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11.1 Introduction to Immunotherapy

The past two decades have marked the beginning of an unprecedented success story
for cancer therapy through redirecting antitumor immunity [1]. While the mecha-
nisms that control the initial and ongoing immune responses against tumors remain
a strong research focus, the clinical development of technologies that engage the
immune system to target and kill cancer cells has become a translational research
priority. Early attempts documented in the late 1800s aimed at sparking immunity
with cancer vaccines were difficult to interpret but demonstrated an opportunity that
more than 100 years later has blossomed into the current field of cancer
immunotherapy. Perhaps the most recent and greatest illustration of this is the
widespread appreciation that tumors actively shut down antitumor immunity, which
has led to the emergence of checkpoint pathway inhibitors that re-invigorate the
body’s own immune system to target cancer [2, 3]. This class of drugs, with first
FDA approvals in 2011, has demonstrated impressive durable clinical responses in
several cancer types, including melanoma, lung cancer, Hodgkin’s lymphoma, and
renal cell carcinoma, with the ongoing investigation in others. The biology and
ultimate therapeutic successes of these drugs led to the 2018 Nobel Prize in
Physiology or Medicine, awarded to Dr. James Allison and Dr. Tasuku Honjo for
their contributions to cancer therapy [4]. In parallel to the emerging science that
aided in unleashing the body’s own antitumor immunity with checkpoint pathway
inhibitors, researchers were also identifying ways to re-engineer antitumor immu-
nity through adoptive cellular immunotherapy approaches. Chimeric antigen
receptor (CAR)-based T cell therapy has achieved an early head start in the field,
with two recent FDA approvals in 2017 for the treatment of B-cell malignancies [5].
There is an explosion of preclinical and clinical efforts to expand the therapeutic
indications for CAR T cell therapies, with a specific focus on improving their
clinical utility, particularly for the treatment of solid tumors. In this chapter, we will
highlight the recent progress, challenges, and future perspectives surrounding the
development of CAR T cell therapies for solid tumors.

11.2 CAR T Cell Therapy

The development of effective CAR T cell therapies for any cancer type lies in
several key variables [6]—(1) design of CAR constructs, (2) manufacturing pro-
cesses that lead to the final therapeutic product, and (3) clinical study design to
comprehensively assess safety and efficacy of CAR T cell therapies and combi-
natorial immunotherapy strategies. We will summarize key findings in these areas
that have contributed to the successes in CAR T cells in treating hematological
malignancies to date, as well as address many of the challenges facing CAR T cell
therapy for treating solid tumors.
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11.2.1 CAR Design

CARs are modular synthetic receptors that redirect antigen specificity of T cells to
cell surface targets expressed by tumor cells, thereby eliciting a potent T cell
functional output primarily through cytolytic activity and production of inflam-
matory cytokines. CARs consist of four major components: the antigen-binding
domain, the extracellular spacer domain, the transmembrane domain, and the
intracellular signaling region consisting of co-stimulatory and CD3f cytolytic
domains (Fig. 11.1). Observations from engineering these components were
recently reviewed extensively [7]. Here, we will summarize major findings that
contribute to the current convention for designing new CARs.

The antigen-binding domain confers target specificity to the CAR. These
domains are often derived from the variable regions of monoclonal antibodies
termed single-chain variable fragments (scFv), although other targeting moieties
have been described, including but not limited to: natural or engineered receptor
ligands [8, 9], receptor extracellular domains [10, 11], and engineered
non-immunoglobulin binding proteins [12, 13]. The majority of solid tumor targets
evaluated to date are also expressed on normal tissue at various levels, which raises
toxicity concerns with “on-target off-tumor” targeting of normal tissue [14].
Therefore, the optimization of CAR selectivity and potency has been heavily
studied by modulating properties of the antigen-binding domain. For instance,
fine-tuning scFv affinity has been impactful in setting antigen expression thresholds

(a) (b)

Fig. 11.1 Illustrations of a T cell receptor (TCR) and a chimeric antigen receptor (CAR). a TCR
complex on the surface of a T cell, composed of six subunits including TCR alpha (a) and beta (b),
a homodimer of CD3 zeta (f), and dimers of CD3 epsilon (e) with either CD3 gamma (c) or CD3
delta (d). b CAR construct on the surface of a T cell, composed of an antigen-binding domain (e.g.,
a single-chain variable fragment, or scFv), an extracellular spacer domain (e.g., an IgG4 Fc
molecule), a transmembrane domain, an intracellular co-stimulatory domain, and an intracellular
CD3f cytolytic domain
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required for CAR activation [15–18]. One potential avenue for decreasing toxicity
concerns is reducing the affinity of the antigen-binding domain. This may increase
the requirement for higher antigen density on tumor cells for optimal activation of
CAR T cells, and therefore, bypass targeting of antigen-low healthy tissue. This
rationale was explored by Liu and colleagues, who generated HER2-specific CARs
targeting solid tumors with a 4-log range of binding affinities [15]. This study
observed that the threshold for antigen density that results in CAR activation
correlates with antigen-binding domain affinity. Antigen-binding domains with low
nanomolar and sub-nanomolar affinity mediated T cell activation against all
HER2+ cell lines tested, whereas antigen-binding domains with micromolar affinity
were much more selective for tumors with higher levels of HER2 expression. This
observation was confirmed using EGFR-specific CAR T cells, as both HER2 and
EGFR are expressed at lower levels on several critical normal tissues. Other studies
have made similar observations correlating decreased CAR binding affinity and
improved selectivity for high target antigen expression [16, 17]. However, in each
case, decreased affinity also correlated with lower CAR T cell-mediated cytokine
secretion, even with high target antigen expression. Thus, the interplay of binding
affinity, selectivity for disease-specific target antigen density, and functional acti-
vation of CAR T cells must be carefully considered when designing new CARs.

The extracellular spacer domain provides an extension from the T cell membrane
and flexibility to allow the antigen-binding domain to optimally access the targeted
epitope. The selected spacer can impact CAR expression, flexibility, epitope
accessibility, and strength of activation outputs [19, 20], which ultimately affects
CAR functionality. Most often, extracellular spacer domains are derived from
natural molecules. Common examples include CD8a hinge, CD28 hinge, and IgG
hinge and Fc regions. The proper spacer length for a particular binding domain—
antigen pair is often empirically determined and likely depends on the target epitope
location and relative level of steric hindrances present on the target cell. Notable
examples of CARs requiring short spacers (CD19, CEA) [21] and long spacers
(MUC1, membrane-proximal epitopes of ROR1) [19, 22] for optimal activity exist
in literature. In some contexts, extracellular spacer domains can also mediate
undesired effects, including antigen-independent tonic signaling [23] and interac-
tion of IgG-derived spacers with FccR-expressing cells [23, 24]. Importantly, these
effects can be abrogated by either selecting different spacer domains or by further
engineering of the spacer based on structural or functional considerations.

