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CHAPTER 5

Designing Insurance Against Extreme 
Weather Risk: The Case of HuRLOs

Martin Boyer, Michèle Breton, and Pascal François

IntroductIon

Hurricanes are among the most catastrophic natural events. Even though 
the number of hurricane landfalls appears stable in the United States, with 
an average of 18 per decade since 1900 (NHC 2018), they tend to be 
more and more costly. According to the National Hurricane Center 
(NHC), 13 out of the 18 hurricanes that caused more than US$10 billion 
(inflation-adjusted) of damage since 1900 occurred during the last 15 years 
despite a 10-year lull between 2006 and 2015. Table 5.1 reports the 
hurricanes that caused the biggest financial damage in the United States 
since 1900.
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Table 5.1 Costliest mainland United States tropical cyclones, 1900–2017

Rank Hurricane Regions hit Year Category Damage

 1 Katrina SE FL, LA, MS 2005 3 160
 2 Harvey TX, LA 2017 4 125
 3 Maria PR, USVI 2017 4 90
 4 Sandy Mid-Atlantic & NE U.S. 2012 1 70.2
 5 Irma FL 2017 4 50
 6 Andrew SE FL, LA 1992 5 47.79
 7 Ike TX, LA 2008 2 34.8
 8 Ivan AL, NW FL 2004 3 27.06
 9 Wilma S FL 2005 3 24.32
10 Rita SW LA, N TX 2005 3 23.68
11 Charley SW FL 2004 4 21.12
12 Hugo SC, USVI, PR 1989 4 18.09
13 Irene Mid-Atlantic & NE U.S. 2011 1 14.985
14 Frances FL 2004 2 12.936
15 Agnes FL, NE U.S. 1972 1 12.516
16 Allison N TX 2001 TS 11.815
17 Betsy SE FL, SE LA 1965 3 11.152
18 Matthew SE US 2016 1 10.3
19 Jeanne FL 2004 3 9.9
20 Camille MS, SE LA, VA 1969 5 9.776
21 Floyd Mid-Atlantic & NE U.S. 1999 2 9.62
22 Georges USVI, PR, FL, MS, AL 1998 2 9.06
23 Fran NC 1996 3 7.9
24 Diane NC 1955 1 7.63
25 Opal NW FL 1995 3 7.614
26 Alicia N TX 1983 3 7.47
27 Isabel Mid-Atlantic 2003 2 7.37
28 Gustav LA 2008 2 6.96
29 Celia TX 1970 3 6.026
30 Frederic AL, MS 1979 3 5.712
31 Iniki Kauai, HI 1992 4 5.487
32 Long Island Express NE US 1938 3 5.279
33 NC/VA 1944 Mid-Atlantic 1944 3 4.927
34 Carol NE US 1954 3 4.198
35 Marilyn USVI, PR 1995 2 3.402

Damage is expressed in US$ billions after accounting for inflation to 2017 dollars

Source: National Hurricane Center. Category “TS” stands for tropical storm

Due to the growth of hurricane occurrence and the costly damages 
associated with them, important literature has been devoted to the assess-
ment of hurricane risk and to their trajectories (see inter alia, Jewson and 
Hall 2007, Nakamura et  al. 2015, Kriesche et  al. 2014, and the 
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references therein). Approaches to predict hurricane outcomes can be 
divided into two main streams: meteorological and probabilistic methods. 
Meteorological methods (see for instance Gray et al. 1992) are based on 
complex models of natural phenomena, while probabilistic methods (static 
or dynamic) rather rely on historical frequencies (see Bove et  al. 1998; 
Epstein 1985; Vickery et al. 2000; Jewson and Hall 2007; Bonazzi et al. 
2014). Both approaches aim at assessing the probability of catastrophic 
events in a given area.

The reason why so much energy has been devoted to predicting this 
natural phenomenon is that insurance against catastrophic risk, such as 
hurricanes, wind storms, and tsunamis, is an important concern for 
homeowners. The concern is especially latent for homeowners in the 
south-east United States, around the Gulf of Mexico, and in the western 
North-Pacific.1

The increase in concern is due in part to the increased concentration of 
insured risk in coastal regions vulnerable to climatic catastrophes,2 leading 
to an increase in the cost of rebuilding communities, and to a reduction in 
the ability of the insurance industry to financially support such losses in 
these regions. The potential insurer insolvency risk associated with major 
climatic catastrophes creates an important entry barrier since newcomers in 
the hurricane and catastrophic insurance market must have large amounts 
of capital available. This entry barrier led Froot (2001) to conclude that the 
market for catastrophic risk suffers from supply restrictions that can be 
partly explained by the market power exerted by traditional reinsurers.

To supplement the traditional insurance market, financial instru-
ments called Insurance Linked Securities have emerged in the 1990s 
and early 2000s (see Cummins and Barrieu 2013). Such instruments are 
also known as catastrophe options and catastrophe bonds, industry loss 
warranties, and sidecars, all of which are financially competitive when 
compared to traditional reinsurance (see Ramella and Madeiros 2007). 

1 See the hurricane generation models of Hall and Jewson (2007) and Rumpf et al. (2009) 
for the case of the North Atlantic, and of Rumpf et al. (2007) and of Yonekura and Hall 
(2011) for the case of the western North-Pacific.

