
The Enterprise Engineering Series

Enterprise
Ontology

Jan L. G. Dietz · Hans B. F. Mulder

A Human-Centric Approach
to Understanding the Essence
of Organisation

The Enterprise Engineering Series

Editors-in-Chief

Robert Pergl
Henderik A. Proper
José Tribolet

Editorial Board Members

David Aveiro
Joseph Barjis
Giancarlo Guizzardi
Jan A. P. Hoogervorst
Hans B. F. Mulder
Martin Op’t Land
Marné de Vries
Robert Winter

Founding Editor

Jan L. G. Dietz

More information about this series at http://www.springer.com/series/8371

http://www.springer.com/series/8371

Jan L. G. Dietz • Hans B. F. Mulder

Enterprise Ontology
A Human-Centric Approach
to Understanding the Essence
of Organisation

Jan L. G. Dietz
Voorburg, The Netherlands

Hans B. F. Mulder
The Hague, The Netherlands

ISSN 1867-8920 ISSN 1867-8939 (electronic)
The Enterprise Engineering Series
ISBN 978-3-030-38853-9 ISBN 978-3-030-38854-6 (eBook)
https://doi.org/10.1007/978-3-030-38854-6

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-38854-6

dag sterke Sanne
bezorger van geluk

goodbye strong Sanne
deliverer of happiness

Preface

Our knowledge can only be finite, while our ignorance must necessarily be infinite.
(Karl Popper)

Would it be possible to develop a way of thinking about enterprises that offers
substantially more insight into their operation and overview over their composition?
And if so, how would such a way of thinking be like? And how could you make it
practical? These are the core research questions addressed in this book.

When the first author finished the book Enterprise Ontology—Theory and Meth-
odology, in 2006, he was quite confident about his understanding of enterprise
ontology. However, both by teaching and by practising the subject, it became clear
that he had to keep thinking. Thanks to this continuous process, the book that you are
about to read is not just a revised edition of the one in 2006; it is a quite
different book.

What we try to emphasise in the current book, is the key role of human beings in
enterprises and in society at large. In contrast to our deep conviction that human
beings are the pearls of enterprises, we witness the madding crowd drift away in the
opposite direction. Unfortunately, this madding crowd does not only include ICT
and AI professionals, it also comprises people who are supposed to lead the world
into a safe and steady future: philosophers, directors, and corporate and public
governors.

Even more firmly than before, leading business schools teach us that employees
can best be considered as carbon-based robots, who are intrinsically untrustworthy
and lazy, and therefore should be replaced by silicon-based robots, the sooner the
better. We think that even Frederic Taylor, who laid the foundation for the currently
dominant mechanistic world view, would turn in his grave if he would see the
madness. People, all over the world, get ever more brainwashed by the idea that
silicon-based robots will soon be better decision makers than we, poor carbon-based
creatures, are. And that it is about time to recognise robots as equivalent fellow
citizens, as the government of Saudi Arabia did in October 2017. How far can one
get derailed?

vii

Fortunately, the falseness of the madding preachers can easily be unmasked if one
gets a clear sight again on the distinction between computing (or information
processing) and decision making, between our rational and our social existence.
Let us exemplify this. In determining the alimony in a divorce case, judges rely
heavily on software applications. And rightly so, because the applicable legislation is
often complicated. But the result of the computations is not automatically the
alimony that one party has to pay to the other. It is only after the judge has decided
it to be so; decision making is not a rational but a social act. It is because we have
given the judge the authority to do so that we accept her/his judgement, regardless
whether we agree or disagree. The basic understanding of this important distinction
is the red thread in the theoretical part of this book. Adopting and nourishing this
crucial insight is the only way, as we see it, to keep the world human, or to make it
human again.

Therefore, it is a good that public governors and councils require governments to
be transparent to the people about whether a decision is made by an authorised
officer or by a computer (or algorithm). But it is better that these artefacts cannot
make decisions, that they can only compute! Deciding is an exclusive human (social)
ability. Making errors is another one, but that is all in the (social) game.

Another distinction between humans and androids is the human ability to feel
responsible for ourselves and for others, that is, to be a social individual. Of course,
we can let androids mimic any human behaviour, but mimicked is not real. For sure,
we can declare androids to be equivalent social players in our society. But this will
be an explicit and freely taken human decision which the decision maker has to
justify to his fellow social individuals. History teaches us that humans can make
stupid decisions and succeed in justifying them. There is no reason to assume that
they won’t in the future. So, indeed, judges and governors make errors, as all
decision makers do. But we, members of the common society, can hold them
responsible and accountable for their deeds. That is also a rule of the game.

Enterprise Ontology, as defined and applied in this book, is therefore an ever
more important way of understanding human social behaviour, more specifically of
human cooperation that is based on trust. Endowed with the authority that is needed
to do their work, people will act responsibly, they will excel in their work, and they
will hardly need being managed.

In addition to a substantial extension and improvement of the theoretical foun-
dations of the notion of Enterprise Ontology, this book contains almost as many
pages that are devoted to its practical applications. This makes the book perfectly
suited for being used as a textbook in courses on Enterprise Ontology and Enterprise
Engineering, or on the principal methodology in Enterprise Engineering: DEMO
(Design and EngineeringMethodology for Organisation). In addition to six exercises
in producing so-called essential models of organisations with DEMO, we have
included two chapters containing reports about the practical application of DEMO
on various subjects in a wide range of enterprises (companies, institutions, govern-
mental agencies).

viii Preface

Although, even after finishing the book, our ignorance regarding Enterprise
Ontology is necessarily infinite (thanks to Popper), we hope that our finite knowl-
edge of it will appear to be sufficient for convincing you and inspiring you to keep on
reading and thereby enter into a wonderful world.

Voorburg, The Netherlands Jan L. G. Dietz
The Hague, The Netherlands Hans B. F. Mulder
15 January 2020

Preface ix

Acknowledgements

From 2006 on, our understanding of Enterprise Ontology has also been shaped in the
communication with many people. Numerous students have been a valuable whet-
stone, notably those at Delft University of Technology and Antwerp Management
School, as well as the NOVI and the Avans+ universities of applied sciences. A
similar role was played by our colleagues in the Ciao! Network and the Enterprise
Engineering Institute. We would like to mention some of them explicitly (in reverse
alphabetical order): Marné de Vries, José Tribolet, Linda Terlouw, Ronald Stamper,
Robert Pergl, Martin Op ’t Land, Mark Mulder, Klaas Meijer, Steven van Kervel,
Joop de Jong, Junichi Iijima, Jan Hoogervorst, Duarte Gouveia, Edward van Dipten,
Joseph Barjis, Eduard Babkin, David Aveiro, Antonia Albani.

xi

Contents

Part I Introduction

1 A History of Organisation and ICT . 3
References . 6

2 Introduction to Enterprise Engineering . 9
References . 12

3 Introduction to Enterprise Ontology . 13
3.1 About Intellectual Manageability . 13
3.2 The Philosophical Background of Enterprise Ontology 14
3.3 The Importance of Enterprise Ontology 15
3.4 The Urgent Need for Enterprise Ontology 17
References . 18

Part II Theories

4 The Enterprise Engineering Theories . 23
4.1 Introduction . 23
4.2 The CIAO Paradigm . 24

4.2.1 From Information-Centric to Communication-Centric . . . 24
4.2.2 Communicative Action . 26
4.2.3 Implications for Information, Action, and Organisation . . . 28

4.3 Overview of the EE Theories . 30
4.4 Summaries of the EE Theories . 32

4.4.1 The FI Theory . 32
4.4.2 The MU Theory . 34
4.4.3 The TAO Theory . 36
4.4.4 The PSI Theory . 37
4.4.5 The DELTA Theory . 39
4.4.6 The OMEGA Theory . 41
4.4.7 The ALPHA Theory . 43

xiii

4.4.8 The BETA Theory . 44
4.4.9 The IOTA Theory . 46
4.4.10 The NU Theory . 46
4.4.11 The SIGMA Theory . 47

References . 47

5 The FI Theory: Understanding Factual Knowledge
and Information . 49
5.1 Introduction . 49
5.2 Foundations . 51

5.2.1 The Semiotic Triangle . 51
5.2.2 The Semiotic Ladder . 52
5.2.3 Things and Objects . 53
5.2.4 Factual Information . 56
5.2.5 The Creation of Types . 59
5.2.6 The Subtype Relation . 60

5.3 Elaborations . 62
5.3.1 Functional Types . 62
5.3.2 Sameness and Change . 63
5.3.3 Composition and Decomposition 65
5.3.4 Dual Notions . 65

5.4 Discussions . 67
5.4.1 The Layout of Forms . 67
5.4.2 Value Types in Programming and Modelling

Languages . 68
References . 69

6 The MU Theory: Understanding Models and Modelling 71
6.1 Introduction . 71
6.2 Foundations . 72

6.2.1 The Notion of Model . 72
6.2.2 The Model Triangle . 73
6.2.3 The General Conceptual Modelling Framework 75

6.3 Elaborations . 80
6.3.1 The General Ontology Specification Language 80
6.3.2 The Textual Formalism of GOSL 81
6.3.3 The Graphical Formalism of GOSL 82
6.3.4 Standard Value Types . 88
6.3.5 The Meta Schema . 89

6.4 Discussions . 90
6.4.1 Comparison of the GCMF with Other Approaches 90
6.4.2 The Confusion that Is Caused by O-O Thinking 91

References . 93

xiv Contents

7 The TAO Theory: Understanding Function and Construction 95
7.1 Introduction . 95
7.2 Foundations . 96

7.2.1 The Notion of Affordance . 96
7.2.2 Artefacts . 98
7.2.3 Function and Construction . 100
7.2.4 Experience and Value . 101

7.3 Elaborations . 103
7.3.1 Constructional and Functional (De)composition 103
7.3.2 Composition and Decomposition of Enterprises 105
7.3.3 The Role of Function and Construction in System

Design . 107
7.4 Discussions . 110

7.4.1 The Subjective Nature of Functional Models 110
7.4.2 Can One Map Functional Models to Constructional

Models? . 111
7.4.3 The Importance of Ontological Modelling 114
7.4.4 The TAO Theory and the TAO Philosophy 116

References . 116

8 The PSI Theory: Understanding the Operation of Organisations . . . 119
8.1 Introduction . 120
8.2 Foundations . 121

8.2.1 Recapitulation of the CIAO Paradigm 121
8.2.2 Work Is Production Plus Coordination 124
8.2.3 The Process of a Coordination Act 126
8.2.4 Business Conversations . 128
8.2.5 Business Transactions . 131
8.2.6 Transaction Patterns . 131
8.2.7 The Notion of Transactor . 144

8.3 Elaborations . 147
8.3.1 Time Aspects of Transactions 147
8.3.2 The Operating Cycle of Actors 150
8.3.3 Human Qualities in Transactions 150

8.4 Discussions . 153
8.4.1 Striving for Consensus and Culture 153
8.4.2 Other Approaches to Organisations as Social Systems . . . 154
8.4.3 The Practical Importance of the PSI Theory 155

References . 156

Contents xv

9 The DELTA Theory: Understanding Discrete Event Systems 159
9.1 Introduction . 159
9.2 Foundations . 160

9.2.1 Systems Thinking . 160
9.2.2 Conceptual Models of Concrete Systems 164
9.2.3 The PRISMA Model . 170

9.3 Elaborations . 178
9.3.1 Specification of the PRISMA Model of Rent-A-Car . . . 178
9.3.2 The Generic Transaction Prismanet 181
9.3.3 The C4E Quality Aspects . 184

9.4 Discussions . 185
9.4.1 Implications of the DELTA Theory for Software

Engineering . 185
9.4.2 Prismanets and Petri Nets . 185
9.4.3 The Petri Net and the DEMO Process Model 189

References . 190

10 The OMEGA Theory: Understanding the Construction of
Organisations . 193
10.1 Introduction . 193
10.2 Foundations . 194

10.2.1 The Organisational Building Block 194
10.2.2 The Interaction Structure . 198
10.2.3 The Interstriction Structure . 202
10.2.4 The Interimpediment Structure 204

10.3 Elaborations . 205
10.3.1 Responsibility Ranges . 205
10.3.2 Business Process Modelling . 206
10.3.3 Reference Models . 208

10.4 Discussions . 216
10.4.1 Structure Thinking Versus Flow Thinking 216
10.4.2 Transforming Flows into Trees 219
10.4.3 The Loose Coupling of Processes 222
10.4.4 The Practical Importance of the OMEGA Theory 224

References . 224

11 The ALPHA Theory: Understanding the Essence of Organisations . . . 227
11.1 Introduction . 228
11.2 Foundations . 229

11.2.1 The Organisational Layers . 229
11.2.2 Organisational Layers and Sorts of Actors 231
11.2.3 Organisational Layers and Sorts of Production 232
11.2.4 The Essential Model of an Enterprise 234

xvi Contents

11.3 Elaborations . 235
11.3.1 Designing the Ontological Model of the I-Organisation . . 236
11.3.2 Designing the Ontological Model

of the D-Organisation . 241
11.3.3 Actors and Agents . 241
11.3.4 Implementing the D-Organisation of an Enterprise 245
11.3.5 Implementing the I-Organisation of an Enterprise 247
11.3.6 Implementing the O-Organisation of an Enterprise 247
11.3.7 Enterprise Information Systems 250

11.4 Discussions . 253
11.4.1 The Boundary of an Enterprise 253
11.4.2 The Debate on AI and the Position of EE 255
11.4.3 The Practical Importance of the ALPHA Theory 256

References . 257

Part III Applications

12 The DEMO Methodology . 261
12.1 Introduction . 262
12.2 DEMO: Essence and Simplicity . 263
12.3 The Way of Modelling . 266

12.3.1 The DEMO Specification Language 268
12.3.2 The Cooperation Model . 268
12.3.3 The Action Model . 272
12.3.4 The Process Model . 275
12.3.5 The Fact Model . 279

12.4 The Way of Working . 282
12.4.1 General Guidelines in the OER Method 282
12.4.2 OER Step 1: Distinguishing Performa-Informa-Forma . . 285
12.4.3 OER Step 2: Identifying Transaction Kinds and Actor

Roles . 287
12.4.4 OER Step 3: Composing the Essential Model 292
12.4.5 OER Step 4: Validating the Essential Model 294

12.5 Deepening the Insight into the PSI Theory 296
12.6 Conclusions . 298
References . 299

13 Exercise: Case Fixit . 301
13.1 Introduction . 301
13.2 Narrative Description . 301
13.3 Analysis of the Narrative Description . 302
13.4 Discussion of the Analysis . 309
13.5 Conclusions . 310
Reference . 310

Contents xvii

14 Exercise: Case Pizzeria . 311
14.1 Introduction . 311
14.2 Narrative Description . 311
14.3 Analysis of the Narrative Description . 313

14.3.1 Analysis of the First Phase . 314
14.3.2 Analysis of the Second Phase 316
14.3.3 Analysis of the Third Phase . 318

14.4 Extending the Essential Model of the Pizzeria 318
14.4.1 The Cooperation Model . 318
14.4.2 The Process Model . 319
14.4.3 Delegations in the Case Pizzeria 321

14.5 Conclusions . 321

15 Exercise: Case Rent-A-Car . 323
15.1 Introduction . 323
15.2 Narrative Description . 324
15.3 Analysis of the Narrative Description . 325
15.4 The Complete Essential Model of RAC 334

15.4.1 The Cooperation Model . 334
15.4.2 The Action Model . 335
15.4.3 The Process Model . 344
15.4.4 The Fact Model . 346

15.5 Conclusions . 348
References . 348

16 Exercise: Case Library . 349
16.1 Introduction . 349
16.2 Narrative Description . 349
16.3 Analysis of the First Phase . 351
16.4 Analysis of the Second Phase . 364
16.5 Discussion and Conclusions . 366
Reference . 366

17 Exercise: Case PoliGyn . 367
17.1 Introduction . 367
17.2 Narrative Description . 367
17.3 Analysis of the Narrative Description . 368
17.4 Analysis of a Patient Case . 373
17.5 Discussion and Conclusions . 377

18 Exercise: Case GloLog . 379
18.1 Introduction . 379
18.2 Narrative Description . 380
18.3 Analysis of the Narrative Description . 388
18.4 Extending the Essential Model . 397
18.5 The Implementation of GloLog . 403

xviii Contents

18.6 Solving the Current Problems and Failures 407
18.7 Conclusions . 408
Reference . 408

19 Real-Life Applications of DEMO . 409
19.1 Introduction . 409
19.2 The VISI Standard in Civil Engineering 410
19.3 Getting Firm Grip on Software Development 414
19.4 Agile Law Making . 416
19.5 Enterprise Transformation . 418
19.6 Designing Data Warehouses . 420
19.7 Enterprise Ontology Based Process Simulation 422
19.8 Designing Digital Document Archives 424
19.9 Air France KLM Cargo: Post Merger Decision Making 426
References . 429

20 DEMO Enhanced Method Engineering . 431
20.1 Introduction . 431
20.2 DEMO Enhanced Agile Software Development 432

20.2.1 Introduction . 432
20.2.2 The Story-Card Experiment . 433
20.2.3 Conclusions . 436

20.3 DEMO Enhanced Lean Six Sigma . 436
20.3.1 Introduction . 436
20.3.2 The Case Study . 437
20.3.3 Conclusions . 439

20.4 DEMO Enhanced BPMN . 440
20.4.1 Introduction . 440
20.4.2 Critical Evaluations of BPMN 441
20.4.3 The Case Study . 442
20.4.4 Conclusions . 444

20.5 DEMO Enhanced Software Testing . 445
20.5.1 Introduction . 445
20.5.2 The Experiment . 445
20.5.3 Conclusions . 448

20.6 DEMO Enhanced Mining . 448
20.6.1 Situation . 448
20.6.2 Task . 449
20.6.3 Approach . 449
20.6.4 Result . 450
20.6.5 Reflection . 451

References . 452

Glossary . 453

Contents xix

About the Authors

Jan L. G. Dietz is Professor Emeritus at Delft University of Technology, and
visiting professor at the University of Lisbon and the Czech Technical University
in Prague. He has always combined academic work with applying research outcomes
in practice. Jan Dietz has supervised over 300 MSc’s and 16 PhD’s and has
published over 250 scientific and professional papers and books. He is the spiritual
father of DEMO (Design & Engineering Methodology for Organisations), one of the
founders of the Enterprise Engineering Institute (www.ee-institute.com), and the
founder of the Ciao! Enterprise Engineering Network (www.ciaonetwork.org).

Hans B. F. Mulder is an entrepreneur and founder of VIAgroep, Standish research
director, executive professor at the Antwerp Management School and lecturer at the
Police Academy of the Netherlands. He is regularly engaged as an IT expert when
conflicts between companies need to be resolved in or out of court, such as
participating in arbitration, mediation, and expert reports. He received his PhD at
Delft University of Technology, MSc in Business Administration at Nijenrode
Business Universiteit, and BSc in Informatics at The Hague University of Applied
Sciences. Furthermore, he has published more than 100 articles in specialist journals
and international magazines, and is the author of several books such as Eenvoud in
Complexiteit.

xxi

http://www.ee-institute.com
http://www.ciaonetwork.org

Abbreviations1

ADT Authorisation Delegation Table [representation form of the Action Model]
(Chap. 12).

AM Action Model [aspect model of the ontological model of an organisational
layer] (Chap. 12).

ARS Action Rule Specifications [representation form of the Action Model]
(Chap. 12).

BAT Bank Access Table [representation form of the Cooperation Model]
(Chap. 12).

BCT Bank Contents Table [cross-model representation form of the Cooperation
Model and the Fact Model] (Chap. 12).

CM Cooperation Model [aspect model of the ontological model of an
organisational layer] (Chap. 12).

CSD Coordination Structure Diagram [representation form of the Cooperation
Model] (Chap. 12).

ct creation time; attribute of a fact (Chaps. 8 and 12).
CUT Create Use Table [cross-model representation form of the Process Model

and the Fact Model] (Chap. 12).
DFS Derived Fact Specifications [representation form of Fact Model] (Chap. 12).
et event time; attribute of a fact (Chaps. 8 and 12).
FM Fact Model [aspect model of the ontological model of an organisational

layer] (Chap. 12).
ICT Information and Communication Technology. It comprises Information

Technology (IT) for information processing and storage, and
Communication Technology (CT) for transmitting information.

OFD Object Fact Diagram [representation form of Fact Model] (Chap. 12).

1In the following, the most common abbreviations of terms in Enterprise Ontology, as used in this
book, are listed in alphabetical order. The chapter where the term is defined is indicated within
brackets.

xxiii

ot operative time; attribute of a product (Chaps. 8 and 12).
PM Process Model [aspect model of the ontological model of an organisational

layer] (Chap. 12).
PSD Process Structure Diagram [representation form of the Process Model]

(Chap. 12).
SoI Scope of Interest
TPD Transaction Process Diagram [representation form of the Process Model]

(Chap. 12).
TPT Transactor Product Table [cross-model representation form of the

Cooperation Model and the Fact Model] (Chap. 12).
WIS Work Instruction Specifications [representation form of the Action Model]

(Chap. 12).

xxiv Abbreviations

Part I
Introduction

Part I contains the three introductory chapters to the main contents in Parts II
(theories) and III (applications). Chapter 1 offers a history of the developments of
both the Organisational Sciences and the ICT Sciences (Computer Science, Software
Engineering, Artificial Intelligence, etc.), and their current convergence. In Chap. 2,
the reader is introduced into the emerging discipline of Enterprise Engineering, in
which a design-oriented view is taken towards organisations. One of the conceptual
pillars of Enterprise Engineering is Enterprise Ontology, the core subject of the
book. Chapter 3 provides an introduction to this key notion.

Chapter 1
A History of Organisation and ICT

Abstract This chapter sketches a history of the Organisational Sciences along with a history
of the ICT Sciences (comprising Computer Science, Software Engineering, Artificial
Intelligence, etc.). The first one starts with the famous publication by Frederick Taylor
in 1911. The history of the ICT Sciences begins in the late fifties of the last century, with
the first use of computers in organisations. The two histories converge at the time that
communication is (also) understood as action, around the year 2000. This insight paves
the way to the development of the discipline of Enterprise Engineering, which includes
Enterprise Ontology.

The test of a healthy business is not the beauty, clarity or perfection of its organisational
structure, it is the performance of people.

(Peter Drucker)

As expressed by its subtitle, this book is about a human-centric approach to
understanding the essence of organisation. Adding such a subtitle begs the question
what the authors understand by human-centric, and by essence, and by organisation.
As will become clear in the remainder of the book, these notions are tightly
interrelated, and they are all also related to Information and Communication Tech-
nology (ICT).1 And because organisation will turn out to be the key notion, let us
start with a sketch of its history, supplemented later on by the history of ICT, which
has, over the years, increasingly become intertwined with organisation. Instead of
“the history”, we speak more humbly of “a history”, since it is our specific view on
the history of organisation and ICT.

In 1911, Frederic Taylor published his paper “The Principles of Scientific Man-
agement” [1], which is widely considered as the first scientific study into the notion
of organisation. At the time, people were the principal resources for doing the work

1Information and Communication Technology commonly refers to the digital electronic, optical,
etc., means to process, store, and transmit data. Regarding the term ‘technology’ we prefer to stick
to the original meaning of the word, which stems from its Greek origin: technè (meaning making)
and logos (meaning knowing). So, by technology we primarily understand knowing how to make,
and only secondarily the means (devices, etc.) mentioned above.

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_1&domain=pdf

that had to be done, in all kinds of organisations, so in manufacturing, in financial,
and in governmental organisations. Taylor’s focus was to improve the efficiency
with which the work was done, in order to minimise the time a piece of work would
take, as well as to minimise material usage, including waste. Typical characteristics
of the scientific management approach are the minute division of labour in simple,
repetitive tasks, and the clear separation between thinking and doing. Workers are
instrumentally viewed as parts of the enterprise ‘machine’. According to Taylor, a
man fit to do the manual work is unfit to understand the organising of the work, like
the coordination of all work and workers. Consequently, Taylor was convinced that
managerial control is indispensable. In [2], we have reflected on Taylor’s contribu-
tion to the organisational sciences and on the criticism that fell upon him later.

Basically, two kinds of criticisms can be identified. The first one concerns ethical
considerations regarding the deployment of ‘human resources’. Various researchers
have argued that the principles of scientific management lead to worker deprivation
and alienation, and to destroying the meaning of work itself [3, 4]. These phenomena
were already visible a few years after Taylor published his paper, when his principles
were practised in Ford’s car manufacturing: workers’ jobs were depleted of skill,
autonomy, and control, leading to extreme worker turnover rates [5].

Considerations concerning the effectiveness and efficiency of enterprises consti-
tute the second kind of criticism. Essentially, the critique boils down to two aspects.
First, the notion that proper attention to employees as a social group can significantly
enhance enterprise effectiveness and efficiency, as for example, evidenced by the
classical Hawthorne studies [6]. Noteworthy within this perspective is the socio-
technical approach [7] that argues the mutual relationship between the social and
technological ‘system’ of an enterprise. Hence, these systems must be jointly
designed since they can mutually support each other to enhance enterprise effec-
tiveness and efficiency.

Second, it is argued that the mere instrumental view on employees—workers as
labour resources—undervalues human cognitive and social capacities. This shift in
focus is evidenced by landmark publications like [8–10]. The new focus considers
employees, and their involvement and participation, as the critical core for enterprise
success.

Around 1970, a revolution took place in the way people conceived ICT and its
applications, particularly the applications in organisations [11]. Since then, people
are aware of the distinction between the form and the content of information and/or
communication. Up to that time, computers (i.e. main ICT devices) were used to
store and process large amounts of data (both numeric and alphanumeric). The
semantic meaning of these data was not a real concern; people were still
overwhelmed by the immense capacity of electronic digital computers to store and
process data. The revolution around 1970 marks the transition from the era of
Electronic Data Processing (EDP) to the era of Information Systems Engineering
(ISE), as shown in Fig. 1.1. It was also the time that relational databases set in [12].

4 1 A History of Organisation and ICT

The comparison we draw in Fig. 1.1 between the Organisation Sciences and the
ICT Sciences2 is not an arbitrary one. On the one hand, ICT has become the key
enabling technology for shaping future enterprises. On the other hand, there is a
growing insight within the ICT Sciences that the central notion for understanding
profoundly the relationship between organisation and ICT is the entering into and
complying with commitments between social individuals [13, 14]. These commit-
ments are raised in communication, through the intention of communicative acts
[15]. Examples of intentions are requesting, promising, declaring, and accepting.
Therefore, like the content of information/communication was put on top of its form
in the 1970s, its intention is now put on top of its content. This explains and clarifies
the organisational notion of collaboration or cooperation. The still ongoing revolu-
tion in the ICT Sciences marks the transition from the era of ISE to the era of
Enterprise Engineering, while at the same time converging with the Organisation
Sciences. In the Chap. 2, we will elaborate on Enterprise Engineering.

Unfortunately, the current practice of ICT lies quite behind the state of the art on
the scientific plane. Most ICT professionals seem to live in the ISE era still, which
means that they don’t understand and recognise that information systems are intrin-
sically parts of organisations; that they have always been there. The only new thing
is that they are now implemented with ICT. They still view their work basically as
developing application software, after having collected requirements from the future
users, and ‘implanting’ the resulting software in the organisation when they are
finished. Let us illustrate this alarming situation with two examples.

The first one is a failed payroll system for health care in Australia [16]. The
system has cost 1 billion euros (1.25 billion Australian dollars) more than budgeted.
The project started in 2007. Shortly after its completion in 2010—18 months late—
problems arose: some employees were not paid; others got too much. Employees
who received too much could not repay the amount because the system did not

Fig. 1.1 The roots of Enterprise Engineering

2The term ICT Sciences is a container term for Computer Science, Software Engineering, Artificial
Intelligence, etc.

1 A History of Organisation and ICT 5

provide this option. The Queensland Government then decided to receive the excess
sums through discounts in time. With reference also to Deming [17], the payroll
system is first of all a matter of organisation. As said and as will be clarified in
Chap. 11, every enterprise information system, thus also a payroll system, is an
intrinsic part of the organisation, only implemented by using ICT.

The second example is the Dutch government, which is unable to manage its ICT
projects. In many cases, the government is not in control of the costs, the timing, or
even the final results of its projects. Since no comprehensive report on the national
public finances has been drawn up after 1995, nobody knows how much money the
Dutch public sector is really spending on ICT, or how much is being wasted on failed
projects.3 A conservative estimate based on information from a variety of experts
suggests that this figure is most likely between 1 and 5 billion euros per year
[16]. Meanwhile, a Dutch governmental Committee has investigated the situation
and found that much is amiss, especially the culture surrounding government ICT
projects. On the one hand, there is unbridled enthusiasm for ICT, with proponents
viewing it as the solution to every problem. On the other hand, the House of
Representatives regularly demands policy measures without realising that almost
always ICT is needed to implement them. The responsible minister promises deliv-
ery without first checking whether the measures required are technically possible.
Political leadership is not challenged enough even when the promises being made to
Parliament cannot be fulfilled, and when ICT project leaders do voice their concerns,
it does not reach the top political level.

The statement by Peter Drucker quoted at the beginning of this chapter (which he
made in 1985) has meanwhile had a reinforced impact, which he most likely did not
foresee. Indeed, the health of an enterprise depends on the performance of the people
in it, both workers and managers, because only people can be responsible for what
happens in the enterprise’s organisation. ICT artefacts, of any kind, can only support
them. They can never take over responsibility, as we will stress and explain in part B.

References

1. Taylor, F. W. (1911). The principles of scientific management (2 p. l., 7–77 p.). New York:
Harper & Brothers.

2. Dietz, J. L. G., Hoogervorst, J. A. P., Albani, A., Aveiro, D., Babkin, E., Barjis, J., et al. (2013).
The discipline of enterprise engineering. International Journal of Organisational Design and
Engineering, 3, 28.

3. Fromm, E. (1942). The fear of freedom. International library of sociology and social recon-
struction (London) (xl, 257 p.). London: K. Paul, Trench, Trubner & Co.

4. Mintzberg, H. (1989).Mintzberg on management: Inside our strange world of organizations (x,
418 p.). New York, London: Free Press, Collier Macmillan.

3https://www.houseofrepresentatives.nl/news/committee-presents-report-failures-government-ict-
projects

6 1 A History of Organisation and ICT

https://www.houseofrepresentatives.nl/news/committee-presents-report-failures-government-ict-projects
https://www.houseofrepresentatives.nl/news/committee-presents-report-failures-government-ict-projects

5. Hounshell, D. A. (1984). From the American system to mass production, 1800–1932: The
development of manufacturing technology in the United States. Studies in industry and society
(xxi, 411 p.). Baltimore: Johns Hopkins University Press.

6. Mayo, E. (1949). The social problems of an industrial civilization; With an appendix on the
political problem. International library of sociology and social reconstruction (xvi, 148 p.).
London: Routledge & K. Paul.

7. Mayo, E. (1977). The social problems of an industrial civilization. Work, its rewards and
discontents (xvii, 150 p.). New York: Arno Press.

8. McGregor, D. (1985). The human side of enterprise: 25th anniversary printing (x, 246 p.).
New York: McGraw-Hill.

9. Katz, D., & Kahn, R. L. (1966). The social psychology of organizations (viii, 498 p.).
New York: Wiley.

10. Drucker, P. F. (2007). Management: Tasks, responsibilities, practices (xvi, 839 p.). New
Brunswick, NJ: Transaction Publishers.

11. Langefors, B. R. (1973). Theoretical analysis of information systems (4th ed., 489 p.). Lund
Sweden, Philadelphia: Studentlitteratur, Auerbach.

12. Codd, E. F. (1990). The relational model for database management: Version 2 (xxii, 538 p.).
Reading, MA: Addison-Wesley.

13. Winograd, T., & Flores, F. (1987). Understanding computers and cognition: A new foundation
for design (xiv, 207 p.). Reading, MA: Addison-Wesley.

14. Dietz, J. L. G. (2006). The deep structure of business processes. Communications of the ACM,
49(5), 58–64.

15. Habermas, J. (1986). The theory of communicative action. Cambridge: Polity Press.
16. Johnson, J., Mulder, J., & CHAOS Chronicles. (2016). Focusing on failures and possible

improvements in it projects. Journal of Systemics Cybernetics and Informatics (JSCI), 14(5), 5.
17. Deming, W. E. (1986). Out of the crisis: Quality, productivity and competitive position (xiii,

507 p.). Cambridge: Cambridge University Press.

References 7

Chapter 2
Introduction to Enterprise Engineering

Abstract Enterprise Engineering is an emerging discipline that takes an engineering
perspective on enterprises. It aims to address the problems in organisations that cannot be
solved by the traditional organisational sciences. Organisational changes are conceived as
situations of (re)design and (re)implementation. The conceptual pillars are Enterprise
Ontology, Enterprise Design, and Enterprise Governance. By applying Enterprise Engi-
neering three goals are attained: intellectual manageability, organisational concinnity, and
social devotion.

Science is about knowing; engineering is about doing.
(Henry Petroski)

In perfect agreement with Petroski’s quote above, the discipline of enterprise
engineering (EE) is about doing. The general goal of EE is to make better enter-
prises, or to make enterprises better, in every meaning of the word. By “enterprise”
we refer to all kinds of organised human activities (like companies, agencies,
institutions, supply chains, etc., but also the organisation of a birthday party). Indeed,
science alone doesn’t solve the problems humanity faces; engineering is needed to
develop and implement effective solutions [1]. At the same time, doing without a
proper understanding of what one is doing, seems to be worse than doing nothing.
That is why every serious engineering discipline is rooted in a solid theoretical
foundation.

The societal need of a discipline of EE is urgent because modern societies are
increasingly complex networks of an increasing number of enterprises, with increas-
ingly complex interrelationships. Moreover, the traditional organisational and man-
agement sciences fail to provide effective help [2]. Deming [3] provides a
convincing account, which can be paraphrased as follows: almost all (94%) mani-
festations of inadequate enterprise performance are the inevitable results of how
enterprises are organised. The purport of this finding is that only in 6% of all
instances of operational failure one can correctly blame workers. In all other cases,
the cause is a design or implementation fault of the organisation.

Over the years insights have been developed on how to (1) enhance the effec-
tiveness and efficiency of enterprises; (2) effectively ensure quality, service, and
customer orientation; and (3) avoid core reasons for strategic failure. One would

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_2&domain=pdf

expect that a century after Taylor published his principles of scientific management
his influence would have vanished. However, as Doz and Thanheiser observed at the
end of the previous century: “Despite the ‘modernisation’ of corporate structures and
systems, the mindset of managers appears to be remarkably similar to the Taylorist
model developed at the beginning of the century” [4]. Thus, principles that follow
from “a machine-like concept of the organisation still dominate managerial practice”
[ibid.]. Others argue that “Corporations continue to operate according to a logic
invented at the time of their origin, a century ago” [5].

The continuation of the Taylorist model can additionally be demonstrated by
observing the increase in the number of management functions. For example, in the
country where Taylor expressed his views, managers accounted for less than 1% of
the labour force in 1900. Thirty years later, this figure was already 7.5%, increasing
to 10.5% by 1970. By 1990, the figure was approaching 14% [6]. These increases
must be understood against the background of increasing population and workforce.

The increased population of managers largely consists of people who believe that
management is a profession like other professions. As Edward Deming, the
renowned quality and productivity leader, observed: “Students in schools of busi-
ness in America are taught that there is a profession of management; that they are
ready to step into top jobs. That is a cruel hoax” [3]. This ‘hoax’ resulted in the
widely observable management crises. An article in the Standardization News
(1983) stated that “Practical all our major corporations were started by technical
men—inventors, mechanics, engineers, and chemists, who had a sincere interest in
the quality of products. Now, these companies are largely run by men interested in
profit, not product. Their pride is the P&L statement or stock report” [3].

The needed paradigm shift is provided by the emerging discipline of Enterprise
Engineering. It amounts to a theory-based methodology for addressing enterprise
(re-) development in an all-encompassing way. A sound and rigid theoretical
foundation is crucial. As Deming states: “Experience alone, without theory, teaches
management nothing about what to do to improve quality and competitive position,
nor how to do it” [3]. In view of our previous discussion, and the tenacity of Taylor’s
principles, little learning seems to have taken place. We posit that an explanatory
theory is required to give experience meaning, so to provide the basis for appropri-
ately understanding enterprises.

In [7], three general goals are identified for the discipline of EE: intellectual
manageability, organisational concinnity, and social devotion. Intellectual manage-
ability is about getting and keeping insight into and overview over complexity.
People who have to govern or run enterprises, or to devise and implement substantial
changes, need first of all a proper understanding of what they are doing. Current
practice shows that this basic premise is often not met. Obviously, enterprise
phenomena that are not properly understood cannot be addressed adequately. Con-
sequently, the necessary changes cannot be determined, and if they can, they cannot
be brought about effectively. In addition, current development approaches, for
enterprises as a whole and for ICT applications in particular, are cursed with
combinatorial impacts of changes. So, in addition, appropriate ideas of enterprise
evolvability are needed for making changes expeditious and manageable.

10 2 Introduction to Enterprise Engineering

Intellectual manageability is an indispensable quality: if you don’t understand fully
and deeply what you are doing, you better not do it.

Organisational concinnity is about designing, engineering, and implementing an
enterprise in such a way that the resulting operational organisation is always a
coherent and consistent whole. In order to perform optimally and to implement
changes successfully, enterprises must operate as unified and integrated wholes,
taking into account all aspects that are deemed relevant. Many approaches to
enterprise development, for example, TOGAF, are ill-suited and suffer from theo-
retical and methodological weakness and incompleteness [8]. It is evidently not
sufficient to consider enterprise design domains like processes, the information
needs of the processes, the software applications providing the information, and
their underlying infrastructure. A viable theory and methodology for enterprise
engineering must be able to address all relevant aspects, even those that cannot be
foreseen presently, in a properly integrated way. It is quite obvious that
organisational concinnity must be designed; it does not emerge in a natural way
[9, 10].

Social devotion is about recognising that the operation of an enterprise’s organi-
sation is brought about, not by its managers, but by its operational employees. In
[2, 7], the importance of employee involvement and participation has been argued in
order to achieve enterprise productivity, product and service quality, customer
orientation, learning and innovation (and subsequent enterprise change), as well as
to cope with enterprise dynamics, complexity, and uncertainty leading to emerging
enterprise developments. Contrary to Taylor’s mechanistic view on organisations
[11], EE takes a human-centric view. It considers human beings to be the ‘pearls’ of
every enterprise. Therefore, all employees should be fully empowered and compe-
tent for the tasks they have to perform. They must be endorsed with transparent
authority and have access to all information needed to perform their tasks in a
responsible way. Next, managers must not only be skilled in managerial work of
the kind that Deming refers to [3], they must first of all be thoroughly knowledgeable
in the subject field of the enterprise they are managing.

The three goals of EE are often connected to the principal parts or pillars of the
discipline in the next way. Intellectual manageability is mainly achieved by applying
enterprise ontology, as presented in this book. It offers an unprecedented reduction
of complexity, resulting in broad overview and deep insight. Organisational concin-
nity is mainly achieved by applying enterprise design, including enterprise archi-
tecture and implementation, while starting from the ontological model of the
organisation to be designed. The goal of social devotion can be achieved by applying
enterprise governance as presented in [2].

To conclude, it is not all sorrow and misery. In the CHAOS database of failed,
challenged, and successful ICT projects, which is set up and maintained by the
Standish Group [12], the so-called ‘next neighbour algorithm’ can be used to
compare projects on selected attributes. In this way, several attributes of DEMO1

1DEMO is the name of the methodology that is presented in Part III of this book.

2 Introduction to Enterprise Engineering 11

projects, such as a sound and grounded way of thinking, and the involvement of
‘shop floor’ employees and managers in large and complex projects, were compared
to some 50,000 other projects. The results clearly demonstrate that being human-
centric as well as being based on sound theoretical foundations, pays off for sure.
The opportunity to learn from international projects could raise awareness to apply
lessons learned in (governmental) ICT projects, right from the beginning [13].

References

1. Petroski, H. (2010). The essential engineer: Why science alone will not solve our global
problems (1st ed., x, 274 p.). New York: Alfred A. Knopf.

2. Hoogervorst, J. A. P. (2017). Foundations of enterprise governance and enterprise engineering
(574 p.). Cham: Springer International.

3. Deming, W. E. (1986). Out of the crisis: Quality, productivity and competitive position (xiii,
507 p.). Cambridge: Cambridge University Press.

4. Doz, Y., & Thanheiser, H. (1993). Regaining competitiveness: A process of organizational
renewal. In J. Hendry, G. Johnson, & J. Newton (Eds.), Strategic thinking: Leadership and the
management of change. Chichester: Wiley.

5. Zuboff, S., & Maxmin, J. (2004). The support economy: Why corporations are failing individ-
uals and the next episode of capitalism (xvii, 458 p.). New York: Penguin Books.

6. Osterman, P. (1996). Broken ladders: Managerial careers in the new economy (259 p.).
New York: Oxford University Press.

7. Dietz, J. L. G., Hoogervorst, J. A. P., Albani, A., Aveiro, D., Babkin, E., Barjis, J., et al. (2013).
The discipline of enterprise engineering. International Journal of Organisational Design and
Engineering, 3, 28.

8. Dietz, J. L. G., & Hoogervorst, J. A. P. (2012). A critical investigation of TOGAF. In A. Albani,
J. L. G. Dietz, & J. Verelst (Eds.), Advances in enterprise engineering V (Lecture notes in
business information processing). Cham: Springer.

9. Keller, S., & Price, C. (2011). Beyond performance: How great organizations build ultimate
competitive advantage (xx, 280 p.). Hoboken, NJ: Wiley.

10. Leinwand, P., & Mainardi, C. (2011). The essential advantage: How to win with a capabilities-
driven strategy (xii, 227 p.). Boston, MA: Harvard Business Review Press.

11. Taylor, F. W. (1911). The principles of scientific management (2 p. l., 7–77 p.). New York:
Harper & Brothers.

12. Johnson, J., Mulder, J., & CHAOS Chronicles. (2016). Focusing on failures and possible
improvements in IT projects. Journal of Systemics Cybernetics and Informatics (JSCI), 14(5), 5.

13. Gaikema, M., Donkersloot, M., Johnson, J., & Mulder, J. B. F. (2019). Increase the success of
governmental IT-projects. Systemics, Cybernetics and Informatics, 17(1), 97–105.

12 2 Introduction to Enterprise Engineering

Chapter 3
Introduction to Enterprise Ontology

Abstract The notion of Enterprise Ontology as adopted in this book comprises both system
ontology (dynamics) and world ontology (statics). By applying the notion, one acquires an
understanding of the essence of an enterprise that is comprehensive, coherent, consistent,
and concise, thus allowing one to achieve intellectual manageability, which is one of the
general goals of Enterprise Engineering. The philosophical background in which Enterprise
Ontology is positioned, is characterised by being both constructivist and interpretive. In
addition to the importance of the Enterprise Ontology for all participants in modern social
and economic life, the urgency of adopting and spreading it is substantiated. The only
prerequisite to achieve this is an open mind.

The difficulty lies not so much in developing new ideas as in escaping from old ones
(John Maynard Keynes)

3.1 About Intellectual Manageability

The use of the—in organisational circles quite novel—term “Enterprise Ontology”
(EO) deserves two explanations. One regards the justification of presenting this still
rather uncommon point of view on enterprises. Why and how would EO assist in
coping with the current and future problems related to enterprises? The other
explanation concerns the particular approach towards EO that this book takes.
Why would this approach be more appropriate and more effective than others? A
first attempt to answer these questions is provided in this introductory chapter.
Definite and fully satisfying answers can only emerge from a dedicated and thorough
study of the book. The lasting reward of such a study is a new and powerful insight
into the essence of the organisation and operation of enterprises.

Let us start by noting that managing an enterprise, but also getting services from it
as a client or collaborating with it as partner in a network, is nowadays far more
complicated than it was in the past. Because you probably have heard this tune in all
pitches and keys, we will not elaborate it. And in case you have not, glance over an
arbitrary management book from the past 20 years and you are sufficiently informed.

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_3

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_3&domain=pdf

The current lasting problems in enterprises, of any kind, are well investigated and
well documented. More than well, one could say, because far less effort is put in
thinking about how to cope with them. Anyhow, the common denominator of these
problems is complexity, and complexity can only be mastered if two conditions are
fulfilled. One is that there is an appropriate and effective theory of the things whose
complexity one wants to master. The other condition is that one disposes of
appropriate analysis methods and techniques, based on that theory.

The knowledge that one acquires at management or business schools does not
suffice anymore. Actually, it never did; managers were just lucky that the shop floor
workers ultimately always managed to really solve problems and implement desired
changes. Therefore, even the gifted entrepreneur can nowadays not succeed without
a basic, systematic, and integral understanding of how enterprises work. In order to
really cope with current and future challenges, a conceptual model of the enterprise
is needed that is coherent, comprehensive, consistent, and concise, and that only
shows the essence of the enterprise, abstracted from irrelevant details. By coherent
we mean that the distinguished aspect models constitute a logical and truly integral
whole. By comprehensive we mean that all relevant issues are covered, that the
whole is complete. By consistent we mean that the aspect models are free from
contradictions or irregularities. By concise we mean that no redundant matters are
contained in it, that the whole is compact and succinct. The most important property,
however, is that this conceptual model is essential, that it shows only the essence of
the enterprise. In particular, we mean that the model abstracts from all realisation and
implementation issues, so that one can effectively discuss alternative ways of
realising and implementing the enterprise.

We shall call such a conceptual model an ontological model. The combined
Greek words “ontos” and “logos” from which the English word “ontology” stems,
mean study or knowledge of what is or exists, and the philosophical branch with the
same name has taken up the term as referring to the reality around us, regardless of
our specific view on it. In other words, ontology requires us to make a strict
distinction between the observing subject and the observed object. This requirement
puts the authors under another obligation, namely of clarifying the philosophical
stance taken with respect to the subject–object dichotomy. We will do it only briefly,
without much elaboration.

3.2 The Philosophical Background of Enterprise Ontology

Three philosophical positions are relevant for our discussion: the objectivist, the
subjectivist, and the constructivist position. Objectivists believe that the world they
live in exists in itself, fully independent of them. In other words, they believe in a
true objective reality. Subjectivists take the opposite position. They believe that there
is no reality outside the subject (human being) and, in the extreme, that every subject
has its own image of reality. Somewhere in between is the position of the construc-
tivists. They agree with the subjectivists that there is no absolute objective reality

14 3 Introduction to Enterprise Ontology

(as the objectivists believe), but they believe that there is instead a kind of semi-
objective reality that they call an intersubjective reality. It is built and continuously
adapted through negotiating and achieving social consensus among subjects [1]. Our
position is this constructivist one. We consider the ontology of a particular part of
reality as the basis for sensible communication about that part of reality. At the same
time, we recognise that this ontology is built, rebuilt, and adapted in communication;
it cannot be otherwise.

We like to add to this tripartite philosophical stance two sociological paradigms
regarding the study of systems, namely the functionalist paradigm and the interpre-
tive paradigm [2]. The functionalist paradigm takes its name from the fact that it
wants to ensure that everything in the system is operating well so as to promote
efficiency, adaptation, and survival. An understanding of how systems work can be
gained by using scientific methods and techniques to probe the nature of parts of the
system, the interrelationships between them, and the relationship between the system
and its environment. The expertise it provides should put managers more in control
of their operations and organisations, and enable them to eliminate inefficiency and
disorder. The interpretive paradigm takes its name from the fact that it believes
social systems, such as organisations, result from the purposes that people have and
that these, in turn, stem from the interpretations they make of the situations in which
they find themselves. People act and interact in organisations as a result of their
interpretations. This paradigm wants to understand the different meanings of col-
laborative activity and to discover where these meanings overlap, and so give birth to
shared, purposeful activity. Managers can be guided to seek an appropriate level of
corporate culture. They can take decisions, on the basis of participative involvement,
that gain the commitment of stakeholders.

It is sometimes argued that these paradigms are incommensurable. In our opinion,
this is not necessarily the case. The notion of EO, as conveyed in this book, is
primarily functionalist in nature. However, various aspects, like considering an
enterprise as a social entity, the focus on (human) social individuals, Habermas’
theory of communicative action [3], the autonomy that is basically allowed to actor
roles, also reflects an interpretive perspective. One might argue that a really com-
prehensive approach to enterprise engineering should be able to address an enter-
prise from different angles, thus integrating important views from different
paradigms. Let this be our final brushstroke in painting the philosophical back-
ground for the key notion of EO.

