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Abstract. Forecasting the day-ahead electricity load is beneficial for
both suppliers and consumers. The reduction of electricity waste and the
rational dispatch of electric generator units can be significantly improved
with accurate load forecasts. This article is focused on studying and
developing computational intelligence techniques for electricity load fore-
casting. Several models are developed to forecast the electricity load of
the next hour using real data from an industrial pole in Spain. Feature
selection and feature extraction are performed to reduce overfitting and
therefore achieve better models, reducing the training time of the devel-
oped methods. The best of the implemented models is optimized using
grid search strategies on hyperparameter space. Then, twenty four dif-
ferent instances of the optimal model are trained to forecast the next
twenty four hours. Considering the computational complexity of the
applied techniques, they are developed and evaluated on the compu-
tational platform of the National Supercomputing Center (Cluster-UY),
Uruguay. Standard performance metrics are applied to evaluate the pro-
posed models. The main results indicate that the best model based on
ExtraTreesRegressor obtained has a mean absolute percentage error of
2.55% on day ahead hourly forecast which is a promising result.

1 Introduction

Decision making in the energy sector was historically supported by information
that allows predicting, with certain degree of uncertainty, the variables that
affect these decisions [8,22]. Much of the useful information is related to natural
variables (e.g., temperature, wind speed, humidity). Other information is related
to the energy consumption profile of users. In recent years, the sources of energy
generation have diversified in the world. Many renewable sources that are directly
related to natural variables have been incorporated [16].

All of aforementioned issues implies that for making decisions is necessary to
take into account a large number of stochastic variables, to ensure that they are
feasible/optimal from the economic point of view. The increase in complexity
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associated with the number of variables to be considered is mitigated by two fac-
tors. On the one hand, the sources of data on the variables have multiplied, since
many technological components of measurement have emerged in all disciplines
and the hardware infrastructure that supports these components has developed
strongly. On the other hand, multiple new uses for energy have emerged.

The new reality presents the challenge of developing new tools that allow
taking advantage of available data as much as possible. Classic statistical models
that were always useful for making predictions have clear limitations in this new
context. Computational intelligence algorithms have shown in recent years to
perform excellently for forecasting in different areas [11,13,15]. These methods
are able to learn the most relevant features of the data to be taken into account in
order to provide a precise forecast, thus providing excellent results by excluding
information of little relevance and considering the most relevant one.

In this line of work, this article presents the application of several predic-
tion algorithms based on computational intelligence to forecast the electricity
demand of an industrial pole for the next hour. The modeled scenario is based
on historical demand data of an industrial pole in Spain from 2014 to 2017. From
the study and comparison of the results of the algorithms developed for the next
hour, a model is constructed to forecast the next 24 h. This model is based on
optimizing the algorithm that presented the best results for the one hour forecast
and extending it to 24 h forecast. The major contributions of this research are: (i)
the evaluation and comparison of computational intelligence models applied to
forecasting the demand of an industrial pole in Spain, and (ii) the optimization
of the model using the infrastructure of the National Supercomputing Center,
in Uruguay.

The article is organized as follows. Section 2 presents the formulation of the
day ahead forecasting problem and a review of related works. Section 3 describes
the proposed approach to solve the problem proposed. Section 4 presents Exper-
imental Analysis of the problem. In Sect. 4.5 analysis of the best method and
extension to 24 h load forecast is presented. Finally, Sect. 5 formulates the main
conclusions and lines for future work.

2 Load Forecasting

This section introduces the load forecasting problem, describes forecasting tech-
niques, and reviews related works.

2.1 General Considerations

The load forecasting problem is usually approached applying mathematical
methods using historical data to predict the demand of electric power. In gen-
eral, there is no method that can be used in all types of load forecasting. Thus,
an appropriate method must be found for each load profile. Using historical data
of a particular load profile is common in practice to determine the most effective
algorithm. Electric load forecasting can be classified by time horizon to forecast:
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(i) ultra short-term load forecasting: up to a few minutes ahead; (ii) short-term
load forecasting: up to few days ahead; (iii) medium-term load forecasting: up to
few month ahead; and long-term load forecasting: years ahead. Different tech-
niques are applied when considering each time horizon. This work focuses in
short-term load forecasting using historical data.

The energy management and operation of grids becomes highly difficult and
uncertain, particularly when new technologies were incorporated. The power
demand of end customers is versatile and is changing on hourly, daily, weekly,
and seasonally basis. Hence, there is a real need of developing a model for precise
and accurate forecasting at different time horizons, depending on the manage-
ment goals. Day ahead hourly power load prediction is considered a short term
forecasting problem, and it is very important to develop very precise models for
solving this particular problem.