2 According to Pielke et al. (2008) the hurricanes that landed in Miami in 1926 resulted in 
losses of 760 million dollars. If such a hurricane were to hit the Miami agglomeration today, 
the financial losses would amount to approximately 150  billion dollars (or 102  billion 
2004-dollars according to Kunreuther and Michel-Kerjan 2009). Hurricane Katrina, which 
hit New Orleans in 2005, caused damages estimated at 108 billion dollars according to the 
National Oceanic and Atmospheric Administration.
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Moreover, and in contrast to traditional insurance contracts, they can 
be designed in a way to have very low moral hazard and credit risk 
(Ramella and Madeiros 2007). Such interesting design features come, 
however, at the cost of increasing the instruments’ basis risk (Doherty 
1997). One new instrument is the HuRLO (Hurricane Risk Landfall 
Option), launched in 2008 by Weather Risk Solutions (WRS), that 
allows investors to take positions on hurricane landfall in a similar way 
as in pari-mutuel first-by-the-post horse race betting. While the interest 
in catastrophe bonds and other insurance-linked securities has been 
growing steadily (Cummins 2008, 2012), the literature on the hurri-
cane-risk market itself is not extensive. Using data from the Hurricane 
Futures Market, Kelly et al. (2012) study the traders’ perception and 
the trading dynamics according to available information on hurricane 
risk. They conclude that relative-demand pricing is consistent with a 
Bayesian update of beliefs according to information released by various 
official meteorological centers.

The objective of this paper is to analyze the operation of the HuRLO 
market by modeling the decisions of rational risk-averse decision-makers 
who want to hedge against catastrophic losses. Using the HuRLO as a 
motivating example, Ou-Yang (2010) and Ou-Yang and Doherty (2011) 
compare pari-mutuel3 and traditional insurance for risk-averse expected 
utility maximizing hedgers. They compute the optimal dynamic hedge of 
a single agent in an economy where the decisions of the other players are 
assumed to be exogenous. Moreover, they examine the properties of the 
equilibrium on that market when agents and risks are symmetrical. They 
find that a pari-mutuel mechanism leads to under-insurance. They also 
find that a pari-mutuel setting can be advantageous when transaction costs 
of traditional insurance are high and when information asymmetry prob-
lems are rampant.

3 The pari-mutuel mechanism was invented by Pierre Oller in 1865 in order to limit the 
profit of bookmarkers who were then controlling the betting industry in France. Since 2002, 
many investment banks have used a pari-mutuel mechanism for wagering on various eco-
nomic statistics; odds on these statistics have been shown to be efficient forecasts of their 
future values (Gürkaynak and Wolfers 2006). The pari-mutuel market microstructure is ana-
lyzed by Lange and Economides (2005) who show the existence of a unique price equilib-
rium and find many advantages of pari-mutuel over the traditional exchange mechanism. A 
pari-mutuel auction system for capital markets is proposed by Baron and Lange (2007).
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With respect to HuRLOs in particular, Wilks (2010) describes their 
market structure, and the mechanism and adaptive algorithm used to price 
the options. He shows that the proposed price adjustment mechanism 
converges rapidly to the market participants’ beliefs about the outcome 
probabilities. Meyer et al. (2008, 2014) study the behavior of participants 
in an experiment of a simulated hypothetical hurricane season, during 
which they are allowed to trade in both primary and secondary HuRLO 
markets. Meyer et al. (2008, 2014) look into the potential bias tradi-
tionally observed in pari-mutuel betting. They find that market prices 
converge to efficient levels and that biases are not significant at the aggre-
gate level. A priori, it therefore seems that HuRLOs should be a perfect 
additional tool for hedging catastrophic loss in the Southeast United 
States, and in the state of Florida in particular.

Our contribution to the literature is twofold. We first examine the 
effectiveness of pari-mutuel insurance, as Ou-Yang and Doherty (2011), 
but in a more realistic setting, with dynamic trading, price updating, and 
strategic interactions between market participants. In addition, unlike 
Meyer et  al. (2008, 2014), our model involves agents characterized by 
concave utility functions acting optimally, albeit possibly with limited 
foresight.

The HuRLO market provides investors with the opportunity to hedge 
against, or speculate on, the risk that a specific region in the Gulf of Mexico 
and on the East Coast of the United States will be the first to be hit by a 
hurricane (or that no hurricane will make landfall in the continental United 
States) during a year. Many characteristics of HuRLOs distinguish them 
from traditional insurance, including the fact that the payment received 
doesn’t depend on an individual’s financial loss (or lack thereof), nor on 
the price paid for such protection. And, because of the pari-mutuel set-
ting, HuRLOs have characteristics that distinguish them from standard 
derivatives such as: (1) the absence of counterparty and liquidity risk; (2) 
the absence of an underlying traded asset; and (3) a market-demand-based 
payoff function.

HuRLOs are interesting for both hedging and speculating purposes. 
On the hedging side, HuRLOs could be useful to agents (individuals, 
firms, or otherwise) that own assets in hurricane-prone and thus vulnera-
ble areas. Speculators could also participate in that market by taking 
advantage of differences in market-based and objective landfall 
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probabilities. As a competitor for traditional reinsurance products, 
HuRLOs have important merits: since the risk is limited to the invested 
capital, no counterparty is needed to assume the position opposite to what 
the insurer/reinsurer desires, and there is essentially no need for a proba-
bility or a loss appraisal since the payoff depends on market-wide factors 
that all but eliminate adverse selection and moral hazard issues.

Despite such advantages and the HuRLOs’ complementarity with 
other forms of natural catastrophe hedging instruments, the market for 
HuRLOs has not taken off. According to the Weather Risk Solution 
website,4 HuRLOs are not presently (2016–2019) available for trading.