3.3 The Importance of Enterprise Ontology

In its modern use, ontology has preserved its original meaning, but it has also a
definite practical goal. It serves to provide a basis for the common understanding of
some area of interest among a community of people who may not know each other at
all, and who may have very different cultural backgrounds. There are various

3.3 The Importance of Enterprise Ontology 15

definitions of the modern notion of ontology in circulation. Our main source is the
ontology of Mario Bunge [4, 5], but we will also refer to other sources. A widely
adopted definition of ontology is the one in [6]: an ontology is a formal, explicit
specification of a shared conceptualisation. It states the core properties that our
notion of ontology also will have. First, it regards the conceptualisation of (a part
of) the world, so it is something in our mind. Because of our constructivist stance, we
consider these mental images be checked and adapted in communication. Second,
this conceptualisation is supposed to be shared, which is the practical goal of
ontologies. This also takes place in communication. Third, it is explicit; an ontology
must be explicit and fully clear, there should be no room for misunderstandings.
Fourth, it is specified in a formal way. Natural language is inappropriate for this task,
because of its inherent ambiguity and impreciseness.

The notion of ontology as applied in [6], but also in [7–9], is what we will call in
Chap. 8 a world ontology. Common examples of such an ontology are the world of
traveling or the world of cooking and dining. The focus is on defining the core entity
types in such a world and their property types in a most clear and extensive way. The
main notion of ontology in this book is the notion of system ontology. Our goal is to
understand the essence of the construction and operation of systems, more specifi-
cally, of enterprises. As will become clear, this notion of system ontology includes
the notion of world ontology. Next, although we fully recognise the need for
ontologies for the purpose of worldwide flawless communication among agents
over the Internet, our motivation for this book is wider. In our opinion, the current
world is, and will remain, in the first place, a world of people, of human beings,
despite all the technical devices that (can) make our lives much more pleasant. This
is a philosophical stance of course; it is a choice. We strongly oppose, for example,
the quite common idea that artificial agents are, or at some future time will be,
equivalent fellow players in human social life. This idea can only be justified by a
severe inflation of such notions as authority and responsibility. Throughout the
history of mankind, people have used anthropomorphic metaphors for the purpose
of understanding and explaining the operation of natural things and of artefacts. The
only, but at the same time serious, danger is that one forgets that they were
metaphors, that one takes the metaphorical reasoning for real. So, for example, if
you think that your computer does not understand you, you are twofold right. First, it
is quite okay to use anthropomorphic metaphors in the interaction with your
computer. You probably do it sometimes also while driving your car or trying to
let any machine do what you want it to do. Second, in the most true sense, your
computer does not understand you, because understanding in the way human beings
have internalised the notion and apply it is applicable only to them. There is no
general notion of understanding that human beings would share with artificial
intelligent systems. There is no evidence for such a belief, except for occasional
apparent similar external behaviour. To conclude from these cases that the behav-
iours of humans and machines are brought about in the same way is merely
speculation.

16 3 Introduction to Enterprise Ontology

3.4 The Urgent Need for Enterprise Ontology

Amajor motivation for this book and for our work in ontology in general stems from
the conviction that the world is in great need for transparency about the operation of
all the systems we daily work with, ranging from the domestic appliances to the big
societal institutions. We are in great need already, and this need can only increase if
one imagines a future life in a cyber culture [10]. Our concern is the current lack of
an appropriate philosophical counterbalance to the dominant technocratic and
bureaucratic thinking. Let us give some examples to clarify the point. First, regard-
ing technical devices, if you read the user manual of a car or a computer or a software
application, you become overloaded with irrelevant details. You mostly end up with
a headache instead of any relevant understanding. And in case you persevere, there is
a high chance that you will discover so many errors and omissions in the description
that reading has become solving a puzzle.

As a concrete example, the implementation of an ERP (Enterprise Resource
Planning) package in an enterprise, even of only a few modules, may easily take
several years and cost the enterprise a huge amount of money. This money is partly
spent in having the supplier of the package (or some intermediary company) explain
how to use it, and partly to have the enterprise adapt its current way of working such
that it fits the straitjacket of the ERP package. Is this societal progress? Do we really
need to suffer this? As another example, have you ever phoned the help desk of a
company or a government agency in order to get the service they claim you will get
in their advertisements? Mostly you end up not by having what you were looking
for, but by being frustrated, maybe to the extent that you think of giving up. Why?
Because the operation of these institutions is completely opaque to you. And, in case
you have succeeded in penetrating to the right place, there is a chance that the other
side does not take on her/his responsibility and concludes your case by blaming the
computer or any other thing that he/she uses as an aid. Most probably, he/she acts in
this way not to hamper or frustrate you, but because the institution is also opaque to
her/him.

This situation should stop because it is not in the interest of humanity that it
continues, as it has been in no one’s interest to have come this far. To the best of our
knowledge, there has never been a plan to organise modern society in such a way
that nobody is able to understand how it works. Likewise, in no manufacturing
company has there ever been a plan to design domestic or professional equipment
such that it takes an incommensurable amount of effort to get to know how to use
it. Things have just gone that way. But, as said, there is no reason to let it continue.
Instead, there is abundant ground for stopping it. Imagine that it is possible for you to
acquire the right amount of the right kind of knowledge about the operation of the
equipment you are working with. Imagine that you are not bothered by incompre-
hensible and irrelevant things but that you get the insight you need in a way that you
immediately understand, because it is about what you want to do with the equipment,
not how it is designed and assembled. In a similar manner, imagine that it is possible
for you to acquire the right amount of the right kind of knowledge of the operation of

3.4 The Urgent Need for Enterprise Ontology 17

the company from which you bought something you want to complain about, or of
the government agency from which you are trying to get a license but have not
succeeded yet.

In summary, imagine that the business processes of these organisations have
become transparent to you. Wouldn’t that be great? So, this is our goal: to offer a
new understanding of systems of any kind, and of enterprises in particular, such that
one is able to look through the distracting and confusing appearance of an enterprise
right into its deep kernel, like an X-ray machine can let you look through the skin and
the tissues of the body right into the skeleton. As a user of systems, this understand-
ing lets you become master again of your activities. As a designer, it lets you design
systems in such a way that the resulting design, in particular the user dialogue and
interface, reflects the essence of the system. We will try to achieve this goal through
a notion of ontology that includes the dynamic aspects of systems, and that at the
same time does justice to the nature of enterprises. This nature is that enterprises are
social systems, of which the operating principle consists of the ability of human
beings to enter into and comply with commitments.

So, this will be our notion of EO and, as a quality criterion for evaluating
enterprise ontologies, we will apply the five properties that were discussed earlier:
coherence, comprehensiveness, consistency, conciseness, and essence, collectively
abbreviated as C4E, and elaborated on in Chap. 9. The particular methodology
(DEMO1) that we will present in Chap. 12 lets you develop the ontology of an
enterprise in a systematic way. But you need not become a professional developer of
ontologies. The explanation of the methodology and the demonstration of the
example cases serve first of all to let you internalise these ontologies, such that,
after having studied the book, you are able to understand them and take full
advantage of them.

Concluding, you will learn how to have more control over your professional life,
how to take the lead again, both as a user and as a manager of enterprises. The only
thing you need to do in return is to put aside your current way of thinking about
enterprises and to open up your mind for new ideas, as conveyed in the quote from
Keynes at the beginning. Only then can EO be the instrument that lets you discover
and reveal the essence of your enterprise (or any other one).

References

1. Searle, J. R. (1995). The construction of social reality (xiii, 241 p.). New York: Free Press.
2. Hoogervorst, J. A. P. (2017). Foundations of enterprise governance and enterprise engineering

(574 p.). Cham: Springer International.
3. Habermas, J. (1986). The theory of communicative action. Cambridge: Polity Press.

1DEMO is an acronym that has had several meanings in the course of time, starting with “Dynamic
Essential MOdelling”. The current one is “Design and Engineering Methodology for Organiza-
tions”. Visit www.ee-institute.nl for more information.

18 3 Introduction to Enterprise Ontology

http://www.ee-institute.nl

4. Bunge, M. (1977). Treatise on basic philosophy ontology I: The furniture of the world. In
Treatise on basic philosophy 3. Dordrecht: Springer Netherlands. p. 1 (370 p.).

5. Bunge, M. (1979). Treatise on basic philosophy ontology II: A world of systems. In Treatise on
basic philosophy 4. Dordrecht: Springer Netherlands. p. 1.

6. Gruber, T. (1995). Towards principles for the design of ontologies used for knowledge.
International Journal of Human-Computer studies, 43(5/6), 907–928.

7. Gómez-Pérez, A., Fernández-López, M., & Corcho, O. (2004). Ontological engineering with
examples from the areas of knowledge management, e-commerce and the semantic web.
Advanced information and knowledge processing (403 p.). London: Springer.

8. Guarino, N., Oberle, D., & Staab, S. (2009). What is an ontology? In Handbook on ontologies
(pp. 1–17). Berlin: Springer.

9. Guizzardi, G. (2005). Ontological foundations for structural conceptual models. The Nether-
lands: University of Twente.

10. Bell, D. (2006). Cybercultures. Critical concepts in media and cultural studies (4 Vols.).
London: Routledge.

References 19

Part II
Theories

There is nothing as practical as a good theory
(Kurt Lewin)

There is nothing as dangerous as a bad theory
(Sumantra Goshal)

Part II comprises the presentation and discussion of the theories underlying the
notion of Enterprise Ontology. Chapter 4 provides an overview of all current
Enterprise Engineering theories and their position in a clarifying framework. Chap-
ters 5 through 11 contain extended summaries of the theories. The texts are called
extended summaries because there is always more to be said. But for the purpose of
this book, they suffice to provide the knowledge that one needs for studying Part III.
Every chapter is divided into three parts: foundations, elaborations and discussions.

The foundations part regards the theoretical basis of the theory, its core ideas, as
well as the core sources of knowledge that they rely on. It is considered to be the
most stable part of a theory.

In the elaborations part, the link to practice is established (illustrations, methods,
techniques, tools, etc.). It is less stable than the foundations part, because new
elaborations may come up in the course of time from applying the theory in practice.

The discussions part serves mainly to compare the theory, and the methods that
are based on it, with comparable other approaches. Therefore, it is also less stable
than the foundations part, as new comparisons may become relevant in the course
of time.

Chapter 4
The Enterprise Engineering Theories

Abstract The foundations of the discipline of enterprise engineering (EE), as envisioned by
the Ciao Network, consist of the CIAO Paradigm and a number of theories. After the
discussion of the paradigm, which has its origins in the communication-centric view on
information systems engineering which emerged around 2000, the role of the EE theories
and their relationships with the EE methods and the practice of EE is explained. After having
been arranged in a suitable classification scheme, each of the following theories is briefly
discussed: the EE information theory, the EE model theory, the EE function-construction
theory, the EE organisational operation theory, the EE system theory, the EE organisational
construction theory, the EE organisational essence theory, the EE organisational design
theory, the EE organisational implementation theory, the EE normalisation theory, and the
EE governance and management theory.

Whether you can observe a thing or not depends on the theory that you use. It is the theory
that decides what can be observed

(Albert Einstein)

4.1 Introduction

In this chapter, the reader is introduced to the theoretical foundations of the disci-
pline of Enterprise Engineering (EE), as it is developed and practised by a group of
researchers and practitioners called the Ciao Network1 [1]. The Italian word Ciao2 is
an acronym for Communication, Information, Action, and Organisation. They are
the key concepts in the CIAO Paradigm, which constitutes the basic understanding
of the operation of enterprises. It also sets our engineering perspective. Even if an

1For more information, visit www.ciaonetwork.org
2The Italian word ‘Ciao’ can mean both ‘hello’ and ‘goodbye’, depending on the context. The
shared characteristic is that one confirms to someone else to consider him/her as a trustworthy
fellow human being.

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_4

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_4&domain=pdf
http://www.ciaonetwork.org

enterprise has not been designed consciously, changing can be considered as
redesigning and re-implementing it. At the same time, the highest appreciation is
given to the ‘pearls’ of every enterprise: the people. Invested with the right authority,
based on competence, and exerted with responsibility, they are the cornerstones of
an enterprise’s organisation. Without people, there is no organisation.

In order to portray the role of theories and methods in the field of EE, the Ciao
Network uses the tree metaphor, as exhibited in Fig. 4.1. The EE theories constitute
the roots of the tree. They feed the trunk, which represents the EE methods, with
their juices. After having been made fit for consumption by the methods, the juices
ultimately reach all branches, where they cause the growth of leaves and flowers,
representing the flourishing enterprises that EE aims to achieve.

As the tree grows, the need may arise to develop new methods, or to graft external
ones on the trunk. There is no objection against it; on the contrary, every useful
contribution is welcome. The only prerequisite is that the methods are (made)
compliant with the EE theories. In addition, a need may occur to develop new
theories, or to add external ones to the root structure. Again, the only prerequisite
is that they are (made) compliant with the existing set of theories.

Section 4.2 contains an explanation of the CIAO Paradigm. In Sect. 4.3, an
overview of the currently existing EE theories is presented, followed by a brief
summary of each of them in Sect. 4.4.

4.2 The CIAO Paradigm

4.2.1 From Information-Centric to Communication-Centric

Up to about 1975, there were no information systems and there was no field of
information systems engineering. The application of programmed computers in

Fig. 4.1 The CIAO tree

24 4 The Enterprise Engineering Theories

enterprises, for the sake of assisting the workers and the managers, was called EDP
(Electronic Data Processing). Around 1975, EDP was replaced by ISE (Information
Systems Engineering) or like names, referring to the field that concerns the applica-
tion of ICT3 in organisations. The primal and core notion became information,
generally defined as the representation of knowledge. Communication was defined
as the exchange of information. The notion of action was something rather discon-
nected from information and communication, as was the notion of organisation,
although there was the general recognition that organisation somehow implies
action, communication, and information. Let us call this point of view the informa-
tion-centric view on information systems (engineering).

One of the consequences of the information-centric view is that developing
(automated) information systems is considered as something that ICT professionals
do ‘to the side’, after having elicited requirements from the people in the organisation,
basically by interviewing these people. Once the system is built, it is ‘implanted’ in the
organisation. A widely acknowledged drawback of this ‘waiter’ approach is that the
delivered systems rarely meet the expectations of the users. In hindsight, the main
reason for this failure is that requirements determination was ill-understood. Asking
the members of an organisation what information they need, presupposes that these
people have such a comprehensive understanding of their tasks, that they are able to
provide complete, consistent, and coherent answers. As a counter example, embedded
software engineers will start to get an appropriate understanding of the system or
machine for which they are going to build supporting software. Based on this
understanding they will specify the requirements for the software system to be built.

For obscure reasons, the developers of ‘embedded’ software for organisations,
thus the information system engineers, have never recognised the necessity to
acquire an appropriate understanding of the objects of interest they want to support:
organisations. As a consequence of the ‘waiter’ approach to requirements determi-
nation, relevant requirements are often missing, and irrelevant ones are included.

In the nineties of the past century, an awareness emerged that the information-
centric view was not sustainable anymore. The number and size of failures in
information systems engineering kept increasing, and the proclaimed benefits of
standard packages, notably ERP4 systems, came along with the feeling of being
armoured by the people that had to use these systems. Based on the achievements in
language philosophy, notably Speech Act Theory [2, 3] and in (social) action theory,
notably the Theory of Communicative Action [4], a community of researchers in
information systems engineering, called LAP (Language/Action Perspective), pro-
posed a paradigm shift [5]. By taking communication as the primal notion, the path
was paved to a more appropriate and more integrated understanding of the other

3ICT stands for Information and Communication Technology. It refers especially to the modern
practice of applying digital electronic, optical, etc., means to process, store, and transmit data.
4ERP stands for Enterprise Resource Planning. It evolved in the 1990s from MRP (Materials
Requirements Planning). ERP is a manufacturing and logistics approach to business processes
and data management.

4.2 The CIAO Paradigm 25

three key notions: information, action, and organisation. Later, the name CIAO
Paradigm (CIAO stands for Communication, Information, Action, and Organisation)
has been coined for this communication-centric view on information systems (engi-
neering). Communication5 is now defined as the sharing of thoughts between sub-
jects (human beings), and information as the means for communication. People, in
organisations and in society at large, have a need to communicate, generally for the
sake of making known what they are doing. Because it is impossible to do this
directly, for example, by connecting brains, they have to use the vehicle of
information.

4.2.2 Communicative Action

In addition to the sharing of thoughts, communication became (also) understood as a
form of action, by virtue of the intention in every communicative act, as explained
by Habermas’ Theory of Communicative Action [4]. Figure 4.2 exhibits the four
constituting parts of a communicative act: the performer, the intention, the
addressee, and the proposition.

The performer and the addressee are subjects, that is, human beings, particularly
in their quality of social individual, which means: being capable to engage in mutual
commitments. The proposition is a state of affairs that is or can be the case. An
example of a proposition in the context of a café is that a client has got a cup of
coffee. The intention is the intent of the performer (the client) towards the addressee
(a waiter), with respect to the proposition. If the intention is ‘request’, the performer
wants the addressee to make the proposition become true. In this case, the client
wants the waiter to bring her a cup of coffee. Habermas [4] tells us that, in
performing a communicative act, the performer raises three validity claims towards

Fig. 4.2 The structure of a communicative act/fact

5The English word ‘communicate’ comes from the Latin word ‘communicare’, which means
‘making something common’, ‘sharing something with somebody’. In a more specific sense, it
means ‘sharing thoughts’.

26 4 The Enterprise Engineering Theories

the addressee: the claim to rightness, the claim to sincerity, and the claim to truth.
These claims have to be assessed by the addressee, and the result of this assessment
will guide him/her in the way he/she will respond. By accepting the claim to
rightness in the above example, the waiter recognises the authority of the client to
make the request. By accepting the claim to sincerity, the waiter expresses that he
considers the client sincere in making the request. By accepting the claim to truth,
the waiter expresses that the proposition can be made true. If all three claims are
accepted, the communicative act is said to be successful. In the café example, the
waiter will then respond by a promise. In case of failure, he will decline the client’s
request. In every communicative act, one of the validity claims is dominant. Based
on this dominance, Habermas [4] distinguishes three categories of communicative
acts, as well as three worlds in which these acts have effect. Figure 4.3 shows the
distinctions. The dominance of a claim, as well as the related world, is indicated by
the grey-coloured rectangles.

In the category of constativa, the dominant claim is the claim to truth, and the
world with which they are primarily concerned, is called the objective world.
Examples of intentions in this category are question and assertion. If a railway
passenger asks a railway officer for the departure time of the next train to Amster-
dam, the dominant claim is the claim to truth, that is, that the fact exists (in their
shared objective world). This holds also for the answer by the officer (which would
be the assertion of a fact). Facts like the departure time of trains are considered to
exist in our common objective world, like the fact that the sun is shining, and the
current price of a glass of beer in your favourite pub. But, the other two
(non-dominant) validity claims must also be satisfied. In the train example, this
means that the railway passenger respectively trusts the railway officer that he/she is
authorised to provide the answer, and that this officer will provide the correct
answer.

In the category of expressiva, the dominant claim is the claim to sincerity, and the
world with which they are primarily concerned, is everyone’s private subjective
world. Examples of intentions in this category are praise and apologise. If the
railway passenger starts his/her conversation with the railway officer by saying

Fig. 4.3 Categories of communicative acts

4.2 The CIAO Paradigm 27

“I’m sorry to disturb you, madam, but . . .”, then the dominant claim of this phrase is
the claim to sincerity. If the officer feels that the passenger is insincere, she will most
likely utter a sincerity checking sentence, and she may even ignore the passenger.
Facts like feeling sorry are considered to exist in everyone’s subjective world. The
claim to sincerity represents the most fundamental condition for human cooperation
in the broadest sense of the word, which is mutual trust. At the same time, it is the
hardest one to verify. Moreover, trust emerges from shared values and norms among
people, which do change over time. In language philosophy [6] and social action
theory [4] it is assumed that people constantly check and adjust their values and
norms when they are communicating. In [7] we have called this second-order
communication, and we have suggested that this is the lubricating oil of organisa-
tions and of society at large.

In the category of regulativa, the dominant claim is the claim to rightness, and the
world with which they are primarily concerned, is the intersubjective or social
world. Examples of intentions in this category are the request and the promise. If
the client in the café asks the waiter for a cup of coffee, the dominant claim is the
claim to rightness, that is, the client claims that she has the authority to make the
request, and that she considers the waiter to be authorised to fulfil it. This holds also
for the response by the waiter. Facts like being authorised to do something are
considered to exist in our common intersubjective or social world. Moreover, we
have created them ourselves. Assigning each other authorities (and expecting that
they will be exerted in a responsible way) is the way in which we build organisations
and societies [6]. This insight has important consequences. One of them is that
people are basically autonomous in deciding how to respond to (intersubjective or
social) events. This is the case in every enterprise and in society at large. The
fundamental autonomy implies that one may disobey rules and laws if the situation
asks for it. At the same time, they must act responsibly, and they can be held
accountable for their deeds. Another consequence is that all facts, or all data if one
likes, are basically social or intersubjective facts. As will be elaborated in the PSI
theory (cf. Chap. 8), a fact is either a coordination fact, like having requested a cup of
coffee, or a production fact, like having brought a cup of coffee, or having observed
the temperature in a room. Even in the upcoming era of the Internet of Things, the
facts that we use in our institutionalised society are always social facts.

4.2.3 Implications for Information, Action, andOrganisation

Let us point out next what the consequences of the communication-centric view are
for the other three concepts: information, action, and organisation, starting from the
basic understanding that communication is the sharing of thoughts by human
minds. Because human beings are not able to directly connect their minds, some
vehicle for transmitting thoughts is needed, and this vehicle is information, or the
sign, which is the preferred term in semiotics (cf. Chap. 5). A major outcome of this
study is the semiotic ladder, shown in Fig. 4.4. It clarifies the role of signs in the
communication of human beings. Information then is the dyad of content and form,

28 4 The Enterprise Engineering Theories

meaning that the two parts are distinguishable but not separable. The content is the
thought that one wants to share, and the form is the agreed-upon perceivable sign.
The content comprises both the intention (or pragmatics) and the proposition
(or semantics) of the thought, and the form comprises both the formalism
(or syntax) and the coding (or empirics). Contrary to the definition in Fig. 4.4,
the content of a sign is often equated with the notion of information, and the form
with data. Precise definitions and their consistent use don’t seem to have a high
priority in current practice.

In the café example, the client has, at some point in time, got the thought that she
wants a cup of coffee. In order to share this thought, she has to express it in a sign
that is intelligible for the waiter. The proposition of the thought is “client has got a
cup of coffee” and the intention is the request. By performing the request, she enters
into a commitment towards the waiter, like the waiter enters into a commitment if he
performs a promise or a decline in response. The client may have expressed her
thought in this English sentence: “I’d like to have a cup of coffee, please”, which
constitutes the form part in Fig. 4.4. The applied formalism is the English grammar
and the coding concerns the representation of the words. The substance in which the
sentence is inscribed consists of the air vibrations that are produced by the client and
then perceived by the sense of hearing of the waiter.

For the concept of action, the communication-centric view means that commu-
nicating is (also) acting, as discussed in Sect. 4.2.2. As Austin [2] puts it, people do
things with words. In the PSI theory (cf. Chap. 8), this is accentuated by
distinguishing coordination acts and production acts, and by combining them in
the concept of the (business) transaction. The new concept of organisation that arises
from the foregoing is: a network of actors who carry out transactions in cooperation.
It is a new way of looking at Mintzberg’s basic idea of organisation: the need to
divide labour into tasks, and the need to coordinate these tasks [8]. The idea that
organisation is somehow the outcome of the social interaction of cooperating human
beings, is not new, by the way. Since Max Weber [9], several sociologists have
studied this relationship, like, for example, Weick [10]. However, none of them has
made the idea as operational as the CIAO Paradigm does.

Fig. 4.4 The semiotic ladder

4.2 The CIAO Paradigm 29

Having this new understanding of organisation, a new and more appropriate
understanding of information system emerges. It appears that every information
system in an organisation can appropriately be conceived as some implementation of
some part of the organisation. This view emphasises the being intrinsically
intertwined of informations systems and their supported organisations. It also clar-
ifies why information system engineers should first of all study the construction and
operation of the organisation before designing the information system. Basically, the
information system is already there, because it is an intrinsic part of the organisation.
Consequently, the functional requirements are also already there. The main task of
the information system engineer is to find a new way of implementing a particular
part of the organisation, in particular by applying ICT.

Although conceiving organisations as networks of actors who carry out trans-
actions, is indifferent to a particular management style or approach, it certainly
matches very well with a high degree of self-management, as discussed in [11]. Mak-
ing decisions at the lowest hierarchical level that is possible, implies that one grants a
high degree of autonomy to the employees on that level.

4.3 Overview of the EE Theories

Paraphrasing Einstein’s quote above, the EE theories are the mental glasses through
which enterprise engineers observe and understand enterprises, and seek to make
sense of them. In addition, the EE theories are the roots of the methods for improving
enterprises, as illustrated in Fig. 4.1.

Table 4.1 The current EE theories

30 4 The Enterprise Engineering Theories

The presently identified EE theories are listed in Table 4.1. Next to the Greek
letter that serves as the primary identifier, their alternative names and EE references
are mentioned. All theories are classified in the EE Framework of Theories
(Fig. 4.5), which is an adapted version of the framework that was introduced in
[1]. Four categories are distinguished: philosophical, ontological, technological, and
ideological. The structure of Fig. 4.5 must be understood as follows. The philosoph-
ical theories underlie all other theories. On top of that, the ontological theories
underlie both the technological theories and the ideological ones. The latter two
categories do not have specific interrelationships. The classification of the theories in
the framework is, to some extent, disputable, because they do not always fit in
exactly one category. However, the presented classification seems to do justice to
their main character.

Philosophical theories concern the most fundamental ways in which people
perceive and conceive the surrounding world, make sense of it, study it, etc. They
are about knowledge in general, and therefore include, for example, epistemology,
phenomenology, and logic. Philosophical theories are justified by their truthfulness.
The truthfulness of a theory is established by reasoning or by judging its tenability in
the face of reality.

Ontological theories are about the nature of things. They serve to explain their
construction and operation, and predict the consequences of changing them, while
completely abstracting from implementation. In EE, the things are organisations.
Ontological theories are justified by their soundness and appropriateness.
The soundness of an ontological theory is established by its being rooted in sound
philosophical theories. The appropriateness of an ontological theory is established
by the evaluation of its practical application, for example, through expert
judgements.

Ideological Theories
about choosing the things to change

(imagination and inspiration)
-theory

Technological Theories
about designing and making things

(analysis and synthesis)
-theory, -theory, -theory

Ontological Theories
about the nature of things

(explanation and prediction)
-theory, -theory, -theory, -theory

Philosophical Theories
about knowledge in general
(conception and perception)
-theory, -theory, -theory

Fig. 4.5 The EE theories in the EE framework of theories

4.3 Overview of the EE Theories 31

Technological6 theories are about designing and building things, and about
putting them into operation. Generally spoken, they assist in analysing and
synthesising things. Technological theories are justified by their rigor and relevance.
The rigor of a technological theory is established by its being rooted in sound
ontological and ideological theories. The relevance of a technological theory is
established by the evaluation of its practical application, e.g., through measurements,
evaluative comparisons, and adoption studies.

Ideological theories are not about things themselves, but about the context in
which one decides on whether to make or change them. In EE, they serve to
feed the imagination of people and to assist them in inspiring other people to
adopt new, better ideas for running enterprises. Ideological theories cannot a
priori be predicated as truthful or as sound and appropriate, nor as rigorous and
relevant, even if they are rooted in rigorous and relevant other theories.
One can only speak of their societal significance. The significance of an
ideological theory boils down to the usefulness that is assigned to it by its
supporters.

The summaries of the EE theories in Sect. 4.4 are presented in an order that seems
to be most logical; one can read them from the first to the last without having to jump
forward for explanations.

4.4 Summaries of the EE Theories

4.4.1 The FI Theory

The FI theory or EE information theory (FI stands for Factual Information),
clarifies how people acquire factual knowledge. Semiotics provides us with the
semiotic triangle [12], which clarifies the dyadic character of information: it is
the inseparable combination of content (the communicated thought) and form
(the sign that signifies the thought). In addition, Semiotics provides us with the
semiotic ladder [13], in which a distinction is made between the semantics and
the pragmatics of thoughts, thereby clarifying that a thought consists of a
proposition and an intention.

6Particularly in Information and Communication Technology, the term ‘technology’ has got the
meaning of means. We prefer to stick to the original meaning of the word, which stems from its
Greek origin: technè (meaning making) and logos (meaning knowing). So technology means
knowing how to make.

32 4 The Enterprise Engineering Theories

The core of the FI theory is the semiotic mill, refined into the ontological mill,
which is a generic framework for understanding perception and conception, shown
in Fig. 4.6. A fact becomes existent in the mind when a perceived concrete thing
conforms to (the prescription of form of) a type. Therefore, a fact is an instantiation
of a type. In logical terms, it is a predication of a conceptual object, with the type as
the predicate. The conceptual object represents a concrete object that is considered to
be the identity of a concrete thing. The first is a member of a conceptual class, and the
second is a member of a concrete class. Type and class are dyadic notions: a class is
the extension of a type; conversely, a type is the intension of a class.

Because the form of the thing with object 701 conforms to the type human, the
conceptual fact is created in the mind that the thing is a human. In addition, factual
knowledge can be acquired through communication.

Types can be declared, as original new types, but they can also be derived from
existing types. Three ways of deriving are discussed: specialisation, generalisation,
and aggregation. An example of specialisation is the definition of the type student as
a specialisation of person: a student is a person for whom there is an admission in
which the person is the admitted person. An example of generalisation is the
(extensional) definition of the type vehicle: the class VEHICLE is the set-theoretic

instantiation

Fig. 4.6 The ontological mill

4.4 Summaries of the EE Theories 33

union of the classes CAR, BIKE, SCOOTER, etc. An aggregation of a number of
types is (extensionally) defined as the cartesian product of their classes. An example
of aggregation is the definition of the price of an article as an attribute of the
Cartesian product of article kind (e.g. apple), supplier (e.g. GreenShop), and day
(e.g. today).

4.4.2 The MU Theory

The MU theory or EE model theory (MU stands for Model Universe), is a theory of
models and modelling in general, and of conceptual modelling in particular. It adopts
Apostel’s definition of model [14]: Any subject using a system A to obtain knowl-
edge of a system B, is using A as a model of B. This definition conveys the basic
understanding of the concept of model as a role concept. The model triangle, which
is based on the semiotic triangle (cf. Sect. 4.4.1), clarifies how complexes (systems
and aggregates) of three major sorts (concrete, conceptual, and symbolic) can be
viewed as models of each other. It is exhibited in Fig. 4.7.

By adding two levels of abstraction (the schema level and the meta level) on top
of the conceptual complex or instance level, the General Conceptual Modelling
Framework (GCMF) emerges. It clarifies the notions of conceptual complex, con-
ceptual schema, and meta schema, for any Universe of Discourse or system’s world.

Fig. 4.7 The model triangle

34 4 The Enterprise Engineering Theories

It also makes clear that these notions are logical constructs, and that consequently
any expression of them (in a suitable language) is directly transformable to first-
order logic. The GCMF is exhibited in Fig. 4.8.

Because the form of the concrete complex conforms to the prescription of
form that the conceptual schema represents, the corresponding conceptual com-
plex is created in the mind. For communicating this ‘thought’, it is expressed in
the symbolic formalism of the conceptual schema, yielding the symbolic
complex.

In order to specify conceptual complexes, conceptual schemas and meta
schemas, the General Ontology Specification Language (GOSL) is presented and
discussed. The syntax of the language consists of graphical and textual symbols
and constructs, as well as a textual part. The latter is an English-like
formal language, which means that it is directly transformable to first-order
logic, like the graphical part. The split between the two is a rather pragmatic
one. Compared to common graphical languages for conceptual modelling, GOSL
might be called minimal: it covers only the basic concepts and constructs. More
complicated logical formulas can mostly be better expressed in formal textual
sentences.

Fig. 4.8 The General Conceptual Modelling Framework

4.4 Summaries of the EE Theories 35

4.4.3 The TAO Theory

EE is an engineering approach to tackling problems in enterprises. By nature,
engineers seek to understand the construction and operation of systems (where
operation is defined as the manifestation of the construction in the course of time),
in addition to their functions and behaviours (where a behaviour is defined as the
manifestation of a function in the course of time). The TAO theory (Teleology–
Affordances–Ontology) clarifies the distinction between function and construction.
One of the clarifications is that the construction of a system is an inherent property of
the system, whereas all of its functions are relationships between the system and
stakeholders. Consequently, functions are not properties of systems. The TAO
theory builds on Gibson’s Theory of Affordances [15]. As Fig. 4.9 illustrates,
affordances emerge from the perception by subjects (with needs or purposes) of
concrete objects (with properties). As an example, if you walk in the woods and feel
the need to sit, you may perceive that a tree trunk offers you the sit-on-ability
affordance.

In addition to using the affordances that existing things offer, people also create
things with particular affordances in mind. These things are commonly called
artefacts, and their intended affordances functions. For example, chairs have the
function to be sit-on-able. In addition, one can assign (new) functions to things. For
example, one can assign the function of parking lot to a square, for particular days of
the week.

Consequently, a strict distinction is made between the construction and the
function perspective on things. In the construction perspective, one studies a thing
in an objective way, that is, independent of the affordances it may offer. In the
function perspective, one studies the affordances that a thing may offer to subjects,

TELEOLOGY ONTOLOGYAFFORDANCE THEORY

object

(with properties)

subject

(with the need to sit)

affordance

(sit-on-ability)

the object is sit-on-able to the subject

Fig. 4.9 Illustration of the TAO theory

36 4 The Enterprise Engineering Theories

while disregarding its construction. So, function (or affordance) is not a property of a
thing, but a relationship between the thing and a stakeholder. For example, to people
who know to drive, cars do offer relevant functions. This does probably not
(directly) hold for the members of an isolated tribe in the jungle of Brazil.

When using the affordances that things can offer them, subjects may have
different experiences. For example, you may value the sit-on-ability of a chair higher
than the same affordance offered by a tree trunk. Experiences are basically subjective
impressions. However, they may be shared among stakeholders.

Corresponding with the function-construction distinction, two sorts of conceptual
models (cf. Sect. 4.4.2) are distinguished: constructional models and functional
models. A constructional model is a representation of the construction of concrete
things, like cars. A functional model is a representation of the possible affordances or
functions that a concrete thing may offer to someone, for example, the driving
function of a car to a (potential) driver. Next, the constructional decomposition
and functional decomposition of enterprises are discussed. To distinguish between
the two, it is suggested that the term “organisation” be used when referring to the
construction perspective, and the term “business” when referring to the function
perspective. A decomposition of an enterprise’s organisation is a constructional
decomposition, and a decomposition of its business is a functional decomposition.

4.4.4 The PSI Theory

The PSI theory (Performance in Social Interaction) serves to study the operational
essence of organisations. The word “organisation” indicates that one takes the
construction perspective on enterprises. Organisations are systems in the category
of social systems (cf. Sect. 4.4.3), which means that the system elements are social
individuals, called actors. The operating principle is that actors enter into and comply
with commitments towards each other.

An actor is defined as a subject (human being) in an actor role. The actor role
determines the authority that the actor may exercise and the responsibility to do
so. Commitments are raised in coordination acts, which are communicative acts in
Habermas’ category of regulativa (cf. Figs. 4.2 and 4.3). The result of performing a
coordination act is the creation of the corresponding coordination fact. For example,
performing a request act concerning some product results in the fact that the product
is requested.

Coordination acts/facts are the atomic building blocks of organisational (but
commonly called: business) processes. They always occur in particular patterns of
interaction between subjects who play either the initiator role or the executor role in
the transaction. These patterns are instances of one generic pattern, called the
(business) transaction. The basic coordination acts in every transaction are the
request (by the initiator), the promise (by the executor), the declare (by the executor),
and the accept (by the initiator). The complete transaction pattern comprises in

4.4 Summaries of the EE Theories 37

addition, the decline (instead of promise), reject (instead of accept), and a revocation
pattern for each of the basic steps. Every transaction (instance) is of a particular
transaction kind. A transaction kind concerns one specific product kind and has one
specific actor role as its executor role. The combination of a transaction kind and its
executor role is called a transactor role. It is the (molecular) building block of
organisations.

Based on the semiotic ladder (cf. Sect. 4.4.1), three human abilities are distin-
guished in performing coordination acts: forma, informa, and performa (cf. Fig. 4.4).
This distinction gives rise to three levels of correspondence in the communication
between subjects: the forma level (notational correspondence), the informa level
(cognitive correspondence), and the performa level (social correspondence), as
shown in Fig. 4.10. To be successful, all three conditions of correspondence must
be satisfied, that is, the communication must be free of distortion. Below the forma
level is the medium level, where forms are inscribed in physical substances and
transported between subjects. Although evenly conditional for successful commu-
nication, this level is considered to be outside the field of EE, as is the ‘inner self’
upper level, where a person’s wisdom and love reside, which constitute the basis for
her/his decisions. He/she is basically autonomous in deciding how to respond to
coordination events. At the same time, actors can always be held accountable, by
other actors, for the acts that they decide to perform.

Fig. 4.10 The process of a
communicative act

38 4 The Enterprise Engineering Theories

The structure of a coordination act/fact is shown in Fig. 4.2. Examples of
intentions are: request, promise, declare, and accept. An example of a product
(or production fact) is ‘sale 1618 is completed’. As said, coordination acts occur in
specific interaction patterns between two participants, called transactions. A trans-
action is successful if the (final) product is accepted. At that moment, the product
starts to exist (comes into being). Figure 4.11 exhibits the complete transaction
pattern, which is considered to be the universal pattern in all organisations. It
consists of the standard pattern (middle part) and four revocations patterns.

4.4.5 The DELTA Theory

The DELTA theory or EE system theory (DELTA stands for Discrete Event in
Linear Time Automaton) is a theory of discrete event systems, both from the
construction and from the function perspective (cf. Sect. 4.4.1). According to
Weinberg’s division of the realm of systems [16], organisations fall in the category
of organised complexity: they are too organised for statistics and too complex for
(mathematical) analysis. Bunge’s system definition [17] is adopted: a (homoge-
neous) system is a triple ℂ,, ð Þ , where ℂ (composition) is a set of elements of
some category, (environment) is a set of elements of the same category as the
elements in ℂ, and (structure) is a set of influencing bonds among the elements in ℂ

Fig. 4.11 The complete transaction pattern

4.4 Summaries of the EE Theories 39

and between them and the elements in . Examples of categories are: physical,
biological, and social. Organisations fall in the category of social systems.

Two sorts of conceptual systems are distinguished that may serve as models
(cf. Sect. 4.4.2) of concrete systems: the black-box system and the white-box system.
White-box models are suited to study the construction and operation of systems
(cf. Sect. 4.4.3). Black-box models are suited to study their functionality and
behaviour. Because black-box systems don’t have an internal state, the grey-box
system is introduced as a black-box system with internal state. Well-known exam-
ples of grey-box systems are the finite automaton (or finite state machine) and the
discrete event system. For a deep and formal study of grey-box and white-box
models, the PRISMA model is introduced. Three ways of mutual influencing
between (the elements of) systems are distinguished, called activating, restricting,
and impeding. In the PRISMA grey-box model, all acts by the system, and their
resulting facts, are divided in two kinds: production acts/facts and coordination acts/
facts (cf. Sect. 4.4.4).

The PRISMA grey-box model is defined as a tuple (P, R, I, S, M, A), where:

P is a partial function, called the performance function
R is a set of C-fact types, called the reaction base
I is a set of C-fact types, called the impediment base
S is a set of P-fact types, called the state base
M is a set of P-fact types, called the mutation base
A is a set of C-fact types, called the action base

P is defined as: ℘((A [I) �) � ℘(S �) ! ℘(M �) � ℘(R �)

where X is the union of the extensions of X 2 X (X is A, I, M, R, or S); is the
discrete time scale and is the set of (positive) time delays.

Fig. 4.12 Legend of the prismanet diagram

40 4 The Enterprise Engineering Theories

The PRISMA white-box model allows one to conceive systems as prismanets:
networks of processors, channels, and banks. The complete prismanet model of a
system is divided into the construction model and the operation model. The con-
struction model of a system is the part that is expressed in the prismanet diagram,
whose legend is shown in Fig. 4.12. The meanings of the various links between the
basic shapes (box for processors, diamond for banks, and disk for channels) are
expressed in an informal way. The operation model of a system consists of the action
rules that constitute the performance function of the corresponding prisma. They
reside in the processor that is the kernel of the prisma. The abstraction that is
achieved through the notions of activating, restricting (constituted by inspection
links), and impeding makes the prismanet comprehensive: no additional knowledge
is needed to get a complete (ontological) understanding of the modelled system. That
is why it is called the essential model of the system. In addition, prismanets are
formalised systems; they can directly be implemented in software.

4.4.6 The OMEGA Theory

The OMEGA theory (Organisational Modules Emerging from General Arrange-
ments) clarifies the coordination structures in which transactor roles are connected.
Three basic structures are distinguished: interaction, interstriction, and
interimpediment.

The interaction structure determines for every transactor role in the organisation
which transactor roles are initiator in transactions of the corresponding transaction
kind. It appears that the interaction structure of an organisation is always a set of tree
structures. Consequently, the transaction kinds at any level of such a tree structure
are enclosed in another transaction kind (except the ‘root’ of the tree) and do have
enclosed transaction kinds (except the ‘leaves’ of the tree). The interaction structure

Fig. 4.13 Legend of the Coordination Structure Diagram

4.4 Summaries of the EE Theories 41

is the inherent fundamental structure of business processes (which are commonly
envisioned as flows, that is, as sequences of events). In addition, it clarifies the
responsibility ranges of actors in business processes, and thus notions like process
ownership and data ownership.

The interstriction structure determines which transactor roles may inspect the
history of the transactions of other transaction kinds. These other transaction kinds
may be external to the organisation (or Scope of Interest). Actors do inspect the
history of transaction processes because they need to take process facts into account
when deciding on acts to perform. In this way, actors restrict each other’s decision
freedom.

The interimpediment structure determines whether actors in some actor role have
to wait with performing specific acts until other transaction processes have reached a
specific state. All three organisational structures are expressed in the Coordination
Structure Diagram (CSD), of which Fig. 4.13 shows the legend. Figure 4.14 illus-
trates it, using the GloLog case (cf. Chap. 19) as an example enterprise. The red
colour of the diamonds indicates that the transactor roles belong to the
O-organisation of the modelled enterprise (cf. Sect. 4.4.7). There are four interaction
trees, also called business process kinds. The top of the left one is a composite
transactor role. The initiator link with TAR01 expresses that it contains a (unknown)
transactor role that initiates transactions TK01. The top of the other three structures
is a self-activating transactor role. The light-grey colour of some boxes indicates that
they belong to the environment of the Scope of Interest (which comprises the white-
coloured boxes). Each of the four processes has its own case kind: client order,
supply order, ship content and container content, respectively. The evoked structural
clashes [18] between them are resolved by the wait links. In addition, there are
several inspection links. Figure 4.14 clearly shows the added value of product (tree)
thinking in addition to flow thinking. There cannot be one ‘seamless’ process flow in
GloLog. Instead, there are four autonomous processes, with their own process cycle,
determined by their case kind. As alluded to in Sect. 4.4.5, no additional knowledge
is needed to get a complete (ontological) understanding of the organisation, that is, of
the collective business processes, provided that the action rules for the transactor
roles are also known. Therefore, this model is called the essential model of the
organisation.

Fig. 4.14 CSD of the GloLog enterprise

42 4 The Enterprise Engineering Theories

There is a second kind of general arrangements, in addition to the ones above. It
appears that every organisational structure is composed of a limited number of
reference patterns, which often resemble legal patterns of action, like the transfer
of property and the granting/obtaining of usufructuary rights.

4.4.7 The ALPHA Theory

The ALPHA theory (Abstraction Layers in Production for Holistic Analysis) is a
theory about tree structures of (trans)actors, in addition to the compositional trees
from the OMEGA theory (cf. Sect. 4.4.6). These tree structures occur in three
transactor layers, which are based on the distinction of three sorts of production
acts: original, informational (or infological), and documental (or datalogical).

Original production acts bring about original, new, production facts. Examples
are devising things, deciding and judging (all of them having intangible results), as
well as manufacturing, transporting, and observing (all of them having tangible
results).

Informational production acts comprise remembering facts (in the state of the
production or coordination world of an organisation), recalling (remembered) facts,
and computing or deriving facts. Computing does not change the state of a world; it
only leads to presenting the state in new, possibly more intelligible ways.

Documental production acts concern the signs (or data) that contain facts, as well
as the files that carry the data (cf. Sect. 4.4.1). They comprise saving, providing and

Fig. 4.15 Organisational layers and sorts of production

4.4 Summaries of the EE Theories 43

transforming (documents or data), and storing, retrieving, copying, transmitting, and
destroying (files). Because original acts are the only acts that change the state of the
production world of an organisation, they need to be performed by authorised and
responsible actors, thus subjects in actor roles. Both informational and documental
acts may be taken over by artefacts, notably ICT systems. However, as pointed out in
Sect. 4.4.4, human actors are ultimately responsible and accountable.

Corresponding with the distinct sorts of production, the actors in an organisation
can be partitioned in three layers: the O-organisation (O from original), the I-orga-
nisation (I from informational), and the D-organisation (D from documental). The
I-organisation supports the O-organisation by means of informational services
(remembering and sharing facts), and the D-organisation supports the
I-organisation by means of documental services (saving and providing documents).
By the realisation of an organisation is understood the devising of the I-organisation
and the D-organisation, given its O-organisation (cf. Fig. 4.15). Conversely,
abstracting from realisation yields the O-organisation of an enterprise. The addi-
tional abstracting from implementation yields the ontological model of the
O-organisation, also called the essential model of the (total) enterprise (cf. Sect.
4.4.5).

The ‘pie chart’ in Fig. 4.16 illustrates the difference between material and
immaterial production in the O- and the D-organisation (the production in the
I-organisation is by definition only immaterial). The adjacency of material original
production and material documental production expresses that the exact sort of an
act/fact may depend on the point of view taken: sending a letter by postal mail is
clearly a material documental act for the sender. Postal mail companies, however,
may consider the distinction between original and documental production less
interesting. Their business is to transport packages, including envelops, without
much regard to their contents.

4.4.8 The BETA Theory

The BETA theory or EE design theory (BETA stands for Building from Essence with
Technology and Architecture), is a theory about designing artefacts. Where the
ALPHA theory tells one how to abstract from the concrete appearance of a system

Fig. 4.16 Organisational layers and sorts of production

44 4 The Enterprise Engineering Theories

(realisation and implementation), the BETA theory guides one in designing a system
and in making it concrete. First, Simon’s notion of design [19] is discussed,
understood as devising a situation that is considered preferable to the current
situation, as well as Alexander’s notion of design process [20], understood as a
sequence of alternate analysis (of the problem) and synthesis (of a solution) steps.
Next, the General System Development Process (GSDP) is introduced. It is a general
framework for understanding the development of an object system for the benefit of a
using system (cf. Fig. 4.17).

With reference to the TAO theory (cf. Sect. 4.4.3), a clear and sharp distinction is
made between the function and the construction of the object system, as well as
between the function and the construction of the using system, thereby clarifying that
the function of the object system supports the construction of the using system. The
three main phases in a development process are function design, construction design,
and implementation design. Function design starts from the ontological model of the
using system, which is commonly arrived at by reverse engineering (cf. Sect. 4.4.7),
and ends with the specification of the object system function. There are two inputs:
functional requirements (determined by the using system construction) and func-
tional principles (determined by the applicable architecture). Construction design
starts from the object system function, and ends with the ontological model of the
object system. There are two inputs: constructional requirements (determined by the
using system construction) and constructional principles (determined by the appli-
cable architecture). Implementation design (also called engineering) starts from the
ontology of the object system and ends with the fully detailed specification of a
possible implementation, which can subsequently be implemented with appropriate
technology. The inputs are both the constructional requirements and the construc-
tional principles.

object system
construction

using system
construction

ontology ontology

re
ve

rs
e

en
gi

ne
er

in
g

engineering

object
system
function

functional
principles

architecture

construction

design

function

design

functional
requirements

constructional
requirements

technology technology

constructional
principles

im
plem

entation

im
plem

entation

Fig. 4.17 The General System Development Process

4.4 Summaries of the EE Theories 45

A general problem in system development is the (too) large amount of design
freedom that is left when all requirements are satisfied. Since time immemorial, the
notion of architecture helps designers to use this freedom in a purposeful and
systematic way. To exemplify this, the Metropolitan Opera in New York, the Sydney
Opera House, and the Scala in Milan have the same basic function, namely to offer
the facilities that are needed to perform operas. Yet, their appearances are very
different. One only has to look at the photos of the respective buildings to see
it. Thus, whereas the functional requirements for each of the opera houses are (for the
largest part) the same, the applied architectures are quite different.

The General Requirements and Architecture Framework (GRAF) is introduced
for expressing architecture in practicable design and implementation principles,
which are basically understood as generic requirements that constrain system
development in addition to the specific requirements.