The transmembrane domain serves to anchor the CAR to the T cell membrane.
Like the extracellular spacer domains, transmembrane domains are derived from
natural proteins, with the most common versions including CD4, CD8, and CD28.
The impact of the transmembrane domain on CAR activity is not well-studied as
this domain is often changed as required by either the extracellular spacer domain
or the intracellular signaling domains. Experiences with CARs to date show that the
transmembrane domain can be active in signaling [25] and dimerization with
endogenous signaling molecules [26], and can also influence CAR expression
level [11].
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Perhaps the greatest attention in optimization strategies has surrounded the
intracellular co-stimulatory signaling domain. The first version of engineered CARs
in the late 1990s (termed immunoglobulin-T-cell chimeric receptor molecules) [27]
were so-called “first-generation” CARs, which included an antigen-binding
domain, an extracellular spacer domain and transmembrane domain, and an intra-
cellular CD3f or FcRc signaling domain. In vitro, these CAR T cells showed potent
antitumor activity, yet demonstrated limited persistence and durability of therapy
[28]. As these first-generation CAR T cells moved to clinical investigation, a lack of
efficacy became clear in a variety of diseases. In hematologic malignancy, a phase 1
trial targeting CD20 in indolent non-Hodgkin lymphoma and mantle cell lymphoma
reported safety and feasibility with modest efficacy [29]. In the context of solid
tumors, a GD2-targeted first-generation CAR to treat neuroblastoma reports one
patient achieving a complete response and one patient having disease cleared from
the bone marrow [30]. Clinical studies targeting FRa in ovarian cancer [31],
TAG72 in colorectal cancer [32], and CAIX in renal cell carcinoma [33] showed no
objective clinical responses, and many of these studies remarked a lack of T cell
persistence.

To address the lack of durable CAR T cell therapy, early in vivo models of
B-cell malignancies illuminated the importance of co-stimulation with
CD19-targeted CAR T cells [34]. In this study, durable antitumor response was
observed when treating Raji Burkitt lymphoma (expressing co-stimulatory mole-
cules CD80 and CD86) but not when treating NALM-6 pre-B-cell ALL (lacking
co-stimulatory molecule expression). In vivo efficacy of CD19-CAR T cells in the
second model was rescued with an engineered expression of CD80 in NALM-6
cells. Importantly, in the Raji model, CD19-CAR T cells were detected in the bone
marrow of treated mice 21 days post-infusion, further accentuating the importance
of co-stimulation in CAR T cell persistence. Similar phenomena were contempo-
raneously observed using solid tumor-directed CAR T cells targeting PSMA [28].
With this new understanding, “second-generation” CARs, which contain one
co-stimulatory domain in series with the CD3f intracellular domain were developed
[35, 36]. These CARs were able to mediate CAR T cell expansion after repeated
antigen exposure while maintaining antigen-specific cytotoxic activity. The most
common co-stimulatory domains added to second-generation CARs were derived
from CD28 [35] and 4-1BB [36], but other domains including ICOS [37], OX40
[37], and CD27 [38] have also been explored. Clinical translation of these
second-generation CAR T cells has thus far resulted in strong therapeutic responses
in hematologic malignancies including chronic lymphocytic leukemia [39], B-cell
acute lymphoblastic leukemia [40], diffuse large B-cell lymphoma [41], and mul-
tiple myeloma [42]. Second-generation CAR T cells have now entered clinical
investigation for solid tumors, including glioblastoma [43–45], advanced sarcoma
[46], liver metastases [47], as well as mesothelioma, ovarian cancer, and pancreatic
cancer [48]. A summary of clinical trials evaluating CAR T cells for solid tumors
has been recently detailed elsewhere [49].

Despite the success of second-generation CAR T cells, the hypothesis remained
that co-stimulation via only one domain would lead to incomplete T cell activation.
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Thus, “third-generation” CARs, which incorporated two co-stimulatory domains in
series with the CD3f, have been evaluated [50]. The most common combinations of
co-stimulatory domains are CD28-OX40 and CD28-4-1BB [51]. Preclinical studies
with third-generation CARs show mixed results. CARs incorporating CD28 and
4-1BB signaling demonstrated stronger cytokine production and improved in vivo
antitumor response in lymphoma [52] and pulmonary metastasis [52] models rel-
ative to second-generation CARs. However, they failed to outperform a second-
generation counterpart in a pancreatic cancer model [53], and resulted in decreased
in vitro cytokine production and no in vivo treatment benefit relative to
second-generation CARs in a leukemia model [54]. Incorporation of CD28 and
OX40 signaling domains resulted in improved therapy of colon adenocarcinoma
in vivo [55] and shows improved activation and cytokine production in vitro [50].
Clinical application of third-generation CAR T cells to date has been limited, but
has not shown marked improvement over second-generation CAR T cells [29, 56].
However, additional investigations are warranted to define the optimal intracellular
co-stimulatory domain required for CARs based on disease indication and tumor
antigen target.

11.2.2 CAR T Cell Manufacturing

The processes used for manufacturing CAR T cells can have a profound impact on
the efficacy of a clinical product. Across many clinical trials, there are significant
variations to the T cell subsets chosen for CAR engineering and cell expansion
protocols used. Unfortunately, due to the relatively small number of CAR T cell
clinical trials completed to date, there have been few direct comparisons of man-
ufacturing methods for a single CAR product. A recent review details many of these
parameters [57].

11.2.3 T Cell Subsets for CAR Engineering

The majority of CAR T cell clinical trials do not select particular T cell subsets,
choosing rather to isolate and engineer peripheral blood mononuclear cells
(PBMCs), using stimulation methods and cytokine regimens to selectively expand
T cells [57]. Early clinical trials with first-generation CARs in neurological
malignancies isolated and expanded CD8+ T cell clones for manufacturing [58, 59],
but this procedure led to products with low persistence in patients, likely due to
exhaustion from clonal ex vivo T cell expansion. More recent innovation involves
the engineering of stem-like T cell subsets [60]. Preclinical data showing the ability
of central memory T cells to persist after adoptive transfer due to their stemness [61,
62] led to the use of this subset in a phase 1 clinical trial in non-Hodgkin lymphoma
demonstrating safety [63] and in a unique case study of complete response in a
glioblastoma patient [43]. Further, preclinical investigation of central memory T
cells showed that using defined 1:1 mixtures CD4+ and CD8+ yielded more
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consistent potency relative to unenriched central memory T cell products [64],
leading to a phase 1 clinical trial in adult B-cell acute lymphoblastic leukemia with
93% remission rate [65]. Additional phase 1 clinical trials have been applied to
define CD4+/CD8+ mixtures with similar success in other B-cell diseases [66, 67].
In phase 1 clinical trial for B-cell non-Hodgkin lymphoma, CD19-CAR T cells
derived from central memory T cells and naïve/memory T cells were directly
compared [68]. Both arms of treatment showed efficacy in patients, but
naïve/memory T cells were viewed as the superior platform because of their greater
yield from apheresis as it required fewer enrichment steps, shorter ex vivo
expansion time, and superior in vivo expansion. Application of naïve/memory
CAR T cells in a recent phase 1 clinical trial for adult relapsed/refractory B-cell
acute lymphoblastic leukemia yielded a 100% complete response rate in 13 patients
treated [69]. In a retrospective study of PBMC-derived CTL019 CAR T cell
products manufactured for the treatment of chronic lymphocytic leukemia, memory
phenotype was correlated with complete-response in patients [70]. The impressive
in vivo persistence and efficacy of CAR T cells with memory phenotype in these
hematological trials motivate the application of these subsets in solid tumor indi-
cations. Further, CD8+ tumor-infiltrating lymphocytes from patient breast and
melanoma tumors dominantly display memory phenotype and retain polyfunc-
tionality despite the expression of checkpoint molecules [71]. Preclinical studies
have also underscored the importance of memory phenotype in both syngeneic [72]
and humanized [73] solid tumor models.

