
Chapter 9
The DELTA Theory: Understanding
Discrete Event Systems

Abstract The DELTA theory, also called EE system theory, is a theory about the
construction and operation of systems in general. The realm of systems is divided into
three regions: organised simplicity, organised complexity, and unorganised complexity.
The definition of a (homogeneous) system is presented as a triple (ℂ,,), where ℂ
(composition) is a set of elements of some category,  (environment) is a set of elements
of the same category as the elements in ℂ, and  (structure) is a set of interaction bonds
among the elements in ℂ and between them and the elements in  . Examples of
categories are: physical, biological, and social. Organisations belong to the category of
social systems. Three sorts of conceptual models are distinguished: black boxes, grey
boxes, and white boxes. The well-known finite automaton or finite state machine, and the
discrete event system are examples of grey boxes. For a thorough discussion of the grey
box and the white box, the PRISMA model is introduced. In this meta model, systems
are considered to be discrete event automata, operating in a linear time dimension. Its
formalised ontological model is particularly suited to study organisations. In the PRISMA
grey box, three ways of mutual influencing between (the elements of) systems are
distinguished, called activating, restricting, and impeding. The PRISMA white box
allows one to conceive organisations as prismanets: networks of processors, channels,
and banks. Prismanets are comprehensive formalised systems, open to formal analysis
and to implementation in software. They can conveniently be expressed in prismanet
diagrams. To illustrate the PRISMA model, two example prismanets are presented: one
regards a traffic control system, and the other a car rental organisation. Next, the generic
transaction prismanet is discussed. It is the understanding of the complete transaction
pattern from the PSI theory in the PRISMA model. Lastly, the quality aspects of
PRISMA models are discussed, as well as the importance of the PRISMA model for
software engineering.

9.1 Introduction

The theory in this chapter is labeledΔ-theory. The Greek capital letter is pronounced
as DELTA, which is an acronym for Discrete Event in Linear Time Automaton. It is
a theory about the construction and operation of systems, in particular of discrete
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event systems. In Chap. 4, the DELTA theory is classified as an ontological theory,
meaning that it is about the nature of things. It serves foremost as a solid foundation
for the other theories in this category: the PSI theory (Chap. 8), the ALPHA theory
(Chap. 11) and the OMEGA theory (Chap. 10). In addition, the DELTA theory
offers three sorts of meta models for studying systems: the black-box model, the
grey-box model, and the white-box model.

Section 9.2 (foundations) consists of three subsections. Section 9.2.1 provides an
introduction in systems theory and in systems thinking, including the ontological
system concept that is adopted in this book. In Sect. 9.2.2, the three basic sorts of
conceptual models are presented and discussed. The most primitive one is the black-
box model; it doesn’t contain any knowledge about the system’s construction and
the operation. This property makes it only suitable for studying possible function
(s) and (external) behaviour. In contrast, the white-box model of a system contains
all knowledge about its construction. It serves to study the construction of a system
(i.e. the constituting parts and their interactions) and its operation (i.e. the effects of
the interaction in the course of time). The grey-box model is a black-box model, but
with an internal state. For the class of discrete event systems, a specific (white-box)
meta model is presented and discussed in Sect. 9.2.3, called the PRISMA model. It
allows one to build comprehensive, coherent, consistent, and concise white-box
models, fully abstracted from realisation and implementation. These models are
called essential prismanets. Their corresponding grey-box models are fully
formalised, and therefore suited for formal analysis and for (discrete event) simula-
tion. The PRISMA white-box and grey-box model is illustrated by a technical
system (traffic control) and a social system (a part of a car rental company).

Section 9.3 (elaborations) starts with the presentation and discussion of the
generic transaction prismanet, which is the expression of the complete transaction
pattern (cf. Chap. 8) in the PRISMA model. Next, the quality aspects of PRISMA
models are discussed. The section ends with a discussion of the implications of the
PRISMA model for the field of software engineering. Section 9.4 (discussions)
contains a comparison of the prismanet and the Petri net.

9.2 Foundations

9.2.1 Systems Thinking

9.2.1.1 Introduction

Systems thinking is an approach to problem solving which goes hence and forth
between a global, holistic view on a system, and a detailed, specific view on its
constituting parts. It originates from several areas, including General Systems
Theory [1], Cybernetics [2], and System Dynamics [3]. Unfortunately, the practice
of systems thinking suffers often from a lack of precision, notably regarding the
notion of system itself. Instead of precise definitions, many textbooks only provide
characterisations, such as “A system is a set of related elements with some purpose”,
and “The whole is greater than the sum of its parts”. Taking the first one, our first
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comment is that, according to the TAO theory (cf. Chap. 7), systems don’t have
purposes; only human beings do. The second comment is that proponents of this
statement fail to separate the function and the construction perspective on systems. The
second assertion (the whole is more than its parts) points to the distinctive property of
systems as opposed to aggregates, but it has to be made more precise. In order to be
called a system, its elements must act upon each other, in such a way that the
trajectories, or processes that they cause to happen, are dependent on the mutual
influencing of the elements, that is, that they are different from what these processes
would have been if the causing elements would not interact. Or, as Bunge puts it, the
assertion is a fuzzy version of the insight that “. . . the components of a concrete system
are linked, whence the history of the whole differs from the union of the histories of its
parts” [4] (Chap. 1). If the relationships between the elements are only passive, the
thing is not a system but an aggregate. A well-known example of something that is an
aggregate, but often called a system, is the Periodic Table of Mendeleev.

Weinberg [5] divides the realm of systems into three regions: organised simplic-
ity, organised complexity, and unorganised complexity. An adapted version of his
figure 1.9 is presented as Fig. 9.1. The region of organised simplicity comprises
systems that have relatively few elements and mostly a great deal of structure.
Systems in this region can generally be studied by (mathematical and logical)
analysis. Examples are machines and other technical systems. The region of
unorganised complexity comprises systems that have a very large number of ele-
ments with mostly few structural relationships. Because of the high level of ran-
domness, systems in this region can generally be studied by statistics. Examples are
populations of animals or plants, and vessels of gas molecules. In between these two
is the region of organised complexity. It comprises systems that are too organised for
statistics and too complex to be studied by analytical methods. This region is the core
of enterprise engineering (EE): all enterprises belong to it. It is the ambition of the
Ciao! Network to shift the border between organised simplicity and organised
complexity, as indicated by the magenta curve in Fig. 9.1, and thus to make more
systems, in particular enterprises, amenable to analytic study.
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9.2.1.2 The Ontological System Concept

As a first step in reducing the complexity of systems, we make a distinction between
homogeneous and heterogeneous systems. Every non-trivial system is a heteroge-
neous system, which means that it is some, possibly complicated, combination of
homogeneous systems. For example, a human being is a physical system but also a
chemical and a biological one, and as a whole it is also a social individual. In order to
address its complexity, Bunge considers a heterogeneous system as a layered nesting
of homogeneous systems [4]; he suggests studying the composing homogeneous
systems first, leaving the study of the complex heterogeneous totality for later.
Hereafter, whenever the term “system” is used, a homogeneous system is meant,
according to the following definition [4]:

A (homogeneous) system can be conceived as a triple (ℂ,,), where:

ℂ is a set of elements, all belonging to the same category,

called the composition of the system;

 is a set of elements of the same category as the elements in ℂ,

called the environment of the system;

 is a set of influencing bonds among the elements in ℂ and between them and the
elements in ,

called the structure of the system.

Figure 9.2 depicts this definition. The red- and purple-coloured boxes are ele-
ments in ℂ, and the green ones are elements in . The purple-coloured closed curve
depicts the boundary of the system. It is defined as the subset of ℂ for whose
elements it holds that they are connected by structural links with elements in , in
correspondence with [6]. The elements in ℂ that are not connected to elements in 
are called kernel elements. Hereafter, we will call the triple (ℂ,,) the construction
of a system.

