(v0) = u0 then it is clear that (v0, u0) ∈ G′. Otherwise, let v1 be the vertex v0
selects in some iteration that had u0 removed from Lv0 . Thus, v1 is a common
neighbor of v0 and u0. Therefore, ID(v1) > ID(u0) and (v0, v1) ∈ G′.

Now, either the edge (v1, u0) ∈ Êu0 and thus belongs to G′, or, during some
iteration, the vertex u0 selects a neighbor u1 that had v1 removed from Lu0 .
Thus we have ID(u1) > ID(v1) > ID(u0), and (u0, u1) ∈ G′. Now, again,
either the edge (u1, v1) ∈ Êv1 and thus belongs to G′, or, during some iteration,
the vertex v1 selects a neighbor v2 that had u1 removed from Lv1 . Thus we
have ID(v2) > ID(u1) > ID(v1) > ID(u0) and (v1, v2) ∈ G′. This cannot
last infinitely since each vertex has a different ID and the paths we build have
descending order. Thus, at some point the path v0, v1, . . . and the path u0, u1, . . .
either meet, or there is an edge (vi, ui) ∈ G′ or an edge (ui, vi+1) ∈ G′. In either
case we have a path from v to u. Since this is true for every edge in G, the
subgraph G′ spans G. 	

In the Congested Clique model, it is now possible for each vertex v to send Êv

to some central vertex. One can thus obtain an O(k)-running-time deterministic
algorithm for computing a spanning tree of a subgraph G in the Congested
Clique. We note that, to the best of our knowledge, our result is the first to be
independent of n, and thus the running time does not increase with the growth
of the number of vertices. We summarize the results.

Theorem 1. There is an O(k) running time deterministic algorithm for com-
puting a spanning subgraph of size O(kn) in the CONGEST model where k is
the neighborhood independence of the graph.

Corollary 1. There is an O(k) running time deterministic algorithm for solving
the connectivity problem in the congested clique model by finding a spanning tree
of the input subgraph where k is the neighborhood independence of the graph.

266 L. Barenboim and T. Maimon

4 A Small Size Small Stretch Spanner in Bounded
Diversity Graphs

It is also of importance to find a spanning subgraph with bounded stretch. Even
though spanners have been well-studied, even in the congested-clique model, to
the best of our knowledge, there is no known algorithm for constructing a spanner
of linear size and a small stretch for any family of graphs deterministically. The
algorithm we devised in the previous section did not guarantee a bounded stretch.
We start with a simple result to show that in the LOCAL model diversity is
strongly tied to spanning. We note that this result is trivial but it only comes
to show that diversity can be utilized to find an underlying connection in the
graph topology. This is evident as spanners are of importance in this manner.
We achieve an O(Dn) size 2-stretch spanner within one round of communication.
This is done as follows. Each vertex shares its 1-hop neighborhood with all its
neighbors. Thus, each vertex can compute locally what are the maximal cliques
it belongs to and what is the highest ID vertex in each such clique (which we
call the master of the clique). Each vertex then connects only to the master in
each clique. If (v, u) is an edge in G then v and u are connected with a path
at most 2 through the master of the clique containing the edge (v, u) (if there
are more than one such clique then v and u are surely connected through the
master with the highest ID among all the masters of these cliques). The size of
such spanner is O(Dn) as each vertex is connected to at most D masters.

Theorem 2. In the LOCAL model one can compute a linear size 2-spanner
within one round of communication in graphs with constant diversity.

We now show the more interesting result which is that for graphs with diver-
sity D one can find a (D + 1)-stretch spanner of size O(D2n) within O(D2)
running time in the CONGEST model. For simplification, we first show our
algorithm in the Congested Clique and later we will show that the all-to-all
communication is not required.

We begin each iteration with each vertex v choosing a neighbor with the
highest ID, denoted c(v), from all vertices it is yet to be connected to in the
solution. v sends c(v) to all vertices in G. Let u be a neighbor of v and c(u)
the chosen vertex of u. We denote C = {c(u) | {u, c(u)} ∈ Γ (v)} to be all the
choices v receives from its neighbors in G such that they, the choices, are also
neighbors of v in G. Let P denote all neighbors of v which made the choices
in C. That is P = {u | c(u) ∈ C}. In other words, if a neighbor w of v chose
a vertex c(w) which is not a neighbor of v, that is c(w) /∈ Γ (v), then w is not
in P . Next, we would like to connect v to all vertices in P with path of size at
most i+1 where i denotes the current iteration. We will show that v needs only
to choose D vertices out of C ∪ P to achieve this. After choosing a subset Ê,
v broadcasts Ê to all vertices in G. All vertices maintain their own copy of the
result so far, denoted R, which represents all the edges accumulated so far. It is
this R that each vertex uses to choose a small subset of C ∪ P . This completes
the description of the algorithm. Its pseudocode appears below. We prove its
correctness in the following lemmas.

Simple Distributed Spanners in Dense Congest Networks 267

Algorithm 1. CongestSpanner(G,D)
1: S = Γ (v)
2: R = ∅
3: for D iterations do
4: Choose the highest ID vertex c(v) in S
5: Add the edge (v, c(v)) to R.
6: Send ID(c(v)) to all neighbors.
7: Remove c(v) from S.
8: C = all choices c(u) sent to v by its neighbors such that c(u) ∈ Γ (v).
9: P = all neighbors u of v which have a choice in C.

10: Choose the smallest subset T ⊆ C ∪ P with the following condition: Let E(T)
be the set of edges between v and the vertices in T . E(T) ∪ R connects v to all
vertices in P .

11: Send the chosen subset of T to all vertices in G. Add T to R. /* This requires
|T | rounds. */

12: Remove all vertices in P from S.
13: end for
14: return R.

Lemma 2. Let u,w be neighbors in G that select c(u), c(w), respectively, in
iteration i. If u,w, c(u), c(w) belong to the same clique and c(u) �= c(w), then
there is a path in R between u and w of length i + 1 in the end of iteration i.

Proof. The proof is by induction on the iteration i.
Base (i = 1): in the first iteration, let two vertices u,w be in the same clique.
Let their choices c(u), c(w) be within that clique. Then both u, v select the
vertex with the maximum ID in that clique. Consequently, c(u) = c(w) and u is
connected to w in R by a path of length 2.
Step: In iteration i, let u,w make choices in the same clique, but u selects a
neighbor c(u) with a smaller ID than that of the selection c(w) of w. This means
that u already has a path in R to c(w). This path was computed in a previous

268 L. Barenboim and T. Maimon

iteration, and so its length is at most i. Hence, by the end of iteration i, the
vertex u is connected to w through c(w) by a path of length at most i + 1. 	

Lemma 3. At each iteration i, there is a subset in C ∪ P of size at most D
which v can choose that connects v to each u ∈ P with a path of size at most
i + 1.

Proof. Denote L = G(C ∪ P) as the subgraph of G induced by the subset of
vertices C ∪ P in iteration i. The diversity of L is less than or equals that
of G since each distinct clique in L is a sub-clique of a distinct clique in G.
Thus, v can be connected to at most D distinct maximal cliques in L. Let Q
be a clique containing v. Denote all pairs of neighbors u, c(u) which are in Q
as (u1, c(u1), . . . , (uq, c(uq))). Note that P consists of u1, u2, . . . , uq. W.L.O.G,
assume that ID(c(u1)) ≤ · · · ≤ ID(c(uq)). Then by Lemma 2, for each 1 ≤ j ≤ q
there is a path of length at most i between uj and c(uq). Thus by connecting v
to c(uq) we obtain paths from v to all the vertices u1, . . . , uq of length at most
i + 1 each. The above means that for each clique v belongs to in L, we need to
add only a single edge, (v, c(uq)), to the solution. Hence at most D edges are
added to the solution per iteration for each vertex. 	

Since Lemma 3 ensures the existence of a subset of small size which connects
v to all of its neighbors in P , surely v can find this subset locally and use it
or maybe a smaller size subset. (Recall that in each iteration, v is aware of the
entire solution R for G in that stage, since the up-to-date information about R
is made available to all vertices in the congested clique).

In the next lemmas we show that each iteration of our algorithm makes a
certain distinct clique of a vertex v to be spanned by a subgraph of bounded
diameter. Consequently, within D iterations each vertex has paths of bounded
length in R to all its neighbors in G. We prove this by analyzing the clique of v
that contains the edge (v, c(v)) of the choice of v in that iteration.

Lemma 4. Let Q be a maximal clique containing the edge (v, c(v)) in iteration
i. Then, within D rounds (performed during the execution of line 11), in the
output R there is a path from v to any vertex in Q of length at most i + 1.

Proof. Let u be a vertex in Q. Since (v, c(v)) ∈ Q, the vertex u is connected to
v in G and also is connected to c(v) in G. Hence, v ∈ P as computed by u. By
Lemma 3, u connects to all vertices in P . Specifically, u makes sure to connect
to v with a path of length at most i + 1. 	

Lemma 5. For i = 1, 2, . . . , D, within i iterations (of the outer loop), there are
paths in the output R between v and all vertices of i cliques containing v.

Proof. Denote ci(v) as the choice v makes in iteration i. Denote Q1, . . . , Qi−1 the
maximal cliques which contain the edges (v, c1(v)), . . . , (v, ci−1(v)) respectively.
By Lemma 4, at each iteration of the outer loop the output contains a path
between v and all of its neighbors in at least one maximal clique containing v.
At each of the following iterations, v chooses the vertex with the highest ID

Simple Distributed Spanners in Dense Congest Networks 269

c(v) such that v is not yet connected to in the output. Hence, the edge (v, ci(v))
cannot belong to any of the cliques Q1, . . . , Qi−1, since v already knows of a
connection to all vertices in these cliques. Thus, another distinct maximal clique
Qi must contain the edge (v, ci(v)). Again, by Lemma 4, the entire clique Qi will
be connected to v in iteration i. Hence, within i iterations (of the outer loop),
there are paths in the output between v and all vertices of i distinct maximal
cliques containing v. Specifically, after D such iterations, v will be left with no
maximal cliques to choose a neighbor from, and will be connected to all of its
neighbors. 	

Since at each inner round each vertex adds at most D edges to the solution
and since there are D outer iterations, we conclude with the following result.

Theorem 3. There is an O(D2) running time deterministic algorithm for com-
puting a spanner of size O(D2n) and stretch at most D + 1 where D is the
diversity of the graph.

Now we note that the information used by a vertex v in order to decide on a
subset Ê of the graph L is whether or not a neighbor u is already connected to
the vertex c(w) in a clique in L that contains the vertices u, c(u), w, c(w) and v.
In the Congested Clique model, this knowledge can be aggregated at v in each
iteration. This, however, is not necessary as v can query u about the reason why
it chose c(u) instead of c(w) in case their IDs are different; is it because u is not
connected to c(w) in G or is it because u is already connected to c(w) in the
output. To achieve this, each vertex is required to register locally the neighbors
it is already connected to in the output. Unlike before, at each iteration i, R will
contain the neighbors v is connected to in the output with a path of length at
most i + 1.

Another difference is that Another difference is that v is now required to
build up the subset Ê edge by edge for O(D) rounds depending on the responses
it gets from querying. (Note that we refer to this inner loop as rounds and to
the outer loop as iterations.) It will first choose the vertex with highest ID from
C, c(w), and then query all vertices in P whether they are connected to c(w)
already. For all those who are, v will remove their choices from C, register them
in R as connected to v with a path of length at most i + 1 as v adds the edge
(v, c(w)) to Ê, and choose the next available vertex with the highest ID in C.
The vertex v needs to repeat this for at most D rounds until we can be sure it is
connected to all vertices in P with paths of length at most i+1 in accordance to
Lemma 3. We provide the pseudocode of this variant for the CONGEST model
in Algorithm 2 below. We summarize this discussion with Theorem 4.

270 L. Barenboim and T. Maimon

Algorithm 2. CongestSpanner(G,D)
1: S = Γ (v)
2: R = ∅
3: for D iterations do
4: Choose the highest ID vertex c(v) in S
5: Add the edge (v, c(v)) to R.
6: Send ID(c(v)) to all neighbors.
7: Remove c(v) from S.
8: C = all choices c(u) sent to v by its neighbors such that c(u) ∈ Γ (v).
9: P = all neighbors u of v which have a choice in C.

10: for D rounds do
11: Choose the highest ID vertex w from C.
12: Remove w from S and from C.
13: Add (v, w) to R.
14: Query all vertices in P if they already registered w as connected to them in

their solution.
15: For each neighbor u which replied ’yes’, remove u from S and from P . Register

that v is connected to u.
16: C = all choices of vertices which are still in P .
17: Register that v is connected to w in the solution R.
18: end for
19: end for
20: return R.

Theorem 4. There is an O(D2) runtime deterministic algorithm for computing
a spanner of size O(D2n) and stretch at most D + 1 in the CONGEST model
where D is the diversity of the graph.

5 Conclusion

As we showed in this paper, bounded diversity is helpful for computing efficiently
a linear size 2-spanner in the LOCAL model as well as a linear size small stretch
spanner in the CONGEST model. As noted these results are added to several
previously-known distributed algorithms for graphs with bounded diversity for
well-studied problems [4,5].

Hence we believe that bounded diversity graphs are indeed an interesting fam-
ily of graphs as this family covers many important network topologies and yet has
deterministic polylogarithmic solutions for many of the well-studied problems in
the distributed setting. Currently, out of the four major symmetry breaking
problems in this setting, namely, vertex-coloring, edge-coloring, Maximal Inde-
pendent Set and Maximal Matching, only the Maximal Independent Set prob-
lem remains open without such a solution for graphs with bounded diversity. We
believe it would be of interest to find such a solution.

Acknowledgments. The authors are grateful to Michael Elkin for fruitful discussions
and helpful remarks.

Simple Distributed Spanners in Dense Congest Networks 271

References

1. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear cost sequential and
distribured constructions of sparse neighborhood covers. In: FOCS 1993, pp. 638–
647 (1993)

2. Barenboim, L., Elkin, M.: Distributed deterministic edge coloring using bounded
neighborhood independence. Distrib. Comput. 26(5–6), 273–287 (2013)

3. Barenboim, L., Elkin, M., Gavoille, C.: A fast network-decomposition algorithm
and its applications to constant-time distributed computation. In: Scheideler, C.
(ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp.
209–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2 15

4. Barenboim, L., Elkin, M., Maimon, T.: Deterministic distributed (Δ+o(Δ))-edge-
coloring, and vertex-coloring of graphs with bounded diversity. In: PODC 2017,
pp. 175–184 (2017)

5. Barenboim, L., Maimon, T.: Distributed symmetry breaking in graphs with
bounded diversity. In: IPDPS 2018, 723–732 (2018)

6. Baswana, S., Sen, S.: A simple linear time algorithm for computing a (2k − 1)-
spanner of O(n1+1/k) size in weighted graphs. In: Baeten, J.C.M., Lenstra, J.K.,
Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 384–396.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0 32

7. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of distributed sparse
spanner construction. In: PODC 2008, pp. 273–282 (2008)

8. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. In: FOCS, pp.
452–461 (1996)

9. Derbel, B., Mosbah, M., Zemmari, A.: Sublinear fully distributed partition with
applications. Theory Comput. Syst. 47(2), 368–404 (2010)

10. Elkin, M.: Computing almost shortest paths. ACM Algorithms 1(2), 283–323
(2005)

11. Erdos, P.: Extremal problems in graph theory. In: Theory of Graphs and its Appli-
cations. Proceedings of Symposium Smolenice, pp. 29–36 (1963)

12. Elkin, M., Peleg, D.: (1+ ε, β)-spanner constructions for general graphs. In: STOC
2001, pp. 173–182 (2001)

13. Grossman, O., Parter, M.: Improved deterministic distributed construction of span-
ners. In: DISC 2017, 24:1–24:16 (2017)

14. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquiz-
zato, M.: Toward optimal bounds in the congested clique: graph connectivity and
MST. In: PODC 2015, pp. 91–100 (2015)

15. Jurdzinski, T., Nowicki, K.: MST in O(1) Rounds of the Congested Clique (2017).
https://arxiv.org/abs/1707.08484

16. Korhonen, J.H.: Deterministic MST Sparsification in the Congested Clique (2016).
https://arxiv.org/pdf/1605.02022.pdf

17. Kuhn, F.: Faster Deterministic Distributed Coloring Through Recursive List Col-
oring (2019). arxiv.org/abs/1907.03797

18. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
PODC 2013, pp. 42–50 (2013)

19. Lotker, Z., Pavlov, E., Patt-Shamir, B., Peleg, D.: MST construction in O(log log n)
communication rounds. In: SPAA 2003, pp. 94–100 (2003)

20. Peleg, D.: Distributed computing: a locality-sensitive approach. In: SIAM 2000
(2000)

21. Peleg, A., Schaffer, A.: Graph spenners. J. Graph Theory 13(1), 99–116 (1989)

https://doi.org/10.1007/978-3-319-25258-2_15
https://doi.org/10.1007/3-540-45061-0_32
https://arxiv.org/abs/1707.08484
https://arxiv.org/pdf/1605.02022.pdf
http://arxiv.org/abs/1907.03797

272 L. Barenboim and T. Maimon

22. Peleg, D., Solomon, S.: Dynamic (1+ε)-approximate matchings: a density-sensitive
approach. In: SODA 2016, pp. 712–729 (2016)

23. Peleg, D., Ullman, J.: An optimal synchronizer for the hypercube. In: PODC, pp.
77–85 (1987)

24. Schneider, J., Wattenhofer, R.: A log-star distributed Maximal Independent Set
algorithm for Growth Bounded Graphs. In: Proceedings of the 27th ACM Sympo-
sium on Principles of Distributed Computing, pp. 35–44 (2008)

25. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In:
FOCS 2006, pp. 389–398 (2006)

The Order Type of Scattered Context-Free
Orderings of Rank One Is Computable

Kitti Gelle and Szabolcs Iván(B)

Department of Computer Science, University of Szeged, Szeged, Hungary
{kgelle,szabivan}@inf.u-szeged.hu

Abstract. A linear ordering is called context-free if it is the lexico-
graphic ordering of some context-free language and is called scattered if
it has no dense subordering. Each scattered ordering has an associated
ordinal, called its rank. It is known that the isomorphism problem of
context-free orderings is undecidable in general. In this paper we show
that it is decidable whether a context-free ordering is scattered with rank
at most one, and if so, its order type is effectively computable.

1 Introduction

If an alphabet Σ is equipped by a linear order <, this order can be extended to
the lexicographic ordering <� on Σ∗ as u <� v if and only if either u is a proper
prefix of v or u = xay and v = xbz for some x, y, z ∈ Σ∗ and letters a < b. So
any language L ⊆ Σ∗ can be viewed as a linear ordering (L,<�). Since {a, b}∗

contains the dense ordering (aa+ bb)∗ab and every countable linear ordering can
be embedded into any countably infinite dense ordering, every countable linear
ordering is isomorphic to one of the form (L,<�) for some language L ⊆ {a, b}∗.
A linear ordering (or an order type) is called regular or context-free if it is
isomorphic to the linear ordering (or, is the order type) of some language of the
appropriate type. It is known [1] that an ordinal is regular if and only if it is less
than ωω and is context-free if and only if it is less than ωωω

. Also, the Hausdorff
rank [11] of any scattered regular (context-free, resp.) ordering is less than ω
(ωω, resp) [5,8].

It is known [7] that the order type of a well-ordered language generated by a
prefix grammar (i.e. in which each nonterminal generates a prefix-free language)
is computable, thus the isomorphism problem of context-free ordinals is decid-
able if the ordinals in question are given as the lexicograpic ordering of prefix
grammars. Also, the isomorphism problem of regular orderings is decidable as
well [2,13], even in polynomial time [10]. At the other hand, it is undecidable
for a context-free grammar whether it generates a dense language, hence the
isomorphism problem of context-free orderings in general is undecidable [4].

Algorithms that work for the well-ordered case can in many cases be
“tweaked” somehow to make them work for the scattered case as well: e.g. it
is decidable whether (L,<�) is well-ordered or scattered [3] and the two algo-
rithms are quite similar. In an earlier paper [6] we showed that it is decidable
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 273–284, 2020.
https://doi.org/10.1007/978-3-030-38919-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_23

274 K. Gelle and S. Iván

for a context-free ordering whether it is a well-ordering strictly below ω2 and if
so, the Cantor normal form of its order type is computable.

In the current paper we extend this result by showing that if the rank of a
scattered context-free ordering is at most one (we also show that this property is
decidable as well), then its order type is effectively computable (as a finite sum
of the order types 1, ω and −ω).

2 Notation

Orderings. A linear ordering is a pair (Q,<), where Q is some set and the
< is a transitive, irreflexive and connex (that is, for each x, y ∈ Q exactly one
of x < y, y < x or x = y holds) binary relation on Q. The pair (Q,<) is
also written simply Q if the ordering is clear from the context. A (necessarily
injective) function h : Q1 → Q2, where (Q1, <1) and (Q2, <2) are some linear
orderings, is called an (order) embedding if for each x, y ∈ Q1, x <1 y implies
h(x) <2 h(y). If Q1 can be embedded into Q2, then this is denoted by Q1 � Q2.
If h is also surjective, h is an isomorphism, in which case the two orderings are
isomorphic. An isomorphism class is called an order type. The order type of the
linear ordering Q is denoted by o(Q).

For example, the class of all linear orderings contain all the finite linear
orderings and the orderings of the integers (Z), the positive integers (N) and the
negative integers (N−) whose order type is denoted ζ, ω and −ω respectively.
Order types of the finite sets are denoted by their cardinality, and [n] denotes
{1, . . . , n} for each n ≥ 0, ordered in the standard way.

The ordered sum
∑

x∈Q Qx, where Q is some linear ordering and for each
x ∈ Q, Qx is a linear ordering, is defined as the ordering with domain {(x, q) :
x ∈ Q, q ∈ Qx} and ordering relation (x, q) < (y, p) if and only if either x < y,
or x = y and q < p in the respective Qx. If each Qx has the same order type o1
and Q has order type o2, then the above sum has order type o1 × o2. If Q = [2],
then the sum is usually written as Q1 + Q2.

If (Q,<) is a linear ordering and Q′ ⊆ Q, we also write (Q′, <) for the
subordering of (Q,<), that is, to ease notation we also use < for the restriction
of < to Q′.

A linear ordering (Q,<) is called dense if it has at least two elements and
for each x, y ∈ Q where x < y there exists a z ∈ Q such that x < z < y. A
linear ordering is scattered if no dense ordering can be embedded into it. It is well-
known that every scattered sum of scattered linear orderings is scattered, and any
finite union of scattered linear orderings is scattered. A linear ordering is called
a well-ordering if it has no subordering of type −ω. Clearly, any well-ordering
is scattered. Since isomorphism preserves well-orderedness or scatteredness, we
can call an order type well-ordered or scattered as well, or say that an order type
embeds into another. We also write o1 � o2 to denote o1 embeds into o2.

For standard notions and facts about linear orderings see e.g. [11] or [12].
Hausdorff classified the countable scattered linear orderings with respect to

their rank. We will use the definition of the Hausdorff rank from [5], which

The Order Type of Scattered Context-Free Orderings 275

slightly differs from the original one (in which H0 contains only the empty order-
ing and the singletons, and the classes Hα are not required to be closed under
finite sum, see e.g. [11]). For each countable ordinal α, we define the class Hα

of countable linear orderings as follows. H0 consists of all finite linear orderings
(including the empty ordering), and when α > 0 is a countable ordinal, then Hα

is the least class of linear orderings closed under finite ordered sum and isomor-
phism which contains all linear orderings of the form

∑
i∈Z

Qi, where each Qi is
in Hβi

for some βi < α.
By Hausdorff’s theorem, a countable linear order Q is scattered if and only

if it belongs to Hα for some countable ordinal α. The rank r(Q) of a countable
scattered linear ordering is the least ordinal α with Q ∈ Hα. (Observe that the
notion of rank from [11] for some scattered ordering Q is either r(Q) or r(Q)+1.)

As an example, ω, ζ, −ω and ω+ ζ or any finite sum of the form
∑

i∈[n]

oi with

oi ∈ {ω,−ω, 1} for each i ∈ [n] each have rank 1 while (ω + ζ) × ω has rank 2.

Languages. Let Σ be an alphabet (a finite nonempty set) and let Σ∗ (Σ+, resp)
stand for the set of all (all nonempty, resp) finite words over Σ, ε for the empty
word, |u| for the length of the word u, u · v or simply uv for the concatenation
of u and v. A language is an arbitrary subset L of Σ∗. If L ⊆ Σ∗ is a language
and u ∈ Σ∗ is a word, then u−1L denotes the (left) quotient {v ∈ Σ∗ : uv ∈ L}.

We assume that each alphabet is equipped by some (total) linear order. Two
(strict) partial orderings, the strict ordering <s and the prefix ordering <p are
defined over Σ∗ as follows:

– u <s v if and only if u = u1au2 and v = u1bv2 for some words u1, u2, v2 ∈ Σ∗

and letters a < b,
– u <p v if and only if v = uw for some nonempty word w ∈ Σ∗.

The union of these partial orderings is the lexicographical ordering <�=<s ∪ <p.
We call the language L well-ordered or scattered, if (L,<�) has the appropriate
property and we define the rank r(L) of a scattered language L as r(L,<�). The
order type o(L) of a language L is the order type of (L,<�). For example, if
a < b, then o

(
{akb : k ≥ 0}

)
= −ω and o

(
{(bb)ka : k ≥ 0}

)
= ω.

An ω-word over Σ is an ω-sequence a1a2 . . . of letters ai ∈ Σ. The set of all
ω-words over Σ is denoted Σω. The orderings <p, <s and <� are extended to
Σ∗ ∪ Σω in the expected way. For an ω-word w over Σ, we let Pref(w) stand
for the set {u ∈ Σ∗ : u <p w} of all finite prefixes of w. An ω-word w is called
regular if w = uvω = uvvvv . . . for some finite words u ∈ Σ∗ and v ∈ Σ+. When
w is a (finite or ω-) word over Σ and L ⊆ Σ∗ is a language, then L<w stands for
the language {u ∈ L : u <� w}. Notions like L≥w, L<sw are also used as well,
with the analogous semantics.

A context-free grammar is a tuple G = (N,Σ,P, S), where N is the alphabet
of the nonterminal symbols, Σ is the alphabet of terminal symbols (or letters)
which is disjoint from N , S ∈ N is the start symbol and P is a finite set of
productions of the form A → α, where A ∈ N and α is a sentential form, that
is, α = X1X2 . . . Xk for some k ≥ 0 and X1, . . . , Xk ∈ N ∪ Σ. The derivation

276 K. Gelle and S. Iván

relations ⇒ and ⇒∗ are defined as usual. The language generated by a grammar
G is defined as L(G) = {u ∈ Σ∗ | S ⇒∗ u}. Languages generated by some
context-free grammar are called context-free languages. The class of context-
free languages enjoys several effective closure properties, e.g. if L is context-
free and w is a regular word, then L<w is effectively context-free as well. For
any set Δ of sentential forms, the language generated by Δ is L(Δ) = {u ∈
Σ∗ | α ⇒∗ u for some α ∈ Δ}. As a shorthand, we define o(Δ) as o(L(Δ)).
When X,Y ∈ N ∪Σ are symbols of a grammar G, we write Y � X if X ⇒∗ uY v
for some words u and v; X ≈ Y if X � Y and Y � X both hold; and Y ≺ X
if Y � X but not X � Y . A production of the form X → X1 . . . Xn with
Xi ≺ X for each i ∈ [n] is called an escaping production. A nonterminal X ∈ N
is called left recursive if X ⇒+ Xα for some sentential form α and is recursive
if X ⇒+ αXβ for some α and β.

For standard notions on regular and context-free languages the reader is
referred to any standard textbook, such as [9].

Linear orderings which are isomorphic to the lexicographic ordering of some
context-free (regular, resp.) language are called context-free (regular, resp.)
orderings.

3 Limits of Languages

In this section we introduce the notion of a limit of a language and establish a
connection: the main contribution of this concept is that one can decide whether
a context-free language has a finite number of limits and if so, one can effectively
compute the limits themselves (Lemma 15), and that a language has a finite
number of limits if and only if its order type is scattered of rank at most one
(Theorem 1).

Firstly, we recall (and prove for the sake of completeness) that Σ∞ = Σω∪Σ∗

forms a complete lattice with the partial ordering ≤�. Thus we can take e.g. the
supremum for any set X ⊆ Σ∞.

Lemma 1. (Σ∞,≤�) is a complete lattice.

Proof. Let L be an infinite language. If L has a maximal element, then it is
the supremum, otherwise we generate the word a1a2a3 . . . ∈ Σω in the following
way: let u0 = ε and ui = a1 . . . ai. We choose the largest possible letter ai+1 with
(uiai+1)−1L being nonempty. The word generated by this way is the supremum
of L. �

3.1 Limits in General

Though limit (point)s of a language could be defined as limits of Cauchy
sequences in a particular metric space, the following definition is more convenient
for our purposes.

Definition 1. The word w ∈ Σω is a limit of a(n infinite) language L, if for
each w0 <p w there exists a word u ∈ L such that w0 <p u.

The Order Type of Scattered Context-Free Orderings 277

If L ⊆ Σ∗ is a language, then we denote the set of limits of L by Lim(L).

Lemma 2. If w is a limit of an infinite language L, then for each w0 <p w
there exist infinitely many words u ∈ L with w0 <p u.

Proof. We construct two sequences w0 <p w1 <p . . . <p w and u0, u1, . . . ∈ L
such that wi <p ui for each i with mutual induction. Now w0 is given. By
definition for each i there exists an ui ∈ L such that wi <p ui and wi ∈ Pref(w)
is constructed such that |ui−1| + 1 < |wi|.

It is clear the words ui are pairwise different, since each wi has different
length. So we get that w0 is a prefix of each ui, so w0 is a prefix of infinitely
many words in L. �
Clearly, if L is finite, then Lim(L) is empty. For the converse we have:

Lemma 3. For each infinite language L, the set Lim(L) is nonempty.

Proof. We construct a limit word w = a1a2 . . . ∈ Σω. Let u0 = ε and ui =
a1 . . . ai and we choose ai+1 ∈ Σ such that uiai+1 is a prefix of infinitely many
words in L. Since u−1

i L is infinite by construction, there exists such a letter.
Thus we can construct an infinite word which is a limit of L. �

It is not difficult to see that any supremum or infimum of a chain of words
of a language is a limit of the language (hence the name “limit”).

Lemma 4. If w0, w1, . . . is a <� (or >� respectively) chain in L, then its supre-
mum (infimum, resp.) is a limit of L.

Now we recall from [6] that for any context-free language, we can compute a
supremum or infimum of some chain within the language.

Lemma 5 ([6], Lemma 1). For each sentential form α with L(α) being infi-
nite, we can generate a sequence w0, w1, . . . ∈ L(α) having the form wi =
u1u

i
2u3u

i
4u5 and a regular word w ∈ Σω satisfying one of the following cases:

(i) w1 <� w2 <� . . . and w =
∨

i≥0

wi or ii) w1 >s w2 >s . . . and w =
∧

i≥0

wi

Hence, whenever L is an infinite context-free language, one of its limits can be
effectively computed, and this particular limit will be a regular word.

Next, we show how to compute limits of unions and products:

Lemma 6. For any languages K and L, Lim(K ∪ L) = Lim(K) ∪ Lim(L).

Proof. Assume w is a limit of L. Then for each w0 <p w, there exists some u ∈ L
with w0 <p u. Since then u ∈ K ∪ L as well, w is a limit of K ∪ L as well.

For the other direction, assume w is a limit of K ∪L. Then for each w0 <p w,
there exists some u ∈ K ∪ L with w0 <p u. Thus, either there exists infinitely
many prefixes w0 of w for which there exists some u ∈ K with w0 <p u or there
exists infinitely many prefixes w0 of w for which there exists some u ∈ L with
w0 <p u. In the former case, w ∈ Lim(K), in the latter, w ∈ Lim(L). �

278 K. Gelle and S. Iván

Lemma 7. Lim(KL) = Lim(K) ∪ KLim(L) if K,L �= ∅.
Proof. Let u ∈ K be a word and w be a limit of L. To prove that uw is a limit
of KL we only have to show that for each prefix w′ of uw there exist a word
w′′ ∈ KL with w′ <p w′′. Let w′ ∈ Pref(uw), and since it is enough to see the
prefixes which are longer than u, the word w′ can be written as uw0. Since w is
a limit of L there exists a word v ∈ L such that w0 <p v. Thus there is a word
uv ∈ KL such that w′ <p uv.

Now let w be a limit of K. To prove that w is a limit of KL, let u be a word
in L and w0 be a prefix of w. Since w is a limit of K there exists a word v ∈ K
with w0 <p v by definition. So vu ∈ KL and w0 is a prefix of vu as well.

For the other direction, we have to prove that there are no more limits of
KL. Let w be a limit of KL and wi be the prefix of w with length i. Since w is
a limit of KL there exist a word uivi ∈ KL such that wi <p uivi where ui ∈ K
and vi ∈ L. Consider for each i > 0 the lengths of these words ui. There are two
cases: either there is a finite upper bound on |ui| or there is not. If |ui| is not
upperbounded, then w is a limit of K, since for each prefix wi there exists some
long enough uj with wi <p uj .

In the case where the lengths of these ui words is bounded, let 	 = max |ui|
be the maximal length. Since there are only finitely many words of length at
most 	, there has to be some u = uj such that u = ui for infinitely many indices
i. Hence in particular, w = uw′ for some w′ ∈ Σω. We show that w′ ∈ Lim(L),
yielding w ∈ KLim(L). Indeed, if w′′ <p w′ is a prefix of w′, then uw′′ <p w
and thus there exists some vi with uw′′ <p uvi, that is, w′′ <p vi and so w′ is a
limit of L. �
Corollary 1. For any language L ⊆ Σ∗ and words u, v ∈ Σ∗, Lim(uLv) =
u · Lim(L).

Lemma 8. It is decidable for any context-free language L and regular word
w = uvω whether w is a limit of L.

Proof. Let L ⊆ Σ∗ be a context-free language and consider the generalized
sequential mapping f : Σ∗ → a∗ defined as

f(x) =

{
a · f(y) if x = vy for some y ∈ Σ∗

ε otherwise.

Now for any word x, f(x) = an for the unique n such that x = vny for some y
not having v as prefix. Thus, vω is a limit of a language L′ if and only if f(L′) is
infinite; hence, by Corollary 1, w = uvω is a limit of L if and only if f(u−1L) is
infinite. Since the class of context-free languages is effectively closed under left
quotients and generalized sequential mappings, and their finiteness problem is
decidable, the claim is proved.

Lemma 9. Assume K is a context-free language and v is a nonempty word.
Then it is decidable whether Kvω is finite and if so, its members (which are
regular words) can be effectively enumerated.

The Order Type of Scattered Context-Free Orderings 279

Proof. Consider the generalized sequential mapping f : Σ∗ → Σ∗ defined as

f(x) =

{
f(y) if x = vRy for some y ∈ Σ∗

x otherwise.

(Here vR is the reverse an . . . a1 of the word v = a1 . . . an.)
Now for any word x, f(x) = y for some y not having vR as prefix such that

x = (vR)ky for some k ≥ 0, that is, f strips away the leading vRs of its input.
So, we have that

(
f(KR)

)R consists of those words we get from members of K,
stripping away their trailing vs. Now u ∈ (

f(KR)
)R if and only if u does not end

with v and uvω ∈ Kvω. Moreover, Kvω is finite if and only if there exist some
u1, u2, . . . , un ∈ Σ∗ such that for each i ∈ [n] the word ui does not end with v and
Kvω = {uiv

ω | i ∈ [n]}. So we get that Kvω is finite if and only if so is
(
f(KR)

)R

which is decidable since the class of context-free languages is effectively closed
under reversal and generalized sequential mappings, and their finiteness problem
is also decidable. In this case, members of

(
f(KR)

)R = {u1, . . . , un} can also be
effectively enumerated and Kvω = {ujv

ω : j ∈ [n]}. �

3.2 Finitely Many Limits

In this part we establish the decidability of the problem whether a context-free
language L has finitely many limits and that this property corresponds exactly
to L being scattered of rank at most one.

In the rest of the paper when grammars are involved, we assume the grammar
G = (N,Σ,P, S) contains no left recursive nonterminals, and for each X ∈ N ,
L(X) ⊆ Σ+ is infinite and S ⇒∗ uXv for some u, v ∈ Σ∗. Moreover, each
nonterminal but possibly S is assumed to be recursive. Any context-free grammar
can effectively be transformed into such a form without changing the order type
of the generated language, see e.g. [7].

It is also known [3] that if the context-free grammar G generates a scattered
language, then for each recursive nonterminal X there exists a unique (and
computable) primitive nonempty word uX such that whenever X ⇒+ uXα for
some u ∈ Σ∗ and sentential form α, then u ∈ u+

X . Moreover, for each pair X ≈ Y
of recursive nonterminals there exists a (computable) word uX,Y ∈ Σ∗ such that
whenever X ⇒+ uY v, then u ∈ uX,Y u∗

Y .

Lemma 10. If L has a unique limit w, then o(L<w) � ω and o(L>w) � −ω.
Moreover, in this case both o(L<w) and o(L>w) are effectively computable (and
hence so is o(L) = o(L<w) + o(L>w)).

Proof. In the o(L<w) case, if L<w is finite (which is decidable and if so, its size
is computable), we are done. Otherwise L<w is infinite, which means it has a
limit, and this limit has to be the w (since it is unique for L). Now for any word
u ∈ L<w, the language (L<w)<u = L<u has to be finite, otherwise by Lemma 3
it would have a limit w′ ≤ ∨

L<u < w and hence L would have at least two
limits. Thus, each u ∈ L<w has finitely many predecessors and so o(L<w) = ω.

280 K. Gelle and S. Iván

Analogously, we get that each u ∈ L>w has finitely many upper bounds in L
and so o(L>w) is either −ω or some finite number, which is decidable. �

Before proceeding to the case of concatenation, we recall the notion of prefix
chains from [6]. A language L ⊆ Σ∗ is called a prefix chain if L ⊆ Pref(w) for
some ω-word w. Lemma 2 from [6] states that it is decidable for any context-free
language L whether L is a prefix chain and if so, a suitable regular w = uvω ∈ Σω

can be effectively computed. For ease of notation, we use o(X) and Lim(X) for
o(L(X)) and Lim(L(X)).

Lemma 11. If X is a recursive nonterminal, then uω
X ∈ Lim(X) and if some

w �= uω
X is also a member of Lim(X), then Lim(X) is infinite.

Proof. Since X ⇒∗ un
XXα holds for each recursive nonterminal for some n > 0

and sentential form α, there exists a word v ∈ L(X) for each u ∈ Pref(uω
X)

such that u <p v: we only have to take a word generated from (un
X)kXαk for a

sufficiently large k.
If w �= uω

X is also a limit of L(X), then it can be written as w = ubw′, where
u <p uω

X , ub �<p uω
X and w′ ∈ Σω. So if we consider a derivation of the form

X ⇒∗ un
XXα, we get that each (un

X)kubw′, k > 0 is a limit, thus Lim(X) is
infinite as these words are pairwise different, since in each such word the marked
occurrence of b is the first position where (un

X)kubw′ differs from uω
X . �

Lemma 12. Assume K and L are context-free languages such that Lim(K) =
{uiv

ω
i | 1 ≤ i ≤ k} and Lim(L) = {u′

jw
ω
j | 1 ≤ j ≤ 	} are finite sets of regular

words. Then it is decidable whether Lim(KL) is finite and if so, then it is a
computable (finite) set of regular words.

Proof. By Lemma 7, Lim(KL) = Lim(K) ∪ KLim(L). Since Lim(K) is a
finite set (and is of course computable since it is given as input), we only have
to deal with K · Lim(L). Since

K · Lim(L) = K · {
u′

jw
ω
j : j ∈ []

}
=

⋃

j∈[�]

(Ku′
j)w

ω
j

and this union is finite if and only if so is each language (Ku′
j)w

ω
j , which is

decidable by Lemma 9 (since the languages Ku′
j are each context-free), we get

decidability and even computability if each of them is finite. �
Corollary 2. Assume n ≥ 0 and X1, . . . , Xn ∈ N ∪ Σ are symbols so that
for each Xi, Lim(Xi) is a known finite set. Then it is decidable whether
L(X1 . . . Xn) has a finite number of limits and if so, Lim(X1 . . . Xn) is effec-
tively computable.

Proof. Let us introduce the fresh nonterminals Y1, . . . , Yn−1 and productions
Y1 → X1Y2, Y2 → X2Y3,. . . , Yn−1 → Xn−1Xn. Applying Lemma 12 or Corol-
lary 1 (depending on whether Xi is a nonterminal or a letter) for the nonterminals
Yn−1, Yn−2, . . . , Y1 in this order we can decide whether each L(Yi) has a finite
number of limits, and if so, we compute Lim(Yi) as well, proving the statement
since L(X1 . . . Xn) = L(Y1). �

The Order Type of Scattered Context-Free Orderings 281

Lemma 13. Assume X is a recursive nonterminal, L(X) is not a prefix chain
and for some nonterminal X ′ ≈ X there exists a production X ′ → αX ′′β with
β containing at least one nonterminal. Then L(X) has infinitely many limits.

Proof. Let u <s v be members of L(X). Since β contains a nonterminal, L(β)
is infinite and has a limit w by Lemma 3. By the conditions on the recursive
nonterminal X, we get X ⇒∗ u1Xu2βu3 for some words u1, u2, u3 ∈ Σ∗. By
Corollary 1, both u1uu2w and u1vu2w are limits of L(X) and they are distinct
by u <s v. Applying Lemma 11 we get Lim(X) is infinite. �
Lemma 14. The word w ∈ Σω is the unique limit of an infinite language L if
and only if for each w0 <p w there exists only finitely many words u ∈ L such
that u <s w0 or w0 <s u.

Proof. We will see just the case where w0 <s u, the other one can be done
analogously.

Suppose for the sake of contradiction there exist infinitely many words u ∈ L
with w0 <s u. Let w0 be the shortest such word, it can be written as w0 = w′

0a.
Since there are just finitely many words u ∈ L with w′

0 <s u, it has to be the case
that w′

0 <p u and w′
0a <s u for infinitely many u ∈ L. Then there exists a letter

b ∈ Σ such that b > a and infinitely many words u ∈ L such that w′
0b <p u. But

any limit of these words is in w′
0bΣ

ω (and by Lemma 3 at least one limit exists),
which cannot be equal to w, so the language L has two different limits which is
a contradiction. �
Lemma 15. Assume L(G) is scattered. Then it is decidable for each nontermi-
nal X whether L(X) has finitely many limits and if so, Lim(X) is a computable
set of regular words.

Proof. We prove the statement by induction on ≺. So let X be a nonterminal
and assume we already know for each Y ≺ X whether Lim(Y) is finite and if
so, we already explicitly computed the set Lim(Y) itself.

If X is nonrecursive, and X → α1 | . . . | αk are all the alternatives of X, then
applying Corollary 2 and Lemma 6 we get both decidability and computability.

So let X be a recursive nonterminal. If L(Y) has at least two limits for some
Y ≺ X, then by Corollary 1 so does L(X), thus by Lemma 11 Lim(X) is infinite
and we are done. So we can assume from now on that each L(Y) with Y ≺ X
has exactly one limit which is already computed.

If L(X) is a prefix chain (which is decidable by Lemma 2 of [6]), then its
supremum is its unique limit, we can compute it by Lemma 5. So we can assume
that L(X) is not a prefix chain. Now if there exist some production of the form
X ′ → αX ′′β with X ′ ≈ X ′′ ≈ X and β containing at least one nonterminal,
then by Lemma 13, Lim(X) is infinite and we can stop.

Otherwise, we can assume that each non-escaping production in the compo-
nent of X has the form X ′ → αX ′′u for some u ∈ Σ∗, X ′ ≈ X ′′ ≈ X. Since
L(X) is scattered, for each such α it has to be the case that L(α) ⊆ uX′,X′′u∗

X′′ .
Now let X ′ ≈ X be a nonterminal and α1, . . . , αk all the escaping alter-

natives of X ′. Applying Corollary 2 and Lemma 6 we can decide whether

282 K. Gelle and S. Iván

Lim(L({α1, . . . , αk})) is finite, and if so, we can compute this set of regular
words. Now if L(α1, . . . , αk) has at least two limits, then so does L(X ′) and
L(X) as well, hence Lim(X) is infinite by Lemma 11 and we are done. Other-
wise, if L({α1, . . . , αk}) is infinite, then its unique limit is a computable word.
On the other hand, for each recursive nonterminal X ′ the word uω

X′ is a limit
of L(X ′), and by L({α1, . . . , αk}) ⊆ L(X ′), the two limits has to coincide. If
these regular words are not the same (which is decidable), then again, L(X) has
infinitely many limits and we can stop.

Hence we can assume that for each X ′ ≈ X, the language L(X ′) has the
limit uω

X′ which is the same as the unique limit of L({α1, . . . , αk}) if this latter
language is infinite.

We claim that in this case, L(X) has the unique limit uω
X . To see this, we

apply Lemma 14 and show that for each prefix w0 of uω
X , there are only finitely

many words u ∈ L(X) with either w0 <s u or u <s w0.
Assume to the contrary that w0 <p uω

X and there are infinitely many words
u ∈ L(X) with either w0 <s u or u <s w0. Each word u ∈ L(X) can be
derived from X using a leftmost derivation sequence resulting in a sentential
form ut

XuX,X′αv for some t ≥ 0 so that X ′ → α is an escaping production
from the component of X and u ∈ ut

XuX,X′L(α)v. Since u and w0 <p uω
X

are not related by <p, we have an upper bound for t, which, as G does not
contain left-recursive nonterminals, places an upper bound for |v|. Hence, there
are only finitely many possibilities for picking t ≥ 0, X ′, α and v, thus for some
combination of them, there are infinitely many such words u belonging to the
same language ut

XuX,X′L(α)v. So we can write each such u as u = ut
XuX,X′u′v

with u′ ∈ L(α), and we can write w0 as w0 = ut
XuX,X′w′

0, that is, w′
0 <p uω

X′ .
This yields that u′v <s w′

0 or w′
0 <s u′v for infinitely many words u′ ∈ L(α).

Thus, there are infinitely words u′ ∈ L(α) of length at least |w′
0| with either

u′v <s w′
0 or w′

0 <s u′v, hence with either u′ <s w′
0 or w′

0 <s u′, which is a
contradiction, since by Lemma 14 this would yield that L(α) has at least two
limits, which we already handled in a former case. �
Theorem 1. Suppose L is a context-free language having a finite number of
limits. Then o(L) is effectively computable and is scattered of rank at most one.

Proof. We prove the statement by induction on the number of limits.
If L has no limits, then it is finite by Lemma 3, and so o(L) = |L| is com-

putable.
If L has a unique limit (which is decidable by Lemma 15), then o(L) can be

embedded into ω + −ω and is computable by Lemma 10.
Now assume L has at least two limits. Since L is infinite, we can compute a

regular limit of the form w = uvω for L by Lemma 5. By Lemma 8, it is decidable
whether w is a limit of either L<w or L>w or both of them. (By Lemma 6, w
is a limit of at least one of them.) If w is not a limit of L<w (L>w, resp.), then
this language has a smaller number of limits than L and we can proceed by
induction. Suppose now w is a limit of L<w – it has to be w =

∨
L<w then. If

L has a limit which is larger than w (that is, L>w is infinite and either w is not

The Order Type of Scattered Context-Free Orderings 283

a limit of L>w or L>w has at least two limits – this is decidable as well), then
L<w has a smaller number of limits than L (since no limit of L<w can be strictly
larger than its supremum) and we can proceed again by induction and get that
L<w is computable. It is also decidable whether L<w has only one limit and if
so, its order type is also computable and we are done.

The last case is when w =
∨

L<w is the largest limit of L and L<w has at
least two limits. Thus, there exists some limit w′ of L<w and an integer n ≥ 0
such that w′ <s uvn, or equivalently, L<uvn is infinite for some n ≥ 0. We can
compute (say, the least) such n by starting from n = 0 and iterating, eventually
we will find an integer n with this property. Then, L<uvn has a smaller number of
limits than L<w so we can use induction and compute o(L<uvn); also, (L<w)≥uvn

has a smaller number of limits than L<w (since w′ is missing) and we can apply
induction to this half as well and compute its order type. Then, o(L<w) is the
sum of the two already computed order types.

Repeating the same argument (by appropriate modifications: taking infimum
instead of supremum, splitting the case when w is the least limit of L) we get
that o(L>w) is also computable, and o(L), being the sum o(L<w) + o(L>w), is
hence computable as well.

We also got that the order type of such a language has to be a finite sum of
the order types ω, −ω and 1, that is, has to have rank at most 1. �
Corollary 3. Suppose L is a scattered context-free language of rank at most
one. Then o(L) is effectively computable.

Proof. If o(L) ∈ {ω,−ω}, then L has one limit, while if o(L) is finite, then it has
no limits. Since scattered order types of rank at most one are finite sums of the
order types ω, −ω and 1, thus scattered languages of rank at most one are finite
unions of languages of order type ω, −ω or 1, by Lemma 6 we get that such
languages have a finite number of limits, and thus their order type is effectively
computable by Theorem 1. �
Corollary 4. For any context-free language L, it is decidable whether L is a
scattered language of rank at most one, and if so, o(L) can be effectively computed
(as a finite sum of the order types 1, ω and −ω).

4 Conclusion

We showed that it is decidable whether a context-free ordering is scattered of
rank at most one, and if so, then its order type is effectively computable as a
finite sum of the order types 1, ω and −ω. This extends our earlier result [6]
which was applicable only for well-orderings.

An interesting question for further study is whether the rank of a scattered
context-free ordering is computable. Another, maybe easier one is to determine
which rank-two scattered orderings are context-free (as there are uncountably
many such orderings, the vast majority of them cannot be context-free), and
whether their isomorphism problem is still decidable.

284 K. Gelle and S. Iván

A related notion is that of tree automatic orderings: these are the order
types of regular tree languages equipped with the lexicographic ordering (on
trees). Through derivation trees, there is a tight connection between context-
free string languages and regular tree languages but as the two orderings differ
(lexicographic ordering of trees vs their frontiers), it is unclear whether there is
a nontrivial inclusion between these two classes of orderings (or at least for the
scattered case). (Observe that the lexicographic order of the frontier words of
trees is not an automatic relation.)

Acknowledgements. Ministry of Human Capacities, Hungary grant 20391-
3/2018/FEKUSTRAT is acknowledged. Szabolcs Iván was supported by the János
Bolyai Scholarship of the Hungarian Academy of Sciences. Kitti Gelle was supported
by the ÚNKP-19-3-SZTE-86 New National Excellence Program of the Ministry of
Human Capacities.

References

1. Bloom, S.L., Ésik, Z.: Algebraic ordinals. Fundam. Inform. 99(4), 383–407 (2010)
2. Bloom, S.L., Ésik, Z.: The equational theory of regular words. Inf. Comput. 197(1),

55–89 (2005)
3. Ésik, Z.: Scattered context-free linear orderings. In: Mauri, G., Leporati, A. (eds.)

DLT 2011. LNCS, vol. 6795, pp. 216–227. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22321-1_19

4. Ésik, Z.: An undecidable property of context-free linear orders. Inf. Process. Lett.
111(3), 107–109 (2011)

5. Ésik, Z., Iván, S.: Hausdorff rank of scattered context-free linear orders. In:
Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 291–302. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29344-3_25

6. Gelle, K., Iván, S.: On the order type of scattered context-free orderings. In: The
Tenth International Symposium on Games, Automata, Logics, and Formal Verifi-
cation, September 2–3, 2019, pp. 169–182 (2019)

7. Gelle, K., Iván, S.: The ordinal generated by an ordinal grammar is computable.
Theoret. Comput. Sci. 793, 1–13 (2019)

8. Heilbrunner, S.: An algorithm for the solution of fixed-point equations for infinite
words. RAIRO - Theoret. Inf. Appl. Informatique Théorique et Applications 14(2),
131–141 (1980)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, Reading (1979)

10. Lohrey, M., Mathissen, C.: Isomorphism of regular trees and words. Inf. Comput.
224, 71–105 (2013)

11. Rosenstein, J.: Linear Orderings. Pure and Applied Mathematics. Elsevier Science,
Amsterdam (1982)

12. Stark, J.A.: Ordinal arithmetic (2015). https://jalexstark.com/notes/
OrdinalArithmetic.pdf

13. Thomas, W.: On frontiers of regular trees. ITA 20(4), 371–381 (1986)

https://doi.org/10.1007/978-3-642-22321-1_19
https://doi.org/10.1007/978-3-642-22321-1_19
https://doi.org/10.1007/978-3-642-29344-3_25
https://jalexstark.com/notes/OrdinalArithmetic.pdf
https://jalexstark.com/notes/OrdinalArithmetic.pdf

Up-to Techniques for Branching
Bisimilarity

Rick Erkens1, Jurriaan Rot2,3, and Bas Luttik1(B)

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{r.j.a.erkens,s.p.luttik}@tue.nl

2 University College London, London, UK
3 Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. Ever since the introduction of behavioral equivalences on
processes one has been searching for efficient proof techniques that
accompany those equivalences. Both strong bisimilarity and weak bisim-
ilarity are accompanied by an arsenal of up-to techniques: enhancements
of their proof methods. For branching bisimilarity, these results have not
been established yet. We show that a powerful proof technique is sound
for branching bisimilarity by combining the three techniques of up to
union, up to expansion and up to context for Bloom’s BB cool format.
We then make an initial proposal for casting the correctness proof of
the up to context technique in an abstract coalgebraic setting, covering
branching but also η, delay and weak bisimilarity.

1 Introduction

Bisimilarity is a fundamental notion of behavioral equivalence between pro-
cesses [13]. To prove that processes P,Q are bisimilar it suffices to give a bisimu-
lation relation R containing the pair (P,Q). But bisimulations can become quite
large, which makes proofs long. To remedy this issue, up-to techniques were pro-
posed [13,19]. They are used, for example, in the π-calculus, where even simple
properties about the replication operator are hard to handle without them [21],
but also in automata theory [5] and other applications, see [4,17] for an overview.

For weak bisimilarity the field of up-to techniques is particularly delicate.
Milner’s weak bisimulations up to weak bisimilarity cannot be used to prove
weak bisimilarity [20] and the technique of up-to context is unsound for many
process algebras, most notably some that use a form of choice. Up-to techniques
for weak bisimilarity have been quite thoroughly studied (e.g., [15,17]). The
question remains whether such techniques apply also to other weak equivalences.

In this paper, we study branching, delay and η bisimilarity, and propose
general criteria for the validity of two main up-to techniques. We make use
of the general framework of enhancements due to Pous and Sangiorgi [17,19],
and prove that the relevant techniques are respectful : this allows to modularly
combine them in proofs of bisimilarity (recalled in Sect. 3).

This work was partially supported by a Marie Curie Fellowship (grant code 795119).

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 285–297, 2020.
https://doi.org/10.1007/978-3-030-38919-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_24

286 R. Erkens et al.

We start out by recasting the up-to-expansion technique, which has been
proposed to remedy certain issues in up-to techniques for weak bisimilarity [20],
to branching bisimilarity. Then, we study up-to-context techniques, which can
significantly simplify bisimilarity proofs about processes generated by transition
system specifications. Up-to context is not sound in general, even for strong
bisimilarity. For the latter, it suffices that the specification is in the GSOS for-
mat [4]. For weak bisimilarity one needs stronger assumptions. It was shown in [4]
that Bloom’s simply WB cool format [3,9] gives the validity of up-to context. We
adapt this result to branching, η and delay bisimilarity, making use of each of the
associated “simply cool” formats introduced by Bloom. These were introduced
to prove congruence of weak equivalences; our results extend to respectfulness
of the up-to-context technique, which is strictly stronger in general [17].

For the results on up-to-context, we give both a concrete proof for the case
of branching bisimilarity, and a general coalgebraic treatment that covers weak,
branching, η and delay in a uniform manner (Sect. 5). This is based on, but also
simplifies the approach in [4], by focusing on (span-based) simulations, avoiding
technical intricacies in the underlying categorical machinery. Our coalgebraic
results are essentially about respectfulness of simulation, suitably instantiated
to weak simulations and subsequently extended to bisimulations via the general
framework of [17]. We conclude with some directions for future work in Sect. 6.

2 Preliminaries

A Labelled Transition System (LTS) is a triple (P,A,→) where P is a set of
states, A is a set of actions with τ ∈ A and → ⊆ P×A×P is a set of transitions.
We denote a transition (P, α, P ′) by P

α−→ P ′. For any α we consider α−→ a binary
relation on P. With this in mind let =⇒ denote the transitive reflexive closure
of τ−→. By P

(α)−−→ P ′ we mean that P
α−→ P ′ or α = τ and P = P ′. The capital

letters P,Q,X, Y, Z range over elements of P. The letters α, β denote arbitrary
elements from A and with lowercase letters a we denote arbitrary elements of
A\{τ}, so the action a is not a silent action.

The set of relations between sets X and Y is denoted by RelX,Y ; when X = Y
we denote it by RelX , ranged over by R,S. Relation composition is denoted by
R ; S = {(P,Q) | ∃X.P R X and X S Q}, or simply by RS. For any set X, the
partial order (RelX ,⊆) forms a complete lattice, where the join and meet are
given by union

⋃
X and intersection

⋂
X respectively. A function f : RelX →

RelX is monotone iff R ⊆ S implies f(R) ⊆ f(S). The set [RelX → RelX] of such
monotone functions is again a complete lattice, ordered by pointwise inclusion,
which we denote by ≤. Thus, join and meet are pointwise:

∨
F = λR.

⋃{f(R) |
f ∈ F} and

∧
F = λR.

⋂{f(R) | f ∈ F}.

Bisimulation. Consider the function brs(R) = {(P,Q) | for all P ′ and for all

α, if P
α−→ P ′ then there exist Q′, Q′′ s.t. Q =⇒ Q′ (α)−−→ Q′′ and P R Q′ and

P ′ R Q′′}. We say that R is a branching simulation if R ⊆ brs(R). Moreover we
define br = brs ∧ (rev ◦ brs ◦ rev) where rev(R) = {(Q,P) | P R Q} and say that

Up-to Techniques for Branching Bisimilarity 287

R is a branching bisimulation if R ⊆ br(R). Since brs and hence br are monotone
and (P(P×P),⊆) is a complete lattice, br has a greatest fixed point. We denote
it by
 and refer to it as branching bisimilarity. To prove P
 Q, it suffices to
provide a relation R that contains the pair (P,Q) and show that R ⊆ br(R);
the latter implies R ⊆
. Up-to techniques strengthen this principle (Sect. 3).

Delay (bi)similarity is defined analogously through the function ds, defined
as brs but dropping the condition P R Q′. Weak simulations are defined using
the map ws(R) = {(P,Q) | for all P ′ and for all α, if P

α−→ P ′ then there exist

Q′, Q′′, Q′′′ such that Q =⇒ Q′ (α)−−→ Q′′ =⇒ Q′′′ and P ′ R Q′′′}. Finally, for η
simulation, we have hs, defined as ws but adding the requirement P R Q′.

Intuitively, the four notions of bisimilarity defined above vary in two dimen-
sions: first, branching and delay bisimilarity consider internal activity (repre-
sented by τ -steps) only before the observable step, whereas η and weak bisimi-
larity also consider internal activity after the observable step; second, branching
and η bisimilarity require that the internal activity does not incur a change of
state, whereas for delay and weak this is not required.

GSOS and Cool Formats. GSOS is a rule format that guarantees strong bisimi-
larity to be a congruence [3]. Bloom introduced cool languages as restrictions of
GSOS, forming suitable formats for weak, branching, η and delay bisimilarity [2].

A signature Σ is a set of operators that each have an arity denoted by ar(σ).
We assume a set of variables V and denote the set of terms over a signature Σ by
T(Σ). For a term t we denote the set of its variables by vars(t). A term t is closed
if vars(t) = ∅. A substitution is a partial function ρ : V ⇀ T(Σ). We denote the
application of a substitution to a term t by tρ. A substitution is closed if ρ is a
total function such that ρ(x) is closed for all x ∈ V.

Definition 2.1. A positive GSOS language is a tuple (Σ,R) where Σ is a sig-
nature and R is a set of transition rules of the form H

σ(x1,...,xar(σ))
α−→t

where t is

a term, x1, . . . , xar(σ) are distinct variables and H is a set of premises such that

each premise in H is of the form xi
β−→ yi where the left-hand side xi occurs in

x1, . . . , xar(σ); the right-hand sides yi of all premises are distinct; the right-hand
sides yi of all premises do not occur in x1, . . . , xar(σ); the target t only contains
variables that occur in the premises or in the source.

The (not necessarily positive) GSOS format also allows negative premises,
that is, premises of the form xi � β−→. In this paper we do not consider those.

An LTS algebra for a signature Σ consists of an LTS (P,A,→) together with
a Σ-indexed family of mappings on P of corresponding arity. We denote the
mapping associated with an element of Σ by the same symbol, i.e., for all σ ∈ Σ
there is a map σ : Par(σ) → P. If t ∈ T(Σ) and ρ : V → P is an assignment of
states to variables, then we denote by tρ the interpretation of t in P.

Now, let L = (Σ,R) be a GSOS language. Then an LTS algebra for Σ is a
model for L if it satisfies the rules in R, i.e., if for every rule H

σ(x1,...,xn)
α−→t

∈ R

288 R. Erkens et al.

and for every assignment ρ we have that whenever ρ(xi)
βi−→ ρ(yi) for every

premise xi
βi−→ yi ∈ H then also σ(ρ(x1), . . . , ρ(xn)) α−→ tρ.

The canonical model for a GSOS language L = (Σ,R) has as states the
set of closed Σ-terms and for all closed terms P and P ′, a transition P

α−→ P ′

if, and only if, there is a rule H

σ(x1,...,xn)
α−→t

∈ R and a substitution ρ such

that P = σ(ρ(x1), . . . , ρ(xn)), P ′ = tρ, and ρ(xi)
βi−→ ρ(yi) for all premises

xi
βi−→ yi ∈ H. The mapping associated with an n-ary element σ ∈ Σ maps

every sequence t1, . . . , tn for closed terms to the closed term σ(t1, . . . , tn).
Bloom’s cool formats [2] rely on some auxiliary notions. A rule of the form

xi
τ−→yi

σ(x1,...,xn)
τ−→σ(x1,...,yi,...,xn)

is called a patience rule for the ith argument of σ. A

rule is straight if the left-hand sides of all premises are distinct. A rule is smooth
if, moreover, no variable occurs both in the target and the left-hand side of a
premise. The ith argument of σ ∈ Σ is active if there is a rule H

σ(x1,...,xn)
α−→t

in

which xi occurs at the left-hand side of a premise. A variable y is receiving in
the target t of a rule r in L if it is the right-hand side of a premise of r. The ith
argument of σ ∈ Σ is receiving if there is a variable y and a target t of a rule in
L s.t. y is receiving in t, t has a subterm σ(v1, . . . , vn) and y occurs in vi.

For instance, CCS [13] has the rule x1
α−→y1

x1+x2
α−→y1

for the binary choice operator

+. The first argument is active, but the semantics does not allow a patience rule
for it. The issue can be mitigated by guarded sums, replacing choice by infinitely
many rules of the form Σi∈I : αi.xi

αi−→ xi. These rules have no premises;
therefore there are no active arguments and no patience rule is needed.

Definition 2.2. A language L = (Σ,R) is simply WB cool if it is positive
GSOS and 1. all rules in L are straight; 2. only patience rules have τ -premises;
3. for each operator every active argument has a patience rule; 4. every receiving
argument of an operator has a patience rule; and 5. all rules in L are smooth.
The language L is simply BB cool if it satisfies 1, 2, and 3. It is simply HB cool
if it satisfies 1, 2, 3, and 4. It is simply DB cool if it satisfies 1, 2, 3, and 5.

In [9], van Glabbeek presents four lemmas, labelled BB, HB, DB and WB,
respectively, that are instrumental for proving that branching, η, delay and weak
bisimilarity are congruences for the associated variants of cool languages. In [9]
these lemmas are established for the canonical model, but they have straight-
forward generalisations to arbitrary models; these generalisations will be instru-
mental for our results in Sects. 4 and 5. We only present the generalisations of
WB and BB here; the generalisations of HB and DB proceed analogously.

Lemma 2.1. Let L be a simply WB cool language, let (P,A,→) be a model for
L, let η : V → P be an assignment and let H

σ(x1,...,xn)
α−→t

be a rule in L. If for each
x

β−→ y in H we have η(x) =⇒ (β)−−→=⇒ η(y), then σ(x1, . . . , xn)η =⇒ (α)−−→=⇒ tη.

Up-to Techniques for Branching Bisimilarity 289

Lemma 2.2. Let L be a simply BB cool language, let (P,A,→) be a model for L,
and let {xi

βi−→yi|i∈I}
σ(x1,...,xn)

α−→t
be some rule in L. If η, θ : V → P are assignments s.t. for

all i ∈ I it holds that η(xi) =⇒ θ(xi)
(βi)−−→ θ(yi) and for every x �∈ {xi, yi | i ∈ I}

we have η(x) = θ(x), then σ(x1, . . . , xn)η =⇒ σ(x1, . . . , xn)θ (α)−−→ tθ.

3 The Abstract Framework for Bisimulations

We recall the lattice-theoretical framework of up-to techniques proposed by Pous
and Sangiorgi [16], which allows to obtain enhancements of branching bisimilar-
ity and other coinductively defined relations in a modular fashion. Throughout
this section, let f, b, s : RelX → RelX be monotone maps.

We think of gfp(b) as the coinductive object of interest (e.g., bisimilarity);
then, to prove (P,Q) ∈ gfp(b) it suffices to prove (P,Q) ∈ R for some R ⊆ b(R)
(e.g., a bisimulation). The aim of using up-to techniques is to alleviate this
proof obligation, by considering an additional map f , and proving instead that
R ⊆ b(f(R)); such a relation is called a b-simulation up to f (e.g., a bisimulation
up to f). Typically, this map f will increase the argument relation. Not every
function f is suitable as an up-to technique: it should be sound.

Definition 3.1. We say that f is b-sound if gfp(b ◦ f) ⊆ gfp(b).

When one proves R ⊆ b(f(R)) it follows that R ⊆ gfp(b ◦ f). Soundness is
indeed the missing link to conclude R ⊆ gfp(b). Unfortunately the composition
of two b-sound functions is not b-sound in general [17, Exercise 6.3.7]. To obtain
compositionality we use the stronger notion of respectfulness.

Definition 3.2. A function f is b-respectful if f ◦ (b ∧ id) ≤ (b ∧ id) ◦ f .

This originates from Sangiorgi [19], and was used to prove that up-to context
is sound for strong bisimilarity, for faithful contexts. Lemma 3.1 states that
respectful functions are sound, and gives methods to combine them. It sum-
marises certain results from [16,17] about compatible functions: f is b-compatible
if f ◦b ≤ b◦f . Thus, respectfulness simply means b∧ id-compatibility. While com-
patibility is stronger than respectfulness, this difference disappears if we move to
the greatest compatible function, given as the join of all b-compatible functions.

Lemma 3.1. Consider the companion of b, defined by t =
∨{f | f ◦ b ≤ b ◦ f}.

1. for all respectful functions f it holds that f ≤ t;
2. for all sets F such that f ≤ t for every f ∈ F , we have

∨
F ≤ t;

3. for any two functions f, g ≤ t it holds that g ◦ f ≤ t;
4. if S ⊆ b(S) then, for λR.S the constant-to-S function, λR.S ≤ t;
5. if f ≤ t then f(gfp(b)) ⊆ gfp(b);
6. if f ≤ t then f is b-sound.

290 R. Erkens et al.

Lemma 3.1 is used to obtain powerful proof techniques for branching bisimilarity
and other coinductive relations. If f is below the companion t, it can safely be
used as an up-to technique; moreover, such functions combine well, via compo-
sition and union. The above lemma gives some basic up-to techniques for free:
for instance, the function f(R) = R∪gfp(b) is below t (for any b). We will focus
on up-to-expansion and up-to-context. Especially the latter requires more effort
to establish, but can drastically alleviate the effort in proving bisimilarity.

We conclude with two useful lemmas. The first states that for symmetric
techniques it suffices to prove respectfulness for similarity, and the second is a
proof technique for respectfulness (and, in fact, the original characterisation).

Lemma 3.2. Let b = s ∧ (rev ◦ s ◦ rev). If f is symmetric (i.e. f = rev ◦ f ◦ rev)
and s-respectful, then f is b-respectful.

Lemma 3.3. The function f is b-respectful if and only if for all R,S we have
that R ⊆ S and R ⊆ b(S) implies f(R) ⊆ b(f(S)).

4 Branching Bisimilarity: Expansion and Context

Up-to Expansion. The first up-to technique for strong bisimilarity was reported
by Milner [13]. It is based on the enhancement function λR.∼R∼ where ∼
denotes strong bisimilarity. It is well known that a similar enhancement function
λR.≈R≈ is unsound for weak bisimilarity [17,20], and the same counterexample
shows that the enhancement function λR.
R
 is unsound for branching bisim-
ilarity: the relation {(τ.a, 0)} on CCS processes [13] is a branching bisimulation
up to λR.
R
, using that a
 τ.a, but clearly τ.a is not branching bisimilar
to 0. The function λR.∼R∼ is br-respectful. But it turns out that one can do
slightly better, using an efficiency preorder called expansion [1,17]. We proceed
to define such a preorder for branching bisimilarity and show that it results in
a more powerful up-to technique than strong bisimilarity.

Definition 4.1. Consider the function br� : P(P × P) → P(P × P) defined as
br�(R) = {(P,Q) | for all P ′ and all α, if P

α−→ P ′ then there exists Q′ such

that Q
(α)−−→ Q′ and P ′ R Q′; and for all Q′ and all α, if Q

α−→ Q′ then there
exist P ′, P ′′ such that P =⇒ P ′ α−→ P ′′ with P ′ R Q and P ′′ R Q′}. We say R
is a branching expansion if R ⊆ br�(R). Denote gfp(br�) by �.

Informally P � Q means that P and Q are branching bisimilar and P always
performs at least as many τ -steps as Q. Similar notions of expansion can be
defined for η and delay bisimilarity. Examples are at the end of this section.

Lemma 4.1. The function λR.�R� is br-respectful.

The proof of Lemma 4.1 is routine if we use Lemmas 3.2 and 3.3. It suffices
to show that if R ⊆ brs(S) and R ⊆ S then �R� ⊆ brs(�S�). This inclusion
can be proved by playing the branching simulation game on the pairs in �R�.

Up-to Techniques for Branching Bisimilarity 291

Up-to Context. Next, we consider LTSs generated by GSOS languages. Here,
an up-to-context technique enables us to use congruence properties of process
algebras in the bisimulation game: it suffices to relate terms by finding a mutual
context for both terms. We show that if L is a language in the simply BB cool
format, then the closure w.r.t. L-contexts is br-respectful.

Definition 4.2. Let L = (Σ,R) be a positive GSOS language and let R be a
relation on closed L-terms. The closure of R under L-contexts is denoted by
CL(R) and is defined as the smallest relation that is closed under the following
inference rules: PRQ

PCL(R)Q and P1CL(R)Q1 ... Par(σ)CL(R)Qar(σ)

σ(P1,...,Par(σ))CL(R)σ(Q1,...,Qar(σ))
.

Theorem 4.1. Let L be a simply BB cool language. Then CL is br-respectful.

For the proof, we use Lemma 3.3 and show that if R⊆ br(S) and R⊆S then
CL(R) ⊆ br(CL(R)). The proof is by induction on elements of CL(R), using
Lemma 2.2, which essentially states that a suitable saturation of the canonical
model of L (Sect. 2) is still a model of L. This is generalised in Sect. 5.

The following two examples use a variant of CCS [13] with replication (!); we
refer to [17] for its syntax and operational semantics.

Example 4.1. We show that !τ.(a|ā)
 !(τ.a + τ.ā). Consider the relation R con-
taining just the single pair of processes. It suffices to prove that R is a branching
bisimulation up to λR.�CL(R)� since both CL and λR.�R� are br-respectful.
In the proof one can use properties for strong bisimilarity like !P |P ∼ P and
P |Q ∼ Q|P . Since ∼ ⊆ � these laws also apply to expansion. Then the expansion
law P |τ.Q � P |Q ensures that R suffices.

Example 4.2. We show that !(a + b)
 !τ.a|!τ.b. The relation R containing just
the single pair of processes is a branching bisimulation up to λR.∼CL(R)∼.
This is sufficient: since λR.�R� is br-respectful and λR.∼R∼ ≤ λR.�R�,
the function λR.∼R∼ is below the companion of br, and therefore it can be
combined with CL to obtain a br-sound technique.

A similar result as Theorem 4.1 is established for weak bisimilarity in [4]. In
fact, one can use the lemmas at the end of Sect. 2 to treat η and delay bisimilarity
as well. We develop a uniform approach in the following section.

5 Respectfulness of Up-to Context: Coalgebraic
Approach

We develop conditions for respectfulness of contextual closure that instantiate to
variants for branching, weak, η and delay bisimilarity. In each case, the relevant
condition is implied by the associated simply cool GSOS format.

The main step is that contextual closure is respectful for similarity, for a
relaxed notion of models of positive GSOS specifications. The case of weak,
branching, η and delay are then obtained by considering simulations between

292 R. Erkens et al.

LTSs and appropriate saturations thereof.1 We use the theory of coalgebras; in
particular, the respectfulness result for simulations is phrased at an abstract
level. We assume familiarity with basic notions in category theory. Further, due
to space constraints, we only report basic definitions; see, e.g., [11,18] for details.

The abstract results in this section are inspired by, and close to, the devel-
opment in [4]. Technically, however, we simplify in two ways: (1) focusing on
simulations rather than on (weak) bisimulations directly through functor lift-
ing in a fibration; and (2) avoiding the technical sophistication that arises from
the combination of fibrations and orderings, by using a (simpler) span-based
approach in the proofs. Still, we use a number of results from [4], connecting
monotone GSOS specifications to distributive laws. The cases of branching, η
and delay bisimilarity, which we treat here, were left as future work in [4]. Note
that we do not propose a general coalgebraic theory of weak bisimulations, as
introduced, e.g., in [6], but focus on LTSs, which are the models of interest here.

Coalgebra. We denote by Set the category of sets and functions. Given a functor
B : Set → Set, a B-coalgebra is a pair (X, f) where X is a set and f : X → B(X) a
function. A coalgebra homomorphism from a B-coalgebra (X, f) to a B-coalgebra
(Y, g) is a map h : X → Y such that g ◦ h = Bh ◦ f .

Let A be a fixed of labels with τ ∈ A. Labelled transition systems are (equiv-
alent to) coalgebras for the functor B given by B(X) = (PX)A. Indeed, a B-
coalgebra consists of a set of states X and a map f : X → (PX)A mapping a
state x ∈ X to its outgoing transitions; we write x

α−→f y or simply x
α−→ y for

y ∈ f(x)(α). In this section we mean coalgebras for this functor, when referring
to LTSs. The notations =⇒f and

(α)−−→f , defined in Sect. 2, are used as well.
To define (strong) bisimilarity of coalgebras we make use of relation lift-

ing [11], which maps a relation R ⊆ X ×Y to a relation Rel(B)(R) ⊆ BX ×BY .
This is given by Rel(B)(R) = {(u, v) | ∃z ∈ B(R).B(π1)(z) = u and B(π2)(z) =
v}. Now, given B-coalgebras (X, f) and (Y, g), a relation R ⊆ X × Y is a bisim-
ulation if for all (x, y) ∈ R, we have f(x) Rel(B)(R) g(y). In case of labelled
transition systems, this amounts to the standard notion of strong bisimilarity.

Algebra. An algebra for a functor H : Set → Set is a pair (X, a) where X is a
set and a : H(X) → X a function. An algebra morphism from (X, a) to (Y, b)
is a map h : X → Y such that h ◦ a = b ◦ Hh. While coalgebras are used here
to represent variants of labelled transition systems, we will also make use of
algebras, to speak about operations in process calculi. In order to do so, we first
show how to represent a signature Σ as a functor HΣ : Set → Set, such that
HΣ algebras are interpretations of the signature Σ. Given Σ, this functor HΣ

is defined by: HΣ(X) =
∐

σ∈Σ{σ} × Xar(σ). On maps f : X → Y , HΣ is defined
pointwise, i.e., HΣ(f)(σ(x1, . . . , xar(σ))) = σ(f(x1), . . . , f(xar(σ))).

We denote by TΣ : Set → Set the free monad of HΣ . Explicitly, TΣ(X) is
the set of terms over Σ with variables in X, as generated by the grammar
1 Note that this is fundamentally different from reducing weak bisimilarity to strong

bisimilarity on a saturated transition system; there, a challenging transition is weak
as well. Here, instead, strong transitions are answered by weak transitions.

Up-to Techniques for Branching Bisimilarity 293

t ::= x | σ(t1, . . . , tar(σ)) where x ranges over X and σ ranges over Σ. In particu-
lar, TΣ(∅) is the set of closed terms. The set TΣ(X) is the carrier of a free algebra
κX : HΣTΣ(X) → TΣ(X): there is an arrow ηX : X → TΣ(X) (the unit of the
monad TΣ) such that, for every algebra b : HΣ(Y) → Y and map f : X → Y ,
there is a unique algebra homomorphism f
 : TΣ(X) → Y s.t. f
 ◦ ηX = f . In
particular, we write b∗ : TΣ(Y) → Y for id

Y . Intuitively, b∗ inductively extends
the algebra structure b on Y to terms over Y .

Simulation of Coalgebras. We recall how to represent simulations [12], based on
ordered functors. This enables speaking about weak simulations (Sect. 5.3). As
before, by Lemma 3.2, relevant respectfulness results extend to bisimulations.

An ordered functor is a functor B : Set → Set together with, for every set X, a
preorder �BX ⊆ BX×BX such that, for every map f : X → Y , Bf : BX → BY
is monotone. Equivalently, it is a functor B that factors through the forget-
ful functor U : PreOrd → Set from the category of preorders and monotone
maps. For maps f, g : X → BY , we write f �BY g for pointwise inequality, i.e.,
f(x) �BY g(x) for all x ∈ X. Throughout this section we assume B is ordered.

To define simulations, we recall from [12] the lax relation lifting Rel�(B),
defined on a relation R ⊆ X × Y as Rel�(B)(R) = �BX ; Rel(B)(R) ; �BY .

Definition 5.1. Let (X, f) and (Y, g) be B-coalgebras. Define the following
monotone operator s : RelX,Y → RelX,Y by s(R) = (f × g)−1(Rel�(B)(R)). A
relation R ⊆ X × Y is called a simulation if it is a post-fixed point of s.

Example 5.1. The functor B(X) = (PX)A is ordered, with u �BX v iff u(a) ⊆
v(a) for all a ∈ A. The associated lax relation lifting maps R ⊆ X × Y to
Rel�(B)(R) = {(u, v) | ∀a ∈ A.∀x ∈ u(a).∃y ∈ v(a). (x, y) ∈ R}. A relation
R ⊆ X × Y between (the underlying state spaces of) LTSs is a simulation in
the sense of Definition 5.1 iff it is a simulation in the standard sense: for all
(x, y) ∈ R: if x

α−→ x′ then ∃y′. y α−→ y′ and (x′, y′) ∈ R.

5.1 Abstract GSOS Specifications and Their Models

HΣ(X)
a
��

HΣ〈f,id〉�� HΣ(BX × X)
λX �� BTΣ(X)

Ba∗
��

X
f �� BX

An abstract GSOS specifica-
tion [22] is a natural transfor-
mation of the form λ : HΣ(B ×
Id) ⇒ BTΣ . Let X be a set, let
a : HΣ(X) → X be an algebra,
and let f : X → BX be a coalgebra; the triple (X, a, f) is a λ-model if the
diagram on the right commutes.

In our approach to proving the validity of up-to techniques for weak similarity,
it is crucial to relax the notion of λ-model to a lax model, following [4]. A triple
(X, a, f) as above is a lax λ-model if we have that f ◦a �BX Ba∗◦λX ◦HΣ〈f, id〉,
and an oplax λ-model if, conversely, f ◦a �BX Ba∗ ◦λX ◦HΣ〈f, id〉. Since �BX

is a preorder, (X, a, f) is a λ model iff it is both a lax and an oplax model.

294 R. Erkens et al.

Taking the algebra κ∅ : HΣTΣ∅ → TΣ∅ on closed terms, there is a unique
coalgebra structure f : TΣ∅ → BTΣ∅ turning (TΣ∅, κ∅, f) into a λ-model. We
sometimes refer to this coalgebra structure as the operational model of λ.

We say λ is monotone if for each component λX , we have

u1 �BX v1 . . . un �BX vn

λX(σ((u1, x1), . . . , (un, xn))) �BTΣX λX(σ((v1, x1), . . . , (vn, xn)))

for every operator σ ∈ Σ, elements u1, . . . un, v1, . . . , vn ∈ BX and x1, . . . , xn ∈
X, with n = ar(σ). Informally, if premises have ‘more behaviour’ (e.g., more
transitions) then we can derive more behaviour from the GSOS specification.

Example 5.2. If BX = (PX)A, then a monotone λ corresponds to a positive
GSOS specification (Definition 2.1). In that case, an algebra a : HΣ(X) → X
together with a B-coalgebra (i.e., LTS) is a λ-model if, for every P ∈ X, we have
that P

α−→ P ′ iff there is a rule H

σ(x1,...,xn)
α−→t

and a map ρ : V → X (with V the

set of variables occurring in the rule) such that P = a(σ(ρ(x1), . . . , ρ(xn))), P ′ =
ρ
(t) (recall that ρ
 denotes the unique algebra homomorphism associated with

ρ) and for all premises xi
βi−→ yi ∈ H we have that ρ(xi)

βi−→ ρ(yi). This coincides
with the interpretation in Sect. 2. A lax model only asserts the implication from
right to left (transitions are closed under application of rules) and an oplax model
asserts the converse (every transition arises from a rule).

5.2 Respectfulness of Contextual Closure

We prove a general respectfulness result of contextual closure w.r.t. simulation.
First we generalise contextual closure as follows [4]. Given algebras a : HΣ(X) →
X and b : HΣ(Y) → Y , the contextual closure Ca,b : RelX,Y → RelX,Y is defined
by Ca,b(R) = a∗ × b∗(Rel(TΣ)(R)) = {(a∗(u), b∗(v)) | (u, v) ∈ Rel(TΣ)(R)}. For
X = Y = TΣ(∅) and a = b = κ∅ : HΣTΣ(∅) → TΣ(∅), Ca,b coincides with the
contextual closure C of Definition 4.2. This allows us to formulate the main result
of this section, giving sufficient conditions for respectfulness of the contextual
closure with respect to s from Definition 5.1. In fact, this result is slightly more
general than needed: we will always instantiate (X, a, f) below with a λ-model.

Theorem 5.1. Suppose that (X, a, f) is an oplax model of a monotone abstract
GSOS specification λ, and (Y, b, g) is a lax model. Then Ca,b is s-respectful.

5.3 Application to Weak Similarity

Let (X, f) be an LTS. Define a new LTS (X, f) by x
α−→f x′ iff x =⇒f

(α)−−→f

=⇒f x′. We call (X, f) the wb-saturation of (X, f). Let swb : RelX → RelX be
the functional for simulation (Definition 5.1) between (X, f) and (X, f). Then
R ⊆ swb(R) precisely if R is a weak simulation on (X, f).

Proposition 5.1. Let (X, a, f) be a model of a positive GSOS specification, and
suppose (X, a, f) is a lax model. Then Ca,a is swb-respectful.

Up-to Techniques for Branching Bisimilarity 295

The condition of being a lax model is exactly as in Lemma 2.1. Hence, the
contextual closure of any simply WB-cool GSOS language is swb-respectful. To
obtain an analogous result for delay similarity, we simply adapt the saturation
to db-saturation, and the appropriate functional sdb.

Branching Similarity. To capture branching simulations of LTSs in the coalge-
braic framework, we will work again with saturation. It is not immediately clear
how to do so: we encode branching simulations by slightly changing the functor,
in order to make relevant intermediate states observable.

Let B′(X) = (P(X × X))A. A B′-coalgebra is similar to an LTS, but tran-
sitions take the form x

α−→ (x′, x′′), i.e., to a pair of next states. We will use
this to encode branching similarity, as follows. Given an LTS (X, f), define the

bb-saturation as the coalgebra (X, f) where x
α−→f (x′, x′′) iff x ⇒ x′ (α)−−→ x′′.

Further, note that every LTS (X, f) gives a B′ coalgebra (X, f ′) by setting
x

a−→f ′ (x′, x′′) iff x′ = x and x
a−→f x′′.

For an LTS (X, f), consider the functional sbb : RelX → RelX for B′-
simulation between (X, f ′) and (X, f) (Definition 5.1). Then a relation R ⊆
X × X is a branching simulation precisely if R ⊆ sbb(R).

To obtain the desired respectfulness result from Theorem 5.1, the last step is
to obtain a GSOS specification for B′ from a given positive GSOS specification
(for B). This is possible if all operators are straight. In that case, every rule is

of the form {xi

βi−→x′
i}i∈I

σ(x1,...,xar(σ))
α−→t

for some I ⊆ {1, . . . , ar(σ)}. This is translated to

{xi
βi−→ (x′′

i , x′
i)}i∈I

σ(x1, . . . , xar(σ))
α−→ (tρ, t)

where ρ(x) =

{
x′′

i if x = xi for some i ∈ I

x otherwise

If the original specification is presented as an abstract GSOS specification λ, then
we denote the corresponding abstract GSOS specification (for B′) according to
the above translation by λ′. (It is currently less clear how to represent this
translation directly at the abstract level; we leave this for future work.)

Proposition 5.2. Let (X, a, f) be a model of a positive GSOS specification λ
with only straight rules. Then (X, a, f ′) is a model of λ′, defined as above; and if
(X, a, f) is a lax model, with (X, f) the bb-saturation, then Ca,a is sbb-respectful.

We recover Theorem 4.1 from Proposition 5.2 and Lemma 2.2 (and Lemma 3.2
to move from similarity to bisimilarity). Again, to obtain respectfulness for
η-similarity, one simply adapts the notion of saturation.

6 Conclusion and Future Work

We have seen two main up-to techniques, that can be combined: expansion and,
most notably, contextual closure. In particular, we have shown that for any lan-
guage defined by a simply cool format, the contextual closure is respectful for the

296 R. Erkens et al.

associated equivalence; this applies to weak, branching, η and delay bisimilarity.
The latter follows from a general coalgebraic argument on simulation.

There are several avenues left for future work. First, we have treated up-to-
expansion on a case-by-case basis; it would be useful to have a uniform treat-
ment of this technique that instantiates to various weak equivalences. Second,
it would be interesting to investigate up-to context for rooted and divergence-
sensitive versions of the weak behavioural equivalences. Associated ‘cool’ rule
formats have already been proposed [3,9]. Third, the current treatment of up-to
context heavily relies on positive formats; whether our results can be extended
to rule formats with negative premises is left open. Perhaps the modal decompo-
sition approach to congruence results [7,8] can help—investigating the relation
of this approach to up-to techniques is an exciting direction of research. Finally,
extension of the formats to languages including a recursion construct would be
very interesting, especially since the proofs that weak and branching bisimilarity
are compatible with this construct use up-to techniques [10,14].

Acknowledgements. We thank Filippo Bonchi for the idea how to encode branching
bisimilarity coalgebraically, and the reviewers for their useful comments.

References

1. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Inf.
29(8), 737–760 (1992)

2. Bloom, B.: Structural operational semantics for weak bisimulations. TCS
146(1&2), 25–68 (1995)

3. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. In: POPL, pp.
229–239. ACM (1988)

4. Bonchi, F., Petrisan, D., Pous, D., Rot, J.: A general account of coinduction up-to.
Acta Inf. 54(2), 127–190 (2017)

5. Bonchi, F., Pous, D.: Hacking nondeterminism with induction and coinduction.
Commun. ACM 58(2), 87–95 (2015)

6. Brengos, T.: Weak bisimulation for coalgebras over order enriched monads. Log.
Methods Comput. Sci. 11(2), 1–44 (2015)

7. Fokkink, W., van Glabbeek, R.: Divide and congruence II: from decomposition of
modal formulas to preservation of delay and weak bisimilarity. Inf. Comput. 257,
79–113 (2017)

8. Fokkink, W., van Glabbeek, R., Luttik, B.: Divide and congruence III: from decom-
position of modal formulas to preservation of stability and divergence. Inf. Comput.
268, 104435 (2019). https://doi.org/10.1016/j.ic.2019.104435. Article no. 31 pages

9. van Glabbeek, R.: On cool congruence formats for weak bisimulations. TCS
412(28), 3283–3302 (2011)

10. van Glabbeek, R.J.: A complete axiomatization for branching bisimulation con-
gruence of finite-state behaviours. In: Borzyszkowski, A.M., Soko�lowski, S. (eds.)
MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57182-5 39

11. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press, Cambridge (2016)

https://doi.org/10.1016/j.ic.2019.104435
https://doi.org/10.1007/3-540-57182-5_39
https://doi.org/10.1007/3-540-57182-5_39

Up-to Techniques for Branching Bisimilarity 297

12. Jacobs, B., Hughes, J.: Simulations in coalgebra. ENTCS 82(1), 128–149 (2003)
13. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.

Prentice Hall, Upper Saddle River (1989)
14. Milner, R.: A complete axiomatisation for observational congruence of finite-state

behaviors. Inf. Comput. 81(2), 227–247 (1989)
15. Pous, D.: New up-to techniques for weak bisimulation. TCS 380(1–2), 164–180

(2007)
16. Pous, D.: Coinduction all the way up. In: LICS, pp. 307–316. ACM (2016)
17. Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method (2012)
18. Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000)
19. Sangiorgi, D.: On the proof method for bisimulation. In: Wiedermann, J., Hájek,

P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 479–488. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60246-1 153

20. Sangiorgi, D., Milner, R.: The problem of “weak bisimulation up to”. In: Cleave-
land, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg
(1992). https://doi.org/10.1007/BFb0084781

21. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

22. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: LICS,
pp. 280–291. IEEE (1997)

https://doi.org/10.1007/3-540-60246-1_153
https://doi.org/10.1007/BFb0084781

Foundations of Data Science and
Engineering – Regular Papers

Crowd Detection for Drone Safe Landing
Through Fully-Convolutional

Neural Networks

Giovanna Castellano, Ciro Castiello, Corrado Mencar, and Gennaro Vessio(B)

Department of Computer Science, University of Bari, Bari, Italy
{giovanna.castellano,ciro.castiello,corrado.mencar,

gennaro.vessio}@uniba.it

Abstract. In this paper, we propose a novel crowd detection method
for drone safe landing, based on an extremely light and fast fully convo-
lutional neural network. Such a computer vision application takes advan-
tage of the technical tools some commercial drones are equipped with.
The proposed architecture is based on a two-loss model in which the main
classification task, aimed at distinguishing between crowded and non-
crowded scenes, is simultaneously assisted by a regression task, aimed at
people counting. In addition, the proposed method provides class acti-
vation heatmaps, useful to semantically augment the flight maps. To
evaluate the effectiveness of the proposed approach, we used the chal-
lenging VisDrone dataset, characterized by a very large variety of loca-
tions, environments, lighting conditions, and so on. The model developed
by the proposed two-loss deep architecture achieves good values of pre-
diction accuracy and average precision, outperforming models developed
by a similar one-loss architecture and a more classic scheme based on
MobileNet. Moreover, by lowering the confidence threshold, the network
achieves very high recall, without sacrificing too much precision. The
method also compares favorably with the state-of-the-art, providing an
effective and efficient tool for several safe drone applications.

Keywords: Unmanned aerial vehicles · Crowd detection · Public
safety · Safe landing · Computer vision · Convolutional neural networks

1 Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, are increasingly
used in a wide range of domains, from fast delivery, to video surveillance and
aerial photography [14,15]. Their increasing popularity is mainly due to the com-
mercial availability of a large variety of drones, even at very low prices. However,
as the use of drones increases, the need of mechanisms for public safety accord-
ingly grows. In particular, although current regulations generally forbid drones
from flying over a crowd, unpredictable problems, such as adverse environmental
conditions, could make the drone’s emergency landing unavoidable, even in the
presence of a crowd. For example, in Italy, a drone must never fly over a crowd;
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 301–312, 2020.
https://doi.org/10.1007/978-3-030-38919-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_25

302 G. Castellano et al.

moreover, it can operate only at a safe horizontal distance of at least 50 m from
a crowd.1 In light of this, there is a pressing need for safety mechanisms able to
detect human crowds, in order to define no-fly zones for dynamically adapting
the flight plan. For example, the given flight plan can be adapted by computing
safe way-points on geo-referenced data [2]. This makes the approach desirable
not only for remotely controlled drones but specifically for autonomous UAVs,
which appear to be the next generation drones [9].

Many commercial drones are equipped with on-board cameras and embed
cheap and powerful GPUs which allow to address the problem of crowd detection
using advanced computer vision approaches such as Convolutional Neural Net-
works (CNNs). Despite the advancements obtained with CNN-based techniques
in a large variety of computer vision tasks, these are not always optimal for deal-
ing with image sequences captured from drones, because of the various challenges
posed by aerial images [17]. A computer vision-based strategy for crowd detection
has been recently adopted by Tzelepi and Tefas [12,13], which instructed a fully-
convolutional network (FCN) to automatically distinguish between crowded and
non-crowded scenes captured from drones. FCNs were used to provide a “light-
weight” model, as imposed by the computational limits of the drone. In addition,
this model handles images of arbitrary dimension—which is important for pro-
cessing possibly low resolution images—, and provides estimated heatmaps to
semantically enrich the flying zones.

To the best of our knowledge, the research in [12,13] is the only one addressing
the problem of detecting crowds from drones through deep learning algorithms.
Hence, potentialities and limitations of this approach have yet to be investi-
gated in depth. A first issue concerns the need to evaluate the robustness of the
FCN-based approach against a larger set of images/frames corresponding to a
larger variability of captured scenes. Indeed, due to the difficulties in collecting
and manually annotating large datasets, the data used in [12,13] are limited
both in size and covered scenarios. Moreover, that work reduces the problem of
crowd detection to a binary one, discriminating between crowded (i.e., with an
arbitrary high number of people) and non-crowded (i.e., with no people) scenes.
Conversely, there is the need to evaluate the effectiveness of the method in detect-
ing the presence of crowd also in “less crisp” situations, where the distinction
between crowd and non-crowd is less clear.

To this end, the present paper contributes to advance the state-of-art on
drone-based crowd detection by overcoming the above-mentioned limitations.
Firstly, we consider a wide and complex dataset, namely the VisDrone bench-
mark dataset [17]. These benchmark data are composed by a large set of frames
and images captured by various drones, covering a wide spectrum of locations,
environments, objects and density, in different scenarios and under different
weather and lighting conditions. The use of these data is meant to inject addi-
tional variance: this makes the risk of overfitting a serious concern requiring
a careful tuning of the network’s hyper-parameters. Using such a benchmark

1 https://www.enac.gov.it/sites/default/files/allegati/2018-Lug/
Regulation RPAS Issue 2 Rev 4 eng.pdf.

https://www.enac.gov.it/sites/default/files/allegati/2018-Lug/Regulation_RPAS_Issue_2_Rev_4_eng.pdf
https://www.enac.gov.it/sites/default/files/allegati/2018-Lug/Regulation_RPAS_Issue_2_Rev_4_eng.pdf

Crowd Detection for Drone Safe Landing Through FCNs 303

dataset, we train and evaluate different FCN architectures. Specifically, we pro-
pose two light-weight architectures, the first one being a model based on a classic
cross-entropy loss; while the second one is a multi-output model characterized by
a joint loss which combines the cross-entropy to a regression loss, based on the
people count. Experimental results show that the latter approach slightly out-
performs the former. Both models provide better results than MobileNet, which
is a more complex pre-trained FCN. Moreover, both our models outperform the
FCN architecture proposed in [13], when applied to the same data.

The rest of this paper is organized as follows. Section 2 reviews the related
works. Section 3 presents the proposed approach. Section 4 describes the data
used for the present study and provides experimental results. Section 5 concludes
the paper and sketches future developments of the present research.

2 Related Work

There has been little research on the problem of drone safe landing through the
use of on-board cameras. Some works make use of the camera to detect a marker
on the ground; others to detect a safe region to land on. Concerning the former
approach, it is aimed at guiding the drone towards the central position of the
marker by using either hand-crafted features [6,10] or features automatically
extracted by a CNN [9]. In [9], the authors proposed a light-weight CNN, called
lightDenseYOLO, which predicts the marker direction from each input image.
As for the latter approach, the goal is to estimate the safety of the landing area in
order to avoid obstacles. Also in this case, the use of CNN-based features [7] may
be preferred to more traditional ones based on colour and texture features [8].
In [7], the authors used a small, embedded CNN, which is trained on synthetic
aerial data to learn the segmentation of images into safe and obstacle regions.

A different way to look at the problem of safe landing concerns the detection
of crowds. Besides the already-mentioned works of Tzelepi and Tefas [12,13],
crowd detection from drones is still an unexplored research direction. In [12],
the authors firstly adapted a pre-trained model by discarding the fully-connected
higher layers in favor of an extra convolutional layer, making it an FCN: this is
done in order to reduce the parameters to be learnt and the computational cost.
Then, a so-called two-loss convolutional model was proposed, including a soft-
max layer and an extra layer based on the linear discriminant analysis method
to improve the between-class separability. Due to the lack of available datasets,
experiments were performed on the Crowd-Drone dataset, purposely designed by
the authors. Specifically, Crowd-Drone was created by querying YouTube with
keywords describing crowded scenes captured from drones, resulting in 11, 840
crowded and non-crowded images. The two-loss convolutional model outper-
formed the one-loss model, achieving an accuracy of ∼95% in the binary dis-
crimination crowded vs. non-crowded scenes. The proposed approach is suitable
for safety applications since it can output heatmaps that semantically enrich the
flight maps by defining “fly” and “no-fly” zones. Each heatmap was obtained
by feeding the network with the corresponding image labeled as “crowd” and

304 G. Castellano et al.

by extracting the output of the last convolutional layer, which is the desired
heatmap. In [13], the authors extended their previous work by proposing a novel
regularization technique, based on the graph embedding framework, which is
applicable not only to crowd detection but also to generic classification problems.
This approach, however, provided little improvement in terms of classification
performance. The investigation of a similar approach against larger and more
variable data is the main goal of the present work.

Some recent works have successfully applied deep CNNs to the problem of
crowd counting and crowd density estimation. This topic is receiving growing
attention due to its applicability to the context of video surveillance for pur-
poses of metropolis security. Zhang et al. [16] proposed an iterative switching
process where the density estimation and the count estimation tasks are alter-
nately optimized, through backpropagation: in this way, the two related tasks
assist each other and achieve a lower loss. In addition, since a model trained
on a specific scene can be hardly used in other scenes, the authors proposed a
data-driven method to select samples from the training set to fine-tune the pre-
trained CNN: the model is thus more apt to the unseen target scenes it is asked
to estimate. The proposed crowd CNN model outperformed classic approaches
based on hand-crafted features on a challenging dataset. In [1], Boominathan
et al. proposed CrowdNet: a deep CNN-based framework for estimating crowd
density from images of highly dense crowds (more than one thousand people).
Highly dense crowds typically suffer from severe occlusion and are characterized
by non-uniform scaling: for instance, an individual near the camera is captured
in great detail, while an individual away from the camera can be represented as a
head blob. To address this issue, CrowdNet uses a combination of a shallow and
a deep architecture which simultaneously operate at a high semantic level (face
detection) and at the head blob low-level. The model is made robust to scale
variations by using a data augmentation technique based on patches cropped
from a multi-scale pyramidal representation of each training image. However,
these works do not consider aerial images taken from drones.

To the best of our knowledge, the problem of people counting in images
captured from drones has been tackled only by Küchold et al. [5]. In contrast to
the recent trend, the authors used features based on the luminance channel and
kernel density estimation, showing that this approach can be faster and more
accurate than a CNN-based method. Nevertheless, in this work, as well as in
other works taking into account people counting with images from traditional
cameras, the presence of a crowd is already assumed in the scene. Instead, in our
research we confront the problem of first determining the presence or absence of
a crowd for the purposes of drone safe landing.

3 Proposed Approach

As previously stated, light architectures are required to meet the computational
limitations imposed by the UAVs’ hardware. Therefore, we propose a light-weight
FCN for crowd detection in video frames acquired from drones. Relying only on

Crowd Detection for Drone Safe Landing Through FCNs 305

Fig. 1. The proposed FCN architecture. The output layer can be either a single output
layer or a multi-output layer.

convolutional layers reduces considerably the amounts of parameters to be learnt,
as the fully connected layers typically stacked on top of the convolutional base
contribute the most to the overall computational cost. Another advantage is that
the network can be fed with images of arbitrary dimensions, as only the fully
connected layers expect inputs having a fixed size. Finally, the convolutional
layers preserve the spatial information which is instead destroyed by the fully
connected layers, because of their connection to all input neurons.

The proposed FCN architecture is depicted in Fig. 1. To speed up calculation,
without sacrificing too much capacity, our model takes as input 128×128 three-
channels images, normalized in the range [0, 1] before training. The input is then
propagated through a convolutional layer having 32 filters, with kernel size 5×5
and stride 1. This layer is followed by a commonly used ReLU non-linearity.
This configuration is intended to preserve the initial input information. Then,
the output of ReLU is down-sampled by a max pooling layer, which divides each
spatial dimension by a factor of 2. Next, there are two consecutive convolutional
layers, having 64 filters each with kernel size 3×3. The number of filters in these
layers is higher mainly because the number of low level features (i.e., circles,
edges, lines, etc.) is typically low, but there are many ways to combine them
to obtain higher level features. Moreover, it is quite common to have layers
with a doubled number of filters, since the pooling layer allows each feature
map to be reduced, thus avoiding a computational explosion. Each of these
two convolutional layers is followed by a ReLU activation. Finally, there is one
output layer preceded by a dropout layer, with dropout rate of 50%, to mitigate
overfitting. We conceived this architecture mainly for two reasons: (i) it provides
a very light model to meet the strict computational requirements of the UAV;
(ii) it is complex enough to avoid underfitting the data.

The proposed architecture is smaller than the one proposed in [13]. The latter
is characterized by six convolutional layers, each one, except for the last layer,
followed by a parametric ReLU as activation function. The output of the last
convolutional layer is fed to an output layer with a softmax activation. The first
and fifth convolutional layers are followed by max pooling layers to reduce their
input size. The first pooling layer is followed by a response-normalization layer
to improve generalization. Finally, a dropout layer, with dropout rate of 50%,
follows the fifth convolutional layer to reduce overfitting.

306 G. Castellano et al.

We experimented with two variants of the proposed architecture. The first
variant is a single output model which is meant to perform the binary classifi-
cation crowd vs. non-crowd. To this end, it is characterized by a single output
layer with a sigmoid activation function. To adjust its parameters, the network
attempts to minimize the cross-entropy loss function:

H(θ) =
N∑

i=1

yc
i log(hc

θ(xi)) + (1 − yc
i) log(1 − hc

θ(xi)),

where N is the number of samples, yc
i is true class label and hc

θ(xi) is the pre-
dicted class label (c stands for classification). Since the separation between the
two classes may be relatively vague, to strengthen the model we propose a two-
loss convolutional network which attempts to simultaneously predict the class of
the input image together with its precise people count. In other words, the model
is asked to predict also the precise cardinality of the crowd. While multi-output
models are typically used to provide different outputs from the same input, we
added the regression task so that it can assist the classification task when the
model is less confident with the label to be assigned to the input image. To
evaluate the cardinality of the crowd, the mean absolute error loss is considered:

L(θ) =
1
N

N∑

i=1

|yr
i − hr

θ(xi)|,

being yr
i and hr

θ(xi) the actual and estimated people counts (r stands for regres-
sion). Hence, the proposed FCN model minimizes the following joint loss func-
tion, combining the cross-entropy loss and the mean absolute error loss:

J (θ) = H(θ) + L(θ).

Once the proposed FCN is trained, its last convolutional layer is used to
obtain heatmaps of class activation over the input images. To do this, we use the
implementation of class activation map (CAM) described in [11]. Given an input
image, this technique extracts the output feature map of the last convolutional
layer and weights every channel by the gradient of the class with respect to that
channel. In this way, a class activation map is obtained, indicating how intensely
the input image activates the class.

4 Experiment

To test the effectiveness of our method in accurately detecting the presence of a
crowd, we partly re-arranged the VisDrone dataset, as described in Sec. 4.1. As
a baseline for a fair comparison we employed a MobileNet model [3] pre-trained
on ImageNet [4]: MobileNet is a light architecture which is well suited to mobile
and embedded computer vision applications. This architecture introduced the
so-called depthwise separable convolutions, which perform a single convolution

Crowd Detection for Drone Safe Landing Through FCNs 307

over each colour channel rather than combining all of them. This significantly
reduces the numbers of parameters to be learned. To perform transfer learning
on the VisDrone dataset, we used the common practice to remove the top level
classifier, which is very specific for the original classification problem, and to
stack a custom layer to be trained on our task. In addition, we compared the
proposed method to our implementation of the architecture proposed in [13]. The
main implementation difference concerns the use of a classic �2 regularization
term, applied to every convolutional layer to further mitigate overfitting. In [13],
this regularization technique provided slightly lower performance than the one
proposed by the authors.

In the following subsections, we firstly describe the dataset preparation, as
well as implementation details; then, we report the results obtained. Qualitative
results are also reported based on the crowd heatmaps provided by the method.

4.1 Dataset Preparation

Developing a large crowd dataset from a drone perspective is a very time consum-
ing and expensive process. To overcome this issue, we used an adaptation of the
VisDrone benchmark dataset,2 collected by the AISKYEYE team at the Labora-
tory of Machine Learning and Data Mining, Tianjin University, China. The data
have been used for the VisDrone 2018 and 2019 challenge. To date, VisDrone
is the largest dataset of aerial images from drones ever published. The original
dataset consists of 288 video clips, with 261, 908 frames and 10, 209 additional
static images: they were acquired by various drone platforms, across 14 different
cities in China [17]. The captured scenes cover various weather and lighting con-
ditions, environment (urban and country), objects (pedestrians, vehicles, etc.)
and density (sparse and crowded scenes). The maximum resolutions of video
clips and static images are 3840 × 2160 and 2000 × 1500, respectively (sample
images are shown in Fig. 2). Frames and images were manually annotated with
more than 2.6 million bounding boxes of targets (this kind of ground truth is
available only for the training and validation sets). The object categories involve
human and vehicles: pedestrians, persons, cars, vans, buses, and so on.

The benchmark data embedded in VisDrone have been originally conceived
to tackle different kinds of tasks, ranging from object detection in images/videos
to single or multi-object tracking. For our purposes, the compilation of a crowd
dataset was necessary, therefore we profited from the VisDrone annotations of
pedestrians and persons. Since a precise definition of “crowdedness” is unpracti-
cal, we considered the presence of at least 10 pedestrians/persons as a crowd. In
this way, we were able to collect a subset of images from VisDrone, all of them
labeled as crowd or non-crowd, depending on the count of the involved pedes-
trians/persons. The arranged dataset is described in Table 1: it is composed by
well-balanced classes and it lacks of a hold-out validation set (mainly because
holding out a fraction of the test set would have resulted in a too small test set).

2 http://aiskyeye.com.

http://aiskyeye.com

308 G. Castellano et al.

Fig. 2. Sample images from the VisDrone dataset.

Table 1. Characteristics of the arranged crowd dataset.

Class Training set (size) Test set (size)

Non-crowd (<10) 15,591 1,634

Crowd (≥10) 15,081 1,760

Total 30,672 3,394

4.2 Experimental Results

Experiments were run on an Intel Core i5 equipped with the NVIDIA GeForce
MX110, with dedicated memory of 2GB: this GPU has similar performance,
or slightly lower, compared to the NVIDIA Jetson TX2 typically mounted on
drones for several applications. Thus, it allowed us to estimate the real-time
capacity of the model. As deep learning framework, we used TensorFlow 2.0 and
the Keras API. The proposed models were trained from scratch by performing
stochastic gradient descent with randomly sampled mini-batches of 64 images
and learning rate of 0.01. As previously mentioned, to reduce the computational
cost the input images were resized to 128×128 and they were normalized within
the range [0, 1].

To assess the effectiveness of our models, we made a comparison with other
existing FCN architectures: the MobileNet architecture and the FCN architec-
ture proposed in [13]. Concerning the MobileNet model, we used a lower learn-
ing rate of 0.0001 in order to prevent the previously learned weights from being
destroyed. The network was initialized with the parameter α equals to 0.50,
which proportionally decreases the number of filters in each layer, making the
model lighter. Moreover, it is worth remarking that we used larger input images
of shape 224×224, so as to address the higher capacity of the network, and each
input channel was re-scaled to the range [−1, 1], as this is the input expected
by the network. Finally, concerning our replica of the model proposed in [13],

Crowd Detection for Drone Safe Landing Through FCNs 309

Table 2. Results.

Model Input Accuracy AP Size (MB) Speed (fps)

Present replica of [13] 128 × 128 79.13% 79.76% ∼17.3 54.74

Pre-trained MobileNet 224 × 224 83.11% 76.98% ∼3.6 64.03

Proposed FCN (one-loss) 128 × 128 84.03% 77.54% ∼1.1 70.70

Proposed FCN (two-loss) 128 × 128 86.80% 82.68% ∼2.0 48.48

it was set with the same parameters described in the paper. More precisely:
images were resized to 128 × 128 pixels; the learning rate was set to 10−5, with
momentum of 0.9; the batch size was set to 64.

We did not perform fine tuning of the MobileNet model, as we noticed that
this was detrimental to prediction accuracy. This can be explained considering
that the dataset we used is very challenging and noisy, thus the trained model
learns soon the irrelevant patterns in the training data, resulting in overfitting.
For the same reason, we trained all the models for few epochs (less than 5 epochs,
requiring about one hour of training time), as the models began to overfit soon.
This was expected, since managing such a complex dataset makes the risk of
overfitting a serious concern.

Experimental results are provided in Table 2: they are expressed in terms
of prediction accuracy and average precision. We also provide measures of size
(HDF5 format) and speed (frames per second) of the experimented models.

As shown, our replica of the architecture proposed in [13] achieved the worst
results in terms of prediction accuracy. This may be due to the architecture which
has still too capacity for the classification problem at hand: in fact, it has the
biggest size among the experimented models. MobileNet achieved better results
in terms of accuracy than the previous model, but with a lower average precision.
This was partly expected since, although the model was tuned to have half of
the filters in each layer to be adjusted, it is still too complex for the problem
too. Moreover, we must consider that, even if it is not drastically different, the
ImageNet dataset MobileNet was trained on is characterized by a number of
photographic scenes which are very different from aerial images captured from
drones. In other words, a perspective problem arises. It is worth noting that
different values for α were tested, obtaining slightly lower performance.

The proposed one-loss model achieved superior performance with the best
size (∼1.1 MB) and speed (∼70.70 fps). These features make the model extremely
fast and useful for a safety application deployed on drones. Finally, the best clas-
sification results were obtained by the proposed two-loss model, outperforming
all other models. In particular, an accuracy of 86.80% and an average precision of
82.68% were achieved. By looking at the one-loss model’s misclassifications, we
noticed that the two-loss model was better in correctly classifying images from a
perspective orthogonal to the ground; in other words, when the drone was hov-
ering. This suggests that the addition of the regression task can be beneficial to
those cases where the detection of people is more difficult, i.e. when individuals

310 G. Castellano et al.

Fig. 3. From left to right: the original image, the corresponding heatmap and the
superimposed image for four test crowded and non-crowded scenes. For a better visu-
alization, the images have been re-scaled to the original proportions.

look only as head blobs. On the other hand, this model exhibits a size which is
a trade off between the MobileNet and the one-loss method. Nevertheless, the
two-loss network is still extremely light and fast.

Comparing our results with the state-of-the-art reported in literature [13],
a lower classification accuracy has been here observed, i.e. 86.80% vs. 95.46%.
However, as previously stated, the state-of-the-art results were obtained on a
smaller dataset, characterized by a lower variance. Indeed, tested on our crowd
dataset, the state-of-the-art method was less able to generalize to previously
unseen examples. The main goal of our research was to test the applicability
and scalability of the FCN-based approach to more challenging scenarios. In
this sense, the results obtained are encouraging for the purposes of our research,
especially if we consider that by lowering the confidence threshold to 0.35, the
proposed two-loss model is able to achieve a very high recall of 97.50%, while
maintaining a precision as high as 78.35%. In this way, the method is excellent in
detecting all crowded scenes, without sacrificing too much precision, i.e. without
suffering too much from false positives. Moreover, it is worth to note that both
derived models are extremely light and fast.

The proposed method can be used to output heatmaps to semantically enrich
the flying zones. Examples of heatmaps, superimposed to the original images, are
provided in Fig. 3. It can be seen that the model is able to distinguish the safer
zones, i.e. trees, buildings, streets with no pedestrian, etc., from the risky zones
where people are standing or walking. It is worth to note that these heatmaps
were obtained by feeding the network with the images re-sized to 128×128: this
allows the network to output the heatmap while providing the prediction for
the original image. Conversely, in [13] heatmaps were obtained by feeding the
network with higher resolution images of 1024 × 1024. While this approach is

Crowd Detection for Drone Safe Landing Through FCNs 311

able to generate higher quality heatmaps, on the other hand it slows down the
processing speed, as higher resolution images require much more computation.

5 Conclusion

In this paper, we have addressed the problem of human crowd detection from
drones. This is important for UAV applications, as unpredictable problems can
cause the drone to fly over a crowd, thus safety mechanisms are required to auto-
matically adjust the flight plan to prevent the drone from landing on a risky zone.
In order to cope with the strict computational requirements of a drone, we have
proposed a very light-weight FCN classification model, trained to distinguish
between crowded and non-crowded scenes by leveraging the camera and GPU
typically mounted on several currently available drones. The classification model
has been trained from scratch on the very challenging VisDrone dataset. The
proposed method is based on minimization of a joint loss function combining two
loss terms, one for classification and one for regression, so that the regression
task assists the classification one by trying to estimate the people count. This
model outperforms a one-loss similar architecture and a more complex method
based on the well-known MobileNet architecture. A deep network pre-trained on
ImageNet can be less tailored to distinguish among aerial images, mainly because
of their different perspective against traditional photographic scenes. The pro-
posed method not only discriminates between crowded and non-crowded scenes,
but also provides heatmaps that can be used to semantically enrich the flight
maps. The approach also compares favorably with the state-of-the-art, providing
an extremely fast, light and with high recall tool.

An open issue of the present research is the lack of a well-defined concept
of crowdedness which forced us to propose a simple concept based only on the
people count. This may have affected the classification task, specially when the
people count was around 10. Moreover, it may have caused the network to over-
look some other patterns which can possibly improve performance. Future work
should investigate more refined concepts of crowdedness, based for example on
the spatial density of the crowd.

Acknowledgement. The research is supported by Ministero dell’Istruzione, del-l’
Università e della Ricerca (MIUR) under grant PON ARS01 00820 “RPASInAir – Inte-
grazione dei Sistemi Aeromobili a Pilotaggio Remoto nello spazio aereo non segregato
per servizi”.

References

1. Boominathan, L., Kruthiventi, S.S., Babu, R.V.: CrowdNet: a deep convolutional
network for dense crowd counting. In: Proceedings of the 24th ACM International
Conference on Multimedia, pp. 640–644. ACM (2016)

2. Castelli, T., Sharghi, A., Harper, D., Tremeau, A., Shah, M.: Autonomous naviga-
tion for low-altitude UAVs in urban areas. arXiv preprint arXiv:1602.08141 (2016)

http://arxiv.org/abs/1602.08141

312 G. Castellano et al.

3. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

5. Küchhold, M., Simon, M., Eiselein, V., Sikora, T.: Scale-adaptive real-time crowd
detection and counting for drone images. In: 2018 25th IEEE International Con-
ference on Image Processing (ICIP), pp. 943–947. IEEE (2018)

6. Lin, S., Garratt, M.A., Lambert, A.J.: Monocular vision-based real-time target
recognition and tracking for autonomously landing an UAV in a cluttered shipboard
environment. Auton. Robots 41(4), 881–901 (2017)

7. Marcu, A., Costea, D., Licaret, V., Pirvu, M., Slusanschi, E., Leordeanu, M.:
SafeUAV: learning to estimate depth and safe landing areas for UAVs from syn-
thetic data. In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 0–0 (2018)

8. Mukadam, K., Sinh, A., Karani, R.: Detection of landing areas for unmanned aerial
vehicles. In: 2016 International Conference on Computing Communication Control
and Automation (ICCUBEA), pp. 1–5. IEEE (2016)

9. Nguyen, P., Arsalan, M., Koo, J., Naqvi, R., Truong, N., Park, K.: LightDenseY-
OLO: a fast and accurate marker tracker for autonomous UAV landing by visible
light camera sensor on drone. Sensors 18(6), 1703 (2018)

10. Polvara, R., Sharma, S., Wan, J., Manning, A., Sutton, R.: Towards autonomous
landing on a moving vessel through fiducial markers. In: 2017 European Conference
on Mobile Robots (ECMR), pp. 1–6. IEEE (2017)

11. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 618–
626 (2017)

12. Tzelepi, M., Tefas, A.: Human crowd detection for drone flight safety using con-
volutional neural networks. In: 2017 25th European Signal Processing Conference
(EUSIPCO), pp. 743–747. IEEE (2017)

13. Tzelepi, M., Tefas, A.: Graph embedded convolutional neural networks in human
crowd detection for drone flight safety. IEEE Trans. Emerg. Top. Comput. Intell.
(2019). https://doi.org/10.1109/TETCI.2019.2897815

14. Valavanis, K.P., Vachtsevanos, G.J.: Handbook of Unmanned Aerial Vehicles.
Springer, Heidelberg (2015)

15. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial
vehicles: opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016)

16. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep con-
volutional neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 833–841 (2015)

17. Zhu, P., Wen, L., Bian, X., Ling, H., Hu, Q.: Vision meets drones: a challenge.
arXiv preprint arXiv:1804.07437 (2018)

http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/TETCI.2019.2897815
http://arxiv.org/abs/1804.07437

Explaining Single Predictions: A Faster
Method

Gabriel Ferrettini(B), Julien Aligon, and Chantal Soulé-Dupuy

Université de Toulouse, UT1, IRIT, (CNRS/UMR 5505), Toulouse, France
{gabriel.ferrettini,julien.aligon,chantal.soule-dupuy}@irit.fr

Abstract. Machine learning has proven increasingly essential in many
fields. Yet, a lot obstacles still hinder its use by non-experts. The lack of
trust in the results obtained is foremost among them, and has inspired
several explanatory approaches in the literature. In this paper, we are
investigating the domain of single prediction explanation. This is per-
formed by providing the user a detailed explanation of the attribute’s
influence on each single predicted instance, related to a particular
machine learning model. A lot of possible explanation methods have
been developed recently. Although, these approaches often require an
important computation time in order to be efficient. That is why we
are investigating about new proposals of explanation methods, aiming
to increase time performances, for a small loss in accuracy.

Keywords: Machine learning · Explanation model · predictive model

1 Introduction

Many explanation methods exist in the literature, to overcome the “black box”
problem of model prediction results. These methods are mainly devoted to
explain a predictive model in a global way. These methods are not relevant
when a domain expert user (for instance a biologist) has to study the behavior
of particular dataset instances over a predictive model (for instance in the con-
text of cohort study). In this direction, previous studies offer the possibility of
explaining single instance prediction, over a model, as in [12] and [2]. One major
problem of these contributions is the complexity of the proposed algorithms
(O(n2)). Thus, it is illusory for domain experts wishing to apply this method
to study the behavior of a set of instances. This complexity makes them very
slow to calculate on datasets with a large number of attributes. Our work fits
the general ambition to help a domain expert user to (re)find motivation to get
involved in data analysis operations. In particular, our goal is to rely as much as
possible on her/his area of expertise, while limiting knowledge in data analysis.
In this paper, we aim to facilitate the use of predictive models by explaining
their predictions in a way balancing information and computing time.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 313–324, 2020.
https://doi.org/10.1007/978-3-030-38919-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_26

314 G. Ferrettini et al.

The contributions presented in this paper include:

– A comparison between two selected prediction explanation approaches. This
is done to decide which method to use as a basis, among the two closest to
our scope.

– Two new methods for classification explanations, based on [12], and adapted
to achieve a better calculation time, without losing too much information.

The paper is organized as follows. Section 2 explores some work already done in
the domain of prediction explanation. In particular, the literature helps us to
identify an explanation method as close as possible to our scope: helping non
expert users to understand the inner workings of a predictive model. Then, in
Sect. 3, we propose improvements of the selected method to achieve a better
calculation time, without losing too much information. Finally, we experiment
our proposals to check their interest in terms of computation time and their
impacts in terms of loss of accuracy.

2 Related Works

Explaining the influence of each attribute (of a dataset) on the output of a
predictive model have been explored largely. An example of the works pertain-
ing to global attribute importance on a model can be seen here: [1]. The most
recent methods are based on swapping the values of attributes in the dataset and
analysing which swap affect the trained model predictions the most. The more
modifying the attributes values affects the predictions, the most this attribute is
considered important for the model, as a whole. These methods are often used
during feature selection, allowing to opt out attributes not used by the model.
Many ways of explaining single predictions have been explored but these methods
often struggle between being too simplistic, or too complex to be interpreted by
a human, notwithstanding the problem of computation time, which can become
problematic for more advanced methods. The possible applications of prediction
explanations have been investigated by [8]. According to their paper, the interest
for explaining a predictive model is threefold:

– First, it can be seen as a mean to understand how a model works in general,
by peering at how it behaves in diverse points of the instance space.

– Second, it can help a non expert user to judge of the quality of a prediction and
even pinpoint the cause of flaws in its classification. Correcting them would
then lead the user to perform some intuitive feature engineering operations.

– Third, it can allow the user to decide the type of model preferable to another
one, even if he has no knowledge of the principles underlying each of them.

A great number of works pertaining to prediction explanation led to [6], which
theorized a category of explanation methods, named additive methods, and pro-
duced an interesting review of the different methods developed in this category.
Some of these methods are described in detail in [3] and [10]. They are sum-
marized in [6] as methods attributing for a given prediction, a weight to each
attribute of the dataset. This creates a very simple “predictive model”, mimick-
ing the original model’s behavior locally. Thus, we have a simple interpretable

Explaining Single Predictions: A Faster Method 315

linear model which gives information on the original model’s inner working in a
small vicinity of the predicted instance. The methods from which these weights
are attributed to each attributes varies between the different additive methods,
but the end result is always this vector of weights. This article has highlighted
several interesting properties about these methods, which make it a very use-
ful theoretical object: Local precision: The system describes precisely the model
in the close vicinity of the explained instance. “Missingness”: If an attribute is
missing for the prediction, the method does not give it a weight, or gives it a
weight of zero. Consistence: If the explained model changes in a way that makes
an attribute more important, or does not change its importance, its attributed
weight is not diminished. This property is important, as some of the early pre-
diction explanation methods could have an erratic behavior in some cases, as
shown in an example of [6]. Other lines of reasoning have been explored, as in
[2], which explored prediction explanation in the point of view of model perfor-
mance. Meaning that their metric shows which feature improves the performance
of the model, rather than which feature the model consider as important for its
prediction. If this line of reasoning is really interesting for the model explanation
field, it does not correspond to our scope as well as other methods, as we are
aiming to help users understand how a model works, and not how to improve it.
In this paper, we are aiming to facilitate the understanding of any machine learn-
ing models for user without particular knowledge on data analysis or machine
learning. Thus, it is more relevant to focus on the works as [12] or [3], cited
as additive methods, as they generate a simple set of importance weights for
each attribute. This set of weights is easy to interpret, even for someone without
expertise on machine learning. Yet, these methods have a major deterrent: their
computation time makes them difficult to use for the average user. That is why
[6] explored methods to generate explanations faster, but at the cost of very
restricting hypotheses, as the Independence of each attributes of the dataset, or
the linearity of the model, which is not always the case. Thus, we are aiming for a
simplification to reduce computational time of methods like [12], but applicable
in a more generic way than [6]. With this work, we want to facilitate the genera-
tion of prediction explanation, without having to restrict ourselves to a given set
of models. The ability to explain the prediction of any model thus appears to be
a key point for allowing a broader public (non expert) to access and use machine
learning models. This need led us to consider the diverse explanation systems,
developed in the literature, as having a major interest for giving more autonomy
to domain experts performing data analysis tasks. Yet, the computational load
found in the most generic methods can be a hindrance to their use. In this paper,
we seek to select a prediction explanation method as generic as possible and try
lowering its computing time without loosing too much information.

3 Choosing a Basic Explanation Method

In order to start developing a faster additive explanation method, we have to
select an algorithm from the literature and reduce its complexity without losing

316 G. Ferrettini et al.

too much information. For this, we compare two methods developed by the
authors of [11] and [12], as they are classical and similar in their design, but
different in their interpretation.

3.1 Prediction Explanation Methods

Given a dataset D of instances and a set of n attributes A = {a1, .., an}, each
attribute being either continuous or nominal, its possible values are then integers
or real number. Each instance x ∈ D is defined by the values of each of its
attributes: x = {x1, ..., xn},∀i ∈ 1..n, xi ∈ N ∨ xi ∈ R. We want to explain
a predictive model, based on the function f : D → [0, 1], whose result is the
confidence score in the classification of the instance x for a class C, as predicted
by the model.

Information Loss Method. One of the first definition for classification expla-
nation is proposed in [11]. According to their method, the influence of an
attribute ai on the classification of a given instance is defined as the differ-
ence between the classifier prediction (with ai) and its prediction without the
knowledge of attribute ai. Thus, given a dataset of instances described along
the attributes of A, the influence of the attribute ai on the classification of an
instance x by the classifier confidence function f on the class C can be repre-
sented as:

infC
f,ai

(x) = f(x) − f(x\ai) (1)

Where f(x\ai) represents the probability distributions for a classification of
the instance x by the classifier f without knowledge of the attribute ai. We name
this method as the information loss method (shortened as loss method).

Information Gain Method. In more recent works, as in [12], another possible
formula is based on the information brought by an attribute in the dataset:

infC
f,ai

(x) = f(xai
) − f(∅) (2)

Where f(xai
) represents the probability that the instance x is included in the

class C with only the knowledge of the attribute ai (according to the predictive
model). We name this method as the information gain method (shortened as gain
method). In order to simulate the absence of an attribute, the authors of [11]
theorize possible approaches, among which we selected to retrain the classifier
without the corresponding attribute.

Comparing the Two Methods: Toy Example on a Basic Dataset. As an
illustration, and in order to ease interpretations, we apply these two methods in
a simple ID3 decision tree [7], trained on the well-known Fisher’s Iris dataset1.

1 Iris, Fisher: https://en.wikipedia.org/wiki/Iris flower data set.

https://en.wikipedia.org/wiki/Iris_flower_data_set

Explaining Single Predictions: A Faster Method 317

As a decision tree is a naturally interpretable model, and Iris dataset is well
studied in the literature, it is easy to compare and interpret the two methods
and detect eventual problems. We use Weka [4] and OpenML [13] to perform
the data management and model training while ensuring the reproductibility of
all experiments. OpenML is a machine learning collective platform. It includes
a repository of datasets and workflows, in which each user can upload any new
dataset and run any data mining task on them. To estimate the reliability of loss
and gain methods, we apply a 5-fold cross validation on the Iris dataset. The
explanations of both methods are generated on the validation set, for each itera-
tion of the cross-validation. We generate thus prediction explanations of Weka’s
J48 tree classifier, for the whole Iris dataset. Then, we compare those explana-
tions to the decision tree, and get a general sense of the explanation accuracy.
Each instance of the Iris dataset is composed of four attributes: petal length,
petal width, sepal length and sepal width. Each instance is included in one of
these three classes: Iris Setosa, V ersicolor or V irginica.

Fig. 1. Repartition of the 3 different classes by petal length and width, with their
corresponding generalization according to the decision tree

Fig. 2. A decision tree trained on Iris

By a simple look at the trained decision tree Fig. 2, we see the influence of
the loss method should be zero for the sepal length and width attributes, as
they are not used by the tree at all. Moreover, the Setosa class instances should
only be influenced by petal width, as it is the only attribute used to classify
them. For Iris Virginica and Versicolor, we can expect a high influence from
petal width, and a lower from petal length influence, yet still significant as these
two attributes are used. We can now compare these expectations to the results

318 G. Ferrettini et al.

Table 1. Average influence of the different attributes according to each explanation
method, for each class of instances

Loss method Gain method

Sepal
length

Sepal
width

Petal
length

Petal
width

Sepal
length

Sepal
width

Petal
length

Petal
width

Setosa 0 0 0 0 0.211 0.104 0.316 0.316

Versicolor 0 0 0.835 0.135 0.037 0.077 0.308 0.373

Virginica 0 0 0.047 0.691 0.150 0.019 0.355 0.375

Average 0 0 0.305 0.284 0.131 0.066 0.326 0.356

indicated Table 1. We see the loss method does not behave as expected for the
Setosa instances, as all the attributes are being given an influence equals to 0.
This can be understood by looking at the representation of the concept learned
by the tree Fig. 1. We note that, by removing one of the attributes between petal
length and petal width, it remains possible to separate the Setosa class linearly
from the others using only the petal length, and still maintain a 100% confidence
in the classification. Thus, each attribute is considered as inconsequential by
the loss method, when classifying Setosa instances. This implies that, for every
dataset in which two attributes carry very similar information, the loss method
will be unable to generate a satisfying explanation.

The gain method, on the other hand, gives an importance to all the four
attributes about Setosa instances. A minimal importance is given for sepal
length and width, unlike the petal length and width. It is easily understand-
able by observing the graphs of repartition of the different classes (Fig. 1). We
note the petal length and width can easily separate the three classes, but the
sepal attributes are less defined in their separation. This is especially true for
the V ersicolor class, as it is mixed with its two adjacent classes. Thus, the gain
method seems to be closer to what the decision tree is doing when being trained.
Finally, we conclude the main difference of the two methods relies in the fact
they are not trying to calculate the same thing: the loss method is based on the
information lost by the model when removing an attribute, while the gain method
is based on the information brought by each attribute. Yet, we remark the loss
method has an aberrant behavior when confronted with two attributes bringing
the same information. Thus, the gain method seems the best proposal for a pre-
diction explanation. But this method has its flaws: it only takes into account
the information brought by each attribute, independently. In many datasets,
the attributes are often interdependent. Our next objective is to consider the
influence of group of attributes as described in the next section.