The majority of CAR T cell products are engineered from a patient’s own
PBMCs or autologous products. This can lead to several issues in manufacturing,
including high cost, manufacturing failures due to dysfunctional cells in the pres-
ence of disease and subsequent pre-treatment, disease progression during manu-
facturing, and contamination of circulating tumor cells in the apheresis product
[74]. Because of these challenges, avenues for developing “off-the-shelf” or allo-
geneic cell-based immunotherapies, which can be obtained from healthy donors and
banked, are actively being explored. Recent advances in genome modification
enable engineering of healthy donor T cells or inducible pluripotent stem cells to
remove endogenous HLA and TCR [75, 76]. Clinical trials are currently underway
using off-the-shelf CD19-CAR T cells (NCT03939026), CD123-CAR T cells
(NCT03190278), and BCMA-CAR T cells (NCT03752541). Likely, the solid
tumor CAR T cell field may follow suit with evaluating allogeneic CAR T cell
therapies, as another potential benefit of this approach is the removal of hetero-
geneity and potential immunosuppressive immune cell populations in the blood of
advanced cancer patients.

11.2.4 Ex Vivo T Cell Expansion

Several methods for ex vivo T cell activation and expansion have been explored.
Generally, isolated T cells are stimulated through the T-cell receptor, and
co-stimulation through agonistic antibodies, cytokines, and/or feeder cells sustains
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the expansion [57]. Early protocols regularly used a monoclonal anti-CD3 antibody
(OKT3) for TCR stimulation and IL-2 for T cell expansion [77]. This method was
later shown to promote a more effector memory phenotype in expanded T cells,
whereas the application of anti-CD28/anti-CD3 antibody-coated magnetic beads for
stimulation promoted a more central memory phenotype [78]. Other studies have
shown that the application of high concentrations of IL-2 in T cell culture leads to a
more exhausted T cell product with poor effector function [73]. Investigations of the
appropriate cytokine cocktails to sustain ex vivo expansion while maintaining
memory phenotype revealed that culture with IL-7 and IL-15 cytokines increased
the frequency of stem cell memory CD8+ T cells, which displayed greater antitu-
mor activity via increased resistance to activation-induced cell death when com-
pared to IL-2 expanded T cells [79]. A recent study showed that T cell expansion
with IL-15 alone produced similar retention of stem cell memory phenotype,
decreased mTORC1 activity, reduced expression of glycolytic enzymes, and
improved mitochondrial fitness relative to T cells cultured with IL-2 [80].

11.2.5 Preconditioning and Chemotherapy Combinations
to Enhance CAR T Cell Therapy

Through clinical experience with adoptive cell therapy, non-myeloablative lym-
phodepleting preconditioning is known to enhance outcomes. Preclinical studies
have shown that the removal of host immune cells prior to adoptive cell transfer
increases the in vivo availability of cc cytokines important to T cell functionality
[81]. One lymphodepleting agent, cyclophosphamide, is known to enhance immune
function further due to the depletion of regulatory T cells, which are hypersensitive
to its effects [82]. Preclinical study has also shown that cyclophosphamide treat-
ment can deplete myeloid-derived suppressor cells and, in combination with IL-12,
increase the presence of inflammatory monocytes and neutrophils in colon cancer
models [83]. A clinical comparison of preconditioning with cyclophosphamide with
or without fludarabine revealed the combination approach yielded superior treat-
ment of non-Hodgkin lymphoma, likely due to increased persistence of the engi-
neered T cells due in part to a decreased immune response against the transgene
[84]. Improved CAR T cell engraftment after preconditioning with cyclophos-
phamide and fludarabine was also observed in a clinical trial using first-generation
CEACAM5-specific CAR T cells [85]. In addition to improving CAR T cell per-
sistence, chemotherapies can have other synergistic effects with CAR T cell ther-
apy. Lenalidomide, an immunomodulatory drug that has anti-multiple myeloma
effects and co-stimulatory effects on T cells, enhanced CS1-targeted CAR T cell
treatment in preclinical models of multiple myeloma via enhancement of the
immune synapse [86]. Decitabine, a DNA methyltransferase inhibitor, enhanced
CD19 expression, and thus susceptibility to CD19-targeted CAR T cell therapy, in
both in vitro lymphoma models and in two treated patients [87]. The combination of
temozolomide with EGFRvIII-targeted CAR T cells improved treatment of
glioblastoma xenografts in mice and has been explored with an escalated dose in
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preclinical models as the sole lymphodepleting agent prior to CAR T cell therapy
[88]. Interestingly, this study showed that the application of dose-intensified
temozolomide significantly increased CAR T cell infiltration into tumors without
significantly decreasing the presence of regulatory T cells. In sum, the utility of
preconditioning and chemotherapy has been validated in combination with CAR T
cell therapies for hematological malignancies and has become an attractive area of
clinical research for the development of solid tumor CAR T cell therapies.

11.2.6 CAR T Cell Route of Administration

Although targeting hematological malignancies has nearly strictly required intra-
venous administration of CAR T cells, solid tumors introduce a unique opportunity
to localize CAR T cell delivery to target tumors in selected disease sites. Two major
reasons to take advantage of different routes of CAR T cell administration com-
pared with systemic delivery are (1) to avoid the requirement of trafficking of
CAR T cells to sites of disease, and (2) to direct the on-target activity of CAR T
cells in tumors, thereby minimizing their opportunity to target normal tissues.
Trafficking of CAR T cells in solid tumors may be hampered by their inability to
penetrate tumor stroma and other physical barriers, as well as by the harsh
immunosuppressive microenvironment that may impede their mobility into the
tumor [89] (more details on the immunosuppressive tumor microenvironment may
be found later in the chapter). Additionally, since many solid tumor antigens tar-
geted by CAR T cells are expressed at varying levels in select normal tissue, local
or regional CAR T cell delivery may mitigate the potential for on-target off-tumor
toxicities [90] (more details on the selection of solid tumor antigens may be found
later in the chapter).