This work focuses on industrial power consumption. Residential (domestic)
power profiles are usually very variable, mainly dependent on the time of the
day and the day of the week, but it also dependent on occasional vacations and
other particular factors. On the other hand, industrial users power profile tends
to be more stable due to the needs of the industrial process itself.

There are two classes of forecasting models for predicting power profile: sta-
tistical and physical models. The main purpose of both classes of models is to
predict the power profile at a future time frame. Statistical models can be built
for time series analysis. Computationally, statistical models are less complex than
physical models and are suitable for short term prediction. Physical models are
based on differential equations for relating the dynamics of the environment and
generally are applied for long term forecasting. In the present work, statistical
models are selected for short term forecasting due to their very good prediction
accuracy and lower complexity.

2.2 Problem Formulation and Strategies

Relation Between One Hour and 24 Hour Forecasting. The main goal of the
study reported in this article is to apply computational intelligence methods
to develop a model for electricity load 24 h ahead forecasting. When historical
data are available with hourly frequency is natural to develop a model that
predicts next hour. From that model, a multi-step time forecasting model can
be constructed, in this case 24 steps in the future.

Four strategies are typically applied for multi-step forecasting starting from
a one-step model:

– Direct strategies develop a different model for each time step to be predicted.
Assuming past observations of the variable to be predicted are used, this
strategy implies, in case of 24 steps, developing 24 models with the structure
defined in Eq. 1, where predt is the prediction of time t value and obst is the
observed value at time t.
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pred(t+1) = model1(obst, obs(t−1), ..., obs(t−n))

pred(t+2) = model2(obst, obs(t−1), ..., obs(t−n))

. . .
pred(t+24) = model24(obst, obs(t−1), ..., obs(t−n))

(1)

Unfortunately, a direct strategy implies developing a model for each time
step to be predicted and consequently is very expensive computationally.
In addition, temporary dependencies are not explicitly preserved between
consecutive time steps.

– Recursive strategies apply a one-step model (recursively), multiple times. The
predictions for previous time steps are used as input for making a prediction
on the following time step. The structure to develop for a recursive strategy
is presented in Eq. 2.

pred(t+1) = model1(obst, obs(t−1), ..., obs(t−n))

pred(t+2) = model1(pred(t+1), obst, obs(t−1), ..., obs(t−n+1))

. . .

pred(t+24) = model1(pred(t+23), pred(t+22), ..., pred(t+1), obs(t−n+23))

(2)

In this strategy predictions are used instead of observations. A single model
is trained, but the recursive structure allows prediction errors to accumulate
and the performance of the model can quickly degrade as the time horizon
increases.

– Hybrid strategies combine the previously described to get benefits form both
methods. A separate model is constructed for each time step to be predicted.
Each model may use the predictions made by models at prior time steps
as input values. For example, using all known prediction, a hybrid strategy
produces the structure in Eq. 3.

pred(t+1) = model1(obst, obs(t−1), ..., obs(t−n))

pred(t+2) = model1(pred(t+1), obst, ..., obs(t−n))

. . .

pred(t+24) = model1(pred(t+23), pred(t+22), ..., obst, ..., obs(t− n))

(3)

– Multiple output strategies develop a model that has as output all time steps
to be predicted (in this case 24). Multiple output models are more complex as
they can learn the dependence structure between inputs and outputs as well
as between outputs. For this reason, they are slower to train and require more



150 R. Porteiro et al.

data to avoid overfitting. Equation 4 shows the corresponding structure.

pred(t+1,...,t+24) = model1(obs(t), obs(t− 1), ..., obs(t− n)) (4)

In this work, hybrid strategies are applied for solving the forecasting problem.

One Hour Forecasting Model Training. Section 2.3 reviews different approaches
and methods for short term load forecasting. This work explores the use of
machine learning techniques, mainly those based on model ensembles. Feature
selection is commonly applied in this kind of problems due to several reasons.
Simpler models are easier to interpret, and have shorter training times. Also, the
size of the model using less features is smaller, mitigating the curse of dimension-
ality [3]. But the main reason to apply feature selection is to reduce overfitting,
enhancing generalization of the model to unseen data.