There are three important comments to be made about the system definition
above. The first one is that a structural link between two elements means that one
of them acts upon the other, or that both do, as discussed in [7]. The second one is
that every element in ℂ must act upon or be acted upon by at least one other element
in ℂ, so that all elements in ℂ are directly or indirectly connected. Consequently,
isolated elements, or isolated clusters of connected elements, cannot exist; their
presence would violate the basic notion of system. The third comment is that the
elements in ℂ and  are of the same category. Examples of system categories are:
physical, chemical, biological, and social. Only systems of the same category can
interact, systems of different categories cannot. For example, if you have something
in your mind that you want to ‘tell’ your computer in order to not forget it, it is
ultimately your homogeneous physical system (which is a part of your heteroge-
neous entirety) that interacts with the homogeneous physical system of the hetero-
geneous computer system, in particular through the physical forces that your fingers
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exert on the keys of the keyboard. The pressing of a key causes the generation of a
train of electrical signals that carry the code of the key that is pressed. This sequence
of signals is transmitted to etc. etc.

Based on the provided definition of system, the next definition of subsystem is in
force [4]: A thing x is a subsystem of a system y if and only if x is a system, and if:

ℂ xð Þ⊆ ℂ yð Þ
 xð Þ⊆ ℂ yð Þ∖ ℂ xð Þð Þ [  yð Þð
 xð Þ⊆  yð Þ

The blue-coloured closed curve in Fig. 9.2 depicts the boundary of a subsystem of
the system whose boundary is depicted by the purple closed curve. As a corollary,
every system may have many subsystems, and can be subsystem of many systems.
Note that one cannot just view something as a system. Only systems, according to
the definition above, can be ‘viewed’ as a system. All other things can’t.

Both its elements and its subsystems are called components of a system. Conse-
quently, the composition of a system comprises both its elements, so the members of
ℂ, and all subsystems that one likes to distinguish. Therefore, the composition of a
system may be said to consist of elementary components and composite compo-
nents, keeping in mind that the latter are always built up of elementary components.
As a corollary, the structural bonds between two composite components are actually
structural bonds between elements in one composite component and elements in the
other.

Likewise, the environment of a system comprises both its elements, so the
members of , and all subsystems, built up of these elements, that one considers
useful to distinguish. In addition, the structural bonds between composite
components in ℂ and  are actually structural bonds between elements in ℂ and
elements in .

construction = kernel + boundary + environment + structure

kernel
element

boundary
element

external
element

environmental
element

Fig. 9.2 Depiction of the
construction of a system and
of a subsystem
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9.2.2 Conceptual Models of Concrete Systems

9.2.2.1 Introduction

According to the MU theory (cf. Chap. 6), a conceptual model of a concrete system
is a conceptualisation of the system within an appropriate conceptual schema or meta
model. The conceptual model is said to be an instance of the conceptual schema.
Hereafter, we use the word “model” to refer to a model (instance) as well as to a meta
model, following the current (confusing) practice in conceptual modelling.

We will distinguish three sorts of conceptual models: black-box models, grey-box
models, and white-box models. They will be discussed in Sects. 9.2.2.2, 9.2.2.3, and
9.2.2.4, respectively. Their distinction is related to the fundamental difference
between the function and the construction perspective on things, as explained in
the TAO theory (cf. Chap. 7). Figure 9.3 shows the construction perspective on a car
(right), and a particular function perspective, namely the driving function (left). Both
models are extensively discussed in Chap. 7.

White-box models are suited for studying the construction and the operation of
systems. The white-box model on the right side of Fig. 9.3 is actually only the
decomposition of a car in its subsystems, sub-subsystems, etc., disregarding the
structure of the system. It resembles a Bill-of-Material (BoM). Black-box models
are suited for studying the behaviour of systems and their possible function(s).
The black-box model on the left side of Fig. 9.3 is the decomposition of the
driving function of a car into subfunctions, sub-subfunctions, etc. Grey-box
models are black-box models with an internal state. Examples will be given in
Sect. 9.2.2.3.

With reference to Fig. 9.1, the only thing one can do in the region of unorganised
complexity is black-box modelling, and the best one can hope for is to find
correlations between (functional) variables. In the region of organised simplicity,
one has the option to apply white-box modelling, and thus to discover the causal
relationships between system acts and observable effects. Consequently, one can
acquire a deeper understanding of a system, not only from the construction perspec-
tive, but also from the function perspective.
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powering steering lighting

igniting regulating direction
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Fig. 9.3 The function and the construction perspective on cars
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9.2.2.2 The Black-Box Model

A black-box model of a concrete system is a conceptual model of the system that
disregards completely the construction and the operation of the system (this explains
the name “black box”). Therefore, black-box models are only suited to study the
behaviour of systems, expressed in relationships between the functional variables
that one chooses to study. Well-known examples of black-box models are economic
models. They are commonly expressed in differential equations concerning a num-
ber of (economic) variables.

Basically, the knowledge of a concrete system that is contained in a black-box
model is the relationship between the input flow i and the output flow o in the course
of time (t). In formal notation: o ¼ B(i, t). Both flows are time series of values of
(functional) variables. Figure 9.4 (left side) exhibits the common graphical repre-
sentation of a black-box system. The behaviour function B is often not or only
partially known, meaning that one only knows that the output flow o at time t is
somehow the effect of the input flow i before t. It is always possible to decompose a
black-box model into a network of connected black-box models (cf. Chap. 7). A
well-known example of such a functional decomposition is the control model [8], as
applied for example in cybernetics and biology.

i o

i

o

Fig. 9.4 The black-box model (left) and a decomposition (right)
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A widely used technique for representing black-box models, including their
decomposition, is SADT (Structured Analysis and Design Technique), developed
by Douglas T. Ross [9], and included in many structured analysis and design
methods. Figure 9.5 shows an example of an SADT activity diagram. It is important
to recognise that the diagram represents only a functional understanding of the
activity of growing vegetables. There is no hint whatsoever to the construction of
a system that is able to exhibit this behaviour. As another example, it is not very
difficult to make a functional model of a coffee machine along the lines of Fig. 9.5.
In fact, we all have some functional (black-box) model of the systems we daily use,
like coffee machines, ATMs, and cars. As is illustrated for cars in Sect. 9.2.2.1 and in
Chap. 7, there is no straightforward mapping between functional (black-box) models
and constructional (white-box) models, because they are of a fundamentally different
nature.

9.2.2.3 The Grey-Box Model

The grey-box model is a black-box model with an internal state [4]. Consequently,
the behaviour is now determined by three variables: the flow of input items i, the
flow of output items o, and the state of the system s, next to time (t). The behaviour
function is formally defined as: o ¼ B(i, s, t). Figure 9.6 exhibits the common
graphical representation of a grey-box model (left side) and of a possible decompo-
sition (right side).

A well-known specialisation of the grey-box model is the finite automaton (FA),
often also called finite state machine (FSM). A finite automaton is a mathematical
model of a system with discrete inputs and outputs, and with discrete states. By this
is meant that the system is at any point in time in some state, and that the state space
is finite (or denumerable infinite). State changes or transitions occur on an input from
a finite (and commonly small) set of possible inputs. Usually, there is an initial state
and there are one or more final or terminal states. FAs are mostly associated with the
way in which they are commonly represented, namely the state transition diagram
(STD), which we will use in Fig. 9.8.

Another well-known specialisation of the grey-box model is the discrete event
system (DES). A discrete event system is a discrete-state, event-driven conceptual
system (cf. Chap. 6). The notion of discrete-state is similar to the notion of state in an
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Fig. 9.6 The grey-box model (left) and a decomposition (right)
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FA. By event-driven is meant that the system responds to the occurrence of particular
input events [10]. The number of distinct events may be denumerable infinite. Many
concrete systems, in particular logistic systems, information systems, and organisa-
tions, can be conceived as discrete event systems. The notion of discrete event
system is often considered to be identical to the notion of grey-box model
[4]. This is not true, however, because in a grey-box model one does not require
that the input to which the system responds, consists of discrete events. As an
example, the variables in economic (grey-box) models are mostly not discrete but
continuous.

Typical problems that are studied by means of discrete event models are stochas-
tic systems, like customers in supermarkets and cars at fuel stations. To get deeper
insight into the behaviour function, discrete event simulation is often applied [10].

