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Abstract. Non-intrusive load monitoring allows breaking down the
aggregated household consumption into a detailed consumption per
appliance, without installing extra hardware, apart of a smart meter.
Breakdown information is very useful for both users and electric com-
panies, to provide an accurate characterization of energy consumption,
avoid peaks, and elaborate special tariffs to reduce the cost of the elec-
tricity bill. This article presents an approach for energy consumption dis-
aggregation in residential households, based on detecting similar patterns
of recorded consumption from labeled datasets. The proposed algorithm
is evaluated using four different instances of the problem, which use syn-
thetically generated data based on real energy consumption. Each gener-
ated dataset normalize the consumption values of the appliances to create
complex scenarios. The nilmtk framework is used to process the results
and to perform a comparison with two built-in algorithms provided by
the framework, based on combinatorial optimization and factorial hid-
den Markov model. The proposed algorithm was able to achieve accurate
results, despite the presence of ambiguity between the consumption of
different appliances or the difference of consumption between training
appliances and test appliances.

1 Introduction

Electricity utilization in homes has shown an uninterrupted increase worldwide,
as detailed in the World Energy Outlook report, prepared by the International
Energy Agency [6]. The electric power demanded in 2050 is expected to be twice
as much as that demanded in 2010 [11]. Under this premise, many investiga-
tions have been carried out to achieve an efficient use of electricity in factories,
buildings, and homes.

One of the approaches implemented to achieve a more efficient use of elec-
tric energy in homes is based on encouraging users to have a behavior change,
favorable to saving. The incentives for behavioral changes are derived from the
analysis of electricity utilization. For this analysis, Non Intrusive Load Monitor-
ing (NILM) techniques are applied.

NILM allows determining the energy consumption of individual devices that
are turned on and off, based on the detailed analysis of the current and volt-
age of the total load, measured at the interface with the source of the load.
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This approach was developed to simplify the collection of energy consumption
data by utilities, but it also has other applications. It is called non-intrusive to
contrast it with techniques previously used to collect load data, which requires
placing sensors on every appliance and, therefore, an intrusion on the user’s
energy consumption. In particular, NILM techniques are applied in residential
households.

NILM uses only the aggregate signal to disaggregate the signal of each appli-
ance, providing an easier way of generating detailed information about household
energy consumption. The disaggregated information is useful to provide break-
down bill information to the consumer, schedule the activation of appliances,
detect malfunctioning, and suggest actions that can lead a significant reduction
in consumption (e.g., up to about 20% in some cases [12]), among other uses.

In this line of work, this article presents a first approach for solving the
dissagregation problem by applying a simple algorithm for recognizing on/off
appliances states using the aggregate consumption signal, and determine energy
consumption patterns. The experimental evaluation of the proposed algorithm is
performed over synthetic datasets, specifically built using real energy consump-
tion data from the well-known UK-DALE repository [8]. Experiments are set to
analyze the accuracy of the method varying the power consumption of appli-
ances varies and generating complex scenarios including ambiguities between
the power consumption of appliances. Experimental results are compared with
two built-in methods of the nilmtk toolkit: Combinatorial Optimization (CO)
and Factorial Hidden Markov Model (FHMM). Results shows that the proposed
algorithm is able to achieve accurate results, accounting for an average of 0.95
on the F-score metric, in the most complex problem instances.

The proposal is developed within the project “Computational intelligence to
characterize the use of electric energy in residential customers”, funded by the
National the Uruguayan government-owned power company (UTE) and Univer-
sidad de la República, Uruguay. The project proposes the application of compu-
tational intelligence techniques for processing household electricity consumption
data to characterize energy consumption, determine the use of appliances that
have more impact on total consumption, and identify consumption patterns in
residential customers. The main contribution of this article is a simple approach
to solve the problem of energy consumption dissagregation in residential house-
holds, conceived to be adapted to the main features of the Uruguayan system,
and the experimental evaluation over a set of problem instances and the com-
parison with existing techniques.