Given the particular price formation mechanism in the HuRLOs mar-
ket, one interesting question is the possible presence of strategic issues: 
when buying HuRLO for insurance purposes, should one place a single 
order, or buy options sequentially? Should one be the first to trade, or wait 
to observe the trades of other players? To address this question, we study 
the behavior of many agents facing potential losses from hurricanes. Our 
model of the HuRLO market is dynamic, and we explicitly account both 
for the impact of individual players’ decisions on the option price and for 
risk aversion in the face of catastrophic losses. As in Ou-Yang and Doherty 
(2011), agents are nonstrategic investors who maximize their utility by 
assuming exogenous prices and stakes of other players. We model their 
behavior during simulated hurricane seasons to evaluate various invest-
ment strategies in terms of sequence and size of purchases. Our simula-
tions reveal that the order type, sequence, and order packaging have a 
significant impact on the price paid, and on the number of traded options. 
Therefore, HuRLO contracts appear to be difficult to evaluate and to 
purchase optimally. This seriously questions the ability of the HuRLO 
market to act as an effective insurance mechanism.

The rest of the paper is organized as follows. Section “Hurricane Risk 
Landfall Options” gives details on the HuRLO product and market orga-
nization and on the price adjustment mechanism. Section “A Simulation 
Experiment” reports on the implementation and results of the simulation 
model. Section “Recommendations and Public Policy Implications” elab-
orates on recommendations and public policy implications. Section 
“Conclusion” concludes.

4 www.weatherrisksolutions.com (last visited in January 2019).

 M. BOYER ET AL.

http://www.weatherrisksolutions.com


97

HurrIcane rIsk LandfaLL optIons

HuRLOs are binary options on the occurrence of hurricane landfall in 
various regions during a given hurricane season; 75 of these options are 
available: 74 correspond to a given county or area (thereafter identified as 
counties), and the “null” option corresponds to the case where none of the 
74 options received a payoff before the end of the hurricane season. When 
the National Hurricane Center (NHC) issues a hurricane warning because 
the hurricane is closing in on a specific county, trading is suspended until 
the hurricane makes landfall or the immediate threat vanishes. Options are 
automatically “exercised” when a hurricane hits one county.5

When this landfall occurs, holders of the winning option (corresponding 
to the hit county) receive a payoff (i.e., the option matures in-the- money) 
while holders of all the other options receive nothing (options mature out-
of-the-money). At the end of the season, the holders of the null option of 
all the series6 that have not yet materialized receive a payoff, while all the 
other options are worthless (since risk pools are separated for different 
series, payoffs of the null option differ across series). When a hurricane hits 
two counties, it is considered as a second hurricane if the contact points 
are more than 150 nautical miles apart.

HuRLOs are priced to reflect market demand. This contrasts with classical 
pari-mutuel settings where the price of a claim is constant and independent 
of the demand for a given position. When the outcome is realized, the 
total mutual reserve is shared equally among the owners of the winning 
claim, irrespective of the price they paid for their option. Thus, if at a given 
date and for a given series we observe the market price of option k (πk), the 
total mutual reserve (M), and that mk options of type k were purchased in 
the primary market, then the payoff of a stake if outcome k is realized (Rk), 
the (decimal) odds of outcome k (Ok), and the implied market probability 
(qk) are given by7:

5 To qualify, a hurricane must be identified as such by the NHC and must cause more than 
1 million dollars damage according to EQECAT (now part of Corelogic).

6 A new series of options is launched every time a new hurricane is identified by the 
National Hurricane Center.

7 A list of notations for all parameters and variables used in this paper is provided in 
Appendix 1.
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In a classic pari-mutuel setting, the corresponding Rk, Ok, and qk values 
are obtained by fixing πk = c for all k so that M = c∑kmk and qk = mk/∑kmk.

Each HuRLO series is “seeded” by a financial institution that buys an 
equal number of each option (say 1), at a price that reflects the historical 
probabilities of the possible outcomes (see the Table 5.6 in Appendix 2 for 
a summary of the historical probabilities in the United States). As options 
are bought on the primary market, prices adjust dynamically to the collec-
tive trading of market participants, reflecting the relative demand for the 
various options. As a result, when an order for a block of identical options 
is executed, the price of each option in the block is increasing, while the 
prices of all the other options are decreasing, reflecting the increasing total 
relative demand for this option.

This dynamic adjustment mechanism is not considered by Ou-Yang 
and Doherty (2011), who are solving a static optimization problem for a 
single agent, under perfect information on odds across all areas. 
Accordingly, they model the decision problem faced by an individual who 
“places his stake at the end of the wagering period after all other partici-
pants have placed their stakes.” Assuming a stake of x dollars in option k 
when the mutual reserve is M and the total stakes on outcome k placed by 
other participants is Mk, the payoff to the agent becomes

 
R x x

M x

M xk
k

( ) = +
+  

if outcome k is realized. In other words, in a static world, all the mutual 
reserve is shared according to the amount wagered rather than to the 
number of options held, since the price of each option is constant so that 
πk = c. This yields an analytical characterization of the optimal stake using 
first-order optimality conditions.
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Even under the assumption of perfect information, if the last player in 
a small market decided to invest x to buy a block of HuRLOs for a given 
county, all of these options would need a different price to reflect the 
increasing demand, and these successive prices are needed to express the 
payoff as a function of x. If that is not the case, then one has to assume that 
an agent’s demand is too small to influence prices.