Several examples of local or regional delivery of CAR T cells have been
evaluated preclinically and in phase 1 trials. Intraperitoneal injection significantly
outperformed the systemic injection of CAR T cells in preclinical models of ovarian
cancer [91, 92] and peritoneal carcinomatosis [93]. On the strength of preclinical
success, a phase 1 clinical trial is currently ongoing comparing intravenous and
intraperitoneal infusion of MUC16-targeted CAR T cells in ovarian cancer
(NCT02498912). Intravenous administration of mesothelin-targeted CAR T cells
that use a murine-derived scFv for antigen recognition has yielded antibody
responses against the murine component and anaphylaxis [94, 95]. To improve the
efficacy of this therapy and potentially shield the CAR T cells from endogenous
immunity, intrapleural delivery of CAR T cells was explored. This route of
administration showed superior treatment of a preclinical orthotopic model of
malignant pleural mesothelioma in both lung and extrathoracic sites compared to
intravenous administration [96], leading to an ongoing phase 1 clinical trial
(NCT02414269). Intrahepatic arterial delivery of CAR T cells for liver metastases
has been explored preclinically, revealing the challenges of liver myeloid-derived
suppressor cells to immunotherapy [97] and in phase 1 clinical trial, demonstrating
safety in four patients [47]. Intraventricular administration of CAR T cells targeting
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HER2 in breast cancer brain metastases [98] and IL13Ra2 in glioblastoma [99]
showed superior therapy relative to intravenous injection in orthotopic xenograft
models. Importantly, this route of administration offers advantages over intravenous
and intracranial delivery in the treatment of multifocal disease. In one patient,
intraventricular infusion of IL13Ra2-targeted CAR T cells resulted in a complete
response of glioblastoma [43]. Phase 1 clinical trials for intraventricular injection of
CAR T cells in glioblastoma (NCT02208362, NCT03389230) and recurrent brain
or leptomeningeal metastases (NCT03696030) are ongoing.

11.3 Barriers to Solid Tumor CAR T Cell Therapies

This chapter has highlighted multiple aspects critical to developing effective CAR T
cell strategies for the treatment of solid tumors. The three most challenging areas
that require attention in the development of next-generation CARs for solid tumors
are (1) selective targeting of tumor antigens, (2) tumor antigen heterogeneity, and
(3) the immunosuppressive tumor microenvironment. These challenges are active
areas of translational research, and will likely require empirical testing for each
tumor type, molecular signature, and disease stage of therapeutic intervention.

11.3.1 Solid Tumor Target Antigen Selection

There are nearly 300 CAR T cell clinical trials currently listed on NIH’s U.S.
National Library of Medicine (ClinicalTrials.gov), with over 50 trials in solid
tumors. The solid tumor antigens most frequently targeted by CAR T cell therapy
include CEA, EGFR, EGFRvIII, GD2, HER2, IL13Ra2, PSCA, and PSMA [14]
and more are summarized in Table 11.1. While all of these antigens are either
over-expressed and/or amplified in tumors compared with normal tissue, their
protein expression is not uniquely restricted to tumor cells, with the exception of
EGFRvIII, a common oncogenic rearrangement in glioblastoma marked by deletion
of exons 2–7 of EGFR. Therefore, unlike CD19, a B-cell restricted antigen that is
expressed in many B-cell malignancies, solid tumor antigen targets pose significant
toxicity concerns that may limit their utility in CAR T cell therapy.

Examples of such toxicities have been observed in clinical trials. A phase 1 trial
at the NIH treated three patients using a murine TCR-expressing autologous T cell
therapy targeting CEA, and although bioactivity was observed in all three patients
with an objective regression in one patient, all patients developed severe transient
inflammatory colitis [121]. Similar on-target toxicities were observed in a clinical
trial evaluating CAIX-specific CAR T cells in patients with renal cell carcinoma,
demonstrating targeting of normal bile duct epithelial cells known to express low
levels of CAIX [33]. Perhaps most famously, a serious adverse event was observed
in a metastatic colon cancer patient treated with a third-generation HER2-CAR T
cell product at the NCI, which resulted in acute respiratory distress syndrome and
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death of the patient five days after treatment [56]. Two recent studies, however,
have reported safety and bioactivity in two clinical trials evaluating
second-generation HER2-CAR T cells in patients with advanced sarcoma and
glioblastoma [45, 46]. One potential avenue for overcoming on-target off-tumor
toxicity is the implementation of a suicide gene strategy, which would allow
selective depletion of engineered cells via treatment with a secondary inducing
agent at the onset of adverse events [122]. Apoptosis can be mediated by the

Table 11.1 Solid tumor targets for CAR T cell therapy

Target Aliases Cancers targeted with CAR T cell therapy

B7-H3 CD276 Pancreatic ductal adenocarcinoma, ovarian
cancer, neuroblastoma [100]; osteosarcoma,
Ewing sarcoma, medulloblastoma [101];
glioblastoma [102]

CAIX Carbonic anhydrase IX Renal cell carcinoma [33]

CD44v6 CD44 variant 6 Sarcoma [103]; colon cancer [104]

CEA Carcinoembryonic antigen Liver metastases [47]

EGFR Epidermal growth factor
receptor; HER1; ERBB1

Non-small cell lung cancer [105]

EGFRvIII Epidermal growth factor
receptor variant III

Glioblastoma [44]

EpCAM Epithelial cell adhesion
molecule

Prostate cancer [106]

FRa Folate receptor alpha Ovarian cancer [107]; colon cancer, pancreatic
cancer [108]

GD2 Disialoganglioside 2 Neuroblastoma [109]; diffuse midline glioma
[110]; melanoma [111]

GPC3 Glypican-3 Hepatocellular carcinoma [112]; lung squamous
cell carcinoma [113]

HER2 Human epidermal growth
factor receptor 2; ERBB2

Biliary tract cancer and pancreatic cancer [114];
sarcoma [46]; colon cancer [56];
medulloblastoma [115]; breast cancer [116];
brain metastases [98]

IL13Ra2 Interleukin 13 receptor
alpha 2

Glioblastoma [43]

MSLN Mesothelin Malignant pleural mesothelioma, ovarian
carcinoma, pancreatic ductal adenocarcinoma
[48]

MUC1* MUC1 cleavage product Breast cancer [117]

MUC16 Mucin 16 Ovarian cancer [91]

PSCA Prostate stem cell antigen Prostate cancer [118]

PSMA Prostate-specific
membrane antigen

Prostate cancer [119]

TAG72 Tumor-associated
glycoprotein 72

Ovarian cancer [92]; colorectal cancer [32]