The article is structured as follows. Section 2 presents the formulation of the
problem addressed in the work. A review of the main related work is presented
in Sect. 3. The proposed algorithms for solving the problem are described in
Sect. 4. The experimental analysis is reported in Sect. 5. Finally, Sect. 6 presents
the conclusions and the main lines of future work.
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2 The Energy Consumption Dissagregation Problem

The problem consists of dissagregating the overall energy consumption of a house
into the individual consumption of a number of appliances.

Consider a set of appliances available in a house A = {ai}, i = 1, . . . ,m, and
let xt be the aggregate power consumption of the house at a given time slice t.
xt can be expressed as the sum of the individual power consumption xi

t of each
appliance in use in that time slice. The status of each time slice is indicated by
the binary variable yi

t, that takes value 1 when appliance i is ON and 0 when it
is OFF. The simplest (binary) variant of the problem assumes just two possible
values for the power consumption of each appliance, i.e., xi

t = ci × yi
t, that is to

say that the power consumption of appliance i is constant and does not depend
on the activity being performed by the appliance.

The total power consumption is described as a function f : {0, 1}m → R
defined by the expression in Eq. 1.

xt = f((y1
t , y

2
t , · · · , ym

t )) = c1y
1
t + c2y

2
t + · · · + cmym

t (1)

If function f is injective (one-to-one), the problem is trivial. Otherwise, the
times series {xt}t∈T must be studied in order to deduce from the variation of
power consumption on time, the signatures of the individual appliances.

For instance, suppose the appliances are: fridge (power consumption 250 W),
washing machine (2000 W), dish washer (2500 W), kettle (2500 W), and home
theater (80 W). The aggregate power consumption is a non-injective function.
There is ambiguity between the power consumption of dish washer and kettle,
as defined by Eq. 2. The variation of the aggregate power consumption in time
must be studied to deduce if the kettle or the dish washer is ON.

f((0, 0, 1, 0, 0)) = f((0, 0, 0, 1, 0)) = 2500 (2)

Several attributes and patterns can be studied to solve ambiguities. In the
previous example, additional information can be used to solve the ambiguity:
e.g., the mean time of utilization of each appliance (it is a couple of minutes
for kettle and longer than an hour for the dish washer). Other more sophisti-
cated patterns can be detected to solve problem instances with more complex
ambiguities.

3 Related Works

The analysis of the related literature allows identifying several proposals on
the design and application of software-based methods for energy consumption
dissagregation. The main related works are reviewed next.

Hart [5] presented the concept of Nonintrusive Appliance Load Monitor-
ing (NALM). The author stated that the previously presented approaches on
the subject had a strong hardware component, installing intrusively monitoring
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points in each household appliance connected to a central information collec-
tor. Hart proposed an approach based on using a simple hardware and complex
software for the analysis, thus eliminating permanent intrusion in homes.

The model proposed by Hart considers that electrical appliances are con-
nected in parallel to the electrical network and that the power consumed is
additive (Eq. 3), where ai(t) represents the ON/OFF state of an appliance at
time t.

ai(t) =

{
1 if appliance i is ON at time t

0 otherwise
(3)

Multiphase loads with p phases are modeled as vectors of dimension p where
each component is the load in each phase. The total charge of the vector is the
sum of the p components. Pi is defined as a vector representing the power con-
sumed by device i when it is turned on (Eq. 4), where P (t) is the corresponding
to time t, and e(t) represents the noise or the recorded error for time t.

P (t) =
n∑

i=1

ai(t).Pi + e(t) (4)

The proposed model involves solving a combinatorial optimization problem
to determine vector a(t) from Pi and P (t), in order to minimize the error (Eq. 5).

â(t) = arg min
a

∣∣∣∣∣P (t) −
n∑

i=1

ai(t).Pi

∣∣∣∣∣ (5)

However, the resulting combinatorial optimization problem is NP-hard and
therefore computationally intractable for large values of n. Heuristic algorithms
allow computing solutions of acceptable quality, but their applicability is limited
because in practice the set of vectors Pi is not fully known, the value n is not
fixed, and unknown devices tends to be described as a combination of those
already known. Furthermore, a small variation in the measurement of P (t) can
cause large changes in a(t), mistakenly predicting simultaneous on and off events.