The grey-box model of a discrete event system can mathematically be defined as a
tuple (B, O, I, S), where:

B is a partial function, called the behaviour function
O is a set of items, called the output base
I is a set of items, called the input base
S is a set of items, called the state base
B is defined as: ℘I � ℘S ! ℘(O � )

The (mathematical) extension of B is a set of rules of the form (I, S, R), where:

I is the current input; I ⊆ I
S is the current state; S ⊆ S
R is the response: a set of pairs (o, d ) with o 2 O and d 2 ; d is a time delay; its

effect is that o becomes existent at the point in time t ¼ Now + d, where Now is
the time of executing the rule.

(Note: for an explanation of the mathematical symbols, see Sect. 9.2.3.1.)

Illustration: Traffic Control System
To illustrate the grey-box system, more specifically the FA, we take a traffic control
system (TCS) at a simple crossover, as shown on the left side in Fig. 9.7. Suppose
that you are asked to produce first a black-box model and then a grey-box model of
the TCS. The black-box model that you may arrive at, after having observed the
traffic control system for some time, is shown to the right of it. Theoretically, there
are nine possible outputs: R1R2, R1G2, R1Y2, G1R2, G1G2, G1Y2, Y1R2, Y1G2,
and Y1Y2, where R denotes red light, G denotes green light, Y denotes yellow light,
1 denotes Cycle 1, and 2 denotes Cycle 2. Four of them do not occur however, and
are therefore struck out above. The five remaining outputs are shown on the right
side in Fig. 9.7. The arrows indicate the order in which the outputs occur. The
additional knowledge of the behaviour function B, which you can deduce from
observing the traffic lights and the traffic, is that the transition R1G2 ! R1Y2 is
influenced by arriving and/or waiting traffic in Cycle 1 (but you don’t know exactly
how). Likewise, the transition G1R2 ! Y1R2 is influenced by arriving and/or
waiting traffic in Cycle 2.
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In order to produce a grey-box model, one has to conceive an internal state of the
system. With this new meta model in mind, one is able to acquire the next, advanced,
knowledge (cf. Fig. 9.8). If the output R1G2 is produced, it will stay for at least a
minimum amount of time. Let us call this the (standard) move time for Cycle
2, abbreviated to MT2. As long as there is no traffic waiting in Cycle 1, this output
is prolonged. However, as soon as the (standard) move time for Cycle 2 has passed,
and there is traffic waiting for red light in Cycle 1, the output R1Y2 will be produced.
This output appears to hold on for a fixed amount of time, which we will call the stop
time for Cycle 2 (ST2). After the stop time has elapsed, the light in Cycle 2 becomes
red. However, also the light in Cycle 1 remains red for some fixed amount of time.
Let us call this amount of time the clear time of Cycle 2 (CT2), meaning that it is
meant for clearing the crossing from traffic in Cycle 2. The output R1R2 is produced.
After the clear time has elapsed, the output G1R2 is produced. And then the whole
story is repeated, with the cycles exchanged. In order to cope with these observa-
tions, you distinguish the next different states: W1M2, W1P2, W1S2, C1W2,
M1W2, P1W2, S1W2, and W1C2, where W stands for “waiting”, M for “(standard)
moving”, P for “prolonged (moving)”, S for “stopping”, and C for “clearing”. The
state transitions occur in the order as exhibited in Fig. 9.8. At the top of the figure, the
outputs (traffic lights) are shown that correspond with the states of the system.

Cycle 1

Cycle 2

R1 Y2 R1 G2 

R1 R2 

Y1 R2 G1 R2 

Fig. 9.7 Picture of the TCS
(left) and its black-box
model (right)

Fig. 9.8 STD of the grey-box model of the TCS
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The choice between transiting from W1M2 to W1P2 or to W1S2 depends on the
presence of traffic in Cycle 1. If traffic arrives in the state W1M2, then the transition
to W1S2 is made, but only after MT2 time units have elapsed since the beginning of
the state W1M2. Otherwise the transition to W1P2 is made. As soon as traffic in
Cycle 1 arrives in this state, the transition to W1S2 is made immediately. The
system remains in this state for ST2 time units. Then, the transition to C1W2 is
made, which takes CT2 time units. After this time has elapsed, the transition to
M1W2 is made. Similar observations hold for the transitions from M1W2 to P1W2
or S1W2.

9.2.2.4 The White-Box Model

The white-box model of a system is a conceptual model that allows one to study the
construction of the system, thus the triple (ℂ, , ) as discussed in Sect. 9.2.1.2, as
well as its operation, that is, the way in which the elements in ℂ and the elements in
 interact, through the bonds in  . Consequently, one is able to reveal the
‘mechanism’ that makes it ‘tick’. The behaviour that the ‘mechanism’ causes to
occur can be studied with a grey-box (or black-box) model of the system, as we have
seen above.

For a proper discussion of the white-box system, we introduce the notion of
world. With every white-box model of a concrete system, a world is associated,
where the acts of the (elements of the) system have their effect. At any point in time,
the world of a system is in some state. A state is simply defined as a set of facts. A
state change is called a transition. It consists of the addition and/or removal of one or
more facts.

The state of a white-box system differs from the state of a corresponding grey-box
system. For a grey-box system, the state concept is an instrument to better under-
stand the behaviour of the system. For a white-box system, the state concept is an
instrument to better understand its operation. The relationship between behaviour
and operation is that the behaviour of a concrete system (which can be studied by
using a black-box or grey-box model) is brought about by the operation of its
construction (which can only be studied by using a white-box system).

Next to the state of the world of a system, there is the state of the system itself. By
the state of a system at a point in time t we understand the particular triple (ℂ, , ) at
time t (cf. Sect. 9.2.1.2). In the course of time, the composition or the environment or
the structure may change. Within EE, such changes are considered to be the effect of
acts by another system, whose world contains facts that represent the elements in ℂ,
, and . This other system is commonly called the governance system of the system
under consideration [11, 12]. In the DELTA theory, we confine ourselves to studying
systems in some system state, that is, we assume a fixed construction (ℂ,  , ).
Proper illustrations of the white-box model will be provided after the PRISMA
model is discussed (in the next section).
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9.2.3 The PRISMA Model

9.2.3.1 Introduction

In the next subsections, we will present and discuss a meta model for discrete event
systems called the PRISMA model, which builds on the SMART model [13]. It
comprises a grey-box and a white-box (meta) model. The PRISMA model is suited
for studying discrete event systems, both technical systems, thus systems in which
the elements are non-human, and social systems, that is, systems in which the
elements are human. An important subclass of social systems is organisations, as
discussed in the PSI theory (cf. Chap. 8). Therefore, one may consider the PRISMA
model as a (mathematical-logical) formalisation of the PSI theory.

In addition, it appears that many technical systems are actually social systems,
only technically implemented. Well-known examples are (automated) enterprise
information systems (cf. Chap. 11), but also ATMs, elevator control systems,
vending machines, web shops, and traffic control systems. Consequently, these
systems can be very well understood and studied within the PRISMA model.

We distinguish three ways in which systems influence each other, called activat-
ing, restricting, and impeding. By activating is understood that a system creates
events to which other systems respond by creating state changes and/or events.
When responding to an event, a system takes the current state of its world into
account. The state of a system’s world can be changed by the system itself, but also
by other systems. This passive way of mutual influencing is called restricting, since
the effect is that a system’s response space is restricted (note that a system is not
‘aware’ of state changes until it is activated—only then will it ‘see’ the new state).
By impeding is understood that a system creates events for whose occurrences other
systems have to wait before they can continue what they were doing. Because of the
three ways of mutual influencing, systems within the PRISMA model are said to
communicate asynchronously.