Tn-MUC1 Tn-glycoform of MUC1 Pancreatic cancer [120]
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expression of engineered endogenous apoptotic molecules that can be dimerized via
small molecule drugs [123]. Examples of this strategy include inducible FAS [124]
or inducible Caspase 9 [125, 126]. Co-expression of transmembrane-anchored
proteins or peptides can mark engineered cells for destruction through monoclonal
antibody therapy. Expression of full-length CD20 [127] or CD20 mimotope inde-
pendently [128] or as part of the CAR construct [129, 130] enables the depletion of
CAR T cells by Rituximab treatment. A truncated, non-signaling version of EGFR
has been shown to facilitate CAR T cell depletion with Cetuximab therapy [131].
Importantly, while suicide gene strategies are attractive for ensuring safety, their
implementation abruptly terminates therapy of potentially rapidly progressing dis-
ease. This motivates the development of other strategies to ensure safety in treat-
ment, leaving suicide gene activation as a last resort for high-grade adverse events.
One such approach was recently reported using Dasatinib, an FDA-approved tyr-
osine kinase inhibitor for the treatment of t(9;22) chronic myelogenous leukemia
and Philadelphia chromosome + acute lymphoblastic leukemia, which suppresses
T-cell activation via inhibition of proximal TCR signaling kinases, such as Src,
Fyn, and Lck [132, 133]. This pharmacological approach to transiently inhibiting
CAR T cell function may allow for the rescue of CAR T cell therapy once toxicities
subside.

To overcome targeting tumor antigens that are also found in normal tissues, such
as CEA and HER2, targeting tumor-restricted post-translational modifications may
provide a unique opportunity for the development of CAR T cell therapy for solid
tumors. One of the well-characterized post-translational processes that are differ-
entially regulated in tumor cells is protein glycosylation. The most prevalent of
these aberrantly glycosylated antigens are truncated O-glycans, including Tn
(GalNAca1-O-Ser/Thr) and sialyl-Tn (STn) (NeuAca2-6-GalNAca1-O-Ser/Thr),
which are found over-expressed in many solid tumor types [134]. The four major
examples that have been evaluated as CAR T cell targets are MUC1, MUC16,
B7-H3, and TAG72. A report of a first-generation CAR T cell therapy for patients
with colorectal cancer targeting the tumor-associated glycoprotein TAG72 [32]
demonstrated safety and bioactivity, but no tumor responses were observed. Two
potential explanations for the lack of therapy in this trial was the use of
first-generation CARs and the observed anti-CAR immune responses. Newer ver-
sions of TAG72-CAR T cells are being investigated, including second-generation
CAR T cells [92] and modifications to the scFv to avoid anti-idiotype immuno-
genicity [135], and will inform the field on the utility of targeting TAG72+ solid
tumors with CAR T cells.

Several ongoing phase 1 clinical trials are evaluating and targeting MUC1 with
CAR T cells, which is highly over-expressed and aberrantly glycosylated in many
solid tumor types [22]. Given the expression of full-length MUC1 in normal tissue,
however, novel engineering strategies are warranted to avoid on-target toxicities
that have been observed in prior studies mentioned above. Two novel
tumor-specific versions of MUC1-targeted CAR T cells are now being evaluated in
early clinical trials. The first is a CAR targeting the tumor-associated Tn-glycoform
of MUC1 (Tn-MUC1) [120, 136], which was shown to be highly expressed in
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tumor tissue, but absent in normal tissue, as compared with full-length MUC1.
A similar approach was recently evaluated in mice with CAR T cells targeting the
novel cleavage product, MUC1*, shown to be expressed on the cell surface of
tumor cells but not in normal tissue [137]. A phase 1 trial has just begun testing
MUC1*-CAR T cells for patients with breast cancer (NCT04020575). Additionally,
MUC16 has been explored as a target for multiple solid tumor types, and an
ongoing phase 1 trial is exploring MUC16ecto-CAR T cells for the treatment of
solid tumors [138, 139] (NCT02498912). More recently, the glycoprotein B7-H3
was found to be over-expressed and aberrantly glycosylated in multiple solid tumor
types. Preclinical studies have demonstrated the safety and efficacy of CAR T cells
targeting B7-H3 [100–102], and a phase 1 clinical trial has just begun to evaluate
the safety and efficacy of B7-H3-targeted CAR T cells in patients with recurrent
glioblastoma (NCT04077866).

11.3.2 Improving Tumor Antigen Selectivity of CARs

Novel strategies have emerged in CAR design to further control the specificity and
activity of CAR T cells for improved safety and antitumor efficacy. Perhaps the
earliest example of this for solid tumors was investigated by Kloss and colleagues,
using a combinatorial CAR targeting PSCA and PSMA in prostate cancer models.
In this system, the co-stimulatory domain and the CD3f cytolytic domain were
uncoupled and required two antigens to be simultaneously expressed on tumors for
optimal CAR T cell activation [140]. Uniquely, the greatest antitumor activity in
preclinical models was achieved using a first-generation PSCA-CAR, which was
further affinity-tuned for optimal tumor targeting, along with a PSMA-CAR con-
taining a 4-1BB co-stimulatory domain that lacked cytolytic activity (no CD3f
domain). More recent versions of controlled CARs include drug-inducible plat-
forms. One of the most promising examples of this uses an inducible MyD88/CD40
(iMC), which can be triggered in vivo with the synthetic dimerizing ligand, rim-
iducid, for potent co-stimulation of CAR T cells [141]. This strategy has been
employed effectively in preclinical studies targeting HER2, demonstrating superi-
ority compared with second-generation HER2-CAR T cells with CD28
co-stimulation [142]. The major improvement in this strategy may involve the
ability to modulate signaling of the CAR, controlling both safety and efficacy.
A phase 1 trial with this approach has been initiated in targeting PSCA+ pancreatic
cancers, with interim results demonstrating safety and bioactivity in patients [143].

11.3.3 Tumor Antigen Heterogeneity and Escape

One of the major limitations to current CAR T cell therapies is single antigen
targeting. Tumor resistance to single therapeutic agents is well-established as the
majority of tumors are heterogenous, and prolonged targeting of a single
drug-sensitive pathway can ultimately lead to drug-resistant tumor recurrences.
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Acquired or intrinsic resistance patterns following CAR T cell therapy have also
been observed. CD19-CAR T cell therapy has demonstrated durable clinical
remissions in 70–90% of patients with B-cell malignancies including acute lym-
phoblastic leukemia (ALL), however, emerging follow-up data from clinical trials
show a common mechanism of resistance including loss and/or downregulation of
CD19 antigen in up to 70% of patients who recur following treatment [144, 145].
Early clinical findings using CAR T cells for solid tumors have observed similar
antigen escape resistance mechanisms. For instance, a phase 1 trial evaluating
intravenous delivery of EGFRvIII-specific CAR T cells in patients with recurrent
glioblastoma, known for its antigen heterogeneity, showed antigen loss resulting in
tumor resistance [44]. A case report targeting IL13Ra2 in glioblastoma with CAR T
cells demonstrated decreased IL13Ra2 expression in tumor recurrences [43], sug-
gesting that antigen escape also may have contributed to tumor relapse. Multiple
mechanisms may exist that underlay antigen escape following CAR T cell therapy.
Hamieh and colleagues recently demonstrated decreased tumor target density by
extracting surface expressed antigen from tumor cells by CAR T cells through a
process known as trogocytosis [146]. These studies strongly suggest that treatment
optimization through CAR design or the rational design of combination and/or
sequential CAR T cell strategies targeting distinct tumor antigens will be necessary
for effective disease control.

