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10.1 Introduction

For decades, it was believed that apoptosis—defined morphologically as a variant
of cell death involving cytoplasmic shrinkage, nuclear condensation (pyknosis) and
fragmentation (karyorrhexis), plasma membrane blebbing, and release of small cell
corpses (so-called apoptotic bodies) [1]—would invariably be immunologically
silent, if not tolerogenic [2]. Conversely, necrosis—defined morphologically as a
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form of cell death lacking the features of apoptosis and autophagic cell death
(characterized by cytoplasmic vacuolization) [3, 4]—was widely considered as a
pro-inflammatory cell modality [1]. Such an oversimplification originated, at least
in part, by the abundant literature on the role of apoptotic cell death in physiological
processes (e.g., embryonic development, adult tissue homeostasis), contrasting with
the common implication of necrosis in pathological conditions with inflammatory
correlates (e.g., burn injuries, neoplastic disorders) [5–7]. It is now clear that the
morphological manifestations of cell death, its biochemical features, and its
immunological properties can vary independently from each other [8]. Thus,
instances of cell death manifesting with an apoptotic morphology can exert robust
immunostimulatory effects, while cases of cell death with a necrotic appearance can
be potently tolerogenic [9].

The term “immunogenic cell death” (ICD) has been originally introduced by
Kroemer and collaborators in 2005 to describe the ability of mouse colorectal
carcinoma CT26 cells challenged in vitro with doxorubicin (an anthracycline
commonly used for cancer therapy) to provide immunocompetent syngeneic
BALB/c mice with long-term immunological protection against the subsequent
inoculation of living CT26 cells [10]. More than a decade later, the term ICD is
widely employed to indicate cases of cell death that (irrespective of morphology
and biochemical correlates) can initiate an adaptive immune response against
antigens expressed by dying cells in the absence of any immunological adjuvant
[11]. Such a functional definition has several implications, including: (1) irrespec-
tive of the existence of several surrogate biomarkers for ICD (see below), bona fide
ICD can only be assessed in immunocompetent, syngeneic experimental systems
[12]; (2) dying cells must express antigens that are not covered by central tolerance
in such experimental systems (implying the presence of naïve T cells potentially
able to recognize antigenic determinants from dying cells) [13]; and (3) dying cells
must release adjuvant-like molecules that promote the recruitment of
antigen-presenting cells (APCs) to sites of cell death, the uptake of dead cell
corpses and their processing for cross-presentation to CD8+ T cells [14]. These
immunostimulatory molecules, which are cumulatively referred to as
damage-associated molecular patterns (DAMPs), encompass small metabolites,
such as ATP, proteins that are normally sequestered within intact cells, such as
calreticulin (CALR) and high mobility group box 1 (HMGB1), as well as cytokines,
such as type I interferon (IFN) [9].

Importantly, the presence of specific DAMPs is required for cell death to be
perceived as immunogenic, but not sufficient. Indeed, cells lysed by repeated
freeze/thawing cycles (which induce cell death with necrotic features) are unable to
driven adaptive immunity [15]. In-depth mechanistic explorations revealed that
DAMPs must be released in a spatiotemporally defined order (the “key”) for the
host immune system (the “lock”) to correctly interpret such signals and mount the
precise cascade of events underpinning adaptive immune responses [16]. Moreover,
it became clear that each DAMP is emitted downstream of the activation of specific
cellular stress response modules, such as the endoplasmic reticulum (ER) stress
response or autophagy [17, 18]. Taken together, these observations explain why
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only a few cytotoxic agents can mediate bona fide ICD [19–22]. Of note, radiation
therapy (RT) is one of such agents, at least when used in specific doses and
according to precise fractionation schedules [23–25]. This implies that the
immunogenic demise of irradiated cancer cells is associated with the release of
DAMPs that contribute to the functional reconfiguration of the tumor microenvi-
ronment (TME).

Here, we discuss the mechanisms whereby DAMPs emitted by cancer cells
undergoing RT-driven ICD reconfigure the TME. Importantly, RT has a multi-
pronged effect on the TME, reflecting its ability to promote ICD as well as its
capacity to: (1) favor the release of a variety of immunomodulatory factors beyond
DAMPs from cells surviving irradiation, such as transforming growth factor beta
(TGF-b) [26, 27]; (2) support the establishment of hypoxia, owing to its elevated
cytotoxic potential for endothelial cells [28]. Despite their importance, these and
other aspects of the interaction between RT and the TME will not be discussed in
detail here.

