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CHAPTER 15

Empirical Modelling of Man-made 
Disaster Scenarios

Melanie Windirsch

IntroductIon

Natural catastrophes may make the headlines, but man-made perils can be 
equally destructive (Zurich Insurance Group 2017). In 2017, out of the 
301 disaster events worldwide, 118 were man-made, resulting in USD 6 
billion insured losses (Swiss Re Institute 2018c, pp.  2–4). Man-made 
disasters have the potential to jeopardise an individual insurer’s solvency 
position if the risk is not properly managed. Furthermore, these catastro-
phes may trigger market shocks and subsequent economic downturns, like 
it happened in 2008s subprime financial crisis, because these events are 
highly destructive and result in the destruction of billions of physical prop-
erty and infrastructure and affect millions of people and multiple 
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companies across different industries (e.g., banks, industrial companies). 
This kind of disaster leads to a disruption of business activities across 
regions (due to globalisation and high interconnectivity of business) and 
halts the economic output, taking several years to recover. These spill-over 
effects result in consequential amplifiers of this shock throughout the 
global economy and have an impact on both sides of an insurer’s balance 
sheet—the losses that would be paid out in claims and the devaluation and 
reduction in returns in relation to the financial assets. Due to multiple 
insurers as well as other parties being affected by such market events, those 
losses may ultimately remove billions of anticipated Gross Domestic 
Product (GDP) from economies across the world (Cambridge Centre for 
Risk Studies 2018).

Due to an increase in frequency, duration, and magnitude of man-made 
disasters, the need for a comprehensive approach to identify, assess, trans-
fer, and mitigate the risks arises today even more than in the past. 
Therefore, a proper estimation of their extent (frequency and severity) is 
important for the healthiness and future existence of insurance companies 
as well as the stability of the financial market.

Natural catastrophes are well understood. But unlike with natural haz-
ards and their sophisticated risk models, the empirical modelling of man- 
made disaster scenarios is very challenging (Clark et al. 2015, p. 5-2) and 
mainly results from two facts:

 1. Variety of loss triggers: The variety of loss triggers, such as explo-
sions, collisions, human errors, leads to an even more unpredictable 
set of possible catastrophic risks.

 2. Low frequency: It is often the case that sufficient historical claims 
data do not exist for man-made catastrophes (low frequency) to 
model those properly.

Nonetheless and especially because of their severity, there is a need to 
evaluate these risks, not only due to regulatory requirements, such as 
Solvency II, but also for internal purposes (e.g., planning or cost alloca-
tion) (Brüske et al. 2010, p. 134).

Due to the lack of empirical modelling approaches for man-made disas-
ter scenarios, the insurance industry uses expert-based approaches to assess 
the frequency and severity of man-made catastrophes. In many cases, a 
group of experts estimates the frequency and severity of specific pre- 
defined scenarios based on experience. Combined with the potential loss 
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volume (derived from the analysis of internal portfolio data), an overall 
assessment of these scenarios can ultimately be conducted. Expert assess-
ments are subjective views that result in relatively high uncertainties. This 
peculiarity is addressed as part of this research.

The ultimate goal of this research is to determine how the frequency 
and severity of tail events can be evaluated and modelled based on empiri-
cal data. Because of the variety of triggers that require separate modelling 
approaches, this research is focused on man-made fire/explosion disasters 
since recent events, such as the Tianjin harbor explosion,1 have shown the 
significance of this disaster type and their impact on the insurance indus-
try. Hence, empirical modelling shall be applied to develop a loss curve to 
ultimately reflect man-made fire/explosion disasters properly.

For this purpose, man-made disaster scenarios are defined and charac-
terised first. Then, the main section focuses on the modelling of man- 
made disaster scenarios based on historical claims data. Once the data 
collection and preparation are explained, different methods for developing 
appropriate frequency and severity curves for man-made fire/explosion 
catastrophes are explored by fitting and validating different potential dis-
tributions. Ultimately, an aggregate loss distribution is derived, illustrating 
the probability for man-made fire/explosion catastrophes. A conclusion 
closes the research work.

defInItIon and characterIstIcs of Man-Made 
dIsasters and theIr dIstInctIon to natural hazards

Broadly, catastrophes (or so-called disasters/tail events) describe extremely 
negative but very rare events resulting in a sudden and massive destruction 
of property, lives, environment, and/or economy. Thus, disasters are char-
acterised with high severity, but low frequency. They can either be caused 
by natural hazards or man-made events. Natural catastrophes refer to an 
event induced by natural forces (weather- or geological-related events) 
such as tropical cyclones, floods, tornadoes, hailstorms, wildfires, 

1 Tianjin harbor explosion is one of the largest global insurance losses in the history of 
man-made disasters. Current estimates assume insurance losses around USD 3.5 billion. In 
2015, a hazardous chemical explosion occurred at a warehouse storing dangerous and flam-
mable materials in the Port of Tianjin. The explosion caused enormous economic and human 
losses for enterprises and society. The review and analysis of the causes and effects of the 
explosion has triggered a wider discussion about risk management and the impact of man-
made disasters (Swiss Re 2016, p. 1).
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blizzards, earthquakes, tsunamis, volcanic eruptions, mudslides, or ava-
lanches. Conversely, man-made catastrophes refer to accidental or inten-
tional human actions. Hence, man-made disaster scenarios represent losses 
from single man-made catastrophic events that are deemed extreme and 
atypical but realistic (Banks 2009, pp. 17–22; Clark et al. 2015, p. 5-2).

Man-made disasters are characterised by various aspects that need to be 
taken into consideration (Thornton 2016, pp. 2–3):

• Variability: Man-made disasters can originate from various, very het-
erogeneous perils that show significant differing characteristics and 
treatment requirements. Hence, there is a broad variety of triggers.