11.3.4 Multi-targeted CAR T Cells

To reduce the relapse rate in CAR T cells for the treatment of hematological
malignancies, studies have emerged using dual-targeted CAR T cells. Such
approaches have utilized either dual CAR constructs, or two scFvs (“OR”-gate)
within a single CAR construct (known as tandem CARs) to simultaneously target
different tumor antigens. Both strategies have been employed targeting CD19 and
CD22 in relapsed/refractory ALL, with promising early clinical data suggesting that
dual-targeting may prolong durable remission rates [147]. Additional studies are
ongoing with simultaneous targeting of CD19 and CD20 with “OR”-gate CARs
[148, 149], as well as CD19 and CD123 co-targeting [150] and others [151]. These
approaches are also being evaluated for CAR T cells targeting multiple myeloma
[152].

In solid tumors, HER2 and MUC1 tandem CARs have been evaluated in pre-
clinical models of breast cancer with improved activity over single antigen targeting
CARs [153]. Similarly, dual-targeting of HER2 and IL13Ra2 in glioblastoma has
been studied in xenograft models [154]. In this study, tandem CARs were evaluated
in both human xenograft and syngeneic immunocompetent mouse models of
glioblastoma, and compared to T cells expressing both CARs, or pooling
single-specific CAR T cells. Interestingly, tandem targeting of HER2 and IL13Ra2
resulted in superior antitumor activity, and reduced antigen escape compared with
the two other dual-targeting approaches. While this finding may be specific for
different antigens being targeted in solid tumors, it highlights the need to
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empirically define dual-targeting approaches that improve antitumor responses and
potentially mitigate antigen escape mechanisms of tumor resistance.

Additional innovative approaches have been developed to target multiple anti-
gens in attempts to overcome antigen escape in solid tumors. Recently in
glioblastoma, a novel EGFRvIII-specific CAR was designed to secrete a bispecific
T cell-engager (BiTE) targeting EGFR. In this study, the co-targeting of EGFRvIII
and EGFR using this strategy successfully controlled heterogeneous model tumors
compared with either strategy alone [155]. Another novel approach to target two
tumor antigens was recently investigated in preclinical studies using oncolytic
viruses to infiltrate tumors and secrete EGFR-BiTEs, in combination with CAR T
cells targeting FRa, which improved antitumor activity over monotherapy [108].

Multi-targeting introduces additional toxicity concerns as each new target
potentially compounds healthy tissue targeting. Newer synthetic CAR switches are
being developed to circumvent this likelihood of exacerbating toxicities to normal
tissue. Perhaps the most intriguing approach in recent years has been demonstrated
using modular synthetic Notch receptors (synNotch) for “AND”-gate CAR T cell
regulation, requiring tumor cells to express two antigens for controlling CAR T cell
activation, sparing normal tissues that express either of the antigen alone [156].
This approach was further validated with co-targeting of ROR1+ tumors expressing
EpCAM or B7-H3 for reduced toxicity to normal tissue [157]. One additional
strategy for improved target selectivity of tumors is the use of “NOT”-gate inhi-
bitory CAR T cells (iCARs), which use checkpoint pathway inhibition of one target
while simultaneously activating CAR T cells with another target [158]. These
approaches potentially provide further improvements over the previous combina-
torial targeting approach mentioned above [140], and are anticipated to enter
clinical testing soon for patients with solid tumors.

While requiring dual antigen expression on tumor cells for optimal activation of
CAR T cells is an exciting advancement over single antigen-specific CARs, another
versatile approach to engineer target specificity, called switchable or universal
CARs, has recently been developed. These programmable CARs come in several
forms, but each has in common the ability to redirect the specificity of CAR T cells
to different antigens based on a druggable reagent. The first example of this strategy
was demonstrated using CARs with an antigen-binding domain specific for the
common fluorophore FITC, which controlled the activation of CAR T cells to
antibodies tagged with FITC, redirecting specificity to EGFR, HER2, or CD20
[159]. Further validation of FITC-specific CAR T cells has been documented [160],
as well as for biotinylated antibodies using Streptavidin-specific CAR T cells [161]
and peptide neo-epitopes from the yeast transcription factor GCN4 [162, 163].
A more recent iteration of this strategy has been demonstrated using a switch,
universal, and programmable (SUPRA) CAR, which employs a leucine zipper as
the targeting domain on the CAR, along with an antibody tagged with the cognate
leucine zipper [164]. Compared to conventional single or dual-targeted CAR T
cells, these modular approaches offer improved safety with robust efficacy of
CAR T cell activation, allowing for “smart” targeting of solid tumors.
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11.3.5 Improving CAR T Cell Therapies
in Immunosuppressive Solid Tumors

Another major challenge for effectively targeting solid tumors with CAR T cell
therapies is the immunosuppressive tumor microenvironment. Distinct from most of
the hematological malignancies that lack local immunosuppressive pathways that
hamper antitumor immunity and limit adoptive T cell therapies, solid tumors can be
heavily infiltrated by multiple cell types that support tumor growth, vasculature,
metastasis, and may dictate therapeutic responses [165]. The most prominently
studied cell types that drive immunosuppression in tumors are regulatory T cells
(Tregs), M2 tumor-associated macrophages (TAMs), and myeloid-derived sup-
pressor cells (MDSCs) [166]. These immune cell infiltrates, in addition to the tumor
cells themselves, drive local cytokine, chemokine, and growth factor production in
solid tumors, including IL-4, IL-10, VEGF, and TGFb, that can facilitate tumor
growth and progression. Likewise, immune checkpoint pathways, including PD-1
and CTLA-4, can be highly active in tumors to dampen antitumor immunity.
Considerable evidence suggests that the tumor microenvironment also controls
response and resistance to immunotherapies [167], and can limit the effectiveness of
CAR T cell therapy [168].