10.2 Calreticulin

CALR is widely known as an ER chaperone with a major role in protein (re-)
folding, and hence in the cellular response to unfolded proteins accumulating as a
consequence of viral infection or alterations in intracellular Ca2+ homeostasis [29,
30]. Alongside, cells experiencing ER stress expose CALR, as well as other ER
chaperones including heat shock protein 90 alpha family class A member 1
(HSP90AA1), heat shock protein family A (Hsp70) member 1A (HSPA1A, best
known as HSP70), and protein disulfide isomerase family A member 3 (PDIA3,
best known as ERp57) [31], on the outer leaflet of the plasma membrane [15, 32,
33]. In the context of ICD, membrane-exposed CALR operates as a pro-phagocytic
signal, de facto boosting the uptake of cell corpses by APCs or their precursors [15,
34]. The precise identity of the APC receptor that underlies such an effect remains
elusive. Indeed, while LDL receptor-related protein 1 (LRP1, best known as CD91)
has been involved in some settings [35–37], it seems that CD91 is not absolutely
required for the pro-phagocytic activity of membrane-exposed CALR [15, 38].

Besides promoting phagocytosis, the interaction between CALR and its receptor
delivers immunostimulatory signals to APCs [15, 35], which is at odds with the
well-known ability of phosphatidylserine (PS) externalized in the course of apop-
tosis to mediate robust immunosuppressive activity upon engagement of jumonji
domain containing 6, arginine demethylase and lysine hydroxylase (JMJD6) on
phagocytes [39, 40]. Importantly, the ICD-associated exposure of CALR on the
plasma membrane occurs before the apoptosis-related externalization of PS [41–
43], which explains (at least partially) why cells undergoing bona fide ICD fail to
establish immunological tolerance. Another signal that counteracts the immunos-
timulatory activity of CALR originates from the interaction of CD47 on cancer cells
and signal regulatory protein alpha (SIRPA) on phagocytes [44, 45]. Reflecting a
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pathophysiologically relevant role of CARL exposure for human cancer, high levels
of total or surface-exposed CALR have been attributed positive prognostic value in
patients affected by a variety of malignancies, including acute myeloid leukemia
(AML) [46], non-small cell lung carcinoma [47, 48], neuroblastoma [49], and
ovarian cancer [48]. Similarly, high levels of CD47 have been correlated with poor
clinical outcome in cohorts of patients with AML [50], breast carcinoma [51], as
well as esophageal and gastric carcinoma [52, 53].

In line with its ability to drive bona fide ICD, RT robustly promotes the exposure
of CALR on the membrane of cancer cells [23, 24, 54], as well as an increase in
global CALR levels, at least in some cancer types [55]. Thus, these observations
indicate that RT-driven ICD is likely to favor the phagocytic activity of
tumor-infiltrating myeloid cells along with the delivery or immunostimulatory
signals. Of note, soluble CALR has been suggested to mediate immunosuppressive,
rather than pro-phagocytic and immunostimulatory, effects, at least in some settings
[41, 56], in thus far resembling natural killer (NK) cell activating ligands [57, 58].
That said, how RT affects CALR secretion remains an open conundrum.

10.3 ATP

While the concentration of intracellular ATP is generally quantified in the range of
1–10 mM, extracellular ATP concentration in healthy tissues is very low, at least in
part owing to the existence of enzymes that sequentially convert ATP into ade-
nosine [59, 60]. These enzymes include ectonucleoside triphosphate diphospho-
hydrolase 1 (ENTPD1, best known as CD39), which converts ATP into AMP via
ADP, and 5′-nucleotidase ecto (NT5E, best known as CD73), which generates
adenosine from AMP [61]. As a consequence of plasma membrane breakdown,
dead cells release ATP in amounts that (at least temporarily) can saturate the
activity of ATP-degrading enzymes, hence resulting in local increments in extra-
cellular ATP concentrations [62]. ATP liberated by dying cells plays a key role in
the perception of cell death as immunogenic [63], via at least two mechanisms.
First, ATP and other nucleotides released by dying cells operate as chemoattractant
for APCs or their precursors upon binding to purinergic receptor P2Y2 (P2YR2)
[64, 65]. Second, ATP mediates immunostimulatory activity on myeloid cells via
purinergic receptor P2X 7 (P2RX7), which culminates with inflammasome acti-
vation and secretion of interleukin 1B (IL1B) [66–68].