The adaptive algorithm to set HuRLO prices in “practice” is described 
by Horowitz et al. (2012). The market price of each HuRLO is adjusted 
dynamically, each time a security is bought on the primary market. Thus, 
when a HuRLO of type k is bought, a smoothing parameter is used to 
increase its price and decrease the price of all the other HuRLOs. This 
adjustment ensures that the total of all HuRLO prices is equal to their 
(time-adjusted) nominal value, while maintaining the payoff Rk as close as 
possible to this amount. Because the market for HuRLOs is operating 
during a significant time horizon, a capitalization factor is used to com-
pensate participants for opportunity costs, rewarding early entries and 
penalizing late ones. More precisely, denote by r the annual rate reflecting 
the time-value of money, by c the nominal value of the option, and by t the 
date, measured in years since the initialization of the market. An investor 
purchasing an option for πk dollars at date t expects a payout in the neigh-
borhood cert if outcome k occurs at date t, so that the total of all option 
prices ∑k πk is equal to cert. Consequently, if the market is in equilibrium, 
the number of options of all types should be approximately equal. This 
adjustment process is described in detail in Appendix 3.

Wilks (2010) examines the behavior of market probabilities implied by 
option prices in the setting of the HuRLO market. Using simulations 
where the most favorably priced HuRLO is purchased, he shows that the 
pricing algorithm responds promptly to participants beliefs. He does not, 
however, provide any rationale for choosing dynamic market probabilities 
rather than the classical pari-mutuel setting where the price of claims is 
held constant.

The following two figures illustrate the relative behavior of the two 
systems over time, measured in transactions, when participants in the mar-
ket are buying the option with the highest expected payoff, according to 
their beliefs. In Fig. 5.1, we assume that prices are constant, whereas we 
assume adaptive prices in Fig. 5.2. We assume in these two figures three 
possible outcomes whose initial probabilities of occurrence are given or 
believed to be (10%, 30%, 60%) for outcomes 1, 2, and 3, respectively. The 
initial mutual reserve is set to 900,000$. During the first 150 transactions, 
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Fig. 5.1 Market evolution as a function of transactions with constant prices. 
(Parameters are M0 = $900,000, p0 = (0.1, 0.3, 0.6), p150 = (0.85, 0.1, 0.05))
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Fig. 5.2 Market evolution as a function of transactions with adaptive prices. 
(Parameters are M0 = $900,000, p0 = (0.1, 0.3, 0.6), p150 = (0.85, 0.1, 0.05))
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outcome probabilities remain at (10%, 30%, 60%). Between transactions 
150 and 151, public information is released, changing the participants’ 
beliefs to (85%, 10%, 5%) for outcomes 1, 2 and 3 respectively.

This experiment makes it apparent that the adaptive price market 
(Fig. 5.2) is reacting much more promptly to changes in beliefs than the 
fixed-priced market (Fig.  5.1). After 300 transactions, the odds in the 
fixed-price market are still very far from the objective probabilities, while 
the market-based odds implied by the adaptive prices reflect closely even 
dramatic changes in objective probabilities. This is particularly interesting 
for the smooth functioning of a climatic catastrophe market, where fore-
casts can change dramatically over a very short time period. Another 
advantage of the adaptive-pricing algorithm is the fact that, when prices 
adjust smoothly, option holders have a good idea of the payoff they will 
receive if they hold a winning option, and therefore of the amount of 
insurance they hold. That is not the case with classical fixed-priced pari- 
mutuel bets.

Let us now compare Fig. 5.2 with Fig. 5.3 where we examine the case 
of adaptive prices when orders are executed for blocks of 10 options. Since 
blocks of options are executed sequentially, prices update after each single 
purchase. This means that market participants do not know precisely the 
total cost of their order at the time it is placed. One can observe that, 
because market probabilities adjust quickly, block orders can have a signifi-
cant impact on prices.

a sImuLatIon experIment

We now simulate and observe the behavior of players and the evolution of 
the HuRLO market during typical hurricane seasons. As in Ou-Yang and 
Doherty (2011), we assume that players do not anticipate the impact of 
their decisions on the decisions of other players and on the evolution of 
the final payoff. Accordingly, at a given decision date, players deciding 
about purchasing an option or a block of options only consider the cur-
rent state of the system and evaluate the options’ final payoff by assuming 
that they are making the last purchase on the primary market.

In our setting, players can buy options in three series of HuRLOs and 
can purchase options on the primary market at distinct moments during 
the hurricane year, depending on the number of hurricanes. The players 
involved in the market are risk-averse investors who may have vulnerable 
assets in various counties.
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This simulation model allows us to experiment with different investment 
strategies. These strategies are myopic, in the sense that players solve a 
static decision problem each time they have the possibility to buy an 
option. However, we give them repeated access to the market during the 
season, allowing them to increase their stake as the prices of options 
evolve. We conduct a large number of experiments using a representative 
data set.

Assumptions

A1: Probabilities of hurricane formation and landfall do not change 
during the season (recall that trading is suspended when a hurricane 
warning is issued).

A2: For each potential hurricane forming in the season, we distinguish 
two stages: (1) Before the hurricane has formed, and (2) When a hurri-
cane is present in the Atlantic Basin but has not yet landed or vanished. We 
further assume that only one hurricane can be present in the Atlantic Basin 
at any given moment.

A3: All players have CRRA utility with the same Arrow-Pratt coefficient 
of relative risk aversion.

A4: In each successive phase of the hurricane season, transactions take 
place sequentially and market data is updated after each single purchase.