In recent works, NILM has been treated as a machine learning problem,
applying supervised and unsupervised learning methods. Supervised learning
approach is based on a data set of the consumption of each circuit device and
the aggregate signal, and the objective is to generate models that learn to dis-
aggregate the signal of the devices from the added signal. The techniques most
commonly applied in this approach are Bayesian learning and neural networks.
The unsupervised approach seeks to learn signatures of possible devices from the
aggregate signal without knowing a priori what devices are inside the circuit.
Bonfigli et al. [2] presented a survey of the test data sets available to researchers
and the main techniques used for the unsupervised NILM approach. The most
used unsupervised learning techniques are those based on Hidden Markov Mod-
els (HMM), which define a number of hidden states in which the model can be
moved, representing the operating conditions of the device (e.g., on, off and pos-
sible intermediate states) and an observable result, which depends on the real
state that represents the analyzed consumption data.



58 J. Chavat et al.

Kelly and Knottenbelt [7] analyzed three deep neural networks for disaggre-
gation in the NILM problem. The proposed neural networks had between one
and 150 million trainable parameters, so large amounts of training data was
needed. The data set used was UK-DALE. The approach consisted of train-
ing a neural network for each household appliance, taking as input a sequence of
aggregate total consumption and returning as a result the prediction of the power
demanded by the associated appliance. Three architectures of neural networks
were studied: (i) long short-term memory (LSTM) recurrent neural network,
suitable for working with data sequences because of its ability to associate the
entire history of the inputs to an output vector; (ii) a self-coding for noise elim-
ination (denoising autoencoder, dAE) that cleans the aggregate consumption
signal to obtain only that corresponding to the target appliance; and (iii) a rect-
angle network to detect the start and end of the use of the target appliance,
and its average power demanded at that time. The networks were trained using
50% of real data and 50% of synthetic data, generated with the signatures of the
UK-DALE appliances using the nilmtk tool. Results were compared with CO
and FHMM. The dAE and the rectangle networks outperformed the results of
both CO and FHMM in F1 score, precision, proportion of total energy correctly
assigned, and mean absolute error; while LSTM outperformed CO and FHMM
in on/off appliances but was behind in multi-state appliances.

Several related works have used the nilmtk tool [1], a framework for NILM
analysis implemented in Python that facilitates using multiple data sets by con-
verting them to a standard data model. nilmtk implements algorithms for data
preprocessing, statistics to describe the data sets, two disaggregation algorithms
(CO and FHMM), and metrics for evaluation. Within the preprocessing algo-
rithms are downsample, to normalize the frequency of consumption signals; and
voltage normalization, to solve the problem of the variation of voltage between
different countries [5], which implements a method to normalize the data and is
able to combine different sets of household data from different countries.

Kolter and Johnson [10] introduced the REDD dataset and studied the per-
formance of a FHMM algorithm for dissagregation using the available data.
FHMM was evaluated using two weeks of data from five households, subsam-
pled in ten-second intervals. Results showed that FHMM was able to disaggregate
the total consumption, observing a clear degradation of the results when going
from the prediction in the training set to the prediction in the evaluation set.
The FHMM for the training set correctly classified 64.5% of the consumption,
while for the evaluation set the correct classification was reduced to 47.7%. The
authors posed the challenge of finding a way to combine REDD with the massive
amount of untagged data generated daily by public energy service companies.

4 The Proposed Algorithm

This section describes the proposed algorithm to solve the problem of energy
consumption disaggregation based on similar consumption patterns.
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4.1 Algorithm Description

Function f : {0, 1}m → R gives the aggregate power consumption of a house for
a set of appliances. A function g : R2d+1 → Rm is considered, where the positive
number d determines a time neighbourhood for the predictions (Eq. 6).