However, the absolute amount of extracellular ATP does not appear as the major
factor in this setting, as demonstrated by the fact that cells subjected to repeated
freeze/thawing cycles (which release all their ATP as plasma membrane breaks
down) fail to vaccinate syngeneic immunocompetent mice against a challenge with
living cancer cells of the same type [15]. In this setting, it appears indeed that ATP
must be released by cells that are still physical intact, in a premortem process that
(1) involves the exocytosis of vesicular ATP pools, cellular blebbing, and opening
of ATP-permeant pannexin 1 (PANX1) channels [69], and (2) is dependent on
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autophagy [70]. In line with a key role for ATP release downstream of functional
autophagic responses in the perception of cell death as immunogenic, the ability of
CT26 cells undergoing chemotherapy-driven ICD to provide immunological pro-
tection to BALB/c mice is lost when CT26 cells overexpress CD39 or are depleted
of key autophagy factors including ATG5, ATG7, and beclin 1 (BECN1) [70, 71].
Along similar lines, ATG5-depleted CT26 cells growing in immunocompetent
BALB/c mice lost (entirely or partially) their ability to respond to mitoxantrone (a
chemotherapeutic agent that induces bona fide ICD) [70] and RT [72], which is
known to cause ATP release [24]. That said, proficient autophagic responses have
also been linked to limited CALR exposure, and hence poor immunogenicity, at
least in the context of photodynamic therapy-initiated ICD [73, 74]. Thus, the
precise impact of autophagy and downstream ATP release on the immunogenicity
of cell death may vary, at least to some degree, with context-dependent variables. In
line with this notion, unpublished results from our laboratory demonstrate that
Atg5-/- and Atg7-/- mouse mammary carcinoma TSA cells exhibit increased (not
decreased) responses to RT when established in immunocompetent BALB/c mice
(as compared to wild-type cells), and preserve complete immunostimulatory
potential when used as vaccine upon irradiation (Yamazaki et al., unpublished
observations).

Despite these apparently controversial and hitherto unresolved observations
(which may reflect the differential importance of specific DAMPs in the
immunogenicity of cell death driven by different stimuli or in different cell type),
several lines of evidence support the notion that ATP released by dying cancer cells
and the consequent engagement of P2R2Y and P2RX7 on immune cells have
therapeutic implications for cancer patients [75]. For instance, loss-of-functions
polymorphisms in P2RX7 have been associated with poor disease outcome in
cohorts of patients with breast carcinoma receiving neoadjuvant
anthracycline-based chemotherapy [66], and individuals with papillary thyroid
cancer [76]. Moreover, CD39 and/or CD73 are upregulated on malignant or
immune cells in a variety of human neoplasms, generally correlating with disease
progression [77–79] and/or poor clinical outcome [80].

Thus, ATP released in the context of RT-driven ICD may support tumor infil-
tration by APCs or their precursors, as well as the establishment of a
pro-inflammatory TME characterized by robust IL1B secretion, at least theoreti-
cally. However, RT is known to initiate several immunosuppressive pathways that
strongly counteract these therapeutically beneficial processes, such as increased
TGF-b bioavailability [26, 27]. Moreover, inflammasome activation downstream of
spontaneous ATP release and consequent P2RY2 and P2RX7 signaling has been
linked with radioresistance in human models of breast cancer [81], and chemore-
sistance in human and mouse models of melanoma [82]. These findings suggest that
predicting the impact of purinergic signaling associated with RT-driven ICD on the
TME is challenging, awaiting urgent experimental verification.