Hurricane formation is assumed to be governed by a Poisson process 
with intensity λ = 3 to match with the number of series that we are using.8 
The probability pk that a hurricane makes landfall in county k, given that 
one is present in the Atlantic Basin, is supposed to be known by market 
participants. Given the probability of hurricane formation and landfall (see 
Appendix 2), players can compute at any decision stage the probability Pjk 
that an option k of series j will be the winning option (i.e., mature in-the- 
money). This probability depends on the remaining duration d of the hur-
ricane season, on the number h of series that have already been executed, 
and on the actual presence (l = 1) or absence (l = 0) of a hurricane in the 
Atlantic Basin (details are given in Appendix 4). Using the initial state of 
the hurricane season, as given by historical landfall probabilities, and the 
seeder portfolio of options, one can then calculate the current market 

8 In reality, it seems that λ is between 5 and 6. See http://climateaudit.org/2007/01/14/
more-evidence-that-hurricanes-are-the-result-of-a-poisson-process/ (last visited on February 
22th, 2019).

 M. BOYER ET AL.

http://climateaudit.org/2007/01/14/more-evidence-that-hurricanes-are-the-result-of-a-poisson-process/
http://climateaudit.org/2007/01/14/more-evidence-that-hurricanes-are-the-result-of-a-poisson-process/


105

prices, the total mutual reserve, and the number of options in the three 
HuRLO series, as a function of d, h, and l.

Players’ utility is given by the concave CRRA function U(W) = W1−γ/
(1−γ). We shall assume that players have a total utility that is equal to the 
expected utility of their final wealth in each of the k counties. In other 
words, for a given player i with current wealth Wi, the expected utility will 
be given by

 
Y p

W L
p

W
i

k

K

k
i ik i=
−( )
−

+
( )

−=

− −

∑
1

1

0

1

1 1

γ γ
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where Lik is Player i’s expected loss if a hurricane makes landfall in 
county k.

Therefore, when considering the possibility to buy an option k in series 
j given the values of d, h, and l, a player observes the state of the market, 
that is, the total mutual reserve Mj, and vectors containing the number of 
each type of options mj and market prices πj in series j, along with the 
probability Pjk. Players also consider their wealth Wi and the number of 
each option k in series j they own. Because the market price vector πj 
applies only to the next option purchased, it is not possible to find an ana-
lytical expression for the optimal wager of Player i. However, it is easy to 
determine whether or not purchasing a single option k in series j would 
increase a player’s expected utility, assuming this would be the last transac-
tion in the market, by considering the marginal impact μijk(·), computed as 
the difference in expected utility for Player i due to the purchase of a single 
option k in series j (see Appendix 5).

A market simulation typically involves many players, each of whom has 
positive marginal impact μijk for many options k in many series j. Even if 
one agent assumes to be the only investor in the market, it may still be 
interesting to buy many options, and the order in which these purchases 
are made will influence the total cost. The order in which purchases are 
made can also alter the composition of an investor’s portfolio of options 
(because the μijk’s will change after each purchase).

In our experiments, we allow the players to use various specific invest-
ment strategies, in order to assess the importance of strategic issues in the 
HuRLO market. These strategies are displayed in Table 5.2. Strategies S1 
and S2 pertain to the size of the order, while strategies S3, S4, and S5 
pertain to the choice among options. Accordingly, the purchase order of a 
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Table 5.2 Set of possible strategies used by player i

Strategy Definition

S1 Player i places an order for a single option.
S2 Player i places an order for a block of options, updating μi after each purchase.
S3 Player i chooses randomly among all the options with positive μjk.
S4 Player i chooses the option with the highest (positive) μjk.
S5 Player i chooses the option with the lowest (positive) μjk.

single player i having computed the vector μi given the current state of the 
market is described by a strategy pair. On each transaction day, the order 
in which players are given access to the market is determined randomly, 
and players are offered the possibility to trade as long as they are interested.

The simulation consists of generating a large number of hurricane sea-
sons, discretized in days. Players are given the opportunity to trade each 
day. The option prices, the mutual reserves, and the number of live options 
are updated, following each trade, using the algorithm presented in 
Appendix 3. The simulation algorithm is detailed in Appendix 6.

General Results from the Simulations

We present our observation of the evolution of the market under various 
scenarios about the strategies used by the players. We thus report repre-
sentative results obtained with a model involving four players, four coun-
ties at risk for a hurricane landfall, and three option series. The HuRLO 
market is initialized with an initial mutual reserve of $1,000,000 used to 
purchase an equal number of each option at prices set to what can be 
viewed as historical landfall probabilities. For the sake of the simulation, 
these landfall probabilities are set to p1 = 0.2, p2 = 0.15, p3 = 0.25, p4 = 0.22. 
The complement, which corresponds to the probability that a given hur-
ricane does not make landfall is given by p0 = 0.18. Parameter values are 
c = 1000, r = 0 and γ = 0.5 and a seeding fee of 3% is taken from the 
mutual reserve at a settlement date. Results are based on 200 repetitions 
of the simulation algorithm and are robust to changes in parameter values.

We conducted five experiments using the same simulation data (200 
trials) to assess whether the HuRLO-purchasing strategies have any sig-
nificant impact on the market as a whole. In experiments E1 and E2 all 
players use the same strategy, while in experiments E3, E4, and E5, one of 
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Table 5.3 Set of experiments in trading

Experiment Definition

E1 All players use strategies S1 and S4.
E2 All players use strategies S2 and S4.
E3 Player 1 uses strategy S1 and S4, the others use S1 and S3.
E4 Player 1 uses strategy S1 and S4, the others use S1 and S5.
E5 Player 1 uses strategy S2 and S4, the others use S2 and S5.