(ŷ1
t , ŷ

2
t , · · · , ŷm

t ) := gW,Z(xi
t−d, · · · , xi

t, · · · , xi
t+d) (6)

In Eq. 6, (ŷ1
t , ŷ

2
t , · · · , ŷm

t ) is the estimated configuration of the set of house
appliances. Function gW,Z has random elements; it is defined using the infor-
mation of a training database {W,Z} = {wt, zt} such that for t = 1, · · · , n,
wt ∈ {0, 1}m, zt ∈ R and Eq. 7 holds.

zt = f((w1
t , w

2
t , · · · , wm

t )) (7)

The parameters of function gW,Z are chosen empirically to maximize the
sum given in Eq. 8, where A is the set of ambiguous configurations A = {y ∈
{0, 1}m/∃y′ ∈ {0, 1}m, y′ �= y, f(y′) = f(y)}. This is equivalent to maximize
the number of time slices t ∈ T for which every appliance status is correctly
detected. ∑

yt∈A

m∏
i=1

1{ŷi
t=yi

t} (8)

The proposed algorithm, named Pattern Similarities (PS), consists of two
parts, training and testing (prediction), which are described next.

The output of the algorithm is y, the vector of disaggregated power consump-
tion, computed using the following input:

– The vector x containing the aggregate power consumption of one house mea-
sured over a period of time with a certain time frequency.

– A training set z containing the aggregate power consumption of one or several
houses measured over a period of time with the same time frequency as x.

– A training set w containing the disaggregated power consumption of the house
(houses) described in z over the same period of time and with the same
frequency as x is measured.

– The parameter δ that defines a power consumption neighbourhood.
– The parameter d that defines a time interval neighbourhood.
– The parameter H that separates high from low power consumption.

Algorithm 1 describes the processing on the training stage. The goal is to
build an array (MZ) with information relating each consumption record with its
neighbour records. The information act as a feature of each appliance signature,
for each sample. The main loop (lines 2–10) iterates over each sample in the
training set. In each iteration step, the algorithm checks if the neighbour samples
has similar consumption values to the currently analyzed sample (lines 4–8); if
they have, then a counter is incremented. In the end, the array with the processed
values is generated for each testing sample. That array is used in the testing stage
to find samples whose consumption is similar to the sample being processed.
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Algorithm 1. PS algorithm: training stage
1: MZ ← array of lenght Z
2: for all zi ∈ Z do
3: counter ← 0
4: for all {zj ∈ Z : |j − i| < d} do
5: if zj > zi − ϕ then
6: counter ← counter + 1
7: end if
8: end for
9: MZ [i] ← counter

10: end for

Algorithm 2. PS algorithm: testing stage
1: MX ← array of lenght X
2: for all xi ∈ X do
3: counter ← 0
4: for all {xj ∈ X : |j − i| < d} do
5: if xj > xi − ϕ then
6: counter ← counter + 1
7: end if
8: end for
9: MX [i] ← counter

10: end for
11: for all xi ∈ X do
12: I ← ∅
13: for all zj ∈ Z do
14: if |zj − xi| ≤ δ and xi > H then
15: I ← I ∪ {j}
16: end if
17: if |I| ≥ 1 then
18: J ← argmin{|MZ(I(·)) − MX(i)|}
19: else
20: J ← argmin{|z(·) − x(i)|}
21: end if
22: k ← rand{1, . . . , length(J)}
23: y(i, ·) ← w(I(J(k)), ·)
24: end for
25: end for

Algorithm 2 presents the testing stage. The first loop (lines 1–10) is similar
to the main loop in the training stage, but applied to the testing dataset. This
loop builds an array (MX) with the processed value of signature feature for
each testing sample. It is used to compare with the array built into the training
stage. The second loop (lines 11–26) iterates over each testing sample to find
similarities with the samples of the training dataset. In line 13, each training
sample is compared to the consumption of the sample being processed, if the
difference between both is lower than a threshold (δ) and the testing sample
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have a consumption value greater than a minimum (H), it is added to set I, to
be considered for next comparisons. If the set I is not empty, i.e., at least one
training sample was found similar to the processing sample, the samples that
minimize the difference between signature features (the difference between MZ

and MX) are selected, and one of them is chosen randomly (line 18 and 22).
If set I is empty, i.e., no training samples were found similar to the processing
sample, the algorithm select the training samples that minimize the difference of
consumption with the sample that is being processed, and one of them is chosen
randomly (lines 20 and 22). Once the algorithm have found a similar training
sample, it maps the consumption per appliance at the time of the training sample
to the prediction results (line 23).