10 Immunogenic Cell Death Driven by Radiation—Impact … 285



10.4 HMGB1

HMGB1 is a non-histone chromatin-binding protein that—according to current
models—gets passively released by cells as they die, consequent to the breakdown
of the nuclear envelope and plasma membrane [8, 83]. Thus, the amount of
HMGB1 released by a cell population undergoing ICD generally correlates with the
degree of cell death, at least when such population express HMGB1 at homoge-
neous levels [84]. The biological activity of extracellular HMGB1 appears to
depend on its oxidation state. In particular, reduced HMGB1 efficiently partners
with CXCL12 to exert robust chemotactic functions via chemokine (C-X-C motif)
receptor 4 (CXCR4) [85, 86]. Conversely, oxidized HMGB1—which is unable to
dimerize with CXCL12—stimulates cytokine synthesis upon binding to advanced
glycosylation end product-specific receptor (AGER, best known as RAGE),
Toll-like receptor 2 (TLR2) and TLR4 [87, 88], a transcriptional activity depending
on NF-jB and interferon regulatory factor 3 (IRF3) [89, 90]. Among other, these
cytokines (and chemokines) include: IL1B, IL6, tumor necrosis factor (TNF),
C-X-C motif chemokine ligand 10 (CXCL10), as well as type I IFN (see below)
[18]. Furthermore, HMGB1 signaling via TLR4 facilitates cross-priming by
inhibiting the fusion of antigen-containing endosomes with lysosomes [91].

Supporting a central role for HMGB1 release in the perception of cell death as
immunogenic, the knockdown of HMGB1 by short-hairpin RNAs (shRNAs) as
well as its neutralization with specific antibodies compromise the ability of cancer
cells responding to anthracyclines in vitro to confer long-term immunological
protection to syngeneic mice when used as a vaccine [92]. Consistent with this,
both Tlr4-/- mice and Myd88-/- mice (which lack a transducer of TLR4 signaling)
lose the ability to mount a protective immune response against syngeneic cancer
cells undergoing chemotherapy-driven ICD [92, 93]. The same does not hold true
for Tlr2-/- and Ager-/- mice [92, 93], suggesting that TLR4 is the key receptor for
HMBG1 in this setting. In line with this notion, the TLR4 agonist dendrophilin has
been successfully employed to restore the immunogenicity of HMGB1-deficient
mouse tumors [94].

Elevated levels of HMGB1 in malignant cells have been correlated with
improved disease outcome in patients with esophageal squamous cell carcinoma
[95], and gastric adenocarcinoma [96]. Moreover, loss of nuclear HMGB1 has been
positively associated with tumor size in patients with breast carcinoma undergoing
anthracycline-based adjuvant chemotherapy [94]. Conversely, high HMGB1 levels
have been linked with advanced disease or poor outcome in cohorts of patients with
bladder [97], nasopharyngeal [98], colorectal [99], hepatocellular [100, 101], head
and neck [102], and prostate carcinoma [103]. These apparently contradictory
observations may reflect the intracellular functions of nuclear and cytoplasmic
HMGB1, the latter being capable of promoting cytoprotective autophagic responses
[104, 105].
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TLR4 loss-of-functions variants have been linked with poor disease outcome in
patients with breast carcinoma [92], head and neck cancer [106], and melanoma
[107, 108], comforting the notion that TLR4 signaling supports anticancer immu-
nity in a variety of clinical settings. Conversely, elevated levels of TLR4 or MYD88
in cancer biopsies have been correlated with shortened survival in patients with
ovarian [109] and colorectal carcinoma [110]. Most likely, these findings reflect the
evolutionary advantage provided to neoplastic cells by TLR4 expression, which can
initiate robust pro-survival signaling pathways via NF-jB [89]. Of note, whether
NF-jB signaling downstream of TLR4 activation is mechanistically involved in the
perception of cell death as immunogenic remains an open conundrum, as (at least
apparently) contradictory reports exist on this aspect of ICD [111, 112].