4.4.9 The IOTA Theory

The IOTA theory or EE organisational implementation theory (IOTA stands for
Implementing Organisations with Technological Alternatives), is theory about
the implementation of organisations. With reference to Fig. 4.17 (right-hand side),
the BETA theory covers the engineering (or implementation design) process, but not
the implementation itself. It stops at the implementation model, thus the lowest level
construction model of the OS. This is the point where the IOTA theory starts. It
guides the enterprise engineer in determining the content of the implementation
model, as well as in finding, justifying, and assigning technological alternatives for
the actual implementation.

The IOTA theory has yet to be produced. The first steps are taken in [21].

4.4.10 The NU Theory

The NU theory or EE normalisation theory (NU stands for Normalised Units), is a
theory about the construction of systems. It can best be considered as complementary
to the DELTA theory (cf. Sect. 4.4.5). The NU theory is concerned with the
evolution of systems. Applying the NU theory in the development (cf. Sect. 4.4.8)
of a system results in a modular structure of the system that prevents unwanted side
effects when the system undergoes changes.

The NU theory has yet to be produced. A candidate footing is the Normalised
Systems Theory [22, 23].

46 4 The Enterprise Engineering Theories

4.4.11 The SIGMA Theory

The SIGMA theory or EE governance & management theory (SIGMA stands for
Socially Inspired Governance and Management Approach), is an ideological theory
about how enterprises should be managed and governed in such a way that the
people in the enterprise are maximally empowered. Traditional thinking about
enterprises considers (executive) management the primary and exclusive custodians
of enterprise performance. Employees, under management control, must behave
instrumentally as parts of the enterprise machine. There is no employee variability:
standard, predefined instrumental behaviour is required and expected. The SIGMA
theory submits a fundamentally different perspective by arguing that variability in
employee behaviour is crucial for operational and strategic performance. In our
view, the instrumental approach to employee behaviour conflicts with moral and
ethical considerations concerning employees and society at large. Current economic
thinking, in which enterprises are merely seen as money-generating machines,
reinforces the instrumental view on employees. It is argued that employee variability
is an absolute prerequisite for aligning employee interests with enterprise perfor-
mance interests. This unitarist perspective rejects any supposedly ‘natural’ opposi-
tion between them. The SIGMA theory is made operational through the notion of
meaningful work, which is seen as an affordance (cf. Sect. 4.4.3): a relationship
between employees with certain subjective needs and enterprises with certain objec-
tive properties of the work environment. The nature of these needs and properties is
elucidated, clarifying at the same time that the theory is firmly grounded in the
organisational sciences. The employee-centric nature of this theory aims to counter-
act the narrow economic theories advanced by many business schools. The discus-
sion of these current ways of thinking reveals the fundamentally different
perspective on enterprises that the SIGMA theory radiates. The SIGMA theory is
extensively discussed in [24].

References

1. Dietz, J. L. G., & Hoogervorst, J. A. P. (2013). The discipline of enterprise engineering.
International Journal of Organisational Design and Engineering, 3, 28.

2. Austin, J. L. (1962). How to do things with words. Cambridge: Harvard University Press.
3. Searle, J. R. (1969). Speech acts: An essay in the philosophy of language. London: Cambridge

University Press. vii, 203 p.
4. Habermas, J. (1986). The theory of communicative action. Cambridge: Polity Press.
5. Weigand, H. (2006). Two decades of the language-action perspective. Communications of the

ACM, 49(4), 44–46.
6. Searle, J. R. (1995). The construction of social reality. New York: Free Press. xiii, 241 p.
7. Dietz, J. L. G. (2012). Red garden gnomes don’t exist. The Netherlands: Sapio Enterprise

Engineering. www.sapio.nl
8. Mintzberg, H. (1979). The structuring of organizations: A synthesis of the research (Theory of

management policy). Englewood Cliffs, NJ: Prentice-Hall. xvi, 512 p.

References 47

http://www.sapio.nl

9. Weber, M. (1990). Legitimate authority and bureaucracy. In D. S. Pugh (Ed.), Organization
theory. London: Penguin Books.

10. Weick, K. E. (2001). Making sense of the organization. Oxford, UK: Blackwell. xii, 483 p.
11. Laloux, F. Reinventing organizations: A guide to creating organizations inspired by the next

stage of human consciousness (1st ed.). Brussels: Nelson Parker. xviii, 360 p.
12. Ogden, C. K., & Richards, I. A. (1923). The meaning of meaning: A study of the influence of

language upon thought and of the science of symbolism (International library of psychology,
philosophy, and scientific method). London: K. Paul, Trench, Trubner/Harcourt, Brace. xxxi,
1, 544 p.

13. Stamper, R. K. (1973). Information in business and administrative systems. London: Batsford.
6, 362 p.

14. Apostel, L. (1960). Towards the formal study of models in the non-formal sciences. Synthese,
12(2–3), 125–161.

15. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
xv, 332 p.

16. Weinberg, G. M. (1975). An introduction to general systems thinking (Wiley series on systems
engineering and analysis). New York: Wiley. xxi, 279 p.

17. Bunge, M. (1979). Treatise on basic philosophy. Ontology II: A world of systems (Treatise on
basic philosophy) (4th ed.). Dordrecht: Reidel.

18. Jackson, M. A. (1975). Principles of program design (A P I C studies in data processing).
New York: Academic Press. xii, 299 p.

19. Simon, H. A. (1969). The sciences of the artificial (Karl Taylor Compton lectures). Cambridge:
M.I.T. Press. xii, 123 p.

20. Alexander, C. (1964). Notes on the synthesis of form. Cambridge: Harvard University Press.
216 p.

21. Op’t Land, M., & Krouwel, M. (2013). Exploring organizational implementation fundamentals.
In H. A. Proper, D. Aveiro, & K. Gaaloul (Eds.), EEWC (pp. 28–42). Berlin: Springer.

22. Mannaert, H., Verelst, J., & de Bruyn, P. (2016). Normalized systems—From foundations for
evolvable software toward a general theory for evolvable design. Kermt, Belgium: Koppa.

23. Krouwel, M. R., Op’t Land, M. (2011). Combining DEMO and normalized systems for
developing agile enterprise information systems. In A. Albani, J. L. G. Dietz, & J. Verelst
(Eds.), EEWC (pp. 31–45). Berlin: Springer.

24. Hoogervorst, J. A. P. (2017). Foundations of enterprise governance and enterprise engineer-
ing. Cham: Springer. 574 p.

48 4 The Enterprise Engineering Theories

Chapter 5
The FI Theory: Understanding Factual
Knowledge and Information

Abstract The FI theory is a theory about factual knowledge and about information in general.
FI stands for Factual Information. The basis for the FI theory consists of Ogden and
Richard’s semiotic triangle and Stamper’s semiotic ladder. They clarify that information is
a dyadic notion: it is the inseparable combination of content (the communicated thought)
and form (the sign that serves to signify the thought). The main contribution of the
semiotic ladder is that it distinguishes between the semantics and the pragmatics of
thoughts and in doing so clarifies that a (elementary) thought consists of a fact and an
intention. Intentions correspond with commitments in the social world. The core of the FI
theory is the semiotic mill, refined into the ontological mill, which is a framework for
understanding perception and conception. It explains how factual knowledge is created
from perceptions of concrete things, directed by (fact) types, which operate as conceptual
sieves. Three topics are elaborated. The first one is the recognition that most of the types
that people use are functional types. Regarding functional types, the important fact is that
they are inherently subjective, and therefore hard to define precisely. The second topic is
the problem of sameness and change, illustrated with the well-known paradox of Theseus.
The third topic concerns the composition and decomposition of things, based on the part-
of relationship between things. Lastly, two issues in current programming and modelling
practice are discussed. The first one is the duality of types, as opposed to the synonymy of
signs. The second issue is the value types in software. Most programming and modelling
languages offer four ‘types’: integer, real, boolean, and string. The first three are true
types; the fourth is only a sign ‘type’.

5.1 Introduction

The theory in this chapter is labeledΦ-theory. The Greek capital letter is pronounced
as FI, which is an acronym for Factual Information. The FI theory, also called the EE
information theory, is an extensive study of the notion of information and the

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_5

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_5&domain=pdf

notion of factual knowledge. It is classified as a philosophical theory in the frame-
work of theories, as presented in Chap. 4, thus a theory that is about knowledge in
general.

As discussed in the founding article of the discipline of enterprise engineering
(EE) [1], the application of contemporary information and communication technol-
ogy (ICT) is the key technology in implementing organisations, and a major driver of
organisational changes and transformations. Consequently, the notions of commu-
nication and information are crucial in understanding the application of ICT. As
presented and discussed in Chap. 4 and elaborated in Chap. 8, the CIAO paradigm
constitutes the new, appropriate understanding of communication, as well as the
new, appropriate understanding of the notions of information, action, and organisa-
tion based on it.

Section 5.2 starts with a discussion of a fundamental framework for studying
information in a most general way: the semiotic triangle. It is a necessary leg up to
the next framework, the semiotic ladder, which clearly defines the notion of infor-
mation as the inseparable dyad of content and form. Based on both the semiotic
triangle and the semiotic ladder, we will discuss the notions of world, thing, and
object, followed by a discussion of facts and types and classes. It culminates in the
presentation of a framework for understanding all these notions in a coherent way,
which is called the semiotic mill (because the shape of the picture resembles a
windmill), followed by a stripped version called the ontological mill. This ontolog-
ical mill will be used to clarify various issues in conceptual modelling, like the
declaring and deriving of types. Three ways of deriving facts are discussed: special-
isation, generalisation, and aggregation. The section concludes with the clear dis-
tinction between specialisation and generalisation, on the one hand, and subtype and
supertype, on the other hand.

Section 5.3 starts with a discussion of the difference between constructional types
and functional types, and the basic impossibility to define functional types in a
definite and precise way. The next part is about sameness and change. It addresses
the fundamental question of what it means for a thing to change while remaining the
same thing. The next topic in Sect. 5.3 is the part-of relationship between things, and
the corresponding notions of composition and decomposition. The section ends with
a discussion of the duality that may exist among concepts. It is exemplified by
discussing the common business concepts purchase and sale.

Section 5.4 points at two habits in the practice of applying ICT to organisations
that appear to violate the outcomes of the FI theory. One regards the layout of
forms, both paper forms end electronic forms. The other concerns the value types
that are broadly used in programming languages and in conceptual modelling
languages.

50 5 The FI Theory: Understanding Factual Knowledge and Information

5.2 Foundations

5.2.1 The Semiotic Triangle

The primary concept in the FI theory is communication, defined as the sharing of
thoughts between (human) minds.1 Because minds cannot communicate directly, a
vehicle is needed to accomplish it, and this vehicle is called information. Thus,
information should be understood as a means for communication. If a subject S1
wants to communicate a thought with a subject S2, S1 has to ‘assign’ the thought to a
sign that can be perceived and interpreted by S2. This makes information a dyadic
notion: it has both content and form, inseparably connected. The process of sharing a
thought is discussed in Sect. 8.2.3. Here, we will only study the relationships between
the thought, the sign, and the state of affairs that is represented by the thought. Almost
a century ago, Ogden and Richards published a framework to support this, known as
the semiotic triangle [2]. Figure 5.1 (left) shows a slightly adapted version of
it. Figure 5.1 (right) shows an extended version, including a node labeled “matter”,
which refers to the physical substance in which the sign is inscribed.

Thoughts are things in the mind. They represent concrete things (i.e. things
outside the mind), called referents. A sign is a mark or a pattern of marks that has
been assigned a special role, namely that it signifies a specific thought. Conversely,
we say that the thought is expressed in the sign. For example, I could write down on
a piece of paper the word “bread”. This may serve as a sign for me, for example, to

Fig. 5.1 The adapted (left) and extended (right) semiotic triangle

1The English word “communicate” comes from the Latin word “communicare”, which means
‘making something common’. In a more specific sense, it means ‘sharing thoughts’.

5.2 Foundations 51

remind me that I have to buy bread. Next, the sign needs to be inscribed in some
matter (physical substance) in order to be perceivable, as I do by writing down the
word. An alternative way of inscribing the same sign could be a voice recording of
the word “bread” or a whole sentence: “buy bread”. Lastly, although the relationship
between a sign and its referent is completely determined by their being connected
through the thought, it is often also indicated separately: the sign is said to denote the
referent.

5.2.2 The Semiotic Ladder

The semiotic triangle is a quite useful but also a quite simplified representation of the
three core concepts in communication: sign, thought, and referent, and the relation-
ships between them. Let us focus first on the notions of sign and thought and on the
signification relationship (cf. Fig. 5.1). This is at the core of the field of semiotics and
of language philosophy. The language philosophical point of view is addressed in
Chap. 8. Here, we will discuss the semiotic point of view. A well-known researcher
in this field is Ronald Stamper, who proposed a more sophisticated framework for
studying information-related notions, known as the semiotic ladder [3, 4]. It is
shown in Fig. 5.2, slightly adapted to our needs.

In the semiotic ladder, the study of the content of information (the thought) is
divided into semantics and pragmatics. Semantics is about the ‘literal’ meaning of a
sign or sentence, thus the thought that it signifies, according to the vocabulary of the
language that is used. Let us assume, as an example, that a subject S1 conveys
somehow, for example, through face-to-face speaking, the sentence “The cat sits on
the mat” to subject S2. The state of affairs that this sentence refers to is obviously
that a particular cat is sitting on a particular mat. Pragmatics then studies what S1
intends to do by sharing the thought with S2. Presumably (i.e. appearing from the

Fig. 5.2 The semiotic ladder

52 5 The FI Theory: Understanding Factual Knowledge and Information

syntactic structure of the sentence), S1 asserts to S2 that the represented state of
affairs is the case, possibly in response to a question of S2 about where the cat could
be. As another example, consider the sentence “There’s a draught here”, again
communicated by S1 to S2. This sentence could be interpreted as an assertion of a
state of affairs (there is a draught here). But it may very well be interpreted also as a
way in which a lord of the castle (S1) requests (intention) his servant (S2) to shut the
window (state of affairs).

The study of the form of information (like the above-mentioned sentence) is also
divided into two subfields: syntactics and empirics. Syntactics is concerned with the
structure of the sentence. This structure must follow particular rules, known as the
grammar of the applied language. Empirics concerns the way of expressing the
components of the sentence, for example, that they are coded in words that are
constructed using Roman letters (instead of the Cyrillic alphabet or Morse code, for
example).

Both the social world and the physical world do, strictly speaking, not belong to
the field of semiotics. The physical world is needed because patterns and codes have
to be inscribed somehow as traces in substances. For example, I can write down the
sentence “The cat sits on the mat” on a white board or I can utter it by speaking. The
top rung of the ladder, the social world, is the most interesting one in EE, notably in
the PSI theory (see Chap. 8). There, the effects of communication on people in their
quality of social individuals are studied, in particular how intentions are related to
commitments between people.

5.2.3 Things and Objects

In his book ‘The Furniture of the World’ [5], Mario Bunge addresses the basic topic
in ontology: what is a world and what does it consist of? Bunge defines a world as a
collection of things, ‘untouched’ yet by mental abstractions. Although the term
“world” can be taken in a general sense, in EE it has the particular meaning of the
world of a system, as discussed in Chap. 9. Think of the production world of an
organisation, for example, as discussed in Chap. 8.

The basic assumption in world ontology is that a world consists of distinguishable
concrete things or things for short. A thing is said to have features. Only through
these features can the thing be perceived; a thing without features is no thing. As an
example, one may perceive a cloud in the sky. The cloud is a thing, of which the
main features are the perceivable water drops or crystals. At some point in time, the
cloud may evaporate. Because then there are no perceivable features anymore, we
say that the cloud is gone. One rarely would say that the cloud is still there, only
invisible. In many cases, however, it makes sense to conceive of a persisting identity
of a thing, even if the thing has no (more) perceivable features. This helps to address
the problem of sameness and change in an elegant way, as we will do in Sect. 5.3.2.

To exemplify the point, let’s have a look at the human body. Although the features
of a body do change dramatically during its lifetime, as we know, we are inclined to

5.2 Foundations 53

say that it is still the same body. The key to Bunge’s solution to the problem of
sameness and change, which we will adopt in Sect. 5.3.2, is that the features of a thing
are assigned to a featureless core, which he names the bare individual. In this bare
individual resides the identity of the thing. Note that this bare individual is no thing.
Only when at least one feature is recognised, there is a thing. Henceforth, we will call
the bare individual of a thing its object. Moreover, we distinguish between concrete
objects and abstract objects. Concrete objects are the core of concrete things, like
humans, dogs, memberships, and rentals. Abstract objects are the core of abstract
things, like numbers, boolean values, and other kinds of values.

When observing and distinguishing the concrete things in a world, the mind creates
conceptual objects that represent these concrete objects. We need further conceptual
means, however, to ‘colour’ our picture of the world, to make it intelligible. The first
step in this ‘colouring’ process is something we did already as a child. It is called
classifying: we observe similarities and differences between things and accordingly
put them into different classes. This is how people learn to distinguish between dogs
and cats, between geometrical shapes, etc. Through a separate intellectual process,
called induction, the mind creates types. As will be discussed in Sect. 5.2.4, types
serve as templates (form patterns) that we ‘put on’ the things we observe, and then
conclude that the things (more precisely: the objects of the things) belong to certain
classes, like humans and rentals. Consequently, conceptual things are typed objects.

Figure 5.3 (left) illustrates the foregoing by applying the semiotic triangle to
concrete things, either tangible, so things that one can observe, like humans and
dogs, or intangible, that is, things that one considers to exist in a conceived world,
like memberships and rentals. The example referent in Fig. 5.3 (left) is a concrete
thing of the type human. The particular instance is denoted by “the human ‘Charlie
Chaplin’”, which is shorthand for “the human with the (human) name Charlie
Chaplin”. The string “Charlie Chaplin” belongs to a specific name class that is
used to refer to humans (but it may also belong to other name classes, of course).

Fig. 5.3 The adapted semiotic triangle for things (left) and classes (right)

54 5 The FI Theory: Understanding Factual Knowledge and Information

To avoid confusion, we will refer to the concrete thing as <the human ‘Charlie
Chaplin’>, and to the corresponding conceptual thing as (the human ‘Charlie
Chaplin’). For concrete objects and classes, we use the bracket pair “[” and “]”.

Figure 5.3 (right) shows an example of applying the semiotic triangle to classes.
The name “the class ‘HUMAN’” denotes the concrete class [the class ‘HUMAN’],
which is the set of the concrete objects of all humans. It is represented in our mind by
the thought (the class ‘HUMAN’). The string “HUMAN” is a name from the name
class for classes.

In Fig. 5.4 (left), the semiotic triangle is applied to the notion of concrete object.
The referents we consider now are thus the cores or identities of concrete things.
They are represented in the mind by conceptual objects. The particular instance is
denoted by “the object ‘701’”, shorthand for “the object with the object name
“701””. The numeric code “701” is arbitrarily chosen from the name class that is
used to refer to objects. To avoid confusion, we will refer to the concrete object as
[the object ‘701’], and to the corresponding conceptual object as (the object ‘701’).

Figure 5.4 (right) shows an example of applying the semiotic triangle to abstract
objects. As indicated by the question mark, abstract objects don’t represent anything
concrete. Through reasoning by analogy (with concrete objects and concrete things),
however, we will conceive abstract objects and abstract things. Well-known abstract
things are numbers. The name “the number ‘387’” signifies the abstract thing (the
number ‘387’). As examples of using this number, we may have counted 387 humans
or dogs or memberships or rentals.

Let us now generalise the features that things may have and through which we are
able to observe and distinguish them, in the notion of fact. For example, to say that
John is a human is mentioning a fact, to say that John is born in The Netherlands is
mentioning a fact, and to say that John is the author of books is mentioning a fact.
We distinguish between unary facts and binary facts. Unary facts are predications of
single objects; binary facts are predications of pairs of single objects. As explained in
Chap. 8, there is no need in EE to consider higher-order facts (cf. Chap. 6).

Fig. 5.4 The adapted semiotic triangle for concrete (left) and abstract (right) objects

5.2 Foundations 55

In Fig. 5.5 (left), the semiotic triangle is applied to unary facts. The example
(conceptual) fact is that the thing with object 701 is a human. In this sentence,
“object 701” is shorthand for “the object ‘701’” that we used before. The sentence
“the thing with object 701 is a human” signifies this (conceptual) fact, and it denotes
the concrete fact <the thing with object 701 is a human>. Let us assume that object
701 is the identity of the human named Charlie Chaplin (cf. Fig. 5.3, left side). The
binary fact on the right side of Fig. 5.5 then expresses a property of Charlie Chaplin,
namely that he is born on day 2411108. This is a day on the time scale Julian Date. In
the Gregorian calendar, this day is denoted by “16 April 1889”. Thus, the sentence
“the birthday of Charlie Chaplin is 2411108” signifies the conceptual fact (the
birthday of Charlie Chaplin is 2411108) and denotes the concrete fact <the birthday
of Charlie Chaplin is 2411108>.

If the object of a unary fact is concrete, the thing is commonly called an entity. As
an example, one commonly speaks of the entity Charlie Chaplin, thereby referring to
the concrete unary fact that object 701 is a human, denoted by the name “Charlie
Chaplin”. Likewise, if the object of a unary fact is abstract, the thing is commonly
called a value. As an example, day 2411108 is a value on the time scale Julian Date.

5.2.4 Factual Information

After the introductory finger exercises above, we are now able to focus on the core
issues of the FI theory: what are facts and how do they come into existence? In
answering these questions, we will adhere strictly to the distinctions we have made
between concrete and conceptual things. Concrete things are the things that we deal
with in reality: the people we cooperate with, the car we drive in, the house we live
in, but also the rental contract of our house, the insurance policy for our car, and the
employment contract we have with our employer. As said, concrete things can be
tangible (like a house) and intangible (like a rental). Conceptual things are things in
the mind. They are representations of concrete things.

Fig. 5.5 The adapted semiotic triangle for unary (left) and binary (right) facts

56 5 The FI Theory: Understanding Factual Knowledge and Information

Let us take a closer look at how the mind operates in perceiving and conceiving
the world. Figure 5.6 exhibits the so-called semiotic mill, in which Figs. 5.3, 5.4, and
5.5 are integrated. The result is a framework for understanding how the mind creates
pictures of the world that we observe and/or study, and how we can communicate
about them by exchanging signs.

The concept of type (or fact type, to be very precise) is crucial in the
conceptualisation process. A type is defined as a template or form pattern that the
mind applies when we consider concrete things (both tangible and intangible). The
form of a concrete thing is defined as the collection of its features or (concrete)
properties. More precisely, a type determines the presence or absence of properties or,
as Wittgenstein puts it: a type is a family resemblance [6]. In applying a type, the mind
puts, so to speak, the type’s template over the things in the world, and sieves out the ones
that conform. Let us take as an example the type human. Let us next assume that there is
a thing whose object we signify by “object 701”, and let us study the thing that is
indicated as<some thing> (also represented in Fig. 5.6 by a picture of Charlie Chaplin).
To illustrate that things are objects with features, the symbol for the thing in the semiotic
mill is a magenta-coloured disk with protrusions, where every protrusion stands for a
feature. The type human is represented by a green disk with a single protrusion.

When putting the template of the type human over the thing, we conclude that it
conforms to the type human, because one of its protrusions fits the protrusion of the
type human. In Fig. 5.6, this process is indicated by the line labelled “conforms to”.

CONCEPTUAL FACT

TYPE

is an instantiation of
<

CONCEPTUAL CLASS

is the intension of ->

<- is the extension of

is a predication of
>

<
is a m

em
ber of

THING

object 701

HUMAN

CONCRETE OBJECT

CONCEPTUAL
OBJECT

human

object 701
is a human

CONCRETE CLASS

HUMAN

CONCRETE FACT

some thing

SENTENCE

“object 701 is a human”

NAME

“object 701”

NOUN

“HUMAN”

NOUN

“human”

object 701
is a human

object
701

Fig. 5.6 The semiotic mill

5.2 Foundations 57

Consequently, a conceptual fact is created in the mind that represents the confor-
mity: object 701 is a human. This conceptual fact is represented by a similar green
disk with one protrusion, and it is called an instantiation (or instance) of the type. It
represents the concrete fact that object 701 is a human. Formally, that is, in the
language of mathematics and logic, the conceptual fact that object 701 is a human is
a predication of the conceptual object (object 701). As we have seen above
(cf. Fig. 5.4, left side), this conceptual object refers to the concrete object [object
701]. The conceptual objects of facts of the same type constitute a conceptual class
of which each of the conceptual objects is a member. Let us call the conceptual class
of objects that are predicated by facts of the type human, HUMAN.2 This class is
called the extension of the type human. Conversely, the type human is called the
intension of the class HUMAN. Formally: HUMAN ¼ {x | human(x)}. Lastly, the
conceptual class (HUMAN) represents the concrete class [HUMAN].

In the ontological modelling of worlds [7], one fully abstracts from the sign part
of information (names, nouns, sentences) as well as the substance in which the sign
is inscribed (cf. Fig. 5.2), in order to focus on the thought part. This focus was also
the intention of information systems modelling [8] but it didn’t turn out that way.
Therefore, we omit the corresponding parts from the semiotic mill, which leads to
the ontological mill, as shown in Fig. 5.7.

instantiation

Fig. 5.7 The ontological mill

2By convention, types are signified by singular nouns in small letters, and classes by nouns in
capital letters.

58 5 The FI Theory: Understanding Factual Knowledge and Information

In general, facts have a lifetime. They start to exist at some point of time and
they end to exist at some (later) point in time. The same holds for types; they are
facts at the schema level, as discussed in Chap. 6. A fact starts to exist either as
soon as the form of a thing conforms to a type, or as soon as a type starts to exist to
which the thing conforms. An example of the first situation is that a caterpillar turns
into a butterfly. Through this event, a new entity of the type butterfly starts to
exist. An example of the second situation is that one ‘invents’ the type pet. From
that moment on, there are pets; before that moment, pets didn’t exist, in a very true
sense.

A fact ends to exist either as soon as the form of the thing that the fact is about,
does not conform anymore to the type, or as soon as a type to which it conforms,
ends to exist. An example of the first situation is again the caterpillar that turns into
a butterfly. After this event has occurred, the thing does not conform anymore to
the type caterpillar. Consequently, the entity of the type caterpillar ends to exist.
An example of the second situation is that a university decides that the type
propaedeutic student is obsolete. From that moment on, there are no more propae-
deutic students.

It is important to make and maintain the distinction between the world one is
referring to and one’s knowledge of this world. As Mario Bunge puts it, a world is
not a collection of facts, pace Wittgenstein, but a collection of things [5]. The
knowledge of these things, and thus one’s factual knowledge of the world, consists
of conceptual facts [9]. This factual knowledge is fully constituted by the ‘green
square’ in Fig. 5.7.

5.2.5 The Creation of Types

Following up the last part of the previous section, there are two ways to create types.
The first one is called declaring. It means that one ‘devises’ a new type, independent
of any existing type, for example, the type person. In conceptual modelling, this
comes down to introducing a new type in the conceptual schema of a world
(cf. Chap. 6). As an example, one could start to conceptualise the world of a
university by declaring the (unary) types person, program, and admission, and the
(binary) types ‘the admitted person of [admission] is [person]’ and ‘the program of
[admission] is [program]’ (Note: the words between “[” and “]” are variables, that is,
place holders for instances, cf. Chap. 12). Instances of declared types have an
‘independent’ existence in the considered world, as well as a ‘natural’ way of
identification. Persons and study programs are candidates for being introduced
through declaration because they have an independent existence. As is explained
in Chap. 8, the entity types that occur in product kinds are proper candidates for
being declared.

5.2 Foundations 59

The second way of creating types is called deriving. It means that one defines a
type based on one or more existing types. There are three ways of deriving types:
specialisation, generalisation, and aggregation.

By specialisation is understood that one defines a new type as a subtype of
another type (which may be declared or derived). As an example, one could define
the type student in this way: “a student is a person who is the applicant in an
admission”. Because students are (also) persons, they can be identified in their
being a person, so by their person’s name. Commonly, universities also use student
numbers to refer to students. Note, however, that student numbers do not identify
students but admissions. Only because an admission regards exactly one person can
student numbers be used to (indirectly) identify students. Note also that if a person is
admitted to several programs, there are several student instances with the same
object. In accordance with the ontological mill (Fig. 5.7), a student is created as
soon as the form of a person (in this case the property of being admitted to a
program) conforms to the type student (which requires the person to be admitted).
When this is not the case anymore, the student entity ceases to exist.

By generalisation is understood that one defines a new type as the union of the
extensions, so the classes, of two or more existing types (which may be declared or
derived). To exemplify generalisation, let us depart from the types car, boat, and
aircraft. We can then define the type vehicle as the intension of the class (cf. Fig. 5.7)
that equals the set-theoretic union of the extensions of car, boat, and aircraft.
Formally: VEHICLE ¼ CAR [BOAT [AIRCRAFT. Typically one does not
devise separate identifications for vehicles. Instead one would identify a vehicle by
its car identification if it is a car, by its boat identification if it is a boat, etc.

By aggregation is understood that one defines a new type as the Cartesian product
of (the extensions of) a number of other types. Thus, if the type T0 is the aggregation
of the types T1, T2, ... Tn, then every instance of T0 is a tuple (a1, a2, ... an), such
that a1 is an instance of T1, a2 of T2, etc. As an example, the price of a product
generally depends on the product kind, the supplier, and the date. So, it may be
conceived as a property of the Cartesian product of (the extensions of) these types,
formally expressed as PRODUCT KIND � SUPPLIER � DAY.

5.2.6 The Subtype Relation

Types that are defined by means of specialisation or generalisation, are implicitly
ordered by means of the subtype relation. A type T1 is said to be a subtype of a type
T2 if the extension of T1 is a proper subset of the extension of T2. Conversely, the
type T2 is called a supertype of the type T1. The subtype relation is transitive. So, if
T1 is a subtype of T2, and T2 is a subtype of T3, then T1 is also a subtype of T3. By
applying the subtype relation, trees of types are created. Well-known examples of
such trees are the taxonomies in biology. Figure 5.8 exhibits a part of the taxonomy
for animals. (Note that only one path through the tree is represented.) For every level,
except the lowest, it holds that it has one or more (direct) subtypes. As an example,

60 5 The FI Theory: Understanding Factual Knowledge and Information

Carnivora is a subtype of Mammalia. Similarly, for every level, except the highest, it
holds that it has one (direct) supertype. As an example, Mammalia is a supertype of
Carnivora.

In building a taxonomy, only one type needs to be created by declaration. In the
biological taxonomy in Fig. 5.8, the genus level would probably be the best
candidate for being declared, because its individuals have a natural way of identifi-
cation. As a rule of thumb: it is possible to draw a panther, but it is impossible to
draw a mammal (Therefore, it is not accidental that only an instance of the type
genus is drawn in the picture). Consequently, the other types in the taxonomy
are derived. The levels above the genus level are derived through generalisation,
and the levels below this level are derived through specialisation. For example, the
family Felidae is a generalisation of the genus Panthera and other genera, whereas
the species Panthera pardus is a specialisation of the genus Panthera. The individ-
uals in all these classes are identified by the concrete identity they have in the class
genus.

Specialisation and generalisation are often said to be each other’s inverse. This is
not true however, as becomes immediately clear from the examples provided above.
Inversion only holds between subtypes and supertypes. Thus, it is correct to say that
the type person is a supertype of student, but it is not correct to say that it is a
generalisation of student (and some other types). Similarly, it is correct to say that the
type car is a subtype of vehicle, but not that it is a specialisation of it. Specialisation
and generalisation are intellectual techniques through which derived types can be
created.

base type

ge
ne

ra
lis

at
io

n
sp

ec
ia

lis
at

io
n

KINGDOM

PHYLUM

CLASS

ORDER

FAMILY

GENUS

SPECIES Panthera
pardus

Panthera

Felidae

Carnivora

Mammalia

Chordata

Animalia

©1999 Addison Wesley Longman, Inc.

Fig. 5.8 Biological taxonomy

5.2 Foundations 61

5.3 Elaborations

5.3.1 Functional Types

Corresponding with the distinction between the function perspective and the con-
struction perspective on things, as discussed in Chap. 7, one can distinguish
between functional and constructional facts and types. The type human, as
discussed, is typically a constructional type: it is based exclusively on the properties
of things. In contrast, the type chair is typically a functional type. It concerns the sit-
on-ability affordance that a thing may offer. Figure 5.9 shows the conceptualisation
of things of the type sit-on-able. It shows the sit-on-ability relationship between the
thing <Charlie Chaplin> and the thing <this chair>, in the TAO theory (cf. Chap.
7) referred to as subject and object respectively. The combination of the two
conforms to the form pattern of the type sit-on-able for humans, resulting in the
creation of the fact that this chair is sit-on-able for Charlie Chaplin. It is important to
recognise that this is a predication of the conceptual object that consists of the
combination of (the conceptual object of) Charlie Chaplin and (the conceptual
object of) the chair. In other words, the fact is an instance of the aggregate type
PERSON � CHAIR.

CONCEPTUAL FACT

TYPE

is an instantiation of
<

CLASS
is the intension of ->

<- is the extension of

is a predication of
>

is a m
em

ber of
<

this chair is sit-on-able
for Charlie Chaplin

<Charlie Chaplin>

this chair *
Charlie Chaplin

this chair *
Charlie Chaplin

SIT-ON-ABLES

CONCRETE OBJECT

CONCEPTUAL OBJECT

sit-on-able
(chair * human)

<this chair>

Fig. 5.9 Conceptualisation of functional types (1)

62 5 The FI Theory: Understanding Factual Knowledge and Information

As said, the type chair is typically a functional type. There are many construc-
tions that are able to offer the function (or affordance) sit-on-ability. Consequently,
it is not possible to define the type chair from the construction perspective. The
way out of this problem is to devise subtypes of chair that are sufficiently specific
for being conceived constructionally. Figure 5.10 shows the conceptualisation
process of an instance of a specific chair model, which happens to be named
Chaplin. The type ‘chair model Chaplin’ can be specified precisely enough from
the construction perspective, in order to decide whether a thing conforms to the
type or not. In Fig. 5.10, the two obtrusions on the green disk represent the type
chair model Chaplin (top) and its instantiation (bottom). Chairs of the model
Chaplin offer the function or affordance sit-on-ability to humans. Note, however,
that this sit-on-ability doesn’t play a role in the conceptualisation process in
Fig. 5.10.

5.3.2 Sameness and Change

In Sect. 5.2.3, we have touched already on the problem of sameness and change.
Its general questions are: when does a thing change and if a thing changes, is it
still the same thing (only changed)? In order to illustrate the problem, let us have

TYPE

is an instantiation of
<

CONCEPTUAL CLASS
is the intension of ->

<- is the extension of

is a predication of
>

is a m
em

ber of
<

THING

this chair is a chair
of chair model Chaplin

<this chair>

this chair

this chair

CHAIR MODEL
CHAPLIN

CONCRETE OBJECT

CONCEPTUAL OBJECT

chair model
Chaplin

<this chair is a
chair of chair

model Chaplin>

CONCRETE CLASS

CHAIR MODEL
CHAPLIN

CONCRETE PROPERTY

CONCEPTUAL FACT

Fig. 5.10 Conceptualisation of functional types (2)

5.3 Elaborations 63

a look at the paradox of Theseus, as formulated by the Greek philosopher
Plutarch3:

The ship wherein Theseus and the youth of Athens returned from a long journey was preserved
by the Athenians by taking away the old planks as they decayed, putting in new and stronger
timber in their place. In the end, all parts of Theseus’ ship are replaced. The philosophical
question, as formulated by Plutarch, is this one: is the ship the same ship or not?

The key to an appropriate solution of the problem of sameness and change,
exemplified by the paradox of Theseus, is to recognise that every thing has a
concrete object, where its concrete identity resides, next to having properties. So,
even if all the parts of the ship are replaced by other (similar) ones, it is still the same
ship. This argument is supported by the distinction between matter-constant (the ship
is composed of the same part instances) and form-constant (the ship is an instance of
the type ship), as proposed by Simons [10]. When the first plank is replaced, the ship
is already not the same matter-constant ship anymore. The form-constant argument
preserves that it is still a ship of the same type because the whole thing keeps
conforming to the type ship (even when all parts are replaced). However, our
argument goes further: Theseus’ ship does indeed still conform to the type ship,
but, in addition, it has kept its identity. This would even hold if the thing would not
conform to the type ship anymore, as a butterfly has kept its identity after having
transformed to being a butterfly from being a caterpillar before.

The philosopher Thomas Hobbes added the next extension to the paradox4:

Assume that all parts are replaced and that the ‘old’ ship is rebuilt by assembling the ‘old’
parts. Then which ship is Theseus’ ship?

This is a tougher question. We are now confronted with two concrete ships, each
of them having its own concrete identity. Most likely, Theseus would consider the
current one his ship, not the one that has been re-assembled from the thrown away
parts. But he could very well (also) call the other one his ship. Which of the ships is
his legal property, is dependent on the prevailing law. But that is not an ontological
issue.

Many researchers in ontology, like Guarino [11] and Guizzardi [12], try to solve
the problem of sameness and change by assigning the identity of a composite thing
to one of its components. Regarding the human body, they consider the human
brains as the component that bears the body’s identity: as soon as the brains are
replaced, it is not the same body anymore. With respect to cars, they choose a
particular part (mostly the body of the car or the motor block) to bear the car’s
identity. Although one can very well live with such choices as practical solutions,
they are not satisfactory from an ontological point of view.

3https://en.wikipedia.org/wiki/Theseus
4https://en.wikipedia.org/wiki/Ship_of_Theseus#cite_ref-hobbes_7-0

64 5 The FI Theory: Understanding Factual Knowledge and Information

https://en.wikipedia.org/wiki/Theseus
https://en.wikipedia.org/wiki/Ship_of_Theseus#cite_ref-hobbes_7-0

5.3.3 Composition and Decomposition

A binary fact type that one can find in many conceptual schemas (cf. Chap. 6) is the
part-of relation. Some modelling approaches even have a separate symbol for it. The
part-of relation is transitive, which means that if P1 is a part of P2, and P2 is a part of
P3, then P1 is also a part of P3. In this way tree-like structure of parts are built. In
such a tree, a part P0 is called the composition of the parts P1, P2, ... , Pn if P1, P2, ...
, Pn are a part of P0. On their turn, each of the parts P1, P2, ... , Pn may be a
composition itself. Conversely, the P1, P2, ... , Pn are called the decomposition of P0.
So, the complete decomposition of P0 consists of P1, P2, ... , Pn, as well as of the
parts of which they are composed, etc., down to the lowest level. Mereology [10]
teaches us that there are several kinds of part-of relations, between which one should
carefully distinguish. We will not elaborate them, however.

A well-known example of a composition tree is the Bill of Materials (BoM) in
manufacturing. It is a tree structure of (elementary) parts and (sub) assemblies. The
top level assembly is the end product. Figure 5.11 exhibits a part of the BoM of a car.
Going up the tree is called composition and going down the tree is called decom-
position. Note that the composition in Fig. 5.11 holds for some kind of car, so not
necessarily for all cars. It seems to apply to all cars with a combustion engine, but it
certainly does not apply to electric cars. The important point to recognise is that a
composite thing has its own identity, independent of the identities of its components.

5.3.4 Dual Notions

Many pairs of notions appear to be dual, which means that they mirror each other.
Well-known pairs of such notions are addition and subtraction (in mathematics),
multiplication and division (in mathematics), conjunction and disjunction (in logic),

Fig. 5.11 The (partial) composition tree of a car

5.3 Elaborations 65

and input and output (in systems theory). In EE, there are also such dual notions.
Examples are debtor and creditor, and purchase and sale. To understand how dual
notions are precisely related to each other, we use Fig. 5.12.

It is a combination of a part of Fig. 5.7 and the mirror image of this part. The
exhibited picture applies to the business relationship of two enterprises, one in the
role of buyer and the other in the role of seller. The same ‘business thing’ (upper
part) appears to conform to two types, namely to the type purchase (left side), and to
the type sale (right side), respectively applied by the buyer and the seller enterprise.
Consequently, the conceptual object (purchase 31424) exists and the concrete object
[purchase 31424] to which is refers. Similarly, the conceptual object (sale 1618)
exists and the concrete object [sale 1618] to which is refers. Because the notions of
purchase and sale apply to the same business thing, they are called dual notions.

One should not confuse the notion of duality with the notion of synonymy.
Duality is a purely conceptual notion, whereas synonymy is a linguistic notion.
Two names are called synonymous if they signify the same thought (or denote the
same referent, cf. Fig. 5.1). Common synonyms in the English language are “car”
and “automobile”, as well as “ship” and “vessel”. Clearly, “sale” and “purchase” are
no synonyms; they are not alternative names of something. Instead they refer to
different things, with different properties. A possible synonym of “sale” is “selling”,
and a possible synonym of “purchase” is “acquisition”.

is an instance of
<

sale

<business thing>

sale 1618

sale
1618

is
 a

n
in

st
an

ce
 o

f
>

purchase

purchase 31416

purchase
31416

Fig. 5.12 The dual notions purchase and sale

66 5 The FI Theory: Understanding Factual Knowledge and Information

5.4 Discussions

In the current practice of information systems and software engineering, there exist
several persistent peculiarities that the FI theory is able to clarify elegantly. Whereas
these peculiarities go often unnoticed, they sometimes cause confusion among
practitioners (information analysts, programmers, information system designers,
etc.) and even among researchers. Two of them are discussed subsequently.

5.4.1 The Layout of Forms

The first peculiarity concerns the layout of forms (either paper or electronic). The
following is an example of a form for illustration:

Name: Charlie Chaplin

Date of birth: 16-04-1889

Address: Mekelweg 4

Postal code: 2628CD

City: Delft

Phone Nr.: 0031152787822

The general understanding of such a form is that the left column shows the names
of property types, and the right one shows the names of instances of these types.
Only the first line of the form is different; it serves to identify a particular entity
where the properties are about. Therefore, something like “Person name” would
have been a better signifier than just “Name”. The other lines represent properties.
For example, “City” is the name of a property type, and the corresponding property
instance is signified by “Delft”. A more appropriate name of this property would be
“residence of person”.

Now, the peculiarity of the form is that the strings in the left column are sometimes
names of property types, but sometimes they are names of name types. To explain this,
“Address” and “City” are property type names, but “Date of birth”, “Postal code”, and
“Phone Nr.” are not. Instead they are names of name types, which means that the
strings in the right column are just instances of the name type; they do not signify a
thought of the type in the left column (cf. Fig. 5.1). For example, “2628CD” is not the
name of a postal code, but a postal code itself. This inconsistency in forms can easily
be solved by mentioning in the first column either only property type names or only
name type names. In the first case, “Date of birth” should be replaced by “Day of
birth”, “Postal code” by “Postal area”, and “Phone Nr.” by “Telephone subscription”.
In the second case, “Address” should be replaced by “Street name and house number”,
and “City” by “City name”. In our view, the first alternative is preferable.

5.4 Discussions 67

5.4.2 Value Types in Programming and Modelling
Languages

There is a related blurring of the distinction between sign and thought to the one
discussed above, which pervades almost all programming languages, as well as
almost all software and information modelling languages.

Most programming languages offer only these four basic value types: real,
integer, boolean, and string. The first three are true value types; the fourth one is
only a way of constructing alphanumeric character strings (that may, e.g., serve as
names). Real numbers, integers, and boolean values have a conceptual meaning;
they belong to the realm of thoughts. Strings, however, are only syntactic constructs;
they belong to the realm of signs. To illustrate this, Fig. 5.13 shows an example of
the Class Diagram of UML (Universal Modelling Language).5 As one can see, it
allows for the value type “dollar” but not for the value type (better: entity type)
“person”. Instead, persons appear to be strings. This may not be the intention of the
modeller, but it is what the diagram says. Unfortunately, also information modelling
languages suffer from this carelessness, whereas there is no excuse (programmers
might say in defence that the programming language they have to use does not allow
them to model things properly).

Fig. 5.13 Example of a class diagram in UML

Fig. 5.14 Example of an ORM diagram

5https://en.wikipedia.org/wiki/Class_diagram

68 5 The FI Theory: Understanding Factual Knowledge and Information

https://en.wikipedia.org/wiki/Class_diagram

To illustrate the point, Fig. 5.14 shows a small information model in ORM
(Object Role Model) [13], one of the better current information modelling
approaches. The problem is with the syntactic type “PhoneNr”. As is clear by now
from the discussion of the form example in the previous section, this should have
been the entity type “Telephone subscription” or the like, with the name class
“PhoneNr” between brackets, like it is done for the other entity types. Name types
or name classes should not occur in conceptual models because the represented
world does not consist of names or strings or codes. These things only serve to
signify the ‘real’ concepts.

A striking example of where such carelessness can lead to is the so-called Y2K
problem (the year 2000 problem). Fixing this problem has cost worldwide a huge
amount of money. This amount has been charged by ICT companies to their clients
to save them from serious consequences. The odd thing is that the problem was
caused by these ICT professionals in the first place. Yet, they presented the problem
as something they couldn’t help. It was allegedly caused by the need to save space
when storing dates. By omitting the first digits “19”, one would only need six ASCII
characters6 to store a date (in the Gregorian calendar). This is not correct, however.
The real cause of the Y2K problem is that these ICT professionals failed to make a
clear distinction between sign and thought (cf. Fig. 5.1). The 48 bits that were used to
store the ‘stripped’ dates (i.e. calendar names) should properly have been used to
store an integer value, representing a day on the time scale. Only a few computer
manufacturers did and do this and thereby act(ed) truly professional (and caused no
Y2K problem). Among them are Apple, Burroughs (nowadays merged in Unisys),
and DEC.

References

1. Dietz, J. L. G., & Hoogervorst, J. A. P. (2013). The discipline of enterprise engineering.
International Journal of Organisational Design and Engineering, 3, 28.

2. Ogden, C. K., et al. (1923). The meaning of meaning: A study of the influence of language upon
thought and of the science of symbolism. International library of psychology, philosophy, and
scientific method. , London: K. Paul, Trench, Trubner/Harcourt, Brace, xxxi, 1, 544p.

3. Stamper, R. K. (1973). Information in business and administrative systems. London: Batsford.
6, 362 p.

4. Liebenau, J., & Backhouse, J. (1990). Understanding information: An introduction. London:
Macmillan. ix, 125 p.

5. Bunge, M. (1977). Treatise on basic philosophy ontology I: The furniture of the world (Treatise
on basic philosophy) (Vol. 3). Dordrecht: Springer. p. 1 (370 pages).

6. Wittgenstein, L. (1958). Philosophical investigations (2nd ed.). Oxford: Blackwell. 246 p.,
23 cm.

7. Dietz, J. L. G. (2005). A world ontology specification language. In: OTM. Springer LNCS.
8. Falkenberg, E. D., et al. (1998). A framework for information systems concepts. Technical

report. IFIP.

6https://en.wikipedia.org/wiki/ASCII

References 69

https://en.wikipedia.org/wiki/ASCII

9. Wittgenstein, L., & Ogden, C. K. (1999). Tractatus logico-philosophicus. Mineola, NY: Dover.
125 p.

10. Simons, P. (1987). Parts—A study in ontology. New York: Oxford University Press.
11. Guarino, N., Oberle, D., & Staab, S. (2009). What is an ontology? In S. Staab & R. Studer

(Eds.), Handbook on ontologies (pp. 1–17). Berlin: Springer.
12. Guizzardi, G. (2005). Ontological foundations for structural conceptual models. The Nether-

lands: University of Twente.
13. Halpin, T. A., & Morgan, T. (2008). Information modeling and relational databases (Morgan

Kaufmann series in data management systems) (2nd ed.). Burlington, MA: Elsevier/Morgan
Kaufman. xxvi, 943 p.

70 5 The FI Theory: Understanding Factual Knowledge and Information

Chapter 6
The MU Theory: Understanding Models
and Modelling

Abstract The MU theory or EE model theory is a theory of models and modelling in
general, and of conceptual modelling in particular. The foundations part starts with this
definition of model: any subject using a system A to obtain knowledge of a system B is
using A as a model of B. It conveys clearly the basic understanding of the concept of
model as a role notion. Next, the model triangle is introduced, based on the semiotic
triangle from the FI theory. It clarifies how complexes (systems and aggregates) of three
major sorts (concrete, conceptual, and symbolic) can be used as models of each other. By
adding two levels of abstraction (namely the schema level and the meta level), the General
Conceptual Modelling Framework emerges. It clarifies the notions of conceptual complex,
conceptual schema, and meta schema for any Universe of Discourse or system’s world. It
is also made clear that these notions are logical constructs, and that consequently any
expression of them (in a suitable language) is directly transformable to first-order logic.
The elaborations part comprises the presentation and discussion of the General Ontology
Specification Language (GOSL). GOSL is a universal language for specifying conceptual
complexes, conceptual schemas, and meta schemas. The syntax of the language consists of
graphical as well as textual symbols and constructs. The latter constitute an English-like
formal language. The split between the two is a pragmatic one. Compared to common
graphical languages for conceptual modelling, GOSL might be called minimal: it covers
only the basic concepts and constructs. More complicated logical formulas can often be
better expressed in textual constructs. The discussions part starts with a comparison of the
GCMF with two other frameworks. Next, the influence of O-O thinking on conceptual
modelling is discussed. It appears that O-O thinking causes the blurring of two crucial
things in conceptual modelling: the type–instance relationship and the subtype–supertype
relationship.