• Geographical location: Some of the man-made disasters don’t have 
geographical boundaries. Hence, accumulations cannot be defined 
in terms of the location of the insured parties, as for example in the 
case of cyberattacks.

• Sparse Data: Due to the low frequency of man-made disasters, there 
is limited historical data available used to perform risk assessments.

• Constant Evolution: Because of the nature of man-made disasters 
being affected by people and behaviour, they constantly evolve which 
deteriorates the data reliability topic as past performances cannot be 
used as a guarantee for future results.

• Prevention: Other than natural catastrophes, man-made disasters can 
theoretically be stopped or even prevented.

Man-made disaster scenarios can be divided into different clusters 
because they show similar characteristics. Cluster groups can mainly be 
structured according to the trigger that is causing a man-made disaster; for 
example, fire/explosion or collision (Lloyd’s 2018). This contribution 
focuses on man-made fire/explosion disasters only as this particular man- 
made disaster cluster is of high importance, not only for insurance compa-
nies, but also for its significance and huge impact on the market.

data collectIon, PreParatIon, and analysIs

Data Collection and Preparation

Different external data sources that are used to build up a loss database for 
man-made fire/explosion disasters are first presented. To explicitly 
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capture man-made fire/explosion disasters, only the events that outline 
fire/explosion as triggers are considered for this exercise.

Reinsurance companies, acting as protectors for multiple insurance 
companies with regards to catastrophic risks, and similar reinsurance bro-
kers, acting as intermediaries in this context, as well as marketplaces like 
Lloyd’s, have access to a great variety of historical loss data due to their 
large portfolios. Therefore, the main reinsurance companies and brokers 
have been contacted to access their historical loss data for man-made fire/
explosion disasters. In addition, the internet is screened for publicly avail-
able data on man-made catastrophes; a Google research is carried out to 
further identify large fire/explosion losses. For instance, Marsh regularly 
publishes an official report about the 100 largest property losses—current 
data is available for the time period 1974–2017 (Marsh 2016, 2018). 
Furthermore, Marsh also presents reports with information about histori-
cal loss experiences that have affected the power generation industry in 
recent years (Marsh 2014; Marsh 2012). Reuters, for example, provides an 
overview of the world’s worst industrial accidents in the last 20  years 
(Cutler 2013). Additional insights are obtained through the list of histori-
cal explosions collected by the organisation Explosion Hazards Ltd. 
(ATEX Explosion Hazards Ltd. 2018). The database is built based on the 
various sources mentioned above.

Finally, it should be noted that it is quite challenging to access valuable 
data about historical fire/explosion catastrophe losses, especially for losses 
that occurred far in the past. Hence, it is almost impossible to build a 
complete database for large man-made fire/explosion losses worldwide. 
Nonetheless, the collected data as described above can be considered rep-
resentative since various data sources are combined.

First, the historical losses that would no longer occur under current 
conditions, for example, due to a change in production mode, are removed 
from the list of historical industry loss data for man-made fire/explosion 
catastrophes.

Second, some events did not have the insured loss amount on record 
and only the total economic loss. Thus, the insured loss amount has to be 
derived thereof, since the total economic loss also includes the uninsured 
loss portion. To achieve this, the insured loss share of the total economic 
loss is to be identified by using the time-series comparison `Insured vs 
Uninsured Losses 1970–2016’ from Swiss Re’s sigma 1/2018 report as a 
basis (Swiss Re Institute 2018b). For every particular year, the insured loss 
share is calculated by dividing the man-made Insured Loss by the 
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man- made Total Economic Loss. Whereas the annual Insured Loss is spe-
cifically available for man-made catastrophes, the Total Economic Loss 
figure also includes Natural Catastrophes (NatCat). Hence, the annual 
Total Economic Loss for man-made catastrophes is to be calculated by 
deducting the NatCat portion from the overall figure. For the year 2001, 
the Insured Loss Share is calculated without consideration of the World 
Trade Center catastrophe as its inclusion would distort the results because 
of the extreme severity of this event. This calculation results in an average 
man- made Insured Loss Share of 63.14% for the time period 1970–2016. 
A correlation factor of 0.93 confirms the significance of the linkage 
between the Total Economic Loss and the Insured Loss per year. 
Depending on the event year, the respective Insured Loss Share for this 
particular year is to be multiplied with the Total Economic Loss figure to 
estimate the Insured Loss amount for the single event.

The collected historical loss data are further prepared to accurately 
reflect the changing environment. First, the inflation measured by the 
consumer price index (2010 base year) needs to be taken into account to 
adjust past loss amounts for the current living standards. Consumer Price 
Index (CPI) is defined as the period-to-period proportional change in the 
prices of a basket of goods and services that are purchased by the reference 
population (OECD 2019). As the CPI for USD is available for a longer 
time period, the adjustment for inflation is to be rendered in USD. Hence, 
the USD loss amount values are extrapolated using the US CPI to give the 
current (2017) values. The World Bank Group is used as a reasonable 
source for this purpose (The World Bank Group 2019). To adjust the 
losses per event for inflation, an individual inflation factor per event year is 
calculated by dividing the level of CPI 2017 by the level of CPI for the 
particular event year. To derive the adjusted loss values for inflation to 
2017, the inflation factor is multiplied with the respective Gross Exposure 
value in USD (Swiss Re Institute 2018a).

In addition, different currencies also need to be converted to one cen-
tral currency for further processing. All data available are converted into 
EUR by using a fixed exchange rate, that is 31.03.2018 (date of conver-
sion) in this particular case.

Finally, all loss data from the different data sources are merged to a 
single overall fire/explosion loss database. To focus on catastrophic losses, 
all losses with a gross exposure/insured loss amount less than EUR 100 
million (inflated amount) are removed and will no longer be considered 
for the following analysis.