4.2 Implementation

A first version of the proposed algorithm was developed on Matlab, version
8.3.0.532 (R2014a), as a proof of concept. After that, it was re-implemented on
python version 3, using pandas and numpy, which allows the implementation
to be included as part of a pipe of execution in nilmtk. For this stage, several
modifications were included in the metrics and utils files of the framework.

Two scripts were implemented for generating the synthetic datasets. The first
script reads the UK-DALE dataset (HDF5 file), normalizes the values for the
indicated houses and appliances, and builds a directory structure that contains
metadata and the normalized data in CSV files. The normalization replaces all
records over a given threshold by an indicated value, and set all other values to
zero. The second script reads the directory structure and its content to generate a
new HDF5 file with the synthetic dataset. In the resulting dataset, data have the
same sample rate than in the original dataset, with the particularity that it does
not present gaps, i.e., if original sample rate is six seconds, the generated dataset
will have a record each six seconds. The gaps presented in the original dataset
are filled by zeros. The algorithm implementation, the scripts for generating
the datasets and the modified nilmtk files are available on a public repository
(https://gitlab.com/jpchavat/nilm-scripts).

5 Experimental Analysis

This section presents the experimental analysis of the proposed algorithm. In
the experiments, the algorithm was executed in a nilmtk pipeline of execution,
using a synthetic dataset based on UK-DALE dataset as input. Results were
compared with CO and FHMM algorithms executed in same settings.

5.1 Problem Instances and Datasets

The synthetic datasets used for the experiments are based on house #1 of
the UK-DALE dataset, considering the following appliances: fridge, washing

https://gitlab.com/jpchavat/nilm-scripts


62 J. Chavat et al.

machine, kettle, dishwasher, and home theatre. These appliances are representa-
tive of devices that contribute the most to household energy consumption [14].

Four different instances were generated for the experimental analysis. All
datasets were generated by downsampling the UK-DALE dataset period to
5 min. A datetime range limit was established for training and testing data.
For training data, the limits were set from 2013-01-01 at 00:00:00 to 2013-07-01
at 00:00:00, while for the testing data the limits were set from 2013-07-01 at
00:00:00 to 2013-12-31 at 23:59:59. A threshold of minimum consumption was
applied in the normalization, which was set to 5.0 W. This value allows discard-
ing standby power consumption records. Instances were generated to analyze the
efficacy of the proposed algorithm to solve different cases of energy consumption
ambiguity. A description of each problem instance and the motivation of using
it is provided next.

Instance #1. The generated dataset normalizes the consumption of each appli-
ance using the median of maximum consumption per activation (i.e., periods of
time in which an appliance remains in state ON). Outliers were filtered by lower
and upper limits defined by the standard deviation. The generated dataset is
used for training and testing. This instance aims at working with values close to
the real ones but keeping constant consumption values over time.

Instance #2. The generated dataset normalizes the consumption values to gen-
erate ambiguity between the consumption of kettle and dish washer. The same
dataset is used for training and testing the algorithms. This instance aims at
testing how the algorithms solves the most basic case of ambiguity.

Instance #3. The dataset normalizes consumption values like instance #2, but
including ambiguities between the sum of consumption of fridge, home theater,
and washing machine with the consumption of the dish washer. The same dataset
is used for training and testing the algorithms. This instance aims at studying
how the algorithms solves a more sophisticated case of ambiguity.

Instance #4. The training dataset is the same than in instance #2; but a new
dataset was generated for the testing step, introducing small variations in the
consumption of every appliance, but the washing machine. For example, the
consumption of the fridge was normalized to 260 instead of 250. This instance

Table 1. Normalized values per appliance for each instance

Instance Appliance

Fridge Washing machine Kettle Dishwasher Home theater

#1 (testing, training) 117 3325 2390 2741 93

#2 (testing, training) 250 2000 2500 2500 80

#3 (testing, training) 300 1800 2200 2300 200

#4 (testing) 250 2000 2500 2500 80

#4 (training) 260 2000 2400 2600 70
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fridge washing
machine

kettle dishwasher home
theater
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Fig. 1. Percentage of operating time of each appliance

aims at testing the algorithm in an scenario where testing appliances are similar
but not equal to the appliances used for the training.