6.1 Introduction

In this chapter, the M-theory is discussed. The Greek capital letter is pronounced as
MU, which is an acronym for Model Universe. The MU theory is about models,
about modelling in general, and about conceptual modelling in particular. We all

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_6

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_6&domain=pdf

make and use conceptual models, in our professional and in our private lives. We
have functional models in our minds of all the things we use (cf. Chap. 7). Without
these models, we couldn’t use the things.

The foundations part (Sect. 6.2) starts with a fundamental discussion of the notion
of model, concluding that something is not a model per se, but that it may be used as
a model. A well-known example is to use the geometric sphere as a model of
celestial bodies.

In Sect. 6.2.2, the model triangle is introduced. Based on the semiotic triangle from
the FI theory (see Chap. 5), it provides a useful framework to understand and discuss
all kinds of models. In the model triangle, three classes of complexes are distin-
guished: concrete, conceptual, and symbolic complexes. Every distinct kind of model
is a mapping from one class to another. As an example, a mapping from the class of
concrete complexes to the class of conceptual complexes is called conceptualisation.
Consequently, the conceptual complex is called a conceptual model of the concrete
complex. To exemplify this mapping: the conceptual complex ‘sphere’ can be used as
a conceptual model of the concrete complex ‘planet Mars’. Conceptual models will be
the focus of interest in the remainder of the chapter and of the entire book.

In Sect. 6.2.3, the General Conceptual Modelling Framework (GCMF) is intro-
duced and discussed. It shows that there are three levels in conceptual modelling,
and how they are related to each other. The levels are: instance, schema, and meta
schema. In the current practice of conceptual modelling, they are often also called:
model, meta model, and meta meta model.

The elaborations part (Sect. 6.3) comprises the presentation and explanation of a
language for expressing ontological models of worlds (cf. Chap. 9), called the
General Ontology Specification Language (GOSL). It is a language for specifying
schemas and meta schemas, fully based on first-order logic. The syntax of GOSL
comprises both graphical and textual symbols and constructs.

In the discussions part (Sect. 6.4), two modelling issues are discussed. One is a
comparison of the GCMF with some existing and well-known frameworks: the
FRISCO framework, and the unified foundational ontology (UFO) framework.
The other issue is the harm that object-oriented (O-O) thinking does to proper
(general) conceptual modelling. It turns out that O-O thinking easily leads to flaws
in conceptual models. More specifically, it blurs the distinction between the type–
instance relationship and the subtype–supertype relationship.

6.2 Foundations

6.2.1 The Notion of Model

As it holds for the notion of system (see Chap. 9), a precise notion of model is crucial
for the advancement of enterprise engineering (EE). In current practice as well as
research, the term “model” is used in so many diverse and incompatible ways, that a

72 6 The MU Theory: Understanding Models and Modelling

thorough study of the notion is imperative. The only common denominator in the
plethora of model notions seems to be that a model is a simplified representation of a
thing, made for the purpose of studying those aspects of the thing that one is interested
in. This is certainly an important and a necessary property of models, but it is not
sufficient for a crisp and clear general understanding of the notion of model.

According to the Belgian philosopher Leo Apostel [1], the notion of model
should be understood as a role notion. In other words, something is not a model
per se, that is, by itself, but it may be used as a model of some other thing. We adopt
his notion. It also happens to be in full accordance with the notion of affordance (and
function) in the TAO theory (see Chap. 7). Apostel’s original definition reads as
follows:

Any subject using a system A that is neither directly nor indirectly interacting with a
system B, to obtain information about the system B, is using A as a model of B.

There may be many different reasons for studying system A instead of system
B. Studying B directly may be physically (almost) impossible, for example, because
B is too far away, like B being the planet Mars. Or it can be too dangerous to study B
directly, for example, if B is a nuclear power station. In addition, system A may be
simpler than B, because it needs only to have the features that one is interested in.

Apparently, the notion of system in this definition must be taken broader than our
notion of system as defined by the DELTA theory (see Chap. 9). It should be able to
include aggregates, like, for example, Mendeleev’s periodic table of elements.
Therefore, we will replace the term “system” in Apostel’s definition by “complex”,
to make the notion of model really general. A complex is either a system or an
aggregate.

6.2.2 The Model Triangle

Based on the semiotic triangle in Chap. 5, three major sorts of complexes can be
distinguished: concrete, conceptual, and symbolic. A concrete complex is either a
concrete system or a concrete aggregate. It may be material or tangible (e.g. a car),
but it may also be immaterial or intangible (e.g. a contract). Conceptual complexes
are aggregates of thoughts, more specifically of facts (cf. Chap. 5). Symbolic
complexes are aggregates of symbols and/or sentences in some language. Together
with their mutual relationships, the three sorts of complexes constitute the model
triangle [2]. It is shown in Fig. 6.1, slightly adapted to our needs. The major
difference of the exhibited model with the one in [2] is that we have left out the
relationships between a symbolic complex and a concrete complex, for the reason
that these relationships actually always go via the corresponding conceptual
complex.

Using a conceptual complex as a model of a concrete complex is called
“conceptualisation”. For example, the geometric sphere (conceptual complex) is

6.2 Foundations 73

taken as a conceptualisation of planets (concrete complexes). The reverse relation-
ship is called “concretisation”. For example, a football (concrete complex) is a
concretisation of the geometric sphere (conceptual complex).

In order to communicate conceptual complexes, they must be expressed in
symbolic complexes. Using a symbolic complex as a model of a conceptual complex
is called “expression”. For example, a Class Diagram in UML [3] (symbolic
complex) is an expression of a Class Model in UML1 (conceptual complex). The
reverse relationship is called “interpretation”. So, a Class Model is an interpretation
of a Class Diagram. In order to be perceivable, symbolic complexes have to be
inscribed in a subclass of concrete complexes, called physical complexes
(cf. Fig. 5.1). These physical complexes, and their relationships with other parts of
the model triangle, are left out from Fig. 6.1 for the sake of simplicity, as we did in
Chap. 5.

Alongside the relationships discussed above, there is a mutual relationship the
three kinds of complexes have over each other. Regarding concrete complexes, this
relationship is called “imitation”. For example, a scale model (concrete complex) of
an aircraft that is made for aerodynamic tests in wind tunnels is an imitation of a real
aircraft (concrete complex). Regarding conceptual complexes, the relationship is
called “conversion”. For example, the algebraic notion of sphere (conceptual com-
plex) can be considered as a conversion of the geometric notion of sphere (concep-
tual complex), and vice versa. For symbolic complexes, the relationship is called
“transformation”. As an example, a text in Morse code (symbolic complex) may be a
transformation of a text in Roman letters (symbolic complex).

Fig. 6.1 The adapted model
triangle

1Currently, the UML (2.0) does not include the notion of Class Model. It would be a good idea,
however, to make a clear distinction in UML between models and diagrams (and to define their
semantics precisely).

74 6 The MU Theory: Understanding Models and Modelling

The focus in EE is on conceptual complexes as models of concrete systems, and
on the symbolic expressions of these conceptual aggregates, notably by means of
graphical and textual formalisms.

6.2.3 The General Conceptual Modelling Framework

As explained in Chap. 5, the prerequisite for the creation of a corresponding thought
in the mind is that the observed form of a thing (i.e. the collection of its properties)
conforms to the prescription of form of a type. This holds also for the creation of
conceptual complexes. Instead of type, we now speak of conceptual schema. So, a
conceptual complex will be created in the mind if, and as soon as, an observed
concrete complex conforms to a conceptual schema. The created conceptual com-
plex is called an instantiation of the conceptual schema. In other words, a conceptual
schema works as a mental lens through which one perceives concrete complexes,
and subsequently creates conceptual complexes. Consequently, we say that a con-
crete complex is conceptualised (i.e. a corresponding conceptual complex is created)
through a conceptual schema. Similarly, the conceptual schema determines what
‘can be seen’ in the world.

Fig. 6.2 The General Conceptual Modelling Framework

6.2 Foundations 75

Figure 6.2 exhibits this conceptualisation process, indicated by the red
curved arrow. In more general terms, and with reference to the quote by Einstein
in Sect. 4.1, a “conceptual model” of a concrete complex is the understanding of the
complex within the applied ‘theory’, that is, within the applicable conceptual
schema. From now on, the term “conceptual model” is applied as a shorthand for
a conceptual complex that is used as a model of a concrete complex. One should
keep in mind, however, that the notion of model is a role notion.

The lower part of the figure is directly taken from Fig. 6.1. It is the adapted original
model triangle, only arranged differently. Moreover, the relationships over each of
the complexes are omitted, for the sake of simplicity. The middle and upper parts are
new. Conceptual complexes are expressed in a symbolic formalism that corresponds
with the conceptual schema through which it is conceptualised, yielding the symbolic
complexes that are taken as their expressions. In other words, a symbolic complex is a
text in a symbolic formalism. The combination of a conceptual schema and a
corresponding symbolic formalism is called a (conceptual) modelling language.
The symbolic formalism constitutes the syntax and the conceptual schema the
semantics of the language. Such a language is often called domain specific, because
the conceptual schema restricts all of its instantiations to some domain. Examples of
domains are hospital care, goods logistics, or car manufacturing.

A conceptual schema can also be understood as a specification of the state space
and the transition space of the world of a system, or better: of a Scope of Interest, as
explained in Chap. 9. More specifically, a conceptual schema determines the entity
types, property types, attribute types, and event types that play a role in the Scope of
Interest. Analogously to the relationships named “conversion” and “transformation”
in Fig. 6.1, there is the relationship named “semantic equivalence” over conceptual
schemas, and the relationship named “syntactic equivalence” over symbolic formal-
isms. As an example, a DEMO Fact Model [4] and an ORM schema [5] of the same
world are syntactically equivalent, because there is a one-to-one correspondence
between the syntactic elements of the Object Fact Diagram in DEMO and the ORM
diagram. Two models or schemas, expressed in whatever symbolic formalism, are
called semantically equivalent if they convey the same meaning. Note that their
syntactic appearance need not be the same, even if they are expressed in the same
symbolic formalism. Like it is the case for natural languages, it is often possible to
express a particular thought in different syntactic ways.

Like a conceptual complex is an instantiation of a conceptual schema, a concep-
tual schema can be understood as an instantiation of a meta schema. This is shown in
the upper part of Fig. 6.2. The combination of a meta schema and a corresponding
symbolic formalism is called a general, that is, not domain-specific, (conceptual)
modelling language. This is the language in which one can express all (domain-
specific) conceptual schemas. Consequently, these schemas are instantiations of the
meta schema. Moreover, the meta schema is an instantiation of itself (the reader is
invited to verify this assertion, after having read the current section). So, there are
exactly three levels in conceptual modelling, which are called the instance level, the
schema level, and the meta level. Notably in process modelling, three alternative
names for these levels are quite common. They are, respectively, model, meta model,
and meta meta model.

76 6 The MU Theory: Understanding Models and Modelling

Figure 6.3 exhibits, on the left side, a stripped version of Fig. 6.2. On the right
side, examples of the things on the left side are shown. At the bottom is an example
of a conceptual complex. It is an instantiation of (a part of) the conceptual schema in
the middle. At the top of the figure is (a part of) the meta schema (cf. Fig. 6.16), of
which the conceptual schema in the middle is an instantiation. All three levels are
expressed in the language GOSL, to be discussed in Sect. 6.3.

To explain the contents of Fig. 6.3, we start from the schema in the middle. It says
that in the modelled world, there can exist entities of the type rental.2 Possible
examples of such entities are: rental 1089 and rental 387. They are listed at the bottom
right of Fig. 6.3 as the sentences “rental 1089 exists” and “rental 387 exists”. It shall
not be too hard to understand the other sentences as expressions of instances of things
at the schema level. Going from the schema level to the instance level is called
deduction in logic. Deduction has proven to be a very effective help in verifying that
one’s conception of a world at the schema level is correct. A few examples of instances
are often sufficient to determine the (in)correctness of a conceptual schema.

is an expression of ->

<- is an interpretation of
CONCEPTUAL

COMPLEX
SYMBOLIC
COMPLEX

CONCEPTUAL
SCHEMA

is
 a

 t
ex

t
in

>

is
 a

n
in

st
an

tia
tio

n
of

>

META
SCHEMA

is
 a

n
in

st
an

tia
tio

n
of

>

is a syntax of ->

<- is a semantics of
SYMBOLIC

FORMALISM

is a syntax of ->

<- is a semantics of
SYMBOLIC

FORMALISM

is
 a

 t
ex

t
in

>

EXAMPLES OF FACTS:

rental 1089 exists
rental 387 exists
person Charlie exists
person Linda exists
the renter of rental 1089 is person Charlie
the renter of rental 387 is person Linda
rental 1089 is rent paid
the amount paid of rent paid rental 1089 is € 124

GOSL

amount paid [money : €]

RENTAL PERSON
renter

>

EXAMPLES OF FACTS:

entity type rental exists
entity type person exists
property type renter exists
the domain of renter is rental
the range of renter is person
event type rent paid exists
rent paid concerns rental
derived entity type rent paid rental exists
attribute type amount paid exists
the domain of amount paid is rent paid rental
the range of amount paid is money : €

GOSL

RENT PAID
RENTAL

<rental> is
rent paid

DECLARED
ENTITY
TYPE

DERIVED
ENTITY
TYPE

PROPERTY
TYPE

ATTRIBUTE
TYPE

ENTITY
TYPE

VALUE
TYPE

<
range

<

domain
<

range

<
domain

GOSL

EVENT
TYPE

concerns
<

Fig. 6.3 Examples of the three conceptual levels (1)

2From now on we will us the expression <string> as a convenient shorthand for: thing with the
name “<string>”, like rental instead of thing with the name “rental”. If the use of names that consist
of several words may cause confusion, these words can be separated by an underscore, like in the
string car_group.

6.2 Foundations 77

Conversely, induction is going from the instance level to the schema level. In
doing so, one can determine the existence of the entity types rental and person, as
well as the property type renter and the event type named “rent paid” at the schema
level. In the same way, one can deduce the schema level in Fig. 6.3 from the meta
level, and one can induce the meta level from the schema level. In doing such an
exercise, it is often helpful to first transform the graphical language in a (structured)
textual language, as is done next to the diagram at the schema level in Fig. 6.3. This
transformation is also known as verbalisation.

As a general convention, to be discussed in Sect. 6.3.2, but already applied in
Fig. 6.3, one may refer to types by their name (e.g. rental), instead of having to write
“entity type rental”. Consequently, one may write for example, “the domain of renter
is rental”.

In the middle of Fig. 6.4, another example of a conceptual schema (but deduced
from the same meta schema) is exhibited, as well as an example of an instantiation at
the bottom. This conceptual schema is taken from the PSI theory (see Chap. 8).

The reader is invited to go hence and forth between the schema level and the
instance level, as well as between the schema level and the meta level, in the same

is an expression of ->

<- is an interpretation of
CONCEPTUAL

COMPLEX
SYMBOLIC
COMPLEX

CONCEPTUAL
SCHEMA

is
 a

 t
ex

t
in

>

is
 a

n
in

st
an

tia
tio

n
of

>

META
SCHEMA

is
 a

n
in

st
an

tia
tio

n
of

>

is a syntax of ->

<- is a semantics of
SYMBOLIC

FORMALISM

is a syntax of ->

<- is a semantics of
SYMBOLIC

FORMALISM

is
 a

 t
ex

t
in

>

ACTOR
ROLE

TRANS-
ACTION
KIND

sort [T-SORT]

initiator role
<

executor role
<

1..*

1..1 1..1

EXAMPLES OF FACTS:

entity type actor role exists
entity type transaction kind exists
property type initiator role exists
the domain of initiator role is
transaction kind
the range of initiator role is
actor role

EXAMPLES OF FACTS:

actor role AR0 exists actor role AR1 exists
actor role AR2 exists transaction kind TK1 exists
the sort of transaction kind TK1 is original
transaction kind TK2 exists
the sort of transaction kind TK2 is original
actor role AR0 is an initiator role of transaction kind TK1
actor role AR1 is the executor role of transaction kind TK1
actor role AR1 is an initiator role of transaction kind TK2
actor role AR2 is the executor role of transaction kind TK2

GOSL

GOSL

DECLARED
ENTITY
TYPE

DERIVED
ENTITY
TYPE

PROPERTY
TYPE

ATTRIBUTE
TYPE

ENTITY
TYPE

VALUE
TYPE

<
range

<

domain
<

range

<
domain

GOSL

EVENT
TYPE

concerns
<

Fig. 6.4 Examples of the three conceptual levels (2)

78 6 The MU Theory: Understanding Models and Modelling

way as we did with respect to Fig. 6.3, in order to get a grip on this aspect of
modelling.

Figure 6.5 exhibits the same part of the conceptual schema (middle right) and the
same part of the conceptual complex (bottom right) as the ones shown in Fig. 6.4, but
now expressed in a different modelling language, namely DEMOSL (DEMO Spec-
ification Language).3 So, the only difference between Figs. 6.4 and 6.5 is in the
symbolic formalism at the schema level (and consequently in the symbolic com-
plexes at the instance level). The symbolic formalism at the schema level in Fig. 6.5
is syntactically equivalent to the one in Fig. 6.4, which means that there is a one-to-
one correspondence between the syntactic constructs in the applied languages
(respectively, DEMOSL and GOSL). They also are semantically equivalent, because
the two languages are designed in this way. Consequently, the expression of the
example at the instance level (the symbolic complex in Fig. 6.5) is also syntactically
equivalent to the corresponding symbolic complex at the instance level in Fig. 6.4.
Moreover, the two complexes have the same (semantic) meaning. Note: the red
colour of the diamonds expresses that the sort of the two transaction kinds is original
(cf. Chap. 8).

is an expression of ->

<- is an interpretation of
CONCEPTUAL

COMPLEX
SYMBOLIC
COMPLEX

CONCEPTUAL
SCHEMA

is
 a

 t
ex

t
in

>

is
 a

n
in

st
an

tia
tio

n
of

>

META
SCHEMA

is
 a

n
in

st
an

tia
tio

n
of

>

is a syntax of ->

<- is a semantics of
SYMBOLIC

FORMALISM

is a syntax of ->

<- is a semantics of
SYMBOLIC

FORMALISM

is
 a

 t
ex

t
in

>

rental payment

TK2

AR0

renter

rental concluding

TK1

AR1

rental
concluder

AR2

payer

TKjARi

TKjARj

ARi

TKj

(elementary)
actor role ARi

transaction kind TKj

ARi is an initiator role of TKj

ARi is the executor role of TKj

DEMOSL

DEMOSL

DECLARED
ENTITY
TYPE

DERIVED
ENTITY
TYPE

PROPERTY
TYPE

ATTRIBUTE
TYPE

ENTITY
TYPE

VALUE
TYPE

<
range

<

domain
<

range

<
domain

GOSL

EVENT
TYPE

concerns
<

Fig. 6.5 Examples of the three conceptual levels (3)

3The document is available from www.ee-institute.org

6.2 Foundations 79

http://www.ee-institute.org

6.3 Elaborations

6.3.1 The General Ontology Specification Language

GOSL (General Ontology Specification Language) is a first-order logic language
for specifying the state space and the transition space of a world (cf. Chap. 9). It is
the successor of WOSL (World Ontology Specification Language), presented in
[4]. The main differences are that the terms “factum” and “statum” are replaced by
“independent fact” and “dependent fact”, and that only unary and binary facts are
considered. Ternary and higher-order facts can be reduced to binary facts through
aggregation (cf. Sect. 6.3.3). Moreover, it appears that if the PSI theory (cf. Chap. 8)
is applied properly, the production world will not contain facts with an arity greater
than 2.

The notion of sentence in GOSL is the same as Wittgenstein’s notion in [6]:
elementary sentences express elementary facts. Although such sentences could be
written in the traditional Peano-Russell notation in logic, an intuitive and simple
graphical formalism is used. The well-known Venn diagram from mathematical set
theory serves to explain mathematical functions as mappings between sets. To
emphasise its logical basis, the definitions of the graphical elements and constructs
of GOSL are also expressed in PRN (Peano-Russell Notation), complemented by
textual set theoretic expressions, if deemed convenient.

The textual formalism of GOSL looks like structured English. Its syntax is
defined in the Extended Backus-Naur Form (EBNF), which is the international
standard (ISO/IEC 14977).4 The transformations of expressions in this formalism
to PRN is straightforward. Moreover, the textual formalism and the graphical
formalism are complementary. By preference, the graphical formalism is used.
However, what cannot be specified in the graphical formalism must be specified in
the textual formalism.

In terms of the GCMF (cf. Fig. 6.2), GOSL is a symbolic formalism for
expressing conceptual schemas and meta schemas. The resulting conceptual
schemas are called ontological because they do not include names and other lexical
attributes of the things in the modelled world. Contrary to current conceptual
modelling approaches, like ER [7], ORM [5], and UML [3], we deliberately omit
name types in conceptual schemas by which one refers to things in the world,
because (proper) names are not constituents of the world to be modelled. They are
labels that people assign to things in order to communicate about them. Conse-
quently, the name of a thing is not one of its attributes: changing the name of a thing,
does not change the thing, only its name.

4http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

80 6 The MU Theory: Understanding Models and Modelling

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

6.3.2 The Textual Formalism of GOSL

In the following, the textual formalism of GOSL is presented. First we present the
way in which names of types are formed, so the nouns and verbs that signify the
types. The names to be specified are written in italics; comments are written between
“%” and “%”.

type name = {lower case letter}-, {“ ”, {lower case letter}}

class name = {upper case letter}-, {“ ”, {upper case letter}}

entity type name = type name % commonly the type name is a noun %
Examples: rental, car

entity class name = class name % commonly the type name is a noun %
Examples: RENTAL, CAR

value type name = type name, “[”, {dimension, “:”, unit} | {unit}, “]”
Examples: time [Julian : day], amount [money : €], amount [€]

property type name = type name
Examples: renter, allocated car

attribute type name = type name
Examples: rental charge, daily rental rate

event type name = type name % preferably the type name is a verb in the perfect
tense %

Examples: concluded, rent paid

Next, we present the way in which types are declared in a conceptual schema:

entity type declaration = “entity type”, entity type name, “exists”
Example: entity type rental exists

value type declaration = “value type”, value type name, “exists”
Example: value type amount exists

property type declaration = “property type”, property type name, “exists”
Example: property type renter exists

6.3 Elaborations 81

attribute type declaration = “attribute type”, attribute type name, “exists”
Example: attribute type rental charge exists

event type declaration = “event type”, event type name, “exists”
Example: event type concluded exists

Once a type is declared, one may refer to it directly, that is, without having to
mention the particular type (entity type, value type, etc.), like it is done in Figs. 6.3
and 6.4, for example, in “the domain of renter is rental”.

Next, we present the way in which individual entities, values, properties, and
attributes at the instance level are added to the state of a world:

entity declaration = entity type name (in italics), entity name, “exists”
Examples: person Linda exists,

rental 387 exists

value declaration = value type name (in italics), value name, “exists”
Examples: transaction sort documental exists,

car group sedan exists

property declaration = “the”, property type name (in italics), “of”, entity type name
(in italics), entity name, “is”, entity type name (in italics), entity name

Example: the renter of rental 1089 is person Linda

attribute declaration = “the”, attribute type name (in italics), “of”, entity type name
(in italics), entity name, “is”, value type name (in italics), value name

Example: the starting day of rental 1089 is day 3456789

event declaration = entity type name (in italics), entity name, “is”, event type name;
Examples: rental 1089 is concluded, rental 1089 is rent paid

6.3.3 The Graphical Formalism of GOSL

The graphical formalism of GOSL is based on the Venn diagram, as illustrated by
Fig. 6.6. There are two sets: RENTAL (with example elements r1, r2 and r3) and
PERSON (with example elements p1, p2, p3 and p4). The function renter is shown as
a mapping from RENTAL to PERSON, which are respectively the domain and the
range of renter. The expression renter(ri) ¼ pj means that person pj is the renter of
rental ri.

82 6 The MU Theory: Understanding Models and Modelling

Figure 6.7 exhibits the more stylised way in which functional mappings are
represented in GOSL. The roundangles5 represent entity classes, thus the extensions
of entity types (cf. Chap. 5). The functions are now called properties. One best
considers the lines with an arrow in the middle as bundles of separate mappings from
elements in RENTAL to elements in PERSON (cf. Fig. 6.6).

The strings “0. . .�” and “1. . .1” denote the cardinality ranges that apply. The first
number is the minimum cardinality and the second one the maximum cardinality. The
symbol “�” (which can only occur as the maximum cardinality) means that the number
is undetermined, that is, any number larger than or equal to the minimum cardinality is
allowed. The cardinality ranges in Fig. 6.7 state that every rental has exactly one
person as its renter (minimum 1 and maximum 1), and that every person is the renter of
an arbitrary number of rentals (minimum 0 and maximum �). The ranges shown in
Fig. 6.7 are the default ones. They may be omitted, as is done, for example, in Fig. 6.9.

Hereafter, the remainder of the graphical formalism of GOSL is presented in a
number of figures. Figure 6.8 shows the graphical notation of the distinct types
(entity, event, value, property, and attribute) as well as the way in which they are
entered into a conceptual schema, either by declaration or by derivation.

Fig. 6.6 Mathematical functions as mappings between sets

Fig. 6.7 Properties as mappings between entity classes

5A roundangle is a rectangle with rounded corners.

6.3 Elaborations 83

In terms of logic, entity types and event types are unary predicates, whereas
property types and attribute types are binary predicates. To emphasise that a
roundangle denotes a class, the class name is written in capitals.

Fig. 6.8 The notation and declaration of the distinct types

Fig. 6.9 The specification of reference laws

84 6 The MU Theory: Understanding Models and Modelling

As mentioned in Sect. 6.2.3, a conceptual schema of a world is a specification
of its state space and its transition space. The state space of a world is determined
first of all by the distinct sorts of facts (entities, events, properties, and attributes)
that may exist in a state of the world. In addition, it is determined by the
applicable existence laws. Existence laws regulate the co-existence of facts. We
distinguish three kinds of existence laws: reference laws, cardinality laws, and
exclusion laws.

Reference laws state which facts must exist together. They are exhibited in
Fig. 6.9. As an example, if the property type ‘renter’ exists, then its domain and its
range must also exist. This is expressed in the figure by connecting the represen-
tation of the property renter with the representations of the classes RENTAL and
PERSON. Like roundangles represent classes of entities (of a specific type),
diamonds represent classes of events (of a specific type). An event is a unary
predicate concerning an entity. As exemplified in Fig. 6.9, the unary predicate
concluded holds for elements of the class RENTAL. If GOSL is used to model the
production world of an organisation (cf. Chap. 8), an event is the becoming
existent of the independent fact of a product, as the result of a transaction. Events
are thus elementary state changes (cf. Chap. 9). As extensively discussed in
Chap. 8, a number of so-called dependent facts may start to exist together with
an independent fact.

Attributes are a special kind of properties. The distinction is first that the range of
an attribute type is a value class, whereas the range of a (normal) property type is an
entity class, and second, that both cardinality ranges are the default ones
(cf. Fig. 6.7). This allows for a more compact notation of attribute types, as shown
in Fig. 6.9 (bottom). The domain of the attribute group is the class RENTAL and the
range is the extension of the value type car group.

Cardinality laws provide a further specification of reference laws, by stating what
their cardinality ranges are, as shown in Fig. 6.10. As said, the default values
(so “0. . .�” on the side of the domain and “1. . .1” on the side of the range) may
be omitted, and therefore usually are omitted.

Fig. 6.10 The specification of cardinality laws

6.3 Elaborations 85

Exclusion laws serve to specify which facts cannot exist together, in addition to
the restrictions that are already expressed in reference laws and cardinality laws. In
other words, they state that the existence of a fact excludes the existence of one or
more other facts. Figure 6.11 exhibits their graphical notation. We assume that the
figure is self-explaining.

Like existence laws determine the set of lawful states of a world, occurrence laws
determine which state transitions are lawful. Two kinds of occurrence laws are
distinguished: precedence laws and preclusion laws. They are presented in
Fig. 6.12, which we assume is self-explaining. A precedence law states that an
event of some type, concerning a particular entity, must always precede an event of
some other type, concerning the same entity. A preclusion law states that an event of
some type, concerning a particular entity, forbids the (future) occurrence of an event
of some other type, concerning the same entity.

Fig. 6.11 The specification of exclusion laws

Fig. 6.12 The specification of occurrence laws

86 6 The MU Theory: Understanding Models and Modelling

Existence laws that cannot be or not easily be specified graphically must be
specified textually in GOSL. Here are some, presumably self-explaining, examples
of textual specifications (words between the brackets “[“and”]” denote variables):

[membership] is started on [day] implies that [day] is the first day of some [month]
and that [month] is equal to or greater than the Current Month;

[membership] is started on [day] implies that the age of the member of [member-
ship] on [day] is equal to or greater than the minimal age in the year of [day];

Alongside introducing concept types in a conceptual schema by declaration, as
explained above, one can introduce types by derivation, meaning that one defines a
new type on the basis of existing types. In Figs. 6.13 and 6.14, the graphical
specification of three kinds of derived types are shown: specialisation, generalisa-
tion, and aggregation, in accordance with their definitions in the FI theory
(cf. Chap. 5). The definition of the specialisation concluded_rental in Fig. 6.13
(right side) is complete. The definition of the specialisation student (left side),
however, needs to be complemented by a precise rule, for example, that a student
is a person for whom there is an admission in which this person is the applicant.

Figure 6.14 (left side) exhibits an example of generalisation. It defines in a
precise and complete way the derived type vehicle: a vehicle is either a car or a
boat or an aircraft. As discussed in Chap. 5, specialisation and generalisation are not
each other’s inverses. They are fundamentally different ways of constructing a type
on the basis of one or more other types. The only invertible relationship between
types is the subtype–supertype relationship. For example, student is a subtype of
person, and thus person is a supertype of student (cf. Fig. 6.13). Likewise, boat is a
subtype of vehicle and thus vehicle is a supertype of boat, etc.

On the right side of Fig. 6.14, the notion of aggregation is explained. The derived
concept offer could be useful for comparing the prices of a product (on a day) in
different shops. The price would then be an attribute type of the entity type offer.

PRN
STUDENT PERSON

NOTE.
PRN
CONCLUDED_RENTAL RENTAL
concluded_rental(x) concluded(x)

Fig. 6.13 The specification of derived types (1)

6.3 Elaborations 87

Derived types that are not, or not completely, specified graphically must be
specified textually in GOSL. Here are some, presumably self-explaining, examples
of textual specifications of derived types:

the age of [person] on Day = Day minus the day of birth of [person]
% Note that the age is expressed in Julian, cf. Fig. 6.15 %

the first fee of [membership] = (((12 minus the month of the starting day of
[membership]) plus 1) divided by 12) times the annual fee in the year of the
starting day of [membership]

6.3.4 Standard Value Types

As said, attribute types are mappings from an entity class to a value class, thus to the
extension of a value type. Many value types appear to be quite common across
conceptual schemas, and thus across worlds. Figure 6.15 shows the list of predefined
value types, also called scales, which are considered to exist always and everywhere
in conceptual schemas that are specified in GOSL. Additional value types must be
declared separately. The first column lists the distinct value types, the second column
their so-called dimension, and the third column the possible units in which values of
the type can be expressed. The base types of these values are listed in the fourth
column, and their (scale) sort in the fifth column.

The scale sort determines the ordering that applies to the values (the instances) of
a value type. The next scale sorts are distinguished as: ordinal (O), interval (I), ratio
(R), absolute (A), boolean (B), and categorial (C). An ordinal scale is only a ranking
of values. A well-known example is the hardness scale of minerals. Interval scales
have a (freely choosable) measuring unit, but no zero point. Examples are time scales
and temperature scales. Ratio scales have both a (freely choosable) measuring unit
and a (freely choosable) zero point. Examples are the scales for measuring mass and
length. The absolute scale has a fixed measuring unit and a fixed zero point. It is
actually just counting, like counting the number of apples in a basket. The boolean

PRN
=

Fig. 6.14 The specification of derived types (2)

88 6 The MU Theory: Understanding Models and Modelling

scale contains the truth values in logic: a proposition is true or false.Categorial scales
are enumerations of values, without any ordering. Examples are car group (sedan,
cabriolet, mini, etc.) and transaction sort (original, informational, documental).

6.3.5 The Meta Schema

Figure 6.16 exhibits themeta schema ofGOSL.We add textually the existence rule that
the three ways of constructing a type (specialisation, generalisation, and aggregation)
exclude each other. In a similar way, we add that the specialisations declared_type and
derived_type constitute an exhaustive set, that is, every type is either declared or
derived. Lastly, the class TYPE SET is defined as the set of all sets of types.

Fig. 6.15 Predefined value types in GOSL

Fig. 6.16 The GOSL meta schema

6.3 Elaborations 89

6.4 Discussions

6.4.1 Comparison of the GCMF with Other Approaches

One of the first attempts to construct conceptual frameworks in the field of informa-
tion systems engineering was undertaken by a task group of IFIP Working Group
8.1. It is known as the FRISCO framework [8]. Figure 6.17 shows the basic relation-
ships between things in the mind (left side) and external representations of these
things (right side). Although at the time of publication it was considered to be a
milestone, most researchers would consider it now as a good but not yet mature
study. Note that the is-a relationship is identical to specialisation (cf. Fig. 6.13).

A more recent study is made by Guizzardi [9]. Figure 1.1 in this dissertation is
reproduced as Fig. 6.18. The corresponding part of the GCMF is shown in Fig. 6.19.

The only part in Fig. 6.19 that is missing in Fig. 6.18 is the box named “concrete
complex”. So, the question “Of what is the bottom-left cloud in Fig. 6.18 a model?”
remains unanswered. Clearly, the model is not only an instance of the top-left cloud
(Conceptualization), this cloud has acted as a conceptual schema to create the model.

is-represented-as

respresents

is-represented-as

respresents

Conception Representation

is-a is-a

Model Model
denotation

Fig. 6.17 The FRISCO framework

Fig. 6.18 Guizzardi’s framework

90 6 The MU Theory: Understanding Models and Modelling

Next, the labelling of the relationships between the parts in Fig. 6.18 is debatable.
Using twice the relationships “represented by” and “interpreted as” seems less
precise than the corresponding relationships in Fig. 6.19. Our preference to use the
terms “syntax” and “semantics” in labelling the relationships between the box named
“symbolic formalism” and the box named “conceptual schema”, is based on the fact
that they may very well be considered as the syntax and semantics of a language, a
point of view that is supported by the name “Modelling Language” in Fig. 6.18.

6.4.2 The Confusion that Is Caused by O-O Thinking

There exists a vast amount of literature on conceptual modelling that is written by
authors who have adopted object-oriented thinking (abbreviated to O-O thinking) in
their mental toolbox for dealing with modelling issues. O-O thinking originates from
the object-oriented programming paradigm, which was proposed in the 1980s as an
alternative to the prevalent procedural or imperative style of programming. A good
introduction to O-O programming is written by Bertrand Meyer [10].

Regardless of the real or supposed benefits of O-O programming over other
programming paradigms, its introduction has definitely brought a serious confusion
with it in conceptual modelling, whether for the purpose of database design or for
ontological modelling. The confusion concerns the distinction between the type–
instance relationship and the subtype–supertype relationship.

Up to the introduction of O-O thinking, the distinction was crisp and clear: the
particular dog ‘Lassie’ was an instance of the type ‘dog’, whereas the type ‘dog’ was
a subtype of, for example, ‘mammal’, in full correspondence with what we have

Fig. 6.19 Mapping of Guizzardi’s framework into the GCMF

6.4 Discussions 91

discussed in Sects. 6.2 and 6.3, and also in full correspondence with the findings of
the FI theory (cf. Chap. 5).

To illustrate the point we want to make, let us take a look at Fig. 6.20. It exhibits a
typical presentation of the conceptual framework that is applied in many publica-
tions by the Object Management Group (OMG). It is taken from [11]. In particular,
the instance_of relationship between M1 and M2 is questionable. Level M0 seems to
correspond with the instance level of the GCMF, and level M3 with the meta schema
level. But then both M1 and M2 must be at the schema level. Therefore, it is most
likely that M1 is a specialisation of M2 instead of an instance.

In order to solve the modelling problems that O-O thinking leads to, the authors
of [11] make a distinction between ontological modelling and linguistic modelling.
The distinction is illustrated by Fig. 6.21, which reproduces Figs. 2 and 3 in [11].

instance_of

instance_of

instance_of

MOF

User Data

User Concepts

UML Concepts

M0

M1

M2

M3
Fig. 6.20 The modelling
framework of the OMG

L1

O1

O0

Collie Class

linguistic
instance-of

Lassie Object

linguistic
instance-of

type

O2

Breed Metaclass

linguistic
instance-of

type

ontological
instance-of

ontological
instance-of

instance

instance

L0

represents

represents

represents

O2

M1

ontological
instance-of

Collie Lassie

Class Object

linguistic
instance-of

linguistic
instance-of

M0

M2

M3

type

Class

linguistic
instance-of

linguistic
instance-of

instance

O1 O0

representsrepresents

instance-of

Fig. 6.21 Linguistic (left) and ontological (right) O-O modelling

92 6 The MU Theory: Understanding Models and Modelling

In our view, however, the introduced distinction between linguistic and ontolog-
ical modelling only complicates the matter. It is actually a perfect demonstration of
blurring the distinction between the type–instance relationship and the subtype–
supertype relationship. Conceptual modelling is by definition an act of the mind,
abstracted from the linguistic terms in which one may communicate the thoughts one
has created. The relationships between conceptual things and linguistic things are
fully and clearly explained by the GCMF (cf. Sect. 6.2.3). So, the picture of Lassie
on the left side of Fig. 6.21 might be taken as a concrete complex in Fig. 6.2, and the
box labeled “Lassie”might then be taken as the conceptual complex in Fig. 6.2. This
conceptual complex, however, is just an instantiation of a type (or of several types) at
the next conceptual level, thus at the schema level in Fig. 6.2. The tree of types that
one may want to build at the schema level will probably be something like the
taxonomy of Linnaeus that is used in Chap. 5 (Fig. 5.8). To illustrate this, let us take
the type dog as the base type of the taxonomy branch for dogs. Then we can
construct, for example, the specialisation “collie” and the generalisation “mammal”.
This makes Lassie not only an instance of dog, but also of collie and of mammal. The
important issue is that these types are all things at the schema level.

The same holds for the concept breed in Fig. 6.21: it is only a categorisation of the
many specialisations of dog. One may, for example, distinguish alaskan husky,
appenzeller sennenhund, and german shepherd, next to collie. One may subse-
quently add the attribute breed to the type dog (once more: at the schema level),
and populate the value class (of the sort categorial) to which breed maps, with collie,
alaskan husky, appenzeller sennenhund, german shepherd, etc.

Concluding, the proposals in [11], exemplified by the pictures in Fig. 6.21, do not
solve the modelling problems that are caused by O-O thinking; they may even
increase the confusion. As an example, an object may certainly be an instance of a
class, but this puts the object necessarily on a lower conceptual level than the class.
The type–instance relationship just doesn’t exist at the same level of abstraction, by
definition. At the schema level (M2 in Fig. 6.21) and the meta level (M3 in
Fig. 6.21), there can only be trees of types, constructed through specialisation and
generalisation. Likewise, one may certainly state that the entity Lassie is an instance
of the type collie (Fig. 6.21, right), but not that the type collie is an instance of a meta
type breed. As said, the notion of breed is a categorisation of the distinctions at a
particular level of a type tree (in this case at the schema level). It is similar to the
distinctions species, genus, family, etc., that Linnaeus has introduced. In his taxon-
omy, collie would be at the species level of the type tree and dog at the genus level.
The meta class (or type) of which collie is an instance, and dog, and all other types in
the taxonomy tree, is the entity type at the meta level (cf. Fig. 6.16).

References

1. Apostel, L. (1960). Towards the formal study of models in the non-formal sciences. Synthese,
12, 125.

2. Bertels, K., & Nauta, L. (1969). Inleiding in het modelbegrip. Amsterdam: Wetenschappelijke
Uitgeverij.

References 93

3. Scott, K. (2001). UML explained (xviii, 151 p.). Boston: Addison-Wesley.
4. Dietz, J. L. G. (2006). Enterprise ontology: Theory and methodology (xiii, 243 p.). Berlin:

Springer.
5. Halpin, T. A., & Morgan, T. (2008). Information modeling and relational databases. Morgan

Kaufmann series in data management systems (2nd ed., xxvi, 943 p.). Burlington, MA:
Elsevier/Morgan Kaufman.

6. Wittgenstein, L., & Ogden, C. K. (1999). Tractatus logico-philosophicus (125 p.). Mineola,
NY: Dover Publications.

7. Chen, P. P. S. (1977). The entity-relationship approach to logical data base design (73 p.). Data
base management no 6. Wellesley, MA: Q.E.D. Information Sciences.

8. Falkenberg, E. D. A. E. (1998). A framework for information systems concepts. Technical
Report. IFIP.

9. Guizzardi, G. (2005). Ontological foundations for structural conceptual models, in CTIT. The
Netherlands: University of Twente.

10. Meyer, B. (1997). Object-oriented software construction (2nd ed., xxvii, 1254 p.). Upper
Saddle River, NJ: Prentice Hall.

11. Atkinson, C., & Kuehne, T. (2003). Model-driven development: A metamodeling foundation.
IEEE Software, 20(5), 6.

94 6 The MU Theory: Understanding Models and Modelling

Chapter 7
The TAO Theory: Understanding Function
and Construction

Abstract The TAO theory (Τ-theory), or function-construction theory, is a theory about
the way subjects (people) perceive the things that surround them. TAO stands for Teleology,
Affordance, Ontology. The foundations part starts with an excerpt from Gibson’s theory
of affordances. This theory clarifies the being subjective of affordances. Next, the intended
affordances, commonly called functions, of designed things (artefacts) are discussed.
Although people are mostly and primarily interested in the functions (affordances) that
things may offer them, engineers are also interested in the construction of things. Contrary to
function, construction is an objective notion. Related to function is the notion of experience,
defined as the sensation that an affordance evokes in someone’s mind. Based on it, the notion
of value is discussed as the intensity of experience, measurable on an ordinal scale. The
elaborations part starts with a discussion of constructional models and functional models,
their incommensurability, and the fundamental difference between constructional decom-
positions and functional ones. Next, these findings are illustrated to an example of an
enterprise.

7.1 Introduction

The theory in this chapter is labeled T-theory. The Greek capital letter is pronounced
TAO, which is an acronym for Teleology, Affordances and Ontology. It is a study of
the notion of affordance and subsequently of the notions of function and construc-
tion. Therefore, the TAO theory is also called the EE function-construction theory. It
is classified as a philosophical theory in the framework of theories (cf. Chap. 4), thus
a theory that is about knowledge in general.

Teleology (from the Greek words ‘telos’, meaning purpose, and ‘logos’, meaning
thinking, reasoning) is the branch of philosophy in which one seeks to explain the
behaviour of things (animate and inanimate) by ascribing them intrinsic purposes.
The branch is as old as the works of Plato and Aristotle. Although it is also
considered controversial, teleology has notorious defenders, like Kant in [1] and
recently Nagel in [2], where the basic assumption is that animals behave in certain
ways in order to achieve survival. The notion of teleology has also been introduced

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_7

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_7&domain=pdf

in cybernetics, by considering it as feedback controlled purpose and by calling
feedback controlled systems, teleological mechanisms [3].

Ontology (from the Greek words ‘ontos’, meaning being, and ‘logos’, meaning
thinking, reasoning) studies questions concerning the nature of things, irrespective
of the intrinsic purposes they would have or the purposes for which subjects would
use them. Three phenomena are investigated in ontology. The first one is what things
essentially are, so what their ‘true’ nature is. This subfield is called core ontology.
Some contemporary researchers in this field are Guarino [4] and Guizzardi [5]. The
second phenomenon is how things are composed of other things. The subfield
studying this phenomenon is called mereology (the Greek word ‘meros’ means
part). An authoritative work is written by Simons [6]. The third phenomenon is
what the causes are of observable changes. They are studied in the subfield called
aetiology (the Greek word ‘aitios’ means cause). The PSI theory (Chap. 8) can be
classified as an aetiological theory.

To exemplify the foregoing, a typical teleological statement regarding the human
heart is that it pumps blood through the veins for the sake of providing all organs
with oxygen and nutrition (and other useful things). Note that this statement is also
an anthropomorphic metaphor, drawn from our experience in using artificial, that is,
man-made, pumps. A typical ontological statement regarding the human heart is that
its muscles alternately contract and relax and by doing so cause the blood in the veins
to flow, without investigating the why question however. So, causation is definitely
an important issue in ontology, but purpose is definitely a non-issue.

The remainder of the paper is organised as follows. Section 7.2 introduces
the notion of affordance and the related notion of function. It also discusses the
important distinction between function and construction. Section 7.3 comprises the
discussion of functional and constructional decomposition, and the roles of function
and construction in system design. In Sect. 7.4, several comparisons are made
between the contributions of the TAO theory and current theoretical and practical
approaches, both inside and outside the field of enterprise engineering. It concludes
with a brief comparison of the TAO theory and the TAO philosophy.

7.2 Foundations

7.2.1 The Notion of Affordance

In order to connect the philosophical branches of teleology and ontology, as briefly
discussed above, we use the theory of affordances, developed by Gibson [7], and
elaborated by Chemero [8]. In this theory, an affordance is defined as an action
possibility which is latent in the natural environment. For example, an affordance of
terrestrial surfaces is that they offer support to human beings and animals: they can
stand on them, walk over them, etc. Affordances can be recognised by an intelligent

96 7 The TAO Theory: Understanding Function and Construction

subject,1 but whether they will be recognised or not, depends on the current needs or
desires of the subject. So, if one doesn’t have the need to sit, one may not recognise
the corresponding affordance that surrounding things offer. The notion of affordance
is the key notion in the TAO theory. For a thorough study of affordances, however, a
few additional notions must be introduced.

The core notions on which the TAO theory is based are summarised in Fig. 7.1.
There is a subject (shown on the left side) and there is an object (shown on the right
side). In order to depict that the need of the subject matches the affordance that the
object offers, the shapes at the top of Fig. 7.1 have protrusions. The affordance(s)
that the object may offer to the subject correspond with the matches of the pro-
trusions. For example, if Charlie Chaplin (the subject) feels the need to sit, he may
perceive that he can sit (the affordance sit-on-ability) on a tree-stump (the object),
because its height and size (the properties) offer the affordance that matches the need
to sit. It is crucial to keep in mind that an affordance is a subject–object relationship,
whereas the needs of subjects are purely subjective, and the properties of objects are
purely objective. Because of the unlimited (actual or imaginary) needs of human
beings, the number of affordances that an object may offer is virtually unlimited.

The sit-on-ability of tree-stumps does not only hold for Charlie Chaplin but for all
subjects with the need to sit, provided they have roughly the same sizes as Charlie
Chaplin. That is why people are inclined to say that tree-stumps are sit-on-able
things. Note, however, that a tree-stump with a height of about 45 cm is not very sit-
on-able for a 2-year-old child. Likewise, people usually say that a ladder is climb-
able, but this may not be the case for a physically disabled person.

TELEOLOGY ONTOLOGYAFFORDANCE THEORY

object

(with properties)

subject

(with the need to sit)

affordance

(sit-on-ability)

the object is sit-on-able to the subject

Fig. 7.1 The notion of affordance

1Contrary to the PSI theory, subjects in the TAO theory may also be (intelligent) animals, and even
intelligent artefacts, next to human beings.

7.2 Foundations 97

As said, understanding affordances as relationships between objects and subjects
is crucial. Consequently, it is fallacious to say that the sit-on-ability of tree-stumps is
a property of tree-stumps. If there wouldn’t exist subjects with a need to sit, the
notion of sit-on-ability would also not exist. But the properties of the objects that
could offer this affordance would still be there.

7.2.2 Artefacts

So, it is the match between the needs of a subject and the properties of an object
where affordances emerge from. But why then do people use nouns, like chair, table,
hammer, screwdriver, and windshield, which suggest that affordances are properties
of things? The answer is that people, in addition to using ‘natural’ things, like tree-
stumps, create and make things,2 commonly called artefacts. Artefacts are com-
monly designed and made with some affordance(s) in mind. For example, people
make things that offer the affordance sit-on-ability; these things are called chairs.
They also make things that offer the affordance sit-at-ability; these things are called
tables. With respect to artefacts, we commonly do not speak of affordances but of
functions. We say, for example, that is the function of a chair to sit on it, instead of
saying that chairs offer the affordance sit-on-ability.

Fig. 7.2 Function and other affordances of an umbrella

2In the TAO theory, we will not make the strict distinction between the notions of object and thing
as done in the FI theory. Here, the two words are considered largely synonymous.