 M. WINDIRSCH



335

Data Analysis

The overall man-made fire/explosion disaster loss database shows 114 
fire/explosion losses with a gross exposure exceeding EUR 100 million 
for the time period 1974–2017.

Table 15.1 shows the major five man-made fire/explosion catastrophes.
The annual number of claims ranges from 0 to 7. The summarised 

measures for the 44-year sample of loss history of claim numbers are as 
follows (Gray and Pitts 2012, pp. 58–61):

mean 2.59, variance 3.83, standard deviation 1.96, min 0.00, max 7.00.
The average number of large fire/explosion losses is at 2.59 per year, 

but a negative trend can be observed, which predicts an average number 
of annual large fire/explosion losses between 3 and 4 at least for the next 
five years.

The size of claims ranges from EUR 101.29 million to EUR 2522.92 
million. The summary measures per single event for the 44-year sample of 
loss history of claim sizes (in million EUR) are as follows (Gray and Pitts 
2012, pp. 58–61):

mean 315.87, variance 111,624.8, standard deviation 334.10, min 
101.29, max 2522.92.

The total loss amount for large fire/explosion losses for the time period 
1974–2017 is roughly at EUR 36 billion. This leads to an average loss 
amount of EUR 316 million per event. The picture with regards to the 
annual loss amounts is very volatile with peaks in 1989 and 2011, which is 
illustrated in Fig. 15.1.

Large parts of the volatility can be explained by the differences regard-
ing the number of events per year as the average loss amount per event is 
quite stable.

Table 15.1 Major five man-made fire/explosion catastrophes

Event 
year

Location Event Gross insured loss 
in mn EUR

2011 Cyprus Vasilikos Power Station (Explosion) 2523
1988 North Sea Piper Alpha (Fire/Explosion) 1433
1989 Texas Polyolefin Plant Pasadena (Vapor Cloud 

Explosion)
1405

2017 Abu Dhabi Ruwais Refinery (Fire) 1379
2015 Hertfortshire Buncefield Oil Storage Depot (Fire) 1085
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Fig. 15.1 Gross large fire/explosion loss amounts in mn EUR

The predicted future large fire/explosion loss amounts result in an 
average annual fire/explosion loss amount between EUR 1.5 billion and 
EUR 2 billion at least for the next five years. Linking these results to the 
predicted average number of events per year, an average loss amount of 
EUR 500 million per event may be assumed.

Overall a negative trend, in frequency and severity, is observable that 
shall be considered during the risk modelling process.

develoPIng a loss curve for Man-Made fIre/
exPlosIon dIsasters based on hIstorIcal Industry 

loss data

Frequency Distribution

The Poisson distribution is the most commonly used distribution to 
model the frequency within a catastrophe model by giving the probability 
of a number of independent events occurring in a specific time frame 
(Mitchell-Wallace et al. 2017, p. 40; Wälder and Wälder 2017, p. 60). The 
Poisson family of distributions has a single parameter, called λ, which rep-
resents the mean of the distribution (Gray and Pitts 2012, p. 13).
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The random variable X has a Poisson distribution Pr(x) for x = 0, 1, 2… 
and parameter λ  >  0, if the following applies (Forbes et  al. 2011, 
pp. 152–156; Mitchell-Wallace et al. 2017, p. 40):

 
Pr

!
x

e

x

x

( ) =
−λλ

 
(15.1)

 
E X Var X[ ] = [ ] = λ

 
(15.2)

The negative binomial distribution is used when a dependence 
between events is known. As in the case of this research, independence 
between the events of the underlying data set may be assumed due to the 
nature and type of the risk (man-made catastrophe), only the Poisson dis-
tribution shall be used for modelling the frequency (Mitchell-Wallace 
et al. 2017, p. 41).

To fit the Poisson distribution Poi(λ), parameter λ is to be estimated 
first. For this purpose, the claims data for the time period 1974–2017 is 
classified according to the number of claims per year exceeding the thresh-
old of EUR 100 million. This is illustrated in Table 15.2.

Independent whether the Method of Moments or the Method of 
Maximum Likelihood is used, parameter λ can be derived by calculating 
the sample mean E[X] from the existing data set. The calculation can be 
summarised as follows:

 
Sample Mean = [ ] = = = =

=
∑E X x r fr
j

1

44
2 5909

0

7

. λ
 

Table 15.2 Number of claims per year

Number of claims per year r Frequency (number of years affected) fr

0 4
1 13
2 8
3 6
4 5
5 3
6 3
7 2
>7 0
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The fitted distribution is then calculated using the fitted frequency  
for r claims, ˆ Prf X rr = ∗ =( )44 , where X~Poi(2.5909). Hence, the  
fitted claims frequency is calculated by applying 
ˆ Pr

.

!

.

f x
e

xr

x

= ∗ ( ) = ∗
−

44 44
2 59092 5909

 to the respective annual number of 

claims (Gray and Pitts 2012, pp. 60–61).
Table 15.3 compares the observed with the fitted claims frequency for 

the 44-year sample period.
Based on the elaboration above, the following frequency distribution is 

used to describe the annual number of claims exceeding EUR 100 million:
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This is ultimately resulting in the graph as per Fig. 15.2.
Now, the goodness of fit of this distribution is assessed by using infor-

mative visual displays and appropriate test statistics to evaluate the ade-
quacy of the Poisson distribution.

A visual inspection is used to evaluate the quality of the frequency dis-
tribution (Forbes et al. 2011, pp. 69–73). For this purpose, the observed 
and expected frequency values are compared in Fig. 15.3.

The graph shows a quite harmonised course of both curves, even though 
the peak for the observed frequency curve is at one claim per year, while the 
fitted frequency has its peak at two claims per year. In addition, the upper 
tail of the observed frequency is heavier than the fitted frequency tail. 
Nonetheless, the flow of both curves overall fits. Hence from a visualisation 
point of view, the fitted frequency may be deemed appropriate.