4 Toward a More Efficient Method

In order to answer the problems of interaction between attributes, we propose
to take inspiration from the work of [12]. We are here in a framework close to

Explaining Single Predictions: A Faster Method 319

the situation of a game called “coalitions”, where each group of attributes can
have an influence on the prediction of the model. Therefore, we cannot consider
each attribute as independent, but all the possible combinations of attributes.
The influence of an attribute is measured according to its importance in each
coalition. We can then refer to the coalition games as defined by Shapley in [9]: A
coalitional game of N players is defined as a function mapping subsets of players
to gains g : 2N �→ R. The parallel can easily be drawn with our situation, where
we wish to assess the influence of a given attribute in every possible coalition
of attributes. We then look at not only the influence of the attribute, but also
its use in all subsets of attributes. We thus define the complete influence of an
attribute ai ∈ A on the classification of an instance x (the notations remain the
same as in Sect. 3.1):

IC
ai

(x) =
∑

A′⊆A\ai

p(A′, A) ∗ (infC
f,(A′∪ai)

(x) − infC
f,A′(x)) (3)

With p(A′, A) a penalty function accounting for the size of the subset A′.
Indeed, if an attribute changes a lot the result of a classifier, depending of a lot
of attributes, it can be considered as very influential compared to the others.
On the opposite, an attribute changing the result of a classifier, whereas this
classifier is based on a few number of attributes, cannot be considered to have
a decisive influence. The Shapley value [9] is a promising candidate, and defines
this penalty as:

p(A′, A) =
|A′|! ∗ (|A| − |A′| − 1)!

|A|! (4)

This complete influence of an attribute now takes into consideration its
importance among all the possible attribute configurations, which is closer to
the original intuition behind attributes’ influence. However, computing the com-
plete influence of a single instance is extremely computationally expensive, with
a complexity in ©(2n ∗ l(n, x)), with n the number of attributes, x the number
of instances in the dataset and l(n, x) the complexity of training the model to be
explained. It is then not practical to use the complete influence. Consequently, it
becomes necessary to seek a more efficient way to explain predictions. Although
the complete influence is too computationally heavy, it can be considered as
an excellent baseline [12]. Thus, we can evaluate other explanation methods by
studying their differences with the complete influence.

4.1 Finding New Estimators of the Complete Influence

An approximation of the complete influence has to remain accurate and practical,
as much as possible. For this we cannot fully rely on recent works (e.g. [12] and
[6]), as explained in Sect. 2. In particular, looking for a subset of all the subgroups
could be more practical in terms of complexity. This solution should produce
explanation, a priori, more accurate than the basic consideration of independent
attributes (linear influence). We consider then the depth-k complete influence

320 G. Ferrettini et al.

defined as:

ICk
ai

(x) =
∑

A′⊆A\ai|A′|≤k

pk(A′, A) ∗ (infC
f,(A′∪ai)

(x) − infC
f,A′(x)) (5)

pk(A′, A) =
|A′|! ∗ (|A| − |A′| − 1)!

k ∗ (|A| − 1)!
(6)

In particular, we can note that the linear influence is actually identical to the
depth-1 complete influence. The intuition behind this approach is to eliminate
the larger groups, which have a lesser impact on the shapley value, while being
the most costly to calculate. We then hope to achieve a better calculation time
without losing too much information.

Another possible approach is to identify the attributes having a correlation
between them. We can obtain a grouping such as:
G = {{a1, a3}, {a2, a5, a8}, {a4}...}. We then only have to calculate the grouped
influence of these attributes groups, without having to consider every possible
attributes’ combination. We then obtain a coalitionnal influence of an attribute
ai ∈ g, g ∈ G:

simpleIC
ai

(x) =
∑

g′⊆g\ai

p(g′, g) ∗ (infC
f,(g′∪ai)

(x) − infC
f,g′(x)) (7)

Given the fact we can set a maximum cardinal c for our subgroups, the com-
plexity is, in the worst case, O(2c ∗ n

c ∗ l(n, x)) ≈ O(n ∗ l(n, x)). This method
calculates less groups than the depth-k complete influence, but tries to make up
for it by only grouping the attributes actually related to each other. In order to
determine which attributes seem to be related, we use an automated correlation
detection algorithm, as proposed in [5]. In order to determine if it is possible
to generate a satisfactory approximation of the influence of an attribute with
the new depth-k complete influence and the coalitionnal influence, it is necessary
to assess the number of attribute’s combinations we need to take into account
before being sufficiently near to the complete influence defined in Eq. 3. More-
over, we need to assess if the results of the depth-k complete influence produce
better explanations than linear and coalitionnal influences, in view of its higher
computation cost. These are the objectives of our next section.

4.2 Evaluating the Two New Heuristics

In this section we aim to evaluate the value of the coalitional and depth-k com-
plete influences, considering their precision when compared to the complete influ-
ence, and their computational time.

Experimental Protocol. Our experiments are run on the OSIRIM2 cluster.
This cluster is equipped with 4 AMD Opteron 6262HE processors with 16 ×
2 http://osirim.irit.fr/site/en.

http://osirim.irit.fr/site/en

Explaining Single Predictions: A Faster Method 321

1,6 GHz cores, for a total of 64 cores, and 10 × 512 GB of RAM. Our tests are
realized from the data available in the Openml platform [13]. We selected the
biggest collection of datasets3 on which classification tasks have been run. We
also consider six classification tasks: näıve Bayes, nearest neighbors, J34 decision
tree, J34 random forest, bagging näıve Bayes and support vector machine. Due
to the heavy computational cost of the complete influence (considered as the
reference of our experiments), we selected the datasets having at most nine
attributes. Thus, a collection of 324 datasets is obtained. Considering the six
types of workflows, we have a total of 1944 runs. For each of those runs, we
generate each type of influence proposed in this paper, for each instance of
the 324 datasets: the complete influence for the baseline, along with the linear,
coalitional and k-complete influences. The k-complete influences are generated
for every possible values of k (from 2 up to the number of attributes of the
dataset). The coalitional influences are generated using subproups of attributes.
Here, these subgroups are produced using the algorithm described in [5], which
is based on an α ∈ [0, 0.5] parameter (small values of α resulting in smaller
subgroups, and high values in bigger ones). We generate the possible subgroups
with 5 different values of α to study the influence of subgroup size. To compare
the different explanation methods, we consider the explanation results as a vector
of attribute influences noted I(x) = [i1, ..., in] with n the number of attributes
in the dataset. Thus, each of the attributes ak is given an influence ik ∈ [0, 1] by
the method I : ∀k ∈ [1..n], ik = Iai

(x). We then define a difference between two
vectors of influences i, j as the normalised euclidian distance:

d(i, j) =
1

2
√

n

n∑

k=1

√
(ik − jk)2 (8)

Considering this formula, we define an error score based on the difference between
an explanation method and the complete influence method. Given an instance
x, an explanation method I(x), and the complete influence method IC(x):

err(I, x) = d(I(x), IC(x)) (9)

For each instance of each dataset, we generate the error score of every method,
allowing us to compare their performances across the different datasets we col-
lected. Each error score is the distance of the method from the complete method.
Thus, lesser error is indicative of a more precise estimation of the complete
method.

Results and Interpretations. Figure 3 indicates the computation time of all
the explanation methods. This time takes in account every step of each method:
the training of the models, the predictions necessary to calculate the influences,
and the constitution of the correlated groups for the coalitional method. As
expected, the coalitionnal influences are much more efficient than the k-complete

3 Available in https://www.openml.org/s/107/tasks.

https://www.openml.org/s/107/tasks

322 G. Ferrettini et al.

Fig. 3. Execution time, in milliseconds, of each explanation method depending on
the number of attributes in the dataset. The mean number of instances is added for
comparison.

Fig. 4. Error score between each explanation method and the complete influence
depending on the number of attributes in the dataset.

Explaining Single Predictions: A Faster Method 323

influences (less than 200 s for the first ones compared to 700 s for the other ones).
The decrease in computation time for 9 attributes is explained by the important
decrease in the mean number of instances. This makes each retraining faster
to do, even if there are twice more subgroups to take into account. Figure 4
depicts the mean error score, aggregating the error score (Eq. 9) of each expla-
nation method for each of our 324 datasets. In this figure, the lowest curve is the
closest to the complete influence method, and thus is performing the best. As
expected, the linear influence gives the worst results. This is explained by the
fact it only considers single attributes, which is far from all the possible groups
of attributes considered by the complete influence. The comparison between the
k-complete influences and the coalitionnal influences (represented by their alpha
parameters) is more delicate. Certainly, the k-complete influences outperform the
other influences, in the majority of the cases, but with a high cost in execution
time. Also, it does not mean the coalitionnal influences are less interesting for
our case. They generate a smaller subset of groups of attributes while preserving
an acceptable error score. Overall, the coalitional methods are not as satisfactory
as the k-complete in term of effectiveness. But their comparatively very low exe-
cution time make them far more desirable when confronted with large datasets
with an important number of attributes. Considering these results, it seems the
k-complete influence is preferable with a relatively small k, and a dataset having
few attributes, while the coalitional influence seems to become preferable with
a higher number of attributes. Obviously, larger subgroups seems to increase
the methods precision, but in the case of the coalitional method, their impact
on computation time seems to be relatively small when compared to the per-
formance gain. Besides, our study about the groups generated by the grouping
algorithm shows that the number of groups stays relatively small, even for large
alphas. As an example, for the datasets of 9 attributes, the mean size of the
biggest generated group is 4, using an alpha of 0.4. This means that the coali-
tional influence is working with far less information than the k-complete one.
Studying the influence of different ways to generate the coalitions of attributes
on the coalitional influence could be a good aim for the near future. With new
methods, it could be possible to find more relevant groups, bettering the preci-
sion of the explanation without an important computational cost. Moreover, it
would be interesting to investigate overlapping attributes coalitions, using algo-
rithms allowing for attributes to be in different coalitions, allowing to explore
more subgroups if necessary.

5 Conclusion

We proposed in this paper a new way to explain the predictions of a single
instance, aiming to reduce their cost of computation without losing too much
information. The explaining methods we relate are a step further toward the
goal of helping users employing machine learning tools. Our first experiment, in
comparing the loss and gain methods, has led us to pinpoint flaws in their ini-
tial design, especially the lack of consideration about attribute combinations. We

324 G. Ferrettini et al.

proposed two adequate methods for prediction explanation, i.e. the k-complete
and coalitional. These methods are faring better in term of calculation time,
with a relatively small loss in accuracy. A short term perspective will be to
investigate the different subgroups generation methods and the results will help
us to focus our efforts on the most promising candidates. A more long term
perspective is to implement a complete tool on this basis, with the goal of guid-
ing a domain expert through the building and exploitation of a machine learning
model. Another longer-term perspective also focuses on the problem of an objec-
tive evaluation of explaining methods existing in the literature. Indeed, to the
best of our knowledge, there is no benchmark for objectively evaluating these
methods.

References

1. Altmann, A., Tolosi, L., Sander, O., Lengauer, T.: Permutation importance: a
corrected feature importance measure. Bioinformatics 26(10), 1340–1347 (2010)

2. Casalicchio, G., Molnar, C., Bischl, B.: Visualizing the Feature Importance for
Black Box Models. arXiv e-prints, April 2018

3. Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influ-
ence: theory and experiments with learning systems. In: 2016 IEEE Symposium
on Security and Privacy (SP), pp. 598–617, May 2016

4. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1),
10–18 (2009)

5. Henelius, A., Puolamaki, K., Boström, H., Asker, L., Papapetrou, P.: A peek into
the black box: exploring classifiers by randomization. Data Min. Knowl. Discov.
28(5–6), 1503–1529 (2014). qC 20180119

6. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. In:
NIPS (2017)

7. Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
8. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the

predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD 2016, pp.
1135–1144. ACM, New York (2016)

9. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of
Games, vol. 28, pp. 307–317 (1953)

10. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, vol. 70, pp. 3145–3153 (2017)

11. Štrumbelj, E., Kononenko, I.: Towards a model independent method for explaining
classification for individual instances. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.)
DaWaK 2008. LNCS, vol. 5182, pp. 273–282. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85836-2 26

12. Strumbelj, E., Kononenko, I.: An efficient explanation of individual classifications
using game theory. J. Mach. Learn. Res. 11, 1–18 (2010)

13. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

https://doi.org/10.1007/978-3-540-85836-2_26
https://doi.org/10.1007/978-3-540-85836-2_26

Inferring Deterministic Regular
Expression with Unorder

Xiaofan Wang1,2 and Haiming Chen1(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{wangxf,chm}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Schema inference has been an essential task in database man-
agement, and can be reduced to learning regular expressions from sets of
positive finite-sample. In this paper, we extend the single-occurrence reg-
ular expressions (SOREs) to single-occurrence regular expressions with
unorder (uSOREs), and give an inference algorithm for uSOREs. First,
we present an unorder-countable finite automaton (uCFA). Then, we con-
struct an uCFA for recognizing the given finite sample. Next, the uCFA
runs on the given finite sample to count the number of occurrences of
the subexpressions (connectable via unorder) for every possibly repeated
matching. Finally we transform the uCFA to an uSORE according to
the above results of counting. Experimental results demonstrate that,
for larger samples, our algorithm can efficiently infer an uSORE with
better generalization ability.

Keywords: Schema inference · Regular expressions · Automata ·
Unorder

1 Introduction

The schemata in database, such as JSON (JavaScript Object Notation) Schema
[2], DTD (Document Type Definitions) and XSD (XML Schema Definitions)
[21], facilitate query processing, automatic data integration, and static analysis
of transformations [1,11,16,17], etc. However, in practice, many data exchange
formats, such as XML documents, are not accompanied by a schema [4,18], or
a valid schema [5,6]. Therefore, it is essential to devise algorithms for schema
inference. In this paper, we focus on inferring schema from XML documents.

Schema inference can be reduced to learning regular expressions from sets of
positive finite-sample. Single-occurrence regular expressions (SOREs) [7,8] are
widely used in DTD files and XSD files. There are many works focusing on learn-
ing SOREs or subclasses of SOREs [7,8,13,14]. However, SOREs, which are just
defined on standard regular expressions, do not support unorder. Regular expres-
sions with unorder are extended from standard regular expressions with unorder

Work supported by National Natural Science Foundation of China under Grant No.
61872339.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 325–337, 2020.
https://doi.org/10.1007/978-3-030-38919-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_27

326 X. Wang and H. Chen

operators %. The unorder % is first used in Standard Generalized Markup Lan-
guage (SGML) [19], and later in a limited form in XML Schema [21]. Unordered
XML, which facilitates query optimization and set-oriented parallel processing
[3], has also been studied recently with respect to schema language definitions
[9,12,20]. In this paper, we propose a class of single-occurrence regular expres-
sions with unorder (uSOREs). For 426,135 regular expressions extracted from
XSD files and 43,326 regular expressions extracted from SGML files, our exper-
iments (see Table 2) showed that the proportions of uSOREs are 90.32% and
93.26%, respectively. This indicates the practicality of uSOREs. Therefore, it is
necessary to study the inference algorithm for uSORE.

For inference algorithms of SOREs, Bex et al. [8] proposed the algorithms
RWR and RWR2

� [8]. Freydenberger et al. [14] presented the algorithm Soa2Sore
[14]. For a given finite sample, the result of Soa2Sore can be more precise than
that of RWR or its variants [14]. For inferring deterministic regular expressions
with unorder, Ciucanu et al. [12] proposed two subclasses disjunction multiplicity
expression (DME) and disjunction free multiplicity expression (ME) [12], ME
does not use the disjunction (‘|’) operators. Ciucanu et al. [12] presented the
algorithm learner+DME [12] for learning DME. The learnt DME, where every
symbol occurs at most once, is a minimal schema consistent with the examples.
However, the unorder of two words u1 and u2 in [12] is defined as the multiset
union u1�u2. So does for the unorder defined in [9] and [20], which is used in
disjunctive interval multiplicity expressions (DIMEs) [9] and single-occurrence
regular bag expressions (SORBEs) [20], respectively. For instance, let u1 = aa
and u2 = b, u1�u2 ={aab}, while u1%u2 ={aab, baa}. Additionally, so far there
does not exist algorithm for learning an expression, which supports unorder (%).
Therefore, we propose a new subclass uSORE and the corresponding learning
algorithm. For larger samples, our algorithm can efficiently infer an uSORE with
better generalization ability.

The main contributions of this paper are as follows. First, we define unorder-
countable finite automaton (uCFA). Then, we present an inference algorithm
for uSOREs. The main steps are as follows: (1) Construct an uCFA by convert-
ing the SOA, which is built for a given finite sample; (2) The uCFA runs on
the given finite sample to count the number of occurrences of the subexpres-
sions (connectable via unorder) for every possibly repeated matching; and (3)
Transform the uCFA to an uSORE according to the above counting results.

The paper is structured as follows. Section 2 gives the basic definitions.
Section 3 describes the uCFA and provides an example of such an automa-
ton. Section 4 presents the inference algorithm of the uSORE. Section 5 presents
experiments. Section 6 concludes the paper.

2 Preliminaries

2.1 Regular Expression with Unorder

Let Σ be a finite alphabet of symbols. A standard regular expression over
Σ is inductively defined as follows: ε and a ∈ Σ are regular expressions,

Inferring DRE with Unorder 327

for any regular expressions r1 and r2, the disjunction (r1|r2), the concate-
nate (r1 · r2), and the Kleene-star r∗

1 are also regular expressions. Usu-
ally, we omit concatenation operators in examples. The regular expressions
with unorder are extended from standard regular expressions by adding the
unorder r1%r2. For regular expressions r1, r2, · · · , rk, L(r1%r2% · · · %rk) =⋃

{τ1,τ2,··· ,τk}∈Perm({1,2,··· ,k}) L(rτ1) · · · L(rτk), where 1 ≤ i, τi ≤ k (k ≥ 2) and
Perm({1, 2, · · · , k})1 is the set of permutations of {1, 2, · · · , k}. Note that r+

and r? are used as abbreviations of rr∗ and r|ε, respectively.
For a regular expression r, |r| denotes the length of r, which is the number of

symbols and operators occurring in r. Let N={1, 2, · · · } and N0 ={0, 1, 2, · · · }.
For regular expressions r1, r2, · · · , rk (k≥2), %{r1, r2, · · · , rk}=r1%r2% · · · %rk,
[{r1, r2, · · · , rk}] = (r1|r2| · · · |rk). Let %{r1} = r1 and [{r1}] = r1. For a finite
sample S, |S| denotes the number of stings in S. ∅ denotes empty set. For a
matrix Mx×y, let [N0]x×y denote M(i, j)∈N0 (1≤ i≤x, 1≤j ≤y). For a constant
t, {t}|T | denote a set consisting of |T | elements t. For space consideration, all
omitted proofs can be found at http://github.com/GraceFun/InfuSORE.

2.2 SORE, uSORE, SOA

SORE is defined as follows.

Definition 1 (SORE [7,8]). Let Σ be a finite alphabet. A single-occurrence
regular expression (SORE) is a standard regular expression over Σ in which
every terminal symbol occurs at most once.

Since L(r∗)=L((r+)?), in this paper, a SORE does not use the Kleene-star
operation.

Example 1. (ab)+ is a SORE, while (ab)+a is not.

uSORE extends SORE with unorder and does not use the Kleene-star operation,
is defined as follows.

Definition 2 (uSORE). Let Σ be a finite alphabet. A single-occurrence regular
expression with unorder (uSORE) is a regular expression with unorder over Σ
in which every terminal symbol occurs at most once.

According to the definition of deterministic regular expressions [10], uSOREs
are deterministic by definition.
Example 2 a?b(c+%d?)(e+)?, c%d, and (a?b)%(c|d)+e are uSOREs, while
a(b|c)+a is not a SORE, therefore not an uSORE.

Definition 3 (SOA [8,14]). Let Σ be a finite alphabet, and let q0, qf be distinct
symbols that do not occur in Σ. A single-occurrence automaton (SOA) over Σ is
a finite directed graph A =(V,E) such that (1) {q0, qf}∈V , and V =Σ∪{q0, qf}.
(2) q0 has only outgoing edges, qf has only incoming edges, and every v ∈ V lies
on a path from q0 to qf .

A string a1 · · · an (n ≥ 0) is accepted by an SOA A , if and only if there is a
path q0 → a1 → · · · → an → qf in A .
1 For instance, Perm({1, 2, 3}) = {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2},

{3, 2, 1}}.

http://github.com/GraceFun/InfuSORE

328 X. Wang and H. Chen

3 Unorder-Countable Finite Automaton (uCFA)

An uCFA is defined to count the number of occurrences of the subexpressions
(connectable via unorder) for every possibly repeated matching by accepting
the given finite sample. uCFA is a variant of the CFA defined in [22], which
is defined to count the minimum and maximum number of repetitions of the
subexpressions (derivable from CFA) by accepting the given finite sample.

3.1 Counter States and Update Instructions

For any given finite sample as input, counter states are the states that are asso-
ciated with update instructions to compute the number of occurrences of the
subexpressions (connectable via unorder) for every possibly repeated matching.
Update instructions are introduced as follows:

q0 a

c

+1 qf
a;∅;∅

c;∅;∅
a/�;∅;∅

c;∅;β1

a/�;α1;β2

a;∅;β4

�;α2;β3

α1 : (M(c, ic), ic) (plus(M(c, ic), cc), inc).
α2 : (M(+1, i+1), i+1)
(plus(M(+1, i+1), c+1), inc).
β1 : cc inc; β2 : cc res; β4 : c+1 inc;
β3 : ({ic}, c+1) (max, res).

Fig. 1. The uCFA A for regular language
L((a(c+)?)+). The label of the transition
edge is (y; αi; βj) (i, j ∈N), y (y∈Σ ∪ {�})
is a current letter, αi is an update instruc-
tion for elements in M and I, respectively.
βj is an update instruction for elements
in ℘(I) and a counter variable in C. Note
that, for βj : (I ′/∅, cq) �→ (∅, inc/res), βj

is abbreviated as cq �→ inc/res.

Let Qc denote the set of counter
states. Let C denote the set of counter
variables, and let cq ∈ C (q ∈ Qc)
denote a counter variable. The map-
ping θ: C �→ N is the function assign-
ing a value to each counter variable
in C. θ1 denotes that cq = 1 for each
q ∈ Qc. Let I = {iq}q∈Qc

. Each iq ∈
I denotes that the iqth time for the
subexpression associated counter state
q that can be repeatedly matched by
the substrings in the given finite sam-
ple. Let partial mapping λ: I �→ N

be a function assigning value to each
index iq ∈ I. Let partial mapping λ′:
℘(I) �→ {N}|I| be a function assigning
value to each index iq ∈ I ′ (I ′ ∈ ℘(I)).
λ1 denotes that iq =1 for each q ∈Qc.
An update instruction is defined by the
partial mapping β: ℘(I)×C �→ {∅,max}×{res, inc} (∅ for empty instruction,
res for reset, inc for increment, and max for solving the maximum of a set
of values). β also defines mapping gβ between mappings λ′ × θ. +j (j ∈ N) is
the state that can be directly transited from q for each iq ∈ I ′. If β(I ′, cq) =
(max, inc), then gβ(λ′, θ)(I ′, cq) = ({max(

⋃
i′∈I′∪{+j} λ′({i′}))}|I′|, θ(cq) + 1).

If β(I ′, cq) = (∅, res), then gβ(λ′, θ)(I ′, cq) = (λ′(I ′), 1). If β(I ′, cq) = (∅, inc),
then gβ(λ′, θ)(I ′, cq) = (λ′(I ′), θ(cq) + 1). If β(I ′, cq) = (max, res), then
gβ(λ′, θ)(I ′, cq)=({max(

⋃
i′∈I′∪{+j} λ′({i′}))}|I′|, 1).

Let Im = max(
⋃

iq∈I λ(iq)). For each counter state q ∈ Qc, let M|Qc|×Im

denote a matrix, M(q, iq) denotes the number of occurrences of the subexpres-
sion associated with counter state q, after it is the iqth time for that subexpres-
sion has been repeatedly matched by the substrings in the given finite sample.

Inferring DRE with Unorder 329

We also define partial mapping γ: M �→ [N0]|Qc|×Im as a function assigning val-
ues to the elements in M . γ0 denotes that every element in M is initialized to
0; Let partial mapping α: M(Qc × I) × I �→ plus(M(Qc × I), C) × inc. For a
counter state q∈Qc, the function plus(M(Qc × I), C) specifies that M(q, iq) :=
M(q, iq) + cq. α also defines the partial mapping fα: γ × λ × θ �→ γ × λ, such
that α(M(q, iq), iq) = (plus(M(q, iq), cq), inc): fα(γ, λ, θ)((M(q, iq), iq), cq) =
(γ(M(q, iq)) + θ(cq), λ(iq) + 1). Let g∅(λ′, θ) = (λ′, θ) and f∅(γ, λ, θ) = (γ, λ).

3.2 Unorder-Countable Finite Automaton

Definition 4 (Unorder-Countable Finite Automaton). An Unorder-
Countable Finite Automaton (uCFA) is a tuple (Q,Qc, Σ, C, q0, qf , Φ,M, I). The
members of the tuple are described as follows:

– Σ is a finite alphabet (non-empty).
– q0 and qf : q0 is the initial state, qf is the unique final state.
– Q is a finite set of states. Q = Σ ∪ {q0, qf} ∪ {+i}i∈N.
– Qc ⊂ Q is a finite set of counter states. Counter state is a state +i or a state

q (q ∈ Σ) with loop that can be directly transited from a state +j (i, j ∈N).
– C is finite set of counter variables that are used for counting the number of

occurrences of the subexpressions connectable via unorder. C = {cq|q ∈ Qc},
for each counter state q, we also associate a counter variable cq.

– M is a matrix. An element M(q, iq) in M denotes the number of occurrences
of the subexpression associated with counter state q, after it is the iqth time
for that subexpression has been repeatedly matched by the substrings in the
given finite sample.

– I ={iq}q∈Qc
. iq ∈I denotes that the iqth time for the subexpression associated

counter state q that can be repeatedly matched by the substrings in the given
finite sample.

– Φ maps each state q ∈ Q to a set of pairs consisting of a state p ∈ Q and two
update instructions. Φ: Q �→ ℘(Q× ((M(Qc × I)× I �→ plus(M(Qc × I), C)×
inc) ∪ {∅}) × ((℘(I)×C �→ {∅,max}×{res, inc}) ∪ {∅})).

For Q, Σ, q0 and qf , they are the same with the corresponding definitions in
CFA [22]. The configuration of an uCFA is defined as follows.

Definition 5 (Configuration of an uCFA). A configuration of an uCFA is
a triple (q, γ × λ, λ′ × θ), where q ∈ Q is the current state, γ × λ: M × I �→
[N0]|Qc|×Im × N, λ′ × θ: ℘(I) × C �→ {N}|I| × N. The initial configuration is
(q0, γ0 × λ1, λ

′×θ1), and a configuration is final if and only if q = qf .

The transition function of an uCFA is defined as follows:

Definition 6 (Transition Function of an uCFA). The transition function
δ of an uCFA (Q,Qc, Σ,C, q0, qf , Φ,M, I) is defined for any configuration (q, γ ×
λ, λ′ ×θ) and the letter y ∈ Σ ∪{�}, where � denotes the end symbol of a string.

(1) y∈Σ : δ((q, γ×λ, λ′×θ), y)={(z, fα(γ, λ, θ), gβ(λ′, θ))|(z, α, β) ∈ Φ(q)∧(z =
y ∨ ((y, α, β) �∈ Φ(q) ∧ z ∈ {+i}i∈N))}.

330 X. Wang and H. Chen

(2) y =�: δ((q, γ×λ, λ′×θ),�)={(z, fα(γ, λ, θ), gβ(λ′, θ))|(z, α, β) ∈ Φ(q)∧(z =
qf ∨ z ∈ {+i}i∈N)}.

The construction of an uCFA and Φ(q) will be given in Sect. 4.1. uCFA and
CFA have the same way for string recognition [22].

Definition 7 (Deterministic uCFA). An uCFA (Q,Qc, Σ, C, q0, qf , Φ,M, I)
is deterministic if and only if |δ((q, γ × λ, λ′ × θ), y)| ≤ 1 for any q ∈ Q, y ∈
Σ ∪ {�} and γ × λ: M × I �→ [N0]|Qc|×Im × N, λ′ × θ: ℘(I) × C �→ {N}|I| × N.

Example 3. Let Σ = {a, c}, Q = {q0, a, c,+1, qf}, Qc = {c,+1}, C = {cc, c+1}
and I = {ic, i+1} = {1, 1}, M = [M(c, 1),M(+1, 1)]T. Figure 1 illustrates a
deterministic uCFA A = (Q,Qc, Σ, C, q0, qf , Φ,M, I) recognizing the language
L((a(c+)?)+).

4 Inference of uSOREs

Our inference algorithm works in the following steps.

Algorithm 1. InfuSORE
Input: a finite sample S;
Output: an uSORE r% : L(r%) ⊇ S;
1: SOA A =2T-INF(S);
2: uCFA A = Soa2uCfa(A);
3: if Running(A, S) then
4: r% = GenuSORE(A);
5: return r%;

(1) We construct an uCFA by con-
verting the SOA, which is built for the
given finite sample. (2) For the given finite
sample used in step (1) as input and the
uCFA obtained from step (1), the uCFA
counts the number of occurrences of the
subexpressions (connectable via unorder)
for every possibly repeated matching. (3)
We transform the uCFA to an uSORE
according to the above results of count-
ing.

Algorithm 1 is the framework of our inference algorithm. Algorithm 2T-
INF [8] constructs the SOA for the sample S. Algorithm Soa2uCfa is given in
Sect. 4.1, algorithm Running [22] is used to run the uCFA in Sect. 4.2, algorithm
GenuSORE is presented in Sect. 4.3.

4.1 Constructing uCFA

In this section, we present the construction of an uCFA. Since uCFA and CFA
[22] have the same way for string recognition, the state-transition diagram of an
uCFA is also same with the corresponding that of a CFA. Thus, we can first
construct the state-transition diagram of an uCFA by using the corresponding
algorithm in [22]. We then give the detailed descriptions of the uCFA.

Inferring DRE with Unorder 331

Algorithm 2. Soa2uCfa

Input: SOA A (V, E);
Output: an uCFA A;
1: G = ConstructG(A ,A);
2: uCFA A = (Q, Qc, Σ, C, q0, qf , Φ, M, I);
3: return A;

Algorithm 2 constructs the state-
transition diagram (a finite directed
graph G) of an uCFA by using algo-
rithm ConstructG [22], which is used
to construct G by modifying the
SOA A , which is built for the given
finite sample S [8]. After the state-
transition diagram G of an uCFA was
constructed, the detailed descriptions
of the uCFA A are as follows.

A = (Q,Qc, Σ, C, G.q0, G.qf , Φ,M, I) where Σ = G.V \ ({q0, qf} ∪ {+i}i∈N),
Q=G.V , Qc ={q|q∈G. � (q)∧q∈Σ}∪{G.+i}i∈N, C ={cq|q ∈ Qc}, I ={iq}q∈Qc

,
and M|Qc|×Im = [M1,M2, · · · ,MIm], Mi = [M(q1, i),M(q2, i), · · · ,M(q|Qc|, i)]T

(1≤ i≤Im, qj ∈Qc and 1≤j ≤|Qc|). Here we present Φ(q):

(1) q = q0 : Φ(q) = {(p, ∅, ∅)|p ∈ G. � (q0)}.
(2) q ∈ Σ : Φ(q)={(p, {(M(q, iq), iq) �→ (plus(M(q, iq), cq), inc)|q �=p ∧ q∈G.�

(q)} ∪ {∅}, {(∅, cq) �→ (∅, res)|q �=p ∧ q ∈G.� (q)} ∪ {(∅, cq) �→ (∅, inc)|q =
p} ∪ {∅})|p∈G.�(q)}.

(3) q ∈ {+i}i∈N : Φ(q) = {(p, {(M(q, iq), iq) �→ (plus(M(q, iq), cq), inc)},
{({il|il ∈ I, l ∈G.≺ (q) ∧ l �∈G.≺ (+j),+j �= q, j ∈N}, cq) �→ (max, res)})|p∈
G. � (q) ∧ (p ∈ {+i}i∈N ∪ {qf} ∨ p �∈ Rq)}

⋃{(p, ∅, {(∅, cq) �→ (∅, inc)})|p ∈
G.�(q) ∧ p∈Σ ∧ p∈Rq}.

q0 a c

b qf

(a) SOA

q0 a c +2

b +1 qf

(b) G

Fig. 2. The SOA (a) for the finite sample
S ={a, acc, acbb, bab}. The state-transition
diagram G of the uCFA (b) is constructed
by modifying the SOA (a).

Note that, the set of each Rq (q ∈
{+i}i∈N) is a global variable in algo-
rithm ConstructG. G is obtained, then
we can obtain the set of each Rq. Each
Rq is established to specify the tran-
sition entrances for state q to count
the number of occurrence of the cor-
responding subexpression connectable
via unorder.

Suppose the SOA A uses ns alpha-
bet symbols and contains ts transitions (ts > ns). Since the time complexity of
constructing a CFA in [22] is O(nsts), the time complexity of constructing an
uCFA is also O(nsts).

Example 4. For the sample S = {a, acc, acbb, bab}, the SOA A is showed in
Fig. 2(a). Soa2uCfa converts the SOA A into the uCFA A, the corresponding
state-transition diagram of the uCFA A is demonstrated in Fig. 2(b). For space
consideration, we illustrate the uCFA recognizing L((a(c+)?)+) in Example 3.

Theorem 1. For any given finite sample S, if the uCFA A is constructed from
the SOA A =2T-INF(S), then the uCFA is deterministic and L(A) ⊇ S.

332 X. Wang and H. Chen

4.2 Counting with uCFA

Given a finite set of strings as input, the uCFA counts the number of occurrences
of the subexpressions (connectable via unorder) for every possibly repeated
matching. The constructed uCFA still runs on the finite sample, which is used
to build the SOA that is the input of algorithm Soa2uCfa. Counting rules are
given by transition functions. We use the algorithm Running proposed in [22]
to run the uCFA. If Running returns true, then the running is terminated that
the counting results (in matrix M|A.Qc|×Im) are obtained.

For the given finite sample S, the number of strings is N and L is the average
length of the sample strings. The time complexity of running with CFA is O(NL)
[22]. Then, the time complexity of counting with uCFA is also O(NL).

Table 1. The results of M(q, iq) after
running the uCFA A (q ∈ {c, b,
+2, +1}).

M(q, iq)

q iq

1 2 3 4 5

c 0 2 1 0 0

b 0 0 2 1 1

+2 1 1 1 1 0

+1 1 1 2 3 0

Example 5. For sample S = {a, acc, acbb,
bab}, the uCFA A is constructed in
Sect. 4.1, Running returns true. Table 1
lists the results of M(q, iq) (q ∈
{c, b,+2,+1}, iq ∈ {1, 2, 3, 4, 5}) after the
M is obtained.

4.3 Generating uSORE

In this section, we transform the uCFA
constructed in Sect. 4.1 to an uSORE,
where the unorder operator % is intro-
duced according to the results of count-
ing obtained in Sect. 4.2.

Algorithm 3. GenuSORE

Input: An uCFA A;
Output: An uSORE r%;
1: Let G be the state-transition diagram of the

uCFA A;
2: SORE rs = Soa2Sore(G);
3: Search all subexpressions rb from rs:
4: if rb = a+ (a ∈ Σ and a ∈ A.Qc) then
5: Replace rb by a(la,ua);
6: if rb =(e+i)

+ (for expression e) then
7: Replace rb by (e)(l+i

,u+i
);

8: r% = add%(rs); r% = NormalForm(r%);
return r%;

The state-transition diagram
of the uCFA can be respected as
an SOA if alphabet includes +i

(i ∈ N). A SORE can be derived
from an SOA by using the algo-
rithm Soa2Sore [14]. Then the
SORE containing symbols +i can
be obtained from uCFA. In order
to obtain an uSORE, first, we use
the algorithm Soa2Sore which
inputs the state-transition dia-
gram of the uCFA to generate a
SORE. Then, for each subexpres-
sion r of the SORE, we rewrite r
to the form r(lq,uq) if r is associ-
ated by a counter state q. Finally, an uSORE is obtained by introducing the
unorder operators and providing a normal form.

Let lq = min{M(q, iq)|M(q, iq) �= 0, 1 ≤ iq ≤ Im} and uq =
max{M(q, iq)|M(q, iq) �=0, 1≤ iq ≤Im}. According to the tuples {(lq, uq)}q∈A.Qc

Inferring DRE with Unorder 333

and the values in {M(q, iq)|q ∈ A.Qc, 1 ≤ iq ≤ Im}, subroutine add%, which is
used to introduce the unorder (%) into an expression, is described as follows.

add%(r). r is the expression possibly containing the subexpressions of form
e = (e1|e2| · · · |ek)(lq,uq), where k ≥ 2 and the subexpression (e1|e2| · · · |ek) is
associated with the counter state q∈A.Qc.

(1) k= lq =uq. Let e=e1%e2% · · · %ek.
(2) k < uq. Let E = {e1, e2, · · · , ek}, where el (1 ≤ l ≤ k) is associated with the

counter state ql ∈ A.Qc. Let F = {ej1 , ej2 , · · · , ejt} (1 ≤ t, jt ≤ k). The set
F with maximum size is extracted from E, such that there exists iq ∈ I:
M(ql, iq) > 0 for each ql ∈ A.Qc. Let E = E \F . We repeatedly extract
the set F from the set E till F = ∅. Let Fi denote ith time for extracting
F from E. Let E′ denote the set of the remainders in E. Then, let e =
(%{r1}r1∈F1 |%{r2}r2∈F2 | · · · |%{ri}ri∈Fi

| · · · | [{r′}r′∈E′]). If lq <uq or 2≤ lq =
uq, e=e+.

(3) k≥uq. Let e=(e1|e2| · · · |ek). If lq <uq or 2≤ lq =uq, e=e+.

The unorder (%) is introduced into the expression, however, there are many
subexpressions with the tuples in {(lq, uq)}q∈A.Qc

. Then, we provide the subrou-
tine NormalForm, which converts an expression with unorder into a defined
form of uSORE (a normal form).

NormalForm(r). Let rb1=e(lq,uq), where the expression e is associated with
the counter state qe. (1) Let rb = (· · · %rb1% · · ·). If rb is a subexpression in
r, then let rb1 = e, if lqe < uqe or 2 ≤ lqe = uqe , rb1 = r+b1.L Assume that rb is
associated with a counter state p. If there exists a counter state q′ ∈G.≺(p) and
iqe , iq′ ∈I such that M(qe, iqe)=0 and M(q′, iq′)=1, then let rb1 =rb1?. (2) Let
rb = (· · · |rb1| · · ·)+. If rb is a subexpression in r, then let rb1 = e. (3) If rb1 is a
subexpression in r, then let rb1=e. If lqe <uqe or 2≤ lqe =uqe , rb1=r+b1.

Assume that, the state-transition diagram G of the input uCFA contains ng

nodes and tg transitions. Then, Soa2Sore takes O(ngtg) time to infer a SORE rs.
It takes O(|rs|) time to transform the SORE rs to the expression with the tuples
in {(lq, uq)}q∈A.Qc

. For subroutines add% and NormalForm, each of them takes
O(|rs|) time to process an expression. Thus, the time complexity of algorithm
GenuSORE is O(ngtg+|rs|)=O(ngtg).

Example 6. The state-transition diagram (G) of the uCFA A is shown in
Fig. 2(b). For each counter state q ∈ A.Qc, M(q, iq) (1 ≤ iq ≤ Im) is illustrated
in Table 1. Then the set C = {(lq, uq)}q∈A.Qc

is computed. (lc, uc) = (1, 2),
(lb, ub) = (1, 2), (l+2 , u+2) = (1, 1) and (l+1 , u+1) = (1, 3). The algorithm
Soa2Sore infers an expression rs =((((a(c+)?)+2)+|b+)+1)+, which is rewritten
to rs =((a(c(1,2)?))(1,1)|b(1,2))(1,3) by introducing tuples in C. Let r%=add%(rs),
r% = ((a(c(1,2)?))(1,1)%b(1,2))+. Then, r% is transformed to a normal form
((a(c+)?)?%(b+)?)+. Thus, the finally obtained uSORE is ((a(c+)?)?%(b+)?)+.

Theorem 2. For any finite sample S, let r% :=InfuSORE(S), then L(r%)⊇S.

334 X. Wang and H. Chen

5 Experiments

In this section, we first analyse the practicability of uSOREs, then we evaluate
our algorithm on XML data in terms of generalization ability and time perfor-
mance. Since Soa2Sore is the most efficient algorithm to infer a precise SORE
[14], our algorithm is mainly compared with the algorithm Soa2Sore.

Table 2. Proportions of uSOREs and SOREs.

Subclasses uSOREs SOREs

% of SGML 93.26 85.81

% of XSD 90.32 81.45

31,386 XSD files and 52,567 SGML files were grabbed from Maven and
GitHub. For 426,135 regular expressions extracted from XSD files and 43,326
regular expressions extracted from SGML files, Table 2 showed that the propor-
tions of uSOREs are 90.32% and 93.26%, respectively. While, the proportions of
SOREs are 82.45% and 85.81%, respectively. This indicates the practicability of
uSOREs. Then, we evaluate our algorithm on XML data.

5.1 Generalization Abilities

We evaluate our algorithm InfuSORE by computing the precision and recall
according to the given sample. We specify that, the learnt expression with higher
precision and recall has better generalization ability. The average precision and
average recall, which are as functions of sample size, respectively, are averaged
over 1000 expressions.

We randomly extracted the 1000 expressions from XSDs and SGML, which
were grabbed from GitHub. To learn each extracted expression e0, we ran-
domly generated corresponding XML data by using ToXgene2. The samples
are extracted from the XML data, each sample size is that listed in Fig. 3. And
we define precision (p) and recall (r). Let positive sample (S+) be the set of the
all strings accepted by e0, and let negative sample (S−) be the set of the all
strings not accepted by e0. Let e1 be the expression derived by InfuSORE. Let
L(e1)≤n denote the set of strings, where a string is accepted by e1 and has a
length not over n=2|e1|+1. A true positive sample (Stp) is the set of the strings,
which are in S+ and in L(e1)≤n. While a false negative sample (Sfn) is the set
of the strings, which are in S+ and not in L(e1)≤n. Similarly, a false positive
sample (Sfp) is the set of the strings, which are in S− and in L(e1)≤n. While
a true negative sample (Stn) is the set of the strings, which are in S− and not
in L(e1)≤n. Then, let p = |Stp|

|Stp|+|Sfp| and r = |Stp|
|Stp|+|Sfn| . Note that, we can con-

struct automata (receptors) [15] for e0 and e1, respectively. Then we can obtain
2 http://www.cs.toronto.edu/tox/toxgene/.

http://www.cs.toronto.edu/tox/toxgene/

Inferring DRE with Unorder 335

|Stp|, |Sfp| and |Sfn|. According to above given computations for precision and
recall, we can also evaluate the result of algorithm Soa2Sore.

The plots in Fig. 3(a) show that, the precision for the expression derived by
InfuSORE is consistently higher than that for the expression learnt by Soa2Sore.
However, the plots in Fig. 3(b) illustrate that, for a larger sample (sample size
≥ 600), the recall for the expression derived by InfuSORE is higher than that for
the expression learnt by Soa2Sore. In general, for larger samples, InfuSORE has
better generalization ability such that its result has higher precision and recall.

5.2 Time Performance

To illustrate the efficiency of algorithm InfuSORE, we provide the statistics
about running time in different size of samples and different size of alphabets.
Table 3(a) shows the average running times in seconds for InfuSORE with differ-
ent inputs of sample size. We randomly extracted 1000 expressions of alphabet
size 10 from the above XSDs and SGML. To learn each expression, we randomly
generated corresponding XML data by using ToXgene, the samples are extracted
from the XML data, each sample size is that listed in Table 3(a). The running
times listed in Table 3(a) are averaged over 1000 expressions of that sample
size. Table 3(b) shows the average running times in seconds for InfuSORE as
a function of alphabet size. For each alphabet size listed in Table 3(b), we also
randomly extracted 1000 expressions of that alphabet size from the above XSDs
and SGML. To learn each expression, we also randomly generated corresponding
XML data by using ToXgene, but for each sample extracted from the XML data,
the sample size is 1000. The running times listed in Table 3(b) are averaged over
1000 expressions of that alphabet size. According to above given computations
for average running time, we can also evaluate the algorithm Soa2Sore.

Table 3(a) and (b) illustrate that, for each given sample size and alphabet size,
the running times for InfuSORE are closer to that for Soa2Sore, respectively.
Soa2Sore is the fast algorithm to infer a SORE [14]. Thus, this implies that, the
algorithm InfuSORE is suitable for processing larger samples and generating the
uSOREs with more alphabet symbols.

100 200 300 400 500 600 700 800 900 1,000
0.8

0.84

0.88

0.92

0.96

1

Simple Size

A
ve
ra
ge

P
re
ci
si
on

Soa2Sore
InfuSORE

(a)

100 200 300 400 500 600 700 800 900 1,000
0.7

0.75

0.8

0.85

0.9

0.95

1

Sample Size

A
ve
ra
ge

R
ec
al
l

Soa2Sore
InfuSORE

(b)

Fig. 3. (a) and (b) are average precision and average recall as functions of the sample
size for each algorithm, respectively.

336 X. Wang and H. Chen

Table 3. (a) and (b) are average running times in seconds for InfuSORE and Soa2Sore
as the functions of sample size and alphabet size, respectively.

(a) (b)

Sample size time(s) (|Σ| = 10) Alphabet size time(s) (|S| = 1000)

InfuSORE Soa2Sore InfuSORE Soa2Sore

100 0.034 0.021 5 0.056 0.034

1000 0.054 0.048 10 0.062 0.049

10000 0.208 0.197 20 0.074 0.056

100000 1.809 1.750 50 0.200 0.171

1000000 21.222 19.183 100 1.150 0.873

6 Conclusion

This paper proposed a series of strategies for inferring uSOREs. The main strate-
gies include: use Soa2uCfa to construct an uCFA from the SOA built for the
given finite sample; use Running to run the uCFA to obtain the number of
occurrences of the subexpressions (connectable via unorder) for every possibly
repeated matching; and use GenuSORE to transform the uCFA to the uSORE
according to the above results of counting. For larger samples, our algorithm can
efficiently infer an uSORE with better generalization ability. For future works,
we can extend the uSORE with counting, and study the inference algorithms.
We can also extend the inference algorithm for uSOREs to infer JSON Schema,
which has more superiorities than other schemas.

References

1. The JSON query language. http://www.jsoniq.org
2. json-schema.org: The home of JSON Schema. http://json-schema.org/
3. Abiteboul, S., Bourhis, P., Vianu, V.: Highly expressive query languages for

unordered data trees. Theory Comput. Syst. 57(4), 927–966 (2015)
4. Barbosa, D., Mignet, L., Veltri, P.: Studying the XML Web: gathering statistics

from an XML sample. World Wide Web 9(2), 187–212 (2006)
5. Bex, G.J., Martens, W., Neven, F., Schwentick, T.: Expressiveness of XSDs: from

practice to theory, there and back again. In: Proceedings of the 14th International
Conference on World Wide Web, pp. 712–721. ACM (2005)

6. Bex, G.J., Neven, F., Van den Bussche, J.: DTDs versus XML Schema: a prac-
tical study. In: Proceedings of the 7th International Workshop on the Web and
Databases: Colocated with ACM SIGMOD/PODS 2004, pp. 79–84. ACM (2004)

7. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from
XML data. In: International Conference on Very Large Data Bases, Seoul, Korea,
pp. 115–126, September 2006

8. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular
expressions and DTDs. ACM Trans. Database Syst. 35(2), 1–47 (2010)

http://www.jsoniq.org
http://json-schema.org/

Inferring DRE with Unorder 337

9. Boneva, I., Ciucanu, R., Staworko, S.: Schemas for unordered XML on a DIME.
Theory Comput. Syst. 57(2), 337–376 (2015)

10. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Com-
put. 142(2), 182–206 (1998)

11. Che, D., Aberer, K., Özsu, M.T.: Query optimization in XML structured-document
databases. VLDB J. 15(3), 263–289 (2006)

12. Ciucanu, R., Staworko, S.: Learning schemas for unordered XML. arXiv preprint
arXiv:1307.6348 (2013)

13. Freydenberger, D.D., Kötzing, T.: Fast learning of restricted regular expressions
and DTDs. In: Proceedings of the 16th International Conference on Database The-
ory, pp. 45–56. ACM (2013)

14. Freydenberger, D.D., Kötzing, T.: Fast learning of restricted regular expressions
and DTDs. Theory Comput. Syst. 57(4), 1114–1158 (2015)

15. Hovland, D.: The membership problem for regular expressions with unordered
concatenation and numerical constraints. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.)
LATA 2012. LNCS, vol. 7183, pp. 313–324. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28332-1 27

16. Manolescu, I., Florescu, D., Kossmann, D.: Answering XML queries on heteroge-
neous data sources. In: VLDB, vol. 1, pp. 241–250 (2001)

17. Martens, W., Neven, F.: Typechecking top-down uniform unranked tree trans-
ducers. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS,
vol. 2572, pp. 64–78. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36285-1 5

18. Mignet, L., Barbosa, D., Veltri, P.: The XML web: a first study. In: Proceedings of
the 12th International Conference on World Wide Web, pp. 500–510. ACM (2003)

19. International Organization for Standardization: Information Processing: Text and
Office Systems: Standard Generalized Markup Language (SGML). ISO (1986)

20. Staworko, S., Boneva, I., Gayo, J.E.L., Hym, S., Prud’Hommeaux, E.G., Solbrig,
H.: Complexity and expressiveness of ShEx for RDF. In: 18th International Con-
ference on Database Theory (ICDT 2015) (2015)

21. Thompson, H., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1:
Structures, 2nd Edn. W3C Recommendation (2004)

22. Wang, X., Chen, H.: Inferring deterministic regular expression with counting. In:
Trujillo, J., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 184–199. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00847-5 15

http://arxiv.org/abs/1307.6348
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1007/3-540-36285-1_5
https://doi.org/10.1007/3-540-36285-1_5
https://doi.org/10.1007/978-3-030-00847-5_15

POI Recommendation
Based on Locality-Specific Seasonality

and Long-Term Trends

Elena Stefancova(B) and Ivan Srba

Slovak University of Technology in Bratislava, Ilkovicova 2, 84104 Bratislava, Slovakia
{elena.stefancova,ivan.srba}@stuba.sk

Abstract. This work deals with time-aware recommender systems in a
domain of location-based social networks, such as Yelp or Foursquare.
We propose a novel method to recommend Points of Interest (POIs)
which considers their yearly seasonality and long-term trends. In con-
trast to the existing methods, we model these temporal aspects specifi-
cally for individual geographical localities instead of globally. According
to the results achieved by the experimental evaluation on Yelp dataset,
locality-specific seasonality can significantly improve the recommenda-
tion performance in comparison to its global alternative. We found out
that it is helpful mostly within recommendations for highly-active users
(it has a smaller influence for the novice users) and as expected, in locali-
ties with a strong seasonal weather variation. Another interesting finding
is that in contrast to seasonality, we did not observe an improvement in
case of locality-specific long-term trends.

Keywords: Recommender systems · Points of interest · Time-aware
recommendation · Seasonality · Long-term trends

1 Introduction

Recommender systems are an important part of various web applications and
their popularity is on the rise due to their crucial role in keeping customers
satisfied and to help customers with overcoming information overload. Taking
context (e.g., time, location) into account in some cases was proven to signifi-
cantly improve the accuracy of provided recommendations.

Temporal context-aware recommendation reflects recency (long/short-term
trends related to items and their categories or user interests and preferences,
e.g. popularity of comedy movies can be increasing) and periodicity/seasonality
(behaviour pattern based on time during the year, day of the week, etc., e.g. a
user goes for a coffee in the morning and to a pub in the evening) [2,6].

We focus on the domain of Location-Based Social Networks (LBSNs), which
provide users with a possibility to search and rate so called Points of Interest
(POIs) (e.g. shops, restaurants). This kind of social networks is well known for
importance of geographical and temporal context in recommendation.

While taking geographical context into account, we focus specifically on
temporal context, namely on seasonality and long-term trends in a society.
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 338–349, 2020.
https://doi.org/10.1007/978-3-030-38919-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_28

POI Recommendation Based on Seasonality and Long-term Trends 339

Some previous research works have already focused on these temporal aspects
within POI recommendation, but usually only on a global granularity and they
have not explicitly considered locality specifics (i.e., seasonality and long-term
trends specific for a particular geographic area, influenced by e.g. local climate).
We decided to address this open problem in our work.

By means of data pre-filtering and context-aware modelling (based on matrix
factorization), we incorporated locality-specific temporal aspects (seasonality
and long-term trends) into POI recommendation. Locality-specific temporal
aspects are modeled individually for each category (each POI is typically
assigned into one or several categories, such as bars, restaurants, or doctors) in
each of the localities. We compare such locality-specific temporal aspects with
global temporal aspects, which are built without taking locality into consider-
ation. Since geographical context is crucial in LBSNs, in order to improve the
final results, we used a geographical post-filtering as well – recommendations
with temporal aspects are reordered and POIs situated geographically close to
the previously visited items are preferred.

Our main contribution is a research of the dependence of the temporal aspects
on the geographical locality. In particular:

– we explicitly model locality-specific temporal aspects in the process of context-
aware recommendation,

– we do not restrict the method to one particular temporal aspect, but we
investigate seasonality as well as long-term trends,

– we address a more challenging and more valuable task to recommend POI
reviews (usually corresponding to visits of previously unvisited POIs) instead
of POI check-ins (corresponding to repetitive visits of already known POIs),

– we evaluate the proposed method by using an extensive real-world dataset
from the Yelp system1.

2 Background and Related Work

Within the classical recommendation techniques, context is not taken into
account. However, in many cases its inclusion is significantly beneficial [1]. The
most common types of the context are time, locality or company of other people.
In the case of context-aware recommendation, the recommended items are the
result of function of users, items, as well as context (Eq. 1, U stands for users, I
for items, C for context) [1].

R : U × I × C → Rating (1)

The incorporation of the context can be done by [2]:

– Pre-filtering – a segment of user ratings on items is filtered according to rele-
vance of the context, then selected part is used for recommendation process.
This approach can lead to an item splitting (splitting an item to more items

1 https://www.yelp.com/.

https://www.yelp.com/

340 E. Stefancova and I. Srba

according to the context) [4]. Despite the increased data sparsity, item split-
ting is beneficial, when some contextual feature separates the item ratings
into more homogeneous rating groups. However, if the contextual feature is
not influential the splitting technique may produce a minor decrease of the
precision and recall.

– Post-filtering – first the ratings are generated, then reordered based on the
context.

– Context-aware modelling – information of context is used within the recom-
mendation process itself.

Temporal and geographical context is present in many online services. One
type of them are Location-Based Social Networks2 (LBSNs) [5], e.g. Foursquare3

(popular due to real-time location sharing and checking in) or Yelp4 (focused on
crowd-sourced reviews about businesses). The basic element of LBSNs (item) is
a Point of Interest (POI). Check-ins (corresponding to POI visits of a particular
user at the given time) [9,10,12] or reviews of POIs [11] serve as transactions.
While users usually create check-ins for the same POI repetitively, reviews are
created only once – typically after the first POI visit.

Since LBSNs try to motivate users to visit a lot of new localities and share
the experience, it is crucial to make the recommendation as relevant as possible.
Context aspects, such as locality (e.g. a user is willing to visit POIs only in
some areas or in a certain distance from his/her usual places of occurrence) and
time (e.g. preferences of users are strongly cyclic during the day/week/year),
are necessary [10,11]. Previous results showed that the best model granularity
(with respect to the interaction of context and items) is to group items by
their categories [3]. Similarly also in LBSNs, POIs are organized into thematic
categories, which are commonly utilized during the recommendation process.

Zhang et al. [11] introduced a POI recommendation approach called GeoSoCa
through exploiting geographical, social and categorical correlations among users
and POIs. It takes into account the popularity of a POI in the corresponding cat-
egory and models the weighed popularity as a power-law distribution to leverage
the categorical correlations between POIs.

For employing the locality, so called Home Locality (home address or the
most visited area) [9] or Personal Functional Regions (several visited areas,
sometimes connected to particular type of activities) [10] are used. Temporal
aspects are often used in combination with collaborative filtering, since people
tend to have similar cyclic patterns [10]. Another popular approach is to employ
a decay (recency) aspect of the item or rating.

A typical problem in POI recommendation is data sparsity – low frequency of
check-ins [11] results from the nature of this kind of explicit feedback. In case of
huge sparsity of the data, methods revealing latent properties are popular, such
as a state-of-the-art matrix factorization [8]. Matrix factorization decomposes
the U × I interaction matrix into two lower dimensional matrices.
2 https://en.wikipedia.org/wiki/Geosocial networking.
3 https://foursquare.com/.
4 https://www.yelp.com.

https://en.wikipedia.org/wiki/Geosocial_networking
https://foursquare.com/
https://www.yelp.com

POI Recommendation Based on Seasonality and Long-term Trends 341

For the purpose of evaluation, datasets from LBSNs (Yelp, Foursquare,
Gowalla) are commonly used. Especially popular is a dataset from Yelp system,
as it is published officially and updated regularly. The most used evaluation
methods are precision@k and recall@k [10,12].

While many research papers have already focused on temporal aspects in POI
recommendation, to the best of our knowledge, none of them did explicitly take
into consideration locality specifics (a locality of an item can be determined at
a different level of granularity, e.g. city, region, country). Nevertheless, temporal
aspects could be highly influenced by such locality influences. A cyclic pattern
of a year could be affected by the seasonal weather, holidays etc. POIs or whole
POI categories could have a different increasing or decreasing popularity trend
in different localities (e.g. a McDonald’s has a pretty stable popularity in the
USA, but its popularity could be growing in a new market).

3 Method Proposal

We propose a novel method of time-aware recommendation to explore how
locality-specific seasonality and long-term trends can influence the performance
of context-aware recommender systems. Our hypotheses are as follows:

– H1: Incorporating locality-specific seasonal patterns of POI categories will
increase the recommendation performance.

– H2: Incorporating locality-specific long-term trends of POI categories will
increase the recommendation performance.

Unlike the majority of the existing works, we consider as a rating (transac-
tion) a POI review instead of a check-in. A reason for this decision is a potentially
high number of missing check-ins since users many times skip check-in and thus
check-in data may not optimally reflect actual POI repetitive visits. In addition,
since a review often corresponds to the first visit of such POI, our method is
applicable to recommend new POIs to a user (POIs which have not been visited
before), what is a more difficult but also a more valuable task.

The overall scheme of the proposed method and its evaluation is depicted in
Fig. 1. It is a hybrid approach based on a combination of collaborative filtering
and content-based recommendation. The collaborative filtering part employs a
matrix factorization. The content-based recommendation part is supplementing
the user-item matrix with an additional item features matrix (matrix of items
and their features, e.g. a category).

Context is incorporated in the proposed method by a hybrid approach as
well. We propose two versions of the method corresponding to two temporal
aspects we are interested in – seasonality version and long-term trend version.
In both method versions, the core of the recommendation process is a context-
aware modelling approach. In addition, a temporal pre-filter (for seasonality only
version of the method) and a geographical post-filter are utilized.

342 E. Stefancova and I. Srba

Fig. 1. Scheme of the proposed method and its evaluation.

3.1 Hybrid Matrix Factorization Model

The core part of the proposed method consists of adapted hybrid LightFM model
previously proposed in [7]. This model represents users and items as linear com-
binations of their context features’ latent factors (embeddings).

Let U be the set of users, I be the set of items (POIs), and F I the set of
item features. In contrast to the original LightFM model, we do not use user
features in our method (LightFM model uses internally an identity matrix as
user-feature matrix). As a result, each u ⊂ U is represented only by one latent
vector similarly to the standard matrix factorization model.

Each POI i is described by a set of features fi ⊂ F I . The features are known
in advance and represent POI contextual metadata (particular features capturing
contextual data for seasonality and long-term trend versions of the method are
described in more details in the following subsections).

The model is parameterised in terms of d-dimensional item feature embed-
dings eIf for each item feature fi. Each item feature is also described by a scalar
bias term bIf .

The latent representation of item i is given by the sum of its features’ latent
vectors:

pi =
∑

j∈fi

eIj (2)

The bias term for item i is given by the sum of the features’ biases:

bi =
∑

j∈fi

bIj (3)

POI Recommendation Based on Seasonality and Long-term Trends 343

Since, we do not use user-feature matrix in the proposed method, the linear
combination of features’ latent vectors is not necessary to obtain the latent
representation qu and the bias term bu for user u.

The model’s prediction for user u and item i is then given by the dot product
of user and item representations, adjusted by user and item feature biases:

r̂ui = f (qu · pi + bu + bi) (4)

The optimization function of LightFM model requires a binary feedback.
Each user interacts with a number of items, either in a favourable way (a positive
interaction), or in an unfavourable way (a negative interaction). For this reason,
the given POI review ratings are normalized for every user individually as a
negative rating (if rating is in the lower quartile of his/her ratings) and positive
rating (otherwise).

In the proposed method, we decided to use the WARP loss function – it is
suitable for optimization of the highest items on the recommendation list. As
an adaptive learning rate method, AdaDelta is used – it gives better results in
combination with low-number-of-epochs WARP, so for the less time cost version.

3.2 Seasonality Pre-filtering and Modelling

In the first version of the method, we explore the locality-specific seasonality. We
consider a year as a cycle length and every month as an individual seasonality
unit. This version of the method combines temporal pre-filtering and modelling.

The first step is an item splitting by applying the temporal pre-filter. Trans-
actions of every POI are divided according to a month and because of that, one
original item (POI) splits into up to 12 new items.

For the purpose of context-aware modelling, item feature vectors are used
as a storage of contextual item information. Namely, the following item features
are used: an original POI ID (month instances of the original POI are connected
through this common item feature), a month (encoded either as an ordinal num-
ber and as a cyclic ordinal value in the form of sine and cosine value), a POI
locality (one-hot encoded country), POI categories (one-hot encoded) and POI
seasonality scores.

The POI seasonality scores are calculated as a weighted arithmetic mean
of category seasonality scores across all POI categories. The category weight is
calculated as an inverse number of its assigned POIs (the less frequent category,
the higher is its influence).

The category seasonality scores are calculated from the category popularity
at the given locality and in the given period. It is calculated from all previous
years as a ratio of an average number of reviews per month in the given period to
an average number of reviews per all months during the year. As the given period,
we experimented with two options: current month, when the recommendation is
created, and current month plus two neighbour-months (a wider season).

344 E. Stefancova and I. Srba

3.3 Long-Term Trends Modelling

The second version of the method, which takes long-term trends into account,
is based on context-aware modelling only.

The following item features are used: a POI locality (one-hot encoded coun-
try), POI categories (one-hot encoded) and POI trend scores.

Similarly to POI seasonality scores, the POI trend scores are calculated as a
weighted arithmetic mean of category trend scores across all POI categories.

The category trend scores reflect the changes in category popularity dur-
ing current and three previous seasons (one year is considered to be a season).
The more recent season, the higher priority is given to its popularity changes
(the most recent season: 1/2 of the score, the second one: 1/3, the third one:
1/6). Besides the “raw” difference in the number of reviews, we calculate also a
difference in a percentage (positive or negative) and a difference as a gradient.

3.4 Geographical Post-filtering

After generating the time-aware recommendations (in both versions of the
method), we reorder the recommended POIs based on their locality – the POIs,
which are located within the certain distance d from any of the previously vis-
ited POIs, are prioritized. These prioritized items are moved to the top of the
list (in the same order as they were in the original list). If the number of these
items is not enough to cover necessary number of recommendations, the rest of
the (not geographically preferred) items would complete the new list. The radius
from the previously visited items d, which is considered during this process, is
supposed to be selected experimentally.

4 Experimental Evaluation

4.1 Dataset

We chose official Yelp dataset5 for the method experimental evaluation. We
created two dataset samples for the purpose of evaluation:

– a dataset of cities with strong (e.g., Mississauga, Champaign) as well as weak
(e.g., Goodyear, Glendale) seasonal weather variation,

– a dataset of cities (e.g., Mississauga, Champaign) with strong seasonal
weather variation only.

The dataset with strong seasonal weather variation contains approx. 3 200 POIs,
39 000 reviews and 3 000 users. The dataset with mixed seasonal weather vari-
ation is approx. two times larger. Both datasets contain data collected during
13 years (from 2005 until 2018).

Exploratory analysis of the dataset revealed an important precondition sup-
porting the Hypothesis 1 – we can observe a stronger locality-specific bias in
5 https://www.yelp.com/dataset.

https://www.yelp.com/dataset

POI Recommendation Based on Seasonality and Long-term Trends 345

the number of reviews for summer and winter months in cities with a strong
seasonal weather variation (an example is provided on Fig. 2).

The exploratory analysis supports also a theory about long-term trends of
categories in a society. We calculated a ratio (per each year) between the number
of reviews in the corresponding category and the number of all reviews in the
system for several selected categories. E.g. ratio of sushi restaurants tended to
grow and after few years the growth stopped and the numbers stabilized for
several years. Interesting trends can be observed also for tobacco shops (an
increase after the introduction of vapes was followed by a later decrease and a
recent stabilization).

Fig. 2. Number of reviews for “ice cream” category in a city with weak (Las
Vegas)/strong (Toronto) winters divided according to months.

4.2 Experiment Setup

During the preprocessing step, we removed from both datasets low-activity users,
POIs and categories. Only users with 5 and more reviews are included. Similarly
POIs must have at least 3 reviews. Finally, categories containing less than 10
reviews per year in average are ignored.

The original reviews (a 1–5 stars rating) are converted to three values: 0 (an
unvisited POI), −1 (a visited POI but the rating is in the lowest quantile of the
user’s ratings), 1 (the rest of more positive ratings).

The context-aware recommendation was implemented with a use of LightFM6

library. As the evaluation metrics, we selected commonly used precision@k
(Eq. 5) and recall@k (Eq. 6), where IU corresponds to the set of recommended
POIs and IR to the set of relevant POIs.

precision@k =
|IU ∩ IR|

min(k, |IR|)) ∗ 100 (5)

recall@k =
|IU ∩ IR|

|IU | ∗ 100 (6)

The proposed method contains several parameters which were set by means of
hyperparameter tuning. In case of context-aware modelling, the number of com-
ponents (dimensionality) of latent vectors was set to 30, the number of epochs
6 https://github.com/lyst/lightfm.

https://github.com/lyst/lightfm

346 E. Stefancova and I. Srba

Fig. 3. Dependency of precision@k and recall@k on a radius d (in kilometers) used in
the geographical post-filtering (without any other contextual influence).

was optimized for each dataset individually. In the case of geographic post-filter,
we found out that the best performing value of the radius is 0.1 km (Fig. 3).
We observed that with increasing radius, the precision of recommendation was
decreasing for all values of k.

We also performed feature selection on item features. In both versions of the
proposed method, we filtered out one-hot encoded POI categories completely,
that did not improve results. In case of seasonality version, we used month
encoded as a cyclic value and as the given period we used the current month with
neighbour-months. Furthermore, during the experimentation, we discovered that
it is more efficient to consider only categories with some considerable seasonality
present and represent these categories in a form of seasonality/trend score.

We compared our method (denoted as local seasonality/local trends) with
two baselines:

– without seasonality/without trends – basic matrix factorization without item
features (i.e., without temporal context),

– global seasonality/global trends – the method with item features calculated
globally (i.e., locality was ignored), what corresponds to the approach, which
is currently employed in the existing solutions.

In the case of seasonality, the last year was divided to twelve test sets (cor-
responding to each month, the presented results are afterwards calculated as
an average from all twelve test sets), while the train set was created from all
previous reviews. In the case of long-term trends, the last year of reviews was
used as the test set, while all previous reviews were used as the train set.

4.3 Results

H1: Seasonality. We found out that the proposed pre-filtering as well as
context-aware modelling individually improved the recommendation. The best
performance was finally achieved by their combination.

POI Recommendation Based on Seasonality and Long-term Trends 347

Table 1. The comparison of results achieved by the proposed method (local seasonal-
ity) and by the baselines. Note: Bold font highlights the best performance, italic font
highlights results that overcome matrix factorization without temporal features.

Method Without seasonality Global seasonality Local seasonality

k precision@k recall@k precision@k recall@k precision@k recall@k

Cities with mixed seasonal weather variation

1 1.01 0.52 1.32 1.10 1.11 0.83

3 1.50 1.41 1.15 1.15 1.22 1.22

5 2.11 2.07 1.15 1.15 1.22 1.22

10 2.36 2.36 1.15 1.15 1.31 1.31

Cities with strong seasonal weather variation

1 1.78 0.41 2.42 1.77 3.29 2.41

3 1.12 0.84 2.41 2.41 2.82 2.82

5 1.30 1.23 2.50 2.50 2.82 2.82

10 1.79 1.78 2.68 2.68 2.82 2.82

Table 2. The comparison of results achieved by the proposed method (local trends)
and by the baselines.

Method Without trends Global trends Local trends

k precision@k recall@k precision@k recall@k precision@k recall@k

Cities with mixed seasonal weather variation

1 1.33 0.46 0.60 0.19 0.60 0.22

3 1.45 1.11 0.44 0.26 0.75 0.53

5 2.28 2.08 0.64 0.56 1.04 0.93

10 3.22 3.16 1.47 1.44 2.77 2.71

The results in Table 1 show that locality-specific seasonality performed sig-
nificantly better than global one for the cities, where the weather is more varied
during the year. For all cities (with mixed seasonal weather variation), taking
seasonality into account improved performance for k = 1. The decrease in per-
formance for higher values of k can be explained by the cities without seasonal
weather variation pushing the numbers down. We found out that the seasonality
works better for users with higher number of previous reviews, while the perfor-
mance for novice users is similar with the popularity-based recommendation.

From these results, we can conclude that locality-specific seasonality can
indeed achieve better performance than the global seasonality and thus we can
confirm our first hypothesis H1. Nevertheless, this finding is not applicable in
general and in all cases. As it can be expected, the significant improvement was
observed for localities and categories with significant seasonal weather variation.
Therefore, we recommend to use locality-specific seasonality exclusively in case
of localities and categories with considerable seasonality patterns.

348 E. Stefancova and I. Srba

We compared our results with the work of Zhang et al. [11], whose GeoSoCa
employs the geographical context, the social correlations between users and the
categorical correlation modeling. Their dataset contained Yelp data of Pheonix,
Arizona, USA. They obtained precision@k of 1

H2: Long-term trends. As the results in Table 2 show, employing features
representing locality-specific as well as global long-term trends did not improve
overall results of recommendation. The features for locality-specific long-term
trends performed slightly better than the global ones. Nevertheless, both meth-
ods (with features for locality-specific as well as global long-term trends) per-
formed worse than recommendation without any contextual features and thus
we cannot confirm our second hypothesis H2. The best performing features of
long-term trends were the “raw” differences between seasons.

This result can be explained by an undesired overfitting on provided temporal
features and by a low diversity of long-term trends in the selected cities. We found
out that the more geographically diverse cities are associated with the better
results achieved by the method using locality-specific long-term trends (than the
method using the global trends). Although the selected cities in the experimental
dataset are located in different countries, they are all located in North America.
It seems that in order to achieve better performance with locality-specific long-
term trends, it would be necessary to use a more varied mix of localities.

5 Conclusion and Future Work

While temporal context is widely analyzed in the domain of POI recommender
systems, we did not identify any work that would attempt to explicitly model
locality-specific temporal aspects. Therefore, we proposed and experimentally
verified the recommendation system that explicitly model locality-specific sea-
sonality and long-term trends and compare them with their global versions.

At first, we can confirm a positive influence of locality-specific yearly season-
ality. In case of cities with strong seasonal weather variation, we can tap the full
potential of locality-specific seasonality as it significantly improved the perfor-
mance in all cases (particularly for users with a higher level of activity). In case
of all cities, we observed improvement on the top of the recommendation list,
what is the successful result as well. Secondly, the consideration of long-term
trends turned out to be less successful. While locality-specific features overcome
global ones, these features in general caused overfitting and cannot outperform
the standard matrix factorization without temporal features.

The findings provide opportunities for a future research. It would be inter-
esting to experiment with different locality units (regions, countries) and sea-
sonality lengths (month, week, day). Employing clustering of localities based on
seasonal similarities could help as well. Moreover, since the proposed method is
not dependent on a particular dataset or a domain, it can be applied at datasets
from other LBSNs (e.g. Foursquare) or even in other domains.

POI Recommendation Based on Seasonality and Long-term Trends 349

Acknowledgments. This work was partially supported by the Slovak Research and
Development Agency under the contracts No. APVV-15-0508 and APVV SK-IL-RD-
18-0004, by the Scientific Grant Agency of the Slovak Republic under the contracts
No. VG 1/0667/18 and VG 1/0725/19, and by the student grant provided by Softec
Pro Society.

References

1. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating con-
textual information in recommender systems using a multidimensional approach.
ACM Trans. Inf. Syst. 23(1), 103–145 (2005). https://doi.org/10.1145/1055709.
1055714

2. Aggarwal, C.C.: Recommender Systems. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-29659-3

3. Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context
aware recommendation. In: Proceedings of the Fifth ACM Conference on Recom-
mender Systems, pp. 301–304. RecSys 2011. ACM, New York (2011). https://doi.
org/10.1145/2043932.2043988

4. Baltrunas, L., Ricci, F.: Context-dependent recommendations with items splitting,
vol. 560, pp. 71–75 (2010)

5. Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recom-
mendation using sparse geo-social networking data. In: Proceedings of the 20th
International Conference on Advances in Geographic Information Systems, pp.
199–208. SIGSPATIAL 2012, ACM, New York (2012). https://doi.org/10.1145/
2424321.2424348

6. Basilico, J., Raimond, Y.: DéJà Vu.: The Importance of Time and Causality in
Recommender Systems. In: Proceedings of the Eleventh ACM Conference on Rec-
ommender Systems, p. 342 (2017). https://doi.org/10.1145/3109859.3109922

7. Kula, M.: Metadata embeddings for user and item cold-start recommendations.
CoRR abs/1507.08439 (2015)

8. Peña, F.J.: Unsupervised context-driven recommendations based on user reviews.
In: Proceedings of the Eleventh ACM Conference on Recommender Systems -
RecSys 2017, pp. 426–430 (2017). https://doi.org/10.1145/3109859.3109865

9. Wang, W., Yin, H., Chen, L., Sun, Y., Sadiq, S., Zhou, X.: St-sage: a spatial-
temporal sparse additive generative model for spatial item recommendation. ACM
Trans. Intell. Syst. Technol. 8(3), 1–25 (2017). https://doi.org/10.1145/3011019

10. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference
by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst.
Man Cybern. Part A Syst. Hum. 45(1), 129–142 (2015). https://doi.org/10.1109/
TSMC.2014.2327053

11. Zhang, J.D., Chow, C.Y.: GeoSoCa: exploiting geographical, social and categori-
cal correlations for point-of-interest recommendations. In: Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. SIGIR 2015, pp. 443–452. ACM, New York (2015). https://doi.org/
10.1145/2766462.2767711

12. Zhao, S., Zhao, T., King, I., Lyu, M.R.: Geo-teaser: geo-temporal sequential embed-
ding rank for point-of-interest recommendation. In: WWW (2017)

https://doi.org/10.1145/1055709.1055714
https://doi.org/10.1145/1055709.1055714
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1145/2043932.2043988
https://doi.org/10.1145/2043932.2043988
https://doi.org/10.1145/2424321.2424348
https://doi.org/10.1145/2424321.2424348
https://doi.org/10.1145/3109859.3109922
https://doi.org/10.1145/3109859.3109865
https://doi.org/10.1145/3011019
https://doi.org/10.1109/TSMC.2014.2327053
https://doi.org/10.1109/TSMC.2014.2327053
https://doi.org/10.1145/2766462.2767711
https://doi.org/10.1145/2766462.2767711

Selection of a Green Logical Data
Warehouse Schema by Anti-monotonicity

Constraint

Issam Ghabri1,2(B), Ladjel Bellatreche2, and Sadok Ben Yahia1,3

1 Faculty of Sciences of Tunis, LIPAH-LR11ES14, University of Tunis El Manar,
El Manar, 2092 Tunis, Tunisia

ghabry.issam@gmail.com
2 LIAS/ISAE-ENSMA - Poitiers University, Poitiers, France

bellatreche@ensma.fr
3 Department of Software Science, Tallinn University of Technology,

Akadeemia tee 15a, 12618 Tallinn, Estonia
sadok.ben@taltech.ee

Abstract. In the era of social media and big data, many organiza-
tions and countries are devoting considerable effort and money to reduce
energy consumption. Despite that, current research mainly focuses on
improving performance without taking into account energy consumption.
Recently, great importance has been attached to finding a good compro-
mise between energy efficiency and performance in data warehouse (DW)
applications. For a given DW , multiple logical schemes may exist due
to the presence of dependencies and hierarchies among the attributes.
In this respect, it has been shown that varying the logical schema has
an impact on energy saving. In this paper, we introduce a new approach
for efficient exploration of the different logical schemes of a DW . To
do so, we prune the search space by relying on anti-monotonicity based
constraint to swiftly find the most energy-efficient logical schema. The
carried out experiments show the sharp impact of the logical design on
energy saving.

Keywords: Data warehouse · Logical schema · Variability ·
Anti-monotonicity · Energy consumption · Green computing

1 Introduction

The initial intention of computer systems design was to improve performance.
With the significant increase in computer power consumption, its reduction in
the context of data deluge has become an active research topic over the last
decade [1]. Recently, the research community recognized the urgency of the inte-
gration of the energy dimension when designing software, hardware, systems,
and applications. Several initiatives have been proposed to improve energy effi-
ciency (EE). The latter is the ratio of computing work done per energy unit.
To do so, we can: (i) either improving performance with the same power or (ii)
reducing power consumption without sacrificing too much performance, to wit,
with reasonable performance degeneration [7].
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 350–361, 2020.
https://doi.org/10.1007/978-3-030-38919-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_29

Selection of a Green Logical Data Warehouse Schema 351

Nowadays, any IT company is questing for data to increase its added-value.
As mentioned in The Economist “the world’s most valuable resource is no longer
oil, but data”1. Like any oil, it pollutes as mentioned in the latest Blog entry of
the Martin Tisné published on July 24, 2019 (“Data isn’t the new oil, it’s the
new CO2”2). This pollution is caused by storing and processing this data.

As database researchers, we are then obliged to propose actions related to
energy savings of the whole database environment by considering small and big
initiatives.

Historically, the energy dimension has been considered in the context of data-
centers as one of the major energy-consuming components of IT applications [12].
This consumption is associated to their servers, storage devices, networks and
infrastructure facilities such as cooling systems and power conditioning [9,16]. In
2000s, several studies have been proposed to integrate energy in DBMS compo-
nents such as query optimizers [13,17–19]. This scenario is feasible and has to be
defended since actually several small and medium-sized enterprises intensively
own DBMSs. According to Gartner’s predictions, DBMSs showed the most dra-
matic growth in the entire infrastructure software market3. A quick visit of the
DB-Engine Website4 dedicated to rank DBMSs according to their popularity,
classical DBMSs (Oracle, MySQL, SQL Server, PostgreSQL, DB2) are the top
5 of the most popular systems. In the middle of 2010, researchers moved to
database applications, where the energy dimension has been integrated within
the physical design phase, seen as one of the most important phases of the
database life cycle [12]. The physical design is the crucial phase of the database
life cycle since it can be seen as a funnel of the remaining phases [6], since it inte-
grates entries and parameters from first phases (conceptual and logical steps).
Based on these entries, it selects optimization structures such as indexes and
materialized views to optimize the workloads.

Most recent studies have highlighted the necessity to integrate the energy
dimension on other phases such as logical [6] and code generation [2]. In Bouarar
et al. [6], the authors attempted to integrate energy dimension in the logical
phase of the DW life cycle thanks to the variability. It can be defined as the
description of possible variations of a system by points of variation. The varia-
tion point identifies and locates where variability occurs. In the context of DW
applications, the presence of hierarchies between attributes and different rela-
tions between them may contribute to varying the logical schema. For instance,
the snowflake schema is a variation of the star schema, by denormalizing its
dimension tables. It should be noticed that optimization techniques such as join
implementations (e.g., nested loop, sort-merge join, hash join, etc.) are applied
on the logical DW schema [10].

1 https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-
resource-is-no-longer-oil-but-data.

2 https://luminategroup.com/posts/blog/data-isnt-the-new-oil-its-the-new-co2.
3 http://www.lgcnsblog.com/features/dbms-in-the-center-of-the-it-market-for-big-

data-management/.
4 https://db-engines.com/en/ranking.

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://luminategroup.com/posts/blog/data-isnt-the-new-oil-its-the-new-co2
http://www.lgcnsblog.com/features/dbms-in-the-center-of-the-it-market-for-big-data-management/
http://www.lgcnsblog.com/features/dbms-in-the-center-of-the-it-market-for-big-data-management/
https://db-engines.com/en/ranking

352 I. Ghabri et al.

In this respect, finding an Eco-friendly logical schema, for a given DW appli-
cation, is the furthest from being an easy task. Indeed, it requires the exploration
of the whole research space of logical schemes. In [6], the identification of such
schema has been done in a brute-force manner. Roughly speaking, their approach
takes a DW schema obtained by a designer. Based on different relationships that
may exist among attributes of the dimension tables, it straightforwardly consid-
ers all possible schemes. Based on a mathematical cost model aiming in evaluat-
ing a workload, it estimates the consumed energy for each schema and finally, it
retains the schema having the minimum cost. The straightforward enumeration
becomes impractical to completely explore the search space. Indeed, the size of
the search space is exponential in terms of the number of facts. To speed up
this selection, we propose to prune the research space. To do so, we propose an
anti-monotonicity based constraint. Thus, we partition dimension tables through
its hierarchical attributes starting by the big sized one and only smart parts of
it are explored. If the generated schema does not improve the current optimal
solution we abstain from exploring the rest of the hierarchy levels and we move
on to the next dimension table. So on we prune the research space.

The remainder of this paper is organized as follows. Some definitions about
DW and the interest of the variability are provided in Sect. 2. In Sect. 3, we
thoroughly describe our approach. We detail the underlying algorithm in Sect. 4
and we also provide an illustrative example. We highlight the results of the
experiments that we carried out to assess the quality of our approach in Sect. 5.
We finally conclude this paper and provide research perspectives in Sect. 6.

2 Background

A DW is a central repository of integrated data from various, heterogeneous, dis-
tributed and disparate sources. It is a structure (similar to a database) that aims to
support decision’s making. Roughly speaking, it is a huge pile of information his-
torized, organized, purified, integrated and coming from several sources of data,
used for analysis and decision support [8]. The data in DW is organized in an easy
and simple way to facilitate the analysis by the decision-maker. The data manip-
ulated in this context is represented in a multidimensional model, which is better
suited for supporting analysis processes. DW s are usually modelled by relational
schemes like star and snowflake schemes. The former incorporates a single large
fact table, which is related to multiple dimension tables. These latter are relatively
small compared to the fact table and they are rarely normalized [3].

In a dimension table, many correlations may exist among attributes, such as
hierarchies and functional dependencies. A dimension table may contain several
hierarchies. A hierarchy contains several related levels (e.g. day, month, year).
The levels in a hierarchy allow analyzing data at various granularities. These
levels impact query processing and optimization.

The variability is the ability of a system to be efficiently extended, changed,
customized or configured for use in a particular context [15]. The variability is
present throughout the life cycle of the DW . In fact, this latter owns differ-
ent variation points. Since, for the conceptual design various formalisms exists

Selection of a Green Logical Data Warehouse Schema 353

(UML, Merise, etc.). For the logical design, the attribute correlation allows the
logical schema to have many variants through the hierarchies. For a DW com-
posed of a fact table and n dimension tables, D = (F,D1,D2, ...,Dn),

∏n
d=1 2hd−1

different logical schema can be generated, where n is the number of dimension
tables, hd is the number of hierarchies in the d dimension. For the physical design,
many variation points may exist, such as the platform (centralized/distributed)
or the optimization structures (index/materialized views).

3 The Proposed Approach: LS-Energy

In this paper, we try to enhance the energy consumption of a data warehouse
by choosing the most eco-friendly logical schema. To achieve our goal, we use
an anti-monotone constraint fulfilled by a logical scheme energy consumption to
prune the research space. We start by sketching the basic concepts related to
energy consumption in DBMS.

Definition 1. The energy: is the total amount of work performed by a system
over a period of time.

Definition 2. The power: is the rate at which the system performs the work.

Energy is usually measured in Joules, while power is measured in Watts. For-
mally, energy and power can be defined as:

E = P × T (1)

P =
W

T
(2)

Where P, T,W and E represent respectively, a power, a period, the total work
performed in that period of time, and the energy consumed.

The power consumption of a given system can be split into two parts (i)
baseline power; and (ii) active power. The former is the power dissipation when
the machine is idle, and the active power is the power dissipation due to the
execution of the workload. There exist two concepts of power that have to be
considered during the evaluation of power utilization in DBMS. Average power
representing the average power consumed during the query execution and peak
power representing the maximum power [4].

According to Roukh et al. [11] and Bouarrar et al. [6], for some queries,
reading large data files requires more I/O operations than processing by the
CPU. Then, running these queries on small data sizes sometimes is more energy-
consuming than those running on big size databases. Thus, when intermediate
results can not be stored in memory, they will be written to disk and read
later. Doing so leads to more CPU greediness since the query spends more time
on reading/writing its data than processing its records. Nevertheless, queries
dominated by I/O operations have less power consumption. On the other hand,
when the data size is small, the reading of data ends quickly and in the remaining

354 I. Ghabri et al.

time, the execution of the query is dominated by the processing of the processor,
which is energy greedy.

In their work, Bouarar et al. [6] shed light on two worth mentioning facts:

– Varying the logical schema has an impact on energy consumption, and even
better, it shows that the star schema is far from being the most ecological.

– The normalization of the smallest size tables in the presence of CPU-intensive
operations represents a definite disadvantage in terms of energy consumption.

Based on the explanations previously described, we propose a new approach
called LS-Energy for generating logical schemes that will ultimately allow us
to choose the most eco-friendly logical schema. Nevertheless, exploring the whole
search space composed of all the possible logical schemes is simply unfeasible.
That’s why we need to efficiently prune the search space. To do so, we rely on
the anti-monotonicity of energy consumption constraint. Let us recall what is
meant by anti-monotone constraint.

Definition 3. A constraint C is anti-monotone, if for any high-level cell ch
and a low-level cell cl covered by ch, the following must hold: ch violates C ⇒ cl
violates C [20].

Our hypothesis is based on the constraint of anti-monotonicity, which will
allow us to prune the research space. Hence, if a level of the hierarchy does not
improve the current optimal solution, then, it will not be interesting to continue
to explore this hierarchy, then, we move on to another dimension. Thus, our
heuristic is, to start with partitioning big-sized tables.

The steps of our approach and their interactions are glanced in Fig. 1. Our
approach begins by evaluating the energy consumption of the star schema and
considering it as the optimal solution. Next, we will sort in descending order all
dimension tables in respect to their sizes. After that, for each dimension table,
we break down its hierarchy and generate its logical schema, rewrite the queries
and execute them, then we take its energy consumption and we compare it to
the current optimal solution.

– If the new value is better than the optimal solution, then, it becomes the
optimal solution. Then, we jump to the next level of the hierarchy and we do
the same work again until we explore the whole hierarchy.

– If the new value is greater than the current optimal solution, we abstain from
the decomposition and we move on to the next dimension and at this level,
the anti-monotonicity constraint appears.

To evaluate the energy consumption of each schema, we adjust the mathe-
matical cost model introduced by Roukh et al. [11]. The adjustment was made
to make the cost model more generic and to consider all variants of the logical
schemes. Since the cost model has been constructed by assuming a DW with
a star schema. The adjustment mainly concerns the training phase [6]. Owe to
this cost model, we can assess theoretically the energy consumed of each logical
schema.

Selection of a Green Logical Data Warehouse Schema 355

Fig. 1. The LS-Energy approach at a glance

It is worth mentioning that for every schema the generation process is based
on attributes correlations and the queries of the workload were rewritten to be
suitable for the new schema as explained in [5].

4 Algorithm

Our algorithm, whose pseudo-code is given in Algorithm 1, inputs a star schema
of a DW . The first step is to evaluate its energy consumption CMpower(SS)
and assign this value to ECopt which is the optimal energy consumption of a
logical schema (line 2). Next, we sort in descending order the dimension tables
with respect to their respective sizes (line 4). After that, for each dimension, we
generate a set of decompositions (lines 5–6). Then, for each decomposition, we
generate the corresponding logical schema (lines 7–8). In the next step, for each
logical schema, we rewrite the queries to be suitable for the schema, execute
them, and capture the energy consumption (lines 9–12). Next, we compare the
energy consumption of this schema (ECls) with the optimal energy consump-
tion (line 13). If (ECls) is less than ECopt, then (ECls) becomes the optimal
consumption ECopt, the schema ls becomes the optimal logical schema and we
move to the next level of hierarchy (lines 14–15). If (ECls) is greater than ECopt,
then, we refrain from testing the remaining decompositions of this dimension,
and we move on to the next dimension (line 17). At the closing, the algorithm
returns the optimal logical schema as well as its energy consumption.

356 I. Ghabri et al.

Algorithm 1: The LS-Energy algorithm
Input: A Star schema SS = {FT ,D1, D2, ..., Dn}; Q = {q1, q2, ..., qm};
Output: BLS: Logical schema most eco-friendly,
ECopt : Energy consumption of BLS.

1 ECopt = CMpower(SS) ;
2 BLSopt = SE ;
3 Dimensions = Descending sort of the dimensions of (SS);
4 for each d ∈ Dimensions do
5 generate the tree of the decompositions of the hierarchical attributes
6 for each decomposition dec do
7 generate the corresponding logical schema.
8 for each logical schema ls do
9 Rewrite queries;

10 Execute queries;
11 evaluate the energy consumption ECls = CMpower(ls)
12 if ECls < ECopt then
13 ECopt = ECls and BLSopt = ls
14 go to the next decomposition.

15 else
16 go to next dimension.

17 return BLSopt : The optimal logical schema
18 ECopt : Optimal energy consumption

Example 1. Let us consider the star schema depicted in Fig. 2. The latter con-
tains two dimensions tables Date, Customer and a fact table Sales. The
Customer table has three hierarchical attributes (city, nation and region). The
Date table also has three hierarchical attributes (month, quarter and year). The
size of the Customer table is bigger than that of the Date table. We start by
assessing the energy consumption of the star schema (Fig. 2).

Fig. 2. The star schema

Then, we partition the biggest table by putting its hierarchical attributes
in another table. We partition table Customer as shown in Fig. 3 to get a new
schema denoted LS1 and we assess its energy consumption. As its energy con-
sumption is less than that of the star schema, we keep it as the current opti-
mal solution and we continue the partitioning to have a new schema denoted
LS2 (Fig. 4). We assess its energy consumption. Since the latter has not been

Selection of a Green Logical Data Warehouse Schema 357

Fig. 3. The schema LS1

improved, we refrain from continuing the decomposition of the table and we
jump to the other dimension table i.e, the Date Table. Thus, we keep the schema
LS1 as the optimal solution and partition the Date table to get a new schema
denoted LS3 (Fig. 5). We measure its energy consumption and we compare it to
the current optimal solution. Since the energy consumption of LS3 is not better
than LS1, and since Date table is the last one, then, we come to an end of the
partitioning process and we consider LS1 as the final solution, which is the most
eco-friendly logical schema.

Fig. 4. The schema LS2

Fig. 5. The schema LS3

5 Experimental Study

In order to show the relevance and efficiency of our proposal, we have conducted
several experiments. Thus, we have carried out tests on a DW implemented
within PostgreSQL on a machine of 8 GB main memory and a 1 TB hard drive
under Ubuntu Server 14.04 LTS. Our experimental study was carried out on the
DW resulting from the benchmark SSB5 with a scale factor of 10 GB. SSB is
composed of 1 fact table i.e., Lineorder and 4 dimension tables (Part, Customer,
Supplier and Date). According to the attribute correlation, 256 logical schemes
could be generated.

We also disabled with unnecessary background tasks. Furthermore, the sys-
tem and the cache are flushed after each query execution. Our experimental
study is carried out on a machine which is equipped with a “Watts UP? Pro
5 https://www.cs.umb.edu/poneil/StarSchemaB.PDF.

https://www.cs.umb.edu/poneil/StarSchemaB.PDF

358 I. Ghabri et al.

Fig. 6. I/O operations Fig. 7. Total energy consumption

ES” power-meter. It is worth mentioning that the queries are executed in an
isolated way. Owe to the cost model, we were able to estimate the I/O cost and
the CPU cost necessary to execute the workload. We were also able to measure
the energy consumed and the average power of each query since the power is not
stable during query processing [11].

Initially, we start by estimating the cost of the star schema, then, we pro-
ceed to the partitioning of the table Part through its hierarchical attributes
(p brand1, p catgory & p mfgr). For the first partition, which we will note P1st,
we decompose the table Part by putting its hierarchical attributes in a sepa-
rate table and we measure the necessary cost to execute the workload. Then we
compare its value with that of the star schema.

The results show that P1st consumes less power to run the workload than
do the star schema. Thus, the optimal solution becomes P1st and we move to
the second partition that we will denote by P2nd. We do the same job and we
compare P2nd versus P1st. The obtained results have been improved and in
the meanwhile, the power decreases. Thus, P2nd becomes the optimal solution
and we proceed to the last partitioning of the table Part. The latter becomes
completely normalized. Note that the queries are rewritten to be conform to the
target schema.

This time, the values have not improved, hence, P2nd is maintained as the
optimal solution. As table Part was fully normalized, we move to the next table
which is Customer. The latter has 3 hierarchical attributes (c city, c nation &
c region). We have partitioned the Customer table by putting its hierarchical
attributes into another one while keeping the second decomposition of the Part
table. We ran the workload of the new schema which we denote P2C1 and we
compare it with the actual optimal schema, to wit, P2nd. The results show that
the values have not improved compared to the optimal solution but nevertheless
still better than those of the star schema ones. Hence, we abstain from generating
the other decompositions of the Customer table and jump to the next table. The
Supplier table has 3 hierarchical attributes (s city, s nation & s region). Similar
to what we did with the table Customer we break it down and we compare
its energy consumption to that of P2nd. The generated schema, denoted P2S1,
was not better than the optimal solution. As a result, we move to the last table,

Selection of a Green Logical Data Warehouse Schema 359

Fig. 8. Average power consumption

Date, which has 3 hierarchical attributes (d dayofweek, d month & d year). By
executing the queries of the decomposition of the table Date denoted P2D1,
the energy consumption decreases compared to other decompositions but it is
not better than that of P2nd. Thus, P2nd is maintained as the final solution.
Owe to the anti-monotonicity constraint, the search space is pruned by sharply
decreasing the number of “tested” schemes from 256 to only 7 schemes.

The values of the I/O operations, the average power and the total energy
consumed of the different schemes are given respectively in Figs. 6, 7 and 8. It
is worth mentioning that the schema size changes from a schema to another. As
expected, and as already mentioned in [6], normalizing large dimension tables
reduces storage space and the star schema is no more the smallest one.

As we can see in Figs. 6, 7 and 8, the star schema is far from being the best in
terms of energy consumption since it needs more power as plotted in Fig. 8 and
it needs more CPU cost to run the workload. We did not put the CPU cost chart
due to lack of space. Nevertheless, it may be better than other logical schemes
for the I/O cost as we can see in Fig. 6.

To get further insights into these results, we observed the execution plan of
the different queries of the different schemes. During this observation, we focused
on the join order [14] and the used join algorithms. Thus, we unveiled that the
join order of the tables changes while processing queries after each partitioning,
and the query optimizer starts by joining the small tables containing the selection
predicates. Doing so, it generates a gain in both I/O operations and CPU cost
and by therefore leads to lowering the energy consumption. On the other hand,
changing the join algorithm also influences energy consumption. We noticed that
the query optimizer alternates between the Nested loop and the Hash join.
Interestingly enough, this can be explained by the fact that the Nested loop
is mainly indicated for joins with a small number of rows. The Hash join is
usually used when the number of table rows becomes important.

360 I. Ghabri et al.

Fig. 9. The join algorithms power consumption

We conducted an additional experimental study in which we ran the SSB
benchmark workload by forcing the query optimizer to use only one join algo-
rithm from the 3 algorithms (Hash join, Sort-Merge and Nested Loop). The
experiments highlight that the Hash join was the best in terms of execution time
and also in terms of energy consumption compared to Sort-Merge and Nested
Loop respectively. The results of the power consumption of the join algorithms
are plotted in Fig. 9. It is worth mentioning that some queries consume less
power while processing the Nested loop than the Hash join or the Sort-Merge.

According to Xu et al. the join in Nested loop uses 15 to 17 % of additional
processor cycles. The Nested loop join is selected only when the table is small
enough to be placed in the database buffer [18]. Whenever the table is large
enough, the cost of energy for accessing the hash table is relatively low. Thus, it
is more likely that the choice of Hash join is made in large table joins than in
smaller table joins [18]. Therefore, we can say that the join algorithms and the
join order have a paramount influence on energy consumption.

6 Conclusion

Through this work, the aim was to better stress on the importance of the logical
design phase through the assessment of the variability impact on energy saving.
In this paper, we introduced an approach called LS-Energy that heavily relies
on the anti-monotonicity constraint. The results show that trying to normalize
the big sized tables can be an interesting solution to decrease energy consump-
tion. Likewise, the join algorithms and join ordering can influence energy con-
sumption. In the near future, we will put the focus on studying the energy in the
database field from a higher level which is the conceptual design. Moreover, we
plan to deal with energy consumption as a constraint during the physical design
phase.

Selection of a Green Logical Data Warehouse Schema 361

References

1. Abadi, D., et al.: The beckman report on database research. Commun. ACM 59(2),
92–99 (2016)

2. Acar, H., Alptekin, G.I., Gelas, J., Ghodous, P.: The impact of source code in
software on power consumption. Int. J. Electron. Bus. Manag. 14 (2016). http://
ijebm-ojs.ie.nthu.edu.tw/IJEBM OJS/index.php/IJEBM/article/view/693

3. Bellatreche, L., Missaoui, R., Necir, H., Drias, H.: A data mining approach for
selecting bitmap join indices. J. Comput. Sci. Eng. 1, 177–194 (2007)

4. Bellatreche, L., Roukh, A., Bouarar, S.: Step by step towards energy-aware data
warehouse design. In: Marcel, P., Zimányi, E. (eds.) eBISS 2016. LNBIP, vol. 280,
pp. 105–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61164-8 5

5. Bouarar, S., Bellatreche, L., Jean, S., Baron, M.: Do rule-based approaches still
make sense in logical data warehouse design? In: Manolopoulos, Y., Trajcevski,
G., Kon-Popovska, M. (eds.) ADBIS 2014. LNCS, vol. 8716, pp. 83–96. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10933-6 7

6. Bouarar, S., Bellatreche, L., Roukh, A.: Eco-data warehouse design through logical
variability. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M.,
Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 436–449. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-51963-0 34

7. Guo, B., Yu, J., Liao, B., Yang, D., Lu, L.: A green framework for DBMS based on
energy-aware query optimization and energy-efficient query processing. J. Netw.
Comput. Appl. 84, 118–130 (2017)

8. Inmon, W.H.: Building the Data Warehouse. Wiley, New York (1992)
9. Liebert, E.: Five strategies for cutting data center energy costs through enhanced

cooling efficiency. White paper (2007)
10. Pitoura, E.: Query optimization. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of

Database Systems. Springer, New York (2018). https://doi.org/10.1007/978-1-
4614-8265-9 861

11. Roukh, A., Bellatreche, L.: Eco-processing of OLAP complex queries. In: Madria,
S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp. 229–242. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-22729-0 18

12. Roukh, A., Bellatreche, L., Boukorca, A., Bouarar, S.: Eco-physic: eco-physical
design initiative for very large databases. Inf. Syst. 68, 44–62 (2017)

13. Roukh, A., Bellatreche, L., Ordonez, C.: Enerquery: energy-aware query processing.
In: Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pp. 2465–2468. ACM (2016)

14. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimiza-
tion for the join ordering problem. VLDB J. 6(3), 191–208 (1997)

15. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization tech-
niques: research articles. Softw. Pract. Exper. 35(8), 705–754 (2005)

16. Tsirogiannis, D., Harizopoulos, S., Shah, M.A.: Analyzing the energy efficiency of
a database server. In: SIGMOD, pp. 231–242 (2010)

17. Tu, Y.C., Wang, X., Zeng, B., Xu, Z.: A system for energy-efficient data manage-
ment. ACM SIGMOD Record 43(1), 21–26 (2014)

18. Xu, Z., Tu, Y., Wang, X.: Online energy estimation of relational operations in
database systems. IEEE Trans. Comput. 64(11), 3223–3236 (2015)

19. Xu, Z., Tu, Y.C., Wang, X.: PET: reducing database energy cost via query opti-
mization. Proc. VLDB Endow. 5(12), 1954–1957 (2012)

20. Yu, P.S., Han, J., Faloutsos, C.: Link Mining: Models, Algorithms, and Applica-
tions, 1st edn. Springer, Heidelberg (2010)

http://ijebm-ojs.ie.nthu.edu.tw/IJEBM_OJS/index.php/IJEBM/article/view/693
http://ijebm-ojs.ie.nthu.edu.tw/IJEBM_OJS/index.php/IJEBM/article/view/693
https://doi.org/10.1007/978-3-319-61164-8_5
https://doi.org/10.1007/978-3-319-10933-6_7
https://doi.org/10.1007/978-3-319-51963-0_34
https://doi.org/10.1007/978-1-4614-8265-9_861
https://doi.org/10.1007/978-1-4614-8265-9_861
https://doi.org/10.1007/978-3-319-22729-0_18

The HyperBagGraph DataEdron:
An Enriched Browsing
Experience of Datasets

Track: Foundation of Data Science and Engineering

Xavier Ouvrard1,2(B) , Jean-Marie Le Goff1,
and Stéphane Marchand-Maillet2

1 CERN, 1 Esplanade des Particules, Meyrin, Switzerland
xavier.ouvrard@cern.ch

2 University of Geneva, Carouge, Switzerland

Abstract. Traditional verbatim browsers give back information linearly
according to a ranking performed by a search engine that may not be
optimal for the surfer. The latter may need to assess the pertinence of
the information retrieved, particularly when s·he wants to explore other
facets of a multi-facetted information space. Simultaneous facet visu-
alisation can help to gain insights into the information retrieved and
call for further refined searches. Facets are potentially heterogeneous co-
occurrence networks, built choosing at least one reference type, and mod-
eled by HyperBag-Graphs—families of multisets on a given universe. Ref-
erences allow to navigate inside the dataset and perform visual queries.
The approach is illustrated on Arxiv scientific pre-prints searches.

Keywords: Hyper-Bag-Graphs · Knowledge discovery · Visual
queries · Information retrieval

1 Introduction

When browsing a textual database, traditional verbatim browsers give back lin-
ear information in the form of ranked list of short reference description. To
increase the pertinence of this information, the surfer has often to perform addi-
tional searches either by refining the original search terms s·he used or by using
other pertinent queries that can help her·him to refine the retrieved information.

In an information space, meaningful information can be regrouped by hierar-
chical classification or—non exclusive—by semantically cohesive categories that

This work is part of the PhD of X. Ouvrard, done at UniGe and funded by a doctoral
position at CERN, co-supervised by Pr. S. Marchand-Maillet and Dr J.M. Le Goff.
The authors are really thankful to Tullio Basaglia (CERN Library).

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-38919-2 30) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 362–374, 2020.
https://doi.org/10.1007/978-3-030-38919-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_30&domain=pdf
http://orcid.org/0000-0003-4054-2771
http://orcid.org/0000-0002-4875-6101
https://doi.org/10.1007/978-3-030-38919-2_30
https://doi.org/10.1007/978-3-030-38919-2_30
https://doi.org/10.1007/978-3-030-38919-2_30

The HyperBagGraph DataEdron 363

are combined to express concepts, called facets [1]. Those facets are linked by
the physical entities contained in the search output. Choosing a type of reference
linked to these entities enables the construction of a co-occurrence network per
facet and enhance navigation in the information space. For instance, in scientific
publications different information are linked in an article: the article reference,
the authors, the main keywords... All this metadata can potentially give insights
into the information space and can be chosen as reference to build co-occurrences.
Choosing as reference for instance the article id, facets depict co-occurrence net-
works, either of homogeneous type, such as co-authors or co-keywords, or of
heterogeneous types, i.e. combining multiple types together. Co-occurrences can
potentially contain repetitions or require an individual weighting: modeling it
requires multisets instead of sets.

We propose in this article a new way to explore an information space by
using hyper-bag-graphs (hb-graphs for short)—families of multisets on a uni-
verse called the vertex set—a mathematical structure we introduced in [2]. Hb-
graphs are a separate mathematical category from the one of hypergraphs. This
is an important difference as hb-graphs store extra-information that can not be
kept with hypergraphs and have different algebra operations. Moreover, we have
shown in [3] that hb-graphs enhance exchange-based diffusion over co-occurrence
networks, providing a fine vertex and hb-edge ranking.

We propose four extensions of the hypergraph framework of [4]. First, the
visualisation part is extended to support hb-graphs: it is an important mathe-
matical generalization that supports redundancy and hb-edge based weighting
of vertices that requires multiset families (hb-graphs) instead of subset fami-
lies (hypergraphs). Second, the new framework supports navigation of heteroge-
neous co-occurrence networks; in the former framework only homogeneous co-
occurrences where allowed. Third, multi-references for building co-occurrences is
tackled. Fourth, an application is given with Arxiv search, by the implementation
of a 2.5D interface to perform visual queries and visualize the Arxiv information
space.

Section 2 lists the related work and the mathematical background. Section 3
presents the hb-graph framework. Section 4 gives results and Sect. 5 concludes.

2 Related Work and Mathematical Background

2.1 Information Space Discovery

Discovering knowledge in an information space requires to gather meaningful
information, either hierarchically or semantically. Semantics provide support to
the definition of facets within an information space [1].

Navigation and visualisation of the information space facets have been
achieved previously in many different ways. [5] uses a pivot to stroll between three
facets; the approach, based on a tripartite graph, is limited to the visualisation
of a small amount of pivots at the same time. In [6], an interactive exploration
of implicit and explicit relations in faceted datasets is proposed. The space of
visualisation is shared between different metadata with cross findings between
metadata, partitioning the space in categories. [7] proposes a visual analytics

364 X. Ouvrard et al.

graph-based framework for exploring an information space. The labeled graph
representing the dataset is explored by retrieving paths with same type vertices
going through reference vertices. Visualisation facets are navigable graphs of
pairwise collaborations.

2.2 Co-occurrence Networks

Data mining is only one step in the knowledge discovery processing chain. If
numerical data allows rich statistics on the instances, non numerical data min-
ing consists often in summarizing data as occurrences. Alternately, techniques
using data instance similarities such as k-nearest neighbors can be used to link
different occurrences: however in high dimensionality, they are limited by the
curse of dimensionality, even if some techniques limit its effect [8]. Retrieving
links through the dataset itself is another way of detecting co-occurrences.

If the dataset reflects existing links—as group of friends in social networks—
the job is easier since an inherent co-occurrence/collaboration network can be
built through the data instances. Nonetheless, links are often neither direct nor
tangible: thus co-occurrences need to be built or processed from the dataset.

A dataset can be a set of physical references, stored as rows in traditional rela-
tional databases. Each physical reference has metadata instances attached to it.
Metadata instance types can be either interesting for visualisation or processing
additional information. The set of physical references and metadata instances
used for visualisation provide the types of the network, each type being seen
either as a reference or a facet of the information space. This allows—as it will
be explained in the next section—the retrieval of co-occurrences in one facet,
based on one reference type—which can differ from the physical reference.

2.3 Multisets and Hb-Graphs

Co-occurrences seen as collaborations are m-adic relationships of occurrences,
often modeled as hypergraphs, i.e. families of subsets of a given vertex set. But
hypergraphs, as they are subsets, do not support neither hyperedge-based repe-
tition nor hyperedge-based weighting of vertices. Hb-graphs—introduced newly
in [2]—as multiset families naturally allow them.

Multisets—also known as bags or msets—have been used for a long time
in many domains such as text representation and image. Multisets support the
individual weighting of their elements by using a multiplicity function on
a set called the universe. The elements that have non-zero multiplicity value
belong to the support of the multiset. A natural multiset occurs when the
multiplicity function has its range in the non-negative integers1.

More information on hypergraphs and multisets, with additional references,
can be found in [3].

1 We denote Am = {xmi
i : i ∈ [[n]]} where mi = m (xi) a mset Am = (A,m) of universe

A = {xi : i ∈ [[n]]} , of multiplicity function m and of support A�
m = {xi : mi �= 0} .

The HyperBagGraph DataEdron 365

Table 1. Synthesis of the framework
M
E
T
A
D
A
T
A

Schema hypergraph
↓

Related to database
structure

HSch = (VSch, ESch)

Extended schema
hypergraph

↓

Store possible
additional processings

HSch = VSch, ESch

)

Extracted extended schema
hypergraph

↓

U : set of metadata of
interest (visualisation

and reference)

HX = (VX , EX) where VX = U ,
EX =

{
e ∩ U : e ∈ ESch

}

Reachability hypergraph
↙↓↘

Hyperedges are
connected components
Ecc (⊂ VX) of HX

HR = (VR, ER)
VR = VX

ER = {Ecc : Ecc c.c. of HX}
Navigation hypergraph

↓
Choose: er ∈ ER

references Rref ⊂ er

HN = (VN , EN)
VN = VR\Rref

EN = {er\R : R ⊆ Rref ∧ R
= ∅}

D
A
T
A

Facet visualisation
hb-graphs

Co-occurrence
networks as hb-graphs

Following [2], a hb-graph H = (V,E)2 is a family of multisets called hb-
edges E = (ei)i∈[[p]] having the same universe V = {v1, ..., vn} called the vertex
set. Each hb-edge ei ∈ E has its own multiplicity function: mei

: V → W

where W ⊂ R
+. A hb-edge can be seen as a dependent weighted system of

vertices. A hb-graph with only natural multisets as hb-edges is said natural.
A hypergraph appears as a particular case of natural hb-graph with a binary
value—0 or 1—for each hb-edge multiplicity.

The support hypergraph H = (V,E) of a hb-graph H = (V,E) is the
hypergraph of same vertex set V and of hyperedges E = (e�i)i∈[[p]] . The support
hypergraph is unique for a given hb-graph. But reconstructing the hb-graph from
a support hypergraph generates an infinite number of hb-graphs, showing that
the information contained in a hb-graph is denser than in a hypergraph.

Hb-graph unnormalized extra-node representation is obtained by adding an
extra-node per hb-edge linked to each hb-edge support vertex with a link thick-
ness proportional to the vertex multiplicity. Figure 2.b(ii) shows an example.

3 Hb-Graph Framework

3.1 Enhancing Navigation

For the sake of clarity, we briefly summarize in Table 1 the enhancement of navi-
gation of [4], achieved by defining different hypergraphs at the metadata level. We
take as thumbnail an example based on a publication dataset. Possible metadata
types are: publication id, title, abstract, authors, affiliations, addresses, author
keywords, publication categories, countries, organizations, and eventually some

2 We use fraktur font for multisets and hb-graphs: A : A, e : e,E : E,H : H.

366 X. Ouvrard et al.

Fig. 1. Schema hypergraph, extended schema hypergraph, Extracted extended schema
hypergraph: exploded view shown on an example of publication dataset

processed metadata types such as processed keywords, continent, ...3 Enhanc-
ing navigation supposes first to define the schema hypergraph reflecting the
relationships between the database metadata instances. We give the possibility
to extend it into an extended schema hypergraph to store potential addi-
tional processings. Out of the latter an extracted extended schema hyper-
graph HX = (VX , EX) is enhanced that keeps metadata instances of interest to
build the co-occurrences and to be visualized; it might require some intermediate
hyperedge bundling. Figure 1 shows the different hypergraphs.

The reachability hypergraph HR = (VR, ER) reflects the connected com-
ponents of HX , with VR = VX : its hb-edges do not intersect. Hence, if HR has
only one hyperedge, the whole dataset is navigable. We assume that in each
hyperedge of the reachability hypergraph, there is at least one metadata type
or a combination of metadata types that can be chosen as the physical refer-
ence. The data instance related to this reference is supposed to be unique. For
instance, in a publication dataset the physical reference is the publication id of
the publication itself. In the example, the extracted hypergraph has only one
component {publication id, authors, processed keywords, subject categories}.

Each hyperedge er ∈ ER of HR leads to one new navigation hypergraph
HN = (VN , EN) by choosing a non-empty subset Rref of er of possible reference
types of interest. The choice of a subset R of Rref allows to consider the remaining
vertices of er\R as visualisation vertex types, that will be used to generate the
facet visualisation hb-graphs and are called the visualisation types. Hence: EN =
{er\R : R ⊆ Rref ∧ R �= ∅} . When there is only one reference of interest selected
at a time in Rref we denote EN/1 for EN . In the publication database example,
many navigation hyperedges are possible; the navigation hyperedge choosing as
reference publication ids is {authors, publication categories, processed keywords}
while using processed keywords as reference is: {authors, publication category,
publication ids}.

3 Metadata of interest for visualisation or referencing are in italic.

The HyperBagGraph DataEdron 367

3.2 Facet Visualisation Hb-Graphs

In [4], we use sets to store co-occurrences. Nonetheless in many cases, it is
worth storing additional information by joining a multiplicity—with nonneg-
ative integer or real values—to the elements of co-occurrences. A small example
emphasizes the interest of moving towards multisets: we consider the publication
network of Fig. 2. In this example, building co-occurrences accounting the occur-
rence multiplicity induces not only a refined visualisation, with distinguishable
hb-edges in between some of the vertices (augmented reality and 3D) but also
yields to refined rankings of both vertices and hb-edges, as mentioned in [3]. As
some parts relies on a mathematic description they have been put in Appendice.
The reader can always refer to Fig. 2 for an illustration of the concepts where
we choose the keywords as reference.

a. Simplified network b.(i) Support hypergraph b.(ii) Hb-graph

b. Co-occurrences of organizations
with keyword as reference

scene recon-

struction

{{
Org 11,Org 21

}}

computer

vision

{{
Org11,Org21,Org 31,Org 41

}}

augmented

reality

{{
Org 21,Org 33,Org 42,Org 51

}}

3D
{{

Org 21,Org 32,Org 41,Org 51
}}

Vertex weighted degree ranking:
1. Org 2;

2. Org 3; Org 4;
4: Org 5; Org 1.

Hyperedge weighted cardinality
ranking:

1. CV, AR, 3D; 2. SR

Vertex weighted m-degree ranking:
1. Org 3;

2. Org 2; Org 4;
4: Org 5; Org 1.

Hb-edge weighted m-cardinality
ranking:

1. AR; 2: 3D; 3: CV; 4: SR

Fig. 2. A simplified publication network with publication id, organizations, keywords.

Each physical entity d of a dataset D corresponds to a unique physical ref-
erence r. d is described by a set of data instances of different types that are in
α ∈ VSch. We write I the set of data instances in D, and t the type application
that gives the type of an instance.

Hb-graphs requires a common universe taken as vertex set. We consider for
each type α, its instance set Uα = {i : i ∈ I ∧ t (i) = α} of instances of D of type
α. The common universe for the visualisation hb-graph depends on the search.

We write Aα,r = (Uα,mα,r) the multiset of universe Uα, of the values of
type α—possibly none—that are attached to d, the physical entity of reference
r. The support of Aα,r is A�

α,r =
{
ai1 , ..., aikr

}
. Hence, we abusively write:

Aα,r =
{

a
mα,r(ai1)
i1

, ..., a
mα,r(aikr

)
ikr

}
omitting the elements of Uα that have a

zero multiplicity in Aα,r.

368 X. Ouvrard et al.

d is entirely described by its reference r and the family of multisets, corre-
sponding to homogeneous co-occurrences of the different types α in VSch linked
to the physical reference, i.e.

(
r, (Aα,r)α∈VSch

)
.

In Fig. 2, the publication id is the physical reference. Taking as reference
the publication id, the co-occurences for the Publication A of organisations are:{
Org 21,Org 31,Org 41

}
and of keywords are:

{
3D1, augmented reality1

}
. The

example in Fig. 2.b shows a reference that is not the physical reference.
Type heterogeneity in co-occurrences can enable simultaneous view of dif-

ferent types in a single facet. To allow type heterogeneity in co-occurrences,
we consider a partition Γ of the different types in VSch. Each type belong-
ing to an element ν of the partition Γ will be visualized simultaneously in a
co-occurrence: it enriches the navigation process, allowing heterogeneous co-
occurrences. An interesting case is when ν has a semantic meaning and ele-
ments of ν appear as an “is a” relationship. For instance in a publication
database organizations regroups “institute” and “company”. Also, we consider
Aν,r

Δ= (Uν ,mν,r), where Uν
Δ=

⋃

α∈ν
Uα, of support A�

ν,r
Δ=

⋃

α∈ν
A�

α,r such that

mν,r (a) Δ=

{
mt(a),r (a) if a ∈ A�

ν,r

0 otherwise
.

d is entirely described in the case of heterogeneous co-occurrences by(
r, (Aν,r)ν∈Γ

)
. The homogeneous co-occurrences are retrieved when all ν ∈ Γ

are singletons.
Performing a search on the dataset retrieves a set S of physical references r. In

the single-reference-restricted navigation hypergraph, each hyperedge eN ∈ EN/1

describes accessible facets relatively to a chosen reference type ρ ∈ VN\eN . Given
a partition γ ∈ ΓN , where ΓN

Δ= {ν ∩ eN : ν ∈ Γ} is the induced partition of eN

related to the partition Γ of VSch, the associated facet shows the visualisation hb-
graph Hγ/ρ,S where the hb-edges are the heterogeneous co-occurrences of types
in γ relatively to reference instances of type ρ (γ/ρ as short) retrieved from the
different references in S.

We then build the co-occurrences γ/ρ by considering the set of all values of
type ρ attached to all the references r ∈ S: Σρ

Δ=
⋃

r∈S
A�

ρ,r. Each element s of Σρ

is mapped to a set of physical references Rs
Δ=

{
r : s ∈ A�

ρ,r

} ∈ P (S) in which
they appear: we write rρ the mapping. The multiset of values eγ,s of types α ∈ γ

relatively to the reference instance s is eγ,s
Δ=

⊎

r∈Rs

Aγ,r.

The raw visualisation hb-graph for the facet of heterogeneous
co-occurrences γ/ρ attached to the search S is defined as:

Hγ/ρ,S
Δ=

(
⋃

r∈S
A�

γ,r, (eγ,s)s∈Σρ

)
. Fig. 2.b(ii) gives an example of such a raw

visualisation hb-graph.
Since some hb-edges can possibly point to the same sub-mset of vertices,

we build a reduced visualisation weighted hb-graph from the raw visualisation

The HyperBagGraph DataEdron 369

hb-graph. To achieve it we define: gγ : s
→ eγ,s and R the equivalence relation
such that: ∀s1 ∈ Σρ, ∀s2 ∈ Σρ : s1Rs2 ⇔ gγ (s1) = gγ (s2) .

Considering a quotient class s ∈ Σρ

/R4, we write eγ,s
Δ= gα (s0) where s0 ∈ s.

Eγ
Δ=

{
eγ,s : s ∈ Σρ

/R}
is the support set of the multiset {{eγ,s : s ∈ Σρ}}:

eγ,s ∈ Eγ is of multiplicity wγ (eγ,s) = |s| in this multiset.

It yields: {{eγ,s : s ∈ Σρ}} =
{
eγ,s

wγ(eγ,s) : s ∈ Sρ

/R
}

.

Let g̃γ : s ∈ Σρ

/R
→ e ∈ Eγ , then g̃γ is bijective. g̃γ
−1 allows to retrieve

the class associated to a given hb-edge; hence the associated values of Σρ to
this class—which will be important for navigation. The references associated to
e ∈ Eγ are

⋃

s∈g̃γ
−1(e)

rρ (s) . The reduced visualisation weighted hb-graph

for the search S is defined as Hγ/ρ,wγ ,S
Δ=

(
⋃

r∈S
A�

γ,r, Eγ , wγ

)
.

Fig. 3. Navigating between facets of the information space

Using the support hypergraph of the visualisation hb-graphs retrieves the
results given in the case of homogeneous co-occurrences in [4]: hence [4] appears
as a particular case of the new hb-graph framework.

3.3 Navigability Through Facets

As for a given search S and a given reference ρ, the sets Σρ and Rs, s ∈ Σρ are
fixed, the navigability can be ensured between the different facets. We consider
a group of types γ, its visualisation hb-graph Hγ/ρ,wγ

and a subset A of the
vertex set of Hγ/ρ,wγ

. We target another group of types γ′ of heterogeneous co-
occurrences referring to ρ for visualisation. Figure 3 illustrates the navigation.

We suppose that the user selects elements of A as vertices of interest from
which s·he wants to switch facet. Hb-edges of Eγ which contain at least one

element of A are gathered in Eγ

∣
∣
A

Δ=
{
e : e ∈ Eγ ∧ (∃x ∈ e : x ∈ A)

}
. Using

the application g̃γ
−1 we retrieve the corresponding class of references of type ρ

associated to the elements of Eγ

∣
∣
A
, to build the set of references V

∣
∣
A

of type ρ

involved in the building of co-occurrences of type γ′. Each of the classes in V
∣
∣
A

4 Σρ

/R is the quotient set of Σρ by R.

370 X. Ouvrard et al.

contains instances of type ρ that are gathered in a set Vρ,A. Each element of
Vρ,A is linked to a set of physical references by rρ. Hence we obtain the physical

reference set involving elements of A: SA
Δ=

⋃

s∈νρ,A

Rs.

The raw visualisation hb-graph Hγ′/ρ

∣
∣
A

Δ=

(
⋃

r∈SA

A�
γ′,r, (eγ′,s)s∈Vρ,A

)

in the

targeted facet is now enhanced using SA as search set instead of set S. To obtain
the reduced weighted version we use the same approach as above. The multiset
of co-occurrences retrieved includes all occurrences that have co-occurred with
the references attached to one of the elements of A selected in the first facet. Of
course if A = Aγ,S the reduced visualisation hb-graph contains all the instances
of type γ′ attached to physical entities of the search S.

In Fig. 2.b(ii), with A = {Org1} , allows to retrieve two hb-edges: computer
vision—attached to PubB and PubC—and scene reconstruction—PubB. Hence:
SA = {PubB,PubC} . Switching to the Publication facet and keeping as refer-
ence keywords, two hb-edges

{
PubB1,PubC1

}
and

{
PubB1

}
are retrieved. The

same with A = {Org1,Org2} retrieves all the co-occurences of Publications with
reference to keywords.

The reference type can always be shown in one of the faces as a visualisa-
tion hb-graph where all the hb-edges are constituted of the reference itself with
multiplicity the number of time the reference occurs in the hb-graph.

Ultimately, by building a multi-dimensional network organized around groups
of types, one can retrieve very valuable information from combined data sources.
This process can be extended to any number of data sources as long as they share
one or more types. Otherwise the reachability hypergraph is not connected and
only separated navigations are possible.

3.4 The Case of Multiple References

Extending co-occurrences to multiple references chosen in eR ∈ ER is not
straightforward. There are two ways of doing so: a disjunctive and a conjunctive
way. We consider the set R ⊂ eR of references and eN = eR\R the visualisation
types.

In the disjunctive way, each co-occurrence is built using the same app-
roach than before considering successively each type ρ ∈ R. This is particularly
adapted for types that are partitioning the physical references. It is the case
for instance in the aggregation of two databases on two different kind of phys-
ical data, such as publication and patent, and the co-occurrence of the chosen
navigation type is built referring in this case either to a publication or (non-
exclusive) to a patent. The hb-graphs obtained are built by extending the family
of hb-edges.

In the conjunctive approach, we start by building the cross product of
instances of the references and retrieve co-occurrences of elements for which
the data d is attached to the corresponding values of cross-reference instances.
Hence co-occurrences are restricted to the simultaneous presence of reference
instances attached to the physical entity.

The HyperBagGraph DataEdron 371

3.5 The DataHbEdron5

The DataHbEdron provides soft navigation between the different facets of the
information space. Each facet of the information space corresponding to a visu-
alisation type includes a visualisation hb-graph viewed in its 2D extra-node rep-
resentation with a normalised thickness on hb-edges [2]. The different facets are
embedded in a 2.5D representation called the DataHbEdron. The DataHbEdron
can be toggled between a cube with six faces—Figure 4—and a carousel shape
with n faces—not shown here due to the lack of space—to ease navigation
between facets. The reference face shows a traditional verbatim list of references
corresponding to the search output.

(a) Cube shape

(b) Performed search

Fig. 4. DataHbEdron: cube shape.

Individual faces of the DataHbEdron show different facets of the information
space: the underlying visualisation hb-graphs support the navigability through
facets. Hb-edges can be selected interactively between the different facets; since
each hb-edge is linked to a subset of the references, the corresponding references
can be used to highlight information in the different facets as well as in the face
containing the reference visualisation hb-graph.

4 Results, Evaluation and Conclusion

4.1 Use Case

We applied this framework to perform searches and visual queries on the Arxiv
database allowing simultaneous visualisation of the different facets of the infor-
mation space constituted by authors, extracted keywords and subject categories.
5 A video demo is available on: https://www.infos-informatique.net.

https://www.infos-informatique.net

372 X. Ouvrard et al.

The tool developed is now part of the Collaboration Spotting family6. When per-
forming a search, the standard Arxiv API7 is used to query the Arxiv database.
The queries can be formulated either by a text entry or done interactively directly
using the visualisation: queries include single words or multiple words, with pos-
sible Boolean query operators—AND, OR and NOT—and parenthesis group-
ings. The querying history is stored and presented as an interactive hb-graph to
visualize the construction of complex queries including refinement of the queries
already performed. Each time a new query is formulated, the corresponding
metadata is retrieved by the Arxiv API.

When performing a search on Arxiv, the query is transformed into a vector
of words. Arxiv relies on Lucene’s built-in Vector Space Model of information
retrieval and the Boolean model. The most relevant documents are retrieved
based on a similarity measure between the query vector and the word vectors
associated to individual documents. The API returns the top n highest scored
document metadata associated to the document. Metadata, filled by authors
during their submission of a preprint, contains different information such as
authors, Arxiv categories and abstract.

The facets are shown on the DataHbEdron with additional faces: the first face
shows the Arxiv reference visualisation hb-graph with a layout similar to classical
textual search engines. The second face corresponds to the visualisation hb-graph
of co-authors. The third face depicts the visualisation hb-graph of co-keywords
extracted from the abstracts using classical natural language processing and TF-
IDF that is used as keyword multiplicity. The fourth face shows the hb-graph of
Arxiv categories. The fifth face shows past or reloaded queries of the session.

Any node on any face is interactive to highlight information from one face to
another showing the hb-edges that are mapped through the references. Queries
can be built using the vertices of the hb-graph, either isolated or in combination
with the current search using AND, OR and NOT. The first query is the only
one required to be typed in. Merging queries of different users is immediate
as they correspond to hb-edges of a hb-graph. Queries are evolving, gathered,
stored and re-executable months later. The surfer has the possibility to display
additional contextual information related to authors using DBLP, to keywords
using DuckDuckGo for disambiguation and Wikipedia.

4.2 Evaluation

The validity of our framework is asserted by the mathematical construction
completeness and robustness: we have achieved the possibility to navigate inside
the dataset by showing co-occurrences in a sufficient refined way to support all
the information extracted. As this model has been instantiated through a user
interface in the use case of Arxiv, but, also, as mentioned previously, on some
other sample data using csv files, its versatility is ensured. We have gathered in
Table 2 some of the non-exhaustive features that allows to compare our solution

6 http://collspotting.web.cern.ch/.
7 https://arxiv.org/help/api/index.

http://collspotting.web.cern.ch/
https://arxiv.org/help/api/index

The HyperBagGraph DataEdron 373

Table 2. Elements of comparison (see text for details)

Verbatim
browser

PivotPath [5] PivotSlice [6] CS core [7]
DataEdron

cube [4]
DataHbEdron

output linear
tripartite

graph
graph graph

linear &
hypergraph

linear &
hb-graph

#facets 1 3 many many 4 many

view per facet no no no yes yes yes

simultaneous facet
views

no yes yes no yes yes

heterogeneous
co-occurrences

x no no yes no yes

multiple references x no no disjunctive no
conjunctive,
disjunctive

zoom in data new query no yes yes no yes

filter data new query no yes yes no
by visual
queries

visual query no no
yes, restricted

to current
search

yes, restricted
to current

search
no

yes, even with
new search

redundancy in
co-occurrences

x no no no yes

information
extraction

limited pivot change
elaborated
questions

elaborated
questions

elaborated
questions

elaborated
questions

combination of
facets

no no yes yes yes yes

type of ranking
binary cosine

similarity
no

number of
references per

vertex

hyperedges
and vertices

hb-edges and
vertices

with others. The user interface uses a 2.5D approach, but it is out of the scope
of this article to make any claim on the quality of the interactions a user can
have with such an interface.

5 Future Work and Conclusion

The framework supports dataset visual queries, possibly contextual, that either
result from searches on related subjects or refine the current search: it enables full
navigability of the information space. It provides powerful insights into datasets
using simultaneous facet visualisation of the information space constructed from
the query results. This framework is versatile enough to enhance user insight
into many other datasets, particularly textual and multimedia ones.

References

1. Ranganathan, S.R.: Elements of Library Classification. Asia Publishing House,
Mumbai (1962)

2. Ouvrard, X., Le Goff, J.-M., Marchand-Maillet, S.: Adjacency and tensor represen-
tation in general hypergraphs. part 2: multisets, hb-graphs and related e-adjacency
tensors. arXiv preprint arXiv:1805.11952 (2018)

http://arxiv.org/abs/1805.11952

374 X. Ouvrard et al.

3. Ouvrard, X., Le Goff, J.-M., Marchand-Maillet, S.: Diffusion by exchanges in hb-
graphs: highlighting complex relationships extended version. arXiv:1809.00190v2
(2019)

4. Ouvrard, X., Le Goff, J., Marchand-Maillet, S.: Hypergraph modeling and visuali-
sation of complex co-occurence networks. Electron. Notes Discrete Math. 70, 65–70
(2018)

5. Dörk, M., Riche, N.H., Ramos, G., Dumais, S.: PivotPaths: strolling through faceted
information spaces. IEEE Trans. Vis. Comput. Graph. 18(12), 2709–2718 (2012)

6. Zhao, J., Collins, C., Chevalier, F., Balakrishnan, R.: Interactive exploration of
implicit and explicit relations in faceted datasets. IEEE Trans. Vis. Comput. Graph.
19(12), 2080–2089 (2013)

7. Agocs, A., Dardanis, D., Le Goff, J.-M., Proios, D.: Interactive graph query lan-
guage for multidimensional data in collaboration spotting visual analytics frame-
work. ArXiv e-prints, December 2017

8. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse
of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, pp. 604–613. ACM (1998)

http://arxiv.org/abs/1809.00190v2

Towards the Named Entity Recognition
Methods in Biomedical Field

Anna Śniegula1, Aneta Poniszewska-Marańda2(B) , and �Lukasz Chom ↪atek2

1 Department of Informatics in Economy, University of Lodz, Lodz, Poland
anna.sniegula@uni.lodz.pl

2 Institute of Information Technology, Lodz University of Technology, Lodz, Poland
{aneta.poniszewska-maranda,lukasz.chomatek}@p.lodz.pl

Abstract. Natural Language Processing (NLP) is very important in
modern data processing taking into consideration different sources, forms
and purpose of data as well as information in different areas our indus-
try, administration, public and private life. Our studies concern Natural
Language Processing techniques in biomedical field. The increasing vol-
ume of information stored in medical health record databases both in
natural language and in structured forms is creating increasing chal-
lenges for information retrieval (IR) technologies. The paper presents
the comparison study of chosen Named Entity Recognition techniques
for biomedical field.