Table 5.4 Number of options and total mutual reserve in the three series

Number of options Total mutual reserve ($)

Experiment Series 1 Series 2 Series 3 Series 1 Series 2 Series 3

E1 120.2 104.2 143.9 25,810 21,467 27,381
E2 676.1 655.6 508.4 122,337 128,852 84,491
E3 120.6 104.2 145.6 25,919 21,456 27,630
E4 122.4 103.1 143.1 26,315 21,249 27,266
E5 682.1 646.6 512.5 114,766 126,723 84,786

the four players is using a strategy that differs from that of the others. 
Table 5.3 presents the set of experiments and the strategies used by the 
players.

Table 5.4 reports the average number of options and the average total 
mutual reserve, excluding the initial seeding capital, for each series accord-
ing to the five experiments, characterized by different joint strategies.

A first obvious conclusion is that considerably more interest is gener-
ated when players are allowed to order their options by blocks (strategy S2) 
instead of separately (strategy S1). Both the mutual reserve and the num-
ber of options are much larger in experiments E2 and E5 than in experi-
ments E1, E3, and E4. This is surprising since players have the opportunity 
to buy options every day, and as many times as they want in a single day. 
We infer from these experiments that the way in which orders are placed is 
very important, not only for the decision-making player, but also for the 
activity of the market. In terms of investment and number of options, the 
global results do not differ much when players are using the same or 
different ordering strategies.

Table 5.5 reports on the players’ average utilities at the end of the 
hurricane season in the five experiments. These payoffs are computed by 
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Table 5.5 Players’ utilities

Experiment Player 1 Player 2 Player 3 Player 4

E1 109 106 105 109
E2 404 359 334 327
E3 128 94 103 107
E4 143 92 105 90
E5 402 246 337 399

assuming that all players have identical initial wealth and vulnerable 
properties in all counties. We see that the difference in utility enjoyed by 
players who are using a “better” strategy than the others can be significant. 
We also observe that utility is generally higher when players are trading 
blocks of options (E2 and E5).

From these experiments, we can conclude that, if one decides to partici-
pate in the HuRLO market, the timing and ordering of option purchases 
are important, even when all players are myopic.

An Illustrative Example

Figures 5.4, 5.5, and 5.6 present the evolution of each of the five option 
prices, of the mutual reserve, and of the number of options purchased over 
time for one of the trials in the simulation experiment. In the trial illus-
trated in Figs. 5.4, 5.5, and 5.6, three hurricanes are formed and land on 
days 113, 187 and 200. Three of the players are using strategy S1–S3, while 
one of them is using strategy S1–S4. In other words, we are showing the 
dynamics of one trial of experiment E3. Each day, players are offered, in 
turn, the possibility to buy a single option. When players are interested in 
more than one option, they choose randomly (Players 1, 2, 3) or they 
choose the one with the highest marginal impact (Player 4). The round of 
offers continues until no player is interested in buying options, which 
closes the trading day.

Four options (dashed lines) are associated with four different districts. 
The fifth one (straight line) is the null option. In this trial, three hurricanes 
are formed and land on days 113, 187 and 200, respectively. The top, 
middle, and bottom graphs correspond to option prices of the first, sec-
ond, and third series. The landfall probabilities are kept constant over the 
year at p0 = 0.18, p1 = 0.2, p2 = 0.15, p3 = 0.25, and p4 = 0.22.

 M. BOYER ET AL.
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This example is representative of market evolution over time; we see 
that prices evolve according to the market demand, and that this demand 
depends on the time elapsed and on the realization of uncertain events 
(recall that the pk’s remain constant over time). In particular, while activity 
in the null option market is regular, most “insurance” options are bought 
in phases where hurricanes are present in the Atlantic Basin. Obviously, 
the demand for such options in series 1 is higher than in series 2 and 3. 
Obviously, the demand for options of series 2 and 3 pick up after options 
of past series have been settled.

Computational Considerations

The results of our simulation experiments clearly show that the way pur-
chase orders are processed makes a significant difference on the players’ 
utilities and on the market activity. This indicates that strategic consider-
ations should be important for a player wishing to participate in the 
HuRLO market.

However, one inescapable conclusion from our experiment is the diffi-
culty of identifying an optimal way to purchase HuRLOs. Our simulation 
experiment involves myopic players, who do not anticipate the impact of 
their decisions on the decisions of other market participants and on the 
evolution of the final payoff, and who evaluate their payoff by assuming 
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that they are making the last purchase on the primary market. Even in that 
case, the information required to evaluate any purchasing strategy of 
Player i (that is, how many options of each kind to buy and the sequence 
in which the orders should be executed) is an observable state vector con-
taining Player i’s current wealth, the conditional probability that a hurri-
cane will make landfall in each county, the number of each options of each 
series owned by Player i, the number of each option of each series in the 
market, the total mutual reserve of each series, and the market price of 
each option in each series.