Once established the strategy to extend the next hour forecasting models to
twenty four hours model, the main issue is to obtain the best possible model for
the next hour. With this purpose, standard steps are taken: (i) data gathering,
(ii) data preparation, (iii) choosing a model, (iv) training, (v) evaluation, (vi)
parameter tuning, and (vii) testing. Each of these steps is described in detail in
Sect. 3.

Complete Model. After obtaining a one hour model with optimized parameters,
it is trained for the next hour taking all steps mentioned. Thus, 24 h different
instances of this model are trained, one for each of the next 24 h. Then, the
hybrid strategy described in Eq. 3 is applied to build a 24 h forecasting model.
The complete model is evaluated on testing data and results are reported.

2.3 Related Works

Several methods support electricity demand forecasting, applying short, medium
and long-term predictions. These methods are classified in statistical models and
machine learning models. This work focuses on short-term load forecasting using
machine learning.

Most used forecasting techniques include auto regressive models (AR), mov-
ing average models (MA), auto regressive moving average models (ARMA) and
auto regressive integrated moving average (ARIMA) models [24]. These kind of
models are easy to implement. ARIMA models for short term load forecasting
were initially proposed by Hagan and Behr [12]. Taylor and McSharry [26] com-
pared different ARIMA implementations using load data from multiple countries.
Linear regression technique was described by Dudek [10]. However, linear mod-
els are inadequate to represent the non-linear behavior of electricity load series
and fail to predict the accurate future demand values. Thus, their forecasting
accuracy tends to be poor.
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Several studies have been conducted on short-term load forecasting using
non-linear models. For example, Do et al. [9] described a model for predicting
hourly electricity demand considering temperature, industrial production levels,
daylight hours, day of the week, and month of the year to forecast electricity
consumption. Results suggested that consumption is better modeled considering
each hour separately. In our work, this strategy is developed and applied. Son
and Kim [25] proposed a method based on support vector regression preceded by
feature selection for the short-term forecasting of electricity demand for the resi-
dential sector. For feature selection, twenty influential variables were considered
and the quality of the model improved substantially.

Peak load estimation is also crucial to determine future demand, in order to
assist future investment decisions [21]. In this article, the decision to consider
ensemble models was taken based in the work presented by Burger and Moura [5],
who applied a gated ensemble learning method for short-term electricity demand
forecasting and showed that the combination of multiple models yielded better
results than the use of a single model. Silva [23] presented a complex feature
engineering to build gradient boosted decision trees and linear regression models
for wind forecasting; in our work several similar ideas were developed for demand
forecasting. De Felice et al. [7] applied several separate models for each hourly
period. Each of those models measure variations in electricity demand based on
multiple variables.

The analysis of the related works allowed to conclude that two main issues
impact on the forecasting capabilities and the results quality: the model itself
and other preparation and pre-processing techniques. Several works applied tech-
niques like data normalization, filtering of outliers, clustering of data or decom-
position by transformations [1,2,6,14] in order to improve the results. In our
research, several data preparation techniques are applied for building a robust
approach for short term energy utilization forecasting. Next section describes
the proposed approach.

3 The Proposed Approach for Day Ahead Industrial
Load Forecasting

This section describes the proposed approach to solve the day-ahead electricity
load forecasting for an industrial pole in Spain, applying the strategies described
in Sect. 2.2.

3.1 General Approach

Data Description, Data Preparation, and Metrics. The analysis reported
in this article considers historical hourly energy consumption data from an indus-
trial pole in Spain. This data was collected between January 2014 and December
2017. The dataset studied in the research is formed by industrial energy con-
sumption measurements. Each measurement is composed of:
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– Year (integer), representing the year on which the measure was taken.
– Month (integer), indicating the month on which the measure was taken.
– Day (integer), indicating the day on which the measure was taken.
– Hour (integer), indicating the hour on which the measure was taken.
– Dayofweek (integer), indicating the day on which the measure was taken.
– Workingday (boolean), indicating whether the measure was taking in a work-

ing day or not.
– Useful (boolean), indicating whether the measure is valid.
– Demand (float), indicating the real power measured.

The data preparation consists in replacing useless measures or outliers using
information from neighboring hours. A few useless measures and outliers were
found (less than 0.0001%), and none of this measueres corresponded to consecu-
tive hours. Thus, useless measures were replaced with the average measure of the
previous and next hour. Outliers were replaced by the value of the mean of the
measures plus 3 standard deviations. A measure is considered an outlier when
its signed number of standard deviations by which is above the mean value of
what is being measured is greater than 3. Feature standardization was applied
to avoid scale problems. Finally, from the dataset, new features were generated
associated with past demand measures to train the models. In particular, the
last 48 measures were considered for each record to capture at least two days of
consumption pattern directly in the features.