Keywords: Machine learning · Natural Language Processing ·
Recurrent neural networks · Named Entity Recognition · Conditional
Random Fields · Long-Short Term Memory · Genia corpus

1 Introduction

Natural Language Processing (NLP) is a very important branch of Artificial
Intelligence (AI) enhancing the performance of data processing and informa-
tion extraction from unstructured datasets. AI and Machine Learning play an
increasingly important role in medicine – successful integration of AI solutions
can improve its efficiency and decrease the costs. AI is widely used to support
developing drugs, gene editing, for personalised treatment, disease diagnosis and
clinical decision support. More ambition systems involve the combination of
multiple sources. The increasing volume of information stored in medical health
record databases both in natural language and in structured forms is creating
increasing challenges for information retrieval (IR) technologies.

Clinical data are often stored in natural language form. Narrative language
is convenient for doctors to express events and medical concepts, unfortunately
it makes the data difficult for searching, summarisation, decision support or
statistical analysis. In order to perform above tasks the information has to be
extracted with various natural language processing (NLP) techniques [10].

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 375–387, 2020.
https://doi.org/10.1007/978-3-030-38919-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_31&domain=pdf
http://orcid.org/0000-0001-7596-0813
https://doi.org/10.1007/978-3-030-38919-2_31

376 A. Śniegula et al.

Our studies concern NLP techniques in biomedical field. Named Entity
Recognition (NER) is a fundamental NLP task to extract entities of interest
(e.g., disease names, medication names and lab tests) from clinical narratives.
The study aims to compare most commonly used Named Entity Recognition
techniques and investigate how well they can perform the task of identifying a
large number of classes that are strongly related with each other.

The paper is structured as follows. Section 2 presents the current state of
art in the field of Named Entity Recognition in biomedicine. Section 3 gives
a theoretical description of natural language processing techniques (focusing on
NER task). Section 4 describes the research methodology, conducted comparative
tests and applied evaluation techniques while Sect. 5 deals with obtained results
and conclusions.

2 Related Works of Named Entity Recognition
in Biomedicine

Named Entity Recognition (NER) is a subfield of information extraction [10].
NER is a task of recognizing words or phrases that should be categorised as
expressions denoting entities. Example entity names in medical field are diseases,
drugs, treatment, genes, cancer, protein and RNA [1,5,6,14,16].

Recent research in biomedical informatics is focused on named entity recog-
nition. NER can be solved with the use of many techniques that can be divided
into several groups [2]: dictionary based approach, rule based approach, machine
learning (ML) approach, deep learning approach and hybrid approach. In the
next section they are described in greater detail.

Recent papers concentrate on deep learning approach applying recurrent neu-
ral networks (RNNs) such as Long-Short Term Memory (LSTM) [12] or Gated
Recurrent Units (GRU). Common trend is to combine deep learning with other
ML method on top of the recurrent layers. CRF is most commonly used method
in this hybrid approach. It ensures that the optimal sequence of tags over the
entire sentence is obtained. The authors of [13] combined Residual Dilated Con-
volutional Neural Network with CRF. Dictionary-based techniques are also still
widely used in biomedical field, mostly as a support of some more complex
machine learning methods. Most of the works use UMLS Metathesaurus or Genia
corpus as knowledge database.

Clinical NER attempts receive lower performance measures values (best F1

score equals 91.32, it was obtained by [13]) in comparison to similar trials with
corpuses in non-technical fields, where recently [3] obtained 93.5 F1 score on
the CoNLL 2003 corpus. The researchers obtained lower results in Biomedical
NER because biomedical texts involve multiple challenges that are listed below.
Firstly, the data available for researchers in the biomedical field are limited,
mostly due to the patient privacy and confidentiality requirements. The avail-
able annotated databases are usually insufficient for NER task [19]. Secondly, the
medical texts are written in a specific manner different from ordinary language,
often written shorthand, contain incomplete sentences, informal grammar and

Towards the Named Entity Recognition Methods in Biomedical Field 377

littered with misspellings and non-standard abbreviations and acronyms. More-
over medical language is characterised by long phrases containing special char-
acters and dashes. Furthermore, the medicine is a rapidly expanding field, large
number of researches conducted contribute to the constantly growing number
of medical concepts. That makes extremely difficult to keep the medical dictio-
naries up to date. What is more, concepts in medicine often carry ambiguous
meaning, it implies the NER models to keep the word context information along
the training process [11,17].

3 Natural Language Processing

The term Natural language is used to describe any language used by human
beings, to distinguish it from “artificial” languages used by computer, for
instance programming languages and data representation languages [10]. Nat-
ural language processing (NLP) term describes computational techniques that
process spoken and written human language [9].

Natural Language Processing (NLP) include data preprocessing techniques
like data cleaning, tokenization, normalization (stemming, lemmazation or other
form standardization). Preparing text requires choosing the optimal tools, how-
ever it helps to improve accuracy of proceeding NLP tasks.

Other tasks of NLP concentrate on extracting statistical features like term
frequency (TF), inverse document frequency (IDF) or syntactical features includ-
ing Part Of Speech (POS) tagging. NLP techniques are tools to achieve superior
task. Among the most applied tasks is Information Extraction (IE) involving
searching for relevant information in documents.

Named Entity Recognition. Named entity recognition (NER) is a stage of
IE. It is one of the key NLP tasks that helps to convert unstructured text into
computer readable structured data [17]. NER refers to the task of recognizing
expressions denoting entities (i.e. Named Entities) such as diseases, drugs or
people’s names in documents containing natural language texts. NER can be
solved with the use of many techniques that can be divided into several groups
[2]: dictionary based approach, rule based approach, statistical approach, deep
learning approach, hybrid approach.

Dictionary based methods store the dictionaries of NER phrases on lists called
gazetteers. This simple approach has some restrictions connected with rapidly
expanding medical knowledge base – it is hard to keep the gazetteers up to date.
Rule based approach is based on a set of manually defined rules and patterns
that can describe the whole sentences. Therefore the context of the phrase is
available during NER process. This approach is very time consuming, it requires
defining all the rules separately by the user.

Machine learning approach involves mostly supervised or semi-supervised
techniques. Standard classification methods are applicable, however sequence-
based methods that use the whole sentences as sequences of words instead of
sets of single words, are more widely used. Deep learning is a sub-domain of

378 A. Śniegula et al.

machine learning that uses neural network architectures, in NER especially valu-
able are architectures that capture long-term dependencies and operate on data
sequences.

Hybrid methods combine multiple approaches, e.g. dictionary based technique
with statistical method. The advantage of this approach is that it is versatile,
as the user can easily improve its performance with no retraining [15]. Other
popular approach combines statistical and deep learning methods, – e.g. LSTM,
that is capable of capturing long distance dependency relations among words
and entities, and CRF in the output layer, that guarantees optimal sequence
labelling [12]. The presented comparison studies sequential ML technique (CRF)
and recurrent neural network (LSTM) as most popular machine learning NER
techniques that analyse sequences of words.

Conditional Random Fields. Conditional Random Fields (CRF) is designed
for predicting an output sequence of tags corresponding to a sequence input. It
is widely applied in natural language processing, computer vision and bioinfor-
matics [18]. It is a discriminative statistical machine learning model that relies
on decision boundary between classes. CRF is based on conditional probabil-
ity, that calculates the probability of Y when random variable X has specific
value. Probability is calculated based on the output values of the feature func-
tions. Probability is normalized with a constant value Z so that its distributions
summed to 1. The general formula for CRF can be stated as follows 1:

P (X | Y) =
1

Z(X)
exp

N−1∑

i=0

K∑

k=1

λkfk(X, i, yi, yi−1) (1)

where N is a number of words in a Vector; i is current word position in a vector;
K is the number of feature functions; λ are weights calculated for each function
during the training process.

The output label is the one that achieves the maximum probability.

LSTM – Recurrent Neural Network. Long short term memory network
(LSTM) is a type of recurrent neural network (RNN) algorithm. RNN can store
historical information in a hidden layer. LSTM was designed specifically to keep
information from longer period than traditional RNN. They advantage of gate
units that protect the stored memory contents from perturbation by irrelevant
inputs [7]. Hidden layer consists of memory cell that allows to keep the cell state
and transfers information along the sequence chain. Gates (input gate, forget
gate and output gate) control which information is saved and which should be
forgotten [12]. The variation Bi-LSTM consists of forward-LSTM and backward-
LSTM that are stacked on top of each other [12]. The extension makes it possible
to process each sequence in two directions in separate recurrent nets that are
connected to the same output layer. This combination ensures that at any point
of the sequence the algorithm keeps the information both about the previous
and the future elements. That is why it can understand the context better than
the standard unidirectional LSTM.

Towards the Named Entity Recognition Methods in Biomedical Field 379

4 Research Methodology and Implementation of Selected
Methods

Dataset Characteristics. We performed NER task on GENIA corpus. Genia
is commonly used corpus by researchers both as dictionary and as base corpus
to perform NER task, it is available in different versions and different formats.
We used version 3.0.2 that consists of 1999 abstract records from MEDLINE
database and is a taxonomy of 34 biologically relevant categories. We reduced
the number of classes to 32. The entity RNA Substructure was omitted during
the tests, because it occurred in only one abstract. Also the entities labelled
other name was omitted as the label scope is too wide.

Table 1 presents all entities in the corpus, the number of abstracts in which
they are present, number of their occurrences and the number of unique phrases.
The most common category is protein molecule that appears over 20000 times
in the dataset. The entities occurrences are unevenly distributed among classes.
Almost 90% of any entity occurrences belong to one third of the classes. 20
classes appear less than a 1000 times and 4 classes appear less than 100 times
in the corpus.

Original files are in XML based mark-up format – for NER task purpose
it was transformed to BIO format with words tagged with “O” do not belong
to any entity or B entity name (B stands for beginning) and I entity name
(I stands for inside) to indicate the first and subsequent words belonging to the
entities.

The dataset was split into train and test subsets and created three train-test
pairs, the first train – test pair was created with an alphabetical split, the second
split was random, both datasets divided the abstracts in the proportion of 70/30.
Random training subset contains 46969 term occurrences and alphabetically split
training subset contains 47251 term occurrences. The last dataset was created
in a random split (because with the randomly split subsets we achieved better
results), however, this time the training subset was bigger (it contained 85% of
all abstracts). Table 2 presents complete entity terms distribution among all the
subsets. The last column presents how many times more each entity occurred in
the 85/15 split train subset in comparison to the 70/30 split train subset.

Implementation of Selected Techniques. The purpose of the research was
to compare most commonly used NER techniques (CRF and LSTM) – to check
how well these methods can detect large number (34) of Named Entities with the
uneven frequency distribution. Moreover, to check if integrating CRF with the
information from UMLS MetaThesaurus can increase the general performance
of NER. The total number of performed tests was 8.

During the comparison we wanted to check if the task can be done with the
use of existing tool with minimal user effort. There are many open source libraries
available in different programming languages. Most of them are for general NER
extraction purpose for extracting traditional entities like “Person”, “Location”,
“Organisation”. One of the most appreciated library is Stanford Named Entity

380 A. Śniegula et al.

Table 1. Genia Corpus 3.0.2 entities and their distribution among abstracts

Class name No of genia
abstracts

No of entity
occurrence

No of unique
phrases

protein molecule 1774 20855 4005

other name 1979 13132 6658

protein family or group 1754 7665 2691

cell type 1637 6844 1867

DNA domain or region 1145 6368 3245

other organic compound 738 3938 1179

cell line 1091 3472 1812

lipid 398 2345 378

protein complex 674 2167 546

virus 398 2065 366

multi cell 496 1660 452

DNA family or group 709 1341 745

protein domain or region 342 889 583

protein subunit 251 817 295

amino acid monomer 227 765 179

tissue 290 656 366

cell component 331 622 207

peptide 146 492 249

body part 195 432 191

DNA molecule 278 413 277

atom 115 331 65

inorganic 71 250 64

polynucleotide 150 242 175

RNA molecule 280 241 134

nucleotide 86 236 59

RNA family or group 185 236 88

mono cell 76 221 89

other artificial source 85 167 94

protein substructure 73 122 85

DNA substructure 73 99 79

carbohydrate 21 92 44

protein N/A 77 86 61

DNA N/A 36 47 34

RNA substructure 1 2 2

Recognizer based on CRF algorithm – it is written in JAVA but there are plug-ins
available in multiple languages (Python, .NET/F#/C#, PHP, Ruby and more).
Other well known NER tools is spaCy – open-source library implemented in
Python. Research [8] shows that spaCy’s NER tool performs second best among

Towards the Named Entity Recognition Methods in Biomedical Field 381

Table 2. Dataset split description

Classname AlphabetTrain AlphabetTest RandomTrain RandomTest RandomTrain RandomTest Train dataset
(70/30 split) (70/30 split) (70/30 split) (70/30 split) (85/15 split) (85/15 split) increment in

85/15 split
amino acid monomer 604 161 573 192 648 117 75
atom 229 102 256 75 298 33 42
body part 327 105 296 136 359 73 63
carbohydrate 84 8 73 19 85 7 12
cell component 398 224 425 197 515 107 90
cell 1403589784204112332enil 431 554
cell 990129925851902357413713115epyt
DNA domain or region 4024 2344 4528 1840 5427 941 899
DNA family or group 936 405 859 482 1130 211 271
DNA molecule 243 170 277 136 361 52 84
DNA N/A 23 24 31 16 34 13 3
DNA substructure 38 61 71 28 85 14 14

4229717164402cinagroni 26 53
lipid 1353 992 1618 727 2017 328 399
mono cell 182 39 143 78 184 37 41
multi cell 1052 608 1149 511 1416 244 267
nucleotide 146 90 163 73 195 41 32
other artificial source 144 23 95 72 146 21 51
other organic compound 2720 1218 2721 1217 3342 596 621
peptide 405 87 346 146 411 81 65
polynucleotide 133 109 190 52 222 20 32
protein complex 1929 238 1611 556 1894 273 283
protein domain or region 645 244 591 298 763 126 172
protein family or group 5528 2137 5414 2251 6517 1148 1103
protein molecule 15822 5033 14903 5952 17946 2909 3043
protein N/A 33 53 54 32 67 19 13
protein substructure 71 51 92 30 109 13 17
protein subunit 498 319 578 239 697 120 119
RNA family or group 144 92 157 79 204 32 47
RNA molecule 127 114 160 81 219 22 59
tissue 511 145 450 206 557 99 107
virus 1253 812 1461 604 1700 365 239
total 47273 18948 46720 19501 56710 9511 9990

four well-established open-source NER tools regarding accuracy (Stanford NER
performance was slightly better) and that it is the fastest in processing speed,
however there is no detailed information provided in its documentation which
models are implemented in the background.

The purpose was to find a tool already allocated in medical domain. That
is why Python library “CliNER” was chosen – an open-source natural language
processing system for named entity recognition in clinical text of electronic health
records [4]. The authors of the library report that they achieved 0.83% F1 with
the NER task with the data from i2b2/VA 2010 challenge. The library sup-
ports all the methods needed for our study, it provides two NER extraction
techniques: CRF and LSTM. Moreover it has implemented basic UMLS integra-
tion. The library is oriented to find medical terms like TEST, PROBLEM and
TREATMENT. The idea was to adapt the library slightly to recognize entities
from Genia corpus.

First test was performed with the use of CRF-based classifier. CRF is calcu-
lated with the CRFSuite library. CliNER CRF classifier implements linguis-
tic features such as word unigram, part of speech tag (generated with nltk
pos tagger), last two characters, word shape, previous and next features, pre-
vious and next 3 unigrams, regex or units.

In the second test the CRF was extended with the knowledge-based features
based on the semantic types of the phrases obtained from the UMLS Metathe-
saurus database. Phrases belonging to Genia entities found their representa-
tives in 119 UMLS different semantic types. Table 4 presents mapping statistics
including how many UMLS semantic types were assigned to each Genia class
representatives and the most frequent UMLS semantic type for each Genia class.

382 A. Śniegula et al.

The third classification test was performed with the bidirectional LSTM.
The CliNER library implements both character level and word level Bi-LSTM.
Character sequence embeddings feed into word level LSTM. This approach is
sensitive to misspellings [4]. LSTM algorithm is realised by Keras python deep
learning library.

The purpose was to investigate how much the splitting order influence the
quality of training the model, therefore, we repeated all the three tests described
above twice, once with the alphabetically split dataset, once with the randomly
split dataset. Finally, to estimate the potential of the models to improve when
train subset increases, the tests on 85/15 randomly split dataset were performed.
This time only one CRF model (UMLS-based) and LSTM model were chosen.

Performance Evaluation. To evaluate the performance of the methods confu-
sion matrix data of each test case was collected. A confusion matrix is a standard
way of displaying classification results to designate the efficiency of a classifica-
tion model. Generally, columns correspond to the true classificatory state, while
the rows correspond to the algorithm results. Confusion matrix values can be
used to calculate many measures of classification performance – it was used accu-
racy (2), precision (3), recall (4) and F1 score (5). These metrics were calculated
according to the following formulas:

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1Score = 2 · Precision · Recall

Precision + Recall
(5)

where: FP is the number of false positive; TN is the number of true negative;
TP are true positive; FN are false negatives.

The precision is used to evaluate the correct degree of prediction power of the
model defining the proportion of the correct positive identifications. Recall rep-
resents the proportion of positive cases that were correctly identified F-measure
calculates the harmonic mean of precision and recall resulting in achieving the
balance between precision and recall.

The above matrices can be used to evaluate individual classes in multi-class
classification. Quality of the overall classification is usually assessed in two ways:
macro-averaging and micro-averaging. Macro-averaging is a mean value of each
measure – as the result it treats all the classes equally. Micro-averaging perfor-
mance measures are calculated with the above formulas, obtaining the cumula-
tive sums of FP , TN , TP , FN . It favours classes with the bigger number of
representatives.

Towards the Named Entity Recognition Methods in Biomedical Field 383

5 Results and Discussion

We achieved better results with the randomly split dataset. CRF tests with ran-
dom dataset achieved micro F1 score over 4% better than with the alphabetically
split dataset. For LSTM the improvement was even better, almost 7%.

The best approach (among 70/30 split subsets) appeared to be the combi-
nation of UMLS with CRF with which we achieved the micro F1 score equal to
57.53%. The Table 3 presents micro values of accuracy, accuracy Non-O, preci-
sion, recall and F1) calculated for each test we performed.

In the discussion we present mainly F1 score values to compare the tests
results, as it is the most balanced measure. As far as the other metrics are
concerned, all the tests achieved better precision than recall. The difference
between two measures ranged between 6–18%.

Macro measures are lower, because of the uneven entity occurrences and the
very small recognition of the classes with small number of representatives. The
entities with the lowest number of occurrences achieved 0 correctly classified
phrases and it significantly lowers macro values. For example, for the test no. 4
(random CRF-UMLS) we achieved 57.53% micro F1 score, while the macro F1

score values 40.08%. 3 classes were not classified correctly at all.

Table 3. Evaluation of the tests – micro measures

Test

no.

Split method Train test

split

Research

method

Correctly

classified

f1 general Accuracy Non 0 Precision Recall

1 Alphabetical 70% - 30% CRF 9117 52.29% 85.04% 52.47% 57.25% 48.12%

2 Random 70% - 30% CRF 10281 56.72% 86.06% 55.62% 61.29% 52.79%

3 Alphabetical 70% - 30% CRF

UMLS

9370 53.21% 85.16% 53.06% 57.58% 49.45%

4 Random 70% - 30% CRF

UMLS

10479 57.53% 86.29% 56.26% 61.80% 53.80%

5 Alphabetical 70% - 30% LSTM 5851 35.07% 79.67% 22.43% 40.56% 30.88%

6 Random 70% - 30% LSTM 7272 42.02% 81.45% 26.86% 48.05% 37.34%

7 Random 85% - 15% CRF

UMLS

5309 58.91% 86.86% 58.21% 62.36% 55.82%

8 Random 85% - 15% LSTM 3491 43.80% 81.50% 24.65% 54.28% 36.70%

Fig. 1. The influence of the entity occurrence number on F1 score value; CRF UMLS
test and LSTM test

384 A. Śniegula et al.

Figure 1 presents the relation between number of the entities occurrences
in the training subset and the achieved F1 score value. Left chart presents
CRF UMLS test results, right chart presents LSTM results. LSTM results are
less stable – for neural-network method we probably have not enough data to
observe regular and stable increase. On the other hand, the minimum number
of the entity occurrence that the model needs for training to be able to recog-
nise any entity correctly is similar for both tests (slightly in a favour of CRF).
CRF needed minimum 85–95 occurrences, LSTM needed 145–150 occurrences.
For entities with about 600 occurrences CRF model was able to achieve F1 score
value round 70%. We did not achieve any further progress with CRF algorithm.
For LSTM it is difficult to draw conclusions, it also reached F1 score value round
70% with about 600 entity occurrences. However, after that the F1 value sud-
denly collapsed, we need further research with the larger dataset to check if we
will be able to improve the F1 score value.

Table 4. Genia to UMLS semantic type mapping

Genia class Umls most frequent semantic type No. of

different

UMLS types

UMLS

influence on

F1

RNA molecule Intellectual Product 16 10.15

body part Body Part, Organ, or Organ Component 32 9.05

mono cell Disease or Syndrome 14 6.86

other organic compound Organic Chemical 60 6.64

atom Element, Ion, or Isotope 14 4.71

protein substructure Spatial Concept 20 4.57

amino acid monomer Biologically Active Substance 14 4.33

nucleotide Nucleic Acid, Nucleoside, or Nucleotide 9 3.5

peptide Biologically Active Substance 31 2.95

lipid Organic Chemical 27 2.06

multi cell Finding 43 1.72

protein domain or region Spatial Concept 38 1.63

protein N/A Functional Concept 18 1.59

RNA family or group Nucleic Acid, Nucleoside, or Nucleotide 21 1.14

protein subunit Intellectual Product 24 1.02

cell type Cell 54 1

DNA family or group Qualitative Concept 46 0.64

protein molecule Enzyme 73 0.39

cell component Cell Component 29 0,17

protein family or group Enzyme 71 0,13

carbohydrate Organic Chemical 10 0

DNA N/A Intellectual Product 15 0

DNA substructure Qualitative Concept 15 0

cell line Cell 54 −0,17

inorganic Element, Ion, or Isotope 19 −0,33

virus Virus 30 −0.52

protein complex Intellectual product 30 −0.58

polynucleotide Nucleic Acid, Nucleoside, or Nucleotide 12 −1.01

DNA domain or region Intellectual Product 73 −1.17

tissue Body Part, Organ or Organ Component 39 −1.65

other artificial source Functional Concept 20 −2.68

DNA molecule Qualitative Concept 32 −3.55

Towards the Named Entity Recognition Methods in Biomedical Field 385

During the UMLS Metathesaurus knowledge acquisition process we have clas-
sified words into 108 different UMLS semantic types. Knowledge base from
UMLS Metathesaurus increased macro F1 score by 0.75% for alphabetically
split dataset and 1.64% for randomly split dataset. It is generally less then
we have expected. Table 4 presents which UMLS semantic type was most com-
monly mapped for each Genia class and how many different UMLS types were
associated with words annotated as Genia classes. The last column presents the
F1 difference between plain CRF test and CRF with the UMLS knowledge. Pre-
sented statistics are related to tests number 2 and 4 (with the randomly split
dataset as it achieved better performance).

For the randomly split dataset the UMLS integration had positive effect for
classification of 20 Genia classes, negative effect for 9 classes and it did not
affect 3 classes. Three classes (with the lowest number of entities in the train
set) achieved F1 score equal to zero. The UMLS integration had negative or no
effect on DNA related classes (four out of five). The most common UMLS types
identified for them are qualitative concept and intellectual product.

We observed the most significant falloff (−3.55%) for class DNA molecule.
At the same time F1 score for RNA molecule was increased by 11.15%.

One of the probable reasons for dictionary classification difficulties is ambi-
guity of words, one word can be classified as different semantic types depend-
ing on a context that in dictionaries is unavailable. For instance a word “fam-
ily” can be classified as multi cell (“asymptomatic family members”), but it
can also be protein family or group (for instance phrase “chemokine family”),
other organic compound (“NSAID family members”), or even dna or region
(“Egr family binding element”).

6 Conclusions

LSTM classification results were lower than CRF, although in the state of the
art it usually outperforms CRF. Neural network methods generally require very
large training datasets, significantly larger in comparison to other supervised
machine learning techniques. This study showed that Genia corpus does not
contain enough data yet to benefit from neural networks, at least when we want
to train the model to find all the Genia semantic types. We were able to achieve
best value of 42.02% micro F1 score with LSTM (for the 70-30 split, for the
test number 6 Table 3). LSTM method occurred to be the most vulnerable for
the different data spiting, changing the split from the alphabetical to random
increased the F1 score by almost 7%, in comparison with CRF and CRF UMLS
the increase was 3.15% and 4.32% respectively.

Last two tests were performed with the bigger training subset (containing
85% of abstracts). To allow better comparison of the results, the training subset
contains all the abstracts from the smaller training random subset. Rest 15% of
the abstracts were moved randomly from the test random subset. We performed
LSTM test and the CRF with UMLS knowledge (as it achieved a little better
results than the plain CRF during the 70% – 30% test). Enlarging the training

386 A. Śniegula et al.

subset improved the F1 score by almost 2% with the LSTM method and by
1.48% with the CRF UMLS. The CRF UMLS still outperformed LSTM. We
achieved the best F1 micro result 58.91% (with the test no. 7, Table 3).

The results were generally lower as expected. However, we still believe that it
is possible to classify multiple number of entities and achieve satisfactory results
with the use of the current state of art methods. To verify this thesis we would
need a dataset with a much larger number of tagged entities. The Genia training
subset that contained seven entities that had less than 100 representatives, 17
entities between 100–1000 representatives, and only 10 entities with over 1000
occurrences turned out to contain not enough tagged phrases for this challenging
task. Other factor that makes the tagging difficult is that in Genia corpus some
entities are related with each other (for instance DNA-related, RNA-related, cell-
related). For these entities we were unable to tag phrases correctly. We believe
that the general performance would be better if all the entities were disjunctive.
In the future we plan to extend the experiment including other data corpuses.

References

1. Abacha, A.B., Zweigenbaum, P.: Medical entity recognition: a comparison of
semantic and statistical methods. In: Proceedings of BioNLP 2011 Workshop,
BioNLP 2011, pp. 56–64 (2011)

2. Allahyari, M., et al.: A Brief Survey of Text Mining: Classifiation, Clustering and
Extraction Techniques (2017)

3. Baevski, A., Edunov, S., Liu, Y., Zettlemoyer, L., Auli, M.: Cloze-driven Pretrain-
ing of Self-attention Networks. http://arxiv.org/abs/1903.07785

4. Boag, W., Sergeeva, E., Kulshreshtha, S., Szolovits, P., Rumshisky, A., Naumann,
T.: CliNER 2.0: Accessible and Accurate Clinical Concept Extraction. http://
arxiv.org/abs/1803.02245

5. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, ACL 2005, pp.
363–370 (2005)

6. Hatzivassiloglou, V., Dubou, P.A., Rzhetsky, A.: Disambiguating proteins, genes,
and RNA in text: a machine learning approach. Bioinformatics 17(Suppl. 1), S97–
S106 (2001). ISSN 1367-4803

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). ISSN 0899-7667

8. Jiang, R., Banchs, R.E., Li, H.: Evaluating and Combining Name Entity Recog-
nition System, pp. 21–27. https://aclweb.org/anthology/papers/W/W16/W16-
2703/

9. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edin. Prentice
Hall, Upper Saddle River (2009). ISBN 978-0-13-187321-6

10. Meystre, S.M., Savova, G.K., Kipper-Schuler, K.C., Hurdle, J.F.: Extracting infor-
mation from textual documents in the electronic health record: a review of recent
research. Yearb. Med. Inf. 17, 128–144 (2008). ISSN 0943-4747

11. Pradhan, S., et al.: Evaluating the state of the art in disorder recognition and
normalization of the clinical narrative. J. Am. Med. Inf. Assoc. 22(1), 143–154
(2014). ISSN 1527-974X

http://arxiv.org/abs/1903.07785
http://arxiv.org/abs/1803.02245
http://arxiv.org/abs/1803.02245
https://aclweb.org/anthology/papers/W/W16/W16-2703/
https://aclweb.org/anthology/papers/W/W16/W16-2703/

Towards the Named Entity Recognition Methods in Biomedical Field 387

12. Qin, Y., Zeng, Y.: Research of clinical named entity recognition based on Bi-LSTM-
CRF. J. Shanghai Jiaotong Univ. (Sci.) 23(3), 392–397 (2018)

13. Qiu, J., Wang, Q., Zhou, Y., Ruan, T., Gao, J.: Fast and accurate recognition of
chinese clinical named entities with residual dilated convolutions. In: Proceedings
of IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp.
935–942 (2018)

14. Quimbaya, A.P., et al.: Named entity recognition over electronic health records
through a combined dictionary-based approach. Procedia Comput. Sci. 100, 55–
61 (2016)

15. Sasaki, Y., Tsuruoka, Y., McNaught, J., Ananiadou, S.: How to make the most
of NE dictionaries in statistical NER. BMC Bioinform. 9(11), S5 (2008). ISSN
1471-2105

16. Song, Y.-J., Jo, B.-C., Park, C.-Y., Kim, J.-D., Kim, Y.-S.: Comparison of named
entity recognition methodologies in biomedical documents. BioMed. Eng. OnLine
17(2), 158 (2018)

17. Sun, W., Cai, Z., Li, Y., Liu, F., Fang, S., Wang, G.: Data processing and text
mining technologies on electronic medical records: a review. J. Healthc. Eng. 2018,
4302425 (2018)

18. Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields.
arXiv:1011.4088 [stat], November 2010

19. Zhang, J., et al.: Category multi-representation: a unified solution for named entity
recognition in clinical texts. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji,
M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10938, pp. 275–287.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93037-4 22

http://arxiv.org/abs/1011.4088
https://doi.org/10.1007/978-3-319-93037-4_22

Vietnamese Punctuation Prediction Using
Deep Neural Networks

Thuy Pham1, Nhu Nguyen1, Quang Pham2, Han Cao3,
and Binh Nguyen1,3,4(B)

1 University of Science, Vietnam National University in Ho Chi Minh City,
Ho Chi Minh City, Vietnam

ngtbinh@hcmus.edu.vn
2 Singapore Management University, Singapore, Singapore
3 Inspectorio Research Lab, Ho Chi Minh City, Vietnam

4 AISIA Research Lab, Ho Chi Minh City, Vietnam

Abstract. Adding appropriate punctuation marks into text is an essen-
tial step in speech-to-text where such information is usually not available.
While this has been extensively studied for English, there is no large-scale
dataset and comprehensive study in the punctuation prediction prob-
lem for the Vietnamese language. In this paper, we collect two massive
datasets and conduct a benchmark with both traditional methods and
deep neural networks. We aim to publish both our data and all implemen-
tation codes to facilitate further research, not only in Vietnamese punc-
tuation prediction but also in other related fields. Our project, including
datasets and implementation details, is publicly available at https://
github.com/BinhMisfit/vietnamese-punctuation-prediction.

Keywords: Punctuation prediction · BiLSTM · Conditional random
field · Attention model

1 Introduction

Punctuation is a system of symbols indicating the structure of a sentence where
one needs to slow down, notice, or express emotion. Punctuation marks are
vital to understand and disambiguate the meaning of sentences. Most automatic
speech recognition systems usually do not provide punctuation in their outputs.
Therefore, it is essential to assign appropriate punctuation marks to transcribed
text so that it can be understood correctly.

In literature, punctuation prediction has been extensively studied during the
last two decades, especially in the English language. Beerferman et al. [3] pro-
pose a lightweight approach for constructing a punctuation annotation system
by relying on a trigram language model and Viterbi algorithm. Huang and Zweig
[6] model the punctuation annotation problem as a sequence tagging problem
where each word is tagged with appropriate punctuation. Lu et al. [12] present a
new punctuation prediction approach for transcribed conversational speech texts
using the dynamic conditional random field model on both Chinese and English.
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 388–400, 2020.
https://doi.org/10.1007/978-3-030-38919-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_32&domain=pdf
https://github.com/BinhMisfit/vietnamese-punctuation-prediction
https://github.com/BinhMisfit/vietnamese-punctuation-prediction
https://doi.org/10.1007/978-3-030-38919-2_32

Vietnamese Punctuation Prediction Using Deep Neural Networks 389

Cuong et al. [14] propose efficient inference algorithms to capture long-range
dependencies among punctuations using high-order semi-Markov conditional
random fields. Peitz [16] formulate the punctuation prediction as machine trans-
lation instead of using a language model based punctuation prediction method.
Zhang et al. [21] study a new technique in punctuation prediction for the stream
of words in transcribed speech texts with excellent accuracy in both test datasets
of IWSLT [15] and TDT4 [19]. Regarding neural network methods, Tilk et al.
[20] introduce a two-stage recurrent neural network using LSTM units to predict
suitable punctuation for automatic speech recognition systems. Ballesteros and
Wanner [2] investigate a novel LSTM-based model for predicting punctuation
marks into raw text material. Recently, Li et al. [9] introduce an efficient gener-
ative model for punctuation prediction without observing the underlying punc-
tuation marks and reconstructing the tree’s underlying punctuation. Regarding
the Vietnamese language, there have been various works in different fields such
as word segmentation [4,13] and Part-of-Speech (POS) tagging [17].

In this work, we aim at building a large-scale dataset and providing an exten-
sive benchmark for predicting punctuation in the Vietnamese language. Notably,
we collect over 40,000 articles from the Vietnamese news and novels to build two
datasets with a total of over 900,000 sentences. Different from previous works of
[14,18], which assume inputs are already segmented into sentences; we make a
general assumption that inputs can contain several sentences without punctua-
tion information. Therefore, we train our model on paragraphs, which is more
realistic and challenging. To provide a comprehensive benchmark for this task,
we consider both traditional methods using CRF [18] and deep neural networks.
Generally, the punctuation distribution in the text is highly imbalanced: most
words are followed by a space that makes training punctuation prediction sys-
tems even more difficult. To address this challenge, we propose to train deep
neural networks with the focal loss [10], which can give more weights to rare
classes. While the focal loss shows promising results with our experiments on
the Vietnamese Novels dataset, the class imbalance nature of this task is still a
challenging problem and becomes an important research direction. We strongly
believe that different languages have divergent challenges to build an efficient
punctuation prediction system. As a consequence, our work can be considered as
an additional contribution to the problem for the Vietnamese language, where
there is little publication using a deep learning approach.

Since training with paragraph requires a strong text representation and the
model’s ability to remember long-range dependencies, we argue that the tradi-
tional CRF based methods are not suitable for this setting. Mainly, each CRF
model treats each word as a one-hot vector, thus does not exploit its rich semantic
meaning. Moreover, CRFs, primarily linear CRFs, only consider the relationship
among words in a small window, thus ignoring information from distant words,
which can be potentially informative. To address the above limitations, we pro-
pose a deep LSTM with an attention model to predict punctuations from the
text. Our model learns to represent words by embedding vectors to exploit their
semantic relationship. LSTM [5] can model long term relationships in sequences,

390 T. Pham et al.

which is used as the base of our model to accumulate knowledge in the para-
graph. However, LSTM may remember information from a too far distant, which
may be noisy and hinder the overall performance. Therefore, we equip LSTM
with an attention layer so that it can selectively choose which information in the
past is useful for the current prediction.

2 Punctuation Prediction as Sequence Tagging

2.1 Problem Formulation

Similar to the previous works for English and Chinese [11,22], we model the
punctuation prediction task as a sequence labeling problem. Remarkably, we
label each word by its immediately following punctuation, where label O denotes
a space. In this study, we aim at considering seven main types of punctuation
marks in the Vietnamese language including the period (.), the comma (,), the
colon (:), the semicolon (;), the question mark (?), the exclamation mark (!), and
the space. By modeling punctuation prediction as a sequence tagging problem,
conventional methods such as conditional random fields (CRF) and neural net-
works can be applied directly without any significant modification. In the simple
case, we use the label O to indicate that a word is not followed by any punctu-
ation. For example, one can consider the following sentence in the Vietnamese
language1.

(The ocean produces a half of the amount of oxygen that humans can
breathe, and help to circulate heat around the Earth and absorb large
amounts of CO2.)

This paragraph can be labeled as follows.

It is worth noting that all the words are in lower case since the word case
information is usually not available for the punctuation prediction task. For
instance, when the texts are transcribed from speeches, we do not have the case
information for the words.

2.2 Punctuation Prediction with Conditional Random Field

By formulating the punctuation prediction as a sequence labeling problem, a
simplified approach is employing Conditional Random Field (CRF) [8], which
has been applied successfully in the literature [14,18]. As our work is closely
related to [18], we consider CRF as a baseline and implement CRF with three
feature templates, as suggested in [18].
1 https://vnexpress.net/khoa-hoc/dai-duong-can-thiet-voi-su-song-tren-trai-dat-

the-nao-3976195.html.

https://vnexpress.net/khoa-hoc/dai-duong-can-thiet-voi-su-song-tren-trai-dat-the-nao-3976195.html
https://vnexpress.net/khoa-hoc/dai-duong-can-thiet-voi-su-song-tren-trai-dat-the-nao-3976195.html

Vietnamese Punctuation Prediction Using Deep Neural Networks 391

3 Neural Networks for Punctuation Prediction

3.1 Network Architectures

Semantic Representation of Syllables. In this section, we describe our pro-
posed approach to obtain the semantic vector of each syllable in a sequence. First,
we initialize two embedding matrices for syllable and character as Es ∈ R

d×S

and Ec ∈ R
d×C , where S and C are respectively the numbers of syllables and

characters in the vocabulary, and d is the embedding dimension. For simplicity,
here we use the same embedding dimension d for both syllables and characters.
Given a sequence of L syllables x = {x1, . . . , xL}, each of which is represented
as a one-hot vector, we calculate the sequence of syllable embedding as:

es
x ={es

x1
, . . . , es

xL
} satisfying that

es
xi

=Es · xi, (1)

where (·) is the matrix-vector dot product and es
xi

∈ R
d. Each element of es

xi

is a semantic representation of the syllable xi. However, a common practice is
that we usually map rare words into the same vector corresponding to an “out
of vocabulary (OOV)” token, which may lose useful information and hinder the
performance. Therefore, we propose to enhance the semantic vectors es

xi
with

the semantic information from the character constructing xi. Without loss of
generality, we assume that each syllable xi is itself a sequence of N characters
xi = {c1, . . . , cN}. Similarly, we can obtain the sequential character representa-
tion of xi as sec

xi
∈ R

d×N

sec
xi

={ec
c1 , . . . , e

c
cN } satisfying that (2)

ec
ci =Ec · ci (3)

Since characters in a syllable have short-range dependencies, we can learn such
dependencies in ec

xi
by applying a convolution layer defined as

cj = f(W ⊗ ec
cj :cj+h−1

), (4)

where W ∈ R
d×h is the convolution parameter with length h and ⊗ denotes

the convolution operation. By applying the operations defined in Eq. (3) on ec
xi

,
we get the character dependences in ec

xi
as c = [c1, . . . , cN−h+1], where each ci

represents the relationship among h consecutive characters in xi. To obtain a
fixed representation of the semantic vector built from characters, we apply the
max pooling over c to compute ec

xi
∈ R

d, and then, we combine it with es
xi

for
achieving a syllable representation as follows:

exi
= es

xi
⊕ ec

xi
, (5)

where ⊕ is the vector element-wise summation.

392 T. Pham et al.

Predicting Punctuation with Deep Neural Networks. To this end, we
have the semantic representation e = {ex1 , . . . , exL

} of the original sequence x.
In the next step, we use a Bidirectional LSTM to read the sequence e from both
ends and obtain a sequence of hidden states, each of which is a concatenation of
each individual LSTM’s hidden state: hi = [

−→
hi ,

←−
hi], i = 1, . . . , L and hi ∈ R

2h,
where h is the hidden size of one component LSTM. Subsequently, the model
predicts the distribution of punctuations over the syllable xi as

ŷi = softmax(R · hi), (6)

where R ∈ R
|Y |×2h is the parameter of the softmax layer and |Y | denotes the

total number of punctuations in the vocabulary. Given the true punctuation
prediction y, we can compute a loss (e.g. cross-entropy) between y and ŷ and
backprop to update all the parameters: Es, Ec,W,LSTM , and R end-to-end.

Also, we consider two improved models that can potentially capture more
complex structures of the data. First, we enhance the fully connected layer with
the attention mechanism [1]. It means the model can focus on particular syllables
in the past while predicting the current punctuation mark, and we refer to this
as the BiLSTM + Attention model.

Finally, we replace the softmax classification layer by a CRF layer, which
is a traditional method for this task [8]; this model is denoted as BiLSTM +
CRF. It is important to remark that BiLSTM + Attention can be regarded
as an additional improvement over BiLSTM due to the attention mechanism.
Similarly, we also consider BiLSTM + CRF as an improvement over CRF for
the reason that CRF models can use learned features from BiLSTM instead of
manually designed features, as mentioned in [18].

3.2 Training with Focal Loss

A standard training procedure is to randomly sample a mini-batch from the
training data, train the model, and then repeat until the convergence happens.
As long as we model the punctuation prediction as a tagging problem, a nature
choice of the loss function is the cross entropy loss between the predicted punc-
tuation and the true punctuation. However, one main drawback of the classical
cross entropy loss is that it has the same penalty for both easy and difficult
classes, which is problematic as a result of the distribution of punctuation marks
in natural languages is highly imbalanced. To address this problem, we propose
to use the focal loss [10] that can give more weights to rare classes in the data:

FL (pt) = −αt(1 − pt)
γ log (pt) . (7)

Equation (7) shows the formula of the focal loss, where αt is the balance factor
of class t and γ is the focusing factor. Focal loss has been successfully used in the
object detection problem where the training dataset is highly imbalanced with
the background class. Nonetheless, focal loss has not been applied in natural
language processing to the best of our knowledge (Fig. 1).

Vietnamese Punctuation Prediction Using Deep Neural Networks 393

Fig. 1. A neural network architecture for the punctuation prediction problem.

4 Datasets for Vietnamese Punctuation Prediction

To investigate punctuation prediction for the Vietnamese language, we build two
large-scale datasets from Vietnamese novels2 and newspapers3 with a total of
over 900,000 sentences. Table 1 shows the different distribution of punctuation
marks in these two datasets.

There are 734244 sentences in the Vietnamese Newspapers dataset, while
the Vietnamese Novels dataset only has 183734. Although the top two punc-
tuation marks having the most significant percentage of occurrence are comma
and period in both datasets, the distribution of remaining ones is quite differ-
ent. For instance, the appearance rate of the colon mark is 0.26% in Vietnamese
newspapers, nearly three times bigger than the corresponding rate (0.092%) in
Vietnamese novels. From Table 1, there exist much more (about 32 times) excla-
mative sentences in novels (1.894%) than newspapers (0.059%).

Similarly, we observe that authors prefer using interrogative sentences in
Vietnamese novels (0.994%) rather than Vietnamese newspapers (0.113%). How-
ever, the occurrence rates of both colon and semicolon marks in newspapers are
much larger than novels. These rates for both colon and semicolon marks in
newspapers are 0.260% and 0.047%, respectively. Meanwhile, the corresponding
values are 0.092% and 0.004% in novels. It turns out that Vietnamese novelists
rarely use semicolon mark in their work. As a result, we decide not to merge
two datasets owing to their inherently different sources, thus having different
punctuation distributions. Therefore, it is worth seeing how proposed models
perform on entirely different datasets.
2 https://gacsach.com/tac-gia/nguyen-nhat-anh.html.
3 https://baomoi.com.

https://gacsach.com/tac-gia/nguyen-nhat-anh.html
https://baomoi.com

394 T. Pham et al.

Table 1. The distribution of punctuation marks in the training, testing sets from
Vietnamese Novels and News dataset.

Novel dataset News dataset

Punctuation Training set Test set Training set Test set

Number % Number % Number % Number %

Comma (,) 50909 3.77 21231 4.045 482435 4.041 160472 4.054

Period (·) 66519 4.926 29643 5.648 419580 3.514 138967 3.51

Colon (:) 742 0.055 1153 0.221 32177 0.269 10728 0.271

Qmark (?) 14899 1.103 5271 1.004 13902 0.116 4468 0.113

Exclam (!) 30183 2.235 9167 1.747 7384 0.062 2333 0.059

Semicolon (;) 48 0.004 43 0.008 5675 0.048 2045 0.052

Sentences 111601 44081 440866 145768

To pre-process the data, we first remove special characters, convert all words
into lower cases, and standardize URLs, emails, and hashtags. Then, we remove
sentences that do not contain any punctuation mark, do not end with a punc-
tuation mark, or the ending punctuation is not a period, a question mark, or
an exclamation mark. Different from previous works [14,18] assuming data are
already segmented into sentences, here we do not make such assumptions and
allow each model to work on arbitrary paragraphs of the text. Therefore, as most
of the lengths of sentences on our datasets are smaller than or equal to 100, we
decide to split the data into segments of length 100 and label them using the
format as described in Sect. 2.1 and [14,18].

Finally, we divide the data into training, validation and testing sets with the
ratio 60%–20%–20%. The distribution of punctuation marks among the training
and testing sets for two datasets (Vietnamese Novels and Vietnamese Newspa-
pers) can be found in Table 1.

5 Experiments

In this section, we present our experiments on two datasets described in Sect. 4.
We consider both traditional CRF models as described in Sect. 2, and deep learn-
ing models (BiLSTM, BiLSTM+Attention, and BiLSTM+CRF) trained
with both focal loss and normal cross-entropy loss. For deep learning models,
we initialize the character embedding randomly and use Fasttext4 as an initial-
ization for the syllable embedding and syllables that are not in Fasttext have
their embeddings initialized randomly. Both character and syllable embedding
matrices are updated during the training process. All hyper-parameters such as
the learning rate and focal loss hyperparameters are cross-validated from the
validation set. We use the CRF++ toolkit5 and implement other models with
4 https://fasttext.cc/.
5 https://taku910.github.io/crfpp/.

https://fasttext.cc/
https://taku910.github.io/crfpp/

Vietnamese Punctuation Prediction Using Deep Neural Networks 395

Tensorflow6. For deep learning models, we set the LSTM’s hidden dimension to
be 300 and train using Adam optimizer [7] for 30 epochs.

(a) Vietnamese Newspapers (b) Vietnamese Novels

Fig. 2. The performance comparison by micro precision, recall and F1 score on the
testing set (B: BiLSTM, A: Attention, C: CRF, F: trained with focal loss, W: trained
without focal loss).

Table 2. Experimental results on the Vietnamese Newspapers dataset with focal loss
(B: BiLSTM, A: Attention, C: CRF, F: trained with focal loss, W: trained without
focal loss).

Punctuation BF BAF BCF

P R F P R F P R F

Comma (,) 62.99 41.33 49.91 66.96 53.46 59.45 42.57 62.65 50.69

Period (·) 66.90 60.32 63.44 72.51 67.20 69.76 50.12 74.54 59.94

Colon (:) 59.49 21.71 31.81 58.59 32.00 41.39 54.25 24.29 33.56

Qmark (?) 58.86 33.68 42.85 61.12 49.40 54.64 47.75 42.82 45.15

Exclam (!) 34.51 4.20 7.49 43.03 5.96 10.47 34.88 4.20 7.50

Semicolon (;) 25.58 2.52 4.58 32.48 4.35 7.67 24.85 1.60 3.01

MICRO AVERAGE 64.67 47.29 54.63 69.01 57.23 62.57 45.79 64.73 53.64

Tables 2, 3, 6, and 7 show the performance of different deep learning based
methods in terms of Precision (P), Recall (R), and F1-score (F) using cross-
entropy loss or focal loss in different methods for datasets. Here, B stands for
BiLSTM, W stands for the case not using focal loss, A stands for the Attention
model, and C stands for the CRF model. Finally, the performance of CRF models
are reported in Tables 4 to 5. Due to space constraints, we refer to [18] for details
for the three templates.

As the data are highly imbalanced among punctuation marks, we opt to use
micro averaged precision (P), recall (R), and F1 score [18] to evaluate these
6 https://www.tensorflow.org/.

https://www.tensorflow.org/

396 T. Pham et al.

Table 3. Experimental results on the Vietnamese Newspapers dataset without using
focal loss (B: BiLSTM, A: Attention, C: CRF, F: trained with focal loss, W: trained
without focal loss).

Punctuation BW BAW BCW

P R F P R F P R F

Comma (,) 62.30 41.03 49.47 68.30 52.42 59.32 62.90 42.10 50.44

Period (·) 68.80 58.84 63.43 72.09 68.13 70.06 65.69 63.89 64.77

Colon (:) 58.10 23.12 33.07 61.54 29.87 40.22 56.62 26.35 35.96

Qmark (?) 63.10 33.48 43.75 61.01 51.30 55.73 57.66 39.32 46.76

Exclam (!) 37.27 5.96 10.27 35.71 7.50 12.40 44.71 5.62 9.98

Semicolon (;) 26.51 3.01 5.41 29.25 4.92 8.43 32.07 2.90 5.32

MICRO AVERAGE 65.13 46.61 54.34 69.63 56.97 62.67 64.01 49.34 55.72

Table 4. Experimental results on the Vietnamese Newspapers dataset using CRF
models.

Punctuation Template 1 Template 2 Template 3

P R F P R F P R F

Comma (,) 50.22 14.03 21.93 58.07 34.77 43.50 58.50 33.13 42.31

Period (·) 60.46 24.86 35.23 60.95 43.54 50.80 62.22 42.40 50.43

Colon (:) 47.02 8.68 14.65 53.01 17.00 25.75 52.86 16.31 24.93

Qmark (?) 46.91 11.37 18.30 55.43 19.32 28.65 54.92 19.47 28.75

Exclam (!) 29.84 3.90 6.90 32.58 4.93 8.56 38.49 5.23 9.21

Semicolon (;) 20.00 0.76 1.47 26.80 1.56 2.96 27.97 1.26 2.41

MICRO AVERAGE 55.05 17.80 26.90 59.16 36.86 45.42 59.96 35.49 44.59

models. Models’ hyper-parameters are cross-validated on the validation set and
we report the best setting on the test set. Figure 2 shows the results of various
models we considered. First, we observe that deep learning methods outper-
form the traditional CRF model significantly on both datasets. Moreover, BiL-
STM+Attention achieves the highest performance overall. Second, on the Viet-
namese Novels dataset, we observe that, except BiLSTM+CRF, models trained
with focal loss have a modest improvement over the traditional cross-entropy
loss. However, on the Vietnamese Newspapers dataset, training with focal loss
results in nearly identical performance. One possible reason is that it is much
more difficult to perform hyper-parameter selection on the Vietnamese News-
papers dataset, which results in the non-optimal setting for focal loss. Overall,
experimental results show that class imbalance is a challenging problem in punc-
tuation prediction, and focal loss can become a promising strategy to alleviate
this difficulty.

Vietnamese Punctuation Prediction Using Deep Neural Networks 397

Table 5. Experimental results on the Vietnamese Novels dataset using CRFs.

Punctuation Template 1 Template 2 Template 3

P R F P R F P R F

Comma (,) 42.47 15.92 23.16 51.69 25.92 34.53 52.66 35.26 42.23

Period (·) 44.94 21.25 28.86 52.77 34.72 41.88 51.78 26.22 34.81

Colon (:) 21.43 0.24 0.47 30.77 0.32 0.62 27.27 0.24 0.47

Qmark (?) 58.34 34.19 43.11 71.20 49.48 58.38 72.00 49.55 58.70

Exclam (!) 44.90 27.23 33.90 54.90 41.99 47.58 54.79 41.79 47.42

Semicolon (;) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MICRO AVERAGE 45.52 20.77 28.52 54.40 33.09 41.15 54.39 33.40 41.38

Table 6. Experimental results on the Vietnamese Novels dataset with focal loss (B:
BiLSTM, A: Attention, C: CRF, F: trained with focal loss, W: trained without focal
loss).

Punctuation BF BAF BCF

P R F P R F P R F

Comma (,) 49.00 29.74 37.01 56.10 38.45 45.63 36.71 47.26 41.32

Period (·) 50.20 41.74 45.58 55.86 47.33 51.24 46.56 45.73 46.14

Colon (:) 50.00 0.24 0.47 21.43 0.95 1.81 0.00 0.00 0.00

Qmark (?) 69.56 55.45 61.71 70.34 65.60 67.89 60.90 67.41 63.99

Exclam (!) 51.48 45.79 48.47 52.09 54.30 53.18 59.47 33.52 42.88

Semicolon (;) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MICRO AVERAGE 51.64 38.35 44.02 56.52 45.67 50.52 44.37 45.43 44.89

Table 7. Experimental results on the Vietnamese Novels dataset without using focal
loss (B: BiLSTM, A: Attention, C: CRF, F: trained with focal loss, W: trained without
focal loss).

Punctuation BW BAW BCW

P R F P R F P R F

Comma (,) 52.04 27.05 35.60 56.13 38.35 45.57 48.53 32.46 38.90

Period (·) 49.69 41.72 45.36 55.51 47.01 50.91 49.22 44.45 46.71

Colon (:) 26.67 0.32 0.62 66.67 0.63 1.25 14.71 0.39 0.77

Qmark (?) 69.05 56.69 62.26 71.67 64.69 68.00 68.39 61.09 64.54

Exclam (!) 51.81 45.63 48.53 52.20 53.66 52.92 47.86 52.03 49.86

Semicolon (;) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MICRO AVERAGE 52.30 37.49 43.67 56.52 45.34 50.31 50.34 41.71 45.62

398 T. Pham et al.

Detailedly, for the best model using BiLSTM + Attention, from the Viet-
namese Newspapers dataset, using the focal loss could achieve a slightly lower
(about 0.1%) F1-score than without using it (62.57% vs. 62.67%). Meanwhile,
for the Vietnamese Novels dataset, using the focal loss could obtain a slightly
higher F1-score than without using the focal loss (50.52% vs. 50.31%). The
experimental results in both datasets are a little bit different due to the differ-
ence between the distribution of punctuation marks in these two datasets, and
especially, some punctuation marks rarely occur in Vietnamese novels rather
than Vietnamese newspapers. In addition, we perform grid search on the pairs
(α, γ) with α in {0.1, 0.25, 0.5, 0.75, 0.99} and γ in {0.1, 0.5, 1.0, 2.0, 5.0} for focal
loss hyper-parameter selection. In future work, we plan to increase the grid size
and tune these parameters carefully to achieve better performance. For BiLSTM-
CRF, the focal loss is originally developed for softmax classifiers on the top of
deep networks. It may be one reason explaining the performance drop observed
in BiLSTM-CRF models.

Finally, regardless of the training loss, our results (Fig. 2) show that BiL-
STM with Attention is the best among all the models considered. Furthermore,
training with the focal loss can provide modest improvement to BiLSTM and
BiLSTM with Attention.

6 Conclusion and Future Work

We have studied the punctuation prediction problem for the Vietnamese lan-
guage. We collect two large-scale datasets and conduct extensive experiments
with both traditional method (using CRF models) and a deep learning app-
roach. We address the class imbalance problem in this task and show promising
results using the focal loss on the Vietnamese Newspapers data.

In future work, we plan to use word embeddings and other techniques
(ELMO, BERT, or word segmentation) for data pre-processing. Also, we
do different experiments with more challenging datasets using Vietnamese
speech/spoken- conversation transcripts. For instance, datasets from the IWSLT
evaluation campaigns can be used to construct an efficient method for Viet-
namese punctuation prediction. Another research direction is combining the
punctuation prediction problem with other classical NLP tasks such as word
segmentation or named entity recognition. For example, if one could correctly
tokenize a paragraph into words and label each token with a named entity, the
disambiguation level of this paragraph would reduce. It turns out that the punc-
tuation prediction system would be easier to train. However, existing tokenizer
and NER systems trained with punctuation information available is not the case
in our problem. Therefore, directly applying a tokenizer might be a suboptimal
solution. We strongly believe that learning these two tasks together will offer a
better solution. Eventually, both the data and the implementation are publicly
available at https://github.com/BinhMisfit/vietnamese-punctuation-prediction
for further research.

https://github.com/BinhMisfit/vietnamese-punctuation-prediction

Vietnamese Punctuation Prediction Using Deep Neural Networks 399

Acknowledgement. We would like to thank The National Foundation for Science and
Technology Development (NAFOSTED), University of Science, Inspectorio Research
Lab, and AISIA Research Lab for supporting us throughout this paper.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. CoRR abs/1409.0473 (2015)

2. Ballesteros, M., Wanner, L.: A neural network architecture for multilingual punctu-
ation generation. In: Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 1048–1053. Association for Computational Lin-
guistics, Austin, November 2016. https://doi.org/10.18653/v1/D16-1111. https://
www.aclweb.org/anthology/D16-1111

3. Beeferman, D., Berger, A., Lafferty, J.: Cyberpunc: a lightweight punctuation anno-
tation system for speech. In: Proceedings of the 1998 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, vol. 2, pp. 689–692, May 1998.
https://doi.org/10.1109/ICASSP.1998.675358

4. Dien, D., Hoang, K., Toan, N.V.: Vietnamese word segmentation. In: NLPRS
(2001)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Huang, J., Zweig, G.: Maximum entropy model for punctuation annotation from
speech, January 2002

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the 18th
International Conference on Machine Learning 2001 (ICML 2001), pp. 282–289
(2001)

9. Li, X.L., Wang, D., Eisner, J.: A generative model for punctuation in dependency
trees, pp. 357–373, July 2019

10. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object
detection. In: 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 2999–3007 (2017)

11. Lu, W., Ng, H.T.: Better punctuation prediction with dynamic conditional random
fields. In: Conference on Empirical Methods in Natural Language Processing (2010)

12. Lu, W., Tou Ng, H.: Better punctuation prediction with dynamic conditional ran-
dom fields, pp. 177–186, January 2010

13. Nguyen, C.T., Nguyen, T.K., Phan, X.H., Nguyen, L.M., Ha, Q.T.: Vietnamese
word segmentation with CRFs and SVMs: an investigation. In: PACLIC (2006)

14. Nguyen, V.C., Ye, N., Lee, W.S., Chieu, H.L.: Conditional random field with high-
order dependencies for sequence labeling and segmentation. J. Mach. Learn. Res.
15, 981–1009 (2014)

15. Paul, M.: Overview of the IWSLT 2009 evaluation campaign. In: International
Workshop on Spoken Language Translation (IWSLT) 2009, pp. 1–18 (2009)

16. Peitz, S., Freitag, M., Mauser, A., Ney, H.: Modeling punctuation prediction as
machine translation. In: IWSLT (2011)

17. Pham, D.D., Tran, G.B., Pham, S.B.: A hybrid approach to Vietnamese word seg-
mentation using part of speech tags. In: 2009 International Conference on Knowl-
edge and Systems Engineering, pp. 154–161 (2009)

https://doi.org/10.18653/v1/D16-1111
https://www.aclweb.org/anthology/D16-1111
https://www.aclweb.org/anthology/D16-1111
https://doi.org/10.1109/ICASSP.1998.675358
http://arxiv.org/abs/1412.6980

400 T. Pham et al.

18. Pham, Q.H., Nguyen, B.T., Cuong, N.V.: Punctuation prediction for Vietnamese
texts using conditional random fields. In: ACML Workshop: Machine Learning and
Its Applications in Vietnam, pp. 1–9 (2014)

19. Stephanie, S., Kong, J., Graff, D.: TDT4 multilingual text and annotations
LDC2005T16 (2005)

20. Tilk, O., Alumae, T.: LSTM for punctuation restoration in speech transcripts. In:
INTERSPEECH 2015, pp. 683–687 (2015)

21. Zhang, D., Wu, S., Yang, N., Li, M.: Punctuation prediction with transition-based
parsing. In: ACL (2013)

22. Zhao, Y., Wang, C., Fu, G.: A CRF sequence labeling approach to Chinese punctu-
ation prediction. In: Pacific Asia Conference on Language, Information and Com-
putation (2012)

Foundations of Software Engineering –

Regular Papers

A Light-Weight Tool
for the Self-assessment of Security

Compliance in Software Development –
An Industry Case

Fabiola Moyón1,2(B) , Christoph Bayr2, Daniel Mendez3,4 ,
Sebastian Dännart5, and Kristian Beckers1

1 Siemens CT Munich, Munich, Germany
{fabiola.moyon,kristian.beckers}@siemens.com

2 Technical University of Munich, Munich, Germany
christoph.bayr@tum.de

3 Blekinge Institute of Technology, Karlskrona, Sweden
daniel.mendez@bth.se

4 fortiss GmbH, Munich, Germany
5 INFODAS GmbH, Cologne, Germany

s.daennart@infodas.de

Abstract. Companies are often challenged to modify and improve their
software development processes in order to make them compliant with
security standards. The complexity of these processes renders it difficult
for practitioners to validate and foresee the effort required for compli-
ance assessments. Further, performing gap analyses when processes are
not yet mature enough is costly and involving auditors in early stages
is, in our experience, often inefficient. An easier and more productive
approach is conducting a self-assessment. However, practitioners, in par-
ticular developers, quality engineers, and product owners face difficulties
to identify security-relevant process artifacts as required by standards.
They would benefit from a proper and light-weight tool to perform early
compliance assessments of their processes w.r.t. security standards before
entering an in-depth audit. In this paper, we report on our current effort
at Siemens Corporate Technology to develop such a light-weight assess-
ment tool to assess the security compliance of software development pro-
cesses with the IEC 62443-4-1 standard, and we discuss first results from
an interview-based evaluation.

Keywords: Security standards · Secure software engineering ·
Security assessment · Secure development process · Tool-support

1 Introduction

In context of software process improvement journeys, security is becoming
more and more important. For some industries, achieving secure development is
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 403–416, 2020.
https://doi.org/10.1007/978-3-030-38919-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_33&domain=pdf
http://orcid.org/0000-0003-0535-1371
http://orcid.org/0000-0003-0619-6027
https://doi.org/10.1007/978-3-030-38919-2_33

404 F. Moyón et al.

imposed by regulations, e.g. the IEC 62443-4-1 standard (the 4-1) [9] when devel-
oping for the industrial systems domain, health care or mobility. Such standards
describe secure software development practices and artifacts and dictate a con-
tinuous software process improvement as part of the development life cycle [12].

The desired outcome of security compliance to such standards is two-fold: a
more mature development organization which manages security risks and more
trustable software products which target state-of-the-art security measures. To
demonstrate compliance, companies evaluate gaps between the current devel-
opment process and the chosen standard. Such evaluation is known as security
compliance assessment (SCA).

Although security compliance is compulsory, we argue that in practice it
is perceived as costly and with uncertain return of investment [21,23,24,26].
Software projects stakeholders need to plan and execute SCA while controlling
development resource allocations.

In our experience – covering among all authors a total 14 years of practice
conducting industrial audits – SCA is commonly performed by experts out-
side the development area. Either auditors conduct official assessments, as part
of financial or quality audits, or security experts help project participants in
preparing for a proper (external) compliance audit. SCA can be enforced by
central departments or security officers as part of their policies, e.g. at Siemens
[15], at Airbus [1], or at Microsoft [21]. In worst-case scenarios, when a soft-
ware product was attacked, an SCA is executed as a post-mortem activity with
the pressure of clients, authorities, and/or social media. Again, externals are
involved to point out security deficiencies of the software development process,
some of these issues even reaching the public (see, e.g., [17,27]).

Attempts for self-assessments by development practitioners are limited due to
the complexity and ambiguity of security standards. Standards describe secure
development with sets of process requirements, hence not only applicable to
technology, but also to organizational structures.

In previous research, we proposed the Security-standard Compliant Assess-
ment Model (S2C-AM), an approach to perform SCA with the 4-1 standard as
baseline [8]. In this paper, we extend this work by providing a light-weight tool
that allows development practitioners to perform SCA themselves and to foresee
the readiness of their processes for an external assessment. A self-assessment
using our tool suits in a three-day workshop only with local resources. More-
over, in the context of formal audits, the results can be explicitly tracked to the
4-1 requirements delivering a common ground for auditors and project partici-
pants. Through a self-assessment, development stakeholders can not only obtain
insights into the effort required for compliance but they can also get an overview
in early stages based on previously defined measurements and threshold values.
In principle, our hope is that practitioners benefit from such a systematic app-
roach that reports in a light-weight manner and visually via a process modeling
language where improvement opportunities can be found.

Self-assessment of Security Compliance 405

In the following, we describe the 4-1 standard and relevant previous work
on SCA in Sect. 2. Section 3 describes a self-assessment and Sect. 4 presents the
light-weight tool. In Sect. 5, we discuss a preliminary evaluation of the tool.

2 Fundamentals and Related Work

2.1 The IEC 62443-4-1 Security Standard

Standards provide established best practices collected from experts from different
industries [11]. Security standards have been described as ambiguous and often
complicated to read and understand [4]. Commonly accepted standards for secure
development are the ISO 27034 [12] and the IEC 62443-4-1 [9].

The 4-1 standard concerns secure product development for industrial automa-
tion and control systems (IACS). It describes a secure development life-cycle
with eight practices: Security Management, Specification of Security Require-
ments, Secure by Design, Secure Implementation, Management of security-
related issues, Security update management, Security guidelines. Each practice
consists of several process requirements. In previous work, we made the 4-1 more
readable through process models. Such process models are basis for results pre-
sentation in the presented lightweight tool [22].

2.2 The Security Standard Compliance Assessment Model -
S2C-AM

In previous work, we proposed an approach to measure compliance with the
4-1 standard, the S2C-AM[8]. It evaluates compliance with 4-1 standard pro-
cess requirements using two dimensions: process maturity and artifact maturity.
Process maturity is defined as the 4-1 states: the maturity levels of the Capabil-
ity Maturity Model Integration for Development [7]. Artifact maturity is then
defined based on artifact’s completeness (content of recommended elements)
timeliness (definition of being up-to-date through the time).

The global reporting of S2C-AM is a two-dimension matrix where every 4-1
process requirement is located. Location in the matrix is based on the results of
the so-called Requirement Card. A Requirement Card contains metrics to grasp
the compliance status of the development process area, subject to assessment,
with the respective 4-1 secure development practice. Our lightweight tool con-
sists on instances of S2C-AM’s Requirement Cards for each of the 4-1 practices’s
requirements and 4-1 process models. To facilitate the self-assessment, we pur-
sue that our metrics fulfill ideal attributes [2,3,5,13] e.g.: simplicity, so everyone
involved in the topic can apply the measurement; cost-effectiveness, so cost of
data collection does not exceed the resulting benefit; consistency and automa-
tion, so the results are the same regardless of who perform the assessment;
threshold adjustment, so the development stakeholders can set their compliance
appetite based on available resources.

406 F. Moyón et al.

2.3 Other Security Assessment Approaches

The Building Security In Maturity Model (BSIMM) [16] and the Software Assur-
ance Maturity Model (SAMM) [6] support secure product development assess-
ments. In particular, BSIMM provides a baseline of commonly applied security
activities. An assessment yields a scorecard which shows the results of each
activity compared to baseline. SAMM, on the other hand, is supported by the
Open Web Application Security Project (OWASP) and provides a list of security
practices with instructions on how to measure security-activities performance.
Both BSIMM and SAMM are, however, not based on regulatory standards. Our
lightweight tool closes this gap by supporting compliance assessments according
to the 4-1 standard. Our process model further makes explicit potential gaps
between the 4-1 and chosen development process areas. Hence, users conducting
self-assessments do not need to have knowledge of the 4-1 standard before hand.

3 Security Compliance Self-assessment

Compliance with security-standards and actual security integration in devel-
opment processes are hard to measure. Two major organizational groups deal
with this task and, therefore, executing security compliance assessments (SCA).
Auditors, for example, are used to deal with blurry standard requirements and
manage long checklists of compliance evidences. Security officers want to know if
they meet regulations, and also where are compliance breaches. Moreover, they
have to ensure accurate investment on security initiatives.

Both groups have notion of a well-established secure development life-cycle.
They are aware of common implementation pitfalls at the product and process
level and tend to develop own assessment matrices and questionnaires when tools
are not available. This requires proficiency in reporting to different organizational
levels using the same assessment tool as source.

In contrast, development practitioners, those involved in the development
process, are not used to deal with security standards. They deal with require-
ments which reflect the functionality of the product, but the design of the devel-
opment process is not in scope of their daily duty. They execute security-related
tasks like testing, configuration, selection of external components with limited
awareness of the relation to security standards.

To perform security compliance self-assessments, development practitioners
need preset tools describing the standard secure development process with simple
language and providing easy reporting – the light-weight assessment concept.
As assessors, development practitioners conduct assessments by following tool’s
instructions. They provide information to the tool based on the current process
without expert knowledge on the standard secure development process. However,
during assessments, awareness on the ideal secure development lifecycle should
be increased. Finally, reporting should show deficiencies in the software product
and the development process levels. An assessor should be able to establish a
road map to solve deficiencies. The tool may provide a visualization of criticality
levels to guide prioritization.

Self-assessment of Security Compliance 407

The lightweight tool proposed in the following section is intended to enable
the assessor to perform the self-assessment, generate the road map overview, and
facilitate a compliance track.

4 Tool Implementation for a Self-assessment of Security
Compliance

The tool consists of eight assessment sheets each corresponding to one practice of
the 4-1 standard. Assessors can evaluate compliance with the whole 4-1 standard
(based on experience, a three-day workshop is recommended) or with a specific
practice (2 h for data collection plus 30 min for results sum up are recommended).
This is a pragmatic approach for self-assessments, as development practitioners
can make trial runs with processes they have more expertise. An assessment sheet
is both the evaluation guide and the reporting tool –the light-weight assessment
concept. At the end of SCA, the assessment sheet reflects the compliance status
of the current process in relation to the ideal process demanded by the 4-1
practice.

Assessment sheets contain the following: the practice process model, the
corresponding requirement cards and evaluation results1. Figure 1 presents an
overview of an assessment sheet for the 4-1 practice Secure Implementation (SI).
An extended description of the elements is the following:

Practice Process Model: This model represents the 4-1 practice processes
with explicit activities flows and artifacts using the Business Process and Mod-
eling Notation (BPMN). Models’ accuracy and usability by non-security prac-
titioners were evaluated in previous work [22]. Development practitioners found
models precise and easy to read in comparison to the standard text. Models
served to design requirement cards and also as a visual report of the compli-
ance status. Figure 3 shows an example for the SI practice of the 4-1 where the
artifacts SI-a1 Secure coding standards and SI-a5 Security coding error as well
as where the task SI-t8 Examine threats and ability to exploit interfaces, trust
boundaries and assets are both highlighted as defective.

Requirement Cards: These implement the S2C-AM’s cards for each of the 47
requirements of the 4-1 (c.f. Sect. 2.2, [8]). To arise awareness of the standard, the
original 4-1 requirement text is stated. However, SCA aims at providing values to
the metrics. Process metrics are separated from software product metrics in order
to improve precision. We preferred numerical metrics since they enable assessors
to set a compliance goal using thresholds. In addition, metrics are related to
process models’ tasks and input/output artifacts. Assessors register the status by
selecting the items. Figure 2 shows an instance of the requirement SI-1 - Secure

1 The tool is implemented as a Microsoft Excel file with embedded Visio models and
vba macros.

408 F. Moyón et al.

Fig. 1. Overview of the assessment sheet for the (Practice 4 - Secure Implementation
(SI)). It shows requirements cards for the two requirements in the practice (upper left),
the practice process model visualization of the complete practice (upper right), and the
evaluation results (bottom). See details in Figs. 2 and 3

implementation review of the Secure Implementation practice. The artifact SI-
a5 Security coding error and the task SI-t8 were marked as defective. At the
end of the assessment, the process model is updated showing in red the missing
tasks or artifacts. This representation enables the assessors to easily identify
where exactly a deviation from the standard takes place and where improvement
measures should be taken.

Evaluation Results: As global summary, the tool provides a bar chart showing
the compliance status versus the desired Threshold. This visualization is useful
for security or IT risk management areas.

Self-assessment of Security Compliance 409

Fig. 2. Requirement Card of SI-1 - Secure implementation review in Practice 4 - Secure
Implementation. (Color figure online)

5 Preliminary Evaluation at Siemens

With this preliminary evaluation, we aim to understand if our tool contains
the elements that assessment practitioners would include in a SCA of the 4-1
security standard. In particular, we test the usability of the light-weight mode
of the tool by the target users – non-experts whose background is the actual
software development field. Our results will allow us to the analyze feasibility of
the light-weight self-assessment concept. Further, we can distill some hints on
future work before officially completing and disseminating the tool in industrial
environments both in projects or training concepts. Our evaluation is guided by
good practices on empirical studies [19] and constraint to the following research
questions:

RQ 1. How can we measure compliance of organizations with the IEC 62443-4-1
standard?

RQ 2. How can the assessment results be presented effectively?
RQ 3. What are the challenges in assessing compliance using this tool?

5.1 Design

We chose semi-structured interviews to analyze subjects’ experiences and opin-
ions as openly as possible [25]. Our evaluation is preliminary in a sense that we

410 F. Moyón et al.

Fig. 3. Process model of Practice 4 - Secure Implementation with marked defective
components.

evaluate our tool in an early stage without actual pilot in a case study. Yet, we
still opt for methodological rigor in keys aspects such as the selection of subjects,
the design and review of our interview instrument, and the analysis of results
considering both the answers to our interview questions as well as the comments
from the interviewees.

Subject Selection. Part of the subjects have expertise in security compliance
assessments and knowledge of the 4-1 standard. To stress the ability of the tool to

Self-assessment of Security Compliance 411

support self-assessments in a light-weight mode, we chose subjects with develop-
ment background and basic knowledge of the 4-1 standard. Table 1 characterises
the participants.

Table 1. Overview of the evaluation participants.

Id Knowledge of the
IEC 62443-4-1
standard

Expertise in security
compliance assessment

Background

P1 Advanced Expert - Security consultant in projects
involving the 4-1 standard and
software development frame-
works
- Previously auditor and
security officer

P2 Expert Expert - Lead security expert and
researcher for industrial environ-
ments
- Lead project manager in
compliance assessments of the
IEC 62443 standards family

P3 Advanced Expert - Security consultant in projects
of ISO 27k compliance norms
- Knowledge of assessment
frameworks: Cobit, CMMI,
BSMMI

P4 Beginner None - Software development
- Works with 4-1 standard
process models

P5 Beginner None - Software development
- Works with standard process
models

Survey Instrument. During the interviews, we relied on a questionnaire shown
below. Our questions are grouped into three blocks. The first block deals with
the measurement of compliance and covers RQ1. The second block asks for the
graphical representation of the results in the tool and targets RQ2. RQ3 is cov-
ered in the last block with general questions on security compliance assessments.

Interview. We set a time-frame of 1 h for each interview. Initially, the partici-
pants were asked about their background and experience with the IEC 62443-4-1
standard in general as well as with assessments in the context of the standard
or other security-related standards.

412 F. Moyón et al.

Table 2. Survey instrument

What do you think about the metrics? (RQ1)

1. Do the individual metrics make sense?

2. Do the metrics correctly represent the requirements?

3. Can the individual metrics be answered well?

Usability and graphical representation of the reporting results (RQ2)

1. Is the representation by the process models clear?

2. Are the metric-diagrams helpful?

3. Is the graphical representation useful for the evaluation of the results?

4. What is your overall opinion of the tool: usability and design?

Can the presented tool be used in an assessment? (RQ3)

1. What is most important to you in an assessment?

2. How would you handle the results from this tool?

3. How would you let yourself be influenced by the result?

4. Would you use such a tool in your daily work?

5. What needs to be improved to meet your requirements?

Subsequently, we gave a short overview of the topic and the intention of this
work. We selected as basis the practice 4 Secure Implementation from the 4-1
Standard [9]. We presented the tool with all its capabilities based on this practice.
Afterwards, the interviewees used the tool and were allowed to ask questions.
After clarification of doubts, we started with the actual questionnaire. During
the interviews, the participants were able to consult the tool at any time.

5.2 Results

We group the answers to our research questions in the following paragraphs.
Answers to closed questions in the questionnaire were mapped to a five-point
Likert scale, see Fig. 4. In this case, interviewees were additionally asked for a
rationale in order to grasp free opinions and extra comments (Table 2).

RQ1. How can we measure compliance of organizations with the IEC
4-1 standard? The interviewees evaluated the quality of the created metrics.
Most of the metrics were easy to understand. However, some required expla-
nation. After an explanation, each participant agreed that the metrics make
sense and can serve as a good basis for an assessment. P2 suggests to have a
“Clarification of what exactly is meant” while P1 describes “They are specific”.
The participants with development knowledge but no assessment experience (P4
and P5) find the metrics easy to answer with numbers. Among the assessment
experts, the opinions vary, P1 stated that, e.g., “There are some things you can’t
count e.g. number of secure coding standards” while P2 and P3 find it possible.
Except for P4, the participants agreed that the requirements of 4-1 standard are

Self-assessment of Security Compliance 413

Fig. 4. Distribution of responses to closed questions in the questionnaire.

well represented by the metrics. For P4, quality aspects of the 4-1 standard may
be overseen when metrics focus only on quantitative aspects. For quantitative
aspects, the metrics mostly refer to artifacts, P2 remarked “It is hard to break
down exactly. You can go on as long as you want”.

RQ2. How can the assessment results be presented effectively? Overall,
participants especially appreciate the compliance report based on process mod-
els. In the example presented, everyone understood the compliance gap showed
by the models (see Fig. 3). The process models can be used to understand the
standard and the metrics. Some quotes from participants are: “You have to look
at it in detail, then it’s obvious” - P2; “If you don’t know the model, it’s very
good” - P3.

Regarding the metric diagrams at the end of each practice, participants stated
that they are a useful in addition to the metrics and models. P3 pointed out
management as an audience “Yeah, it’s helpful, but not right there”. In terms of
content, the participants seemed very satisfied by the diagrams, since they can
easily determine how close they are to the respective threshold.

All participants agreed on a good usability of the tool. P1 noted, however,
that it would be difficult to handle without the introduction of the author.
Therefore, instructions for using the tool should be included. In particular, the
participants agreed that the tool is structured in a meaningful and clear way.

The fact that the tool had been implemented in an Excel file was well received
by all participants although poses extra work to provide signed macros in envi-
ronments where macros are automatically blocked: “Excel is something that
everybody has.” - P1. In this context, P3 (security expert) noted that Excel
is a common tool and someone may misuse it. For example, the metrics could
be changed by the user. Versioning and proper access control may reduce the
risk in a real scenario. To sum up, the simple procedure during the assessment

414 F. Moyón et al.

contributes to the tool’s usability (P2: “I only have to enter value and threshold
and then I can mark the components.”).

RQ3. What are the challenges in assessing compliance using this tool?
Participants with assessment experience referred to the following aspects of the
tool as positive:

– Assessments should have a sequence: First check existence of tasks and arti-
facts, then check quality of artifacts and consistent applicability of the tasks.

– Results of the assessment need good visibility and should show in a easy way
the relevant points.

– Metrics should be plausible and well understood by the self-assessment team.
– Assessment teams should be aware of which are the assessment objectives.
– Assessment teams should have good communication skills to deal with inter-

nal and external stakeholders. Internal during the assessment, external to
elevate reports and claim resources for implementation.

Participants reported that they would use the results of the tool to take action
for improvements. P1 might use the tool to discuss the status quo and miss-
ing components with customers in assessment projects. P3 would process and
summarize results to communicate them both at management and development
level. P2 may use process models to support the results of metrics.

Overall, the results of our preliminary evaluation thereby strengthen our
confidence in that this (Excel-based) tool set is a proper means for a light-
weight assessment by non-experts while still making explicit some points for
improvement.

These points for improvement are: instructions to use the tool (P1), global
overview with am structured summary of results (P1, P2, P3). P2 recommends
to apply the tool in several projects and track issues to update the metrics.
Further, metrics require unique id numbers. This will support communication
and tracking.

Threats to Validity. As any qualitative study with a preliminary charac-
ter, we face various threats to validity such as a possible bias from the expert
interviewees emerging from their local context. We compensated for the bias
by considering a larger sample size relative to the context including non-expert
interviewees as well to gain a sense or usability from a non-security practitioners
perspective. In any case, we were particularly interested in harvesting opinion-
ated (experience-based) views and perceptions as they provide a suitable ground
to steer future evaluations in differing contexts (and following different empirical
approaches).

6 Conclusion

In this paper, we have reported on a technique including tooling for a lightweight
self-assessment of security compliance in the development process. One particular
focus was set on covering both the artifact view and the process view alike as

Self-assessment of Security Compliance 415

we consider both imperative in context of software process improvement [18,20].
The transformation from a regular development process to a secure development
process can be further tracked with metrics based on artifacts and tasks. The
gap is reported directly by the metric report and can be also globalized in the
S2C-AMframework which reports in a compliance matrix.

In a world that has already significantly adopted lean and agile develop-
ment practices, we believe security compliance assessment techniques need to be
aligned for self-learning organizations. We consider this light-weight approach
to be essential. Our tool supports cross-functional teams in fulfilling security
requirements in the development process. Our intention is to help these teams
to become mature w.r.t. their secure product development compliance to IEC
62443-4-1.

In particular, our contribution helps practitioners to:

– Understand security compliance goals fast by using process models
– Use practical metrics to assess the level of as-is compliance
– Make gaps transparent and easy to communicate by annotating process
– Output results also in the format of other process maturity frameworks such

as CMMI

For researchers, we contribute the following:

– A blueprint of how a complex secure development process such as IEC 62443-
4-1 can be operationalized for practitioners. This work can serve as blueprint
for operationalizing further process quality standards as well

– Metrics aligned with process models for transparent visualization of problems.
This can serve research as a inspiration of how to communicate process quality
problems to management

Our work has the following limitations. Interview research poses threats to
validity, the most important for this preliminary evaluation relate to possible
selection and confirmation bias. We tried to mitigate this through interview
preparation and rigor, allowing participants to answer freely and asking them
to use the tool themselves. In addition, choosing participants that might not be
directly influenced by the results of this research.

As future steps, we will align further with frameworks for IT governance
such as COBIT [10]. Moreover we will provide a holistic approach of how gov-
ernance can be combined with large scale agile software engineering methods
such as SAFe [14]. We will also conduct further studies with practitioners and
certification bodies to assess the possible adaption of our approach in practice.

References

1. Airbus cybersecurity. https://airbus-cyber-security.com/products-and-services/
2. Basili, V., Caldiera, G., Rombach, H.: The goal question metric approach. Encycl.

Softw. Eng. 528–532 (1994)
3. Basili, V., Weiss, D.: A methodology for collecting valid software engineering data.

IEEE Trans. Softw. Eng. SE–10(6), 728–738 (1984)

https://airbus-cyber-security.com/products-and-services/

416 F. Moyón et al.

4. Beckers, K.: Pattern and Security Requirements: Engineering-Based Establishment
of Security Standards. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16664-3

5. Böhme, R., Freiling, F.C.: On metrics and measurements. In: Eusgeld, I., Freil-
ing, F.C., Reussner, R. (eds.) Dependability Metrics. LNCS, vol. 4909, pp. 7–13.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68947-8 2

6. Chandra, P.: Software assurance maturity model v1.5 (2017)
7. CMMI Product Team: CMMI for development, version 1.3. Technical report,

CMU/SEI-2010-TR-033, Software Engineering Institute, Carnegie Mellon Univer-
sity (2010)

8. Dännart, S., Constante, F.M., Beckers, K.: An assessment model for continuous
security compliance in large scale agile environments. In: Giorgini, P., Weber,
B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 529–544. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21290-2 33

9. IEC: 62443-4-1. Security for industrial automation and control systems Part 4–1.
Product security development life-cycle requirements (2018)

10. ISACA: Cobit 5 (2012)
11. ISO: The main benefits of ISO standards. www.iso.org/benefits-of-standards
12. ISO/IEC: 27034. Information technology - security techniques - application security

(2011)
13. Jaquith, A.: Security Metrics: Replacing Fear, Uncertainty, and Doubt. Pearson

Education, London (2007)
14. Leffingwell, D., Yakyma, A., Knaster, R., Jemilo, D., Oren, I.: SAFe reference guide

(2017)
15. Maidl, M., Kröselberg, D., Christ, J., Beckers, K.: A comprehensive framework for

security in engineering projects based on IEC 62443. In: ISSRE Workshops, USA,
15–18 October 2018 (2018)

16. McGraw, G., Migues, S., Chess, B.: Building security in maturity model. www.
bsimm.com

17. Mello, J.: Cybercrime diary, Q2 2019 who’s hacked (2019). cybersecurity-
ventures.com

18. Fernández, D.M., et al.: Artefacts in software engineering: a fundamental position-
ing. J. Syst. Softw. 18, 2777–2786 (2019)

19. Fernández, D.M., Passoth, J.: Empirical software engineering: from discipline to
interdiscipline. CoRR abs/1805.08302 (2018). http://arxiv.org/abs/1805.08302

20. Méndez Fernández, D., Wagner, S.: A case study on artefact-based RE improve-
ment in practice. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PRO-
FES 2015. LNCS, vol. 9459, pp. 114–130. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-26844-6 9

21. Microsoft Corporation iSEC Partners: Microsoft SDL: return-on-investment (2009)
22. Moyon, F., Beckers, K., Klepper, S., Lachberger, P., Bruegge, B.: Towards contin-

uous security compliance in agile software development at scale. In: RCoSE. ACM
(2018)

23. Ponemon Institute LLC: The true cost of compliance study (2017)
24. PWC: Compliance on the forefront: setting the pace for innovation (2019)
25. Shull, F., Singer, J., Sjøberg, D.I.: Guide to Advanced Empirical Software Engi-

neering. Springer, New York (2007). https://doi.org/10.1007/978-1-84800-044-5
26. Thomson Reuters: Costs of compliance report 2018 (2018)
27. U.S. House of Representatives: The equifax data breach, majority staff report

(2018)

https://doi.org/10.1007/978-3-319-16664-3
https://doi.org/10.1007/978-3-319-16664-3
https://doi.org/10.1007/978-3-540-68947-8_2
https://doi.org/10.1007/978-3-030-21290-2_33
www.iso.org/benefits-of-standards
www.bsimm.com
www.bsimm.com
http://cybersecurityventures.com/
http://cybersecurityventures.com/
http://arxiv.org/abs/1805.08302
https://doi.org/10.1007/978-3-319-26844-6_9
https://doi.org/10.1007/978-3-319-26844-6_9
https://doi.org/10.1007/978-1-84800-044-5

A Novel Hybrid Genetic Algorithm
for the Two-Stage Transportation

Problem with Fixed Charges Associated
to the Routes

Ovidiu Cosma, Petrica C. Pop(B), and Cosmin Sabo

Department of Mathematics and Computer Science, Technical University
of Cluj-Napoca, North University Center at Baia Mare, Baia Mare, Romania
{ovidiu.cosma,petrica.pop}@cunbm.utcluj.ro, sabo.cosmin@gmail.com

Abstract. This paper concerns the two-stage transportation problem
with fixed charges associated to the routes and proposes an efficient
hybrid metaheuristic for distribution optimization. Our proposed hybrid
algorithm incorporates a linear programming optimization problem into
a genetic algorithm. Computational experiments were performed on a
recent set of benchmark instances available from literature. The achieved
computational results prove that our proposed solution approach is
highly competitive in comparison with the existing approaches from the
literature.

1 Introduction

This work deals with a variant of the transportation problem, namely the fixed-
charges transportation problem in a two-stage supply chain network consisting of
a set of manufacturers, a set of distribution centers (DC’s) and a set of customers,
whose scope is to identify and select the manufacturers and the distribution
centers fulfilling the demands of the customers under minimal costs. The main
characteristic of the two-stage fixed-charges transportation problem (TSFCTP)
is that a fixed charge is associated with each route that may be opened in
addition to the variable transportation cost which is proportional to the amount
of goods shipped.

The fixed-charges transportation problem (FCTP) generalizes the classical
transportation problem and it was introduced by Balinski [1]. Guisewite and
Pardalos [6] showed that the fixed-charges transportation problem is NP -hard.
For more information on the FCTP, including a review of exact and heuris-
tic algorithms developed for solving the problem, we refer to Buson et al. [2].
For a review on the variants of the fixed-charges transportation problem and
related problems to the investigated TSFCTP, we refer to Cosma et al. [4] and
Pop et al. [9].

The existing literature regarding the two-stage transportation problem with
fixed-charges associated to the routes is rather scarce. The form investigated in
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 417–428, 2020.
https://doi.org/10.1007/978-3-030-38919-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_34&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_34

418 O. Cosma et al.

our paper was introduced by Jawahar and Balaji [7]. They described a math-
ematical model of the transportation problem as a mixed integer linear pro-
gramming, a heuristic approach based on genetic algorithm (GA) with a specific
coding scheme suitable for two-stage transportation problems, as well as a set
of 20 benchmark instances of various sizes and capacities. Their obtained com-
putational results have been compared to lower bounds and approximate solu-
tions obtained by relaxing the integrality constraints. Raj and Rajendran [10]
proposed two scenarios of the two-stage transportation problem: the first one,
called Scenario 1, considers fixed charges associated to the routes in addition to
unit transportation costs and unlimited capacities of the DCs, while the second
one, called Scenario 2, considers the opening costs of the DCs in addition to unit
transportation costs. In the case of Scenario 1, which coincides with the form
considered in our paper, they described a two-stage genetic algorithm in order
to solve the problem. They also proposed a solution representation that allows
a single-stage genetic algorithm to solve it. The major feature of these GA’s
is a compact representation of the chromosomes based on permutations. Pop
et al. [8] proposed a hybrid algorithm that combines a steady-state genetic algo-
rithm with a local search procedure for solving the problem. Recently, Calvete
et al. [3] described a matheuristic approach for the problem that incorporates
an optimization problem within an evolutionary algorithm and proposed a set
of 20 larger randomly generated instances and Cosma et al. [5] developed an
efficient multi-start Iterated Local Search procedure for the total distribution
costs minimization of the TSFCTP, which constructs an initial solution, uses a
local search procedure to increase the exploration, a perturbation mechanism
and a neighborhood operator in order to diversify the search.

Our novel solution approach has some important and original features that
differentiate it from the existing ones from the literature. We used an integer
chromosome representation in which the genes have integer values that represent
estimates of the number of units to be transported on each transportation link
of the model. For an efficient exploration of the solutions space and in order to
avoid evolution stalling due to local minima, several chromosome populations
have been created, evolving separately to different offspring, which are finally
merged into the populations.

We organized the remainder of the paper as follows: in Sect. 2, we give some
notations and definitions related to the two-stage transportation problem with
fixed-charges associated to the routes that will be used throughout the paper and
we also present a mixed integer formulation of the problem. The novel solution
approach for solving the considered transportation problem is described in Sect. 3
and some preliminary computational experiments and the achieved results are
presented and analyzed in Sect. 4. Finally, we conclude our work and discuss our
plans for future work in Sect. 5.

A Novel Hybrid GA for the Two-Stage Transportation Problem 419

2 Definition of the Two-Stage Fixed-Charges
Transportation Problem

In order to define the considered two-stage fixed-charges transportation problem,
we start by defining the related sets, decision variables and parameters:

p the number of manufacturers and i is the manufacturer identifier;

q the number of distribution centers (DCs) and j is the DC identifier;

r the number of customers and k is the customer identifier;

Si the capacity of manufacturer i;

Dk the demand of customer k;

fij the fixed charge for the link from manufacturer i to DC j

gjk the fixed charge for the link from DC j to customer k;

bij the unit cost of transportation from manufacturer i to DC j;

cjk the unit cost of transportation from DC j to customer k.

xij the number of units transported from manufacturer i to DC j,

yjk the number of units transported from DC j to customer k,

zij is 1 if the route from manufacturer i to DC j is used and 0 otherwise,

wjk is 1 if the route from DC j to customer k is used and 0 otherwise

Given a set of p manufacturers, a set of q distribution centers (DC’s) and a
set of r customers with the following properties:

1. Each manufacturer may ship to any of the q DCs at a transportation cost
bij per unit from manufacturer i, where i ∈ {1, ..., p}, to DC j, where j ∈
{1, ..., q}, plus a fixed charge fij for operating corresponding the route.

2. Each DC may ship to any of the r customers at a transportation cost cjk per
unit from DC j, where j ∈ {1, ..., q}, to customer k, where k ∈ {1, ..., r}, plus
a fixed charge gjk for operating the corresponding route.

3. Each manufacturer i ∈ {1, ..., p} has Si units of supply and each customer
k ∈ {1, ..., r} has a given demand Dk.

The aim of the two-stage fixed-charges transportation problem is to determine
the routes to be opened and corresponding shipment quantities on these routes,
such that the customer demands are fulfilled, all shipment constraints are satis-
fied, and the total distribution costs are minimized.

An illustration of the investigated TSFCTP is presented in the next figure
(Fig. 1).

The TSFCTP can be modeled as the following mixed integer problem
described by Raj and Rajendran [10]:

420 O. Cosma et al.

Fig. 1. Illustration of the two-stage fixed-charges transportation problem

min Z =
p∑

i=1

q∑

j=1

(bijxij + fijzij) +
q∑

j=1

r∑

k=1

(cjkyjk + gjkwjk) (1)

s.t.

q∑

j=1

xij ≤ Si, ∀ i ∈ {1, ..., p} (2)

q∑

j=1

yjk = Dk, ∀ k ∈ {1, ..., r} (3)

p∑

i=1

xij =
r∑

k=1

yjk, ∀ j ∈ {1, ..., q} (4)

xij ≥ 0, ∀ i ∈ {1, ..., p}, ∀ j ∈ {1, ..., q} (5)
yjk ≥ 0, ∀ j ∈ {1, ..., q},∀ k ∈ {1, ..., r} (6)

zij =
{

1, xij > 0
0, xij = 0 ∀ i ∈ {1, ..., p}, ∀ j ∈ {1, ..., q} (7)

wjk =
{

1, yjk > 0
0, yjk = 0 ∀ j ∈ {1, ..., q}, ∀ k ∈ {1, ..., r} (8)

The objective function minimizes the total distribution cost: the fixed charges
and the transportation per-unit costs. Constraints (2) guarantee that the quan-
tity shipped out from each manufacturer does not exceed the available capacity,
constraints (3) guarantee that the total shipment received from DCs by each
customer is equal to its demand and constraints (4) are the flow conservation
conditions and they guarantee that the units received by a DC from manufactur-
ers are equal to the units shipped from the DCs to the customers. The last four
constraints ensure the integrality and non-negativity of the decision variables.

The considered two-stage transportation problem with fixed charges associ-
ated to the routes is a NP -hard optimization problem because it extends the

A Novel Hybrid GA for the Two-Stage Transportation Problem 421

fixed-charges transportation problem, which have been shown to be NP -hard by
Guisewite and Pardalos [6]. That is why in order to tackle the two-stage trans-
portation problem with fixed charges associated to the routes, we proposed an
efficient hybrid genetic algorithm.

3 Description of the Hybrid Metaheuristic Algorithm

Our proposed hybrid metaheuristic approach consists of a genetic algorithm
(GA) whose operation is based on solving a set of linear optimization problems.

GAs are search heuristic methods inspired from the theory of natural evo-
lution. They can deliver good solutions efficiently, making them attractive for
solving difficult optimization problems.

One of the most important elements of a GA is the chromosome representa-
tion scheme. In our genetic algorithm, each chromosome contains p × q + q × r
genes, that represent the transportation links in the distribution system. There
are p × q links from the p manufacturers to the q DCs, and q × r links from
the q DCs to the r customers. The value of each gene represents an estimate
of the number of units transported along the corresponding transportation link,
in the optimal solution of the TSFCTP. The gene corresponding to the link
from manufacturer i to DC j is denoted x̃ij , and the gene corresponding to the
link from DC j to customer k is denoted ỹjk. The genes are used to estimate
the total cost for transporting one unit on the corresponding link, so that it
includes the correct fraction of the fixed charge required for opening that link.
These estimated costs denoted b̃ij and c̃jk are computed according to relations
(9) and (10), where b̃ij correspond to the links from manufacturers to DCs and
c̃jk correspond to the links from DCs to customers.

b̃ij =

⎧
⎨

⎩
bij +

fij
x̃ij

, if x̃ij > 0

bij + fij , if x̃ij = 0
(9)

c̃jk =

{
cjk +

gjk
ỹjk

, if ỹjk > 0

cjk + gjk, if ỹjk = 0
(10)

The value of the genes that form the initial population chromosomes are cho-
sen randomly. However, it is improbable that the random estimates will be close
to reality. For improving the quality of the chromosomes, we developed a simple
algorithm called Estimates Correction, that will be used also for improving each
new chromosome created by the crossover operator.

For defining the Estimates Correction algorithm, we consider the following
linear optimization problem:

min
p∑

i=1

q∑

j=1

b̃ijxij +
q∑

j=1

r∑

k=1

c̃jkyjk (11)

s.t. (2), (3), (4), (5), (6)

422 O. Cosma et al.

Algorithm 1. Algorithm Estimates Correction
input: chromosome(x̃ij , ỹjk)
output: corrected chromosome
1: Z̃ ← ∞
2: Solve the linear optimization problem (11)
3: Calculate Z based on relation (1)
4: if Z̃ < Z or the solution is a duplicate then
5: Result ← saved chromosome
6: STOP
7: else
8: Z̃ ← Z
9: Save the chromosome

10: Update the estimates: x̃ij ← xij , ỹjk ← yjk
11: goto 2.
12: end if

where b̃ij and c̃jk are the total unit transportation cost estimates, calculated
according to (9) and (10).

This is a well-known optimization problem, namely the Minimum Cost Flow
Problem, for which there are several algorithms that solve it efficiently. For the
results presented in this paper, we used the Network Simplex algorithm.

The Estimates Optimization algorithm works as follows:
Step 1 initializes the total cost of distribution Z̃. The linear optimization

problem (11) is optimally solved in step 2. The amounts xij and yjk determined
in step 2 are used in step 3 to calculate the total cost Z of the TSFCTP. Steps 2
and 3 may repeat because of the loop created by the jump in step 11, but there
is no guarantee that the solutions will always be improved. The decision to stop
or continue the algorithm is taken in step 4. The algorithm is stopped if the last
iteration worsened the solution, or the resulting chromosome is a duplicate. Two
chromosomes are considered identical, if the corresponding linear optimization
problems (11) have identical solutions, even if the x̃ij and ỹjk estimates are
different. The last saved chromosome represents the result of the algorithm. If
step 7 is reached, it means that the last iteration improved the TSFCTP solution.

Algorithm 2. Algorithm Genetic Evolution
input: population
1: repeat
2: repeat
3: p1 ← Tournament Selection (population)
4: p2 ← Tournament Selection (population)
5: new offspring ← Mutation (Crossover (p1, p2))
6: until new generation is completed
7: population ← Admission (population, new generation)
8: until evolution stalls

A Novel Hybrid GA for the Two-Stage Transportation Problem 423

Fig. 2. The operating principle of our genetic optimization algorithm

In this case, the chromosome is saved, the x̃ij and ỹjk estimates are updated in
step 10, and the algorithm continues with a jump to step 2.

The operating principle of our genetic optimization algorithm is shown in
Fig. 2.

The process of evolution for a chromosome population is presented in Algo-
rithm2.

The selection operator chooses two parent chromosomes p1 and p2 from the
current population, for mating. The two parents are chosen using the tournament
selection strategy (lines 3, 4). The number of participants in each tournament is
randomly selected between 2 and 10.

The crossover operator combines the genes of the two parents, to form the
chromosome of the offspring (line 5). The genes of the offspring are taken either
from p1 or p2 with equal probabilities. This results in an offspring carrying equal
genetic information from both parents.

Each new chromosome can suffer a mutation, with 0.01 probability. The
mutation operator chooses randomly a client k, and clears all the estimates for
its links ỹjk. Then maximum 5 DCs are randomly chosen and the estimates of
their links to client k are replaced with random values in the interval [0,Dk].
Next a DC j is randomly chosen and all the estimates for the links from j to the

424 O. Cosma et al.

manufacturers x̃ij are cleared. Then maximum 5 manufacturers are randomly
chosen and their estimates for the links to DC j are replaced with random values
in the interval [0, Si].

The resulting offspring is passed through the Estimates Correction algorithm,
that also evaluates its fitness value Z. If the offspring has better fitness than the
last individual in the current population, then the crossover and eventual muta-
tion are considered successful, and the individual is retained. Unfit chromosomes
are destroyed immediately.

The internal loop (lines 2–6) of the Genetic Evolution algorithm performs at
least 3N crossover operations for each new generation. If those operations fail to
create at least 2N new fit chromosomes, then the number of crossover operations
is increased to maximum 10N , or until 2N fit chromosomes are created.

The Admission operation in line 7 of the Genetic Evolution algorithm takes
some of the chromosomes in the current population and offspring to form the
new population, hopping that it will be better than the previous one. The age
of each chromosome is incremented when it is passed from the old into the new
population. The following rules have been applied to create the new population:

– The maximum age of chromosomes was limited to 3 generations. Older chro-
mosomes are not allowed into the new population.

– The first 2/3N chromosomes in the new population are composed of the fittest
chromosomes from the old population and offspring. At most, half of these
chromosomes may originate from the old population.

– The remaining 1/3N chromosomes are randomly chosen from the rest of the
old population and offspring.

The main loop of the Genetic Evolution algorithm ends when the best chro-
mosome is no longer improved in the last three consecutive generations. This
chromosome could represent the optimal solution to the TSFCTP, but usually
for complex problems it is only a local minimum.

Our main optimization procedure is presented in Algorithm3.

Algorithm 3. Main
1: randomly generate population
2: Genetic Evolution(population)
3: repeat
4: new breed ← population
5: randomly generate population
6: Genetic Evolution(population)
7: repeat
8: p1 ← Tournament Selection (population)
9: p2 ← Tournament Selection (new breed)

10: new offspring ← Mutation (Crossover (p1, p2))
11: until new generation is completed
12: population ← Hybrid Admission (population, new breed, new generation)
13: Genetic Evolution(population)
14: until the running time limit is exceeded

A Novel Hybrid GA for the Two-Stage Transportation Problem 425

The initial population is composed of N = min(
pq + qr

5
, 500) randomly gen-

erated chromosomes. The x̃ij estimates are chosen randomly from the interval
[0, Si], and the ỹjk estimates are chosen randomly from the interval [0,Dk]. Each
random chromosome in the initial population is passed through the Estimates
Correction algorithm.

The chromosome population is improved by calling the Genetic Evolution
procedure. This procedure ends when the optimal solution of TSFCTP is found
or is reached in a local minimum. The population thus obtained represents a new
breed of chromosomes, the evolution of which is stopped, because any subsequent
gains would appear far too slow.

The main loop of the algorithm (lines 3 14) creates new breeds of chromo-
somes that are merged together using hybrid selection and the crossover oper-
ator, for the best possible coverage of the solutions space. The loop ends when
the running time limit of the algorithm is exceeded. Each breed evolution starts
with a population of random chromosomes.

The Loop on lines 7 11 creates a new chromosome population by merging
two different breeds. The selection process organizes one tournament in each
of the two breeds that are merged together Thus each offspring will contain
genetic information from both breeds. In the merging operation, a minimum
of 5N crossover operations are performed, that result in at least 4N new fit
chromosomes. If this is not possible, then the number of crossover operations is
extended up to a maximum of 15N .

The Hybrid Admission operation performed at the end of the loop, creates
a new population, taking chromosomes from the two merged populations and
their offspring, based on the rules described above. The newly created population
follows the normal process of evolution.

4 Computational Results

In order to analyze the performance of our proposed algorithm, we tested it
on a set of benchmark instances that was proposed by Calvete et al. [3]. We
performed 5 independent runs for each instance, as there were performed by
Calvete et al. [3].

The computational results obtained by our proposed solution approach in
comparison to the matheuristic approach proposed by Calvete et al. [3] are pre-
sented in Table 1. The first column in Table 1 gives the number of the instance
and the second one provides its size. The next two columns contain the optimal
solution obtained by CPLEX when it is available and the corresponding time.
The running time of CPLEX was limited to 3600 s. The instances for which
CPLEX could not find the optimal solution within the running time, are marked
with an asterisk. The last columns provide the results reported by Calvete et al.
[3] and our achieved results. The following information is provided: the mini-
mum and maximum objective function values obtained in the five runs of each
instance (Zmin, and Zmax), the average gap and the average time spent by the
algorithms for finding the best solution. The gap was calculated as proposed by

426 O. Cosma et al.

Calvete et al. [3]: gap = 100 × (Z − Zmin)/Zmin, where Z is the average of the
solutions objective value.

The computational times are reported in seconds. The results written in bold
represent cases for which the best results have been achieved either by CPLEX,
or using the mat heuristic proposed by Calvete et al. [3], or by our novel solution
approach.

Table 1. Computational results achieved by our proposed soft computing approach
compared to existing methods

No. Size CPLEX Calvete et al. [3] Our approach

p q r Zopt Tcplex Zmin Zmax gap Time Zmin Zmax gap Time

1. 2 4 6 71484 0.2 opt opt 0.00 0.0 opt opt 0.00 0.006

2. 2 4 8 102674 0.4 opt opt 0.00 0.0 opt opt 0.00 0.004

3. 4 8 12 124253 0.3 opt opt 0.00 0.2 opt opt 0.00 0.036

4. 4 8 16 136779 0.3 opt opt 0.00 0.2 opt opt 0.00 0.020

5. 6 12 18 150932 0.3 opt opt 0.00 0.2 opt opt 0.00 0.101

6. 6 12 24 200998 0.9 opt opt 0.00 0.2 opt opt 0.00 0.128

7. 8 16 24 147741 0.5 opt opt 0.00 0.4 opt opt 0.00 0.224

8. 8 16 32 196187 2.4 opt opt 0.00 1.8 opt opt 0.00 0.993

9. 10 20 30 162660 1.2 opt opt 0.00 2.2 opt opt 0.00 0.993

10. 10 20 40 216758 23.1 opt opt 0.00 2.6 opt opt 0.00 1.483

11. 20 40 60 235366 11.2 opt 235783 0.07 8.4 opt opt 0.00 15.3

12. 20 40 80 ∗424386 >3600 424732 426762 0.12 126.4 423827 423827 0.00 554.3

13. 30 60 90 296441 2047 296451 297937 0.25 276.6 opt 296443 0.0003 299.2

14. 30 60 120 ∗405231 >3600 405099 405294 0.01 278.6 404625 404625 0.00 250.0

15. 40 80 120 ∗346934 >3600 347381 348277 0.15 592.8 346934 346934 0.00 1564.8

16. 40 80 160 ∗554160 >3600 553841 556802 0.19 503.4 553392 554341 0.047 2664.0

17. 50 100 150 ∗371799 >3600 371799 372480 0.01 1088.6 371831 371976 0.006 1575.7

18. 50 100 200 ∗678451 >3600 678150 680430 0.19 814.6 677708 679078 0.103 2357.2

19. 60 120 180 ∗370693 >3600 370905 372023 0.16 1600.8 370809 370961 0.02 2129.9

20. 60 120 240 ∗577985 >3600 575566 576213 0.05 1125.4 575241 576304 0.998 2538.6

Regarding the computational times, it is difficult to make a fair compari-
son between algorithms, because they did not run on the same computer and
they were implemented in different programming languages. In order to be able
to make an objective comparison, we will analyze the processing power of the
computers that ran the two algorithms, and the efficiencies of the programming
languages used for their implementation.

The matheuristic algorithm proposed by Calvete et al. [3] has been run on an
Intel Pentium D CPU at 3.0 GHz having 3.2 GB of RAM, while our algorithm on
an Intel Core i5-4590 processor at 3.3 GHz with 4GB of RAM. The single thread
ratings of the two processors can be found in [12] and we observed that our
processor runs 3.03 times faster. As regards the programming languages, we used
Java, while the algorithm proposed by Calvete et al. [3] was programmed in C++.
A comparison between the two programming languages in terms of efficiency can
be found in [11]. The time factor for C++: 1, the time factor for Java 64 bit: 5.8.
Therefore, our programming language is 5.8 times slower. In consequence, we

A Novel Hybrid GA for the Two-Stage Transportation Problem 427

considered that the greater speed of the Core i5 processor roughly compensates
the slowness of the Java programming language. Because the ratings are always
approximate, we did not use any scaling factor. The running times reported in
Table 1 are the times measured during the experiments.

Analyzing the computational results reported in Table 1, we can observe that
the algorithm developed by Calvete et al. [3] provided the optimal solutions in
10 out of 20 instances and our proposed solution approach obtained the optimal
solutions for all the instances for which CPLEX delivered the optimal solution.

Our algorithm provided the optimal solution in all the five runs in less than
1 s for the first ten instances and within 15.3 s in the case of instance 11 and
within 299.2 s in the case of instance 13. We should point out that in the case
of instance 12, the solution reported by Calvete et al. [3] as to be obtained
by CPLEX is wrong. We obtained a different solution using CPLEX which is
displayed in Table 1.

In the case of instances 14 and 16, our algorithm provided in all the five
runs better solutions compared to the ones delivered by CPLEX within 3600 s
and Calvete et al. [3]. For 6 out of 20 instances our proposed approach does not
provide the same solution in all the five runs, but we can remark that the gap
ranges between 0.0003 and 0.103, fact that proves the stability of our proposed
solution approach. Instance 17 is the only one for which the algorithm developed
by Calvete et al. [3] delivered a better value of the minimum objective function
(Zmin) than our proposed algorithm, but our maximum objective value function
(Zmax) is better.

Overall, the comparison between our proposed solution approach and the
algorithm of Calvete et al. [3] can be summarized as follows:

Our algorithm provided the best maximum objective value function (Zmax)
and the best gap for each of the 20 instances and our algorithm provided the
best minimum objective function (Zmin) for each of the instances, with only one
exception: instance 17, for which our solution is 0.009% weaker. The computation
times of our algorithm are better for 10 out of 20 instances. Our algorithm needed
longer computation times for some instances, but that is explicable because our
algorithm found better solutions for those instances.

Compared with CPLEX, our algorithm found better solutions or the same
solutions for 18 out of 20 instances. The exceptions are instances 17 and 19,
for which our solutions are 0.009% respectively 0.016% weaker. Our algorithm
performs faster than CPLEX for all the instances.

5 Conclusions

In this paper, we described a novel hybrid genetic algorithm for solving the
two-stage transportation problem with fixed charges associated to the routes.
Our method incorporates a linear programming optimization procedure within
the framework of a genetic algorithm. Some important features of our proposed
algorithm are: the use of an efficient representation in which the chromosomes
are generated in two stages, the use of several chromosome populations that

428 O. Cosma et al.

are created and that evolve separately to different offspring, which are finally
merged into the populations, giving us the possibility to explore other parts of
the solutions space and escaping from local optima.

We evaluated the performance of the proposed solution approach on a set of
benchmark instances recently proposed by Calvete et al. [3]. The computational
results that we achieved, prove the efficiency of our proposed solution approach
in yielding high quality solutions within reasonable running times, besides its
superiority against other existing competing methods from the literature.

In future, we plan to improve the developed hybrid genetic algorithm by com-
bining with local search methods and to evaluate the generality and scalability
of the proposed solution approach by testing it on larger instances.

References

1. Balinski, M.I.: Fixedcost transportation problems. Nav. Res. Logist. 8(1), 41–54
(1961)

2. Buson, E., Roberti, R., Toth, P.: A reduced-cost iterated local search heuristic for
the fixed-charge transportation problem. Oper. Res. 62(5), 1095–1106 (2014)

3. Calvete, H., Gale, C., Iranzo, J., Toth, P.: A matheuristic for the two-stage fixed-
charge transportation problem. Comput. Oper. Res. 95, 113–122 (2018)

4. Cosma, O., Danciulescu, D., Pop, P.C.: On the two-stage transportation problem
with fixed charge for opening the distribution centers. IEEE Access 7(1), 113684–
113698 (2019)

5. Cosma, O., Pop, P.C., Pop Sitar, C.: An efficient iterated local search heuristic
algorithm for the two-stage fixed-charge transportation problem. Carpathian J.
Math. 35(2), 153–164 (2019)

6. Guisewite, G., Pardalos, P.: Minimum concave-cost network flow problems: appli-
cations, complexity, and algorithms. Ann. Oper. Res. 25(1), 75–99 (1990)

7. Jawahar, N., Balaji, A.N.: A genetic algorithm for the two-stage supply chain
distribution problem associated with a fixed charge. Eur. J. Oper. Res. 194, 496–
537 (2009)

8. Pop, P.C., Sabo, C., Biesinger, B., Hu, B., Raidl, G.: Solving the two-stage fixed-
charge transportation problem with a hybrid genetic algorithm. Carpathian J.
Math. 33(3), 365–371 (2017)

9. Pop, P.C., Matei, O., Pop Sitar, C., Zelina, I.: A hybrid based genetic algorithm
for solving a capacitated fixed-charge transportation problem. Carpathian J. Math.
32(2), 225–232 (2016)

10. Raj, K.A.A.D., Rajendran, C.: A genetic algorithm for solving the fixed-charge
transportation model: two-stage problem. Comput. Oper. Res. 39(9), 2016–2032
(2012)

11. Hundt, R.: Loop recognition in C++/Java/Go/Scala. In: Proceedings of Scala Days
(2011). https://days2011.scala-lang.org/sites/days2011/files/ws3-1-Hundt.pdf

12. https://www.cpubenchmark.net/compare/Intel-Pentium-D-830-vs-Intel-i5-4590/
1127vs2234

https://days2011.scala-lang.org/sites/days2011/files/ws3-1-Hundt.pdf
https://www.cpubenchmark.net/compare/Intel-Pentium-D-830-vs-Intel-i5-4590/1127vs2234
https://www.cpubenchmark.net/compare/Intel-Pentium-D-830-vs-Intel-i5-4590/1127vs2234

Do People Use Naming Conventions
in SQL Programming?

Aggelos Papamichail, Apostolos V. Zarras(B), and Panos Vassiliadis

Department of Computer Science and Engineering, University of Ioannina,
Ioannina, Greece

{apapamichail,zarras,pvassil}@cs.uoi.gr

Abstract. In this paper, we investigate the usage of naming conventions
in SQL programming. To this end, we define a reference style, consisting
of naming conventions that have been proposed in the literature. Then,
we perform an empirical study that involves the database schemas of
21 open source projects. In our study, we evaluate the adherence of the
names that are used in the schemas to the reference style. Moreover,
we study how the adherence of the names to the reference style evolves,
during the lifetime of the schemas. Our study reveals that many conven-
tions are followed in all schemas. The adherence to these conventions is
typically stable, during the lifetime of the schemas. However, there are
also conventions that are partially followed, or even not followed. Over
time, the adherence of the schemas to these conventions may improve,
decay or remain stable.

Keywords: Naming conventions · Coding styles · SQL programming

1 Introduction

Take a look at the code snippet that is given in Listing 1. It is a typical SQL
table definition from the database schema of Joomla (Table 2). There are several
naming issues that clutter the definition of the table. For instance, the name
of the table, ‘# menu’, begins with a sequence of special characters. Moreover,
the table name and the column names are quoted. In general, the use of special
characters and quotes in names is not considered a good practice, for compat-
ibility and portability reasons [9,11]. Several column names consist of multiple
terms. Concerning readability, this practice is perfectly fine. However, the way of
separating the terms is not consistent. For some multi-term names the terms are
separated with underscores (e.g., ‘checked out’, ‘checked out time’), other
multi-term names are in camelCase (e.g., ‘browserNav’), while there are also
multi-term names without any separation between the constituent terms (e.g.,
‘menutype’, ‘utaccess’). Another possible readability problem is the use of
acronyms in some column names (e.g., ‘lft’, ‘rgt’) [9,11]. From a lexico-
graphical point of view, table names are typically in plural or in some collective
form, while column names are in singular form [9,11]. However, in Listing 1 the
name of the table is in singular form.
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 429–440, 2020.
https://doi.org/10.1007/978-3-030-38919-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_35&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_35

430 A. Papamichail et al.

1 --
2 -- Table structure for table ‘#__menu ‘
3 --
4
5 CREATE TABLE ‘#__menu ‘ (
6 ‘id‘ int (11) NOT NULL auto_increment ,
7 ‘menutype ‘ varchar (75) default NULL ,
8 ‘name ‘ varchar (255) default NULL ,
9 ‘alias ‘ varchar (255) NOT NULL default ’’,

10 ‘link ‘ text ,
11 ‘type ‘ varchar (50) NOT NULL default ’’,
12 ‘published ‘ tinyint (1) NOT NULL default 0,
13 ‘parent ‘ int (11) unsigned NOT NULL default 0,
14 ‘componentid ‘ int (11) unsigned NOT NULL default 0,
15 ‘sublevel ‘ int (11) default 0,
16 ‘ordering ‘ int (11) default 0,
17 ‘checked_out ‘ int (11) unsigned NOT NULL default 0,
18 ‘checked_out_time ‘ datetime NOT NULL default ’0000 -00 -00�00:00:00 ’,
19 ‘pollid ‘ int (11) NOT NULL default 0,
20 ‘browserNav ‘ tinyint (4) default 0,
21 ‘access ‘ tinyint (3) unsigned NOT NULL default 0,
22 ‘utaccess ‘ tinyint (3) unsigned NOT NULL default 0,
23 ‘params ‘ text NOT NULL ,
24 ‘lft ‘ int (11) unsigned NOT NULL default 0,
25 ‘rgt ‘ int (11) unsigned NOT NULL default 0,
26 ‘home ‘ INTEGER (1) UNSIGNED NOT NULL DEFAULT 0,
27 PRIMARY KEY (‘id ‘),
28 KEY ‘componentid ‘ (‘componentid ‘,‘menutype ‘,‘published ‘,‘access ‘),
29 KEY ‘menutype ‘ (‘menutype ‘)
30) TYPE=MyISAM CHARACTER SET ‘utf8 ‘;

Listing 1. A typical SQL table definition in Joomla.

Using appropriate naming conventions in source code is important for porta-
bility, readability and maintainability reasons [14]. In this paper, we investigate
the use of naming conventions in SQL programming. Specifically, we perform
an empirical study that involves 21 database schemas found in respective free
and open source (FOSS) projects. To begin, we introduce a reference style that
consists of a set of naming conventions, which have been proposed in the liter-
ature [9,11]. Then, we focus on two issues: (1) we assess the adherence of the
names that are used in the schemas to the naming conventions of the reference
style; (2) we investigate the evolution of the schemas, to see if the adherence of
the names to the conventions improves, decays or remains stable. To assess the
adherence of a schema to the reference style we developed a tool, called DBSea,
which is available as an open source project1.

The rest of this paper is structured as follows. In Sect. 2, we discuss related
work. In Sect. 3, we detail the reference naming style and the setup of our study.
In Sect. 4, we present our findings. Finally, in Sect. 5 we conclude with a summary
of our contribution and the future perspectives of this work.

2 Related Work

Several interesting empirical studies have been performed regarding the usage of
names in source code. According to these studies, the usage of full word identifiers
1 github.com/apapamichail/DBsea.

http://github.com/apapamichail/DBsea

Do People Use Naming Conventions in SQL Programming? 431

improves source code readability [4,13]. Typically, short identifiers take longer to
understand [10]. Nevertheless, in some cases single letter identifiers may convey
meaningful information [5]. The styles used for separating multi-term identifiers
like CamelCase and underscores are also important for software comprehension
[6]. The impact of each style varies depending on the development task and the
developers’ experience. Further research efforts study naming patterns and anti-
patterns for classes, attributes, methods, variables and so on [3,7,8]. Moreover,
there are studies that report naming patterns used in visual programming [16].
Another line of research, concerns techniques for the recommendation of class,
variable and method names [1,2,12] that can be used to improve the readability
of the code.

Differently from the aforementioned efforts, in this paper we perform an
empirical study that concerns the usage of naming conventions in SQL program-
ming.

3 Setup

In this section, we discuss in detail the naming conventions and the database
schemas that we consider in our study.

3.1 Reference SQL Naming Style

The naming conventions that we consider come from Joe Celko’s SQL program-
ming style [9], Simon Holywell’s SQL style guide [11], and the ISO-11179 naming
standard. We do not claim that this list of conventions is complete, neither that
it covers the in-house style of every possible organization. However, we believe
it is a good starting point for our study as they come from 3 well-known sources
that are not specific to any particular DBMS. We do not consider the assumed
naming conventions as ground truth. Instead, we assess the extent to which they
are actually used in practice.

Table 1, summarizes the naming conventions that we consider. In the table,
each convention is introduced with a brief description and an acronym that we
use to facilitate the visualization of the results. We categorize the conventions
with respect to their scope, which can be tables and/or columns. Moreover,
we categorize the conventions with respect to their purpose, which can be to
facilitate portability, readability, and maintainability.

For portability reasons between different commercial and open source DBMSs
it is better to start SQL elements names with letters (SWL) and end them with
letters or numbers (EWL). In addition, it is better to avoid using special charac-
ters (ASC), spaces (AUS) and delimiters (AUD). Moreover, it is recommended
to use names of a proper length (UPL), not exceeding respective standard upper
bound limits. Celko provides a table with various identifier length limits that
have been assumed in different DBMSs. Based on this table, the limit that we
assume in our study is 30 characters.

432 A. Papamichail et al.

Table 1. Reference style.

For readability reasons, it is better to use a uniform term separation style
(UTS) for multi-term names. To facilitate understanding, names that consist of
multiple terms should contain more words than acronyms (UMW). According to
[9], names in CamelCase should be avoided (ACC) because empirical evidence
indicates that they disrupt the flow of reading, by making the eye concentrate on
case changes. Similarly, the use of consecutive underscores (ACU) and reserved
words (ARW) in names is not a good practice.

In the context of an SQL schema, tables are unique concepts that repre-
sent collections of related data. Therefore, table names should be treated like
proper nouns, starting with a capital letter (SWC). As tables represent collec-
tions of related data, it is expected that table names should be in plural (TIP).
It would also be good to avoid concatenating table names (ACN) to name rela-
tions between them. This is a common practice for naming relations, but the
concatenated names do not reveal the purpose of the relation.

Concerning column names, when needed, it would be good to use standard-
ized postfixes (USP); a list of such postfixes is provided in [9]. Columns, represent
specific properties of the related data. Hence, it is expected that column names
should be in singular form (CIS). Column names should be different from table
names (DCN). Defining column names by place should also be avoided (NBP),
in the sense that column names should not include table names as prefixes or
suffixes. Moreover, using “id” to name primary keys is not a good practice (AII),
because it does not reveal the purpose of the keys.

3.2 Database Schemas

In our study we consider a well-established large collection of database schemas,
the only available that comprises multiple schema versions. We have used this
collection in previous studies to investigate the evolution of database schemas [15,
17,18]. The collection consists of five scientific projects from CERN, two medical
projects and eleven CMS projects. Table 2, gives detailed statistics regarding the

Do People Use Naming Conventions in SQL Programming? 433

Table 2. Schemas statistics.

database schemas of the projects. Specifically, for each schema the table provides
the number of versions it went through, the total number of tables and the total
number of columns in the first and the last known versions of the schema. All
the data sets are available at the web site of the DAINTINESS group2.

4 Research Questions and Answers

In this section we discuss the findings of our study, organized with respect to
the research questions that we investigate. To address our questions we define
respective metrics that measure the adherence of the table/column names used
in the examined schemas to the conventions of the reference style, and the way
that the adherence of the names to the naming conventions evolves, during the
lifetime of the schemas. Table 3, gives details about the basic notions that we
assume for the definition of the metrics.

4.1 Is the Reference Style Followed by the Schemas?

To address our first research question, we define a simple metric, called Adherence
Indicator (AI).

2 github.com/DAINTINESS-Group/EvolutionDatasets.

http://github.com/DAINTINESS-Group/EvolutionDatasets

434 A. Papamichail et al.

Table 3. Basic notions and notation.

– Ω = {S1, S2, . . . , SK} is the overall set of schemas that we consider in our study.
– RNC = {nc1, nc2, . . . , ncN} is the set of naming conventions that constitute the

reference naming style.
– HSj

= {Sj
f , Sj

f+1, . . . , S
j
� } denotes a history of subsequent versions of a database

schema Sj ∈ Ω.
– Ω� = {S1

� , S2
� , . . . , SK

� } is the set of the last known versions of the examined
schemas Ω.

– Sj
i .NT is the set of table names, used in a schema version Sj

i ∈ HSj

.
– Sj

i .NC is the set of column names, used in a schema version Sj
i ∈ HSj

.
– Ω�.NT = {S1

� .NT , S2
� .NT , . . . , SK

� .NT } denotes the sets of table names, used in the
last known versions Ω� of the examined schemas.

– Ω�.NC = {S1
� .NC , S2

� .NC , . . . , SK
� .NC} denotes the sets of column names, used in

the last known versions Ω� of the examined schemas.
– HSj

T = {Sj
f .NT , Sj

f+1.NT , . . . , Sj
� .NT } denotes the history of tables names, used

throughout the history HSj

of Sj ∈ Ω.
– HSj

C = {Sj
f .NC , Sj

f+1.NC , . . . , Sj
� .NC} denotes the history of column names, used

throughout the history HSj

of Sj ∈ Ω.
– ΩHT = {HS1

T , HS2

T , . . . , HSK

T }, denotes the table names histories of the examined
schemas Ω.

– ΩHC = {HS1

C , HS2

C , . . . , HSK

C }, stands for the column names histories of the ex-
amined schemas Ω.

The subscript T|C in the formulas (Definitions 1 to 5) indicates that a formula is
applicable to tables (T) or columns (C). Equivalently, in the text we use the term
table/column to express this property.

Definition 1. [Adherence Indicator] The Adherence Indicator is a function
AI(Sj

i .NT |C , nc) that takes as input a set of table/column names Sj
i .NT |C , used

in a schema version Sj
i ∈ HSj

of a schema Sj ∈ Ω, and a naming convention
nc ∈ RNC . The value of the function gives the percentage of the table/column

names that adhere to nc. More formally, AI(Sj
i .NT |C , nc) = |Sj

i .NA|
|Sj

i .NT |C | ∗ 100%,

where Sj
i .NA is the subset of Sj

i .NT |C that adhere to nc.

We focus our analysis on the last known versions Ω� of the examined schemas.
Later, (Sect. 4.2) we show that these versions are representative of the schemas’
histories ΩH .

To begin our analysis, we consider the reference style as a whole. Specifically,
our goal is to determine the adherence of table/column names to the overall style.
To achieve this goal, we calculate the values of AI(Sj

� .NT |C , nc) for the naming
conventions of the reference style RNC and the sets of table/column names
Ω�.NT |C . For each set of table/column names Sj

� .NT |C , we partition the naming
conventions of RNC in three subsets, PSj

� .NT |C
= {CF,PF,NF}, containing the

naming conventions that are completely followed (AI(Sj
� .NT |C , nc) = 100%),

Do People Use Naming Conventions in SQL Programming? 435

Fig. 1. Adherence of the names used in the schemas to the reference naming style.

partially followed (AI(Sj
� .NT |C , nc) < 100%), not followed (AI(Sj

� .NT |C , nc) =
0%) by Sj

� .NT |C , respectively.
Figure 1, shows the results that we obtain. Specifically, for the sets of table/-

column names Ω�.NT |C the figure provides respective stacked bars, describing
the partitions of RCI

NC . A stacked bar is divided in three parts, each giving the
percentage3 of conventions that belong to a partition subset.

In the results, we observe that the names used in the schemas do not follow
the reference style faithfully. On the positive side, many conventions are com-
pletely followed. Regarding tables, the percentage of naming conventions that
are completely followed is higher than 62%, in all schemas. As for columns, the
respective percentage of naming conventions is higher than 57%, in all schemas.
On the negative side, several conventions are partially followed and few others
are not followed at all. Concerning tables, the percentage of naming conventions
that are partially followed ranges from 7.14% to 42.8%, while the percentage of
conventions that are not followed varies from 0% to 21.43%. Regarding columns,

3 Due to the lack of space we use percentages to give an overview of the results. The
complete raw results that we obtained in our study can be found in www.cs.uoi.gr/
∼zarras/SQLNamingConventions/SQLStatisticsSLA.rar.

www.cs.uoi.gr/~zarras/SQLNamingConventions/SQLStatisticsSLA.rar
www.cs.uoi.gr/~zarras/SQLNamingConventions/SQLStatisticsSLA.rar

436 A. Papamichail et al.

Fig. 2. Adherence of the names used in the schemas to each naming convention.

the percentage of naming conventions that are partially followed ranges from
18.75% to 37.50%.

Next, we focus our analysis on the individual naming conventions. Our objec-
tive is to assess the adherence of table/column names to each naming conven-
tion. To address this issue, for each naming convention nc ∈ RNC we parti-
tion the examined sets of table/column names Ω�.NT |C in four subsets, Pnc =
{AH , AMH , AML, AL}, containing the sets of tables/column names that have
high (AI(Sj

� .NT |C , nc) ≥ 75%), medium-high (50% ≤ AI(Sj
� .NT |C , nc) < 75%),

medium-low (25% ≤ AI(Sj
� .NT |C , nc) < 50%), low (AI(Sj

� .NT |C , nc) < 25%)
adherence to nc.

Figure 2, shows the results that we obtain. In particular, for the naming
conventions of the reference style, the figure provides corresponding stacked bars,
describing the partitions of the examined sets of table/column names Ω�.NT |C .
A stacked bar is divided in four parts, each giving the percentage of the sets of
table/column names that belong to a partition subset.

Do People Use Naming Conventions in SQL Programming? 437

In general, we observe high adherence of the sets of table/column names to
most naming conventions. Regarding tables, the percentage of name sets that
belong to AH is higher than 95.24%, in 10 out of 14 conventions. As for columns,
the percentage of name sets that belong to AH is higher than 85.71%, in 13
out of 16 conventions. Concerning tables, the exceptions are UMW, SWC, TIP
and ACN. Regarding columns, the exceptions are UMW, USP and CIS. All
of these conventions concern the readability of the schemas. In particular, the
table/column names that are used in the schemas may comprise more acronyms
than words (UMW). Moreover, the schemas may contain concatenated table
names (ACN), table names are not in plural form (TIP) and/or table names
that do not begin with capital letters (SWL). Similarly, the schemas may contain
column names that are not in singular form (CIS) and/or column names with
non standardized postfixes (USP).

4.2 Does the Adherence of the Schemas to the Reference
Style Evolve?

Having some clear evidence of adherence to the reference style, we move to the
next issue that we consider in our study. We investigate the adherence of the
table/column names to the reference style, with respect to the history of the
examined schemas.

Specifically, we check if the adherence of the table/column names improves,
decays or stays the same, between the first and the last known versions of the
examined schemas. For this purpose, we employ the Adherence Progress Indicator
(API) metric, defined below.

Definition 2. [Adherence Progress Indicator] We define the Adherence
Progress Indicator as a function API(HSj

T |C , nc) that takes as input the his-

tory of table/column names HSj

T |C , used in Sj ∈ Ω, and a naming convention
nc ∈ RNC . The value of the function is the difference between the value of the
Adherence Indicator function for the names Sj

� .NT |C , used in the last known ver-
sion Sj

� ∈ HSj

of Sj, and the names Sj
f .NT |C , used in the first known version

Sj
f ∈ HSj

of S. Formally, API(HSj

T |C , nc) = AI(Sj
� .NT |C , nc)−AI(Sj

f .NT |C , nc).