Table 15.3 Observed versus fitted (Poisson distribution) frequency of claims

Number of claims Observed frequency Poisson fitted claims frequency

0 4 3.2979
1 13 8.5445
2 8 11.0690
3 6 9.5596
4 5 6.1920
5 3 3.2086
6 3 1.3855
7 2 0.5128
>7 0 0.0
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As a second and even more important approach, an appropriate test 
statistic is used to evaluate the quality of the frequency distribution. To 
perform the Pearson chi-square goodness-of-fit test, the null hypothesis 
regarding the frequency distribution is to be formulated first (Forbes et al. 
2011, pp. 69–73):
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There is no significant difference between the observed and the expected values 
with respect to the number of claims per year exceeding EUR 100 million.

To fulfil the minimum requirements in terms of fitted frequency,2 the 
cells for six and seven claims per year need to be combined as the expected 
frequency for seven or more losses per year does not exceed the value of 1 
(Gray and Pitts 2012, pp. 63–65). This combination leads to the results in 
Table  15.4 that can now be used to perform the Pearson chi-square 
goodness- of-fit test.

As one parameter is estimated in the fitting process of the Poisson dis-
tribution and as seven cells are used during calculation, the appropriate 
chi-squared distribution has parameter a = 5, degrees of freedom. Applying 
the outlined formula, the calculation looks as follows:

 
X

E

E
2

2

9 9598= ∑
−( )

=
Ο

.
 

This results in a p-value of 0.0764. As this value exceeds the signifi-
cance level of 0.05, the Poisson distribution may be deemed appropriate 
to reflect the claim size of the existing data set (GraphPad Software 2019).

Furthermore, comparing the calculated X2 value with the table value of 
the chi-squared distribution, that is, 11.07 for a = 5 degrees of freedom 
and a confidence level of 95%, results in the conclusion that the null 
hypothesis is accepted, as the calculated value is less than the table value. 

Table 15.4 Observed frequency versus adjusted fitted claims frequency

Number of claims Observed frequency Poisson fitted claims frequency

0 4 3.2979
1 13 8.5445
2 8 11.0690
3 6 9.5596
4 5 6.1920
5 3 3.2086
≥6 5 1.8984

2 A cell is only deemed usable if the expected frequency is not too small, meaning all cells 
need to reach E ≥ 1, and not more than 20% of the cells should have E < 5. If the frequencies 
are too low, neighbouring cells are combined.
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Therefore, it can be concluded that there is no significant difference 
between the observed and expected values.

To summarise, it can be observed empirically that the fit of the Poisson 
distribution is considered good as the frequencies expected under the fit-
ted model are not far away from the observed frequencies; in particular, 
the Poisson model is also capable of reproducing the tail of the observed 
data. The observed data shows 5 out of 44 years with six or more large 
fire/explosion losses exceeding EUR 100 million, while the Poisson fit 
manages an expected frequency of about 1.9—the tail of the fitted Poisson 
is slightly too light but still appropriate. Since the Poisson distribution is a 
member of a single-parameter family, its distribution is not very flexible, 
and its ability to fit an observed frequency distribution is restricted. 
Nevertheless for this purpose, the selected distribution seems to reflect the 
data set accordingly. Formally, the hypothesis that the number of claims 
follows a Poisson distribution is confirmed (Gray and Pitts 2012, 
pp. 63–65).

Severity Distribution

With respect to modelling the severity, Pareto, Weibull, or lognormal dis-
tributions are often used (Embrechts and Schmidli 1994, pp. 7–10).

To identify which of these distributions are worth modelling, the mean- 
excess function is considered because it describes the distribution in the 
tail quite good. As the area around the large quantiles is extremely risk 
relevant, it is important to determine a distribution that is close to the 
empirical distribution in this area. The mean excess function e(t) of a ran-
dom variable X with X ≥ 0 describes the expected exceedance of a given 
threshold and is defined as follows:

 

e u E X u X u
t u f t dt

P X u
u( ) = − >( ) =

−( ) ( )
>( )

∞

∫
: 

 

For the empirical case with x1, ≤ … ≤ xn large losses, the following 
applies:

 

e u
x u

x u
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n
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n
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>
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∑
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with ℩x > u being the indicator function that equals the value 1 for x > u 
and 0 in any other case (Brüske et al. 2010, pp. 137–138; Embrechts et al. 
2003, pp. 294–297; Embrechts and Schmidli 1994, p. 11).

For the existing data set, the mean excess function for different thresh-
olds t results in the graph as per Fig. 15.4.

Comparing this figure to the graphs of the mean excess function e(u) of 
some standard distributions indicates that all distributions as outlined 
above might potentially be capable of reflecting the empirical data 
accordingly.

First, the Pareto distribution will be considered, including two types: 
the one parameter Pareto and the three parameter Generalized Pareto 
distribution.

Due to their characterisation as heavy-tailed distributions, Pareto dis-
tributions are appropriate for modelling the severity of catastrophe losses 
(Brüske et al. 2010, pp. 137–138; Wälder and Wälder 2017, pp. 51–52). 
There are different types of Pareto distributions. The one parameter 
Pareto distribution is often used in catastrophe pricing. In general, the 
distribution has two parameters, although one is not a free parameter as it 
is defined upfront by the threshold t beyond which the distribution applies. 
For threshold >0, x > t and parameter a > 0, the one parameter Pareto 
distribution is given as follows:
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If the mean can be calculated based on the existing data set, parameter 
a is estimated using the following formula (Forbes et al. 2011, pp. 149–151; 
Mitchell-Wallace et al. 2017, p. 43):

 

a
E X

E X t
=

[ ]
[ ]−  

To fit the one parameter Pareto distribution Par(a, t), threshold t 
and parameter a are to be defined. Threshold t reflects the amount beyond 
which the distribution applies. As the existing data set only considers losses 
exceeding EUR 100 million, threshold t is defined as t = 100. To finally fit 
the one parameter Pareto distribution, parameter a is estimated. For this 
purpose, the sample mean is calculated as follows:

 
Sample Mean = [ ] = = =

=
∑E X x Xn
n

1

114
315 87

1

114

.
 