In the remainder of this document, set theory and logic are applied when
considered useful. For the convenience of the reader, we list below the symbols
that are used, with their meanings.

x in general, small letters denote elements (of sets)
X in general, capital letters denote sets
2 membership of a set; x 2 A means that x is an element of A
=2 negation of membership; x =2 A means that x is not an element of A
∅ empty set; A ¼ ∅ means that for all x: x =2 A
⊆ subset; A ⊆ B means that A is a subset of B; for all x: x 2 A ) x 2 B
[ union; A [ B is the set of elements x for which holds: x 2 A or x 2 B
\ intersection; A \ B is the set of x for which holds: x 2 A and x 2 B
\ set difference; A\B is the set of elements x for which holds:

x 2 A and x =2 B
Δ symmetric set difference; A Δ B ¼ (A \ B) [ (B \ A)
� Cartesian product of a set; A�B is the set of tuples (x, y)

with x 2 A and y 2 B
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℘ powerset; ℘A is the set of all subsets of A
f: A ! B (mathematical) function f with domain A and range B.
x variable to denote a type (of acts or facts);

a type is a unary predicate in logic, for example, person or dog.
X variable to denote the class that is the extension1 of the type x
X variable to denote the union of the extensions of all x 2 X
^ logical conjunction (also denoted by and)
_ logical (inclusive) disjunction (also denoted by or)
ct( f ) creation time of fact f
et( f ) effectuation or event time of fact f

For a proper discussion of the PRISMA model, a discrete linear time dimension is
adopted, which means that we consider the time axis to be divided into distinct time
units of arbitrary but equal length.2 Every such time unit on the time axis is called a
point in time. Events only occur on (or in) these points in time, and they take place
instantaneously, that is, within the duration of the point in time. An event is defined as
the becoming existent (or ceasing to exist) of a fact at some point in time. As
mentioned above, facts have a creation time (ct) and an effectuation or event time (et).

The notion of a discrete linear time scale, for any time unit, can be formalised in
the following way:

 the (ordered) set of real numbers
 the (ordered) set of natural numbers
 :  !  the (ordered) set of discrete points in time; we will use tn as a

shorthand for (n); the time difference between any tn + 1 and tn is
the same; it is called the time unit (tu)

Now the current point in time; Now 2 , so Now is always some tn
 the set of (positive) time durations; for every d 2  , it holds that

d ¼ k � tu with k 2 

From now on, we mean by a point in time t an element tn 2  .

9.2.3.2 The PRISMA Grey-Box Model

The distinction that we have made in the PSI theory (cf. Chap. 8) between the things
that constitute its core, thus its production (or P-) acts/facts, and the things that serve
to make them happen, thus the coordination (or C-) acts/facts, appear to have a
general applicability. Therefore, the same distinction is made in the PRISMA model.
The only difference is that they are now not connected in larger structures of
conversations or transactions.

1The extension of a type is the set of objects that conform to the type (cf. Chap. 5).
2The duration or length of the applied time unit will depend on the application domain. Therefore, it
may vary from nanoseconds or microseconds (for technical systems) to hours or days (for
enterprises).
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The PRISMA grey-box model can best be considered as an extended ‘normal’
grey-box model, as discussed in Sect. 9.2.2.3. The extension is that it comprises
process dependency next to state dependency. It means that the response to an input
item does not only depend on the current state, but may also depend on the
occurrences of (past or future) input or output events.

A prisma can formally be defined as a tuple (P, R, I, S, M, A), where:

P is a partial function, called the performance function
R is a set of C-fact types, called the reaction base
I is a set of C-fact types, called the impediment base
S is a set of P-fact types, called the state base
M is a set of P-fact types, called the mutation base
A is a set of C-fact types, called the action base

P is defined as: ℘((A [ I) ) � ) � ℘ (S � ) ! ℘ (M � ) � ℘ (R � )

At every point in time, a prisma disposes of a set of agenda.3 An agendum is a
pair (c, t), in which c is a C-fact and t is its event time. The C-fact belongs to the
extension4 of the action base or the impediment base. The set of agenda c with et
(c) ¼ t, is called the trigger at time t (note: commonly the trigger will be a singleton
set). Considering impediments as potential agenda allows us to deal with impedi-
ments in a simple way: we consider them to be agenda, similar to real agenda, that is,
to elements in the extension of the action base. If the settling of a real agendum, that
is, a pair (c, t), in which c is an element of A, has to wait for an impediment, the
prisma will skip this agendum and settle the impediment, once it has occurred. The
having occurred of the real agendum then becomes a state condition for settling the
impediment event.

A prisma responds to a trigger instantaneously, so within the duration of the point
in time t. As the effect of settling a trigger, a finite set of P-events is created, called
the mutation, and a finite set of C-events, called the reaction. The set of P-fact types,
whose instances can belong to a mutation, is called its mutation base. The set of
C-fact types, whose instances can belong to a reaction, is called the reaction base.

The response to a trigger is generally dependent on the state of the P-world, which
is a set of P-facts. The set of P-fact types, instances of which can belong to a state, is
called the state base of the prisma.

The (mathematical) extension of P is a set of performance rules of the form (A, S,
M, R) where:

A is the agenda; A ⊆ (A [ I) � 
the trigger at time t is {f 2 A: et( f ) ¼ t}

S is the state; S ¼ {( f, t) with f 2 S and t 2 }
M is the mutation: a set of pairs (m, d ) with m 2 M and d 2 
R is the reaction: a set of pairs (r, d ) with r 2 R and d 2 

3The word ‘agenda’ is the plural form of the Latin word ‘agendum’, meaning ‘thing to be done’. So,
agenda are ‘to do’ items.
4The extension of a type is the set of objects that conform to the type (cf. Chap. 5).
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The delay d in a pair (m, d) or (r, d) is an occurrence delay; it means that the P-fact
m or the C-fact r becomes effective at the event time t ¼ Now + d, where Now is the
point in time at which the performance rule is executed. As said, {f 2 A: et( f ) ¼ t} is
commonly a singleton set, thus a set containing only one element. Note that the state S
at time t comprises existing facts (with et( f ) � t) and future facts (with et( f ) > t).

On the basis of their formal definition, the mutual influencing of prismas as
discussed in Sect. 9.2.3.1, can be described more precisely as follows.

A prisma1 activates a prisma2 if R1 \ A2 6¼ ∅ (so if R1 and A2 overlap). If this is
the case, then all C-events in a reaction of prisma1, of which the C-fact belongs to this
intersection, are instantly added to the agenda of prisma2. If prisma1 and prisma2 are
identical, we speak of self-activation. Through self-activation, periodic activities can
be modelled conveniently. If this is the case, the period equals the settlement delay.

A prisma1 restricts a prisma2 ifM1 \ S2 6¼∅ (so ifM1 and S2 overlap). If this is
the case, then every P-event in a mutation of prisma1 of which the P-fact belongs to
this intersection, affects the state of prisma2, at its event time. The way in which the
state of prisma2 is affected by a mutation is defined as follows. If S1 is the state of
prisma2 before applying a mutation M (at its event time), and S2 is the state
afterwards, then S2 ¼ S1 Δ M. (Δ is the symmetric set difference, cf. Sect. 9.2.3.1).
If prisma1 and prisma2 are identical, we speak of self-restricting. This is the classical
concept of the state of a world (where only the system itself can make changes).

A prisma1 impedes a prisma2 ifR1 \ I2 6¼∅ (so ifR1 and I2 overlap). If this is the
case, then all C-events in a reaction of prisma1 of which the C-fact belongs to this
intersection, are instantly added to the impediments of prisma2. Consequently,
prisma2 may have to wait with responding to an action until one or more impediments
have occurred. Self-impeding is ignored, because it doesn’t seem to make sense.

If the action base A of a prisma consists of one fact type, the prisma is called
elementary. The action bases of elementary prismas are disjoint. A composite prisma
is a collection of elementary prismas. The specification of a composite prisma in
terms of its constituting elementary prismas is simple: every component of the tuple
(P, R, I, S, M, A) of a composite prisma is equal to the set-theoretic union of the
corresponding components of the constituting elementary prismas.

Illustration: Traffic Control System
Let us take the Traffic Control System from Sect. 9.2.2.3 to exemplify the PRISMA
grey-box model. From the STD in Fig. 9.8 and the accompanying explanation, we
deduce the next components of the tuple (P, R, I, S, M, A):

A ¼ {let_pass(Cycle)}
I ¼ ∅
S ¼ {phase(Cycle), move_time(Cycle), stop_time(Cycle), clear_time(Cycle)}
R ¼ ∅
M ¼ {phase(Cycle)}

In this specification, the variable Cycle has the value cycle1 or cycle2. The value
of phase(Cycle) is W1M2 or W1P2 or W1S2, etc. let_pass(Cycle) is the external
trigger to which the prisma responds (cf. Fig. 9.8). A phase change takes place if the
mutation of the prisma contains a new P-fact of the type phase(Cycle). Next to the
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current phase of each of the cycles, the state also includes the current values of the
parameters (move_time, stop_time, and clear_time) for each of the cycles.