In a normal HuRLO market offering 3 series of 75 options (one per 
county plus the null option), purchase orders are vectors of dimension 
225, with combinatorial possible sequences, while the state vector is of 
dimension 754. Finding the best response of a player to fixed strategies of 
other players, or finding the equilibrium strategy in a market populated by 
rational farsighted players, may be a very difficult problem. The use of a 
simulation approach is probably the only way to gain some insight about 
the strategic issues present in the HuRLO market.

recommendatIons, and pubLIc poLIcy ImpLIcatIons

One interesting feature of the pari-mutuel approach to managing hurri-
cane risk is that there seems to be very little demand for such market 
design. In particular, as pointed out by Ou-Yang and Doherty (2011), 
pari-mutuel insurance has several merits with respect to insurance markets, 
including the possibility of becoming an interesting alternative to tradi-
tional insurance. Pari-mutuel insurance can be sought as an alternative 
when traditional insurance has high transaction costs, is too expensive, and 
is plagued with informational problems, or when it is simply not available. 
With respect to the Florida catastrophic and weather risk market, the 
development of such an alternative to traditional insurance products 
would appear to have a high potential. One could even imagine that the 
Florida market would be ready for the introduction of such a risk manage-
ment tool that is neither plagued by moral hazard nor adverse selection 
problems. Moreover, in an active HuRLO market, insurers would bear no 
counterparty or default risk, and they do not need to invest in further loss 
and cost appraisals. That is why it was natural to think, in 2008 when such 
a market was introduced, that HuRLOs would perform well in Florida, 
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with 75 HuRLOs being possibly traded (74 coastal counties, plus the 
null). No transactions seem to have occurred on this market after 2009. 
The question is why would such a market find no traction in the financial 
and risk management world?

One possible reason for the absence of a market is that there were not 
enough “speculators” who were willing to take a position on there being 
no hurricane that would make a landfall so that natural hedgers could not 
be able to get enough return of their market positions in HuRLOs. This 
is similar to saying that the initial seed to lift the market (which was 5 mil-
lion dollars in 2009) was not large enough to attract speculators and play-
ers with no stake in the Florida hurricane market to “buy” the null 
contract. Without enough speculators (or risk neutral investors) populat-
ing the HuRLO market, it is possible that this market fell into a “no-trade 
theorem” gap (see Milgrom and Stokey 1982) where prices were adjust-
ing to new information in such a way that there was essentially no money 
to be made by entering a transaction. The “no-trade theorem” states that 
if all players are rational and all players receive the same information at the 
same time (in our case, hurricane trajectory), then a market that is designed 
to give an efficient equilibrium will find to have very little (or no) volume 
of transactions. It seems that the market for HuRLOs embedded all these 
conditions.

Another reason why the market for HuRLOs did not find much trac-
tion with entities exposed to hurricane risk in Florida is that positions on 
where a hurricane would make landfall could be done continuously up 
until the point where the option paid. In other pari-mutuel settings, such 
as horse races, betting stops at some time well before the state of the world 
is realized. If one was able to take positions on a horse while the race is 
going on, no one would have an incentive to “invest” in a horse before 
more information is learned throughout the race. This creates tension 
between risk management based on prior probability and risk manage-
ment based on posterior probability. In the case of HuRLOs, the tension 
is made worse by betting against other players than the house (a similar 
discussion could be constructed around the game of roulette).

For the market to run appropriately, there needs to be important 
changes to the current structure to reduce both the “no-trade” problem 
and the tension between prior and posterior probabilities and beliefs. 
From a broader perspective, it seems to us that a central planner could play 
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a key role in this market by providing the necessary seed money for the 
market to be active. The central planner could then use the HuRLO mar-
ket as a soft commitment device to pay only the seed amount, and no 
more, when a storm hits some coastal area. At the same time, the central 
planner could put together similar markets for similar events such as an 
earthquake in California, typhoons in the Pacific and winter storms in 
Europe. With enough seed capital from some public source, new players, 
who have only indirect natural catastrophe exposures, could become inter-
ested in this pari-mutuel market. Another potential nudge on this market 
would be to force insurers who are involved in writing Hurricane risk 
insurance in Florida to hold a certain basket of such options in a way that 
would be similar the managing of carbon-emission trading schemes. 
Without a more capital intensive presence of the insurance industry or of 
local governments, there is little that pure speculators can do to see this 
market take off.

concLusIon

In this research, we examined one particular market design: Hurricane 
Risk Landfall Option (or HuRLOs), which seeks to become an alternative 
to traditional insurance and reinsurance contracts. These pari-mutuel mar-
kets for hurricane risk were launched in 2008 by Weather Risk Solutions, 
but never found enough players to make the market liquid or dynamic 
enough to effectively help with managing hurricane risk. One reason may 
be that HuRLOs are not pure pari-mutuel products since their payoffs do 
not depend directly on the amount wagered.

To assess why the market never took off, we investigated whether nega-
tive strategic issues were too detrimental to the market when a player 
decided to invest in HuRLOs. We showed that the order, sequence, and 
packaging of an order make a difference in the price paid, and in the num-
ber of options held by players. This highlights a major drawback of 
HuRLOs as an insurance product, that is, HuRLOs are very difficult to 
evaluate and to purchase optimally. In addition, it is important to note 
that speculators are really needed for the HuRLO market to work. Indeed, 
if the only options bought correspond to counties where the hurricane risk 
is high, then there is a real possibility that properties in these counties will 
be underinsured. In the limit, if there is only one county where hurricanes 
can strike, then without speculators buying the null option, there is no 
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insurance at all since, in that scenario, what the investors will recover will 
be exactly what they put in the pool.