Based on the sample mean E[X]  =  315.87  and threshold t  =  100, 
parameter a is calculated as follows:

 

a
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Applying the parameter as defined above, the following severity distri-
bution is used to describe the claim size exceeding EUR 100 million:

 
f x

x
( ) = ∗1 4632 1001 4632

2 4632

. .

.
 

The cumulative distribution function is then determined as follows 
(Forbes et al. 2011, pp. 149–151; Mitchell-Wallace et al. 2017, p. 43):

 
F x

x
( ) = − 






1

100
1 4632.

 

This is ultimately resulting in the graphs as per Figs. 15.5 and 15.6.
To model a specific claim size section beyond a particular threshold, the 

three parameter Generalized Pareto distribution is commonly consid-
ered (Peng and Welsh 2001, pp. 53–54). For parameters k (shape param-
eter) with k ∈ R, σ (scale parameter) with σ > 0, and ξ (location parameter) 
with ξ ∈ R, the Generalized Pareto distribution is given as follows (Zea 
Bermudez and Kotz 2010, p. 1354):
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Fig. 15.5 Claim size probability density function (one parameter Pareto 
distribution)
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Fig. 15.6 Claim size cumulative distribution function (one parameter Pareto 
distribution)
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To fit the three parameter Generalized Pareto distribution (k, ξ, σ), 
parameters k, ξ and σ are to be defined first. Several methods exist in litera-
ture to estimate these parameters, but the Method of Maximum Likelihood 
is mostly used (Zea Bermudez and Kotz 2010, p. 1354). One of the major 
prerequisites to achieve reliable results through its application is a mini-
mum size sample of 500 data points. For smaller samples (like in the case 
of this research), estimators derived from the Method of Moments are 
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more reliable (Zea Zea Bermudez and Kotz 2010, p. 1354). The Method 
of Moments of parameters k, ξ, and σ can be derived by solving the related 
equations for the moment estimators (Hosking and Wallis 1987, p. 341; 
Singh and Guo 1995, p. 174):

First, the moment estimates of k is obtained by determining the sample 
skewness and solving the third equation (Hosking and Wallis 1987, 
p. 341):

 

ˆ .k
x

s
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 =

1

2 1
0 4469

2

2

 

Using parameter k = 0.4469, parameter σ can be calculated by solving 
the second equation (Singh and Guo 1995, p. 174):

 
σ = +( ) +( ) =S k k1 1 2 665 2683

0 5.
.

 

Using parameters k = 0.4469 and σ = 665.2683, parameter ξ can be 
calculated by solving the third equation:

 
ξ

σ
σ

= −
+

=x
k

314 8708.
 

Applying the parameters defined above, the following severity distribu-
tion may be used to describe the claim size exceeding EUR 100 million (as 
k ≠ 0 applies) (Zea Bermudez and Kotz 2010, p. 1354):
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The cumulative distribution function is then determined as follows (as 
k ≠ 0 applies):

 
F x x( ) = − − −( )
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As for catastrophic risks, extreme value distributions are often used and 
thus the Weibull distribution is next considered. The random variable X 
has a Weibull distribution for 0 ≤ x < ∞ and parameters a > 0 and β > 0, 
if the following applies (Forbes et al. 2011, pp. 193–201):
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To fit the Weibull distribution Wei(a, β), parameters a (shape param-
eter) and β (scale parameter) are to be defined first. Applying the Method 
of Maximum Likelihood requires the application of a numerical method as 
both parameters are unknown (Gray and Pitts 2012, p.  60). The log- 
likelihood function is given by:
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To maximise the log-likelihood function, an iterative procedure is used. 
The Newton-Raphson method is one common option to be applied 
(Nwobi and Ugomma 2014, p. 69; Pobočíková and Sedliačková 2014, 
p. 4141). The method starts with a function h defined over the sample 
data set n with values xi, the function’s derivative h′ and an initial guess β0 
for the value of β. To define a new estimate for the value of β, i.e. βk + 1, the 
following calculation is performed:
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The calculation is repeated until the value of βk converges, meaning that 
h(βk) becomes close to zero. Based on parameter β̂ , parameter α̂  can be 
calculated using the following formula (Zaiontz 2019):

 
a

v

n
= 







1

β

 

Applying the described methodology to the underlying data set results 
in the following parameter estimates:

 ˆ .a = 342 3824  

 
ˆ .β = 1 2269  

Applying the parameter as defined above, the following severity distri-
bution may be used to describe the claim size exceeding EUR 100 million 
(Forbes et al. 2011, pp. 193–201):
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The cumulative distribution function is then determined as follows:
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ultimately resulting in the graphs as per Figs. 15.7 and 15.8.
Conditional distributions may be considered to model the probability 

of a claim size exceeding a particular threshold. For this purpose, the log-
normal distribution is considered to reflect the conditional tail probabil-
ity. The random variable X has a lognormal distribution for x > 0 and the 
two parameters, μ and σ, if the following applies (Gray and Pitts 2012, 
pp. 23–36; Wälder and Wälder 2017, p. 50):
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Fig. 15.7 Claim size probability (Weibull distribution)
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Fig. 15.8 Claim size cumulative distribution function (Weibull distribution)
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, the distribution function is determined 

by using the log transformation to normal and the distribution func-
tion of the standard normal distribution Z~N(0, 1).
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To fit the lognormal distribution lognormal(μ, σ), parameters μ and σ 
are to be defined first. Applying the Method of Maximum Likelihood 
(MLE), the MLEs of μ and σ can be derived from the logged data as the 
sample mean and standard deviation of the log(xi) values. Their calcula-
tions can be summarised as follows (Gray and Pitts 2012, p. 36):
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Applying the parameter as defined above, the following severity distri-
bution may be used to describe the claim size exceeding EUR 100 million:
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The cumulative distribution function is then determined by using the 
log transformation to normal and the distribution function of the standard 
normal distribution Z~N(0, 1):
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Although the normal, exponential, and gamma distributions are widely 
used to model the severity of insurance losses, they will not be considered 
due to their thin-tailed characteristics.