98 7 The TAO Theory: Understanding Function and Construction

Because artefacts may also offer unintended affordances to subjects, in addition
to the intended ones (the functions), the totality of functions is a subset of the totality
of affordances. Thus, like all other affordances, functions are relationships between
subjects and objects, as discussed in Sect. 7.2.1 and as clarified by Fig. 7.1. To
illustrate the point, Fig. 7.2 exhibits, in the lower right part, the function, that is, the
intended affordance, of an umbrella, namely shielding from rain. But the picture also
shows three other affordances that umbrellas may offer to people. Proceeding anti-
clockwise, there is the affordance shielding from sun, hitting, and hiding things (like
a gun). In spite of these other affordances, people easily recognise the thing on all
four pictures as an umbrella. The word “umbrella” is a functional word, like the other
words mentioned above: chair, table, hammer, screwdriver, and windshield, and like
many more words. There is nothing wrong with using functional names, as long as
one is aware that they do not refer to a thing as such but to its intended affordance(s).
Ontologically spoken, no thing is a chair, but it may be used as a chair (and intended
to be used in this way). Most nouns in natural languages are functional because of
people’s primary interest in what they can use things for, instead of what they
ontologically are. Therefore, tables are also used to sit on and chairs to sit at. In
general, whenever the properties of an object match a need of a subject (that seeks to
satisfy this need), the corresponding affordance emerges. Moreover, it doesn’t matter
whether the object is an artefact or a ‘natural’ thing.

In addition to designing and making artefacts, people also assign (new) functions
to existing things, whether they are artefacts or not. Let us use Fig. 7.3 to clarify this.
The building in the middle of the picture is a church, most people would say. Why?

Fig. 7.3 Assignments of functions. © Jan L.G. Dietz, reprinted with permission

7.2 Foundations 99

Because we have learned that buildings with such a shape are erected with the
function of church in mind. But churches are sometimes (also) used as a place of
shelter, for example, for refugees. And when too few people make use of the original
function of a church, it may be assigned, for example,, the function of indoor
playground. As for the paved area in front of the church, it may have been designed
to be a village square. But these squares may be assigned various other functions, for
example, marketplace (on Tuesday and Friday) and parking lot (on the other days,
except Sunday). And twice per year it may be a fairground. In addition, the paved
area may offer various unintended affordances to specific stakeholders (like roller
skate ground, dancing place, meeting place, etc.).

The important conclusion from these examples, once more, is that (designed or
assigned) functions and other (unintended) affordances are relationships between
objects (things) and subjects (people). A building is not a church per se, but it may
have been designed with this function in mind, and a paved area is not a marketplace
or parking lot per se, but it may have been assigned these functions (or have been
designed with these functions in mind).

7.2.3 Function and Construction

Despite the fact that artefacts may offer various affordances to people, they are
mostly designed with a specific function (for a specific target group) in mind.
Figure 7.4 exhibits on the left side a clock that could be a showpiece in a living
room. The intended function is obvious: it is a clock, that is, it tells one what time it
is. This intended function is realised by the construction behind the clock-face in the
casing: the clockwork (Fig. 7.4, right side). The casing is also part of the (total)
construction of the clock and it may offer additional affordances, like being a nice
piece of furniture. The clockwork itself may also be considered a beautiful piece of
craftsmanship.

Fig. 7.4 Function versus construction

100 7 The TAO Theory: Understanding Function and Construction

Thus, every function of a thing is realised by its construction. Taking the
construction perspective on a thing (a natural thing or an artefact) means that
one exclusively considers the thing as an object, without paying any attention to the
intended function(s) or other affordances it may offer to subjects. So, for example,
we can perceive the clockwork in Fig. 7.4 just as a material thing with properties:
spatial dimensions, mass, etc. without having in mind what affordances it may
offer. Because the construction perspective is independent of the possible
affordances of the thing, it is said to be objective. By this we mean that two
knowledgeable persons will have or can acquire the same constructional under-
standing of it. As an example, if two clockwork engineers are asked to produce the
Bill of Materials (BoM) of the clockwork in Fig. 7.4, by dissembling it, they will
come up with the same BoM. In case they don’t, at least one of them has made an
error.

Taking the function perspective on a thing means that one exclusively considers
the affordances that are offered by the thing given the purposes or needs one has in
mind. For example, one could think of sitting on a chair, or of using it as a
temporary store, one could create a baby’s crib by putting the seating sides of
two chairs together, etc. The distinctive characteristic of the function perspective is
that we take the position of an observer who has purposes in mind for which the
chair could be used. By way of metaphor, he/she looks at the chair through the
‘lens of purposes’ and in doing so ‘sees’ the affordances that the chair offers.
Consequently, two persons, even if they are equipped with the same generic
knowledge of chairs, could easily ‘see’ different affordances of the chair, depen-
dent on the purposes they have in mind. Hence the function perspective is said to
be subjective, although functions are actually subject–object relationships, as we
have seen. In Sect. 7.3.1, we will elaborate what the distinction means for design-
ing artefacts and for modelling them, both from the function and from the con-
struction perspective.

7.2.4 Experience and Value

Although different things, like tree-stumps and chairs, may offer the same affordance
to subjects, these affordances may very well be experienced differently. By experi-
ence is understood the subjective sensation that the recognition of an affordance
evokes in the subject’s mind (cf. Fig. 7.5).

7.2 Foundations 101

For example, the sit-on-ability of the tree-stump in Fig. 7.1 may evoke a different
experience in Charlie Chaplin’s mind than the one offered by the chair in Fig. 7.5.
On this basis, he may have a preference for one of them. Generally, subjects appear
to not just look for affordances that match their needs, but to also pay attention to the
experiences that they evoke.

Related to the notion of experience is the notion of value. In the light of the
previous discussion, it may be clear that value is not a property of a thing. Conse-
quently, one can, in principle, not say that a thing has a particular value, like it has a
particular weight. More specifically, we will define value as the intensity of the
experience that is evoked in a subject’s mind by the recognition of an affordance.
The subject could express this value as an attribute of the affordance, by which value
becomes measurable, although most likely only on an ordinal scale. For example, the
affordance sit-on-ability that is offered by an armchair to Charlie Chaplin could
evoke in his mind a higher ranked experience than the one that is offered by a tree-
stump. He could express this by assigning a higher value of the affordance sit-on-
ability to the armchair than to the tree-stump. As another example, many people
nowadays rank their experience of hotel stays, restaurant visits, etc. on websites. In
order to make this useful for other people, the subjective rankings are ‘normalised’
through an ordinal scale.

In contrast to value, the price of a thing must be considered as a property of
the thing, so as something objective, regardless whether this price is the outcome
of a calculation or someone’s original declaration. For example, Charlie Chaplin’s
decision to buy a new walking pole is most likely based on balancing the price of
the pole and the value that he assigns to the affordance(s) that the pole offers
to him.

artefact

(with properties)

EXPERIENCE FUNCTION CONSTRUCTION

the function of the artefact is
to be sit-on-able to the subject

intended
affordance

subject

(with the need to sit)

Fig. 7.5 The notion of function

102 7 The TAO Theory: Understanding Function and Construction

7.3 Elaborations

7.3.1 Constructional and Functional (De)composition

In Sect. 5.3.3, the composition and decomposition of concrete things is discussed,
based on the part-of relation between the parts of composite things, as extensively
discussed in [6]. Below, Fig. 5.11 is reproduced as Fig. 7.6. It shows the composition
and decomposition of a car. Taking the foregoing into account, we need to add that
the (de)composition is a constructional one, that is, it regards purely the construction
of a car, not its function(s). Therefore, the exhibited structure is called a construc-
tional component tree, also known as a Bill of Materials (BoM). Obviously, the tree
is not complete, it has to be extended. Moreover, the exhibited decomposition does
certainly not hold for all cars. Presumably, it holds for all cars with a combustion
engine, but it certainly does not hold for electric cars.

A constructional component tree shows how a composite thing (the top level in
Fig. 7.6) can be disassembled down to its elementary parts (the bottom level, or the
‘nuts and bolts’), and how it can be (re-)assembled from these elementary parts. As
every engineer knows, disassembling a car (or any other artefact) is mostly not very
difficult, but re-assembling it may easily turn into a nightmare. The reason of the
trouble is that there is only one constructional decomposition of a car. This holds
anyhow for the top level (the assembled car) and the lowest level (the distinct parts).
Whether there is always exactly one structure of sub-assemblies in between the top
and the bottom level for a particular brand and model of car, is disputable, but at the
same time it is irrelevant for the argument.

Component trees can also be applied to the functions3 of things. Figure 7.7
exhibits (a part of) a possible functional component tree of a car. It shows a
functional decomposition of the function driving, which most people will consider

Fig. 7.6 Constructional component tree of a car

3From now on, we will not be strict anymore about the distinction between function and
(unintended) affordance. The latter may be considered as a possible function.

7.3 Elaborations 103

the most distinctive function of cars. Other functions could be: a cosy shelter and
a status symbol. The exhibited functional model could be very useful for a
driving instructor to explain to a new pupil how one drives a car. The driving
function is decomposed into four subfunctions: powering, steering, lighting, and
seating. Both the powering and the lighting function are further decomposed, just
for illustration. In addition to plain black boxes, Fig. 7.7 contains grey-lined black
boxes. These boxes represent the (sub) functions that can be used through
operating specific constructional parts. In general, such a constructional part is
called a user interface to the function. In all cars, the steering function is operated
by turning the steering wheel, but the constructional parts through which other
functions are operated may differ between car brands and models. Fortunately,
car manufacturers nowadays attempt to standardise the user interfaces. Note
that these user interfaces are the only mental connections between the functions
and the construction of the car, and that they must be explicitly designed and
implemented.

Up to now, we have intentionally avoided using the term “model” when
discussing the constructional and functional component trees, for the simple reason
that they do not comply with the definition of model as presented in Chap. 6, where a
(conceptual) model of a thing is the understanding of the thing within some (proper)
theory. As an example, discrete event systems can be understood properly within the
DELTA theory (Chap. 9), more specifically within the PRISMA meta model. The
part-of relation, on which the component trees are built, can hardly be called a
theory. However, if component trees are integral parts of theories, there is no
objection against calling structures like the ones that are exhibited in Figs. 7.6 and
7.7, models. We will go along with this habit. In addition, we will call functional
component trees black-boxmodels, in conformity with the DELTA theory (Chap. 9),
because they completely ignore the ‘internals’ of a system (its statics, kinematics,
and dynamics). Likewise, we will call constructional component trees white-box
models.

Fig. 7.7 Functional component tree of the driving function of a car

104 7 The TAO Theory: Understanding Function and Construction

Contrary to constructional decompositions, which are objective, functional
decompositions are subjective. In principle, everyone can have his/her own func-
tional model of the driving function of cars, as well as of the function(s) of other
devices, like computers and vending machines. However, although these models are
basically personal, they are commonly shared among groups of people. The insight
that functional models are subjective sheds a clarifying light on the endless discus-
sions about the ‘correctness’ of functional models. We will elaborate this topic in
Sect. 7.4.

In order to show the distinction between constructional and functional component
trees in a graphical way, the parts (boxes) of the first are coloured white and the parts
(boxes) of the latter are black. Contrary to constructional decompositions, functional
decompositions may be ‘endless’, that is, one can always decompose a functional
component, at will, just and only because they are not (directly) related to
constructions.

7.3.2 Composition and Decomposition of Enterprises

Like it holds for other composite systems, the construction and the function(s) of
enterprises4 are generally decomposable. Let us first investigate the functional
decomposition, taking the enterprise Malum, discussed in [9], as the example for
illustration. The primary function of every enterprise is what is commonly called its
business: the service(s) that the enterprise offers to the customers or clients. Malum
is a manufacturer and vendor of wheelbarrows.

Figure 7.8 exhibits a possible functional decomposition of the business of
Malum. For the depth of the decomposition, the same criterion is applied as we
did to the driving function of cars (Fig. 7.7), namely being able to operate the ‘leaf’
functions. Only three functional components are considered to be ‘leaves’ of the
enterprise’s business. The other ‘black’ components in Fig. 7.8 have yet to be
decomposed to the ‘leaf’ level. The ‘leaf’ functions: selling, paying, and
transporting, can be operated by actors in the environment through some user
interface. They are indicated in the figure by grey-lined black boxes. These functions
can be used by initiating transactions of three corresponding kinds: one that provides
the service of selling, one that provides the service of paying, and one that provides
the service of transporting.

4The term “enterprise” is used to denote any instance of human cooperation, ranging from
organising a birthday party to running a multinational company.

7.3 Elaborations 105

We will refer to the construction of enterprises as their organisation. Regarding
the relationship between the construction of an enterprise and its function(s), it is the
organisation that realises its business, as well as all other conceivable functions,
including those services that are offered to other stakeholders than the customers or
clients. Figure 7.9 exhibits the constructional component tree of Malum’s organisa-
tion, conceived according to the PSI theory (Chap. 8) and the OMEGA theory
(Chap. 10). It realises the business functions of selling, paying, and transporting.

In order to be precise as well as to illustrate the interconnectedness of the
functions selling, paying, and transporting, the corresponding transaction kinds in
the Transactor Product Table (cf. Table 7.1) are called, respectively, sale completing,
sale paying, and sale transporting, where a sale is an instance of selling. The latter
two turn out to be constructional components of the first one. It means that, although
all three business functions are offered to the environment, paying and transporting
can only be used in the context of selling. The three transactor roles are user
interfaces through which users can use the functions selling, paying, and
transporting. Note that the users of selling are the customers of Malum, that the
users of paying are actors in the sales department, and that the users of transporting
are also actors in the sales department.

As follows from the PSI theory (Chap. 8), the initiators of transactions TK01 (sale
completing) are the customers of Malum and the executors are actors in the sales
department. The initiators of transactions TK02 (sale paying) are actors in the sales

Fig. 7.8 Functional component tree of the business of Malum

Table 7.1 Transactor Product Table of Malum

transaction kind product kind actor role

01 sale completing [sale] is completed sale completer

02 sale paying [sale] is paid sale payer

03 sale transporting [sale] is transported sale transporter

106 7 The TAO Theory: Understanding Function and Construction

department and the executors are the customers of Malum. The initiators of trans-
actions TK03 (sale transporting) are actors in the sales department and the executors
are actors in the (internal) transportation department or an (external) transportation
company.

Only the building blocks in the O-organisation (cf. Chap. 11) of Malum are
shown in Fig. 7.9. Those in its I-organisation and D-organisation are omitted. For a
complete ontological model, the informational and documental component trees
must be added, which would make the tree substantially bigger. However, for
understanding the constructional essence of Malum, also called its essential model
(cf. Chap. 9), the component tree in Fig. 7.9 is the basis.

7.3.3 The Role of Function and Construction in System
Design

Although this book is not about designing systems, studying the role of functional
and constructional models in the design of systems appears to shed a clarifying light
on them. So, let us look at the design process, as presented in [10]. There, system
design is considered to be a part of system development, a process in which two
systems play a crucial role: the object system and the using system. By the object
system is understood the system which is going to be developed. By the using system
is understood the system that is going to use the services (functions) of the object
system.

As the explanatory example of the using system we take the sales department of
an enterprise. One of the services that the object system offers to the using system is
providing the monthly turnover of the enterprise. As the explanatory example of the
object system we take a sales information system. One of the monthly products that it
brings about is the sum of a set of numbers. This sum is interpreted by the using
system as the monthly turnover.

Fig. 7.9 Constructional component tree of the organisation of Malum

7.3 Elaborations 107

The complete system development process is divided into three phases: design,
engineering, and implementation. As said, our goal is to clarify the design process.
Figure 7.10 exhibits the basic view that we consider appropriate for understanding
the design process. The figure shows that the function perspective and the construc-
tion perspective on systems, as well as the corresponding black-box model and
white-box model, play a crucial role in understanding the design process. Two major
activities can be distinguished in the design of the object system. The first one is
called “function design” and the second one “construction design”. Function design
starts from the using system construction, which is a white-box model, and ends at
the function of the object system, which is a black-box model. In line with what has
been said about black-box models above, this means that the specified function of
the object system does not contain any information about the construction of the
object system. In other words, the function of the object system must be specified
fully and only in terms of the construction of the using system.

As said, the function of the object system supports the construction of the using
system. Put the other way around: the construction of the using system uses the
function(s) of the object system. Why the construction of the using system, and not
its function? The answer is that there must always be an alternation of function and
construction in the support–use relationship of systems. A function cannot support
another function directly, because functions cannot have a need for support; only
constructions can. To exemplify this, the sales department as a part of the construc-
tion of the enterprise can have a need for a sales information system. The sales
department as a black box is a functional abstraction of the operational activities of
selling. Conversely, the function of the object system is always and necessarily
expressed in terms of the construction of the using system. So, for example, the
salesmen in (the construction of) the using system may have a need to know the
monthly turnover of the enterprise. The notion of turnover is a business notion that
takes its meaning from the larger economic context in which the enterprise operates.
The value of the monthly turnover is something by which people in the sales
department may become excited or depressed. In specifying the function of the
object system, it is this rich meaning of turnover that the salesmen will express to the

object system
construction

using system
construction

object
system
function

construction

design

function

design

functional
requirements

constructional
requirements

Fig. 7.10 The system design process

108 7 The TAO Theory: Understanding Function and Construction

functional designers of the object system. Needless to say, the functional designers
must possess sufficient knowledge of the enterprise in order to be well-matched
sparring partners to the salesmen in the process of function design.

The nature of the second design phase, construction design, is quite different
from the first one. It starts from the specified function of the object system and it
ends at the construction of the object system. Without intending to wrong func-
tional designers, the job of constructional designers is definitely more creative,
because they have to bridge the mental gap between function and construction.
They have to establish a correspondence between systems of different kinds: the
system kind of the using system and the system kind of the object system. The
constructional designer is aware of the fact that the sales information system
that he or she is going to design will never have any ‘understanding’ of turnover.
The name “turnover” will at best be a label, assigned to a variable in the computer
program; however, this variable can equally well be named “Mickey Mouse”. It is
the task of the constructional designer to get the precise definition of turnover from
the functional designer, and to replace its business semantics by its formal seman-
tics. From these formal semantics, the constructional designer devises an appro-
priate calculation rule. As another example for clarification, have a look at
Figs. 7.6 and 7.7. Obviously, there is no simple way to arrive at the constructional
model in Fig. 7.6 from the functional model in Fig. 7.7. It requires ‘hard’ design
efforts.

The result of the activity function design is a functional model of the object
system, which by nature is a black-box model. It contains all functional specifica-
tions for the object system to be built. The major inputs for the activity function
design are the functional requirements, which are provided by the using system
(cf. Fig. 7.10). Not all functional requirements need to be contained in the functional
specifications, for two reasons. First, requirements may be unfounded. Fortunately,
the ontological model of the using system provides an objective yardstick for
determining unfounded requirements, since the essential model of the sales depart-
ment (the ontological model of its O-organisation, cf. Chap. 10) specifies the
information that is needed for every actor role. All other information that the fillers
of an actor role may ask for, they do not really need. Next, determining requirements
includes their validation, something that can be achieved only in thorough discus-
sions with people ‘in the business’. If the ontological model of the O-organisation is
taken as the starting point, one cannot forget essential requirements. Second, the
functional specifications must be feasible. By this is meant that the needed object
system can be implemented, given the available technology. In addition, it must be
possible to finish the development process within the agreed-upon time and for the
agreed-upon costs.

As Fig. 7.10 indicates, the using system may also provide constructional require-
ments. This option is added to let people have a say in the construction of the object
system. Constructional requirements regard a.o. the interface through which the
services of the object system are made available to the using system.

7.3 Elaborations 109

7.4 Discussions

7.4.1 The Subjective Nature of Functional Models

As pointed at in Sect. 7.3.1, there is a persistent practical problem concerning
functional modelling approaches. Examples of such models in the area of enterprise
engineering are Forrester’s System Dynamics Models, SADT (or IDEF0) activity
models, and the models expressed in Data Flow Diagrams.

The problem is that different modellers commonly produce different functional
models of the same system, often to the surprise of the principal or the teacher who
ordered them to produce it. It should not be surprising, however, for the simple
reason that functional models are inherently subjective. They represent the
affordances, both intended (by the designer of the system) and unintended, that the
modeller perceives, steered by the needs he/she sees or feels, as discussed in Sect.
7.2. Notwithstanding, there may be a considerable amount of similarity between the
different models, but that is due to the common context in which the distinct
modellers work, and the preceding discussions they may have had. The bottom
line is that a functional model of a system contains the affordances that the maker
perceives, and the alarming point is that many modellers seem not to be aware of this
subjective nature. Consequently, they conduct endless and fruitless discussions
about which functional model is ‘correct’. Correctness, however, is an objective
notion, and therefore only applicable to constructional models. As said, if two
knowledgeable persons were asked to produce the constructional model of the
same thing, for example, a coffee machine, they would come up with the same
model (or they made a mistake). The criterion is the resemblance of the model to the
coffee machine. For functional models, there is no such criterion. Therefore, it makes
little sense to talk about the correctness of functional models.

To illustrate the problem, let us have a look at the Data Flow Diagram (DFD) in
Fig. 7.11. It represents a functional model, at the highest level of abstraction, of an
elevator control system, as discussed in [11]. It is of the grey-box model kind,
according to the DELTA theory (Chap. 9), which means that it is a black-box
(behavioural) model with an internal state. The disks (or ‘bubbles’) in Fig. 7.11
represent functions (also called processes), the double lines represent partial states
(also called data stores), the straight arrows represent data flows, and the dashed
arrows represent control flows. The latter are actually also data flows but with a
special role: they activate functions, whereas the ‘normal’ data flows consist of input
to or output from functions. The names “process” and “data store” suggest that DFDs
represent constructional models, but a simple test shows that this cannot be the case.
First, in no concrete elevator control system will one find parts like elevator
scheduler or elevator controller. Second, the decomposition rules of DFDs tell us
that one may decompose every process into a network of (sub) processes, data stores,
data flows, and control flows. This may be done at will, as long as the totality of the

110 7 The TAO Theory: Understanding Function and Construction

processes, data stores, etc. is equivalent to the corresponding process at the higher
level. This property is typical for functional models. Regarding constructional
models, there are always a limited number of possible decompositions, and there
is a definite lowest level, as discussed in Sect. 7.3.1.

7.4.2 Can One Map Functional Models to Constructional
Models?

In the current practice of enterprise engineering, notably in software engineering, but
also for example in business systems engineering and systems architecture, there is a
widespread belief that functional models can be mapped directly to constructional
models, which is fully opposite to the findings in Sect. 7.3.3. How should one
understand this (mis)belief, and how could one reconcile it with the findings of
Sect. 7.3.3, which are in addition compliant with the DELTA theory (Chap. 9)? The

Fig. 7.11 Data flow diagram of an elevator control system

7.4 Discussions 111

answers to these questions lie in two fallacies that, for some reason, are quite
common in software engineering and in computer science at large.

The first fallacy is that if one ‘opens’ a black-box model of a system, one gets a
white-box model, where ‘opening’means that one replaces the system by a structure
of subsystems. In order to illustrate the point, Fig. 1.8 in [12] is reproduced as
Fig. 7.12. The figure exhibits a decomposition of the system SysA into a collection
of interrelated systems SysB, SysC, etc. This decomposition can be functional or
constructional (one cannot tell from the figure), but not some mix, as suggested by
the figure and the clarifying text in [12]. If the boxes in Fig. 7.12 are black boxes,
then the decomposition is functional and the interactions are behavioural relation-
ships (cf. Chap. 9). If they are white boxes, then the decomposition is constructional
and the interactions are operational relationships (cf. Chap. 9). Decomposing a
functional model can only lead to structured collections of functional components
(cf. Figs. 7.7 and 7.11), and decomposing a constructional model can only lead to
structured collections of constructional components (cf. Fig. 7.6).

The second fallacy is that computer programming, so the producing of software,
can be understood as a transformation from function to construction or, more
precisely, a mapping of functional requirements into software primitives [op. cit.,
Chap. 11], where the latter are considered constructional entities. The cause of this
fallacy is probably that the software primitives in modern programming languages
are high-level functional entities, called functions, procedures, or methods,
depending on the programming language. The ultimate constructional realisation
of these functional entities are algorithms, that is, the instructions that make the
hardware do what one wants it to do. These algorithms must still be created, and this
work is not straightforward or trivial, although there are libraries of standard
algorithms where the software engineer can pick from.

Fig. 7.12 The ‘opening’ of a black box

112 7 The TAO Theory: Understanding Function and Construction

Because the notion of function in current programming languages is quite
blurred, and because in software engineering the dominant view on software systems
is information-centric (cf. Chap. 4), a clarifying light on the second fallacy might be
shed by the ALPHA theory (Chap. 11). It states that the organisation of an enterprise
(so the construction perspective on the enterprise) can be divided into three partial
organisations: the O-organisation, the I-organisation, and the D-organisation, as
shown in Fig. 7.13, which is a reproduction of Fig. 10.12. The whole organisation
is operating if the three partial organisations are operating, and if they are connected
in the way as shown in Fig. 7.13. Every enterprise information system is some part of
the enterprise’s I-organisation together with the corresponding part of its
D-organisation, as indicated by the yellow trapezium. Note that in the ALPHA
theory (Chap. 11), we are exclusively talking in terms of white-box models.

The operation of the enterprise information system is independent of the way in
which the covered parts of the I- and the D-organisation are implemented. As
discussed in Chap. 11 and in [10], a possible implementation technology is ICT,
which means that the actors are replaced by software modules or agents.

The functions that are needed by the actors in the O-organisation, and which are
offered by the enterprise information system, are realised by the transactions of the
general kinds remembering (of facts that are created in the O-organisation) and
sharing (of remembered or computed facts). The issue of evolvability of information
systems, which is a major issue in software engineering [13] and in systems engi-
neering in general [12], can also be solved by redesigning the relevant parts of the
I- and the D-organisation, and subsequently re-implementing them. If ICT is the
implementation technology, this implies regenerating the software, including the data
bases that contain representations of the facts in the O-organisation. Evolvability only
concerns the implementation of a system; it is no issue at the level of the
O-organisation. At this level, there is only one copy of every action, entity, fact,
etc., as follows from the DELTA theory (Chap. 9) and the PSI theory (Chap. 8).

O-
organisation

I-
organisation

saving providing

D-
organisation

sharingremembering

Fig. 7.13 The notion of enterprise information system

7.4 Discussions 113

7.4.3 The Importance of Ontological Modelling

As discussed in Sect. 7.3.3, devising a construction that will realise a specified
function, is generally the hardest task in a design process. It requires professionalism
and creativity, next to thorough knowledge of the subject matter. Next, starting this
process with devising the ontological model of the object system is of major help.
Unfortunately, it is rarely taught in design courses; of any kind, not only in the area
of enterprise engineering.

One of the good exceptions is electrical engineering, notably electronics. To
illustrate this, let us have a look at the ontological model and the implementation
model of a simple FM radio (which you may have built as a student). The detailed
(i.e. lowest level of decomposition) ontological model is exhibited in Fig. 7.14.5

The main component is an integrated circuit referred to by TDA7000. It does the
lion’s share of the (analog) signal processing work of the radio. It has 18 input/
output ports, which take in or produce electrical signals, except ports 5 and
16, which are supplied by an electrical voltage of 6 and 0 DC, respectively.
Integrated circuits, like the TDA7000, are composite components, which com-
monly consist of dozens of elementary components. Examples of such elementary
components are transistors, diodes, capacitors, inductors, and resistors. Actually,
these components cannot really be found in the integrated circuit, which is why it
is called integrated. Consequently, integrated circuits mostly have a quite complex
construction.

Fig. 7.14 Ontological model of the radio receiver

5The pictures and the other information of the FM radio are taken from http://pdf.datasheetcatalog.
com/datasheet/philips/TDA7000_CNV_2.pdf and https://circuitswiring.com/fm-radio-with-
tda7000/

114 7 The TAO Theory: Understanding Function and Construction

http://pdf.datasheetcatalog.com/datasheet/philips/TDA7000_CNV_2.pdf
http://pdf.datasheetcatalog.com/datasheet/philips/TDA7000_CNV_2.pdf
https://circuitswiring.com/fm-radio-with-tda7000/
https://circuitswiring.com/fm-radio-with-tda7000/

In Fig. 7.14, capacitors are represented by ‘double-lines’, inductors by ‘wired’
symbols, and resistors by rectangular shapes (note that the diagram doesn’t contain
transistors or diodes). All elementary components have a specific functional behav-
iour, as has the integrated circuit TDA7000. Figure 7.15 exhibits a possible imple-
mentation of the ontological model. Only the right side, with the TDA7000 in the
middle, is applicable. The left side contains an audio amplifier, which amplifies the
audio output from the right side to a level that is needed to make it audible through a
loudspeaker. The TDA7000 is implemented by the black-coloured device labeled
TDA7000. It has 18 sockets, each of them implementing one of the ports in Fig. 7.11
(note Figs. 7.14 and 7.15 do not fully correspond). As said, it is the construction of a
system that brings about the function(s) and additional affordances to its users, and
possibly to other stakeholders. The highest level function is that of a radio. This
function is elaborated in more extensive and more specific functions, ending up in
one or more functional component trees, like the one in Fig. 7.7, complemented by
detailed behaviour specifications. As an example, Fig. 7.16 shows one of the detailed
functional behaviour specifications of the integrated circuit TDA7000 that are
relevant for the performance of the FM radio.

Fig. 7.15 Implementation of the FM radio

A.F output voltage (Vo) and total harmonic distortion (THD) as a function of the e.m.f. input voltage (EMF)
with a source impedance (RS) of 75 : (1) muting system enabled; (2) muting system disabled.

Fig. 7.16 Part of the functional specifications of the TDA7000

7.4 Discussions 115

7.4.4 The TAO Theory and the TAO Philosophy

The TAO, also spelled as DAO, is a metaphysical concept in ancient Chinese
philosophy, in Confucianism among others. Its literal translation into English is:
the way or the path [14]. TAO is considered the source and the substance of
everything that exists. Taoists seek to free themselves from the subjective influences
that unavoidably stick to the human observations of the world that surrounds us, and
subsequently to find the human independent truth in the world. The TAO philosophy
has also led to a particular way of living, the TAO ethics, which is characterised by
three so-called treasures: compassion, frugality, and humility.

The similarity of the TAO theory and the TAO philosophy is not only in the
name.6 The sharp distinction in the TAO theory between the function and the
construction of the things that surround us, or more generally between teleology
and ontology, paves the way to a crisp and clear notion of the ontological essence of
systems in general (cf. Chap. 8) and of organisations in particular (cf. Chap. 9). But it
also suggests a profound correspondence between this notion of ontological essence
and the core of the TAO philosophy. We leave it to the reader to verify that this
correspondence is more than mere speculation, as well as to discover the correspon-
dence between the TAO ethics and the human-centric ideological foundation of
Enterprise Engineering, as presented in [15].

References

1. Kant, I. (1965). First introduction to the critique of judgment (The Library of Liberal Arts)
(p. xv, 55). Indianapolis: Bobbs-Merrill.

2. Nagel, T. (2012).Mind and cosmos: Why the materialist neo-Darwinian conception of nature is
almost certainly false (p. x, 130). New York: Oxford University Press.

3. Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philos-
ophy of Science, 10(1), 18–24.

4. Guarino, N., Oberle, D., & Staab, S. (2009). What is an ontology? In Handbook on ontologies
(pp. 1–17). Berlin: Springer.

5. Guizzardi, G. (2005). Ontological foundations for structural conceptual models. CTIT, Uni-
versity of Twente.

6. Simons, P. (1987). Parts—A study in ontology. New York: Oxford University Press.
7. Gibson, J. J. (1979). The ecological approach to visual perception (p. xv, 332). Boston:

Houghton Mifflin.
8. Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15(2),

181–195.
9. Dietz, J. L. G. (2012). Red garden gnomes don’t exist. The Netherlands: Sapio Enterprise

Engineering. www.sapio.nl
10. Dietz, J. L. G. (2009). Architecture: Building strategy into design. The Hague: SDU Publishing.
11. Yourdon, E. (1989). Modern structured analysis (p. x, 672). Englewood Cliffs, NJ: Yourdon

Press.

6The Roman writing of the pronunciation of the Greek letter T is actually not TAO but TAU.

116 7 The TAO Theory: Understanding Function and Construction

http://www.sapio.nl

12. Mannaert, H., Verelst, J., & Bruyn, P. D. (2016). Normalized systems theory: From foundations
for evolvable software toward a general theory for evolvable design. Kermt: Koppa.

13. Lehman, M. M., & Belady, L. A. (1985). Program evolution: Processes of software change
(A P I C Studies in Data Processing) (p. xiii, 538). London: Academic.

14. Puett, M. J. (2016). The path: What Chinese philosophers can teach us about the good life (First
Simon & Schuster hardcover edition, p. xvi, 204). New York: Simon & Schuster.

15. Hoogervorst, J. A. P. (2017). Ideological foundation. In Foundations of enterprise governance
and enterprise engineering: Presenting the Employee-Centric Theory of Organization
(pp. 355–564). Cham: Springer.

References 117

Chapter 8
The PSI Theory: Understanding
the Operation of Organisations

Abstract The PSI theory is a theory about the operation of organisations. PSI stands for
Performing in Social Interaction. Based on the CIAO (Communication, Information,
Action, and Organisation) paradigm, a communication-centric view is taken on the coop-
eration of people in enterprises, as manifested in business processes. The fundamental
notion in understanding the operation of organisations is the coordination act. It consists of
a performer, an addressee, an intention, and a product. The performer and the addressee are
actors, that is, subjects filling an actor role. Actor roles are the units of authority and
responsibility. Coordination acts can be performed verbally, non-verbally, and tacitly. They
are the key elements in (business) conversations, which are the constituting parts of
(business) transactions. A transaction is carried out by actors in two roles: the initiator
and the executor. The executor brings about the product of the transaction to the benefit of
the initiator. The process of a transaction is a path, possibly including iterations, through a
universal transaction pattern, which consists of one main pattern and four revocation
patterns. The latter serve to revert the state in the main pattern to a previous state. Because
of the inherent connection between an actor role and the transaction kind of which fillers
are the executor, the combination of the two is called transactor role. Transactor roles are
the universal building blocks of business processes. Performing a coordination act results in
creating the corresponding coordination fact. The time attributes of coordination facts are:
the creation time and the event time, defined as the time at which the fact comes into
existence. Regarding products (which consist of one independent production fact and a
number of dependent facts), the notion of operative time (i.e., the time at which the product
becomes effective) is distinguished, next to its event time, that is, its coming into existence,
and its creation time. A fundamental principle in the PSI theory is that actors act autono-
mously, also if they are guided by business rules. Based on this principle, precise defini-
tions are developed for the notions of authority, responsibility, accountability, and
competence.

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_8

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_8&domain=pdf

Every organised human activity—from the making of pots to the placing of a man on the
moon—gives rise to two fundamental and opposing requirements: the division of labour into
various tasks to be performed and the coordination of these tasks to accomplish the activity.

(Henry Mintzberg [1])

8.1 Introduction

The statement by Henry Mintzberg, quoted above, comprises the core problem of
organising: how to divide the total amount of work, how to assign the resulting parts
to workers, and how to arrange the necessary coordination among them. The quote
also hints at the prospect that it could be possible to understand the notion of
organisation in a very general way, independent of the particular kind of enterprise
and independent of the particular workers. But how should one conceive work and
workers, so that a universal notion of organisation emerges that is effective, partic-
ularly in the current practice, where the pervasiveness of ICT applications1 blurs the
sight of the ‘real’ organisation? Achieving this goal has been the aim of a long-
lasting research activity that began in the early 1990s, and that resulted in the present
Ψ-theory. The Greek letter Ψ is pronounced as PSI, which is an acronym for
Performing in Social Interaction. It is about human cooperation in enterprises, and
it is classified as an ontological theory in the framework of theories, as presented in
Chap. 4, meaning that it is about the nature of things.

The PSI theory exclusively takes the construction perspective (cf. Chap. 7) on
enterprises, disregarding all functional aspects. Therefore, we will try to consistently
use the specific term “organisation” instead of the general term “enterprise”. The
operation of an organisation is defined as the manifestation of its construction in the
course of time. In concordance with the DELTA theory (Chap. 9), every organisa-
tion is a discrete event system, in the category of social systems [2]. By the
construction of an organisation is understood the triple of its composition, its
environment, and its structure (cf. Chap. 9). The elements in the composition and
the environment are social individuals, commonly called subjects, and the structure
of an organisation consists of mutual influencing bonds between these subjects, as
explained by the OMEGA theory (Chap. 10).

Section 8.2 (foundations) starts with a recapitulation of the CIAO paradigm
from Chap. 4. Communication is the primal notion in understanding organisations.
Communicating is (also) acting, or as Austin [3] puts it: people do things with
words. In the PSI theory, this is accentuated by distinguishing coordination acts
and production acts, and by bringing them together in the concepts of business
conversation and business transaction. In addition, the process of performing a
coordination act is discussed. In Sect. 8.3 (elaborations), several time aspects of
transactions are highlighted, followed by a discussion of the operating cycle of
actors. Next, attention is paid to crucial factors in organisations, like authority,
responsibility, accountability, and competence. In Sect. 8.4 (discussions), the PSI

1By ICT applications are understood all artefacts that are implemented using ICT (Information and
Communication Technology). They include all AI (Artificial Intelligence) artefacts.

120 8 The PSI Theory: Understanding the Operation of Organisations

theory is compared to several similar approaches, and the practical importance of
the PSI theory is discussed.

8.2 Foundations

8.2.1 Recapitulation of the CIAO Paradigm

In general, the best way of addressing the potentials of a new technology is to step
back and to reconsider how one actually did think about the field of application
before its introduction, and to find new, better ways of thinking, following Einstein’s
quote “We can’t solve problems by using the same kind of thinking we used when
we created them”, often paraphrased as out-of-the-box thinking. Initially, the office
workers in enterprises, including accountants, considered ICT as a more efficient
alternative for the existing paper-based data processing technology. Hence the
original name “Electronic Data Processing” (EDP). It took until around 1975 before
EDP was replaced by ISE (Information Systems Engineering) or by like names. The
shift of attention from the form to the content of information (cf. Fig. 8.3) was a
paradigm shift. Thus, the information-centric view on information systems
was born.

But the wrong belief among ICT professionals, that developing information
systems is something that one does ‘to the side’, after having elicited requirements
from the people in the organisation, basically by interviewing these people,
persisted. Despite many improvements, this approach to requirements determination
has rarely been able to achieve that the delivered systems meet the justified expec-
tations of the users. Around 2000, a new way of thinking emerged, which took
communication as the primal notion. From this communication-centric view on
information systems, the CIAO paradigm has evolved. The acronym CIAO stands
for Communication, Information, Action, and Organisation. In this paradigm, com-
munication2 is defined as the sharing of thoughts between (human) minds, and
information as the means for communication. As articulated by the ALPHA theory
(Chap. 11), every information system can be conceived as some implementation of
some part of the organisation, thereby applying some information and communica-
tion technology (ICT). The CIAO paradigm definitely solves the requirements
problem: if one understands the operation of an organisation fully and properly,
one also has got the requirements.

2The English word “communicate” comes from the Latin word “communicare”, which means
‘making something common’. In a more specific sense, it means ‘sharing thoughts’.

8.2 Foundations 121

In addition, communication became understood as a form of action. In Habermas’
Theory of Communicative Action [4], the elementary instance of communication is
the communicative act. It consists of four parts: performer, intention, addressee, and
proposition, as exhibited in Fig. 8.1.

The performer and the addressee are human beings, in their quality of social
individual, which means: being capable to engage in and comply with commitments.
The proposition is a state of affairs that is or that can be the case. The intention is the
intent of the performer (a client in Fig. 8.1) towards the addressee (a waiter), with
respect to the proposition. If the intention is ‘request’, the performer wants the
addressee to make the proposition become true. In the café case, the client wants
the waiter to bring her a cup of coffee. According to Habermas [4], the performer of a
communicative act raises three validity claims towards the addressee: the claim to
rightness, the claim to sincerity, and the claim to truth. The claims have to be
assessed by the addressee, and the result of this assessment will guide her/him in
her/his response. By accepting the claim to rightness in the above example, the
waiter recognises the authority of the client to make the request: according to the
applicable societal norms or laws, she is allowed to place orders in the café. By
accepting the claim to sincerity, the waiter expresses that he considers the client to be
honest and trustworthy in making the request. It includes that she complies with the
applicable terms of sale (implying, e.g. that she has to pay for the service). By
accepting the claim to truth, the waiter expresses that he is able to make the
proposition true. If all three claims are accepted, the waiter responds by a promise.
Otherwise, he will decline the request.

Fig. 8.1 The structure of a communicative act/fact

Fig. 8.2 The three categories of communicative acts

122 8 The PSI Theory: Understanding the Operation of Organisations

There is always one validity claim dominant. Based on this dominance, Habermas
distinguishes three categories of communicative acts, and three worlds in which they
have effect (cf. Fig. 8.2). The dominance of a claim, as well as the related world, is
indicated by the grey-coloured rectangles. In the category of constativa, the domi-
nant claim is the claim to truth, and the world with which they are concerned is the
objective world. Examples of constativa are questions and assertions. If a railway
passenger asks a railway officer for the departure time of the next train to Amster-
dam, the dominant claim is the claim to truth. Facts like the departure time of trains
are considered to exist in the objective world. In the category of expressiva, the
dominant claim is the claim to sincerity, and the world with which they are
concerned is everyone’s private subjective world. Examples of expressiva are praises
and apologies. If the railway passenger starts by saying “I’m sorry to disturb you,
madam. . .”, then the dominant claim of this phrase is the claim to sincerity. In the
category of regulativa, the dominant claim is the claim to rightness, and the world
with which they are concerned is the intersubjective or social world. Examples of
regulativa are requests and promises. If the client in the café asks the waiter for a cup
of coffee, the dominant claim is the claim to rightness, that is, the client claims that
she has the authority to make the request.

Because people are not able to directly connect their minds, some vehicle for
communication is needed, and this vehicle is information or, more precisely, signs,
which is the preferred term in semiotics, the branch of philosophy that studies signs
[5]. A major outcome of this study is the semiotic ladder, exhibited in Fig. 8.3. It
clarifies the role of signs in the communication between human beings. A unit of
information, commonly called an information item, is the dyad of content and form,
meaning that the two parts are distinguishable but not separable. The content of an
information item is the thought (cf. Chap. 5) that one wants to share, and the agreed
upon perceivable shapes constitute the form, thus the sign. The content comprises
both the intention (or pragmatics) and the proposition (or semantics) of the thought,
and the form comprises both the formalism (or syntax) and the coding (or empirics)
of the sign.

Fig. 8.3 The semiotic ladder

8.2 Foundations 123

In the café example, the client has, at some point in time, got the thought that she
wants a cup of coffee. In order to share this thought, she has to express it in a sign
that is intelligible to the waiter. The proposition of the thought is “client has got a cup
of coffee” and the intention is the request. By performing the request, she enters into
a commitment towards the waiter, as the waiter enters into a commitment if he
performs a promise or a decline in response to her request. The client may have
expressed her thought in this English sentence: “I’d like to have a cup of coffee,
please”, which constitutes the sign part in Fig. 8.3. The applied formalism is the
English grammar and the coding concerns the construction of the words. The
substance in which the sentence is inscribed consists of the air vibrations that are
produced by the client and perceived by the sense of hearing of the waiter.

For the concept of action, the communication-centric view means that commu-
nicating is also acting. In the PSI theory, this is accentuated by distinguishing
coordination acts and production acts (cf. Sect. 8.2.2), and by combining them in
the concepts of business conversation (cf. Sect. 8.2.4) and business transaction
(cf. Sect. 8.2.5). Consequently, the word “in” in the explanation “Performing in
Social Interaction” of PSI, has a twofold meaning. It means that coordination acts,
like requesting a cup of coffee, are performed in communication, and thus in social
interaction. In addition, it means that production acts, like delivering a cup of coffee,
are performed in patterns of social interactions (cf. Sect. 8.2.6).

The (new) concept of organisation is that it is a system of transactor roles, the
universal building blocks of organisations, to be discussed in Sect. 8.2.7.

8.2.2 Work Is Production Plus Coordination

8.2.2.1 Production Acts and Facts

As postulated by the DELTA theory (Chap. 9), all acts, in all systems, of all
categories, can be divided in two sorts: production acts and coordination acts. By
performing production acts (or P-acts for short), the subjects in an organisation
create products. The character of a production act can be tangible (like transporting
goods) or intangible (like becoming member of a library). The effect of performing a
P-act is the creation of the corresponding independent P-fact, together with a number
of dependent P-facts. Examples of independent P-facts are “membership 387 is
started”, “rental 1087 is concluded”, “the car of rental 1087 is issued”, and “sale
1618 is completed”. Dependent P-facts are called dependent because they start to
exist (come into being) as a consequence of, and together with, the related indepen-
dent P-fact. Independent P-facts are mostly unary facts (concerning some entity),
whereas dependent P-facts are always binary facts. They constitute the properties of
the entity (cf. Chap. 5). The combination of an independent P-fact and all of its
related dependent P-facts (properties) is called a product. As an example, the
independent P-fact ‘membership 387 is started’ is an instance of the P-fact type
‘[membership] is started’, which is a logical predication over the class

124 8 The PSI Theory: Understanding the Operation of Organisations

MEMBERSHIP. The term “[membership]” is a placeholder, or variable, that can be
instantiated; membership 387 could be one of its instances. Possible properties of
membership 387 are that the concerned member is John, and that the starting day
(in Julian days, cf. Chap. 6) is 2458209, which equals 1 April 2018 in the Gregorian
calendar.

Independent P-fact types (or product kinds) are formulated in such a way that the
instances are unique in time and space. To illustrate this, if it is allowed that one can
be member of a tennis club several times during one’s lifetime, there is only one
proper way to deal with it. It is to adopt the notion of membership, whose instances
are unique in time. By space is meant the state space of the production world
(cf. Sect. 8.2.2.1). Unique in space means that there can only exist one membership
387 in any state of the world. So, membership 387 is a unique entity.

Lastly, one should be aware that a phrase like “membership 387 is started” is just
the formulation of a proposition (or P-fact). It is not the assertion that the proposition
is true.3 As we will see, the proposition may become true at some point in time,
which means that the corresponding P-fact becomes existent at that point in time.

8.2.2.2 Coordination Acts and Facts

Coordination acts (or C-acts for short) are communicative acts in Habermas’ cate-
gory of regulativa (cf. Fig. 8.2). Its generic structure is exhibited in Fig. 8.4, which is
a refinement of Fig. 8.1. The illustrating example is taken from the case wheelbar-
rows, as discussed in [6]. The performer of the act is Gnome 463, in his role of buyer
on behalf of the company HORTUS, and the addressee is Gnome 691, in her role of
seller on behalf of the company MALUM. The product is the purchase of a number
of wheelbarrows. This is represented by the independent P-fact ‘purchase 31416 is
fulfilled’ (split into the predication “is fulfilled” and the predicated entity “purchase
31416”), and the dependent P-facts or properties ‘article type is Quadra 75’, number
of items is 100, ‘price is 165 (in the currency of Gnomeland)’, and ‘delivery day is
731.513 (in the Gnomeland calendar)’. The intention of the C-act/fact is the request.
By conveying this intention to Gnome 691, Gnome 463 commits himself to his
request, which means that he cannot simply say at some later point in time that he
was just joking. Similarly, Gnome 691 will become committed to the response that
she is going to perform. C-acts are the atoms of business processes. They are
ontologically indivisible: one performs a ‘complete’ request or any other C-act or
none.

3In English, like in many natural languages, it is not possible to make a grammatical distinction
between the formulation of a proposition and the assertion that the proposition is true. Both are
expressed in the same assertive sentence.

8.2 Foundations 125

The coloured parts in the representation of a C-act/fact in the figure constitute the
normal form of a C-act/fact, formally defined as follows (plus an example, in which
the performer and the addressee are indicated as <actor role>/<subject>):

< performer > : < intention > : < addressee > : < product >

buyer=Gnome 463 : request : seller=Gnome 691 : purchase 31416 is fulfilled

8.2.3 The Process of a Coordination Act

Corresponding with the semiotic ladder (cf. Fig. 8.3), we distinguish three abilities
that communicating subjects need to dispose of: the forma ability (in order to deal
with codings and formalisms), the informa ability (in order to deal with propositions
and intentions), and the performa ability (in order to deal with commitments). These
abilities are shown, on the right side of Fig. 8.3, as three shapes that human beings
can take on. Note that the physical world (dealing with substances) is not covered by
the performa-informa-forma distinction. If needed, we will consider it to be included
in the forma ability. For the sake of completeness, however, the physical (grey)
shape is included in the elaborated explanation of the process of a coordination act in
Fig. 8.6, next to the blank shape, which represents the most inner self of every

Fig. 8.4 The structure of a coordination act/fact

126 8 The PSI Theory: Understanding the Operation of Organisations

subject. There reside the wisdom and love that are considered to constitute the basis
for deciding on how to comply with commitments. The Matryoshka doll shapes in
this figure are scaled, to illustrate that they should be understood as being enclosed in
each other, from top to bottom.