As a last remark, we would like to point out that we did not consider 
the choice between buying insurance or buying options in the sense that 
we assumed that the only available hedge against losses are the HuRLOs. 
Also, we did not examine in our simulations whether market participants 
would prefer to acquire other types of securities. We assumed that inves-
tors could only buy HuRLOs, and they would do so whenever it would 
increase their expected utility. The choice between traditional and pari- 
mutuel insurance may be simplified somewhat if one assumes that the pay-
off of a winning option should be near its par value in a well-functioning 
market. However, the question of how and when to buy pari-mutuel 
insurance remains open.

appendIx 1: LIst of parameters and VarIabLes

Notation Definition

K Number of counties, indexed by k ∈ {1,…, K}.
I Number of players, indexed by i ∈ {1,…, I}.
J Index of the option series, j ∈ {1, 2, 3}.
Wi Current wealth of player, i ∈ {1,…, I}.
pk Conditional probability that a hurricane present in the Atlantic Basin will make 

landfall in county k. For k = 0, p0 = 1−∑k pk is the probability that it will not 
make landfall.

Lik Potential (expected) losses of player i in county k, where Li0 ≡ 0.
c Nominal value of a HuRLO.
Rjk Payoff of an option k in series j if outcome k is realized.
Ojk Decimal odds of outcome k in series j.
qjk Implied market probabilities for outcome k in series j.
Pjk Probability that option k of series j will mature in-the-money.
nijk Number of each option k of series j owned by player i.
mjk Number of each option k of series j in the market.
Mj Total mutual reserve of series j.
πjk Market price of option k of series j.
Yi Expected utility of agent i.
γ Risk aversion parameter.
r Annual discount rate.
d Time remaining until the end of the hurricane season.
H Number of series that have already been executed.
l Indicator of the presence of a hurricane.
λ Annual expected number of hurricanes.
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appendIx 2: HurrIcane LandfaLL probabILItIes 
In tHe unIted states

For each of the 11 Atlantic regions of the United States, Table 5.6 pres-
ents the probability that a named storm, a hurricane, or an intense hurri-
cane will make landfall in a given year.

Under a Poisson distribution, the probability that at least one storm 
makes landfall is given by the complement probability that no storm makes 
landfall: 1 −  P(0)  =  1 −  exp(−x/d), where x is the number of named 
storms or hurricanes or intense hurricane to make landfall in that particu-
lar region over a span of d years according to historical records.

appendIx 3: prIce updatIng aLgorItHm

The market is seeded by the purchase of an equal number of each option 
(say 1) at a price that reflects historical probabilities of the possible out-
comes (see Appendix 2). Each time an option of type b is bought, the 
market price vector of HuRLOs is updated using an adjustment factor α 
that ensures that “pricing probabilities” sum to 1 and that the payoff of 
the last option bought is close to the time-adjusted nominal value. Denote 
by β =  exp(rt) the capitalization factor applied to account for the time 
elapsed since the initialization of the market, and by ξk the pricing proba-
bilities, k = 1,…, K + 1. The updating algorithm is the following:
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where mk and M represent the number of type-k options and the  
total mutual reserve immediately before the transaction, and where  
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A > 1/(mb + πb). The effect of the smoothing constant α is to increase the 
pricing probability of option b and to reduce the pricing probabilities of 
the other options. When M/mb > βc, option b is overpriced, and no update 
is made. When M/mb = βc, the smoothing constant corrects for the dilu-
tion effect due to the additional claimer for outcome b. Otherwise, the 
option is underpriced, and the smoothing factor should be higher. In our 
implementation, we used A = max{(M − cβmb)(1 − πb)/M, 1/(mb + πb)}, 
which has the desirable properties of increasing with the imbalance, 
decreasing with the total mutual reserve, and decreasing with the pricing 
probability of option b.

appendIx 4: computatIon 
of tHe outcome probabILItIes

The probability distribution of the number of new hurricanes that will 
form until the end of the season is denoted by ϕd, where d is the remaining 
time in the season. Assuming that hurricane formation is a Poisson process 
of intensity λ, the probability that y hurricanes will form until the end of 
the season is then given by:
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The probability Pjk (d, h, l) that option k in series j will be the winning 
option depends on the remaining time in the season, on the number of 
series that have already been settled, and on the presence or absence of a 
hurricane. For j = 1 and h = 0, it is given by:
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where D is a random variable representing the presence time of a hur-
ricane. Here, an option k in the first series will be executed if one hurricane 
or more is formed, and the first one to land does so in county k. Clearly, 
P1k (d, h, l) = 0 for h ≥ 1. Similarly, for j = 2 and h = 0 we get:
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Notice that there is exactly one winning option in each series, so that
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appendIx 5: computatIon of margInaL Impact

The computation of the marginal impact of buying an option is presented 
for the case of a single series (J  =  1). When more than one series are 
offered, the computation is done in a similar way, accounting for the fact 
that an option k ≠ 0 in series j can only be a winning option if the null 
option is not the winning option in series j − 1.

If Player i does not buy option b, expected utility is given by:
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where Li0 = 0.
On the other hand, if Player i buys option b, expected utility is given by:
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The marginal value of investing in option b is therefore:
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appendIx 6: sImuLatIon aLgorItHm

 1. Read parameters and initialize the market using p, yielding M0 and 
m0. Initialize the options held by all players to nik

0 = 0 for I = 1,…, 
I and k = 0,…, K. Set d = 1, h = 0 and l = 0.

 2. Using the hurricane model, generate hurricane dates, durations, and 
outcomes during the hurricane season.

 3. Compute probabilities Pjk at (d, h, l) and select randomly an order-
ing O of the players.

 4. For I = 1,…, I

 a. Determine the purchase order for Player O(i) according to 
her strategy,

 b. For each transaction by player O(i), update market variables,
 c. When purchase order of Player O(i) is completed, set i = i + 1.

 5. If d = 0, stop. Otherwise, update h and l according to the hurricane 
scenario realization. Set d = d − 1/365 and go to 3].
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