A number of recent studies have aimed to boost CAR T cell functionality by
blocking immune checkpoint pathways. Multiple studies have demonstrated that
following CAR T cell therapy, PD-1/PD-L1 and other checkpoint pathways are
induced, thereby limiting durable therapy [169]. The simplest of these methods has
been demonstrated by combining CAR T cells with immune checkpoint blockade
[170–172]. Phase 1 clinical trials are underway evaluating this combination
approach to improve response rates in hematological malignancies and solid tumors
[173, 174] (NCT03545815). Novel strategies to intrinsically circumvent
PD-1/PD-L1 signaling pathways to prolong CAR T cell functionality have been
explored. For example, a chimeric PD1-CD28 receptor allowed for redirecting
PD-1-signaling in T cells towards co-stimulation [175, 176]. Cherkasskey and
colleagues evaluated multiple methods of intrinsic blockade of PD-1 in CAR T
cells, including shRNA knockdown of PD-1 or a PD-1 dominant negative receptor,
showing improved antitumor responses in multiple preclinical models by blunting
PD-1 signaling in adoptively transferred T cells [177]. More recently, the secretion
of PD1 blocking antibodies by CAR T cells was shown to similarly improve
therapy [178, 179]. CRISPR/Cas9-mediated disruption of PD-1 in CAR T cells has
also been explored, and clinical trials are now underway evaluating this approach in
patients [180–182]. In the context of the most well-studied PD-1 and CTLA-4
inhibitors, it has been demonstrated that potential mechanisms of tumor resistance
include compensatory upregulation of alternative immune checkpoint pathways.
Therefore, it will be imperative to evaluate and overcome these resistance mech-
anisms in the context of combinatorial CAR T cell – immune checkpoint blockade.

Expression of TGFb, a multi-functional cytokine that is dysregulated in many
cancers, has been associated with an immune phenotype characterized by a lack of
tumor T cell infiltration [183]. Hence, a recent pursuit has been dedicated to

312 L. A. Stern et al.



blocking TGFb signaling in CAR T cells and in the immunosuppressive tumor
microenvironment to promote adoptive and adaptive T cell antitumor immunity.
Preclinical studies suggest that CAR T cells containing a CD28 co-stimulatory
domain may resist TGFb-mediated inhibitory signals predominantly through IL-2
signaling [184]. Despite recent evidence pointing to superior T cell persistence and
antitumor activity, 4-1BB-containing CAR T cells may lack the ability to resist
TGFb-mediated immunosuppression. Therefore, CAR T cells engineered to be
refractory to immunosuppressive factors present in the tumor microenvironment,
including TGFb, have been developed [185]. Based on these strong preclinical
findings, a phase 1 clinical trial has been initiated to evaluate PSMA-targeted
CAR T cells with a dominant negative TGFb receptor in patients with metastatic
castration-resistant prostate cancer (NCT03089203). Other approaches include
redirecting TGFb signaling in T cells towards 4-1BB co-stimulation [186] or IL-12
signaling [187] using chimeric receptors. Uniquely, CAR T cells targeting soluble
TGFb have also been engineered [20], which can be used in a dual-targeted CAR T
cell approach to simultaneously target tumor cells and inhibit TGFb signaling
[188].

In addition to engineering CAR T cells to block inhibitory signals in the
immunosuppressive tumor microenvironment, the expression of pro-inflammatory
cytokines with the ability to shape the tumor microenvironment for improved T cell
trafficking, survival, persistence, and antitumor functionality has been explored.
The earliest example of this strategy was shown using CD19-CAR T cells engi-
neered to secrete IL-12. In addition to increased IFNc production, CAR T cell
persistence, and overall therapeutic activity, this therapy also eliminated tumors in
the absence of lymphodepleting preconditioning [189]. IL-12 secreting
MUC16-directed CAR T cells also produced elevated levels of IFNc, increased
survival and persistence of CAR T cells, and improved overall therapy in xenograft
models of ovarian cancer [91]. Follow-up studies in immunocompetent mice
showed that IL-12-secreting MUC16-CAR T cells also shaped the immunosup-
pressive microenvironment in ovarian cancers by depleting tumor-associated
macrophages and overcoming PD-L1-mediated T cell inhibition [190]. These
preclinical studies have resulted in a clinical trial testing this approach in
MUC16+ solid tumors (NCT02498912). CD19-CAR T cells have also been engi-
neered to express IL-15 tethered to the surface of T cells (mbIL-15). mbIL-15
CAR T cells showed improved stem/memory phenotype with increased T cell
persistence and durable antitumor activity [191]. Alternative platforms for intrinsic
IL-15 production by CAR T cells have been investigated, including CAR T cells
engineered to secrete soluble IL-15 [192], and a novel nanoparticle drug delivery
platform carrying an IL-15 super-agonist complex [193]. Other approaches have
introduced novel ways to redirect immunosuppressive cytokines toward
pro-inflammatory pathways, including CAR T cells with chimeras in which the
IL-4 receptor ectodomain is fused to the IL-7 receptor endodomain. This platform
was utilized in xenograft models of pancreatic cancer using PSCA-directed CAR T
cells [194]. A similar strategy was utilized to redirect IL-4 signaling towards
another pro-inflammatory cytokine, IL-21 [195].
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The immunosuppressive tumor microenvironment, in addition to suppressing the
function of CAR T cells once they arrive at the tumor site, likely also intrinsically
blocks trafficking of CAR T cells. Therefore, in addition to increasing doses of
infused CAR T cells to achieve a required threshold of recruitment at the tumor site,
combination approaches to amplify endogenous immunity to aid in CAR T cell
responses have been explored. Oncolytic viruses (OV) can be selectively pro-
grammed to target, infect, and kill cancer cells, and genetically modified to express
therapeutic genes selectively in the tumor microenvironment [196, 197]. Through
cancer cell infection and lysis, OV has been used for tumor debulking, reversing
tumor immunosuppression, and initiating systemic antitumor immune responses.
Watanabe and colleagues showed that the combination of mesothelin-targeted
CAR T cell therapy with an oncolytic adenovirus driving tumor expression of
TNFa and IL-2 induced significant tumor regression in a syngeneic mouse model of
pancreatic cancer. This antitumor response was accompanied by an increase in
CAR T cell and endogenous T cell infiltration, pro-inflammatory M1 macrophage
polarization, and dendritic cell maturation [198]. Additional studies have utilized
OV to express multiple transgenes in cancer cells simultaneously, consisting of
immune checkpoint inhibitors and pro-inflammatory cytokines, that, when com-
bined with CAR T cells, showed enhanced T cell effector function [199]. These
findings indicate that combining cytokine-armed oncolytic adenoviruses to enhance
the efficacy of CAR T cell therapy is a promising approach to overcome the
immunosuppressive tumor microenvironment and to also amplify endogenous
antitumor immunity.

11.3.6 Pre-existing T Cell Immunity and CAR T Cell-Induced
Endogenous Immunity

Current understanding suggests that the effectiveness of immunotherapy depends
on the presence of pre-existing immunity and the ability to effectively modulate the
baseline immune response. Clinical studies are beginning to define predictive tumor
and immunological factors governing the anticancer response—one such measure is
the immune classification of cancer.