Table 1 reports the normalized value of the datasets used for training and
testing for each instance, and Fig. 1 shows the percentage of records when each
appliance is in state ON/OFF, which is the same for all the generated datasets.

5.2 Software and Hardware Platform

The nilmtk framework was used to implement the pipeline of execution for the
experiments, as described in Fig. 2.

Fig. 2. Execution pipeline implemented in nilmtk

The first stage of the pipeline loads the dataset while the second splits the
dataset into a training set and a testing set. The training set is used to train
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each algorithm and after that, the testing set is used to obtain the results of
dissagregation. Finally, results are compared with the ground truth data (i.e.
the test set) to compute a set of metrics.

The experimental evaluation was performed on National Supercomputing
Center (Cluster-UY) infrastructure that counts with Intel Xeon-Gold 6138 nodes
(up to 1120 CPU cores), 3.5 TB RAM, and 28 GPU Nvidia Tesla P100, connected
by a high-speed 10 Gbps Ethernet network (cluster.uy) [13].

5.3 Baseline Algorithms for Comparison

Two methods from the related literature were considered as baseline for the
comparison of the results obtained by the proposed algorithm: CO and FHMM.

The CO method was first presented by Hart [5], and included in the nilmtk
framework. The approach of CO is to find the optimal combination of appli-
ance states that minimises the difference between the total sum of aggregated
consumption and the sum of the consumption of the predicted state on of appli-
ances. CO searches for a vector â that minimises the expression on Eq. 5 Given
the complexity of the CO algorithm, which is exponential in the number of appli-
ances, it is not useful to address scenarios with a large number of appliances.
The complexity of the CO algorithm is exponential in the number of appliances.
Thus, it is not useful to address scenarios with a large number of appliances.

FHMM was introduced by Gharamani and Jordan [4]. Different variations
of the original method were developed by Kim et al. [9] to solve the disaggre-
gation problem. HMM are mixture models that encode historical information
of a temporal series in a unique multinomial variable, represented as a hidden
state; FHMM extends HMM to allow modeling multiple independent hidden
state sequences simultaneously. FHMM scales worst than CO in scenarios with
a large number of appliances.

5.4 Metrics for Results Evaluation

Standard metrics were applied to evaluate the efficacy of the studied algorithms.
Let x

(n)
i be the actual status series for appliance n and x̂

(n)
i the status predicted

by the algorithm, True Positive (TP), False Positive (FP), True Negative (TN)
and False Negative (FN) ratios are defined by Eqs. 9–12.

TP =
∑
i

AND(x(n)
i = 1, x̂

(n)
i = 1) (9)

FP =
∑
i

AND(x(n)
i = 0, x̂

(n)
i = 1) (10)

TN =
∑
i

AND(x(n)
i = 0, x̂

(n)
i = 0) (11)

FN =
∑
i

AND(x(n)
i = 1, x̂

(n)
i = 0) (12)

http://cluster.uy
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Five metrics are considered in the analysis:

– precision of the prediction, defined as an estimator of the conditional proba-
bility of predicting ON given that the appliance is ON (Eq. 13).

– recall, defined as the conditional probability that the appliance is ON given
that the prediction is ON (Eq. 14).

– F–Score, defined as the harmonic mean of precision and recall (Eq. 15).
– Error in Total Energy Assigned (TEE), defined as the error of the total

assigned consumptions (Eq. 16).
– Normalized Error in Assigned Power (NEAP), defined as the mean normal-

ized error in assigned consumptions (Eq. 17).

precision =
TP

TP + FN
(13)

recall =
TP

TP + FP
(14)

F–Score =
2 × precision × recall

precision + recall
(15)

TEE(n) =

∣∣∣∣∣
∑
t

y
(n)
t −

∑
t

ŷ
(n)
t

∣∣∣∣∣ (16)

NEAP(n) =

∑
t

∣∣∣y(n)
t − ŷ

(n)
t

∣∣∣∑
t y

(n)
t

(17)

5.5 Results

Tables 2, 3, 4 and 5 report the results of the proposed algorithm (PS) and the
baseline algorithms (CO and FHMM), on instances #1 to #4. All results were
obtained using the following parameter configuration, set by a rule-of-thumb and
empirical evaluation: δ = 100, d = 10, H = 500 and ϕ = 250.