Now, the goodness of fit of these distributions is assessed by using 
informative visual displays and appropriate test statistics to finally decide 
which distributions are selected for further processing.

A visual inspection is first used to evaluate the quality by comparing the 
empirical cumulative distribution function with the various fitted cumula-
tive distribution functions. For independent and identically distributed 
random variables X1, X2, …, Xn the empirical cumulative distribution 
function is defined as

 
F x

n
X xn i

n

i( ) = ≤( )=∑1 1


 

with ℩(Xi ≤ x) being the indicator function that equals the value 1 for 
Xi ≤ x and 0  in any other case (Gray and Pitts 2012, pp. 63–65). The 
result is shown in Fig. 15.9.

The graph shows a quite harmonised course of the empirical cumulative 
distribution function and the one parameter Pareto distribution 
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Fig. 15.9 Visualisation empirical versus fitted distribution functions
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function; however, the Weibull distribution function seems to be quite 
adequate too, even though it seems to overemphasise the lower tail. The 
graph already outlines that the Generalized Pareto and the lognormal 
distribution do not reflect the empirical data at all. From a visualisation 
point of view, the one parameter Pareto distribution may be deemed the 
most appropriate one, but as this is not completely clear, further tests are 
carried out.

Therefore, as a second and even more important approach, an appro-
priate test statistic is used to evaluate the quality of the severity distribu-
tions. To perform the Pearson chi-square goodness-of-fit test, the null 
hypothesis regarding the severity distribution is to be formulated first 
(Forbes et al. 2011, pp. 69–73):

There is no significant difference between the observed and the expected values 
with respect to the size of a single claim exceeding EUR 100 million.

The chi-squared test divides the observed claim sizes into k intervals 
and compares the observed counts (number of data values observed in 
interval i) to the number expected given the fitted distribution (number 
of data values expected in interval i) (Packová and Brebera 2015, p. 18). 
To fulfil the minimum requirements in terms of fitted frequency,3 the 
observed claim sizes need to be combined to specific categories (Gray and 
Pitts 2012, pp. 63–65).

The results are shown in Table 15.5 that now can be used to perform 
the Pearson chi-square goodness-of-fit test.

Already at a first glance (and hence similar to the visualisation test), it is 
obvious that only two distribution functions have the potential to pass the 
goodness-of-fit test. The Generalized Pareto Distribution fails completely 
in the lower tail (no claims expected for loss volumes lower than EUR 300 
million, even though the observed data show a major frequency in this 
area) and overemphasises the upper tail with a huge frequency for claims 
with loss volumes greater than EUR 1 billion. The lognormal distribution 
behaves even worse as it only covers claims with loss volumes in the area 
between EUR 100 million and EUR 150 million.

3 A cell is only deemed usable if the expected frequency is not too small, meaning all cells 
need to reach E ≥ 1, and not more than 20% of the cells should have E < 5. If the frequencies 
are too low, neighbouring cells are combined.
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Table 15.5 Observed versus expected frequency for different claim size 
categories

Claims 
interval

Observed 
frequency

Expected 
frequency 

Pareto

Expected 
frequency 

GPD

Expected 
frequency 
Weibull

Expected 
frequency 

Lognormal

100–150 39 51.0145 34.7268 112.3157
150–200 24 21.6403 11.2988 0.4650
200–250 12 11.5173 10.2141 0.2794
250–300 3 6.9845 9.0512 0.1848
300–350 6 4.6128 5.9320 7.9029 0.1304
350–400 4 3.2357 8.1419 6.8200 0.0964
400–450 1 2.3739 7.7907 5.8291 0.0737
450–500 6 1.8032 7.4425 4.9413 0.0580
500–750 8 4.8410 32.1014 14.8917 0.1662
750–1000 0 2.0535 23.9067 5.5745 0.0764
1000–1250 2 1.0929 16.2274 1.8987 0.0424
>1250 4 2.8305 12.4575 0.8509 0.1115

Therefore, only the one parameter Pareto as well as the Weibull distri-
bution function will be considered for further analysis.

As for the one parameter Pareto distribution, only one parameter is 
estimated in the fitting process, and 12 categories are used during calcula-
tion, the appropriate chi-squared distribution has parameter a = 10 degrees 
of freedom. Applying the above outlined formula, the calculation looks as 
follows:

 
X

E

E
2

2

33 5817= ∑
−( )

=
Ο

.
 

This formula results in a p-value of 0.0002. As this value by far falls 
below the significance level of 0.05, the one parameter Pareto distribution 
may not be deemed appropriate to reflect the claim size of the existing 
data set (GraphPad Software 2019).

Furthermore, comparing the calculated X 2 value with the table value 
of the chi-squared distribution, that is 3.940 for a = 10 degrees of free-
dom and a confidence level of 95%, results in the conclusion that the null 
hypothesis is denied, as the calculated value is higher than the table value. 
Hence, it can be concluded that there is a significant difference between 
the observed and expected values.
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As for the Weibull distribution, two parameters are estimated in the fit-
ting process and 12 categories are used during calculation, the appropriate 
chi-squared distribution has parameter a = 9 degrees of freedom. Applying 
the outlined formula, the calculation looks as follows:

 
X

E

E
2

2

42 4882= ∑
−( )

=
Ο

.
 