In line with its prominent cytotoxic effects, RT efficiently promotes the release of
HMGB1 from dying cancer cells [24], which might impact the TME in a dual
manner. On the one hand, RT-driven ICD favors tumor infiltration by CCR4+

monocytes downstream of HGMB1-bound CXCL12. On the other hand, the
cytotoxic activity of RT promotes the establishment of an immunostimulatory
milieu as a consequence of the HMGB1-dependent activation of TLR4 in
tumor-infiltrating myeloid cells, which culminates with the secretion of multiple
cytokines and chemokines. That said, the response of mouse colorectal carcinoma
MC38 cells to a single RT dose of 20 Gy is not influenced by the deletion ofMyd88
from the host or by the administration of HMGB1-neutralizing antibodies [113].
Thus, the actual relevance of TLR4 signaling downstream of the ICD-associated
release of HMGB1 for therapeutic responses remains to be clarified. Additional
experiments are required to elucidate this unknown. Along similar lines, whether
HMGB1 released by cancer cells succumbing to chemotherapy-driven versus
RT-driven occurs via different kinetics calls for urgent experimental verification.
Intriguingly, ultraviolet light has recently been suggested to favor HMGB1 release
by melanocytes and keratinocytes, culminating with the expression of the
immunosuppressive molecule CD274 (best known as PD-L1) downstream of
AGER signaling [114]. Whether a similar pathway can be initiated by RT remains
obscure.

10.5 Type I IFN

Best known for its key role in viral interference (the process whereby virally
infected cells establish local resistance to infection via paracrine circuitries) [115,
116], type I IFN is also abundantly produced by cancer cells undergoing
chemotherapy-driven [117] and RT-driven ICD [25]. Type I IFN signals via
homodimeric interferon (alpha, beta, and omega) receptor 1 (IFNAR1), which has a
particularly high affinity for IFN-b, or via IFNAR1/IFNAR2 heterodimers, which
bind all type I IFNs, culminating with the activation of immunostimulatory tran-
scriptional programs dependent on signal transducer and activator of transcription 1
(STAT1) and STAT2 [118, 119]. In particular, type I IFN promotes cross-priming
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[120], boosts the cytotoxic functions of CD8+ cytotoxic T lymphocytes and natural
killer cells [121], increases the survival of memory T cells [122], and drives the
expression of CXCL10, a potent chemotactic factor for effector T cells [123]. Thus,
type I IFN secretion by dying cancer cells not only delivers robust immunostim-
ulatory signals to tumor-infiltrating cells, but also favors the recruitment of effector
T cells to the TME [119].

Importantly, in the course of chemotherapy-driven ICD type I IFN is secreted
downstream of TLR3 activation by endogenous RNA species, and largely acts by
driving CXCL10 production in cancer cells [117]. Thus, neither Tlr3-/- nor Ifnar1-/-

mouse cancer cells succumbing to anthracyclines in vitro preserve their ability to
vaccinate immunocompetent syngeneic mice against a subsequent challenge with
cancer cells of the same type, while the immunogenicity of wild-type cancer cells is
preserved in Ifnar1-/- mice [117]. Conversely, irradiated cells produce type I IFN
upon the accumulation of cytosolic DNA [25, 124–126], a process that is under
negative regulation by the RT-responsive nuclease three prime repair exonuclease 1
(TREX1) [25]. This explains the existence of RT dose thresholds above which type
I IFN secretion by irradiated cancer cells becomes inefficient [25]. Cytosolic DNA
favors cyclic GMP-AMP synthase (CGAS) activation and downstream signaling
via transmembrane protein 173 (TMEM173, best known as STING) [127, 128].
Importantly, irradiated cancer cells can also trigger type I IFN secretion by dendritic
cells (DCs), largely upon the exosomal transfer of DNA species [129]. In this
setting, IFNAR1 expression by the host (not by cancer cells) appears to play a
major role [130–133]. Of note, although nuclear DNA is currently viewed as the
main source of cytosolic DNA driving CGAS-STING signaling in irradiated cells
[124, 125], our unpublished preliminary data indicate that mitochondrial DNA may
play an equal or even superior role in this setting (Yamazaki et al., unpublished
observations). At least in part, this explains why Atg5-/- and Atg7-/- TSA cells
exhibit superior (not compromised, as expected per their limited capacity to secrete
ATP as they die) responsiveness to RT when growing in immunocompetent
BALB/c mice (see above).