Results in Table 2 indicate that PS was able to accurately solve problem
instances without ambiguity between power consumption of appliances. F-score
values between 0.92 and 1.0 were obtained. Both CO and FHMM got F-score
values around 0.6 for fridge and washing machine, around 0.3 for dish washer
and home theater, and 0.04 (i.e., almost null) for kettle. In all cases, F-score
values were lower than the obtained with PS.

Results in Table 3 indicate that F-score values of PS for appliances with
ambiguities decreased up to 9%, while the rest of the F-score values remains
similar to instance #1. Regarding the baseline algorithms, CO showed a decrease
of 50% in the prediction of appliances with ambiguity, while results of FHMM
remained similar to the ones computed for instance #1, with exception of the
kettle (F-score decreased 66%).

Results in Table 4 indicates that the F-score values of PS decreased for wash-
ing machine (3%), dish washer (6%), and kettle (the worst value, 25% less than
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Table 2. Results of CO, FHMM, and PS on instance #1

CO

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 292.18 2318.84 2767.39 6651.69 1118.64

NEAP 0.8663 0.7644 5.9284 2.6279 2.1975

Precision 0.8324 0.9863 0.7153 0.9758 0.8413

Recall 0.5584 0.4827 0.0228 0.2301 0.2814

F-score 0.6684 0.6481 0.0442 0.3724 0.4218

FHMM

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 306.46 3209.08 3399.42 5371.37 948.72

NEAP 0.8843 0.8367 6.8117 2.7134 2.3119

Precision 0.7576 0.9817 0.7810 0.9768 0.5799

Recall 0.5408 0.5078 0.0258 0.2377 0.2199

F-score 0.6311 0.6694 0.0500 0.3823 0.3188

PS

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 23.87 0.00 0.00 0.00 29.67

NEAP 0.0218 0.0000 0.0000 0.0000 0.1497

Precision 0.9839 1.0000 1.0000 1.0000 0.9409

Recall 0.9942 1.0000 1.0000 1.0000 0.9121

F-score 0.9891 1.0000 1.0000 1.0000 0.9263

Table 3. Results of CO, FHMM, and PS on instance #2

CO

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 2228.32 1701.36 5595.52 7206.13 685.29

NEAP 1.0053 1.5412 9.8478 3.0491 1.6285

Precision 0.6973 0.8271 0.6715 0.9807 0.7781

Recall 0.5123 0.2457 0.0111 0.1184 0.2907

F-score 0.5907 0.3789 0.0219 0.2113 0.4233

FHMM

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 1401.84 962.88 7904.24 5016.79 431.27

NEAP 0.9007 1.1175 13.2448 2.1841 1.7049

Precision 0.7687 0.9149 0.7007 0.9787 0.6649

Recall 0.5573 0.4790 0.0084 0.2379 0.2850

F-score 0.6461 0.6288 0.0166 0.3828 0.3990

PS

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 0.00 0.00 42.50 42.50 14.88

NEAP 0.0000 0.0000 0.1788 0.0473 0.1264

Precision 1.0000 1.0000 0.9416 0.9681 0.9460

Recall 1.0000 1.0000 0.8866 0.9843 0.9289

F-score 1.0000 1.0000 0.9133 0.9761 0.9374
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Table 4. Results of CO, FHMM, and PS on instance #3

CO

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 1690.42 2194.13 6298.06 6720.05 949.90

NEAP 0.9386 1.6483 12.1919 3.0818 1.7343

Precision 0.8217 0.8678 0.5876 0.9826 0.8432

Recall 0.5754 0.2400 0.0073 0.1212 0.3250

F-score 0.6768 0.3760 0.0145 0.2157 0.4692

FHMM

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 2069.24 1655.52 6273.13 6895.43 1561.12