Table 9.1 exhibits the performance function P that can be deduced from the grey-
box model in Sect. 9.2.2.3. The agenda column contains the triggers to settle. The
state column contains logical propositions concerning the state of the production
world, and the mutation column contains the state changes to be effectuated.

The table presents the situation that traffic is arriving in cycle1. A similar table
applies for the situation that traffic is arriving in cycle2, by exchanging cycle1 and
cycle2. Occurrence delays are specified by a value between “[” and “]”. If no
occurrence delay is specified, the default value is assumed (which is 1 time unit).
The abbreviations have the following meanings: MT (Cycle) stands for the standard
move time in Cycle, ST (Cycle) for the stop time in Cycle, and CT (Cycle) for the
clear time in Cycle. The meaning of the delay D is explained later on.

The trigger to be settled is let_pass(cycle1). If the current state (at time t)
comprises the facts <phase(cycle1) ¼ waiting> and <phase(cycle2) ¼ moving or
prolonged_moving>, both with an event time in the past or present (et( f ) � t), and
there is not already a future stopping for cycle2 (with et( f ) > t, caused by another
car), then the rule is executed; otherwise nothing happens. The response of executing
the rule is the specified mutation. It says that the phase of cycle2 will become
‘stopping’ after D time units. The delay D is defined as follows: D ¼ max (0, (MT
(cycle2) � (Now � ETM)), where ETM ¼ et(phase(cycle2) ¼ moving), the point in
time at which the phase of cycle2 started to be moving. The mathematical expression
is clarified in Fig. 9.9. If the current time is Now1, then the delay is the time
represented by the blue line. If the current time is Now2, then the delay is zero.

In addition, the mutation contains the state changes phase(cycle2) :¼ waiting
[D + ST(cycle2)] and phase(cycle1) :¼ moving [D + CT(cycle2)]. These occurrence
delays are also clarified by Fig. 9.9.

Table 9.1 The performance function of the TCS

agenda state mutation

let_pass(cycle1) phase(cycle1) ¼ waiting
phase(cycle2) ¼ moving or
prolonged_moving) and
there is no future event
phase(cycle2) ¼ stopping)

phase(cycle2) :¼ stopping [D]
phase(cycle2) :¼ waiting [D + ST(cycle2)]
phase(cycle1) :¼ moving [D + CT(cycle2)]

Fig. 9.9 Explanation of the time delay D
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9.2.3.3 The PRISMA White-Box Model

The influencing relationships among a collection of prismas can be made more
comprehensible if the collection is conceived as a prismanet. A prismanet is a
white-box system, wherein the construction (ℂ,, ) comprises three kinds of
components: processors, banks, and channels. The components in the composition
ℂ and in the environment  are processors. The structure  consists of banks and
channels and of the various links that connect them with the processors in ℂ and in .

Processors are the ‘motors’ of prismas. The motor of an elementary prisma is an
elementary processor, and the motor of a composite prisma is a composite proces-
sor. The operation of a processor is fully determined by the performance function
P of the corresponding prisma (i.e. the prisma of which it is the motor).

Channels are used to transmit and keep C-events. A channel Cn is determined by
its transmission base TB, which is the set of C-fact types whose instances it can keep
and transmit. The set of C-events in a channel at time t, is called the contents of the
channel at time t. The channel metaphor runs as follows. Suppose processor Pi
creates at time t the pair (c, d ), where c is a C-fact and d is the occurrence delay. The
metaphor then is that Pi ‘puts’ c in a channel at time ct(c) (the creation time of c) and
that c ‘arrives’ at a processor Pj at the event time et(c)¼ t + d. On arrival, it is settled
instantaneously. Every transmitted C-event remains in the channel, because it may
be an impediment for one or more (other) prismas. If the transmission base consists
of one C-fact type, the channel is called a single channel. The transmission bases of
the single channels in a prismanet are disjoint. A collection of single channels is
called amultiple channel. The transmission base of a multiple channel is the union of
the transmission bases of the composing single channels.

Banks are used to keep P-events. A bank Bk is determined by its contents base
CB, which is the set of P-fact types whose instances it can contain. The set of
P-events in the bank at some time is called the contents of the bank at that time. If the
contents base consists of one P-fact type, the bank is called a single bank. The
contents bases of the single banks in a prismanet are disjoint. A collection of single
banks is called a multiple bank. The contents base of a multiple bank is the union of
the contents bases of the composing single banks.

A channel Cn is called an action channel of processor Pj if the transmission base
of the channel is a subset of the action base of the prisma of which processor Pj is the
motor, so if TB(Cn)⊆ Aj. The settling of an action may be impeded by one or more
C-events or P-events. It means that the processor has to wait until these events have
occurred. A Processor Pj is impeded by C-events in a channel Cn if the transmission
base of the channel is a subset of the impediment base of the prisma of which
processor Pj is the motor, so if TB(Cn) ⊆ Ij. If so, the channel Cn is called an
impediment channel of processor Pj.

As the result of settling an action, processor Pi creates a (possibly empty) set of
P-events, called the mutation. They are put in every bank Bk of which the contents
base is a subset of the mutation base of the prisma whose motor is processor Pi, so of
which CB(Bk) ⊆ Mi. If so, bank Bk is called a mutation bank of processor Pi.
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In addition, processor Pi creates a (possibly empty) set of C-events, called the
reaction. They are put in every channel Cn of which the transmission base is a subset
of the response base of the prisma whose motor is processor Pi, so of which TB
(Cn) ⊆ Ri. Consequently, channel Cn is called a reaction channel of processor Pi.

When dealing with a C-event, a processor Pj may take P-events that are kept in
one or more banks into account. This holds for bank Bk if its contents base is a subset
of the state base of the prisma of which processor Pj is the motor, so if CB
(Bk) ⊆ Sj. Consequently, bank Bk is called an inspection bank of processor Pj.

The operation of a processor must be understood as follows. Processors con-
stantly loop through their operating cycle, of which the cycle time is equal to or less
than the time unit (cf. Sect. 9.2.3.1). In every cycle, the processor ‘sees’ the current
trigger (if any) and brings about a response by evaluating the corresponding
performance rule.

9.2.3.4 The Prismanet Diagram

The understanding of a prismanet may be enhanced by expressing it in a prismanet
diagram (cf. Fig. 9.10).

Processors, banks, and channels are respectively represented by boxes, diamonds,
and disks, as shown in the top part of the figure.

Channels are connected to processors by four kinds of links: reaction links, action
links, inspection links, and wait links. A reaction link connects a processor with one
of its reaction channels. An action link connects a processor with one of its action

Fig. 9.10 Legend of the prismanet diagram
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channels. An inspection link connects a processor with one of its inspection chan-
nels. A wait link connects a processor with one of its impediment channels. Banks
are connected to processors by two kinds of links: mutation links and inspection
links. A mutation link connects a processor with one of its mutation banks. An
inspection link connects a processor with one of its inspection banks.

From a prismanet diagram, one can directly deduce that for an elementary prisma
with processor Pj as its motor:

• The action base Aj is the union of the transmission bases of its action channels.
• The impediment base Ij is the union of the transmission bases of its impediment

channels.
• The state base Sj is the union of the content bases of its inspection banks and the

transmission bases of its inspection channels.
• The reaction base Rj is the union of the transmission bases of its reaction

channels.
• The mutation base Mj is the union of the content bases of its mutation banks.

Illustration: Traffic Control System
To illustrate the PRISMA white-box model for the traffic control system (TCS),
Fig. 9.11 exhibits its prismanet diagram. The light-grey coloured frame represents
the Scope of Interest (SoI). It means that one is exclusively interested in the
operation of the processors within the SoI. They are therefore called internal pro-
cessors, whereas the composite processors CP1 (traffic participant) and CP2 (traffic
control manager) are called environmental processors. To show this, their boxes are
coloured light-grey. Channel C1 is a reaction channel of CP1 and an action channel
of P1. Bank B1 is a mutation bank and an inspection bank of P1, as well as an
inspection bank of CP1. The banks B2, B3, and B4 are mutation banks of CP2 and
inspection banks of P1.