Supporting the central role of type I IFN signaling in the perception of cell death
as immunogenic, high levels of TLR3 or its signal transducer TLR3 and/or toll-like
receptor adaptor molecule 1 (TICAM1, best known as TRIF) have been associated
with improved disease outcome in patients with hepatocellular carcinoma [134,
135], neuroblastoma [136], and breast carcinoma [137]. Of note, in this latter setting
women with breast cancer were treated with RT plus a TLR3 agonist [137], lending
further support to the importance of type I IFN signaling for radiosensitivity. Along
similar lines, a type I IFN-related transcriptional signature has been shown to predict
the likelihood of breast carcinoma patients to obtain clinical benefits from neoad-
juvant anthracycline-based chemotherapy [117], and polymorphic IFNAR1 variants
with reduced functions have been linked to poor disease outcome in patients with
colorectal carcinoma [138]. Furthermore, the metastatic dissemination of human
breast cancers to the bone is often linked to deficient type I IFN secretion by
carcinoma cells, generally consequent of IRF7 downregulation [139]. That said, type
I IFN-related transcriptional signatures have also been correlated with poor disease
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outcome in patients with breast carcinoma [140, 141] and melanoma [142]. Most
likely, these apparently contradictory findings reflect the opposed biological out-
come of robust, acute vs mild, chronic type I IFN secretion [18].

Altogether, these observations suggest that type I IFN secretion in the context of
RT-driven ICD is instrumental for the TME to acquire a robust TH1 polarization
and to recruit BATF3-dependent conventional DCs (cDC1) and naïve T cells [25],
key processes that are required for the initiation of anticancer immunity [123].
However, several of the immunosuppressive effects of RT, including increased
TGF-b bioavailability [26, 27] and some degree of vascular disruption [28] may
offset the ability of type I IFN to polarize the TME toward a robustly immunos-
timulatory state with anticancer activity. In line with this notion, TGF-b blockade
enhances the priming of tumor-specific T cells in multiple mouse models of
mammary carcinomas [26].

10.6 Concluding Remarks

In summary, DAMPs emitted by malignant cells succumbing to RT (Table 10.1)
are able (at least hypothetically) to establish optimal conditions for the activation of
potent innate and adaptive anticancer immunity. Of note, several other
ICD-associated DAMPs have been characterized, including DNA of both nuclear
and mitochondrial origin [143, 144], as well as the endogenous protein annexin A1
[145]. However, the ability of RT to drive danger signaling through these DAMPs
remains unexplored. Moreover, RT has also multipronged immunosuppressive
effects that often compromise, at least to some degree, the ability of cancer cells
undergoing ICD to initiate therapeutically relevant immune responses. In this

Table 10.1 Main effects of danger signals emitted in the course of RT-driven ICD

DAMP Stress response Receptor Target cells Effect

ATP Autophagy P2RX7 Myeloid cells Cytokine secretion

ATP Autophagy P2RY2 Myeloid cells Recruitment

CALR ER stress CD91 (?) Myeloid cells Phagocytosis

CXCL10 Cytokine
signaling

CXCR3 Effector T cells Recruitment

HMGB1
(oxidized)

Cell death TLR4 Myeloid cells Cytokine secretion

HMGB1 (reduced) Cell death CXCR4 Myeloid cells Recruitment

Type I IFN Nucleic acid stress IFNARs Cancer cells Cytokine secretion

Type I IFN Nucleic acid stress IFNARs CD8+ T cells Cytotoxicity and
memory

Type I IFN Nucleic acid stress IFNARs Dendritic cells Cross-presentation

Type I IFN Nucleic acid stress IFNARs Myeloid cells Cytokine secretion

Type I IFN Nucleic acid stress IFNARs NK cells Cytotoxicity

DAMP damage-associated molecular pattern; ER endoplasmic reticulum; ICD immunogenic cell
death; NK natural killer; RT radiation therapy
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scenario, the balance between immunostimulation and immunosuppression is a
major determinant for the clinical benefits that patients receiving RT can experi-
ence. Thus, efforts should be dedicated to the identification of optimal RT doses and
fractionation schedules [146, 147] as well as to the identification of combinatorial
partner that boost RT-driven immunostimulation [148, 149]. We surmise that
moving down these avenues will provide important insights into the interactions
between RT-driven ICD and the TME, and hence will generate new therapeutic
paradigms for preclinical and clinical testing.
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