Several visualization analysis were performed to gain an intuitive insight of
the information contained in each feature. The most relevant fact confirmed in
this preliminary analysis was the daily periodicity of the demand value. The
correlation diagram shown in Fig. 1 presents the high correlation between actual
demand and the demand of the same hour of two days before. Data prepro-
cessing was performed using pandas library [18]. The dataset from 2014 to 2017
was extended to include all lag features of the last 24 past hours. The training
set included all data from 2014 to 2016, and the testing set included data from
2017. A linear regression model Msim was trained using the sklearn toolkit [20],
configured with default parameters as benchmark model. New training and test
datasets were produced keeping only the relevant features, according to the anal-
ysis performed to determine the relative importance of each feature.

Three standard metrics were used for evaluation: Mean absolute percentage
error (MAPE, Eq. 5), root mean square error (RMSE, Eq. 6) and mean abso-
lute error (MAE, Eq. 7); reali represents the measured value for t = i, predi
represents the predicted value and n represents the predicted horizon length.

MAPE = 100 ×
∑n

i=1| reali−predi

reali
|

n
(5)

RMSE =

√
∑n

i=1 (reali − predi)
2

n
(6)

MAE =
∑n

i=1|reali − predi|
n

(7)
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Fig. 1. Correlation diagram between actual demand and 48 last demand measures

Training One Hour Ahead Forecasting Models. Once all data was pre-
pared for model training, a four-step procedure was applied for training and
evaluation. The four steps are:

1. Training and test sets were generated in a 3:1 proportion. In this case, the
training set considered data from 2014 to 2016 and the test set considered
data from 2017.

2. A simple base model was trained for benchmarking. Using the trained model,
a recursive feature elimination process was performed. The ten most impor-
tant features are preserved.

3. Several models were trained and compared with the benchmark model.
4. The best model according to MAPE, RMSE and MAPE metrics was chosen.
5. An optimization of hyperparameters of the best model was performed using

grid search techniques.

Finally, the best model found with the optimized hyperparameters was used
as a reference to train the 24 h forecasting model.

Twenty Four Hour Model. The best model configured with the best hyperpa-
rameters obtained in the previous step, was used to generate twenty four models
M1,M2, ...,M24 to forecast day ahead hours, applying the following procedure:

1. Training and test sets were generated in a 3:1 proportion. the training set
considered data from 2014 to 2016 and the test set considered data from
2017.
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2. Model Mi was trained using yi as output, where yi consists of the demand
value corresponding to i hours ahead, and input X is enriched for models
Mi, i > 2 with a new column consisting of the i − 1 prediction obtained by
the trained model Mi−1

3. Models Mi are assembled to get a complete model M to forecast the next
24 h altogether.

3.2 Implementation

This section describes the implementation of the approach described in Sect. 3.1.

Computational Platform and Software Environment. Experiments were
performed in an HP ProLiant DL380 G9 server with two Intel Xeon Gold 6138
processors (20 cores each) and 128 GB RAM, from the high performance com-
puting infrastructure of National Supercomputing Center Cluster-UY [19].

The proposed approach was implemented in Python. Several scientific pack-
ages were used to handle data, train models and visualize results. Used packages
included pandas, sklearn, and keras. A generic module was implemented to train
various type of models following a pipeline processing. Parameter tuning of the
studied models were performed using RandomizedSearchCV and GridSearchCV
modules from sklearn. The main details of the implementation of the studied
models are provided in the following subsections.

Implementation of One Hour Model. Data preprocessing was already
described in Sect. 3.1. All one hour models described in this section use a train-
ing set containing data from 2014 to 2016 and a test set containing data from
2017.

Base Model: Linear Regression. A linear regression model was trained to be used
as benchmark for the results comparison. A recursive feature selection strategy
[4] was also applied on this model to determine the most important features (the
rest of features were removed from the dataset).

Ten features were selected based on their relative importance:

– T1, T2, T24, T25: demand values lagged.
– workingday : flag indicating whether the day of measured value is a working

day
– month: month on which the measure was taken.
– hour : hour of the day on which the measure was taken.
– dayofweek : day of the week on which the measure was taken.
– day : day of month on which the measure was taken.
– year : year on which the measure was taken.