This formula results in a p-value of 0.0001. As this value by far falls 
below the significance level of 0.05, the Weibull distribution may not be 
deemed appropriate to reflect the claim size of the existing data set 
(GraphPad Software 2019).

Furthermore, comparing the calculated X2 value with the table value of 
the chi-squared distribution, that is 3.325 for a = 9 degrees of freedom 
and a confidence level of 95%, results in the conclusion that the null 
hypothesis is denied, as the calculated value is higher than the table value. 
Hence, it can be concluded that there is an extremely significant difference 
between the observed and expected value.

To summarise, it can be observed empirically that the fit of none of the 
reviewed severity distributions is good because the expected frequencies 
for particular claim size intervals under the fitted model in some parts are 
far away from the observed frequencies; in particular, these distributions 
are not capable of reproducing the tail of the observed data. Formally, the 
hypotheses that the size of claims has a one parameter Pareto or Generalized 
Pareto or Weibull or lognormal distribution is to be denied. The conclu-
sion is that none of these distributions provides an adequate description of 
the variation in the claim sizes that has been observed.

Even though none of the distribution properly fits, the one parameter 
Pareto distribution, providing the best fit, will be considered going for-
ward to allow the development of an approximation of the aggregate loss 
distribution for large fire/explosion catastrophes.

Aggregate Loss Distribution

The aggregate loss distribution is determined by the frequency and sever-
ity distribution and describes the probability of the annual expected total 
loss resulting from large fire/explosion losses with individual loss volumes 
exceeding EUR 100 million (Cottin and Döhler 2013, p.  27). Both 
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distributions have been modelled on an individual basis and now need to 
be combined through an approximation method (Gondring 2015, 
p.  539). As both, claim size and claim number, are random variables 
expressed by a distribution, the collective model of risk aggregation is to 
be applied (Cottin and Döhler 2013, pp. 88–92). For the following, it is 
worth highlighting that claim size and claim number will be deemed inde-
pendent. For the purpose of aggregation, compound distributions may be 
considered. For a known claim number distribution function pN(t) and a 
known claim size distribution function F(x), the aggregate loss distribu-
tion is given as:

 
G x t p t p t F x

v

v
v,( ) = ( ) + ∑ ( )∗ ( )

∞

=
∗

0

1

 

with F∗v(x) being the v-fold convolution of the distribution function 
F(x) that is calculated as follows:

 
F x F x F x F F x Kk k∗ ∗ ∗ −( ) = ( ) ( ) = ( )( ) >1 1 1, *( ) for 

 

Determining the aggregate loss distribution is quite challenging as the 
simplified approximation method via Panjer recursion cannot be used: 
The main prerequisite that the claim size X can only have values 0, h, 2h, 
3h, …, does not apply for the existing data set. This challenge can only be 
solved with the support of statistical applications, such as Matlab or Solver. 
Using the command ‘PsiPareto(1.4632, 100, PsiCompound(PsiPois
son(2.5909)))’ the graphs of the aggregate loss distribution can be 
derived.

Because an explicit calculation of the aggregate loss distribution is not 
available for the distributions used, Monte Carlo simulation is an accept-
able alternative to derive the aggregate loss distribution (Betram and 
Feilmeier. 1987; Mikosch 2009). For this, a series of incidental claim 
numbers N1, N2, N3, … is to be created based on the predefined claim 

number distribution, that is, Pr
.

!
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x
e

x
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( ) =
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bution, that is, F x
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.
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For every i = 1, 2, …, n the annual aggregate loss S(i) is calculated as 
follows:

 
S Xi

j
i

j

Ni( ) ( )= ∑
 

This formula results in the following aggregate loss distribution 
function:

F x
m x

ns ( ) ≈ ( )
 with m(x) being the number of all S(i).

If simulating in Excel, the inverse of the respective cumulative distribu-
tion functions is to be determined to define the incidental values for both, 
claim number and claim size. Based on the simulated annual aggregate 
losses, the aggregate loss distribution can be derived through applying the 
fitting process. Due to the permanent changing values in Excel, only a 
snapshot can be discussed in the following by using the particular values 
from one simulation cycle as a basis to fit the distribution (Wälder and 
Wälder 2017, pp. 83–85). Due to limited computer capacity, a simulated 
sample of size 1000 is considered appropriate. When analysing the simu-
lated data, it is quite obvious that the Exponential distribution might be a 
good fit.

To fit the Exponential distribution Exp(λ), parameter λ is estimated. 
For this, the sample mean is calculated (Gray and Pitts 2012, pp. 25–26). 
The calculation can be summarised as follows:

 
Sample Mean = [ ] = = =

=
∑E X x Xn
n

1

1000
787 2676

1

1000

.
 

Based on the sample mean E[X] = 787.2676 parameter, λ can be calcu-
lated as follows:

 

λ =
[ ]

= =
1 1

787 2676
0 0013

E X .
.

 

Applying the parameter as defined above, the following aggregate loss 
distribution is used to describe the annual aggregated loss volume for 
large fire/explosion losses exceeding EUR 100 million:
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f x e ex x( ) = =− −λ λ 0 0013 0 0013. .

 

The cumulative distribution function for x > 0 is then determined as 
follows:

 
F x e ex x( ) = − = −− −1 1 0 0013λ .

 

This formula is ultimately resulting in the graphs as per Figs.  15.10 
and 15.11.

To confirm the validation of the developed aggregate loss distribution, 
a visual inspection is used by comparing the empirical with the fitted 
cumulative distribution function (Gray and Pitts 2012, pp. 65–67). The 
results are shown in Fig. 15.12.

The graph shows a quite harmonised course of the empirical cumulative 
distribution function and the exponential distribution function, although 
it seems to underestimate the upper tail. From a visualisation point of 
view, the exponential distribution may be deemed appropriate.