In order to effectuate a decision to perform a C-act, the subject on the left side
of Fig. 8.5 has to expose the corresponding commitment in her/his ‘red’ shape,
that is, by applying her/his performa ability. Because it is impossible to convey the
commitment directly to the addressee, he/she has to formulate, in her/his ‘green’
shape, a thought that contains the commitment. As we know from Sect. 8.2.1, the
thought consists of a proposition and an intention. As it is impossible to share the
thought directly with the addressee, the subject has to utter, in her/his ‘blue’ shape,
a sentence that expresses the thought. In order to make the sentence perceivable to
the addressee, he/she has, in her/his ‘grey’ shape, to inscribe the sentence in some
substance, and have the inscription transmitted through a proper communication
channel to the addressee. This action succeeds if the message arrives undistorted.
If so, the two subjects have achieved physical correspondence, that is, the medium
condition is satisfied. The addressee is now able, in her/his ‘blue’ shape, to
perceive the inscribed sentence from the transmitted substance. If he/she succeeds,
the two subjects have achieved notational correspondence, that is, the forma

Fig. 8.5 The process of a coordination act

8.2 Foundations 127

condition is satisfied. Next, the addressee can educe, in her/his ‘green’ shape, the
thought from the sentence, so the contained proposition and intention. If he/she
succeeds, the two subjects have achieved cognitive correspondence, that is, the
informa condition is satisfied. Then, in her/his ‘red’ shape, the addressee has to
evoke in her/his mind the commitment that the performer of the C-act wanted to
convey. If he/she succeeds, the two subjects have achieved social correspondence,
that is, the performa condition is satisfied. Lastly, the addressee has to decide on
how he/she will respond in her/his blank shape, after which a similar process takes
place for sharing the decision with the other subject. At every level, but commonly
only at the informa level, the addressee may confirm or disconfirm the message.
Figure 8.5 clearly illustrates that communicating is a laborious activity. Fortu-
nately, people are experts at it.

8.2.4 Business Conversations

Communicative acts occur in sequences, called conversations, which are the objects
of interest in conversation theory [7–9]. In the PSI theory, the focus is on business
conversations, defined as conversations that take place in an institutional setting and
of which the participants aim at achieving a common goal [10]. These participants
are considered to satisfy the requirements of the ideal speech situation.4 In the course
of time, several patterns of conversation have been identified, like the conversation
for information and the conversation for action [11]. Based on these studies, we

4Habermas has elucidated and elaborated the notion of “ideal speech situation” in his book “Moral
Consciousness and Communicative Action”. This a relevant quote: “A measure of whether or not
participants in communication reach agreement is the yes or no position taken by the hearer
whereby he accepts or rejects the claim to validity that has been raised by the speaker. In the
attitude oriented toward reaching understanding, the speaker raises with every intelligible utterance
the claim that the utterance in question is true (or that the existential presuppositions of the
propositional content hold true), that the speech act is right in terms of a given normative context
(or that the normative context that it satisfies is itself legitimate), and that the speaker’s manifest
intentions are meant in the way they are expressed. When someone rejects what is offered in an
intelligible speech act, he denies the validity of an utterance in at least one of three respects: truth,
rightness, or truthfulness. His “no” signals that the utterance has failed to fulfil at least one of its
three functions (the representation of states of affairs, the maintenance of an interpersonal relation-
ship, or the manifestation of lived experience) because the utterance is not in accordance with either
the world of existing states of affairs, our world of legitimately ordered interpersonal relations, or
each participant’s own world of subjective lived experience. These aspects are not clearly distin-
guished in normal everyday communication. Yet in cases of disagreement or persistent
problematisation, competent speakers can differentiate between the aforementioned three relations
to the world, thematising individual validity claims and focusing on something that confronts them,
whether it be something objective, something normative, or something subjective”.

128 8 The PSI Theory: Understanding the Operation of Organisations

distinguish four kinds of conversations: actagenic conversations, factagenic conver-
sations, reversiogenic conversations, and cogitatiogenic conversations.5 Henceforth,
we assume that a conversation involves two participants, but we allow that a
participant is the collectivity of a number of subjects (cf. Sect. 8.2.7).

An actagenic conversation, or A-conversation for short, is a conversation in
which the participants strive to reach consensus about a product that one of them
is going to bring about at the other’s request. The key C-acts in an A-conversation
are the request and the promise. Both must be present for a successful conversation,
and in this order, because the promise is a response to the request. However, except
for the order, they may occur at any place in the conversation. An example of an
A-conversation in the café situation is given below (where C is the client and W the
waiter). The request is expressed in the fourth line, and the corresponding promise in
the fifth line.

W Good morning madam, what a wonderful weather you bring with you.
C Yes indeed, it is beautiful outside. I think I will go for a walk later today.
W A very good idea, I would say, madam. What can I do for you?
C I think, I’d like to have a cup of coffee. [request]
W I will bring it right away, madam. Anything else? [promise]
C No thanks, that’s all.

A factagenic conversation, or F-conversation for short, is a conversation in which
the participants strive to reach consensus about the produced P-fact. The key C-acts
in an F-conversation are the declare and the accept. Both must be present for a
successful conversation, and in this order, because the acceptance is a response to the
declaration. Except for the order, they may occur at any place in the conversation.
F-conversations typically go together with A-conversations in the frame of trans-
actions, to be discussed in Sect. 8.2.5. An example of an F-conversation in the café
situation that matches the A-conversation above could be:

W Here you are, madam, a fresh cup of coffee, the best in town! [declare]
C Ha ha, I hope so, sir. What makes you think it is the best in town?
W Just gut feeling, madam. Anyway, I know no better one!
C Well, let me see whether I can agree with you. [accept]
W I’ll bet you will!

A reversiogenic conversation, or R-conversation for short, is a conversation in
which the participants strive to agree on reverting (turning back) the current state in
an A- or an F-conversation, in which they (also) participate. As shown in Sects.
8.2.6.4–8.2.6.7, it means that one can revert a complete transaction in this way. The
key C-acts in a successful R-conversation are the revoke, followed by the allow. An
example of an R-conversation in the café situation, right after the A-conversation
above, when the waiter is already on his way to get the coffee, could be:

5The words actagenic, factagenic, reversiogenic, and cogitatiogenic mean, respectively, act creat-
ing, fact creating, reversion creating, and idea or plan creating.

8.2 Foundations 129

C Oh, waiter, please, on second thoughts . . . do you have
cappuccino? [revoke rq]

W Sure, madam, and it’s no problem at all that you changed
your mind [allow]

C Oh, thanks a lot, you are very kind. So, a cappuccino please. [request]
W As you wish, madam. [promise]

The revoke of the request is expressed in the first line, and the corresponding
allow in the second one. The third and fourth lines contain the new request and the
corresponding promise. They are not part of the R-conversation, however. The
example contains also an informational transaction, namely in the last part of the
first sentence and the first part of the second sentence. In this transaction, the
availability of cappuccino is checked by the client and confirmed by the waiter
(cf. Chap. 11).

As said, an A-conversation is successful if the state of being promised is reached.
In case of no success, the state of the conversation can be reverted by a successful
corresponding R-conversation, as will be discussed in Sect. 8.2.6. Likewise, an
F-conversation is successful if the state of being accepted is reached. In case of no
success, the state of the conversation can be reverted by a successful corresponding
R-conversation, as will be discussed also in Sect. 8.2.6. An R-conversation is said to
be successful if the intended reversion is achieved, that is, if the state of an A- or an
F-conversation is reverted. In case of no success, the state in the A- or F-conversation
will remain unchanged.

A cogitatiogenic conversation, or C-conversation for short, is a conversation in
which the participants strive to reach consensus about an idea or plan for future
action. C-conversations are typically held in preparation of a decision to perform a
C-act in an A-, F-, or R-conversation. They include conversations that are commonly
known as consultations and deliberations, in particular the conversations in the
discussion states that we will see in Sect. 8.2.6. Contrary to the other three kinds
of conversations, the PSI theory does not contain specific patterns for
C-conversations. The reason is simply that C-conversations are not composed of
coordination acts but of other (non-performative) communicative acts. However,
their existence and their relevance are recognised. An example of a C-conversation
in the café situation, which could precede the formal part of the A-conversation
above, is:

W Good morning madam, what a wonderful weather you bring with you.
C Yes indeed, it is beautiful outside. I think I will go for a walk later today.
W A very good idea, I would say, madam. What can I do for you?
C I don’t know yet, I just came in because I wanted to have something

stimulating. I feel a bit groggy, perhaps of the wine last night.
W Then I can recommend a cup of coffee or, if you don’t feel for it, a glass of fresh

mint tea.
C Hmm, well, coffee sounds like a good idea.

130 8 The PSI Theory: Understanding the Operation of Organisations

8.2.5 Business Transactions

A (business) transaction6 is a sequence of C-acts/facts, within a specific pattern
called the transaction pattern, concerning some product. It involves two actors, one
in the role of initiator and one in the role of executor. An actor is a subject in filling
an actor role. The notions of actor and actor role are elaborated in Sect. 8.2.7.

The best general understanding of a transaction is that it proceeds in three phases:
the order phase, the execution phase, and the result phase. The order phase is an
A-conversation in which the two actors discuss and negotiate in order to come to
agreement about a product (cf. Sect. 8.2.2) that the executor can promise to bring
about in response to the request by the initiator. The properties of the product include
the terms of delivery (time, price, etc.) that are common in (business) transactions. In
this phase, the product is also called proposition. In the execution phase, the executor
produces some product (which may differ from the promised one). The initiator is
basically ignorant of what the executor does in this phase. The result phase is an
F-conversation in which the two actors discuss and negotiate in order to come to an
agreement about the actually brought about product so that it can be accepted
responsibly by the initiator. In this phase, the product is also called result. While
in the order phase, basically all properties of the product are negotiable, some are still
also negotiable in the result phase, notably properties like price and delivery time. As
an example in the café, the client may not be fully satisfied with the declared product
if the coffee is not really warm. Instead of producing a fresh cup of coffee (something
that will be discussed in Sect. 8.2.6), the two actors could agree on a lower price
(note: paying is a separate transaction, as discussed in Chap. 10).

8.2.6 Transaction Patterns

8.2.6.1 The Basic Transaction Pattern

The DELTA theory (Chap. 9) postulates that the state of a world at some point in
time is the set of facts that are created up to that point in time. The coming into
existence of a fact is called an event. So, an event is a change of state, also called
transition, at a particular point in time, called the event time. The C-acts and P-acts in
an organisation cause events in its coordination world, called coordination events or
C-events, and its production world, called production events or P-events, respec-
tively (cf. Fig. 8.6). The two actors in the middle interact through the creation of
C-facts (represented by disks), which are the immediate results of performing C-acts
(represented by boxes). For example, the effect of performing a request is the
creation of the fact of being requested. Likewise, the effect of a P-act (represented

6The noun “transaction” is related to the verb “to transact”, which originates from the Latin verb
“transigere”, meaning carrying out, bringing through.

8.2 Foundations 131

by a grey box) is a P-fact (represented by a grey diamond). As will become clear, the
number of C-events is always much larger than the number of P-events. The light-
grey colouring of the shapes of the P-acts and P-facts will be explained later.

In Fig. 8.7, the basic transaction pattern is shown. It contains the five steps that
must always be performed in order to let a transaction succeed: the request and the
promise in the A-conversation (the order phase), the declaration and the acceptance
in the F-conversation (the result phase), and performing the P-act in between (the
execution phase). The symbols used are explained in Table 8.1. In the café example,
the first step is the performing of a request by the client (the initiator) for a cup of
coffee, addressed to the waiter (the executor). We have entered now the order phase
of the transaction. The second step is the promise by the waiter to bring the cup of
coffee. With this step, the order phase ends successfully, and the execution phase
starts, in which the waiter produces the cup of coffee. The shapes of the P-act and the
P-fact in Fig. 8.7 are coloured light-grey to indicate that they are private to the
executor, and thus not directly knowable to the initiator (nor to anyone else). After
this third step, the waiter addresses himself to the client again and declares the result
of his work, which is the fourth step. At this moment, the created P-fact is knowable
to the initiator, as part of the created C-fact (cf. Fig. 8.4). We have entered now the

PRODUCTION
WORLD

COORDINATION
WORLD

production factscoordination facts

production

acts

coordination

acts

actor

actor

Fig. 8.6 The coordination world and the production world of an organisation

Fig. 8.7 The basic transaction pattern

132 8 The PSI Theory: Understanding the Operation of Organisations

result phase of the transaction. This phase ends successfully if the client accepts the
declared result, which is the fifth transaction step.

The two light-grey lined rectangles in Fig. 8.7 indicate the responsibility areas of
the two participants: the initiator is responsible for the request and the acceptance,
and the executor for the promise, the P-act, and the declaration. The notion of
responsibility will be elaborated in Sect. 8.3.3. In order to indicate that they are
knowable to both actors, the conversation states (C-facts) are put in between these
rectangles. Note that we abstract completely from the particular way in which the
steps in Fig. 8.7 are performed. This abstraction is one of the key elements in calling
the understanding of organisations that the PSI theory provides, ontological. The
other key element is the rootedness of this understanding in the atomicity of C-acts/
facts, and in the molecularity of transactions. Note also that the pattern in Fig. 8.7
makes the communication between the initiator and the executor asynchronous. To
illustrate this, the fact of being requested exists from the moment that the request act
is performed. The addressee (thus the executor) takes notice of the fact when it suits
her/him (cf. Sect. 8.3.2).

C-acts may be performed verbally, for example, by uttering sentences like “I’d
like to have a cup of coffee, please” as a way to request, but they may also be
performed non-verbally, which means that some other act counts as the C-act (like
just putting the cup of coffee in front of the client as a way of performing the
declaration). In both cases, the evidence of the act is explicit. In addition, C-acts may
be performed tacitly, which means that there is no evidence of acts that could count
as performing them. Still they are performed, but the evidence is said to be implicit:
they can be deduced from the presence or the absence of other acts [13]. To illustrate
this, if the waiter doesn’t perform an explicit promise, the client may deduce it from
the absence of an explicit decline (cf. Sect. 8.2.6.2). Moreover, when the waiter
brings the cup of coffee and thereby performs the declare act, the client may deduce
the promise from the presence of this act. As one may expect, tacitly performed

Table 8.1 Legend of the links in transaction patterns

8.2 Foundations 133

C-acts are a major cause of business process failures where an actor is waiting for an
explicit C-event that will never occur (because the other actor thinks there is no need
for it: no news is good news).

The product of a transaction, that is, the independent P-fact together with its
dependent P-facts (cf. Sect. 8.2.2), will only become existent after a successful
completion of the result phase. In this way, P-acts/facts are firmly connected to
C-acts/facts: the resulting product becomes existent as soon as it is accepted by the
initiator of the transaction. Consequently, every P-fact is the result of a successfully
completed transaction (or it is derived from such original facts, cf. Chap. 6).

Moreover, the initiator may accept a result that differs from the requested product.
Let us take the café example again to illustrate this. Suppose that the client has asked
for a double espresso and the waiter delivers a cappuccino. Most people would reject
the declare act by the waiter in such a case, but it is perfectly fine if the client accepts
it. The example emphasises that the most important world for human beings is
Habermas’ intersubjective or social world (cf. Fig. 8.2). To top that, the client may
even accept the declaration if no coffee has been brought at all! This basic under-
standing of the ‘nature’ of P-facts reflects our basic understanding of the ‘nature’ of
societal institutions, namely that they are primarily intersubjective or social con-
structs, in accordance with the core message in [12].

The carrying out of a transaction (of whatever kind) can be taken as a generic
business process building block, and the C- and P-acts in transactions can be taken as
a generic notion of task, seeming to be more precise than the one that is rather
implicitly used in Mintzberg’s quote in Sect. 8.1.

8.2.6.2 The Standard Transaction Pattern

Figure 8.8 exhibits an extension of the basic pattern. Note that the diamond of the
P-fact is drawn in the box of the P-act (just to save space), that the phase colours are
omitted, and that the accept act and fact have another place (for purposes of
convenience). Moreover, we have added the external state (C-fact) called “in”. It
represents the becoming existent of some state in some process. From now on, we
will refer to acts and facts in the next concise way: we use the brackets “(” and “)” for
a C-fact or conversation state, “<” and “>” for a P-fact, and “[” and “]” for a C-act or
a P-act. As an example, [rq] denotes the act of requesting and (rq) denotes the fact of
being requested.

The basic transaction process is represented by the green path. As discussed in
Sect. 8.2.1, the performer of a C-act raises three validity claims towards the
addressee: the claim to rightness, the claim to sincerity, and the claim to truth. All
three of them must be accepted by the addressee in order to proceed successfully. If
so, the executor will respond by a promise. This is indicated in Fig. 8.8 by the green
path from (rq) via [pm] to (pm). If the validity claims are not satisfied, the executor
will decline the request, which brings the transaction process in the state declined.
This is indicated in Fig. 8.8 by the yellow path from (rq) via [dc] to (dc).

134 8 The PSI Theory: Understanding the Operation of Organisations

The state (dc) is a discussion state, indicated by a double disk, because ending up
there is most likely not what the initiator had in mind. Therefore, he/she now
challenges the executor to explain why one or more validity claims could not be
accepted, and the initiator has the opportunity to refute the objections of the
executor, as well as to discuss possible changes in the properties of the product. In
the café example, the waiter could have declined the request for a cup of coffee,
because the coffee machine is broken (claim to truth), or because the closing time has
passed (claim to rightness), or because the client repeatedly has revoked her request
for no good reasons (claim to sincerity). The result of the discussion in the state
(dc) can be that the client stands by her request or that she performs an adapted
request, like ordering tea instead of coffee, or waiting for the coffee machine to be
fixed (in which case the delivery time of the coffee changes). This is indicated in
Fig. 8.8 by the yellow path from (dc) via [rq] to (rq). The executor can then perform
the promise of the adapted request, thus following the green path from (rq) via
[pm] to (pm). Note that performing a new request is optional, as indicated by the
cardinality range 0. . .1. The initiator can also do nothing instead, which means that
the process remains in the state (dc).

Let us assume that the process has reached the state declared. The initiator may
then accept the declared product, by which the transaction ends successfully. This is
indicated in Fig. 8.8 by the green path from (da) via [ac] to (ac). But the initiator may
also reject the declare, which brings the transaction process in the state rejected. This
is indicated in Fig. 8.8 by the yellow path from (da) via [rj] to (rj), which is also a
discussion state. The initiator now has the opportunity to explain why he/she could
not accept one or more validity claims, and the executor gets the opportunity to
convince the initiator that the declared product is what was promised. In the café
example, the client could have rejected the declaration (of a cup of coffee) by the
waiter because she thinks that the coffee is not fresh or not warm enough (claim to
truth), or because an unknown person brings the coffee (claim to rightness), or
because she has waited for a long time for the coffee after having reminded the
waiter several times (claim to sincerity). During the discussion in the state (rj), the
two may come to agree, for example, on a lower price for the client. If so, the
executor performs an adapted declare. This is indicated in Fig. 8.8 by the yellow path
from (rj) via [da] to (da). From there, the initiator can perform the acceptance,

Fig. 8.8 The standard transaction pattern

8.2 Foundations 135

following the green path up to (ac). Note that a renewed declaration is optional, as
indicated by the cardinality range 0. . .1. The executor can also do nothing. Then the
process remains in the state (rj).

So, a transaction process can end up successfully in the final state (ac), but it can
also get stuck in one of the discussion states (dc) or (rj). The pattern in Fig. 8.8 offers
no options to escape from these deadlock situations. In Sects. 8.2.6.3–8.2.6.7,
reversiogenic conversations (R-conversations) are presented, which allow one to
revert the main process to some previous state. Two of them, namely the revocation
of the request and the revocation of the declaration, can be used to get out of the
deadlock situations mentioned. Let us therefore add the corresponding revocation
patterns to the standard pattern, as is done in Fig. 8.9. Through the revocation pattern
in the top left corner, the initiator can ‘undo’ her/his request and revert the main
process to the state (in), as if nothing has happened, provided that the condition (rq+)
is satisfied. Through the pattern in the bottom right corner of Fig. 8.9, the executor
can ‘undo’ the declare act and revert the main process to the state (pm), provided that
the condition (da+) is satisfied.

Let us use the café example again to illustrate the revocations. If the discussion
between the client and the waiter in the state (dc) does not lead to performing an
adapted request, followed by a promise, the client has the option to start an
R-conversation, in which she strives to turn the state in the main process back to

Fig. 8.9 The standard transaction pattern with two revocation patterns

136 8 The PSI Theory: Understanding the Operation of Organisations

the initial state (in), and thus to ‘undo’ her request. She does so by performing
[rv-rq], which brings the R-conversation in the discussion state (rv-rq), indicated in
Fig. 8.9 by the blue path from (?) via [rv-rq] to (rv-rq). Note that the state (?) is
identical to (dc) now. If the waiter allows the revoke, he performs [al[rv-rq]], which
leads to the state (al[rv-rq]), indicated by the blue path from (rv-rq) via [al] to (rv-rq).
The reversion link from (al) to (in) expresses that the state of the main process will
immediately be reverted to the initial state (in). The social meaning of this reversion
is that both actors are discharged from all commitments in the main process. But, if
the waiter refuses the revocation, so if he performs [rf[rv-rq]], by which the state (rf
[rv-rq]) is reached, indicated in Fig. 8.9 by the yellow path from (rv-rq) via [rf] to
(rf), the main process remains in the state (dc). The social meaning of this situation is
that the waiter does not seem to strive to consensus, which is a fundamental
assumption in Habermas’ theory [4]. In order to get out of this deadlock, the two
parties may leave the discussion layer of the conversation and enter the discourse
layer [13]. At this layer, people investigate, challenge, and discuss the values and
norms that they, explicitly or implicitly, apply in their social interaction. Such a
discourse may eventually, and hopefully, lead to an allowance of the [rv-rq] by the
executor.

Likewise, the executor may revoke her/his declaration, in order to escape from a
deadlock situation in the state (rj). If successful, the main process will be reverted to
the state (pm), from which the executor can redo the P-act, followed by the
declaration of the new product. In case of failure, the process remains in the state
(rj). Then the only possible way out of the discussion state is to leave the discussion
layer of the conversation and enter the discourse layer, hoping to reach consensus.

8.2.6.3 The Complete Transaction Pattern

In addition to the revocations of the request and the declare act, as discussed above,
the other two basic C-acts, namely the promise and the acceptance, can also be
revoked. Moreover, all four R-conversations can be started at any point in time, that
is, regardless of the current state in the main transaction process. In other words, both
the initiator and the executor can revoke any basic step they have taken, from any
state in the main transaction process. They may also revoke a step several times, in
the same transaction. Figure 8.10 exhibits the complete transaction pattern, in which
these extensions are included. All four R-conversation patterns are expressed in a
similar pattern. In this pattern, the boxes and disks are bold-lined, in order to indicate
that these conversations are at a meta level with regard to the main process, in which
they aim to revert the current state to a previous one.

Revoking a step means that one wants to undo a step that one has performed
intentionally earlier, because one has changed one’s mind. If a step is taken by
mistake, it can be cancelled (as long as the addressee has not responded). In this way,
both participants can correct mistakes. An R-conversation can be initiated in

8.2 Foundations 137

response to any state in any process. Therefore, its initial state is shown in Fig. 8.10
as a C-fact named “?”. In addition, the R-conversations have a conditional link
(cf. Table 8.1) from a state in the main process to the revoke act, meaning that
performing the revoke is only possible if the main process has reached this state. For
the act [rv-rq], the condition is (rq+), meaning that the state of the main process must
be (rq) or further.

Likewise, the condition for performing [rv-pm] is (pm+), for performing [rv-da],
it is (da+), and for performing [rv-ac], it is (ac). If an R-conversation is successful,
the state of the main process will be reverted to (in) for a revoke of the request, to
(rq) for a revoke of the promise, to (pm) for a revoke of the declare, and to (da) for a
revoke of the accept, as indicated in Fig. 8.10. If an R-conversation is unsuccessful,
the state of the main process remains unchanged.

Concluding, every transaction process is some path (possibly including iterations)
through the complete transaction pattern, starting from the state (in) and ending up
either successfully in the state (ac) or unsuccessfully in the state (in) or in one of the
deadlock situations, (dc) and (rj). Although theoretically every step in a transaction
process should be revocable, the four R-conversations in Fig. 8.10 seem to be
sufficient in practice. Revocations have a legal counterpart in the Civil Codes of

Fig. 8.10 The complete transaction pattern

138 8 The PSI Theory: Understanding the Operation of Organisations

many nations. In these Civil Codes, a (business) commitment cannot be made
undone by one party without the explicit allowance by the other party. This legal
requirement is fully accommodated by the revocation patterns as presented above.
Therefore, the discussed complete transaction pattern is considered to be universal.

Let us take a closer look now at the four R-conversations. In order to let the
discussions be as general as possible, we will start all of them from the state (ac) in
the main process, that is, when the transaction has ended successfully.

8.2.6.4 The Revocation of an Acceptance

Figure 8.11 exhibits the process of revoking an accept act. It starts with performing
the act [rv-ac] by the initiator, resulting in the discussion state (rv-ac), indicated in
the figure by the blue path from (?) via [rv-ac] to (rv-ac). The dashed line from (ac) to
[rv-ac] represents the conditional link. It means that the revocation can only be
performed if the main process has reached the state (ac), which is the case. The state
(rv-ac) is considered a discussion state, which means that the two actors have to sit
together in order to discuss the proposed reversion of the main process.

The executor may allow the revoke, indicated by the continued blue path to (al) or
refuse it (the yellow path to (rf)). If he/she allows, the main process will return to the
state (da), as indicated by the green-white path in the standard pattern, and by the
green circle around (da). From there, the initiator is able to perform the reject,
indicated by the yellow path from (da) via [rj] to (rj). As an example in the café,
the client may have accepted the delivered cup of coffee, but later on discovers that
the coffee is not as warm as it should be. She then may call the waiter again and tell
him that she doesn’t want this coffee. This act counts as revoking the accept act. If

Fig. 8.11 The process of revoking an accept act

8.2 Foundations 139

the waiter allows the revocation, the client can subsequently reject the declaration,
by which the main process ends up in (rj). If the waiter refuses the revocation, the
state of the main process remains unchanged, namely (ac).

8.2.6.5 The Revocation of a Declaration

The executor of a transaction may at any point in time want to undo the declare act.
Logically, this entails that he/she wants to redo the P-act and subsequently perform a
new declare act. Revoking the declare act is a common response by the executor of a
transaction in case the initiator has rejected the declare act, and the executor agrees,
during the discussion in the state (rj), on the reason for the reject. As an example in
the café, after the client has rejected the acceptance because the coffee was cold, the
waiter may want to redo the P-act and the subsequent declare act, that is, he wants to
bring a new, warm cup of coffee.

The pattern for revoking the declare act is exhibited in Fig. 8.12. It starts with
performing the act [rv-da] by the executor, resulting in the state (rv-da), indicated by
the blue path from (?) to (rv-da). The conditional link from (da+) to [rv-da]
represents the condition that the revocation can only be performed if the state in
the main process is at least (da). Thus, it can be performed from any state after, and
including (da). This condition is met. The state (rv-da) is considered a discussion
state, which means that the two actors have to sit together in order to discuss the
proposed turning back of the main transaction process. The initiator may allow the
revoke (continued blue path to (al)) or refuse it (the yellow path to (rf)). If he/she
allows, the state of the main process will be reverted to (pm), as indicated by the
green-white path in the standard pattern, and by the green circle around (pm). From

Fig. 8.12 The process of revoking a declare act

140 8 The PSI Theory: Understanding the Operation of Organisations

there, the executor is able to redo the P-act, followed by a new declare act, as
indicated by the blue line. If the initiator refuses the revocation, the state of the main
process remains unchanged. In Fig. 8.12, this is the state (ac).

8.2.6.6 The Revocation of a Promise

The executor of a transaction may at some point in time want to undo the promise act.
This will normally happen if he/she discovers that he/she cannot comply with the
promise anymore. As an example in the café, the waiter may have promised the client
a cup of coffee, and then discovers that the coffee machine is broken. By revoking the
promise and the subsequent allowance by the initiator, they can end up in the state
declined, in which they can discuss for example other drinks, like a cup of tea.

The revocation pattern of a promise is exhibited in Fig. 8.13. It starts with the
revoke promise [rv-pm] by the executor, resulting in the state (rv-pm), indicated by
the blue path from (?) via [rv-pm] to (rv-pm). The conditional link from (pm+) to
[rv-pm] represents the condition that the revocation can only be performed if the
state in the main process is (pm) or further. This condition is met. The being revoked
is a discussion state, which means that the two actors have to sit together in order to
discuss the proposed reverting of the main transaction process. The initiator may
allow the revoke (continued blue path to (al)) or refuse it (the yellow path to (rf)). If
he/she allows, the state of the main process will be reverted to (rq), as indicated by
the green-white path in the standard pattern, and by the green circle around (rq).
From there, the executor can perform the act [dc], and discuss changes to the
proposition so that he/she will be able to promise it, as indicated by the yellow
path. If the initiator refuses the revocation, the state of the main process, which is
(ac), remains unchanged.

Fig. 8.13 The process of revoking a promise act

8.2 Foundations 141

A common example of the revocation of a promise from the state (ac) is the
situation where a client has paid for a purchase, but the purchase transaction has
successfully been ‘rolled back’. The state (?) in Fig. 8.13 represents the initial state
of the purchase transaction. In order to get her/his money back, the client then
has to revoke the promise (to pay). After the allowance by the other party, the
payment transaction is reverted to the state (rq), including the ‘undoing’ of
the P-act. From the state (rq), the client then declines the original request (the
yellow path in Fig. 8.13). In the state (dc), the two participants can discuss a
new amount to pay, or the initiator can revoke the request, by which (after
allowance by the client) the payment transaction is completely rolled back to the
initial state.

8.2.6.7 The Revocation of a Request

Lastly, the initiator of a transaction may at some point in time want to undo the
request act. As an example in the café, the client may have asked for a cup of
coffee, but then gets an urgent telephone call because of which she has to leave
immediately. Or, after a while she changes her mind and wants a cup of tea instead of
coffee.

The revocation pattern is exhibited in Fig. 8.14. It starts with the revoke request
[rv-rq] by the initiator, resulting in the state (rv-rq), indicated by the blue path from
(?) via [rv-rq] to (rv-rq). The conditional link from (rq+) to [rv-rq] represents the
condition that the revocation can only be performed if the state of the main process
is (rq) or further. This condition is met. The state (rv-rq) is a discussion state, which
means that the two actors have to sit together in order to discuss the proposed turning
back of the main transaction process. The executor may allow the revoke, indicated
by the continued blue path to (al) or refuse it (the yellow path to (rf)). If he/she
allows, the state of the main process will be reverted to (in), as indicated by the
green-white path in the standard pattern, and by the green circle around (in). If he/she
refuses, the state of the main process remains what it is. In Fig. 8.14, this is the state
(ac).

So, a revoke request can even be performed from the state (ac), as shown in the
figure, that is, when the transaction has been completed successfully. A common
example is that one has bought something from a shop and returns it, for example,
because one sees no need for having it anymore. The being revoked is a discussion
state, which means that the two actors have to sit together in order to discuss the
proposed reversion of the main transaction process. The executor may allow the
revoke (continued blue path) or refuse it (yellow path). The main process will then be
reverted to the state (in), and both parties are freed of all obligations. In other words,
the transaction is completely ‘rolled back’.

142 8 The PSI Theory: Understanding the Operation of Organisations

For (business) transactions like acquiring goods, there is mostly a favour in
return. Normally, this is the payment for the purchased goods or the rendered
service. Note that paying is a separate transaction. It is commonly enclosed in the
purchase transaction as discussed in Chap. 10, but it is a separate transaction. Rolling
back the purchase transaction then implies rolling back the payment transaction.

As becomes evident from the discussion of the complete transaction pattern
above, the path of every single transaction through this pattern may comprise an
arbitrary number of loops. But there are some definite landmarks. Both the order
phase and the result phase have a clear successful completion. The order phase of a
transaction is completed successfully if the (latest) promised product is equal to the
(latest) requested one. Likewise, the result phase of a transaction is completed
successfully if the (latest) accepted product is equal to the (latest) declared one. If
this is the case, the product starts to exist at the event time of the acceptance.

However, it is always possible to ‘break open’ a successfully completed transac-
tion by revoking one of the basic steps. The permanent option to (try to) return to a
previous state in the transaction process, long after the transaction is completed, may
seem irrelevant, but has an important practical relevance. All warranty clauses in
sales contracts are actually openings to revoking one of the basic transaction steps.
Understanding the settling of warranty claims and of returned goods as simple
revocations in an existing transaction, instead of distinct processes, is crucial. It is
an illustrative example of the reduction of complexity that Enterprise Ontology
claims to offer (cf. Chap. 3).

8.2.6.8 The Operating Principle of Organisations

Every (dynamic) system has some internal mechanism that makes it ‘tick’ [14]. For
inanimate systems, this mechanism is usually called the operating principle.

Fig. 8.14 The process of revoking a request act

8.2 Foundations 143

Regarding animate systems, one often speaks of the vital force [15]. But, although
the subjects in organisations (and other social systems) are animate systems, the
organisations themselves are considered inanimate. Therefore, we speak of the
operating principle of organisations, in much the same way as we speak of the
operating principle of cars, aircrafts, etc. By performing coordination acts, subjects
enter into and comply with commitments towards each other regarding the product
to be brought about. Commitments are the social agencies through which people
cooperate. In other words, subjects comply with commitments because they feel the
social/cultural obligation to do so. We consider this ‘mechanism’ to be the operating
principle of every organisation. The underlying premise, as already articulated in
Habermas’ Theory of Communicative Action [4], is that the actors in a transaction
strive to reach consensus. This is only possible if the actors trust each other, and this
trust is verified explicitly when the claim to sincerity is assessed (cf. Fig. 8.2).
Mutual trust is the fundament of every instance of human cooperation. With
reference to Habermas’ Theory of Communicative Action, we must add that the
cooperation takes place in a context in which the participants are free and autono-
mous, and in which they strive for consensus. All situations of dependence or abuse
of force are excluded. In Habermas’ theory, these situations are categorised as
instrumental or strategic [16, 17]. Fortunately, it rarely happens in contemporary
enterprises. Unfortunately, it is the case sometimes.

8.2.7 The Notion of Transactor

In all exhibited transaction patterns above, there is a clear separation between the
acts that the initiator of a transaction can perform and the acts that fall within the
responsibility area of the executor. In Figs. 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, and
8.14, these areas are indicated by light-grey coloured, bold-lined rectangles. We
have also emphasised the importance of precisely formulating the independent P-fact
of a transaction, such that it is unique in time and space (cf. Sect. 8.2.2.1). An
example is “[membership] is started”, where [membership] is a variable that can be
instantiated, for example, to membership 387. We will take such expressions as
denoting a product kind, while being aware that it is only the expression of its
independent P-fact type (cf. Sect. 8.2.2.2).

Corresponding with the notion of product kind, we will use the notion of
transaction kind as an attribute of every transaction (cf. Chap. 6). There is a one-
to-one relationship between transaction kinds and product kinds. A proper naming of
the transaction kind, in which instances products of the kind <[membership] is
started> are brought about, would be “membership starting”. Next, we introduce the
notion of actor role, defined as the authority to be the executor in transactions of
some transaction kind. This authority can be assigned to subjects, as will be
elaborated in Sect. 8.3.3. As a consequence of the definition of actor role, every
transaction kind has exactly one actor role as its executor role, and vice versa. An
actor role may have an initiator role in several transaction kinds, however, or in none.

144 8 The PSI Theory: Understanding the Operation of Organisations

Figure 8.15 exhibits the graphical notation of these relationships in DEMOSL-4.7

The shape of a transaction kind is a diamond (the symbol of production) in a circle or
disk (the symbol of coordination), and the shape of an actor role is a square or
rectangle, commonly called a box. Transaction kinds are connected to actor roles by
initiator links (represented by a line between their shapes) and by executor links
(represented by a line between their shapes and by a small diamond at the junction of
the line and the actor role shape). These links constitute the interaction structure,
which is one of the three coordination structures in organisations (cf. Chap. 10). The
cardinality range 0. . .1 in Fig. 8.15 indicates that transactions TK04 are optional.

The example organisation shown in Fig. 8.15 is the case Pizzeria (cf. Chap. 14).
The red colour of the diamonds indicates that the transaction kinds and actor roles
belong to the O-organisation of the Pizzeria (cf. Chap. 11). As said, the combination
of a subject and an assigned actor role is called actor. Only actors can participate in
transactions. A subject may fill several actor roles and an actor role may be assigned
to several subjects, both sequentially and simultaneously. As examples in the café
situation, the waiter (subject plus actor role) can at the same time be cashier (same
subject, different actor role), and there may be several waiters in the café (one actor
role, assigned to several subjects). Next, an actor role can be assigned to a collec-
tivity of subjects, which means that these subjects can fill the role only together.
Examples are the board of directors of a company and the general assembly of an
association.

Fig. 8.15 Business process tree structure in the Pizzeria

7DEMOSL stands for DEMO Specification Language. It is the formal definition of the ways in
which DEMOmodels can be expressed (diagrams and formal text). The official reference document
on DEMOSL can be found on www.ee-institute.org.

8.2 Foundations 145

http://www.ee-institute.org

The left side of Fig. 8.15 shows that actors in the composite actor role CAR00 are
initiator in transactions TK01, and that actors AR01 are executor in these trans-
actions.8 At the same time, they are initiator of transactions TK02, TK03, and TK04,
of which actors AR02, AR03, and AR04 are the executors, respectively.

Because of the one-to-one relationship between a transaction kind and its executor
role, it makes sense to combine them in one shape, called transactor role, as shown in
Fig. 8.15 (right side). The exhibited tree structure represents the same organisation as
the one on the left side. When using the transactor role shape, one can just number the
transactor roles, without using prefixes (like the “TK” and the “AR”). Transactor roles
are the basic building blocks of organisations. Through the bringing about of a
particular product, a transactor is also said to provide a particular service to the
initiating transactor (cf. Chap. 7; [18]). The links between the transactor roles in
Fig. 8.15 (right side) are initiator links. So, like in the tree structure on the left side,
actors AR01 are initiator in transactions TK02, TK03, and TK04.

Table 8.2 represents the so-called Transactor Product Table of the Pizzeria. The
process of completing a client order (conceived as a sale by the Pizzeria) starts with
the request of a transaction of the kind ‘sale completing’ by a subject who fills actor
role ‘customer’ (CAR00) to someone who fills actor role ‘sale completer’ (AR01).
During the carrying out of this transaction, three other transactions are initiated: one
of the kind ‘sale preparing’, one of the kind ‘sale paying’, and one of the kind ‘sale
delivering’. As clarified in Chap. 10, all three must be carried out before the
transaction of the kind ‘sale completing’ can be finished. In other words, every
product of the kind ‘[sale] is completed’ implies three other products: one of the kind
‘[sale] is prepared’, one of the kind ‘[sale] is paid’, and one of the kind ‘[sale] is
delivered’. In the formulation of these product kinds, [sale] denotes the variable that
has to be instantiated to get individual products, like ‘sale 1618’.

Figure 8.16 depicts what happens if a specific transaction of the kind TK01 (sale
completing) is executed. The initiating subject is Linda. By force of the operative
Civil Code, she is authorised to fill the unknown transactor role within the composite
transactor role CTAR00 that has an initiator link with TK01, thus to be a customer of

Table 8.2 Transactor Product Table

transaction kind product kind executor role

TK01 sale completing PK01 [sale] is completed AR01 sale completer

TK02 sale preparing PK02 [sale] is prepared AR02 sale preparer

TK03 sale paying PK03 [sale] is paid AR03 sale payer

TK04 sale delivering PK04 [sale] is delivered AR04 sale deliverer

8We will write ‘actors ARn’ as a shorthand for ‘actors filling actor role ARn’, ‘transactions TKn’ as
a shorthand for ‘transactions of the kind TKn’, and ‘products PKn’ as a shorthand for ‘products of
the kind PKn’.

146 8 The PSI Theory: Understanding the Operation of Organisations

the Pizzeria. As an actor in this role she has the potential to initiate transactions
TK01. This is expressed on the left side of the figure by the ‘initiator part’ of the
transaction shape on the edge of the actor role shape. Mia is authorised by the
Pizzeria to fill actor role AR01 (cf. Chap. 14), so she has the potential to provide the
service of executing transactions TK01 (sale completing) to Linda. Her potential is
expressed in Fig. 8.16 by the ‘executor part’ of the transaction shape on the edge of
the actor role shape. As soon as Linda performs a request, a specific transaction, let’s
say T5189, is created. This is exhibited on the right side of the figure. In filling actor
role AR01, Mia can initiate transactions TK02 (sale preparing), TK03 (sale paying),
and TK04 (sale delivering). The executors in transactions of these kinds are respec-
tively Mario, Linda, and Edward. As soon as Mia effectuates her authorities, the
transactions T5190, T5191, and T5192 are created, as shown on the right side of
Fig. 8.16. As elaborated in Chap. 14, Edward is not only the executor of T5192, but
he has also a delegated authority in transactions T5189, T5190, and T5191, which is
the reason why he is also a filler of actor role AR01.

As soon as the transactions T5190, T5191, and T5192 are successfully com-
pleted, T5189 can be completed. Figure 8.16 does not show from which state in
T5189 the other transactions are initiated by Mia, and which states in transactions
T5190, T5191, and T5192 Mia (or Edward) has to wait for. In order to exhibit these
details, one needs to produce the Process Model of the Pizzeria (cf. Chap. 14).

8.3 Elaborations

8.3.1 Time Aspects of Transactions

As discussed in Sect. 8.2, the process of a transaction is a sequence of C-events,
starting with the request (in response to the initial state) and ending with either the

Fig. 8.16 Instantiation of the coordination structure diagram of the Pizzeria

8.3 Elaborations 147

acceptance (in case of success) or a reversion to the initial state (in case of failure), or
being stuck in an eternal deadlock or impasse, as discussed in Sect. 8.2.6.2. Let us
have a closer look now at the time aspects of C-facts and P-facts, in order to acquire a
deeper understanding of the transaction concept.

The structure of a C-act/fact that was presented in Fig. 8.4 is reproduced in
Fig. 8.17, but without the specific example, and including the time aspects that are
common to all C-acts/facts. The first one is the point in time at which the C-act is
performed, and thus at which the C-fact is created. This is the creation time of the
C-fact. The second time aspect of C-facts is their event time. By default, the event
time is equal to the creation time. In technical systems, the difference between
creation time and event time is used to synchronise processes (cf. Chap. 9). In
organisations, the event time may be used as the (intended) settlement time. By
this is meant the point in time at which the performer of a C-act wants the addressee
to have settled the created C-event. Although often, like in the café example, the
settlement time is asap (as soon as possible), it may be set at a specific point in time,
thereby introducing a specific time delay. The addition of the adjective “intended”
expresses that it is not an imperative, since actors always act autonomously. So,
they may settle the C-event before or at the intended point in time, but they may also
do it later. If no specific settlement time is set, the performer of the act expects the
addressee to respond within a reasonable amount of time after the creation time. For
example, if the client in the café asks the waiter for a cup of coffee, she assumes that
the waiter responds to her request more or less instantly, not after an hour.

Fig. 8.17 Time aspects of coordination acts/facts

148 8 The PSI Theory: Understanding the Operation of Organisations

Regarding P-acts/facts, we distinguish between the event time and the operative
time. Because the creation time of a product is basically unknown, we disregard
it. This holds specifically for independent P-facts. The dependent facts that are
related to them may be created in advance, as is illustrated by the Create Use
Tables in Chap. 12. However, the event time of dependent P-facts is always equal
to the event time of the corresponding independent P-fact (or the product). The event
time of a product is by definition equal to the event time of the accept fact in the
transaction in which it is brought about. If the acceptance is performed tacitly, it is
considered to be equal to the event time of the declare fact. In addition, products have
an operative time. By this is meant the time period9 during which the product is
operative or valid. Like it holds for any other attribute, the value of the operative time
may change during the transaction process, but the accepted value is the definite one.
Consequently, a product is operative or valid during its (accepted) operative time.
During this period, the product, consisting of an independent P-fact and a number of
dependent P-facts (cf. Fig. 8.17), is effective.

Mostly, as in the café example, the initiator wants the product to be operative or
effective asap. Therefore, the event time of a product is its default operative time.
However, in a business-to-business situation, one often wants to set a specific future
time. This holds for all product categories that are discussed in Chap. 10: creation of
things, transporting and storing, transferring ownership, and granting right of usu-
fruct. As an example in the category of transferring ownership, you may give a
money transfer order to your bank today but have the transfer effectuated on the 28th
of this month. Other quite common examples are making appointments with pro-
fessionals, like medical doctors, for getting diagnosis, advice or treatment (all of
them falling in the category of creating things), and making reservations for hotel
stays, theatre performances, car rentals, flights, etc. (all of them falling in the
category of transferring right of usufruct). So, for example, if you conclude today
a reservation for a hotel stay for three nights, starting on the 13th of next month, the
event time of the product is today, but the operative time is from the 13th till the
16th. During that period, you have the right to use a room of a particular kind. In
order to effectuate this right, you have to check in. This is a separate transaction. By
performing the declare act in this transaction, you exert your right to use the room
(cf. Chap. 10).

For the product category transferring right of usufruct, it may even make sense to
set the operative time in the past. This may sound strange at first sight, but it is not
unusual. For instance, you subscribe to a monthly magazine, let’s say during the
month of May, but that the subscription starts in retroaction from January on, so that
you (have the right to) receive all issues of the current year. Similar advantages may
hold for becoming member of an association in retroaction.

9As discussed in the DELTA theory (Chap. 9), every point in time is actually a time period, but
possibly very small. This holds always for the attribute event time. The operative time, however,
may be so large (minutes, hours, days) that one preferably speaks of a time period.

8.3 Elaborations 149

8.3.2 The Operating Cycle of Actors

Every actor is considered to loop constantly through its operating cycle, at a pace that
is sufficiently frequent to deal with her/his agenda on time. The cycle begins when the
actor selects an agendum to be settled. As discussed earlier, he/she may settle it at the
intended settlement time (cf. Fig. 8.17), but it may also be earlier or later. Then, the
actor fetches the applicable action rule, which is similar to an imperative business rule
[19] (note: actors have always access to these action rules). If there is no specific
action rule present, he/she is led by the general guidelines (culture, policies) of the
enterprise, which may have been expressed in declarative rules [19]. Because
the authorisation of the actor is also based on her/his competence (cf. Sect. 8.3.3.4),
he/she will also be guided by her/his professionalism. After having assessed the
conditions in the action rule, the actor decides how to respond to the selected C-event.
Then, the actor performs the act(s) that follow from the decision. The ALPHA theory
(Chap. 11) clarifies in more detail how assessing an action rule proceeds (Fig. 8.18).

As said, action rules are guidelines, because actors are autonomous in deciding
how to act. However, they are responsible and possibly also accountable for their
acts (cf. Sect. 8.3.3), which might imply acting against the action rules. Several
examples have been discussed above. Another illustrative example is presented in
Sect. 8.3.3.2.

8.3.3 Human Qualities in Transactions

In Sect. 8.2, the notions of responsibility and authority were briefly touched upon.
We have talked about the responsibility areas of the initiator and the executor in a
transaction, and we have defined the notion of actor role as the authority to be
executor in transactions of a specific transaction kind. Let us have a closer look at
these human qualities, and at two other ones, namely accountability and competence.

Fig. 8.18 The operating cycle of actors

150 8 The PSI Theory: Understanding the Operation of Organisations

The definitions we will provide are not (fully) compatible with the popular RACI
framework10, due to the fact that the RACI framework lacks a solid foundation. In
contrast, the notions defined hereafter have a solid foundation in the PSI theory.

8.3.3.1 Authority

The notion of authority is defined as the right of a subject to perform particular
C-acts in response to particular C-events. Taking the café situation again, the subject
who is referred to as waiter, apparently has the authority to be executor in ‘café sale’
transactions, and the subject who is referred to as client, apparently has the authority
to be initiator in these transactions.

There are two ways in which authority can be assigned to subjects: through
authorisation and through delegation. Authorisation is the common way in which
authority is assigned to people in organisations, and it is commonly the authority of
the human resource functionaries in an enterprise to authorise employees. In current
practice, the unit of authorisation is mostly the functionary type: salesperson,
accountant, assistant accountant, secretary, trainee, etc. In the PSI theory, the unit
in which authorisation takes place is, more fundamentally and more precisely, the
(trans)actor role.

An authorisation may include the right to delegate a part of the authority to other
subjects. In the PSI theory, this part consists of the transaction steps in the transaction
kind(s) for which the delegator is authorised to respond to. The only act that can
never be delegated is the P-act.