The most relevant past demand values are T1, T2, T24, and T25 because
the current demand is highly correlated with the immediate past demands and
also with the demands of the previous day at the same time due to the daily
periodicity. The full analysis is presented and discussed in Sect. 4.1.
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Selection of the Best Method. Seven regression models were trained including
the base model considering the ten most important features, and default param-
eters, using the scikit-learn API [4]: Linear Regression, MLP, Extra Trees, Gra-
dient Boosting, Random Forest, K-Neighobors and Ridge. These models were
evaluated using the MAPE metric and the linear regression model was used to
determine a baseline performance value. The most accurate method was chosen
for further evaluation (this method is called Mbest).

Optimization of the Best Method. Parameter search techniques were applied to
optimize a model based on the best method obtained (Mbest). The model Mbest

trained with default parameters was optimized using two standard sklearn tools:

– GridSearchCV: The user specify a parameters grid selecting a discrete set of
values for each parameter and a model. The tool trains the model in each
point of the multidimensional grid generated and finds the best parameters
setting according to a predetermined metric.

– RandomizedSearchCV: The user specify a parameter probability distribution
and the number of points that must be draw. The tool samples according to
the distribution and train the model in each of this points. Then finds the
best parameters setting according to a predetermined metric.

The best parameter set obtained for Mbest results in an optimal model Mopt.
The main details of the implementation of the complete model based on Mopt

are described in the next subsection.

3.3 Implementation of the Complete Model

Model Mopt was optimized for predicting the next hour and used for predicting
any of the following 24 h to build the complete model. This decision was adopted
assuming that the forecasting quality of the parameter setting obtained in the
previous phase is independent of the hour used as output.

To build the complete model, 24 instances of the optimized model Mopt were
trained. These instances are called Mopt,i, defining the model trained to fore-
cast the ith hour ahead. The output yi used to train the model consisted in the
demand value for the i-th hour ahead. For i > 2, the input Xi is enriched
with a new set of columns consisting of all predictions obtained by models
Mopt,1, ...,Mopt,i−1. Equation 8 describes the hybrid strategy applied to Mopt.

pred(t+1) = Mopt,(t+1)(obst, obs(t−1), ..., obs(t−n))

pred(t+2) = Mopt,(t+2)(M(t+1), obst, ..., obs(t−n))

. . .

pred(t+24) = Mopt,(t+24)(M(t+23),M(t+22), ..., obst, ..., obs(t− n))

(8)
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The complete model Mopt is computed by Eq. 9. Output of the model is a 24
valued vector, one prediction for each hour.

Mopt(t) = (pred(t+1), pred(t+2), ..., pred(t+24)) (9)

4 Experimental Analysis

This section presents the results of the experimental analysis of the proposed
computational intelligence methods for day ahead industrial electricity load fore-
casting.

4.1 Recursive Feature Elimination

A feature selection analysis was performed using the recursive feature elimination
tool in sklearn. A model and a number of features are selected, and the tool
works by recursively removing features and building a new model (of the type
selected) on those remaining features. The accuracy of the new model is used
to identify the features or combination of features that contribute the most to
predicting the target attribute. The recursive feature selection tool was applied
over the linear regression method described in Subsect. 3.2 and studying up to
ten features. Figure 2 presents the results of the analysis, reporting the relative
importance of the ten most important features.

T1 T2 working
day

T24 month hour T25 day of
week

day year
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20%

40%
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Fig. 2. Relative importance of most important features (percentage values)
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4.2 Experimental Results on Preliminary Models

Performance metrics defined in Sect. 3.1 were used to evaluate implementation of
one hour models as described in Sect. 3.2. Table 1 reports the obtained results for
the studied forecasting models. The best results are reported in cells with green
background. Results reported in Table 1 indicate that three methods achieved the
best results regarding the analyzed metrics. Focusing on MAPE, Extratreesre-
gressor improved over MLP by 4.16% and over RandomForest by 6.54%. Addi-
tionally, the training time of Extratreesregressor was approximately three times
shorter than RandomForest and six times smaller than MLP. Overall, Extra-
TreesRegressor was the most effective model for forecasting the next hour, out-
performing all the other methods regarding the three standard metrics studied.
According to this result, ExtraTrees was selected as the best method for showing
the best performance and a low training time. Mbest =ExtraTreesRegressor .

Table 1. Results for each regression method.