We calculate the values of API(HSj

T |C , nc) for the naming conventions RNC

and the table/column names histories ΩHT |C that we consider in our study.
For each naming convention nc ∈ RNC we partition the histories in three sub-
sets P

HT |C
nc = {AI , AS , AD}, containing histories of table/column names with

improved (API(HSj

T |C , nc) > 0%), stable (API(HSj

T |C , nc) = 0%) and decayed

(API(HSj

T |C , nc) < 0%) adherence to nc, respectively.
Figure 3 gives the results that we obtain. For the naming conventions of the

reference style, the figure provides corresponding stacked bars, describing the
partitions of the examined table/column names histories ΩHT |C . A stacked bar
is divided in three parts, each giving the percentage of histories that belong to
a partition subset.

438 A. Papamichail et al.

Fig. 3. Progress of adherence to each naming convention.

In the results we see that the adherence of the examined table/column names
to most of the naming conventions is stable. Regarding tables, the percentage of
histories that belong to AS is higher than 85.71%, in 11 out of 14 conventions.
As for columns, the percentage of histories that belong to AS is higher than
71.43%, in 14 out of 16 conventions.

The adherence of table/column names to the rest of the naming conventions
may improve, decay, or remain stable. Specifically, in the largest percentage of
histories, the adherence of table names to UMW and ACN decays (Fig. 3(a)).
Nevertheless, we also observe considerable percentages of histories with improved
and stable adherence. In the case of TIP, the adherence of the table names is
stable in a large percentage of histories. However, there is also a notable percent-
age of histories with decayed adherence, and a small percentage of histories with
improved adherence. In the largest percentage of histories, the adherence of col-
umn names to USP and CIS improves, while there are also notable percentages
of histories with stable and decayed adherence (Fig. 3(b)).

4.3 Threats to Validity

A possible threat to the construct validity of our study is deficiencies of the
tool that we used for the assessment of the examined schemas. To cope with this
threat, we developed DBSea based on well-known open source libraries and tools

Do People Use Naming Conventions in SQL Programming? 439

(WordNet4, Apache Commons Math5, ANTLR6). For the validation of the tool,
we developed an extensive set of unit tests that covers the naming conventions
of the reference style. Moreover, we manually checked the correctness of DBSea
by inspecting random samples of the collected data. Internal validity, is not an
issue in our study, as we do not attempt to establish any particular cause-effect
relationships.

Regarding external validity, our study has been conducted in a well-defined
context, database schemas used in FOSS. We studied a reasonable number of
schemas with variance in the respective fields of use. The schemas also vary in
size and number of versions. Thus, we believe that the examined schemas are
representative for the case of open source projects. Nevertheless, studying more
schemas from open source and industrial projects, may reveal further interesting
observations.

5 Conclusion

In this paper, we defined a reference style consisting of naming conventions that
have been proposed in the literature. Then, we assessed whether these conven-
tions are used in practice in a study that involved 21 schemas used in respective
FOSS projects. We observed that many conventions are followed in all schemas,
but there are also conventions that are partially followed, or not followed at all.
During the lifetime of the schemas, the adherence to the conventions that are
generally followed is stable, while the adherence to the rest of the conventions
may improve, decay, or remain stable.

Our study is a starting point towards the investigation of further issues con-
cerning the usage of naming conventions in SQL programming. For instance, it
would be interesting to examine why some projects follow certain conventions
more often than others. Another possible issue is to find reasons that make
developers deviate from naming conventions. Using good naming practices and
conventions is a basic prerequisite for the development of clean SQL code. Never-
theless, it is not the only one; the structure of the code is also important. Looking
for best practices, patterns, and quality metrics in this context is an interesting
issue for future research. Another interesting research direction concerns tools
and techniques for the refactoring of SQL code.

Acknowledgements. We would like to thank the anonymous reviewers for their use-
ful suggestions and comments.

References

1. Allamanis, M., Barr, E.T., Bird, C., Sutton, C.A.: Learning natural coding con-
ventions. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), pp. 281–293 (2014)

4 wordnet.princeton.edu.
5 commons.apache.org/proper/commons-math/.
6 www.antlr.org/.

http://wordnet.princeton.edu/
http://commons.apache.org/proper/commons-math/
www.antlr.org/

440 A. Papamichail et al.

2. Allamanis, M., Barr, E.T., Bird, C., Sutton, C.A.: Suggesting accurate method
and class names. In: Proceedings of the Joint 23rd ACM SIGSOFT Symposium on
the Foundations of Software Engineering and 15th European Software Engineering
Conference (FSE/ESEC), pp. 38–49 (2015)

3. Arnaoudova, V., Penta, M.D., Antoniol, G.: Linguistic antipatterns: what they are
and how developers perceive them. Empirical Softw. Eng. 21(1), 104–158 (2016)

4. Avidan, E., Feitelson, D.G.: Effects of variable names on comprehension an empir-
ical study. In: Proceedings of the 25th International Conference on Program Com-
prehension (ICPC), pp. 55–65 (2017)

5. Beniamini, G., Gingichashvili, S., Klein-Orbach, A., Feitelson, D.G.: Meaningful
identifier names: the case of single-letter variables. In: Proceedings of the 25th
International Conference on Program Comprehension (ICPC), pp. 45–54 (2017)

6. Binkley, D., Davis, M., Lawrie, D., Maletic, J.I., Morrell, C., Sharif, B.: The impact
of identifier style on effort and comprehension. Empirical Softw. Eng. 18(2), 219–
276 (2013)

7. Butler, S.: Mining Java class identifier naming conventions. In: Proceedings of
the 34th IEEE-ACM-SIGSOFT International Conference on Software Engineering
(ICSE), pp. 1641–1643 (2012)

8. Butler, S., Wermelinger, M., Yu, Y.: A survey of the forms of Java reference names.
In: Proceedings of the 23rd IEEE International Conference on Program Compre-
hension, (ICPC), pp. 196–206 (2015)

9. Celko, J.: SQL Programming Style. Morgan-Kaufmann, Burlington (2005)
10. Hofmeister, J.C., Siegmund, J., Holt, D.V.: Shorter identifier names take longer to

comprehend. Empirical Softw. Eng. 24(1), 417–443 (2019)
11. Holywell, S.: SQL Style Guide. www.sqlstyle.guide
12. Kashiwabara, Y., Onizuka, Y., Ishio, T., Hayase, Y., Yamamoto, T., Inoue, K.: Rec-

ommending verbs for rename method using association rule mining. In: Proceedings
of the 21st IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pp. 323–327 (2014)

13. Lawrie, D., Morrell, C., Feild, H., Binkley, D.: What’s in a Name? A study of
identifiers. In: Proceedings of the 14th IEEE International Conference on Program
Comprehension (ICPC), pp. 3–12 (2006)

14. Martin, R.C.: Clean Code - A Handbook of Agile Software Craftsmanship. Prentice
Hall, Upper Saddle River (2009)

15. Skoulis, I., Vassiliadis, P., Zarras, A.V.: Growing up with stability: how open-source
relational databases evolve. Inf. Syst. 53, 363–385 (2015)

16. Swidan, A., Serebrenik, A., Hermans, F.: How do scratch programmers name vari-
ables and procedures? In: 17th IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM), pp. 51–60 (2017)

17. Vassiliadis, P., Kolozoff, M., Zerva, M., Zarras, A.V.: Schema evolution and foreign
keys: a study on usage, heartbeat of change and relationship of foreign keys to table
activity. Computing 101(10), 1431–1456 (2019)

18. Vassiliadis, P., Zarras, A.V., Skoulis, I.: Gravitating to rigidity: patterns of schema
evolution - and its absence - in the lives of tables. Inf. Syst. 63, 24–46 (2017)

www.sqlstyle.guide

Employing Costs in Multiagent Systems
with Timed Migration and Timed

Communication

Bogdan Aman(B) and Gabriel Ciobanu

Faculty of Computer Science, Alexandru Ioan Cuza University, Iaşi, Romania
{bogdan.aman,gabriel}@info.uaic.ro

Abstract. We use a process calculus to describe easily multiagent sys-
tems with timeouts for mobility and communication, and with assigned
costs for agents actions and for the locations of a distributed network.
After presenting an operational semantics and some results regarding this
calculus, we provide a translation of the multiagent systems to weighted
timed automata having a bisimilar behaviour. Such a translation allows
the use of an existing software tool for verification of various properties
of the multiagent systems, and for optimizing the costs involved in the
distributed networks of mobile agents.

1 Introduction

Multiagent systems with mobility and communication between agents present
several challenges for formal methods. Each agent that moves in a distributed
system and interacts with other agents should confine to some timing constraints,
keeping also certain flexibility in performing its migration. These challenges
include a specification language able to describe easily the distributed network
of mobile agents, a formal semantics able to describe the execution steps, as
well as automated verification involving behavioural quantitative aspects (tim-
ing, costs). Automated verification is more and more required because the fact
that agents move and perform local communication makes these systems not
only complicated, but also increasingly used in distributed networks.

In this paper we integrate a rather simple specification language with a rather
sophisticated software tool able to simulate and verify various properties involv-
ing timeouts and costs for migration and communication. We introduce an exten-
sion with costs of the process calculus TiMo (Timed Mobility); TiMo is used
for describing distributed systems composed of a finite number of explicit loca-
tions [7,8]). The mobile agents (modelled as processes) can migrate between
the locations of the distributed network, and also interact with other agents by
using local communication. Timeouts attached to migration and communication
actions in TiMo offer flexibility to agents behaviour. In the version of TiMo
used in this paper, the timeout for migration marks the fact that the movement
to another location must be performed after exactly a number of time units, and
the new location could be a variable instantiated in previous steps.

It is worth noting that TiMo is able to describe the dynamic topology of
the multiagent systems in a compositional way. This aspect is very useful in
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 441–453, 2020.
https://doi.org/10.1007/978-3-030-38919-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_36&domain=pdf
http://orcid.org/0000-0001-7649-8181
http://orcid.org/0000-0002-8166-9456
https://doi.org/10.1007/978-3-030-38919-2_36

442 B. Aman and G. Ciobanu

specifying such a system because the system is typically composed of several
mobile agents combining their behaviours for a common goal. We propose a
version of TiMo extended with some costs assigned to actions and locations in
order to illustrate the effort of performing an action or of staying in a location
for a period of time, respectively. Thus, this extension is called cTiMO (with ‘c’
from ‘cost’). To determine a cost by performing a specific arithmetic operation
on clock values, we consider that the computations are performed only when the
clocks display integer values.

The Paper is Structured as Follows: Section 2 presents the syntax and operational
semantics of cTiMO, together with some results regarding the costs. Section 3
briefly presents weighted timed automata, an extension of timed automata with
costs added to both edges and locations. These weighted timed automata are
then related to cTiMO networks. Based on the relationship, we can use the
existing tool Uppaal [5] to simulate and verify multiagent systems with timeouts
and costs. Various quantitative properties of cTiMO networks can be verified in
Uppaal, and so optimize execution time and certain costs.

2 Syntax and Operational Semantics of cTiMO

Syntax of cTiMO is presented in Table 1, where the following are assumed:

• Loc, Chan and Id are sets of locations, communication channels, and process
identifiers, respectively;

• for each process identifier id ∈ Id, there is an arity mid and distinct variables
ui (1 ≤ i ≤ mid) such that a unique definition id(u1, . . . , umid

)
def
= Pid exists;

• a ∈ Chan denotes a communication channel, and l ∈ Loc is a location or a
location variable; c ∈ N denotes a cost, and t ∈ N is a timeout of an action;
u and v denote a tuple of variables, and a tuple of expressions over values,
variables and allowed operations, respectively.

Table 1. cTiMO syntax.

The timeout associated to a move process denotes the amount of time that has
to pass before the migration to a new location is performed, while the cost con-
straint applied to a move process specifies the cost needed to perform the move-
ments between locations. Migration is achieved by using a process got

c l then P

Employing Costs in Multiagent Systems 443

describing the movement of process P from the location in which it currently
resides to the location l in exactly t time units and with a cost c. As location l
can be a variable, its value can dynamically change by performing local commu-
nication with other processes. This provides flexibility, as processes can change
their behaviour based on certain changes in the multiagent system. A timer is
denoted either by t (for migration actions) or Δt (for output and input actions).
A timer t associated to a migration process got

c l then P indicates that process P
should change its location by moving to location l in exactly t time units, while
the cost of this movement is c. A timer Δt from an output process aΔt

c !〈z〉 then P
else Q restricts the availability of channel a for sending the value z to at most t
time units, and the cost of performing this operation is c. In a similar manner,
the timer Δt from an input process aΔt

c ?(x) then P else Q restricts the avail-
ability of channel a for receiving a value to at most t time units. In case of a
successful communication by using output or input actions, the previous pro-
cesses continue by executing P , while an unsuccessful communication continues
by executing the alternative process Q; in order the simplify the presentation the
cost to perform this switch is the same as performing the communication. Note
that performing the switch or the communication are mutual exclusive actions.

The process 0 denotes inaction, while a located process l[[c P]] specifies a
process P executing at location l where the cost of computing is c. A network N
is built from parallel located processes L, and it is well-formed if fv(N) = ∅.

Note that there is only one binding process, namely aΔt
c ?(u) then P else Q,

in which the variable u is bound within process P (but not within the alternative
process Q). All the other variables (including location variables) are free. The
sets of free variables for a process P and a network N are denoted by fv(P)
and fv(N), respectively, where fv(Pid) ⊆ {u1, . . . , umid

} holds. Processes are
defined up to an α-conversion, and the process P{v/u, . . .} means that inside
process P all the free occurrences of the variable u are replaced by the value v
(possibly after α-converting some names in P in order to avoid clashes). The
process id(v) describes recursion, with id(x) = Pid being the process definition.
The call invokes the process Pid , replacing its formal parameters x with values v,
namely by launching the process Pid{v/x}.
Structural equivalence ≡ over networks is the smallest congruence given by:

N | l[[c0]] ≡ N N | N ′ ≡ N ′ | N (N | N ′) | N ′′ ≡ N | (N ′ | N ′′).

The role of structural relation ≡ is to rearrange a network such that the rules
of the operational semantics can be applied. Each located process li[[ci

Pi]] of a
network N is called a component.
Operational Semantics of cTiMO is presented in Table 2. A complete step
describes individual actions with costs (by

Λ,C−−→), followed by a time step with

costs (by
t,C

). A multiset-labelled transition N
Λ,C−−→ N ′ indicates that the

actions from the multiset Λ are executed in parallel in one step, and the costs of
their execution is from the multiset C. The order of the costs in C depends on the
order of actions in Λ, as each action has a unique execution cost. If Λ = {λ} and

action λ has a cost c, then the notation N
λ,c−−→ N ′ is used. Given a network N ,

a time step of length t and costs C is modelled by a transition N
t,C

N ′.

444 B. Aman and G. Ciobanu

In rule (Move0), the migration process go0c′′ l′ then P moves to location l′

in order to behave there as P . The migration cost is c′′, and the cost of its
computation at the new location l′ is computed by using the cost c′.

In rule (Com), an output process aΔt
c1 !〈v〉 then P else Q executing at loca-

tion l is able to successfully send along channel a a tuple of values v; the input
process aΔt

c2 ?(u) then P ′ else Q′ executing at the same location l successfully
receives the values on the same channel a. The output and input processes remain
at location l and continue their executions as P and P ′{v/u}, respectively. The
label !v@l|?u@l, c1|c2 indicates the fact that the first process performs the output
action !v@l with cost c1, and the second process performs the complementary
input action ?u@l with cost c2. The label !v@l|?u@l is an equivalent notation
for the label {v/u}@l from [3], but is used here because we are interested in the
actions taken by each process and not only on the overall evolution as in [3].

Table 2. Operational Semantics of cTiMO.

Employing Costs in Multiagent Systems 445

If an output or input process aΔ0
c ∗ then P else Q for ∗ ∈ {!〈v〉, ?(u)} is

unable to communicate and its timer reaches the value 0, then the process con-
tinues by executing the alternative process Q at the current location (by using
the rule (Put0) or the rule (Get0), respectively). The cost of changing the
execution towards the alternative process Q is c, the same as for performing the
communication successfully. Rule (Call) simulates the unfolding of a recursion
process. Rules (Equiv) and (DEquiv) model the use of the equivalence relation
≡ in order to rearrange a network. Rule (Par) puts in parallel smaller networks
in order to obtain larger networks such that processes have multiple possible
evolutions.

The rules starting with the capital letter ‘D’ are used to model the passing
of time. Notice that in the rules (DMove), (DPut) and (DGet) the maximum
time that can elapse is limited by the timers of the actions that can be executed
next. This implies that in rule (DPar), the time that can pass is the minimum
time that can pass in the two systems. Following the work done on timed π-
calculus [16], we only consider non-Zeno behaviours, namely just a finite number
of transitions can be executed within a finite amount of time.

A network N ′ is directly reachable from N if N
Λ,C−−→ N1

t,C′
N ′. Since the

cost does not influence the behaviour of the system, a network N is guaranteed
to proceed even without costs. The functions erasec(N) and erasec(P) applied
to a network N and to a process P , respectively, maps each network and process
to the same network and process in which costs are ignored (removed).

Results: We have the following results.

Proposition 1. 1. If N
Λ,C−−→ N ′, then erasec(N) Λ−→ erasec(N ′).

2. If N
t,C′

N ′, then erasec(N) t erasec(N ′).

Proposition 2. 1. If erasec(N) Λ−→ N ′, then exists N ′′ and C such that N
Λ,C−−→

N ′′ and erasec(N ′′) = N ′.

2. If erasec(N) t
N ′, then is N ′′ and C such that N

t,C
N ′′ and erasec(N ′′)=N ′.

In what follows we consider the relation ≡c that simply rearranges the order
of costs depending on the order of components in the network. Precisely, ≡c is
defined as the smallest relation given by the following equalities:

C ≡c C C | C ′ ≡c C ′ | C (C | C ′) | C ′′ ≡c C | (C ′ | C ′′).

Theorem 1. For any networks N , N ′ and N ′′, the following sentences hold:

1. If N
t,C

N ′ and N
t,C′

N ′′, then N ′ ≡N ′′ and C ≡c C ′;

2. N
(t+t′),C′′

N ′ if and only if there is a N ′′ such that N
t,C

N ′′ and N ′′ t′,C′

N ′, where C ′′ = C ′ + C ′′ (the sum is component-wise).

The first part of Theorem 1 claims that for any network N , performing only time
reductions does not lead to nondeterministic behaviour. The second part claims

446 B. Aman and G. Ciobanu

that if a network N is able to perform a certain time step, then its evolution can
be split in smaller time steps.

Since located processes contain single processes, namely not processes run-
ning in parallel, then determining the cost of execution for a network reduces
to determining the cost of execution for all located processes (and then just
adding them up). For determining the cost of the execution of a located process,
it should be noticed that each location has associated its own cost (of staying
there, per time unit), while each migration or communication action has associ-

ated an execution cost. In what follows, if L1|L2
!v@l|?u@l,c1|c2−−−−−−−−−−→ L′

1|L′
2, then we

have L1 and L2 evolving in parallel such that L1
!v@l,c1−−−−→ L′

1 and L2
?u@l,c2−−−−−→ L′

2.

Definition 1 (Execution Cost). Let eL = L
d0,c0

L1 . . .
dn,cn

Ln+1 be
a finite execution of a located process L = l[[c P]]. Then cost(eL) =

∑
0≤i≤n ci

represents the cost of the execution of eL, while time(eL) =
∑

0≤i≤n di represents
the execution time of eL .

For a given process L′ = l′[[c′ P ′]], the minimal cost mincostL(L′) of reach-
ing L′ starting from L = l[[c P]] is the minimum of the costs of executions
starting in L and ending in L′. Formally,

mincostL(L′) =

{
min({cost(L d0,c0

. . .
dn,cn

L′)}) if L′ reachable from L,

0 otherwise.

The next result shows how the execution time is computed by using appro-
priate values for the costs appearing in the network. This illustrates also the fact
that the TiMo formalism is just an instance of the cTiMO formalism.

Proposition 3. Let eL be a finite execution of a located process L. If all location
costs are set to 1 and all the migration and communication costs are set to 0,
then cost(eL) = time(eL).

Proposition 4. If a located process L = l[[c P]] has its process P without any
communication action, then for any finite execution eL = L . . . L′ with L′ =
l′[[c′ 0]] we have cost(eL) = mincostL(L′).

3 Translating cTiMO into Weighted Timed Automata

Weighted timed automata were defined in [2] by adding cost information to the
edges and locations of the classical timed automata. The cost added to a location
represents the price per time unit of residing in that location, while the cost
added to an edge represents the price of executing the corresponding transition.
In this way, for each run of an automaton a global cost can be computed by
adding the costs along the run of all delay and discrete transitions.

We consider the time domain R+ and a finite set X of variables called clocks.
A clock valuation over X is a mapping v : X → R+ assigning to each clock x a

Employing Costs in Multiagent Systems 447

value from R+. The set of all clock valuations over the set X is denoted by R
X
+ .

For t ∈ R+, the valuation v + t is defined by (v + t)(x) = v(x) + t for all clocks
x ∈ X. For a set Y ⊆ X of clocks, v[Y ← 0] denotes the valuation assigning
the value 0 to any x ∈ Y , and the value v(x) to any x ∈ X \ Y . The valuation
assigning 0 to every clock x ∈ X is denoted by 0, while C(X) denotes the set
of clock constraints defined as conjunctions of atomic constraints of the form
x �� c, where x ∈ X, c ∈ N and ��∈ {<,≤,=,≥, >}. AP denotes the finite set of
atomic propositions. For g ∈ C(X) and v ∈ R

X
+ , we use v � g to denote that v

satisfies g. Let Σ be a set of input and output actions together with τ actions.

Definition 2. A weighted timed automaton A over X and AP is a tuple (L, l0, T,
λ, cost), where L is a finite set of locations, l0 ∈ L is the initial location, T ⊆
L × C(X) × Σ × 2X × L is a finite set of transitions, λ : L → 2AP is a labelling
function, and cost : L ∪ T → N assigns costs to locations and transitions.

The semantics of a weighted timed automaton without costs is similar to
that of a timed automaton. It is a timed transition system (S, s0,→), where
S = L × R

X
+ , s0 = (l0,0), and → contains two types of transitions:

– delay transitions: (l, v)
δ(d)−−→ (l, v + d) if d ∈ R+;

– discrete transitions: (l, v) tr−→ (l′, v′) if there exists a transition tr =
(l, g, σ, Y, l′) ∈ T such that v � g, v′ = v[Y ← 0] and σ ∈ Σ.

For each step there is associated a cost defined by:

– cost((l, v)
δ(d)−−→ (l, v + d)) = cost(l) · d;

– cost((l, v) tr−→ (l′, v′)) = cost(tr).

A run ρ of the weighted timed automaton is a finite or infinite sequence of steps
in this transition system. The cost of ρ is denoted by cost(ρ), and it is the
accumulated cost of steps along such a run.

In what follows we denote the set of networks by N , and the set of weighted
timed automata by A. Their transition systems differ not only in transitions,
but also in states. Therefore, we define a specific notion of bisimilarity.

Definition 3. A relation ∼ over cTiMO networks and weighted timed automata
is a bisimulation if, whenever it holds that (N, (A, 〈l, v〉)) ∈∼, we have

– if N
λ,c→ N ′, then exists trλ such that 〈l, v〉 trλ→ 〈l′, v′〉 and (N ′, (A, 〈l′, v′〉))∈∼,

where cost(〈l, v〉 trλ→ 〈l′, v′〉) = c;

– if N
d,c

N ′, then 〈l, v〉 δ(d)−−→ 〈l′, v′〉 and (N ′, (A, 〈l′, v′〉)) ∈∼,

where v′ = v + d and cost(〈l, v〉 δ(d)−−→ 〈l′, v′〉) = c.

Using this notion of bisimulation, we get the following result that claims that
building a weighted timed automaton for each component of a network N leads to
the equivalence between the cTiMO network N and its corresponding weighted
timed automaton A in the initial state 〈lN , vN 〉 (namely (A, 〈lN , vN 〉)).
Theorem 2. Given a cTiMO network N , there exists a weighted timed automa-
ton AN having a bisimilar behaviour. Formally, N ∼ (AN , 〈lN , vN 〉).

448 B. Aman and G. Ciobanu

4 Simulating cTiMO Multiagent Systems by using Uppaal

Based on the previous translation of the cTiMO networks into weighted timed
automata having a bisimilar behaviour, we use Uppaal to simulate and verify
the multiagent systems described in cTiMO. In order to compute the total cost
of an execution we should be able to perform a specific arithmetic operation
on clock values by reading the value and multiplying with the cost of staying
in a location for a time unit. These operations are not directly supported by
the theory of timed automata, and so they are not implemented in Uppaal. To
overcome this obstacle, we consider the integer clocks defined in [13], and so a
transition can take place only when the clock has integer values by using the
select choice t ∈ int[0, n] to choose an integer t from the interval [0, n].

We illustrate a simulation in Uppaal by using a simple network composed
of the located processes L1 and L2 defined as:

L1 = l[[2 go31 l′ then (aΔ2
2 !〈v〉 then 0 else 0)]], and

L2 = l′[[3 aΔ5
1 ?(x) then 0 else 0]].

The simulation is done using the following two templates:

• LocProc1() is used to create the located process L1 by using the command
L1 = LocProc1(). It is also possible to instantiate any number of located
processes having the same signature; if we consider parameters, we can define
different instantiations. The template is depicted in Fig. 1.

• LocProc2() is the template used to create the located process L2 by using
the command L2 = LocProc2(). The template is depicted in Fig. 2.

The initial cTiMO network is given by the located processes L1 and L2. We
provide here the details regarding the LocProc1() template of Fig. 1 (the other
construction is similar). This template has four locations: l0, l1, l2 and l3 (the last
three locations should be primed, but for readability we avoid using additional

Fig. 1. LocProc1 Template.

Employing Costs in Multiagent Systems 449

symbols). For readability also, we added comments with the cost of each location
and transition just to see how we compute the costs using integers.

The initial location is l0 which corresponds to the fact that the initial location
of L1 is l. The location has attached the atomic proposition x <= 3 (taken from
the cTiMO move action go31) which has the effect that this location must be
left within 3 units of time. The loop transition is used to model the passage of
time and the increment of the cost to reach location l0, cost denoted by cost l0.
We could use only a global cost variable, but we prefer to use specific notations
to compute the cost to reach each location because it will be easier later in the
verification phase. The outgoing transition towards location l1 is guarded by the
constraints x == 3 and last l0 == 3 which correspond to the above mentioned
move action, and to the fact that at location l0 was computed the cost for
three time units spent there. Once moved at location l1, the agent can either
synchronize on channel a and then move to location l2 or, migrate to location l3
if channel a expires. For location l1 we have a loop that is used to compute
the cost of the process being located here. Assuming that the communication is
performed, the current location is l2.

Fig. 2. LocProc2 Template.

According to the results presented in the previous sections, such a description
in Uppaal allows us to verify various properties of the multiagent systems with
timeout for migration/communication and with costs, systems specified in a
natural way in cTiMO. For verification we use the sophisticated software tool
Uppaal. Uppaal is commonly used to verify complex properties of networks
of timed automata, properties expressed in Computation Tree Logic (CTL).
We performed several verifications for multiagent systems described in cTiMO,
verification involving quantitative aspects expressed by both time and costs.

• L1.l1 − − > L1.l2
This formula checks that, once the located process L1 is at location l1, then
it will always reach the location l2. This implies that after leaving location

450 B. Aman and G. Ciobanu

l1, the communication on channel a always takes place (due to the presence
of the located process L2 that has the dual communication transition).

• E〈 〉 L1.cost l2 == 9 and L2.l2
This formula checks whether once the located process L1 has the cost cost l2
equal to 9, the located process L2 reached location l2. This means L1 com-
municated on channel a, while L2 did not. As expected, this property is not
satisfied; it becomes satisfied if we replace L2.l2 by L2.l1.

• E〈 〉 L1.cost l2 + L2.cost l2 == 19
This formula checks whether the total cost of the evolution to reach locations
L1.l2 and L2.l2 is equal to 19 (the total cost of reaching the two locations by
independent transitions). Since we have a communication synchronization, it
is impossible to reach the two locations as final ones (as explained above).
The property becomes satisfied if we replace L2.cost l2 by L2.cost l1.

• A[] L1.cost l2 <= 9
This formula verifies that, whatever are the interactions between the involved
located processes, the cost of reaching location l2 by L1 is always less than 9.

• E[<= 6; 100000](max : L1.cost l2)
This formula is used to estimate the maximum value of cost l2 of L1 by
performing 100000 simulations no longer than 6 time units. As expected, the
value is 9. Similar verifications can be made for the minimum value.

Many other properties of the cTiMO networks can be verified by using Uppaal.
The simulation and verification of the multiagent systems presented as

cTiMO networks require to describe the main actions of these systems (mobility,
message exchange, time constraints, costs) and to verify both qualitative aspects
(e.g., safety, liveness) and quantitative aspects (e.g., evaluation of performances
using various costs). Verifying quantitative aspects allows for cost optimization.

5 Conclusion and Related Work

We described multiagent systems with timeouts for migration and communica-
tion and with various costs by using a calculus called cTiMO. An operational
semantics allows to get interesting observations and results regarding the evolu-
tion of these multiagent systems. This approach allows to specify easily complex
multiagent systems, and to get deep insights on their dynamics. Moreover, the
specification by using a process calculus allows the description of larger and
larger systems in a modular way (due to compositionality). We also present a
translation of the cTiMO networks to weighted timed automata having a bisim-
ilar behaviour (bisimulation is a notion introduced in process calculi). Based
on such a translation, we use Uppaal to simulate and verify cTiMO networks.
Since the multiagent systems with timeouts and costs could have very complex
behaviours, the simulation and automated verification become more and more
required and necessary. By using the steps described before, we were able to
verify various properties of the systems described in cTiMO involving timed
migration and costs for actions and locations. This type of (formal) verification

Employing Costs in Multiagent Systems 451

could be useful for checking properties involving concurrency and communication
protocols of real multiagent systems.

Different notions of cost have been tackled previously in the framework of
process calculi. In [4] the cost of computation is expressed in terms of space
consumption, and the mobile agents are allowed to migrate only if the target
location has sufficient capacity to accommodate it. In [14] a cost is associated
with each action of CCS (calculus of communicating systems), but the costs are
not compared as only the overall cost counts. The theory of typed bisimulation
equivalence for the π-calculus [15] was adapted in [12] to provide an adequate
theory of costed process behaviour by defining a very simple variation of the
asynchronous π-calculus called πcost in which channels are viewed as resources
usable only if sufficient funds are available. The $-calculus (pronounced cost cal-
culus) is another extension with costs of the π-calculus that is used for problem
solving by providing support to handle intractability and undecidability, and
thus being able to go beyond the Turing Machine model [10]. In the spice calcu-
lus [17], an extension based on the π-calculus and spi-calculus [1], annotations
attached to transitions are used to keep track of the costs of process executions.
Our approach is different, considering costs for actions and locations determined
by time consumption. More important, TiMo is much easier to use than the
π-calculus (TiMo is a sugared version of the timed distributed π-calculus [9]).

There exist previous approaches for the verification of multiagent systems.
In some model-based approaches, a system is represented as a Kripke structure
by using an appropriate logic, and the specification is represented by a formula
expressed in this logic. The verification consists of checking whether the model
satisfies the specification; actually, this is an algorithmic-based technique done
automatically. Model checking has been used previously to verify agent-based
systems, for instance in [6] and [11]. In [6], the agents specification language
AgentSpeak is translated to the language used by a model checker. In [11], the
specification and verification of agents is addressed by using a temporal action
logic. In both [6] and [11] the agents were equipped with reasoning and com-
municative abilities expressed by using specific logics, and the systems were
modelled by a set of rules allowing communication in various situations. The
correctness is checked by verifying that the system satisfies the required prop-
erties such as deadlock-free, safety and reachability, as well as by checking that
unexpected executions expressed as logical formulas never happen in the system.

Our approach is different from these approaches. We use a specification lan-
guage for describing multiagent systems with timed migration, timed communi-
cation and with costs. The language offers migration and communication prim-
itives allowing to model the explicit localization of the agents, and systems in
which the agents can move between locations and then interact locally. The
fact that the costs appear on both locations and actions is also a new aspect
we did not find in previous approaches. Using cost information provides the
opportunity of interesting optimization problems such as: Is it possible to min-
imize/maximize the cost for reaching a given goal state? We used the powerful
software tool Uppaal to answer various questions (including this one), and to

452 B. Aman and G. Ciobanu

obtain a number of critical verification results for cTiMO networks. It is worth
to mention that there exists a version of Uppaal called Uppaal CORA work-
ing on priced timed automata involving costs. However, Uppaal CORA is used
only for finding optimal paths matching goal conditions, and it cannot use cost
variables in expressions or verifications.

Acknowledgement. This work was partially supported by the project funded by
the Ministry of Research and Innovation within Program 1 - Development of the
national RD system, Subprogram 1.2 - Institutional Performance - RDI excellence
funding projects, Contract no.34PFE/19.10.2018.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi-calculus.
Inf. Comput. 148, 1–70 (1999). https://doi.org/10.1006/inco.1998.2740

2. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
Theor. Comput. Sci. 318, 297–322 (2004). https://doi.org/10.1016/j.tcs.2003.10.
038

3. Aman, B., Ciobanu, G.: Verification of critical systems described in real-time TiMo.
STTT 19, 395–408 (2017). https://doi.org/10.1007/s10009-016-0439-9

4. Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sassone, V.: A calculus of
bounded capacities. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp.
205–223. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40965-
6 14

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

6. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.J.: Model checking AgentS-
peak. In: The Second International Joint Conference on Autonomous Agents &
Multiagent Systems, AAMAS 2003, pp. 409–416 (2003). https://doi.org/10.1145/
860575.860641

7. Ciobanu, G., Koutny, M.: Modelling and verification of timed interaction and
migration. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
215–229. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78743-
3 16

8. Ciobanu, G., Koutny, M.: Timed mobility in process algebra and Petri nets. J. Log.
Algebr. Program. 80, 377–391 (2011). https://doi.org/10.1016/j.jlap.2011.05.002

9. Ciobanu, G., Prisacariu, C.: Timers for distributed systems. Electr. Notes Theor.
Comput. Sci. 164, 81–99 (2006). https://doi.org/10.1016/j.entcs.2006.07.013

10. Eberbach, E.: The $-calculus process algebra for problem solving: a paradigmatic
shift in handling hard computational problems. Theor. Comput. Sci. 383, 200–243
(2007). https://doi.org/10.1016/j.tcs.2007.04.012

11. Giordano, L., Martelli, A., Schwind, C.: Verifying communicating agents by model
checking in a temporal action logic. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 57–69. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30227-8 8

12. Hennessy, M., Gaur, M.: Counting the cost in the π-calculus (extended abstract).
Electr. Notes Theor. Comput. Sci. 229, 117–129 (2009). https://doi.org/10.1016/
j.entcs.2009.06.042

https://doi.org/10.1006/inco.1998.2740
https://doi.org/10.1016/j.tcs.2003.10.038
https://doi.org/10.1016/j.tcs.2003.10.038
https://doi.org/10.1007/s10009-016-0439-9
https://doi.org/10.1007/978-3-540-40965-6_14
https://doi.org/10.1007/978-3-540-40965-6_14
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1145/860575.860641
https://doi.org/10.1145/860575.860641
https://doi.org/10.1007/978-3-540-78743-3_16
https://doi.org/10.1007/978-3-540-78743-3_16
https://doi.org/10.1016/j.jlap.2011.05.002
https://doi.org/10.1016/j.entcs.2006.07.013
https://doi.org/10.1016/j.tcs.2007.04.012
https://doi.org/10.1007/978-3-540-30227-8_8
https://doi.org/10.1007/978-3-540-30227-8_8
https://doi.org/10.1016/j.entcs.2009.06.042
https://doi.org/10.1016/j.entcs.2009.06.042

Employing Costs in Multiagent Systems 453

13. Huang, X., Singh, A., Smolka, S.A.: Using integer clocks to verify clock-
synchronization protocols. ISSE 7, 119–130 (2011). https://doi.org/10.1007/
s11334-011-0152-5

14. Kiehn, A., Arun-Kumar, S.: Amortised bisimulations. In: Wang, F. (ed.) FORTE
2005. LNCS, vol. 3731, pp. 320–334. Springer, Heidelberg (2005). https://doi.org/
10.1007/11562436 24

15. Milner, R.: Communicating and Mobile Systems - The π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

16. Saeedloei, N., Gupta, G.: Timed π-calculus. In: Abadi, M., Lluch Lafuente, A.
(eds.) TGC 2013. LNCS, vol. 8358, pp. 119–135. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05119-2 8

17. Tomioka, D., Nishizaki, S., Ikeda, R.: A cost estimation calculus for analyzing the
resistance to denial-of-service attack. In: Futatsugi, K., Mizoguchi, F., Yonezaki, N.
(eds.) ISSS 2003. LNCS, vol. 3233, pp. 25–44. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-37621-7 2

https://doi.org/10.1007/s11334-011-0152-5
https://doi.org/10.1007/s11334-011-0152-5
https://doi.org/10.1007/11562436_24
https://doi.org/10.1007/11562436_24
https://doi.org/10.1007/978-3-319-05119-2_8
https://doi.org/10.1007/978-3-319-05119-2_8
https://doi.org/10.1007/978-3-540-37621-7_2
https://doi.org/10.1007/978-3-540-37621-7_2

Maintainability of Automatic Acceptance
Tests for Web Applications—A Case
Study Comparing Two Approaches
to Organizing Code of Test Cases

Aleksander Sadaj, Miros�law Ochodek(B) , Sylwia Kopczyńska ,
and Jerzy Nawrocki

Poznan University of Technology, Poznań, Poland
sadaj.aleksander@gmail.com, miroslaw.ochodek@cs.put.poznan.pl

Abstract. [Context] Agile software development calls for test automa-
tion since it is critical for continuous development and delivery. How-
ever, automation is a challenging task especially for tests of user inter-
face, which can be very expensive. [Problem] There are two extreme
approaches of structuring the code of test duties for web-applicating,
i.e., linear scripting and keyword-driven scripting technique employing
the page object pattern. The goal of this research is to compare them
focusing on the maintainability aspect. [Method] We develop and main-
tain two automatic test suites implementing the same test cases for a
mature open-source system using these two approaches. For each app-
roach, we measure the size of the testing codebase and the number of
lines of code that need to be modified to keep the test suites passing
and valid through five releases of the system. [Results] We observed that
the total number of physical lines was higher for the keyword-driven
approach than for the linear scripting one. However, the number of pro-
grammatical lines of code was smaller for the former. The number of
lines of code that had to be modified to maintain the tests was lower for
the keyword-driven scripting test suite than for the linear-scripting one.
We found the linear-scripting technique was more difficult to maintain
because the scripts consist only of low-level code directly interacting with
a web browser making it hard to understand the purpose and broader
context of the interaction they implement. [Conclusions] We conclude
that test suites created using the keyword-driven approach are easier
to maintain and more suitable for most of the projects. However, the
results show that the linear scripting approach could be considered as
a less expensive alternative for small projects that are not likely to be
frequently modified in the future.

Keywords: Acceptance testing · Keyword-driven testing · Linear
scripting · Web applications · Selenium · Cucumber

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 454–466, 2020.
https://doi.org/10.1007/978-3-030-38919-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_37&domain=pdf
http://orcid.org/0000-0002-9103-717X
http://orcid.org/0000-0002-9550-3334
http://orcid.org/0000-0003-2724-0103
https://doi.org/10.1007/978-3-030-38919-2_37

Maintainability of Automatic Acceptance Tests for Web Applications 455

1 Introduction

Quality assurance (QA) and software testing play an important role in the soft-
ware development process. According to the recent industrial survey of 1700
executives from 32 countries published in 2019, they account for 26% of IT bud-
gets [12]. At the same time, the study shows that roughly 40% of the increase
in QA and testing budget was caused by the higher number of iteration cycles
resulted from the growth in the adoption of agile and DevOps. These new meth-
ods shift attention to test automation [13] since it is critical for continuous
integration, development, and delivery [18].

However, test automation is a challenging task. According to Cohn’s pyra-
mid [2], automation should be brought to all levels of testing. At the bottom
of the pyramid are automated unit tests, which shall be implemented in large
quantities, while at the top are end-to-end tests exercising user interface. Unfor-
tunately, the latter tests can be expensive to write, brittle, and slow [17].

When making a decision about automating user-interface tests, the decision-
maker has to consider multiple technical, economic, and human and organiza-
tional factors [5]. On the one hand, there are undoubted benefits, but on the
other, there are costs of implementing and maintaining test cases (i.e., creat-
ing new and updating existing ones to work for a new release of the software).
There are two extreme options that could be used to develop automatic tests:
(1) “quick-and-dirty” way i.e., using the simplest possible approach that does
not require intensive training of testers, and the opposite (2) to develop a well-
structured testing framework, which could help reducing maintenance costs by
increasing the reusability of the test code. The first option could be tempting for
smaller organizations that do not have large budgets to spend on test automa-
tion. However, the question is: how much more they would need to invest in
test maintenance if they decided to take the “quick-and-dirty” approach while
introducing user-interface test automation to an organization?

Thus, we decided to analyze two extreme approaches to structuring the
code of automatic test cases. As representatives of the approaches we chose
linear scripting (LS) and keyword-driven scripting (KS). The purpose
of the analysis is comparison of the approaches concerning maintenance costs
from the viewpoint of a software tester in the context of a small software-
development organization developing web applications wanting to introduce end-
user test automation to the development of one of its software products. To
achieve the goal, we formulated three research questions to be answered in case
study research:

– RQ1: Which approach to create automatic test cases (LS, KS) require more
lines of code to be modified while maintaining a test suite?

– RQ2: What are the main problems one can encounter while maintaining a
test suite using both approaches (LS, KS) to create automatic test cases?

– RQ3: How difficult is it to maintain a test suite using the LS, KS approaches?

Justification: We limit our focus to web applications taking into account their
popularity and high-availability of open-source automation test frameworks.

456 A. Sadaj et al.

Since there are numerous frameworks and approaches to develop automatic test
cases for web applications and the arbitrary choice of the approaches might have
been biased by the author’s knowledge in the area, we chose the two approaches
based on the results of the survey among practitioners [16]. The respondents
perceived as the most reasonable approaches to structuring the code of the test
suites in the context of this study the following approaches: linear scripting
(using Selenium [10] and jUnit [19]) for the “quick-and-dirty” approach and
keyword-driven scripting (using Cucumber Framework [3], Page Objects [4,14],
Selenium [10], and jUnit [19]) for the well-structured approach. We are going to
analyze both all physical lines of code needed by a given approach, and those
lines that require manual work of a developer to implement test cases, which we
call programmatical lines of code further on.

2 Case Study

To answer the research questions stated in Sect. 1, we conducted a case study
using the guidelines by Runeson et al. [15]. This kind of study allows to thor-
oughly examine a selected case while taking into account any related conditions.

2.1 Case Selection

Since we wanted to observe how the evolution of a software product (a web appli-
cation) affects the test suite of automatic test cases created using two different
approaches. Therefore, a mature web application for which we could access the
history of releases and the source code of each release was needed. We have
chosen Moodle [11]—an open-source learning management system (LMS) that
had its first version released on 20th August 2002, and is well known worldwide
among students, tutors, and other people involved in academia. In order to sim-
ulate the process of the constant development of the application, we used the
first and the last release of every major release of Moodle, beginning from the
1.9.19 version, i.e., we analyzed versions: 1.9.19, 2.0.0, 2.9.9, 3.0.0, and 3.6.2.

We selected three features to investigate that represent a range of possible
cases, i.e., typical and extreme cases [20] from the perspective of maintenance
effort. We have decided to pick one feature that would probably not change
much during the development of the platform and two that would change a lot.
The former feature is the login feature, as it is, most of the time, represented
by a straightforward form consisting of two fields that a user has to fill in with
their user name and password. The latter two features were selected based on
the analysis of the history of changes of the Git repository. To find the features,
we queried Git for the files with the .feature extension that contain test-cases
written by the developers of Moodle. We assumed that changes made in these
files are good indicators (proxies) of the changes made to the system’s features
(see [16] for details). From the 10 most frequently modified features that were
present in all considered versions of Moodle we selected calendar and course
management listing.

Maintainability of Automatic Acceptance Tests for Web Applications 457

2.2 Test Suite Implementation and Maintenance

Each test suite contained the same test cases as the tests implemented by the
Moodle team that can be found in the repository together with the source code of
the system. However, some of the tests from the original Moodle’s test repository
were intentionally omitted, because they were testing some technical aspects of
the features, for example, tests checking whether some AJAX calls have been
made or not, which is outside the scope of the study.

To implement the test cases, we chose the Java language as it is one of the
most popular programming languages in the world. We intended to study the
code of the test suite explicitly, not the code that is responsible for controlling
the web browser. For that reason, to implement the tests using the linear script-
ing approach, we decided to use one of the most known frameworks that serve
this purpose, being Selenium WebDriver [10]. For the keyword-driven scripting
approach, we used the Cucumber framework [3], which has its own language,
called Gherkin, that is used to express the steps of the test cases in a natural-
language-like way. To make it possible to execute the tests automatically, some
Jave code needed to be written. In addition to the Cucumber framework, we also
decided to use the Page Object pattern [4]. It is one of the most recognizable
patterns that are used along Selenium. This pattern works around the idea of
creating objects that are a representation of the User Interface that a developer
is going to be testing.

The common part for both types of the tests is that on the low level of
understanding, they both use Java and Selenium WebDriver to implement the
logic and manipulate the web browser.

The procedure of the study was as follows. Firstly, the test cases were imple-
mented for the first version of the Moodle for each feature in the following order:
(1) Login, (2) Calendar, and (3) Category management listing. We implemented
a test suite for each feature, and only after finishing one, we switched to the next
feature. For instance, we started from implementing the test suite for the login
feature with the first considered version of Moodle 1.9.19, and implemented the
tests with the linear scripting approach. Then, we implemented the same tests,
but with keyword-driven scripting approach.

Secondly, we switched to the next version of Moodle. We run all of the tests
for the currently maintained feature to see how many of the test cases have
started to fail. The failures could be triggered by a number of reasons. After
identifying the issues with the tests and defining the reasons, we fixed all of the
failures and made the suite pass again.

After we completed the whole cycle for one feature, meaning having imple-
mented the test suite for a certain feature in the first version being 1.9.19, gone
through all of the next versions, and finally made sure that all of the feature’s
tests are passing for the last version 3.6.2, the next step of the study was to
repeat the process for the next feature in order.

458 A. Sadaj et al.

2.3 Data Collection and Analysis

Quantitative Metrics. We decided use lines of code (LOC) as a proxy of
the overall effort needed to maintain a test suite. With the assumption that
effort = size × productivity we decided to omit the productivity component,
because it introduces too much noise and would be impossible to measure in
this research, as the small company’s developer team which is the case being
studied we take into account is purely hypothetical. We did not want to guess
the costs of the developers’ conceptual thinking about the test suite. We decided
to measure the quantity of the physical lines of code present in the code-base
separately for the linear scripting tests and keyword-driven ones.

We did not implement the setup of the test cases (e.g., adding test data to
the database) because they would be the same for both compared approaches.
Therefore, all of the needed accounts, courses, course categories, or user groups
had been created manually before the implementation of the tests. The created
data is identical for each version of Moodle, so data consistency has been ensured.
One of the criteria taken into account while picking the features to write the tests
for was that the data setup required for such feature to work should be relatively
easy to conduct and it should be a one-time-only operation, meaning that the
data would not change along with the tests. Thanks to picking the tested features
with that information in mind, the setup could be done manually in an easy way
and would have to be done only once. This has allowed lots of unnecessary code
not to be written.

The quantitative metrics were gathered after the implementation of all test
suites for all versions, and all features have been finished. Since all tests were
manged in the Git repository, we used the system measurement mechanism.

Qualitative Analysis. We decided to collect the following qualitative infor-
mation about the process of creating and maintaining test cases:

– What are the biggest difficulties while maintaining a test suite?
– How difficult is it to write the test suite for a new feature (with no pre-

implemented architecture)?
– How difficult is it to debug a failed test case?
– How difficult is it to understand a test case by reading its code?
– Which of the approaches is faster to develop?
– Which of the approaches facilitates test case repairing more?

3 Results and Observations

Based on the results of the study, we made the following observations that answer
the research questions.

� RQ1: Which approach to create automatic test cases require more lines of code
to be modified while maintaining a test suite?

Maintainability of Automatic Acceptance Tests for Web Applications 459

Observation 1: The keyword-driven approach resulted in producing more lines
in total than the linear scripting technique.

Justification: Code for the linear scripting approach constitutes of Java code
while in the keyword-driven one the test suite is implemented with Java, Gherkin,
and Page Objects. The linear scripting approach resulted in total 1111 physical
lines of code, while the keyword-driven one in 1514. It follows from Table 1 that
for each version of Moodle the keyword-driven approach required more lines of
code than the other one. This difference is because, frequently, it is needed to
write more code that will provide enough abstractions when one creates reusable
code using the keyword-driven approach.

Note: We decided to split version v2.9.9 into three parts—fixing the existing
tests, extending the existing tests to match their full new capabilities, and imple-
menting tests for functionalities that have appeared in this version.

Table 1. Physical lines of code per approach

Approach/Moodle’s version v1.9.19 v2.0.0 v2.9.9 -

fixing

v2.9.9 -

extension

v2.9.9 - adding

missing

v3.0.0 v3.6.2

Linear scripting 658 662 655 761 1112 1112 1111

Keyword-driven scripting 937 929 929 1074 1473 1473 1514

Keyword-driven scripting – parts:

Cucumber (Gherkin) 170 163 162 217 425 425 425

Cucumber (Java) 335 337 344 381 491 491 492

Page Object (Java) 432 429 433 476 557 557 597

Observation 2: The keyword-driven approach resulted in a smaller Java test-
ing codebase than the linear scripting technique.

Justification: In the keyword-driven scripting approach the Java codebase con-
sists of the code implementing the Page Objects and Java definitions of test steps
(keywords). It follows from Table 1 that the total number of the physical lines of
code for the keyword-driven scripting test suite was 1089 physical lines of code.
This is a slightly lower number than in the case of the linear scripting test suite,
which had 1111 lines of Java code.

Observation 3: The keyword-driven approach resulted in a lower number of
changed lines of code required to maintain test cases than the linear scripting
technique.

Justification: Let us define changed lines of code metric as a sum of added,
modified and deleted lines of code that had to be altered in order to keep a test
suite passing, or in other words—maintain it. Figure 1 depicts the number of

460 A. Sadaj et al.

(a) Linear scripting approach

(b) Keyword-driven scripting approach

Fig. 1. Total modified lines of code with linear scripting approach and with keyword-
driven scripting one.

changed lines of code for each approach, per each version of the platform. The
total amount of changed lines of code for the keyword-driven scripting approach
was 964 lines of code, while for the linear scripting one it was 984. As predicted,
investing time and effort in implementing a structured and abstract test suite,
such as one written with the help of keyword-driven scripting approach, pays off
in the long term of test suite maintenance.

Observation 4: The keyword-driven approach resulted in a lower number of
modified lines of Java code required to maintain test cases than the linear script-
ing technique.

Justification: A total of 326 modified lines of code come from the Cucumber
(Gherkin) framework’s code. As stated before, it does not contain programmatic

Maintainability of Automatic Acceptance Tests for Web Applications 461

code, so we decided to exclude it from the sum of total modified lines of code to
see the difference between the Java code. This resulted in 638 modified lines of
code in the keyword-driven scripting test suite and 984 in the linear scripting
one. This means that 35% fewer changes were needed to maintain the Java part
of the keyword-driven scripting test suite than the linear one.

� RQ2: What are the main problems one can encounter while maintaining a test
suite using both approaches (LS, KS) to create automatic test cases?

Observation 5: Linear scripts can be made unreadable quickly.

Justification: In the linear scripting approach, with low effort invested in mak-
ing the code readable, the code of tests cases quickly became difficult to read.
The readability issue had its origin in the fact that test cases implemented in
this approach contain a significant amount of low-level code. The code used
Selenium WebDriver to execute steps of test scenarios. The purpose of the code
was not visible at first glance as the methods had technical names. During the
development, to make our code readable, we split the code into blocks, divided
by the responsibility or a task that such block of code would execute. We put
one line of comment for each one, in which we explained what does the block
do. There were many situations, especially in the more complex test cases, in
which besides the explanation, such block of code would still be difficult to read
and understand. However, overcompensating and putting even more effort into
commenting, in our opinion, would hurt the readability, as there would be too
many comments and they would clutter the code.

Observation 6: Commenting blocks of code helps in making test cases easier
to read and understand in the linear scripting approach.

Justification: As we mentioned in the justification of Observation 5, due to
the fact that the linear-scripting-approach test cases are dense with the code,
they quickly become difficult to read and understand. To mitigate this risk, we
decided to split the code into blocks, based on their responsibility, and provide
a comment line of code. The comments explained what each block do. The
frequency and level of details of the comments is an arbitrary decision. Too little
explanation could not bring any value, and too many details could make the test
cases challenging to read. It would clutter the code.

Observation 7: Introducing changes to the codebase, after a widely used selec-
tor has changed, is tedious work in the linear scripting approach.

Justification: In the linear scripting approach methods locating GUI elements
(e.g., via link text, XPath, IDs or CSS classes), so-called selectors, are frequently
used. When a widely used selector gets changed, the test suite requires to be
modified in many places. For example, the login button’s selector, which is used
at least at the beginning of every test to log in the test user, would require

462 A. Sadaj et al.

changes in all these places. Moreover, the blocks of code in the linear scripting
approach are very dense. It makes the parts of code requiring modification hard
to notice, which makes the maintenance a difficult task.

Observation 8: To fully benefit from the keyword-driven scripting approach,
one needs to implement the keywords in a way that will make them reusable
across different test cases.

Justification: A keyword is a natural language statement that is used to express
some part of a test scenario (e.g., an action of login). It is mapped by a developer
to code that during the execution of the test will make the machine execute this
part automatically. If there are similar test scenarios across different test cases,
the defined keywords can be reused. However, to effectively use them and not
to clutter the code, a developer has to have good knowledge on what steps and
keywords have already been defined and what responsibilities they have. This
might be a difficult aspect of using this approach, as it requires one to know
the whole test codebase and understand it well. It might also introduce some
problems for new members of the team, especially junior ones, as they would
have more effort to be made in order to start contributing to the project.

� RQ3: How difficult is it to maintain a test suite using the LS, KS approaches?

Observation 9: The keyword-driven approach requires more lines of test code
to write than the linear scripting one, but it is easier to implement.

Justification: As it follows from Table 1, the keyword-driven scripting approach
required us to write more lines in Java and Gherkin compared to the linear
scripting one. However, in our opinion, it was easier to implement the test suites
using the former one. The reason behind it is that the code developed using the
keyword-driven scripting approach is more structured. While implementing the
code, using semantically correct components, it would give the context of what
is the code going to accomplish. Also, this approach required us to write less
low-level code using the Selenium WebDriver.

Observation 10: The keyword-driven approach requires knowledge of more
design patterns, e.g. Page Object

Justification: Using complex and abstract approaches to writing the code, such
as the keyword-driven scripting approach can easily lead to the need for learning
more design patterns, such as the Page Object one [4,14]. The code to imple-
ment the Page Object pattern made up for 1/3 of the test suite’s code, so it
was important to us to know how to use it. Although it would be possible to
implement the keyword-driven scripting test suite without the pattern, to fully
benefit from the approach, we had to use this and some other design patterns.

Maintainability of Automatic Acceptance Tests for Web Applications 463

4 Threats to Validity

We identified the following threats to validity that could have affected both our
study and the results gathered from it.

The first threat concerns the choice of the test techniques investigated in the
study. Not to base the decision on the opinion of the researchers, the choice of
approaches follows from the results of the survey conducted among practitioners
world-wide. Still, some subjectivity might be included.

The second threat we identified is the possibility that our own experience
and opinions affecting the study itself. We tried to be as objective as we could
while formulating observations and discussed them together. However, there is
always a chance that our opinions might slip into either the conclusions drawn
from it.

The third threat to validity is the scale of the research. We tried to pick a
mature, open-source web-based application, and we selected Moodle. We stand
by this decision, as this platform is widely and internationally used, and it has
been available on the market for over 10 years. The threat might be caused not
only by analyzing only one, however complex system but also by the number and
the complexity of features we decided to test. We need to accept the threat. To
mitigate this threat the features represent various types. One is a non-complex
and stable feature, and two of them are more complex and changing features.

Another threat to validity we identified is the very fact that Moodle is an
open-source platform. This has an influence on several aspects of the source
code that could directly affect our study. Rotation of contributors, free-of-charge
involvement might affect the quality of the source code, and as a result, affect
how we created test suites.

5 Related Work

Multiple studies have been conducted in the area of maintainability of test suites
for web applications. However, to the best of our knowledge, they are mostly
focused on the topic of increasing the robustness and immunity to changes of test
suites or proposing some new approaches, e.g., [1,8,9]. Many of them compare
the maintainability of test suites, but focus on using different approaches to find
web elements from the web applications (e.g., [6,8]).

According to our up-to-date knowledge, there is one empirical case study on
the similar topic. Leotta et al. [7] conducted a case study comparing the Capture-
Replay approach against a programmable one. The difference between this and
our study is that we decided to use linear scripting technique to implement
the non-complex test suite to compare the maintainability. The Capture-Replay
approach the researchers have used is taken from Selenium IDE in which a
programmer starts recording, clicks through a test case and then saves the test.
Selenium IDE then recreates the test, but saving it as lines of code written in
the linear scripting manner. The difference is that automatically created code
is prone to creating unnecessary lines and lacks intelligence. We think that the

464 A. Sadaj et al.

fact of the Capture-Replay ’s code being automatically created by a software
tool might be a threat to validity. Based on that, we decided to implement the
test cases in our study ourselves, so we can eliminate those threats. Also, the
researchers gave some quantitative values considering the cost of implementation,
but they did not focus on the qualitative part of the research.

6 Conclusions

The goal of the study we conducted was to compare approaches to structure
code of test cases in the context of maintainability of the automatic acceptance
tests for web-based applications. The approaches we selected to compare were
linear scripting and keyword-driven scripting. We conducted a case study on the
Moodle learning management system within which we created and maintained
automatic test suites for three features.
From the results of the study the following observations follows:

• Observation 1: The keyword-driven approach resulted in producing more
lines in Java and Gherkin than the linear scripting technique

• Observation 2: The keyword-driven approach resulted in a smaller Java
testing codebase than the linear scripting technique

• Observation 3: The keyword-driven approach resulted in a smaller number
of modified lines of Java and Gherkin required to maintain test cases than
the linear scripting technique

• Observation 4: The keyword-driven approach resulted in a smaller number
of modified lines of Java code required to maintain test cases than the linear
scripting technique

• Observation 5: Linear scripts can be made unreadable quickly
• Observation 6: Commenting blocks of code helps in making test cases easier

to read and understand
• Observation 7: Introducing changes to the codebase after a widely used

selector has changed is a tedious work
• Observation 8: To fully benefit from the keyword-driven scripting approach,

one needs to implement the keywords in a way that will make them reusable
across different test cases

• Observation 9: The keyword-driven approach requires more lines to write
(Java and Gherkin), but it is easier to write

• Observation 10: The keyword-driven approach requires knowledge of more
design patterns, e.g., Page Object

Based on the observations, the following recommendations regarding the
choice between the two considered approaches depending on the nature of the
software project can be formulated.

Can the size of the application-to-be-tested be predicted? If the size of the
application is small and, at best, the complexity is not high using structured and
complex scripting techniques might be excessive and we would rather recommend
picking approaches like linear scripting. It can save time on both implementation

Maintainability of Automatic Acceptance Tests for Web Applications 465

and learning. The complex techniques would not have the chance to pay back
the time invested in learning them. The test suite codebase would be too small
and possibly too simple to profit from it.

Does the project have an end-of-life date set? Given the development team
has time and resources for learning a complex technique of structuring the code-
base, the recommendation would be to spend the time learning it. In the long
run it will be easier for the developers to implement new tests or maintain the
existing ones. The longer the project will be developed, the more gains will be
drawn from implementing such an approach.

Is it important for the team to broaden knowledge? Implementing test suites
using the keyword-driven approach requires a higher level of expertise than for
the simple linear scripts. We believe that acquiring this additional knowledge
will increase the development’s team value as programmers. Their experience
will be richer with some new approaches, techniques and might unlock a whole
new perspective of looking at software development for them. The benefits of
learning new approaches in the testing field might transfer to the regular source
code development world.

Is understandability of the tests important? The complex scripting
approaches such as the keyword-driven scripting require a larger amount of work
and effort to be done at the beginning to grasp their concepts and to understand
them. Using such concept forces the codebase to be structured. Thus, it facili-
tates the process of joining the development team and orienting oneself in the
codebase. In our opinion, it will be easier to explain the way how the test suite
has been implemented if it has been done in a structured, thought-through,
logical way.

It would be worth to continue work in the area. Especially, scaling up the
case study to improve the generalizability of the conclusions would be valuable.

References

1. Carvalho, R.: A comparative study of GUI testing approaches (2016)
2. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Pearson

Education, London (2010)
3. Dees, I., Wynne, M., Hellesoy, A.: Cucumber Recipes: Automate Anything with

BDD Tools and Techniques. Pragmatic Bookshelf, Raleigh (2013)
4. Fowler, M.: https://martinfowler.com/bliki/PageObject.html. Accessed 25 Oct

2019
5. Garousi, V., Mika, M.: When and what to automate in software testing? A multi-

vocal literature review. Inf. Softw. Technol. 76, 92–117 (2016)
6. Leotta, M., Clerissi, D., Ricca, F., Spadaro, C.: Comparing the maintainability of

selenium WebDriver test suites employing different locators: a case study. In: Join-
ing AcadeMiA and Industry Contributions to Testing Automation (JAMAICA)
(2013)

7. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Capture-replay vs. programmable
web testing: an empirical assessment during test case evolution. In: WCRE 2013,
Koblenz, Germany, pp. 272–281 (2013)

https://martinfowler.com/bliki/PageObject.html

466 A. Sadaj et al.

8. Leotta, M., Ricca, F., Stocco, A., Tonella, P.: Reducing web test cases aging by
means of robust XPath locators. IEEE (2013)

9. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: Using multi-locators to increase the
robustness of web test cases. IEEE (2015)

10. Mg, R.P.: Learning Selenium Testing Tools. Packt Publishing Ltd., Birmingham
(2015)

11. Moodle.org: Moodle – Open-source learning platform (2019). https://moodle.org.
Accessed 17 June 2019

12. Natarajan, S., Balasubramaniam, K., Kanitkar, M.: Efficiency and cost contain-
ment in quality assurance, 10th edn. Capgemini, Micro Focus, Sogeti, World Qual-
ity Report 2018-19 (2019)

13. Ochodek, M., Kopczyńska, S.: Perceived importance of agile requirements engi-
neering practices-a survey. J. Syst. Softw. 143, 29–43 (2018)

14. pluralsight.com: Getting Started with Page Object Pattern for Your Sele-
nium Tests (2019). https://www.pluralsight.com/guides/getting-started-with-
page-object-pattern-for-your-selenium-tests. Accessed 13 June 2019

15. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

16. Sadaj, A.: Maintainability of automatic acceptance tests for web applications–a
case study comparing two approaches to organizing code of test cases. Master’s
thesis, Poznan University of Technology (2019)

17. Spinellis, D.: State-of-the-art software testing. IEEE Softw. 34(5), 4–6 (2017)
18. St̊ahl, D., Bosch, J.: Modeling continuous integration practice differences in indus-

try software development. J. Syst. Softw. 87, 48–59 (2014)
19. Tahchiev, P., Leme, F., Massol, V., Gregory, G.: JUnit in Action. Manning Publi-

cations Co., Greenwich (2010)
20. Yin, R.: Case Study Research: Design and Methods. SAGE Publications, Thousand

Oaks (2003)

https://moodle.org
https://www.pluralsight.com/guides/getting-started-with-page-object-pattern-for-your-selenium-tests
https://www.pluralsight.com/guides/getting-started-with-page-object-pattern-for-your-selenium-tests

Recommending Trips in the Archipelago
of Refactorings

Theofanis Vartziotis, Apostolos V. Zarras(B), Anastasios Tsimakis,
and Panos Vassiliadis

Department of Computer Science and Engineering, University of Ioannina,
Ioannina, Greece

{tvartzio,zarras,pvassil}@cs.uoi.gr, atsimakis@gmail.com

Abstract. The essence of refactoring is to improve source code quality,
in a principled, behavior preserving, one step at the time, process. To this
end, the developer has to figure out the refactoring steps, while working
on a specific source code fragment. To facilitate this task, the documenta-
tion that explains each primitive refactoring typically provides guidelines
and tips on how to combine it with further refactorings. However, the
developer has to cope with many refactorings and lots of guidelines.

To deal with this problem, we propose a graph-based model that for-
mally specifies refactoring guidelines and tips in terms of nodes that
correspond to refactorings and edges that denote part-of, instead-of and
succession relations. We refer to this model as the Map of the Archipelago
of Refactorings and we use it as the premise of the Refactoring Trip Advi-
sor, a refactoring recommendation tool that facilitates the combination
of refactorings. A first assessment of the tool in a practical scenario that
involves 16 developers and a limited set of refactorings for composing
and moving methods brought out positive results that motivate further
studies of a larger scale and scope.

Keywords: Refactoring recommendation · Refactoring graph ·
Refactoring combination

1 Introduction

Refactoring is a basic prerequisite for keeping our source code clean. The basic
idea is to improve source code quality, via a series of small behavior-preserving
transformations [4,11].

“The biggest problem with Extract Method is dealing with local variables,
and temps are one of the main sources of this issue. When I’m working
on a method, I like Replace Temp with Query to get rid of any temporary
variables that I can remove. If the temp is used for many things, I use
Split Temporary Variable first to make the temp easier to replace.”

The previous quote is from Martin Fowler’s catalog of refactorings [4]. What
is interesting in this quote is that it provides certain guidelines on how to perform
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 467–478, 2020.
https://doi.org/10.1007/978-3-030-38919-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_38&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_38

468 T. Vartziotis et al.

the Extract Method refactoring. To make things easier, it suggests to remove
temporary variables before the method extraction, using Replace Temp with
Query. Taking a step further, the quote suggests to use Split Temporary Variable
before Replace Temp with Query, so as to facilitate the removal of multi-purpose
temporary variables.

Observe the next quote, which suggests using Replace Method with Method
Object instead of Extract Method, in the case of very complex methods.

“Sometimes, however, the temporary variables are just too tangled to
replace. I need Replace Method with Method Object. This allows me to
break up even the most tangled method, at the cost of introducing a new
class for the job.”

Moreover, in the following quote we see part-of relations, which dictate how
to realize Extract Superclass based on more primitive refactorings like Extract
Method and Pull Up Method.

“Examine the methods left on the subclasses. See if there are common
parts, if there are you can use Extract Method followed by Pull Up Method
on the common parts.”

Hence, refactorings come along with several informal guidelines that tell us
how to combine them into more complex evolution tasks. What is the problem
with that? On the one hand, there are way too many refactorings and guidelines
in Fowler’s catalog. Specifically, the catalog consists of 68 different refactorings,
while the documentation of these refactorings includes more than 100 guidelines
and tips [16]. On the other hand, the state of the art on refactoring (two detailed
surveys can be found in [6] and [2]) does not provide means that facilitate the
effective exploitation of this knowledge.

To deal with the aforementioned issues, we propose an approach that allows
the developers to combine refactorings into more complex evolution tasks via
the following key concepts:

– The Map of the Archipelago of Refactorings, a graph-based model that specifies
informal guidelines and tips, found in Fowler’s catalog, in terms of nodes
that correspond to refactorings, and edges that signify part-of, instead-of and
succession relations between them. In Zarras et al. [16] we introduced a coarse
sketch of the map, while in this paper we provide its detailed formal definition.

– The Refactoring Trip Advisor, a refactoring recommendation facility that pro-
vides an interactive perspective of the archipelago map, which makes sugges-
tions regarding which refactoring(s) to use before, after, or instead of a partic-
ular refactoring. The Refactoring Trip Advisor further provides guidelines on
how to apply individual refactorings, and enables the identification of refac-
toring opportunities.

We assess our approach in two steps: (1) we show that the Refactoring
Trip Advisor adheres to the basic refactoring tool principles, recommended by

Recommending Trips in the Archipelago of Refactorings 469

Fig. 1. The archipelago hyper-map.

Murphy-Hill and Black in [10]; (2) we validate that the Refactoring Trip Advisor
can be successfully used in a realistic re-engineering scenario, in a study that
involves 16 developers with varying profiles.

The rest of this paper is structured as follows. In Sect. 2, we discuss related
work. In Sect. 3, we detail the modus operandi of the proposed approach. In
Sect. 4, we concentrate on the validation of the proposed approach. Finally, in
Sect. 5 we summarize our contribution and point out the future directions of this
work.

2 Related Work

Opdyke introduced refactoring as a behavior preserving process that changes a
software, so as to enable other changes to be made more easily [11]. Mens and
Tourwé [6] provide an excellent survey that addresses several different aspects of
the refactoring process (e.g., refactoring activities, techniques, supporting tools).
A more recent extensive survey that focuses on techniques and tools for the
detection of refactoring opportunities is provided by Al Dallal [2].

An important result that is brought out by the empirical study of Kim et al.
[5] is the need to combine refactorings in more complex evolution tasks. To deal
with this issue, the state of the art comprises a number of interesting search-based
refactoring approaches (e.g., [9]) that apply refactorings automatically towards
maximizing the software quality improvement, with respect to a set of target

470 T. Vartziotis et al.

quality indicators. Our approach follows a different direction, as the goal is to
widen the developer’s choices with recommendations derived from the proposed
graph-based refactoring model.

Our work is more closely related to approaches that concern the modeling
of refactoring relations. In particular, Mens et al. [7] model refactoring rela-
tions to detect conflicts between refactorings. Another interesting approach that
employs refactoring relations to enable automated refactoring scheduling and
conflict resolution is proposed by Moghadam and Cinnéide [8]. Van Der Straeten
et al. [15], rely on refactoring relations to preserve program behavior. The key
difference of our approach from these efforts is that we formally model guidelines
and tips found in Fowler’s catalog of refactorings [4], in terms of an interactive
model that provides actionable recommendations for the effective combination
of refactorings.

When it comes to the detection of refactoring opportunities [2], the goal of
our approach is to facilitate the integration of different existing techniques under
the common umbrella of the proposed graph-based refactoring model. As a proof
of concept, we have done this in the Refactoring Trip Advisor with three different
refactoring detection techniques [3,12,13] that are provided by the JDeodorant
framework.

3 Refactoring Trip Advisor

In this section, we formally model the map of the archipelago of refactorings.
Then, we focus on the recommendation of refactoring trips. Finally, we illustrate
the role of our approach in a realistic re-engineering scenario.

3.1 Modelling Refactoring Relations

At a glance, the Map of the Archipelago of Refactorings models informal guide-
lines and tips in terms of different relations between refactorings. Our baseline
is Martin Fowler’s catalog of refactorings [4]. Nevertheless, the extension of the
map with further refactorings and relations is straightforward. The core concept
of the map is a graph, with nodes representing refactorings and edges represent-
ing the relations between them. As relations are of different kinds, we introduce
corresponding types of edges. More formally, we define the overall model as
follows.

Definition 1 [Archipelago Map]. The map of the archipelago of refactorings
is a directed graph MR(VR,ER), s.t. the nodes VR represent refactorings, while
the edges ER denote relations that correspond to guidelines and tips, concerning
the combination of refactorings:

– [Node Properties] VR =
⋃6

i=1 V
i
R is divided into disjoint subsets, called

regions. The regions correspond to the different categories of refactorings
(Fig. 1), defined in Fowler’s catalog [4].

Recommending Trips in the Archipelago of Refactorings 471

Fig. 2. The Composing Methods region map. (Color figure online)

– [Edge Properties] The edges e(vi, vj) ∈ ER are typed, with type(e(vi, vj)) ∈
T = {succession, part of, instead of}:

• A succession relation, is represented as a solid unidirectional edge; it
denotes that it would be useful to perform the source (resp. target) refac-
toring vi (resp. vj), before (resp. after) the target (resp. source) refactor-
ing vj (resp. vi).

• A part of relation is represented as a dotted unidirectional edge between
two refactorings; it signifies that the source refactoring vi, can be used for
the realization of the target refactoring vj.

• A instead of relation, is denoted as a dashed bidirectional edge; it means
that either one of the related refactorings can be used, instead of the other.

The archipelago map is complex, consisting of 68 nodes and 101 edges
between them1. The complexity of the map further points out the amount of
information and the effort that is required from the developer, to exploit refac-
torings in an effective way. To deal with the complexity of the map, we decompose
it into a set of region maps (e.g., Composing methods region given in Fig. 2). A
region map shows the refactorings of a respective region, along with important
refactorings from other regions that are related to them.

Definition 2 [Region Map]. For every region V i
R of VR, the region map

M i
RG(V i

RG, E
i
RG) is an induced sub-graph of MR, s.t. V i

RG consists of the refac-
torings V i

R and related refactorings from other regions, i.e., (V i
RG ⊃ V i

R)∧(∀vj ∈
V i
RG − V i

R, ∃vi ∈ V i
R s.t. (e(vi, vj) ∈ ER ∨ e(vj , vi) ∈ ER)).

1 The map can be found at: www.cs.uoi.gr/∼zarras/RefactoringsArchipelagoWEB/
ArchipelagoOfRefactorings.html.

www.cs.uoi.gr/{~}zarras/RefactoringsArchipelagoWEB/ArchipelagoOfRefactorings.html
www.cs.uoi.gr/{~}zarras/RefactoringsArchipelagoWEB/ArchipelagoOfRefactorings.html

472 T. Vartziotis et al.

At a higher-level of abstraction the region maps are organized with respect to
a hyper-map (Fig. 1). In a sense, the archipelago hyper-map provides a summary
of the full-fledged archipelago map.

Definition 3 [Archipelago Hyper-map]. The archipelago hyper-map HR(VH,
EH), is a directed graph, s.t. the nodes of the graph represent the regions
V 1
R, V

1
R, . . . V

6
R of the archipelago map and the edges of the hyper-map are pro-

duced with respect to the archipelago map MR(VR,ER), as follows: ∀e(vi, vj) ∈
ER, ∃e(V i

R, V
j
R) ∈ EH if and only if (vi ∈ V i

R ∧ vj ∈ V j
R ∧ V i

R �= V j
R).

3.2 Recommending Refactoring Trips

To facilitate the refactoring process, the archipelago map must go live to provide
actionable recommendations to the developer towards the effective combination
of refactorings. Moreover, the developer needs contextualization for each refac-
toring, in the form of guidelines concerning how to apply it. Finally, the developer
needs assistance for the identification of refactoring opportunities in the specific
module (package, class, method, etc.) that he/she is working with.

To deal with the aforementioned issues we developed the Refactoring Trip
Advisor as an Eclipse plugin2. At a glance, a refactoring trip begins with the
developer selecting a particular refactoring region from the archipelago hyper-
map (e.g., the Composing method region given in Fig. 1). As a result, the Refac-
toring Trip Advisor provides to the developer the map of the selected region.
The developer selects the particular refactoring (e.g., Extract Method in Fig. 2)
that he/she wants to apply. Then, the Refactoring Trip Advisor highlights in the
map the selected refactoring and other related refactorings, which can be used
before, after, as part of, or instead of the selected refactoring, with the respective
nodes colored in yellow, pink, cyan, purple and tan.

Each refactoring is related with slideware that provides guidelines on how
to apply it. The slideware consists of three parts: the first part explains the
problem solved by the refactoring; the second part, gives a simple example on
how to apply the refactoring; the last part, allows the developer to execute
available refactoring detectors that identify refactoring opportunities in the code.
To perform the recommended refactorings the developer can exploit the available
IDE refactoring facilities (see the related discussion in Sect. 4.1).

Regarding the refactoring detectors, one of the primary concerns of our app-
roach is extensibility. Specifically, our goal is to ease the integration of the tool
with (a) in-house refactoring detectors, developed specifically for our approach
and (b) external refactoring detectors, provided by third-party developers. To
achieve this goal, we rely on the Three-Steps Refactoring Detector pattern that
we introduced in Tsimakis et al. [14]. The pattern facilitates the development
of refactoring detectors via a polymorphic hierarchy of template classes that
realize a general three-step refactoring detection process. In the Refactoring
Trip Advisor we used the pattern for the development of eight in-house refac-
toring detectors. Moreover, we used the pattern to facilitate the integration of
2

The plugin source code can be downloaded from github.com/AnastasiosHJW/RefactoringTrip-
Advisor.

Recommending Trips in the Archipelago of Refactorings 473

the Refactoring Trip Advisor with three external refactoring detectors that are
provided by the JDeodorant refactoring framework [3,12,13]. More details con-
cerning the usage of the pattern in the Refactoring Trip Advisor can be found
in Tsimakis et al. [14].

To discuss the involvement of the Refactoring Trip Advisor in the refactoring
process we employ a typical re-engineering scenario that concerns data contain-
ers and misplaced responsibilities. Specifically, we focus on an application that
analyzes the evolution of Amazon Web Services (AWS) [17]. The heart of the
application is the History class, a data container that keeps the evolution data
of subsequent Web service versions. Around the History class there are several
client classes that manipulate the evolution data. The code of the client methods
is typically long and complicated. Certain parts of the client methods are mis-
placed, as the History class should have been responsible for the manipulation
of the evolution data.

1 public ChartPanel [] visualizeGrowth () {
2 ChartPanel [] panels = new ChartPanel [2];
3 ArrayList <VersionInfo > versionsList = history.getVersions ();
4
5 DefaultCategoryDataset operationsGrowth =new DefaultCategoryDataset();
6 for (int i = 0; i < versionsList.size(); i++) {
7 double opers = versionsList.get(i).getOperationGrowth ();
8 String xAxis = versionsList.get(i).getId();
9 operationsGrowth.setValue(opers , "Operations", xAxis);

10 }
11
12 JFreeChart opersGrowthChart = ChartFactory.createLineChart(
13 "Growth�Rate�Line�Chart", "Version�ID",
14 "Growth�Rate", operationsGrowth ,
15 true , true , false
16);
17 panels [0] = new ChartPanel(opersGrowthChart);
18
19 //
20 return panels;
21 }

Listing 1. Code snippet from visualizeGrowth(), before refactoring.

1 public ChartPanel [] visualizeGrowth () {
2 ChartPanel [] panels = new ChartPanel [2];
3
4 DefaultCategoryDataset operationsGrowth = history.getOpersGrowth ();
5
6 JFreeChart opersGrowthChart = ChartFactory.createLineChart(
7 "Growth�Rate�Line�Chart",
8 "Version�ID", "Growth�Rate",
9 operationsGrowth , true , true , false

10);
11 panels [0] = new ChartPanel(opersGrowthChart);
12
13 //
14 return panels;
15 }

Listing 2. Code snippet from visualizeGrowth(), after refactoring.

For instance, GrowthVisualizer is a client class that visualizes the Web
services’ growth, in terms of the number of provided operations and data struc-
tures. Listing 1 gives a code snippet from the visualizeGrowth() method of

474 T. Vartziotis et al.

GrowthVisualizer. Our goal is to make this snippet smaller and simpler. To
this end, we begin from the archipelago hyper-map (Fig. 1), which gives gen-
eral recommendations on how to combine refactorings from different regions. To
reorganize the code of the method, we can use refactorings from the Compos-
ing Methods region. These refactorings typically result in the extraction of new
methods. Therefore, the hyper-map suggests that afterwards it may be useful
to consider refactorings from the Moving Features region, to potentially move
extracted methods and related fields.

Table 1. Developers profiles (colours highlight boundary values).

Suppose that we select Extract Method (yellow node in Fig. 2) from the
Composing Methods region. The respective refactoring detector [13] suggests to
extract a new method for the loop (Listing 1, lines 6–10) that prepares the evolu-
tion data-sets for the visualization of the Web service growth. Before the method
extraction, the Composing Methods map recommends the use of refactorings like
Inline Temp and Replace Temp with Query (pink nodes in Fig. 2) for the removal
of local variables. These refactorings shall make the method extraction easier (see
first quote in Sect. 1). The Inline Temp detector [14] identifies several such vari-
ables (e.g., versionList, opers, xAxis) After the method extraction, the map
suggests to consider Move Method (cyan node in Fig. 2) to place the extracted
methods (getOpesGrowth()) close to the data that it manipulates, while the
Move Method detector [12] identifies History as the appropriate target class.
Overall, the refactored code snippet is given in Listing 2.

4 Validation

To validate the Refactoring Trip Advisor we consider two main issues. First, we
assess whether it adheres to the basic refactoring tool principles, introduced by
Murphy-Hill and Black [10]. Then, we examine what do the developers actually
think about the tool.

Recommending Trips in the Archipelago of Refactorings 475

4.1 Fitness for Purpose

Murphy-Hill and Black introduced five principles for refactoring tools [10].
Specifically, a refactoring tool should allow the programmer to: (R1) Choose
the desired refactoring quickly; (R2) switch seamlessly between program edit-
ing and refactoring; (R3) view and navigate the program code while using the
tool; (R4) avoid providing explicit configuration information; (R5) access all
the other tools normally while using the tool.

The Refactoring Trip Advisor facilitates the selection of refactorings (R1)
based on two concepts: (1) it provides the region maps that hide from the devel-
oper the complexity of the entire archipelago map; (2) it provides the archipelago
hyper-map that summarizes the contents of the archipelago map. The basic func-
tionalities of the tool are provided via a separate frame (Figs. 1 and 2). The
developer can activate this frame and switch back to the main IDE frame, at
any point, to edit/view/navigate the program code (R2, R3), and use any other
tool that is available through the IDE (R5). The recommendation of refactorings
based on the region maps does not require any configuration information. On
the other hand, certain detectors of refactoring opportunities do. Typically, the
required information concerns thresholds that customize the detectors’ modus
operandi. Nevertheless, the developer can avoid setting these thresholds (R4),
as the proposed tool assumes default values for them.

4.2 The Developers’ Opinions

The goal of this study is to let the developers use the Refactoring Trip Advi-
sor and get their feedback concerning the overall approach. To familiarize the
developers with the Refactoring Trip Advisor we employed the re-engineering
scenario introduced in Sect. 3. Specifically, we asked the developers to simplify
the visualizeGrowth() method (a code snippet of the method is given in List-
ing 1) with the help of the tool. As a starting point, we prompted the developers
to focus on refactorings from the Composing Methods region. After this expe-
rience, we asked them to perform an overall review of the the Refactoring Trip
Advisor, by rating the usefulness of the refactoring relations, slideware, and
detection facilities, based on a typical 5-level likert scale. The developers could
provide further comments, remarks, and suggestions, concerning our approach.

Our study involves a sample of 16 developers from industry and academia
(students and staff members). The selection was based on purposive sampling
of heterogeneous instances [1]; the developers were chosen deliberately to reflect
diversity on (a) development experience, (b) knowledge about refactoring, (c)
frequency of refactoring, and (d) usage of refactoring tools. The detailed profiles
of the developers are provided in Table 1.

Key Findings. Table 2 summarizes the results that we obtained. The results are
provided in three parts: the first part (Table 2 - left) gives the statistical break-
down of the refactorings that have been performed by the developers; the second
part (Table 2 - middle) analyzes the exploitation of the recommendations that
have been provided by the Refactoring Trip Advisor, in terms of the percentage

476 T. Vartziotis et al.

Table 2. Refactorings & tool feature ratings (colours highlight boundary values).

of recommended refactorings that have been performed by the developers, and
the percentage of performed refactorings that have been recommended; finally,
the third part (Table 2 - right) details the assessment of the tool’s features.

Overall, the developers managed to use the Refactoring Trip Advisor in the
context of a realistic task. Nevertheless, the exploitation of the provided recom-
mendations by the developers varies, along with the quality of the results that
they produced. In particular, two developers (3 and 9) just removed local vari-
ables from visualizeGrowth(), via Inline Temp. Five developers (2, 5, 7, 8,
9) simplified visualizeGrowth() even more, using Extract Method. Finally,
nine developers (1, 4, 6, 10, 11, 12, 13, 15, 16) solved the problem of misplaced
responsibilities, by moving the extracted methods to the History class, via Move
Method.

The percentage of recommended refactorings that have been performed by
the developers varies from 18.18% to 100%. However, most of the developers
applied a large percentage of the recommended refactorings; twelve developers
performed more than 60% of the recommended refactorings, while the average
percentage of refactorings that have been performed is 74.43% with a standard
deviation of 26.60%. On the other hand, the percentage of performed refactorings
that have been recommended is 100% for all the developers, except one, who
extracted a method that was not included in the suggestions.

Concerning the assessment of the overall approach, the developers provided
quite high ratings, with the refactoring relations and slides being the most appre-
ciated features, followed by the refactoring detection facilities. Regarding fur-
ther comments and remarks, several developers pointed out that the proposed

Recommending Trips in the Archipelago of Refactorings 477

approach helped them to learn more about refactoring. Moreover, they mentioned
that the proposed approach could be considered both for development and educa-
tion purposes. The developers’ suggestions ranged from concrete improvements
(e.g., to reduce the number of pop-up windows and make the slideware resizable),
to broader ideas like making the representation of the map more interactive,
allowing the developer to customize it by adding/removing/changing refactor-
ings and relations, adding more slides on the relations between refactorings,
complementing the slideware with audio/video, and so on.

Threats to Validity. Two factors that threaten the internal validity of one
group experiments are history and maturation; the longer the time of the exper-
iment, the more likely are these threats [1]. In our study, the overall duration
of the tests was reasonably short, ranging from 15 to 65 min. Another threat
to internal validity is the social desirability bias, in the sense that the develop-
ers simply agreed with the tool recommendations. To deal with this threat, we
used anonymous questionnaires. Our assessment relies on a single scenario that
focuses on a subset of refactorings for composing and moving methods. These
are threats to external validity. We further asked from the developers an overall
review, concerning the proposed approach as a whole. Nevertheless, to be able
to generalize the results further studies should be performed, involving more
developers, subject systems and refactorings.

5 Conclusion

In this paper, we proposed an approach that provides actionable recommen-
dations for the effective combination of refactorings. The recommendations are
based on an interactive model that formally specifies respective informal refac-
toring guidelines. The proposed approach is inline with the fundamental refac-
toring tool principles. To further assess the approach, we conducted a study
that involved 16 developers and a limited set of refactorings for composing and
moving methods. The developers found the overall approach useful. The posi-
tive results that we obtained encourage follow up studies of a broader scale and
scope.

Our approach is currently based on knowledge that is “hidden” in Fowler’s
catalog. Other sources of information, views and notations can be consid-
ered towards its extension. Making the refactoring detection techniques more
developer-intuitive and easy to use is also an issue that should be further inves-
tigated. In the future, it would also be interesting to investigate the relation
between the proposed approach and the issue of technical debt prioritization.

Acknowledgements. We would like to thank the anonymous reviewers for their feed-
back on the paper.

478 T. Vartziotis et al.

References

1. Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design and Analysis Issues
for Field Settings. Houghton Mifflin Company, Boston (1979)

2. Al Dallal, J.: Identifying refactoring opportunities in object-oriented code: a sys-
tematic literature review. Inf. Softw. Technol. 58, 231–249 (2015)

3. Fokaefs, M., Tsantalis, N., Stroulia, E., Chatzigeorgiou, A.: Identification and
application of extract class refactorings in object-oriented systems. J. Syst. Softw.
85(10), 2241–2260 (2012)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (2000)

5. Kim, M., Zimmermann, T., Nagappan, N.: An empirical study of refactoring chal-
lenges and benefits at Microsoft. IEEE Trans. Softw. Eng. 40(7), 633–649 (2014)

6. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.
30(2), 126–139 (2004)

7. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Softw. Syst. Model. 6(3), 269–285 (2007)

8. Moghadam, I.H., Cinnéide, M.Ó.: Resolving conflict and dependency in refactoring
to a desired design. e-Informatica 9(1), 37–56 (2015)

9. Morales, R., Chicano, F., Khomh, F., Antoniol, G.: Efficient refactoring scheduling
based on partial order reduction. J. Syst. Softw. 145, 25–51 (2018)

10. Murphy-Hill, E.R., Black, A.P.: Refactoring tools: fitness for purpose. IEEE Softw.
25(5), 38–44 (2008)

11. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University
of Illinois - Urbana Champaign (1992)

12. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring oppor-
tunities. IEEE Trans. Softw. Eng. 99(3), 347–367 (2009)

13. Tsantalis, N., Chatzigeorgiou, A.: Identification of extract method refactoring
opportunities for the decomposition of methods. J. Syst. Softw. 84(10), 1757–1782
(2011)

14. Tsimakis, A., Zarras, A.V., Vassiliadis, P.: The three-step refactoring detector pat-
tern. In: Proceedings of the 24th European Conference on Pattern Languages of
Programs (EuroPLoP) (2019, to appear). www.cs.uoi.gr/∼zarras/papers/C36.pdf

15. Van Der Straeten, R., Jonckers, V., Mens, T.: A formal approach to model refac-
toring and model refinement. Softw. Syst. Model. 6(2), 139–162 (2007)

16. Zarras, A.V., Vartziotis, T., Vassiliadis, P.: Navigating through the archipelago of
refactorings. In: Proceedings of the the Joint 23rd ACM SIGSOFT Symposium on
the Foundations of Software Engineering and 15th European Software Engineering
Conference (FSE/ESEC), pp. 922–925 (2015)

17. Zarras, A.V., Vassiliadis, P., Dinos, I.: Keep calm and wait for the spike! insights
on the evolution of Amazon services. In: Proceedings of the 28th International
Conference on Advanced Information Systems Engineering (CAiSE), pp. 444–458
(2016)

www.cs.uoi.gr/~zarras/papers/C36.pdf

String Representations of Java Objects:
An Empirical Study

Matúš Suĺır(B)

Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
matus.sulir@tuke.sk

Abstract. String representations of objects are used for many pur-
poses during software development, including debugging and logging.
In Java, each class can define its own string representation by overriding
the toString method. Despite their usefulness, these methods have been
neglected by researchers so far. In this paper, we describe an empirical
study of toString methods performed on a corpus of Java files. We are
asking what portion of classes defines toString, how are these methods
called, and what do they look like. We found that the majority of classes
do not override the default (not very useful) implementation. A large
portion of the toString method calls is implicit (using a concatenation
operator). The calls to toString are used for nested string representation
building, exception handling, in introspection libraries, for type conver-
sion, and in test code. A typical toString implementation consists of liter-
als, field reads, and string concatenation. Around one third of the string
representation definitions is schematic. Half of such schematic implemen-
tations do not include all member variables in the printout. This fact
motivates the future research direction – fully automated generation of
succinct toString methods.

Keywords: ToString methods · Java · Quantitative study ·
Qualitative study

1 Introduction

Almost every object-oriented programming language supports a way to represent
the state of an object as a text string. Usually, the textual representation is
obtained by calling a method such as String(), printOn:, or to s.

In Java, this method is called toString. Its basic implementation is defined
in the root of the class hierarchy – the class Object. It is therefore callable
on an object of any type. However, the default implementation displays only
a class name and a hash code of the object, e.g., java.io.FileWriter@5c29bfd.
Each class can override this method to implement a potentially useful textual
representation. For example, a HashMap instance can be represented as “{a = 1,
b = 2}”.

String representations are used during debugging, logging, testing and for
many other purposes. For instance, when a developer displays a list of variables
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 479–490, 2020.
https://doi.org/10.1007/978-3-030-38919-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_39&domain=pdf
http://orcid.org/0000-0003-2221-9225
https://doi.org/10.1007/978-3-030-38919-2_39

480 M. Suĺır

in a contemporary debugger, each non-primitive variable is initially shown as a
string obtained by calling the toString method on it. Only after expanding it,
individual member variables are displayed.

Despite their importance, toString and related methods have received lim-
ited attention by researchers so far. Schwarz [10] performed a very brief analysis
of printOn: methods in Smalltalk. Although not directly focused on string rep-
resentation methods, Qiu et al. [8] and Lemay [5] performed large-scale studies
of Java language usage, where they found the toString method is among the
most used standard library calls.

In this paper, we would like to present an empirical study about the preva-
lence and properties of toString methods in Java. Using automated analysis of
a source code corpus and manual inspection of selected examples, we will answer
the following research questions:

– RQ1: What portion of classes defines their own toString method?
• RQ1.1: How deep in the inheritance hierarchy are toString methods

defined?
– RQ2: How are toString methods called in the code?

• RQ2.1: Are they explicit (method calls) or implicit (concatenations of a
string and a non-string)?

• RQ2.2: Are they often called from other toString implementations?
• RQ2.3: What are other common usage scenarios of string representa-

tions?
– RQ3: What do typical toString methods look like?

• RQ3.1: What language constructs do they consist of?
• RQ3.2: Do they often call toString of the superclass?
• RQ3.3: Are they rather schematic, or do they contain advanced logic?
• RQ3.4: Do they print the values of all member variables or only a portion

of them?

The contribution of this paper is twofold. First, we expand the available
knowledge in this area by describing the current state of string representation
implementation and usage. Second, since these implementations may be repet-
itive, this paper can act as a basis for their future automated generation. This
could, for example, make debugging easier, particularly in situations when the
available display space is constrained [12].

In Sect. 2, we briefly describe the method. In Sects. 3, 4, and 5, the method
is elaborated and the results of each research question are presented. Finally, we
describe the threats to validity (Sect. 6), related work (Sect. 7), conclusion and
future work (Sect. 8).

2 Method Outline

To perform the analysis, we needed a corpus of parsable source code files. For
some questions or their parts, type resolution was necessary. This means that
except for the source files themselves, we needed also their compiled versions

String Representations of Java Objects: An Empirical Study 481

along with all their dependencies, such as third-party libraries. Furthermore,
although projects in online repositories (e.g., GitHub) are easily accessible in
large quantities, they can include homework assignments or personal backups,
potentially skewing the analysis results [4]. Therefore, we sought for a curated
collection of software projects.

The only well-known corpora fulfilling all of the above criteria are the Qual-
itas Corpus [13] and corpora based on it, such as Qualitas.class [14]. Since they
are outdated, we decided to build a new corpus based on them. From the Qual-
itas Corpus [13], we selected a random subset of 15 open source projects which
are still active (updated in the last year) and successfully buildable. We manually
downloaded their current versions and whenever possible, we also automatically
downloaded both the source code and binary forms of their dependencies, includ-
ing the transitive ones. This way, we obtained an up-to-date corpus consisting of
759 artifacts (projects and modules) with 106,473 unique Java files (based on the
package and type names). The number of classes in these files, including named
inner and nested classes, is 149,057. For more than 97% of them, we were able
to successfully resolve all their superclasses up to the root of the type hierarchy.

After constructing the corpus, we executed an automated source code analysis
process on it. This analysis was performed by a custom program we have written
using the Spoon library [7]. To enable the reproducibility of research, both the
corpus-building script and the analysis program are available online1.

All quantitative results were produced fully automatically by the program.
The output of the analysis included also source code examples, some of which
we inspected manually, thus producing qualitative results (RQ2.3 and a part of
RQ3.1). Details of the method are different for each of the research questions,
so they are described in the following sections.

3 ToString Definitions

First of all, we would like to know what proportion of classes defines their own
toString method and how many of them rely on the default representation. A
naive approach answering this might be to count the classes defining toString

and divide them by the total number of classes. However, we must consider
also type hierarchies: For example, a HashMap does not define its own toString,
but its superclass, AbstractMap, defines one. A string representation defined in a
superclass is usually still useful, but in some cases it may be less specific than
the method defined directly in the class.

Therefore, we first counted all concrete (not abstract) classes, excluding
enumeration types, anonymous and test classes, considering only classes with
resolved supertypes. The result was a list of 94,548 classes. Then for each of them,
we constructed a type hierarchy from the class itself up to Object. Finally, we
determined which toString method would be executed when calling this method
on the object of the analyzed class. It is always the most specific defined method

1 https://github.com/sulir/tostring-study.

https://github.com/sulir/tostring-study

482 M. Suĺır

– e.g., in the mentioned example, for the hierarchy HashMap � AbstractMap �

Object, it is the method in AbstractMap.
We divided the results into four categories: the most specific toString method

is defined directly in the given class, in its direct superclass, indirect superclass,
or in the root of the class hierarchy (Object). In Fig. 1, we can see the results in
a graphical form.

root (Object) 73.1%
indirect superclass 10.7%

direct superclass 6.3%
in the given class 9.9%

0 10 20 30 40 50 60 70 [%]

Fig. 1. The most specific toString method definition for classes

Answering RQ1 and RQ1.1, only 9.9% of classes define their own toString

implementation directly, while 17.0% derive a custom implementation from one
of their superclasses. The majority of the analyzed classes (73.1%) does not
define a custom string representation at all – it relies on the default one, which
is useless in many cases. This highlights a need to offer fully automated genera-
tion of string representations. Although modern IDEs (integrated development
environments) offer semi-automated (partially manual) generation of toString

methods, developers evidently do not utilize this feature to a high extent.

4 ToString Invocations

In Java, toString methods can be called either explicitly or implicitly. An explicit
call is a standard method call visible in the source code, e.g.:

String value = someObject.toString();

An implicit toString call is performed automatically on a non-string object
during concatenation of a string and non-string expression:

Object nonStringObject;
String value = "string" + nonStringObject;

When answering RQ2 and its sub-questions, we considered all parsable Java
files (106,473). We automatically searched for all toString() method invoca-
tions and categorized them as either implicit or explicit. The implicit calls were
recognized by searching for the “+” operator with one string and one non-
string operand. The locations of the calls were also noted and categorized as
either directly inside another toString method definition or outside it. Then,
we selected a random subset of the calls, which we inspected manually to gain
insights about string representation usage.

For the summary of quantitative results, see Table 1.

String Representations of Java Objects: An Empirical Study 483

Table 1. Explicit vs. implicit toString calls, calls from other toString methods.

Call type Explicit (obj.toString()) 36.7%

Implicit (concatenation) 63.3%

Call location From within other toString methods 13.0%

Outside a toString method 87.0%

4.1 Explicit and Implicit Calls

First, we will answer RQ2.1. A majority of toString calls (63.3%) is implicit
– i.e., not visible in the source code at a first sight. On average, we found 0.34
explicit and 0.59 implicit toString invocations per Java file. This totals to 0.93
toString invocations per Java file, which means string representations are fairly
commonly utilized in the code.

4.2 Calls from Other ToStrings

Answering RQ2.2, we determined that 13.0% of all toString() calls were located
directly in another toString definition. This means string representations are
fairly often built recursively from other textual representations. In addition to
this, the toString method is sometimes called also indirectly through a chain of
other auxiliary methods.

4.3 Other Usage Scenarios

Except for building string representations of objects from other string repre-
sentations, there are other common usage scenarios. Now we will look at the
examples of them, thus answering RQ2.3.

String representations are commonly used to work with exceptions. There are
two recurring patterns which we encountered during the manual inspection of
the results. In the first case, an object is converted to a string and then included
in the message of the exception being constructed and thrown. The second case
is the conversion of a caught exception to a string and passing it to a logger.

Textual representations were used for logging beyond exception handling:
Any object can be converted to a string and written to a logger (e.g., a file or
console) for debugging purposes.

We also encountered multiple toString invocations in introspection libraries,
where they were used to convert runtime metadata of the program into strings,
so they could be later used for debugging and visualization purposes.

A very common usage of toString is for a conversion of a string-like object
(e.g., an XMLString) to a standard String. The most frequent conversion we
encountered was from a StringBuilder (or related classes), which is a mutable
implementation of a text string in Java.

484 M. Suĺır

Finally, toString calls were present also in unit tests. In assertions, a string
representation was often compared with another string representation or a literal.

Particularly the last two applications (type conversion and unit testing) are
typical examples of cases when the toString method is not used only for debug-
ging and development purposes, but where it has an influence on the correct
program functionality. This has an important implication for us. If we wanted to
implement an automatically applied string representation generator, we would
have to take great care not to break the existing representations. For example,
if an object had the toString method implemented in an indirect superclass
and we wanted to generate a more specific one directly in the given class, we
could break the functionality if the program logic relied on the toString from
the superclass.

5 ToString Contents

To answer RQ3, we analyzed all toString methods defined inside classes in our
corpus (considering only the ones for which we had the source code available
and superclasses resolved). In total, 11,302 method definitions were analyzed.

5.1 Language Constructs

Our main goal was to find out whether there exist certain very common forms of
toString definitions, which are possibly repetitive. To answer RQ3.1, for each
analyzed method, we obtained a set of all AST (abstract syntax tree) node types
present in it. For example, the definition

return "a" + "b";

contains the AST node set {Return, Literal, BinaryOperator}. We excluded too
generic AST types, such as blocks or type references. Then, we counted how
often each such node set is present in the collection of the analyzed toString

methods.
In Table 2, we can see a list of the most frequently occurring node sets, along

with the percentages of the toString methods where they occur and examples of
their source code. This provides us an overview of how typical toString methods
look, which of them were probably semi-automatically generated with an IDE,
and to what extent their generation could be fully automatized.

Almost 14% of toString methods consist of a return statement and a mix
of literals, field reads on the current object (this), and binary operators (most
notably, “+”). We suppose these definitions were frequently generated using an
IDE.

The second most frequent set contains method invocations in addition to
these node types. Here we observe less schematic code, since on some variables,
various methods were called to more precisely specify the string representation.

The next three node type sets usually represent the same essence – only one
member variable is included in the string representation, without any additional

String Representations of Java Objects: An Empirical Study 485

Table 2. The most frequent node type sets in the collection of analyzed toString
method definitions.

% Node type set Source code example

13.82 {Return, Literal, ThisAccess,

FieldRead, BinaryOperator}
return "PreparedStatementCreator: sql=[" +

sql + "]; parameters =" + this.parameters;

8.84 {Return, Literal, ThisAccess,

FieldRead, BinaryOperator,

Invocation}

return "registry[" + this.sessions.size()

+ "sessions]";

8.03 {Return, ThisAccess, FieldRead,

Invocation}
return table.toString();

5.81 {Return, ThisAccess, Invocation} return getName();

5.63 {Return, ThisAccess, FieldRead} return flag;

5.42 {Return, Literal} return "Immediate key";

5.15 {Return, ThisAccess, Invocation,

BinaryOperator, Literal}
return getArtifact() + " < "

+ getRepositories();

2.90 {Return, ThisAccess, FieldRead,

Invocation, Literal}
return String.format("%s[value=%s]",

getClass().getSimpleName(), value);

2.62 {Return, LocalVariable,

ConstructorCall, VariableRead,

Invocation, Literal, ThisAccess,

FieldRead}

final StringBuilder buf

= new StringBuilder();

buf.append("[local: ").append(this.local);

buf.append("defaults: ")

.append(this.defaults);

buf.append("]");

return buf.toString();

2.44 {Return, LocalVariable,

ConstructorCall, VariableRead,

Invocation, Literal, ThisAccess,

FieldRead, BinaryOperator, If}

StringBuilder sb

= new StringBuilder("FactoryCreateRule[");

if (creationFactory != null) {
sb.append("creationFactory=");

sb.append(creationFactory);

}
sb.append("]");

return (sb.toString());

information. In cases when the given field was not a sole member variable of
the class, a question arises how this field was selected and why its name is not
printed.

When a toString method returns solely a literal, it is often related to the
given class name; this is not a rule though. Methods consisting of invocations,
binary operators, and literals frequently contained getters – but again, this is
not a rule.

The last three lines in Table 2 are mainly just variations of the first one,
but using either a string-formatting function String.format or mutable strings
(StringBuilder, with or without null checking) instead of string concatenation.

5.2 Reusing Superclass Implementations

Next, we were interested in whether toString implementations reuse the string
representation of a superclass in some way – i.e., whether they include a call to
super.toString(). We analyzed all toString methods inside classes derived from
a class other than Object.

486 M. Suĺır

We found out only 10.3% of such methods call super.toString(). This is
probably caused by the fact that only a small portion of classed directly defines
toString, which makes reuse difficult.

5.3 Schematic Implementations

Since our future vision is to fully automate the string representation gener-
ation, in RQ3.3 we focused on the schematicity of the toString implemen-
tations. We define a schematic implementation as a method definition which
consists only of one or more of these language constructs: return, this, string
literals, super.toString(), direct reading of the fields of the current object, a
null-checking if statement or ternary operator, and standard string-building
operations (a toString call, string concatenation, a String.format call, basic
StringBuilder and StringBuffer operations).

We found that 33.4% of toStrings correspond to our definition of schematic
implementation, while 66.6% of them are more complicated. The former group
looks promising with respect to the possibility of fully automated generation.

5.4 Member Variables Read

Finally, in RQ3.4, we further inspect the schematic implementations found in
the previous step. Schematic toString definitions often contain a class name and
a list of name–value pairs of the object’s member variables. Many of them were
probably generated using a wizard in an IDE. However, note that the genera-
tion process is not fully automated: the programmer must still manually select
which member variables will be included in the textual representation and which
ones will be omitted. Otherwise the representations might get impractically long,
especially if the member variables themselves are non-primitive objects with their
own – similarly structured – string representation. Some fields might be also con-
sidered irrelevant to the application domain (e.g., logging support). Therefore,
we hypothesize only a portion of member variables are included in string repre-
sentations.

To empirically confirm our intuition, we consider all schematic toString

implementations inside classes with at least one non-constant (i.e., not static
final) member variable. For them, we determine what proportion of non-constant
member variables of the given class are read in its toString method. For simplic-
ity, we consider only member variables (fields) defined directly in a given class,
not in its superclasses.

The results are depicted in Fig. 2. About half of the analyzed classes (51.5%)
read all fields in its string representation, while the other half (48.5%) include
only some of them or none.

String Representations of Java Objects: An Empirical Study 487

all fields 51.5%
at least 1/2 20.2%

less than 1/2 22.0%
no fields 6.3%

0 10 20 30 40 50 [%]

Fig. 2. The proportion of member variables read in schematic toString methods

We consider the latter case to be a suitable candidate for full automation:
Using heuristics or machine learning, we could select a subset of fields which
should be included in the string representation.

6 Threats to Validity

Now we will describe threats to the validity of our study according to Wohlin
et al. [15].

6.1 Construct Validity

During the analysis, we excluded duplicate files based on package names and
top-level type names (fully qualified class names). Nevertheless, there still may
be duplicate classes present under different names.

In the first research question, we excluded test classes based on standard-
ized directory names, which might not be sufficient. However, it is questionable
whether it is useful to have string representations of test classes or not, and what
exactly is considered a test class.

For the third research question, we represented methods by the sets of node
types they consist of, which may be an oversimplification. The displayed exam-
ples might not fully represent the whole node type sets. Nevertheless, RQ3.1 was
partially qualitative and the listed exact percentages are mainly supplementary.

Our definition of schematic implementation is rather ad-hoc. However, it was
inspired by common toString generation templates of the most used Java IDEs.

During the analysis of member variable reads, we did not include member
variables defined in the superclasses. However, this improves the clarity of the
study since the fields in superclasses are not always accessible (there may be
private, package-private and located in a different package, etc.), which would
complicate the interpretation of the results.

6.2 External Validity

Findings about the corpus used in this study might not be generalizable, since
the corpus may not be representative of all software used in practice. We tried
to mitigate this threat by basing it on an existing curated corpus and including
dependencies to increase its size. Although it was not constructed directly by

488 M. Suĺır

crawling large-scale software forges such as GitHub, it includes many projects
hosted on these sites. The corpus includes software maintained by many orga-
nizations and individuals, developed by thousands of developers. On the other
hand, the inclusion of dependencies in the analysis might add bias as the code
of libraries may be different from other code.

Although the original corpus was dated, we selected only projects updated
in the last year. The list of the 15 base projects therefore includes rather mature
projects – but their dependencies can include also newer and smaller ones.

7 Related Work

The most similar study to ours was performed by Schwarz [10]. He found that
28% of Smalltalk repositories in Squeaksource included a definition of a printOn:

method (a Smalltalk analogy of toString), and the average length of a printOn:

method was 7.1 lines. A few other findings regarding the properties of printOn:

methods were very briefly described. In contrast to him, our study was per-
formed on Java, uses a larger corpus, defines more precise research questions,
and includes a more in-depth analysis.

There exist multiple works studying language and API usage in general.
However, they are not specifically focused on toString methods in any way. For
example, Dyer et al. [3] performed a study of a huge collection of AST nodes to
study the usage of Java language features. Three separate studies – by Ma et al.
[6], Qiu et al. [8], and Lemay [5] – studied general API call usage on large Java
corpora. These three studies consistently found out that the toString method is
one of the most called standard API methods in source code.

Xu et al. [16] parse toString methods to determine the mapping between
lines in log files and the source code fragments that produced them. They did
not perform any empirical study of the toString methods though.

In a study of the Hackage Haskell corpus, deriving Show, responsible for the
string representation generation, was the most common deriving statement [1].

Complementary to string representations, researchers designed also
approaches to specify graphical representations of objects: namely DoodleDebug
[10], Vebugger [9], and the Moldable Inspector [2]. In our previous work [11], we
investigated what properties developers expect from such visual representations.

8 Conclusion and Future Work

In this paper, we described an empirical study of textual object representations
in Java. We found that the majority of classes (73%) relies on the default (and
often not very useful) toString implementation defined in the Object class.

A majority of toString method calls (63%) is implicit – using a string con-
catenation operator with one non-string operand. The toString methods are
called from other representation-building methods (13%), in exception handling
and logging code, in introspection utilities, when performing type conversion,

String Representations of Java Objects: An Empirical Study 489

and from unit tests. They are therefore consumed not only by developers as a
debugging aid, but are sometimes necessary for the software to function properly.

A very common toString definition consists of literals, field reads, and string
concatenation operators. String representations of superclasses are rarely reused
(10% of toStrings contain them). A significant portion of toString definitions
(over 33%) is rather schematic. Half of such schematic implementations read all
member variables, the other half excludes some of them.

In the future, we would like to extend our study. First, we could use a larger
and more representative source code corpus. Second, we would like to answer
our research question in a more in-depth manner, particularly RQ3. Finally,
our main future goal is fully automated generation of useful and still succinct
toString methods without any manual interaction by a developer, particularly
by selecting the most important fields to display using machine learning.

Acknowledgments. This work was supported by Project VEGA No. 1/0762/19
Interactive pattern-driven language development. This work was also supported by
FEI TUKE Grant no. FEI-2018-57 “Representation of object states in a program facil-
itating its comprehension”.

References

1. Bezirgiannis, N., Jeuring, J., Leather, S.: Usage of generic programming on hackage:
experience report. In: Proceedings of the 9th ACM SIGPLANWorkshop on Generic
Programming, WGP 2013, pp. 47–52. ACM, New York (2013). https://doi.org/10.
1145/2502488.2502494

2. Chiş, A., Nierstrasz, O., Syrel, A., Gı̂rba, T.: The moldable inspector. In: 2015
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Onward! 2015, pp. 44–60. ACM, New York (2015).
https://doi.org/10.1145/2814228.2814234

3. Dyer, R., Rajan, H., Nguyen, H.A., Nguyen, T.N.: Mining billions of AST nodes to
study actual and potential usage of Java language features. In: Proceedings of the
36th International Conference on Software Engineering, ICSE 2014, pp. 779–790.
ACM, New York (2014). https://doi.org/10.1145/2568225.2568295

4. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.:
The promises and perils of mining GitHub. In: Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pp. 92–101. ACM, New
York (2014). https://doi.org/10.1145/2597073.2597074

5. Lemay, M.J.: Understanding Java usability by mining GitHub repositories. In:
9th Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU 2018). OpenAccess Series in Informatics (OASIcs), vol. 67, pp. 2:1–
2:9. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019).
https://doi.org/10.4230/OASIcs.PLATEAU.2018.2

6. Ma, H., Amor, R., Tempero, E.: Usage patterns of the Java standard API. In:
Proceedings of the XIII Asia Pacific Software Engineering Conference, APSEC
2006, pp. 342–352. IEEE Computer Society, Washington (2006). https://doi.org/
10.1109/APSEC.2006.60

7. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: a
library for implementing analyses and transformations of Java source code. Softw.
Pract. Exp. 46(9), 1155–1179 (2016). https://doi.org/10.1002/spe.2346

https://doi.org/10.1145/2502488.2502494
https://doi.org/10.1145/2502488.2502494
https://doi.org/10.1145/2814228.2814234
https://doi.org/10.1145/2568225.2568295
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.4230/OASIcs.PLATEAU.2018.2
https://doi.org/10.1109/APSEC.2006.60
https://doi.org/10.1109/APSEC.2006.60
https://doi.org/10.1002/spe.2346

490 M. Suĺır

8. Qiu, D., Li, B., Leung, H.: Understanding the API usage in Java. Inf. Softw.
Technol. 73(C), 81–100 (2016). https://doi.org/10.1016/j.infsof.2016.01.011

9. Rozenberg, D., Beschastnikh, I.: Templated visualization of object state with
Vebugger. In: Proceedings of the 2014 Second IEEE Working Conference on Soft-
ware Visualization, VISSOFT 2014, pp. 107–111. IEEE Computer Society, Wash-
ington (2014). https://doi.org/10.1109/VISSOFT.2014.26

10. Schwarz, N.: DoodleDebug, objects should sketch themselves for code understand-
ing. In: 5th Workshop on Dynamic Languages and Applications, DYLA 2011 (2011)

11. Suĺır, M., Juhár, J.: Draw this object: a study of debugging representations. In:
Proceedings of the Conference Companion of the 3rd International Conference on
Art, Science, and Engineering of Programming, pp. 20:1–20:11. ACM (April 2019).
https://doi.org/10.1145/3328433.3328454

12. Suĺır, M., Porubän, J.: Augmenting source code lines with sample variable values.
In: Proceedings of the 2018 26th IEEE/ACM International Conference on Pro-
gram Comprehension (ICPC), pp. 344–347 (May 2018). https://doi.org/10.1145/
3196321.3196364

13. Tempero, E., et al.: The Qualitas Corpus: a curated collection of Java code for
empirical studies. In: Proceedings of the 2010 Asia Pacific Software Engineer-
ing Conference, APSEC 2010, pp. 336–345. IEEE Computer Society, Washington
(2010). https://doi.org/10.1109/APSEC.2010.46

14. Terra, R., Miranda, L.F., Valente, M.T., Bigonha, R.S.: Qualitas.class corpus: a
compiled version of the Qualitas Corpus. SIGSOFT Softw. Eng. Notes 38(5), 1–4
(2013). https://doi.org/10.1145/2507288.2507314

15. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Berlin (2012). https://doi.org/10.
1007/978-3-642-29044-2

16. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale sys-
tem problems by mining console logs. In: Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP 2009, pp. 117–132. ACM, New
York (2009). https://doi.org/10.1145/1629575.1629587

https://doi.org/10.1016/j.infsof.2016.01.011
https://doi.org/10.1109/VISSOFT.2014.26
https://doi.org/10.1145/3328433.3328454
https://doi.org/10.1145/3196321.3196364
https://doi.org/10.1145/3196321.3196364
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1145/2507288.2507314
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1145/1629575.1629587

Foundations of Algorithmic
Computational Biology – Regular

Papers

Fast Indexes for Gapped Pattern
Matching

Manuel Cáceres1, Simon J. Puglisi2, and Bella Zhukova2(B)

1 Department of Computer Science, University of Chile, Santiago, Chile
mcaceres@dcc.uchile.cl

2 Department of Computer Science, University of Helsinki, Helsinki Institute
for Information Technology (HIIT), Helsinki, Finland

{puglisi,bzhukova}@cs.helsinki.fi

Abstract. We describe indexes for searching large data sets for variable-
length-gapped (VLG) patterns. VLG patterns are composed of two
or more subpatterns, between each adjacent pair of which is a gap-
constraint specifying upper and lower bounds on the distance allowed
between subpatterns. VLG patterns have numerous applications in com-
putational biology (motif search), information retrieval (e.g., for lan-
guage models, snippet generation, machine translation) and capture a
useful subclass of the regular expressions commonly used in practice for
searching source code. Our best approach provides search speeds several
times faster than prior art across a broad range of patterns and texts.

1 Introduction

In the classic pattern matching problem, we are given a string P (the pattern
or query) and asked to report all the positions where it occures in another
(longer) string T (the text). This problem has been very heavily studied and has
applications throughout computer science.

In this paper we consider a variant on the classic pattern matching problem,
called variable length gap (VLG) pattern matching. In VLG matching, the query
P is not a single string but is composed of k ≥ 2 strings (subpatterns) that must
occur in order in the text. Between each subpattern, a number of characters may
be allowed to occur, an upper and lower bound on which is specified as part of
the query. Formally, our problem is as follows.

Definition 1 (Variable Length Gap (VLG) Pattern Matching [4]). Let
T be a string of n symbols drawn from alphabet Σ and P be a pattern consisting
of k ≥ 2 subpatterns (i.e. strings) p0, . . . , pk−1, each consisting of symbols also
drawn from Σ, and having lengths m0, . . . , mk−1, and k − 1 gap constraints
C0, . . . , Ck−2, such that Ci = 〈δi,Δi〉 with 0 ≤ δi ≤ Δi < n specifies the smallest
(δi) and largest (Δi) allowable distance between a match of pi and pi+1 in T. Find
all matches—reported as k-tuples i0, . . . , ik−1 where ij is the starting position for
subpattern pj in T—such that all gap constraints are satisfied.

This research is supported by Academy of Finland through grant 319454.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 493–504, 2020.
https://doi.org/10.1007/978-3-030-38919-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_40&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_40

494 M. Cáceres et al.

In computational biology, VLG matching is used in the discovery of and
search for motifs— i.e. conserved features—in sets of DNA and protein sequences
(see, e.g., [18,20]). For example, the following is a protein motif from the rice
genome (see [18]) expressed as a VLG pattern:

MT[115, 136]MTNTAYGG[121, 151]GTNGAYGAY.

A similar motif concept in music information retrieval means VLG matching
also finds applications in mining and searching for characteristic melodies [7]
and other musical structures [8,9] in sequences of musical notes expressed in
chromatic or diatonic notation. Bader et al. [1] point out several more applica-
tions of VLG matching in information retrieval and related fields such as natural
language processing (NLP) and machine translation. For example, Metzler and
Croft [17] define a language model in which query terms occuring within as cer-
tain window of each other must be found (in NLP, such terms are said to be
colocated). Locating tight windows of a document containing the set of words
contained in a search engine query is the problem of query-biased snippet gener-
ation [22]. In machine translation, VLG matching is used to derive rule sets from
text collections to boost effectiveness of automated translation systems [15].

VLG matching has a big parameter space and it is easy to think of patho-
logical combinations of pattern and text that lead to an exponential number
of matches. Fortunately, however, in practice the problem gets naturally con-
strained in important ways. The gap constraints are always bound the length of
documents under consideration, which in the case of source code or web pages
means that usually δi and Δi (and so their difference) are in (at most) the
tens-of-kilobytes range. In genomics and proteomics maximum gaps tend to be
around 100 characters or so (see, e.g., [18,20]).

Because of the interesting and useful applications outlined above, VLG
matching has received a great deal of attention in the past 20 years. The vast
majority of previous work deals with the online version of the problem in which
both the pattern P and the text T are previously unseen and cannot be pre-
processed [2,4,5,9,12,18,21]. Our concern in this paper is the offline version
of the problem, where T is known in advance and can be preprocessed and
an index structure built and stored to later support fast search for previously
unseen VLG patterns (the stream of which is assumed to be large, practically
infinite). Almost all work on the offline problem is of theoretical interest [3,14].
The exception is the recent work of Bader, Gog, and Petri [1], who develop
methods for the offline setting that use a combination of suffix arrays [16] and
wavelet trees [11,19]. Bader et al. show that their index is an order of magnitude
faster at VLG matching than are online methods, and several times faster than
q-gram-based indexes, the likes of which were behind Google Code Search [6].

Contribution. Our main contribution in the paper is to show that in practice,
on a broad range of inputs typical in real applications of VLG matching, sim-
ple algorithms based on intersecting ranges of the suffix array corresponding

Fast Indexes for Gapped Pattern Matching 495

to subpattern occurrences can be made very fast in practice, and comfortably
outperform state-of-the-art methods based on wavelet trees.

We emphasise that none of our new approaches are particularly exotic. They
are, however, very fast, and so represent non-trivial baselines by which future
(possibly more exotic) indexes for VLG pattern matching and related problems
(such as regex matching) can be meaningfully measured.

Roadmap. The remainder of this paper is as follows. Section 2 then looks at a
simple method for solving VLG matching that works by sorting and intersect-
ing ranges of the suffix array that contain the occurrences of subpatterns of the
VLG pattern. Sections 3 and 4 evolve this basic idea, presenting the results of
small illustrative experiments along the way. In Sect. 5 we compare our best per-
forming method to the recent wavelet-tree-based approach of Bader et al., which
represents the current state-of-the-art for indexed pattern matching (details of
our test machine and data sets can also be found in Sect. 5). Reflections and
directions for future work are then offered in Sect. 6.

2 VLG Matching via Sorting and Scanning Suffix Array
Intervals

Essential to the methods for VLG matching we will consider in this and later
sections is the suffix array [16] data structure. The suffix array of T, |T| = n,
denoted SA, is an array SA[0..n−1], which contains a permutation of the integers
0..n such that T[SA[0]..n − 1] < T[SA[1]..n − 1] < · · · < T[SA[n]..n − 1]. In other
words, SA[j] = i iff T[i..n] is the jth suffix of T in ascending lexicographical
order. Because of the lexicographic ordering, all the suffixes starting with a given
substring p of T form an interval SA[s..e], which can be determined by binary
search in O(|p| log n) time. Clearly the integers in SA[s..e] correspond precisely
to the distinct positions of occurrence of p in T and once s and e are located it
is straightforward to enumerate them in time O(e − s).

The starting point for our approaches is a baseline algorithm from the study
by Bader et al. called SA-scan, which makes use of the suffix array of T. A
pseudo-C++ fragment adapted from Bader et al.’s codebase capturing the main
thrust of SA-scan is shown in Fig. 1. For ease of reading the code here assumes
two subpatterns, but is easy to generalize for k > 2.

The operation of SA-scan can be summarized as follows. First, search for
each of the k subpatterns using SA to arrive at k ranges of the SA containing the
subpattern occurrences (in the code listing this is acheived by the two search
method calls). Next, for each range, allocate a memory buffer equal to the range’s
size and copy the contents of the range from SA to the newly allocated memory
and sort the contents of the buffer (positions of subpattern occurrence) into
ascending order. Finally, intersect the positions for subpatterns p0 and p1 with
respect to the gap constraints. Experimenting with SA-scan we observed the
time taken to find the ranges of subpattern occurrences in SA constituted less
than 1% of the overall runtime, with the vast majority of time spent sorting.

496 M. Cáceres et al.

SA-scan(string type p1, string type p2, int min gap, int max gap){

//1:find intervals of SA containing subpattern occurrences

std::pair<int,int> interval1 = search(p1,T,SA);

std::pair<int,int> interval2 = search(p2,T,SA);

//2: copy positions of subpattern occurrence from SA and sort

int m1 = interval1.second-interval1.first+1;

int m2 = interval2.second-interval2.first+1;

int *A = new int[m1];

int *B = new int[m2];

std::memcpy(A,SA+interval1.first,m1);

std::memcpy(B,SA+interval2.first,m2);

std::sort(A,A+m1);

std::sort(B,B+m2);

//3: intersect according to gap constraints

for(int i=0,j=0; i<m1 && j<m2; i++){

while(B[j] < (A[i] + min gap) && j < m2) j++;

while(j < m2 && B[j] <= (A[i] + max gap)){

result.push back(B[j]);
j++;

}

}

}

Fig. 1. A basic C++ implementation of the SA-scan VLG matching algorithm suitable
for k = 2 subpatterns.

Bader et al. use SA-scan as a baseline from which to measure the success of
their wavelet-tree-based method. SA-scan is natural enough, to be sure, but it
does look suspiciously like a straw man. To start with, is std::sort really the
best we can do for sorting those arrays of integers? We replaced the std::sort
call with a call to an LSD radix sort of our own implementation (using a radix of
256) and replicated an experiment from Bader et al.’s paper, searching several
text collections (including web data, source code, DNA, and proteins—see Sect. 5
for more details) for 20 VLG patterns (k = 2, δi,Δi = 〈100, 110〉), composed
of very frequent subpatterns drawn from the 200 most common substrings of
length 3 in each data set.

Figure 2 shows the results obtained on our test machine (see Sect. 5 for speci-
fications). Using radix sort instead of std::sort, SA-scan becomes at least two
times faster on the Kernel and Proteins datasets, almost twice as fast on CC, and
more than 30% faster on Para. A large if algorithmically-somewhat-unexciting
leap forward—but further improvements are possible1.

1 It is possible that further improvements from sorting alone are possible, using a more
heavily engineered sort function that our hand-rolled LSD radix sort. Our point here
is that sorting is an important dimension along which SA-scan can be optimized.

Fast Indexes for Gapped Pattern Matching 497

CC Kernel Para Proteins

Radix sort std::sort Radix sort std::sort Radix sort std::sort Radix sort std::sort

1k

10k

100k

1M
Q
ue

ry
ti
m
e
[µ
s]

Fig. 2. Time to search a 2GiB subset of the Common Crawl web collection
(commoncrawl.org). for 20 VLG patterns (k = 2, δi, Δi = 〈100, 110〉), composed of
very frequent subpatterns drawn from the 200 most common substrings of length 3 in
the collection.

3 Filter, Filter, Sort, Scan

Our first serious embellishment to SA-scan aims to avoid sorting the full set
of subpattern occurrences by filtering out some of the candidate positions that
cannot possibly lead to matches. Specifically, we allocate a bitvector F of n/b
bits initially all set to 0. We refer to b as the block size of the filter. Logically,
each bit represents a block of b contiguous positions in the input text, with the
ith bit corresponding to the positions ib..i(b + 1) − 1. In describing the use of
the filter we assume two subpatterns p1 and p2 (with occurrences in SA[s1..e1]
and SA[s2..e2], respectively), but the technique is easy to generalize for k > 2.

Having allocated F , we scan the interval SA[s1..e1] containing the occur-
rences of subpattern p1 and for each element i = SA[j] encountered, we set bits
F [(i + δ)/b..(i + Δ)/b] to 1 to indicate that an occurrence of p2 in any of the
corresponding blocks of the input is a potential match. During the scan we also
copy elements of the interval to an array A1 of size m1 = e1 − s1 + 1. We then
scan the interval SA[s2..e2] containing the occurrences of the second subpattern
and for each position i encountered we check F [i/b]. If F [i/b] = 0 then i cannot
possibly be part of a match and can be discarded. Otherwise (F [i/b] = 1) we add
i to a vector A2 of candidates. We then sort A1 and A2 and intersect them with
respect to the gap constraints, the same as in the original SA-scan algorithm.
The hope is that |A2| is much less than e2 −s2 +1, and so the time spent sorting
prior to intersection will be reduced.

There are two straightforward refinements to this approach. The first is to
make the initial scan not necessarily over SA[s1..e1], but instead over the smaller
of intervals SA[s1..e1] and SA[s2..e2]. The only difference is that if the interval for
p2 (the second subpattern) happens to be smaller (i.e. p2 has less occurrences in T
than p1) then we set bits F [(i−δ)/b..(i−Δ)/b] (rather than F [(i+δ)/b..(i+Δ)/b])

http://commoncrawl.org

498 M. Cáceres et al.

to 1. Assuming p1 is in fact more frequent than p2, the second refinement is to
perform a second round of filtering using the contents of A2. More precisely,
having obtained A2, we clear F (setting all bits to 0) and scan A2 settings bits
F [(i − δ)/b..(i − Δ)/b] to 1 for each i ∈ A2. We then scan A1 and discard any
element i for which F [i/b] now equals 0. Obviously it only makes sense to employ
this heuristic if the initial filtering reduced the number of candidates, |A2|, of
the second subpattern significantly below m1. In practice we found m2 < m1/2
led to a consistent speedup.

Of course, these techniques generalize easily to k > 2 subpatterns. The idea
is that the output of the intersection of the first two subpatterns then becomes
an input interval to be intersected with the third subpattern, and so on.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
·107

log b

T
ot
al

ti
m
e
[µ
s]

CS

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
·107

log b

CM

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
·107

log b

CL

CC Filter Kernel Filter Para Filter Proteins Filter
CC Radix Kernel Radix Para Radix Proteins Radix

Fig. 3. Effect of filter granularity on search time. Ordinate is runtime in microseconds
and mantissa is the logarithm (base 2) of the filter block size. Dashed lines show the
time required by SA-scan (using radix sort) without any filter. Each plot corresponds
to a different set of 20 synthetically generated VLG patterns. All patterns contain 2 of
the 200 most frequent subpatterns in each data set. We fixed the gap constraints Ci =
〈δi, Δi〉 between subpatterns to small (CS = 〈100, 110〉), medium (CM = 〈1000, 1100〉),
or large (CL = 〈10000, 11000〉). Section 5 gives more details of data sets and pattern
sets.

As Fig. 3 shows, employing F can reduce runtime immensely, but the
improvement varies greatly with b. A good choice for b depends on a number
of factors. For each occurrence of p1, we set �Δ−δ

b � bits in F . Accesses to F
while setting these bits are essentially random (determined by the order of the
positions of p1, which are the lexicographic order of the corresponding suffixes
of T), and so it helps greatly if b is chosen so that F , which has size n/b bits,
fits in cache. This can be seen in Fig. 3, particularly clearly for the CC, Kernel,
and Protein data sets, where performance improves sharply with increasing b
until F fits in cache (30 MiB on our test machine) where it quickly stablizes (at
log b = 3 for CC and Kernel, and log b = 2 for Protein). Runtimes then remain
relatively fast and stable until b becomes so large that the filter lacks specificity,
from which point performance gradually degrades. Para has the same trend,
though it is not immediately obvious—because the data set is smaller (409MB)

Fast Indexes for Gapped Pattern Matching 499

F already fits in L3 cache when b = 2. Section 5 gives more details of data sets
and pattern sets.

For the large-gap pattern set (CL), where Δ − δ = 1000 the optimal choice
of b for all data sets is much higher—b = 1024 in all cases (b = 512 has very
similar performance). Here we are seeing the effect of the time needed to set bits
in the filter. For example, for Kernel, F already fits in L3 cache when b = 8, but
at that setting �Δ−δ

b � = 1000/8 = 125 bits must be set in F per occurrence of
p1. With b = 1024 or 512, the number of bits set in F per occurrence of p1 is
just 1 or 2, the same as it is at the optimal setting for the small-gap (CS) and
middle-gap (CM) pattern sets. This effect can probably be largely alleviated by
employing two levels of filters or, alternatively, by implementing a method for
setting a word of 1s at a time (effectively reducing the time to set bits from
�Δ−δ

b � to �Δ−δ
b·w �, where w is the word size).