Delegation may be used to deliberately relieve an actor of tasks, but sometimes it
is inevitable, for physical/logistic reasons. The case Pizzeria (cf. Chap. 14) is a good
example to illustrate this. Table 8.2 shows the existing transaction kinds and actor
roles. The subject who is authorised to fill the actor role ‘sale completer’ is Mama
Mia, the owner of the company. She is executor of transactions ‘sale completing’ and
initiator of transactions ‘sale paying’. This implies that she has to perform the accept
act in transactions ‘sale paying’. However, if the pizzas are delivered at the home
address of the customer, she has no other choice than to delegate this process step to
the delivery boy, who fills the actor role ‘sale deliverer’. In addition, she has to
delegate the authority to perform the declare act in transactions ‘sale completing’ to
the delivery boy, because he is the only one who has direct contact with the customer
at the customer’s home address.

8.3.3.2 Responsibility

The notion of responsibility seems to have two meanings, which we will refer to as
feeling responsible and being responsible. By nature, most people feel responsible

10See https://www.raci.com

8.3 Elaborations 151

https://www.raci.com

for using the resources offered by our planet in such a way that they will not get
exhausted, or for causing irreversible damages to the environment. Similarly, most
people feel responsible for behaving properly vis-à-vis fellow human beings. In the
context of enterprises, most people feel the social obligation to exert their authority
in the best way possible, so by acting professionally, by behaving properly towards
other actors, etc. It corresponds with the fundamental ‘social’ principle in the PSI
theory to base one’s decisions on one’s wisdom and love (cf. Sect. 8.2.3).

In our view, the meaning “being responsible” is the institutionalised version of
“feeling responsible”. If someone has been assigned a particular authority (either by
authorisation or by delegation), he or she is considered responsible for exerting this
authority in the best possible way. As a consequence, authority and responsibility
may be considered as the two sides of the same coin; none of them can exist without
the other. In Sect. 8.2.6, we applied this notion already when we spoke of the
responsibility areas of the initiator and the executor in carrying out transactions.

A related crucial notion in the PSI theory is autonomy, by which is meant that
actors may deviate from the existing rules or norms. To illustrate this important
point, let us take a purchaser in a manufacturing company as an example. Suppose
that he/she gets the advice from the ‘intelligent’ purchase system to place a purchase
order at a specific supplier. Normally, the purchaser would follow the advice, but
suppose that he/she has heard the evening before in the local bar that this supplier is
going bankrupt soon. Wouldn’t it be irresponsible to place the order? And, doesn’t
he/she have a good story to justify her/his disobeying the rule?

In order to clarify this issue, one often distinguishes in current practice between
advisory and compulsory business rules. Advisory rules can be disobeyed but
compulsory rules cannot. In the light of the foregoing discussion, the question is,
however, whether this distinction is tenable. Also with respect to compulsory rules,
there can always be a situation that requires one to deviate from the rule, in order to
act responsibly. After all, human beings are no robots.

8.3.3.3 Accountability

Responsibility seems often to be confused with accountability, which we define as
the obligation to provide justifications of one’s acts, whenever there is a need for
it. Because of the basic autonomy that actors have in the PSI theory, they are
accountable for all of their acts. So, if a particular subject is authorised to perform
certain acts, he/she is responsible and accountable for the way he/she performs the
acts, also if the authority is acquired through delegation. This becomes particularly
apparent when an actor has violated the applicable business rules (for which there
may be very good reasons, as we have seen). The actor will be held accountable for
having deviated from the rule or the norm. In such a case, sanctions may be applied,
depending on the severity of the deviation.

Related to accountability is the notion of liability, which means that an actor may
be prosecuted legally on the basis of the applicable Civil Code. With respect to
liability, there is an important difference between authorisation and delegation:

152 8 The PSI Theory: Understanding the Operation of Organisations

delegates may be held accountable for their deeds, but they are never liable. Liable is
the actor who has delegated the corresponding part of her/his authority. Therefore,
distinguishing between authorisation (often also called mandating) and delegation is
an interesting issue in every enterprise. Ultimately, the ‘big boss’ is always liable.

8.3.3.4 Competence

Although one may assign any authority to any subject, one normally would do so on
the basis of her/his competence. By someone’s competence is understood the totality
of knowledge, skills, and experience that the person possesses. Competence is thus a
capability. Based on the PSI theory, it can be divided into production competence
and coordination competence. Production competence is quite specific; it concerns
being able to bring about products of one or more kinds. On the other hand,
coordination competence is quite generic; it concerns basically the performing of
all coordination acts in the complete transaction pattern. It belongs to what are
commonly called communication skills or soft skills.

To exemplify this, let us assume that someone has acquired, for example through
education, the (production) competence of a plumber. In order to practise this
competence, he/she has to get the corresponding authority from some (institutional)
actor, for example, the boss of a plumbing company. Once this is done, he/she is
expected to exert the authority in a responsible way, and he/she is accountable for all
acts, as discussed in the previous sections. This will first of all apply to the ‘real’
plumbing work in the buildings of the clients of the company. But it also holds for
the corresponding coordination acts. More specifically, the plumber is supposed to
behave properly during contacts with the clients.

8.4 Discussions

8.4.1 Striving for Consensus and Culture

As discussed in Sects. 8.2.4 and 8.2.6, the fundamental assumption in Habermas’
theory of communicative action, and consequently of the PSI theory, is that the
participants in (business) transactions strive for consensus, thus for mutual agree-
ment. In other words, they attempt to make the transactions that they are involved in,
successful. This is the core of the notion of communicative action. Habermas
recognises, however, that this precondition is not always satisfied. Therefore, he
includes and discusses a fourth category of communicative acts, namely the
imperativa, where the claim to power is the dominant one. Habermas explicitly
presents this category outside the region of ‘proper’ coordination. This is clarified in
[20], which comprises a thorough comparison of Searle’s speech act theory [21] and
Habermas’ theory of communicative action [4], yielding the next outcomes.

8.4 Discussions 153

Because Searle overlooks the orientation towards mutual agreement, he is inca-
pable of distinguishing power claims from validity claims. He considers communi-
cation primarily as an interaction between persons who try to let one another perform
actions. A speech act thus succeeds if the course of action aimed at, is taken. In this
view, it is impossible to distinguish a situation in which the addressee acts because
he/she wants to evade sanctions, from one in which he/she responds to the demand of
the performer because he/she accepts the validity of her/his claims in a rational way.
Otherwise said, Searle’s theory is incapable of distinguishing between empirical and
rational coordination of action.

The central point of Habermas’ critique, however, is that Searle fails to reveal what
really makes a speech act work. The mechanism is that validity claims are criticisable,
stemming from the orientation of the participants towards mutual agreement, and
giving rise to negotiations about the claims made. It is particularly because of this
weakness in Searle’s theory that his taxonomy misses several important distinctions.
One of these is the distinction between speech acts that are based on power claims and
speech acts that are based on validity claims (or speech acts proper).

Whether people in organisations are engaged in communicative acts that suc-
ceed because they satisfy validity claims, or in imperative coordination, that is,
exerting the power to force others to do things, is largely a matter of culture, as
explained in [22]. Culture is defined as the whole of values, norms, convictions,
and beliefs (rational or irrational, implicit or explicit) that the members of an
organisation (and of societies at large) have learned through social interaction,
and apply in their cooperation. Cases about successful enterprise transformation,
like the famous NUMMI case [23], show that management behaviour in the form
of leadership and culture (meaning, purpose, norms, and values) are the crucial
determinants of enterprise success.

8.4.2 Other Approaches to Organisations as Social Systems

In the course of time, several ways of composing conversations into larger units are
proposed, of which the workflow loop is probably best known [24]. It also underlies
the Action Workflow approach [25]. Among other things, however, it does not
recognise the production act as a crucial part of a workflow loop and it lacks the
revocation patterns. The concept of workflow loop is therefore not as well-founded
and not as universally applicable as the (business) transaction in the PSI theory.

As discussed before, the CIAO paradigm has evolved from the communication-
centric view on information systems (cf. Sect. 8.2.1), which was developed between
1996 and 2005 by a group of researchers who called themselves the Language-
Action Perspective (LAP). In the May 2006 issue of the Communications of the
ACM, the group has presented its final achievements.11 Next to [26], which is an

11During the last meeting, in 2005, the group decided to discontinue. Some members continued
their research activities under the name “Pragmatic Web”.

154 8 The PSI Theory: Understanding the Operation of Organisations

early sketch of the PSI theory, the issue contains presentations of comparable
approaches, like for example the approach called BAT [27].

A well-known approach to systems thinking, both in general and more specifically
to organisations and information systems is the Soft Systems Methodology (SSM) by
Peter Checkland [28]. The notion that seems to come closest to that of organisation in
the PSI theory is the notion of human activity system. It is hard to compare them,
however, for many reasons, of which we present the three most important. First, SSM
does not distinguish clearly between the function and the construction perspective on
systems (cf. Chap. 7). Second, the human beings in SSM are not considered as the core
active elements of a system. Third, SSM does not provide a theoretical explanation of
the operation or behaviour of an organisation on the basis of the actions of its elements,
notably the human beings in the activity system.

Sociotechnical Systems Theory (SST) is an approach to understanding the rela-
tionship between technology, individuals, organisations and society at large in the
design of workplaces. SST includes the hardware, software, social, psychological,
political, policy, and legal systems that comprise the overall organisational system.
SST pays particular attention to internal supervision and leadership at the level of the
group and refers to it as responsible autonomy [29]. In our view, SST can be very
well combined with the PSI theory and its practical bearings through the notion of
collective actor role: a team in SST can be modelled as a collective actor role.

8.4.3 The Practical Importance of the PSI Theory

The PSI theory is meant to be, and has also proven to be over many years now, an
intellectual instrument in clearing up the massive and seemingly unrelated details
that one is faced with when trying to make sense of the observable operations of an
organisation, notably of its business processes. Being based on a general under-
standing of human cooperation, the PSI theory is applicable to every enterprise.

The most powerful innovation that the PSI theory brings to the practice of (re-)
designing, (re-) engineering, (re-) implementing, and running enterprises of any kind
and size is the understanding that the operation of every organisation is a network of
transactions, and that every transaction is some path through the universal complete
transaction pattern (CTP). In addition, every transaction is of some transaction kind,
determined by the product kind of its result, and by the two actor roles that the
subjects who carry out the transaction, fill.

A typical example of how the CTP clarifies everyday problems in doing whatever
kind of business is the case Fixit (cf. Chap. 13). It demonstrates that common
solutions to the presented organisational problems, like help desks (to deal with
customers’ complaints regarding business processes) and goods returning proce-
dures (to deal with customers’ dissatisfactions with received goods), should not be
addressed as separate problem areas, but instead be understood as integral parts of
the notion of transaction, namely as dealing with the ‘exceptional’ states declined
and rejected, and with an acceptance, a declaration, a promise, or a request being
revoked.

8.4 Discussions 155

The CTP is also a powerful tool in identifying transaction steps that are appar-
ently performed tacitly, thus for whose presence there is no evidence. Typical
examples are the promise and the acceptance. In order to avoid communication
costs, people rely from time immemorial on a no-news-is-good-news rule. However,
this rule is also a major cause of process malfunctions, because it is doomed to fade
into oblivion in the course of time. Note also that tacitly performed steps do not
appear in common business process models, since these models only contain what is
observable.

The notion of actor role, the unit of authority and responsibility, is an effective
help in unravelling the tangles of ineffective and superfluous bureaucratic measures
that are a plague to consumers and citizens. Any functionary without (either assigned
or delegated) authority is plainly redundant. Their only purpose is to shield the
responsible persons and thus to mask their responsibility. Even in simple business
processes, like in the café example discussed above, the blurring of responsibilities is
annoying. When a client, in interaction with a particular waiter, has successfully
carried out the order phase of a transaction to get something to drink or eat, she will
not be pleased when somebody else addresses her to carry out the result phase,
because it will only complicate a possible discussion in the state rejected, that is, in
case she is not satisfied with what is delivered. Unfortunately, this is the order of the
day, all over the world. It is the effect of how managers are educated. They are
mainly taught that organising is about cutting costs, achieving targets, and improv-
ing efficiency. What they fail to learn is a proper understanding of how organisations
actually work.

References

1. Mintzberg, H. (1979). The structuring of organizations: A synthesis of the research. Theory of
management policy (xvi, 512 p.). Englewood Cliffs, NJ: Prentice-Hall.

2. Bunge, M. (1979). Treatise on basic philosophy ontology II: A world of systems, in treatise on
basic philosophy 4. Dordrecht: Reidel.

3. Austin, J. L. (1962). How to do things with words. Cambridge: Harvard University Press.
4. Habermas, J. (1986). The theory of communicative action. Cambridge: Polity Press.
5. Stamper, R. K. (1973). Information in business and administrative systems (6, 362 p.). London:

Batsford.
6. Dietz, J. L. G. (2012). Red garden gnomes don’t exist. The Netherlands: Sapio Enterprise

Engineering. www.sapio.nl
7. Edmondson, W. J. (1981). Spoken discourse: A model for analysis. Longman linquistics library

(217 p.). London: Longman.
8. Grice, H. P. (1975). Logic and conversation. In P. Cole & J. Morgan (Eds.), Syntax and

semantics. Speech acts (Vol. 3). New York: Academic.
9. Grice, H. P. (1978). Further notes on logic and conversation. In P. Cole & J. Morgan (Eds.),

Syntax and semantics. Pragmatics (Vol. 9). New York: Academic.
10. Steuten, A. (1998). A contribution to the linguistic analysis of business conversations within the

language/action perspective. Delft: Delft University of Technology.
11. Winograd, T., & Flores, F. (1986). Understanding computers and cognition: A new foundation

for design (xiv, 207 p.). Norwood, NJ: Ablex.

156 8 The PSI Theory: Understanding the Operation of Organisations

http://www.sapio.nl

12. Searle, J. R. (1995). The construction of social reality (xiii, 241 p.). New York: Free Press.
13. Van Reijswoud, V. E. (1996). The structure of business communication: Theory, model and

application. Delft: Delft University of Technology.
14. Bunge, M. (1979). A world of systems. Ontology (XVI, 314 S). Dordrecht: Reidel.
15. Bergson, H. (1913). Creative evolution (XV, 425 S). London: Macmillan.
16. Habermas, J. (1984). The theory of communicative action (v). Boston: Beacon.
17. Dietz, J. L. G., & Widdershoven, G. A. M. Speech acts or communicative action? In Second

European Conference on Computer Supported Cooperative Work. Dordrecht: Kluwer.
18. Terlouw, L. (2011). Modularization and specification of service-oriented systems. In Computer

Science. Delft Univeisity of Technology.
19. Dietz, J. L. G. (2009). On the nature of business rules. In J. L. G. Dietz, A. Albani, & J. Barjis

(Eds.), Advances in enterprise engineering I. Berlin: Springer.
20. Dietz, J. L. G., & Widdershoven, G. A. M. (1991). Speech acts or communicative action? In

Second European Conference on Computer Supported Cooperative Work. Dordrecht: Kluwer.
21. Searle, J. R. (1969). Speech acts: An essay in the philosophy of language (vii, 203 p.). London:

Cambridge University Press.
22. Hoogervorst, J. A. P. (2017). Foundations of enterprise governance and enterprise engineering

(p. 574). Cham: Springer.
23. Shook, J. (2010). How to change a culture: Lessons from NUMMI. Sloan Management Review,

50(2), 63–68.
24. Denning, P., & Medina-Mora, R. (1995). Completing the loops. Interfaces, 25(3), 15.
25. Medina-Mora, R., Winograd, T., Flores, R., & Flores, F. (1992). The action workflow approach

to workflow management technology. In Conference on Computer-Supported Cooperative
Work. ACM.

26. Dietz, J. L. G. (2006). The deep structure of business processes. Communications of the ACM,
49(5), 59–64.

27. Goldkuhl, G. (2006). Action and media in interorganizational interaction. Communications of
the ACM, 49(5), 53.

28. Checkland, P., & Checkland, P. (1999). Systems thinking, systems practice: A 30-year retro-
spective (2nd ed., A66, xiv, 330 p.). Chichester: Wiley.

29. Sitter, L. U., Hertog, J. F., & Dankbaar, B. (1997). From complex organizations with simple
jobs to simple organizations with complex jobs. Human Relations, 50(5), 497–536.

References 157

Chapter 9
The DELTA Theory: Understanding
Discrete Event Systems

Abstract The DELTA theory, also called EE system theory, is a theory about the
construction and operation of systems in general. The realm of systems is divided into
three regions: organised simplicity, organised complexity, and unorganised complexity.
The definition of a (homogeneous) system is presented as a triple (ℂ,,), where ℂ
(composition) is a set of elements of some category, (environment) is a set of elements
of the same category as the elements in ℂ, and (structure) is a set of interaction bonds
among the elements in ℂ and between them and the elements in . Examples of
categories are: physical, biological, and social. Organisations belong to the category of
social systems. Three sorts of conceptual models are distinguished: black boxes, grey
boxes, and white boxes. The well-known finite automaton or finite state machine, and the
discrete event system are examples of grey boxes. For a thorough discussion of the grey
box and the white box, the PRISMA model is introduced. In this meta model, systems
are considered to be discrete event automata, operating in a linear time dimension. Its
formalised ontological model is particularly suited to study organisations. In the PRISMA
grey box, three ways of mutual influencing between (the elements of) systems are
distinguished, called activating, restricting, and impeding. The PRISMA white box
allows one to conceive organisations as prismanets: networks of processors, channels,
and banks. Prismanets are comprehensive formalised systems, open to formal analysis
and to implementation in software. They can conveniently be expressed in prismanet
diagrams. To illustrate the PRISMA model, two example prismanets are presented: one
regards a traffic control system, and the other a car rental organisation. Next, the generic
transaction prismanet is discussed. It is the understanding of the complete transaction
pattern from the PSI theory in the PRISMA model. Lastly, the quality aspects of
PRISMA models are discussed, as well as the importance of the PRISMA model for
software engineering.

9.1 Introduction

The theory in this chapter is labeledΔ-theory. The Greek capital letter is pronounced
as DELTA, which is an acronym for Discrete Event in Linear Time Automaton. It is
a theory about the construction and operation of systems, in particular of discrete

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_9

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_9&domain=pdf

event systems. In Chap. 4, the DELTA theory is classified as an ontological theory,
meaning that it is about the nature of things. It serves foremost as a solid foundation
for the other theories in this category: the PSI theory (Chap. 8), the ALPHA theory
(Chap. 11) and the OMEGA theory (Chap. 10). In addition, the DELTA theory
offers three sorts of meta models for studying systems: the black-box model, the
grey-box model, and the white-box model.

Section 9.2 (foundations) consists of three subsections. Section 9.2.1 provides an
introduction in systems theory and in systems thinking, including the ontological
system concept that is adopted in this book. In Sect. 9.2.2, the three basic sorts of
conceptual models are presented and discussed. The most primitive one is the black-
box model; it doesn’t contain any knowledge about the system’s construction and
the operation. This property makes it only suitable for studying possible function
(s) and (external) behaviour. In contrast, the white-box model of a system contains
all knowledge about its construction. It serves to study the construction of a system
(i.e. the constituting parts and their interactions) and its operation (i.e. the effects of
the interaction in the course of time). The grey-box model is a black-box model, but
with an internal state. For the class of discrete event systems, a specific (white-box)
meta model is presented and discussed in Sect. 9.2.3, called the PRISMA model. It
allows one to build comprehensive, coherent, consistent, and concise white-box
models, fully abstracted from realisation and implementation. These models are
called essential prismanets. Their corresponding grey-box models are fully
formalised, and therefore suited for formal analysis and for (discrete event) simula-
tion. The PRISMA white-box and grey-box model is illustrated by a technical
system (traffic control) and a social system (a part of a car rental company).

Section 9.3 (elaborations) starts with the presentation and discussion of the
generic transaction prismanet, which is the expression of the complete transaction
pattern (cf. Chap. 8) in the PRISMA model. Next, the quality aspects of PRISMA
models are discussed. The section ends with a discussion of the implications of the
PRISMA model for the field of software engineering. Section 9.4 (discussions)
contains a comparison of the prismanet and the Petri net.

9.2 Foundations

9.2.1 Systems Thinking

9.2.1.1 Introduction

Systems thinking is an approach to problem solving which goes hence and forth
between a global, holistic view on a system, and a detailed, specific view on its
constituting parts. It originates from several areas, including General Systems
Theory [1], Cybernetics [2], and System Dynamics [3]. Unfortunately, the practice
of systems thinking suffers often from a lack of precision, notably regarding the
notion of system itself. Instead of precise definitions, many textbooks only provide
characterisations, such as “A system is a set of related elements with some purpose”,
and “The whole is greater than the sum of its parts”. Taking the first one, our first

160 9 The DELTA Theory: Understanding Discrete Event Systems

comment is that, according to the TAO theory (cf. Chap. 7), systems don’t have
purposes; only human beings do. The second comment is that proponents of this
statement fail to separate the function and the construction perspective on systems. The
second assertion (the whole is more than its parts) points to the distinctive property of
systems as opposed to aggregates, but it has to be made more precise. In order to be
called a system, its elements must act upon each other, in such a way that the
trajectories, or processes that they cause to happen, are dependent on the mutual
influencing of the elements, that is, that they are different from what these processes
would have been if the causing elements would not interact. Or, as Bunge puts it, the
assertion is a fuzzy version of the insight that “. . . the components of a concrete system
are linked, whence the history of the whole differs from the union of the histories of its
parts” [4] (Chap. 1). If the relationships between the elements are only passive, the
thing is not a system but an aggregate. A well-known example of something that is an
aggregate, but often called a system, is the Periodic Table of Mendeleev.

Weinberg [5] divides the realm of systems into three regions: organised simplic-
ity, organised complexity, and unorganised complexity. An adapted version of his
figure 1.9 is presented as Fig. 9.1. The region of organised simplicity comprises
systems that have relatively few elements and mostly a great deal of structure.
Systems in this region can generally be studied by (mathematical and logical)
analysis. Examples are machines and other technical systems. The region of
unorganised complexity comprises systems that have a very large number of ele-
ments with mostly few structural relationships. Because of the high level of ran-
domness, systems in this region can generally be studied by statistics. Examples are
populations of animals or plants, and vessels of gas molecules. In between these two
is the region of organised complexity. It comprises systems that are too organised for
statistics and too complex to be studied by analytical methods. This region is the core
of enterprise engineering (EE): all enterprises belong to it. It is the ambition of the
Ciao! Network to shift the border between organised simplicity and organised
complexity, as indicated by the magenta curve in Fig. 9.1, and thus to make more
systems, in particular enterprises, amenable to analytic study.

ra
nd

om
ne

ss

complexity

organised
complexity

organised
simplicity

unorganised
complexity

too organised
for statistics

too complex
for analysis

Fig. 9.1 Regions of
systems with respect to
methods of thinking

9.2 Foundations 161

9.2.1.2 The Ontological System Concept

As a first step in reducing the complexity of systems, we make a distinction between
homogeneous and heterogeneous systems. Every non-trivial system is a heteroge-
neous system, which means that it is some, possibly complicated, combination of
homogeneous systems. For example, a human being is a physical system but also a
chemical and a biological one, and as a whole it is also a social individual. In order to
address its complexity, Bunge considers a heterogeneous system as a layered nesting
of homogeneous systems [4]; he suggests studying the composing homogeneous
systems first, leaving the study of the complex heterogeneous totality for later.
Hereafter, whenever the term “system” is used, a homogeneous system is meant,
according to the following definition [4]:

A (homogeneous) system can be conceived as a triple (ℂ,,), where:

ℂ is a set of elements, all belonging to the same category,

called the composition of the system;

 is a set of elements of the same category as the elements in ℂ,

called the environment of the system;

 is a set of influencing bonds among the elements in ℂ and between them and the
elements in ,

called the structure of the system.

Figure 9.2 depicts this definition. The red- and purple-coloured boxes are ele-
ments in ℂ, and the green ones are elements in . The purple-coloured closed curve
depicts the boundary of the system. It is defined as the subset of ℂ for whose
elements it holds that they are connected by structural links with elements in , in
correspondence with [6]. The elements in ℂ that are not connected to elements in
are called kernel elements. Hereafter, we will call the triple (ℂ,,) the construction
of a system.

There are three important comments to be made about the system definition
above. The first one is that a structural link between two elements means that one
of them acts upon the other, or that both do, as discussed in [7]. The second one is
that every element in ℂ must act upon or be acted upon by at least one other element
in ℂ, so that all elements in ℂ are directly or indirectly connected. Consequently,
isolated elements, or isolated clusters of connected elements, cannot exist; their
presence would violate the basic notion of system. The third comment is that the
elements in ℂ and are of the same category. Examples of system categories are:
physical, chemical, biological, and social. Only systems of the same category can
interact, systems of different categories cannot. For example, if you have something
in your mind that you want to ‘tell’ your computer in order to not forget it, it is
ultimately your homogeneous physical system (which is a part of your heteroge-
neous entirety) that interacts with the homogeneous physical system of the hetero-
geneous computer system, in particular through the physical forces that your fingers

162 9 The DELTA Theory: Understanding Discrete Event Systems

exert on the keys of the keyboard. The pressing of a key causes the generation of a
train of electrical signals that carry the code of the key that is pressed. This sequence
of signals is transmitted to etc. etc.

Based on the provided definition of system, the next definition of subsystem is in
force [4]: A thing x is a subsystem of a system y if and only if x is a system, and if:

ℂ xð Þ⊆ ℂ yð Þ
 xð Þ⊆ ℂ yð Þ∖ ℂ xð Þð Þ [yð Þð
 xð Þ⊆ yð Þ

The blue-coloured closed curve in Fig. 9.2 depicts the boundary of a subsystem of
the system whose boundary is depicted by the purple closed curve. As a corollary,
every system may have many subsystems, and can be subsystem of many systems.
Note that one cannot just view something as a system. Only systems, according to
the definition above, can be ‘viewed’ as a system. All other things can’t.

Both its elements and its subsystems are called components of a system. Conse-
quently, the composition of a system comprises both its elements, so the members of
ℂ, and all subsystems that one likes to distinguish. Therefore, the composition of a
system may be said to consist of elementary components and composite compo-
nents, keeping in mind that the latter are always built up of elementary components.
As a corollary, the structural bonds between two composite components are actually
structural bonds between elements in one composite component and elements in the
other.

Likewise, the environment of a system comprises both its elements, so the
members of , and all subsystems, built up of these elements, that one considers
useful to distinguish. In addition, the structural bonds between composite
components in ℂ and are actually structural bonds between elements in ℂ and
elements in .

construction = kernel + boundary + environment + structure

kernel
element

boundary
element

external
element

environmental
element

Fig. 9.2 Depiction of the
construction of a system and
of a subsystem

9.2 Foundations 163

9.2.2 Conceptual Models of Concrete Systems

9.2.2.1 Introduction

According to the MU theory (cf. Chap. 6), a conceptual model of a concrete system
is a conceptualisation of the system within an appropriate conceptual schema or meta
model. The conceptual model is said to be an instance of the conceptual schema.
Hereafter, we use the word “model” to refer to a model (instance) as well as to a meta
model, following the current (confusing) practice in conceptual modelling.

We will distinguish three sorts of conceptual models: black-box models, grey-box
models, and white-box models. They will be discussed in Sects. 9.2.2.2, 9.2.2.3, and
9.2.2.4, respectively. Their distinction is related to the fundamental difference
between the function and the construction perspective on things, as explained in
the TAO theory (cf. Chap. 7). Figure 9.3 shows the construction perspective on a car
(right), and a particular function perspective, namely the driving function (left). Both
models are extensively discussed in Chap. 7.

White-box models are suited for studying the construction and the operation of
systems. The white-box model on the right side of Fig. 9.3 is actually only the
decomposition of a car in its subsystems, sub-subsystems, etc., disregarding the
structure of the system. It resembles a Bill-of-Material (BoM). Black-box models
are suited for studying the behaviour of systems and their possible function(s).
The black-box model on the left side of Fig. 9.3 is the decomposition of the
driving function of a car into subfunctions, sub-subfunctions, etc. Grey-box
models are black-box models with an internal state. Examples will be given in
Sect. 9.2.2.3.

With reference to Fig. 9.1, the only thing one can do in the region of unorganised
complexity is black-box modelling, and the best one can hope for is to find
correlations between (functional) variables. In the region of organised simplicity,
one has the option to apply white-box modelling, and thus to discover the causal
relationships between system acts and observable effects. Consequently, one can
acquire a deeper understanding of a system, not only from the construction perspec-
tive, but also from the function perspective.

car

body wheels engine lamps

doors chairs cylinders valves

driving

powering steering lighting

igniting regulating direction

seating

general

Fig. 9.3 The function and the construction perspective on cars

164 9 The DELTA Theory: Understanding Discrete Event Systems

9.2.2.2 The Black-Box Model

A black-box model of a concrete system is a conceptual model of the system that
disregards completely the construction and the operation of the system (this explains
the name “black box”). Therefore, black-box models are only suited to study the
behaviour of systems, expressed in relationships between the functional variables
that one chooses to study. Well-known examples of black-box models are economic
models. They are commonly expressed in differential equations concerning a num-
ber of (economic) variables.

Basically, the knowledge of a concrete system that is contained in a black-box
model is the relationship between the input flow i and the output flow o in the course
of time (t). In formal notation: o ¼ B(i, t). Both flows are time series of values of
(functional) variables. Figure 9.4 (left side) exhibits the common graphical repre-
sentation of a black-box system. The behaviour function B is often not or only
partially known, meaning that one only knows that the output flow o at time t is
somehow the effect of the input flow i before t. It is always possible to decompose a
black-box model into a network of connected black-box models (cf. Chap. 7). A
well-known example of such a functional decomposition is the control model [8], as
applied for example in cybernetics and biology.

i o

i

o

Fig. 9.4 The black-box model (left) and a decomposition (right)

Buy
Supplies

Cultivate

Extract
Seeds

Seed & Vegie
Prices

Plan &
Budget Weather

Plan

Budget

Fertilizer

Seeds

Plants

Vegetables

Pick
Produce

Vegetables

Grow Vegetables

Buyu
Supplie

yy
s

Cultivate

Extract
Seedsdd

Seed & VeVV gie ii
Prices

Plall n &
Budget Weather

Plan

Budget

Fertilizer

Seedsdd

Plants

Vegetables

Pick
Produce

Vegetables

Growrr Vw ggegeVV tablett s

Money

Fig. 9.5 Example of an
SADT activity diagram

9.2 Foundations 165

A widely used technique for representing black-box models, including their
decomposition, is SADT (Structured Analysis and Design Technique), developed
by Douglas T. Ross [9], and included in many structured analysis and design
methods. Figure 9.5 shows an example of an SADT activity diagram. It is important
to recognise that the diagram represents only a functional understanding of the
activity of growing vegetables. There is no hint whatsoever to the construction of
a system that is able to exhibit this behaviour. As another example, it is not very
difficult to make a functional model of a coffee machine along the lines of Fig. 9.5.
In fact, we all have some functional (black-box) model of the systems we daily use,
like coffee machines, ATMs, and cars. As is illustrated for cars in Sect. 9.2.2.1 and in
Chap. 7, there is no straightforward mapping between functional (black-box) models
and constructional (white-box) models, because they are of a fundamentally different
nature.

9.2.2.3 The Grey-Box Model

The grey-box model is a black-box model with an internal state [4]. Consequently,
the behaviour is now determined by three variables: the flow of input items i, the
flow of output items o, and the state of the system s, next to time (t). The behaviour
function is formally defined as: o ¼ B(i, s, t). Figure 9.6 exhibits the common
graphical representation of a grey-box model (left side) and of a possible decompo-
sition (right side).

A well-known specialisation of the grey-box model is the finite automaton (FA),
often also called finite state machine (FSM). A finite automaton is a mathematical
model of a system with discrete inputs and outputs, and with discrete states. By this
is meant that the system is at any point in time in some state, and that the state space
is finite (or denumerable infinite). State changes or transitions occur on an input from
a finite (and commonly small) set of possible inputs. Usually, there is an initial state
and there are one or more final or terminal states. FAs are mostly associated with the
way in which they are commonly represented, namely the state transition diagram
(STD), which we will use in Fig. 9.8.

Another well-known specialisation of the grey-box model is the discrete event
system (DES). A discrete event system is a discrete-state, event-driven conceptual
system (cf. Chap. 6). The notion of discrete-state is similar to the notion of state in an

i o

i

os

s

s

s

s

ss

Fig. 9.6 The grey-box model (left) and a decomposition (right)

166 9 The DELTA Theory: Understanding Discrete Event Systems

FA. By event-driven is meant that the system responds to the occurrence of particular
input events [10]. The number of distinct events may be denumerable infinite. Many
concrete systems, in particular logistic systems, information systems, and organisa-
tions, can be conceived as discrete event systems. The notion of discrete event
system is often considered to be identical to the notion of grey-box model
[4]. This is not true, however, because in a grey-box model one does not require
that the input to which the system responds, consists of discrete events. As an
example, the variables in economic (grey-box) models are mostly not discrete but
continuous.

Typical problems that are studied by means of discrete event models are stochas-
tic systems, like customers in supermarkets and cars at fuel stations. To get deeper
insight into the behaviour function, discrete event simulation is often applied [10].

The grey-box model of a discrete event system can mathematically be defined as a
tuple (B, O, I, S), where:

B is a partial function, called the behaviour function
O is a set of items, called the output base
I is a set of items, called the input base
S is a set of items, called the state base
B is defined as: ℘I � ℘S ! ℘(O �)

The (mathematical) extension of B is a set of rules of the form (I, S, R), where:

I is the current input; I ⊆ I
S is the current state; S ⊆ S
R is the response: a set of pairs (o, d) with o 2 O and d 2 ; d is a time delay; its

effect is that o becomes existent at the point in time t ¼ Now + d, where Now is
the time of executing the rule.

(Note: for an explanation of the mathematical symbols, see Sect. 9.2.3.1.)

Illustration: Traffic Control System
To illustrate the grey-box system, more specifically the FA, we take a traffic control
system (TCS) at a simple crossover, as shown on the left side in Fig. 9.7. Suppose
that you are asked to produce first a black-box model and then a grey-box model of
the TCS. The black-box model that you may arrive at, after having observed the
traffic control system for some time, is shown to the right of it. Theoretically, there
are nine possible outputs: R1R2, R1G2, R1Y2, G1R2, G1G2, G1Y2, Y1R2, Y1G2,
and Y1Y2, where R denotes red light, G denotes green light, Y denotes yellow light,
1 denotes Cycle 1, and 2 denotes Cycle 2. Four of them do not occur however, and
are therefore struck out above. The five remaining outputs are shown on the right
side in Fig. 9.7. The arrows indicate the order in which the outputs occur. The
additional knowledge of the behaviour function B, which you can deduce from
observing the traffic lights and the traffic, is that the transition R1G2 ! R1Y2 is
influenced by arriving and/or waiting traffic in Cycle 1 (but you don’t know exactly
how). Likewise, the transition G1R2 ! Y1R2 is influenced by arriving and/or
waiting traffic in Cycle 2.

9.2 Foundations 167

In order to produce a grey-box model, one has to conceive an internal state of the
system. With this new meta model in mind, one is able to acquire the next, advanced,
knowledge (cf. Fig. 9.8). If the output R1G2 is produced, it will stay for at least a
minimum amount of time. Let us call this the (standard) move time for Cycle
2, abbreviated to MT2. As long as there is no traffic waiting in Cycle 1, this output
is prolonged. However, as soon as the (standard) move time for Cycle 2 has passed,
and there is traffic waiting for red light in Cycle 1, the output R1Y2 will be produced.
This output appears to hold on for a fixed amount of time, which we will call the stop
time for Cycle 2 (ST2). After the stop time has elapsed, the light in Cycle 2 becomes
red. However, also the light in Cycle 1 remains red for some fixed amount of time.
Let us call this amount of time the clear time of Cycle 2 (CT2), meaning that it is
meant for clearing the crossing from traffic in Cycle 2. The output R1R2 is produced.
After the clear time has elapsed, the output G1R2 is produced. And then the whole
story is repeated, with the cycles exchanged. In order to cope with these observa-
tions, you distinguish the next different states: W1M2, W1P2, W1S2, C1W2,
M1W2, P1W2, S1W2, and W1C2, where W stands for “waiting”, M for “(standard)
moving”, P for “prolonged (moving)”, S for “stopping”, and C for “clearing”. The
state transitions occur in the order as exhibited in Fig. 9.8. At the top of the figure, the
outputs (traffic lights) are shown that correspond with the states of the system.

Cycle 1

Cycle 2

R1 Y2 R1 G2

R1 R2

Y1 R2 G1 R2

Fig. 9.7 Picture of the TCS
(left) and its black-box
model (right)

Fig. 9.8 STD of the grey-box model of the TCS

168 9 The DELTA Theory: Understanding Discrete Event Systems

The choice between transiting from W1M2 to W1P2 or to W1S2 depends on the
presence of traffic in Cycle 1. If traffic arrives in the state W1M2, then the transition
to W1S2 is made, but only after MT2 time units have elapsed since the beginning of
the state W1M2. Otherwise the transition to W1P2 is made. As soon as traffic in
Cycle 1 arrives in this state, the transition to W1S2 is made immediately. The
system remains in this state for ST2 time units. Then, the transition to C1W2 is
made, which takes CT2 time units. After this time has elapsed, the transition to
M1W2 is made. Similar observations hold for the transitions from M1W2 to P1W2
or S1W2.

9.2.2.4 The White-Box Model

The white-box model of a system is a conceptual model that allows one to study the
construction of the system, thus the triple (ℂ, ,) as discussed in Sect. 9.2.1.2, as
well as its operation, that is, the way in which the elements in ℂ and the elements in
 interact, through the bonds in . Consequently, one is able to reveal the
‘mechanism’ that makes it ‘tick’. The behaviour that the ‘mechanism’ causes to
occur can be studied with a grey-box (or black-box) model of the system, as we have
seen above.

For a proper discussion of the white-box system, we introduce the notion of
world. With every white-box model of a concrete system, a world is associated,
where the acts of the (elements of the) system have their effect. At any point in time,
the world of a system is in some state. A state is simply defined as a set of facts. A
state change is called a transition. It consists of the addition and/or removal of one or
more facts.

The state of a white-box system differs from the state of a corresponding grey-box
system. For a grey-box system, the state concept is an instrument to better under-
stand the behaviour of the system. For a white-box system, the state concept is an
instrument to better understand its operation. The relationship between behaviour
and operation is that the behaviour of a concrete system (which can be studied by
using a black-box or grey-box model) is brought about by the operation of its
construction (which can only be studied by using a white-box system).

Next to the state of the world of a system, there is the state of the system itself. By
the state of a system at a point in time t we understand the particular triple (ℂ, ,) at
time t (cf. Sect. 9.2.1.2). In the course of time, the composition or the environment or
the structure may change. Within EE, such changes are considered to be the effect of
acts by another system, whose world contains facts that represent the elements in ℂ,
, and . This other system is commonly called the governance system of the system
under consideration [11, 12]. In the DELTA theory, we confine ourselves to studying
systems in some system state, that is, we assume a fixed construction (ℂ, ,).
Proper illustrations of the white-box model will be provided after the PRISMA
model is discussed (in the next section).

9.2 Foundations 169

9.2.3 The PRISMA Model

9.2.3.1 Introduction

In the next subsections, we will present and discuss a meta model for discrete event
systems called the PRISMA model, which builds on the SMART model [13]. It
comprises a grey-box and a white-box (meta) model. The PRISMA model is suited
for studying discrete event systems, both technical systems, thus systems in which
the elements are non-human, and social systems, that is, systems in which the
elements are human. An important subclass of social systems is organisations, as
discussed in the PSI theory (cf. Chap. 8). Therefore, one may consider the PRISMA
model as a (mathematical-logical) formalisation of the PSI theory.

In addition, it appears that many technical systems are actually social systems,
only technically implemented. Well-known examples are (automated) enterprise
information systems (cf. Chap. 11), but also ATMs, elevator control systems,
vending machines, web shops, and traffic control systems. Consequently, these
systems can be very well understood and studied within the PRISMA model.

We distinguish three ways in which systems influence each other, called activat-
ing, restricting, and impeding. By activating is understood that a system creates
events to which other systems respond by creating state changes and/or events.
When responding to an event, a system takes the current state of its world into
account. The state of a system’s world can be changed by the system itself, but also
by other systems. This passive way of mutual influencing is called restricting, since
the effect is that a system’s response space is restricted (note that a system is not
‘aware’ of state changes until it is activated—only then will it ‘see’ the new state).
By impeding is understood that a system creates events for whose occurrences other
systems have to wait before they can continue what they were doing. Because of the
three ways of mutual influencing, systems within the PRISMA model are said to
communicate asynchronously.

In the remainder of this document, set theory and logic are applied when
considered useful. For the convenience of the reader, we list below the symbols
that are used, with their meanings.

x in general, small letters denote elements (of sets)
X in general, capital letters denote sets
2 membership of a set; x 2 A means that x is an element of A
=2 negation of membership; x =2 A means that x is not an element of A
∅ empty set; A ¼ ∅ means that for all x: x =2 A
⊆ subset; A ⊆ B means that A is a subset of B; for all x: x 2 A) x 2 B
[union; A [B is the set of elements x for which holds: x 2 A or x 2 B
\ intersection; A \ B is the set of x for which holds: x 2 A and x 2 B
\ set difference; A\B is the set of elements x for which holds:

x 2 A and x =2 B
Δ symmetric set difference; A Δ B ¼ (A \ B) [(B \ A)
� Cartesian product of a set; A�B is the set of tuples (x, y)

with x 2 A and y 2 B

170 9 The DELTA Theory: Understanding Discrete Event Systems

℘ powerset; ℘A is the set of all subsets of A
f: A ! B (mathematical) function f with domain A and range B.
x variable to denote a type (of acts or facts);

a type is a unary predicate in logic, for example, person or dog.
X variable to denote the class that is the extension1 of the type x
X variable to denote the union of the extensions of all x 2 X
^ logical conjunction (also denoted by and)
_ logical (inclusive) disjunction (also denoted by or)
ct(f) creation time of fact f
et(f) effectuation or event time of fact f

For a proper discussion of the PRISMA model, a discrete linear time dimension is
adopted, which means that we consider the time axis to be divided into distinct time
units of arbitrary but equal length.2 Every such time unit on the time axis is called a
point in time. Events only occur on (or in) these points in time, and they take place
instantaneously, that is, within the duration of the point in time. An event is defined as
the becoming existent (or ceasing to exist) of a fact at some point in time. As
mentioned above, facts have a creation time (ct) and an effectuation or event time (et).

The notion of a discrete linear time scale, for any time unit, can be formalised in
the following way:

 the (ordered) set of real numbers
 the (ordered) set of natural numbers
 : ! the (ordered) set of discrete points in time; we will use tn as a

shorthand for (n); the time difference between any tn + 1 and tn is
the same; it is called the time unit (tu)

Now the current point in time; Now 2 , so Now is always some tn
 the set of (positive) time durations; for every d 2 , it holds that

d ¼ k � tu with k 2

From now on, we mean by a point in time t an element tn 2 .

9.2.3.2 The PRISMA Grey-Box Model

The distinction that we have made in the PSI theory (cf. Chap. 8) between the things
that constitute its core, thus its production (or P-) acts/facts, and the things that serve
to make them happen, thus the coordination (or C-) acts/facts, appear to have a
general applicability. Therefore, the same distinction is made in the PRISMA model.
The only difference is that they are now not connected in larger structures of
conversations or transactions.

1The extension of a type is the set of objects that conform to the type (cf. Chap. 5).
2The duration or length of the applied time unit will depend on the application domain. Therefore, it
may vary from nanoseconds or microseconds (for technical systems) to hours or days (for
enterprises).

9.2 Foundations 171

The PRISMA grey-box model can best be considered as an extended ‘normal’
grey-box model, as discussed in Sect. 9.2.2.3. The extension is that it comprises
process dependency next to state dependency. It means that the response to an input
item does not only depend on the current state, but may also depend on the
occurrences of (past or future) input or output events.

A prisma can formally be defined as a tuple (P, R, I, S, M, A), where:

P is a partial function, called the performance function
R is a set of C-fact types, called the reaction base
I is a set of C-fact types, called the impediment base
S is a set of P-fact types, called the state base
M is a set of P-fact types, called the mutation base
A is a set of C-fact types, called the action base

P is defined as: ℘((A [I)) �) � ℘ (S �) ! ℘ (M �) � ℘ (R �)

At every point in time, a prisma disposes of a set of agenda.3 An agendum is a
pair (c, t), in which c is a C-fact and t is its event time. The C-fact belongs to the
extension4 of the action base or the impediment base. The set of agenda c with et
(c) ¼ t, is called the trigger at time t (note: commonly the trigger will be a singleton
set). Considering impediments as potential agenda allows us to deal with impedi-
ments in a simple way: we consider them to be agenda, similar to real agenda, that is,
to elements in the extension of the action base. If the settling of a real agendum, that
is, a pair (c, t), in which c is an element of A, has to wait for an impediment, the
prisma will skip this agendum and settle the impediment, once it has occurred. The
having occurred of the real agendum then becomes a state condition for settling the
impediment event.

A prisma responds to a trigger instantaneously, so within the duration of the point
in time t. As the effect of settling a trigger, a finite set of P-events is created, called
the mutation, and a finite set of C-events, called the reaction. The set of P-fact types,
whose instances can belong to a mutation, is called its mutation base. The set of
C-fact types, whose instances can belong to a reaction, is called the reaction base.

The response to a trigger is generally dependent on the state of the P-world, which
is a set of P-facts. The set of P-fact types, instances of which can belong to a state, is
called the state base of the prisma.

The (mathematical) extension of P is a set of performance rules of the form (A, S,
M, R) where:

A is the agenda; A ⊆ (A [I) �
the trigger at time t is {f 2 A: et(f) ¼ t}

S is the state; S ¼ {(f, t) with f 2 S and t 2 }
M is the mutation: a set of pairs (m, d) with m 2 M and d 2
R is the reaction: a set of pairs (r, d) with r 2 R and d 2

3The word ‘agenda’ is the plural form of the Latin word ‘agendum’, meaning ‘thing to be done’. So,
agenda are ‘to do’ items.
4The extension of a type is the set of objects that conform to the type (cf. Chap. 5).

172 9 The DELTA Theory: Understanding Discrete Event Systems

The delay d in a pair (m, d) or (r, d) is an occurrence delay; it means that the P-fact
m or the C-fact r becomes effective at the event time t ¼ Now + d, where Now is the
point in time at which the performance rule is executed. As said, {f 2 A: et(f) ¼ t} is
commonly a singleton set, thus a set containing only one element. Note that the state S
at time t comprises existing facts (with et(f) � t) and future facts (with et(f) > t).

On the basis of their formal definition, the mutual influencing of prismas as
discussed in Sect. 9.2.3.1, can be described more precisely as follows.

A prisma1 activates a prisma2 if R1 \ A2 6¼ ∅ (so if R1 and A2 overlap). If this is
the case, then all C-events in a reaction of prisma1, of which the C-fact belongs to this
intersection, are instantly added to the agenda of prisma2. If prisma1 and prisma2 are
identical, we speak of self-activation. Through self-activation, periodic activities can
be modelled conveniently. If this is the case, the period equals the settlement delay.

A prisma1 restricts a prisma2 ifM1 \ S2 6¼∅ (so ifM1 and S2 overlap). If this is
the case, then every P-event in a mutation of prisma1 of which the P-fact belongs to
this intersection, affects the state of prisma2, at its event time. The way in which the
state of prisma2 is affected by a mutation is defined as follows. If S1 is the state of
prisma2 before applying a mutation M (at its event time), and S2 is the state
afterwards, then S2 ¼ S1 Δ M. (Δ is the symmetric set difference, cf. Sect. 9.2.3.1).
If prisma1 and prisma2 are identical, we speak of self-restricting. This is the classical
concept of the state of a world (where only the system itself can make changes).

A prisma1 impedes a prisma2 ifR1 \ I2 6¼∅ (so ifR1 and I2 overlap). If this is the
case, then all C-events in a reaction of prisma1 of which the C-fact belongs to this
intersection, are instantly added to the impediments of prisma2. Consequently,
prisma2 may have to wait with responding to an action until one or more impediments
have occurred. Self-impeding is ignored, because it doesn’t seem to make sense.

If the action base A of a prisma consists of one fact type, the prisma is called
elementary. The action bases of elementary prismas are disjoint. A composite prisma
is a collection of elementary prismas. The specification of a composite prisma in
terms of its constituting elementary prismas is simple: every component of the tuple
(P, R, I, S, M, A) of a composite prisma is equal to the set-theoretic union of the
corresponding components of the constituting elementary prismas.