The traffic participants take note of the phase of each cycle (by looking at the traffic
lights) and generate let_pass commands (by passing a sensor in the road). There is a
traffic control manager, who is able to change the control parameters of each of the
cycles: move time, stop time, and clear time (through updates of their values).

Fig. 9.11 Prismanet
diagram of the TCS
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Processor P1 responds to let_pass commands by bringing about the appropriate phase
changes, according to the performance function that is exhibited in Table 9.1.

From the diagram in Fig. 9.11, together with the discussion in Sect. 9.2.3.2 and
the explanation in Fig. 9.9, one can easily verify the following specifications of the
action base, the impediment base, the state base, the mutation base, and the reaction
base of the prisma with motor P1:

A1 ¼ TB(C1) ¼ {let_pass(Cycle)}
I1 ¼ ∅
S1 ¼ CB(B1) [ CB(B2) [ CB(B3) [ CB(B4) ¼ {phase(Cycle),

move_time(Cycle), stop_time(Cycle), clear_time(Cycle)}
M1 ¼ CB(B1) ¼ {phase(Cycle)}
R1 ¼ ∅

In the specification of the performance function of the TCS (cf. Table 9.1), P-facts
are referred to by a particular value of the variable Cycle, for example, as in “phase
(cycle1) ¼ moving”. In the specification of a contents base, only the variable is
mentioned, as in CB(B1)¼ {phase(Cycle)}. To be complete, one should also add the
value class for each variable. As an example, these are the value classes for the
variables that are used in the case TCS:

phase(Cycle) : {moving, prolonged_moving, stopping, waiting}
move_time(Cycle) : 
stop_time(Cycle) : 
clear_time(Cycle) : 

9.3 Elaborations

9.3.1 Specification of the PRISMA Model of Rent-A-Car

In this section, we use a slightly adapted version of the case Rent-A-Car
(cf. Chap. 15) for illustrating the application of the PRISMA model to organisations.
We will first discuss the white-box model and then the grey-box model.

9.3.1.1 The White-Box Model of Rent-A-Car

Figure 9.12 exhibits the prismanet diagram of a part of the Rent-A-Car organisation.
It regards the settling of requests for concluding a rental contract, according to the
PSI theory (cf. Chap. 8) and the generic transaction prismanet in Fig. 9.13.

The system consists of six elementary processors, eight single channels, three
multiple banks, and one single bank. The interface with the environment consists of

178 9 The DELTA Theory: Understanding Discrete Event Systems

https://doi.org/10.1007/978-3-030-38854-6_15
https://doi.org/10.1007/978-3-030-38854-6_8


the action channel C1, the reaction channel C2, the impediment channel C3, the
mutation bank B1, as well as the multiple inspection banks MB1, MB2, and MB3.

The processors outside the SoI, so the environmental processors, have been
omitted, for the sake of simplicity. For the same reason, the revocation options are
left out (cf. Chap. 8). Moreover, the multiple banks MB1, MB2, and MB3 are
connected through inspection links with the border of the SoI. This is a convenient
way to express that they are inspection banks of all internal processors. Their content
bases are respectively denoted as CB(MB1), CB(MB2), and CB(MB3).

From the diagram in Fig. 9.12, one can easily deduce the specification of the
components A, I, S, R, and M, of the corresponding internal prismas. As an
example, we provide the specifications of prisma1 (with processor P1 as its motor):

A1 ¼ TB(C1) ¼ {request ([rental] is completed)}
I1 ¼ ∅
S1 ⊆ CB(MB1) [ CB(MB2) [ CB(MB3)
M1 ¼ ∅
R1 ¼ TB(C2) [ TB(C4) [ TB(C6) ¼ {request ([rental] is paid),

decline ([rental] is completed), promise ([rental] is completed)}

Note. Without knowing precisely the performance function P1, we cannot be
more specific about S1 than only stating that it is a subset of some other set. The
reader is challenged to formulate S1 precisely after the specification of P1 is
presented in Sect. 9.3.1.2.

Fig. 9.12 Prismanet diagram of a part of the Rent-A-Car organisation
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9.3.1.2 The Grey-Box Model of Rent-A-Car

On the basis of Fig. 9.12, we specify in Table 9.2 the performance function of
prisma1 (with motor P1). As the specification language, we use a table form and a
‘structured English’ like language, which resembles the one that is applied in [14].

Table 9.2 Specification of prisma1 in the Rent-A-Car organisation

action request ([rental] is completed)

with starting_day[rental] : DAY

ending_day[rental] : DAY

renter[rental] : PERSON

driver[rental] : PERSON

car_group[rental] : CAR_GROUP

pick-up_location[rental] : BRANCH

drop-off_location[rental] : BRANCH

impediments Ø

state starting_day[rental] rental_horizon (year(starting_day [rental] )) and
ending_day[rental] rental_horizon(year (starting_day [rental] )) and
ending_day[rental] ≥ starting_day[rental] and
duration[rental] ≤ max_rental_duration(year (starting_day [rental] ))

and
#{cars in car_group[rental] on starting_day[rental] } > 0

mutation

reaction

Ø

promise ([rental] is completed)

request ([rental] is paid)

action request ([rental] is completed)

with starting_day[rental] : DAY

ending_day[rental] : DAY

renter[rental] : PERSON

driver[rental] : PERSON

car_group[rental] : CAR_GROUP

pick-up_location[rental] : BRANCH

drop-off_location[rental] : BRANCH

impediments Ø

state starting_day[rental] rental_horizon (year(starting_day [rental])) or
ending_day[rental] rental_horizon(year (starting_day [rental])) or
ending_day[rental] < starting_day[rental] or
duration[rental] > max_rental_duration(year (starting_day [rental]))

or
#{cars in car_group[rental] on starting_day[rental]} ≤ 0

mutation

reaction

Ø

decline ([rental] is completed)
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The first action rule in Table 9.2 is performed when there is a request for
completing a rental contract (first line of the action part). Note that, according to the
PSI theory (cf. Chap. 8), there may be more than one request regarding the same rental
in the course of time, but then it is a different event. Commonly, it will also have
different properties (specified in the ‘with’ clause). There is no impediment for
performing the first action rule, which is indicated by the symbol “Ø” in the imped-
iments part. If the state condition is satisfied, so if its logical evaluation yields the
value true, then the payment of the rental will be requested. The mutation is empty.

The state condition in the second action rule is the negation of the one in the first
rule, whereas the action part and the impediments part are the same as in the first rule.
If the state condition is satisfied, so if its logical evaluation yields the value true, then
the concluding of the rental will be declined. Otherwise, nothing happens. The
mutation is empty. Note that always either the first or the second action rule is
executed successfully.

9.3.2 The Generic Transaction Prismanet

According to the PSI theory (cf. Chap. 8), C-acts/facts and P-acts/facts occur in
universal patterns, called transactions. In Fig. 9.13, the complete transaction pattern
from the PSI theory is reproduced. In order to express it in the PRISMA model, we
need the prismanet whose corresponding diagram is shown in Fig. 9.14. It is called
the generic transaction prismanet.

Fig. 9.13 The complete transaction pattern
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There are nine processors that take care of the acts in the responsibility areas of
the initiator in Fig. 9.13. They are labeled “Pin1” through “Pin9”. Next, there are ten
processors that take care of the acts in the responsibility areas of the executor in
Fig. 9.13. They are labeled “Pex1” through “Pex10”. The transmission bases of the
channels are indicated by the abbreviated names of the intentions of the C-facts that
they may transmit and contain: rq for request, pm for promise, etc. The four multiple
channels, indicated with a “?”, are (unknown) channels through which C-events are
transmitted that trigger the connected performer to revoke [rv] one of the four basic
C-facts in the transaction process: (rq), (pm), (st), and (ac).