4 Direct Text Checking

The filtering ideas described in the previous section can drastically reduce the
amount of time spent per subpattern occurrence, but the overall runtime is still
Ω(occ1 + occ2), because both subpattern intervals are scanned in full. When the
number of occurrences of the less frequent subpattern, say p1, are significantly
less than those of p2, it is possible to get below that bound by scanning over
only the occurrences of p1, and for each occurrence, i, checking directly in the
substring of text T[i + δ..i + Δ] for any occurrences of p2, each of which cor-
responds to a match (or valid candidate match in the case k > 2). If we use
a linear time pattern matching algorithm such as that by Knuth, Morris, and
Pratt [13] to search for the occurrences of p2, runtime (for two subpatterns)
becomes Θ(occ1 · (Δ − δ)).

Employed by itself, this kind of text checking can lead to terrible perfor-
mance when both occ1 and occ2 are large. However, when employed in concert
with a filter, it can lead to significant performance gains, particularly in later
rounds of intersection when k > 2. Figure 4 illustrates this for k = 2, along with
the performance of the other versions of SA-scan (Filter and Radix) we have
decribed in previous sections. In sum, SA-scan has been sped up by more than
an order of magnitude on some data sets. In Fig. 5 we see that the text checking
heuristic makes an even bigger improvement when the number of subpatterns
increases (from k = 2 to k = 4) because it is employed more often.

5 Experimental Evaluation

In this section we compare the practical performance of our version of SA-scan
to the wavelet-tree-based method of Bader et al., which is called WT. We use
a variety of texts and patterns, which are detailed below (most of these have
appeared in experiments described in previous sections). Our methodology in
this section closely follows that of [1].

500 M. Cáceres et al.

CC Kernel Para Proteins
Q
ue

ry
ti
m
e
[µ
s]

F+TC Filter Radix F+TC Filter Radix F+TC Filter Radix F+TC Filter Radix

100

1k

10k

100k

1M

Fig. 4. Direct text checking improves search times further (k = 2).

Test Machine and Environment. We used a 2.10 GHz Intel Xeon E7-4830 v3
CPU equipped with 30 MiB L3 cache and 1.5 TiB of main memory. The machine
had no other significant CPU tasks running and only a single thread of execution
was used. The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.10.0-38-
generic. Programs were compiled using g++ version 5.4.0.

Texts. We use five datasets from different application domains:

– CC is a 2 GiB prefix of a recent 145TiB web crawl from commoncrawl.org.
– Kernel is a 2 GiB file consisting of source code of all (332) Linux kernel

versions 2.2.X, 2.4.X.Y and 2.6.X.Y downloaded from kernel.org. The data
set is very repetitive as only minor changes exist between subsequent versions.

– Para is a 410 MiB, which contains 36 sequences of Saccharomyces Paradoxus,
is provided by the Saccharomyces Genome Resequencing Project. There are
four bases {A,C,G, T}, but some characters denote an unknown choice among
the four bases in which case N is used.

– Proteins is a 1.2 GiB sequence of newline-separated protein sequences
(without descriptions, just the bare proteins) obtained from the
Swissprot database. Each of the 20 amino acids is coded as one letter.

Patterns. As in [4], patterns were generated synthetically for each data set.
We fixed the gap constraints Ci = δi,Δi between subpatterns to small (CS =
〈100, 110〉), medium (CM = 〈1000, 1100〉), or large (CL = 〈10000, 11000〉).
VLG patterns were generated by extracting the 200 most common substrings
of lengths 3, 5, and 7, which are then used as subpatterns. We then form 20
VLG patterns for each dataset, k (i.e. number of subpatterns), and gap con-
straint by selecting from the set of 200 subpatterns. We emphasise that the
generated patterns, while not specifically designed to be pathological, do repre-
sent relatively hard instances for SA-scan because of the high frequency of each
subpattern.

http://commoncrawl.org
http://kernel.org
http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release_compressed/uniprot_sprot.dat.gz

Fast Indexes for Gapped Pattern Matching 501

CC Kernel Para Proteins

F+TC Filter Radix F+TC Filter Radix F+TC Filter Radix F+TC Filter Radix

100

1k

10k

100k

1M

Q
ue

ry
ti
m
e
[µ
s]

Fig. 5. Direct text checking improves search times further (k = 4).

Matching Performance for Different Gap Constraint Bands. Our first experi-
ment aims to elucidate the impact of gap constraint size on query time. We
fix the subpattern length |pi| = mi = 3. Table 1 shows the results from VLG
patterns consisting of k = 21, . . . , 25 subpatterns. Our method, marked Fil-
ter+TC, is always faster than WT, with the exception of the large-gap CL

pattern sets, where on some data sets it yields to WT (most likely due to the
text-checking heuristic being less effective on CL).

Table 1. Total query time in milliseconds on all data sets for fixed mi = 3 and gap
constraints CS = 〈100, 110〉, CM = 〈1000, 1100〉, and CL = 〈10000, 11000〉.

Method CC Kernel Para Proteins

CS CM CL CS CM CL CS CM CL CS CM CL

k = 2

Filter+TC 1110 1261 2106 739 823 1023 2372 4696 2335 393 523 1000

WT 14748 18066 41101 7763 8685 26982 14760 57026 99730 8812 11435 24922

k = 4

Filter+TC 1420 1627 5941 420 1105 4341 5022 12742 16012 418 598 1589

WT 6458 6758 10582 1290 3821 5026 6578 48254 160223 8525 9463 15816

k = 8

Filter+TC 1109 2857 5705 978 1107 1640 8708 16237 18845 400 597 2070

WT 4641 4358 5439 1255 520 1937 234 357 86996 12708 12866 14054

k = 16

Filter+TC 1344 1989 4666 1581 1080 1646 3497 4802 13503 547 607 2313

WT 4410 5083 6224 527 513 326 262 260 253 20970 21731 23894

k = 32

Filter+TC 1344 2176 5835 706 762 1749 6218 6171 18233 393 604 2335

WT 4532 6727 5722 491 668 568 500 540 527 45984 47297 50376

Matching Performance for Different Subpattern Lengths. In our second exper-
iment, we examine the impact of subpattern lengths on query time, fixing the
gap constraint to CS = 100, 110. Table 2 shows the results. Larger subpattern

502 M. Cáceres et al.

lengths tend to result in smaller SA ranges. Consequently, SA-scan outperforms
WT by an even wider margin.

Table 2. Total query time in milliseconds for fixed gap constraint CS = 〈100, 110〉 for
different subpattern lengths mi ∈ {3, 5, 7} and different data sets.

Method CC Kernel Para Proteins

3 5 7 3 5 7 3 5 7 3 5 7

k = 2

Filter+TC 1110 756 654 740 178 46 2372 641 78 393 32 22

WT 14748 8576 6158 7763 1731 93 14760 10176 2502 8812 441 182

k = 4

Filter+TC 1420 362 310 420 159 53 5022 778 71 417 30 26

WT 6458 1477 637 1290 2182 30 6578 10882 2457 8525 97 67

k = 8

Filter+TC 1109 683 230 978 206 196 8708 767 153 400 30 23

WT 4641 1380 464 1255 156 47 234 16558 3602 12708 51 33

k = 16

Filter+TC 1344 541 679 1581 276 164 3497 836 77 547 31 32

WT 4410 922 412 527 155 81 262 29226 6317 20970 83 62

k = 32

Filter+TC 1344 457 257 706 225 90 6218 730 234 393 33 61

WT 4532 1492 540 491 324 171 500 64070 13813 45984 177 128

Overall Runtime Performance. In a final experiment we explored the whole
parameter space (i.e. k ∈ {21, . . . , 25}, mi ∈ {3, 5, 7}, C ∈ {CS , CM , CL}). The
results are summarized in Fig. 6. Overall out SA-scan-based method is faster
on average than the wavelet-tree-based one, usually by a wide margin.

CC Kernel Para Proteins

Filter+TC WT Filter+TC WT Filter+TC WT Filter+TC WT

100k

1M

Q
ue

ry
ti
m
e
[µ
s]

Fig. 6. Overall runtime performance of both methods, accumulating the performance
for all mi ∈ {3, 5, 7} and CS , CM , and CL.

Fast Indexes for Gapped Pattern Matching 503

6 Concluding Remarks

We have described a number of simple but highly effective improvements to the
SA-scan VLG matching algorithm that, according to our experiments, elevate it
to be the state-of-the-art approach for the indexed version of problem. We believe
better indexing methods for VLG matching can be found, but that our version
of SA-scan, which makes judicious use of filters, text checking, and subpattern
processing order, represents a strong baseline against which the performance of
more exotic methods should be measured.

Numerous avenues for continued work on VLG matching exist, perhaps the
most interesting of which is to reduce index size. Currently, SA-scan uses
n log n + n log σ bits of space for a text of length n on alphabet σ for the suffix
array and text, respectively (the WT approach of Bader et al., uses slightly
more). Because our methods consist (mostly) of simple scans of SA ranges or
scans of the underlying text, they are easily translated to make use of recent
results on Burrows-Wheeler-based compressed indexes [10] that allow fast access
to elements of the suffix array from a compressed representation of it. Via this
observation we derive the first compressed indexes for VLG matching. These
indexes use O(r log n) bits of space, where r is the number of runs in the Burrows-
Wheeler transform, a quantity that decreases with text compressibility. On our
2 GiB Kernel data set, for example, the compressed index takes around 20 MiB
in practice, and can still support VLG matching in times competitive with the
indexes of Bader et al. We plan to explore this in more depth in future work.

Acknowledgments. Our thanks go to Tania Starikovskaya for suggesting the problem
of indexing for regular-expression matching to us. We also thank Matthias Petri and
Simon Gog for prompt answers to questions about their article and code and the
anonymous reviewers for helpful comments. This work was funded by the Academy of
Finland via grant 319454 and by EU’s Horizon 2020 research and innovation programme
under Marie Sk�lodowska-Curie grant agreement No. 690941 (BIRDS).

References

1. Bader, J., Gog, S., Petri, M.: Practical variable length gap pattern matching.
In: Goldberg, A.V., Kulikov, A.S. (eds.) SEA 2016. LNCS, vol. 9685, pp. 1–16.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38851-9 1

2. Bille, P., Farach-Colton, M.: Fast and compact regular expression matching. Theor.
Comput. Sci. 409(3), 486–496 (2008)

3. Bille, P., Gørtz, I.L.: Substring range reporting. Algorithmica 69(2), 384–396
(2014)

4. Bille, P., Gørtz, I.L., Vildhøj, H.W., Wind, D.K.: String matching with variable
length gaps. Theor. Comput. Sci. 443, 25–34 (2012)

5. Bille, P., Thorup, M.: Regular expression matching with multi-strings and intervals.
In: Proceedings of SODA, pp. 1297–1308. ACM-SIAM (2010)

6. Cox, R.: Regular expression matching with a trigram index or how Google code
search worked (2012). https://swtch.com/∼rsc/regexp/regexp4.html

https://doi.org/10.1007/978-3-319-38851-9_1
https://swtch.com/~rsc/regexp/regexp4.html

504 M. Cáceres et al.

7. Crawford, T., Iliopoulos, C.S., Raman, R.: String matching techniques for musical
similarity and melodic recognition. Comput. Musicol. 11, 73–100 (1998)

8. Crochemore, M., Iliopoulos, C.S., Makris, C., Rytter, W., Tsakalidis, A.K., Tsich-
las, T.: Approximate string matching with gaps. N. J. Comput. 9(1), 54–65 (2002)

9. Fredriksson, K., Grabowski, S.: Efficient algorithms for pattern matching with
general gaps, character classes, and transposition invariance. Inf. Retr. 11(4), 335–
357 (2008)

10. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proceedings of SODA, pp. 1459–1477. ACM-SIAM (2018)

11. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proceedings of the SODA, pp. 841–850. ACM-SIAM (2003)

12. Haapasalo, T., Silvasti, P., Sippu, S., Soisalon-Soininen, E.: Online dictionary
matching with variable-length gaps. In: Pardalos, P.M., Rebennack, S. (eds.) SEA
2011. LNCS, vol. 6630, pp. 76–87. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20662-7 7

13. Knuth, D., Morris, J.H., Pratt, V.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

14. Lewenstein, M.: Indexing with gaps. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 135–143. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24583-1 14

15. Lopez, A.: Hierarchical phrase-based translation with suffix arrays. In: Proceedings
of the EMNLP-CoNLL 2007, pp. 976–985. ACL (2007)

16. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

17. Metzler, D., Croft, W.B.: A markov random field model for term dependencies. In:
Proceedings of the SIGIR, pp. 472–479. ACM (2005)

18. Morgante, M., Policriti, A., Vitacolonna, N., Zuccolo, A.: Structured motifs search.
J. Comput. Biol. 12(8), 1065–1082 (2005)

19. Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2–20 (2014)
20. Pissis, S.P.: MoTeX-II: structured MoTif eXtraction from large-scale datasets.

BMC Bioinform. 15(235), 1–12 (2014)
21. Saikkonen, R., Sippu, S., Soisalon-Soininen, E.: Experimental analysis of an online

dictionary matching algorithm for regular expressions with gaps. In: Bampis, E.
(ed.) SEA 2015. LNCS, vol. 9125, pp. 327–338. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20086-6 25

22. Turpin, A., Tsegay, Y., Hawking, D., Williams, H.E.: Fast generation of result
snippets in web search. In: Proceedings of the SIGIR 2007, pp. 127–134. ACM
(2007)

https://doi.org/10.1007/978-3-642-20662-7_7
https://doi.org/10.1007/978-3-642-20662-7_7
https://doi.org/10.1007/978-3-642-24583-1_14
https://doi.org/10.1007/978-3-319-20086-6_25
https://doi.org/10.1007/978-3-319-20086-6_25

Linearizing Genomes: Exact Methods
and Local Search

Tom Davot1(B), Annie Chateau1, Rodolphe Giroudeau1, and Mathias Weller2

1 LIRMM - CNRS UMR 5506, Montpellier, France
{davot,chateau,rgirou}@lirmm.fr

2 CNRS, LIGM (UMR 8049), Champs-s/-Marne, France
mathias.weller@u-pem.fr

Abstract. In this article, we address the problem of genome lineariza-
tion from the perspective of Polynomial Local Search, a complexity class
related to finding local optima. We prove that the linearization problem,
with a neighborhood structure, the neighbor slide, is PLS-complete. On
the positive side, we develop two exact methods, one using tree decompo-
sitions with an efficient dynamic programming, the other using an integer
linear programming. Finally, we compare them on real instances.

1 Introduction

Motivation. When inferring genome sequences from high-throughput sequencing
(HTS) data, we obtain (after assembly) fragments of the target sequence called
contigs1 without any information on how these contigs are located in the genome.
To address this shortcoming, contigs can be linked using external information
(usually a read-pairing included in the HTS data), yielding a graph (called scaf-
fold graph) whose vertices are contig extremities and edges are either contigs or
links between them. The scaffolding operation then aims at selecting the best
paths in this graph in order to produce longer genomic sequences called scaffolds.
Previous work focuses on the production of sequences by solving the so-called
Scaffolding problem in this graph [4,14,16]. Scaffolding is a widely studied
problem in bioinformatics and can be modeled by numerous, mostly heuristic,
methods [8].

Unfortunately, real-world genomes escape the relative simplicity of previ-
ous models (that still lead to NP-complete problems). A particular problem is
modeling contigs occurring multiple times in the target genome. Such “repeats”
and their “multiplicity” (or “copy numbers”) vary depending on the species and
individual [2]. Due to the conservatism of some assembly methods, a repeat
may cover an entire contig which is separated from the other genomic side
fragments [11]. Recent methods address this problem, avoiding chimeric recon-
struction by using long reads as additional data [3,13]. Unfortunately, most
projects on genomic databases are still constituted of short-reads only and are

1 Contigs are words on a genomic alphabet, usually {A, C, G, T}.
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 505–518, 2020.
https://doi.org/10.1007/978-3-030-38919-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_41&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_41

506 T. Davot et al.

not intended to be resequenced with long-reads technologies in the near future.
One motivation of our work it to take care of these kind of projects, and improve
assemblies using only the original short-read (though paired-end) data. In this
context, a solution to the Scaffolding problem may not be a collection of
distinct paths, but rather a graph, called solution graph (which is a particu-
lar scaffold graph with multiplicities). Transforming such a graph into genomic
sequences turns out to be a challenging task. The aim of the present work is to
study the problem consisting of removing ambiguities in the solution graph in
order to provide longer and error-free genomic sequences with minimal loss of
information.

In the following, most of the proofs has been omitted due to space constraints.
A full version including the proofs is available in https://hal-lirmm.ccsd.cnrs.fr/
lirmm-02332049.

2 Notation and Problem Description

With G denoting a graph, we let V (G) and E(G) be the sets of vertices and
edges of G, respectively. A scaffold graph (G,M∗, ω,m′) is an edge-weighted,
simple, undirected graph G equipped with 1. a perfect matching M∗ that cor-
responds to the contigs, 2. non-contig edges uv whose weights ω(uv) indicate
the likelihood that the contig-extremity u is adjacent to the contig-extremity v
in the target genome and 3. a multiplicity m′ on contig edges which indi-
cates the desired number of their occurrences (see Fig. 1). An alternating walk
(u0, . . . , u2�−1) is a sequence of vertices such that for each i < �, u2iu2i+1 ∈ M∗

and u2i+1u2i+2 ∈ E(G) \ M∗. If u0 = u2�−1, the walk is closed. The Scaffold-

ing with Multiplicities problem is stated as follows:

Scaffolding with Multiplicities (SCAM)
Input: a scaffold graph (G,M∗, ω,m′) and σp, σc, k ∈ N

Question: Is there a multiset S of at most σc closed and at most σp

non-closed alternating walks in G such that each e ∈ M∗ occurs m′(e)
times across all walks of S and

∑
e∈E(S)\M∗ ω(e) ≥ k?

In this work, we will not focus on the SCAM problem itself (instead, the reader
is referred to Weller et al. [14,16,17]). Instead, we assume that we are given a
solution S, whose walks then induce a subgraph of the input scaffold graph which
we call solution graph (G∗, M∗, ω, m). More precisely, given a scaffold graph
(G, M∗, ω, m) and a solution S of SCAM, the solution graph (G∗,M∗, ω,m)
is obtained by removing the edges that do not belong to S. The multiplicity
function m defined on all the edges of the solution graph is the number of
times that an edge occurs in S. Note that for each matching edge e, we have
m(e) = m′(e). It turns out that, in presence of repeated contigs, a solution
graph implies a unique set of sequences if and only if it does not contain so
called ambiguous paths [15] (see Fig. 1 for an example).

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02332049
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02332049

Linearizing Genomes: Exact Methods and Local Search 507

a b c d

e f

g h

ATCTT

m = 1

CCT

m = 2

TAA

m = 1

CATG

m = 1

26

7

9

3

1

1

2

Fig. 1. A scaffold graph and a solution graph obtained with an optimal solution of
SCAM. Matching edges are bold and plain edges are part of the solution graph. Edge
cd has multiplicity two. Other contigs have multiplicity one. Edges of the solution graph
also have multiplicity one. Links between contigs are labeled by their weight. Because
of the presence of the ambiguous path cd, two optimal solutions are possible for SCAM
with σc = 0 and σp = 2: {(a, b, c, d, e, f), (c, d, g, h)} and {(a, b, c, d, g, h), (c, d, e, f)}.

Definition 1 (Ambiguous path). Let p be path with extremities u and v in
a solution graph. If, for all vertices x of p, p also contains the matching edge
containing x, we call p alternating. If all edges of p have the same multiplicity μ
(that is, m(e) = μ for all e ∈ p), then p is called μ-uniform (or simply uniform
is μ is unknown). If p is alternating, uniform, and both of u and v are incident
with a non-matching edge of multiplicity strictly less than μ, then p is called
ambiguous.

To break ambiguous paths, we remove non-contig edges from the solution graph,
thereby losing information, and our goal is to minimize this loss. Definition 1
implies that minimal solutions remove all incident non-contig edges from a
selected set X of vertices. The “cost” of such a set X can be defined by the
following scorings:

Cut score. Pay one per vertex in X: score(X) := |X|.
Path score. Pay one for each multiplicity that is removed:

score(X) :=
∑

{m(uv) | uv ∈ E \ M∗ ∧ uv ∩ X �= ∅}.
Weight score. Pay the total cost of edges that are removed:

score(X) :=
∑

{m(uv) · ω(uv) | uv ∈ E \ M∗ ∧ uv ∩ X �= ∅}.

Since the Path score and the Weight score are very similar, we study in this
paper only the Cut score and the Weight score. The following reduction rules
simplify a given instance (solution graph) without changing the solution set X.

Rule 1 ([15]). Let p be a μ-uniform alternating path with extremities u and v.
Remove p and add a new contig edge uv with multiplicity μ.

Rule 2 ([15]). Let uv ∈ M∗ be a contig edge not appearing in ambiguous paths
and let u and v have degree at least two. Then, remove uv, add new vertices u′

and v′ and add the contig edges uv′ and vu′ with multiplicity m(uv).

Let (G∗,M∗, ω,m) be a solution graph and let u ∈ V (G∗). We let NG∗(u) =
{v |uv ∈ E(G∗) \ M∗} denote the set of neighbors of u linked to u with a non-
matching edge. We say that a vertex u is clean if NG∗(u) = ∅ and a matching

508 T. Davot et al.

edge uv ∈ M∗ is clean if at least one of its extremities is clean. In the following,
we assume that all solution graphs are reduced with respect to Rule 1, and we
observe that, in this case, all ambiguous paths have length one. Thus, we use
the term “ambiguous edges” (resp. “non-ambiguous edges”) when we speak of
ambiguous (resp. non-ambiguous) paths. With Rule 2, we can further assume
that all non-ambiguous edges are clean, implying that each matching edge e is
ambiguous if and only if e is not clean. Hence, disambiguating a solution means
to render all matching edges clean. We can now formulate our problem Semi-

Brutal Cut as follows.

Semi-Brutal Cut (SBC)
Input:A solution graph (G∗,M∗, ω,m) and some k ∈ N

Question:Is there a set X of extremities of ambiguous edges in G∗ such
that removing all non-matching edges incident to vertices of X renders
all matching edges clean, and score(X) ≤ k?

For a vertex u of G∗, we let ω(u) denote the sum of the weights of all non-
matching edges incident to u. For a solution X of Semi-Brutal Cut, we let
ω(X) :=

∑
u∈X ω(u). We say that u is cut if u ∈ X. Since we are not limited in

number of cuts for the weight score, we suppose that in a solution X for Semi-

Brutal Cut under the weight score, each ambiguous edge of (G∗,M∗, ω,m)
contains exactly one vertex in X.

3 Related Work

Problems similar to the linearization of scaffolds are studied in the context of
guided, multiple-source assembly problems [12]. However, the model does not
integrate multiplicities as a constraint on the structure of the desired paths. In
previous work, we show that the variants of Semi-Brutal Cut according to
all presented scoring functions are NP-complete [15]. In [10], we explore spe-
cial classes of graphs, namely bipartite, planar with bounded degree, analyzing
complexity and approximability, showing that even in very restricted cases, the
problem is hard to solve. We also proposed a 2-approximation algorithm under
the weight score and a 4-approximation under the cut score. In the present
work, we consider general instances, showing that even finding a locally optimal
solution is hard, but propose effective exact methods to linearize genomes.

4 Hardness Using PLS-Reduction

This section is devoted to determine the local-search complexity using the PLS
(Polynomial Local Search) class, which models the difficulty of finding a locally
optimal solution to an optimization problem [5]. Schäffer and Yannakakis [9]
proved several classic combinatorial optimization problems PLS-complete. In
the following, we propose a new neighborhood structure called the neighbor slide
adapted to Semi-Brutal Cut. We recall first some definitions related to PLS.

Linearizing Genomes: Exact Methods and Local Search 509

A neighborhood structure N is a function that associates to each solution S a
set of solutions N(S). A local search problem is a combinatorial optimization
problem P for which, given a neighborhood structure N , we want to find a
solution S (called local optimum), such that no solution in N(S) has a better
score. In the following, we let P/N denote a local search problem where P is a
combinatorial optimization problem and N a neighborhood structure.

Definition 2 (PLS). A local search problem P/N is in PLS if there are
polynomial-time algorithms AL, BL, and CL such that

(a) for each instance x, AL gives an initial solution Sinit,
(b) for each solution S, BL determines the score of S, and
(c) for each solution S, CL determines if S is a local optimum and, if not, gives

a solution with the best score in N(S).

To show that finding a local optimum for a problem P1/N1 is at least as difficult
as finding a local optimum for a problem P2/N2, we use PLS-reductions.

Definition 3 (PLS-reduction). A local search problem P1/N1 is PLS-
reducible to a local search problem P2/N2 if there are polynomial-time computable
functions f and g such that:

(a) If x1 is an instance of P1, then f(x1) is an instance of P2.
(b) If S2 is a solution for f(x1), then g(x1, S2) is a solution for x1.
(c) If S2 is a local optimum for f(x1), then g(x1, S2) is a local optimum for x1.

Then, a local search problem P/N is PLS-complete if P/N is in PLS and every
problem in PLS can be PLS-reduced to P/N . We now introduce the Max

W2SAT problem and the Flip neighborhood structure.

Max W2SAT

Input: A boolean formula ϕ in conjunctive normal form where each clause
Ci has a weight ω(Ci) and contains exactly two variables.

Task: Find an assignment maximizing the total weight of satisfied clauses.

Definition 4 (Flip). Let S be a solution for ϕ. A solution S′ is in N(S) if
there exists a unique variable xi such that the assignment of xi is different in S
and S′. We say that S′ is obtained by flipping the value of xi in S.

Note that Max W2SAT/Flip is PLS-complete [7]. Let ϕ be an instance of Max

W2SAT and let S be a solution for ϕ. We let ω(ϕ) denote the sum of the weights
of all clauses of ϕ and we let ω(S) denote the total weight of all clauses that are
not satisfied by S. From an instance of Max W2SAT, we build an instance of
SBC using the following construction.

Construction 1 (See Fig. 2(left)). Let ϕ be an instance of Max W2SAT

with n′ variables xi and m′ clauses Cj and let occ(xi) denote the number of
occurrences of xi in ϕ. We construct the following solution graph (G∗,M∗, ω,m).

510 T. Davot et al.

s1s2

v11 v21 v12 v22 v13 v23

u1 u1 u2 u2

s1s2

v11 v21 v12 v22 v13 v23

u1 u1 u2 u2

Fig. 2. Left: The graph produced by Construction 1 on input ϕ = (x1 ∨ x2) ∧ (¬x1 ∨
x2) ∧ (¬x1 ∨ ¬x2) (each clause has weight one). Matching edges are bold and all non-
matching edges have weight one. A solution S with ω(S) = 6 is highlighted in gray.
In S, v1

1v2
1 is satisfied, v1

2v2
2 is unsatisfied and v1

3v2
3 is neither satisfied nor unsatisfied.

Right: A solution of weight 5 produced by a neighbor slide of u1u1.

1. Construct a matching edge s1s2 with m(s1s2) = 2m′.
2. For each xi, construct a matching edge uiui such that m(uiui) = occ(xi) + 1

(variable edge).
3. For each clause Cj, construct a matching edge v1

j v2
j such that m(v1

j v2
j) = 2

(clause edge).
4. For each clause Cj, let xk be the tth variable of the clause. If xk occurs

positively in the clause, then add the edge vt
juk with m(vt

juk) = 1 and
ω(vt

juk) = ω(Cj). Otherwise, add the edge vt
juk with m(vt

juk) = 1 and
ω(vt

juk) = ω(Cj).
5. Finally, for each matching edge uiui, if ω(ui) < ω(ui), add an edge s1u1 with

m(s1u1) = 1 and ω(s1u1) = ω(ui) − ω(ui). If ω(ui) > ω(ui), add an edge
s1u1 with m(s1u1) = 1 and ω(s1u1) = ω(ui) − ω(ui).

Note that for each variable edge uiui, we have ω(ui) = ω(ui). All matching edges
except s1s2 are ambiguous. If a cut in a clause edge v1

j v2
j is adjacent to a cut in a

variable edge, then we say that the clause edge v1
j v2

j is satisfied. If no extremity
of a clause edge v1

j v2
j is adjacent to a cut vertex in a variable edge, we say that

the clause edge v1
j v2

j is unsatisfied. Note that a clause edge could be neither
satisfied nor unsatisfied. In a graph produced by Construction 1, we simulate
the flipping operation with the neighbor slide operation defined as follows:

Definition 5 (Neighbor Slide, see Fig. 2). Let S ⊆ V (G∗) be a solution for
(G∗,M∗, ω,m) and let uv be an unclean matching edge of G∗ with u ∈ S.

The neighbor slide operation applied to uv produces a new solution S′ as
follows:

1. S′ ← (S ∪ {v}) \ {u},
2. for each neighbor nu �= s1 of u: S′ ← (S′ ∪ {M∗(nu)}) \ {nu}, and
3. for each neighbor nv �= s1 of v: S′ ← (S′ ∪ {nv}) \ {M∗(nv)}.

Thus, a solution S′ belongs to N(S) if S′ can be produced by applying a neighbor
slide operation on S.

Linearizing Genomes: Exact Methods and Local Search 511

Definition 6. Let ϕ be an instance of Max W2SAT, let (G∗,M∗, ω,m) be the
graph produced by Construction 1, and let X be a solution for it. A solution S for
ϕ corresponds to X if, for all matching edges uiui, we have ui ∈ X ⇒ S(xi) = 1
and ui ∈ X ⇒ S(xi) = 0.

Note that, after a neighbor slide of a variable edge, all adjacent clause edges are
either satisfied or unsatisfied, and that if a clause edge v1

j v2
j is satisfied (resp.

unsatisfied), then the corresponding clause Cj is satisfied (resp. unsatisfied).

Lemma 1. Let X be a solution for (G∗,M∗, ω,m), produced by Construction 1
and let S be the corresponding solution for ϕ.

1. If X is a local minimum, then all clause edges are satisfied or unsatisfied.
2. If all clause edges are satisfied or unsatisfied by X, then ω(X) = ω(ϕ)+ω(S).

Theorem 1. SBC/Neighbor slide is PLS-complete for the weight score.

Proof. It is easy to see that SBC/Neighbor slide is in PLS. We propose a PLS-
reduction of Max W2SAT/Flip to SBC/Neighbor slide. Let ϕ be an instance
of Max W2SAT. The function defined by Construction 1 produces an instance
(G∗,M∗, ω,m) of Semi-Brutal Cut and the function defined in Definition 6
computes a solution for ϕ from a solution for (G∗,M∗, ω,m). It remains to show
that, if a solution X is a local minimum of Semi-Brutal Cut in (G∗,M∗, ω,m),
then its corresponding solution S is also a local minimum. By Lemma 1(1) and
Lemma 1(2), we have ω(X) = ω(ϕ) + ω(S). Suppose that S is not a local min-
imum. Then, there is a variable xi in S such that flipping its value produces
a solution S′

1 with a smaller weight. Let S′
2 be the solution produced by the

neighbor-slide operation on the variable edge uiu1 in X. Note that the corre-
sponding solution of S′

2 is S′
1. By Lemma 1(1), all clause edges in X are either

satisfied or unsatisfied and since the clause edges modified by a neighbor-slide
are either satisfied or unsatisfied, all clause edges in S′

2 are either satisfied or
unsatisfied. Thus, by Lemma 1(2), ω(S′

2) = ω(ϕ)+ω(S′
1) < ω(X), contradicting

the fact that X is a local minimum.

5 Exact Methods

5.1 Integer Linear Programming

In this section, we propose an integer linear program modeling Semi-Brutal

Cut for all scores.

Variables. For each non-matching edge ek, we define a binary variable xk which
equals 1 if and only if one of its extremities is in the solution, that is, ek is
removed from the graph. For each extremity ui of an ambiguous edge p, we
define two binary variables ci and ni. ci = 1 iff ui is in the solution and ni = 1
if and only if all neighbors v �= M∗(ui) of ui are in the solution.

512 T. Davot et al.

Constraints.

(1) For any ambiguous matching edge uiuj , we force one of the extremities to
have degree one by adding the constraint ni + nj + ci + cj ≥ 1.

(2) If any extremity ui is adjacent to a non-ambiguous matching edge, then not
all neighbors of ui can be cut. In this case, we add the constraint n� = 0.

(3) For all extremities ui, we force all neighbors of ui (except M∗(ui)) to be cut
if ni = 1 by adding the constraint

∑

u�∈N(ui)

c� ≥ ni · |N(ui)|.

(4) For each extremity ui of a non-matching edge ek, we force that ek is removed
from the graph if ui = 1 by adding the constraint xk ≥ ci.

Objective Function. For the cut score, we want to minimize the number of ver-
tices in the solution, that is, the number of variable ci with value one. Thus, the
objective function for the cut score is min

∑
i ci. For the weight score, we want

to minimize the total weight of the edges removed from the graph. Thus, the
objective function for the weight score is min

∑
ek∈E(G)\M∗ xk · ω(ek).

5.2 Dynamic Programming on Tree Decompositions

We show that Semi-Brutal Cut can be solved in linear time on classes of
graphs that exhibit a constant bound on the treewidth, such as series-parallel or
outerplanar graphs. To this end, we present a dynamic programming algorithm,
working on nice tree decompositions, that finds an optimal solution in O(2tw ·
|E(G)|) under the weight score and in O(5tw · |E(G)|) under the cut score, where
tw is the treewidth of the input graph.

Definition 7 ([6]). Given a graph G, a tree decomposition for G is a pair
(T,X) where T is a tree and X = {Bi | i ∈ V (T)} is a multiset of subsets of
V (G) (called “bags”) such that

(a) for each uv ∈ E(G), there is some i with uv ⊆ Bi and
(b) for each v ∈ V (G), the bags Bi containing v form a connected subset of T .

The width of (T,X) is maxi |Bi| − 1. Further, (T,X) is called nice if

(c) T is rooted at bag Br, with Br = ∅ and each bag has at most two children.
(d) Each bag Bi of T has one of the four types:

– Leaf bag: i has no children and Bi = ∅.
– Join bag: i has two children j and k and Bi = Bj = Bk.
– Introduce u bag: i has only one child j and Bj = Bi \ {u}.
– Forget u bag: i has only one child j and Bj = Bi ∪ {u}.

For any bag Bi of T , we let Gi denote the subgraph of G induced by the vertices
of G that are introduced “below” Bi (that is, in a bag of the subtree of T that is
rooted at i).

Note that for each vertex u of G, (T,X) contains exactly one forget u bag.
Further, the root r of a nice tree decomposition is a forget bag and we let r′

denote the vertex forgotten by r.

Linearizing Genomes: Exact Methods and Local Search 513

a b c d

e f

Fig. 3. A subgraph G∗
i with Bi = {a, b, c, d} (matching edges in bold). Let Y1 =

{(a, “∅”), (b, “∅”), (c, “×”), (d, “×”)}, let Y2 = {(a, “∅”), (b, “N”), (c, “∅”), (d, “∅”)},
and let Y3 = {(a, “N”), (b, “×”), (c, “∅”), (d, “∅”)}. No set vertex set X is eligible for
(Y1, Bi) and (Y2, Bi) but {b, e} is eligible for (Y3, Bi). The trace of Y3 is T (Y3) = {b}.

Tree Decompositions Introducing Matching Edges. Let (G∗,M∗, ω,m) be a solu-
tion graph and let Bi ∈ X . In our algorithm, we need M∗(u) ∈ Bi for each
u ∈ Bi. For this reason, we contract all matching edges in (G∗,M∗, ω,m), yield-
ing a graph G′ with V (G′) = M∗. We compute a nice tree decomposition (T,X)
of G′, then the vertices of G′ are expanded, that is, we replace the vertices
of G′ in the tree decomposition by their corresponding matching edges. Each
introduce u bag now introduces the matching edge uM∗(u). We call such a tree
decomposition for G∗ M∗-preserving. In the following, G′ refers to the graph
with contracted matching edges and G∗ refers to the original solution graph.

Signatures. To every (X,V ′) where X is a solution of a subgraph H and V ′ is a
subset of vertices of H, we associate a signature describing how the vertices of
V ′ are cut in X. The signature of a vertex u can be “×”, “N”, or “∅”, depending
on whether, respectively, u is cut, all neighbors of u are cut, or u is not cut.

Definition 8 (see Fig. 3). Let H be a subgraph of G∗ such that, for each
u ∈ V (H), we have M∗(u) ∈ H. Let X ⊆ V (H) be a solution for (G∗,M∗, ω,m)
in H and let V ′ ⊆ V (H). A mapping Y : V ′ → {“N”, “×”, “∅”} with

(i) Y (u) = “×” ⇔ u ∈ X and,
(ii) Y (u) = “N” ⇒ NH(u) ⊆ X

is called signature of X in V ′ and T (Y) = {u | Y (u) = “×”} is called trace
of Y .

Note that a solution X can be associated to many signatures. Likewise, two
different solutions X and X ′ of H such that X ∩ V ′ = X ′ ∩ V ′ are associated
to the same signatures. In order to minimize the number of signatures, we add
some restrictions on the mappings. The main idea is that sub-solutions with the
same signature are equivalently suited to construct a complete solution. Thus,
for a vertex set V ′, we define a set of signatures Y(V ′) as follows.

Definition 9. Let V ′ be a vertex set. We define Y(V ′) as the set of all Y : V ′ →
{“∅”, “N”, “×”} such that, for all u ∈ V ′, the three following conditions hold:

1. uM∗(u) is clean ⇔ Y (u) = Y (M∗(u)) = “∅”
(no cut occurs in an already clean matching edge).

514 T. Davot et al.

2. if the considered scoring function is the weight score, then:
– Y (u) �= “N” and,
– Y (u) = “∅” ⇔ Y (M∗(u)) = “×”

(each ambiguous edge contains exactly one cut).
3. if the considered scoring function is the cut score, then:

– Y (u) = “∅” ⇒ Y (M∗(u)) �= “∅”
(an ambiguous edge must be clean) and,

– Y (u) = “N” ⇒ Y (M∗(u)) = “∅”
(no need to store a neighbor cut if M∗(u) is cut or has a neighbor cut).

Note that if V ′ contains a single ambiguous edge, then |Y(V ′)| = 2 under the
weight score and |Y(V ′)| = 5 under the cut score.

Definition 10. Let Yi : Vi → {“∅”, “N”, “×”} for i ∈ {1, 2} be two signatures
such that V1∩V2 = ∅. The union of Y1 and Y2 is the mapping Y1∪Y2 : V1∪V2 →
{“∅”, “N”, “×”} with

(Y1 ∪ Y2)(v) =

{
Y1(v) if v ∈ V1

Y2(v) otherwise.

For each bag Bi of a given, M∗-preserving tree decomposition of G∗, we will
compute solutions for G∗

i . To this end, we introduce the following definition.

Definition 11 (see Fig. 3). Let (X , T) be a nice tree decomposition of G∗, let
X ⊆ V (G∗

i), let Bi ∈ X , let Y ∈ Y(Bi), and let u ∈ Bi. Further, let

(i) Y be the signature of X in Bi and,
(ii) X be a solution for (G∗

i ,M
∗, ω,m).

Then, we call X eligible with respect to (Y,Bi).

If there is no set eligible for a pair (Y,Bi), we say that the signature Y is
incompatible with G∗

i .

Lemma 2. Let Bi ∈ X and let Y ∈ Y(Bi). Y is incompatible with G∗
i if and only

if there are u, v ∈ Bi with uv ∈ E(G∗
i) \ M∗ and Y (u) = “N” and Y (v) �= “×”.

Semantics: Let Y : V (G∗
i) → {“×”, “N”, “∅”}. A table entry [Y]i is some

minimum-score solution X that is eligible with respect to (Y,Bi) (and [Y]i = ⊥
if no such X exists).

We set score(⊥) = ∞ and ⊥ ∪ X = ⊥, for any set X.

Linearizing Genomes: Exact Methods and Local Search 515

The Algorithm. Let (G∗,M∗, ω,m) be a solution graph. We compute a M∗-
preserving tree decomposition (X , T) of G∗ as described previously. We then
traverse (X , T) from the leaf bags to the root Xr. We compute the table entry
for each signature Y ∈ Y(Bi) of each bag Bi. Then, we obtain the minimum
solution for (G∗,M∗, ω,m) from [Y]r. Let Bj and B� the children of Bi (if they
exist). We compute [Y]i depending on the type of the bag Bi:

leaf bag: Since Bi = ∅, the only table entry is [∅]i and we set [∅]i = ∅.
introduce uv ∈ M∗ bag: We apply the following routine:

1. First consider that uv is isolated. We copy the table entries of the child
Bj and complete them such that all signatures in Y(Bi) are instantiated:

[Y]i = argmin
Y ∈Y(Bj)

argmin
Y ′∈Y({u,v})

{score([Y]j ∪ T (Y ′))}.

2. Then, we introduce successively the non-matching edges incident to uv.
If a signature is incompatible with G∗

i , then we set its table entry to ⊥.
Let E′ be the set of incident edges to the matching edge uv. For each
xx′ ∈ E′ and all Y ∈ Y(Bi), we set [Y]i = ⊥ if

– if Y (x) = “N” and Y (x′) �= “×” (Lemma 2),
– if Y (x′) = “N” and Y (x) �= “×” (Lemma 2).

join bag: For all Y ∈ Y(Bi), we set [Y]i = [Y]j ∪ [Y]�.
forget uv ∈ M∗ bag: For all Y ∈ Y(Bi), we set

[Y]i = argmin({score([Y ′]j) | Y ′ ∈ Y(Bj) ∧ ∃Y ′′∈Y({u,v})Y ′ = Y ∪ Y ′′}).

Lemma 3. The described algorithm is correct, that is, the computed value of
[Y]i corresponds to the semantics.

In each bag Bi, we have to iterate over all signatures in Y(Bi). The number of
possible values for an ambiguous edge is equal to two under the weight score and
to five under the cut score. Thus, the number of signatures in a bag containing
tw matching edges is equal to 2tw under the weight score and to 5tw under the
cut score. Since the number of bags depends on the number of non-matching
edges, we obtain a complexity of O(2tw · |E(G′)|) under the weight score and a
complexity of O(5tw ·|E(G′)|) under the cut score. To obtain an optimal solution,
we just have to take the value of [∅]r computed by the algorithm.

Corollary 1. Given a M∗-preserving nice tree decomposition with width tw,
Semi-Brutal Cut can be solved in O(2tw · |E(G∗)|) time under the weight
score and in O(5tw · |E(G∗)|) time under the cut score.

Optimization. As no non-ambiguous matching edge will contain a cut, we can
remove these matching edges from the graph before computing the tree decom-
position, yielding a reduction of the treewidth. However, we must ensure that
each vertex stores its adjacency to a removed matching edge.

516 T. Davot et al.

Table 1. Results statistics. “ILP” and “Tree Dec.” columns indicate the execution
times, in seconds.

Data Treewidth Cut score Weight score
Score ILP Tree Dec. Score ILP Tree Dec.

anopheles 3 1093 4.63 5.10 1387 4.76 4.22
anthrax 2 12 0.42 0.32 17 0.41 0.31
gloeobacter 2 39 0.44 0.36 67 0.46 0.36
lactobacillus 2 13 0.19 0.15 18 0.19 0.14
pandora 1 5 0.25 0.19 6 0.25 0.18
pseudomonas 2 36 0.54 0.42 51 0.53 0.42
rice 2 3 0.01 0.00 3 0.01 0.00
sacchr3 2 3 0.03 0.02 5 0.03 0.02
sacchr12 4 12 0.10 0.07 18 0.09 0.07

6 Experiments

The contribution of the paper being mainly theoretical, we propose implemen-
tation and tests on real instances. In order to compare the performance of both
algorithms, we tested them on datasets already used in [14]. We can observe
that selected instances have a small treewidth. A real instance of SBC is gener-
ated from a collection of alternating paths and alternating cycles, thus we may
think that such instance has a small treewidth. Our implementation of the tree
decomposition based algorithm relies on the HTD library [1] for tree decompo-
sition construction. We use ILOG CPLEX to provide a solution to our integer
linear programming formulation. We compare results for both scores, statistics
on produced solutions are presented in Table 1. We can see that the tree decom-
position algorithm is faster under the weight score, which can be explained by
the difference of the theoretical complexity. For the cut score, the dynamic pro-
gramming is slightly faster than the ILP with one exception for the anopheles
genome. Since the real instances seem to have a small treewidth and the tree
decomposition algorithm uses more the internal structure of the problem, we
may think that it remains faster than the ILP.

7 Conclusion

In this paper, we present a novel point of view on a problem dedicated to the pro-
duction of genomic sequences. The previous exploration of the frontier between
tractable and hard cases did not provide a satisfactory polynomial-time algo-
rithm and, thus, we explore here two possible solutions: The first is to position
the problem relative to the PLS class, aiming to decide whether local search is
easier than global search. The second is to consider natural exact methods. In

Linearizing Genomes: Exact Methods and Local Search 517

this context, we studied and implemented a simple and efficient ILP and a tree-
decomposition based method, yielding an FPT algorithm with respect to the
treewidth of the input graph. Interesting open questions include the existence of
polynomial-time approximation algorithms, and whether alternative tools, such
as color coding or kernel techniques, allow designing more efficient FPT algo-
rithms. As a more practical perspective, we intend to perform further tests on
these algorithms and previous ones, to explore the ability of each method to
perform well on various kinds of genomes.

References

1. Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for
(customized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M.
(eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 376–386. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59776-8_30

2. Biscotti, M.A., Olmo, E., Heslop-Harrison, J.S.: Repetitive DNA in eukaryotic
genomes. Chromosome Res. 23(3), 415–420 (2015)

3. Bongartz, P.: Resolving repeat families with long reads. BMC Bioinform. 20(232)
(2019). https://doi.org/10.1186/s12859-019-2807-4. ISSN 1471-2105

4. Chateau, A., Giroudeau, R.: A complexity and approximation framework for the
maximization scaffolding problem. Theor. Comput. Sci. 595, 92–106 (2015)

5. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J.
Comput. Syst. Sci. 37(1), 79–100 (1988)

6. Kloks, T.: Treewidth, Computations and Approximations. Lecture Notes in Com-
puter Science, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/
BFb0045375

7. Krentel, M.: On finding and verifying locally optimal solutions. SIAM J. Comput.
19(4), 742–749 (1990)

8. Mandric, I., Lindsay, J., Măndoiu, I.I., Zelikovsky, A.: Scaffolding algorithms (chap.
5). In: Măndoiu, I., Zelikovsky, A. (eds.) Computational Methods for Next Gener-
ation Sequencing Data Analysis, pp. 107–132. Wiley, Hoboken (2016)

9. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve.
SIAM J. Comput. 20(1), 56–87 (1991)

10. Tabary, D., Davot, T., Weller, M., Chateau, A., Giroudeau, R.: New results about
the linearization of scaffolds sharing repeated contigs. In: Kim, D., Uma, R.N.,
Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp. 94–107. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04651-4_7

11. Tang, H.: Genome assembly, rearrangement, and repeats. Chem. Rev. 107(8),
3391–3406 (2007)

12. Tomescu, A.I., Gagie, T., Popa, A., Rizzi, R., Kuosmanen, A., Mäkinen, V.:
Explaining a weighted DAG with few paths for solving genome-guided multi-
assembly. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(6), 1345–1354 (2015)

13. Ummat, A., Bashir, A.: Resolving complex tandem repeats with long reads.
Bioinformatics 30(24), 3491–3498 (2014). https://doi.org/10.1093/bioinformatics/
btu437. ISSN 1367-4803

14. Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. BMC
Bioinform. 16(Suppl 14), S2 (2015)

https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1186/s12859-019-2807-4
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-030-04651-4_7
https://doi.org/10.1093/bioinformatics/btu437
https://doi.org/10.1093/bioinformatics/btu437

518 T. Davot et al.

15. Weller, M., Chateau, A., Giroudeau, R.: On the linearization of scaffolds sharing
repeated contigs. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol.
10628, pp. 509–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71147-8_38

16. Weller, M., Chateau, A., Dallard, C., Giroudeau, R.: Scaffolding problems revisited:
complexity, approximation and fixed parameter tractable algorithms, and some
special cases. Algorithmica 80(6), 1771–1803 (2018)

17. Weller, M., Chateau, A., Giroudeau, R., Poss, M.: Scaffolding with repeated contigs
using flow formulations (2018)

https://doi.org/10.1007/978-3-319-71147-8_38
https://doi.org/10.1007/978-3-319-71147-8_38

Scanning Phylogenetic Networks
Is NP-hard

Vincent Berry1, Celine Scornavacca2, and Mathias Weller3(B)

1 LIRMM, Université de Montpellier, Montpellier, France
vberry@lirmm.fr

2 CNRS, Université de Montpellier, Montpellier, France
celine.scornavacca@umontpellier.fr

3 CNRS, LIGM, Université Paris Est, Marne-la-Vallée, France
mathias.weller@u-pem.fr

Abstract. Phylogenetic networks are rooted directed acyclic graphs
used to depict the evolution of a set of species in the presence of reticulate
events. Reconstructing these networks from molecular data is challeng-
ing and current algorithms fail to scale up to genome-wide data. In this
paper, we introduce a new width measure intended to help design faster
parameterized algorithms for this task. We study its relation with other
width measures and problems in graph theory and finally prove that
deciding it is NP-complete, even for very restricted classes of networks.

1 Introduction

Phylogenetic networks are rooted directed acyclic graphs used to depict the evo-
lution of a set of species in the presence of reticulate events such as hybridiza-
tions, where two species combine their genetic material to create a new species
(see nodes H1 and H2 in Fig. 1(left)) [9]. Herein, leaves represent the studied
species and the root their most recent common ancestor, from which time flows
away (as indicated by the direction of the arcs). Internal vertices represent either
speciation events (a single parent) or reticulation events (several parents). Each
arc represents the evolution of a species in time, during which each gene in the
species genome can change due to mutations, allowing different forms of a gene
(alleles) to appear among species, and even among individuals within the same
species. Though the species history is modeled by a network, the evolution of a
single non-recombinant gene can always be depicted by a tree, see Fig. 1(center),
embedded in the species network, see Fig. 1(right).

Usually, a species network is inferred from a DNA dataset S = {S1, . . . , SL}
composed of L genes sequenced from the genome of one or several individuals
for each studied species [16]. To find the best phylogenetic network explaining
S, a possibility is to sample many different networks N and compute the prob-
ability P (S|N) of each N given S. Without giving all details here (they can be
found for instance in [16]), P (S|N) can be computed from the individual prob-
abilities P (Gi|N) of gene trees G1, . . . , GL for the L loci given N . In turn, each
P (Gi|N) can be computed from the probabilities of all possible embeddings of Gi

in N , weighted by their respective probability depending on Si, i.e. P (Gi|N,Si).
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 519–530, 2020.
https://doi.org/10.1007/978-3-030-38919-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_42&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_42

520 V. Berry et al.

H2

H1

C
B

A a b1 b2 c

→

ca
b1 b2

Fig. 1. Left: A phylogenetic network N depicting the evolutionary history of species
A, B, and C. Center: An evolution scenario for a gene, given the sequences of one
individual from species A, one from C and two from B, where different alleles (boxes)
are observed: gray for A and for one individual from B, and white for the other indi-
viduals. The arc containing the mutation from the white to the gray allele is marked.
Right: An embedding (gray arcs) in N of this gene evolution scenario.

See Fig. 1(center) for a gene tree and Fig. 1(right) for one of its possible embed-
dings within the network. Thus, heavy computations are needed to obtain
P (S|N) and current algorithms fail to scale to genome-wide data. To design
faster algorithms, it is possible to integrate out the possible gene trees and
embeddings, as done in [4]. To apply this technique to network inference we
designed new partial likelihood formulae to compute P (S|N) and stumbled on a
new width parameter for DAGs that clearly puts into evidence why our approach
is faster than existing ones, allowing us to handle several real-world datasets
within minutes instead of weeks [13]. In this paper, we introduce this new param-
eter, which we call scanwidth, we study its relation with other parameters and
problems in graph theory and finally prove that deciding it is NP-hard. A com-
mon and intuitive idea when working with phylogenetic networks is to exploit the
observation that reticulation should be rare in practice to design algorithms that
are fast for only mildly reticulate networks. This tree-likeness is often measured
by the tree-width of the input. However, tree decompositions are in no way obli-
gated to follow the leaf-to-root structure that phylogenies naturally impose and
this makes dynamic programming on decomposition trees unnecessarily compli-
cated. The scanwidth remedies this problem by forcing the leaves of the network
to correspond to the leaves of the decomposition tree, yielding a form of tree-like
cutwidth. Thus, our work broadens the arsenal of width measures that can be –
and recently have been – used to attack hard problems in phylogenetics [5,8,12].
To get an intuition, imagine a (possibly red) scanner line traversing a network
from the leaves to the root; at any moment, its width is the number of arcs it
cuts. As the line moves up, it traverses nodes, changing the set of arcs it cuts
and, hence its width. The cutwidth of the network is the largest width achieved
by such a traversing line. Now, consider multiple independent scanner lines, each
one scanning an arc incoming to a different leaf of the network. Whenever a node
could be passed by two different lines, they are merged to form a single one. This
naturally generalizes the cutwidth to a stronger (that is, smaller) width measure
that we call scanwidth. As with the cutwidth, different orders in which the nodes
are passed imply different values of the final width and the goal is to minimize
it. In many optimization approaches for phylogenetic networks, a network is

Scanning Phylogenetic Networks Is NP-hard 521

traversed from the leaves up to its root, while computing some quantities. For
some applications, computations on tree-parts can be done independently for
each arc but, when meeting a reticulation node, computations on both arcs
entering the node have to be considered jointly. This inter-dependence makes
computing the required quantities more time consuming. In such cases, one really
wants to process the network while minimizing the numbers of arcs considered
jointly. This is captured by the scanwidth parameter.

In this work, we show that deciding the scanwidth of a network relates to
an old problem in program optimization called Register Sufficiency (PO1
of Garey and Johnson [7]). Our proof comprises a non-trivial adaptation of an
NP-hardness proof [14] for the latter problem to a very restricted class of rooted
DAGs, on which Register Sufficiency coincides with deciding the cutwidth
and the scanwidth (offset by 1). This hardness proof, as well as the scanwidth
parameter itself, may be of independent interest to the design of algorithms for
other problems on DAGs.

Note that computing the scanwidth and using it as a parameter for other
algorithms are two different pairs of shoes and, though a parameterized algorithm
may require a tree extension (see Sect. 2) to be given, there is still hope that the
scanwidth can be approximated efficiently. Thus, in analogy with other highly
successful (width) parameters such as the treewidth, the hybridization number
or the hybridization level [2,3,11,15], we point out that being NP-complete to
compute does not hurt the practical usefulness of the scanwidth.

We defer some proofs to a long version of this paper.

2 Preliminaries

Phylogenetic Networks. Let G be a leaf-labelled, directed, acyclic graph with a
single source (which is called “root”). The in-degree of a vertex v in G is deg−

G(v)
and its out-degree is deg+G(v), the sum of those being the degree of v. If all
vertices of G have either in-degree one and out-degree zero (leaves), in-degree at
most one and out-degree at least two (tree-vertices), and in-degree at least two
and out-degree one (reticulation), then G is called rooted phylogenetic network
(henceforth network). Note that the root is a special tree-vertex. We denote the
set of leaves of G by L(G), the set of vertices by V (G) and the tree-vertices by
VT (G). If the root has degree two, the internal vertices have degree three, and
the leaves have degree one, then G is called binary. If G contains a u-v-path for
vertices u and v, we say that u is an ancestor of v (and v is a descendant of u)
and we write v <G u.

Vertex Orderings. A linear ordering σ of a subset V ′ of the vertices of a network
G is called G-respecting if u <G v ⇒ u <σ v for all u, v ∈ V ′. A G-respecting
ordering σ over V (G) is called an extension (or “reverse topological order”) of G,
see Fig. 2. We call a tree Γ on V (G) a tree extension for G if x <G y ⇒ x <Γ y
for all x, y ∈ V (G). We denote the vertex at position i in σ by σ(i) and σ−1(u)
returns the position of the vertex u in sigma. Since positions and vertices are in
bijection, we sometimes use vertices to represent their positions. A position i of

522 V. Berry et al.

σ

))

σ

)))

. . .
j

.
j

(j)

σ(i

i

.

Fig. 2. Left: For an extension σ each position i induces a cut through G separating
the vertices in σ[1..i] (below gray line) from σ[i+1..] (above gray line). Right: G with
vertices linearly arranged according to σ.

σ is called a milestone if σ(i) is a tree-vertex and σ is called stable if all maxima
(wrt. ≤G) in σ[1..i] for any milestone i are tree-vertices (that is, each reticulation
in σ[1..i] has a parent in σ[1..i]). We denote the sub-order of σ restricted to the
elements of a set U by σ[U] and we abbreviate σ[{σ(i), σ(i + 1), . . . , σ(j)}] =:
σ[i..j]. For disjoint orders σ and π let σ ◦ π denote the concatenation of σ with
π (that is, σ followed by π). For a set X, we let (X) denote any order on the
elements of X. Further, for distinct vertices or disjoint vertex sets X1,X2, . . .,
we abbreviate (X1) ◦ (X2) ◦ . . . =: (X1,X2, . . .).

(Directed) Cutwidth. For an extension σ of a DAG G and a position i, we will
use Ci(σ) to denote the set of arcs from a vertex in σ[i+1..] to a vertex in σ[1..i]
and cwi(σ) := |Ci(σ)| is called the cutwidth of σ at position i. The cutwidth of
σ is cw(σ) := maxi cwi(σ) and the cutwidth of G, denoted cw(G), is the mini-
mum of cw(σ) over all extensions σ of G. We allow i to be a vertex instead of a
position, as σ is a bijection between the two.

(Directed) Register width. For an extension σ of G and a position i, we will use
RWi(σ) to denote the set of vertices in σ[1..i] that have a parent in σ[i + 1..]
and rwi(σ) := |RWi(σ)| is called the register width (also known as “vertex cut”
or “separation” [6]) of σ at position i (again, we allow i to be a vertex instead
of a position, as σ is a bijection between the two). The register width of σ
is rw(σ) := maxi rwi(σ) and the register width of G, denoted rw(G), is the
minimum over all extensions σ for G of rw(σ).

Theorem 1. For all binary networks G, we have cw(G) = rw(G) + 1.

Scanwidth. Let σ be an extension for G and let i ∈ N. We define SWi(σ) as
the set of all arcs uv ∈ Ci(σ) for which v and σ(i) are weakly connected in
G[σ[1..i]] (see Fig. 3(left)). swi(σ) is defined as |SWi(σ)|, while the scanwidth
of σ is sw(σ) := maxi swi(σ) and the scanwidth of G, denoted by sw(G), is the
minimum of sw(σ) over all extensions σ for G. Again, in our notations we allow
i to be a vertex instead of a position, as σ is a bijection between the two.

Alternatively, sw(G) can be defined as follows. For a tree extension Γ for G,
we define GWv(Γ) as the set of arcs (x, y) ∈ E(G) with x >Γ v ≥Γ y. Further,

Scanning Phylogenetic Networks Is NP-hard 523

a b c

x y z

r
v w

q

u

σ(i) SWi(σ) = GWσ(i)(Γ)

a {xa}
b {yb}
c {zc}
x {rx, vx}
y {vy, wy}
z {wz, qz}
v {rx, uv, wy}
w {rx, uv, uw, qz}
.

a b

cx y

z

r

v

w

q

u

Fig. 3. Illustration of the two definitions of scanwidth. Left: Lower part of a graph
G where gray zones represent the weakly connected components induced by σ[1..i] for
σ = (a, b, c, x, y, z, v, w, . . .) and i ≤ 8. Here, SWv(σ) = {rx, uv, wy} since x, y, and v
are weakly connected in G[a, b, c, x, y, z, v]. Middle: table indicating SWi(σ) for i ≤ 8
corresponding to σ. Right: part of a tree Γ with GWσ(i)(Γ) = SWi(σ) for all i ≤ 8.
For the extension π = (c, a, z, b, y, x, v, w, . . .), we also have GWπ(i)(Γ) = SWi(π) for
all i ≤ 8.

we let γw(Γ) := maxv |GWv(Γ)| and γw(G) := minΓ γw(Γ). Although a tree
extension is defined independently of a (full) extension for G, there is a link
between the two notions. Indeed, the sets GWv(Γ) in an optimal tree extension
correspond to the sets SWv(σ) in one or several optimal extensions σ (see Fig. 3).

Proposition 1. For any network G, (a) γw(G) = sw(G). Further, (b) if G
has only one leaf, then sw(G) = cw(G). (c) If G is also binary, then sw(G) =
rw(G) + 1.

Observe that the scanwidth differs largely from the directed path-width [1],
which is always zero for DAGs. To relate the scanwidth to established param-
eters, let us mention that the scanwidth of any level-k network cannot exceed
k + 1 but it might even be constant. Regarding width-measures, the scanwidth
is bounded by the cutwidth from below and the treewidth (of the underlying
undirected graph) from above.

3 NP-completeness

+
∗

a+
∗

bc x

To compute the value of a given algebraic expression such as
(cx+b)x+a using a computer, we need to store the values of a, b,
c, and x in registers which can then be processed by the CPU. As
registers can be overwritten, expressions involving more variables
than the number of available registers can be evaluated. The
problem of deciding whether a given expression can be evaluated
on a CPU with k registers (without recomputing sub-expressions
or relying on the costly spilling technique) is called Register Sufficiency.
We suppose that the input expression is given as a rooted DAG of necessary

524 V. Berry et al.

computations. For example, to compute (cx+b)x+a, we need to compute cx+b,
for which we need to compute cx (see figure on the right).

Register Sufficiency [PO1 in [7]] (RS)
Input: a rooted DAG G of an expression to be computed, k ∈ N

Question: Can G be computed using at most k registers?

Register Sufficiency can be interpreted as a game played on G, where the
player has k stones that have to be placed progressively on all vertices, using
the following operations [14]:

1. remove a stone from any vertex
2. for a vertex p whose every child contains a stone,

2a. place an available stone on p or
2b. move a stone from a child of p to p,

so that each vertex receives a stone exactly once during these operations.
Stones represent registers and putting a stone on a vertex of the graph cor-

responds to computing the vertex and storing the result in that register (this is
why we need stones on all children of a vertex when computing it). Removing
a stone from a vertex corresponds to forgetting the value of the vertex, which
should then be done only if we do not need it in other computations (as vertices
cannot be recomputed), i.e. when all its parent vertices have already received a
stone.

Winning the game means successfully computing the algebraic expression
encoded in the graph while using at most k registers. In this context, an exten-
sion σ for a graph G indicates in which order the vertices receive stones. Note
that the first stone enters G via applying Rule 2a to a leaf of G. Then, solving the
optimization problem associated to Register Sufficiency can be seen as find-
ing an extension of G that minimizes the number k of stones (registers) needed
to win the game (compute the expression). As suggested by our formulation, this
number equals the previously introduced “register width”, rw(G).

Proposition 2. A DAG G can be computed using ≤ k registers if and only if
rw(G) ≤ k.

With Proposition 2, the Register Sufficiency problem can be formulated
as: given a rooted DAG G and some integer k, decide if rw(G) ≤ k. Following
Sethi [14], we will use a special, “initial” vertex in our reduction.

Definition 1. Let (G, k) be an instance of Register Sufficiency such that
G has k leaves and all leaves have a common parent ψ. Then, we say that ψ is
an initial vertex and that (G, k) has the initial vertex property.

Lemma 1 (See [14]). Let (G, k) be a yes-instance of Register Sufficiency

with an initial vertex ψ. Let σ be an extension of G with rw(σ) ≤ k. Then,
σ(k + 1) = ψ and σ[1..k] contains the k leaves of G in any order. Moreover,
there is a leaf whose only parent is ψ.

Scanning Phylogenetic Networks Is NP-hard 525

A corollary of Lemma 1 is that, in a yes-instance (G, k) with the initial vertex
property, all children of the initial vertex are leaves. Thus, rwk(σ) = k for all
extensions σ with rw(σ) ≤ k and, thus, rw(G) = k for such yes-instances. Note
that 3-SAT reduces to instances (G, k) of Register Sufficiency that have the
initial vertex property [14].

Theorem 2 ([14]). It is NP-hard to decide Register Sufficiency for
instances (G, k) that have the initial vertex property.

Below, we reduce Register Sufficiency on instances with the initial vertex
property to Register Sufficiency on rooted, binary, single-leaf DAGs. To this
end, we reduce from Weighted 2-Satisfiability instead of 3-Satisfiability
and modify parts of the reduction in order to obtain a network that is already
bifurcating in some crucial spots. Then, we present a number of polynomial-time
executable transformation rules that take one such instance (G, k) of Register

Sufficiency having the initial vertex property and replace all remaining high-
degree vertices with binary ones without changing the answer for the instance.
Finally, a reduction rule is given to ensure that the resulting DAG has a single
leaf.

3.1 An Adaptation of a Known NP-hardness Proof

We strengthen the construction presented by Sethi [14] to construct a binary
DAG with a single leaf and without degree-two vertices. Our modifications to
Sethi’s construction come in two stages. First, instead of 3-SAT, we will reduce a
2-SAT variant called Monotone Weighted 2-Satisfiability (also known as
Vertex Cover), which is also NP-hard [10]. In this variant, all variables occur
non-negated in the instance formula ϕ, each variable is used at least once, and
we ask for an assignment that satisfies ϕ while setting at most k variables to
true. Second, we show how to “binarize” all remaining polytomies and establish
a single leaf.

Construction 1 (See Fig. 4). Given a formula ϕ in monotone 2-CNF on
variables x1, . . . , xn and clauses C1, . . . , Cm, let yi,j denote the jth literal in Ci.
Construct the instance (G, k′), where k′ = 8n + 3m + k + 2 and G is a rooted
DAG on the vertex set A′ � B′ � C � F ′ � H � P � P ′ � R′ � S′ � T ′ � U �
W � X � X ′ � X∗ � Z ′ � {α,ψ, d, ρ}} where R′ :=

⋃
i∈[n] R

′i, S′ :=
⋃

i∈[n] S
′i,

T ′ :=
⋃

i∈[n] T
′i and

A
′
= {ai | i ∈ [2n + 1 + k]} C = {ci | i ∈ [m]} F

′
= {fi,1, fi,2 | i ∈ [m]}

B
′
= {bi | i ∈ [3n − m]} W = {wi | i ∈ [n]} R

′i
= {ri,j | j ∈ [2n − 2i + 2 + k]}

U = {ui,1, ui,2, ui,3 | i ∈ [n]} X
′
= {x

′
i | i ∈ [n]} S

′i
= {si,j | j ∈ [2n − 2i + 1 + k]}

X = {xi, xi | i ∈ [n]} X
∗
= {x

∗
i | i ∈ [n]} T

′i
= {ti,j | j ∈ [2n − 2i + 1 + k]}

H = {hi,1, hi,2 | i ∈ [m]} P = {pi | i ∈ [m]} P
′
= {p

′
i, p

′′
i , p

′′′
i | i ∈ [m]}

Z
′
= {zi | i ∈ [n + 1]}

526 V. Berry et al.

and the arc set is the union of the following sets:

E′
1 = {ψv | v ∈ A′ � B′ � F ′ � U � H � {α}} E5 = {wiui,1, wiui,2 | i ∈ [n]}

E′
2 = {vψ | v ∈ R′i � S′i � T ′i} E′

7,1 = {zi+1wi, zi+1zi | i ∈ [n]}
E4 = {xizi, xizi, xiui,1, xiui,2, x′

iui,3 | i ∈ [n]} E′
7,2 = {cizn+1 | i ∈ [m]}

E12 = {ri,jri,j+1| j ∈ [2n − 2i + k + 1], i ∈ [n]} E′
9 = {dv | v ∈ B′ � C}

E13 = {si,jsi,j+1, ti,jti,j+1| j ∈ [2n − 2i + k], i ∈ [n]} E11 = {x∗
i x′

i, x
′
ixi | i ∈ [n]}

E′
3 = {ρv | v ∈ W � X � Z′ � {ψ, d} � X∗ � {p′

i, p
′′′
i | i ∈ [m]} � {ui,3 | i ∈ [n]} � {zn+1}}

E′
6 = {ziri,j , xisi,j , xiti,j | ri,j ∈ R′i, si,j ∈ S′i, ti,j ∈ T ′i, i ∈ [n]}

E′
8 = {cipi, pifi,1, pifi,2, p′′′

i fi,2, p′′′
i p′′

i , p′′
i p′

i, p
′′
i hi,2, p′

ihi,1 | i ∈ [m]}
E′

10 = {x∗
i,1fi,1, x∗

i,2hi,2, xi,1hi,1 | i ∈ [m]}

where xi,j denotes the jth variable in Ci and xi,j the negation of xi,j (and their
corresponding vertices with the same names) and x∗

i,j the vertex in X∗ such that
x∗

i,jxi,j ∈ E11.

The idea behind Construction 1 is that the “variable-assignment phase” of
Sethi [14] still works as before (with k more stones in each step to account for the
k additional vertices we have in R′i, S′i, and T ′i). In more detail, this process is
as follows: in the beginning, all k′ stones have to go to all the leaves, at which
point ψ is computed using one stone of a vertex in A′, while the other k + 2n
stones of A′ are now free (unlike stones on other leaves still having other parents).
These k+2n stones need to go to R′1 (otherwise we will not have enough stones
later for these vertices), allowing to compute z1, who will keep one stone. The
k+2n− 1 other stones from R′1 are free to go to either S′1 allowing to compute
x1 or to T ′1 allowing to compute x1. The chosen literal allows exactly one stone
from U to move to w1 (e.g. u1,1 if x1 is chosen and u1,2, otherwise), who will
keep this stone. Thus, k +2n − 2 stones (from either S′1 or T ′1) are now free to
compute R′2, followed by z2. This process continues until wn receives a stone,
at which point we ended Sethi’s variable assignment phase. Now, the stone on
α moves to zn+1 and we are left with the k free stones, coming from either S′n

or T ′n, that we can spend on vertices x′
j ∈ X ′ (which then move to x∗

j ∈ X∗)
whose corresponding xj ∈ X has received a stone before.

Consider what happens if the described “variable assignment” phase chooses
k vertices in X satisfying the formula and the k corresponding vertices of X∗

receive a stone right after this phase. Consider the gadget corresponding to clause
Ci = (xj ∨ x�) and recall that fi,1, fi,2, hi,1, hi,2 already hold stones. In analogy
with Sethi [14], each ci receives a stone as follows:

– If Ci is satisfied by xj , then x∗
j holds a stone, so the stone on fi,1 can move

to pi (this is allowed since pi’s children all hold stones).
– Otherwise, both xj and x∗

� hold stones. The first one allows the stone on hi,1

to move to p′
i. The second one allows the stone on hi,2 to move to p′′

i and
then to p′′′

i , allowing the stone on fi,2 to move to pi.

Scanning Phylogenetic Networks Is NP-hard 527

z1

x1

x′
1

x∗
1

x1

u1,1 u1,2

u1,3

w1

R′1
︸︷︷︸

k+2n

S′1
︸︷︷︸

k+2n-1

T ′1
︸︷︷︸

k+2n-1

z2

x2

x′
2

x∗
2

x2

u2,1 u2,2

u2,3

w2

R′2
︸︷︷︸

k+2n-2

S′2
︸︷︷︸

k+2n-3

T ′2
︸︷︷︸

k+2n-3

zn

xn

x′
n

x∗
n

xn

un,1 un,2

un,3

wn

R′n
︸︷︷︸

k+2

S′n
︸︷︷︸

k+1

T ′n
︸︷︷︸

k+1

zn+1

α

c7

d

B′
︸︷︷︸

3n-m

p7

f7,1f7,2

p′′′
7

p′′
7

p′
7

h7,1h7,2

x∗
4

x∗
9

x4

zn+1

Fig. 4. Illustration of Construction 1; white vertices are children of the root ρ, triangles
are leaves and children of ψ. This allows us to omit drawing ψ and ρ. We also omit the
leaves in A′. Left: “variable-assignment” gadget (arcs of E′

2 omitted). Right: clause
gadget for the clause C7 = (x4 ∨x9). Note that all wi, pi, p′′

i , p′′′
i and ci are bifurcating.

Thus, in both cases pi gets a stone which it then passes to ci. Finally, when
all ci have received a stone, d receives a stone from one of them, freeing up
|B′| = 3n − m stones on the vertices in B′ and |C| − 1 = m − 1 stones on the
vertices in C. Since k ≤ n, these 3n − 1 stones can then be placed on T ′1 (if
x1 already holds a stone) or S′1 (if x1 already holds a stone) and one of them
can then move to x1 or x1, respectively. In this way, all 2n vertices xi and xi

progressively receive a stone. Since n of them already got stones in the variable
assignment phase, this leaves us with (3n−1)−n stones, n−k of which are then
put on the n − k remaining stoneless vertices of X ′ which immediately move to
the remaining vertices of X∗. At this point, all stones on all hi,1 and hi,2 move to
p′

i and p′′
i followed by p′′′

i if they did not already do so before. Finally, ρ receives
a stone from any of its children.

528 V. Berry et al.

Theorem 3. Let k ∈ N, let ϕ be a formula in monotone 2-CNF, and let (G, k′)
be an instance of Register Sufficiency constructed by Construction 1 on
input (ϕ, k). Then, ϕ has a satisfying assignment with ≤ k true variables if and
only if rw(G) ≤ k′.

Note that networks G created by Construction 1 contain non-binary vertices, as
well as many leaves. However, all non-binary vertices of G have nice properties
that allow us to “binarize” them using reduction rules that we present in Sect. 3.2.

Observation 1. Let (G′, k′) result from Construction 1 and let u ∈ V (G′).

(a) If u is a non-leaf with deg+(u) ≥ 3, then u has a child with in-degree 1.
(b) If u is a non-leaf with at least 3 parents, then the root ρ is a parent of u.
(c) If u is a leaf with at least 3 parents, then u has exactly 3 parents and ψ is

one of them.

3.2 Reducing Nice Polytomies and Leaves

The following reduction rule is used to turn all leaves binary since many leaves
constructed in Construction 1 have in-degree three.

Rule 1. Let (G, k) have an initial vertex ψ and let u
be a leaf in G with at least three parents, one of which
is ψ. Then, add a new parent v to u, add the arc vψ,
and replace all xu by xv except ψu.

u

ψ

u

v ψ

The next rule splits vertices of in- and out-degree at least two into a reticu-
lation and a tree-vertex.

Rule 2. Let u be a vertex of G, let P and C be its parents and children, respec-
tively, and let |P | > 1 and |C| > 1. Then, “split” u, i.e. add a new vertex v, add
the arc uv and, for all c ∈ C, replace the arc uc by the arc vc.

Rule 3 (See Fig. 5(left)). Let u be a vertex with at least three children, let x
and y be children of u such that y is a tree-vertex and x is either a tree-vertex or
x has a parent q 	= u that is comparable to u in G. Then, “split” u into ru (that
is, create a new parent r for u and make all parents of u parents of r instead),
subdivide ru with a new vertex r′, for all parents q of x with q >G u replace qx
with qr′, add the arc rx, subdivide uy with a new vertex w, remove the arc ux
and, unless x has a parent q <G u in G, add the arc wx.

Correctness proofs of Rules 1–3 are deferred to the full version of this paper.
Note that Rule 3 only increases deg−

G(x) if x has no parents q <G u in G. But
then, either x is a tree-vertex in G, in which case no new polytomies are created,
or x has a parent q >G u, in which case this parent becomes a parent of r′

instead. Further, although Rule 3 may introduce degree-two vertices, all of them
are parents of tree-vertices and can thus be removed using the following:

The following rule turns polytomous reticulations into binary ones. We make
use of the fact that G has a root and an initial vertex (see Definition 1).

Scanning Phylogenetic Networks Is NP-hard 529

u

xy

⇒ u

xy

w
r′

r

u

p0 p1 pt
. . .

⇒
u

p0 p1 pt

v′

w

v

. . .

Fig. 5. Illustration of Rule 3 (left) and Rule 4 (right). Triangles are leaves and children
of the initial vertex ψ, white vertices are children of the root ρ. Note that, on the left,
u has a tree-vertex child before and after the modification.

Rule 4 (see Fig. 5, right). Let (G, k) have an initial vertex ψ, let ρ be the
root of G, let u be a non-leaf with parents p0, p1, . . . , pt, pt+1 = ρ (t ≥ 1). Then,
add a new leaf w, increase k by one, subdivide p0u with a vertex v, replace arc
ρu by ρv, add a new parent v′ of u, replace arc piu by piv

′ for all i ∈ [t+1], and
add the arcs ρv′, vw, ψw.

Note that Rule 4 effectively turns a vertex of in-degree t + 2 (for t ≥ 1) into a
vertex of in-degree t+1. Further, note that the instance (G′, k′) constructed by
Construction 1 has an initial vertex ψ.

Rule 5. Let (G, k) have an initial vertex ψ, let X be
the set of leaves of G and let Y ⊆ X contain the leaves
that have more than one incoming arc. Let Y 	= ∅ and
let x1, x2, . . . , xk be an arbitrary total order of X with
xk ∈ Y . Then, turn X into a path by adding the arc
xi+1xi for all i. Further, for all y ∈ Y −xk, subdivide ψy
with a new vertex z, and replace all arcs uy occurring
in G by uz.

ψ

ψ

Note that the graphs produced by Construction 1 satisfy ∅ � Y � X.
Note that Rule 5 destroys the initial vertex property, preventing any further use
of Rule 4 and Rule 5. However, Rule 5 does not create new polytomies and, for
turning ψ binary by applying Rule 3, it is sufficient that ψ is “primal” (a weaker
condition than being initial).

Theorem 4. Register Sufficiency is NP-complete on rooted, single-leaf
binary DAGs.

Acknowledgments. We thank Fabio Pardi to have brought the problem to our atten-
tion and the Genome Harvest project, ref. ID 1504-006 (“Investissements d’avenir”,
ANR-10-LABX-0001-01).

530 V. Berry et al.

References

1. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs
Comb. 22(2), 161–172 (2006)

2. Bordewich, M., Scornavacca, C., Tokac, N., Weller, M.: On the fixed parameter
tractability of agreement-based phylogenetic distances. J. Math. Biol. 74(1), 239–
257 (2017)

3. Bordewich, M., Semple, C.: Computing the hybridization number of two phyloge-
netic trees is fixed-parameter tractable. IEEE/ACM Trans. Comput. Biol. Bioin-
form. 4(3), 458–466 (2007)

4. Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N.A., RoyChoudhury, A.:
Inferring species trees directly from biallelic genetic markers: bypassing gene trees
in a full coalescent analysis. Mol. Biol. Evol. 29(8), 1917–1932 (2012)

5. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT.
Theor. Comput. Sci. 351(3), 296–302 (2006)

6. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput.
Surv. 34(3), 313–356 (2002)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., Ltd., New York City (1979)

8. Grigoriev, A., Kelk, S., Lekić, N.: On low treewidth graphs and supertrees. In:
Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542,
pp. 71–82. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07953-0_6

9. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts: Algo-
rithms and Applications. Cambridge University Press, Cambridge (2010)

10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://
doi.org/10.1007/978-1-4684-2001-2_9

11. Kelk, S., Scornavacca, C.: Constructing minimal phylogenetic networks from soft-
wired clusters is fixed parameter tractable. Algorithmica 68(4), 886–915 (2014)

12. Kelk, S., Stamoulis, G., Wu, T.: Treewidth distance on phylogenetic trees. Theor.
Comput. Sci. 731, 99–117 (2018)

13. Rabier, C.E., Berry, V., Pardi, F., Scornavacca, C.: On the inference of complicated
phylogenetic networks by Markov chain Monte-Carlo (submitted)

14. Sethi, R.: Complete register allocation problems. SIAM J. Comput. 4(3), 226–248
(1975)

15. Whidden, C., Beiko, R.G., Zeh, N.: Fixed-parameter algorithms for maximum
agreement forests. SIAM J. Comput. 42(4), 1431–1466 (2013)

16. Zhang, C., Ogilvie, H.A., Drummond, A.J., Stadler, T.: Bayesian inference of
species networks from multilocus sequence data. Mol. Biol. Evol. 35(2), 504–517
(2018)

https://doi.org/10.1007/978-3-319-07953-0_6
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

The Maximum Equality-Free String
Factorization Problem: Gaps vs. No Gaps

Radu Stefan Mincu1(B) and Alexandru Popa1,2

1 Department of Computer Science, University of Bucharest, Bucharest, Romania
{mincu.radu,alexandru.popa}@fmi.unibuc.ro

2 National Institute for Research and Development in Informatics,
Bucharest, Romania

Abstract. A factorization of a string w is a partition of w into sub-
strings u1, . . . , uk such that w = u1u2 · · ·uk. Such a partition is called
equality-free if no two factors are equal: ui �= uj , ∀i, j with i �= j. The
maximum equality-free factorization problem is to decide, for a given
string w and integer k, whether w admits an equality-free factorization
with k factors.

Equality-free factorizations have lately received attention because of
their application in DNA self-assembly. Condon et al. (CPM 2012) study
a version of the problem and show that it is NP-complete to decide if
there exists an equality-free factorization with an upper bound on the
length of the factors. At STACS 2015, Fernau et al. show that the maxi-
mum equality-free factorization problem with a lower bound on the num-
ber of factors is NP-complete. Shortly after, Schmid (CiE 2015) presents
results concerning the Fixed Parameter Tractability of the problems.

In this paper we approach equality free factorizations from a practical
point of view i.e. we wish to obtain good solutions on given instances.
To this end, we provide approximation algorithms, heuristics, Integer
Programming models, an improved FPT algorithm and we also conduct
experiments to analyze the performance of our proposed algorithms.

Additionally, we study a relaxed version of the problem where gaps
are allowed between factors and we design a constant factor approxi-
mation algorithm for this case. Surprisingly, after extensive experiments
we conjecture that the relaxed problem has the same optimum as the
original.

Keywords: String factorization · Equality-free · String algorithms ·
Heuristics

1 Introduction

To factorize a string (or word) means to obtain a partitioning of non-overlapping
substrings that reconstitute the original string when concatenated in order. More

This work was supported by project PN19370401 “New solutions for complex problems
in current ICT research fields based on modelling and optimization”, funded by the
Romanian Core Program of the Ministry of Research and Innovation (MCI), 2019–2022.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 531–543, 2020.
https://doi.org/10.1007/978-3-030-38919-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_43&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_43

532 R. S. Mincu and A. Popa

exactly, a factorization of a string w is a tuple of strings (u1, u2, . . . , uk) such
that w = u1u2 · · · uk.

Despite its simple definition, word factorization has a wide number of appli-
cations. For instance, finding an occurrence of a string v in a text t can be
formulated as t admitting a factorization t = uvw. A string v is a prefix of
another string t if t = vw and it is a suffix of t if t = uv. Moreover, many string
problems can be seen as word factorization problems [5] such as: Shortest
Common Superstring, Longest Common Subsequence and Shortest
Common Supersequence, to name a few. Another example of word factor-
ization problem is the Minimum Common String Partition [1], a problem
concerned with identifying factorizations for two strings such that the sequence
of factors for one word is the permutation of the other’s.

In this paper we focus on the equality-free factorization, a special case of
word factorization in which all factors are distinct. The problem is motivated by
an application in DNA synthesis [3]. More specifically, it is possible to produce
short DNA fragments that will self-assemble into the wanted DNA structure.
However, to obtain the desired structure, it is required that no two fragments
are identical. Since the fragments must be short, one approach is to split the
target DNA sequence into as many distinct pieces as possible.

Previous work. The equality-free factorization problem was first introduced
by Condon, Maňuch and Thachuk [3] where it was presented as the string par-
titioning problem. The string partitioning problem asks for a factorization into
distinct factors such that each factor is at most of a certain length. The problem
was studied in a more general setting where the measure of collision between
two factors is either equality or one is a prefix/suffix of the other. Condon et
al. showed that these variants are NP-complete. More recently, Fernau, Manea,
Mercaş and Schmid [4] presented a similar problem that imposes a lower bound
on the number of factors instead of an upper bound on factor length. Fernau et
al. showed that this variant is also NP-complete. Afterwards, Schmid [5] stud-
ied the Fixed-Parameter Tractability of the two problems. Henceforth, we use
the notation of Schmid and refer to the problem variant with a lower bound
on the number of factors as Maximum Equality-Free Factorization Size
(MaxEFF-s).

Problem definitions. In this paper we consider the optimization version of the
MaxEFF-s problem. Additionally, we consider a relaxed variant of the problem
in which the factors do not necessarily cover the entire word, a so-called gapped
factorization, that can be said to emerge from generalized patterns [2].

A gapped factorization of a string w over some alphabet Σ is a tuple of
strings (u1, u2, . . . , uk) such that w = α0u1α1u2α2 · · · αk−1ukαk with ui ∈ Σ+

(non-empty substrings) and αi ∈ Σ∗ (possibly empty substrings).
First, let us go over the base definitions:

1. factorization of w is a tuple of strings (u1, u2, . . . , uk) s.t. w = u1u2 · · · uk.
2. equality-free factorization is a factorization with all distinct factors.
3. gapped factorization of string w over alphabet Σ is a tuple (u1, u2, . . . , uk)

such that w = α0u1α1u2α2 · · · αk−1ukαk, with ui ∈ Σ+ and αi ∈ Σ∗.

Heuristics for the Maximum Equality-Free String Factorization Problem 533

4. size of a factorization represents the number of factors.
5. width of a factorization represents the length of the longest factor.

Let us define the decision problem MaxEFF-s and its optimization version:

Problem 1 (Maximum Equality-Free Factorization Size - Decision). Does a
given string admit an equality-free factorization of size at least k?

Problem 2 (Maximum Equality-Free Factorization Size - Optimization). For a
given string w find the largest integer k, such that w admits an equality-free
factorization of size k.

In the rest of the paper we refer to Problem 2 as OptEFF-s.
In the relaxed variant we allow gaps between the factors of the string.

Problem 3 (Maximum Gapped Equality-Free Factorization Size - Decision).
Does a given string admit a gapped equality-free factorization of size at least k?

Problem 4 (Maximum Gapped Equality-Free Factorization Size - Optimization).
For a given string w find the largest integer k, such that w admits a gapped

equality-free factorization of size k.

To the best of our knowledge, the gapped version of the equality-free factor-
ization problem has not been studied previously.

In the rest of the paper we refer to Problem 4 as OptGEFF-s.

Our results. We provide heuristic algorithms for computing equality-free fac-
torizations and we also give an approximation ratio guarantee. Additionally, in
order to understand how well the algorithms perform it is necessary to compare
the solutions of our algorithms with optimum solutions. For this purpose, we
choose to build ILP models for OptEFF-s and OptGEFF-s, which we use with
the state-of-the-art Gurobi solver to obtain optimum solutions on moderate sized
instances.

The paper is organized as follows. In Sect. 2 we introduce our notations and
present some observations. One such observation is used to improve the previ-
ously known best FPT algorithm for MaxEFF-s (see Sect. 3). Following that, we
design a 1

2 -approximation algorithm for OptGEFF-s in Sect. 4. We would have
liked to extend this result for OptEFF-s, since we conjecture that the optimum
of the two problems is the same. In Sect. 5 we provide an ILP model for both
OptEFF-s and OptGEFF-s that was successfully used to give optimum solutions
using the Gurobi solver. It is with this model that we have discovered the same
optimum for the two problems on each of nearly 300000 instances, leading to the
conjecture that their optimum is the same. The design of our proposed heuris-
tic algorithms (dubbed Greedyk) is presented in Sect. 6. We prove a

√
OPT

approximation factor for Greedy1 and we give an example where Greedy1 has
an approximation factor greater than log n. We study the behavior of our algo-
rithms on genomic data in Subsect. 6.3.

534 R. S. Mincu and A. Popa

2 Preliminaries

We commonly use the notation S = s1s2 . . . sn for a string of length n over some
alphabet Σ. A substring of S is identified by S[i..j] = si . . . sj and has length
j − i + 1.

Let there be a string w for which we are given an equality-free factorization
of size k. Then, we can construct an equality-free factorization of size k − 1 by
concatenating one of the longest factors with one of its neighbors. This leads us
to the following observation:

Observation 1. If a string w admits an equality-free factorization of size k,
then w admits equality-free factorizations of size i, ∀i ∈ {1, . . . , k}.

One of the implications of the previous observation is that, obtaining the
solution of the optimization problem OptEFF-s for a given instance, provides
the solutions for the decision problem MaxEFF-s on that respective instance and
for all sizes.

Observation 2. OptEFF-s(w) ≤ OptGEFF-s(w): For any input string w, an
equality-free factorization of size k gives is also a solution for a gapped factor-
ization of size k.

Indeed, for w = α0u1α1u2α2 · · · αk−1ukαk, if we consider all the gaps αi to be
the empty string ε then all equality-free factorizations of size k are also gapped
factorizations of size k.

Observation 3. In a string of length n there exists an equality-free factorization
of maximum size with width (i.e. length of the longest factor) at most �√2n�.

The previous observation follows from the fact that, in the worst case, all the
factors have different length: 1, 2, . . . , �. This brings us to the well-known finite
sum n = �(�+1)/2. Solving for � shows that width ≤ �(√1 + 8n−1)/2� ≤ �√2n�.
We bring to the attention of the reader that this result is important for two rea-
sons. First, we can use it to reduce the number of variables in our proposed ILP
model in Sect. 5 from O(n2) to O(n

√
n), drastically improving solver computing

speed. The second reason is that this result improves the previously known best
FPT algorithm for MaxEFF-s.

3 A Better FPT Algorithm for MaxEFF-S

In [5] Schmid shows an FPT algorithm for deciding if a string of length n has
an equality-free factorization with k factors with complexity O((k2+k

2 − 1)k). In
this section we design another algorithm with running time O((k2 + k)

k
2). The

algorithm is similar to the one of Schmid, but uses Observation 3.
By Observation 3, there exists an optimum solution with width at most

�√2n�. Thus, instead of an O(nk) algorithm to verify if a string of length n has a

Heuristics for the Maximum Equality-Free String Factorization Problem 535

factorization with k factors, we obtain an algorithm with complexity O((2n)
k−1
2),

by trying all the possible starting points of the k−1 factors (notice that the first
factor always starts at position 1).

Finally, the running time of the FPT algorithm follows from the following
observation:

Observation 4. When n ≥ k(k+1)/2, there always exists a factorization, which
means that the problem has a trivial polynomial kernel.

4 A 1
2
-Approximation Algorithm for OptGEFF-s

In this section we show that there exists a natural reduction from OptGEFF-s to
the problem JISPk (the so-called Job Interval Selection Problem with k intervals
per job). Moreover, this problem admits a 1

2 -approximation [6].
An instance of JISPk is a set of n k-tuples (also called jobs), containing

time intervals. The intervals are of the form [a, b) with a, b integers. Two time
intervals [a, b) and [c, d) are said to intersect if [a, b) ∩ [c, d)
= ∅.

Problem 5 (JISPk). Given n jobs containing k time intervals each, find the max-
imum number of intervals that can be selected such that (i) no two intervals
intersect and (ii) at most one time interval is selected per job.

Theorem 1. An instance of OptGEFF-s can be transformed into an instance
of JISPn, with the same optimum solution.

Proof. We proceed to construct an instance of JISPn containing O(n2) jobs from
a string w of length n.

Consider the factors in a gapped equality-free factorization of a string w
of length n. They are a set of non-overlapping and distinct substrings of w.
For each distinct substring of w (which is a possible factor) we create a job
in the corresponding JISPn instance. For each job created from a substring s,
we add as time intervals [a, b) the start and end indices of all the occurrences
s = w[a . . . b − 1] of s in w. At this moment, we have created a set of jobs that
are not n-tuples and therefore cannot be said to be a JISPn instance.

To obtain a JISPn instance, we simply pad each tuple by adding an appro-
priate number of duplicate intervals. This operation constructs an equivalent
instance due to the observation that a JISP(n + t) instance with the same opti-
mum as a JISPn instance can be created by adding t duplicates of an arbitrarily
selected interval within every job.

Since there are at most n occurrences of a substring in a string and there
exist O(n2) distinct substrings in any given string, we have shown that we can
construct a JISPn instance with O(n2) jobs, from any string of length n.

Moreover, a solution for the JISPn instance that is constructed in the manner
described above immediately gives us a solution for OptGEFF-s. Each interval
selected from a job corresponds to the occurrence of a factor in the initial string.
The intervals are not allowed to intersect and thus the factors are not allowed

536 R. S. Mincu and A. Popa

to overlap. Only one interval may be selected per job and therefore only distinct
factors may be selected because the jobs correspond to distinct substrings. As
such, we conclude that we can reduce OptGEFF-s to JISPn. �

It is known that JISPn has the following greedy 1
2 -approximation algorithm

[6]: at each step, select the time interval with the lowest end time that does not
intersect already selected intervals. Using Theorem 1 we have shown that:

Theorem 2. OptGEFF-s has a 1
2 -approximation algorithm.

With the above results, we may now present a more tidy version of the greedy
approximation algorithm for the OptGEFF-s: for each position j = 1, 2, . . . , n in
a string w of length n, select as a factor (if possible) any substring s of w that
ends on position j such that (i) s does not overlap the previously selected factor
and (ii) s is not equal to any previously selected factor.

5 ILP Formulations for OptEFF-S and OptGEFF-S

We define an ILP model for the problems and then explain the notations:

max
n∑

i=1

n−i+1∑

j=1

xij subject to: (1a)

n−i+1∑

j=1

xij ≤ 1,∀i = 1, 2, . . . , n (1b)

xij + xk� ≤ 1,∀i = 1, 2, . . . , n − 1,∀j = 1, 2, . . . , n − i + 1 (1c)
∀k = i + 1, i + 2, . . . , i + j − 1 and k ≤ n,∀� = 1, 2, . . . , n − k + 1

xi� + xk� ≤ 1,∀i, k, �, where S[i..i + �] = S[k..k + �] (1d)

xij −
n−i−j+1∑

�=1

x(i+j)� ≤ 0,∀i = 1, 2, . . . , n − 1,∀j = 1, 2, . . . , n − i + 1 (1e)

n∑

�=1

x1� ≥ 1 and
n∑

i=1

xi(n−i+1) ≥ 1 (1f)

xij ∈ {0, 1},∀i = 1, 2, . . . , n − 1,∀j = 1, 2, . . . , n − i + 1 (1g)

1. The binary variables xij (see 1g) represent the choice for a factor starting on
position i of length j.

2. We need to maximize the number of factors i.e. sum of xij (see 1a).
3. Only one factor (regardless of length) may begin on any position (see 1b).
4. Factors cannot overlap i.e. begin inside each other (see 1c).
5. Distinct factors: only one of the occurrences of a factor may be selected (1d).

If we want an equality-free gapped factorization, conditions 1–5 are enough. To
enforce factorizations without gaps, we add:

Heuristics for the Maximum Equality-Free String Factorization Problem 537

Algorithm Greedy1: reads the input string w left-to-right and builds an equality-free
factorization F by greedily adding the next shortest factor not yet present in F .
input: string w[1..n]; output: equality-free factorization F ;
1: last ← 1, F ← ∅;
2: for i ← 1, n step 1 do
3: if w[last..i] /∈ F then
4: F ← F ∪ {w[last..i]}, last ← i + 1;

5: if last �= n + 1 then
6: F ← (F \ {F [−1]}) ∪ {F [−1] · w[last..n]};

7: return F ;

1. If a factor ut is selected, then a factor ut+1 of any length that begins imme-
diately after ut ends must be selected (see 1e).

2. A factor starting on position 1 must be selected; a factor ending on the last
position must be selected (see 1f).

Recall that by using Observation 3 we may reduce the number of variables in
the formulation to O(n

√
n) by discarding xij with j > �√2n�.

6 Heuristic and Approximation Algorithms for OptEFF-S

In this section we present a family of heuristic greedy-based algorithms for the
OptEFF-s problem. We begin with presenting the outline for the algorithms and
then we evaluate the performance of the algorithms on datasets composed of
randomly generated strings.

The proposed algorithms are based on building a factorization by reading
the input left-to-right and greedily adding words to the incumbent solution.

6.1 Description of Greedy1

To illustrate the most basic strategy, consider starting “at the left” and adding
the next shortest substring (distinct from the already selected factors) to the
incumbent factorization at each step of the algorithm (see Algorithm Greedy1).
The only issue is to define the behavior of the algorithm at the end of the string,
where we may have a remainder that is already present as a factor in the working
solution. We choose to simply concatenate this remainder to the last factor. We
mention here that this algorithm is essentially identical to the well-known LZ’78
factorization procedure [7], excepting the handling of the last factor. To prove
the correctness of our algorithm, the following property of Greedy1 is of interest:

Property 1 (Prefix property). Let there be two factors ui and uj in a factorization
w = u1u2 · · · un computed by Algorithm Greedy1. If ui is a prefix of uj then
i < j. In other words, for any factor constructed by Greedy1, its prefixes precede
it in the factorization.

Theorem 3. Greedy1 yields an equality-free factorization in O(n) time.

538 R. S. Mincu and A. Popa

Proof. By adding the next distinct substring at each step, the equality-free con-
dition of the factorization is satisfied. The only question is if the behavior of the
algorithm at the end of the string is correct or may yield a duplicate factor. If
there is a remainder r at the end of the sequence of operations, then it has a
duplicate in the factorization. Concatenating this remainder to the last factor v
always produces the equality-free factor vr. To prove this we use Property 1: the
resulting factor vr must have a duplicate preceding v in the factorization for the
procedure to be incorrect. However, v is a prefix of vr and must appear before
vr, a contradiction. Therefore the factorization is equality-free.

In the implementation of Greedy1, if the incumbent factorization is a list of
starting/ending positions of factors and we use a hash set structure to check for
collisions, the average running time is O(nt), with t being the average factor
length t = n

OPT and OPT being the size of the optimum. This is because we
compute a linear time string hash function n times (i.e. for each /∈ operation; see
Algorithm Greedy1, line 3). We can optimize by changing the way we compute
the hash function (by not discarding previous partial results) or by using a
modified insertion in a trie structure instead of using hash sets in order to bring
the time down to O(n). �
Theorem 4. The Greedy1 algorithm is a

√
OPT approximation for OptEFF-s.

Proof. A string with n characters can be factorized in at most n factors. The
Greedy1 algorithm produces at least

√
n factors—the case when all the factors

have different length. �
In the following paragraphs we focus on the tightness of Greedy1 as an

approximation algorithm. In practice Greedy1 can offer very good solutions as
can be seen in Fig. 1 from Subsect. 6.3. However, we show that there exists an
instance for which the ratio between Greedy1 and OPT is Ω(log n). Therefore,
in order to obtain a constant factor approximation for OptEFF-s we need to
design a different algorithm.

Theorem 5. Let there be an alphabet Σ = {x1, x2, . . . , xn}. We build a string
s = X1 · X2 · · · Xn by concatenating in order strings Xi = x1x2 · · · xi. There
exists a factorization of s with Ω(n log n) factors.

Proof. A factorization of s is as follows. We begin with Xn and factorize it into n
factors: x1|x2| · · · |xn. At each iteration 1 ≤ i ≤ �n/2� we factorize Xn−i+1 into
�(n − i + 1)/i� factors of length i in left-to-right order: x1 · · · xi|xi+1 · · · x2i| · · · .
If Xn−i+1 is not a multiple of i, then we concatenate the remainder of length
< i to the last factor. All of the factors added at iteration i are distinct, but a
question remains about the correctness of the algorithm regarding the concate-
nated factor. Correctness is ensured because the new factor constructed in this
manner contains xn−i+1, symbol that cannot appear in subsequent iterations.
In the end, the prefix X1X2 · · · X�n/2� is transformed into one factor.

The number of factors in this solution is n+�(n−1)/2�+�(n−2)/3�+ · · ·+1
which is Ω(n+(n/2−1)+(n/3−1)+ · · ·+1) = Ω(n(1+1/2+1/3+ · · ·+1/n)) =
Ω(n log n). �

Heuristics for the Maximum Equality-Free String Factorization Problem 539

On string s, Greedy1 produces n factors, i.e. the output factorization is
X1|X2| · · · |Xn. Using Theorem 5 we conclude that:

Corollary 1. The approximation ratio of Greedy1 is Ω(log n).

6.2 Description of Greedyk

We generalize Algorithm Greedy1 into the family Greedyk in the following way:
instead of adding the next distinct substring to the incumbent factorization
we consider adding k factors at the same time. In other words, we select the
shortest substring that follows such that this substring admits a partition into
k distinct factors that have not yet been selected (see Algorithms Greedyk and
Factorization). Again, the behavior of the algorithm needs to be defined when
it is no longer possible to split a remaining substring into k factors and now it
is a little more complicated because Greedyk does not benefit from Property 1:

1. Greedyk will first attempt to partition the remainder r into t distinct and
not yet selected factors with t = k − 1, . . . , 1.

2. If this is not possible, then we try to discard the last k factors in the factoriza-
tion ui, ui−1, . . . , ui−k+1 and re-partition the entire substring ui−k+1 · · · uir
into t valid factors, t = k, k − 1, . . . , 1. This step is added to the algorithm
to ensure that Greedyk will always produce an optimum solution when the
optimum is known to be k.

3. Finally, if the above steps fail, we append the remainder r to the last factor
and proceed to concatenate the last two factors in the solution until duplicates
no longer exist.

Function Factorization(T,F,start,end,w,k): returns a factorization F with exactly
k factors of the substring w[start..end], or null if no such factorization is possible.
Moreover, the factors in F must not already appear in the incumbent factorization T .
input: factorizations T , F (pre-initialized), string w[1..n], int start, int end, int k;
output: factorization F (modified from the input F);
1: if end − start + 1 < k then
2: return null;

3: if k = 1 and w[start..end] /∈ T and w[start..end] /∈ F then
4: F ← F ∪ {w[start..end]};
5: return F ;

6: for i ← start, end − 1 step 1 do
7: if w[start..i] /∈ T and w[start..i] /∈ F then
8: solution ← Factorization(T, F ∪ {w[start..i]}, i + 1, end, w, k − 1);
9: if solution �= null then

10: return solution
11: return null;

Theorem 6. The Factorization(T,F,start,end,w,k) recursive function obtains a
factorization of size k, if it exists in the specified substring of length �, in time
O(�k).

540 R. S. Mincu and A. Popa

Proof. If we denote the length of the substring as � = end − start + 1, we can
observe that we test all of the

(
�−1
k−1

)
= O(�k−1) partitions. The time necessary for

the /∈ operation depends on the structure used to check for substring collisions.
Whether we employ a hash set and compute a hash function or use a trie, the
time required is O(�) i.e. linear in substring size. Observe that when k = 1 the
function takes O(�) time and that by increasing k by 1, the time is multiplied
by O(�). By simple induction, the time complexity of the function is O(�k). �
Theorem 7. Greedyk is correct and runs in O((n + k)�k) average time, with
� = k n

OPT and OPT being the value of the optimum solution.

Proof. The equality-free condition of the factorization is satisfied when k distinct
factors are added at each step (lines 2–5 in the pseudocode). When it is no longer
possible, a substring r may remain:

1. First we try to split r into fewer than k factors (see lines 7–10). If we are suc-
cessful, then the resulting factorization is equality-free and covers the entire
string and is therefore correct.

2. Secondly, we try to discard the last k factors and refactorize the entire remain-
ing substring into k factors or less (see lines 11–14). If we are successful, the
resulting factorization is correct.

Algorithm Greedyk: reads the input string w from left to right and builds a Fac-
torization F by greedily adding k distinct, not yet selected factors at each step. We
use the notations newEmptyFactorization to denote creation of a new factorization
structure and F [−1] to refer to the last factor inside the factorization structure F .
input: string w[1..n], int k; output: Factorization F ;

1: prev ← 1, last ← 1, F ← ∅, solution ← ∅, lastsol ← ∅, sol2 ← ∅;
2: for i ← 1, n step 1 do
3: solution ← Factorization(F, newEmptyFactorization, last, i, w, k);
4: if solution �= null then
5: F ← F ∪ solution, prev ← last, last ← i + 1, lastsol ← solution;

6: if last �= n + 1 then
7: for j ← k − 1, 1 step −1 do
8: solution ← Factorization(F, newEmptyFactorization, last, n, w, j);
9: if solution �= null then

10: return F ∪ solution;

11: for j ← k, 1 step −1 do
12: sol2 ← Factorization(F \ lastsol, newEmptyFactorization, prev, n, w, j);
13: if sol2 �= null then
14: return (F \ lastsol) ∪ sol2;

15: lastFactor ← F [−1], F ← F \ {F [−1]}, lastFactor ← lastFactor · w[last..n];
16: while lastFactor ∈ F do
17: lastFactor ← F [−1] · lastFactor;
18: F ← F \ {F [−1]};

19: F ← F ∪ {lastFactor};

20: return F ;

Heuristics for the Maximum Equality-Free String Factorization Problem 541

3. Thirdly we employ a fallback where we append the remainder r to the last
factor and keep concatenating the last two factors until the factorization is
equality-free (see lines 15–19).

In the implementation of Greedyk, we traverse the string and attempt to partition
a substring of length � into k valid factors. This operation takes O(�k) time (see
Theorem 6). There are O(n + k) calls to the partitioning function, therefore the
average running time for the algorithm is boundedbyO((n+k)�k),with � = k n

OPT .

6.3 Experimental Results

First, we want to determine the solution quality given by the Greedyk algorithms
in practice. The dataset we have selected for this experiment is the RNA string
of Saccharomyces cerevisiae narnavirus 23S (obtained from yeastgenome.org).

The methodology for the experiment is as follows. For each integer � ∈
{4, . . . , 512} we randomly select 10 substrings of length � from the input RNA
string (whose length is 2891). We compute the optimum solution for each sub-
string using the ILP formulations in Sect. 5 and the Gurobi solver. We proceed
to compute the value of the 1

2 -approximation algorithm for OptGEFF-s from
Sect. 4, as well as Greedy{1, . . . , 8}. Following that, we average the results among
the 10 substrings for each length � and plot the fractions

1
2 -approximation

OPT , Greedy1
OPT

and max({Greedy1,...,Greedy8})
OPT in Fig. 1.

We are pleased to report Greedy1 situating within 91% of the optimum
(alongside the 1

2 -approximation) and max({Greedy1, . . . ,Greedy8}) placing
within 93% of the optimum. All solutions are within 94% of the optimum on
lengths 350–512. In Fig. 2 we also display the running time of Greedyk on longer
strings (using whole genomes from yeastgenome.org including Saccharomyces
bayanus and Saccharomyces cerevisiae). The experiments demonstrate that the
Greedyk algorithms are fit for practical usage.

Fig. 1. Plot describing the values of the 1
2
-approximation algorithm for OptGEFF-s,

Greedy1, and max({Greedy1, . . . ,Greedy8}) for all integer string lengths ∈ {4, . . . , 512}.
All y-axis values are averages of 10 instances per x-axis point, as well as being divided by
the average of the optima of the 10 instances.

https://www.yeastgenome.org/
https://www.yeastgenome.org/

542 R. S. Mincu and A. Popa

Fig. 2. The running time of Greedy{1, 2, 4, 8}. The x-axis is logarithmic scaled.

During our testing, we have computed exact solutions using our ILP model
for both OptEFF-s and OptGEFF-s on each test instance. We hypothesized
that OptGEFF-s would have a higher value solution than OptEFF-s. However,
after having evaluated some 300.000 random instances (using various lengths and
alphabet size), we observed no difference between the two problems regarding
the size of the exact solutions on the same instance. Thus, we believe that the
two problems share the same optimum.

7 Conclusions and Open Problems

We have presented heuristic and approximation algorithms for the OptEFF-s
and OptGEFF-s problems. Moreover, our experiments show insights into the
nature of the problem and provide high quality solutions.

We leave as open problems the following conjectures:

Conjecture 1 (Gaps = No Gaps). OptGEFF-s(w) = OptEFF-s(w), ∀w.

We strongly believe that the optimum for the two problems OptGEFF-s and
OptEFF-s is one and the same. This result can be achieved if one of the following
statements is proven:

1. Given a string, it is possible to transform an equality-free gapped factorization
of maximum size into one without gaps and of the same size.

2. The number of factors in the maximum size equality-free factorization for an
instance does not decrease if we insert a symbol anywhere in the string.

Conjecture 2 (Greedy1 approximation ratio is tight). There exists an instance
for which the ratio between Greedy1 and OPT is Θ(

√
n).

We conjecture that the analysis of the Greedy1 algorithm is tight. Neverthe-
less, we leave this as an open problem.

Heuristics for the Maximum Equality-Free String Factorization Problem 543

References

1. Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algorith-
mics for NP-hard string problems. Bull. EATCS 114, 295–301 (2014)

2. Clifford, R., Harrow, A.W., Popa, A., Sach, B.: Generalised matching. In: Karlgren,
J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 295–301. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03784-9 29

3. Condon, A., Maňuch, J., Thachuk, C.: The complexity of string partitioning. J.
Discrete Algorithms 32, 24–43 (2015)

4. Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Pattern matching with variables:
fast algorithms and new hardness results. In: 32nd International Symposium on
Theoretical Aspects of Computer Science, 4–7 March 2015, Garching, Germany, pp.
302–315 (2015)

5. Schmid, M.L.: Computing equality-free and repetitive string factorisations. Theor.
Comput. Sci. 618, 42–51 (2016)

6. Spieksma, F.: On the approximability of an interval scheduling problem. J. Sched.
2(5), 215–227 (1999)

7. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24, 530–536 (1978)

https://doi.org/10.1007/978-3-642-03784-9_29

Foundations of Computer Science –

Short Papers

A Calculus for Language Transformations

Benjamin Mourad(B) and Matteo Cimini

University of Massachusetts Lowell, Lowell, MA 01854, USA
benjamin mourad@student.uml.edu, matteo cimini@uml.edu

Abstract. In this paper we propose a calculus for expressing algorithms
for programming languages transformations. We present the type sys-
tem and operational semantics of the calculus, and we prove that it is
type sound. We have implemented our calculus, and we demonstrate its
applicability with common examples in programming languages. As our
calculus manipulates inference systems, our work can, in principle, be
applied to logical systems.

1 Introduction

Operational semantics is a standard de facto to defining the semantics of pro-
gramming languages [10]. However, producing a programming language defini-
tion is still a hard task. It is not surprising that theoretical and software tools
for supporting the modeling of languages based on operational semantics have
received attention in research [4,5,11]. In this paper, we address an important
aspect of language reuse which has not received enough attention: Producing
language definitions from existing ones by the application of transformation
algorithms. Such algorithms may automatically add features to the language,
or switch to different semantics styles. In this paper, we aim at providing theo-
retical foundations and a software tool for this aspect.

Consider the typing rule of function application below on the left and its
version with algorithmic subtyping on the right.

(t-app)
Γ � e1 : T1 → T2 Γ � e2 : T1

Γ � e1 e2 : T2

f(t-app)
=⇒

(t-app’)
Γ � e1 : T11 → T2 Γ � e2 : T12

T12 <: T11

Γ � e1 e2 : T2

Intuitively, we can describe (t-app’) as a function of (t-app). Such a func-
tion includes, at least, giving new variable names when a variable is mentioned
more than once, and must relate the new variables with subtyping according
to the variance of types (covariant vs contravariant). Our question is: Can we
express, easily, language transformations in a safe calculus?

Language transformations do not apply just to one language but to several
languages. They are beneficial because they can alleviate the burden to language

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 547–555, 2020.
https://doi.org/10.1007/978-3-030-38919-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_44&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_44

548 B. Mourad and M. Cimini

designers, who can use them to automatically generate new language definitions
rather than manually defining them, an error prone endeavor.

In this paper, we make the following contributions.

– We present L–Tr (pronounced “Elter”), a formal calculus for language trans-
formations (Sect. 2). We define the syntax (Sect. 2.1), operational semantics
(Sect. 2.2), and type system (Sect. 2.3) of L–Tr.

– We prove that L–Tr is type sound (Sect. 2.3).
– We show the applicability of L–Tr to the specification of two transforma-

tions: adding subtyping and switching from small-step to big-step seman-
tics (Sect. 3). Our examples show that L–Tr is expressive and offers a rather
declarative style to programmers.

– We have implemented L–Tr [8], and we report that we have applied our
transformations to several language definitions.

In this paper, we show selected parts of our formalism, and we omit proofs.
The full development can be found in the corresponding technical report [7].

2 A Calculus for Language Transformations

We focus on language definitions in the style of operational semantics. To briefly
summarize, languages are specified with a BNF grammar and a set of inference
rules. BNF grammars have grammar productions such as Types T ::=B | T →
T . We call Types a category name, T is a grammar meta-variable, and B and
T → T , as well as, for example, (λx.e v), are terms. (λx.e v) −→ e[v/x] and
Γ � (e1 e2) : T2 are formulae. An inference rule has a set of formulae above the
horizontal line, which are called premises, and a formula below, the conclusion.

2.1 Syntax of L–Tr

Below we show the L–Tr syntax for language definitions.
cname ∈ CatName,X ∈ Meta-Var, opname ∈ OpName, predname ∈
PredName

Language L ::= (G,R)
Grammar G ::= {s1, . . . , sn}
Grammar Pr. s ::= cname X ::= lt

Rule r ::=
lf

f
Formula f ::= predname lt
Term t ::= X | opname lt | (X)t | t[t/X]
List of Rules R ::= nil | cons r R
List of Formula lf ::= nil | cons f lf
List of Terms lt ::= nil | cons t lt

OpName contains elements such as → and λ. PredName contains elements
such as � and −→. We assume that terms and formulae are defined in abstract

A Calculus for Language Transformations 549

syntax tree fashion, i.e., they have a top level constructor applied to a list of
terms. L–Tr also provides syntax for unary binding (X)t and capture-avoiding
substitution t[t/X]. L–Tr is then more suited to model static scoping. Lists can
be built as usual with the nil and cons operator.

Below we show the rest of the syntax of L–Tr.

Expression e ::= x | cname | str | t̂ | f̂ | r̂
| nil | cons e e | head e | tail e | e@e
| map(e, e) | e(e) | mapKeys e
| just e | nothing | get e
| cname X ::= e | cname X ::= . . . e
| getRules | setRules e
| e[p] : e | e(keep)[p] : e | uniquefy(e, e, str) ⇒ (x, x) : e
| if b then e else e | e ; e | e;r e | skip
| newVar | e’ | fold predname e
| error

Boolean Expr. b ::= e == e | isEmpty e | e in e | isNothing e | b and b | b or b | not b

L–Tr Rule r̂ ::= e
e

L–Tr Formula f̂ ::= predname e | x e
L–Tr Term t̂ ::= X | opname e | x e | (X)e | e[e/X]
Pattern p ::= x : T | predname p | opname p | x p | nil | cons p p
Value v ::= t | f | r | cname | str

| nil | cons v v | map(v, v) | just v | nothing | skip

Design Principles: We strive to offer well-crafted operations that map well with
language manipulations. There are three features that exemplify our approach
the most: (1) selectors e[p] : e, (2) the uniquefy operation, and (3) the ability to
program parts of rules, premises and grammars. We shall describe these feauters,
among others, below.

L–Tr has strings, lists, maps and options with their typical operators. The
expression cname X ::= e augments the current grammar with a new production.
cname X ::= . . . e (notice the dots) adds the grammar items in the list e to an
existing production. getRules and setRules e retrieve and set the current list
of rules, respectively.

Selectors. e1[p] : e2 selects one by one the elements of the list e1 that satisfy
the pattern p and executes the body e2 for each of them. It returns a list that
collects the result of each iteration. Selectors are useful for selecting elements of
a language with great precision. Suppose that we wanted to invert the direction
of all subtyping premises in prems, prems[T1 <: T2] : just T2 <: T1 would
do just that. Notice the use of options. As we shall see in Sect. 3, it is common
for iterations to return nothing, and options are then suited. Selectors handle
options automatically and remove nothings, so the selector above returns a list
of premises rather than a list of options. e(keep)[p] : e works like a selector
except that it also returns the elements that failed the pattern-matching.

uniquefy is useful because it is often necessary to assign distinct variables
when transforming languages. Therefore, L–Tr provides a specific operation for
this. uniquefy(e1, e2, str) ⇒ (x, y) : e3 takes in input a list of formulae e1, a

550 B. Mourad and M. Cimini

map e2, and a string str (we shall discuss x, y, and e3 shortly). This opera-
tion modifies the formulae in e1 to use different variable names when a vari-
able is mentioned more than once. However, not every variable is subject to
the replacement. Only the variables that appear in some specific positions are
targeted. The map e2 and the string str contain the information to identify
these positions. e2 maps operator names and predicate names to a list that con-
tains a label (as a string) for each of their arguments. For example, the map
m = {� �→ [“in”, “in”, “out”]} says that Γ and e are inputs in Γ � e : T , and
that T is the output. L–Tr inspects the formulae in e1 and their terms. Argu-
ments that correspond to the label specified by str receive a new variable. To
make an example, if lf is the list of premises of (t-app) and m is defined as
above, the operation uniquefy(lf ,m, “out”) ⇒ (x, y) : e3 creates the premises
of (t-app’) shown in the introduction. The computation continues with the
expression e3 in which x is bound to the new premises and y is bound to a map
that summarizes the changes made by uniquefy, which associates variables X
to the new variables that uniquefy has used to replace X. In our example we
have the map {T1 �→ [T11, T12]} passed to e3 as y.

Programming rules, premises, and terms is possible in L–Tr thanks to L–Tr
terms (t̂), L–Tr formulae (f̂), and L–Tr rules (r̂), which can contain arbitrary
expressions, such as if-then-else statements, at any position. This provides a
declarative way to create languages, as we shall see in Sect. 3.

The operation fold predname e creates a list of formulae that interleaves
predname to any two subsequent elements of the list e. To make an example, the
operation fold = [T1, T2, T3, T4] generates the list of formulae [T1 = T2, T2 =
T3, T3 = T4]. vars(e) returns the list of the meta-variables in e. newVar returns
a meta-variable that has not been previously used. The tick operator e’ gives a
prime to the meta-variables of e1 (X becomes X ′). Some variables have a special
treatment in L–Tr. We can refer to the value that a selector iterates over with
the variable self . If we are in a context that manipulates a rule, we can also refer
to the premises and conclusion with variables premises and conclusion.

The next two sections present the rest of our formalism. We recall that we
only show selected parts. The full formalism can be found in [7].

2.2 Operational Semantics of L–Tr

In this section we show a small-step operational semantics for L–Tr. A configura-
tion is denoted with V ;L; e, where e is an expression, L is the language subject
of the transformation, and V contains the variables generated by newVar. The
main reduction relation is V ;L; e −→ V ′;L′; e′, defined as follows. Evaluation
contexts E can be found in [7].

V ;L; e −→@ V ′;L′; e′ � L′

V ;L;E[e] −→ V ′;L′;E[e′]
V ;L; e −→@ V ′;L′; e′ �� L′

V ;L;E[e] −→ V ;L; error

This relation relies on a step V ;L; e −→@ V ′;L′; e′. � L′ checks that ill-formed
elements such as � T T have not been inserted. Below, we show the most relevant
rules for V ;L; e −→@ V ′;L′; e′.

A Calculus for Language Transformations 551

match(v1, p) = θ θ′ =

{
θ
(r)
rule if v1 = r

{self �→ v1} otherwise

V ;L; (cons v1 v2)[p] : e −→@ V ;L; (cons∗ eθθ′ (v2[p] : e))
(r-selector-cons-ok)

V ;L; r;r e −→@ V ;L; eθ(r)rule (r-rule-comp)
X ′ �∈ V ∪ vars(L) ∪ range(tick)

V ; (G,R); newVar −→@ V ∪ {X ′};L;X ′ (r-newvar)

(lf ′, v2) = uniquefy lf(lf , v1, str, map([], []))

V ;L; uniquefy(lf , v1, str) ⇒ (x, y) : e −→@ V ;L; e[lf ′/x, v2/y]
(r-uniquefy-ok)

(r-selector-cons-ok) makes use of the meta-operation match(v1, p) = θ.
If this operation succeeds it returns the substitutions θ with the associations
computed during pattern-matching. The body is evaluated with these substitu-
tions and with self instantiated. If the element selected is a rule, then the body is
instantiated with θ

(r)
rule to refer to that rule as the current rule. If the premises of r

are v1, and the conclusion is v2 then θ
(r)
rule ≡ [r/self , v1/premises, v2/conclusion].

The selector returns an option type but the special cons∗ discards nothings and
unwraps justs. (r-rule-comp) applies when the first expression has been eval-
uated to a rule r, and starts the evaluation of the second expression in which r is
set as the current rule with θ

(r)
rule. (r-newvar) returns a new meta-variable and

augments V with it. Meta-variables are chosen among those that are not in the
language, have not previously been generated by newVar, and also do not clash
with ticked variables. (r-uniquefy-ok) defines the semantics for uniquefy. It
relies on the meta-operation uniquefy r(lf , v, str, map([], [])), which takes the list
of formulae lf , the map v, the string str, and an empty map to start computing
the result map. uniquefy r is a recursive traversal of formuale and terms that
seeks variables at the specified positions. This function returns a pair (lf ′, v2)
where lf ′ is the modified list of formulae and v2 maps meta-variables to the new
meta-variables that have replaced it.

2.3 Type System of L–Tr

Types and the type environment of L–Tr are defined as follows.

Type T ::= Language | Rule | Formula | Term
List T | Map T T | Option T | String | OpName | PredName

Type Env Γ ::= ∅ | Γ, x : T

The typing judgement � V ;L; e type checks configurations.

V ∩ vars(L) = ∅ � L ∅ � e : Language
� V ;L; e

552 B. Mourad and M. Cimini

This judgment checks that the variables of V and those in L are disjoint.
We also check that L is well-typed and that e is of type Language. The typing
judgement Γ � e : T means that e has type T under the assignments in Γ .

(t-selector)

Γ � e1 : List T Γ � p : T ⇒ Γ ′

Γ ′′ =

{
Γrule if T = Rule

self : T otherwise
Γ, Γ ′, Γ ′′ � e2 : Option T ′

Γ � e1[p] : e2 : List T ′

(t-rule-comp)

Γ � e1 : Rule
Γ, Γrule � e2 : Rule

Γ � e1;r e2 : Rule

(t-uniquefy)

Γ � e1 : List Formula Γ � e2 : Map T ′ (List String) T ′ ∈ {OpName, PredName}
Γ, x : List Formula, y : Map Term (List Term) � e3 : T

Γ � uniquefy(e1, e2, str) ⇒ (x, y) : e3 : T

(t-selector) type checks a selector operation. We use Γ � p : T ⇒ Γ ′ to
type check the pattern p and return the type environment for the variables of the
pattern. Its definition is standard and is omitted. When we type check the body
e2 we then include Γ ′. If the elements of the list are rules then we also include
Γrule, where Γrule ≡ self : Rule, premises : List Formula, conclusion : Formula.
This gives a type to the variables that refer to the current rule. Otherwise, we
assign self . (t-rule-comp) type checks a rule composition. In doing so, we type
check e2 with Γrule. (t-uniquefy) type checks the uniquefy operation. The keys
of the map are of type OpName or PredName, and its values are strings. We type
check e3 giving x the type of list of formulae, and y the type of a map from
meta-variables to list of meta-variables.

We have proved that L–Tr is type sound.

Theorem 1 (Type Soundness). For all V,L, e, if � V ;L; e then V ;L; e −→∗

V ′;L′; e′ s.t. (i) e′ = skip, (ii) e′ = error, or (iii) V ′;L′; e′ −→ V ′′;L′′; e′′.

3 Examples

We show the applicability of L–Tr with two examples of language transforma-
tions: adding subytyping [9] and switching to big-step semantics [6]. In the code
we use let-binding and pattern-matching, which can be easily derived ([7]).
The code below defines the transformation for adding subtyping. We assume
that two maps are already defined, mode = {� �→ [“inp”, “inp”, “out”]} and
variance = {→ �→ [“contra”, “cova”]}.

1 getRules(keep)[(� [Γ, e, T])] :
2 uniquefy(premises, mode, “out”) ⇒ (uniq, newpremises) :
3 newpremises @ concat(mapKeys(uniq)[Tf] : fold <: uniq(Tf))

4 conclusion
5 ;r
6 concat(premises(keep)[T1 <: T2] :
7 premises[(� [Γ, ev, (cv Tsv)])] :

A Calculus for Language Transformations 553

8 let vmap = map(Tsv, variance(cv)) in
9 if vmap(T1) = “contra” then T2 <: T1

10 else if vmap(T1) = “inv” and vmap(T2) = “inv” then T1 = T2 else T1 <: T2)

conclusion

Line 1 selects all typing rules, and each of them will be the subject of the
transformations in lines 2–10. Line 2 calls uniquefy on the premises of the
selected rule. We instruct uniquefy to give new variables of the typing relation
�, if they are used more than once in output position. As previously described,
uniquefy returns the list of new premises, which we bind to newpremises, and
the map that assigns variables to the list of the new variables generated to
replace them, which we bind to uniq. The body of uniquefy goes from line 3 to
10. Lines 3 and 4 add subtyping premises to the selected rule. The conclusion is
left unchanged, with variable conclusion. The premises of this rule include the
premises just generated by uniquefy. Furthermore, we add premises computed
as follows. With mapKeys(uniq)[Tf], we iterate over all the variables replaced by
uniquefy. We take the variables that replaced them and use fold to relate them
all with subtyping. In other words, for each {T �→ [T1, . . . , Tn]} in uniq, we have
the formulae T1 <: T2, . . . , Tn−1 <: Tn. This transformation has created unique
outputs and subtyping, but subtyping may be incorrect because if some variable
is contravariant its corresponding subtyping premise should be swapped. Lines
6–10, then, adjust the subtyping premises based on the variance of types. Line
6 selects all subtyping premises of the form T1 <: T2. For each, Line 7 selects
typing premises with output of the form (cv Tsv). We do so to understand the
variance of variables. If the first argument of cv is contravariant, for example,
then the first element of Tsv warrants a swap in a subtyping premise because it
is used in contravariant position. We do this by creating a map that associates
the variance to each argument of cv (line 8). The information about variance for
cv is in variance. If T1 or T2 (from the pattern at line 6) appear in Tsv then they
find themselves with a variance assigned in vmap. Lines 9–10 generate a new
premise based on the variance of variables. For example, if T1 is contravariant
then we generate T2 <: T1.

Below, we show the code to turn language definitions into big-step semantics.

1 Value[v] : v −→ v @
2 getRules(keep)[(op es) −→ et] :
3 if isEmpty(Expression[(op)] : self) then nothing else

4 let vres = newVar in

5 let emap = createMap((es[e] : newVar), es) in
6 (mapKeys(emap)[e] : if isVar(emap(e)) and not(emap(e) in vars(et))
7 then nothing else e −→ emap(e))
8 @ (if not(et in es) then [(et −→ vres)] else nil) @ premises

9 (op (mapKeys(emap))) −→ if not(et in es) then vres else et

Line 1 generates reduction rules such as λx.e −→ λx.e, for each value, as it is
standard in big-step semantics. These rules are appended to those generated in
lines 2–9. Line 2 selects all the reduction rules. Line 3 leaves out those rules that
are not about a top-level expression operator. This skips contextual rules that

554 B. Mourad and M. Cimini

take a step E[e] −→ E[e′], which do not appear in big-step semantics. To do so,
line 3 makes use of Expression[(op)] : self. As op is bound to the operator we
are focusing on (from line 2), this selector returns a list with one element if op
appears in Expression, or an empty list otherwise. This is the check we perform
at line 3. Line 4 generates a new variable that will store the final value of the
step. Line 5 assigns a new variable to each of the arguments in (es). We do so
creating a map emap. These new variables are the formal arguments of the new
rule being generated (lines 8–9). Lines 6–7 make each of these variables evaluate
to its corresponding argument in es (line 7). For example, for the β-reduction an
argument of es would be λx.e and we therefore generate the premise e1 −→ λx.e,
where e1 is the new variable that we assigned to this argument at line 5. Line 6
skips generating the reduction premise if it is a variable that does not appear in
et. For example, in the translation of rule (if-t) (if true e2 e3) −→ e2 we do not
evaluate e3 at all. Line 8 handles the result of the overall small-step reduction.
This result is evaluated to a value (vres), unless the target et already appears
in the arguments es. The conclusion of the rule syncs with this, and we place
vres or et in the target of the step accordingly. Line 8 also appends the premises
from the original rule, as they contain conditions to be checked.

Our algorithm translates the β-reduction and (if-t) as follows.

(λx.e v) −→ e[v/x] ⇒ e′
1 −→ λx.e e′

2 −→ v e[v/x] −→ vres

(e′
1 e′

2) −→ vres

(if true e1 e2) −→ e1 ⇒ e′
1 −→ true e′

2 −→ e2

(if e′
1 e′

2 e′
3) −→ e2

We have implemented L–Tr and we have applied our algorithms, and exten-
sions of them, to the examples in this paper as well as λ-calculi with lists, pairs,
sums, options, let-binding, function composition (g ◦ f)(x), and System F. We
also considered these calculi in both call-by-value and call-by-name version, as
well as lazy evaluation for data types such as pairs and lists. The languages pro-
duced by our tool are compiled to λ-prolog, which type checks them successfully
and, in fact, can execute them. We have tested the generated languages against
simple programs. We have checked that the functionality of subtyping has been
added, and that programs evaluate to the expected values in one big-step.

4 Related Work

An excellent classification of language transformations has been provided in [3].
Language workbenches (Rascal, Spoofax, etcetera) implement these types of
transformations and similar ones. These transformations are coarse grained in
nature because they do not access the components of languages with precision.
L–Tr, instead, includes operations to scan rules, and select/manipulate formulae
and terms with precision.

Proof assistants are optimized for handling inductive (rule-based) definitions,
and can automatically generate powerful inductive reasoning mechanisms from

A Calculus for Language Transformations 555

these definitions. L–Tr does not provide these features, and does not assist lan-
guage designers with their proofs. On the other hand, proof assistants do not
have reflective features for programmatically retrieving their own inductive def-
initions, selected by a pattern, and for manipulating them to form a different
specification, which is instead characteristic of L–Tr. A limitation of L–Tr com-
pared to proof assistants (and programming languages) is that L–Tr does not
offer recursion but only a simple form of iteration.

Works such as [2] and [1] offer translations from small-step to big-step seman-
tics. Our algorithm differs slightly from that of Ciobâcă [1]. However, we do not
provide correctness theorems for our algorithms.

5 Conclusion

We have presented L–Tr, a calculus for expressing language transformations.
The calculus is expressive enough to model interesting transformations such as
adding subtyping, and switching from small-step to big-step semantics. We have
proved the type soundness of L–Tr, and we have implemented the calculus in a
tool. As L–Tr manipulates inference systems it can, in principle, be applied to
logical systems, and we plan to explore this research venue. Overall, we believe
that our calculus offers a rather declarative style for manipulating languages.