To confirm the visual fit, an appropriate test statistic is used to evaluate 
the quality of the aggregate loss distribution.

Fig. 15.10 Aggregate loss probability density function (Exponential 
distribution)
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Fig. 15.11 Aggregate loss cumulative distribution function (Exponential 
distribution)

Fig. 15.12 Visualisation empirical versus fitted aggregate loss distribution 
function
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The chi-squared test divides the observed annual aggregate losses into 
k intervals and compares the observed counts (number of data values 
observed in interval i) to the number expected given the fitted distribu-
tion (number of data values expected in interval i) (Packová and Brebera 
2015, p.  18). To fulfill the minimum requirements in terms of fitted 
frequency,4 the observed annual aggregate losses need to be associated to 
specific categories (Gray and Pitts 2012, pp. 63–65).

As for the exponential distribution, only one parameter is estimated in 
the fitting process and 36 categories are used during calculations, the 
appropriate chi-squared distribution has parameter a = 34 degrees of free-
dom. Applying the previously outlined formula, the calculation is ren-
dered as follows:

 
X

E

E
2

2

136 3417= ∑
−( )

=
Ο

.
 

This results in a p-value lower than 0.00001. As this value by far falls 
below the significance level of 0.05, the exponential distribution may not 
be deemed appropriate to reflect the aggregate loss distribution of the 
existing data set (GraphPad Software. 2019).

Furthermore, comparing the calculated X2 value with the table value of 
the chi-squared distribution, that is between 18.493 for a = 30 degrees of 
freedom and 26.509 for a = 40 degrees of freedom for a confidence level 
of 95%, results in the conclusion that the null hypothesis is denied, as the 
calculated value is higher than the table value. Hence, it can be concluded 
that there is an extremely significant difference between the observed and 
expected values. This result is not surprising since the underlying claim 
size distribution also failed the goodness-of-fit test, but was still used for 
further processing in the Monte Carlo simulation because it still reflects 
parts appropriately.

To summarise, it can be observed empirically that the fit of the created 
distribution is not good; in particular, this distribution is not capable of 
reproducing the tail of the observed data. Formally, the hypothesis that 
the aggregate loss distribution has an exponential distribution is to be 

4 A cell is only deemed usable if the expected frequency is not too small, meaning all cells 
need to reach E ≥ 1, and not more than 20% of the cells should have E < 5. If the frequencies 
are too low, neighbouring cells are combined.
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denied. The conclusion is that this distribution does not provide an ade-
quate description of the variation in the annual aggregate loss volumes 
that has been observed.

Although there seems to be no appropriate loss curve reflecting the 
severity and frequency for man-made fire/explosion disasters based on a 
historical data set, the developed loss curves (frequency—Poisson distri-
bution/severity—one parameter Pareto distribution) may still be useful to 
the insurance industry. They can be integrated into the existing expert- 
based assessment processes for man-made disaster scenarios as they at least 
fit for specific sections and may support the estimation process from a 
quantitative/scientific perspective.

conclusIon

Due to the potential of man-made disasters to not only jeopardise an indi-
vidual insurer’s solvency position if the risk is not properly managed, but 
also to trigger market shocks and subsequent economic downturns, the 
need for a comprehensive approach to identify, assess, transfer, and miti-
gate the risk arises today even more than in the past. The objective of this 
research was to determine how the frequency and severity of such tail 
events can be evaluated and modelled based on empirical data. Due to the 
variety of triggers that require separate modelling approaches, this research 
was focused on man-made fire/explosion disasters since recent events, 
such as Tianjin harbor explosion, have shown the significance of this disas-
ter type and their impact on the insurance industry and other markets.

In a broader perspective, it can be confirmed that the empirical model-
ling of man-made disaster scenarios remains very challenging since limited 
historical claims data exist (although different data sources were combined 
and a historical large fire/explosion loss database was developed) to model 
man-made catastrophes properly. For the time period 1974–2017, 114 
large fire/explosion losses with a loss volume exceeding EUR 100 million 
were identified with an overall loss volume of EUR 36 billion. Based on 
the loss data, frequency, and severity, distributions were modelled on an 
individual basis and then combined through a Monte Carlo simulation to 
derive an aggregate loss distribution reflecting the industry loss data (col-
lective risk model). For both, typical distribution types that are commonly 
used in the large/catastrophic loss modelling space were considered. In 
terms of the claim number, the Poisson distribution was fitted and a posi-
tive goodness-of-fit test was performed. In terms of the claim size, various 
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distributions—one parameter Pareto, Generalized Pareto, Weibull, and 
lognormal distribution were fitted, but for all of these distributions the 
goodness-of-fit test was negative. Thus, although an appropriate distribu-
tion for the claim number was identified, no proper distribution could be 
created in terms of claim size, which mainly refers to the significant stan-
dard deviation with regards to the loss volume.

Therefore, it is not surprising that the aggregate loss distribution, for 
which an exponential distribution was used, fails in the goodness-of-fit 
test as well. This result emphasises the challenges outlined at the begin-
ning of this contribution and furthermore confirms that an assessment of 
man- made catastrophes is currently not possible if this is purely based on 
empirical modelling techniques by using historical loss data. Thus, the 
developed catastrophe loss curves should not be regarded as a stand-alone 
solution to the problem of quantifying tail events, but may be used as an 
additional tool for assessing man-made catastrophes since they provide an 
indication of the estimated loss potential. Accordingly, the quantitative 
outcome of this research should be integrated in the existing expert-based 
assessment approaches to ultimately create a more powerful and sophisti-
cated methodology for evaluating man-made catastrophes. Since model-
ling approaches evolve, especially in times of predictive analytics, research 
on modelling man-made disasters should be continued and alternative 
approaches should be further explored.
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