The specifications of the transmission bases of the three multiple channels MC1,
MC2, and MC3 are as follows: TB(MC1) is the union of TB(C1) through TB(C8); TB
(MC2) is the union of TB(C2), TB(C3), TB(C4), and TB(C6); TB(MC3) is the union
of TB(C3), TB(C4), and TB(C6). They correspond with the revocation conditions
that hold for the complete transaction pattern. The contents base of bank B1 consists
of the independent P-fact type in the product kind, and all of its dependent P-fact
types. The multiple channel, labeled “in”, is included to complete the prismanet. Its
transmission base consists of C-fact types to whose instances processor Pin1 may
respond by creating a request and putting it in channel C1.

The operation of the generic transaction prismanet can briefly be explained as
follows. If Pin1 is triggered by an item in channel “in”, it puts a request in channel
C1. In response, Pex1 creates either a promise, put in channel C2, or a decline, put in

Fig. 9.14 The generic transaction prismanet
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channel C5. In response to the decline, Pin2 may create a renewed request, put in C1.
If this is not a feasible option, processor Pin4 may create a [rv (rq)], in response to the
decline (which is also contained in channel “?”), and put it in channel C7.

Processor Pex2 responds to a promise by creating a state fact, which is put in
channel C3. Processor Pin3 responds to it by either an accept, put in channel C4, or a
reject, put in channel C6. In the latter case, processor Pex3 may respond by creating a
renewed state, put in C3. If this is not a feasible option, processor Pex6 may create a
[rv (st)], in response to the reject (which is also contained in channel “?”), and put it
in channel C9. In response to an accept in C4, processor Pex4 adds the corresponding
independent P-fact and its dependent P-facts to the contents of bank B1. This reflects
the postulation in the PSI theory (cf. Chap. 8) that the product of a transaction is
created at the moment that the accept fact is created. At the same time, this
arrangement reflects the postulation that the executor of a transaction is the owner
of the product, and thus the primary source to inquire about it. For each of the four
revocation patterns, it holds that there is an unknown trigger in the channel that is
indicated by “?”, and that there is a wait event in channel MC1, MC2, MC3, or C4.
The wait condition is that the status of the main process (the middle part of Fig. 9.13)
must respectively be “requested or further”, “promised or further”, “stated or
further”, and “accepted”. If the revoke of a request, promise, state, or accept is
allowed, a corresponding C-fact will be put in respectively channel C11, C12, C13,
and C14, which are action channels of respectively Pin8, Pex9, Pex10, and Pin9. These
processors revert the main process to the statuses as indicated by the complete
transaction pattern in Fig. 9.13. Note that if a refuse act is performed, the main
process stays in the status it was in. No processors respond to refuse events. As said,
ending up in a refuse state means that nothing has changed in the main process.

If the single processors Pin1 through Pin9 are combined in the composite proces-
sor CPin, and if the processors Pex1 through Pex10 are combined in the composite
processor CPex, one gets the prismanet as shown in Fig. 9.15 (left side). In this
diagram, the channel names are left out, only the intention of the C-facts is men-
tioned. Moreover, the shapes of CPin and CPex are sinuated, in order to indicate that
they are only shown partly, that is they may contain more components, because they
are normally also connected to other prismanets (cf. Chap. 11). The use of composite
processors, like the ones shown in Fig. 9.15, may be helpful in modelling discrete
event systems, notably ‘technical’ systems that are actually technically implemented
social systems. Examples of such systems are machines of all kinds, like vending
machines, and control systems of all kinds, like warehouse control systems.

Fig. 9.15 Composite processors as organisational building blocks
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On the right side of Fig. 9.15, the ‘compression’ of the left side part into the
organisational building block (cf. Chap. 8) is shown. All channels (C1 through C14)
and the bank B1 are put together, resulting in the transaction-kind shape, which is a
diamond (representing production) inside a disk (representing coordination). The
small black diamond on the edge of the lower actor role shape indicates that it has the
executor role in this transaction kind. Note that the executor role also comprises the
processors, channels, and banks, that it needs as initiator in (other) transactions
(if any), and that the initiator role also comprises the processors, channels, and
banks, that it needs as executor of its ‘own’ transaction kind, as well as the pro-
cessors, channels, and banks, that it needs as initiator in other transactions (if any).
As already explained for the left part of Fig. 9.15, this is indicated by their sinuated
shapes.

9.3.3 The C4E Quality Aspects

In this section, we will discuss the quality aspects of white-box systems in the
PRISMAmodel, that is, of prismanets. To start with, we have shown that a prismanet
is an ontological model of a discrete event system, that is, a white-box model that is
fully abstracted from the (technological) implementation of the modelled system.

The first quality aspect of a prismanet is that it is comprehensive, whichmeans that it
is ontologically complete, of course provided that one has all knowledge of the concrete
system. Consequently, it allows not only for studying the statics of themodelled system
(its construction), but also its dynamics (its operation). Next, a prismanet is coherent, by
virtue of the ontological system concept (cf. Sect. 9.2.1.2). It means that the model
elements are connected in such a way that there are no ‘loose’ parts.

In addition, the presented prismanets are abstracted from realisation
(cf. Chap. 11), so from all informational issues (like remembering, sharing, and
deriving facts) and from all documental issues (like storing and retrieving documents
or data). Note that derived facts just ‘exist’ in the ontological sense once they are
defined. For example, someone’s age at a particular day exists if the day exists and
the person’s birthday exists. The additional abstraction from realisation makes
prismanets concise, by which we mean that their size is very small compared to
current meta models, which mostly do not abstract from realisation and implemen-
tation. Moreover, prismanets are consistent, that is, they do not contain logical
contradictions, as ensured by the PRISMA model.

The four quality aspects (coherent, consistent, comprehensive, and concise)
constitute the requirements for calling the prismanet of a system its essential
model (within the PRISMA model). By using the definite article “the”, we want to
conjecture that there is only one essential model for a given system. As a mnemonic,
the quality requirements, together with their corollary of capturing the essence of a
system, are collectively named “C4E”. The added connotation is “see for E”,
expressing that one must always strive to capture the essence of a system, in order
to reduce the complexity of its white-box model, and consequently to get deeper
insight into and better overview over the system. The reduction of complexity that is
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achieved by producing a white-box model that satisfies the C4E requirements,
contributes to achieving the generic enterprise engineering goal of intellectual
manageability [15].

9.4 Discussions

9.4.1 Implications of the DELTA Theory for Software
Engineering

Software engineering is the discipline of engineering software systems. It includes
the design, the implementation, the deployment and the maintenance of these
systems. Even professional software engineers sometimes seem to forget that a
software system in operation is a mathematical machine (also if its function is to
support people in organisations). This undeniable truth has important implications
for the discipline of software engineering, however.

First, it implies that a software engineer must have a comprehensive understanding
of the object system that is going to be supported by the software system that he/she is
going to develop. The relationship between the object system and its supporting
information/software system is precisely defined in the ALPHA theory (cf. Chap. 11).
Moreover, this understanding of the object system must be concise (thus fully
abstracted from realisation and implementation) in order to manage intellectually
its complexity, that is, to get and keep insight into and overview over of the software
system to be developed. This insight and overview is also indispensable for validating
that the software system satisfies the applicable requirements.

Second, such an understanding of the object system is also indispensable for
verifying the logical correctness of the developed software system. The role of
testing can only be secondary, because it may show the presence of errors but
never their absence, as pointed out already long ago by Edsger Dijkstra [16].

Third, such an understanding would also be a necessary basis for studying the
construction and operation of the system by means of mathematical and logical
analysis, as well as through simulation, possibly including animation.

Fourth, such an understanding of the object system would be a necessary condi-
tion for generating software in such a way that its correctness can be guaranteed
[17]. Because PRISMA models are formalised, they can be converted to mathemat-
ical/logic complexes (cf. Chap. 6), and subsequently expressed in a programming
language.

9.4.2 Prismanets and Petri Nets

Readers who are familiar with Petri nets may have wondered already what the
similarities and differences are between prismanets and Petri nets [18], because the
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resemblance of the graphical symbols suggests some similarity. It seems worthwhile
therefore to make a comparison of the two process modelling techniques.