References

1. Ciobâcă, Ş.: From small-step semantics to big-step semantics, automatically. In:
Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 347–361. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-8 24

2. Danvy, O.: Defunctionalized interpreters for programming languages. In: Proceed-
ings of the 13th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2008, pp. 131–142. ACM, New York (2008)

3. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In:
LDTA 2012, pp. 7:1–7:8. ACM, New York (2012)

4. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press, Cambridge (2009)

5. Fowler, M.: Language workbenches: the killer-app for domain specific languages?
(2005). http://www.martinfowler.com/articles/languageWorkbench.html

6. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing,
M. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987).
https://doi.org/10.1007/BFb0039592

7. Mourad, B., Cimini, M.: A calculus for language transformations (2019). Technical
report. arXiv:1910.11924 [cs.PL]

8. Mourad, B., Cimini, M.: L-Tr (2019). http://www.cimini.info/LTR/index.html
9. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)

10. Plotkin, G.D.: A structural approach to operational semantics. DAIMI report FN-
19, Computer Science Department of Aarhus University (1981)

11. Rosu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Log.
Algebraic Program. 79(6), 397–434 (2010)

https://doi.org/10.1007/978-3-642-38613-8_24
http://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1007/BFb0039592
http://arxiv.org/abs/1910.11924
http://www.cimini.info/LTR/index.html

Computing Directed Steiner Path Covers
for Directed Co-graphs
(Extended Abstract)

Frank Gurski1(B), Stefan Hoffmann1, Dominique Komander1, Carolin Rehs1,
Jochen Rethmann2, and Egon Wanke1

1 Institute of Computer Science, Heinrich Heine University,
40225 Düsseldorf, Germany
frank.gurski@hhu.de

2 Faculty of Electrical Engineering and Computer Science,

Niederrhein University of Applied Sciences, 47805 Krefeld, Germany

Abstract. We consider the Directed Steiner Path Cover problem
on directed co-graphs. Given a directed graph G = (V (G), E(G)) and
a set T ⊆ V (G) of so-called terminal vertices, the problem is to find a
minimum number of directed vertex-disjoint paths, which contain all ter-
minal vertices and a minimum number of non-terminal vertices (Steiner
vertices). The primary minimization criteria is the number of paths. We
show how to compute a minimum Steiner path cover for directed co-
graphs in linear time. For T = V (G), the algorithm computes a directed
Hamiltonian path if such a path exists.

Keywords: Directed co-graphs · Directed Steiner path cover problem

1 Introduction

The Steiner path problem is a restriction of the Steiner tree problem such that the
required terminal vertices lie on a path of minimum cost. The related Euclidean
bottleneck Steiner path problem was considered in [1] and a linear time solution
for the Steiner path problem on trees was given in [11].

While a Steiner tree always exists within connected graphs, it is not always
possible to find a Steiner path, which motivates us to consider Steiner path cover
problems. The Steiner connectivity problem was considered in [4].

In this article we consider the Directed Steiner Path Cover problem
defined as follows. Let G be a directed graph on vertex set V (G) and edge set
E(G) and let T ⊆ V (G) be a set of terminal vertices. A directed Steiner path
cover for G is a set of vertex-disjoint simple directed paths in G that contain
all terminal vertices of T and possibly also some of the non-terminal (Steiner)

This work was funded in part by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 388221852.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 556–565, 2020.
https://doi.org/10.1007/978-3-030-38919-2_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_45&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_45

Computing Directed Steiner Path Covers for Directed Co-graphs 557

vertices of V (G) − T . The size of a directed Steiner path cover is the number
of its paths, the cost is defined as the minimum number of Steiner vertices in a
directed Steiner path cover of minimum size.

Name: Directed Steiner Path Cover
Instance: A directed graph G and a set of terminal vertices T ⊆ V (G).
Task: Find a directed Steiner path cover of minimum cost for G.

The Directed Steiner Path Cover problem generalizes the directed
Hamiltonian path problem, implying that it is NP-hard. This motivates us to
restrict the problem to special inputs. We consider a very natural class of inputs,
which is defined as follows.

Directed co-graphs (short for directed complement reducible graphs) can be
generated from the single vertex graph by applying disjoint union, order composi-
tion and series composition [3]. They also can be characterized by excluding eight
forbidden induced subdigraphs, see [6, Fig. 2]. Directed co-graphs are exactly
the digraphs of directed NLC-width 1 and a proper subset of the digraphs of
directed clique-width at most 2 [9]. Directed co-graphs are also interesting from
an algorithmic point of view since several hard graph problems can be solved in
polynomial time by dynamic programming along the tree structure of the input
graph, see [2,7,8]. Moreover, directed co-graphs are very useful for the recon-
struction of the evolutionary history of genes or species using genomic sequence
data [12].

In this paper we show how the value of a Steiner path cover of minimum
size and cost for the disjoint union, order and series composition of two digraphs
can be computed in linear time from the corresponding values of the involved
digraphs. Therefore, we define a useful normal form for directed Steiner path
covers in digraphs which are defined by the order composition or series composi-
tion of two digraphs. Further we sketch an algorithm which constructs a directed
Steiner path cover of minimum size and cost for a directed co-graph in linear
time.

2 Preliminaries

Definition 1 ([3]). The class of directed co-graphs is recursively defined as
follows.

(i) Every digraph on a single vertex ({v}, ∅), denoted by •v, is a directed co-
graph.

(ii) If A, B are vertex-disjoint directed co-graphs, then
(a) the disjoint union A⊕B, which is defined as the digraph with vertex set

V (A) ∪ V (B) and edge set E(A) ∪ E(B),
(b) the order composition A � B, defined by their disjoint union plus all

possible edges from V (A) to V (B), and
(c) the series composition A ⊗ B, defined by their disjoint union plus all

possible edges between V (A) and V (B), are directed co-graphs.

558 F. Gurski et al.

The recursive generation of a co-graph can be described by a tree called
directed co-tree. The leaves of the directed co-tree represent the vertices of the
digraph and the inner vertices of the directed co-tree correspond to the opera-
tions applied on the subgraphs of G defined by the subtrees. For every directed
co-graph one can construct a directed co-tree in linear time, see [6].

Next we define a normal form for directed Steiner path covers in digraphs.
Therefore we introduce some notations. Let G be a directed co-graph, let T ⊆
V (G) be a set of terminal vertices, and let C be a directed Steiner path cover
for G with respect to T . Then, s(C) denotes the number of Steiner vertices in
the paths of C. We define p(G,T) as the minimum number of paths within a
Steiner path cover for G with respect to T . Further let s(G,T) be the minimum
number of Steiner vertices in a directed Steiner path cover of size p(G,T) with
respect to T . We do not specify set T if it is clear from the context which set is
meant.

Lemma 1. Let C be a directed Steiner path cover for some directed co-graph
G = A ⊗ B or G = A � B with respect to a set T of terminal vertices. Then,
there is a directed Steiner path cover C ′ with respect to T which does not contain
paths p and p′ satisfying one of the properties (1)–(4), such that |C| ≥ |C ′| and
s(C) ≥ s(C ′) holds.

1. p = (x, . . .) or p = (. . . , x) where x 	∈ T . Comment: No path starts or ends
with a Steiner vertex.

2. p = (. . . , u, x, v, . . .) where u ∈ V (A), v ∈ V (B), and x 	∈ T . Comment: On a
path, the neighbors u, v of a Steiner vertex x are both contained in the same
digraph.

3. p = (. . . , x), p′ = (u, . . .), where x ∈ V (A), u ∈ V (B), p 	= p′. Comment:
There is no path p that ends in A, if there is a path p′ 	= p that starts in B.

4. p = (. . . , x, u, v, y, . . .) where u, v 	∈ T . Comment: The paths contain no edge
between two Steiner vertices.

If G = A ⊗ B then cover C ′ also does not contain paths satisfying properties
(5)–(8).

5. p = (x, . . .), p′ = (u, . . .), where x ∈ V (A), u ∈ V (B), p 	= p′. Comment: All
paths start in the same digraph.

6. p = (. . . , x, y, . . .), p′ = (. . . , u, v, . . .) where x, y ∈ V (A), u, v ∈ V (B). Com-
ment: The cover C ′ contains edges of only one of the digraphs.

7. p = (x, . . .), p′ = (. . . , u, y, v, . . .), where x, y ∈ V (A), u, v ∈ V (B), and
y 	∈ T . Comment: If a path starts in A then there is no Steiner vertex in A
with two neighbors on the path in B.

8. p = (x, . . .), p′ = (. . . , u, v, . . .), where x ∈ V (A) and u, v ∈ V (B). Comment:
If a path starts in A, then no edge of B is contained in the cover.

The proof of Lemma 1 is omitted due to space restrictions. Since the hypoth-
esis of Lemma 1 is symmetric in A and B, the statement of Lemma 1 is also valid
for co-graphs G = A ⊗ B if A and B are switched.

Computing Directed Steiner Path Covers for Directed Co-graphs 559

Definition 2. A directed Steiner path cover C for some directed co-graph G =
A ⊗ B or G = A � B is said to be in normal form if it satisfies all properties
(1)–(8) given in Lemma 1.

In the following we assume that a directed Steiner path cover for some
directed co-graph G = A � B or G = A ⊗ B is always in normal form.

3 Algorithms for the Directed Steiner Path Cover
Problem

3.1 Computing the Optimal Number of Paths

Lemma 2. Let A and B be two vertex-disjoint digraphs and let TA ⊆ V (A) and
TB ⊆ V (B) be two sets of terminal vertices. Then, the following equations hold:

1. p(•v, ∅) = 0 and p(•v, {v}) = 1
2. p(A ⊕ B, TA ∪ TB) = p(A, TA) + p(B, TB)
3. p(A ⊗ B, ∅) = 0
4. p(A ⊗ B, TA ∪ TB) = max{1, p(B, TB) − |V (A)|} if 1 ≤ |TB | and |TA| ≤ |TB |
5. p(A ⊗ B, TA ∪ TB) = max{1, p(A, TA) − |V (B)|} if 1 ≤ |TA| and |TA| > |TB |
6. p(A � B, TA ∪ TB) = p(A, TA) if p(A) ≥ p(B)
7. p(A � B, TA ∪ TB) = p(B, TB) if p(A) < p(B)

Proof. 1.–3. Obvious.

4. We show that p(A⊗B) ≥ max{1, p(B)−|V (A)|} applies by an indirect proof.
Assume a directed Steiner path cover C for A⊗B has less than max{1, p(B)−
|V (A)|} paths. The removal of all vertices of A from all paths in C gives a
directed Steiner path cover of size |C| + |V (A)| < p(B) for B. �
To see that p(A⊗B) ≤ max{1, p(B) − |V (A)|} applies, consider that we can
use any vertex of A to combine two paths of the cover of B to one path, since
the series composition of A and B creates all directed edges between A and
B. If there are more terminal vertices in A than there are paths in the cover
of B, i.e. p(B) < |TA|, then we have to split paths of B and reconnect them
by terminal vertices of A. This can always be done since |TA| ≤ |TB |.

5. Similar to 4.
6. To see that p(A�B) ≤ p(A) applies, consider that we can connect each path

of A by each path of B, see Lemma 1(3). Since no edge between B and A is
created, no path of B can be extended by a path of A.
We show that p(A�B) ≥ p(A) applies by an indirect proof. Assume a directed
Steiner path cover C for A � B contains less than p(A) paths. The removal
of all vertices of B from all paths in C gives a Steiner path cover of size
|C| < p(A). �

7. Similar to 6. �

560 F. Gurski et al.

3.2 Computing the Optimal Number of Steiner Vertices

Remark 1. For two vertex-disjoint directed co-graphs A, B and two sets of ter-
minal vertices TA ⊆ V (A), TB ⊆ V (B) it holds that s(A ⊕ B, TA ∪ TB) =
s(A, TA) + s(B, TB), since the disjoint union does not create any new edges.

Remark 2. Let G = A�B be a directed co-graph, and let C be a directed Steiner
path cover of G such that p = (q1, u1, x, q2, v1) is a path in A, p1 = (u2, q3) and
p2 = (v2, q4) are paths in B, all paths are vertex-disjoint paths in C, where
x 	∈ T , u1, u2, v1, v2 ∈ T , and q1, . . . , q4 are subpaths. Then, we can split p at
vertex x into two paths, combine them with p1 and p2 to get (q1, u1, u2, q3) and
(q2, v1, v2, q4) as new paths and we get a Steiner path cover without increasing
the number of paths and one Steiner vertex less than C. If A and B are switched
we get (u2, q3, q1, u1) and (v2, q4, q2, v1) as new paths and the statement also
holds.

Next, we give the central lemma of our work, which is proven by induction
on the structure of the directed co-graph.

Lemma 3. For every directed co-graph G and every directed Steiner path cover
C for G with respect to a set T of terminal vertices it holds that p(G) + s(G) ≤
|C| + s(C).

Proof. The statement is obviously valid for all directed co-graphs which consist
of only one vertex. Let us assume that the statement is valid for directed co-
graphs of n vertices. Let A and B are vertex-disjoint directed co-graphs of at
most n vertices each.

Let G = A⊕B be a directed co-graph that consists of more than n vertices. By
Lemma 2, and Remark 1, it holds that p(A⊕B)+s(A⊕B) = p(A)+p(B)+s(A)+
s(B). By the induction hypothesis, it holds that p(A) + s(A) ≤ |C|A| + s(C|A)
and p(B) + s(B) ≤ |C|B | + s(C|B), where C|A denotes the cover C restricted to
digraph A, i.e. the cover that results from C when all vertices of B are removed.
Then, the statement of the lemma follows.

Let G = A⊗B be a directed co-graph that consists of more than n vertices.
Without loss of generality, let |TA| ≤ |TB |.
1. Let X(A) denote the vertices of A used in cover C, and let D denote the

cover for B that we obtain by removing the vertices of X(A) from cover C.
By induction hypothesis, it holds that p(B) + s(B) ≤ |D| + s(D).

2. Let nt(X(A)) denote the number of non-terminal vertices of X(A). Since
covers are in normal form it holds that s(C) = s(D) + nt(X(A)) and |C| =
|D| − |TA| − nt(X(A)). Thus, we get |C| + s(C) = |D| + s(D) − |TA|.
We put these two results together and obtain:

p(B) + s(B) − |TA| ≤ |D| + s(D) − |TA| = |C| + s(C)

To show the statement of the lemma, we first consider the case p(B)−1 ≤ |V (A)|.
Then, it holds that p(A⊗B) = 1. If |TA| ≥ p(B)−1, then d := |TA|− (p(B)−1)

Computing Directed Steiner Path Covers for Directed Co-graphs 561

many Steiner vertices from B, if available, can be replaced by terminal vertices
from A. Otherwise if |TA| < p(B) − 1, then −d = (p(B) − 1) − |TA| many
Steiner vertices from A are used to combine the paths. Thus, it holds that
s(A⊗B) ≤ max{0, s(B) − d} since the number of Steiner vertices in an optimal
cover is at most the number of Steiner vertices in a certain cover. Thus, since
p(A ⊗ B) = 1 we get for s(B) ≥ d:

p(A ⊗ B) + s(A ⊗ B) ≤ 1 + s(B) − d = 1 + s(B) − (|TA| − (p(B) − 1))
= �1 + s(B) − |TA| + p(B) − �1 ≤ |C| + s(C)

If s(B) < d then all Steiner vertices of B can be replaced by terminal vertices of
A and since |TA| ≤ |TB | holds, some of the paths of B can be reconnected by the
remaining terminal vertices of A. Thus, p(A ⊗ B) + s(A ⊗ B) = 1 ≤ |C| + s(C)
holds.

Consider now the case where p(B) − 1 > |V (A)| holds, i.e. not all paths in
an optimal cover for B can be combined by vertices of A. By Lemma 2, it holds
that p(A ⊗ B) = max{1, p(B) − |V (A)|}. Thus, for p(A ⊗ B) > 1 we get:

p(A ⊗ B) + s(A ⊗ B) ≤ p(B) − |V (A)| + s(B) + nt(A)
= p(B) + s(B) − |TA| ≤ |C| + s(C)

The non-terminal vertices of A must be used to combine paths of the cover, thus
the non-terminal vertices of A become Steiner vertices.

Let G = A�B be a directed co-graph that consists of more than n vertices.
By the induction hypothesis, it holds that p(A) + s(A) ≤ |C|A| + s(C|A) and
p(B) + s(B) ≤ |C|B | + s(C|B).

First, we consider the case p(A) > p(B). By Lemma 2 it holds p(A � B) =
p(A). We can connect every path of A with every path of B. By Remark 2 it
holds that if there are more paths in A than in B, for each additional path in
A we can remove one Steiner vertex from B. And since an optimal cover has
at most as many Steiner vertices as a concrete cover, it holds that s(A � B) ≤
s(C|A) + s(C|B) − min{s(C|B), |C|A| − |C|B |}. If we sum up both equations, we
get

p(A � B) + s(A � B) ≤ p(A) + s(C|A) + s(C|B) − min{s(C|B), |C|A| − |C|B |}
If s(C|B) ≥ |C|A| − |C|B | holds, and since s(C) = s(C|A) + s(C|B) holds, we get

p(A � B) + s(A � B) ≤ p(A) + s(C) − |C|A| + |C|B |.
The statement would be shown if p(A) − |C|A| + |C|B | ≤ |C| would apply. It
holds that p(A) ≤ |C|A|, since an optimal cover has at most as many paths as
a concrete cover, and it holds that |C|B | ≤ |C|, since |C| = max{|C|A|, |C|B |}
and the covers are in normal form. We sum up these equations and we get
p(A) + |C|B | ≤ |C|A| + |C|, which is equivalent to p(A) − |C|A| + |C|B | ≤ |C|,
thus p(A � B) + s(A � B) ≤ |C| + s(C) has been shown.

If s(C|B) < |C|A| − |C|B |, then it holds that p(A � B) + s(A � B) ≤ p(A) +
s(C|A), and we have to show that p(A)+s(C|A) ≤ |C|+s(C) applies. It holds that

562 F. Gurski et al.

p(A) ≤ |C|A|, since an optimal cover has at most as many paths as a concrete
cover, and it holds that |C|A| ≤ |C|, since |C| = max{|C|A|, |C|B |} and the covers
are in normal form. Furthermore, it holds that s(C|A) ≤ s(C), since a part is
only as big as the whole.

The other case p(A) ≤ p(B) can be shown in a similar way. �
Remark 3. Let G be a directed co-graph and let C be a directed Steiner path
cover for G with respect to some set of terminal vertices T . Then s(C) ≥ s(G)
holds only if |C| = p(G). If |C| > p(G) then s(C) might be smaller than s(G).

This fact will be used in the proof of the next lemma.

Lemma 4. Let A and B be two vertex-disjoint digraphs, and let TA ⊆ V (A),
TB ⊆ V (A) be sets of terminal vertices. Then, the following equations hold:

1. s(•v, ∅) = 0 and s(•v, {v}) = 0
2. s(A⊗B, TA ∪TB) = max{0, s(B, TB)+p(B, TB)−p(A⊗B)−|TA|} if |TA| ≤

|TB |
3. s(A⊗B, TA ∪TB) = max{0, s(A, TA)+p(A, TA)−p(A⊗B)−|TB|} if |TA| >

|TB |
4. s(A � B, TA ∪ TB) = s(A, TA) + s(B, TB) if p(A, TA) = p(B, TB)
5. s(A � B, TA ∪ TB) = s(A) + s(B) − min{s(A), p(B) − p(A)} if p(A) < p(B)
6. s(A � B, TA ∪ TB) = s(A) + s(B) − min{s(B), p(A) − p(B)} if p(A) > p(B)

Proof. 1. Obvious.
2. First, we show s(A ⊗ B) ≤ max{0, s(B) + p(B) − p(A ⊗ B) − |TA|}. By

Lemma 3, we know that s(A⊗B)+p(A⊗B) ≤ s(C)+ |C| holds for any cover
C for co-graph A ⊗ B and any set of terminal vertices T . Consider cover C
for A ⊗ B obtained by an optimal cover D for B in the following way.

Construction 1. We use the terminal vertices of A to either combine paths of
D or to remove a Steiner vertex of D by replacing v 	∈ T by some terminal vertex
of A in a path like (. . . , u, v, w, . . .) ∈ D, where u,w ∈ T .

If |TA| ≥ s(B) + p(B) then all paths of D can be combined and all Steiner
vertices of D can be replaced by terminal vertices of A and since |TA| ≤ |TB |
holds, some of the paths can be split and reconnected by the remaining terminal
vertices of A. Thus, s(C) + |C| = 1 and s(A ⊗ B) = 0.

Otherwise, if |TA| < s(B)+p(B), then by Construction 1 we get s(C)+ |C| =
s(B) + p(B) − |TA|, and by Lemma 3, we get the statement.

s(A ⊗ B) + p(A ⊗ B) ≤ s(B) + p(B) − |TA| = s(C) + |C|
⇐⇒ s(A ⊗ B) ≤ s(B) + p(B) − p(A ⊗ B) − |TA|

Next, we prove s(A ⊗ B) ≥ max{0, s(B) + p(B) − p(A ⊗ B) − |TA|}. Let X(A)
be the vertices of V (A) that are contained in the paths of an optimal cover C
for A⊗B. Let D be the cover for B obtained by removing the vertices of X(A)
from C. Since the covers are in normal form, the following holds:

|X(A)| = nt(X(A)) + |TA| = |D| − p(A ⊗ B)
⇐⇒ nt(X(A)) = |D| − p(A ⊗ B) − |TA|

Computing Directed Steiner Path Covers for Directed Co-graphs 563

Thus, we get:

s(A ⊗ B) − nt(X(A)) = s(D) = s(A ⊗ B) − |D| + p(A ⊗ B) + |TA|
⇐⇒ s(A ⊗ B) = s(D) + |D| − p(A ⊗ B) − |TA|
⇒ s(A ⊗ B) ≥ s(B) + p(B) − p(A ⊗ B) − |TA|

The implication follows since by Lemma 3 it holds that s(D)+|D| ≥ s(B)+p(B).

3. Similar to 2.
4. To see that s(A�B) ≤ s(A)+s(B) applies, consider optimal covers C and D

for A and B, respectively. We construct a cover E for A�B in the following
way.

Construction 2. Connect each path of C by a path of D, see Lemma 1(3).

Since |E| = p(A�B) holds, we get s(A�B) ≤ s(E) = s(C)+s(D) = s(A)+s(B),
because an optimal cover has at most as many Steiner vertices as a concrete
cover.

To see that s(A�B) ≥ s(A) + s(B) applies consider an optimal cover C for
A � B. Then, it holds that s(A � B) = s(C|A) + s(C|B) ≥ s(A) + s(B), since
|C|A| = p(A) = p(A � B) = p(B) = |C|B |.

5. We have to distinguish two cases. First, let s(A) > p(B) − p(A).
To see that s(A�B) ≤ s(A)+s(B)− (p(B)−p(A)) applies, consider optimal
covers C and D for A and B. We construct a cover E for A � B as follows.

Construction 3. First, we split p(B)−p(A) many paths of C at Steiner vertices
as described in Remark 2. Afterwards, we connect each of the resulting paths by
a path of D.

Thus, it holds that |E| = p(A � B) = p(B) and therefore s(A � B) ≤ s(C) +
s(D) − (p(B) − p(A)) = s(A) + s(B) − (p(B) − p(A)).

Please note, a Steiner path cover C for A�B with s(C|A) > 0 is not optimal
if |C|A| < |C| = p(A�B) holds. By Remark 2 a path of C|A could be splitted at
a Steiner vertex and the number of Steiner vertices could be reduced.

To see that s(A � B) ≥ s(A) + s(B) − (p(B) − p(A)) applies, consider an
optimal cover C for A�B. Then, it holds that s(A�B) = s(C) = s(C|A)+s(C|B),
and by the previous note it holds that |C| = p(A � B) = p(B) = |C|A|. By
Lemma 3 we get s(C|A)+ |C|A| ≥ s(A)+ p(A). If we sum up these equations, we
get s(A � B) + p(A � B) = s(C|A) + |C|A| + s(C|B). Finally we get:

s(A � B) = s(C|A) + |C|A| − p(A � B) + s(C|B)
≥ s(A) + p(A) − p(B) + s(C|B) ≥ s(A) + p(A) − p(B) + s(B)

Consider now the case that s(A) ≤ p(B) − p(A). To see that s(A � B) ≤ s(B)
applies, consider optimal covers C and D for A and B, respectively. We construct
a cover E for A � B as follows.

564 F. Gurski et al.

Construction 4. First, we split as many paths of C at Steiner vertices as pos-
sible in a way described in Remark 2. Afterwards, all Steiner vertices of C have
been removed and we connect each of the resulting paths by a path of D.

Thus, it holds that |E| = p(A�B) = p(B) and therefore s(A�B) ≤ s(E) = s(B).
To see that s(A�B) ≥ s(B) applies, consider an optimal cover C for A�B.

By the above note it holds that s(C|A) = 0, since C would not be optimal
otherwise. Thus, we get s(A � B) = s(C|B) ≥ s(B), since |C|B | = p(B) holds
and by Remark 3.

6. Similar to 5. �
By Lemmas 2 and 4, and since a directed co-tree can be computed in linear

time from the input directed co-graph [6], we have shown the following result.

Theorem 1. Given some directed co-graph G, the values p(G) and s(G) can be
computed in linear time with respect to the size of a directed co-expression for
G.

3.3 Computing an Optimal Directed Steiner Path Cover

Next, we sketch an algorithm to compute a solution for the Directed Steiner
Path Cover problem for some given directed co-graph G represented by its
binary directed co-tree T (G). By performing the rules given in Construction 1–4
bottom-up along T (G), we compute the directed Steiner path cover for G. In
order to obtain a linear running time O(|V (G)| + |E(G)|), we store the paths
using double-linked, linear lists. While the paths that contain Steiner vertices
are stored in one set and the paths that contain no Steiner vertices are stored
in another set. The lists each have a pointer to the first and last element, which
are terminal vertices by Lemma 1(1), and they have a pointer to the first and
last Steiner vertices. The Steiner vertices are additionally chained as a doubly
linked list. Additionally, we store the number of terminal and Steiner vertices
for each list. This allows us to perform each construction step in constant time.

Theorem 2. Given some directed co-graph G, a solution for the Directed
Steiner Path Cover problem can be computed in linear time with respect to
the size of a directed co-expression for G.

4 Conclusions

Our results for directed co-graphs can be transfered to undirected co-graphs,
which are precisely those graphs that can be generated from the single vertex
graph by disjoint union and join operations, see [5]. Given some undirected co-
graph G, we can solve the Steiner path cover problem in linear time by replacing
every edge {u, v} of G by two anti-parallel directed edges (u, v) and (v, u) and
applying our solution for directed co-graphs.

Since a directed Hamiltonian path exists in digraph G if and only if we have
T = V (G) and p(G) = 1, our results imply the first linear time algorithm for
the directed Hamiltonian path problem on directed co-graphs. This generalizes
the known results for undirected co-graphs of Lin et al. [10].

Computing Directed Steiner Path Covers for Directed Co-graphs 565

References

1. Abu-Affash, A.K., Carmi, P., Katz, M.J., Segal, M.: The euclidean bottleneck
steiner path problem and other applications of (α,β)-pair decomposition. Discret.
Comput. Geom. 51(1), 1–23 (2014)

2. Bang-Jensen, J., Maddaloni, A.: Arc-disjoint paths in decomposable digraphs. J.
Graph Theory 77, 89–110 (2014)

3. Bechet, D., de Groote, P., Retoré, C.: A complete axiomatisation for the inclusion
of series-parallel partial orders. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232,
pp. 230–240. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-
5 74

4. Borndörfer, R., Karbstein, M., Pfetsch, M.: The steiner connectivity problem.
Math. Program. 142(1), 133–167 (2013)

5. Corneil, D., Lerchs, H., Stewart-Burlingham, L.: Complement reducible graphs.
Discrete Appl. Math. 3, 163–174 (1981)

6. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for
directed cographs. Discrete Appl. Math. 154(12), 1722–1741 (2006)

7. Gurski, F., Komander, D., Rehs, C.: Computing digraph width measures on
directed co-graphs. In: G ↪asieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT
2019. LNCS, vol. 11651, pp. 292–305. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-25027-0 20

8. Gurski, F., Rehs, C.: Directed path-width and directed tree-width of directed co-
graphs. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 255–
267. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1 22

9. Gurski, F., Wanke, E., Yilmaz, E.: Directed NLC-width. Theor. Comput. Sci. 616,
1–17 (2016)

10. Lin, R., Olariu, S., Pruesse, G.: An optimal path cover algorithm for cographs.
Comput. Math. Appl. 30, 75–83 (1995)

11. Moharana, S.S., Joshi, A., Vijay, S.: Steiner path for trees. Int. J. Comput. Appl.
76(5), 11–14 (2013)

12. Nøjgaard, N., El-Mabrouk, N., Merkle, D., Wieseke, N., Hellmuth, M.: Partial
homology relations - satisfiability in terms of di-cographs. In: Wang, L., Zhu, D.
(eds.) COCOON 2018. LNCS, vol. 10976, pp. 403–415. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94776-1 34

https://doi.org/10.1007/3-540-62950-5_74
https://doi.org/10.1007/3-540-62950-5_74
https://doi.org/10.1007/978-3-030-25027-0_20
https://doi.org/10.1007/978-3-030-25027-0_20
https://doi.org/10.1007/978-3-319-94776-1_22
https://doi.org/10.1007/978-3-319-94776-1_34

Counting Infinitely by Oritatami
Co-transcriptional Folding

Kohei Maruyama1(B) and Shinnosuke Seki1,2

1 The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu,
Tokyo 1828585, Japan

{k.maruyama,s.seki}@uec.ac.jp
2 École Normale Superiéure de Lyon, 46 allée d’Italie, 69007 Lyon, France

Abstract. A fixed bit-width counter was proposed as a proof-of-concept
demonstration of an oritatami model of cotranscriptional folding [Geary
et al., Proc. MFCS 2016, LIPIcs 58, 43:1–43:14], and it was embed-
ded into another oritatami system that self-assembles a finite portion of
Heighway dragon fractal. In order to expand its applications, we endow
this counter with capability to widen bit-width at every encounter with
overflow.

1 Introduction

Counting is one of the most essential tasks for computing; as well known, the abil-
ity to count suffices to enable Turing universality [9]. Nature has been counting
billions of days using molecular “circadian clockwork” which is “as complicated
and as beautiful as the wonderful chronometers developed in the 18th century”
[8]. Nowadays, developments in molecular self-assembly technology enable us to
design molecules to count. Evans has demonstrated a DNA tile self-assembly sys-
tem that counts accurately in-vitro in binary from a programmed initial count
until it overflows [3]. In its foundational theory of molecular self-assembly, such
binary counters have been proved versatile, being used to assemble shapes of
particular size [1,10], towards self-assembly of fractals [7], as an infinite scaffold
to simulate all Turing machines in parallel in order to prove undecidability of
nondeterminism in the abstract tile-assembly model [2], to name a few.

A fixed bit-width (finite) binary counter has been implemented as a proof-
of-concept demonstration of the oritatami model of cotranscriptional folding
[5]. As shown in Fig. 1, an RNA transcript folds upon itself while being tran-
scribed (synthesized) from its corresponding DNA template strand. Geary et
al. programmed a specific RNA rectangular tile structure into a DNA tem-
plate in such a way that the corresponding RNA transcript folds cotranscrip-
tionally into the programmed tile structure with high probability in vitro at

This work is supported in part by KAKENHI Grant-in-Aid for Challenging Research
(Exploratory) No. 18K19779 and JST Program to Disseminate Tenure Tracking System
No. 6F36, both granted to S. S.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 566–575, 2020.
https://doi.org/10.1007/978-3-030-38919-2_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_46&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_46

Counting Infinitely by Oritatami Co-transcriptional Folding 567

Fig. 1. RNA origami. RNA polymerase enzyme (orange) synthesizes the temporal copy
(blue) of a gene (gray spiral) out of ribonucleotides of four types A, C, G, and U. (Color
figure online)

room temperatures (RNA origami) [6]. An oritatami system folds a transcript
of abstract molecules called beads of finitely many types over the 2-dimensional
triangular lattice cotranscriptionally according to a rule set that specifies which
types of molecules are allowed to bind once they are placed at the unit dis-
tance away. The transcript of the binary counter in [5] is of period 60 as
0©− 1©− 2©−· · · −58©−59©− 0©− 1©· · · and its period is semantically divided into
two half-adder (HA) modules A = 0©− 1©−· · · −11© and C = 30©−31©−· · · −41©
and two structural modules B and D, which are sandwiched by half-adder mod-
ules along the transcript. While being folded cotranscriptionally in zigzags, HA
modules increment the current count i by 1, which is initialized on a linear seed
structure, alike the Evans’ counter, whereas structural modules B and D align
HA modules properly and also make a turn at an end of the count i; B guides the
transcript from a zig to a zag (↪→) while D does from a zag to a zig (←↩). This
counter was embedded as a component of an oritatami system to self-assemble
an arbitrary finite portion of Heighway dragon fractal [7]. Its applications are
limited, however, by lack of mechanism to widen bit-width; its behavior is unde-
fined when its count overflows. In this paper, we endow this counter, or more
precisely, its structural module B, with the capability to widen the count by 1
bit at every encounter with overflow.

2 Preliminaries

Let Σ be a finite alphabet, whose elements should be regarded as types of
abstract molecule, or beads. A bead of type a ∈ Σ is called an a-bead. By
Σ∗ and Σω, we denote the set of finite sequences of beads and that of one-way
infinite sequences of beads, respectively. The empty sequence is denoted by λ.
Let w = b1b2 · · · bn ∈ Σ∗ be a sequence of length n for some integer n and bead
types b1, . . . , bn ∈ Σ. The length of w is denoted by |w|, that is, |w| = n. For
two indices i, j with 1 ≤ i ≤ j ≤ n, we let w[i..j] refer to the subsequence
bibi+1 · · · bj−1bj ; if i = j, then w[i..i] is simplified as w[i]. For k ≥ 1, w[1..k] is
called a prefix of w.

Oritatami systems fold their transcript, which is a sequence of beads, over
the triangular grid graph T = (V,E) cotranscriptionally. For a point p ∈ V , let�d

p denote the set of points which lie in the regular hexagon of radius d centered

568 K. Maruyama and S. Seki

at the point p. Note that �d
p consists of 3d(d + 1) + 1 points. A directed path

P = p1p2 · · · pn in T is a sequence of pairwise-distinct points p1, p2, . . . , pn ∈ V
such that {pi, pi+1} ∈ E for all 1 ≤ i < n. Its i-th point is referred to as P [i].
Now we are ready to abstract RNA single-stranded structures in the name of
conformation. A conformation C (over Σ) is a triple (P,w,H) of a directed
path P in T, w ∈ Σ∗ of the same length as P , and a set of h-interactions
H ⊆ {{i, j} ∣

∣ 1 ≤ i, i + 2 ≤ j, {P [i], P [j]} ∈ E
}
. This is to be interpreted as

the sequence w being folded along the path P in such a manner that its i-th
bead w[i] is placed at the i-th point P [i] and the i-th and j-th beads are bound
(by a hydrogen-bond-based interaction) if and only if {i, j} ∈ H. The condition
i + 2 ≤ j represents the topological restriction that two consecutive beads along
the path cannot be bound. The length of C is defined to be the length of its
transcript w (that is, equal to the length of the path P). A rule set R ⊆ Σ × Σ
is a symmetric relation over Σ, that is, for all bead types a, b ∈ Σ, (a, b) ∈ R
implies (b, a) ∈ R. A bond {i, j} ∈ H is valid with respect to R, or simply R-
valid, if (w[i], w[j]) ∈ R. This conformation C is R-valid if all of its bonds are
R-valid. For an integer α ≥ 1, C is of arity α if it contains a bead that forms
α bonds but none of its beads forms more. By C≤α(Σ), we denote the set of
all conformations over Σ whose arity is at most α; its argument Σ is omitted
whenever Σ is clear from the context.

The oritatami system grows conformations by an operation called elongation.
Given a rule set R and an R-valid conformation C1 = (P,w,H), we say that
another conformation C2 is an elongation of C1 by a bead b ∈ Σ, written as
C1

R−→b C2, if C2 = (Pp,wb,H ∪ H ′) for some point p ∈ V not along the path
P and set H ′ ⊆ {{i, |w| + 1} ∣

∣ 1 ≤ i < |w|, {P [i], p} ∈ E, (w[i], b) ∈ R
}

of bonds
formed by the b-bead; this set H ′ can be empty. Note that C2 is also R-valid.
This operation is recursively extended to the elongation by a finite sequence of
beads as: for any conformation C, C

R−→
∗
λ C; and for a finite sequence of beads

w ∈ Σ∗ and a bead b ∈ Σ, a conformation C1 is elongated to a conformation
C2 by wb, written as C1

R−→
∗
wb C2, if there is a conformation C ′ that satisfies

C1
R−→

∗
w C ′ and C ′ R−→b C2.

An oritatami system (OS) Ξ is a tuple (Σ,R, δ, α, σ, w), where Σ and R are
defined as above, while the other elements are a positive integer δ called delay,
a positive integer α called arity, an initial R-valid conformation σ ∈ C≤α(Σ)
called the seed, and a (possibly infinite) transcript w ∈ Σ∗ ∪ Σω, which is to be
folded upon the seed by stabilizing beads of w one at a time so as to minimize
energy collaboratively with the succeeding δ−1 nascent beads. The energy of a
conformation C = (P,w,H), denoted by ΔG(C), is defined to be −|H|; the more
bonds a conformation has, the more stable it gets. The set F(Ξ) of conformations
foldable by the system Ξ is recursively defined as: the seed σ is in F(Ξ); and
provided that an elongation Ci of σ by the prefix w[1..i] be foldable (i.e., C0 = σ),
its further elongation Ci+1 by the next bead w[i + 1] is foldable if

Counting Infinitely by Oritatami Co-transcriptional Folding 569

10

91

4

5

7

14

26

9067

20

29

1

65

1321225

130

128

12724

17

96898878

6

11

18 1319

21

30

66

22

7976 77

3

8

91628

131

129

2

15

2327 14

79

5

90

18

20

27

30

66

127

21

26

77

4

23

129

7

11

22

29

91

130

8

10

24

128

13

16

88 89

19

28

65 76

3

25 1

915

17

78

2

6

67

132

96

12

131

15

1920

24 30

8

12

6

7131

3 5 17

29

22 23127126

124

9

28

25

16

132

129 4

10

14

130

1

2

11

125

27

13

18

21128 26

130

128

25 29127 24

124

125

8 12

28

2

5 6 10

18 15

132

3

13

7

14

1

21

126 23 30

131

4 11

22

1719

26 27

16

9129

20

Fig. 2. All the four bricks of module F: the two bricks at the top, Fnt and Fnb, are for
zigs while the others, F0 and F1, are for zags.

Ci+1 ∈ arg min
C∈C≤αs.t.

Ci
R−→w[i+1]C

min
{

ΔG(C ′)
∣
∣
∣ C

R−→
∗
w[i+2...i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}
. (1)

Then we say that the bead w[i+1] and the bonds it forms are stabilized according
to Ci+1. The easiest way to understand this stabilization process should be the
video available at https://www.dailymotion.com/video/x3cdj35, in which the
Turing universal oritatami system by Geary et al. [4], whose delay is 3, is running.
This video is worth watching because a directed motif called a glider, which it
features, is utilized for our infinite counter. Note that an arity-α oritatami system
cannot fold any conformation of arity larger than α. A conformation foldable by
Ξ is terminal if none of its elongations is foldable by Ξ.

3 Folding an Infinite Binary Counter

Between two consecutive overflows, the proposed system behaves in the same
way as the finite binary counter proposed by Geary et al. [5]. Its transcript folds
in a zigzag manner macroscopically (downward in figures throughout this paper).
A zig, folding from right to left, increments the current value of the counter by 1.
The succeeding zag, folding from left to right, formats the incremented value for
the sake of next zig and copies it downward. Unlike the existing counter, when
a zig encounters an overflow, it does not abort but rather extends the current
value by 1 bit.

The transcript of our counter is periodic. Its period 1-2-3- · · · -132 is semanti-
cally divided into the following four subsequences, called modules: 1–30 (Format
module or F; colored in green in figures), 31–66 (Left-Turn module or L; blue),
67–96 (Half-Adder module or H; red), and 97–132 (Right-Turn module or R;
yellow). The transcript can be hence represented as (FLHR)∗ at the module
level. Modules are to play their roles in expected environments by folding into

https://www.dailymotion.com/video/x3cdj35

570 K. Maruyama and S. Seki

65

4563

35

37

47

64

26

32

34

42

33

56

40

44

49 314348

284652

54

59

36

62 53

58

66

2741

51

61

57 29

60 55

3038

39

50

25

64 4243

61

5157

62

31

4450 41

54

345258

25

39 27

55

263847

46 33

53

60

65 36

45

4866 30

35

49

56

59

32

40

29

28

37

63

65

31

64

44

65

30

63

59

34

42

43

51

55

29

6636

37

45

61

27

6263

22

52 23

61

33

38

47

49

5654

62

40

46

25

60

50

53

58

58

26

64

28

35

48

57 60

66

32

39

41

59

48

26

22

41

59

4245

57 1325 12

27

64

52

8

18

11

19

20

9

44

65

60

14

31

53

6162

3547 37

43

49 1628

32 17

10

36

66

21

58

63

15

7

23

3950

54

34 38

4046

29

24

51

56

33

55

30

30

28

32

37

45

4753

63

63

36

41

5152

65

58

33

35

40

50

55

59

64

60

64

31

38

39

6061

26

34

434954

59

23

46

65

62

2757

61

29

25

66

42

44

48

56

58

62

66

Fig. 3. All the five bricks of module L: Lt, Lbn, Lcrn, Lcre, and Lbe from top left to
bottom right. In zigs, L folds into either Lt or Lbn depending on where it starts, until
the transcript reaches the left end, where L folds either into Lcrn if the current value
has not been overflowed, or into Lbe at an overflow. In the case of overflow, the next L
folds into Lcre. In zags, L always folds into Lbn.

respective conformations which should be pairwise-distinct enough to be distin-
guishable by other modules transcribed later. Such expected conformations are
called a brick. For example, module F encounters the four environments shown in
Fig. 2 where it takes the four bricks Fnt, Fnb, F0, and F1, respectively. Here, by
saying (an instance of) a module folds into (or takes) a brick in an environment,
what we actually mean is that the rule set is designed so as for the transcript
of the module to interact with itself as well as with the environment into that
brick according to the oritatami dynamics (1). The whole system is designed to
guarantee that each module is transcribed only in one of the environments it
expects. This fact is illustrated in the brick automaton, which describes pairs of
an environment and a brick as a vertex and transitions between them. Since this
automaton is closed, it suffices to test whether for all pairs of an environment
and a brick, the brick is folded in the environment. This test has been done
in-silico using our simulator developed for this project. This brick automaton
and all the certificates can be found at https://komaruyama.github.io/oritatami-
infinit-counter/.

https://komaruyama.github.io/oritatami-infinit-counter/
https://komaruyama.github.io/oritatami-infinit-counter/

Counting Infinitely by Oritatami Co-transcriptional Folding 571

68

82

65

66

2310

95 62

94

127

96

2212

758193

13

7879

83

84

1

72

7789

91 85 61

24

70

30

67

86

88

90

132

87 6469

25

71

73

92

63

74

76

80

11

92 65

132

77

86

76

88

96

1

7484

30

5978

90

87

64

6070

91

10

63

67

68

73

79

95

2412 22

75

82

23

8993

127

81

72

80

85 61

66

11

83

94

62

13 25

69

71

65

6679

86

646976

8083

55

59

758287

91 8496

56

60

63

61

6895

58

6778

8188

62

70

72

778992

9394 57

71

73

74

8590

74

8791

96

132

62

22

6873

80 81

8892

79

70 61

85

1 27

77 83 8476

72

78

29

90

66

2523

63

127

65

28

69

93

95

30

64

75

94

2624

71 67

82

8689

23

94 64

24

61

65

132

83

89

30

9093

636268

73

86

59

29

71

92

74

81

60707778

96

25

87

8891

26 281

75

85

66

80 82

72

127

67

6976

2722

79 84

95 96

59

88 89 91

80

82

85 9262

72

78

71

79

94

9575 866163

9369 8460

68

81

65

70

77

73

9076

83

87

6664 67

74

Fig. 4. All the six bricks of module H: H00, H01, He1, H10, H11, and Hn from top left
to bottom right. In zags, H always folds into Hn while in zigs, it folds into one of the
other five bricks.

113

130

96

94123 92106

97

101116128 119

126

105

102103108

111117

95104

121

122 82125

132 109

110

118129

8081114127

83

93

115

107

120

131

124

98

99100112

92113

132

98

130

97

124

104110

123

125

127

89

93

108

119

118

131

96

111112

114126

88117

120

107128 122

94

103

116

100105

121

129

91

95

106

102109115 90

99

101

92113

132

98

130

97

124

104110

123

125

127

89

93

108

119

118

131

96

111112

114126

88117

120

107128 122

94

103

116

100105

121

129

91

95

106

102109115 90

99

101

131 129 101 102 115

124

98 119

122

118

123

1

91 10896

103

117

132

126

90

106

109

116

130

132

97

125

128

129

95

93 99

122

110

114

128

94

105

120

126

108

85

123

100 113

124

109

111

121

131

120

97

104

112

130

127

127

92

84

107

125

121

Fig. 5. All the three bricks of module R: Rt, Rb, and Rcr. In zigs, R folds into Rt or Rb,
depending on how high it starts. In zags, R always folds into Rb until the transcript
reaches the right end, where R folds into Rcr.

Seed and Encoding. The initial counter value is encoded as bk−1bk−2 · · · b1b0 in
binary on the seed in the following format

64−65−66−
(

0∏

i=k−1

(
wHnwRbwFbi

wLbn

)
)

wHn (2)

where wHn, wRb, wF0, wF1, and wLbn are sequences of bead types exposed
downward by modules H, R, F, L when they fold into bricks Hn, Rb, Fbi, Lbn,
respectively, which can be found in Figs. 4, 5, 2, and 3. For example, wHn =
67−76−77−78−79−88−89−90−91−96. The seed is examplified for k = 1 and
b0 = 0 in Fig. 6, where it is colord in purple.

Brick Level Overview. Starting from the seed, this system cyclically transits four
phases: zig (←), left carriage-return (↪→), zag (→), and right carriage-return
(←↩). The prefix (FLHR)kF of the transcript folds into the first zig (recall
that k is the bit-width of the initial value). In zigs in general, all the instances of
modules F and H fold into bricks of width 10 and height 3, while all the instances

572 K. Maruyama and S. Seki

121

90 126

79

119

31

78

88

116

103

30 64

24

26 69

1135 131

108

50

65

78

13

80126

49

4717

12 123

60

18

97

6536102

4393

128

8842

220

115

32

1016

103

45

129

125115

25

40

27

55132

35

100

108

62

10912764

757624 81114

1120

1267

70

72129

26

96

29

8965

9022

98

111

120

114 24 89

63

102

122

36

131

7

20

67 77

22

91 10

39

118

77 96

1

87

127

127

31

54

61

132

76

5110

109

58

49

95

105

12088 43

91

44

64106

97

211

97 2311

8

9613

56

25

22

14

60

66 91

99

104

9

122

121

27

94 89

14

7

23107 38

42

74

130

79

124

54

34

23

15

15

4153

124

108 66

21 1124

52109 130

3 73

132

79 78

10

37 25

18

125

126

67

9

66123

3

55

11

59

687185

6

465158

86

6

30

28

92

28

59

37 48

128

19

11

48

57

83

33

63101

76

16

172982

117

61

30

84

12

19

62

13

90

477

28

Fig. 6. The first zig. 0 is encoded as an initial value below the seed in the format (2)
with k = 1 (1-bit width). Being fed with carry, the zig increments the value. Module H
outputs 1, or more precisely a sequence of bead types which shall be interpreted as 1
in the next zag and reformatted, as a sum and cancels the carry. (Color figure online)

42

12911

15

10

5

21

77

34

24

56

16

56

67

122

11

64

84

37

50

77

61

23

7

11

111

78

131

59

62

76

103 54

17

3

51

66 24

102

85

1

102

45

103

132

38

126

25

69

90

13

55

96

57

88

63

21

127

53

75

94 24

9381

25

43

18

45

57

92

58

4

12

66

86

116

80 110

60

112

2

72

9736

95

98

13

27

51 8044

53

32

57

79

95

54

132

43

62

71

13237

4761

16

979

98

32

3

11

10

88

48

117

7776

128

5970

13120

84

13

29

46

128

76

116

22

106

87 92

105

74

5

121

14

19

34

90

123

76

126439

85 41

70

114

14

125

74

60

110

108 132

59

82

94

115

30118

125

127

109 120 89

39

90

56

9193

127

65

12

20

83

74

114

14

3

64

18

55 79

102

2252

89

35

63

103

19

37

75

115

121

6 7 8

1264

130

91

73

38

82

47

29

92

11491 48 77

109

4468

126

9

9471

40

73

105

48

78

35

50113

61

89

83

30

34112 58

55

127

7

119

66

2

15

23

39

113

59 118

86

26

4931

45120

55

88 37

27

124

104

43

33

27 31

32

36

80

1

4 52

108

87

89

124

44 62

67

49

99

25

33

96

8530

90

60

8840

96

49

108

122

101

24

58

68

91

111 36

31

68

41

97

35

54 60

78

64

91

16

52

84 82

3189

122

72

126

121

123

42 43

23

29

40

6100

9

67

62

1872

97

15

42 9630

38

67

81

28

46

2

108

131

48

8 8

46

129

47

1 67

54 66

81

49

107 83

93

107

120

90

26

12064

101

10

33

65

129

22

97

20

51109115

87

1

124

25

73

22

78

42

17

125 95

6

75

106

13

71

78

12863

10

119

61

41 12

28

79

19

100

104

70

88

79

21

235053

109

65

65

26

36

96

5

28

99

17

65

58

66

77

130

63

117

123

69 130 69

76

86

Fig. 7. Module L turns and start the first zag pass. Since there is a Turn Signal at the
left end of the seed, when the carry is 0, module L turns and at the end of L forms
Turn Signal. In zag pass, module F reads the output of module H and copies it down.

of L and R fold into bricks of width 12 and height 3. Zigs thus turn out to be
a linear structure of height 3. We can inductively observe that the i-th instance
of H in the prefix is transcribed right below bi−1 encoded on the seed in the
format (2) so that the H can “read” bi−1. After the whole prefix thus has folded
into the first zig, the next L is transcribed right below Turn Signal, which lets
the L fold into a special brick for left carriage-return if the zig ended at the top
(this occurs when bk−1bk−2 · · · b0 < 1k) (see Fig. 7). We should note that this
special brick Lcre is provided with another Turn Signal for the sake of next left
carriage-return. Having been thus carriage-returned, the succeeding subsequence
(HRFL)kH of the transcript folds into the first zag. Even in zags instances of
F and H fold into bricks of width 10 and height 3, while those of L and R fold
into bricks of width 12 and height 3. As a result, zags turn out to be a linear
structure of height 3. More importantly, instances of H and F are aligned thus
vertically and alternately into columns (see Figs. 6, 7 and 8), i-th of which from
the right propagates the (i−1)-th bit of the counter value downward. After the
whole subsequence has folded into the first zag, an instance of R is transcribed
and folded into a special brick Rcr for right carriage-return due to the turn signal
125-124-123-122, which occurs also at the bottom of Rcr for the sake of next
right carriage-return. This amounts to one cycle of the phase transition.

Increment of the Counter. In a zig, module H plays its primary role as a half-
adder and carry transfers through instances of others (F, L, and R) from an
instance of H to another for more significant bit. Carry transfers as a height for
modules to start. In zigs, modules F, L, and R take the respective two bricks
(Fnt and Fnb for F, Lt and Lbn for L, and Rt and Rb for R; see Figs. 2, 3, and 5),
both of which start and end at the same height: one at the top while the other

Counting Infinitely by Oritatami Co-transcriptional Folding 573

47

116

27

119

64

112

113

1

102

2

40

18 32

102

34

5

6871

115

24

28

72

72

1 91

46

86

5878

121109 67

128

4

108

93 70

121

130

88

84104131

51

78

10

44

103 43

64

96 132

96

128

95

79

44

31

25

76

82

80

27

71

21

67 89

132

2

62

77

117

2361

57

15

16

18

116

24

30

63

30

38

43121

124

114

28

62

10

3

31

86

129

113

4

124

81

12119

78

126

5

86

98

37

28

52

19

29

60

22

7 10

89

90

42

23

130

112

84

96

101

1

20

12

36

58

27

83

5174

35

5826

33

68

124109

81

76

44

99

110

4

104

34

129

72

89118

132

17

126

77

28

105

2

38

66

36

83 45

89

1337

39

53

78

24

39

97

97

83

11

33

36

117 94

10

31

32

55

8629

91 66

32107

13

16

63

108

6

59102114

45

122

59

92

115

68

73

62

12315

84

113

120

123 122

67

7

35

115

29

131 63

9

82

67 88

13174

60

79

49

19

70

66

82 57

65

52

90

16

106

96

105

125

54 96

8

9141

78

64

73100

118

35

11

40

80

82

102

13

52

105

128

109

26

54117

97

10

88

67

36

31

107

55

131

16

48

65

87 119

20 127

99

110

88

13

69

20

67

1277

78

95

26

9

66

125

23

16

6123

122

96

118

85

24

30

108120

98 13

114

11

49

58 106 59

28

66

19

38

62 50

61

94

108

63

107

131

9230

130

112

103

1753 14

115

17

75

128

51

92

99 111

11

94

79

48

35

116

884

127

22103

61

49

65

13

65102 48126

55

8

22

105

110

5

56

109

116

21

50

6592

26

98

123

120

125

109

70

127

1

49114

27

45

93

6925

36

79

12271

83

80

117

1544

6

17

30

56

18

23

63

51

54 76

118 75

100

104

12

6

59

12

129

77 103

93

126

88

94

1291

29

8543

53

73

60

42

18

95

12089

34

115

54

56

66

3

53

77

21

42

61

2240

103

79

119

6

33

74

22

87

42

46

4

6

58

5

127

41

119

47

37

90

74

15

24

52

120

7577

21

25

130

71

128

7

34

56

10610

20

27

111 5

26

81

95

22

79 89

47

87

693

127411258

101

120 25

43

48

12

45

15

46

7

46

30

132

104

123

17

69 72

111

132

64

99

114

47

12521

112

28

12

77

126

55

97

4

132

9

129

31

39

75

24

59

37

60

62

11

33

9765

50

85

41

889329

48 76126 42

73

43

100

19

14

70

121

123 11

14

2

64

64

100

14

57

109

81

2050

91

101

85

124

18

98

76 108

40

107

14

6097

769

129

55

37

90

1

111

54

68 113

122

91

3

25

90

110

132

57

108

39

130

90

49

87101

80

124

38 39

23

106

25

Fig. 8. Reach the left end with carry. Even if transcript of module L sticks to Turn
Signal, it can not bind because the distance is long.

at the bottom. A zig is carried by being forced to start at the bottom by the
last Rcr or the seed. Until the count overflows, module H encounters only four
environments, which encode input 0 as wF0 or 1 as wF1 and carry or no-carry
as of whether the module starts at the bottom or top, where it takes H00, H01,
H10, and H11, respectively, as shown in Fig. 4 (Hxc is folded when the input is x
and the carry is given if c = 1 or not otherwise).

Let us see how the subsequence (FLHR)kF folds into a zig in order to count
up; for k = 1 and the current value 0, see Fig. 6. The zig starts at the bottom,
that is, being carried, and the carry transfers through the first instances of F
and L in the way just explained toward the first instance of H. This H is thus
fed with carry and folds into H01 if the bit encoded above is 0, as illustrated
in Fig. 6, or H11 if the bit is rather 1. H01 ends at the top, corresponding to
canceling the carry out. This absence of carry transfers through the succeeding
modules leftward. As a result, the zig ends, or more precisely an instance of F
ends folding at the bottom if the current value is overflowed (Fig. 8), or at the
top otherwise (Fig. 6). An instance of L is to be transcribed next. It folds either
into Lcrn for (normal) carriage-return unless the current value is overflowed, or
into Lbe at an overflow.

Bit-Width Expansion at an Overflow. The counter of Geary et al. cannot handle
a zig that ends at the bottom, that is, its behavior is undefined at an overflow.
In contrast, module L in this infinite counter is designed so as to fold into Lbe
in this situation in order to continue counting up (Fig. 9). Observe that the dent
on Turn Signal made of 58, 63, and 64 is too far for module L or more precisely
its beads 33 and 34 to interact with strongly enough to fold into Lcrn. Lbe
is a self-sustaining conformation (glider) so that it can fold even if nothing is
around, which occurs at that very moment. For the same reason, the following
instances of H, R, and F fold into self-sustaining conformations He1, Rb, and Fnb,
respectively (Figs. 9 and 10). Note that He1 is essentially the same as H00 but
exposes the opposite side downward, which will be interpreted as the leading bit
1 after expansion in the next zag. When the next instance of L is transcribed,
there is nothing around. Nevertheless, it does not fold into Lbe but folds into
Lcre for carriage-return; how? It is guided by interaction between the beads 35,
36 along the transcript of L and the Turn Signal 28-27-22 above Fnb (Figs. 3 and
10). This signal is usually hidden geometrically by the previous zag, and hence,
does no harm.

574 K. Maruyama and S. Seki

55

6

98

60

132

20

42 18

29

75 80

66

10

34

41

120

11

83

95

116

94

12

57 9

67

12310

124

90

37

59

82

48

87

31

32

8

32

24

1450

7

22

63

118130

23

33

25

50

103

118

21

17

60

26 8

15

90

17

71

89

13

78

119

1174

30

74

128

24 19

4149

13045

127

52

127

66

11551

54

91

7

10276

128

73 85

28

51

79

67

81 99

46

91

64

4042

125

36

97

44

117

38

52

3

11

26

22

44

39

54

65

126

340

62

96

104

60

1

2

20

57

119

88

10

38

46

86 101

10559

45

10

88

35

53

58

43

92

37

35

77

28

29

89

64

63

16

68

48

27

31

6

116

121

14

61

39

107

30

62

79

122

18

120

11

77

125

49

121

15

62

72

21

58

126

103

27

93

97

123

102

115

16

47

1

84

33

108

122

12

34

106

23

36

63

511

124

9

11

129

65

70

1315

69 100

132

96

25

43

6665

56

5356

61

78

58

55

13

61

464

76

59

2

108

129

131

19

47

⇒ 62

33

60

1

28

37

67

19

118

6

10

40

86

55

2

56

90

91

54

82

89

292

21

54

96

12547

61

97 103

65

85

40

59

89

88

26

26

118

58

23

35

131

4

20

31

89

76 15

3

27

6

46

46

38

66

52

39

92

36

57

1

2787

58

50 8

55

14

18

53

11131

126

65

129

68

339

53

13

96

44

6388

72

71

25

74

90

22

25

100

18

62

76

132

105

10

11

75

130

2971

77

10

123

1669 57

101

99

64

31

11

91

66

78

120

77

41

72

12

3742

38

60 81

119

1732

79

126

43

61

63

11

62

73

77

28

78

82

85

122

93

1641

24

75

59

124

5

9

35 2356

93

36

64

49

97

19

74

102

122

84

30

51

83

14

7

5

79

50

20

102

121379

80

33

34

65

69

94 58

61

63

45

67

4

127

45

64

81

24

42

94

21 10

98

1274373

51

60

88

9

130

30

32

29

83

15

78

59

70

104

96

132

67

70 124

49 48

8068

10

95

8

76

17

86

90

128

47

12552

119

120

129

66

91

128

84

12144

95

22

121

34

103

123

48

87

7

62

33

60

1

28

37

67

19

118

6

40

86

55

2

56

90

91

54

82

89

292

21

54

96

12547

61

97 103

65

85

40

59

89

88

26

26

118

58

23

35

131

4

20

31

89

76 15

3

27

6

46

46

38

66

52

39

92

36

57

1

2787

58

50 8

55

14

18

53

131

126

65

129

68

339

53

13

96

44

6388

72

71

25

74

90

22

25

100

18

62

76

132

105

10

11

75

130

2971

77

123

1669 57

101

99

64

31

11

91

66

78

120

77

41

72

12

3742

38

60 81

119

1732

79

126

43

61

63 62

73

77

28

78

82

85

122

93

1641

24

75

59

124

5

9

35 2356

93

36

64

49

97

19

74

102

122

84

30

51

83

14

7

5

79

50

20

102

121379

80

33

34

65

69

94 58

61

63

45

67

4

127

45

64

81

24

42

94

21 10

98

1274373

51

60

88

9

130

30

32

29

83

15

78

59

70

104

96

132

67

70 124

49 48

8068 95

8

76

17

86

90

128

47

12552

119

120

129

66

91

128

84

12144

95

22

121

34

103

123

48

87

7

Fig. 9. (Left) Starting from the bottom, the Turn Signal above is too far for this L
to fold into Lcrn. It rather folds into Lbe and initiates bit expansion. (Right) Without
anything around, the succeeding H folds into a glider (brick He1).

59116

16

107

111

62

96102

14

28

120

12421

56101110 95

1096

112

17

677

113125

114

92

97

1522

53 50

19 5578

57

86

27 100

10324

88105

1318

29 1120 104119 68

12 72

58

30

122

121

10

108

4

61

2

6481

127 91

117

132 84

3

128

99

80

1261

130

115

118123

71

94 63

25 66

75

83 65

87

60

8926

79

93106 70

23

69

5

5282

131

73

9

74

76

85

129

54

7798

90

8 ⇒
45

54

62

42

56

5557

57

74

1522

50

3

65

129

97

101

16

98

52931069

666785

88

50

61

6096

125

736

63

103127

64

33

39

90

43

58

61

14

58

95107

108

65

23

81

11020

51

126

52

30

60

9113 72

62

12327

13126

49

59

87

53

102

113

115

38

29

99

119

124

31

59

120

37

68

121

10 105

56 8

69

1327

89

1

64

18

130

84109114

32

63

5

12

704

78

92

19

94117

17

35

28 118

11

46

122

36

48

66

7186

100

104

75

47

7780

54

53

82

2

76

25

112

41

116128

111

34

44

55 83

21

40

7924

Fig. 10. The succeeding R and F also fold into respective glider-like bricks. (Left) This
brick of F (Fnb) exposes Turn Signal 28-27-22 (boxed), which is usually “hidden” under
the previous zag. (Right) The exposed 28-27-22 (boxed) triggers the folding of next L
into a special brick (Lcre) for left carriage-return.

Formatting. The value has been successfully incremented but it is not in the
format (2) yet. In the upcoming zag, instances of F play their primary role to
format 1 bit output by module H (recall that instances of H and F are aligned
vertically and alternately). Both of the bricks of L for carriage-return, i.e., Lcrn
and Lcre, end at the bottom so that zags start at the bottom. All modules start
and end at the bottom in zags; note that nothing has to be transferred between
modules. That is, instances of H, L, and R fold into Hn, Lbn, and Rb, respectively.
Below the brick Hxc, an instance of F folds into Fy, where y = (x + c) mod 2.

References

1. Adleman, L., Chang, Q., Goel, A., Huang, M.D.: Running time and program size
for self-assembled squares. In: Proceedings of the STOC 2001, pp. 740–748. ACM
(2001)

2. Bryans, N., Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: The power of nonde-
terminism in self-assembly. Theory Comput. 9, 1–29 (2013)

3. Evans, C.G.: Crystals that count! Physical principles and experimental investiga-
tions of DNA tile self-assembly. Ph.D. thesis, Caltech (2014)

4. Geary, C., Étienne Meunier, P., Schabanel, N., Seki, S.: Proving the turing univer-
sality of oritatami co-transcriptional folding. In: Proceedings of the ISAAC 2018,
pp. 23:1–23:13 (2018)

5. Geary, C., Étienne Meunier, P., Schabanel, N., Seki, S.: Oritatami: a computational
model for molecular co-transcriptional folding. Int. J. Mol. Sci. 20(9), 2259 (2019)

6. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799–804
(2014)

7. Masuda, Y., Seki, S., Ubukata, Y.: Towards the algorithmic molecular self-assembly
of fractals by cotranscriptional folding. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS,
vol. 10977, pp. 261–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94812-6 22

https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1007/978-3-319-94812-6_22

Counting Infinitely by Oritatami Co-transcriptional Folding 575

8. McClung, C.R.: Plant circadian rhythms. Plant Cell 18, 792–803 (2006)
9. Minsky, M. (ed.): Computation: Finite and Infinite Machines. Prentice-Hall Inc.,

Upper Saddle River (1967)
10. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled

squares (extended abstract). In: Proceedings of the STOC 2000, pp. 459–468. ACM
(2000)

On Synchronizing Tree Automata
and Their Work–Optimal Parallel Run,

Usable for Parallel Tree Pattern Matching

Štěpán Plachý(B) and Jan Janoušek(B)

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

{plachste,Jan.Janousek}@fit.cvut.cz

Abstract. We present a way of synchronizing finite tree automata: We
define a synchronizing term and a k-local deterministic finite bottom–
up tree automaton. Furthermore, we present a work–optimal parallel
algorithm for parallel run of the deterministic k-local tree automaton
in O(log n) time with � n

logn
� processors, for k ≤ log n, or in O(k) time

with �n
k
� processors, for k ≥ log n, where n is the number of nodes of an

input tree, on EREW PRAM. Finally, we prove that the deterministic
finite bottom–up tree automaton that is used as a standard tree pattern
matcher is k-local with respect to the height of a tree pattern.

1 Introduction

Finite tree automaton (FTA) is a standard model of computation for the class of
regular tree languages [4,5]. Synchronizing finite string automaton [1,13,14] is
a well-studied principle in the theory of formal regular string languages. We are
not aware of any existing result dealing with synchronizing finite tree automata.

In this paper we present a new way of synchronizing finite tree automata:
We define a synchronizing term and a k-local deterministic finite bottom–up tree
automaton (k-local DFTA). In the theory of string languages reading a synchro-
nizing word from any configuration sets a deterministic finite string automaton
(DFA) in a well-defined state [1,13]. A stronger property of k-locality, k ≥ 0, of
the DFA occurs when all words of length at least k are synchronizing [13,14].
The new notions are introduced with analogous properties: The run of a DFTA
reading a synchronizing term results in a well-defined state in the root of the
term and a DFTA is k-local when all terms of height at least k are synchronizing.

Furthermore, we present a new work–optimal parallel algorithm for parallel
run of k-local DFTA in O(log n) time with � n

logn� processors, for k ≤ log n,
or in O(k) time with �n

k � processors, for k ≥ log n, where n is the number of
nodes of an input tree, on EREW PRAM. We note that the run of a DFTA
can be performed sequentially in O(n) time. Our parallel algorithm uses several
basic parallel techniques and for the sake of work-optimality it further uses

The authors acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 576–586, 2020.
https://doi.org/10.1007/978-3-030-38919-2_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_47&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_47

On Synchronizing Tree Automata and Their Work–Optimal Parallel Run 577

some nontrivial new operations on the data representation of the input tree.
We are not aware of any existing algorithm for work-optimal parallel run of
the DFTA. Parallelizing the run of DFTA was studied from the point of view
of complexity theory: Lohrey [9] showed that the membership problem for a
fixed tree automaton is in the DLOGTIME-uniform NC1 complexity class, i.e.,
it can be solved in O(log n) time with O(nc) processors for some constant c ≥ 1.
Effectively parallelising the run of k-local string DFA was described in [7].

Tree pattern matching (TPM) [6], where a tree pattern to be matched corre-
sponds to a connected subgraph of an input tree, is one of the most important
basic algorithmic tree-related problems, with such applications as those search-
ing in data tree representations, for example in compiler optimizations. Many
string pattern matching problems were successfully solved by the use of DFA as
a useful model of computation. For TPM it is possible to construct analogously
DFTA. See [3] for the way of constructing a standard tree pattern matcher as a
minimal DFTA, where the DFTA is extended by a simple output function indi-
cating matches of a fixed tree pattern by some specific states of the automaton.

Finally, we prove that the minimal DFTA that is used as a standard tree
pattern matcher [3] is k-local with respect to the height of a tree pattern. We
are not aware of any existing known result describing a work–optimal parallel
algorithm for some TPM problem. Various parallel TPM algorithms were intro-
duced, most notably in Ramesh et al. [11] and in Tarora et al. [12], where a
parallel TPM running in O(log n) time with � nm

log n� processors, where m is the
number of nodes of the tree pattern, on CREW PRAM is described. Our parallel
TPM is work-optimal for any given fixed tree pattern on EREW PRAM.

2 Basic Notions

A ranked alphabet F is a finite nonempty set of symbols each of which has
a nonnegative arity (or rank). The arity of a symbol f ∈ F is denoted by
arity(f) and the set of symbols of arity p is denoted by Fp. The set T (F ,X)
of terms over a ranked alphabet F and a set of variables X, X ∩ F = ∅, is the
smallest set defined as F0 ⊆ T (F ,X), X ⊆ T (F ,X) and if f ∈ Fp, p ≥ 1 and
t1, . . . , tp ∈ T (F ,X) then f (t1, . . . , tp) ∈ T (F ,X). A term t ∈ T (F ,X) is called
ground term if X = ∅ and the set of all ground terms is denoted by T (F). A tree
language is a set of ground terms. A term is called linear if each variable occurs at
most once in the term. All terms in this paper are assumed to be linear. A ground
substitution σ of a set of variables X over a ranked alphabet F is a mapping X →
T (F). Ground substitution can be extended to T (F ,X) in such a way that ∀f ∈
F0 : σ (f) = f and ∀p ≥ 1,∀f ∈ Fp,∀t1, . . . , tp ∈ T (F ,X) : σ (f (t1, . . . , tp)) =
f (σ (t1) , . . . , σ (tp)). A height of a term t ∈ T (F ,X) denoted by height (t) is a
function inductively defined as ∀f ∈ F0 : height (f) = 0, ∀x ∈ X : height (x) = 0
and ∀p ≥ 1, ∀f ∈ Fp, ∀t1, . . . , tp ∈ T (F ,X) : height (f (t1, . . . , tp)) = 1+
maxp

i=1 height (ti). A subterm t|p in a term t ∈ T (F ,X) on a position p ∈ N
∗

is a term defined as, if |p| = 0 then t|p = t, otherwise if t = f(t1, . . . , tr) then
t|ip′ = ti|p′ , where i ≤ r, p′ ∈ N

∗. The set of all subterms of t is denoted by

578 Š. Plachý and J. Janoušek

Subterms(t) and the set of all subterm positions of t is denoted by SubtPos(t).
A depth of the subterm position denoted by depth(p) is the length of p. A ground
term t ∈ T (F) matches a tree pattern p ∈ T (F ,X) if σ(p) = t for some ground
substitution σ.

A deterministic (bottom–up) finite tree automaton (DFTA) over a ranked
alphabet F is a 4-tuple A = (Q,F , Qf ,Δ), where Q is a finite set of states, Qf ⊆
Q is a set of final states, and Δ is a transition function of type f (q1, . . . , qn) → q,
where f ∈ Fn, n ≥ 0 and q, q1, . . . , qn ∈ Q. An extended transition function
Δ̂ of a DFTA A = (Q,F , Qf ,Δ) is a mapping T (F) → Q such that ∀f ∈
F0 : Δ̂(f) = Δ(f), ∀p ≥ 1,∀f ∈ Fp, ∀t1, . . . , tp ∈ T (F) : Δ̂(f(t1, . . . , tp)) =
Δ(f(Δ̂(t1), . . . , Δ̂(tp))). A DFTA A = (Q,F , Qf ,Δ) is said to accept a ground
term t ∈ T (F) if Δ̂(t) ∈ Qf . The DFTA A matches a tree pattern p ∈ T (F ,X)
if A accepts the ground term t iff t matches p. Such DFTA is called a tree pattern
matcher. A language of a set of states Q′ ⊆ Q is a set of ground terms defined
as L(Q′) = {t ∈ T (F) : Δ̂(t) ∈ Q′}. We assume the DFTA to have complete
transition function, therefore L(Q) = T (F). A language of the DFTA is L(Qf).
The DFTA is minimal if |Q| is minimal among automata accepting the same
language.

a

b

c

b

x

(a)

a

yb

x

(b)

a

b

c

b

c

(c)

Fig. 1. Example of terms over ranked alphabet F = {a2, b1, c0}. Terms (a) and (b)
are terms over F and set of variables X = {x, y}, while the term (c) is a ground term
over F . The term (c) can be created by applying a ground substitution σ to either (a)
or (b), such that σ(x) = c and σ(y) = b(c), and therefore (c) matches (a) and (b). The
position of constant c in (a) is 21.

A = (Q, F , Qf , Δ), where Q = {0, 1, 2, 3, 4}, F = {a2, b1, c0}, Qf = {4} and Δ :

c → 1

b (1) → 3

a (2, 3) → 4

a (3, 3) → 4

b (q) → 2, q �= 1

a (q1, q2) → 0, q1 /∈ {2, 3} ∨ q2 �= 3

Fig. 2. Example of a minimal DFTA matching the tree pattern from Fig. 1a.

Figures 1, 2 and 4 show examples of terms, DFTA matching the pattern in
Fig. 1a and its run on a ground term respectively. Note that terms are equivalent
to finite ordered rooted labeled ranked trees (further on only trees), where for a

On Synchronizing Tree Automata and Their Work–Optimal Parallel Run 579

term t ∈ T (F ,X) the set of nodes is SubtPos(t), the root is a node with position
being the empty sequence, the label of each node is a ranked symbol or a variable
found at its position in the term and each p′i ∈ SubtPos(t) is the i-th child of
its parent p′. We therefore use notions of terms and trees interchangeably. For
our algorithms we assume the input tree in an adjacency list form by arrays
label and children, where label[i] contains label of i-th node and children[i][j]
contains index of j-th child of i-th node.

As parallel computational model we use the standard EREW PRAM (exclu-
sive read exclusive write parallel random access machine with a shared memory).
A parallel algorithm is work-optimal if T (n, p) · p = O(SU(n)) for an input of
size n and p processors, where T (n, p) is the parallel time complexity of the
algorithm and SU(n) is the upper bound time complexity of the best known
sequential algorithm for the problem. Several fundamental parallel algorithms
are used, including prefix (suffix) sum, segmented prefix (suffix) sum (or seg-
mented scan), list ranking, parenthesis matching, all running in O(log n) time
with n/ log n processors, and Euler tour technique, which can be constructed in
O(1) time with n processors. For details see [4,8,10].

3 Synchronizing Term and k-Local DFTA

Assuming a DFA without unreachable states and with a complete transition
function, we can say that a string is synchronizing if the run of the DFA on the
string with any added prefix substring ends up in the same state. An analogous
operation for terms and tree patterns is adding a subterm, which can be achieved
only by substituting a variable. We define a synchronizing term as follows.

Definition 1. A term t ∈ T (F ,X) is called synchronizing for a DFTA A =
(Q,F , Qf ,Δ) if there exists a state q ∈ Q such that ∀σ : Δ̂ (σ (t)) = q.

Terms in Fig. 1a and c are synchronizing for the automaton in Fig. 2, while
the term in Fig. 1b is not. Note that all ground terms are synchronizing.

A DFA is called k-local if all strings of length at least k are synchronizing.
That way we need only a suffix of the input of length k to compute a state. We
define a similar property for tree automata such that we need a subtree of only
k levels to compute a state.

Definition 2. A minimal variable depth MVD (t) of a term t ∈ T (F ,X) is a
function defined as: ∀f ∈ F0 : MVD (f) = +∞; ∀x ∈ X : MVD (x) = 0; ∀p ≥
1,∀f ∈ Fp,∀t1, . . . , tp ∈ T (F ,X) : MVD (f (t1, . . . , tp)) = 1+minp

i=1 MVD (ti) .

Definition 3. DFTA A = (Q,F , Qf ,Δ) is k-local if all terms t ∈ T (F ,X)
such that MVD (t) ≥ k are synchronizing.

580 Š. Plachý and J. Janoušek

A = (Q, F , Qf , Δ), where Q = {0, 1}, F = {b1, c0}, Qf = {0} and Δ :

c → 0 b (0) → 1 b (1) → 0

Fig. 3. Example of a DFTA accepting ground terms with even number of symbols b.
This DFTA is not k-local for any k ≥ 0.

Figure 3 shows a DFTA that is not k-local for any k ≥ 0 since its states
represent the parity of the number of occurences of symbol b in a subtree, which
always depends on the entire subtree of any height.

For any tree pattern a DFTA matching that pattern can be constructed, as
shown in [3]. This DFTA is minimal and each state indicates a match of exactly
a set of some subterms of the pattern and therefore the state depends only on
a subtree no higher than the pattern and is k-local with respect to that height.
The automaton in Fig. 2 is a minimal DFTA matching the tree pattern from
Fig. 1a and is therefore 3-local.

Theorem 1. For each term p ∈ T (F ,X) a minimal DFTA A = (Q,F , Qf ,Δ)
matching p is k-local, where k = height(p).

4 Parallel Run of k-local DFTA on EREW-PRAM

The motivating idea for our parallel algorithm, described by Algorithm 1, is
dividing the input tree into segments of k levels, or possibly fewer levels in
the case of the lowest segment, assigning arbitrary states to each node and
performing two passes of the bottom–up computation of the k-local DFTA on
each segment in parallel. The first pass would be a synchronization phase that
obtains the correct initial states because of k locality. The second pass would
perform the run based on the correct states. However, such division is not trivial
when the input tree is in adjacency list form. Therefore linear order, defined by
Definition 4, is computed first. Table 1 shows an example computation of the
algorithm.

Algorithm 1. Parallel run of k-local DFTA
Require: k-local DFTA A, tree of size n given as arrays label and children
Ensure : state array with states of each node

1 Using Euler tour technique on children compute depth array with depth of each
node

2 DMKA ← depthModkSort(children, depth)
3 step ← computeStep(DMKA, depth)
4 ∀i < n : state[i] ← 0 init arbitrary state

5 computeState(A,DMKA, step, children, state) first pass

6 computeState(A,DMKA, step, children, state) second pass

On Synchronizing Tree Automata and Their Work–Optimal Parallel Run 581

a0

b2

a4

b3

c1

b2

a0

a0

a0

b2

b3

c1

c1

a0

c1b2

b3

c1

c1

b2

b2

b2

a4

b3

c1

b2

a4

b3

c1

b2

b3

c1

a0

b14

a15

b30

c31

b16

a17

a19

a25

b27

b28

c29

c26

a20

c24b21

b22

c23

c18

b1

b2

b3

a4

b12

c13

b5

a6

b10

c11

b7

b8

c9

Fig. 4. Figure on the left side shows example of a ground term where numbers in
each node represent states after a run of the DFTA in Fig. 2. Separated segments can
be computed independently in the parallel algorithm. Figure on the right side shows
groups of the depth-mod-k order of the tree for k = 3. Nodes are written with their
preorder number for further identification.

Definition 4. Depth-mod-k order of term t is a total preorder of SubtPos(t)
where ∀p1, p2 ∈ SubtPos(t) : p1 ≤ p2 ⇔ depth(p1) mod k ≤ depth(p2) mod k.

An i-th group of the order is an equivalence class of associated equivalence
relation to the preorder such that p mod k = i for p ∈ SubtPos(t) and i < k.

A linear depth-mod-k order of a term t is a linear order of SubtPos(t) that
is a maximal antisymmetric subrelation of the depth-mod-k order of t.

To compute the linear order we modify a parallel algorithm for computing
breadth-first traversal order of tree nodes in [2], where we change the order
of levels by modifying some pointers, as described in Algorithm 2. With the
Euler tour technique the algorithm constructs a list of parentheses and using
parenthesis matching [10] changes pointers to create the resulting order (Fig. 5).

With ordered nodes we can process all nodes in a group in parallel, start-
ing with the lowest group located at the end. As described in Algorithm 4,
all processors will traverse a group from right to left, as shown in Fig. 6, until
the boundary with the preceding group is reached where some processors might
stall if the size of the group is not divisible by the number of processors. To
determine when a processor should do computation on a node and when to stall,

582 Š. Plachý and J. Janoušek

Algorithm 2. Computation of depth-mod-k order
Require: children array of input tree with n nodes, depth array from Alg. 1
Ensure : depth-mod-k order permutation of input nodes

1 Function DepthModkSort(children, depth)
2 Using Euler tour technique on children compute an array of arcs EA
3 Using parallel reduction compute height as maximum of depth array
4 for all e ∈ EA do in parallel

5 par[e] ←
{

’)’ if e downgoing

’(’ if e upgoing

6 end
7 for all i ∈ 1, . . . , height do in parallel
8 par[−i] ← ’(’
9 par[|EA| − 1 + i] ← ’)’

10 end
11 Using parenthesis matching on par compute indices of matching parentheses

into nextPar
12 for all e ∈ EA do in parallel
13 if e downgoing then
14 nextPar[e] ← opposite arc of e
15 end

16 end
17 for all i ∈ 1, . . . , height do in parallel

18 nextPar[|EA| − 1 + i] ←
{

nextPar[−i − k] if i < height − k

nextPar[−i mod k] − 2 if i mod k 	= k − 1

19 end
20 for all e ∈ EA do in parallel
21 if e upgoing then
22 nextPar[e] ← nextPar[nextPar[e]]
23 end

24 end
25 Using list ranking on nextPar create array of lower nodes of corresponding

arcs, add root of the tree to the beginning and return result

while maintaining read exclusivity, we first preprocess the input with Algorithm 3
to calculate in which parallel step a node should be computed. For the traversal
at least k sequential steps are needed. Since each processor can stall at most once
for each group, the total number of stalls is no more than n with n/k processors.

All operations used can be computed work optimally with at most either
� n
log p� or �n

k � processors. Using the Brent’s scheduling principle [8] the whole
algorithm can then run work efficiently with the number of processors being
minimum of those values. Parallel time changes accordingly.

On Synchronizing Tree Automata and Their Work–Optimal Parallel Run 583

a0

b14

a15

b30

c31

b16

a17

a19

a25

b27

b28

c29

c26

a20

c24b21

b22

c23

c18

b1

b2

b3

a4

b12

c13

b5

a6

b10

c11

b7

b8

c9

) () (

) () (

) () () (

) () () (

) () () () (

) () () () (

) () () () () () (

) () () () (

) () () (

(

(

(

(

(

(

(

(

(

)

)

)

)

)

)

)

)

)

Fig. 5. Linked list of parentheses in Algorithm 2 for tree in Fig. 4 representing nodes,
excluding root, in a linear depth-mod-k order (see Fig. 6).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
a b b b a c a a c c c b b a a c b b b c c b b a b b c a b c b b
0 3 16 30 6 13 20 25 9 23 29 1 14 4 17 31 7 10 21 24 26 27 2 15 5 12 18 19 8 11 22 28

step 1step 2step 3step 4step 5step 6step 7step 8step 9

Fig. 6. Nodes in linear depth-mod-k order of the tree in Fig. 4 with parallel steps, com-
puted by Algorithm 3, in which a node should be processed when running Algorithm 4
with 4 processors.

Theorem 2. Algorithm 1 correctly computes the run of a k-local DFTA on an
input tree of size n in time O(max(k, log n)) with � n

max(k,logn)� processors on
EREW PRAM.

For the future work properties of synchronizing DFTA, such as those anal-
ogous to Černý conjecture [13] for DFA, can be studied as well as constructing
efficient parallel algorithms for various problems solvable by k-local DFTA.

584 Š. Plachý and J. Janoušek

Algorithm 3. Computation of step array
Require: linear depth-mod-k order array of tree of size n, depth array,

processor count p
Ensure : parallel iteration for each node when a state should be computed

1 Function computeStep(DMKA, depth)
2 for all i < n do in parallel
3 group[i] ← depth[DMKA[i]] mod k
4 GE[i] ← i = n − 1 ∨ group[i] 	= group[i + 1] group end

5 GEI[i] ← i · GE[i] group end index

6 end
7 Perform parallel segmented suffix sum on GEI with segment bound flags in

GE
8 for all i < n do in parallel
9 step[i] ← (GEI[i] − i) mod p = 0

10 end
11 Perform parallel suffix sum on step and return step

Algorithm 4. State computation traversal
Require: k-local DFTA, depth-mod-k order array of size n, step array,

children array, state array, processor id pid
Ensure : recalculated state array

1 Procedure computeState(A = (Q, F , Qf , Δ), DMKA, step, children, state)
2 do in parallel
3 j ← 1, i ← n − pid
4 while i >= 0 do
5 if step[i] = j then
6 f ← label[DMKA[i]], ch ← children[DMKA[i]]
7 childrenStates ← state[ch[0]] . . . state[ch[arity(f) − 1]]
8 state[DMKA[i]] ← Δ(f, childrenStates)
9 i ← i − p

10 end
11 j ← j + 1

12 end

13 done

On Synchronizing Tree Automata and Their Work–Optimal Parallel Run 585

Table 1. Computation of Algorithm 1 with the 3-local DFTA from Fig. 2, the input
tree from Fig. 4 and 4 processors. Arrays in parenteses are shown permuted by the
linear depth-mod-k order (array DMKA). Array GE indicates group end. Arrays GEI
(group end index) and step are shown before and after their respective suffix sum
operation. Array state is shown on initialization and after the first and the second
pass.

(DMKA) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DMKA 0 3 16 30 6 13 20 25 9 23 29 1 14 4 17 31 7 10 21 24 26 27 2 15 5 12 18 19 8 11 22 28

(label) a b b b a c a a c c c b b a a c b b b c c b b a b b c a b c b b

(children) 1 4 17 31 7 21 26 2 15 5 18 8 11 22 28 3 16 6 13 20 9 23 29

14 10 24 27 12 19 30 25

(depth) 0 3 3 3 6 6 6 6 9 9 9 1 1 4 4 4 7 7 7 7 7 7 2 2 5 5 5 5 8 8 8 8

(group) 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

GE 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

GEI 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 31

10 10 10 10 10 10 10 10 10 10 10 21 21 21 21 21 21 21 21 21 21 21 31 31 31 31 31 31 31 31 31 31

step 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1

9 9 9 8 8 8 8 7 7 7 7 6 6 6 5 5 5 5 4 4 4 4 3 3 2 2 2 2 1 1 1 1

(state) 0

0 2 2 3 4 1 0 0 1 1 1 2 2 0 0 1 2 3 2 1 1 2 2 0 2 2 1 0 2 1 2 2

0 2 2 3 4 1 0 0 1 1 1 2 2 4 0 1 2 3 2 1 1 2 2 4 2 3 1 0 3 1 3 3

References

1. Béal, M.-P., Perrin, D.: Symbolic dynamics and finite automata. In: Rozenberg,
G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 463–506. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-662-07675-0 10

2. Chen, C.C.-Y., Das, S.: Breadth-first traversal of trees and integer sorting in par-
allel. Inf. Process. Lett. 41, 39–49 (1992)

3. Cleophas, L.G.W.A.: Tree algorithms: two taxonomies and a toolkit. Ph.D. thesis,
Department of Mathematics and Computer Science (2008)

4. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.
grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007

5. Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, vol. 3,
pp. 1–68. Springer, New York (1997). https://doi.org/10.1007/978-3-642-59136-5

6. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM 29(1), 68–95
(1982)

7. Holub, J., Štekr, S.: On parallel implementations of deterministic finite automata.
In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 54–64. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02979-0 9

8. JaJa, J.F.: An Introduction to Parallel Algorithms. Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City (1992)

9. Lohrey, M.: On the parallel complexity of tree automata. In: Middeldorp, A. (ed.)
RTA 2001. LNCS, vol. 2051, pp. 201–215. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45127-7 16

10. Prasad, S.K., Das, S.K., Chen, C.C.-Y.: Efficient EREW PRAM algorithms for
parentheses-matching. IEEE Trans. Parallel Distrib. Syst. 5(9), 995–1008 (1994)

11. Ramesh, R., Ramakrishnan, I.V.: Parallel tree pattern matching. J. Symb. Comput.
9(4), 485–501 (1990)

https://doi.org/10.1007/978-3-662-07675-0_10
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-02979-0_9
https://doi.org/10.1007/3-540-45127-7_16
https://doi.org/10.1007/3-540-45127-7_16

586 Š. Plachý and J. Janoušek

12. Tarora, K., Hirata, T., Inagaki, Y.: A parallel algorithm for tree pattern matching.
Syst. Comput. Japan 24(5), 30–39 (1993)

13. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

14. Rosenauerová, B., Černý, J., Pirická, A.: On directable automata. Kybernetika
7(4), 289–298 (1971)

On the Hardness of Energy Minimisation
for Crystal Structure Prediction

Duncan Adamson1,2(B), Argyrios Deligkas2, Vladimir V. Gusev2,
and Igor Potapov1

1 Department of Computer Science, Univiersity of Liverpool, Liverpool, England
duncan.adamson@liverpool.ac.uk

2 Leverhulme Research Centre for Functional Materials Design, Liverpool, England

Abstract. Crystal Structure Prediction (csp) is one of the central and
most challenging problems in materials science and computational chem-
istry. In csp, the goal is to find a configuration of ions in 3D space
that yields the lowest potential energy. Finding an efficient procedure
to solve this complex optimisation question is a well known open prob-
lem in computational chemistry. Due to the exponentially large search
space, the problem has been referred in several materials-science papers
as “NP-Hard” without any formal proof. This paper fills a gap in the
literature providing the first set of formally proven NP-Hardness results
for a variant of csp with various realistic constraints. In particular, this
work focuses on the problem of removal : the goal is to find a substructure
with minimal energy, by removing a subset of the ions from a given initial
structure. The main contributions are NP-Hardness results for the csp
removal problem, new embeddings of combinatorial graph problems into
geometrical settings, and a more systematic exploration of the energy
function to reveal the complexity of csp. These results contribute to the
wider context of the analysis of computational problems for weighted
graphs embedded into the 3-dimensional Euclidean space, where our NP-
Hardness results holds for complete graphs with edges which are weighted
proportional to the distance between the vertices.

1 Introduction

One of the central and most challenging problems in materials science and com-
putational chemistry is the problem of predicting the structure of a crystal given
the set of ions composing it [14]. The goal is to find a structure of ions that
achieves the lowest energy. This problem, Crystal Structure Prediction (csp),
has remained open due to the complexity of solving it optimally [14] and the
combinatorial explosion following a brute-force approach. Current approaches
to this problem are based on heuristic techniques [9,12], however they cannot
guarantee optimality while remaining computationally demanding.

In generic formulations of csp there are many degrees of freedom due to
the numerous parameters: the number of ions, their positions, and the unique
interactions between each type of ion. The search space remains exponential in
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 587–596, 2020.
https://doi.org/10.1007/978-3-030-38919-2_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_48&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_48

588 D. Adamson et al.

size even for greatly simplified versions of csp. Due to this, csp has, incorrectly,
been referred to in several computational-chemistry papers as “NP-Hard and
very challenging” [11]. However the argument that the search must be done in
a set of exponential size implies NP-Hardness does not hold.

The two results which are often mentioned in context of the NP-Hardness of
csp are [3] and [13]. In [3], within the context of the Ising model, the authors
show NP-Hardness in the model of placing ±1 charges on a graph with degree
at most 6 taking into account only the local interactions between connected
vertices. In [13], provides a reduction to TSP, showing the problem belongs to
NP however not Hardness.

In this work, several variants of csp are considered, providing alternative
reasons for the hardness of closely related problems, focusing on the problem of
removal. Inspiration comes from hard combinatorial problems in graph theory
and proposes several new embeddings of NP-Hard graph problems into numerical
versions of csp which can be seen as an optimisation problem for weighted geo-
metric graphs with a non-linear objective function. The input is a configuration
of the ions, with the goal to remove a subset of the ions such that the interac-
tion energy among the remaining atoms is minimised. The problem of removing
vertices of a graph whose deletion results in a subgraph satisfying some specific
property have been intensively studied in the combinatorial graph theory. [8]
shows that for a large class of properties this problem is NP-Complete, extended
in [16] and [15] to further properties showing NP-Completeness for bipartite
graphs and for non-trivial hereditary properties.

The removal problem can be seen as a variant of combinatorial csp problem,
where the positions of the ions correspond to points in a discrete grid. The
idea is to find an optimal structure by placing many copies of the ions used to
build a new structure in unrealistic positions in the discrete space. Due to the
nature of the energy function, when the goal is to minimise the potential energy,
the excess ions must be removed. In this variant of the removal problem for
which NP-Hardness is shown, the initial configuration (from where the ions are
removed) is part of the input and has only vacant positions or positions with a
single ions in the discrete three-dimensional-Euclidean space.

Our Contributions. This work provides the first NP-Hardness results for csp
[7] with realistic constraints, providing new embeddings of combinatorial graph
problems in geometrical settings, as well as exploring the energy function in a
more systematic way that could reveal the computational complexity of csp.
Moreover, these results can be seen as part of a more general problem of remov-
ing vertices from a weighted graph embedded into 3D Euclidean space. Three
versions of this problem are considered:

– k-Charge Removal: Remove exactly k charges minimising the total energy;
– Minimal At-Least-k-Charge Removal: A generalisation of k-charge

removal where the removed set is a minimal set of at least k charges min-
imising the total energy;

On the Hardness of Energy Minimisation for Crystal Structure Prediction 589

– At-Least-k-Charge Removal: A generalisation of min-at-least-k-charge
removal where the removed set is of least charges but not necessarily minimal,
minimising the total energy.

One challenge of the Euclidean graphs considered here is that these graphs are
complete, with edges weighted proportional to the distance between the ver-
tices. Many classical NP-Hard problems are much harder to embed into this
setting. Even for some existing hardness results, in both the geometric and more
restricted Euclidean setting, to bring these problems into a bounded number of
dimensions often requires non-trivial technical proofs as dimension often is part
of the input [2,10]. Often these constructions utilise the results on geometric
graphs embedded into the plane [5,6], with many problems in this field open.

This work will be organised as follows: Sect. 2 provides relevant notation and
definitions, Sect. 3 presents NP-Hardness for the general case of the problems
under both energy function in F and the Coulomb (electrostatic) potential.
Section 4 restricts the problem to only 2 species under the Buckingham-Coulomb
(interatomic) potential, and is shown the remain NP-Hard in Theorem 5. The
full version of this paper, containing the omitted proofs is available at arXiv [1].

Theorem Summary Setting

Theorem 1 NP-Completeness by
reduction from the
clique problem

All problems, under any energy
function in F , charges of ±c for a given
c and an unbounded number of ion
species

Theorem 2 NP-Completeness by
extension of Theorem 1

All problems, under any energy
function in F , any bounded set of
charges and an unbounded number of
ion species

Theorem 3 Reduction to
max-weight-k-clique

k-charge removal or
minimal-at-least-k-charge removal
under any computable energy function,
charges of ±c for a given c, and a
unbounded number of ion species

Theorem 4 NP-Completeness by
reduction from the
knapsack problem

Minimal-at-least-k-charge removal and
at-least-k-charge removal, under the
Coulomb potential energy function,
unbounded number of charges and
unbounded number of ion species

Theorem 5 NP-Completeness by
reduction from
independent set on
penny graphs

All problems, under the
Buckingham-Coulomb potential energy
function, charges of ±1, and two
species of ion

590 D. Adamson et al.

2 Notation and Definitions

Unit Cell. A crystal is a solid material whose ions, are arranged in a highly
ordered arrangement, forming a crystal structure that extends in all directions.
A crystal structure is described by its unit cell; a region of R

3 bounded by a
parallelepiped representing a period containing ions in a specific arrangement.
The unit cells are stacked in R

3 tiling the whole space forming a crystal. The
unit cell is a parallelepiped alongside the arrangement of ions with their specie.
Each unit cell contains a set of n ions within the parallelepiped. Each ion, i,
has a specie, e.g. Ti or Sr, and a non-zero charge qi. The specie for an ion i
will be denoted S(i). All unit cells are neutrally charged, i.e.,

∑

1≤i≤n

qi = 0. An

arrangement defines a position for every ion in the unit cell.

Energy. The energy of a crystal is computed by summing the pairwise inter-
actions between all pairs of ions. A positive value for the pairwise interaction
means the two ions are repelling, while a negative value means they are attract-
ing. Each pair of species has a unique set of parameters (called force fields) which
are applied to the common energy function U alongside the Euclidean distance
between the ions. In general, energy is defined via series as a crystal is infinite.

In this paper interaction will be restricted to a single unit cell. The primary
reason is that the energy between ions in different unit cells quickly converges,
making the energy within a single unit cell a good approximation of the total.

Each arrangement has n ions and a corresponding potential energy PE, cal-
culated with respect to the given energy function U . The goal is to minimise
the potential energy. Pairwise interaction between two ions i and j with respect
to the energy function U is U(i, j), denoted Uij when it is clear from the con-
text. The value of Uij is defined by the force field of the ions and the Euclidean
distance between them, which is included as one of the parameters. The total
potential energy for an arrangement of n ions is given by PE =

∑

1≤i,j≤n,i �=j

Uij .

This paper will consider a general class of energy functions, called the con-
trollable potential functions, denoted F . All functions in F are computable in
polynomial time for any input. Intuitively, for every f ∈ F there exists a set
of force field parameters that counteract the distance parameter r. Formally, a
function f : Rn �→ R belongs to F if and only if for any given a ∈ R and any fixed
r ∈ R

+ there exists a set {x1 . . . xn−1} ∈ R
n−1 such that f(x1, . . . , xn−1, r} = a.

The most popular function for csp, which will be focused on in this paper, is
the Buckingham-Coulomb potential [4], which is the sum of the Buckingham and
Coulomb potentials. The Coulomb potential for a pair of ions i, j is UC

ij = qiqj
rij

,
where rij is the Euclidean distance between the ions. The Buckingham potential
for a pair of ions i, j, UB

ij , is defined by four parameters. These are the distance
and the three force field parameters, AS(i),S(j), BS(i),S(j), CS(i),S(j), which are
dependent on the specie of the ions. It should be noted that all three parameters
are positive values. The energy is calculated as UB

ij = AS(i),S(j)

e
BS(i),S(j)rij

− CS(i),S(j)

r6ij
.

Therefore the Buckingham-Coulomb potential is given by:

On the Hardness of Energy Minimisation for Crystal Structure Prediction 591

UBC
ij = UB

ij + UC
ij =

AS(i),S(j)

eBS(i),S(j)rij
− CS(i),S(j)

r6ij
+

qiqj
rij

.

Proposition 1. There exists a set of parameters for the Buckingham-Coulomb
function such that it is in F .

Crystals as Geometric Graphs. Using the above definitions, it can be shown
how crystals may be viewed as geometric graphs. Recall that each ion corre-
sponds to a charged point in R

3. Each ion is represented with a weighted vertex,
also placed into R

3 at the same position as the ion, giving a total of n vertices.
The vertex corresponding to the ion i, denoted vi, is assigned a weight of qi.
wt(vi) will denote the weight of a given vertex vi, i.e. wt(vi) = qi. For notation,
V + will denote the set of vertices with a positive weight in V , and V − for the set
of vertices with a negative weight in V . Between each pair of vertices there is an
edge, weighted by the pairwise interaction of the corresponding ions Uij . Note
that Uij will be determined by the length of the edge, which will be a straight
line in the space. The energy of a crystal graph G = {V,E} can be computed as
PE =

∑

{vi,vj}∈E

Uij . Geometric graphs created from a unit cell will be referred

to as crystal graphs.

The Charge Removal Problem. The Charge removal problem takes as input
a crystal graph G corresponding to a “dense” initial arrangement of ions, with
the goal of removing some subset of vertices X. In the most general case this
may be any subset, provided the final graph is charge neutral, meaning it satisfies∑

vi∈R

wt(vi) = 0. It will be assumed that the initial graph is charge neutral, and

therefore that X is also neutral. This work will consider three variants of this
problem where there are further conditions on the set, summarised in Table 1.
Note that the second of these, At-Least-k-Charges, becomes the general case
when k = 0. This work considers three restrictions on the removed set, which
are defined in Table 1. The base version of the problem is stated as:

Instance: A crystal graph G, with edges weighted by a given common energy
function U .

Goal: The set of charges R satisfying P from G such that G′ = G \R created by
the removal of R from G which minimises

∑

{vi,vj}∈E′
Uij .

From this problem, a decision version may be obtained by asking if there exists
a removal that leaves G′ with no-more total energy than some goal g, i.e.∑

vi,vj∈V ′,i �=j

Uij ≤ g. In the case there is some restriction on the output, there

may also be additional input - in all the cases considered here this will be a
natural k. In the remainder of this work, the problems under the restrictions in
Table 1 and will be denoted as follows:

592 D. Adamson et al.

– The k-Charge-Removal Problem (k-charge removal).
– The At-Least-k-Charge-Removal Problem (at-least-k-charge removal).
– The Minimal At-Least-k-Charge Removal Problem (minimal-at-least-k-

charge removal).

Table 1. Summary of restrictions for the charge removal problem.

Restriction Summary

k-Charges A neutral set of charges R where∣
∣
∣
∣
∣

∑

vi∈R+
wt(vi)

∣
∣
∣
∣
∣
= k

At-Least-k-charges A neutral set of charges R where R ⊆ V and
∑

vi∈R+
wt(vi) ≥ k

Minimal-At-Least-k-charges A minimal set of at-least-k-charges R - where
minimal means that there does not exist any
neutral subset R′ ⊂ R where R′ is also a set of at
least k-charges

Proposition 2. A solution to k-charge removal or at-least-k-charge
removal can be verified in polynomial time.

Proposition 3. A set of k-charges may be verified as minimal in polynomial
time if and only if the set of allowed values for charges is polynomially bounded.

Proposition 2 follows from noting that for a given graph with precomputed
weights for the edges, the requisite edges and vertices may be summed to verify
that it is either a set of k or of at-least-k charges, and that the energy is bellow
the required bound in the decision case. Proposition 3 is shown by reduction
from the subset sum problem to the problem of verifying if the set is minimal,
as defined in Table 1.

3 NP-Hardness for an Unbounded Number of Ion Species

This section will focus on results for an unbounded number of ion species. The-
orems 1, 2 and 4 will show NP-Hardness for various settings via a series of
reductions under the general class of potential function in the case of Theorems
2 and 2, and under the Coulomb energy in Theorem 4. Theorem 3 will show a
novel way of encoding the problem into the well studied max-weight clique prob-
lem. While these results will apply to all restrictions, it should be noted that in
the case the charges are not bounded, although minimal-at-least-k-charge
removal will remain NP-Hard it will not be in NP.

On the Hardness of Energy Minimisation for Crystal Structure Prediction 593

Theorem 1. k-charge removal, minimal-at-least-k-charge removal
and at-least-k-charge removal are NP-Complete for energy functions in
F for charges of ±c, for any natural number c.

Theorem 2. k-charge removal remains NP-Hard for set of allowed charges
with unique magnitude and an energy function within F .

Theorem 3. k-charge removal can be reduced to max-weight k-clique
in polynomial time, under the restriction that charges are limited ±c and the
energy function is computable within polynomial time.

Theorems 1 and 2 come by a reduction from the Max-Clique problem. Theorem
1 provides a construction for the decision version of the charge removal problem
from an instance of Max-Clique using constant charges such that under any of the
restrictions on the removed vertices a solution the the charge removal instance
will imply a solution to the Max-Clique problem. This is extended in Theorem 2,
where it is shown that this construction may be extended with a set of dummy
vertices, the removal of which may be done at no cost while maintaining the
total set a charge neutral. Theorem 3 provides a novel encoding of the charge
removal problem into the well known maximum weight clique problem.

Theorem 4. at-least-k-charge removal remains NP-Hard when the
energy function is limited to the Coulomb potential.

Theorem 4 compliments Proposition 3 by showing that, even in the case the
removal does not have to be verified as minimal, the complexity of finding a
solution may still be NP-Hard for the Coulomb potential function.

4 NP-Hardness for a Bounded Number of Species

In Sect. 3 NP-Hardness was shown for the case that there was an unbounded
number of species, and NP-completeness in the case that there is a bounded
number of charges. This will now be strengthened by considering instances with
only two unique species. Only the Buckingham-Coulomb potential function with
charges of ±1 will be considered in this section. All three problems will again
be considered, noting that for charges of ±1 k-charge removal is equivalent
to minimal-at-least-k-charge removal. NP-Hardness will be shown by a
reduction from independent-set on penny graphs adapting it to the Euclidean
settings of crystal graph of ions within a unit cell. The Independent Set problem,
denoted independent-set, takes as input a graph, G, and a natural number
k. The goal is to find an independent set, i.e. a set of vertices such that no two
are adjacent, of size k in G, or report that one does not exist. Penny graphs
are the class of graphs where each vertex may be drawn as a unit circle such
that no two circles overlap, and an edge between two vertices exist if and only if
the corresponding circles are tangent, i.e. they intersect at only a single point.
Finding an independent set on this class of graphs is known to be NP-Hard [5].

594 D. Adamson et al.

Sketch of the construction of the k-charge removal instance: Starting
with an instance of independent-set on a maximum degree 3 planar graph,
containing the graph and a natural number k a penny graph, G, is created using
Theorem 1.2 from Cerioli et al., using a radius of n

2 for the pennies. Graphs
created in this manner will be denoted long orthogonal penny graphs. The k-
charge removal instance is created by placing a positive ion above the centre
of each penny, and a negative ion bellow.

Ion Species: The positive and negative species are assigned charges of magni-
tude 1. From these species there are parameters for the interaction between two
ions of the positive specie, two ions of the negative specie, and between one ion
of the positive specie and one of the negative specie. For brevity, 1 and 2 will
denote the positive and negative specie respectively. Under this construction, the
interaction between the two ions of the positive specie is the same as between
two ions of the negative specie. Therefore the parameters that may be set are
A11, B11, C11, A12, B12, and C12.

Notation: Let k′ = n − k, being the number of charges that are required to
be removed to be left with an independent set of size k.charge Note that as
the charge of each ion has a magnitude of one, a removal of k′ can only be
achieved by removing k′ positive and k′ negative ions. The goal energy for the
construction is set as g = (k − 1)(A12

eB12 − C12 − 1). To simplify the equations
regarding the interaction between planes, let r̂ denote

√
r2 + 1. An independent

set is left if the ions left after a removal of k′ charges have labels corresponding
to an independent set in G. To ensure that an independent set is left of size k if
and only if one exists, the following three inequalities must be satisfied:

A11

eB11n
− C11

n6
+

1
n

+
A12

eB12n̂
− C12

n̂6
− 1

n̂
≥

∣
∣
∣
∣
A12

eB12
− C12 − 1

∣
∣
∣
∣ (1)

n2

∣
∣
∣
∣
A11

eB11r
− C11

r6
+

1
r

+
A12

eB12r̂
− C12

r̂6
− 1

r̂

∣
∣
∣
∣ ≤

∣
∣
∣
∣
A12

eB12
− C12 − 1

∣
∣
∣
∣ , r ≥

√
2n (2)

A11

eB11r
− C11

r6
+

1
r

+
A12

eB12r̂
− C12

r̂6
− 1

r̂
> 0, r ≥

√
2n (3)

Theorem 5 formally states the correctness of this reduction, via Lemmas 1–4.

Lemma 1. Inequalities (1) and (2) are sufficient to ensure that an independent
set is left if one exists.

Lemma 2. There exists, for any structure created from a long orthogonal penny
graph, some parameters such that Inequalities (1, 2) and (3) are satisfied.

Lemma 3. Given k pairs, the energy will be less than (k−1)(A12
eB12 −C12−1) only

if the pairs correspond to an independent set of size k, for A12
eB12 − C12 − 1 < 0.

Lemma 4. It is always preferable to remove pairs from the construction from a
long orthogonal penny graph under Inequalities (1–3).

On the Hardness of Energy Minimisation for Crystal Structure Prediction 595

Lemmas 1 and 2 show that the inequalities ensure that leaving an indepen-
dent set is preferable, and are satisfiable for the Buckingham-Coulomb potential.
Lemma 3 provides bounds, which may be calculated exactly using the construc-
tion provided by Lemma2. Lemma 4 proves that when removing either member
of a pair vertices, it is always preferable to select the the other member for
removal.

Theorem 5. k-charge removal, minimal-at-least-k-charge removal
and at-least-k-charge removal are NP-Complete when limited to only two
species of ion and restricted to the Buckingham-Coulomb potential function.

Proof. Lemma 1 shows that, under Inequalities (1) and (2), the optimal solution
will be to leave an independent set. Lemma 2 provides a construction such that
the inequalities are satisfiable. Lemma3 shows the upper bound is reachable if
and only if an independent set has been left. It follows from Lemma4 that it
is preferable to remove a set of pairs over any other set of charges. Therefore
there will be a satisfiable instance of k-charge removal or any generalisation
if and only if the instance of independent set on a max degree 3 planar
graph is satisfiable. Conversely if the independent set instance is satisfiable,
the corresponding k-charge removal instance can be satisfied by leaving the
vertices corresponding to the independent set in the penny graph construction.
Hence under these restriction all three problems will be NP-Complete. �	
Conclusions and Future Work: Motivated by analyses of computational com-
plexity for CSP Problem we defined a class of functions for which the k-charge
removal problem is NP-Complete in general. We have also shown that the prob-
lem remains NP-Complete under both the restriction that we have only two
species of ions and the Buckingham-Coulomb energy function and the restric-
tion we only use the Coulomb potential on an unbounded number of ion species.
One obvious question would be if approximation results can be gained for this
problem. From a chemistry stand point, while we have made progress towards
physical constructions there is still a lot that could be done. As such investi-
gation into the restrictions of having more realistic physical values remains an
important unexplored direction. Another question would be if we can investigate
the convergence of these interactions, particularly the Coulomb potential, over
a periodic structure to more fully understand the energy function.

References

1. Adamson, D., Deligkas, A., Gusev, V., Potapov, I.: On the Hardness of Energy
Minimisation for Crystal Structure Prediction. arXiv.org/abs/1910.12026

2. Ageev, A.A., Kelmanov, A.V., Pyatkin, A.V.: Np-hardness of the euclidean max-
cut problem. Doklady Math. 89, 343–345 (2014)

3. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys.
A: Math. Gen. 15(10), 3241–3253 (1982)

4. Buckingham, R.A.: The classical equation of state of gaseous helium, neon and
argon. Proc. Royal Soc. London Ser. A. Math. Phys. Sci. 168(933), 264–283 (1938)

http://arxiv.org/abs/org/abs/1910.12026

596 D. Adamson et al.

5. Cerioli, M.R., Faria, L., Ferreira, T.O., Protti, F.: A note on maximum indepen-
dent sets and minimum clique partitions in unit disk graphs and penny graphs:
complexity and approximation. RAIRO 45(3), 331–346 (2011)

6. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Disc. Math. 86(1),
165–177 (1990)

7. Zanella, M., et al.: Accelerated discovery of two crystal structure types in a complex
inorganic phase field. Nature 546(7657), 280 (2017)

8. Krishnamoorthy, M., Deo, N.: Node-deletion np-complete problems. SIAM J. Com-
put. 8(4), 619–625 (1979)

9. Lyakhov, A.O., Oganov, A.R., Mario, V.: How to predict very large and complex
crystal structures. Comput. Phys. Commun. 181(9), 1623–1632 (2010)

10. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
np-hard. In: WALCOM: Algorithms and Computation, pp. 274–285 (2009)

11. Oganov, A.R.: Crystal structure prediction: reflections on present status and chal-
lenges. Faraday Discuss. 211, 643–660 (2018)

12. Oganov, A.R., Glass, C.W.: Crystal structure prediction using ab initio evolution-
ary techniques: principles and applications. J. Chem. phys. 124(24), 244704 (2006)

13. Wille, L.T., Vennik, J.: Computational complexity of the ground-state determina-
tion of atomic clusters. J. Phys. A: Math. Gen. 18(8), L419–L422 (1985)

14. Woodley, S.M., Catlow, R.: Crystal structure prediction from first principles. Nat.
Mater. 7(12), 937 (2008)

15. Yannakakis, M.: Node-and edge-deletion np-complete problems. In: STOC, vol.
1978, pp. 253–264 (1978)

16. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput.
10(2), 310–327 (1981)

Practical Implementation of a Quantum
Backtracking Algorithm

Simon Martiel and Maxime Remaud(B)

Atos, Quantum R&D, 78340 Les Clayes-sous-Bois, France
{simon.martiel,maxime.remaud}@atos.net

Abstract. In previous work, Montanaro presented a method to obtain
quantum speedups for backtracking algorithms, a general meta-algorithm
to solve constraint satisfaction problems (CSPs). In this work, we derive
a space efficient implementation of this method. Assume that we want
to solve a CSP with m constraints on n variables and that the domain
in which these variables take their value is of cardinality d. Then, we
show that the implementation of Montanaro’s backtracking algorithm
can be done by using O(n log d) data qubits. We detail an implementation
of the predicate associated to the CSP with an additional register of
O(log m) qubits. We explicit our implementation for graph coloring and
SAT problems, and present simulation results. Finally, we discuss the
impact of the usage of static and dynamic variable ordering heuristics in
the quantum setting.

Keywords: Backtracking algorithm · Quantum walk · CSP · Graph
coloring · SAT

1 Introduction

Quantum computing. Quantum computing is one of the most promising emerging
computation technology. Theory promises algorithmic speedups ranging from
quadratic, for unstructured problems, up to exponential for some particular
key problems. Besides some problems such as integer factoring and its obvious
applications in cryptology, very few applicable large scale algorithms have been
derived or studied. In 2015, Montanaro [16] presented a general method to obtain
speedups of backtracking-based algorithms, relying on Belovs’ previous work [5].
The algorithm uses Quantum Walks, a well developed quantum algorithmic tool
intensively studied in the scope of search algorithms [1,2,7,13,14,19,20].

Constraint satisfaction problems. CSPs form a very general class of problems,
that encompass a large set of practical problems. The most famous examples are
the Boolean satisfiability problem (SAT) [12] and the graph coloring problem
[15]. CSPs have been widely studied and a well known meta-algorithm taking
advantage of their structure to solve them is backtracking. For example, the
DPLL [8,9] backtracking-based algorithm has been introduced in 1962 and is
currently the procedure at the basis of some of the most efficient SAT solvers

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 597–606, 2020.
https://doi.org/10.1007/978-3-030-38919-2_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_49&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_49

598 S. Martiel and M. Remaud

[10,11,21]. Since backtracking algorithms explore a tree whose vertices are partial
solutions to the associated CSP [21], one can think of using a quantum walk to
explore such a tree faster.

Quantum backtracking. In 2017, Ambainis and Kokainis [3] have dealt with Mon-
tanaro’s algorithm in depth. Using these works, it has been shown how to get a
quantum speedup of the two most efficient forms of enumeration (a lattice algo-
rithm) [4] and of branch-and-bound algorithms [17]. Thus, Montanaro’s algo-
rithm is of high interest in computing science and cryptography. In 2018, its
complexity has been reviewed when applied to the graph coloring problem and
SAT, assuming access to a very large amount of qubits, since the circuit depth
was aggressively optimized [6]. The aim of our work is to investigate a memory
efficient implementation of this backtracking algorithm, in order to be able to
validate the algorithm on small instances via classical emulation. We manage to
reduce the number of data qubits to O(n log d) and ancillae to O(log m).

The paper is organized as follows. Section 2 introduces definitions. We discuss
the choice of heuristic in Sect. 3. Then, Sect. 4 is about the use of the predicate,
how to implement it and how to check some generic constraints. We conclude by
presenting some of the results we got for graph coloring, thanks to a simulator,
in Sect. 5.

2 Preliminaries

Thereafter, we will denote by P a constraint satisfaction problem defined by a
triple 〈X,D,C〉, where X = {x1, . . . , xn} is a set of n variables, D = [[1, d]] is a
set of d values and C is a set of m constraints. If a variable has no value, we will
denote it by “∗”.

Let x be an assignment of values to the n variables of a CSP P. It will
be said to be a solution to P if it verifies all the constraints in C; complete if
∀xi ∈ X, xi �= ∗, partial otherwise; valid if it is partial and can be extended to
a solution; invalid if it is partial and not a solution.

A standard approach for solving a CSP P is the technique of backtracking.
For this, we assume that we have access to a predicate P which can receive an
assignment (complete or partial) of values x as argument and returns “true” if
x is a solution, “indeterminate” if it is valid, “false” otherwise. We also assume
access to a heuristic h which specifies which variable should be instantiated next.

Montanaro’s backtracking algorithm [16] is based on a quantum walk on trees.
The idea is summarized as follows. Consider a rooted tree T with T vertices,
labeled r, 1, . . . , T − 1, the vertex r being the root of T . Hereafter, A (resp.,
B) will denote the set of vertices at an even (resp., odd) distance from r and
x −→ y will mean that y is a child of x in the tree. The quantum walk operates
on the space spanned by {|x〉; x ∈ {r} ∪ [[1, T − 1]]}, and starts in the state |r〉.
It is based on a set of diffusion operators Dx, where Dx is the identity if x is a
solution, otherwise, diffuses on the subspace spanned by {|x〉} ∪ {|y〉 : x −→ y}.
A step of the walk consists in applying the operator RBRA, where:

RA =
⊕

x∈A Dx and RB = |r〉〈r| +
⊕

x∈B Dx

Practical Implementation of a QBA 599

Thanks to these operators, an algorithm for detecting a solution in a tree can
be established (Algorithm 1). It is the phase estimation of the operator RBRA

which allows the quantum walker to go through the paths leading to a solution
in T . By applying the detection algorithm to wisely chosen vertices of T , it is
possible to construct an hybrid algorithm for finding a solution (described in
Subsection 2.1 of [16]). Montanaro has shown that it finds a solution in time
complexity O(

√
Tn3/2 log n log 1/δ) and O(

√
Tn log3 n log 1/δ) if there exists a

unique solution. For more details, we refer to [16].

Algorithm 1. Detecting a solution (Algorithm 2 of [16])
Require: Operators RA, RB , a failure probability δ, upper bounds on the depth n

and the number of vertices T . Let β, γ > 0 be universal constants to be determined.
1: Repeat K = �γ log 1/δ� times:
2: Apply phase estimation to the operator RBRA with precision β/

√
Tn.

3: If the eigenvalue is 1 then accept

4: If number of acceptances ≥ 3K/8 then return “Solution exists”
5: else return “No solution”

3 Variable Ordering Heuristics

In order to be able to test the algorithm with the means we have, we initially
took a close look at the choice of the heuristic. Indeed, the largest qubit over-
head in the implementation comes from the heuristic implementation, since one
has to store variable indexes inside the quantum memory (O(n log n) qubits are
needed). Moreover, even though the depth overhead of the heuristic is asymptot-
ically negligible compared to the rest of the algorithm, it seems that for instances
of reasonable size, this overhead is not negligible.

Since we are interested in optimizing the number of qubits, we chose to
deal with static variable ordering (SVO) heuristics, which can be classically
precomputed at the start of the meta-algorithm. The benefits are twofold: only
O(n log d) data qubits are required to store an assignment and we do not have
to produce a reversible implementation of a dynamic variable ordering (DVO)
heuristic.

In [6,18], the implementation of Montanaro’s algorithm has been optimized
in depth and its complexity has been studied by considering the use of a DVO
heuristic. However, the benefit of implementing a DVO heuristic is unclear in the
range of parameters for which it is claimed in [6] that a graph could be colored in
one day (up to approximately 150 vertices). Let T (resp., T ′) be the number of
vertices in the backtracking tree associated with an SVO (resp., DVO) heuristic
and cT (resp., cT ′) the number of calls to RBRA made by Montanaro’s algorithm.
If we denote the depth of the overhead due to the implementation of a DVO
heuristic by dh and the depth of the operators RA and RB without heuristic by
dR, we have that using a dynamic heuristic is more efficient than using a static

600 S. Martiel and M. Remaud

one if cT dR ≥ cT ′(dR + dh), i.e. if cT

cT ′ ≥ 1 + dh

dR
. This is asymptotically true

but thanks to the script computing the algorithm’s complexity to solve graph
coloring given in [18], one can compute an estimate of dh

dR
. In the considered

range of parameters, we can see that using a DVO heuristic would be better
than using an SVO one if cT ≥ 4

3cT ′ . Even if no DVO heuristic has been proved
to verify such a bound, DSATUR could be a good candidate. Nevertheless, the
time-saving trick allowed by a quantum DVO heuristic may not be obvious and
it might be worth using an SVO heuristic, at least for “small” instances.

The modified algorithm for RA and RB is presented as Algorithm 2.

Algorithm 2. Implementation of the operator RA

Require: A basis state |�〉|v1〉 . . . |vn〉 ∈ C
n+1 ⊗ (Cd+1)⊗n corresponding to a partial

assignment x1 = v1, · · · , x� = v�. Ancilla registers : Hanc, Hchildren, storing a tuple
(a, S), where a ∈ {∗} ∪ D, S ⊆ D, initialized to a = ∗, S = ∅.

1: If � is odd, swap a with v�.
2: Compute P (x).
3: If P (x) is true, go to step 8.
4: If a = ∗, subtract 1 from �.
5: For each w ∈ D, if P (v1, · · · , v�, w) is not false, set S = S ∪ {w}.
6: If � = 0, i = n, else, i = 1. Perform I − 2 |φi,S〉〈φi,S | on Hanc.
7: Revert steps 5 and 4.
8: Revert steps 2 and 1.

RB is similar, except that: step 1 is preceded by the check “If � = 0, return”; “odd” is
replaced with “even” in step 1; and the check “If � = 0 is removed from step 6.

4 Generic Implementation

Thereafter, we will use the following notations: ν = �log (n + 1), δ =
�log (d + 1) and μ = �log (m + 1).

The most straightforward way of implementing the predicate P is to compute
a logical AND of the result of the evaluation of each constraint over the current
variable assignment. This would lead to a circuit using m + 1 work qubits. We
present another solution, a quantum counter, using only μ qubits.

In the case of the partial predicate, an index � stored in a quantum register
indicates that the first � + 1 variables have been assigned a value. Therefore,
if is sufficient to check the constraints that depend on at least one variable in
{xi1 , · · · , xi�

}. To find out if a constraint has to be checked, we use a system
of comparison of values, one of which is quantum and the other classical. The
overall process requires O(m) additions on ν qubits.

Similarly, if we apply the detection algorithm to a vertex located at the �-th
level of the backtracking tree, it is unnecessary to check the constraints that
depend solely on the variables in {xi1 , · · · , xi�−1}.

Practical Implementation of a QBA 601

St
ep

1
St
ep

2
St
ep

4
St
ep

5
St
ep

6

d
×

∀
co
ns
tr
ai
nt

∀
co
ns
tr
ai
nt

∀
co
ns
tr
ai
nt

∀
co
ns
tr
ai
nt

|�〉
/ν

•
−
1

+
1

•
±

M
∓

M
•

|o
v
er

〉
•

•

|v
1
〉

/
δ

v�←→Hanc

ifl≡1mod2

Check

Check

Check

Check

v�+1←+1

Check

Check

Check

Check

v�+1←−d

. . .

|v
n
〉

/
δ

|H
a
n

c
〉

/
δ

U
† 1

cZ
cZ

U
1

U
† n

cZ
U

n

|H
c
h

il
d
r
e
n
〉

/
d

|ct
rl

〉
•

•
•

•

|co
u
n
te

r〉
/

μ
+
1

−
1

+
1

−
1

|P
〉

︷︸
︸︷

︷
︸︸

︷
︷

︸︸
︷

︷
︸︸

︷
︷

︸︸
︷

︷
︸︸

︷

︷
︸︸

︷
︷

︸︸
︷

︷
︸︸

︷
︷

︸︸
︷

F
ig
.
1
.
C

ir
cu

it
co

rr
es

p
o
n
d
in

g
to

A
lg

o
ri

th
m

2
fo

r
R

A
.
S
te

p
s

7
a
n
d

8
a
re

n
o
t

re
p
re

se
n
te

d
si

n
ce

th
ey

co
n
si

st
in

re
v
er

si
n
g

st
ep

s
5
,
4
,
2

a
n
d

1
.
S
te

p
3

is
re

a
li
ze

d
b
y

co
n
tr

o
ll
in

g
cZ

(c
o
n
tr

o
ll
ed

Z
)

o
p
er

a
ti

o
n
s

in
S
te

p
6

w
it

h
|P

〉.
In

th
e

sa
m

e
w

ay
,
it

is
su

ffi
ci

en
t

to
co

n
tr

o
l
th

e
th

re
e

cZ
in

S
te

p
6

to
co

n
tr

o
l
th

e
w

h
o
le

o
p
er

a
to

r,
d
u
e

to
th

e
re

v
er

si
b
il
it
y

o
f
th

e
o
th

er
st

ep
s.

C
ir

cu
it

fo
r

R
B

is
q
u
it

e
si

m
il
a
r.

“
If

�
≡

1
m

o
d

2
”

is
re

p
la

ce
d

b
y

“
If

�
≡

0
m

o
d

2
”

in
S
te

p
1
.

S
te

p
6

is
si

m
p
li
fi
ed

(t
h
e

tw
o

la
st

cZ
o
p
er

a
ti

o
n
s,

U
n

a
n
d

U
† n

a
re

re
m

ov
ed

).
A

n
a
d
d
it

io
n
a
l

a
n
ci

ll
a
ry

q
u
b
it

se
t

to
0

is
n
ec

es
sa

ry
.
It

is
fl
ip

p
ed

b
ef

o
re

S
te

p
1

if
�

=
0

a
n
d

u
se

d
to

co
n
tr

o
l
th

e
re

m
a
in

in
g

cZ
o
p
er

a
ti

o
n
.

602 S. Martiel and M. Remaud

4.1 How to Implement a Predicate

Let P = 〈X,D,C〉 be a CSP. For all i ∈ [[1, n]], the binary representation of the
value assigned to xi is denoted by vi. The symbol ∗ will be encoded by 0.

The step 2 in Fig. 1 verifies if an assignment is solution to P, by checking for
all i ∈ [[1,m]] the constraint Ci ∈ C. An ancillary register is used as a counter.
In order to check Ci, a subroutine depending on the set Yi of involved variables
in Ci will be used and will increase the counter if Ci is not verified. Once all
the constraints have been checked, the counter will be equal to the number of
constraints that are violated. Thus, if it is 0, we set the result qubit to 1. Then,
we reverse the Ci checking operations to reset the counter to 0. At the end of
the circuit, the result qubit will carry P (v1, · · · , vn).

We also want to be able to verify if a partial assignment x1 = v1, · · · , x�+1 =
v�+1 is valid for P. For this purpose, we check for all i ∈ [[1,m]] the constraint Ci if
maxxi∈Yi

{i}−1 ≤ �. In the following, ∀i ∈ [[1,m]], Mi will denote maxxi∈Yi
{i}−1

and M0 = 0.
In order to compute the comparison operator, we add a bit (most significant

one) to |�〉 (call it |a〉) and use the following procedure (denoted by M):

1. If Mi −Mi−1 > 0, subtract it from |�−Mi−1〉, otherwise, add it to |�−Mi−1〉;
2. If Mi > � (i.e., if maxxi∈Yi

{i} > � + 1), then some overflow will occur, and
thus, |a〉 will be flipped. Use |a〉 to control the Ci checking operation.

Within the scope of an optimization of the depth of our implementation, note
that constraint checking operations can easily be parallelized. We divide C in
k ∈ N sets of m

k constraints and use a copy of the vi registers and a counter for
checking each one. This involves using O(kn log d) qubits but the depth of the
predicate would be divided by k (we just fan-out/fan-in vi registers to k copies,
which can be done in depth O(log k)).

4.2 How to Check a Constraint

For the specific case of Boolean variables, we suggest to represent the bit 0 by
the quantum state |10〉, the bit 1 by the quantum state |11〉 and the unassigned
symbol ∗ by |00〉. Our suggestion stems from the fact that thanks to this choice,
it is simpler to manipulate the variables. Controlling the right qubit by the left
one allows us to do the negation of the Boolean variable without having a side
effect on the unassigned values. The right qubit will allow us to distinguish 1 from
∗ and 0, which will be useful to check a disjunction of literals (by incrementing
the counter if all the right qubits of these literals are 0).

Since we have chosen that the value 0 means that vi = ∗, we can easily check
if the variable xi has been assigned a value (e.g., if the i-th vertex of a graph
G has been colored). In order to do this, the “Check” operation (Fig. 1) is a
δ-Toffoli gate checking that each bit of vi is 0 and targeting a qubit set to 0
(ctrl). Thus, this qubit can be used to control a counter increment by 1.

If we want to check if the variables xj and xk have different values (e.g., if
the coloring of the edge between the j-th and the k-th vertices of a graph is

Practical Implementation of a QBA 603

well colored), we can use the same idea as above. In fact, we want to increase
the couter if vj = vk, i.e. if vj ⊕ vk = 0. For that, we apply a bit-wise XOR to
the values of the two variables (the result is stocked in place of vk) and then we
apply the δ-Toffoli gate, controlled by the bits of vj ⊕ vk.

4.3 General Structure

Thanks to the precedent subsections, step 2 and most of step 5 of Algorithm 2
can be realized. The rest of the implementation is most straightforward, circuit
of the operator RA is given in appendix (Fig. 1). Note that, contrary to what is
stated in [6], we can simply add one control qubit to three (resp., one) controlled-
Z gates in step 6 to control the whole operator RA (resp., RB).

5 Simulation Results

Now, we present some results of our simulations for the graph coloring problem.
Please note that despite these graphs being small and our implementation being
space optimized, up to 30 qubits are necessary.

v4

v1 v2

v3

1 2 3 4 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Number of qubits of precision

A
cc
ep

ta
nc

e
pr

ob
ab

ili
ty

v4

v1 v3

v2

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of qubits of precision

A
cc
ep

ta
nc

e
pr

ob
ab

ili
ty

Fig. 2. (a): a first graph. (b): some results of our simulations for graph in Fig. (a). (c):
a second graph. (d): some results of our simulations for graph in Fig. (c). (Color figure
online)

For the first example, we used our implementation of Montanaro’s algorithm
for graph coloring on the graph in Fig. 2.(a) with 2 colors. Obviously, no 2-
coloring exists for this graph, but it is quite interesting to wonder which precision
the Algorithm 1 requires in the phase estimation step to output “No solution”, on
such a small graph. Figure 2.(b) presents the probabilities of acceptance depend-
ing on the precision used. We can see that for a precision smaller than 4, the
Algorithm 1 will fail with high probability, since the threshold probability fixed
in [16] is 0.375 (blue line).

For the second example, we applied the algorithm on the graph in Fig. 2.(c)
with 3 colors and colored the vertices in increasing order of indices. We can

604 S. Martiel and M. Remaud

Table 1. Comparison of our RBRA circuit with CKM one.

Circuit Input qubits Ancillae Toffoli Depth

DVO-CKM [6] O(n log n) O(n2d log d) O(md log d) O(n log n)

SVO-CKM O(n log d) O(n2 log d) O(m log d) O(n log n)

Our O(n log d) O(log m) O(md log n) O(md log n log log n)

see that v2 must be the same color as v1 if we want to get a solution. We
distinguished the cases where v1 = v2 and v1 �= v2 (v1 �= ∗, v2 �= ∗, v3 = v4 = ∗)
and looked at the results where the algorithm has been applied on these partial
colorings. Figure 2.(d) presents the probabilities of acceptance depending on the
precision used: plus signs when v1 = v2, crosses otherwise. Algorithm 1 quickly
discriminates the two cases, since 2 qubits of precision are already sufficient.

6 Conclusion

In this paper, we presented our implementation of Montanaro’s algorithm, but an
improved quantum algorithm for backtracking has been introduced by Ambai-
nis and Kokainis [3], reducing the queries complexity from O(

√
Tn log 1

δ) to
O(n3/2

√
T ′ log2 n log T

δ), where T ′ is the number of vertices of T actually explored
by a classical backtracking algorithm. Nevertheless, Montanaro’s algorithm can
not be left out since it is a component of Ambainis-Kokainis’ algorithm.