NEAP 1.1036 1.2927 12.1388 3.1483 2.0024

Precision 0.4318 0.9067 0.6387 0.9797 0.7645

Recall 0.4512 0.3677 0.0087 0.1380 0.2942

F-score 0.4413 0.5232 0.0171 0.2419 0.4249

PS

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 4.50 82.80 15.40 89.70 13.60

NEAP 0.0221 0.0668 0.5000 0.1092 0.0377

Precision 0.9893 0.9771 0.7372 0.9266 0.9845

Recall 0.9886 0.9570 0.7566 0.9629 0.9780

F-score 0.9889 0.9670 0.7468 0.9444 0.9812

Table 5. Results of CO, FHMM, and PS on instance #4

CO

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 2543.42 2239.86 5208.68 7414.75 637.84

NEAP 0.9819 1.7824 9.6185 3.0921 1.8408

Precision 0.6597 0.7653 0.6533 0.9826 0.7895

Recall 0.5202 0.1823 0.0121 0.1193 0.3205

F-score 0.5817 0.2944 0.0238 0.2128 0.4559

FHMM

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 1829.65 699.35 8567.56 5080.58 560.53

NEAP 0.9218 1.1591 14.6967 2.2034 1.9148

Precision 0.7209 0.8403 0.6971 0.9797 0.6961

Recall 0.5453 0.4634 0.0083 0.2383 0.2931

F-score 0.6210 0.5974 0.0163 0.3834 0.4125

PS

Metric Fridge Washing machine Kettle Dishwasher Home theater

TEE (kW) 182.69 62.00 42.60 111.00 145.00

NEAP 0.0440 0.0142 0.3221 0.0821 0.2720

Precision 0.9985 1.0000 0.8066 0.9758 0.9666

Recall 0.9957 0.9860 0.8984 0.9787 0.9166

F-score 0.9971 0.9930 0.8500 0.9773 0.9409
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for instance #1), increased for home theater (6%), and did not vary for fridge.
CO decreased for washing machine (42%), kettle (67%), and dish washer (42%),
compared with instance #1. F-score values for FHMM decreased for all the
appliances (up to 66% for kettle), but the home theater (increased 33%).

Finally, results in Table 5 demonstrate that PS has a robust behavior when
using different normalized datasets for training and testing steps. The F-score
for PS was over 0.99 for fridge and washing machine, over 0.97 for dish washer,
and over 0.94 for home theater. The lowest F-score value was obtained for kettle
(0.85) With respect to instance #1, the F-score of the kettle decreased 15%. The
rest of the appliances experienced a decrease/increase lower than 2%. For CO,
F-score values decreased for all appliances but the home theater For FHMM,
F-score values of fridge and dish washer varied less than 1.6% with respect to
instance #1, and decreased for washing machine and kettle (up to 67%).

Overall, the proposed PS algorithm achieved satisfactory results for all the
studied instances. Improvements on F-score were 60% over CO and 57% over
FHMM in average, and up to 64% over CO in problem instance #4 and up to
60% over FHMM in problem instance #3. Furthermore, PS systematically
obtained the lowest values of both TEE and NEAP metrics for all instances.
Degraded results obtained for kettle in problem instances with ambiguity sug-
gest that the lower percentage of operating time (0.5% for kettle) affects the
results negatively and the more complex the dataset is, the more consumption
samples are needed in the testing dataset.

6 Conclusions and Future Work

This article presented an approach to address the problem of household energy
disaggregation. An algorithm based on pattern similarities was proposed. The
experimental evaluation performed over realistic problem instance showed that,
overall, the proposed algorithm is effective for addressing the problem of energy
consumption disaggregation. Results can be applied to household energy plan-
ning by using intelligent recommendation systems [3].

The main lines for future work are related to study instances with different
sample rates and noise in the power consumption, and extend the parameter
analysis of the proposed algorithm. In addition, more sophisticated computa-
tional intelligent methods can be evaluated to solve the problem.
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