Regression method MAE MAPE RMSE Score Time (s)

LinearRegression 127.63 3.60 176.00 0.96 1.72
Ridge 127.63 3.60 176.00 0.97 0.09
KNeighbors 180.54 5.03 253.20 0.93 0.07
RandomForest 180.20 3.21 151.54 0.98 3.1
GradientBoosting 121.97 3.38 166.17 0.97 1.99
MLP 111.08 3.13 154.23 0.97 6.21
ExtraTrees 105.44 3.00 148.61 0.99 1.2

4.3 Parameter Tuning

Parameter tuning techniques described in Sect. 3.2 were applied on the best
model Mbest. The following grid was generated as input for both studied tech-
niques: n estimators: [10, 50, 75, 100, 150], max features: [auto, sqrt, log2], and
max depth: [50, 100,150, 200, 250]. GridSearchCV achieved the best results.
The best parameter setting found by the algorithm was n estimators = 50,
max features = auto and max depth = 250, improving 14% on the MAPE results
over the second best configuration.

4.4 Experimental Results After Parameter Tuning

Table 2 reports results of the ExtraTreesRegressor model before and after param-
eter tuning. The best results are highlighted (cells with green background).
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Results show that the numerical results improved considerably for the three
studied metrics. In particular, MAPE reduced from 3.00% to 1.79%. The per-
formance improvement just demanded a negligible increase on training time
increases after parameter tuning from 1.2 s to 1.7 s.

Table 2. Comparative results of ExtraTrees before and after parameter tuning.

Regression method MAE MAPE RMSE Score Time (s)

ExtraTrees before tuning 105.44 3.00 148. 61 0.99 1.2
ExtraTrees after tuning 87.52 1.79 111.08 0.99 1.7

4.5 Experimental Results of the Complete Model

The forecast accuracy of the final model was validated by applying a metric that
extends MAPE. Let MAPEh be the MAPE value for a predicted horizon h, the
extension of MAPE to the complete testing set is defined by Eq. 10.

MAPEtot =
∑k

i=1 MAPEh

k
(10)

Table 3 reports the results for each of the 24 models. The expected behaviour
is that the models trained for highly correlated hours in the future respect
to the current hour, perform best. This fact is due to predictability, and it s
enhanced when the correlation between input features and predicted values is
higher. According to Fig. 1, highly correlated demand values correspond to the
immediately preceding hours and from the same hours of the day before.

Analyzing the obtained results for the MAPEtot metric for each one of the
24 hourly models, the performance got worse from i = 1 to i = 17 and then
improved from i = 18 to i = 24. These results show that highly correlated
demand values performed better, as expected.

Table 3. MAPEtot score for each ETopt,i single hour model.

hour
1 2 3 4 5 6 7 8 9 10 11 12

MAPE tot 1.79 1.84 1.90 1.97 2.09 2.19 2.39 2.52 2.68 2.75 2.80 2.86

hour
13 14 15 16 17 18 19 20 21 22 23 24

MAPE tot 2.93 3.02 3.05 3.08 3.09 3.02 2.88 2.77 2.63 2.49 2.32 2.17
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Finally, the complete model ETopt was applied. A day-ahead hourly fore-
cast load curve was generated for each time window for the testing set and the
MAPEtot value was calculated.

The final result for the complete model was MAPEtot = 2.55%. This result
implies that the model obtained for the day ahead demand forecasting of the
industrial pole analyzed incurs in an error that is considered very low for most
of the studies that rely on these types of models [13,15]. Figure 3 presents an
example of the real demand curve and the predicted demand curve using the
best model, for the testing set considered in the experiments.

Fig. 3. Predicted demand and testing data curves

5 Conclusions and Future Work

This article presented an approach to address the problem of day ahead electric-
ity load forecasting. Several machine learning models was presented and studied
for next hour forecasting. Recursive feature selection was applied to select most
relevant features to train the studied models. After a comparative evaluation,
the best model was optimized using random search and grid search techniques.
With the optimized model for single hour prediction, an hybrid strategy (direct
and recursive) was applied to build a complete day ahead electricity load hourly
forecasting model.

An extension of MAPE metric was used to evaluate this complete model
for the testing set, obtaining a value of MAPEtot = 2.55%. This result shows
that the proposed algorithm is effective for addressing the problem of day-ahead
industrial demand forecasting.
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The main lines for future work are related to extend the analysis to other
data sets of industrial poles with different demand profiles, and apply the pro-
posed approach to residential demand forecasting, including other relevant fea-
tures (e.g., related to weather, such as temperature, humidity, and wind speed,
which have impact on residential demand [17]). Deep learning techniques (e.g.,
recurrent/long-short term memory neural networks) should be considered for
future work, since they can provide accurate results in scenarios that are dif-
ficult for other simpler methods, i.e. when handling large volumes of historical
data.
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