While Campbell et al. [6] assumed access to an extremely large number of
physical qubits to propose a depth optimized method to implement Montanaro’s
algorithm, we have presented techniques minimizing the space usage (Table 1).
For that, we especially looked at the implementation of the predicate and the
heuristic. We have proposed the use of a quantum counter for the former (stating
the number of ancillae to O(log m)) and highlighted the fact that up to a certain
point, the latter might not be quantumly implemented (improving the number
of input qubits from O(n log n) to O(n log d)). However, these propositions are
not asymptotically competitive, although our implementation of the predicate
could be parallelized to be efficient and could lead to a trade-off between the
space usage and the time usage. As far as the heuristic is concerned, it would be
interesting to establish a precise resource estimation and define to what extent
an SVO heuristic would present benefits compared to a DVO one.

Acknowledgments. This work was supported by Atos. The implementation was
developed in python using Atos’ pyAQASM library. All simulations were performed on
the Atos Quantum Learning Machine. We acknowledge support from the French ANR
project ANR-18-CE47-0010 (QUDATA), the QuantERA ERA-NET Cofund in Quan-
tum Technologies implemented within the European Union’s Horizon 2020 Program
(QuantAlgo project), and the French ANR project ANR-18-QUAN-0017 (QuantAlgo
Project).

Practical Implementation of a QBA 605

References

1. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum
Inf. 01(04), 507–518 (2003). https://doi.org/10.1142/S0219749903000383

2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput.
37(1), 210–239 (2007). https://doi.org/10.1137/S0097539705447311

3. Ambainis, A., Kokainis, M.: Quantum algorithm for tree size estimation, with
applications to backtracking and 2-player games. In: Proceedings of the 49th
STOC. ACM (2017). https://doi.org/10.1145/3055399.3055444

4. Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking
discrete pruning. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS,
vol. 11272, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03326-2 14

5. Belovs, A., Childs, A.M., Jeffery, S., Kothari, R., Magniez, F.: Time-efficient quan-
tum walks for 3-distinctness. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.,
Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 105–122. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39206-1 10

6. Campbell, E., Khurana, A., Montanaro, A.: Applying quantum algorithms to con-
straint satisfaction problems. Quantum 3, 167 (2018). https://doi.org/10.22331/
q-2019-07-18-167

7. Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponen-
tial algorithmic speedup by a quantum walk. In: Proceedings of the 35th STOC.
ACM (2003). https://doi.org/10.1145/780542.780552

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

9. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM
7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

11. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In:
Handbook of Knowledge Representation. Elsevier (2008). https://doi.org/10.1016/
S1574-6526(07)03002-7

12. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability
(SAT) problem: a survey. In: Handbook of Combinatorial Optimization. Springer
(1999) https://doi.org/10.1007/978-1-4757-3023-4 7

13. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys.
44(4), 307–327 (2003). https://doi.org/10.1080/00107151031000110776

14. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In:
Proceedings of the 39th STOC. Theory of Computing (2007). https://doi.org/10.
1145/1250790.1250874

15. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper.
Res. 17(1), 1–34 (2010). https://doi.org/10.1111/j.1475-3995.2009.00696.x

16. Montanaro, A.: Quantum walk speedup of backtracking algorithms. Theory Com-
put. 14(15), 1–24 (2018). https://doi.org/10.4086/toc.2018.v014a015

17. Montanaro, A.: Quantum speedup of branch-and-bound algorithms.
arXiv:1906.10375 (2019)

18. Montanaro, A.: Data from Quantum algorithms for CSPs. c9pb. Accessed Jul 2019.
https://doi.org/10.5523/bris.19va21gun3c7629f291kmd6w37

https://doi.org/10.1142/S0219749903000383
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-642-39206-1_10
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S1574-6526(07)03002-7
https://doi.org/10.1016/S1574-6526(07)03002-7
https://doi.org/10.1007/978-1-4757-3023-4_7
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1145/1250790.1250874
https://doi.org/10.1145/1250790.1250874
https://doi.org/10.1111/j.1475-3995.2009.00696.x
https://doi.org/10.4086/toc.2018.v014a015
http://arxiv.org/abs/1906.10375
https://doi.org/10.5523/bris.19va21gun3c7629f291kmd6w37

606 S. Martiel and M. Remaud

19. Santha, M.: Quantum walk based search algorithms. In: Agrawal, M., Du, D.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 31–46. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-79228-4 3

20. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: FOCS 2004.
IEEE (2004). https://doi.org/10.1109/FOCS.2004.53

21. van Beek, P.: Backtracking search algorithms. In: Handbook of Constraint Pro-
gramming. Elsevier (2006). https://doi.org/10.1016/S1574-6526(06)80008-8

https://doi.org/10.1007/978-3-540-79228-4_3
https://doi.org/10.1109/FOCS.2004.53
https://doi.org/10.1016/S1574-6526(06)80008-8

Simplified Emanation Graphs: A Sparse
Plane Spanner with Steiner Points

Bardia Hamedmohseni1, Zahed Rahmati1(B), and Debajyoti Mondal2

1 Department of Mathematics and Computer Science,
Amirkabir University of Technology, Tehran, Iran

{hamedmohseni,zrahmati}@aut.ac.ir
2 Department of Computer Science, University of Saskatchewan, Saskatoon, Canada

dmondal@cs.usask.ca

Abstract. Emanation graphs of grade k, introduced by Hamedmohseni,
Rahmati, and Mondal, are plane spanners made by shooting 2k+1 rays
from each given point, where the shorter rays stop the longer ones upon
collision. The collision points are the Steiner points of the spanner.

We introduce a method of simplification for emanation graphs of grade
k = 2, which makes it a competent spanner for many possible use cases
such as network visualization and geometric routing. In particular, the
simplification reduces the number of Steiner points by half and also signif-
icantly decreases the total number of edges, without increasing the span-
ning ratio. Exact methods of simplification is provided along with com-
parisons of simplified emanation graphs against Shewchuk’s constrained
Delaunay triangulations on both synthetic and real-life datasets. Our
experimental results reveal that the simplified emanation graphs outper-
form constrained Delaunay triangulations in common quality measures.

Keywords: Network visualization · Mesh generation · Plane spanners

1 Introduction

Let G = (V,E) be a geometric graph in the Euclidean plane. For a pair of
vertices u, v, we denote by dG(u, v) and dE(u, v), the minimum graph distance
and the Euclidean distance between u and v, respectively. The spanning ratio of
G is the maximum value of dG(u,v)

dE(u,v) over all pairs of vertices {u, v} ∈ V . A graph
is called a t-spanner if its spanning ratio is less than or equal to t.

Many applications use t-spanners, and in general, planar geometric graphs, in
different applied areas of computational geometry and data visualization. Nach-
manson et al. [10] introduced a system called GraphMaps for interactive visu-
alization of large graphs based on constrained Delaunay triangulations. Mondal
and Nachmanson [9] introduced and used a specific mesh called the competi-
tion mesh to improve GraphMaps. Given a set of points P , a competition mesh

The full version of this paper can be found in arXiv [8].
Work of D. Mondal is supported in part by NSERC.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 607–616, 2020.
https://doi.org/10.1007/978-3-030-38919-2_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_50&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_50

608 B. Hamedmohseni et al.

is constructed by shooting from each point, four axis-aligned rays at the same
speed, where the shorter rays stop the longer ones upon collision (the rays that
are not stopped are clipped by the axis-aligned bounding box of P). This can
also be seen as a variation of a motorcycle graph [3]. The points corresponding
to the collisions are called Steiner points.

The ray shooting idea that the competition mesh used, encouraged the intro-
duction of a new, general t-spanner called the emanation graph by Hamed-
mohseni, Rahmati, and Mondal [6]. An emanation graph of grade k, is obtained
by shooting 2k+1 rays around each given point. Given a set P of n points in the
plane, an emanation graph Mk is constructed by shooting 2k+1 rays from each
point p ∈ P with equal π

2k
angles between them. Each ray stops as soon as it hits

another ray of a larger length or upon reaching the bounding box R(P). When
two parallel rays collide they both stop and when two rays with equal length
collide at a point, one of them is randomly stopped. The competition mesh is
thus the emanation graph of grade 1. Figure 1(left) depicts an emanation graph
of grade 2 with six points in the plane.

An emanation graph of grade 1 is a
√

10-spanner with at most 4n Steiner
points [6]. Emanation graphs of larger grades allow many redundant edges and
Steiner points, i.e., elements that can be removed without increasing the span-
ning ratio. Redundant edges make a spanner visually cluttered and unsuitable
for the visualization purposes unless we further refine the layout. In this paper we
propose a simplification for the emanation graphs of grade 2 (Fig. 1 (right)). Our
simplified version of the emanation graph has the potential to be used in tools
such as GraphMaps for interactive visualization of large graphs, and serve as an
alternative spanner with better properties. We now briefly review the literature
related to the emanation graphs and other geometric spanners.

Fig. 1. (Left) A non-simplified and complete emanation graph of grade k = 2 for an
example point set, and (Right) its simplified version.

Related Work: The literature on geometric spanners is rich and there are many
approaches to construct geometric spanners and meshes. We refer the reader
to [2] and [11] for the surveys on geometric spanners and mesh generation,
respectively. Emanation graph was motivated by a well-studied question in this
context: Given a set P of n points in the plane, can we compute a planar spanner

Simplified Emanation Graphs: A Sparse Plane Spanner with Steiner Points 609

G = (V,E) of P with small size, degree, spanning ratio and few Steiner points?
There are fewer approaches known for constructing planar spanners with Steiner
points compared to the vast literature on planar geometric spanners that do not
use them.

Comparing emanation graphs with traditional spanners such as Delaunay
triangulation and its variants reveals interesting differences. While Delaunay
meshes generally have better spanning ratios, there is no guarantee on the min-
imum angle between edges incident to the same node, i.e. angular resolution of
the resulting graph. Shewchuk [12] has thoroughly examined the angular con-
straints on Delaunay triangulations and introduced a Delaunay mesh generation
algorithm which adds Steiner points to the original vertex set to increase the
graph’s angular resolution; however, this algorithm does not guarantee to exit for
angular constraints over 34◦, meaning that it may run forever. For an emanation
graph, the angular resolution is determined by it’s grade k, and all emanation
graphs of grade k = 2 have 45◦ angular resolution.

Contributions: We provide a simplification method for emanation graphs which
works by building a Simplified Emanation Graph (SEG) from scratch, instead of
removing extra edges from the original version. Then we compare SEG with con-
strained Delaunay triangulations and demonstrate it’s advantages under various
quality metrics. Good geometric properties of emanation graphs mostly belong
to grades k ≤ 2, e.g. much fewer vertex degrees and sufficiently good spanning
ratio. Yet the current form of these graphs output a cluttered and visually com-
plex layout. We provide a simplification method for graphs of grade k = 2. Thus
whenever we refer to Simplified Emanation Graph (SEG) in this paper, we refer
to grade k = 2. This simplification process greatly reduces the total number of
edges while the good properties of the original graph such as the spanning ratio
and angular resolution are preserved.

We compared emanation graphs with Delaunay triangulation on both real-life
geospatial data and synthetic point sets. The synthetic point sets were created
from small world graphs by FMMM algorithm [4], which is a well-known force
directed algorithm to create network visualization. The experimental results
reveal the reduction of total number of edges, total edge length and the aver-
age vertex degree in less than half, while the number of Steiner points and the
spanning ratios are comparable.

2 Simplification Method

In an emanation graph, it is common to find two paths of shortest length between
a pair of vertices, e.g. p1 and p3 in Fig. 1 (left). Our simplification attempts to
remove such redundancy.

We iterate on the vertices and find only one nearest neighbor for every 2k+1

directions. Although this appears to be similar to the construction of Θ-graphs,
but there are also significant differences in the technique for finding appropriate
sweep lines. After selecting this nearest neighbor, we check whether they can

610 B. Hamedmohseni et al.

connect or that their connection is somehow interfered by a ray of another vertex.
For the ease of explanation, the rightward ray of a vertex is labeled r1 and its
other rays are numbered counter-clockwise (Fig. 2). During the computation of
the neighbors of p, we will refer to two important vertex types ps (the ‘top’
neighbor to connect to p) and pc (the candidate vertices to check while searching
the correct neighbor). We use emanated rays {r1, r2, r3, ...} and their angular
bisectors labeled b1, a1, a2, b2, respectively, as guidelines to sweep appropriate
regions (cones) to search for ps and pc. We use the notation Ca1a2 to refer to
the cone shaped region between the two guidelines a1 and a2, and denote by lg
a sweep line orthogonal to the guideline g, starting from p.

Fig. 2. (left)–(middle) Illustration for the selection of ps. Both sweep lines start at
the same time from p and stop as soon as one finds a vertex ps. (right) An example,
where a successful connection between p and ps has been made, but a horizontal sweep
cannot find ps.

While describing the computation, instead of iterating on directions, we
rotate the plane by (π

2k
)-degrees at each step, and then find a proper top neigh-

bor for each vertex. The top neighbor of each vertex p is labeled ps: The first
vertex found sweeping up p’s top cones Ca1r3 and Cr3a2 . Two sweep lines la1

and la2 , orthogonal to a1 and a2, respectively, are used simultaneously to sweep
Ca1r3 and Cr3a2 as drawn in Fig. 2 (left)–(middle).

Note that using a single horizontal sweep line may not hit the correct neighbor
ps to be connected to p, e.g. the first point q hit by the horizontal sweep line
maybe a vertex near ps in the same cone and one of the downward rays of ps

may block the connection between q and p (contradicting that q is the correct
neighbor). Figure 2 (right) illustrates an example for such cases.

To find whether ps should be connected to p, we need to check whether
there is a vertex pc with |p|y ≤ |pc|y < |ps|y whose ray reaches the potential
connection between ps and p faster than that of the rays of ps and p. If so, then
ps and p should not be connected. The notation |p|y refers to the y coordinate
of vertex p. We now show how to check each candidate pc vertex in the four
cones Cb1r2 , Cr2a1 , Ca2r4 , and Cr4b2 . Cones Cr1b1 and Cb2r5 and their vertices
are skipped as no vertex in these areas can reach p’s connection to ps in time.

We use sweep lines with angles specific to each cone to find the first pc vertex
in that cone, i.e. the vertex winning the competition of reaching p’s connection
to ps among all the points in the underlying cone. Such a selection of the first
candidate vertex pc ensures that its ray is not interfered by another point inside

Simplified Emanation Graphs: A Sparse Plane Spanner with Steiner Points 611

Fig. 3. Sweep lines used to select pc in each cone around p, drawn in yellow color. They
start from p and stop upon finding a vertex. (Color figure online)

ps

p

pc

ps

p

pc

ps

p

pc

r2

b1

r4

b2

a1a2
r3

r1

r2

b1

r4

b2

a1a2
r3

r1

r2

b1

r4

b2

a1a2
r3

r1

r3

r′
4

r3r3

r′
4

r′
4

Fig. 4. Left and middle depict two different cases where pc has interfered, right shows
a successful connection between ps and p.

this cone. Figure 3 illustrates the sweep lines for each cone. Depending on their
geometric properties, every vertex in a cone has one ray which is the most
competent, for example in a vertex pc ∈ Cb1r2 , it’s r4, the north-western ray,
may interfere with p, thus to find the most competent vertex inside Cb1r2 we
use a vertical sweep line lr1 starting from p. In other words, if pc is the correct
neighbor to be connected to p, then to reach the ray of p, any subsequent point
in the cone will need to have a longer ray than that of pc. The same method
applies to the other cases.

After finding our candidate pc vertices, we must check for special conditions in
each and every one of them individually in order to know whether they can block
the connection between ps and p. These conditions are thoroughly explained
later. For every vertex p and each rotation, we find ps and a list of possibly
interfering vertices pc using the selection methods provided above. During these
iterations we skip pairs that are already connected, therefore, if p is already
connected to ps, we do not check if ps can connect to p. This almost halves the
total number of edges and Steiner points by avoiding redundant paths between
two connected vertices in the original emanation graph. Theorem 2 provides a
bound on total Steiner points in a SEG.

612 B. Hamedmohseni et al.

Fig. 5. Left depicts the case where pc has interfered, right shows a successful connection
between ps and p.

For each pc ∈ Cb1a1 , there are four different cases in which pc does not
interfere the connection between ps and p. Figures 4 and 5 illustrate the example
for each case, where the rightmost section in each figure depicts the case when
p can successfully connect to p. The conditions are as follows:

1. ps ∈ Ca1r3 and pc ∈ Cb1r2 and |ps|x < |pc|x and ps is below r′
4 of pc: the

continued refraction of r4 of pc after hitting r3 of p; see Fig. 4.
2. ps ∈ Ca1r3 and pc ∈ Cr2a1 and ps is swept before pc by the sweep line lb1

orthogonal to b1 of p; see Fig. 5 (top).
3. ps ∈ Cr3a2 and pc ∈ Cb1r2 and ps is swept before pc by a sweep line orthogonal

to r2 of p; see Fig. 5 (middle).
4. ps ∈ Cr3a2 and pc ∈ Cr2a1 and |psp|x < |pspc|y; see Fig. 5 (bottom).

Explaining cases where pc ∈ Ca2b2 and |pc|x < |p|x is straightforward, as every
condition needs to be vertically mirrored, relative to p. We thus describe the
conditions regarding these mirrored cases without any additional figure.

1. ps ∈ Cr3a2 and pc ∈ Cb2r4 and |ps|x > |pc|x and ps is below r′
2 of pc: continued

refraction of r2 of pc after hitting r3 of p.
2. ps ∈ Cr3a2 and pc ∈ Cr4a2 and ps is swept before pc by a sweep line orthogonal

to b2 of p.
3. ps ∈ Ca1r3 and pc ∈ Cb2r4 and ps is swept before pc by a sweep line orthogonal

to r4 of p.
4. ps ∈ Ca1r3 and pc ∈ Cr4a2 and |pps|x < |pcps|y.

Simplified Emanation Graphs: A Sparse Plane Spanner with Steiner Points 613

Properties of SEG: The following two lemmas discuss a few properties that SEG
provides as a spanner. These properties along with ones that result into a visually
less cluttered image, highlight the purpose of SEG opposed to it’s normal version
and in comparison to other commonly used spanners. Yet the lemma proofs are
omitted from this paper and provided in our full paper [8].

Lemma 1. A SEG on a set of n points can be constructed in time O(n ·
polylog(n)).

Lemma 2. A SEG of grade k = 2 is a max-degree-8 geometric spanner with at
most 4n Steiner points.

Table 1. Results of our comparisons on 3 random and two real data sets. CIT marks
the results related to World’s most populated cities data set while AIR refers to the data
set of US Airlines, lines that are unmarked are related to our random experimentation,
based on averages of 1000 instances. SEG stands for Simplified Emanation Graph of
grade k = 2 and DEL C = α is a α◦ constrained Delaunay Triangulation.

ConfigurationPoint

Count

Data

Set

Steiner

Points

Max

Degree

Average

Degree

Edge

Count

Max Edge

Len

Edge

Length

Total Edge

Length

Min

Angle

Spanning

Ratio

SEG 100 197 6.20 2.55 379 80.33 19.36 7319 45 1.88

DEL C=0 100 0 9.55 5.66 283 304.15 50.50 14301 0.57 1.37

DEL C=22.5100 87.73 9.05 5.40 506 89.49 29.34 14803 22.68 1.44

DEL C=33 100 315.60 8.18 5.56 1156 56.95 18.75 21392 33.07 1.59

SEG 500 1085 6.85 2.63 2087 69.35 12.58 26261 45 2.07

DEL C=0 500 0 10.31 5.91 1478 317.07 28.97 42820 0.27 1.39

DEL C=22.5500 253 9.48 5.75 2165 76.87 21.06 45576 22.55 1.60

DEL C=33 500 1017 8.69 5.79 4398 47.44 14.35 62963 33.02 1.84

SEG 1000 2177 7.01 2.66 4231 58.10 9.52 40289 45 2.16

DEL C=0 1000 0 10.72 5.95 2974 284.05 21.16 62933 0.20 1.40

DEL C=22.51000 472 9.75 5.83 4296 64.75 15.91 68346 22.53 1.96

DEL C=33 1000 1933 8.90 5.86 8601 39.35 10.95 94099 33.01 2.16

SEG 235 AIR 485 7 2.69 970 61.17 9.95 9651 45 1.96

DEL C=0 235 AIR 0 11 5.89 692 291.34 26.64 18432 0.06 1.39

DEL C=22.5235 AIR 221 9 5.57 1270 66.82 15.5 19682 22.53 1.48

DEL C=33 235 AIR 729 8 5.66 2727 56.96 10.15 27691 33 1.73

SEG 1000 CIT 1161 7.00 2.94 3177 580 20.39 64796 45 2.28

DEL C=0 1000 CIT 0 12 5.95 2975 2024 50.93 151541 0.09 1.41

DEL C=22.51000 CIT 1358 10 6.28 7414 373 27.64 192302 22.55 1.49

DEL C=33 1000 CIT 4676 9 6.03 17139 166 18.34 308560 33.00 1.6

3 Experimental Comparison

In this section we compare SEG with graphs generated with Delaunay triangu-
lation: constrained [12] and normal.

We generated three sample data sets [7], each containing 1000 random
Newman Watts Strogatz small world graphs using NetworkX [5]. All the graphs

614 B. Hamedmohseni et al.

Fig. 6. (left) A SEG of grade 2 on a sample of size 1000. (right) The corresponding
33◦ constrained Delaunay triangulation.

in a data set contains the same number of nodes. Thus the three data sets contain
graphs of size 100, 500, and 1000. We generated the layout for all these graphs
using the fast multi-pole multilevel (FMMM) layout [4]. Aside from experiment-
ing on randomly generated data, we also tried SEG on two commonly used data
sets: Locations of 1000 Most Populated Cities and US Airports [1].

Figure 6 depicts SEG and the corresponding constrained Delaunay triangu-
lations for a sample of size 1000.

Although one would like to have angular constraints higher than 33◦ and
close to what emanation graph gives, but the algorithm for constrained Delaunay
triangulation doesn’t guarantee an exit for larger angular resolutions. We used
Triangle [13] to compute the Delaunay triangulations. The metrics we chose to
compare our samples are Steiner Point Count, Vertex Degree, Edge Count, Edge
Length, Angle and Spanning Ratio. Results are depicted in Table 1, separated by
different configurations and the number of vertices. Every row of the table shows
the mean performance over all 1000 instances of the graphs. In comparison with
33◦ constrained Delaunay triangulation, SEG provides:

– Much better angular resolution (45◦ compared to 33◦)
– Less than half the number of edges
– Less than half the total edge length
– Less than half the average vertex degree
– Slightly worse spanning ratio (within a factor of 1.18 when n = 100 and

n = 500; and the comparable when n = 1000)
– Comparable number of Steiner points (less than half the number of Steiner

points for n = 100; but slightly worse for n = 1000)

4 Discussion

In this paper we present an algorithm to simplify emanation graphs of grade k =
2, and experimentally evaluate its aesthetic qualities compared to the Delaunay

Simplified Emanation Graphs: A Sparse Plane Spanner with Steiner Points 615

triangulation and constrained Delaunay triangulation. Our experimental result
shows the potential of the simplified emanation graph to be considered as a good
alternative to these traditional spanners.

A theoretical open question is to prove a tight upper bound on spanning
ratio of the simplified version. Furthermore, one can implement simplified ema-
nation graphs in visualization systems such as GraphMaps [10] to compare the
visual results with that of generated by the Delaunay and constrained Delaunay
triangulations.

Another interesting avenue for future research is to look for local drawing
methods for emanation graph, which output a roughly exact drawing based on
user’s view-port and zoom level, without computing all other nodes outside user’s
view-port. Also, extending simplified emanation graphs to a triangulated mesh
by triangulating the faces maybe considered as a possible extension of this paper.

References

1. Gephi sample data sets: Us airlines (2019). https://github.com/gephi/gephi/wiki/
Datasets. Accessed 6 June 2019

2. Bose, P., Smid, M.H.M.: On plane geometric spanners: a survey and open problems.
Comput. Geom. 46(7), 818–830 (2013)

3. Eppstein, D., Goodrich, M.T., Kim, E., Tamstorf, R.: Motorcycle graphs: canonical
quad mesh partitioning. Comput. Graph. Forum 27(5), 1477–1486 (2008)

4. Hachul, S., Jünger, M.: Large-graph layout with the fast multipole multilevel
method. University of Cologne, Computer Science Department, Technical report.
Cologne (2005)

5. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynam-
ics, and function using networkx. In: Proceedings of the 7th Python in Science
Conference (SciPy) (2008)

6. Hamedmohseni, B., Rahmati, Z., Mondal, D.: Emanation graph: a new t-spanner.
In: Proceedings of the 30th Canadian Conference on Computational Geometry
(CCCG), pp. 311–317 (2018)

7. Hamedmohseni, B., Rahmati, Z., Mondal, D.: Simplified emanation graph -
implementations and tests (2019). https://github.com/sneyes/SEG/tree/master.
Accessed 6 June 2019

8. Hamedmohseni, B., Rahmati, Z., Mondal, D.: Simplified emanation graphs: A
sparse plane spanner with steiner points. https://arxiv.org/abs/1910.10376 (2019)

9. Mondal, D., Nachmanson, L.: A new approach to GraphMaps, a system browsing
large graphs as interactive maps. In: Telea, A., Kerren, A., Braz, J. (eds.) Pro-
ceedings of the 13th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISIGRAPP), pp. 108–119.
SciTePress (2018)

10. Nachmanson, L., Prutkin, R., Lee, B., Riche, N.H., Holroyd, A.E., Chen, X.:
GraphMaps: browsing large graphs as interactive maps. In: Di Giacomo, E., Lubiw,
A. (eds.) GD 2015. LNCS, vol. 9411, pp. 3–15. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-27261-0 1

11. Owen, S.J.: A survey of unstructured mesh generation technology. In: Proceedings
of the 7th International Meshing Roundtable (IMR), pp. 239–267 (1998)

https://github.com/gephi/gephi/wiki/Datasets
https://github.com/gephi/gephi/wiki/Datasets
https://github.com/sneyes/SEG/tree/master
https://arxiv.org/abs/1910.10376
https://doi.org/10.1007/978-3-319-27261-0_1
https://doi.org/10.1007/978-3-319-27261-0_1

616 B. Hamedmohseni et al.

12. Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and delaunay
triangulator. In: Lin, M.C., Manocha, D. (eds.) WACG 1996. LNCS, vol. 1148, pp.
203–222. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0014497

13. Triangle: A two-dimensional quality mesh generator and delaunay triangulator
(2013). https://www.cs.cmu.edu/∼quake/triangle.html. Accessed 6 June 2019

https://doi.org/10.1007/BFb0014497
https://www.cs.cmu.edu/~quake/triangle.html

Simultaneous FPQ-Ordering and Hybrid
Planarity Testing

Giuseppe Liotta1 , Ignaz Rutter2 , and Alessandra Tappini1(B)

1 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy
giuseppe.liotta@unipg.it, alessandra.tappini@studenti.unipg.it

2 Department of Computer Science and Mathematics, University of Passau,
Passau, Germany

rutter@fim.uni-passau.de

Abstract. We study the interplay between embedding constrained pla-
narity and hybrid planarity testing. We consider a constrained planarity
testing problem, called 1-Fixed Constrained Planarity, and prove
that this problem can be solved in quadratic time for biconnected graphs.
Our solution is based on a new definition of fixedness that makes it
possible to simplify and extend known techniques about Simultaneous
PQ-Ordering. We apply these results to different variants of hybrid
planarity testing, including a relaxation of NodeTrix Planarity with
fixed sides, that allows rows and columns to be independently permuted.

1 Introduction

A flat clustered graph (G,S) consists of a graph G and a set S of vertex disjoint
subgraphs of G called clusters. An edge connecting two vertices in different
clusters is an inter-cluster edge while an edge with both end-vertices in a same
cluster is an intra-cluster edge. A hybrid representation of (G,S) is a drawing of
the graph that adopts different visualization paradigms to represent the clusters
and to represent the inter-cluster edges. For example, Fig. 1(a) depicts a flat
clustered graph and Fig. 1(b) shows a NodeTrix representation of this graph.

A NodeTrix representation is a hybrid representation of a flat clustered
graph where the clusters are depicted as adjacency matrices and the inter-cluster
edges are drawn according to the node-link paradigm. NodeTrix representa-
tions have been introduced to visually explore non-planar networks by Henry
et al. [7] in one of the most cited papers of the InfoVis conference. They have
been intensively studied in the last few years, see e.g. [4,6].

PolyLink representations are a generalization of NodeTrix representa-
tions. In a PolyLink representation every vertex of each cluster has two copies
that lie on opposite sides of a convex polygon (in a NodeTrix representation the

Work partially supported by: MIUR, grant 20174LF3T8 AHeAD: efficient Algo-
rithms for HArnessing networked Data; Dip. Ingegneria Univ. Perugia, grants
RICBASE2017WD-RICBA18WD: “Algoritmi e sistemi di analisi visuale di reti comp-
lesse e di grandi dimensioni”; German Science Found. (DFG), grant Ru 1903/3-1.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 617–626, 2020.
https://doi.org/10.1007/978-3-030-38919-2_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_51&domain=pdf
http://orcid.org/0000-0002-2886-9694
http://orcid.org/0000-0002-3794-4406
http://orcid.org/0000-0001-9192-2067
https://doi.org/10.1007/978-3-030-38919-2_51

618 G. Liotta et al.

Fig. 1. (a) A flat clustered graph (G,S). Clusters S1 and S2 are highlighted. (b) A
NodeTrix representation of (G,S). (c) A PolyLink representation of (G,S). (d) An
intersection-link representation of (G,S).

polygon is a square); see Fig. 1(c). Intersection-link representations are another
example of hybrid representations: Each vertex of (G,S) is a simple polygon
and two polygons overlap if and only if there is an intra-cluster edge connecting
them [1]. Figure 1(d) is an intersection-link representation with unit squares.

Given a flat clustered graph (G,S) and a hybrid representation paradigm,
it makes sense to ask whether (G,S) is hybrid planar, that is, whether (G,S)
admits a drawing in the given paradigm such that no two inter-cluster edges
cross. In general terms, hybrid planarity testing is a more challenging problem
than “traditional” planarity testing. Hybrid representations allow multiple copies
for each vertex, which facilitates the task of avoiding crossings but makes the
problem of testing the graph for planarity combinatorially more complex. Hybrid
planarity testing can be studied in both the “fixed sides” and the “free sides”
scenarios. Let e = (u, v) be an inter-cluster edge where u is a vertex of cluster
Cu ∈ S and v is a vertex of Cv ∈ S. The fixed sides scenario specifies the sides
of the geometric objects representing Cu and Cv to which e is incident; the free
sides scenario allows the algorithm to choose the sides of incidence of e. For
example, NodeTrix Planarity with fixed sides specifies whether e is incident
to the top, bottom, left, or right copy of u (v) in the matrix representing Cu (Cv).

This paper studies different variants of hybrid planarity testing in the
fixed sides scenario. It adopts a unified approach that models these problems
as instances of a suitably defined constrained planarity testing problem on a
graph G. The constrained planarity problem specifies for each vertex v which
cyclic orders for the edges of G incident to v are allowed. Choosing an order for a

Simultaneous FPQ-Ordering and Hybrid Planarity Testing 619

vertex of G influences the allowed orders for other vertices of G; such dependen-
cies between different allowed orders are expressed by a directed acyclic graph
(DAG) whose nodes are FPQ-trees (a variant of PQ-trees). Our contribution is
as follows:

• We introduce and study 1-Fixed Constrained Planarity and show that
this problem can be solved in quadratic time for biconnected graphs, by mod-
eling it as an instance of Simultaneous FPQ-Ordering. 1-Fixed Con-
strained Planarity generalizes the partially PQ-constrained planarity
testing problem studied by Bläsius and Rutter [2]. Our solution exploits a
new definition of fixedness that simplifies and extends results of [2].

• We show that a relaxation of NodeTrix Planarity with fixed sides, that
allows to independently permute the rows and the columns of the matri-
ces, can be modeled as an instance of 1-Fixed Constrained Planarity,
and hence it can be solved in quadratic time if the multi-graph obtained
by collapsing the clusters to single vertices is biconnected. We recall that
NodeTrix Planarity with fixed sides is NP-complete in general, but it is
linear-time solvable if the rows and the columns of each matrix cannot be
permuted [4]. Thus it makes sense to further explore the conditions under
which the problem is polynomially tractable.

• We introduce PolyLink representations and we show that biconnected
instances of PolyLink Planarity with fixed sides can be solved in quadratic
time. As a byproduct, we obtain that a special instance of intersection-link
planarity, clique planarity with fixed sides, can be solved in quadratic time.
Note that clique planarity is NP-complete in general [1]. We remark that
PolyLink Planarity is equivalent to NodeTrix Planarity with free
sides if the polygons have maximum size four and each side is associated with
the same set of vertices.

For reasons of space, the results about PolyLink Planarity and some
missing proofs and details can be found in [9].

2 Preliminaries

PQ-Trees: A PQ-tree is a data structure that represents a family of permuta-
tions on a set of elements [3]. In a PQ-tree, each element is represented by a leaf
node, and each non-leaf node is either a P-node or a Q-node. The children of a
P-node can be arbitrarily permuted, while the order of the children of a Q-node
is fixed up to a reversal. Three main operations are defined on PQ-trees [2,3].
Let T be a PQ-tree and let L be the set of its leaves. Given S ⊆ L, the projection
of T to S, denoted as T |S , is a PQ-tree T ′ that represents the orders of S allowed
by T , such that T ′ contains only the leaves of T that belong to S. T ′ is obtained
form T by removing all the leaves not in S and simplifying the result, where
simplifying means, that former inner nodes now having degree 1 are removed
iteratively and that degree-2 nodes together with both incident edges are iter-
atively replaced by single edges. The reduction of T with S, denoted as T + S,

620 G. Liotta et al.

is a PQ-tree T ′ that represents only the orders represented by T where the leaves
of S are consecutive. A Q-node in T +S can determine the orientation of several
Q-nodes of T , while if we consider a P-node μ′ in T + S, there is exactly one
P-node μ in T that depends on μ′. We say that μ′ stems from μ. Given two
PQ-trees T1 and T2, the intersection of T1 and T2, denoted as T1 ∩ T2, is a
PQ-tree T ′ representing the orders of L represented by both T1 and T2. If T1

and T2 have the same leaves, their intersection is obtained by applying to T2 a
sequence of reductions with subsets of leaves whose orders are given by T1 [2].

Simultaneous PQ-Ordering: An instance of Simultaneous PQ-Ordering
[2] is a DAG of PQ-trees that establishes relations between each parent node
and its children nodes. Informally, the DAG imposes that the order of the leaves
of a parent node must be “in accordance with” the order of the leaves of its
children. More formally, let N = {T1, . . . , Tk} be a set of PQ-trees whose leaves
are L(T1), . . . , L(Tk), respectively. Let I = (N,Z) be a DAG with vertex set N
and such that every arc in Z is a triple (Ti, Tj ;ϕ) where Ti is the tail vertex,
Tj is the head vertex, and ϕ : L(Tj) → L(Ti) is an injective mapping from the
leaves of Tj to the leaves of Ti (1 ≤ i, j ≤ k). Given two cyclic orders Oi and
Oj defined by Ti and Tj , respectively, we say that Oi extends ϕ(Oj) if ϕ(Oj)
is a suborder of Oi. The Simultaneous PQ-Ordering problem asks whether
there exist cyclic orders O1, . . . Ok of L(T1), . . . , L(Tk), respectively, such that
for each arc (Ti, Tj ;ϕ) ∈ Z, Oi extends ϕ(Oj). Let (Ti, Tj ;ϕ) be an arc in Z.
An internal node μi of Ti is fixed by an internal node μj of Tj (and μj fixes μi

in Ti) if there exist leaves x, y, z ∈ L(Tj) and ϕ(x), ϕ(y), ϕ(z) ∈ L(Ti) such that
(i) removing μj from Tj makes x, y, and z pairwise disconnected in Tj , and (ii)
removing μi from Ti makes ϕ(x), ϕ(y), and ϕ(z) pairwise disconnected in Ti.

An instance I = (N,Z) of Simultaneous PQ-Ordering is normalized if,
for each arc (Ti, Tj ;ϕ) ∈ Z and for each internal node μj ∈ Tj , tree Ti con-
tains exactly one node μi that is fixed by μj . Every instance of Simultaneous
PQ-Ordering can be normalized by means of an operation called the normal-
ization [2], which is defined as follows. Consider each arc (Ti, Tj ;ϕ) ∈ Z and
replace Tj with Ti|ϕ(L(Tj)) ∩ Tj in I, that is, replace tree Tj with its intersection
with the projection of its parent Ti to the set of leaves of Ti obtained by applying
mapping ϕ to the leaves L(Tj) of Tj . Consider a normalized instance I = (N,Z).
Let μ be a P-node of a PQ-tree T with parents T1, . . . , Tp and let μi ∈ Ti be
the unique node in Ti, with 1 ≤ i ≤ p, fixed by μ. The fixedness of μ is defined
as fixed(μ) = ω +

∑p
i=1(fixed(μi) − 1), where ω is the number of children of

T containing a node that fixes μ. A P-node μ is k-fixed if fixed(μ) ≤ k. Also,
instance I is k-fixed if all the P-nodes of any PQ-tree T ∈ N are k-fixed.

FPQ-Trees: An FPQ-tree is a PQ-tree where, for some of the Q-nodes, the
reversal of the permutation described by their children is not allowed. To dis-
tinguish these Q-nodes from the regular Q-nodes, we call them F-nodes [8]. The
study of Bläsius and Rutter on Simultaneous PQ-Ordering also considers
the case in which the permutations described by some of the Q-nodes are totally

Simultaneous FPQ-Ordering and Hybrid Planarity Testing 621

Fig. 2. (a) A biconnected planar graph G. (b) An SPQR-decomposition tree of G. (c)
The embedding DAG D of G. P-nodes are depicted as circles, while Q-nodes are boxes.

fixed, hence the results given in [2] for Simultaneous PQ-Ordering also hold
when the nodes of the input DAG are FPQ-trees. In the rest of the paper we talk
about Simultaneous FPQ-Ordering to emphasize the presence of F-nodes,
since they play an important role in our applications of hybrid planarity testing.

Embedding DAG: Let G be a biconnected planar graph and let T be an SPQR-
tree of G [5]. We can associate with each vertex v of G an FPQ-tree T (v) called
the embedding tree of v, whose leaves correspond to the edges incident to v [2];
T (v) encodes all the cyclic orders of the edges incident to v that are described by
T . The cyclic orders around a vertex in a planar embedding of a graph depend
on the cyclic orders of the edges around other vertices. Such dependencies can be
conveniently modeled as a DAG of FPQ-trees, called the embedding DAG of G
and denoted as D (see also [9]). Figure 2(b) shows an SPQR-tree of the graph in
Fig. 2(a), and (c) is the corresponding embedding DAG. The injective function
ϕ for each arc of D associates the leaves of a source FPQ-tree to the leaves of a
sink FPQ-tree. For example, there is a mapping between the leaves a, b, and e of
T (v1) and the leaves of the sink FPQ-tree T ′; while a suitable mapping between
T (v1) and the sink FPQ-tree T ′′ maps g, a and b to the leaves of T ′′. Let v be
a vertex of G. The embedding DAG of v, denoted as D(v), is the subgraph of D
induced by T (v) and by the FPQ-trees that are connected to T (v). Note that D
and D(v) are instances of Simultaneous FPQ-Ordering.

3 Fixedness and 1-Fixed Constrained Planarity

Bläsius and Rutter in [2] show that normalized instances of Simultaneous
FPQ-Ordering can be solved in quadratic time if they are 2-fixed. In their
applications, instances are normalized (or have a very simple structure) so that
it is easy to verify whether an instance is 2-fixed. The difficulty of applying
their result to other contexts is that if the instances are not normalized, it is
quite technical to understand the structure of the normalized instance and to
check whether it is 2-fixed. We present a new definition of fixedness that does
no longer require the normalization as a preliminary step to check whether an

622 G. Liotta et al.

instance of Simultaneous FPQ-Ordering is 2-fixed. This definition signifi-
cantly simplifies the application of Simultaneous FPQ-Ordering. Also, we
discuss the impact of this definition to efficiently solve a constrained planarity
testing problem, called 1-Fixed Constrained Planarity.

3.1 A New Definition of Fixedness

Definition 1. Let I = (N,Z) be an instance of Simultaneous FPQ-
Ordering and let μ be a P-node of an FPQ-tree that belongs to a node v of I.
The fixedness of μ is denoted as fixed(μ). Let ω be the number of children of v
fixing μ. If v is a source, we define fixed(μ) = ω. If v is not a source, let p be
the number of parent nodes T1, . . . , Tp of v in I. For i = 1, . . . , p, let Fi be the
set of P-nodes of Ti that is fixed by μ. If |Fi| = 0 for some i = 1, . . . , k, then
fixed(μ) = 0, otherwise fixed(μ) = ω +

∑p
i=1 maxν∈Fi

(fixed(ν) − 1). The P-node
μ is k-fixed if fixed(μ) ≤ k. Instance I is k-fixed if all P-nodes of FPQ-trees
T ∈ N are k-fixed.

We remark that Definition 1 coincides with the notion of fixedness given in [2] if
we restrict ourselves to normalized instances. Namely, in a normalized instance,
|Fi| = 1 for i = 1, . . . , p, and the maximum vanishes.

Lemma 1. Let I be an instance of Simultaneous FPQ-Ordering and let I ′

be the normalization of I. Then fixed(I ′) ≤ fixed(I).

By Lemma 1, it suffices to check the 2-fixedness of a non-normalized
instance of Simultaneous FPQ-Ordering to conclude that it can be solved in
quadratic time by exploiting [2, Theorems 3.11, 3.16]. We now further simplify
the applicability of the result.

Let I = (N,A) be an instance of Simultaneous FPQ-Ordering. We
denote by source(I) the set of sources of I. A solution of an instance I = (N,A)
of Simultaneous FPQ-Ordering determines a tuple of cyclic orders (Ov)v∈N .
In many cases, we are only interested in the cyclic orders at the sources, and
we therefore define sol(I) = {(Ov)v∈source(I) | I has a solution (O′

v)v∈N with
Ov = O′

v for v ∈ source(I)}. We say that an instance I has P-degree k if
every node whose FPQ-tree contains a P-node has at most k parents. Let I
and I ′ be two instances of Simultaneous FPQ-Ordering such that there
exists a bijective mapping M between the sources of I and the sources of I ′

with L(M(T)) = L(T) for each source T of I. We call I and I ′ joinable. The
join DAG of I and I ′ is the instance I � I ′ obtained by replacing, for each
source node T of I (and each corresponding source node M(T) of I ′), the nodes
T (and M(T)) by T ∩ M(T) and identifying the respective nodes of I and I ′.
By construction, it is sol(I � I ′) = sol(I) ∩ sol(I ′).

Lemma 2. Let I and I ′ be joinable instances of Simultaneous FPQ-
Ordering with P-degree at most 2 and such that their associated DAGs each
have height 1. If both I and I ′ are 1-fixed, then J = I � I ′ is 2-fixed.

Simultaneous FPQ-Ordering and Hybrid Planarity Testing 623

3.2 1-Fixed Constrained Planarity

Let G = (V,E) be a biconnected planar graph, let v ∈ V be a vertex, and let
E(v) be the edges of G incident to v. A 1-fixed constraint C(v) for v is a 1-fixed
instance of Simultaneous FPQ-Ordering such that it has P-degree at most 2
and it has a single source whose FPQ-tree has the edges in E(v) as its leaves.
The following property is implied by [2, Section 4.1].

Property 1. For each vertex v of G, D(v) is a 1-fixed constraint.

Let E be an embedding of G and let E(v) be the cyclic order that E induces on
the edges around v. We say that embedding E satisfies constraint C(v) if there
exists a solution for C(v) such that the order of the source is E(v).

Given a graph G and a 1-fixed constraint for each vertex of G, the 1-Fixed
Constrained Planarity testing problem asks whether G is 1-fixed constrained
planar, i.e., it admits a planar embedding that satisfies all the constraints.

Theorem 1. Let G = (V,E) be a biconnected planar graph with n vertices,
and for each v ∈ V let C(v) be a 1-fixed constraint. 1-Fixed Constrained
Planarity can be tested in O(n2) time.

Proof. Let D be the embedding DAG of G, where sol(D) corresponds bijec-
tively to the rotation systems of the planar embeddings of G [2]. The embedding
DAG D(v) of a vertex v ∈ V is such that sol(D(v)) corresponds bijectively
to the cyclic orders that the planar embeddings of G induce around v. Let
C denote the instance of Simultaneous FPQ-Ordering that is the disjoint
union

⋃
v∈V C(v), and observe further that sol(C) are precisely the rotations at

vertices that satisfy all the constraints C(v). Observe further that D and C are
joinable, and sol(D � C) are exactly the rotation systems of planar embeddings
of G that satisfy all the constraints C(v), v ∈ V . By Property 1, both D and C are
1-fixed, have height 1 and P-degree at most 2. Therefore, by Lemma 2 J = D � C
is 2-fixed and by Lemma 1 also the normalization of J is 2-fixed. It follows that
the normalization of J can be solved in O(n2) time [2, Theorems 3.11, 3.16].
The overall result follows from the fact that D and C have size linear in n and
their normalization can be computed in linear time [2, Lemma 3.12].

4 Hybrid Planarity Testing Problems

We recall that in a NodeTrix representation each cluster is represented as an
adjacency matrix, while the inter-cluster edges are simple curves connecting the
corresponding matrices and not crossing any other matrix [4,6,7]. A NodeTrix
graph is a flat clustered graph with a NodeTrix representation. For example,
Fig. 1(b) is a NodeTrix representation of the graph in Fig. 1(a); note that for
every vertex there are four segments, one for each side of the matrix, to which
inter-cluster edges can be connected. A NodeTrix representation is with fixed
sides if the sides of the matrices to which inter-cluster edges must be incident
are given as a part of the input. NodeTrix Planarity with fixed sides is

624 G. Liotta et al.

NP-hard [4], and it is fixed parameter tractable with respect to the maximum
size of clusters and to the treewidth of the graph obtained by collapsing each
cluster into a single vertex, as shown in [6,8]. NodeTrix Planarity with fixed
sides is known to be solvable in linear time when rows and columns are not
allowed to be permuted [4]. This naturally raises the question about whether a
polynomial-time solution exists also for less constrained versions of NodeTrix
Planarity.

We study the scenario in which the permutations of rows and columns can
be chosen independently. Namely, we introduce a relaxed version of Node-
Trix Planarity with fixed sides, called Row-Column Independent Node-
Trix Planarity (RCI-NT Planarity for short). RCI-NT Planarity asks
whether a flat clustered graph admits a planar NodeTrix representation in the
fixed sides scenario, but it allows to permute the rows and the columns inde-
pendently of one another. A graph for which the RCI-NT Planarity test is
positive is said to be RCI-NT planar.

The Equipped Frame Graph: We model RCI-NT Planarity as an instance
of 1-Fixed Constrained Planarity defined on a (multi-)graph associated
with (G,S), that we call the equipped frame graph of G, denoted as GF , and that
is obtained from G by collapsing each cluster into a single vertex. More precisely,
GF has nF = |S| vertices, each one corresponding to one of the matrices defined
by S. There is an edge between two vertices u and v of GF if and only if there
is an edge in G between matrices Mu and Mv corresponding to u and to v,
respectively. A NodeTrix graph is biconnected if its equipped frame graph is
biconnected and, from now on, we consider biconnected NodeTrix graphs.

Each vertex v of GF is associated with a constraint DAG H(v) whose nodes
are FPQ-trees. More precisely, the source vertex of H(v) is an FPQ-tree TM con-
sisting of an F-node with four incident P-nodes; each of such P-nodes describes

Fig. 3. (a) An RCI-NT planar graph (G,S) that is not NodeTrix planar with fixed
sides. (b) The constraint DAG H(v1) associated with vertex v1 of the equipped frame
graph of G, corresponding to matrix M1. P-nodes are circles, F-nodes are shaded boxes.

Simultaneous FPQ-Ordering and Hybrid Planarity Testing 625

possible permutations for the rows or for the columns of the matrix Mv. Two
P-nodes encode the permutations of the rows (on the left and right hand-side
of Mv), and the other two P-nodes encode the permutations of the columns (on
the top and bottom hand-side of Mv). The source of H(v) has two adjacent
vertices; one of these adjacent vertices is associated with an FPQ-tree TR, and
the other one is associated with an FPQ-tree TC . TR specifies permutations for
the rows of Mv, and TC specifies permutations for the columns of Mv, that must
be respected by the P-nodes of the FPQ-tree in the root of H(v). We say that
TR and TC define the coherence between the permutations of the rows and the
permutations of the columns, respectively. Figure 3(a) shows a NodeTrix graph
(G,S) and Fig. 3(b) shows the constraint DAG H(v1) associated with vertex v1
of the equipped frame graph of G. Note that G is RCI-NT planar but it is not
NodeTrix planar with fixed sides: If we require the rows and the columns of M1

to have the same permutation, it is easy to check that either a crossing between b
and c or one between d and k occurs. Two arcs of Fig. 3(b) are labeled reversing
because, for any given permutation of the rows (columns), the rows (columns)
are encountered in opposite orders when walking around M1. Note that H(v) is
an instance of Simultaneous FPQ-Ordering.

Property 2. For each vertex v of GF , H(v) is a 1-fixed constraint.

Let D be the embedding DAG of GF . Each vertex v of GF is associated with its
constraint DAG H(v) and its embedding DAG D(v).

Lemma 3. A biconnected NodeTrix graph with fixed sides is RCI-NT planar
if and only if its equipped frame graph is 1-fixed constrained planar.

Testing RCI-NT Planarity: Based on Lemma 3, we shall test whether (G,S)
is RCI-NT planar by testing whether GF is 1-fixed constrained planar. Observe
that H(v) and D(v) have the same leaves, since they describe possible cyclic
orders for the same set of inter-cluster edges, namely those incident to the matrix
Mv associated with v in GF , hence H(v) and D(v) are joinable instances of
Simultaneous FPQ-Ordering. GF is 1-fixed constrained planar if and only
if it admits a planar embedding such that, for each vertex v the cyclic order of the
edges incident to v satisfies both the constraints given by H(v) and the ones given
by D(v). These constraints are described by the join DAG J (v) = H(v) � D(v).
Properties 1, 2, and Lemma 2 imply that, for each vertex v of G, J (v) is 2-fixed.

We now exploit Theorem 1, and hence we can test in O(n2
F) time whether

GF is 1-fixed constrained planar, where nF is the number of vertices of GF . By
Lemma 3, and since constructing GF may require O(n2) time, the follow-
ing holds.

Theorem 2. Let (G,S) be a biconnected NodeTrix graph. RCI-NT Pla-
narity can be tested in O(n2)-time, where n is the number of vertices of G.

626 G. Liotta et al.

References

1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.:
Intersection-link representations of graphs. JGAA 21(4), 731–755 (2017)

2. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained
embedding problems. ACM Trans. Algorithms 12(2), 16:1–16:46 (2016)

3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. C. Syst. Sci. 13(3), 335–379 (1976)

4. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix rep-
resentations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139–176 (2018)

5. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5),
956–997 (1996)

6. Di Giacomo, E., Liotta, G., Patrignani, M., Rutter, I., Tappini, A.: NodeTrix pla-
narity testing with small clusters. Algorithmica 81(9), 3464–3493 (2019)

7. Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)

8. Liotta, G., Rutter, I., Tappini, A.: Graph planarity testing with hierarchical embed-
ding constraints. CoRR abs/1904.12596 (2019)

9. Liotta, G., Rutter, I., Tappini, A.: Simultaneous FPQ-Ordering and hybrid planarity
testing. CoRR abs/1910.10113 (2019)

Two-Player Competitive Diffusion Game:
Graph Classes and the Existence

of a Nash Equilibrium

Naoka Fukuzono1(B), Tesshu Hanaka2(B), Hironori Kiya1(B),
Hirotaka Ono1(B), and Ryogo Yamaguchi3(B)

1 Graduate School of Informatics, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, Japan

fukuzono.naoka@h.mbox.nagoya-u.ac.jp,

kiya.hironori@f.mbox.nagoya-u.ac.jp, ono@i.nagoya-u.ac.jp
2 Department of Information and System Engineering, Chuo University,

1-13-27Kasuga, Bunkyo-ku, Tokyo, Japan
hanaka.91t@g.chuo-u.ac.jp

3 Development Bank of Japan, Tokyo, Japan

Abstract. The competitive diffusion game is a game-theoretic model
of information spreading on a graph proposed by Alon et al. (2010). In
the model, a player chooses an initial vertex of the graph, from which
information by the player spreads through the edges connected with the
initial vertex. If a vertex that is not yet influenced by any information
receives information by a player, it is influenced by the information and
it diffuses it to adjacent vertices. A vertex that simultaneously receives
two or more types of information does not diffuse any type of information
from then on. The objective of a player is to maximize the number of ver-
tices influenced by the player’s information. In this paper, we investigate
the existence of a pure Nash equilibrium of the two-player competitive
diffusion game on chordal and its related graphs. We show that a pure
Nash equilibrium always exists on block graphs, split graphs and inter-
val graphs, all of which are well-known subclasses of chordal graphs. On
the other hand, we show that there is an instance with no pure Nash
equilibrium on (strongly) chordal graphs; the boundary of the existence
of a pure Nash equilibrium is found.

Keywords: Nash equilibrium · Competitive diffusion game ·
Algorithmic game theory · Chordal graph

1 Introduction

The competitive diffusion game is a game-theoretic model of information spread-
ing on a graph proposed by Alon et al. [1]. It is introduced in order to
study several competitive diffusion phenomena on social network services (SNS),

This work was partially supported by JSPS KAKENHI Grant Numbers JP17K19960,
17H01698, 19K21537.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 627–635, 2020.
https://doi.org/10.1007/978-3-030-38919-2_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_52&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_52

628 N. Fukuzono et al.

such as Facebook and Twitter. For example, viral marketing is a typical com-
mercial activity utilizing information diffusion phenomena on a social network.
A game-theoretical setting happens when several companies want to sell inter-
operable products via viral marketing.

In the model, each player has its own information and wants to spread it
to vertices in a graph. To this end, a player chooses an initial vertex of the
graph, from which information by the player spreads through the edges connected
with the initial vertex. If a vertex that is not yet influenced by any information
receives information by a player, it is influenced by the information and it diffuses
the information to adjacent vertices. A vertex that simultaneously receives two
or more types of information by multiple players does not diffuse any type of
information from then on. The objective of a player is to maximize the number
of vertices affected by the player’s information. These settings are interpreted
in real world situations as follows: A graph is a social network and each vertex
represents a person (potential customer) and an edge represents that two persons
corresponding end vertices are friends in SNS. Players are commercial companies
that want to sell interoperable products via viral marketing. Each company asks
a person on the SNS to advertise its own product by paying some amount of
money. The person receiving money recommends the product of the company
to his/her friends. A person receives a recommendation of a product from a
friend, he/she decides to buy the product and newly recommends the product
of the company to his/her friends. Sometimes a person simultaneously receives
two types of recommendations. Then he/she gets confused, and he/she does not
buy any of the products and recommend anything. This is a simplest model and
we can consider more generalized models.

In analyses of game-theoretic models, one of typical approaches is to focus on
Nash equilibria. This is because finding a Nash equilibrium is related to predict
behaviours of rational players. Although it is known that there exists a mixed-
strategy Nash equilibrium for every finite game, a pure Nash equilibrium does
not always exist. In fact, in the competitive diffusion game, there is a graph under
which no pure Nash equilibrium exists even for the two-player case [1], whereas
a graph in some restricted graph classes such as cycles always has a pure Nash
equilibrium for any number of players [3]. If a game has a pure Nash equilibrium,
it implies that it is relatively easy to analyze. From such a viewpoint, several
studies try to find classes of graphs under which a pure Nash equilibrium always
exists. For more details, see the following subsection.

1.1 Related Work

There are many studies that focus on the existence of a pure Nash equilibrium of
the two-player competitive diffusion game. For example, Alon et al. give a graph
with diameter 3 has no pure Nash equilibrium [1]. Takehara et al. give a stronger
example, a graph with diameter 2 has no pure Nash equilibrium [14]. On the
other hand, Small and Mason show that a pure Nash equilibrium always exists on
trees [12]. Roshanbin shows that a pure Nash equilibrium always exists on cycles
and grid graphs [11], and Sukenari et al. show that a pure Nash equilibrium

Two-Player Competitive Diffusion Game 629

Fig. 1. Graph classes and the existence of a pure Nash equilibrium. Connections between
two graph classes imply that the above one is a super class of the below one.

always exists on torus grid graphs [13]. These results are about the two-player
competitive diffusion game. For three or more players, the situation is different.
For example, in most of the cases, a path always has a pure Nash equilibrium.
The exception is the case where the number of players is 3 and the number
of vertices is at least 6. On the other hand, a cycle always has a pure Nash
equilibrium for the case where the number of players and the number of vertices
are arbitrary [3].

If the number k of players is bounded by a constant, it can be done in
polynomial time to check whether a given graph has a pure Nash equilibrium or
not, because the number of combinations of strategies is O(nk), where n is the
number of vertices. On the other hand, it is not trivial to check the existence of
a pure Nash equilibrium for general k. Etesami and Basar show that the decision
problem of the existence a pure Nash equilibrium for general k is NP-complete [5].
Furthermore, Ito et al. show that the decision problem of the existence a pure
Nash equilibrium is W[1]-hard when it is parameterized by k [8].

1.2 Our Results

In this paper, we investigate the existence of a pure Nash equilibrium of the two-
player competitive diffusion game on chordal and its related graphs. A graph is
called chordal if every induced cycle in the graph should have exactly three ver-
tices. The class of chordal graphs is a well-known graph class in many research
fields, and they are also called rigid circuit graphs or triangulated graphs. Par-
ticularly in the algorithm theory, it is considered very important, because many
NP-hard optimization problems in general graphs can be solved in polynomial
time if the input graph is chordal. This is a motivation that we focus on chordal

630 N. Fukuzono et al.

graphs. Furthermore, chordal graphs and its related graph classes are inten-
sively and extensively studied, and there are many well-known graph classes.
For example, trees are also chordal.

We obtain the following results: We show that a pure Nash equilibrium always
exists on block graphs, split graphs and interval graphs, all of which are well-
known subclasses of chordal graphs. In particular, block graphs is a super class
of trees. On the other hand, we show that there is a (strongly) chordal graph
that has no pure Nash equilibrium; the boundary of the existence of a pure Nash
equilibrium is found. The results are summarized in Fig. 1.

The rest of the paper is organized as follows. In Sect. 2, we define several
notations and terminology, and introduce graph classes. Section 3 is the main
part of this paper. We show that a pure Nash equilibrium always exists on block
graphs, split graphs and interval graphs, and give a (strongly) chordal graph
that has no pure Nash equilibrium. Finally, we present the existence of a pure
Nash equilibrium for some related graph classes and settings in Sect. 4.

2 Preliminaries

In this paper, we use the standard graph notations. Let G = (V,E) be an
undirected conneted graph where |V | = n and |E| = m. For V ′ ⊆ V , we denote
by G[V ′] a subgraph induced by V ′. We denote by N(v) the set of neighbors
of v. A vertex set C is called a clique if G[C] is a complete graph. Moreover, a
clique C is maximal if there is no clique C ′ such that C ⊆ C ′.

2.1 Competitive Diffusion Game

Let p1 and p2 be players 1 and 2, respectively. Also, let G = (V,E) be an
undirected connected graph. Then the two-player competitive diffusion game on
G proceeds as follows (see also Fig. 2).

Time 1. Each player chooses one vertex v ∈ V . The vertex v is called an initial
vertex. If v is chosen by only one player, we say v is dominated by p. Oth-
erwise, that is, if two players choose v, the vertex v is a neutral vertex. In
the subsequent time, no player can dominate the neutral vertex. A vertex is
called undominated if it is neither a dominated vertex nor a neutral vertex.

Time t (t ≥ 2). A vertex v ∈ V is dominated by a player p at time t if (i) v is
neither neutral nor dominated by any player by time (t − 1), and (ii) v has
a neighbor dominated by p, but does not have a neighbor dominated by the
other player p′. If v satisfies (i) and has both neighbors of p and p′, then v
becomes a neutral vertex at time t. When no player can dominate a vertex
any more, the game ends.

When player p chooses a vertex s ∈ V at time 1, we call a vertex s the
strategy of p. For two players p1 and p2, a strategy profile s = (s1, s2) is a pair
of strategies of p1 and p2. If p1 changes the strategy s1 to s′

1, we denote it by

Two-Player Competitive Diffusion Game 631

Fig. 2. An example how two-player competitive diffusion game goes. Vertices with
1 and 2 stand for vertices dominated by p1 and p2, respectively. White vertices are
undominated vertices and a grey vertex is a neutral vertex. (a) A graph is an initial
state. (b) At time 1, p1 chooses v3 and p2 chooses v8. (c) At time 2, v2 and v6 are
dominated by p1 and v7 and v9 are dominated by p2. Vertex v5 becomes a neutral
vertex. (d) At time 3, v4 is dominated by p2. Since no player can dominate a vertex
any more, the game ends. In the end of the game, v1 is an undominated vertex. The
utility of p1 is U1(v3, v8) = 3 and the utility of p2 is U2(v3, v8) = 4.

(s1, s2) → (s′
1, s2). Similarly, if p2 changes the strategy s2 to s′

2, we denote it by
(s1, s2) → (s1, s′

2). For a strategy profile (s1, s2), we say si dominates vertices
dominated by pi in the end of a game. For a strategy profile s, the utility Ui(s)
of pi is the sum of vertices dominated by pi at the end of a game. In Fig. 2, the
utility of p1 is U1(v3, v8) = 3 and the utility of p2 is U2(v3, v8) = 4.

Then we define a pure Nash equilibrium in the two-player competitive diffu-
sion game.

Definition 1. A strategy profile s = (s1, s2) is called a pure Nash equilibrium
if there is no vertex v ∈ V such that U1(v, s2) > U1(s1, s2) or U2(s1, v) >
U1(s1, s2), that is, if no player can increase the utility by changing the strategy.

We call the two-player competitive diffusion game 2-CDG for short. Also, we
simply use term “Nash equilibrium” instead of pure Nash equilibrium” from
here on. If both p1 and p2 choose v ∈ V as initial vertices, the utilities of p1
and p2 are 0 because v is a neutral vertex and other vertices are undominated
in the end of a game. Then, a player has an incentive to change the strategy
from v to another vertex because if two players choose different vertices, the
utilities of them are at least 1. This implies that the strategy profile (v, v) for
any v ∈ V cannot be a Nash equilibrium. Thus, we suppose that two players
choose different vertices as initial vertices.

2.2 Graph Classes

In this subsection, we define several graph classes. A graph G = (V,E) is a
chordal graph if every cycle of length at least 4 has a chord, or equivalently every
induced cycle has exactly 3 vertices [4]. A graph G = (V,E) is a strongly chordal
graph if it is chordal graph and includes no n-sun (for n ≥ 3) as an induced
subgraph [6]. A cycle is a graph with closed circuits. A graph G = (V,E) is a block
graph if all the two connected components are cliques [7]. A graph G = (V,E) is

632 N. Fukuzono et al.

Fig. 3. A chordal graph
with no Nash equilibrium.

Fig. 4. A strongly chordal graph with no Nash equi-
librium.

a split graph if V can be partitioned in an independent set I and a clique C [10].
A graph G = (V,E) is a interval graph if it has an intersection model consisting
of intervals on a real line corresponding to a vertex such that there is an edge
in G if and only if two lines are intersect [9]. For more information about graph
classes, see [2].

3 The Existence of a Nash Equilibrium

In this section, we investigate the existence of Nash equilibrium in 2-CDG. The
results are summarized as the following two theorems (also see Fig. 1).

Theorem 1. There is a chordal graph with 9 vertices and diameter 3 that has
no Nash equilibrium in 2-CDG. There is a strongly chordal graph with 12 vertices
and diameter 3 that has no Nash equilibrium in 2-CDG.

Theorem 2. If a graph G belongs to classes of split graphs, block graphs or
interval graphs, 2-CDG on G always has a Nash equilibrium.

We can show Theorem 1 by the concrete examples in Figs. 3 and 4, though we
omit the details explaining that they really have no Nash equilibrium. For Theo-
rem 2, we need more careful arguments, though we omit the detailed proof again.
Instead, we briefly give several key ideas or overviews of the proof. Sections 3.1,
3.2 and 3.3 explain how we can show the existence of a Nash equilibrium in split
graphs, block graphs and interval graphs, respectively.

3.1 Split Graph

In the proof for split graphs, we introduce the following two lemmas. The former
gives a simple utility expression and the latter restricts pairs of strategies as
possible Nash equilibria. Combining these, we can show that contradiction arises
if no Nash equilibrium exists in a split graph. Both of the proofs are omitted.

Lemma 1. Let G = (C ∪ I, E) be a split graph where C forms a clique and I is
an independent set. If the strategy profile of p1 and p2 is (u, v) where u, v ∈ C,
the utilities of p1 and p2 are U1(u, v) = |N(u)|−|N(u) ∩ N(v)|+1 and U2(u, v) =
|N(v)| − |N(v) ∩ N(u)| + 1, respectively.

Two-Player Competitive Diffusion Game 633

Lemma 2. On any split graph G = (C ∪ I, E), if both p1 and p2 choose vertices
in C, there is no strategy to choose a vertex in I that increases own utilities.

3.2 Block Graph

The proof is based on the characterization of two vertices in a block graph G that
give a Nash equilibrium. To describe them, we introduce several new terminology
and notations in the following. We suppose that G is a block graph that is not
complete, since the 2-CDG on a complete graph trivially has a Nash equilibrium.

A vertex v is called a cut vertex if G[V \ {v}] has at least two components.
On a block graph, a non cut vertex is contained in exactly one maximal clique
C and all the neighbors is in C. For a maximal clique C, we suppose that p1 and
p2 select x ∈ C and y ∈ C, respectively. If x is not a cut vertex, the utility of p1
is |{x}| = 1 since x is adjacent to only vertices in C on block graph G and every
vertex in C\{x, y} becomes a neutral vertex. Suppose that x is a cut vertex in G.
Then, let Dx(C) be the set of vertices in connected components not containing C
in G[V \{x}]. Since y ∈ C, the set of vertices dominated by x is Dx(C)∪{x}. Note
that every vertex in C \{x, y} is neutral. Moreover, every vertex in C is a neutral
vertex and every vertex in V \ (Dx(C) ∪Dy(C) ∪C) is an undominated vertex.
Thus, the utility of p1 is |Dx(C)|+1 if p1 chooses x ∈ C and p2 chooses a vertex
in C \ {x}. For a maximal clique C on block graph G, we denote by w(C, u)
the number of vertices dominated by u when either p1 or p2 chooses u ∈ C
and the other chooses a vertex in C \ {u}. Note that if u is a cut vertex, then
w(C, u) = |Du(C)|+1, and otherwise w(C, u) = |{u}| = 1. Also, we suppose that
a maximal clique C = {uC

1 , . . . , u
C
k } satisfies that w(C, uC

1) ≥ · · · ≥ w(C, uC
k).

By using these, we have the following lemma, which proves the corresponding
part of Theorem 2. We omit the proof due to space limitation.

Lemma 3. Let C be the set of maximal cliques in G. Also, let C∗ be a maxi-
mal clique such that w(C∗, uC∗

2) = maxC∈C w(C, uC
2). Then the strategy profile

(uC∗
1 , uC∗

2) is a Nash equilibrium.

3.3 Interval Graph

We assume that an interval graph G = (V,E) is given by corresponding intervals
I = {I1, . . . , In}, where each interval Ii = [ai, bi] (i = 1, . . . , n) of two integer
ai ≤ bi corresponds to vertex i. The endpoint ai of Ii is called the initial end-
point and the other endpoint bi is called the terminal endpoint. We assume that
{I1, . . . , In} are sorted in nonincreasing order of the initial endpoints ai’s. On
an interval graph, there is an edge if and only if two intervals are intersect. An
interval graph is called a proper interval graph if no interval properly contains
any other interval, and known to have a unit interval representation, in which
each interval has unit length [2].

Here, we prove the existence of a Nash equilibrium of 2-CDG on any proper
interval graph as Lemma 4, instead of interval graph. It is because the proof for
proper interval graphs is essentially same but simpler. For interval graphs, we
just give a corresponding lemma (Lemma 5) without proof.

634 N. Fukuzono et al.

Lemma 4. Suppose that G = (V,E) is a proper interval graph and U1(x, y) ≥
U2(x, y) for any strategy profile (x, y). Let {x∗, y∗} be an edge satisfying
U2(x∗, y∗) = max{x,y}∈E U2(x, y). Then (x∗, y∗) is a Nash equilibrium in 2-CDG
on G.

Proof. Prove by contradiction. Suppose that strategy profile (x∗, y∗) is not a
Nash equilibrium; a player has an incentive to change the strategy. Without loss
of generality, we suppose ax∗ ≤ ay∗ , that is, the initial point of ax is on the left
side of ay by the unit interval representation. We first observe that p2 does not
change the strategy since U2(x∗, y∗) = max{x,y}∈E U2(x, y) holds. Thus p1 is the
player that changes the strategy x∗. Let Dx∗ be the set of vertices such that
every vertex v satisfies av ≤ ax∗ . Moreover, let Dy∗be the set of vertices such
that every vertex v satisfies ay∗ ≤ av. Since {x∗, y∗} ∈ E, any vertex v satisfying
ax∗ ≤ av ≤ ay∗ is in N(x∗)∩N(y∗). Then we observe that p1 dominates vertices
in Dx∗ \ (N(x∗)∩N(y∗)). Also, p2 dominates vertices in Dy∗ \ (N(x∗)∩N(y∗)).
Since U1(x∗, y∗) ≥ U2(x∗, y∗), p1 does not change the strategy to any vertex v
satisfying ay∗ ≤ av. Moreover, any vertex v satisfying av ≤ ax∗ can dominate
only Dx∗ \ ((N(x∗)∩N(y∗))∪{x∗}) and the utility of p1 does not increase when
p1 changes the strategy to v. Finally, we consider the case that p1 changes to x′

satisfying ax∗ < ax′ < ay∗ . When p1 changes the strategy from x∗ to x′, at most
it can dominate vertices in Dx′ \ ((N(x′)∩N(y∗)∪{x∗}). As the result, we have
U1(x∗, y∗) ≥ U1(x′, y∗). Thus, p1 does not change the strategy from x∗ to any
vertex in V , which implies (x∗, y∗) is a Nash equilibrium, a contradiction. 	

This lemma is extended to interval graphs by focusing on a subset of vertices.
Let G = (V,E) be an interval graph and we assume that no two identical intervals
exists in V , without loss of generality. For x ∈ V , we call x an essential vertex if
no y ∈ V properly contains x. The following lemma is the extension of Lemma 4.
Note that in a proper interval graph V itself is the set of essential vertices.

Lemma 5. Suppose that G = (V,E) is an interval graph, V ′ is the set of essen-
tial vertices in G and U1(x, y) ≥ U2(x, y) for any strategy profile (x, y). Let
{x∗, y∗} be an edge satisfying U2(x∗, y∗) = max{U2(x, y) | x, y ∈ V ′, {x, y} ∈ E}.
Then (x∗, y∗) is a Nash equilibrium in 2-CDG on G.

4 Some Other Results

In this section, we briefly present two related results, though we omit all of
the proofs and detailed explanation due to the space limitation. One is about
vertex-weighted cycles (Theorem 3), and the other is about cacti (Theorem 4). In
the vertex-weighted model, the utility is defined by not the number of influenced
vertices but the total weights of influenced vertices. A cactus is a connected graph
in which any two simple cycles have at most one vertex in common. Intuitively,
given a block graph, we can obtain a cactus by removing the internal edges in all
the cliques with size at least 4. Theorem 3 and the results of unweighted case [3]
contrast, and Theorem 4 and the block graph part of Theorem 2 contrast.

Two-Player Competitive Diffusion Game 635

Theorem 3. In 2-CDG, any vertex weighted cycle of length at most 5 always
has a Nash equilibrium, whereas for any length at least 6 there are a cycle that
has no Nash equilibrium.

Theorem 4. In 2-CDG, any vertex-weighted cactus whose induced cycles con-
sist of at most 5 always has a Nash equilibrium. On the other hand, there is
an unweighted cactus containing a cycle with length at least 6 that has no Nash
equilibrium.

References

1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: A note on competitive
diffusion through social networks. Inf. Process. Lett. 110(6), 221–225 (2010)

2. Brandstadt, A., Spinrad, J.P., et al.: Graph Classes: A Survey, vol. 3. SIAM,
Philadelphia (1999)

3. Bulteau, L., Froese, V., Talmon, N.: Multi-player diffusion games on graph classes.
Internet Math. 12(6), 363–380 (2016)

4. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Semin. Univ. Hambg 25(1), 71–76
(1961)

5. Etesami, S.R., Basar, T.: Complexity of equilibrium in competitive diffusion games
on social networks. Automatica 68, 100–110 (2016)

6. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43(2–3),
173–189 (1983)

7. Harary, F.: A characterization of block-graphs. Can. Math. Bull. 6(1), 1–6 (1963)
8. Ito, T., et al.: Competitive diffusion on weighted graphs. In: Dehne, F., Sack, J.-

R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 422–433. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21840-3 35

9. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on the real line. Fundamenta Mathematicae 51(1), 45–64 (1962)

10. Roberts, F.S., Spencer, J.H.: A characterization of clique graphs. J. Comb. Theory
Ser. B 10(2), 102–108 (1971)

11. Roshanbin, E.: The competitive diffusion game in classes of graphs. In: Gu, Q.,
Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 275–287. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07956-1 25

12. Small, L., Mason, O.: Nash equilibria for competitive information diffusion on trees.
Inf. Process. Lett. 113(7), 217–219 (2013)

13. Sukenari, Y., Hoki, K., Takahashi, S., Muramatsu, M.: Pure Nash equilibria of
competitive diffusion process on toroidal grid graphs. Discrete Appl. Math. 215,
31–40 (2016)

14. Takehara, R., Hachimori, M., Shigeno, M.: A comment on pure-strategy nash equi-
libria in competitive diffusion games. Inf. Process. Lett. 112(3), 59–60 (2012)

https://doi.org/10.1007/978-3-319-21840-3_35
https://doi.org/10.1007/978-3-319-07956-1_25

Foundations of Data Science and
Engineering – Short Papers

Automatic Text Generation
in Slovak Language

Dominik Vasko, Samuel Pecar(B), and Marian Simko

Faculty of Informatics and Information Technologies,
Slovak University of Technology in Bratislava, Ilkovicova 2,

842 16 Bratislava, Slovakia
{xvasko,samuel.pecar,marian.simko}@stuba.sk

Abstract. Automatic text generation can significantly help to ease
human effort in many every-day tasks. Recent advancements in neural
networks supported further research in this area and also brought signif-
icant improvement in quality of text generation. Unfortunately, most of
the research deals with English language and possibilities of text genera-
tion of Slavic languages was not fully explored yet. Our work is concerned
with automatic text generation and language modeling for Slovak lan-
guage. Since Slovak language has more complicated grammatical struc-
ture and morphology, the task of text generation is also more challenging.
We experimented with the neural approaches in natural language gen-
eration and performed several experiments with text generation in both
Slovak and English language for two different domains. Additionally, we
performed an experiment with human annotators to assess the quality of
generated texts. Our experiments showed promising results and we can
consider using neural networks for text generation as sufficient also for
text generation in Slovak language.

Keywords: Natural language processing · Language modeling · Text
generation

1 Introduction

Natural text generation belongs to one of the most popular tasks in natural
language processing (NLP). It can be also considered as one of the essential parts
for many higher level tasks in NLP, such as summarization or dialogue systems.
During the history of AI, there have been many approaches for text generation.
We are concerned with the approach based on the probability distribution in
natural languages, which also employs neural network architectures.

In this paper, we present a study of language modeling along with a qual-
itative evaluation of models on two different languages – Slovak and English.
To the best of our knowledge, our study is the first attempt to experiment
with text generation in Slovak language. The main contribution of our paper
is exploration of techniques for natural language generation in Slovak language
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 639–647, 2020.
https://doi.org/10.1007/978-3-030-38919-2_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_53&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_53

640 D. Vasko et al.

and experiments with human annotators to assess the quality of generated texts
in the same domains (Wikipedia articles and European Parliament speeches) for
two different languages (Slovak and English).

We train neural networks, which learn the probability distribution of char-
acters or words from text corpora. Based on already seen words or characters,
these networks can predict the probability of a following character or word. The
process of generating samples is performed in two steps. First, the network learns
the probability distribution on examples (input/output pairs); this is the train-
ing part. Second, an initial word or character is given to the network and the
output is interpreted; this is the inference part. Based on the second step, we
can build up long text samples, which can be used for manual evaluation.

Language modeling can be utilized as part of many NLP tasks, where models
would be hard to train even on superb hardware. Other reasons for using lan-
guage models is the ease of obtaining corpora. Separate inputs and outputs are
not needed since the output is only shifted by one token relative to the input.

It is also important to compare similar architectures on different languages.
Since the most research for language modeling is done on English datasets, per-
formance for other languages might vary. Furthermore, to ensure that the gen-
erated texts are meaningful and can be understood, a qualitative evaluation by
humans is needed, contrary to evaluation by other automated methods, which
might yield negative results due to the complexity of languages.

2 Related Work

Language models (LM) are often used as a part of more complex tasks in natural
language processing, such as text summarization [12], machine translation [2] or
automatic speech recognition [8].

There are many applications for LMs, especially in sequence-to-sequence
tasks, which often employ an encoder-decoder architecture. In encoder-decoder
architectures, the input sequences have to be represented as one value, which is
used to generate a new sequence. Therefore, there is a lot of motivation to train
language models that perform outstandingly on a wide range of languages.

Statistical LM based on recurrent neural models proved to outperform
approaches, such as the ones based on grammars or dense neural networks [1],
since they are made to model longer continuous sequences with dependencies.

Different improvements over classical recurrent neural network (RNN) archi-
tectures can be used to obtain better language models. One of those improved
architectures is the long short-term memory (LSTM) network. It deals with the
shortcomings of classical RNNs, especially vanishing gradients [6], which allow
LSTMs to outperform RNNs. The authors have tried and succeeded in the task
of language modeling due to the fact that these models are better suited for very
long dependencies [15]. This all comes with the cost of more parameters to train,
which increases the whole training time and memory usage. An improved mod-
ification of the RNN, which addresses the same issues are the gated recurrent
unit (GRU) networks. They are similar to LSTM but have much less parameters
to learn and achieve comparable results [3].

Automatic Text Generation in Slovak Language 641

Improvement over classical RNN for LM was achieved in many tasks such as
simplification, summarization or translation with the use of a mechanism called
attention. This mechanism guides the selection of better predictions based on the
previous context. It has been shown that it increases not just the performance but
also the convergence of the network, while using less parameters. We employed
a customized attention mechanism based on a previous work of Salton [13].

A work by Cotterell et al. on the topic of comparison of language modeling
for multiple languages suggests the differences due to different levels of morphol-
ogy complexity [4]. Slovak language being morphologically richer means that it
is supposed to be more difficult to model. Although the published experiment
was evaluated only automatically and only with the use of one dataset (Euro-
pean Parliament speeches), it clearly shows that some languages with richer
morphology are more difficult to model, as a result of their morphology (it was
also reported that after lemmatization the differences between languages mostly
disappeared).

3 Model

In this section, we describe general architecture of the proposed models along
with their properties and training process. In total, we used two similar architec-
tures with the difference of using/not using an attention mechanism (see Fig. 1).

Fig. 1. Our LSTM neural network architecture. Attention layer is red. (Color figure
online)

During the preprocessing stage, the whole dataset is divided into sequences
of the same length, which are organized into batches. Since our model utilizes
embeddings, every character or word is represented with a corresponding number
(index), which is used to look up word representations in the embedding layer.

Then, the pre-processed batches are fed into the network, starting with the
embedding layer. Embeddings help with the representation of inputs, instead of

642 D. Vasko et al.

one-hot encoding which uses discrete values for every single input, continuous
values can be used with much lower dimensionality. As a result, less data is
needed to learn relationships. Weights of the embedding layer are learned and
updated during the training phase. The same weights are used in the output,
where the conversion from vector to index is performed.

After obtaining the vector representations, the whole input sequence is fed to
the first LSTM, which consequently outputs another value. The output from the
first LSTM layer is again fed to the second LSTM. Two stacked LSTM layers
were used. After the last LSTM layer, the output value is forwarded to a dense
linear layer and decoded into a vector, which contains probability values for every
character or word. The size of this vector is the same as the size of dictionary.
This probability is obtained after application of the softmax function.

For our second architecture, we employed an attention layer, which calculates
a context vector for every time step. This context vector is concatenated to the
output of the current time step [13].

4 Evaluation

We performed an evaluation of our models in several steps. First, we trained
multiple language models on data described below for each language with pro-
posed architecture and generated articles using these models. Random generated
articles were selected and were given to participants (speaking both Slovak and
English), who manually assessed them based on a few selected measures.

4.1 Dataset

Since we train both Slovak and English language models, semantically equivalent
text corpora were needed, meaning the content of the datasets was the same or
very similar except for the language itself.

We used two datasets. The first one (Data-Wiki) included the Wikipedia1

for Slovak and Simplified English. The articles were extracted to a single file
and consequently preprocessed and fed to the networks The Slovak Wikipedia
contains 225,080 articles with the average length of 892 characters while the
simple English had 188,198 articles with the average length of 655 characters.

The second dataset (Data-EP) we used included Euro-parliament speeches
[5]. It is more appropriate for comparison since the data in both languages are
the same. The whole dataset was manually translated to every EU language.
After dividing the speeches we ended up with about 130,000 training examples
for the word level model and 330,000 examples for the character level model.

4.2 Training

First, two character level models were trained on the Data-Wiki dataset. We
used the same architecture for both models, two layers of LSTM layers with
hidden and embedding sizes of 200 units with a dense layer at the end.
1 https://dumps.wikimedia.org/.

https://dumps.wikimedia.org/

Automatic Text Generation in Slovak Language 643

Next, four additional models were trained, character and word level, with
an additional attention layer [13]. Those models were trained on the Data-EP
dataset. The architecture was bigger then the first one with two layers of LSTM
cells with hidden size of 512 features, embedding sizes of 32 features for charac-
ters and 512 features for words. Adam was used as the optimization algorithm.

Both datasets were divided into chunks of length 200 characters or 90 words in
the case of Euro-parliament speeches, and 320 characters in the case of Wikipedia
articles. The models used those chunks as individual training examples and after
each example the internal state of LSTM networks was reset. The generated texts
were around the same length as the input sequences.

The models were trained based on the following two rules. First, we started
with a learning rate of 0.001. If the model became over-fitted, we used the model
with the best validation perplexity. Second, if the validation perplexity plateaued
for 4 epochs, the learning rate was decreased tenfold. Character level models were
trained for around 40 epochs, while word level model for around 10 epochs.

4.3 Article Generation

After the training of the models, we generated some samples. The output of our
model is a vector with probabilities for each character or word, which sum up to
1. We used softmax with a different base values ranging from β = 0.75 − 0.9 to
select the best candidates. Furthermore, sampling from multinomial distribution
was used to increase the diversity of our outputs. This candidate was then fed to
the network again. We repeated this step until we had a long enough sequence.
Tables 1 and 2 show some generated samples from our models.

Table 1. Sample from an article generated by the Slovak and English model

4.4 Results

In this section, we sum results of our experiments for text generation. The eval-
uation consisted of two parts. In the first part, we assessed text generation
automatically by computing perplexities of trained models. In the second part,
the generated text samples were evaluated manually by human participants.

In Table 3, we show the results of automatic evaluation. These results are
in line with previous research [4] done on the topic of differences in language

644 D. Vasko et al.

Table 2. Sample from an article generated by the Slovak and English models trained
on speeches from Euro-parliament

modeling for different languages. Particularly that morphologically richer lan-
guages are harder to learn with the word-level models. This also explains the
gap between the Slovak and English models.

In manual evaluation we evaluated the generated samples from two datasets.
We assessed the following metrics: existence of words, syntax, morphology and
semantics of the article. The participants had to subjectively select from value
on a scale from 1 to 10, smaller values meaning that the metric was bad, e.g most
of the words did not exist. Each participant was shown 6 articles (3 in English
and 3 in Slovak). The generated samples of the Wikipedia models were presented
to 14 participants, the generated samples of the Euro-parliament speeches to 21
participants. The results of manual evaluation can be seen in Tables 4 and 5,
where the average rating of the metrics are shows.

Table 3. Perplexities of trained models on the validation and testing set. Perplexity is
calculated as ecross-entropy loss. The models were trained on the Data-EP and Data-Wiki
datasets. The SK and EN denote the language and the W or CH represents input
type (words or characters)

Models Validation perplexity Test perplexity

Data-EPEN−CH 2.1344 2.1364

Data-EPSK−CH 2.2321 2.2313

Data-EPEN−W 26.0888 26.2095

Data-EPSK−W 30.8373 30.3086

Data-WikiEN−CH 3.1365 –

Data-WikiSK−CH 4.6751 –

Automatic Text Generation in Slovak Language 645

Table 4. Evaluation results on the Data-Wiki dataset for character level input.

Data-WikiEN-CH Data-WikiSK-CH

Word existence 7.88 6.98

Morphology 6.67 5.43

Syntax 5.95 4.23

Semantics 7.75 8.33

Table 5. Results of human evaluation on the Data-EP dataset for both character level
and word level input.

Data-EPEN-CH Data-EPEN-W Data-EPSK-CH Data-EPSK-W

Word existence 8.68 7.89 8.58 8.84

Morphology 6.37 8.63 7.95 6.95

Syntax 6.74 8.63 7.47 6.37

Semantics 5.21 7.58 6.47 6.21

In most cases, English language models outperformed Slovak ones in per-
plexity. We can also observe the results of manual evaluation are different then
automatic one. The participants viewed the Slovak character level language mod-
els better then English ones. While for the word level models the English ones
performed better. In the case of the models trained on EP speeches, every single
English model outperformed the Slovak ones. This can be due to several reasons.
Character level language models can model better intra-word probabilities and
also lack of the ability to generalize enough to successfully and model syntax
level dependencies. The meaning in English relies more on the syntax, while in
Slovak more on the morphology of the words.

We can also see that going from the least difficult to more difficult metric
(from word existence to semantics) both in English and Slovak models had no
problem creating words from characters and most of the words did exist. On the
other hand, the articles themselves were making less sense. This could be related
to the fact that the models were trained on short examples.

When evaluating models trained on the Data-EP dataset, we aimed to assess
overall authenticity of generated samples (see Table 6). We included additional
binary measure to assess if the generated sample as whole is seen as gener-
ated or original (non-generated, genuine). The generated samples (articles) were

Table 6. Evaluation results of manual assessment in English and Slovak

English Slovak

Condition

Positive Negative Positive Negative

Prediction positive TP = 103 FP = 42 TP = 145 FP = 26

Prediction negative FN = 65 TN = 105 FN = 23 TN = 121

F1 score 0.6581 – 0.8555 –

646 D. Vasko et al.

evaluated by 21 participants. Each participant had to evaluate 30 articles, half
of them were generated and the other half were original. True positives (TP) are
generated articles which were classified as generated, true negatives (TN) orig-
inal articles classified as original, false positives (FP) original articles classified
as generated and false negatives (FN) generated articles classified as originals.

5 Conclusions and Future Work

Evaluation done by humans showed that the resulting language models are quite
different, when using two different languages and equivalent models. The differ-
ence reflects mainly in the quality of resulting generated texts. While the per-
plexities of English models were much lower, manual evaluation showed that
Slovak language models trained on character level outperformed English ones
and English language models outperformed Slovak ones on word level.

Potential further improvements of our model could involve using convolu-
tional neural networks (CNNs) instead of embeddings, as CNNs were reported
to yield better results [7]. The use of softmax at the dense layer of our model
can also create a bottleneck [16]. Methods such as the use of more sophisticated
embeddings or pre-trained embeddings has shown to increase performance of
neural networks for different tasks. Such approach could also be used in our
model [10]. Furthermore, training a language model on a larger corpora and
transferring the weights into our model using transfer learning [11] could be
used to compensate the lack of the data, especially in Slovak language.

It would also be possible to further extend the application of very similar
neural models on different languages for tasks such as text summarization [9] or
text simplification, where a similar level of model architecture can be applied.

The results show the evaluators had more problems identifying generated
texts in English language. This suggests higher vulnerability of English language
for potential misuse for harmful purposes [14]. Interestingly, richer morphology
of Slovak language introduces more safety checks for people that can prevent
from being misused.

Acknowledgments. This work was partially supported by the Slovak Research and
Development Agency under the contract No. APVV-17-0267 and No. APVV SK-IL-
RD-18-0004 and the Scientific Grant Agency of the Slovak Republic, grant No. VG
1/0667/18 and grant No. VG 1/0725/19 and the education and research development
project “STU as a digital leader”, project no. 002STU-2-1/2018 by the Ministry of
Education, Science, Research and Sport of the Slovak Republic and by the student
grant provided by Softec Pro Society.

References

1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

2. Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language models in
machine translation. In: Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL) (2007). http://aclweb.org/anthology/D07-1090

http://aclweb.org/anthology/D07-1090

Automatic Text Generation in Slovak Language 647

3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep
Learning, December 2014

4. Cotterell, R., Mielke, S.J., Eisner, J., Roark, B.: Are all languages equally hard to
language-model? In: Proceedings of the 2018 Conference of the NAACL: Human
Language Technologies, Volume 2 (Short Papers), pp. 536–541. ACL, New Orleans,
June 2018. https://doi.org/10.18653/v1/N18-2085

5. Galuščáková, P., Garab́ık, R., Bojar, O.: English-Slovak parallel corpus (2012).
http://hdl.handle.net/11858/00-097C-0000-0006-AAE0-A

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

7. Józefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits
of language modeling (2016). http://arxiv.org/abs/1602.02410

8. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neu-
ral network based language model. In: Eleventh Annual Conference of the Inter-
national Speech Communication Association (2010)

9. Pecar, S.: Towards opinion summarization of customer reviews. In: Proceedings
of ACL 2018, Student Research Workshop, pp. 1–8. ACL, Melbourne, July 2018.
https://doi.org/10.18653/v1/P18-3001

10. Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the
2018 Conference of the NAACL: Human Language Technologies, Volume 1 (Long
Papers), pp. 2227–2237. ACL, New Orleans, June 2018. https://doi.org/10.18653/
v1/N18-1202

11. Pikuliak, M., Simko, M., Bielikova, M.: Towards combining multitask and multi-
lingual learning. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.)
SOFSEM 2019. LNCS, vol. 11376, pp. 435–446. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-10801-4 34

12. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sen-
tence summarization. In: Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 379–389. ACL (2015). https://doi.org/
10.18653/v1/D15-1044, http://aclweb.org/anthology/D15-1044

13. Salton, G., Ross, R., Kelleher, J.: Attentive language models. In: Proceedings of the
Eighth International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 441–450. Asian Federation of Natural Language Processing,
Taipei, November 2017. https://www.aclweb.org/anthology/I17-1045

14. Simko, J., Hanakova, M., Racsko, P., Tomlein, M., Moro, R., Bielikova, M.: Fake
news reading on social media: an eye-tracking study. In: Proceedings of the 30th
ACM Conference on Hypertext and Social Media, pp. 221–230. ACM (2019)

15. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language mod-
eling. In: 13th Annual Conference of the International Speech Communication
Association (2012)

16. Yang, Z., Dai, Z., Salakhutdinov, R., Cohen, W.W.: Breaking the softmax bot-
tleneck: a high-rank RNN language model. CoRR abs/1711.03953 (2017). http://
arxiv.org/abs/1711.03953

https://doi.org/10.18653/v1/N18-2085
http://hdl.handle.net/11858/00-097C-0000-0006-AAE0-A
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1602.02410
https://doi.org/10.18653/v1/P18-3001
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1007/978-3-030-10801-4_34
https://doi.org/10.1007/978-3-030-10801-4_34
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
http://aclweb.org/anthology/D15-1044
https://www.aclweb.org/anthology/I17-1045
http://arxiv.org/abs/1711.03953
http://arxiv.org/abs/1711.03953

Connecting Galaxies: Bridging the Gap
Between Databases and Applications

Henrietta Dombrovskaya1, Jeff Czaplewski1, and Boris Novikov2(B)

1 Braviant Holdings, Chicago, IL 60602, USA
{hettie.dombrovskaya,jeff.czaplewski}@braviantholdings.com

2 National Research University Higher School of Economics, Saint Petersburg, Russia
borisnov@acm.org

Abstract. An incompatibility of object-oriented application code and
relational database engine often causes performance problems, known as
Impedance Mismatch, which negatively affect business-critical applica-
tion functions. The incompatibility can also over-complicate application
design and increase the costs of development.

We address these issues, applying a concept of the API contracts to
the interaction between the application and the database. We introduce
a new technique providing for the transfer of complex objects rather than
low-level records. We describe the implementation of the proposed solu-
tion in industrial settings and show how suggested techniques streamline
the application development, at the same time providing significant per-
formance gains.

Keywords: Database connectivity · Complex objects · Impedance
mismatch · Performance

1 Introduction

It is hardly possible to find an application area that does not use databases. How-
ever, in the overwhelming number of cases, the system design is driven by applica-
tion developers, whose perceptions regarding databases are oversimplified.

Recently there have been many discussions in the database research commu-
nity regarding the relevance of the data management scientific paradigms to the
industry. Several authors [14,18] have observed that industry does not seem to
use most of the advantages provided by relational databases. The recent move
toward NoSQL databases [17] is powered by a desire to run fast and free of any
rigorous RDBMS requirements.

There is some rationale behind these practices. The object-oriented approach
to the application design reduces the role of a database to a persistence layer
where NoSQL storage managers, including key-value stores and document stores
like Mongo DB [16], may indeed be more appropriate.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 648–656, 2020.
https://doi.org/10.1007/978-3-030-38919-2_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_54&domain=pdf
http://orcid.org/0000-0003-4657-0757
https://doi.org/10.1007/978-3-030-38919-2_54

Connecting Galaxies 649

However, we also can observe movement in the opposite direction. Some of
the most popular NoSQL systems are gradually implementing more advanced
database features, such as joins, declarative (SQL-like) query languages, and
even transactions. The latter observation shows that advanced DBMS features
are still needed [20].

Modern high-end, high-performance object-relational databases can present
complex objects by their own means; however, the most widely used data transfer
interfaces do not allow the transferring of such objects. The connectivity stan-
dards (such as JDBC) provide only a simplified database view, hiding advanced
DBMS features from a client application.

On the application side Object Relational Mappers (ORMs), disassemble
complex objects into atomic components, generating queries, which are either
too generic or too small, producing inefficient communications and leaving no
room for query optimization. As a result, application response time can degrade
and directly affect business performance [1,2,10,12,13].

This observation suggests that the most significant impact of object-relational
impedance mismatch is in the data exchange rather than model conversions.

In this paper, we introduce a technique for bi-directional transfer of complex
objects between applications and DBMS. These techniques rely on the well-
known concept of API contract and avoid explicit conversions to a low-level
representation. Both sides convert their internal representations into complex
hierarchical objects represented in JSON format suitable for transfer.

This approach requires some compromises. Application developers have to
accept the fact that relationships may exist in the persistence layer and thus
delegate certain parts of logic to the database. On the other side, database
developers have to provide and accept non-first-normal-form (nested relations)
as a unit of data transfer. As a reward, application developers get the convenience
of APIs, while the database side benefits from the coarse granularity of requests.
Our solution was developed and fully implemented at Braviant Holdings, with
the database of choice being PostgreSQL and the applications running on Java.
The resulting solution appeared to be very generic and can be implemented in
a variety of platforms.

The rest of the paper is organized as follows. Section 2 describes the proposed
model, Sect. 3 outlines the implementation. Section 4 shows the performance
results. Sections 5 provides an overview of the related research.

2 Models and Conversions

The primary reason for the inefficiency of interactions between a database and
an application is the inability to preserve complex object structure, which leads
to the need to disassemble objects into primitive types. A typical interaction
between different layers of the system is shown in Fig. 1a.

The format for data transfer differs inevitably from both internal formats.
We name application objects A-objects, database objects D-objects, and transfer
objects T-objects. Both A-objects and D-objects may include references to other

650 H. Dombrovskaya et al.

respective objects, thus producing more complex objects. However, to avoid the
need for hyperlinks, T-objects must be hierarchical. Any data model that sup-
ports hierarchical structures (e.g., XML and JSON) can serve as a T-model.

Two conversions are required for each interaction between an application
and a database. To transfer data from a DB to an application, D-objects are
converted into T-objects, then T-objects are converted to A-objects.

The main distinguishing feature of the approach presented in this paper is
that the model mapping is symmetrical, and conversion to the transfer model is
performed on both sides. This feature enables us to define data transfer in terms
of complex hierarchical objects that may contain nested collections, as shown in
Fig. 1b.

(a) Low-level data transfer

(b) Structured data transfer

Fig. 1. Data transfer architectures

Resulting JSON objects are considered as plain text strings, which can be
transferred via low-level JDBC connections. The immediate advantages are:

1. The data structure is preserved during the data exchange.
2. All information representing an object can be transferred within a single

transmission even if data are stored in several tables.
3. Several objects may be transferred in a single bulk collection.

The combination of items 2 and 3 results in a reduction of the number of
needed interactions, contributing to overall performance improvement. Of course,
this cannot prevent poor application design exploiting too fine-grained interac-
tions, but provides for effective and natural coarse-grained interactions in terms
of complex objects.

Connecting Galaxies 651

To preserve the flexibility of an application and to facilitate adjustments and
improvements, and at the same time to build a scalable system, it is essential
to separate the database logic and the application logic. Although this division
seems to be very subjective, we were able to specify rules in the Logic Split
methodology, originally introduced in [6]. At Braviant Holdings, we designed
our system so that each database function returns all the data elements needed
for a specific endpoint exposed by the application level microservice. Since rela-
tionships between the data are known to the database engine, query execution
has been optimized for maximum efficiency. For example, our search functions
allow arbitrary sets of search criteria that are passed to search functions as JSON
objects. Depending on the specific set of search attributes, the select statement
may utilize different execution plans. Moreover, on the database side, we can
generate the SQL statements completely differently, joining different tables, in
order to achieve the best performance for each specific set of attributes. In each
case, the result set has an identical structure.

3 Implementation

3.1 Application Considerations

Our current solution calls for a contract to be established between the application
layer and the database much the way you would see a contract over a RESTful
web service. Through this contract, we’ve simplified the persisting of objects
by serializing the objects into JSON payloads that the database can consume.
This results in one DB call to persist an object regardless of its structure or
complexity. Likewise, when retrieving objects, we deserialize the result coming
back from the database to our model in a single database call. We are also able
to pass additional parameters as a part of the contract to tell the database that
we may want additional pieces of the model similar to an ODATA web service
request. We have found that there are several advantages to this approach.

One of the advantages is the simplified implementation of the data access
layer on the application side. Previously we had tried using Hibernate as our
ORM but found that when persisting and retrieving objects, there were cer-
tain scenarios where Hibernate did not work. In many cases, Hibernate would
make multiple queries to retrieve a complex object as well as to persist one. We
also found ourselves writing many native queries and thus embedding database
specifics into the application layer. To correctly retrieve the data that we needed,
the results of our query was an untyped generic array, basically Object[]. Con-
verting this array to our model resulted in a very brittle implementation. In
contrast, our current solution uses a contract to determine the inputs and out-
puts of every call to the database. This allows application developers to code to
the contract and easily mock out any dependencies when testing as the calls to
and from the database will abide by the contract.

An additional advantage is ease of development. When developing our data
access layer, we found several well-established libraries that would meet our
needs on the application side. A pattern was quickly established for serializing

652 H. Dombrovskaya et al.

and deserializing the objects as well as the correct JDBC APIs to use when
interacting with the DB in a variety of situations. As each new DB interac-
tion arose, we were able to reuse the same pattern for implementation. This
allowed us to spend more time designing the JSON payload to ensure it was
meeting the current and future needs of the business. Reusing the same pattern
of interactions also reduced our implementation time, minimized the possibilities
for defects, and allowed minimal code changes to impact our entire DB access
implementation.

3.2 Database Considerations

Although conceptually any relational database may be used to store complex
objects, a restriction to first normal form inevitably leads to a need to use
multiple relations for its representation. To be able to conform to the contract,
we need to assemble the object into the single units suitable for transfer to or
from the application.

Fortunately, all high-end DBMSs allow nested collections as values of rela-
tion attributes. Any action on such a collection is supported with strong type
checking. However, these kinds of complex objects are supported in PostgreSQL
only internally. To externalize complex objects, we rely on a notation designed
for data transfer, i.e., JSON.

The following steps build a JSON representation of T-object:

– Construct an internal complex (nested collection) object. This process is fully
supported by type checking.

– Convert the complex internal object (or set of objects) into JSON format with
a single invocation of the to json function (and then convert the output into
text string for JDBC transfer).

Update requests require the mapping of T-objects to D-objects. Regardless of
whether an operation is insert, update, or delete, each of the data manipulation
functions receives a T-object (JSON object) as an input parameter. Inside each
function, T-object specific parsing is performed, and each element of the T-object
is converted to the corresponding element of the matching D-object. While we
know what type of operation we are going to perform on the top level, different
operations may be needed on the lower level.

To be able to specify what exactly should be done, the contract between a
database and an application includes the following:

– If a primary key value is omitted, an operation is an insert, and a function
assigns a new primary key

– If a primary key is present, an operation is an update, which updates the
values for all the keys passed

– No key means no changes; we do not automatically set any key values to
NULL.

– To delete a database object, we utilize a special key ‘command’, which allows
only one value - ‘delete’.

Connecting Galaxies 653

We wrap our queries into function calls for two main reasons. First, we want
to simplify interactions between an application and a database, which would
allow us to abstract D-objects from A-objects. The second reason is to ensure
strong type dependencies. Our functions return complex nested objects of pre-
defined structure, each structure being a PostgreSQL user-defined type. Any
change made to the user-defined type results in cascade drop of all dependent
functions, prompting to recreate them reflecting the change.

The ideal solution to abstract D-objects from A-objects would be to define
D-objects as object types with accompanying methods. However, PostgreSQL
does not support either object types with a state shared between methods, nor
Oracle PL/SQL-style packages with the static state. Since we do not need to pass
internal state between methods, PL/pgSQL functions work well, and naming
rules are enforced to group related functions together.

4 Field Measurements

The framework described in this paper was developed to support new services
of the Braviant Holdings OLTP system. Although the foundation for this work,
Logic Split methodology [6] and [7] was laid earlier, the two differ significantly.

(a) DB calls per screen rendering (b) Time per screen rendering (msec)

Fig. 2. The Logic Split performance gain on frequent application functions

The Logic Split methodology was implemented to fix the flaws of the original
application design, which used the Active Record ORM. When we succeeded
in replacing multiple (in some cases hundreds) database calls with one function
execution, the performance increase was dramatic. Figure 2 represents the results
that were achieved during 2014–2016.

Note, that the PostgreSQL cluster was running on 80 thread 2.4 GHz CPUs
with 512 GB RAM almost entirely used by DB cache. Also, due to the complexity
of the legacy system, we were unable to improve any updates.

The most important advantage of our current solution is the ease of use. In
2014, the major complaint was that the application development using the Logic
Split was time-consuming and unnatural. In contrast, the new methodology is
very easily adopted and does not impose any risks on projects timelines.

At Braviant Holdings, our goal was to design a system with a specific focus
on performance and scalability. We host our databases on Amazon RDS, which

654 H. Dombrovskaya et al.

(a) Workload per hour (b) Avg. response time per hour

Fig. 3. Average execution time and avg. operations/min per hour

(a) DB size, Gb (b) Avg. response time

Fig. 4. Scalability: Monthly DB growth and response times

means that the available resources are limited to one of the typical configurations.
Specifically, our OLTP database runs on xLarge instance with 4 vCPU and 16 GB
RAM (of which we use only 6 GB on average). We currently use 100 times less
memory and achieve similar or better performance for all data retrieval functions,
not just for the top 10.

Figure 3a shows the average number of calls per minute during one-hour
intervals for the most frequently executed functions. Figure 3b shows the aver-
age execution time (in milliseconds) for each of these functions. In spite of sig-
nificant variations of workload throughout the day, the response time remains
stable for all functions. The longest execution time (about 300 ms) is observed
for account update function, which updates multiple rows in several different
tables. The most frequently executed function is account search. The number
of executions of this function varies from 100 to over 3000 per hour, with average
execution times varying from 220 ms to 320 ms.

Another measure of scalability is the dependency of average execution times
on the overall size of the database. Figure 4 shows that the execution times of
some most commonly used functions remain stable while the database is growing.
There is a room for scale-up and no need in scale-out in the foreseeable future.

5 Related Work

Many ORMs recognize the existence of ORIM (Object-Relational Impedance
Mismatch) and have made some improvements to accommodate bulk data pro-
cessing. However, the absence of bulk processing is not considered a part of
ORIM. Hibernate [11] is a widely used ORM that provides two SQL-like lan-
guages: HSQL and JPQL. Both of them allow constructing declarative queries,
but the usage of these features is optional.

Connecting Galaxies 655

LINQ (Language Integrated Query) [15] is a set of features that define a
query as a class of objects, but an option of performing bulk operations does not
mean developers are inclined to “thinking sets” [4]. SQLAlchemy Toolkit [19]
is an extremely powerful tool for building database applications. It includes a
variety of options that allow exact control over database interactions. However,
since the toolkit was created by database professionals, it calls for a similar level
of DB expertise from the application developers. Another important direction
of research is related to finding algorithms that would help identify and fix the
inefficient application code [3,5]. In [5], the authors present a tool to trace the
occurrences of non-performing code, by coupling the application trace with the
database trace. This tool helps to identify the opportunities for bulk processing,
indexes optimization, reduction of fetched data volumes, etc. The AppSleuth [3]
is another example of a tool, that focuses on application code improvement. It
identifies delinquent design patterns, such as fetching one record at a time rather
than a pre-selected set of records. Several research groups focus their efforts
on a holistic approach to application optimization. One of the most advanced
projects of that kind is DBridge [8,9], which explores different methods of holistic
application optimization, based on the analysis of the application source code.
The most important advantage of DBridge tool is that the code optimization
process is automated and that the system guarantees the consistency of the
results.

6 Conclusion

We described an approach based on a contract between the application and the
database considered as a service providing for a transfer of complex hierarchical
objects represented in JSON format. Although the processing of JSON requires
some additional effort on the database side, it significantly simplifies application
development and makes mapping between models straightforward.

Further, this approach allows developers to define strong type dependencies,
and also allows the application to manipulate object sets, rather than individual
objects. Coarse-grained interactions, in turn, allows the use of DBMS optimiza-
tion capabilities to build a scalable and robust system.

The framework described in this paper has been in use at Braviant Hold-
ings for over two years in a real production environment. Measurements show
efficiency, effectiveness, and scalability of our techniques.

References

1. How one second could cost amazon $1.6 billion in sales, March 2015. http://www.
fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales/

2. Baxter, R.: Improving site speed - talk about the business benefit, October 2017.
https://builtvisible.com/improving-site-speed-talk-about-the-business-benefit/

3. Cao, W., Shasha, D.: AppSleuth: a tool for database tuning at the application
level. In: Proceedings of the 16th International Conference on Extending Database
Technology, EDBT 2013, pp. 589–600. ACM, New York (2013)

http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales/
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales/
https://builtvisible.com/improving-site-speed-talk-about-the-business-benefit/

656 H. Dombrovskaya et al.

4. Celko, J.: Joe Celko’s Thinking in Sets: Auxiliary, Temporal, and Virtual Tables in
SQL. Data Management Systems, 1st edn. The Morgan Kaufmann, San Francisco
(2008)

5. Chaudhuri, S., Narasayya, V., Syamala, M.: Bridging the application and DBMS
divide using static analysis and dynamic profiling. In: Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD 2009, pp.
1039–1042. ACM, New York (2009)

6. Dombrovskaya, H., Lee, R.: Talking to the database in a semantically rich way. In:
Amer-Yahia, S., Christophides, V., Kementsietsidis, A., Garofalakis, M.N., Idreos,
S., Leroy, V. (eds.) Proceedings of the 17th International Conference on Extending
Database Technology, EDBT 2014, Athens, Greece, 24–28 March 2014, pp. 676–
687. OpenProc.org (2014)

7. Dombrovskaya, H., Rangarajan, S., Marks, J.: FastFunction: replacing a herd
of lemmings with a cheetah a ruby framework for interaction with PostgreSQL
databases. In: 32nd IEEE International Conference on Data Engineering, ICDE
2016, Helsinki, Finland, 16–20 May 2016, pp. 1275–1286. IEEE Computer Society
(2016)

8. Emani, K.V., Deshpande, T., Ramachandra, K., Sudarshan, S.: DBridge: trans-
lating imperative code to SQL. In: Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD 2017, pp. 1663–1666. ACM, New
York (2017)

9. Emani, K.V., Ramachandra, K., Bhattacharya, S., Sudarshan, S.: Extracting equiv-
alent SQL from imperative code in database applications. In: Proceedings of the
2016 International Conference on Management of Data, SIGMOD 2016, pp. 1781–
1796. ACM, New York (2016)

10. Google’s push to speed up your web site, October 2017. https://searchengineland.
com/googles-push-to-speed-up-your-web-site-42177/

11. Hibernate web site (2017). http://www.hibernate.org/about/
12. How loading time affects your bottom line, March 2015. https://blog.kissmetrics.

com/loading-time/
13. Speed is a killer? Why decreasing page load time can drastically increase conver-

sion, March 2015. https://blog.kissmetrics.com/speed-is-a-killer/
14. Kumar, A.: Ml/Ai systems and applications: is the SIGMOD/VLDB community

losing relevance? August 2018. https://wp.sigmod.org/?p=2454
15. Language-Integrated Query (LINQ) (2017). https://docs.microsoft.com/en-us/

dotnet/csharp/programming-guide/concepts/linq/
16. MongoDB (2018). https://www.mongodb.com/
17. NoSQL (2018). http://nosql-database.org/
18. Pavlo, A.: What are we doing with our lives?: nobody cares about our concurrency

control research. In: Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD 2017, p. 3. ACM, New York (2017)

19. SQLAlchemy (2015). http://www.sqlalchemy.org/
20. Stonebraker, M.: The “NOSQL” discussion has nothing to do with SQL, Novem-

ber 2009. https://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-
nothing-to-do-with-sql/fulltext

https://searchengineland.com/googles-push-to-speed-up-your-web-site-42177/
https://searchengineland.com/googles-push-to-speed-up-your-web-site-42177/
http://www.hibernate.org/about/
https://blog.kissmetrics.com/loading-time/
https://blog.kissmetrics.com/loading-time/
https://blog.kissmetrics.com/speed-is-a-killer/
https://wp.sigmod.org/?p=2454
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://www.mongodb.com/
http://nosql-database.org/
http://www.sqlalchemy.org/
https://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
https://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext

GRaCe: A Relaxed Approach for Graph
Query Caching

Francesco De Fino(B), Barbara Catania, and Giovanna Guerrini

University of Genova, Genoa, Italy
francesco.defino@dibris.unige.it

Abstract. SPARQL query optimization is an important issue for RDF
data stores that can benefit from the usage of caching frameworks. Most
caching approaches rely on a precise match semantics, that limits the
number of cache hits and, as a consequence, the potential benefit. Oth-
ers propose relaxed matches for the entire query, which is precisely exe-
cuted over the cached result set. In this paper, to overcome these limita-
tions we propose GRaCe, a Graph Relaxed Caching approach for RDF
data stores. GRaCe supports relaxed cache matches and a relaxed query
semantics, thus increasing the number of cache hits. Experimental results
show that a relaxed cache can significantly reduce query execution time
in all the scenarios where a relaxed query result is tolerated.

1 Introduction

Motivation. An increasing number of data sources are represented in RDF
and queried through SPARQL. RDF stores, SPARQL endpoints, and, in gen-
eral, Semantic Web query engines heavily depend on the ability of efficiently
executing SPARQL queries. SPARQL query optimization often relies on caching
frameworks, by which the results of previously executed queries are stored in a
cache to be reused for further query processing. Most caching approaches adopt
an exact semantics for matches, thus limiting the number of hits and, as a conse-
quence, the number of cache-based optimizations. Other approaches (e.g., [3,14])
admit relaxed matches, based on query containment, for the whole query, which
is then precisely executed over the cached result set. In this way, however, when
the result set is huge or the matched query is quite far from the input one, the
performance improvement could be limited. Both approaches return a precise
result to the user. There are situations, however, in which a precise answer is
not needed. This happens, e.g., in very interactive environments where the user
can tolerate a loss in accuracy for a gain in performance. In such cases, relaxed
cache matches and relaxed query semantics could be an interesting alternative
approach towards increasing the number of cache hits thus reducing the query
execution time, at the price of reducing answer accuracy, in a controlled way.

Contribution. In this paper, we propose GRaCe, a Graph Relaxed Caching
approach for RDF data stores. In GRaCe, SPARQL queries are executed in a
relaxed way. Thus, a superset of the query result can be returned to the user
for efficiency purposes. An execution plan for a SPARQL query is composed
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 657–666, 2020.
https://doi.org/10.1007/978-3-030-38919-2_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_55&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_55

658 F. De Fino et al.

of (optimal) atomic plans for subqueries, each corresponding to either a tradi-
tional query execution or a (precise or relaxed) cache match. The best plan is
determined by relying on a dynamic programming planner (DPP), that, besides
execution cost as in [11], also considers the degree of relaxation due to relaxed
cache matches. The proposed framework is parametric with respect to the spe-
cific condition used for relaxation and query containment. In this paper, how-
ever, we focus on relaxed matches based on class and predicate generalization
constraints, derived from RDF schema information. For designing GRaCe we
thus: (i) propose a sufficient condition for query containment for a relevant sub-
set of SPARQL queries, extending that in [11] to cope with relaxation based on
Subproperty and Subclass RDFS entailment rules; (ii) design a relaxed cache
selection algorithm, obtained as a variation of the A∗ algorithm over a tree rep-
resenting in a compact way all the cached queries; (iii) propose a DPP taking
relaxation into account in computing query (sub)plan execution costs.

Related Work. Existing caching approaches for SPARQL queries rely on a pre-
cise semantics, thus, differently from GRaCe, they return the exact query result.
They can be classified depending on whether they support exact or relaxed
(i.e., containment based) matches and the approach used for efficiently checking
equality or containment - well known NP-complete problems - for specific types
of SPARQL queries. Among exact-match caching approaches, we mention the
one in [10], relying on a hashing approach for identifying matches, and the one
in [11], based on the usage of canonical labels for checking graph isomorphism.
Among relaxed matches approaches, the work in [3] relies on tight simulation for
checking containment. Cached queries are stored using their spanning polytree
and search is done by using an indexing system based on polytree signatures. The
problem of SPARQL query containment under the RDFS entailment regime is
studied in [1], where the problem is reduced to the expressive logic of μ-calculus.
In [14], subgraph/supergraph relationships are detected by relying on subgraph
isomorphism. In [8], sufficient conditions for checking graph similarity are pro-
vided for different types of SPARQL queries but no specific caching approach
is proposed. More recently, f-graph queries are introduced to solve the contain-
ment problem in polynomial time [9]. Among the approaches described so far,
the one in [11] uses cache matches in the context of more complex but precise
query execution plans, identified through the usage of a dynamic programming
planner.

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we formalize the problem we want to address. The cache selection algorithm and
the cache-based query processing planner are described in Sects. 3 and 4, respec-
tively. Some preliminary experimental results are reported in Sect. 5. Finally,
Sect. 6 presents some concluding remarks and outlines future work. Due to space
constraints, the paper presents the basic ideas underlying the proposed system.
Additional details can be found in [2].

GRaCe: A Relaxed Approach for Graph Query Caching 659

2 Problem Statement and GRaCe Architecture

The focus of our work is the design of a cache-based SPARQL execution engine,
relying on relaxation for performance issues. To this aim, we consider SPARQL
queries executed over RDF datasets [12]. For the sake of simplicity, we only deal
with Basic Graph Pattern (BGP) SPARQL queries, i.e., set of triple patterns,
each corresponding to a subject, predicate, object triple, where subject and
predicate can be either a URI or a variable and object can be either a URI, a
variable, or a literal.

A graph-based relaxed cache C is a set of pairs (Q1, r1), ..., (Qn, rn), where
each Qi is a query and ri is a set of triples returned as result for Qi in pre-
vious executions. The cache selection algorithm we consider relies on a relaxed
approach: given a query Q and a cache C, it selects a query Qi in C such that
Q � Qi, i.e., Q is contained in Qi (thus, for each RDF dataset d, Q(d) ⊆ Qi(d)).
We say that Qi is a relaxed cache hit for/generalizes Q.

Since more than one cache item might contain the query, the issue arises of
selecting the “best match” through a relaxation cost function relaxC() that quan-
tifies the distance between Q and Qi. When Q � Qi, such distance is computed
taking into accountRDFschema information and in particular the entailment rules
related to subPropertyOf and subClassOf properties (see Fig. 1 [4]). It can be
easily proved that, given a query Q containing the triple pattern in bold in one of
the rules in Fig. 1 and assuming the RDF schema contains the other triple in the
premise of the same rule, a query Qi obtained from Q by replacing the triple pat-
tern in bold with that appearing as the consequence of the same rule, generalizes
Q, i.e., Q � Qi.

Subproperty(sp) (1) (a;sp;b)(b;sp;c)
(a;sp;c)

(2) (a;sp;b)(x;a;y)
(x;b;y)

Subclass(sc) (3) (a;sc;b)(b;sc;c)
(a;sc;c)

(4) (a;sc;b)(x;type;a)
(x;type;b)

Fig. 1. RDFS entailment rules

The GRaCe architecture is then obtained by extending classical cache-based
query processing architectures, like that proposed in [11], by taking into account
relaxation in several places. More precisely: (i) the cache might associate queries
with relaxed results, generated from previous executions based on at least one
relaxed cache hit; (ii) the cache selection algorithm detects the best cache hits
based on a relaxation function; (iii) the planner chooses the best execution plan
for the query at hand, taking into account relaxation costs besides processing
time; (iv) the cache update module is extended to cope with cache redundancy,
due to the presence in cache of queries generalizing other queries in cache (not
addressed in this paper).

660 F. De Fino et al.

Fig. 2. (a) SPARQL queries and corresponding canonical labels; (b) Predicate and
class taxonomies; (c) Graph cache tree

3 Cache Selection Algorithm

3.1 Graph Query Matching and Cache Data Structure

Cached queries are represented as a tree by exploiting a canonical labeling extend-
ing the labeling in [11]. All isomorphic forms of a SPARQL query are assigned
the same label, generated through an extension of the Bliss algorithm [7]. Each
canonical label represents a graph query as a string (see Fig. 1(a)): each vari-
able, resource, and predicate is represented by an id and triple patterns are listed
according to the ordering generated by the Bliss algorithm, applied over a spe-
cific vertex-coloured representation of the input graph. In [11], a variation of this
basic algorithm is also provided with an ad-hoc treatment for star subqueries
(i.e., the set of triple patterns sharing the same variable and in join with at most
one other triple patterns). The canonical label first lists the canonical label of
the non-star subquery (skeleton canonical label) and then lists (after symbol “!”)
the canonical representation of each star subquery in a predefined order.

When subPropertyOf and subClassOf relationships form two taxonomy
trees, the approach in [11] can be extended to deal with entailment rules pre-
sented in Fig. 1. A label according to the Dewey numbering scheme is assigned
to each node in the taxonomy trees, and such labels are used inside canonical
labeling as predicate and class ids (see Fig. 2(a) and (b)).

It can be shown that, when Q � Qi, the canonical label of Qi differs from that
of Q only for Dewey identifiers of corresponding but generalized predicates and
classes. Subgraph isomorphism can then be checked by relying on the approach in
[11] and replacing predicate/class equality with generalization tested on Dewey
identifiers.

A set of extended canonical labels can be represented as a graph cache tree as
follows. Each node but the root (which is a dummy node) is associated with the
canonical representation of a triple pattern appearing in the skeleton canonical
label of a cached query. There is an edge from node n1 to node n2 if the triple
pattern associated with n2 follows the one associated with n1 in the canonical

GRaCe: A Relaxed Approach for Graph Query Caching 661

relaxC(Q,Qi) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h∑

j=1

relaxd(tj , gj) + (k − h) · (hmax
pred + 2hmax

res + 1) k > h

h∑

j=1

relaxd(tj , gj) h = k

k(hmax
pred + 2hmax

res + 1) k < h

Fig. 3. relaxC() function, applied over Q ≡ t1, ..., tk, Qi ≡ g1, ..., gh

representation of a cached query. Each skeleton canonical label of a cached query
thus corresponds to a path in the cached tree. Since many queries in the cache
may share the same skeleton canonical representation, each node corresponding
to the final triple pattern of a skeleton label has a child for each cached query
sharing that skeleton label, corresponding to the canonical representation of one
of its star subqueries (see Fig. 2(c)).

3.2 Selection Algorithm

The best cache hit for a query Q is identified through a relaxation function
relaxC() that, given two queries Q ≡ t1, ..., tk and Qi ≡ g1, ..., gh, returns a
value quantifying the relaxation distance between Q and Qi (see Fig. 3). When
Q � Qi, k ≥ h holds and relaxC() is defined in terms of function relaxd()
that, for each pair of corresponding triple patterns tj and gj in Q and Qi, such
that tj generalizes gj , returns the sum of the distances between corresponding
predicates/subjects/objects inside taxonomies. In all the other cases, an upper
bound, based on the maximum height in the input taxonomies, is returned.

The best relaxed cache hit can then be detected by searching the cache
tree through a customized version of the A* search [6], computing costs based
on function relaxC(). Differently from the state-of-the-art A* algorithm, our
search: (i) takes as input the canonical representation of an input query Q; (ii)
compares the i-th triple pattern appearing in the label with labels of nodes at
level i in the tree, checking generalization; (iii) considers a path as a candidate
answer if it corresponds to a query that generalizes the query at hand. The cost
of a path, i.e., of a cached query Qi, corresponds to the result of relaxC(Q,Qi).

4 Extending the Planner

In order to choose the best query execution plan for a given SPARQL query, we
rely on a dynamic programming planner (DPP) approach that selects the optimal
query plan by decomposing the problem taking into account all the connected
subgraphs of the input query. Differently from state of the art approaches, e.g.,
[11], we exploit both query execution and relaxation costs in the identification
of the optimal query plan.

662 F. De Fino et al.

For each connected subgraph, three different atomic plans can be considered:
(i) precise plan, without cache match (T): the execution corresponds to a tradi-
tional approach over the input dataset; (ii) precise plan, with cache match (P):
the execution coincides with a precise cache match; (iii) relaxed plan, with cache
match (R): the execution coincides with a relaxed cache match.

The cost C of each atomic plan is computed as the sum of two sub-costs,
Cexe and Crelax.

Cexe is the cost of executing the query over the input dataset. This cost is set
to 1 for P and R plans since no query has to be executed in this case. For T plans,
a standard estimation of the execution cost based on database statistics can be
used. However, since our main aim is to investigate cache usage performance, we
simply set this cost to the number of triple patterns in the input query Q. The
rationale is that the higher the number of triple patterns, the higher the number
of potential joins and therefore the overall execution cost.

Crelax represents the loss in precision due to a relaxed plan. This cost
is 0 for T and P plans. For R plans, this cost can be precisely defined as
r(Qi, Q,D) = |Qi(D)−Q(D)|, i.e., as the difference between the result cardinal-
ity of the relaxed query Qi and that of the given query Q. While the cardinality
of the relaxed cached query is known (since it has already been executed), the
cardinality of the input query is not and can only be estimated (see, e.g., [13]).
By estimating the difference based on function relaxd() we can simply obtain a
value for r(Qi, Q,D). We refer the interested reader to [2] for additional details.

The DPP relies on an efficient approach for enumerating all possible sub-
graphs, following the approach in [11]. For each identified subgraph Qj of the
input query, the cost of each atomic plan Pj is computed as αCj

exe + βCj
relax,

where α and β allow the system to weight performance w.r.t. relaxation costs.

5 Experimental Evaluation

5.1 Experimental Setup

GRaCe has been developed in Java, version HotSpot(TM) 64-Bit Server VM
under Java SE 10.0.1, relying on Apache Jena 3.12.0. The experiments were
performed on a machine with CPU Intel Core i3-2350M 2.30 GHz, 8 GB of RAM
size, running Ubuntu 18.04 LTS.

Our evaluation relies on the Lehigh University Benchmark (LUBM) [5].
LUBM features an OWL ontology for the university domain, enables scaling
of datasets to an arbitrary size, and includes a class and a predicate taxonomies
that we exploit for checking query containment. The considered LUBM dataset
describes 4 universities, extended with all triples inferred according to the rules
presented in Fig. 1, computed with the Jena reasoning module. The total num-
ber of triples is 985879. The LUBM dataset has been stored under Apache Jena
TDB1 and T plans have been executed by Jena querying facilities. While LUBM
comes with a given workload, such queries have not been designed for relaxation
1 https://jena.apache.org/documentation/tdb/.

https://jena.apache.org/documentation/tdb/

GRaCe: A Relaxed Approach for Graph Query Caching 663

Q1

?ap ub:researchInterest ?res.
?ap rdf:type ub:AssociateProfessor.
?ap ub:mastersDegreeFrom ?uni.
?uni rdf:type ub:University.
?gs ub:undergraduateDegreeFrom ?uni.
?gs rdf:type ub:GraduateStudent.

Q2

?l rdf:type ub:Lecturer.
?l ub:name ?name.
?l ub:teacherOf ?gc.
?gs ub:takesCourse ?gc.
?gc rdf:type ub:GraduateCourse.
?gc ub:name ?gcName.

Q3

?ap rdf:type ub:AssociateProfessor.
?ap ub:mastersDegreeFrom
<http://www.University548.edu>.
<http://www.University548.edu> rdf:type
ub:University.
?gs ub:undergraduateDegreeFrom
<http://www.University548.edu>.

Q4

?l rdf:type ub:Lecturer.
?l ub:name ?name.
?l ub:teacherOf ?gc.
?gs ub:takesCourse ?gc.
?gc rdf:type ub:GraduateCourse.
?gc ub:name ?gcName.
?gs ub:name ?gsName.
?gs ub:emailAddress ?email.

Q5

?ap ub:mastersDegreeFrom ?uni.
?ap ub:worksFor ?dep.
?dep rdf:type ub:Department.
?uni rdf:type ub:University.
?dep ub:name "Department0".

Q6

?fp ub:headOf ?dep.
?fp ub:teacherOf ?c.
?fp ub:doctoralDegreeFrom ?uni.
?ap ub:telephone ?tel.
?dep rdf:type ub:Department.
?ap ub:mastersDegreeFrom ?uni.
?ap ub:name ?apName.
?ap ub:worksFor ?dep.

Q7

?rg ub:subOrganizationOf ?dep.
?rg rdf:type ub:ResearchGroup.
?ap ub:worksFor ?dep.
?dep rdf:type ub:Department.
?ap ub:name ?apName.
?ap ub:mastersDegreeFrom ?uni.
?ap ub:teacherOf ?gc.
?gc rdf:type ub:GraduateCourse.

Q8

?ap ub:worksFor ?dep.
?dep rdf:type ub:Department.
?ap rdf:type ub:AssistantProfessor.
?ap ub:mastersDegreeFrom ?uni.
?uni rdf:type ub:University.
?ap ub:teacherOf ?gc.
?gc rdf:type ub:GraduateCourse.

Q9

?fp ub:headOf ?dep.
?fp ub:teacherOf ?c.
?fp ub:doctoralDegreeFrom ?uni.
?ap ub:telephone ?tel.
?dep rdf:type ub:Department.
?ap ub:mastersDegreeFrom ?uni.
?ap ub:name ?apName.
?ap ub:worksFor ?dep.

Q10
?ap ub:undergraduateDegreeFrom ?uni1.
?ap ub:mastersDegreeFrom ?uni2.
?uni1 rdf:type ub:University.
?uni2 rdf:type ub:University.

Fig. 4. SPARQL queries over LUBM Benchmark

purposes. We therefore designed our own workload of 10 queries Q1, ..., Q10 (see
Fig. 4), differing for the total number of relaxation steps that can be applied to
them. We then created a cache containing 100 entries, corresponding to a cache
tree of about 4000 nodes. The result of each cached query is computed by a T
plan and stored together with the query in the cache. The cache has been gen-
erated so that for queries Q1, ..., Q5 a precise cache hit for the whole query can
be found while for queries Q6, ..., Q10 only a relaxed cache hit can be detected.

The aim of the performed experiments is to: (i) analyze the benefits obtained
by the usage of a relaxed cache during query processing; (ii) analyze the
behaviour of the DPP for the selection of the optimal query plan. In the experi-
ments, we consider three GRaCE versions: one relying on the DPP described in
Sect. 4 (denoted by GRaCe) and two versions in which the DPP only considers
total cache hits, i.e., cache hits for the whole query, either precise (denoted by
GRaCe−

p) or relaxed (denoted by GRaCe−
r). As usual, each query is executed

10 times in GRaCe, GRaCE−
p , or GRaCE−

r , depending on the experiments, and
the average execution time is computed.

5.2 Experimental Results

Relaxed Cache Benefits. For analyzing relaxed cache benefits, we executed
queries Q1, ..., Q5 on GRaCe−

p and queries Q6, ..., Q10 on GRaCe−
r . For each

query Qi, we compared the performance of the execution of a T plan with respect

664 F. De Fino et al.

Fig. 5. (a) GRaCE−
p and GRaCE−

r performance; (b) Performance of the top-5 best
plans for query Q6 in GRaCe (partial matches with different parameters)

to the performance of a P or R plan (see Fig. 5(a)). As expected, P and R
plans have better performance than T plans since no SPARQL query has to be
executed. The performance of a P or R plan depends on the number of visited
cache tree nodes and the number of generalization checks to be performed. Thus,
when the cache hit is precise, the cost for selecting the best cache hit is lower
since more pruning is applied during the cache tree visit.

DPP Behaviour. In the second experiment, we consider GRaCe for analyz-
ing the behaviour of the DPP. To this aim, we consider query Q6 (see Table 4).
Tables 1, 2, and 3 report the 5 plans with the lowest costs, generated by the
DPP for different values of α and β. Numbers in subgraph descriptions corre-
spond to triple pattern positions inside the query. For each plan, we report the
considered query subgraphs (which results are then joined) and the type of the
corresponding selected plan. Figure 5(b) shows the total estimated cost for each
plan, pointing out Cexe and Crelax costs. We can see that, when α = 0.5, β = 0.5,
plans p1 and p2, that correspond to precise match hits, have the lowest cost since
in this case relaxation is not applied and cached results are just retrieved and
joined. When α = 1, β = 0, the relaxation cost is 0 (β = 0); since in this case
all plans correspond to a relaxed match hit (see Table 2), any of them can be
selected by the DPP. Finally, when, α = 0, β = 1, only the amount of relaxation
is relevant for estimating the cost, thus, either plan p1 or p2 is selected since, in
both cases, no relaxation is applied (see Table 3).