The immune classification of cancer is an evolving measure that characterizes
tumors with respect to their immune infiltration in two broad classifications:
immunologically “hot” and immunologically “cold” tumors (Fig. 11.2). Immuno-
logically hot, or immune-inflamed tumors, are characterized predominantly with a
high infiltrate of T cells, low infiltration of immune-suppressive cells including
regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and include
additional features like PD-L1 expression on tumor cells and tumor-associated
immune cells, potential genomic instability and the presence of a pre-existing
antitumor immune response. Immunologically cold, immune-excluded, or
immune-deserted tumors typically have poor antitumor T cell infiltration, high
immune-suppressive cell infiltration, low PD-L1 expression, with high proliferation
of cancer cells and low mutational burden [167]. Studies have recently proposed a
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combinatorial set of parameters to augment this classification: the T cell phenotype
(follicular helper T (Tfh), T helper 1 (Th1), memory and exhausted T cells) at the
tumor, dependent on location (invasive margin, tumor core, and tertiary lymphoid
structures), density (immune density and quantity), and functional immune orien-
tation (chemokines, cytokines, cytotoxic factors, adhesion, attraction) [200]. These
factors combine to represent cancer immune interactions for an individual patient
[201], and together, they can help define immunomodulation strategies to optimize
personalized treatment choices [202].

It has yet to be determined whether antitumor responses with CAR T cell therapy
is impacted by pre-existing T cell immunity. In the context of immune checkpoint
blockade, response to therapy may rely on the reactivation of pre-existing T cells, the
recruitment of new T cells to the tumor, or a combination of both [203, 204]. T cell
exhaustion represents a distinct state of T cell differentiation and can be driven by
cell signaling, prolonged TCR engagement, co-stimulatory/inhibitory signals, sol-
uble factors (e.g. excessive suppressive cytokines), and microenvironment features
(e.g. chemokine receptor expression, adhesion molecules). Exhausted T cells acquire

(a) (b)

Fig. 11.2 The immune landscape of solid tumors. a A representative immunologically “hot”
tumor containing a high frequency of antitumor CD8 T cells, and a relatively low frequency of
immunosuppressive regulatory T cells (Treg) and myeloid cell subsets including tumor-associated
macrophages (TAM), mononuclear myeloid-derived suppressor cells (MO-MDSC), neutrophils,
and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC), along with tumor
vasculature and stromal cells.b A representative immunologically “cold” tumor containing a
higher frequency of immunosuppressive cell subsets and a relatively low frequency of antitumor
CD8 T cells
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an epigenetic profile that is distinct from T effector cells, and despite the ability to
revert to an effector using PD-1 blockade, these cells may never acquire a memory
phenotype [204]. This limits the durability of immunotherapy, and an understanding
of how to permanently reverse T cell exhaustion is currently incomplete. These
phenotypes may heavily impact CAR T cells once they arrive at tumors, and may
overcome in part by addressing immunosuppression, as covered in the section
above.

The presence and density of tumor-infiltrating lymphocytes (TILs) are often
interpreted as an indication of pre-existing T cell immune recognition, though
recent studies have highlighted that reactivity of TILs with respect to cognate tumor
antigens is rare and variable [205]. A recent study that analyzed phenotype and
TCR repertoire in site matched tumors, from basal or squamous cell carcinoma
patients, pre- and post-therapy showed that response to PD-1 blockade associated
with the expansion of a distinct repertoire of T cell clones from pre-therapy TILs
[206]. Together, these studies suggest that increasing the frequency and breadth of
the tumor-specific TCR repertoire may be critical to boost the response towards
immunotherapy, thereby increasing infiltration of tumor reactive T cells, and
amplifying secondary immune responses. These studies also indicate that priming
the tumor microenvironment prior to, and during, CAR T cell therapy may greatly
impact the overall antitumor responses and provide for more durable clinical out-
comes in patients.

One suggested mechanism by which adoptive T cell therapy is able to promote
durable antitumor responses is through the stimulation of epitope spreading—a
dynamic process that underlies the expansion of an immune response to secondary
epitopes that are not targeted by therapy. In particular, epitope spreading may be
initiated by the presence of a tumor-specific endogenous immune response
responsible for the release of immunosuppressive mechanisms and promotion of T
cell chemo-attracting cytokines at the tumor site. In the context of CAR T cell
therapy, this resulting immune recruitment may confer the ability to produce a
secondary immune response to cancer cells that do not express the CAR target
antigen.

The potential for CAR T cells to induce epitope spreading has not been exten-
sively studied with the exception of a few preclinical studies. In a murine CAR
model targeting EGFR+ glioblastoma, mice that were cured of EGFR+ tumors later
rejected EGFR-tumors when re-challenged, suggesting the generation of endoge-
nous immunity against additional tumor antigens [207]. Pituch and colleagues
showed significant changes in the tumor microenvironment and endogenous
immune infiltration after IL13Ra2-CAR T cell therapy in an immunocompetent
mouse model of malignant glioblastoma [208]. These changes included a decrease of
immunosuppressive MDSCs and an increase in both endogenous CD4+ and CD8+ T
cells, as well as CD8a+ dendritic cells. The presence of these factors along with a
lack of tumor development upon re-challenge with an IL13Ra2 negative tumor,
suggests these mice could acquire antitumor immunity in response to CAR T cell
therapy. Modifications to the cytokine/chemokine expression of CAR T cells,
namely inclusion of IL-7 and CCL19, resulted in superior antitumor activity coupled
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with increased endogenous immune infiltration and protection against CAR-targeted
antigen-negative tumor growth [209]. These preclinical studies have underscored
that CAR T cell therapy may not only modulate the immune landscape by creating a
pro-inflammatory tumor microenvironment, but also recruit endogenous antitumor
immunity in response to CAR T cell therapy.

Recent clinical studies have suggested that CAR T cells show evidence for
inducing a secondary immune response. A first-in-human study of intravenous
delivery of EGFRvIII-CAR T cells reported that the CAR T cells trafficked to the
brain tumor proliferated, and exerted some bioactivity in patients with recurrent
glioblastoma [44]. Although the T cell receptor clonotypes present in the CAR T
product were a large fraction of the T cell repertoire infiltrating the tumor after
CAR T infusion, a significant portion were not, suggesting that CAR T cell infu-
sions could potentially increase endogenous TCR repertoire diversity to the tumor,
with the potential to induce a secondary immune response targeting secondary
epitopes on EGFRvIII- tumor cells [44]. CAR T cell-mediated epitope spreading
was suggested in a patient with recurrent multifocal glioblastoma that received
IL13Ra2-CAR T cells [43]. Following 10 intraventricular infusions, regression of
all intracranial and spinal tumors with a continued clinical response in the patient
for 7.5 months was observed. Evidence of endogenous T cell recruitment and
stimulation in the CSF after every CAR T cell infusion was associated with
increases in T cell chemo-attractants CXCL9/CXCL10, as well as IFNc.

Together, these studies suggest that CAR T cells have the capacity to amplify an
inflammatory immune response and recruit endogenous T cells to tumor sites.
Increasing the frequency and breadth of the tumor-specific TCR repertoire at tumor
sites may be critical to boost CAR T cell therapy by inciting a secondary immune
response. This phenomenon will likely be an important component of durable
clinical outcomes in patients with single or multi-targeted CAR T cell therapy to
ultimately overcome resistance driven by heterogeneity and in solid tumors.
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