In [19], the relationship between the Petri net and the smartienet is investigated.
Since the smartienet [20, 21] is the precursor of the prismanet, we will first
summarise the findings in [19], using the TCS again as the example system. The
smartienet diagram in Fig. 6 in [19] is reproduced as Fig. 9.16. The legend of the
diagram is the same as for the prismanet diagram (cf. Fig. 9.10). So, there are two
processors (P1 and P2), four banks (B1, B2, B3, and B4) and two channels (C1 and
C2). Because the smartienet lacks the notion of delayed mutation, which the
prismanet does have (cf. Sect. 9.2.3.2), two elementary processors are needed to
model the TCS properly. Next to being activated by set_phase commands from P1,
P2 also activates itself, through channel C2.

Although the TCS is a quite simple system, its discussion above and in [19]
illustrates how difficult it is to understand a system comprehensively (i.e. its construc-
tion, its operation, and the effects of its operation, thus the processes or state trajectories
in the system’s world) without a proper theory. At the same time, both the prismanet
model in this chapter and the smartienet model in [19], demonstrate the power of
ontological modelling: providing one with a comprehensive, coherent, and consistent
understanding of a system, released from the burden of implementation details.

The Petri net [18] originates from the research work that Carl Adam Petri5

undertook already at a young age. It can best be understood as a (meta) model for
studying synchronisation problems in discrete event systems. A well-known appli-
cation of the Petri net is the studying of cooperating sequential processes in com-
puters. Because of its popularity among (business) process modellers with a focus on

Fig. 9.16 Smartienet diagram of the TCS

5https://en.wikipedia.org/wiki/Carl_Adam_Petri
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formalisation, the Petri net has evolved in the course of time in order to meet the
additional requirements. The major extensions have been the addition of delay times
(resulting in the timed Petri net [22]) and the ‘colouring’ of tokens, by which is
meant adding process semantics (resulting in the coloured Petri net [23]).

In Figs. 9.17 and 9.18 the timed Petri net diagram of the TCS is exhibited. It is an
adapted version of Fig. 2.10 in [24]. The adaptation comprises a more accurate
layout and corrections of the delay times. The disks represent the places of the Petri
net and the boxes represent the transitions. The black dots in the places are the tokens
that can ‘move’ through the net. A place is an input place of a transition if its shape is
connected to the transition shape by an arrow. A place is an output place of a
transition if its shape is connected to the transition shape by a solid line. Transitions
‘fire’ if all input places contain at least one token. The effect of ‘firing’ is that one
token is removed from every input place and that one token is added to every output
place. The names of the places and transitions, as well as the time delays, correspond
with the names in Fig. 9.8. So, for example, W1 means Cycle 1 is in the state
waiting, S1–W1 is the transition from S1 toW1, and CT2 is the clear time in Cycle 2.

The process starts in the situation that the state of Cycle 1 is waiting and the state
of Cycle 2 is (prolonged) moving (cf. Fig. 9.17 upper part). Then a let_pass event in
Cycle 1 occurs (a token is put in place let_pass 1). The condition to fire M2-S2 is
now satisfied, and thus the transition takes place. The state of Cycle 2 will imme-
diately become stopping (cf. Fig. 9.17, lower part). This enables the firing of S2-W2

Fig. 9.17 Timed Petri net of the TCS (1)
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after ST2 time units. Then the token in S2 is removed and a token is added to both
W2 and C1 (cf. Fig. 9.18, upper part). Together with the token in W1, this satisfies
the condition for W1-M1 to fire, after CT1 time units. The effect of this transition is
that the tokens in W1 and C1 are removed and that a token is added to M1, meaning
that the state of Cycle 1 will become ‘moving’ (cf. Fig. 9.18, lower part). After MT1
time units, transition M1-S1 is enabled by this token, but the firing has to wait for a
token in place let_pass 2, so for arriving traffic in Cycle 2. As soon as this is the case,
the whole process will be repeated, but now with the cycles reversed.

Despite the similarity of the diagrams, the Petri net that is represented in
Figs. 9.17 and 9.18 and the prismanet that is represented in Fig. 9.11, are funda-
mentally different. The prismanet is a construction model: it shows the composition,
the environment, and the structure of a system (cf. Sect. 9.2.1.2). The Petri net,
however, is a process model in the strict systemic sense [4]: it specifies the lawful
states and the lawful transitions of a system’s world, possibly the world of the system
that is represented by the prismanet diagram in Fig. 9.11. The Petri net in Figs. 9.17
and 9.18 is semantically equivalent to the STD in Fig. 9.8. Note that the presented
Petri nets are independent of any implementation, contrary to the one in [24]: using
red, yellow, and green lights to inform traffic participants about the states ‘waiting’,
‘stopping’, and ‘moving’, is just one way of implementing the inspection link from
the processor ‘traffic’ to the bank ‘phase’ in the prismanet diagram in Fig. 9.11. Such
implementation choices should not appear in an ontological model.

Fig. 9.18 Timed Petri net of the TCS (2)
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9.4.3 The Petri Net and the DEMO Process Model

Because Petri nets are process models, as discussed in the previous section, it is
interesting to compare the Petri net with the DEMO Process Model (PM), as
presented in Chap. 12. For some time already, Petri nets have been applied for
analysing and simulating (business) processes that are modelled in DEMO, for
example, in [25] and in [26]. As discussed in Chap. 8, DEMO process models are
basically tree structures (cf. Chap. 10) of transaction processes. So, let us first draw a
comparison between the Petri net and the complete transaction pattern (CTP), by
interpreting the CTP as a Petri net.

Figure 9.19 contains the CTP from Fig. 9.13, but without the names of the
C-facts, in order to let them resemble the places of a Petri net. The C-acts must be
interpreted as transitions. The optionalities (indicated by the cardinality ranges 0. . .1
next to the response links in Fig. 9.13) are accommodated by adding the alternatives
(cf. Chap. 8): performing rv-rq and rv-da, respectively. Moreover, the P-act and the
P-fact are separated: the P-fact symbol (the diamond) is also interpreted as a place in
the Petri net. The reversion states are indicated in the same way as they are in
Fig. 9.13, in order to avoid crossing lines in the diagram.

Let us suppose that there is a token in the place labeled “in”. Then transition rq
will fire, resulting in putting a token in its output place (which corresponds with the
state requested). Then both transition dc and transition pm are enabled. However,
only one of them can fire because there is only one token in the input place. Going
on in this way, one will discover that the process either ends (successfully) in the
state accepted or goes on infinitely, which is exactly the idea of the CTP
(cf. Chap. 8).

What is new in Fig. 9.19, compared to the ‘real’ Petri net, are the dashed lines.
In a Petri net, they have to be replaced by solid arrows, and thus serve as an
additional input place for the four revocation transitions, because state conditions
and response conditions cannot be distinguished in a Petri net. In other words, the
CTP (and for that matter the DEMO PM) is richer than a Petri net as regards the
ability to represent real (business) processes, where the distinction between state
conditions (inspection links) and triggers (response links) is crucial to deeply
understand them.

A similar remark can be made with respect to the wait links in the DEMO PM
(cf. Chap. 12). They are also crucial in real business processes: waiting for
something to happen before acting, is fundamentally different from being triggered
to act.

As said, a Petri net only represents the world of a system, not the system itself: it
is (only) a grey-box model, not (also) a white-box model. To understand the
corresponding system, one has to model it in some other way, for example, as a
prismanet.
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The current use of (timed coloured) Petri nets for modelling business processes is
a typical illustration of how meta models can be ‘inflated’ to accommodate applica-
tions where they were never meant for (and consequently are mostly not suited for).
As convincingly discussed in Chap. 8, business processes are processes that occur in
the coordination world of organisations, as the effect of acts by autonomous human
actors. Other examples of ‘inflations’ of modelling approaches are the use of the
Entity Relationship Diagram (originally meant for exhibiting the structure of rela-
tional databases) for conceptual modelling, and the use of the UML class diagram for
conceptual modelling and even for ontological modelling (cf. Chap. 6).

With reference to Einstein’s quote at the beginning of Chap. 4 (Whether you can
observe a thing or not depends on the theory that you use. It is the theory that
decides what can be observed), all modelling actions are inherently shaped by the
theory one applies or, when lacking an explicit theory, by the ‘mental glasses’ one
has put on. If these glasses are ill-suited, the resulting models will not be very useful.
Unfortunately but most likely, one may not be aware of the mismatch.
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