GRaCe: A Relaxed Approach for Graph Query Caching 665

Table 1. Top-5 best plans for query Q6,
α = 0.5, β = 0.5

Plan Subgraphs Subplans

p1 (1)(2)(3)(5)(8) �� (1)(4)(5)(6)(7)(8) P �� P

p2 (1)(2)(3)(5)(8) �� (1)(4)(5)(6)(7) P �� P

p3 (4)(7) �� (1)(2)(3)(5)(6)(8) T �� R

p4 (2)(3) �� (4)(7) �� (5)(6)(8) R �� T �� R

p5 (1)(2)(3)(5)(8) �� (4)(6) P �� R

Table 2. Top-5 best plans for
query Q6, α = 1, β = 0

Plan Subgraphs Subplans

p1 (1)(3)(4)(5)(6)(7)(8) R

p2 (1)(2)(3)(4)(5)(7)(8) R

p3 (1)(2)(5)(6)(8) R

p4 (3)(4)(6)(7)(8) R

p5 (1)(3)(6) R

Table 3. Top-5 best plans for query Q6, α = 0, β = 1

Plan Subgraphs Subplans

p1 (1)(2)(3)(4)(5)(6)(7)(8) T

p2 (1)(2)(3)(5) �� (1)(4)(5)(7)(8) T �� P

p3 (4)(7) �� (1)(5)(6)(8) T �� R

p4 (2)(3) �� (4)(7) �� (5)(6)(8) R �� T �� R

p5 (1)(2)(3)(5)(8) �� (4)(6) P �� R

6 Concluding Remarks

In this paper, we have presented a Graph Relaxed Caching approach for RDF
data stores. To the best of our knowledge, our framework is the first relaxed
caching framework for speeding up query processing taking into account relax-
ation during plan cost estimation. Experimental results show that the usage of
a relaxed cache can significantly increase performance and it is suitable when
relaxed query results are acceptable. Future work focuses on two main issues:
(i) the definition of efficient cache replacement algorithms, taking into account
potential cache redundancy, i.e., the presence in cache of queries generalizing
each other; (ii) the extension of GRaCe to deal with SPARQL endpoints, and in
general Semantic Web query engines.

References

1. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: SPARQL query containment
under RDFS entailment regime. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 134–148. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31365-3 13

2. De Fino, F.: Relaxation meets caching: towards smart caching approaches for graph
query processing. Ph.D. thesis. University of Genova, Italy (2020, in preparation)

3. Fard, A., et al.: Effective caching techniques for accelerating pattern matching
queries. In: Big Data 2014, pp. 491–499 (2014)

4. Frosini, R., et al.: Flexible query processing for SPARQL. Semant. Web 8(4), 533–
563 (2017)

https://doi.org/10.1007/978-3-642-31365-3_13

666 F. De Fino et al.

5. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

6. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

7. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and
sparse graphs. In: International Workshop on Algorithm Engineering and Experi-
ments (ALENEX), pp. 135–149 (2007)

8. Lorey, J., Naumann, F.: Caching and prefetching strategies for SPARQL queries.
In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC
2013. LNCS, vol. 7955, pp. 46–65. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41242-4 5

9. Mailis, T., et al.: An efficient index for RDF query containment. In: SIGMOD
Conference 2019, pp. 1499–1516 (2019)

10. Martin, M., Unbehauen, J., Auer, S.: Improving the performance of semantic web
applications with SPARQL query caching. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC
2010. LNCS, vol. 6089, pp. 304–318. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13489-0 21

11. Papailiou, N., et al.: Graph-aware, workload-adaptive SPARQL query caching. In:
SIGMOD Conference 2015, pp. 1777–1792 (2015)

12. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF, W3C rec-
ommendation (2008). https://www.w3.org/TR/rdf-sparql-query/

13. Stocker, M., et al.: SPARQL basic graph pattern optimization using selectivity
estimation. In: WWW 2008, pp. 595–604 (2008)

14. Wang, J., et al.: GC: a graph caching system for subgraph/supergraph queries.
PVLDB 11(12), 2022–2025 (2018)

https://doi.org/10.1007/978-3-642-41242-4_5
https://doi.org/10.1007/978-3-642-41242-4_5
https://doi.org/10.1007/978-3-642-13489-0_21
https://doi.org/10.1007/978-3-642-13489-0_21
https://www.w3.org/TR/rdf-sparql-query/

Modelling of the Fake Posting Recognition
in On-Line Media Using Machine Learning

Kristína Machová(B), Marián Mach, and Gabriela Demková

Department of Cybernetics and Artificial Intelligence,
Technical University, Letná 9, 042 00 Košice, Slovakia

kristina.machova@tuke.sk, gabriela.demkova@student.tuke.sk

Abstract. Discuss content in the online web space has a significant impact on
social life in recent years, especially in the political world. The impact of social
networks has its advantages and disadvantages. An important disadvantage is
a rising of the antisocial content in online communities. The antisocial content
represents a serious and actual problem that is reinforced by a simplifying the
process of creating and disseminating of antisocial posts. A typical example is a
spreading of fake reviews. Detection of fake reviews is becoming one of the most
important areas of research in last years. It is easier to track the impact of fake
reviews than to detect them. The aim of this paper is to create suitable models
for the fake reviews recognition using machine learning algorithms particularly
decision tree, random forests, support vector machine and naïve Bayes classifier.
Using a confusion matrix, several indicators of binary classification efficiency
were quantified in the process of these models testing.

Keywords: Social media mining ·Model for fake reviews identification ·
Machine learning methods · Antisocial posting

1 Introduction

In today’s technology, nearly three and a half billion people have access to the Internet.
At its beginning, the web was used to spread knowledge and education, first among
academics and later among the general public.When the social networks began to emerge
later, their goal was similar. Over time and with their rapid development, they have
become not only a communication channel but also a means of sharing photos, videos,
articles, opinions, even though a mobile phone. Many people do things in their lives just
to share it on social networks. Unfortunately, this communication tool also has a dark
side. It has become the home of fake reviews, gossip, or nonsense, which unfortunately
users continue to share without validation. Every day, falsehood and deceit are spread
through social networks for a variety of reasons as a financial gain or a gain the favor of
the greatest number of people. And consumer users are just helping.

The concept “fake reviews” is neologism, which is very often used to refer to a
fictive message. The fictive information is distributed mainly by social media, but it
can be also distributed through the conventional media. Fake reviews is written and

© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 667–675, 2020.
https://doi.org/10.1007/978-3-030-38919-2_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_56&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_56

668 K. Machová et al.

published in order to mislead and sometimes to harm the reputation of a company,
entity or person, and to profit from it either financially or politically. They usually have
sensational headlines to increase readability of posts.

The effort to manipulate people’s minds is very old. In ancient times, tribal leaders,
princes, kings, and pharaohswanted tomanipulate power. In these times, it was enough to
influence those who had some power. With the arrival of the city states, it was necessary
to manipulate wider groups of people as senators or ambassadors. With the oncoming of
democratic regimes, it was necessary to persuade the masses of the people about their
truth by means of books or daily newspapers. The problem at that time was that the
reader had to buy a book or newspaper with lies. When the radio and television came,
the manipulation was easier, because they allowed the information to be spread among
masses without necessity to pay for the content so much. The mass manipulation began
to fall slowly with the oncoming of the Internet. Suddenly it was also very easy and
quick to find out what was true.

After some time, the mass manipulation took on a new form, for example the form
of fake reviews. Social networks provided an ideal environment for the fake reviews. If
misleading information comes frommultiple sources in a similar period, it is not difficult
to believe that it is serious information. Most social networks users give them only a
quick look. Time and space to confront the source of information is significantly low.
Large number of users do not verify the truth of information because the information
is already enjoyed by thousands of users. Everybody who has a social network account
can create a professionally looking posts, which are spread quickly and for free [1].

2 Fake Reviews Detection

2.1 Fake Reviews in Online Space

The fake reviews under mines serious media companies and make it difficult for jour-
nalists to report significant reviews stories. BuzzFeed, an American Internet media and
reviews agency, found that the top twenty fake reports of the 2016 US presidential
election received more engagement on Facebook than the first twenty election stories
from nineteen major social media. Also, well known publishers have been anonymously
attacked by sites that published fake reviews because it was difficult to detect sources
of them. During and after the presidential election, Donald Trump began using the term
“fake reviews” to describe negative information about his presidency.

To be able to detect fake reviews, at first the concept has to be characterized. There
are more types of fake reviews:

• Satire or parody - no intention to cause harm, but there is a possible craziness
• False link - subtitles and headlines do not support content
• Misconception - use of misleading information to confront a problem or an individual
• False context - if a true content is shared with a false context information
• Fraudulent content - if original sources are supplied with false resources
• Manipulated content - when original information or images intend for fraud are
manipulated, for example in a “modified” photo

• Invented content - the new content is 100% false, designed to deceive and damage

Modelling of the Fake Posting Recognition in On-Line Media 669

According the source, the fake reviews on traditional media has psychology and
social foundations. On the other hand, the fake reviews on social media can be
characterized by malicious accounts and its echo chamber [2].

2.2 State of the Art

There are different approaches to fake reviews detection. The first approach is based on
a content analysis using knowledge (an external source can be used for check-up the
truth of reviews) and the style analysis (a spreading of fake and misleading information
requires the special writing style). The second approach is based on a social context
analysis of a stance, attitude and a propagation of reviews. Detecting false messages on
social networks is a relatively new area of research. The survey [2] addresses related
research areas, open issues, and future research directions fromadataminingperspective.
The fake reviews detection can be oriented on data, feature, model and application.

Social media such as Facebook and Twitter are undoubtedly main channels for
spreadingmisleading information. Facebook has attempted to implement detection tools.
The first is, that users have the option to mark reviews they consider to be a fake reviews.
To identify the source, badges are created that mark the lie and allow users to learn
more about the story. When enough users label a story to be fake, the frequency of the
shared article decreases. To prevent the spread of fake reviews, the company reduces
the number of tagged posts and thus reduces their spreading. Repeated offenders, who
spread often misleading messages, have removed advertising rights, thereby reducing
their distribution as well as earning.

Another possibility is to implement an artificial intelligence to detect fake mes-
sages. The artificial intelligence can learn quickly and efficiently to determine words
and phrases most relevant to fake reviews - using the trial-and-error method. The artifi-
cial intelligence can be used to identify inappropriate posts and to recognize extremism,
violence, hatred, threats and other forms ofmisleading information in online discussions.

Thework [3] represents an approach to fake reviews detection using spam indicators.
It integrates content and usage information to detect fake products reviews. The model
is based also on a reviewer’s behavioural trails interlinked by specific spam indicators
as an extreme evaluation, a big number of post in a short time period and a similarity of
posts of the reviewer.

Another study is based on the detection of online fake reviews using a text anal-
ysis approach based on n-gram models and machine learning techniques. It compares
six different classification techniques, namely, K-nearing neighbors (KNN), logistic
regression, linear support vector machine (SVM), decision trees and stochastic gradient
descent. To reduce the size of the lexical profile of texts, two methods were used TF and
TF-IDF weightings. The authors collected 12,600 false and 12,600 true reviews on the
2016 political situation. The study showed linear models are better than nonlinear ones.
The highest accuracy was achieved using the SVM algorithm and the lowest accuracy
was achieved using the KNN algorithm [4].

The work [5] is focused on an uncovering fake reviews by classifying it using naive
Bayes classifier and random forests. The reviews were obtained from Amazon and
included the seller’s website, product name, rating, reviewer ID, review topic, review
content, date added, review impact (howmany people consider it useful), andwhether the

670 K. Machová et al.

purchase was verified. The experiments showed that the random forests model achieved
better results than the naive Bayes classifier.

Another work [6] answers interesting questions, for example if the performance of
the classificationmethods for fake reviews filtering is affectedwhen they are used in real-
world scenarios that require online learning. Their datasetswere fromvarious domains as
a trip advising, a recommendation of hotels, or an evaluation of restaurants. Some of data
were ordered chronologically and some were not. They used naïve Bayes multinomial
and Bernoulli, K-nearest neighbors, decision trees, random forests and support vector
machines. The best results were achieved by support vector machines (F1 measure =
0.899).

3 Used Machine Learning Methods

To solve the problem of fake reviews detection, we have selected following machine
learning algorithms: naive Bayes, decision trees, random forests and support vector
machines. We have chosen them for number of reasons, for example - they are the most
reliable, understandable, often used with success, etc. [7, 8].

Naive Bayes is a probabilistic classifier based on Bayes’ theorem and the indepen-
dence assumption between features. It is very natural selection when the final decision
about class fake/non-fake review depends on conditional probability of words in the
given review on the class. The naive Bayes is often applied as a baseline for text clas-
sification. This method is successful on extremely short text. On the other hand, its
performance can be outperformed by support vector machines [9] in the case of big
lexical profile of data texts.

Another selection is a model which uses a tree of decisions to predict a fake/non-
fake label for a new post sample. The tree is learned on the training set using a standard
top-down approach, which starts with a full dataset in one root (parent) node A ques-
tion divides a node to sub-nodes - each representing answers to the question [10]. The
advantages of decision trees in comparison with two above methods are their intuitive
interpretation and the non-linear solution. The decision trees were successfully used for
part-of-speech tagging [11] and text documents categorization and parsing [12].

Random Forests [13] represents a composed learning. It builds a set of de-correlated
decision trees. It averages results of the set of decision trees to final decision about class.
The classification result is determined by voting. To ensure the condition that individual
tree models must be independent, the random forests technique uses a random selection
of attributes for each tree generation. Advantages of Random forests are following.

• Since these trees are independent, it is suitable and easier to generate them in parallel.
• The random selection of a training set for training of each decision tree enable to
validate (to test) it on data, which was not used for training. It facilitates validation.

• This approach is fast and accurate - so it has been used very often in recent years.

The Support Vector Machine (SVM) model separates the sample space into two or
more classes with the widest margin possible, which enables to find the best separating
hyperplane. SVM is originally a linear classifier. However, the classifier can perform

Modelling of the Fake Posting Recognition in On-Line Media 671

a non-linear classification [14] using non-linear function or kernel function. Kernel
method maps features into a higher dimensional separable space. The objective is to
maximize the width of the margin, which is known as the primal problem of support
vector machines [15].

4 Models Building

The main aim of this work was to find the most accurate machine learning algorithm for
learning the model that could detect the fake reviews.We used CRISP-DMmethodology
[16] for the data mining process. We had a dataset that contained the title, the text and
the label of the posts in the form of marks False and True. The attributes Title and Text of
the posts have been pre-processed. Input to the modelling was in two forms - a document
term matrix with and without TF-IDF weighting. We have verified the created models
on the test set using several indicators of binary classification.

4.1 Data Source

We have chosen a dataset that was freely available at https://www.kaggle.com/. Dataset,
Fake News Detection, contained 4009 records and 4 attributes. The message tag was
specified using the Label attribute, which takes two values, 0 - indicates fake reviews,
and 1 - indicates true post. The attribute represents the target attribute. The proportion
of false and true posts was 51.31% to 46.69%. We suppose, that it reflects a reality of a
discussions, when authors want to respond to fake reviews to balanced it. Dataset also
contained attributes: URLs, which indicates the location of the post on the Internet, the
Headline and Body of a post. The dataset contains reviews about the new USA President
Donald Trump. The dataset was divided into two datasets. First data set contains only
bodies of all reviews and the second dataset contains only headlines of reviews. These
two datasets were used for testing. We wanted to figure out which machine learning
methods are better for extremely short texts and which methods can be used for all
reviews.

4.2 Data Preprocessing

The data pre-processing is one of the most time consuming phases of the process of data
mining. The quality of pre-processed input data affects the quality of output. The data
pre-processing contained following steps:

• removing unsuitable symbols and unnecessary gaps
• conversion to lowercase and delete punctuation
• remove “stop words”
• stemming
• create document term matrix (DTM) using “Bag of words” representation
• create DTM with weighting scheme TF-IDF [16].

https://www.kaggle.com/

672 K. Machová et al.

5 Models Testing

Four models were trained using following four machine learning methods: naive Bayes
(NB), decision tree (DT), random forests (RF) and support vector machine (SVM). The
input data, process of models learning, and testing are illustrated in Fig. 1.

Fig. 1. Illustration of input data and generated model testing

The input of the training was consisted from tests of posts (attribute Body) from
dataset described above. The data were pre-processed to the form of document term
matrix (DTM) and processed by four above mentioned machine learning methods under
two different conditions: with and without TF-IDF waiting. Using a confusion matrix,
following indicators of binary classification were quantified: Accuracy, Interval of accu-
racy (Table 1), Precision, Recall and F1 measure as a harmonic average of precision and
recall (see Table 2).

Table 1. Accuracy and Interval of accuracy of models learned from the body of posts

Body of posts DTM DTM + TF-IDF

Accuracy Interval of accuracy Accuracy Interval of accuracy

NB 0.844 (0.822, 0.864) 0.904 (0.886, 0.920)

DT 0.881 (0.862, 0.899) 0.904 (0.886, 0.920)

RF 0.978 (0.969, 0.988) 0.983 (0.973, 0.989)

SVM 0.782 (0.758, 0.805) 0.944 (0.930, 0.957)

Experiments presented in both Tables 1 and 2 showed that in the case when the
input of the learning are whole texts of reviews or posts the best model is model learned
by random forests algorithm. The random forests method is best in all results of the

Modelling of the Fake Posting Recognition in On-Line Media 673

Table 2. Recall, Precision and F1 measure of models learned from the body of posts

Body of
posts

DTM DTM + TF-IDF

Recall Precision F1 Recall Precision F1

NB 0.910 0.818 0.862 0.880 0.936 0.907

DT 0.938 0.854 0.894 0.920 0.902 0.911

RF 0.964 0.995 0.979 0.972 0.995 0.983

SVM 0.570 0.938 0.709 0.916 0.978 0.946

monitored parameters of effectivity: Recall, Precision, F1 measure and Accuracy. Also
Intervals of accuracy are narrowest and smallest for random forests model. A smaller
range of the Interval of accuracy means a better model.

Our best result achieved by SVM in F1 measure is 0.946 what is better than in the
similar work [6].

Other four models were trained using following four machine learning methods:
naive Bayes (NB), decision tree (DT), random forests (RF) and support vector machine
(SVM). The input of the training was created with headlines of posts (attribute Head-
line) from dataset described above. The data were pre-processed to the form of document
termmatrix (DTM)without and with TF-IDFwaiting. Using a confusionmatrix, follow-
ing indicators of binary classification were quantified: Accuracy, Interval of accuracy
(Table 3), Precision, Recall and F1 measure (Table 4).

Table 3. Accuracy and Interval of accuracy of models learned from the headlines of posts

Headline of posts DTM DTM + TF-IDF

Accuracy Interval of
accuracy

Accuracy Interval of
accuracy

NB 0.802 (0.778, 0.824) 0.812 (0.788, 0.833)

DT 0.551 (0.523, 0.580) 0.550 (0.521, 0.578)

RF 0.749 (0.724, 0.773) 0.760 (0.735, 0.784)

SVM 0.762 (0.737, 0.786) 0.775 (0.750, 0.798)

Experiments presented in Table 3 shows that in the casewhen the input of the learning
were extremely short texts as headlines or titles of posts the bestmodelwasmodel learned
byNaïve Bayes learningmethodwhenAccuracy and Interval od accuracy was taken into
account. The results in Table 4 are not so clear.When Recall and Precision was taken into
account naïve Bayes model and decision tree model were the best alternately according
the way of pre-processing: DTM or DTM with TF-IDF waiting. But when F1 measure
was taken into account the naïve Bayes model was the best. We can close the evaluation
by claim, that naïve Bayes model is best for Headlines of post, because F1 measure is

674 K. Machová et al.

Table 4. Recall, Precision and F1 measure of models learned from the headlines of posts

Headline of posts DTM DTM + TF-IDF

Recall Precision F1 Recall Precision F1

NB 0.792 0.829 0.810 0.820 0.826 0.823

DT 1.000 0.543 0.704 0.200 0.898 0.327

RF 0.830 0.734 0.779 0.710 0.827 0.764

SVM 0.718 0.814 0.763 0.766 0.802 0.783

harmonic means of Precision and Recall and so the F1 measure takes into account both
types of mistakes – numbers of falls positive and falls negative classifications.

6 Conclusions

The approach to the fake reviews detection in online discussions was introduced. The
approach was based on models for fake reviews classification generated by machine
learning algorithms: naive Bayes, decision trees, random forests and support vector
machines. Generated models have been tested. Experiments showed that input data
representation is important, as in most cases models that worked with the document
term matrix with a TF-IDF weighting (DTM + TF-IDF) achieved better results. The
naive Bayes model appeared to be the best for a smaller data input sample for example
in the form of headlines or titles of posts. On the other hand, the random forests model
appeared to be the best for larger data input samples as whole texts of posts. For future,
the presented 4 approaches are planned to be explore by evaluating their robustness on
a progressively unbalanced dataset and on other datasets.

Thiswork has produced results that could be further developed, as the problemof fake
reviews steadily increases. These issues should be discussed, their dangers highlighted,
and they can be resolved by finding and detecting them. For future, we would like to
use a deep learning method to get better results mainly in the accuracy measure. The
problem of fake reviews detection could be also analyzed from the point of sentiment
or opinion polarity [17].

Acknowledgements. The work presented in this paper was supported by the Slovak Research
and Development Agency under the contract APVV-017-0267 and APVV-16-0213.

References

1. Vítek, F.: Fake news – where did it begin and where do we go?, May 2019. http://mocnedata.
sk/2018-fake-news/

2. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data
mining perspective. Newsletter 19(1), 22–36 (2017)

http://mocnedata.sk/2018-fake-news/

Modelling of the Fake Posting Recognition in On-Line Media 675

3. Dematis, I., Karapistoli, E., Vakali, A.: Fake review detection via exploitation of spam indi-
cators and reviewer behavior characteristics. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van
Leeuwen, J.,Wiedermann, J. (eds.) SOFSEM2018. LNCS, vol. 10706, pp. 581–595. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_41

4. Ahmed, H., Traore, I., Saad, S.: Detection of online fake news using N-gram analysis and
machine learning techniques. In: Traore, I., Woungang, I., Awad, A. (eds.) ISDDC 2017.
LNCS, vol. 10618, pp. 127–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69155-8_9

5. Chowdhary, N.S., Pandit, A.A.: Fake review detection using classification. Int. J. Comput.
Appl. 180(50), 16–21 (2018)

6. Cardoso, E.F., Silva, R.M., Almeida, T.A.: Towards automatic filtering of fake reviews.
Neurocomputing 309, 1–41 (2018)

7. Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach, 3rd edn, pp. 1–932.
Prentice Hall, Pearson Education, Upper Saddle River (2010). ISBN-13: 978-0-13-604259-4

8. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 3rd edn, pp. 1–703. Morgan
Kaufmann, Elsevier, Burlington (2012)

9. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine
learning techniques. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP 2002), Philadelphia, pp. 79–86 (2002)

10. Kingsford, C., Salzberg, S.L.: What are decision trees? Nat. Biotechnol. 26(1), 1011–1013
(2008)

11. Orphanos, G., Kalles, D., Papagelis, T., Christodoulakis, D.: Decision trees and NLP: a case
study in POS tagging. Academia, 1–7 (1999)

12. Magerman, D.M.: Statistical decision-tree models for parsing. In: Proceeding ACL 1995
Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics,
pp. 276–283 (1995)

13. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
14. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: With

Applications in R. STS, vol. 103, pp. 1–426. Springer, New York (2013). https://doi.org/10.
1007/978-1-4614-7138-7

15. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering. J. Mach.
Learn. Res. 2(2), 125–137 (2001)

16. Paralič, J., et al.: Mining Knowledge from Texts. Equilibria, Košice (2010)
17. Mikula, M., Machová, K.: Combined approach for sentiment analysis in Slovak using a

dictionary annotated by particle swarm optimization. Acta Electrotechnica et Informatica
18(2), 27–34 (2018)

https://doi.org/10.1007/978-3-319-73117-9_41
https://doi.org/10.1007/978-3-319-69155-8_9
https://doi.org/10.1007/978-1-4614-7138-7

Two-Step Memory Networks for Deep
Semantic Parsing of Geometry

Word Problems

Ishadi Jayasinghe(B) and Surangika Ranathunga

Department of Computer Science and Engineering, University of Moratuwa,
Katubedda, Moratuwa 10400, Sri Lanka

{ishadij.12,surangika}@cse.mrt.ac.lk

Abstract. Semantic parsing of geometry word problems (GWPs) is the
first step towards automated geometry problem solvers. Existing sys-
tems for this task heavily depend on language-specific NLP tools, and
use hard-coded parsing rules. Moreover, these systems produce a static
set of facts and record low precision scores. In this paper, we present
the two-step memory network, a novel neural network architecture for
deep semantic parsing of GWPs. Our model is language independent
and optimized for low-resource domains. Without using any language-
specific NLP tools, our system performs as good as existing systems. We
also introduce on-demand fact extraction, where a solver can query the
model about entities during the solving stage that alleviates the problem
of imperfect recalls.

Keywords: Semantic parsing · Memory networks · Low-resource
domains

1 Introduction

A Geometry Word Problem (GWP) usually consists of a set of sentences that
describes some geometric entities and a question regarding those entities. An
example of a description of a GWP is given in Table 1 (Sentences section). Ample
amount of previous research available in this area of automated solving of GWPs
attests to the importance of this domain [2,3]. However, most of the existing
systems for this task require the GWPs to be manually parsed to machine-
understandable formats. In this research, we tackle this problem of automating
the parsing of GWPs, which paves the way towards end-to-end automatic solving
of GWPs.

We use deep semantic parsing here, as it focuses on building more formal
representations that support automated reasoning [1]. This task of deep parsing
of geometry questions is inherently difficult due to several reasons. One critical
reason is the lack of data [3], so using usual deep learning models for this task is
not viable. Hence, existing systems such as GEOS and GEOSV2 have resorted
to using hard-coded parsing rules [2,3]. These rule-based approaches bring forth
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 676–685, 2020.
https://doi.org/10.1007/978-3-030-38919-2_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_57&domain=pdf
http://orcid.org/0000-0001-9186-7192
http://orcid.org/0000-0003-0701-0204
https://doi.org/10.1007/978-3-030-38919-2_57

Two-Step Memory Networks for Deep Semantic Parsing of GWPs 677

a couple of limitations. Firstly, these systems are limited only for one language,
and even within that language, the scalability and the maintenance are difficult
due to hard-coded rules. Secondly, these systems record low precision scores [3].

Table 1. Task definition

Sentences

Line AB is parallel to line CD

AB is a chord of the circle with center O

Initial fact extraction

Unary rules Line(AB), Line(CD), Circle(O)

Binary rules Parallel(AB, CD), IsChordOf(AB, O)

Relation completion

Parallel(Line(AB), Line(CD))

IsChordOf(Line(AB), Circle(O)))

On-demand fact extraction

AB→ {Line(AB), Chord(AB)}
CD→ Line(CD)

O→ Circle(O)

A solver that uses deductive reasoning, rather than a numeric approach, is
more interpretable [2]. Hence, the importance of entities for such a system is
dynamic. For example, during a proof where the goal is to prove the entities AB
and CD are equal, and if the solver deduces a relationship such as AB = BC,
proving that BC = CD would achieve the target. Thus, the solver will have to
explore about BC. However, due to imperfect recalls, the facts relevant to BC
can be missing in the extracted fact set. This can inhibit solving the problem.
Considering the requirements above, we model this task as a question answering
(Q/A) task. Through this way of modeling, in addition to the capability to
extract facts similar to the other existing systems, we also facilitate the solver
to extract facts about interested entities (BC in the example above) during
the deduction process. This effectively increases the recall of the system, thus
lessening the severity of the impact caused by imperfect recalls during the initial
fact extraction phase. We term this feature as on-demand fact extraction.

This Q/A task is built on Memory networks [6]. We enhance this memory
network model to suit for low resource datasets facilitating (i) the introduction
of deep learning to this task (which in turn brings forth advantages such as inter-
language usability, and low-cost maintainability), (ii) on-demand fact extraction
resulting in an overall high recall, and (iii) the capability to accommodate mul-
tiple sentences. We show this model performs comparable to existing systems,

678 I. Jayasinghe and S. Ranathunga

and is better than memory networks in all the tasks. We also show that the
position encoding scheme we introduce improves results on all the tasks1.

2 Related Work

GEOS focuses on solving geometry questions in an end-to-end manner [3]. Using
a hardcoded set of parsing rules, GEOS generates a set of facts that are scored
for their accuracy using a discriminative model. Although GEOS produces a
large number of inaccurate rules at the end of text parsing, one reason this is
not affecting GEOS is due to this limited scope. Hence, if this parser is used for
problems where proofs are needed, not only might the wrong facts would lead to
a wrong proof, proving might even become impossible if some of the necessary
facts are missing in the extracted set.

RNNs such as LSTMs are frequently used in a wide array of tasks [4]. How-
ever, it is known that their memory is limited and they have trouble in modeling
long-range dependencies [5,6]. Even though increasing the layer size is a solu-
tion (as in the machine translation model developed by Xu et al. [7]), it is not
possible on low resource domains.

Memory networks [6] were proposed as a means to query from multi-
ple sentences. Consider we have N number of sentences as memories, with the
memory for sentence i denoted as mi. The memory network first selects the most
matching memory mo1 with the query x. Then it goes for a second iteration to
select the most matching memory mo2, but now, not only with the query x but
also with the memory mo1. This process is repeated for the configured number of
hops (2 in this case). Finally, the most matching word (â) from the vocabulary
W is selected based on its similarity score with the query x and the selected
memories (mo1 and mo2 in this case).

End-to-end Memory Networks [5] were introduced to make memory net-
works end-to-end trainable by replacing the hard attention mechanism in mem-
ory networks by a soft attention mechanism. Sukhbaatar et al. [5] also introduced
modifications to reduce the trainable parameter count.

3 Two-Step Memory Networks

3.1 Task Definition

Table 1 illustrates the intended use of our model. Our model should initially
produce unary rules (rules with one child), binary rules (rules with two children),
and, finally, completed relations (merging unary and binary rules) for a given
set of sentences. Also, it should be capable of extracting facts related to a given
entity as shown under On-demand Fact Extraction in the table.

We model this task as a question-answering (Q/A) task. First, a list of key-
words from the training data is automatically extracted along with their valences.
1 Our work can be accessed from this repository: https://github.com/IshJ/Two-step-

memory-networks.

https://github.com/IshJ/Two-step-memory-networks
https://github.com/IshJ/Two-step-memory-networks

Two-Step Memory Networks for Deep Semantic Parsing of GWPs 679

For example, if there are two rules such as {“parallel AB CD”, “line AB”}, the
words parallel, and line are extracted along with 2 and 1 as their valences
respectively. These words are used as the query words. Two models are trained
for unary and binary rules.

3.2 Limitations of Existing Memory Networks

End-to-end memory networks store a given sentence as the sum of the embedding
vectors of its words resulting in a lossy sentence representation. Even though this
has not caused a significant loss of information with the experiments carried out
by Sukhbaatar et al. [5], we found this representation to be too lossy for our task.
As discussed above, increasing the network capacity to retain more data is not
viable here. On the other hand, if we can store only the important memories, we
will not need to compress information as much as above. This is our motivation
behind coming up with a model that can selectively store only the essential data
within a limited capacity.

3.3 Model Formulation

Here, we first need to select the sentences that are relevant to the query at hand.
Taking x as the query and mi as the ith sentence, the probability is calculated
for the relevance of sentence i to the query x:

pi = Sigmoid(xTmi) (1)

Figure 1 shows an example for the resulting probability distribution. Lighter
colors indicate higher probabilities. We do not concern about handling inter-
sentence dependencies in this research. So we are not going for a multi-hops
approach for selecting the relevant sentences. As a hyper-parameter of the model,
we maintain a threshold for the lowest probability a sentence should get to be
considered as a relevant sentence. This is hard attention. Even though this makes
the network incapable of being trained end-to-end using standard backpropaga-
tion methods [7], we adopt it to keep the computations simple.

Fig. 1. Architecture of the sentence selection model.

After selecting the relevant sentences, each of the selected sentences is fed
to the word-level memory network (Fig. 2). Here, the model attends each
selected sentence in the word level.

680 I. Jayasinghe and S. Ranathunga

First, the words of the query are embedded with the embedding matrices
A and B respectively. Then the dot product is calculated between each word
embedding and the query. These scores are converted to a probability distribu-
tion using the Softmax operation:

pi = Softmax(xTmi) (2)

Fig. 2. Architecture of the word-level memory network

After that, the words are again embedded using the embedding matrix C,
and then the weighted sum of these embedding vectors is calculated:

o =
∑

i

pici (3)

Now the query embedding is updated with this sum so that the query for the
next hop contains the information from this hop:

xk+1 = xk + ok (4)

In the single hop scenario (Fig. 2a), the words are embedded using a second input
embedding matrix (A2). From the dot products calculated with the updated
query, a probability distribution is produced. This process is similar to the pro-
cess described above (Eq. 2). Now, as the answer, the word with the highest
probability is selected:

â = Argmax(Softmax(xT
k+1mi)) (5)

Two-Step Memory Networks for Deep Semantic Parsing of GWPs 681

In the multi-hop scenario (Fig. 2b), equations from 2–4 are executed in a
loop for the given number of hops. After each hop, the query is updated with
the weighted sum of the word embeddings, thus allowing the forward-passing of
information. Finally, similar to the single hop scenario, the answer is selected
based on the probabilities calculated in the final hop.

Focus controlling (FC) with position encoding: If we consider the sen-
tence “In the given figure, line AB is parallel to line CD”, it contains two rules for
the same keyword line. If we query the sentence just with line, we will not be able
to get both rules. To overcome this limitation, we introduce a mechanism to “tell”
the network where to focus. We do this by a customized position encoding
(PE) scheme. This scheme also serves the purpose of giving the model a sense of
the order of the words. We build our scheme based on the PE scheme introduced
by Sukhbaatar et al. [5]. We first extend the embedding matrices with a size of
2∗max len, where max len refers to the maximum sentence length in the train-
ing dataset. After that, instead of the memory mi being simply the embedding of
wi, we modify the memory mi to be embedding(wi)+ embedding(max len+di)
where di refers to the distance between wi and the matched keyword in the
sentence. Words before the query word get negative values for di, whereas the
words after the query word get positive values for di. According to this scheme,
the memory in the location of the query always gets added the same vector;
embedding(max len). So does the words around the query word. Hence, we can
expect the model to learn to focus more on memories near the query word.

Unary Rule Extraction: This task only needs single word answers. So, we use
the model in Fig. 2b as it is.

Binary Rule Extraction: Here, we focus on rules such as “parallel AB CD”.
Unlike extracting unary rules, not only do we have to extract two words but also
the second word depends on the first word retrieved. Due to this dependency,
we cannot model this problem as a multi-class classification problem. Also, as
explained earlier, introducing an RNN is not viable. Therefore we come up with a
layer-wise retrieving mechanism; assuming we have k number of hops and layerk
as the final layer, we retrieve the first literal (AB in this case) from layerk−1

and the second literal (CD) from layerk. We define the loss function as the
summation of individual losses (categorical cross-entropies) from the two layers;

Loss =
l∑

i

(tik log(sik) + tik−1 log(sik−1)), i = 1, 2...l (6)

Here, l refers to the memory size (or the length of the sentence). tik refers to the
ground truth value for the ith location for kth layer. Usually (if label smoothing
or any such technique is not used), tik is 1 for the location of the second literal
(CD) and 0 for the other locations. Similarly, tik−1 is 1 for the location of the first
literal (AB) and 0 for the other locations. sik refers to the probability computed
by the model for the ith location for the kth layer.

On-demand Fact Extraction: We model this task similar to unary rule extrac-
tion. Here, we query with the interested entity. For example, if we consider the

682 I. Jayasinghe and S. Ranathunga

sentence “AB is a tangent to circle O”, and if we query the sentence with AB,
the system will produce tangent. Through FC, as described above, we retrieve
multiple rules for a single entity.

4 Experiments

GEOSV2 have used a publicly unavailable dataset that is larger than the dataset
used in GEOS. Thus, we compare the scores of our model with the scores
of GEOS and GEOSV2 when they are trained on the dataset used in GEOS
(Table 2). We use the training and the practice datasets in the table as our
training and evaluation datasets respectively.

Table 2. Statistics of the dataset. Introduced by Seo et al. [3].

Total Training Practice Official

Questions 186 67 64 55

Sentences 326 121 110 105

Binary relations 337 110 108 119

Unary relations 437 141 150 146

4.1 Unary Rule Extraction

The keywords with valence 1 are used for this task. Unary Rule Extraction in
Table 3 indicates the results of this task. We handle multiple occurrences of
the same keyword through FC. Figure 3 shows how the probability distribution
changes based on the focused location during multiple rule extraction for the
same keyword. We can see a significant improvement in the F1-score when it
comes to two-step memory networks from end-to-end memory networks.

Table 3. Precision, Recall, and F1 scores for the tasks of unary rule extraction, binary
rule extraction, and on-demand fact extraction

Task Model P R F1

Unary rule extraction End-to-end MN 0.51 0.25 0.33

Two-step MN without FC 0.52 0.42 0.46

Two-step MN with dynamic FC 0.55 0.58 0.56

Two-step MN with fixed FC 0.68 0.72 0.70

Binary rule extraction End-to-end MN 0.83 0.19 0.30

Two-step MN without FC 0.36 0.60 0.45

Two-step MN with fixed FC 0.49 0.62 0.55

On-demand fact extraction End-to-end MN 0.49 0.20 0.29

Two-step MN without FC 0.49 0.56 0.52

Two-step MN with dynamic FC 0.73 0.80 0.76

Two-Step Memory Networks for Deep Semantic Parsing of GWPs 683

Dynamic Versus Fixed FC: Dynamic FC refers to changing the position
encoding based on the location of the keyword. Consider the sentence “.. line
AB is parallel to line CD”. We will use {line, 5} and {line, 10} for querying under
this setting. Fixed FC refers to keeping the position of the keyword fixed ignoring
its multiple occurrences. Interestingly, when it comes to results, for unary rule
extraction, we can see that dynamic FC has lower scores compared to fixed FC
(3rd and 4th rows of Unary Rule Extraction in Table 3). The disadvantage caused
by being unable to produce multiple rules for the same keyword can be seen to
be overridden by the advantage of being able to ignore the query word position
during training. As expected, having FC in either setting above is better than
having no FC (2nd and 3rd rows of Unary Rule Extraction in Table 3).

Fig. 3. Extracting the rules (a) “line AB”, (b) “line CD”, and (c) “line EF” with the
keyword line.

4.2 Binary Rule Extraction

The (Binary Rule Extraction in Table 3) indicates the results for this task. We
can see a significant improvement in the F1-score with the two-step memory
network (two-step MN) and further improvements with FC. Figure 4 shows an
example for this task.

Fig. 4. Binary rule extraction for the keyword lies.

4.3 On-Demand Fact Extraction

Here, as the training set, we reversed the unary rules so that the entity would
be the querying word and the property would be the answer. During the test-
ing phase, using a regex expression, we first scan the sentence to retrieve all
the candidates, and then we query the sentence with each of those candidates
(Fig. 5).

684 I. Jayasinghe and S. Ranathunga

Fig. 5. Fact extraction for the entity v. We can see how the answer area is refined over
hops.

It is important to note that we use this regex rule only for evaluating the sys-
tem. We do not need this rule for training the system and inferencing afterwards.
On-demand Fact Extraction in Table 3 shows our results under this task. Similar
to the above tasks, we can see substantial improvements with the improvements
we introduce.

4.4 Relation Completion

Here we see whether our system outperforms the existing systems. The results
are indicated in Table 4. Compared to GEOS, we have an increment of 25% for
precision despite the drop of F1-score by 3%. Compared to GEOSV2, we have
a precision increment of 20% while we record a drop of 3% with F1-score. Both
GEOS and GEOSV2 have low precision scores despite the high recalls, which
occurs when a system produces a lot of false positives. As our system records a
higher precision only with a slight drop of the F1-score, we claim that the rules
generated by our system are more reliable. With on-demand fact extraction
(that records a high F1-score of 76%, a recall of 80%, and a precision of 73%),
we effectively increase the recall of our system.

Table 4. Precision, Recall, and F1 score for relation completion

P R F1

GEOS 0.57 0.82 0.67

GEOSV2 0.59 0.83 0.69

Two-step MN 0.71 0.60 0.65

5 Conclusion and Future Work

In this paper, we present the two-step memory network, a novel neural network
architecture, for deep semantic parsing of GWPs. Our system is competitive with
GEOS and GEOSV2. Also, our system can generate on-demand rules, which
alleviates the problem of having a low recall. Unlike existing systems that are
heavily dependent on NLP tools and hardcoded parsing rules, our system does
not use any language dependent tools and optimized for low-resource languages.
Also, since we do not use any domain specific rules, we conjecture that our
system can be used for other similar parsing tasks too.

Two-Step Memory Networks for Deep Semantic Parsing of GWPs 685

Even though we have provisioned for multiple sentences, we did not experi-
ment this. Research in this line will make way to modeling inter-sentence depen-
dencies such as co-reference resolution.

Acknowledgments. This research was funded by a Senate Research Committee
(SRC) Grant of University of Moratuwa, Sri Lanka and LK Domain Registry, Sri
Lanka.

References

1. Miikkulainen, R.: Subsymbolic case-role analysis of sentences with embedded
clauses. Cogn. Sci. 20(1), 47–73 (1996)

2. Sachan, M., Xing, E.: Learning to solve geometry problems from natural language
demonstrations in textbooks. In: Proceedings of the 6th Joint Conference on Lexical
and Computational Semantics (* SEM 2017), pp. 251–261 (2017)

3. Seo, M., et al.: Solving geometry problems: combining text and diagram interpre-
tation. In: Proceedings of EMNLP 2015, pp. 1466–1476 (2015)

4. Socher, R., et al.: Recursive deep models for semantic compositionality over a sen-
timent treebank. In: Proceedings of EMNLP 2013, pp. 1631–1642 (2013)

5. Sukhbaatar, S., et al.: End-to-end memory networks. In: NIPS, pp. 2440–2448 (2015)
6. Weston, J., et al.: Memory networks. arXiv preprint arXiv:1410.3916 (2014)
7. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual

attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

http://arxiv.org/abs/1410.3916

Foundations of Software Engineering –

Short Papers

A Case Study on a Hybrid Approach
to Assessing the Maturity

of Requirements Engineering Practices
in Agile Projects (REMMA)

Miros�law Ochodek , Sylwia Kopczyńska(B) , and Jerzy Nawrocki

Poznan University of Technology, Poznań, Poland
{miroslaw.ochodek,sylwia.kopczynska}@cs.put.poznan.pl

Abstract. Context: Requirements Engineering (RE) is one of the key
processes in software development. With the advent of agile software
development methods, new challenges have emerged for traditional, pre-
scriptive maturity models aiming to support the improvement of RE
process. One of the main problems is that frequently the guidelines pre-
scribed by agile approaches have to be adapted to a project’s context
to provide benefits. Therefore, it might be naive to believe that it is
possible to propose a prescriptive method of RE process improvement
that will suit all agile projects without any alteration. Objective: The
aim of the paper is to evaluate a hybrid approach to assessing the matu-
rity of agile RE (REMMA), which combines elements of prescriptive and
problem-oriented improvement methods. Method: The usefulness, ease
of use, and cost-effectiveness of REMMA were investigated through a
case study performed in one of the biggest software houses in Central
Europe. Results: The results of the case study suggest that the method
seems easy to use, affordable, and is perceived as a useful tool to support
the process of improving RE practices in agile projects. Its feature of tak-
ing into account the dependencies between practices and the necessity to
adapt them to a certain project context was regarded as well suited for
the agile context. Conclusions: REMMA, which includes two main com-
ponents: a maturity model for agile RE (a set of state-of-the-art agile RE
practices) and an assessment method that makes it possible to evaluate
how well the agile RE practices are implemented, seems to be a useful
tool supporting improvement of RE in agile projects.

Keywords: Requirements Engineering · Process assessment · Process
maturity · Process improvement · Agile

1 Introduction

Requirements Engineering (RE) is one of the key processes in software develop-
ment. It has been observed that when the RE process is orchestrated properly
it can favorably influence the whole software development process [3,6]. Con-
versely, problems related to requirements were often identified as main causes of
the failures of IT projects, e.g., [4,8,9,18].
c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 689–698, 2020.
https://doi.org/10.1007/978-3-030-38919-2_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_58&domain=pdf
http://orcid.org/0000-0002-9103-717X
http://orcid.org/0000-0002-9550-3334
http://orcid.org/0000-0003-2724-0103
https://doi.org/10.1007/978-3-030-38919-2_58

690 M. Ochodek et al.

With the advent of agile software development methods, such as eXtreme
Programming (XP) [1], or Scrum [14], new challenges have emerged for RE.
The approach to planning projects has changed from traditional—predictive to
adaptive [7]. The need for adaptivity is deeply-rooted in the Agile Manifesto
[2] that advise teams to regularly reflect on how to become more effective and
make use of the lessons they learned. Although this principle makes the team
responsible for improving the software development process, many agile soft-
ware development methods introduce additional roles responsible for driving the
improvement process, e.g., Coach in XP [1], or Scrum Master [14] (we will refer
to them as agile coaches). The agile coaches are supposed to have decent knowl-
edge of agile methods to help teams find the best solutions to their problems,
as well as be able to convince management to allocate necessary resources to
support the improvement process.

Among the different tools that agile coaches can use to support the improve-
ment process, they can employ one of the existing agile maturity models (e.g.,
AMM [11], SAMI [15]). These tools might be useful for discovering problems in
their projects, as they prescribe sets of guidelines related to the proper usage of
practices in agile projects.

One of such tools is the approach to assessing the maturity of Requirements
Engineering practices in agile projects (REMMA). It is a unique approach. It
does not only support the improvement of RE by indicating some practices
that need to be tweaked but also it allows incorporating information about how
the specific context of a project affects the usage of agile RE practices. Thus,
REMMA is a hybrid method in the sense that it combines elements characteristic
to both prescriptive and inductive approaches to process improvement. REMMA
has been proposed by Ochodek and Kopczyńska in [10]. Although it has been
developed using Design Science Research, so its components resulted from several
empirical studies, it lacks empirical validation. Therefore, in the paper we present
a study with which we would like to fill this gap.

We carried out an exploratory case study in a software house context to
understand to what extent the method satisfies its requirements: is perceived as
useful (i.e., provides results that correctly reflect the current state of implemen-
tation of RE practices in a project), easy to use (can be used by project team),
and cost-effective (project team can afford using the method).

2 Case Study

We conducted an exploratory case study to characterize and understand an
application of REMMA to assess the alignment of practices within the context
of an organization simultaneously running several agile software development
projects using the guidelines by Runeson et al. [13].

To formulate the research questions we referred to the theoretical framework
of the Technology Acceptance Model (TAM) [17], which was used while creat-
ing REMMA to define quality attributes that the method should exhibit. The
following determinants of Perceived usefulness (PU) and perceived ease of use

A Case Study on REMMA 691

(PEOU) were selected—job relevance, output quality, and result demonstrabil-
ity, and self-efficacy (an individual’s belief that he or she can perform the matu-
rity assessment in his or her project), and perception of external control, which
is the degree to which an individual believes that organizational and technical
resources exist to support the use of the artifact (e.g., management support).
Finally, the authors wanted the method to be cost-effective concerning the effort
required to perform the assessment. Thus, the following research questions were
formulated:

– RQ1 What is the cost of performing the assessment?
– RQ2 How easy to use is the method?
– RQ3 How useful are the results of the assessment?

Case and Subject Selection. In our study, we decided to look for an organiza-
tion that could provide us with some ‘typical cases’ [19]. We decided to conduct
the study in a software house (we refer to it as Company) that at the moment of
conducting the study employed nearly 100 Python programmers, which made it
one of the largest software development houses in Central Europe. The company
ran approximately seven concurrent projects. It had three locations in Poland.
One of their main goals is continuously improving and working towards becoming
a truly agile organization.

We were allowed to carry out the case study in three of the company’s project
teams. We were also able to talk to a person that had worked at the company
for 3 months as a Scrum Master (Coach) with the goal to improve their pro-
cesses (we will refer to this person as Agile Coach). This gave us the chance to
investigate the RE practices from multiple perspectives (Agile Coach, project
team members) and triangulate the observations made during the case study.
The Agile Coach had cross-sectional knowledge of all the projects and was no
longer employed at the time. This was important for us and helped reduce poten-
tial biases. Prior to the case study, we had asked the Agile Coach to select the
projects (cases) to analyze. He chose three projects, A, B, and C that he thought
corresponded to outstanding, good and poor projects with respect to how agile
practices were implemented at the time he was working for the company.

All projects developed web-based applications using Scrum for small- or
medium-sized organizations that were located in different countries. We describe
the projects in more detail in Table 1, to the extent that we are allowed.

Data Collection and Analysis Procedure. We decided to use semi-
structured interviews to collect data during the study. The interview guide for
the study was prepared by one of the researchers (the primary interviewer),
based on research questions. As a following step, the guide was reviewed by the
secondary interviewer. We additionally decided to extend the model by adding
more context factors than those presented in the detailed paper on REMMA
[10]. Based on our experience we defined the following factors: adherence to
Scrum, use of XP, team location, team communication type, type of budget,
and staff retention. Finally, we decided to test the prepared instrumentation
during a pilot study. The primary interviewer conducted an interview session
with the secondary interviewer as an interviewee. The pilot interview pertained

692 M. Ochodek et al.

to the three software projects that the secondary interviewer had participated
in during the previous year.

After incorporating all the suggestions and remarks from the pilot study,
we proceeded to the actual interview sessions. We began by interviewing the
Agile Coach in two sessions. Afterward, we met with the representatives of each
project team. We organized separate sessions for each project team. Each session
was conducted in Polish, and was constituted by five phases:

1. General Questions—the goal was to better understand the company and
project context and to inquire about the interviewees’ experience;

2. Assessment—the primary interviewer facilitated the process of interviewees
collectively filling in the assessment form about their project using a prototype
version of a software tool supporting the REMMA assessment;

3. Presentation of the method—both interviewers explained the mechanism of
practice alignment assessment with REMMA by giving a small presentation;

4. Presentation of results—both interviewers discussed the assessment results
with the interviewees. Then the interviewers presented results of the assess-
ment performed by the Agile Coach and asked interviewees to discuss the
commonalities and differences between these two assessments;

5. Questions about REMMA and Closing up—the interviewers asked about the
interviewees’ impressions of using REMMA and closed up the interview.

Before the sessions, we obtained support for the study from the CEO. Dur-
ing the sessions, we observed that the participants were committed, sometimes
even enthusiastic. Both interviewers were present during all sessions. The pri-
mary interviewer focused on asking questions while the secondary interviewer
tried to reflect and ask follow-up questions. All recordings from the sessions
were transcribed by the primary interviewer (7.5 h of the audio recordings) and
reviewed by the secondary interviewer. Both interviewers analyzed the collected
data according to the guidelines of Charmaz [5]. First, initial coding was car-
ried out incident-by-incident, individually by each researcher. Then in vivo codes
underwent constant comparison, and finally axial coding was performed by both
reviewers working together. At the end, we discussed the results. The part of our
coding scheme that we perceive as relevant to answering the research questions
is presented in Fig. 1. To make the codes more understandable to the reader,
we substituted their names with exemplary quotations they tagged. We also
changed the names of categories to questions. Finally, we used font weight to
reflect the number of projects in which the underlying code existed.

3 Results

Cost of Performing Assessment (RQ1). The Agile Coach needed 40 min to
assess all three projects while projects’ teams assessed their projects in 20 min
(C), 28 min (B), and 38 min (A). All interviewees stated that from their perspec-
tive using REMMA did not require much effort. Moreover, they regarded it as
an acceptable investment for their current projects. They also claimed that they
could afford to perform this assessment regularly, e.g., every sprint (Fig. 1).

A Case Study on REMMA 693

T
a
b
le

1
.
D

es
cr

ip
ti

o
n

o
f
th

e
p
ro

je
ct

s
a
n
d

in
te

rv
ie

w
ee

s
p
re

se
n
te

d
a
cc

o
rd

in
g

to
th

e
g
u
id

el
in

es
o
f
P
et

er
se

n
a
n
d

W
o
h
li
n

[1
2
].

694 M. Ochodek et al.

REMMA

What are your
impressions?

the project status

I want to do it by myself
for another project

I would like to use it for other
practices as well (not only for RE)

I want to use it in
my project

The method is good, can be added
to those we use in our company

What are your
insights?

Context without relationships
does not make sense

Relationships
exist between

some practices

I am not sure if all relationships
are included, it would require

deeper analysis

Assessing practices Using context factors would help
us avoid making the same

errors in the future

The project risks
have been revealed The most important

practices are
included

From basic assessment I can get an
overall view, and in the detailed view;

I can see where the problems are

Who and
What for?

Product
Owner

Scrum
Master

Company
owner

Developers
and Testers

Customer

Team

Unaware
team

Understand
project status

Prepare to
retrospectives

Use as other type
of retrospective

Look at the project from
another perspective

(from time to time and only in areas
easily understood by customer)

Can motivate customer
to improve cooperation

Rather
useless

(sometimes)
See project status

Get overview of
projects

To identify
problems

Motivate team by showing
current status

and improvement

Get acceptance from boss
to introduce / improve practices

improvement goals

Monitor
improvement

Get rationale
to improve
practices

When?

Each sprint

From time to
time

When your
organization aims

at being agile

Good for a 'normal' project,
but not when

a project is delayed
or under pressure

Is it expensive to
use?

Time

Ease of use

I can do it by
myself

nor troublesome

Does not require
much effort

Can be done during one
retrospective session

Each project
should afford

doing it

the numbers indicate the research questions the codes relate to.

RQ: 1 2 3

RQ: 3

RQ: 3

RQ: 3

RQ: 1 2 3

RQ: 1 2 3

RQ: 1 2 3

RQ: 2

RQ: 2

RQ: 3

RQ: 1

RQ: 1

RQ: 1

RQ: 3

RQ: 1 3

RQ: 1

RQ: 1

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 2 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 3

RQ: 1 2 3

Fig. 1. Interviewees opinions on REMMA. The size and emphasis reflects the number
of projects in which the statement was made.

REMMA was also indicated as well suited for retrospectives. Conversely, one
person asserted that he would not use REMMA when there are multiple prob-
lems in the project as“investing in anything other than source code development
activities would be treated as a waste of resources”. Taking into consideration the
quantitative data related to the effort required to perform assessments, and the
positive feedback of team members, we might come to the conclusion that the
method seems affordable for an agile project, which is in a relatively favorable
situation. Nevertheless, using REMMA might not be the best option if a project
is in a dramatic situation.

Perceived Ease of Use of the Method (RQ2). (1) Self-efficacy. At first,
we focus on identifying possible problems with understanding REMMA and
any spontaneous questions asked during the interview. There was a question
regarding the interpretation of the practice assessment scale and the rationale
behind it, and about the source of the practices. There appeared ten questions
concerning several terms used in the names of practices, e.g., “what is an eleva-
tor test?”. These required the interviewers to read aloud the description of the
ambiguous practice from the REMMA assessment form. The remaining practices
and context factors seemed self-explanatory. As the Fig. 1 shows, the majority
of interviewees claimed that they would be able to conduct the assessment by

A Case Study on REMMA 695

themselves. The Agile Coach concluded the interview by stating that “from my
perspective, it is a super tool for the Scrum Master, who can perform the assess-
ment by himself without any great effort”. (2) Perception of external con-
trol. Taking into account the previously discussed cost-efficiency of REMMA,
we can state that participants considered using the method in their projects. In
addition, they suggested that the management might be interested in using the
method to “get an overview of the projects.”

Usefulness of REMMA (RQ3). Output quality. Project A: The results of
both the team members’ and Agile Coach’s assessments showed that all critical
and the majority of important practices were performed in this project at the de
facto standard level in basic assessment. There were only two important prac-
tices identified as never used. Both assessments indicated that there are certain
important practices to be improved, and additional practices to be introduced, in
the Knowledge sharing area. Project A was believed to be the best Agile project
in the company concerning its process quality. The team members seemed very
proud of their success in applying Scrum “everybody says that we do it by the book
and even better”. Project B : The Agile Coach assessed the project as middling
in applying the Agile principles. Around 80% of critical and ca. 75% of impor-
tant practices were at least normally used. Two critical, one important, and two
additional practices were performed at discretionary-use level. Moreover, two
important and three additional practices were never used. There were also five
negative influencers (practices insufficiently used) and one practice unfit for the
context. The Agile Coach triggered some positive changes during his presence
in the company. When we asked to comment on the differences between their
assessment and the one of the Agile Coach, the team members easily identi-
fied the improvement steps that led them to the up-to-date status. Project C :
It had the highest number of practices that required improvement. This state
was correctly reflected in the results of the assessment—the project obtained
the lowest score compared to the others. Only around 20% and 36% of practices
were assessed to be de facto standard or normally used by team members and
the Agile Coach respectively. In both assessments, there were 8–9 practices that
negatively impacted the usage of other practices and 8 practices unfit for the
context. Both assessments also indicated that Customer Involvement, Knowl-
edge sharing areas had the lowest result. The assessment of the Planning area
by the Agile Coach showed that the practices were at least normally used. While
discussing the Agile Coach’s assessment with the team, they confirmed that the
Agile Coach had tried to introduce them, but they were rejected soon after.

We can state that all the interviews approved the results of assessment pro-
vided by the method. They also confirmed the appropriateness of each major
increase or decrease in influence and contextual assessments. Moreover, we ana-
lyzed the codes developed during the analysis of transcripts; we assigned them
into categories of the project’s problems, strong points, and context factors. We
wanted to find out if they were mirrored in the assessments. We observed that
100% of problems and strong points, described by interviewees, were reflected

696 M. Ochodek et al.

in the assessments results. In addition, we obtained examples of practice imple-
mentation for 75% of cases.

Result Demonstrability. Some of the remarks from interviewees concerned the
usability of our prototype tool used to support the assessments. Most of them
were related to graphical details, such as colors, or layout. We also received com-
ments regarding different forms of presenting the results. Interviewees suggested
that they should be provided in a form supporting a top-down approach to anal-
ysis. They stated that, first of all, that the method should be able to provide
an overall result of assessment—accurately expressed by a single number. For
instance, in REMMA the overall assessment is provided in the form of TL and
PIP measures, or a chart summarizing the results of the basic assessment. The
interviewees supported this idea with the argument that some people may not
be interested in the details of assessment. Second, team members might want to
receive a quick report on the current status of their project, without needing to
analyze the results. On the other hand, agile coaches and team members who are
working on improvement may like to receive more detailed reports. Such reports
should help them identify potential problems in their project.

Job Relevance. All of the interviewees stated that they were interested in
using REMMA in their projects. Moreover, two interviewees were eager to use
it in another project right after the interview. During the sessions, we tried to
identify which project roles could potentially benefit from applying REMMA
in certain situations (see Fig. 1). The participants indicated that Scrum Master
would be the role that would use the tool most extensively for supporting the
whole improvement process (identification of problems, defining goals, monitor-
ing the process). However, they also believed that a company owner (manage-
ment) would consider the tool valuable, as it provides comprehensive information
about project status. Overall, REMMA was recognized by project stakeholders
as an appropriate tool to make the development team more aware of the current
status of a project or to support retrospectives. According to the interviewees,
the teams that are unaware of how agile practices shall be implemented may
find REMMA particularly valuable.

4 Conclusions

To validate the approach to assessing the maturity of Requirements Engineer-
ing practices in agile projects (REMMA) proposed method we conducted an
exploratory case study in one of the biggest software houses in Central Europe.
The results of the study made us expect that the proposed approach might
be useful for agile development teams to identify strengths and weaknesses of
RE and provoke improvement. Besides, according to the study participants the
method seems cost-effective and simple enough to be regularly used in agile
software projects.

A Case Study on REMMA 697

Finally, we are aware of the limitations of the case study as a validation
method, but we believe that the promising results might provoke further imple-
mentation and evaluation of the method by practitioners in various organiza-
tions. Moreover, we hope that the paper will facilitate the discussion about the
role of project context in the assessment of the agile-projects maturity.

Acknowledgements. We thank the employees of Company for the participation in
the study. We especially thank Maciej Dziergwa, Oliwia Gogolewska, Jakub Jurkiewicz,
Sebastian Kalinowski, Micha�l Kwiatkowski, Klaudia Prasek, and Dariusz Śmigiel.

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional, Boston (2000)

2. Beck, K., et al.: The Agile Manifesto. http://agilemanifesto.org. Accessed 28 Aug
2015

3. Brodman, J.G., Johnson, D.L.: Return on Investment (ROI) from software process
improvement as measured by US industry. Softw. Process: Improv. Pract. 1(1),
35–47 (1995)

4. Charette, R.N.: Why software fails. IEEE Spectr. 42(9), 36 (2005)
5. Charmaz, K.: Constructing Grounded Theory. SAGE Publications, Thousand Oaks

(2006)
6. Damian, D., Zowghi, D., Vaidyanathasamy, L., Pal, Y.: An industrial case study

of immediate benefits of requirements engineering process improvement at the
Australian center for Unisys software. Empir. Softw. Eng. 9, 45–75 (2004)

7. Elshandidy, H., Mazen, S.: Agile and traditional requirements engineering: a survey.
Int. J. Sci. Eng. Res. 4(9), 473–482 (2013)

8. Kappelman, L.A., McKeeman, R., Zhang, L.: Early warning signs of it project
failure: the dominant dozen. Inf. Syst. Manag. 23(4), 31–36 (2006)

9. May, L.: Major causes of software project failures. CrossTalk-J. Defense Softw.
Eng. 11(7), 9–12 (1998)

10. Ochodek, M., Kopczyńska, S., Nawrocki, J.: A hybrid approach to assessing
the maturity of Requirements Engineering practices in agile projects (REMMA).
http://remma.cs.put.poznan.pl/about

11. Patel, C., Ramachandran, M.: Agile maturity model (AMM): a software process
improvement framework for agile software development practices. Int. J. Softw.
Eng. IJSE 2(1), 3–28 (2009)

12. Petersen, K., Wohlin, C.: Context in industrial software engineering research. In:
Proceedings of ESEM, pp. 401–404. IEEE (2009)

13. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hokoben (2012)

14. Schwaber, K., Sutherland, J.: The Scrum GuideTM. The Definitive Guide to Scrum:
The Rules of the Game. Scrum.org (2013)

15. Sidky, A.: A structured approach to adopting agile practices: the agile adoption
framework. Ph.D. thesis, Virginia Polytechnic Institute and State University (2007)

16. The Commission of the European Communities: Commission Recommendation of
6 May 2003 concerning the definition of micro, small and medium-sized enterprises
(2003/361/EC)

http://agilemanifesto.org
http://remma.cs.put.poznan.pl/about

698 M. Ochodek et al.

17. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on
interventions. Decis. Sci. 39(2), 273–315 (2008)

18. Verner, J., Cox, K., Bleistein, S., Cerpa, N.: Requirements engineering and software
project success: an industrial survey in Australia and the US. Australas. J. Inf.
Syst. 13(1), 1–14 (2005)

19. Yin, R.: Case Study Research: Design and Methods. SAGE Publications, Thousand
Oaks (2003)

Does Live Regression Testing Help?

Marek Bruchatý and Karol Rástočný(B)

Institute of Informatics, Information Systems and Software Engineering,
Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava, Ilkovičova 2, Bratislava, Slovakia
{xbruchaty,karol.rastocny}@stuba.sk

Abstract. Regression testing is an expensive, yet crucial part of the
software development process. As regression test suites grow in size, the
time required for their execution increases proportionally, and their exe-
cution is often either delegated to a specialized testing environment out
of developers reach, or they are omitted completely. This could have a
variety of negative effects on the developers’ productivity, including inter-
ruptions and slowdown of developers’ workflow. We propose a method
of live regression unit testing to address these issues via incorporating
Regression Test Selection and Test Case Prioritization techniques and
an automatized change detection mechanism to run the regression test-
ing in the background automatically. By combining the test results with
source code changes and code coverage information, we are able to pre-
cisely identify source code changes responsible for test failures. By the
paired two-sample t-test we proved, that our method is able to increase
the speed of fault detection and to fix changes responsible for incorrect
behaviour almost 2 times (p-value = 0.001, α = 0.05).

Keywords: Regression testing · Regression test selection · Test case
prioritization

1 Introduction and Related Work

Frequent re-execution of test suites with large numbers of test cases can be very
resource-intensive, mainly due to the testing time requirements. Regression test
selection (RTS) and Test case prioritization (TCP) are two of the most common
practices of regression test optimization (RTO) addressing these issues. Although
extensive research exists regarding both optimization practises, their application
to near real-time environment was not sufficiently examined. A method of auto-
matic and optimized regression testing designed for individual development envi-
ronments can have a profound positive effect on the effectiveness of individual
developers regarding source code development.

Previous research conducted on both of RTS and TCP practices resulted
in a variety of new techniques addressing the issues of applying selection and
optimization to a wide variety of programming languages and different types
of software projects [7]. As described in the work of Biswas et al. [3], RTS

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 699–707, 2020.
https://doi.org/10.1007/978-3-030-38919-2_59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_59&domain=pdf
http://orcid.org/0000-0002-4904-2485
https://doi.org/10.1007/978-3-030-38919-2_59

700 M. Bruchatý and K. Rástočný

techniques can be categorized by the type of programs they are intended for,
mainly divided on the basis of the programming paradigm these programs are
created in. The Object Oriented (OO) approach introduces several important
concepts fundamental for the OO programming paradigm, e.g. polymorphism.
These fundamental concepts directly affect the design of methods used for RTS.
One of often used techniques are Firewall-based techniques that are based on
the concept of a firewall, originally introduced by Leung and White [5]. Firewall-
based techniques use an abstract firewall placed around certain parts of the
program, that contain code modifications. Tests, that exercise at least some
code from the parts of the program enclosed by the firewall are then added to
the test suite for rerun. Firewall techniques are applicable on different testing
levels, e.g. unit tests or integration tests.

As described by Rothermel et al. [9], TCP is a problem of finding the best
possible prioritization/reordering of a test suite, such that a selected award-
ing function always yields more preferable award value to tests placed sooner
in the ordered test suite. Many goals of prioritization can be defined [9], e.g.
reveal faults earlier in the test suite, accelerate the code coverage of the system.
As described by Rothermel et al. [9] there is a strict distinction between TCP
intended for the initial testing of software and regression testing of software. In
case of regressional TCP, information gathered from previous runs are used to
prioritize the subsequent reruns. Therefore at least one successful test suite run
need to be performed in order for this technique to work. Rothermel et al. [9]
also defines two varieties of test case prioritization: general TCP and version-
specific TCP. General TCP is aimed at defining a test case order that will be
used over a sequence of subsequent versions of the program [4,9]. General TCP
can be therefore performed for any release of the program. Version-specific TCP
is aimed on finding a test case order for a specific version of the program [4,9].

Great insight to the effectiveness and possibilities of combining RTS and
TCP techniques can be acquired from the work of Beszédes et al. [2]. They were
able to reduce the average test case selection size to below 10% of the original
size, while still preserving about 50% of test suite inclusiveness [2].

Despite the fact, that hybrid optimization techniques are promoted as a
viable method for further optimization in papers published on the subject of
RTS and TCP [1], none of these works provide any usable information about
their effectiveness in a real production environment and on wider variety of soft-
ware projects. To the best of our knowledge, no available research suggests that
a hybrid approach can be successfully used in a near real-time environment.
Exemplary implementation of the near real-time testing is Live Unit Testing1 in
Microsoft Visual Studio. Although no empirical evidence confirms nor disproves
the effectiveness of hybrid RTS in a near real-time environment. For this reason
we propose a hybrid RTO technique and evaluate effectiveness of developers in
their change implementation tasks.

1 https://docs.microsoft.com/en-us/visualstudio/test/live-unit-testing.

https://docs.microsoft.com/en-us/visualstudio/test/live-unit-testing

Does Live Regression Testing Help? 701

2 Proposed Method

We propose the RTO technique, that targets the problem of regression testing
inefficiency during development. Our aim is to optimize the process of regression
testing performed by individual developers during the development of a source
code and adjacent test cases. This type of regression testing is a frequently occur-
ring process, that is routinely performed by developers as a form of prevention
from introducing software bugs to the modified system [6]. It provides insurance
for the developers, that changes introduced to the modified system are not caus-
ing any problems and that they coincide with existing functional requirements.
Successfully satisfied functional requirements outlined by a test suite can be used
by the author of the changes as a form of validation for the modified source code.
Based on the outcomes of a regression testing process, changes compliant with
all necessary requirements can be then marked as completed. Completed source
code changes are changes that are verified for not having any harmful effects on
the original system.

The proposed method incorporating the techniques of RTS and TCP to form
one unified continuous testing platform, that can be integrated into an integrated
development environment (IDE). The proposed platform also oversees the execu-
tion of test cases and collection of testing data. Our platform is intended to work
in the background, without the need of any oversight from the developer. Mini-
mization of unnecessary interactions between the user and the testing platform
can be achieved by test automation. The proposed method uses changes of the
source code as triggers, designed to initiate specific processes of the testing plat-
form. Based on the severity of detected changes, different steps including multiple
optimization techniques can be applied. Once the final test suite is ready to run,
our proposed testing tool executes all prepared test cases and gather the execu-
tion data. This entire process is initiated by the developer indirectly, only as a
side effect of applying changes to the source code. The use of triggers assumes,
that the regression testing will take place every time the developer introduces a
modification to the source code. Our method proposes a form of real-time test
execution where the source code is tested while it is being developed. By creating
this method, we want to accomplish a level of near real-time testing, to be able
to use the gathered test execution information to provide a quick feedback for
the developer. By building our method on top of an IDE, we are able to utilize
the provided features and use them to notify the developer about detected faults
immediately after they are detected. By informing the developer about detected
fault that were introduced to the system with recent changes, we suppose that
we would be able to help the developer to identify failing tests and the defective
changes more effectively.

The proposed method utilizes following workflow:

1. A developer performs a change of the original source code;
2. The testing platform detects the newly applied change to the source code;
3. The testing platform collects data about the changed source code and effected

test cases;

702 M. Bruchatý and K. Rástočný

4. The testing platform executes an optimized regression testing and collects
testing results;

5. The testing platform alerts the developer about its findings if necessary (if
test failure/s occur);

6. The developer uses the alert/s to quickly localize the defective change/s of
the source code responsible for possible test failure/s.

2.1 Regression Test Selection Method

Our RTS method uses a change-based test selection approach that uses code cov-
erage information to determine the areas of the system affected by the modifica-
tions of the source code. Due to the fact, that our method is prone to encounter
possible performance issues caused by the amount of computation required for its
reliable work we decided, that the high level of inclusiveness that can be achieved
with advanced test selection techniques is inferior to the performance and high
efficiency that rises from the use of more minimalistic selection techniques like
the change-based approach.

Our method uses the code coverage information obtained from the available
test suites to identify units of the source code affected by recent changes. The
coverage information collected at the procedural level, i.e. on level of methods,
is stored in a coverage database. The coverage database stores the relations
between test cases and code units as well as records about the outcomes of
previously performed test runs, i.e. recent test failures. By using the coverage
information to identify all effected code units, we are able to determine which
tests are necessary to add to the test suite prepared for the upcoming test run.
If combined with previously failed test cases, we are capable of assembling a test
suite with a high level of inclusiveness while maintaining a smaller test suite size.
Our selection method is based on a method applied by Beszédes et al. [2], who
have achieved positive results on which are our estimates for inclusiveness based
on. This test selection method offers a good foundation for test optimization on
which test case prioritization can be applied.

2.2 Test Case Prioritization Method

Our method of TCP acts as a second layer of RTO, following the RTS process.
The output of the RTS process – a reduced regression test suite is supplied as an
input to the TCP process. The TCP process then executes a set of sub-processes
that collectively produces a version of the test suite designed to fail fast if a newly
introduced source code bug is detected.

During the first two steps of this method focused on information acquisition,
code coverage information supplied by a chosen testing framework is used to
identify the coverage of individual test cases. At this stage, a set of important test
cases is already known from the previous step of RTS. The coverage information
is thus used with additional information collected from previous test suite runs
to evaluate each test case in terms of its significance with regards to source code
changes. Previously gathered information includes the defect frequency, i.e. the

Does Live Regression Testing Help? 703

number of previously unsuccessful test runs for a particular test case, and the
time of the last test run for a particular test case. An awarding value from the
interval [0; 1] is then computed and assigned to all of the considered test cases
(higher value = higher probability of test failure). Test cases within the test
suite are then reordered in a descending order based on the awarding value they
have had received. This ensures, that the test suite will be executed in an order
ranging from a test case most susceptible to failure to the least one.

3 Evaluation

The aim of our experimental evaluation is to find out if the proposed method
increases the developers’ efficiency of finding source code changes responsible
for test failures. Higher efficiency means, that the developer spends less time on
finding the failing test cases, as well as the actual changes of the source code
responsible for the failures.

3.1 Experiment Design

This experiment relies on the implementation of the proposed method as a work-
ing prototype2, on which we are able to conduct necessary experiments. For this
purpose, we have decided to use the IntelliJ IDEA platform to create a IDE
plugin3 able to provide all necessary features based upon the proposed method.
This choice also enables the subjects (IDE users) to interact with the prototype
directly within the IDE environment.

Goal. We suppose that by incorporating the prototype to the IDE, the developer
would be able to efficiently detect changes responsible for test failures and fix
them in shorter period of time compared to a situation where the prototype is
not available.

Procedure. We propose an experiment in which we test each test subject two
times using two different software projects. Two sets of three tasks are created,
one set for each of the two projects. These tasks contain instructions for the
participants that instructs them to modify the existing source code of a specific
software project in a certain way. One task is purposely designed so that it
contradicts with precisely one test case from the existing test suite. Source code
changes required by this task will therefore produce a failed test case when
running the available regression test suite. A participant is required to fulfill all
three of the tasks defined for each project and confirm their compliance with
the existing regression test suite. The existing test suite is marked as the source
of truth and therefore every task that contradicts with it should be ignored.
If such conflict occurs, the participant is required to find the failed test case and

2 https://github.com/marekbruchaty/livetest.
3 https://www.youtube.com/watch?v=PFdGbQaFUPk.

https://github.com/marekbruchaty/livetest
https://www.youtube.com/watch?v=PFdGbQaFUPk

704 M. Bruchatý and K. Rástočný

then locate the source code changes responsible for the test case failure. Once
the participant is aware of the source code changes responsible for the test case
failure, he/she is required to revert all changes responsible for the failure and
retest the source code again to confirm its compliance with the test suite. If
the changes carried out do not result in a test case failure, the participant can
continue to the next task. A task ignored by the participant due to it being in
conflict with the existing test suite is also considered as successfully completed.

The experiment consists of two independent measurements conducted on
each of the participants, one for each of the two software projects. The key
difference between these measurement is, that the participant carries out one
measurement without the use of the proposed IDE plugin and need to run the
regression test suite manually, whereas during the other measurement the testing
plugin is enabled, and the participant can interact with it. Once the participant
finishes with the first test, he/she is tested for the second time using the second
configuration. To further reduce the transfer of knowledge between the two mea-
surements, we reverse the order in which the two measurements are conducted
for the second half of the subjects.

Different projects are used to prevent the participants to gain an advantage
by learning the source code between the two measurements. Both projects have
source code with similar complexity and comparable test suites.

Screen recording is used to record the behaviour of all participants during the
testing process and to extract individual time intervals critical for the experimen-
tal evaluation. These individual time intervals are recorded for the evaluation of
the experiment:

– Time used to determine the state of the test suite, measured from the time
of the last executed modification to the time when the state of the sets suite
is known;

– Time used to find the failing test case, measured from the time when the test
suite state is determined to the time when the failing test case is discovered;

– Time used to fix the failing test suite, measured from the discovery of the
failing test case to the time when the test suite does not contain any other
failed test cases.

Participants. The participants of this experiment were chosen from the ranks
of developers, with various levels of expertise with python programming lan-
guage. Since it is hard to obtain a large test group of this type, we decided
to perform the experiment on a smaller test group of 10 developers. While it
is necessary to include different expertise levels in the experiment since this
method is intended for use in any common development scenario, our sub-
ject group is mainly composed of junior or medium-experienced developers.
All developers chosen for this experiment have a good knowledge of the IDE
used during the experiment and are familiar at least with the basic knowledge
required to navigate the environment, to use the editor, and to run test cases.
Statistical evaluation method appropriate for the composition and the size of
the sample group was chosen accordingly.

Does Live Regression Testing Help? 705

Data Analysis. We have designed the experiment to produce an output con-
taining two sets of sample values, one set for each tested source code. Samples
from the first set are paired with the values from the second set, based on the
repeated measurement carried out by the same test subject.

The paired two-sample t-test, also known as the dependent samples t-test was
chosen as a statistical test for our hypotheses. It is used to objectively evaluate
the data obtained from the experiment and determine, if the differences between
the two sets of measurements are statistically significant. The paired two-sample
t-test operates on two sets of input data, as the name suggests. It assumes, that a
relationship exists between two particular sample values, measured separately in
each set. Our evaluation method repeats the same experiment with a particular
test subject repeatedly in a slightly different configuration. Our data is there-
fore paired based on the tested subject and is ideal for this type of statistical
test. The use of the paired t-test gives us an advantage over the use of unpaired
t-test because the use of paired observations reduces the intersubject variability
caused by a variety of differences between the tested subjects. The paired design
therefore tends to increase the signal-to-noise ration that directly determines
the statistical significance. Therefore, paired two-sample t-test can be theoret-
ically marked as the more powerful compared to the unpaired t-test, capable
to identify a significant difference between measurements using less resources, if
one exists [8]. This design allows us to test our hypotheses on a relatively low
subject group with 10 participants.

Based on our subject analysis, we have formulated 5 alternative hypotheses:

– H1: The time needed to find the state of the test suite after applying source
code changes is shorter when using the proposed method.

– H2: The time needed to find the test case responsible for test suite failure is
shorter using the proposed method.

– H3: The time needed to fix the source code and retest it after discovering the
failed test case is shorter when using the proposed method.

– H4: The time needed to fix the source code and retest it after finding the
state of the test suite is shorter when using the proposed method.

– H5: The time needed to fix the source code and retest it after applying source
code change is shorter when using the proposed method.

3.2 Evaluation Results

We measured time intervals for each one of our hypotheses. Each of these time
intervals contains two sets of paired observations, one pair for each of the test
subjects – observations with and without the use of the Livetest plugin. We
have analysed all sets of measured time intervals by the Shapiro-Wilk test and
we found all sets approximately normally distributed within their observation
groups.

We have computed the two-sample paired t-tests for each of the paired groups
of observations associated with each of the proposed alternative hypotheses. All
t values computed using the paired t-test fell into the expected critical region

706 M. Bruchatý and K. Rástočný

predicted by each of the alternative hypotheses. All p values are therefore smaller
than the significance level defined by the chosen α (0.05) value, see Table 1.
We are therefore able to reject the null hypotheses for all of the alternative
hypotheses and assume, that the use of our method improves the developers’
effectiveness for each of the specified intervals.

Table 1. Two sample t-test results

Hypothesis Difference t (observed) |t| (critical) df p value α

H1 11.550 8.697 2.262 9 <0.0001 0.05

H2 2.800 3.579 2.262 9 0.006 0.05

H3 9.700 3.750 2.262 9 0.005 0.05

H4 15.600 3.612 2.262 9 0.006 0.05

H5 28.400 5.059 2.262 9 0.001 0.05

4 Findings and Discussion

The most substantial differences were observed regarding the hypotheses H1 and
H3, as well as the hypothesis H5. The mean difference between the two sets of
observations measured for the H1 hypothesis is the largest among the performed
tests. Introduction of the Livetest plugin to the developers’ workflow decreased
the variance in the time needed by the developer to identify the state of the
test suite after modifying the source code. We attribute this result to the fact,
that the developer is not required to manually run the appropriate test suite
and the testing process is initiated automatically after a source code change is
detected. The test suite rerun is also initiated faster by the Livetest plugin as
if initiated manually by the developer. The test subjects were often reviewing
the source code changes before they approached the rerun of the test suite.
The Livetest plugin however executes the appropriate test cases right after the
developer finishes modifying the source code, regardless of the fact that he/she
is still reviewing the changes or not. This greatly increases the test suite state
discoverability. The conducted experiments have used only a small test suite
with small number of test cases that can be rerun in a fraction of a second. The
effects and the differences in means of the two sets of observations can increase
if the test suite grows in size.

The observations related to the H3 hypothesis also show a difference between
the means of the observations. We attribute these results to the easily discover-
able state of the test suite achieved by using the gutter icons and the detailed
popup messages containing the effected test cases and their state as well as the
highlighting of the source code changes responsible for the test suite failure.

While the measurements associated with the H2 hypothesis show slightly
less dominant difference between the means of the observations, the observa-
tions related to the hypotheses H1 and H3 outbalance the observations for the

Does Live Regression Testing Help? 707

hypothesis H2 and therefore results in a substantial difference between the means
of the observations associated with the hypothesis H5. The overall developers’
effectiveness in regard to the implementation of source code changes and repa-
ration of possible test suite failures is therefore significantly higher.

The overall reduction of the variance of the observed time intervals when
using the Livetest plugin indicates, that the plugin successfully helped to guide
the developer through the testing process and eliminated redundant actions the
developer. This time can be further decreased by refining the test suite opti-
mization process as well as the design of the software prototype.

Additional experiments need to be performed to correctly identify all the
impacts and possible areas of improvements for the proposed method. The eval-
uation on a larger test group with greater diversity of experience with unit and
regression testing is one of the most important improvements. Secondly, experi-
ments with a large software project containing several thousand unit test should
also provide valuable information regarding the true effectiveness of the proposed
method.

Acknowledgements. This work was partially supported by the Slovak Research and
Development Agency under the contract No. APVV-15-0508, and by the Scientific
Grant Agency of the Slovak Republic, grant No. VG 1/0759/19.

References

1. Ansari, A., Khan, A., Khan, A., Mukadam, K.: Optimized regression test using test
case prioritization. Procedia Comput. Sci. 79, 152–160 (2016). Proceedings of Int,
p. 2016. Conf. on Communication, Computing and Virtualization (ICCCV)

2. Beszédes, A., Gergely, T., Schrettner, L., Jász, J., Langó, L., Gyimóthy, T.: Code
coverage-based regression test selection and prioritization in Webkit. In: 2012 28th
IEEE International Conference on SW Maintenance (ICSM), pp. 46–55 (2012)

3. Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: Regression test selection tech-
niques: a survey. Informatica 35, 289–321 (2011)

4. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: a family of
empirical studies. IEEE Trans. SW Eng. 28(2), 159–182 (2002)

5. Elbaum, S., Rothermel, G., Penix, J.: Techniques for improving regression testing
in continuous integration development environments. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of SW Engineering, FSE
2014, pp. 235–245. ACM, New York (2014)

6. Kandil, P., Moussa, S., Badr, N.: Cluster-based test cases prioritization and selection
technique for agile regression testing. J. Softw. Evol. Process 29(6), 19 (2017)

7. Kazmi, R., Jawawi, D.N.A., Mohamad, R., Ghani, I.: Effective regression test case
selection: a systematic literature review. ACM Comput. Surv. 50(2), 29:1–29:32
(2017)

8. NCSS, LLC: Paired t-test (2019). https://ncss-wpengine.netdna-ssl.com/wp-
content/themes/ncss/pdf/Procedures/NCSS/Paired T-Test.pdf. Accessed 27 Aug
2019

9. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Trans. SW Eng. 27(10), 929–948 (2001)

https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Paired_T-Test.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Paired_T-Test.pdf

Foundations of Algorithmic
Computational Biology – Short Paper

Dense Subgraphs in Biological Networks

Mohammad Mehdi Hosseinzadeh(B)

Università degli Studi di Bergamo, Bergamo, Italy
m.hosseinzadeh@unibg.it

Abstract. A fundamental problem in analysing biological networks is
the identification of dense subgraphs, since they are considered to be
related to relevant parts of networks, like communities. Many contribu-
tions have been focused mainly in computing a single dense subgraph, but
in many applications we are interested in finding a set of dense, possibly
overlapping, subgraphs. In this paper we consider the Top-k-Overlapping
Densest Subgraphs problem, that aims at finding a set of k dense sub-
graphs, for some integer k ≥ 1, that maximize an objective function that
consists of the density of the subgraphs and the distance among them.
We design a new heuristic for the Top-k-Overlapping Densest Subgraphs
and we present an experimental analysis that compares our heuristic
with an approximation algorithm developed for Top-k-Overlapping Dens-
est Subgraphs (called DOS) on biological networks. The experimental
result shows that our heuristic provides solutions that are denser than
those computed by DOS, while the solutions computed by DOS have
a greater distance. As for time-complexity, the DOS algorithm is much
faster than our method.

Keywords: Biological networks · Graph algorithms · Heuristics ·
Dense subgraph

1 Introduction

Analyzing biological interactions is an important task to study complex bio-
logical data, which are usually represented as a network. Network mining is a
fundamental method that helps us in understanding biological networks and
their underlying properties.

One of the most studied problems in this area is the identification of dense
subgraphs [8]. Identification of dense subgraphs in a network enables for exam-
ple to obtain a better understanding of the processes organization in a biologi-
cal system. For instance, in protein-protein interaction networks, finding dense
subgraphs gives a comprehensive view of protein interaction patterns, thus pro-
viding information to understand biological processes at various resolutions [15].
Molecular processes require usually the interaction of many proteins. Proteins
densely interact together, forming large molecular machines. Identification of

This paper was supported by STARS Supporting Talented Research.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 711–719, 2020.
https://doi.org/10.1007/978-3-030-38919-2_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_60&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_60

712 M. M. Hosseinzadeh

such densely interconnected groups in protein-protein interaction is crucial to
understand and explore the organization of biological networks [15].

Most of the contributions focused on the identification of a subgraph of inter-
est, like a clique [12] or a relaxed clique (for example an s-club, a t-clique, a
k-core, and an s-plex) [1,13,16]. Several of these definitions lead to optimiza-
tion problems that are NP-hard (for example finding a clique of at least a given
cardinality [12]). The dense subgraph problem, which asks for a subgraph of
maximum average-degree density, is instead polynomial-time solvable [11] and
it can be approximated within factor 1

2 in linear-time [2,4].
In several applications, finding a single subgraph is not enough to understand

the property of a network. The Top-k-Overlapping Densest Subgraphs problem,
introduced in [9], given an input graph, asks for a set of k ≥ 1 subgraphs that
may overlap (since communities may share vertices, for example hubs [9,14]).
Top-k-Overlapping Densest Subgraphs aims at maximizing an objective function
that includes the overall density of the k subgraphs and a distance between them.
The distance allows to differentiate the returned subgraphs and it is controlled
by a parameter λ > 0. For values of λ close to zero, the density plays a dominant
role in the objective function, hence we can have subgraphs with a substantial
overlap. For larger values of λ, the returned subgraphs may be disjoint.

Top-k-Overlapping Densest Subgraphs has been shown to be approximable
within factor 1

10 [9]. This approximation factor has been improved to 1
2 when

k < |V | and to 2
3 when k is a constant [6]. Furthermore, Top-k-Overlapping

Densest Subgraphs has been shown to be NP-hard, when k = 3 and λ = 3|V |3 [6].

1.1 Related Works

An approach similar to Top-k-Overlapping Densest Subgraphs was proposed in
[3]. The problem defined in [3], given a graph G = (V,E), asks for a set of
k subgraphs of maximum density, such that the maximum pairwise Jaccard
coefficient of the subgraphs in the solution is bounded by a value.

A dynamic variant of this problem, whose goal is finding a set of k disjoint
subgraphs in a dynamic graph, has been recently considered in [17].

Other approaches related to Top-k-Overlapping Densest Subgraphs include
covering or partitioning an input graph in dense subgraphs, like Minimum
Clique Partition [10] or Minimum s-Club Covering [7]. However, notice that these
approaches require that all the vertices of the graph belong to some dense sub-
graph of the solution, which is not the case for Top-k-Overlapping Densest Sub-
graphs, where a solution consists of collection of k subgraphs, with no constraint
on the covering of the graph.

1.2 Contribution

In this paper, we design in Sect. 3 a new heuristic for the Top-k-Overlapping
Densest Subgraphs, inspired by the approximation algorithm in [6]. The heuris-
tic iteratively adds a subgraph by applying three phases and by picking the

Dense Subgraphs in Biological Networks 713

densest subgraph computed by these phases. Then, in Sect. 4 we compare our
heuristic with the approximation algorithm of [9], called DOS (Dense Overlapping
Subgraphs). We compare the two algorithms on biological networks ranging from
453 to 3518 vertices, and our heuristic always produces denser subgraphs while
DOS graphs have greater distance. On the other hand, the algorithm [9] is much
faster than our method.

2 Definitions

In this section, we give the definitions that we use in the rest of the paper and
we present the formal definition of Top-k-Overlapping Densest Subgraphs.

We consider only undirected graphs. Consider a graph G = (V,E), and a
subset W ⊆ V , then G[W] denotes subgraph of G induced by W , that is G[W] =
(W,EW), where EW is defined as:

EW = {{u, v} : {u, v} ∈ E ∧ u, v ∈ W}. (1)

Let G[W1] and G[W2], with W1,W2 ⊆ V , be two subgraphs of G = (V,E),
then G[W1] and G[W2] are called overlapping when W1 ∩ W2 �= ∅. G[W1] and
G[W2] are distinct when W1 �= W2.

Next, we introduce formally the definition of density, which is fundamental
to define Top-k-Overlapping Densest Subgraphs.

Definition 1. Let G = (V,E) be a graph and let G[W] = (W,EW), with W ⊆
V , be a subgraph of G. Then the density of G[W], denoted by dens(G[W]), is
defined as follows:

dens(G[W]) =
|EW |
|W | . (2)

Given a graph G = (V,E), a subgraph G[U], with U ⊆ V , is a densest
subgraph of G if it has maximum density among the subgraphs of G. Consider the
example of Fig. 1. The subgraph induced by {v4, v5, v6, v7, v8, v9} is the densest
subgraph and has density 11

6 .
Let G = (V,E) be a graph and let W = {G[W1], . . . , G[Wk]} be a collection

of subgraphs of G. The density of W, denoted by dens(W), is defined as follows:

dens(W) =
k∑

i=1

dens(G[Wi]). (3)

Top-k-Overlapping Densest Subgraphs asks for a collection W of k subgraphs
of the input graph G, with k ≥ 1, such that W maximizes an objective function
that contains the density of W and the distance between the subgraphs in W.
We present the definition of distance between two subgraphs of G introduced in
[9] and used in Top-k-Overlapping Densest Subgraphs.

714 M. M. Hosseinzadeh

Definition 2. Let G = (V,E) be a graph and let G[W], G[Z], with W,Z ⊆ V ,
be two subgraphs of G. The distance between G[W] and G[Z], denoted by d :
2G[V] × 2G[V] → R+ is defined as follows:

d(G[W], G[Z]) =

{
2 − |W∩Z|2

|W ||Z| if W �= Z,

0 otherwise.
(4)

Fig. 1. A graph and a solution W of Top-k-Overlapping Densest Subgraphs, for
k = 3, consisting of the three subgraphs included in boxes. The density of the subgraph
induced by {v4, v5, v6, v7, v8, v9} is 11

6
. The distance between the subgraphs induced by

{v4, v5, v6, v7, v8, v9} and {v1, v2, v3} is 2, as they do not overlap. The distance between
the subgraphs induced by {v4, v5, v6, v7, v8, v9} and {v4, v5, v6, v7, v8} is 2 − 25

30
= 7

6
,

since they overlap for five vertices.

Notice that 1 < d(G[W], G[Z]) ≤ 2, for any two distinct subgraphs of G.
Next, we present the formal definition of the Top-k-Overlapping Densest Sub-
graphs problem.

Problem 1. Top-k-Overlapping Densest Subgraphs
Input: a graph G = (V,E), a parameter λ > 0.
Output: a collection W = {G[W1], . . . , G[Wk]} of k subgraphs of G, with k ≥ 1,
such that the following objective function is maximized:

dens(W) + λ

k−1∑

i=1

k∑

j=i+1

d(G[Wi], G[Wj]) (5)

2.1 Greedy and Constrained Greedy Algorithm for Densest-Subgraph

Although a densest subgraph of a given graph can be computed in polynomial
time with the Goldberg’s Algorithm [11], as in [9] we apply the faster approx-
imation algorithm proposed in [2,4], denoted by Greedy, that has a linear-time
complexity and achieves an approximation factor of 1

2 .
Given an input graph G = (V,E), Greedy iteratively removes from G a vertex

having lowest degree and stops when all the vertices of the graph have been
removed. Greedy returns a densest subgraph among those computed starting
from G by iteratively removing vertices.

Dense Subgraphs in Biological Networks 715

We consider also a variant of the Greedy algorithm, called Constrained-Greedy.
The Constrained-Greedy, given an input graph G = (V,E) and a subset C ⊆ V ,
called the constrained set, computes a subgraph of G that contains C. Similar to
Greedy, Constrained-Greedy iteratively removes a vertex of V \ C having lowest
degree (hence vertices in C can not be removed), until it obtains a graph on the
set C of vertices. Then Greedy-Constrained returns a densest subgraph among
those computed starting from G by iteratively removing vertices.

3 A Heuristic for Top-k-Overlapping Densest Subgraphs

In this section, we present our heuristic for Top-k-Overlapping Densest Subgraphs,
called Iterative Dense Subgraphs (IDS). IDS is based on the Greedy and the
Constraint-Greedy algorithms (see Sect. 2.1) to find k distinct subgraphs. The
heuristic makes k iterations to compute W = {G[W1], ..., G[Wk]}, and at itera-
tion i, with 1 ≤ i ≤ k, it adds a subgraph denoted by G[Wi] to W.

The first iteration of IDS applies Greedy on the input graph G to compute
subgraph G[W1]. In iteration i, with 2 ≤ i ≤ k, given the subgraph G[Wi−1]
added to W in iteration i−1, IDS applies Steps 1–3 (described later) to compute
subgraph G[Wi] and add it to W = {G[W1], ..., G[Wi−1]}. Each Step s, with
s = 1, 2, 3, of iteration i, 2 ≤ i ≤ k, computes a subgraph G[Wi,s].

IDS adds to W the densest among the subgraphs G[Wi,1], G[Wi,2], G[Wi,3],
and the subgraphs G[Wj,1], G[Wj,2], G[Wj,3], with 2 ≤ j ≤ i − 1, computed
from iterations 2 to i − 1 and not already added to W. Hence notice that the
subgraphs computed by each iteration, and not already added to W, are saved
and considered in next iterations of IDS. Steps 1–3 of iteration i, with 2 ≤ i ≤ k,
are based on sets Qi,s ⊆ V , with s = 1, 2, 3, of at most qi vertices (|Qi,s| will
be defined as the maximum value not greater than qi), where qi is defined as
follows:

qi = λ

√|Wi−1|
2

. (6)

Sets Qi,s are used by IDS to differentiate the subgraphs computed in Step
1–3 from subgraph G[Wi−1]. In particular, Qi,s, with 2 ≤ i ≤ k and s = 1, 2, 3,
is used by IDS in two following ways:

(I) A set Qi,1 of at most qi vertices that will not be contained in the subgraph
G[Wi,1] computed by Step 1 of the ith iteration. In this case we select Qi,1

as a set of at most qi vertices with lower degree.
(II) A set Qi,s, with s = 2, 3, of at most qi vertices that will be contained in the

subgraphs G[Wi,2] and G[Wi,3] respectively, computed by Step 2 and Step 3
of the ith iteration. In this case we select Qi,s as a set of at most qi vertices
with higher degree.

Recall that, G[Wi−1] is the subgraph added at iteration i − 1 to the solution
W = {G[W1], ..., G[Wi−1]}. The input of the i-th iteration of IDS consists of G,
W = {G[W1], ..., G[Wi−1]} and a set Qi,s, with s = 1, 2, 3 (the definition of Qi,s

depends on the specific step we consider).

716 M. M. Hosseinzadeh

Next, we give some details about Steps 1–3 of each iteration i, 2 ≤ i ≤ k, of
heuristic IDS.

Step 1: Given a set Qi,1 ⊆ Wi−1 of at most qi vertices of lower degree, Step 1
computes a subgraph G[Wi,1], distinct from the subgraphs in W such that
Wi,1 ∩ Qi,1 = ∅. Step 1 computes subgraph G[Wi,1] by applying the Greedy
algorithm on input G[Wi−1 \ Qi,1].

Step 2: Given a set Qi,2 ⊆ (V \ Wi−1) of at most qi vertices of higher degree,
Step 2 computes a subgraph G[Wi,2], distinct from the subgraphs in W such
that (Wi−1∪Qi,2) ⊆ Wi,2. Step 2 computes subgraph G[Wi,2] by applying the
Constrained-Greedy algorithm (described in Sect. 2.1) on G, with constrained
set Wi−1 ∪ Qi,2, that is (Wi−1 ∪ Qi,2) ⊆ Wi,2.

Step 3: Given a set Qi,3 ⊆ V of at most qi vertices of higher degree not covered
by any subgraph of W, Step 3 computes a subgraph G[Wi,3], distinct from the
subgraphs in W such that Qi,3 ⊆ Wi,3. Step 3 computes subgraph G[Wi,3] by
applying Constrained-Greedy algorithm on G, with constrained set Qi,3, that
is Qi,3 ⊆ Wi,3.

Notice that some of the Steps 1–3, at an iteration i, with 2 ≤ i ≤ k, may not
be applied. For example, if each vertex of V is covered by the subgraphs in W,
then Step 3 cannot be applied. Moreover, notice that if Steps 1–3 of iteration i of
IDS are not able to compute a subgraph of G distinct from those in W, we apply
a post-processing phase in order to have |W| = k. This post-processing phase,
starting from subgraph G[Wi−1], greedily adds to W a set of densest subgraphs
obtained by removing a single vertex from G[Wi−1] or by adding a single vertex
to G[Wi−1].

Next, we discuss the time complexity of IDS.

Lemma 1. Given an input graph G = (V,E), the time complexity of IDS is
O(k2|V | + k|E|).
Proof. First, recall that the time complexity of Greedy is O(|V | + |E|) [4]. It
follows that also the time complexity of Constrained-Greedy is O(|V | + |E|).

IDS makes k iterations to compute W. In the first iteration, IDS applies
Greedy, hence this iteration has time complexity O(|V | + |E|). Consider now
iteration i, with 2 ≤ i ≤ k, in which IDS applies Steps 1–3. In Step s, with
s = 1, 2, 3, the set Qi,s is computed in time O(|V |), by applying the Counting
Sort algorithm [5] to sort the vertices by their degree, then either Greedy or
Constrained-Greedy is applied, which requires time O(|V | + |E|). Finally, the set
of covered vertices is updated in time O(|V |) (this set is required for Step 3) and
the comparison between a subgraph G[Wi,s] and the subgraphs in W, in order
to verify if G[Wi,s] is distinct from the subgraphs in W, requires time O(k|V |).
It follows that each iteration i, with 2 ≤ i ≤ k, requires time O(k|V |+ |E|). The
overall time complexity of IDS is then O(k2|V | + k|E|). �

Dense Subgraphs in Biological Networks 717

4 Experimental Results

In this section, we show the experimental results of the comparison of our pro-
posed heuristic IDS with DOS [9]. DOS is an iterative approximation algorithm
for Top-k-Overlapping Densest Subgraphs that achieve the approximation ratio of
1
10 . Given an input G = (V,E), DOS has time complexity O(k|E| + |V |(t + k)),
where t = min{2k, |V |}. We consider the value of λ equal to range from 0.25 to
2 (similarly to [9]).

The DOS was implemented in Python, while we implemented IDS in MAT-
LAB R2018b. IDS and DOS were run on a computer with processor 2.9 GHz
Intel Core i5 and 8 GB of RAM, MacOS version 10.14.3.

Table 1. Performance of IDS and DOS on real-world networks with k = 10. For each
network, we report the size of the network (number of vertices |V | and edges |E|), the
density (Den.), distance (Dis.) and the objective function value (Obj. val.).

IDS DOS

Set |V | |E| λ Den. Dis. Obj. val. Den. Dis. Obj. val.

c.elegans 453 2K 0.25 74.96 51.63 87.87 51.92 86.55 73.56

1 74.81 51.83 126.64 36.65 89.39 126.04

2 74.16 56.41 186.98 32.57 89.85 212.28

Diseasome 516 1K 0.25 48.10 56.13 62.14 37.78 88.84 59.99

1 45.91 56.99 102.90 33.29 89.51 122.81

2 44.31 62.30 168.92 28.28 89.97 208.21

Yeast-protein-inter 2114 4K 0.25 29.45 54.71 43.13 19.86 88.86 42.08

1 26.67 63.08 89.75 17.16 89.67 106.83

2 26.05 73.44 172.94 15.27 89.93 195.13

Worm 3518 13K 0.25 77.39 49.10 89.66 49.15 87.11 70.93

1 76.61 53.12 129.73 32.10 89.69 121.79

2 75.48 55.68 186.85 24.08 89.93 203.95

Following [9], we set k = 10 for the Top-k-Overlapping Densest Subgraphs
problem. We present the results of both algorithms on real-world networks in
Table 1. We consider four biological networks (see [18]), with the size ranging
from 453 to 3518 vertices. The c.elegans network represents substrates ver-
tices type and metabolic reactions edges type. Diseasome network represents
disease map whose vertices are diseases and edges are various molecular relation-
ships between the disease-associated cellular components. Yeast-protein-inter
and worm networks are networks whose vertices are protein and edges are inter-
action between proteins.

5 Conclusion

In this paper, we propose a new heuristic (IDS) for Top-k-Overlapping Dens-
est Subgraphs, a problem recently introduced for finding a collection of dense

718 M. M. Hosseinzadeh

subgraphs in a network. We compare IDS with DOS [9], an approximation algo-
rithm designed for Top-k-Overlapping Densest Subgraphs, on four biological net-
works. The experimental results show that always IDS performs better than
DOS in terms of density, while DOS is faster. A future direction of research is to
expand the comparison to synthetic and other real datasets.

References

1. Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol.
3, 113–126 (1973)

2. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense sub-
graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 136–
148. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61422-2 127

3. Balalau, O.D., Bonchi, F., Chan, T.H., Gullo, F., Sozio, M.: Finding subgraphs with
maximum total density and limited overlap. In: Cheng, X., Li, H., Gabrilovich, E.,
Tang, J. (eds.) Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, WSDM 2015, pp. 379–388. ACM (2015). https://doi.
org/10.1145/2684822.2685298

4. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X 10

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

6. Dondi, R., Hosseinzadeh, M.M., Mauri, G., Zoppis, I.: Top-k overlapping densest
subgraphs: approximation and complexity. In: Proceeding in 20th Italian Confer-
ence on Theoretical Computer Science (2019, to appear)

7. Dondi, R., Mauri, G., Sikora, F., Zoppis, I.: Covering a graph with clubs. J. Graph
Algorithms Appl. 23(2), 271–292 (2019). https://doi.org/10.7155/jgaa.00491

8. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: MotifCut: regulatory
motifs finding with maximum density subgraphs. Bioinformatics 22(14), 156–157
(2006). https://doi.org/10.1093/bioinformatics/btl243

9. Galbrun, E., Gionis, A., Tatti, N.: Top-k overlapping densest subgraphs. DataMin.
Knowl. Discov. 30(5), 1134–1165 (2016). https://doi.org/10.1007/s10618-016-
0464-z

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. WH Freeman & Co., Stuttgart (1979)

11. Goldberg, A.V.: Finding a Maximum Density Subgraph. University of California
Berkeley, CA (1984)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
IRSS, pp. 85–103. Plenum Press, New York (1972). https://doi.org/10.1007/978-
1-4684-2001-2 9

13. Komusiewicz, C.: Multivariate algorithmics for finding cohesive subnetworks. Algo-
rithms 9(1), 21 (2016)

14. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: natural cluster sizes and the absence of large well-defined clus-
ters. Internet Math. 6(1), 29–123 (2009). https://doi.org/10.1080/15427951.2009.
10129177

https://doi.org/10.1007/3-540-61422-2_127
https://doi.org/10.1145/2684822.2685298
https://doi.org/10.1145/2684822.2685298
https://doi.org/10.1007/3-540-44436-X_10
https://doi.org/10.7155/jgaa.00491
https://doi.org/10.1093/bioinformatics/btl243
https://doi.org/10.1007/s10618-016-0464-z
https://doi.org/10.1007/s10618-016-0464-z
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1080/15427951.2009.10129177

Dense Subgraphs in Biological Networks 719

15. Ma, X., Zhou, G., Shang, J., Wang, J., Peng, J., Han, J.: Detection of complexes
in biological networks through diversified dense subgraph mining. J. Comput. Biol.
24(9), 923–941 (2017)

16. Mokken, R.: Cliques, clubs and clans. Qual. Quant. Int. J. Methodol. 13(2), 161–
173 (1979)

17. Nasir, M.A.U., Gionis, A., Morales, G.D.F., Girdzijauskas, S.: Fully dynamic algo-
rithm for top-k densest subgraphs. In: Lim, E., et al. (eds.) Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, CIKM 2017, pp.
1817–1826. ACM (2017). https://doi.org/10.1145/3132847.3132966

18. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (2015). http://networkrepository.com

https://doi.org/10.1145/3132847.3132966
http://networkrepository.com

Author Index

Abu-Khzam, Faisal N. 236
Adamson, Duncan 587
Akagi, Tooru 148
Aligon, Julien 313
Aman, Bogdan 441
Ardagna, Claudio A. 3

Bannai, Hideo 125, 148
Barenboim, Leonid 260
Bayr, Christoph 403
Bazgan, Cristina 236
Beckers, Kristian 403
Bellatreche, Ladjel 350
Berry, Vincent 519
Blumenstock, Markus 51
Bousquet, Nicolas 76
Bruchatý, Marek 699
Bshouty, Nader H. 101

Cáceres, Manuel 493
Cao, Han 388
Castellano, Giovanna 301
Castiello, Ciro 301
Catania, Barbara 657
Chateau, Annie 505
Chen, Haiming 325
Chomątek, Łukasz 375
Cimini, Matteo 547
Ciobanu, Gabriel 441
Cosma, Ovidiu 417
Csirik, J. 199
Czaplewski, Jeff 648

Damiani, Ernesto 3
Dännart, Sebastian 403
Davot, Tom 505
De Fino, Francesco 657
Deligkas, Argyrios 587
Demková, Gabriela 667
Dombrovskaya, Henrietta 648
Dósa, Gy. 199

Erkens, Rick 285
Erlebach, Thomas 64

Faran, Rachel 161
Fernau, Henning 236
Ferrettini, Gabriel 313
Fischer, Frank 51
Fujishige, Yuta 148
Fukuzono, Naoka 627

Gelenbe, Erol 24
Gelle, Kitti 273
Ghabri, Issam 350
Giroudeau, Rodolphe 505
Grüttemeier, Niels 248
Guerrini, Giovanna 657
Gurski, Frank 556
Gusev, Vladimir V. 587

Haddad, George 101
Haddad-Zaknoon, Catherine A. 101
Hamedmohseni, Bardia 607
Hanaka, Tesshu 627
Hendrian, Diptarama 211
Hoffmann, Stefan 556
Hosseinzadeh, Mohammad Mehdi 711

Inenaga, Shunsuke 125, 148
Iván, Szabolcs 273

Janoušek, Jan 576
Jargalsaikhan, Davaajav 211
Jayasinghe, Ishadi 676
Joffard, Alice 76
Jordon, Liam 187

Kamali, Shahin 113
Kiya, Hironori 627
Klau, Gunnar W. 16
Komander, Dominique 556
Komusiewicz, Christian 248
Konstantinidis, Stavros 174

Kopczyńska, Sylwia 454, 689
Kószó, D. 199
Kuhara, Yuki 148
Kupferman, Orna 161
Kutrib, Martin 136

Le Goff, Jean-Marie 362
Liotta, Giuseppe 617
Luttik, Bas 285

Mach, Marián 667
Machiavelo, António 174
Machová, Kristína 667
Mäcker, Alexander 88
Maimon, Tzalik 260
Marchand-Maillet, Stéphane 362
Martiel, Simon 597
Maruyama, Kohei 566
Mencar, Corrado 301
Mendez, Daniel 403
Meyer auf der Heide, Friedhelm 88
Mieno, Takuya 148
Miller, Avery 113
Mincu, Radu Stefan 531
Mondal, Debajyoti 607
Morawietz, Nils 248
Moreira, Nelma 174
Moser, Philippe 187
Mourad, Benjamin 547
Moyón, Fabiola 403

Nakashima, Yuto 125, 148
Nawrocki, Jerzy 454, 689
Nguyen, Binh 388
Nguyen, Nhu 388
Novikov, Boris 648

Ochodek, Mirosław 454, 689
Ono, Hirotaka 627
Otto, Friedrich 39
Ouvrard, Xavier 362

Papamichail, Aggelos 429
Pecar, Samuel 639
Pham, Quang 388

Pham, Thuy 388
Plachý, Štěpán 576
Poniszewska-Marańda, Aneta 375
Pop, Petrica C. 417
Popa, Alexandru 531
Potapov, Igor 587
Puglisi, Simon J. 493
Pukrop, Simon 88

Rahmati, Zahed 607
Ranathunga, Surangika 676
Rástočný, Karol 699
Rehs, Carolin 556
Reis, Rogério 174
Remaud, Maxime 597
Rethmann, Jochen 556
Rot, Jurriaan 285
Rutter, Ignaz 617

Sabo, Cosmin 417
Sadaj, Aleksander 454
Scornavacca, Celine 519
Seki, Shinnosuke 566
Shinohara, Ayumi 211
Simko, Marian 639
Śniegula, Anna 375
Sommer, Frank 248
Soulé-Dupuy, Chantal 313
Spooner, Jakob T. 64
Srba, Ivan 338
Stefancova, Elena 338
Sulír, Matúš 479

Takeda, Masayuki 125, 148
Tappini, Alessandra 617
Tredup, Ronny 223
Tsimakis, Anastasios 467

Vartziotis, Theofanis 467
Vasko, Dominik 639
Vassiliadis, Panos 429, 467
Vessio, Gennaro 301

Wang, Xiaofan 325
Wanke, Egon 556
Weller, Mathias 505, 519

722 Author Index

Yahia, Sadok Ben 350
Yamada, Kohei 125
Yamaguchi, Ryogo 627
Yoshinaka, Ryo 211

Zarras, Apostolos V. 429, 467
Zhang, Kenny 113
Zhang, Yunxiao 24
Zhukova, Bella 493

Author Index 723

	Preface
	Organization
	Contents
	Invited Papers
	Certified Machine-Learning Models
	1 Introduction
	2 State of the Art
	2.1 Governance of AI/ML Systems
	2.2 AI Ethics by Design
	2.3 Software Certification

	3 Methodology
	3.1 Using MAB to Test Behavior of ML Models: A Meta-Learning Process
	3.2 Open Issues
	3.3 Ecosystem

	4 Certifying Differential Privacy
	5 Conclusions
	References

	The Lost Recipes from the Four Schools of Amathus
	1 The Four Schools of Amathus
	2 Deciphering the Scrolls
	3 Computational Genomics and Read-Based Haplotype Phasing
	4 Back to Amathus
	References

	Sharing Energy for Optimal Edge Performance
	1 Introduction
	2 EPN and Its G-Network Representation
	2.1 The G-Network Model

	3 The EPN System
	3.1 Cost Function, Parameters and Optimization
	3.2 An Example

	4 Conclusions
	References

	Foundations of Computer Science – Regular Papers
	A Characterization of the Context-Free Languages by Stateless Ordered Restart-Delete Automata
	1 Introduction
	2 The Stateless Ordered Restart-Delete Automaton
	3 Swift Stl-ORD-Automata Only Accept Context-Free Languages
	4 Each Context-Free Language Is Accepted by a Swift-ORD-Automaton
	5 Conclusion
	References

	A Constructive Arboricity Approximation Scheme
	1 Introduction
	2 Paper Outline and Contributions
	3 Related Work
	4 Notation and Preliminaries
	5 The Surplus Graph
	6 Exchanging Edges on Cycles
	7 Finding the Exchange Edge Fast
	8 (Near-)Exact Arboricity Algorithms
	9 Conclusion and Outlook
	References

	A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity
	1 Introduction
	2 Graph Model and Game Rules
	3 Determining the Winner of a Game of EPCR
	3.1 Transformation
	3.2 Proof of Theorem 1

	4 An Upper Bound on the Length Required to Ensure an Edge-Periodic Cycle Is Robber-Win
	5 Conclusion
	References

	Approximating Shortest Connected Graph Transformation for Trees
	1 Introduction
	2 Preliminaries
	2.1 Symmetric Difference
	2.2 Basic Facts Concerning Flips

	3 Upper Bound
	4 Discussion on the Tightness of the Lower Bound
	References

	Approximating Weighted Completion Time for Order Scheduling with Setup Times
	1 Introduction
	1.1 Contribution and Results

	2 Model
	3 Related Work
	4 The One-Time Setup Problem
	4.1 Transforming One-Time Setup Solutions

	5 Approximations for Constant Number of Families
	5.1 Series Parallel Digraph and Lawler's Algorithm
	5.2 Simple Local Search Algorithm

	6 Arbitrary Number of Families
	6.1 Approximation Algorithm
	6.2 Lower Bound on the Approximability

	7 Future Work
	References

	Bounds for the Number of Tests in Non-adaptive Randomized Algorithms for Group Testing
	1 Introduction
	1.1 Old and New Results

	2 The RID Model
	3 The RrSD Model
	4 The RsSD Model
	5 Random Uniform Transversal Design Model
	References

	Burning Two Worlds
	1 Introduction
	2 Dense Graphs
	3 Graphs of Small Pathlength or Treelength
	3.1 Preliminaries
	3.2 Burning Graphs of Small Pathlength
	3.3 Burning Graphs of Small Treelength

	References

	Faster STR-EC-LCS Computation
	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 STR-EC-LCS

	3 Dynamic Programming Solution for the STR-EC-LCS Problem
	3.1 Solution for LCS by Nakatsu et al.
	3.2 Solution for STR-EC-LCS by Wang et al.
	3.3 Our Solution for STR-EC-LCS

	4 Algorithm
	References

	Kernels of Sub-classes of Context-Free Languages
	1 Introduction
	2 Preliminaries
	3 Uniqueness of Kernels
	4 Union of Kernels
	5 Intersection of Kernels
	6 Untouched Questions
	References

	Minimal Unique Substrings and Minimal Absent Words in a Sliding Window
	1 Introduction
	2 Preliminaries
	3 Combinatorial Results on MUSs in a Sliding Window
	3.1 Changes to MUSs When Appending a Character to the Right
	3.2 Changes to MUSs When Deleting the Leftmost Character

	4 Algorithm for Computing MUSs in a Sliding Window
	4.1 Updating a Suffix Tree and Three Loci in a Suffix Tree
	4.2 Computing sqpi-1,j
	4.3 Detecting MUSs to Be Added/Deleted

	5 Combinatorial Results on MAWs in a Sliding Window
	5.1 Changes to MAWs When Appending Character to the Right
	5.2 Changes to MAWs When Deleting the Leftmost Character
	5.3 Total Changes of MAWs When Sliding the Window on a String

	References

	On Synthesis of Specifications with Arithmetic
	1 Introduction
	2 Preliminaries
	3 Different Levels of Nondeterminism in NLWAs
	4 Synthesis
	4.1 The Synthesis Game
	4.2 Solving the Synthesis Game

	References

	On the Average State Complexity of Partial Derivative Transducers
	1 Introduction
	2 Preliminares
	3 2D Expressions
	4 The Analytic Combinatorics Framework
	5 Average Descriptional Complexity Results
	5.1 Average State Complexity of TPD for 2D-RE
	5.2 Average State Complexity of TPD for Pairs of REs

	6 Conclusions
	References

	On the Difference Between Finite-State and Pushdown Depth
	1 Introduction
	2 Preliminaries
	3 Models of Computation
	3.1 Finite-State Transducers
	3.2 Pushdown Compressors

	4 Pushdown Depth
	5 Finite-State Depth
	5.1 Separation from ILPDC-depth

	6 Final Remarks
	References

	Online Scheduling with Machine Cost and a Quadratic Objective Function
	1 Introduction
	2 Preliminaries
	3 Lower Bound
	4 Algorithm
	4.1 Description
	4.2 Properties of the Relaxed Optimum and Algorithm ALG
	4.3 Modifying the Two Schedules
	4.4 Competitivness

	References

	Parallel Duel-and-Sweep Algorithm for the Order-Preserving Pattern Matching
	1 Introduction
	2 Preliminaries
	3 Parallel Duel-and-Sweep Algorithm for the OPPM Problem
	3.1 Pattern Preprocessing
	3.2 Pattern Searching

	4 Discussion
	References

	Parameterized Complexity of Synthesizing b-Bounded (m,n)-T-Systems
	1 Introduction
	2 Preliminaries
	3 W[1]-Hardness Parameterized by m+n
	3.1 The Proof of Lemma 2.[lem:if]1
	3.2 The Proof of Lemma 2.[lem:onlyspsif]2

	4 Conclusion
	References

	Parameterized Dynamic Variants of Red-Blue Dominating Set
	1 Introduction
	2 Complexity of Dynamic Red Blue Dominating Set
	3 The Partial Dynamic RBDS Set Problem
	4 Concluding Remarks
	References

	Refined Parameterizations for Computing Colored Cuts in Edge-Colored Graphs
	1 Introduction
	2 Structural Graph Parameters
	3 A Kernel for the Number of Edges with Rare Colors
	4 Parameterization by Color Subsets
	4.1 Number of Path-Frequent Colors
	4.2 Number of Colors in at Least Three Conflicts
	4.3 Parameter Intersections

	References

	Simple Distributed Spanners in Dense Congest Networks
	1 Introduction and Related Work
	1.1 On Diversity and Neighborhood Independence
	1.2 Quick Review of Our Results
	1.3 Related Work

	2 Preliminaries
	3 Spanning Graphs with Bounded Neighborhood Independence in the CONGEST Model
	4 A Small Size Small Stretch Spanner in Bounded Diversity Graphs
	5 Conclusion
	References

	The Order Type of Scattered Context-Free Orderings of Rank One Is Computable
	1 Introduction
	2 Notation
	3 Limits of Languages
	3.1 Limits in General
	3.2 Finitely Many Limits

	4 Conclusion
	References

	Up-to Techniques for Branching Bisimilarity
	1 Introduction
	2 Preliminaries
	3 The Abstract Framework for Bisimulations
	4 Branching Bisimilarity: Expansion and Context
	5 Respectfulness of Up-to Context: Coalgebraic Approach
	5.1 Abstract GSOS Specifications and Their Models
	5.2 Respectfulness of Contextual Closure
	5.3 Application to Weak Similarity

	6 Conclusion and Future Work
	References

	Foundations of Data Science and Engineering – Regular Papers
	Crowd Detection for Drone Safe Landing Through Fully-Convolutional Neural Networks
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experiment
	4.1 Dataset Preparation
	4.2 Experimental Results

	5 Conclusion
	References

	Explaining Single Predictions: A Faster Method
	1 Introduction
	2 Related Works
	3 Choosing a Basic Explanation Method
	3.1 Prediction Explanation Methods

	4 Toward a More Efficient Method
	4.1 Finding New Estimators of the Complete Influence
	4.2 Evaluating the Two New Heuristics

	5 Conclusion
	References

	Inferring Deterministic Regular Expression with Unorder
	1 Introduction
	2 Preliminaries
	2.1 Regular Expression with Unorder
	2.2 SORE, uSORE, SOA

	3 Unorder-Countable Finite Automaton (uCFA)
	3.1 Counter States and Update Instructions
	3.2 Unorder-Countable Finite Automaton

	4 Inference of uSOREs
	4.1 Constructing uCFA
	4.2 Counting with uCFA
	4.3 Generating uSORE

	5 Experiments
	5.1 Generalization Abilities
	5.2 Time Performance

	6 Conclusion
	References

	POI Recommendation Based on Locality-Specific Seasonality and Long-Term Trends
	1 Introduction
	2 Background and Related Work
	3 Method Proposal
	3.1 Hybrid Matrix Factorization Model
	3.2 Seasonality Pre-filtering and Modelling
	3.3 Long-Term Trends Modelling
	3.4 Geographical Post-filtering

	4 Experimental Evaluation
	4.1 Dataset
	4.2 Experiment Setup
	4.3 Results

	5 Conclusion and Future Work
	References

	Selection of a Green Logical Data Warehouse Schema by Anti-monotonicity Constraint
	1 Introduction
	2 Background
	3 The Proposed Approach: LS-Energy
	4 Algorithm
	5 Experimental Study
	6 Conclusion
	References

	The HyperBagGraph DataEdron: An Enriched Browsing Experience of Datasets
	1 Introduction
	2 Related Work and Mathematical Background
	2.1 Information Space Discovery
	2.2 Co-occurrence Networks
	2.3 Multisets and Hb-Graphs

	3 Hb-Graph Framework
	3.1 Enhancing Navigation
	3.2 Facet Visualisation Hb-Graphs
	3.3 Navigability Through Facets
	3.4 The Case of Multiple References
	3.5 The DataHbEdronA video demo is available on: https://www.infos-informatique.net.

	4 Results, Evaluation and Conclusion
	4.1 Use Case
	4.2 Evaluation

	5 Future Work and Conclusion
	References

	Towards the Named Entity Recognition Methods in Biomedical Field
	1 Introduction
	2 Related Works of Named Entity Recognition in Biomedicine
	3 Natural Language Processing
	4 Research Methodology and Implementation of Selected Methods
	5 Results and Discussion
	6 Conclusions
	References

	Vietnamese Punctuation Prediction Using Deep Neural Networks
	1 Introduction
	2 Punctuation Prediction as Sequence Tagging
	2.1 Problem Formulation
	2.2 Punctuation Prediction with Conditional Random Field

	3 Neural Networks for Punctuation Prediction
	3.1 Network Architectures
	3.2 Training with Focal Loss

	4 Datasets for Vietnamese Punctuation Prediction
	5 Experiments
	6 Conclusion and Future Work
	References

	Foundations of Software Engineering – Regular Papers
	A Light-Weight Tool for the Self-assessment of Security Compliance in Software Development – An Industry Case
	1 Introduction
	2 Fundamentals and Related Work
	2.1 The IEC 62443-4-1 Security Standard
	2.2 The Security Standard Compliance Assessment Model - S2C-AM
	2.3 Other Security Assessment Approaches

	3 Security Compliance Self-assessment
	4 Tool Implementation for a Self-assessment of Security Compliance
	5 Preliminary Evaluation at Siemens
	5.1 Design
	5.2 Results

	6 Conclusion
	References

	A Novel Hybrid Genetic Algorithm for the Two-Stage Transportation Problem with Fixed Charges Associated to the Routes
	1 Introduction
	2 Definition of the Two-Stage Fixed-Charges Transportation Problem
	3 Description of the Hybrid Metaheuristic Algorithm
	4 Computational Results
	5 Conclusions
	References

	Do People Use Naming Conventions in SQL Programming?
	1 Introduction
	2 Related Work
	3 Setup
	3.1 Reference SQL Naming Style
	3.2 Database Schemas

	4 Research Questions and Answers
	4.1 Is the Reference Style Followed by the Schemas?
	4.2 Does the Adherence of the Schemas to the Reference Style Evolve?
	4.3 Threats to Validity

	5 Conclusion
	References

	Employing Costs in Multiagent Systems with Timed Migration and Timed Communication
	1 Introduction
	2 Syntax and Operational Semantics of cTiMO
	3 Translating cTiMO into Weighted Timed Automata
	4 Simulating cTiMO Multiagent Systems by using Uppaal
	5 Conclusion and Related Work
	References

	Maintainability of Automatic Acceptance Tests for Web Applications—A Case Study Comparing Two Approaches to Organizing Code of Test Cases
	1 Introduction
	2 Case Study
	2.1 Case Selection
	2.2 Test Suite Implementation and Maintenance
	2.3 Data Collection and Analysis

	3 Results and Observations
	4 Threats to Validity
	5 Related Work
	6 Conclusions
	References

	Recommending Trips in the Archipelago of Refactorings
	1 Introduction
	2 Related Work
	3 Refactoring Trip Advisor
	3.1 Modelling Refactoring Relations
	3.2 Recommending Refactoring Trips

	4 Validation
	4.1 Fitness for Purpose
	4.2 The Developers' Opinions

	5 Conclusion
	References

	String Representations of Java Objects: An Empirical Study
	1 Introduction
	2 Method Outline
	3 ToString Definitions
	4 ToString Invocations
	4.1 Explicit and Implicit Calls
	4.2 Calls from Other ToStrings
	4.3 Other Usage Scenarios

	5 ToString Contents
	5.1 Language Constructs
	5.2 Reusing Superclass Implementations
	5.3 Schematic Implementations
	5.4 Member Variables Read

	6 Threats to Validity
	6.1 Construct Validity
	6.2 External Validity

	7 Related Work
	8 Conclusion and Future Work
	References

	Foundations of Algorithmic Computational Biology – Regular Papers
	Fast Indexes for Gapped Pattern Matching
	1 Introduction
	2 VLG Matching via Sorting and Scanning Suffix Array Intervals
	3 Filter, Filter, Sort, Scan
	4 Direct Text Checking
	5 Experimental Evaluation
	6 Concluding Remarks
	References

	Linearizing Genomes: Exact Methods and Local Search
	1 Introduction
	2 Notation and Problem Description
	3 Related Work
	4 Hardness Using PLS-Reduction
	5 Exact Methods
	5.1 Integer Linear Programming
	5.2 Dynamic Programming on Tree Decompositions

	6 Experiments
	7 Conclusion
	References

	Scanning Phylogenetic Networks Is NP-hard
	1 Introduction
	2 Preliminaries
	3 NP-completeness
	3.1 An Adaptation of a Known NP-hardness Proof
	3.2 Reducing Nice Polytomies and Leaves

	References

	The Maximum Equality-Free String Factorization Problem: Gaps vs. No Gaps
	1 Introduction
	2 Preliminaries
	3 A Better FPT Algorithm for MaxEFF-S
	4 A 12-Approximation Algorithm for OptGEFF-s
	5 ILP Formulations for OptEFF-S and OptGEFF-S
	6 Heuristic and Approximation Algorithms for OptEFF-S
	6.1 Description of Greedy1
	6.2 Description of Greedyk
	6.3 Experimental Results

	7 Conclusions and Open Problems
	References

	Foundations of Computer Science – Short Papers
	A Calculus for Language Transformations
	1 Introduction
	2 A Calculus for Language Transformations
	2.1 Syntax of L–Tr
	2.2 Operational Semantics of L–Tr
	2.3 Type System of L–Tr

	3 Examples
	4 Related Work
	5 Conclusion
	References

	Computing Directed Steiner Path Covers for Directed Co-graphs (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Algorithms for the Directed Steiner Path Cover Problem
	3.1 Computing the Optimal Number of Paths
	3.2 Computing the Optimal Number of Steiner Vertices
	3.3 Computing an Optimal Directed Steiner Path Cover

	4 Conclusions
	References

	Counting Infinitely by Oritatami Co-transcriptional Folding
	1 Introduction
	2 Preliminaries
	3 Folding an Infinite Binary Counter
	References

	On Synchronizing Tree Automata and Their Work–Optimal Parallel Run, Usable for Parallel Tree Pattern Matching
	1 Introduction
	2 Basic Notions
	3 Synchronizing Term and k-Local DFTA
	4 Parallel Run of k-local DFTA on EREW-PRAM
	References

	On the Hardness of Energy Minimisation for Crystal Structure Prediction
	1 Introduction
	2 Notation and Definitions
	3 NP-Hardness for an Unbounded Number of Ion Species
	4 NP-Hardness for a Bounded Number of Species
	References

	Practical Implementation of a Quantum Backtracking Algorithm
	1 Introduction
	2 Preliminaries
	3 Variable Ordering Heuristics
	4 Generic Implementation
	4.1 How to Implement a Predicate
	4.2 How to Check a Constraint
	4.3 General Structure

	5 Simulation Results
	6 Conclusion
	References

	Simplified Emanation Graphs: A Sparse Plane Spanner with Steiner Points
	1 Introduction
	2 Simplification Method
	3 Experimental Comparison
	4 Discussion
	References

	Simultaneous FPQ-Ordering and Hybrid Planarity Testing
	1 Introduction
	2 Preliminaries
	3 Fixedness and 1-Fixed Constrained Planarity
	3.1 A New Definition of Fixedness
	3.2 1-Fixed Constrained Planarity

	4 Hybrid Planarity Testing Problems
	References

	Two-Player Competitive Diffusion Game: Graph Classes and the Existence of a Nash Equilibrium
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	2.1 Competitive Diffusion Game
	2.2 Graph Classes

	3 The Existence of a Nash Equilibrium
	3.1 Split Graph
	3.2 Block Graph
	3.3 Interval Graph

	4 Some Other Results
	References

	Foundations of Data Science and Engineering – Short Papers
	Automatic Text Generation in Slovak Language
	1 Introduction
	2 Related Work
	3 Model
	4 Evaluation
	4.1 Dataset
	4.2 Training
	4.3 Article Generation
	4.4 Results

	5 Conclusions and Future Work
	References

	Connecting Galaxies: Bridging the Gap Between Databases and Applications
	1 Introduction
	2 Models and Conversions
	3 Implementation
	3.1 Application Considerations
	3.2 Database Considerations

	4 Field Measurements
	5 Related Work
	6 Conclusion
	References

	GRaCe: A Relaxed Approach for Graph Query Caching
	1 Introduction
	2 Problem Statement and GRaCe Architecture
	3 Cache Selection Algorithm
	3.1 Graph Query Matching and Cache Data Structure
	3.2 Selection Algorithm

	4 Extending the Planner
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Concluding Remarks
	References

	Modelling of the Fake Posting Recognition in On-Line Media Using Machine Learning
	1 Introduction
	2 Fake Reviews Detection
	2.1 Fake Reviews in Online Space
	2.2 State of the Art

	3 Used Machine Learning Methods
	4 Models Building
	4.1 Data Source
	4.2 Data Preprocessing

	5 Models Testing
	6 Conclusions
	References

	Two-Step Memory Networks for Deep Semantic Parsing of Geometry Word Problems
	1 Introduction
	2 Related Work
	3 Two-Step Memory Networks
	3.1 Task Definition
	3.2 Limitations of Existing Memory Networks
	3.3 Model Formulation

	4 Experiments
	4.1 Unary Rule Extraction
	4.2 Binary Rule Extraction
	4.3 On-Demand Fact Extraction
	4.4 Relation Completion

	5 Conclusion and Future Work
	References

	Foundations of Software Engineering – Short Papers
	A Case Study on a Hybrid Approach to Assessing the Maturity of Requirements Engineering Practices in Agile Projects (REMMA)
	1 Introduction
	2 Case Study
	3 Results
	4 Conclusions
	References

	Does Live Regression Testing Help?
	1 Introduction and Related Work
	2 Proposed Method
	2.1 Regression Test Selection Method
	2.2 Test Case Prioritization Method

	3 Evaluation
	3.1 Experiment Design
	3.2 Evaluation Results

	4 Findings and Discussion
	References

	Foundations of Algorithmic Computational Biology – Short Paper
	Dense Subgraphs in Biological Networks
	1 Introduction
	1.1 Related Works
	1.2 Contribution

	2 Definitions
	2.1 Greedy and Constrained Greedy Algorithm for Densest-Subgraph

	3 A Heuristic for Top-k-Overlapping Densest Subgraphs
	4 Experimental Results
	5 Conclusion
	References

	Author Index