Illustration: Traffic Control System
Let us take the Traffic Control System from Sect. 9.2.2.3 to exemplify the PRISMA
grey-box model. From the STD in Fig. 9.8 and the accompanying explanation, we
deduce the next components of the tuple (P, R, I, S, M, A):

A ¼ {let_pass(Cycle)}
I ¼ ∅
S ¼ {phase(Cycle), move_time(Cycle), stop_time(Cycle), clear_time(Cycle)}
R ¼ ∅
M ¼ {phase(Cycle)}

In this specification, the variable Cycle has the value cycle1 or cycle2. The value
of phase(Cycle) is W1M2 or W1P2 or W1S2, etc. let_pass(Cycle) is the external
trigger to which the prisma responds (cf. Fig. 9.8). A phase change takes place if the
mutation of the prisma contains a new P-fact of the type phase(Cycle). Next to the

9.2 Foundations 173

current phase of each of the cycles, the state also includes the current values of the
parameters (move_time, stop_time, and clear_time) for each of the cycles.

Table 9.1 exhibits the performance function P that can be deduced from the grey-
box model in Sect. 9.2.2.3. The agenda column contains the triggers to settle. The
state column contains logical propositions concerning the state of the production
world, and the mutation column contains the state changes to be effectuated.

The table presents the situation that traffic is arriving in cycle1. A similar table
applies for the situation that traffic is arriving in cycle2, by exchanging cycle1 and
cycle2. Occurrence delays are specified by a value between “[” and “]”. If no
occurrence delay is specified, the default value is assumed (which is 1 time unit).
The abbreviations have the following meanings: MT (Cycle) stands for the standard
move time in Cycle, ST (Cycle) for the stop time in Cycle, and CT (Cycle) for the
clear time in Cycle. The meaning of the delay D is explained later on.

The trigger to be settled is let_pass(cycle1). If the current state (at time t)
comprises the facts <phase(cycle1) ¼ waiting> and <phase(cycle2) ¼ moving or
prolonged_moving>, both with an event time in the past or present (et(f) � t), and
there is not already a future stopping for cycle2 (with et(f) > t, caused by another
car), then the rule is executed; otherwise nothing happens. The response of executing
the rule is the specified mutation. It says that the phase of cycle2 will become
‘stopping’ after D time units. The delay D is defined as follows: D ¼ max (0, (MT
(cycle2) � (Now � ETM)), where ETM ¼ et(phase(cycle2) ¼ moving), the point in
time at which the phase of cycle2 started to be moving. The mathematical expression
is clarified in Fig. 9.9. If the current time is Now1, then the delay is the time
represented by the blue line. If the current time is Now2, then the delay is zero.

In addition, the mutation contains the state changes phase(cycle2) :¼ waiting
[D + ST(cycle2)] and phase(cycle1) :¼ moving [D + CT(cycle2)]. These occurrence
delays are also clarified by Fig. 9.9.

Table 9.1 The performance function of the TCS

agenda state mutation

let_pass(cycle1) phase(cycle1) ¼ waiting
phase(cycle2) ¼ moving or
prolonged_moving) and
there is no future event
phase(cycle2) ¼ stopping)

phase(cycle2) :¼ stopping [D]
phase(cycle2) :¼ waiting [D + ST(cycle2)]
phase(cycle1) :¼ moving [D + CT(cycle2)]

Fig. 9.9 Explanation of the time delay D

174 9 The DELTA Theory: Understanding Discrete Event Systems

9.2.3.3 The PRISMA White-Box Model

The influencing relationships among a collection of prismas can be made more
comprehensible if the collection is conceived as a prismanet. A prismanet is a
white-box system, wherein the construction (ℂ,,) comprises three kinds of
components: processors, banks, and channels. The components in the composition
ℂ and in the environment are processors. The structure consists of banks and
channels and of the various links that connect them with the processors in ℂ and in .

Processors are the ‘motors’ of prismas. The motor of an elementary prisma is an
elementary processor, and the motor of a composite prisma is a composite proces-
sor. The operation of a processor is fully determined by the performance function
P of the corresponding prisma (i.e. the prisma of which it is the motor).

Channels are used to transmit and keep C-events. A channel Cn is determined by
its transmission base TB, which is the set of C-fact types whose instances it can keep
and transmit. The set of C-events in a channel at time t, is called the contents of the
channel at time t. The channel metaphor runs as follows. Suppose processor Pi
creates at time t the pair (c, d), where c is a C-fact and d is the occurrence delay. The
metaphor then is that Pi ‘puts’ c in a channel at time ct(c) (the creation time of c) and
that c ‘arrives’ at a processor Pj at the event time et(c)¼ t + d. On arrival, it is settled
instantaneously. Every transmitted C-event remains in the channel, because it may
be an impediment for one or more (other) prismas. If the transmission base consists
of one C-fact type, the channel is called a single channel. The transmission bases of
the single channels in a prismanet are disjoint. A collection of single channels is
called amultiple channel. The transmission base of a multiple channel is the union of
the transmission bases of the composing single channels.

Banks are used to keep P-events. A bank Bk is determined by its contents base
CB, which is the set of P-fact types whose instances it can contain. The set of
P-events in the bank at some time is called the contents of the bank at that time. If the
contents base consists of one P-fact type, the bank is called a single bank. The
contents bases of the single banks in a prismanet are disjoint. A collection of single
banks is called a multiple bank. The contents base of a multiple bank is the union of
the contents bases of the composing single banks.

A channel Cn is called an action channel of processor Pj if the transmission base
of the channel is a subset of the action base of the prisma of which processor Pj is the
motor, so if TB(Cn)⊆ Aj. The settling of an action may be impeded by one or more
C-events or P-events. It means that the processor has to wait until these events have
occurred. A Processor Pj is impeded by C-events in a channel Cn if the transmission
base of the channel is a subset of the impediment base of the prisma of which
processor Pj is the motor, so if TB(Cn) ⊆ Ij. If so, the channel Cn is called an
impediment channel of processor Pj.

As the result of settling an action, processor Pi creates a (possibly empty) set of
P-events, called the mutation. They are put in every bank Bk of which the contents
base is a subset of the mutation base of the prisma whose motor is processor Pi, so of
which CB(Bk) ⊆ Mi. If so, bank Bk is called a mutation bank of processor Pi.

9.2 Foundations 175

In addition, processor Pi creates a (possibly empty) set of C-events, called the
reaction. They are put in every channel Cn of which the transmission base is a subset
of the response base of the prisma whose motor is processor Pi, so of which TB
(Cn) ⊆ Ri. Consequently, channel Cn is called a reaction channel of processor Pi.

When dealing with a C-event, a processor Pj may take P-events that are kept in
one or more banks into account. This holds for bank Bk if its contents base is a subset
of the state base of the prisma of which processor Pj is the motor, so if CB
(Bk) ⊆ Sj. Consequently, bank Bk is called an inspection bank of processor Pj.

The operation of a processor must be understood as follows. Processors con-
stantly loop through their operating cycle, of which the cycle time is equal to or less
than the time unit (cf. Sect. 9.2.3.1). In every cycle, the processor ‘sees’ the current
trigger (if any) and brings about a response by evaluating the corresponding
performance rule.

9.2.3.4 The Prismanet Diagram

The understanding of a prismanet may be enhanced by expressing it in a prismanet
diagram (cf. Fig. 9.10).

Processors, banks, and channels are respectively represented by boxes, diamonds,
and disks, as shown in the top part of the figure.

Channels are connected to processors by four kinds of links: reaction links, action
links, inspection links, and wait links. A reaction link connects a processor with one
of its reaction channels. An action link connects a processor with one of its action

Fig. 9.10 Legend of the prismanet diagram

176 9 The DELTA Theory: Understanding Discrete Event Systems

channels. An inspection link connects a processor with one of its inspection chan-
nels. A wait link connects a processor with one of its impediment channels. Banks
are connected to processors by two kinds of links: mutation links and inspection
links. A mutation link connects a processor with one of its mutation banks. An
inspection link connects a processor with one of its inspection banks.

From a prismanet diagram, one can directly deduce that for an elementary prisma
with processor Pj as its motor:

• The action base Aj is the union of the transmission bases of its action channels.
• The impediment base Ij is the union of the transmission bases of its impediment

channels.
• The state base Sj is the union of the content bases of its inspection banks and the

transmission bases of its inspection channels.
• The reaction base Rj is the union of the transmission bases of its reaction

channels.
• The mutation base Mj is the union of the content bases of its mutation banks.

Illustration: Traffic Control System
To illustrate the PRISMA white-box model for the traffic control system (TCS),
Fig. 9.11 exhibits its prismanet diagram. The light-grey coloured frame represents
the Scope of Interest (SoI). It means that one is exclusively interested in the
operation of the processors within the SoI. They are therefore called internal pro-
cessors, whereas the composite processors CP1 (traffic participant) and CP2 (traffic
control manager) are called environmental processors. To show this, their boxes are
coloured light-grey. Channel C1 is a reaction channel of CP1 and an action channel
of P1. Bank B1 is a mutation bank and an inspection bank of P1, as well as an
inspection bank of CP1. The banks B2, B3, and B4 are mutation banks of CP2 and
inspection banks of P1.

The traffic participants take note of the phase of each cycle (by looking at the traffic
lights) and generate let_pass commands (by passing a sensor in the road). There is a
traffic control manager, who is able to change the control parameters of each of the
cycles: move time, stop time, and clear time (through updates of their values).

Fig. 9.11 Prismanet
diagram of the TCS

9.2 Foundations 177

Processor P1 responds to let_pass commands by bringing about the appropriate phase
changes, according to the performance function that is exhibited in Table 9.1.

From the diagram in Fig. 9.11, together with the discussion in Sect. 9.2.3.2 and
the explanation in Fig. 9.9, one can easily verify the following specifications of the
action base, the impediment base, the state base, the mutation base, and the reaction
base of the prisma with motor P1:

A1 ¼ TB(C1) ¼ {let_pass(Cycle)}
I1 ¼ ∅
S1 ¼ CB(B1) [CB(B2) [CB(B3) [CB(B4) ¼ {phase(Cycle),

move_time(Cycle), stop_time(Cycle), clear_time(Cycle)}
M1 ¼ CB(B1) ¼ {phase(Cycle)}
R1 ¼ ∅

In the specification of the performance function of the TCS (cf. Table 9.1), P-facts
are referred to by a particular value of the variable Cycle, for example, as in “phase
(cycle1) ¼ moving”. In the specification of a contents base, only the variable is
mentioned, as in CB(B1)¼ {phase(Cycle)}. To be complete, one should also add the
value class for each variable. As an example, these are the value classes for the
variables that are used in the case TCS:

phase(Cycle) : {moving, prolonged_moving, stopping, waiting}
move_time(Cycle) :
stop_time(Cycle) :
clear_time(Cycle) :

9.3 Elaborations

9.3.1 Specification of the PRISMA Model of Rent-A-Car

In this section, we use a slightly adapted version of the case Rent-A-Car
(cf. Chap. 15) for illustrating the application of the PRISMA model to organisations.
We will first discuss the white-box model and then the grey-box model.

9.3.1.1 The White-Box Model of Rent-A-Car

Figure 9.12 exhibits the prismanet diagram of a part of the Rent-A-Car organisation.
It regards the settling of requests for concluding a rental contract, according to the
PSI theory (cf. Chap. 8) and the generic transaction prismanet in Fig. 9.13.

The system consists of six elementary processors, eight single channels, three
multiple banks, and one single bank. The interface with the environment consists of

178 9 The DELTA Theory: Understanding Discrete Event Systems

the action channel C1, the reaction channel C2, the impediment channel C3, the
mutation bank B1, as well as the multiple inspection banks MB1, MB2, and MB3.

The processors outside the SoI, so the environmental processors, have been
omitted, for the sake of simplicity. For the same reason, the revocation options are
left out (cf. Chap. 8). Moreover, the multiple banks MB1, MB2, and MB3 are
connected through inspection links with the border of the SoI. This is a convenient
way to express that they are inspection banks of all internal processors. Their content
bases are respectively denoted as CB(MB1), CB(MB2), and CB(MB3).

From the diagram in Fig. 9.12, one can easily deduce the specification of the
components A, I, S, R, and M, of the corresponding internal prismas. As an
example, we provide the specifications of prisma1 (with processor P1 as its motor):

A1 ¼ TB(C1) ¼ {request ([rental] is completed)}
I1 ¼ ∅
S1 ⊆ CB(MB1) [CB(MB2) [CB(MB3)
M1 ¼ ∅
R1 ¼ TB(C2) [TB(C4) [TB(C6) ¼ {request ([rental] is paid),

decline ([rental] is completed), promise ([rental] is completed)}

Note. Without knowing precisely the performance function P1, we cannot be
more specific about S1 than only stating that it is a subset of some other set. The
reader is challenged to formulate S1 precisely after the specification of P1 is
presented in Sect. 9.3.1.2.

Fig. 9.12 Prismanet diagram of a part of the Rent-A-Car organisation

9.3 Elaborations 179

9.3.1.2 The Grey-Box Model of Rent-A-Car

On the basis of Fig. 9.12, we specify in Table 9.2 the performance function of
prisma1 (with motor P1). As the specification language, we use a table form and a
‘structured English’ like language, which resembles the one that is applied in [14].

Table 9.2 Specification of prisma1 in the Rent-A-Car organisation

action request ([rental] is completed)

with starting_day[rental] : DAY

ending_day[rental] : DAY

renter[rental] : PERSON

driver[rental] : PERSON

car_group[rental] : CAR_GROUP

pick-up_location[rental] : BRANCH

drop-off_location[rental] : BRANCH

impediments Ø

state starting_day[rental] rental_horizon (year(starting_day [rental])) and
ending_day[rental] rental_horizon(year (starting_day [rental])) and
ending_day[rental] ≥ starting_day[rental] and
duration[rental] ≤ max_rental_duration(year (starting_day [rental]))

and
#{cars in car_group[rental] on starting_day[rental] } > 0

mutation

reaction

Ø

promise ([rental] is completed)

request ([rental] is paid)

action request ([rental] is completed)

with starting_day[rental] : DAY

ending_day[rental] : DAY

renter[rental] : PERSON

driver[rental] : PERSON

car_group[rental] : CAR_GROUP

pick-up_location[rental] : BRANCH

drop-off_location[rental] : BRANCH

impediments Ø

state starting_day[rental] rental_horizon (year(starting_day [rental])) or
ending_day[rental] rental_horizon(year (starting_day [rental])) or
ending_day[rental] < starting_day[rental] or
duration[rental] > max_rental_duration(year (starting_day [rental]))

or
#{cars in car_group[rental] on starting_day[rental]} ≤ 0

mutation

reaction

Ø

decline ([rental] is completed)

180 9 The DELTA Theory: Understanding Discrete Event Systems

The first action rule in Table 9.2 is performed when there is a request for
completing a rental contract (first line of the action part). Note that, according to the
PSI theory (cf. Chap. 8), there may be more than one request regarding the same rental
in the course of time, but then it is a different event. Commonly, it will also have
different properties (specified in the ‘with’ clause). There is no impediment for
performing the first action rule, which is indicated by the symbol “Ø” in the imped-
iments part. If the state condition is satisfied, so if its logical evaluation yields the
value true, then the payment of the rental will be requested. The mutation is empty.

The state condition in the second action rule is the negation of the one in the first
rule, whereas the action part and the impediments part are the same as in the first rule.
If the state condition is satisfied, so if its logical evaluation yields the value true, then
the concluding of the rental will be declined. Otherwise, nothing happens. The
mutation is empty. Note that always either the first or the second action rule is
executed successfully.

9.3.2 The Generic Transaction Prismanet

According to the PSI theory (cf. Chap. 8), C-acts/facts and P-acts/facts occur in
universal patterns, called transactions. In Fig. 9.13, the complete transaction pattern
from the PSI theory is reproduced. In order to express it in the PRISMA model, we
need the prismanet whose corresponding diagram is shown in Fig. 9.14. It is called
the generic transaction prismanet.

Fig. 9.13 The complete transaction pattern

9.3 Elaborations 181

There are nine processors that take care of the acts in the responsibility areas of
the initiator in Fig. 9.13. They are labeled “Pin1” through “Pin9”. Next, there are ten
processors that take care of the acts in the responsibility areas of the executor in
Fig. 9.13. They are labeled “Pex1” through “Pex10”. The transmission bases of the
channels are indicated by the abbreviated names of the intentions of the C-facts that
they may transmit and contain: rq for request, pm for promise, etc. The four multiple
channels, indicated with a “?”, are (unknown) channels through which C-events are
transmitted that trigger the connected performer to revoke [rv] one of the four basic
C-facts in the transaction process: (rq), (pm), (st), and (ac).

The specifications of the transmission bases of the three multiple channels MC1,
MC2, and MC3 are as follows: TB(MC1) is the union of TB(C1) through TB(C8); TB
(MC2) is the union of TB(C2), TB(C3), TB(C4), and TB(C6); TB(MC3) is the union
of TB(C3), TB(C4), and TB(C6). They correspond with the revocation conditions
that hold for the complete transaction pattern. The contents base of bank B1 consists
of the independent P-fact type in the product kind, and all of its dependent P-fact
types. The multiple channel, labeled “in”, is included to complete the prismanet. Its
transmission base consists of C-fact types to whose instances processor Pin1 may
respond by creating a request and putting it in channel C1.

The operation of the generic transaction prismanet can briefly be explained as
follows. If Pin1 is triggered by an item in channel “in”, it puts a request in channel
C1. In response, Pex1 creates either a promise, put in channel C2, or a decline, put in

Fig. 9.14 The generic transaction prismanet

182 9 The DELTA Theory: Understanding Discrete Event Systems

channel C5. In response to the decline, Pin2 may create a renewed request, put in C1.
If this is not a feasible option, processor Pin4 may create a [rv (rq)], in response to the
decline (which is also contained in channel “?”), and put it in channel C7.

Processor Pex2 responds to a promise by creating a state fact, which is put in
channel C3. Processor Pin3 responds to it by either an accept, put in channel C4, or a
reject, put in channel C6. In the latter case, processor Pex3 may respond by creating a
renewed state, put in C3. If this is not a feasible option, processor Pex6 may create a
[rv (st)], in response to the reject (which is also contained in channel “?”), and put it
in channel C9. In response to an accept in C4, processor Pex4 adds the corresponding
independent P-fact and its dependent P-facts to the contents of bank B1. This reflects
the postulation in the PSI theory (cf. Chap. 8) that the product of a transaction is
created at the moment that the accept fact is created. At the same time, this
arrangement reflects the postulation that the executor of a transaction is the owner
of the product, and thus the primary source to inquire about it. For each of the four
revocation patterns, it holds that there is an unknown trigger in the channel that is
indicated by “?”, and that there is a wait event in channel MC1, MC2, MC3, or C4.
The wait condition is that the status of the main process (the middle part of Fig. 9.13)
must respectively be “requested or further”, “promised or further”, “stated or
further”, and “accepted”. If the revoke of a request, promise, state, or accept is
allowed, a corresponding C-fact will be put in respectively channel C11, C12, C13,
and C14, which are action channels of respectively Pin8, Pex9, Pex10, and Pin9. These
processors revert the main process to the statuses as indicated by the complete
transaction pattern in Fig. 9.13. Note that if a refuse act is performed, the main
process stays in the status it was in. No processors respond to refuse events. As said,
ending up in a refuse state means that nothing has changed in the main process.

If the single processors Pin1 through Pin9 are combined in the composite proces-
sor CPin, and if the processors Pex1 through Pex10 are combined in the composite
processor CPex, one gets the prismanet as shown in Fig. 9.15 (left side). In this
diagram, the channel names are left out, only the intention of the C-facts is men-
tioned. Moreover, the shapes of CPin and CPex are sinuated, in order to indicate that
they are only shown partly, that is they may contain more components, because they
are normally also connected to other prismanets (cf. Chap. 11). The use of composite
processors, like the ones shown in Fig. 9.15, may be helpful in modelling discrete
event systems, notably ‘technical’ systems that are actually technically implemented
social systems. Examples of such systems are machines of all kinds, like vending
machines, and control systems of all kinds, like warehouse control systems.

Fig. 9.15 Composite processors as organisational building blocks

9.3 Elaborations 183

On the right side of Fig. 9.15, the ‘compression’ of the left side part into the
organisational building block (cf. Chap. 8) is shown. All channels (C1 through C14)
and the bank B1 are put together, resulting in the transaction-kind shape, which is a
diamond (representing production) inside a disk (representing coordination). The
small black diamond on the edge of the lower actor role shape indicates that it has the
executor role in this transaction kind. Note that the executor role also comprises the
processors, channels, and banks, that it needs as initiator in (other) transactions
(if any), and that the initiator role also comprises the processors, channels, and
banks, that it needs as executor of its ‘own’ transaction kind, as well as the pro-
cessors, channels, and banks, that it needs as initiator in other transactions (if any).
As already explained for the left part of Fig. 9.15, this is indicated by their sinuated
shapes.

9.3.3 The C4E Quality Aspects

In this section, we will discuss the quality aspects of white-box systems in the
PRISMAmodel, that is, of prismanets. To start with, we have shown that a prismanet
is an ontological model of a discrete event system, that is, a white-box model that is
fully abstracted from the (technological) implementation of the modelled system.

The first quality aspect of a prismanet is that it is comprehensive, whichmeans that it
is ontologically complete, of course provided that one has all knowledge of the concrete
system. Consequently, it allows not only for studying the statics of themodelled system
(its construction), but also its dynamics (its operation). Next, a prismanet is coherent, by
virtue of the ontological system concept (cf. Sect. 9.2.1.2). It means that the model
elements are connected in such a way that there are no ‘loose’ parts.

In addition, the presented prismanets are abstracted from realisation
(cf. Chap. 11), so from all informational issues (like remembering, sharing, and
deriving facts) and from all documental issues (like storing and retrieving documents
or data). Note that derived facts just ‘exist’ in the ontological sense once they are
defined. For example, someone’s age at a particular day exists if the day exists and
the person’s birthday exists. The additional abstraction from realisation makes
prismanets concise, by which we mean that their size is very small compared to
current meta models, which mostly do not abstract from realisation and implemen-
tation. Moreover, prismanets are consistent, that is, they do not contain logical
contradictions, as ensured by the PRISMA model.

The four quality aspects (coherent, consistent, comprehensive, and concise)
constitute the requirements for calling the prismanet of a system its essential
model (within the PRISMA model). By using the definite article “the”, we want to
conjecture that there is only one essential model for a given system. As a mnemonic,
the quality requirements, together with their corollary of capturing the essence of a
system, are collectively named “C4E”. The added connotation is “see for E”,
expressing that one must always strive to capture the essence of a system, in order
to reduce the complexity of its white-box model, and consequently to get deeper
insight into and better overview over the system. The reduction of complexity that is

184 9 The DELTA Theory: Understanding Discrete Event Systems

achieved by producing a white-box model that satisfies the C4E requirements,
contributes to achieving the generic enterprise engineering goal of intellectual
manageability [15].

9.4 Discussions

9.4.1 Implications of the DELTA Theory for Software
Engineering

Software engineering is the discipline of engineering software systems. It includes
the design, the implementation, the deployment and the maintenance of these
systems. Even professional software engineers sometimes seem to forget that a
software system in operation is a mathematical machine (also if its function is to
support people in organisations). This undeniable truth has important implications
for the discipline of software engineering, however.

First, it implies that a software engineer must have a comprehensive understanding
of the object system that is going to be supported by the software system that he/she is
going to develop. The relationship between the object system and its supporting
information/software system is precisely defined in the ALPHA theory (cf. Chap. 11).
Moreover, this understanding of the object system must be concise (thus fully
abstracted from realisation and implementation) in order to manage intellectually
its complexity, that is, to get and keep insight into and overview over of the software
system to be developed. This insight and overview is also indispensable for validating
that the software system satisfies the applicable requirements.

Second, such an understanding of the object system is also indispensable for
verifying the logical correctness of the developed software system. The role of
testing can only be secondary, because it may show the presence of errors but
never their absence, as pointed out already long ago by Edsger Dijkstra [16].

Third, such an understanding would also be a necessary basis for studying the
construction and operation of the system by means of mathematical and logical
analysis, as well as through simulation, possibly including animation.

Fourth, such an understanding of the object system would be a necessary condi-
tion for generating software in such a way that its correctness can be guaranteed
[17]. Because PRISMA models are formalised, they can be converted to mathemat-
ical/logic complexes (cf. Chap. 6), and subsequently expressed in a programming
language.

9.4.2 Prismanets and Petri Nets

Readers who are familiar with Petri nets may have wondered already what the
similarities and differences are between prismanets and Petri nets [18], because the

9.4 Discussions 185

resemblance of the graphical symbols suggests some similarity. It seems worthwhile
therefore to make a comparison of the two process modelling techniques.

In [19], the relationship between the Petri net and the smartienet is investigated.
Since the smartienet [20, 21] is the precursor of the prismanet, we will first
summarise the findings in [19], using the TCS again as the example system. The
smartienet diagram in Fig. 6 in [19] is reproduced as Fig. 9.16. The legend of the
diagram is the same as for the prismanet diagram (cf. Fig. 9.10). So, there are two
processors (P1 and P2), four banks (B1, B2, B3, and B4) and two channels (C1 and
C2). Because the smartienet lacks the notion of delayed mutation, which the
prismanet does have (cf. Sect. 9.2.3.2), two elementary processors are needed to
model the TCS properly. Next to being activated by set_phase commands from P1,
P2 also activates itself, through channel C2.

Although the TCS is a quite simple system, its discussion above and in [19]
illustrates how difficult it is to understand a system comprehensively (i.e. its construc-
tion, its operation, and the effects of its operation, thus the processes or state trajectories
in the system’s world) without a proper theory. At the same time, both the prismanet
model in this chapter and the smartienet model in [19], demonstrate the power of
ontological modelling: providing one with a comprehensive, coherent, and consistent
understanding of a system, released from the burden of implementation details.

The Petri net [18] originates from the research work that Carl Adam Petri5

undertook already at a young age. It can best be understood as a (meta) model for
studying synchronisation problems in discrete event systems. A well-known appli-
cation of the Petri net is the studying of cooperating sequential processes in com-
puters. Because of its popularity among (business) process modellers with a focus on

Fig. 9.16 Smartienet diagram of the TCS

5https://en.wikipedia.org/wiki/Carl_Adam_Petri

186 9 The DELTA Theory: Understanding Discrete Event Systems

https://en.wikipedia.org/wiki/Carl_Adam_Petri

formalisation, the Petri net has evolved in the course of time in order to meet the
additional requirements. The major extensions have been the addition of delay times
(resulting in the timed Petri net [22]) and the ‘colouring’ of tokens, by which is
meant adding process semantics (resulting in the coloured Petri net [23]).

In Figs. 9.17 and 9.18 the timed Petri net diagram of the TCS is exhibited. It is an
adapted version of Fig. 2.10 in [24]. The adaptation comprises a more accurate
layout and corrections of the delay times. The disks represent the places of the Petri
net and the boxes represent the transitions. The black dots in the places are the tokens
that can ‘move’ through the net. A place is an input place of a transition if its shape is
connected to the transition shape by an arrow. A place is an output place of a
transition if its shape is connected to the transition shape by a solid line. Transitions
‘fire’ if all input places contain at least one token. The effect of ‘firing’ is that one
token is removed from every input place and that one token is added to every output
place. The names of the places and transitions, as well as the time delays, correspond
with the names in Fig. 9.8. So, for example, W1 means Cycle 1 is in the state
waiting, S1–W1 is the transition from S1 toW1, and CT2 is the clear time in Cycle 2.

The process starts in the situation that the state of Cycle 1 is waiting and the state
of Cycle 2 is (prolonged) moving (cf. Fig. 9.17 upper part). Then a let_pass event in
Cycle 1 occurs (a token is put in place let_pass 1). The condition to fire M2-S2 is
now satisfied, and thus the transition takes place. The state of Cycle 2 will imme-
diately become stopping (cf. Fig. 9.17, lower part). This enables the firing of S2-W2

Fig. 9.17 Timed Petri net of the TCS (1)

9.4 Discussions 187

after ST2 time units. Then the token in S2 is removed and a token is added to both
W2 and C1 (cf. Fig. 9.18, upper part). Together with the token in W1, this satisfies
the condition for W1-M1 to fire, after CT1 time units. The effect of this transition is
that the tokens in W1 and C1 are removed and that a token is added to M1, meaning
that the state of Cycle 1 will become ‘moving’ (cf. Fig. 9.18, lower part). After MT1
time units, transition M1-S1 is enabled by this token, but the firing has to wait for a
token in place let_pass 2, so for arriving traffic in Cycle 2. As soon as this is the case,
the whole process will be repeated, but now with the cycles reversed.

Despite the similarity of the diagrams, the Petri net that is represented in
Figs. 9.17 and 9.18 and the prismanet that is represented in Fig. 9.11, are funda-
mentally different. The prismanet is a construction model: it shows the composition,
the environment, and the structure of a system (cf. Sect. 9.2.1.2). The Petri net,
however, is a process model in the strict systemic sense [4]: it specifies the lawful
states and the lawful transitions of a system’s world, possibly the world of the system
that is represented by the prismanet diagram in Fig. 9.11. The Petri net in Figs. 9.17
and 9.18 is semantically equivalent to the STD in Fig. 9.8. Note that the presented
Petri nets are independent of any implementation, contrary to the one in [24]: using
red, yellow, and green lights to inform traffic participants about the states ‘waiting’,
‘stopping’, and ‘moving’, is just one way of implementing the inspection link from
the processor ‘traffic’ to the bank ‘phase’ in the prismanet diagram in Fig. 9.11. Such
implementation choices should not appear in an ontological model.

Fig. 9.18 Timed Petri net of the TCS (2)

188 9 The DELTA Theory: Understanding Discrete Event Systems

9.4.3 The Petri Net and the DEMO Process Model

Because Petri nets are process models, as discussed in the previous section, it is
interesting to compare the Petri net with the DEMO Process Model (PM), as
presented in Chap. 12. For some time already, Petri nets have been applied for
analysing and simulating (business) processes that are modelled in DEMO, for
example, in [25] and in [26]. As discussed in Chap. 8, DEMO process models are
basically tree structures (cf. Chap. 10) of transaction processes. So, let us first draw a
comparison between the Petri net and the complete transaction pattern (CTP), by
interpreting the CTP as a Petri net.

Figure 9.19 contains the CTP from Fig. 9.13, but without the names of the
C-facts, in order to let them resemble the places of a Petri net. The C-acts must be
interpreted as transitions. The optionalities (indicated by the cardinality ranges 0. . .1
next to the response links in Fig. 9.13) are accommodated by adding the alternatives
(cf. Chap. 8): performing rv-rq and rv-da, respectively. Moreover, the P-act and the
P-fact are separated: the P-fact symbol (the diamond) is also interpreted as a place in
the Petri net. The reversion states are indicated in the same way as they are in
Fig. 9.13, in order to avoid crossing lines in the diagram.

Let us suppose that there is a token in the place labeled “in”. Then transition rq
will fire, resulting in putting a token in its output place (which corresponds with the
state requested). Then both transition dc and transition pm are enabled. However,
only one of them can fire because there is only one token in the input place. Going
on in this way, one will discover that the process either ends (successfully) in the
state accepted or goes on infinitely, which is exactly the idea of the CTP
(cf. Chap. 8).

What is new in Fig. 9.19, compared to the ‘real’ Petri net, are the dashed lines.
In a Petri net, they have to be replaced by solid arrows, and thus serve as an
additional input place for the four revocation transitions, because state conditions
and response conditions cannot be distinguished in a Petri net. In other words, the
CTP (and for that matter the DEMO PM) is richer than a Petri net as regards the
ability to represent real (business) processes, where the distinction between state
conditions (inspection links) and triggers (response links) is crucial to deeply
understand them.

A similar remark can be made with respect to the wait links in the DEMO PM
(cf. Chap. 12). They are also crucial in real business processes: waiting for
something to happen before acting, is fundamentally different from being triggered
to act.

As said, a Petri net only represents the world of a system, not the system itself: it
is (only) a grey-box model, not (also) a white-box model. To understand the
corresponding system, one has to model it in some other way, for example, as a
prismanet.

9.4 Discussions 189

The current use of (timed coloured) Petri nets for modelling business processes is
a typical illustration of how meta models can be ‘inflated’ to accommodate applica-
tions where they were never meant for (and consequently are mostly not suited for).
As convincingly discussed in Chap. 8, business processes are processes that occur in
the coordination world of organisations, as the effect of acts by autonomous human
actors. Other examples of ‘inflations’ of modelling approaches are the use of the
Entity Relationship Diagram (originally meant for exhibiting the structure of rela-
tional databases) for conceptual modelling, and the use of the UML class diagram for
conceptual modelling and even for ontological modelling (cf. Chap. 6).

With reference to Einstein’s quote at the beginning of Chap. 4 (Whether you can
observe a thing or not depends on the theory that you use. It is the theory that
decides what can be observed), all modelling actions are inherently shaped by the
theory one applies or, when lacking an explicit theory, by the ‘mental glasses’ one
has put on. If these glasses are ill-suited, the resulting models will not be very useful.
Unfortunately but most likely, one may not be aware of the mismatch.

References

1. Bertalanffy, L. V. (1969). General system theory; foundations, development, applications (Rev.
ed., xxiv, 295 p.). New York: G. Braziller.

2. Wiener, N. (1965). Cybernetics: or, Control and communication in the animal and the machine
(2nd ed., 212 p.). The M I T paperback series. Cambridge, MA: MIT.

Fig. 9.19 Petri net interpretation of the CTP

190 9 The DELTA Theory: Understanding Discrete Event Systems

3. Legasto, A., Forrester, J. W., & Lyneis, J. M. (1980). System dynamics. TIMS studies in the
management sciences (282 p.). Amsterdam: North-Holland.

4. Bunge, M. (1979). Treatise on basic philosophy ontology II: A world of systems. In Treatise on
basic philosophy 4 (p. 1). Dordrecht: Springer.

5. Weinberg, G. M. (1975). An introduction to general systems thinking (xxi, 279 p.). Wiley series
on systems engineering and analysis. New York: Wiley.

6. Marquis, J.-P. (1996). A critical note on Bunge’s ‘system boundary’ and a new proposal.
International Journal of General Systems, 24(3), 245–255.

7. Bunge, M. (1977). Treatise on basic philosophy ontology I: The furniture of the world. In
Treatise on basic philosophy 3 (p. 1, 370 p.). Springer: Dordrecht.

8. Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (2010). Feedback control of dynamic
systems (xviii, 819 p., 6th ed.). Upper Saddle River, NJ: Pearson.

9. Marca, D., & McGowan, C. L. (1988). SADT: Structured analysis and design technique (xvii,
392 p.). New York: McGraw-Hill.

10. Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete event systems (xxiii, 769 p.,
2nd ed.). New York: Springer Science + Business Media.

11. Hoogervorst, J. A. P. (2017). Foundations of enterprise governance and enterprise engineering
(p. 574) Cham: Springer International.

12. Aveiro, D., Silva, A. R., & Tribolet, J. (2010). Towards a G.O.D organization for organizational
self-awareness. In 6th International Workshop, CIAO! 2010. St. Gallen: Springer.

13. Hee, K. M. V., Houben, G.-J., & Dietz, J. L. G. (1989). Modelling of discrete dynamic systems;
framework and examples. Information Systems, 14.

14. Perinforma, A. P. C. (2015). The essence of organisation. South Holland: Sapio Enterprise
Engineering.

15. Dietz, J. L. G., & Hoogervorst, J. A. P. (2013). The discipline of enterprise engineering. Journal
Organisational Design and Engineering, 3, 28.

16. Dijkstra, E. W. (1970). Notes on structures programming.
17. van Kervel, S. J. H., et al. (2012). Enterprise ontology driven software engineering. In ICSOFT

2012. SciTePress.
18. Peterson, J. L. (1981). Petri net theory and the modeling of systems (x, 290 p.). Englewood

Cliff, NJ: Prentice-Hall.
19. Dietz, J. L. G. (2005). System ontology and its role in system development. In J. Castro &

E. Teniente (Eds.), Advanced information systems engineering wokshops (CAiSE)
(pp. 271–284). Porto.

20. Dietz, J. L. G. (Ed.). (1987). Modelleren en specificeren van informatiesystemen. Eindhoven:
T.N. Eindhoven University of Technology.

21. Houben, G.-J., Dietz, J. L. G., & van Hee, K. M. (1988). The SMARTIE framework for
modelling discrete dynamic systems. In P. Varaiya & H. Kurzhanski (Eds.), Discrete event
systems: Models and applications. New York: Springer.

22. Wang, J. (1998). Timed petri nets – Theory and applications. Boston: Kluwer Academic.
23. Jensen, K. (1997). Coloured petri nets: Basic concepts, analysis methods, and practical use

(2nd ed.). Monographs in theoretical computer science. Berlin: Springer.
24. van der Aalst, W., & van Hee, K. M. (2004). Workflow management models, methods, and

systems. Cooperative information systems series (368 S.). Cambridge, MA: MIT.
25. Barjis, J. A., & Dietz, J. L. G. (2001). A type of petri net based on speech act theory for

modeling social systems. In A. W. Heemink (Ed.), EUROSIM. Delft.
26. Barjis, J. A. (2008). The importance of business process modeling in software systems design.

Elsevier Science of Computer Programming, 71, 73–87.

References 191

Chapter 10
The OMEGA Theory: Understanding
the Construction of Organisations

Abstract The OMEGA theory, also called organisational construction theory, is a theory
about the modular structures that can be distinguished in organisations. Based on the
organisational building block (the transactor role) from the PSI theory, three kinds of
coordination structures are identified and discussed: interaction structure, interstriction
structure, and interimpediment structure. The interaction structure of an organisation
consists of tree structures, composed of the initiator links between transactor roles. An
interaction structure determines a business process kind. The interstriction structure of an
organisation consists of the access links between transactor roles. Through access links,
actors have reading access to the facts in transaction banks. A distinction is made between
the interprocess and the intraprocess interstriction structure. The interimpediment structure
of an organisation is composed of the wait links between transactor roles. A distinction is
made between the interprocess and the intraprocess interimpediment structure. Three topics
are elaborated in-depth. The first one is the notion of responsibility range of a transactor
role, as an extension of the responsibility area from the PSI theory (cf. Chap. 8). The
second subject is a comprehensive way of modelling business processes, which allows for
all the details that are needed, but that is still very concise. The third subject concerns
general patterns in process structures, called reference models. To conclude, the structural
way of thinking about business processes is compared with the current dominant flow
thinking.

10.1 Introduction

The theory in this chapter is labeledΩ-theory. The Greek capital letter is pronounced
as OMEGA, an acronym for Organisational Modules Emerging from General
Arrangements. The theory concerns the possible ways in which transactor roles
(cf. Chap. 8) can influence each other, as well as the modular structures that these
ways of influencing give rise to. In Chap. 4, the OMEGA theory is classified as an
ontological theory, meaning that it is about the nature of things.

The PSI theory (cf. Chap. 8) provides us with the most fundamental work
structure in organisations, namely the division in production and coordination, and

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_10

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_10&domain=pdf

their combined occurrence in the universal pattern of the (business) transaction. The
complete transaction pattern comprises all coordination acts/facts that are necessary
and sufficient for carrying out any transaction. Based on it, the PSI theory provides
us also with the universal building block of organisations: the transactor (transaction
processing actor) role. Every transactor role includes the complete transaction
pattern. In addition, it comprises the guidelines for carrying out transactions of the
corresponding transaction kind, varying from cultural norms to imperative business
rules.

Section 10.2 (foundations) starts with a summary of the PSI theory. In Sects.
10.2.2–10.2.4, the distinct coordination structures are presented that arise from the
three distinct ways of influencing between transactors: the interaction structure, the
interstriction structure, and the interimpediment structure. All three are expressed in
the Coordination Structure Diagram (CSD). The business processes in the GloLog
enterprise (cf. Chap. 18) are used for illustration.

Section 10.3 (elaborations) covers three topics. In Sect. 10.3.1, the notion of
responsibility range of transactors is discussed, as an extension of the notion of
responsibility area from the PSI theory. In Sect. 10.3.2, the Process Structure
Diagram (PSD) is introduced for understanding the three coordination structures in
more detail, and the notion of business process is elucidated. Section 10.3.3 is
devoted to a discussion of the reference models that emerge from the presented
structures.

Section 10.4 (discussions) is about the added value of structure thinking in
business processes, next to flow thinking, as well as its indispensability if it comes
to changing business processes. The chapter ends with a discussion of the practical
relevance of the OMEGA theory.

10.2 Foundations

10.2.1 The Organisational Building Block

In this section, the parts of the PSI theory (cf. Chap. 8) that are relevant for the
OMEGA theory are resumed and elaborated. The first important notion is the notion
of transaction. It is a pattern of acts, performed by actors in two roles: the initiator
and the executor. The executor brings about the product of the transaction to the
benefit of the initiator. In the presented complete transaction pattern, there is a clear
separation between the coordination acts (C-acts) that the initiator of a transaction
can perform and the C-acts that belong to the responsibility of the executor.
Emphasis is put on the precise formulation of the product of a transaction, namely
in such a way that it is uniquely identified. The example of a correct formulation of a
product kind that was used in Chap. 8 is ‘[membership] is started’, where [member-
ship] is a placeholder or variable in this logical predicate type. An example of an
instance of the predicate type is ‘membership 387 is started’. Related to the notion of
product kind, the notion of transaction kind is introduced. It is a basic property of
every transaction, and there is a one-to-one relationship between transaction kinds

194 10 The OMEGA Theory: Understanding the Construction of Organisations

and product kinds. A suitable naming of the transaction kind, in which instances
products of the kind ‘[membership] is started’ are brought about, would be “mem-
bership starting”. Next, the notion of actor role is introduced, defined as the
authority to be the executor in transactions of a particular transaction kind. This
authority can be assigned to subjects, by which these subjects become eligible to act
accordingly. A proper name for the executor role of the transaction kind ‘member-
ship starting’ would be “membership starter”.

The combination of a subject and an assigned actor role is called actor. Only
actors can act, that is, be active in transactions. A subject may fill several actor roles
and an actor role may be assigned to several subjects, both sequentially and
simultaneously. As examples from the case Rent-A-Car (cf. Chap. 15), renters
(subjects in an actor role) can at the same time be deposit payers (same subject,
different actor role), and there are several rental completers (one actor role, assigned
to several subjects). Next, an actor role can be assigned to the collectivity of a
number of subjects, which means that these subjects fill the role collectively.
Examples of collective actor roles are the board of directors of a company and the
general assembly of an association.

Every transaction kind has exactly one actor role as its executor role, and vice
versa, but actor roles may have an initiator role in a number of (other) transaction
kinds. The left side of Fig. 10.1 shows the graphical notation of these relationships in
the DEMO Specification Language.1 The shape of a transaction kind is a diamond
(the symbol of production) in a disk (the symbol of coordination), and the shape of
an actor role is a box (possibly stretched to a rectangle). A transaction kind is
connected to an actor role by an initiator link (represented by a solid line between
the shapes) or an executor link (represented by a solid line between the shapes plus a
small black diamond at the junction of the line and the executing actor role box).
Figure 10.1 shows that actors CAR00 are initiators in transactions TK01 and that
actors AR01 are their executors.2 Actors AR01 are also initiators of transactions
TK02, TK03, and TK04, of which actors AR02, AR03, and AR04, respectively, are
the executors.

The transaction kind shape has two interpretations. In the constructional inter-
pretation, it represents the complete transaction pattern, as discussed in Sect. 8.2.6.3.
Every instance of a transaction of the transaction kind is some path, possibly
including iterations, through the complete transaction pattern. In the operational
interpretation, the transaction kind shape represents the conceptual store of all C-
and P-facts in transactions of the transaction kind that are created in the course of
time. Therefore, the transaction kind is now conceived as a transaction bank.
Basically, the subjects who fill or have filled the initiator or executor role in one or

1The DEMO Specification Language (DEMOSL) formally defines the ways in which DEMO
models can be expressed (diagrams and formal text). The official reference document on DEMOSL
can be found on www.ee-institute.org
2We will write “actors ARn” as a shorthand for “actors filling actor role ARn”, “transactions TKn”
as a shorthand for “transactions of the kind TKn”, and “products PKn” as a shorthand for “products
of the kind PKn”.

10.2 Foundations 195

http://www.ee-institute.org

more transactions of some kind, have access to the contents of the corresponding
transaction bank, possibly restricted to the specific transactions in which they have
participated.

The actor role shape has also two interpretations. The constructional interpreta-
tion is that it represents the authority to be the executor in transactions of the
transaction kind to which it is linked by an executor link. The operational interpre-
tation is that it represents the guidelines, ranging from culture (norms and values) to
specific action rules and work instructions that actors filling the actor role apply
when they carry out transactions. The action rules regard the role of executor of
transactions of the kind to which it is linked by an executor link and the role of
initiator in transactions of the kind to which it is linked by an initiator link. So, for
example, actor role AR01 contains guidelines both for dealing with C-events in
transactions TK01 (of which it is the executor) and in transactions TK02, TK03, and
TK04 (of which it is an initiator).

Because of the one-to-one relationship between a transaction kind and its exec-
utor role, it makes sense to use one shape for the combination of the two. This shape,
called transactor role, is shown on the right side of Fig. 10.1. Instead of using
prefixes (like “TK” and “AR” that are used on the left side of the figure), we just
number transactor roles. The links between the transactor roles are initiator links. So,
for example, transactors TAR01 are initiator in transactions TK02, TK03, and TK04.
Henceforth, we will talk of transactors and transactor roles, as well as of actor roles
and transaction kinds. The cardinality range 0. . .1 in Fig. 10.1 indicates that the
carrying out of a transaction TK04 within a transaction TK01 is optional.

Because transactor roles can have an initiator role in one or more transaction
kinds, next to having the executor role in their ‘own’ transaction kind, the being
connected through initiator links, constitutes tree structures, like the one shown in

Fig. 10.1 Graphical notations of transaction kinds, actor roles, and transactor roles

196 10 The OMEGA Theory: Understanding the Construction of Organisations

Fig. 10.1. To illustrate the meaning of this tree structure, we use the Pizzeria case
(cf. Chap. 14). Table 10.1 represents the so-called Transactor Product Table of the
Pizzeria.

The processing of a client order (which is conceived as completing a sale) starts
from the request of a transaction of the kind TK01 ‘sale completing’ by someone
who fills the actor role ‘customer’ (an actor role within the composite actor role
CAR00) to someone who fills actor role AR01 ‘sale completer’. During the carrying
out of this transaction, three other transactions are initiated: one of the kind TK02
‘sale preparing’, one of the kind TK03 ‘sale paying’, and (optionally) one of the kind
TK04 ‘sale delivering’. All three must have been finished before the transaction of
the kind TK01 ‘sale completing’ can be finished. In other words, every product of
the kind ‘[sale] is completed’ implies three other products: one of the kind ‘[sale] is
paid’, one of the kind ‘[sale] is prepared’, and (optionally) one of the kind ‘[sale] is
delivered’.

The transactor role is the construction element or basic building block of organi-
sations, as shown in Fig. 10.2. On the left is the ‘bare’ building block. In the middle,
this transactor role is connected to another actor role by an initiator link. By doing
this, actors in this role become initiator of transactions TK01, of which actors AR01
are the executor. The construct on the right side of Fig. 10.2 represents another way
of making actor roles initiator of transaction kinds. The meaning of the disk-shaped
cut-away in the upper box is that actors filling the corresponding actor role become
initiator in transactions TK01 by ‘clicking’ the transaction symbol to the cut-away.
This so-called “click mode” will be elaborated in Sect. 10.3.2. The operational
meaning of the middle and the right construct is that the initiators of transactions

Table 10.1 Transactor Product Table of the Pizzeria

Transaction kind Product kind Executor role

TK01 sale completing PK01 [sale] is completed AR01 sale completer

TK02 sale preparing PK02 [sale] is prepared AR02 sale preparer

TK03 sale paying PK03 [sale] is paid AR03 sale payer

TK04 sale delivering PK04 [sale] is delivered AR04 sale deliverer

Fig. 10.2 Representations
of the organisational
building block

10.2 Foundations 197

TK01 perform requests, to which actors AR01 respond by a promise (or a decline),
and thus start the carrying out of transactions TK01, which concern products of the
kind PK01. A product starts to exist as soon as the initiator has accepted it.

10.2.2 The Interaction Structure

By the interaction structure of an organisation is understood the collective initiator
links between the transactor roles, as illustrated by Fig. 10.1, right side. This is
equivalent to saying that the interaction structure comprises the transaction kinds of
an organisation, as well as the initiator links and the executor links that connect them
to the actor roles (cf. Fig. 10.1, left side). The interaction structure is the main
structure in an organisation, because it determines the business process kinds in
which the products are brought about (cf. Chap. 8). Therefore, we take the following
as the definition: every interaction tree in an organisation is a business process kind.
As we will see later, the top of such a tree is either an environmental or a self-
activating transactor role. Both, the interstriction structure (to be discussed in Sect.
10.2.3) and the interimpediment structure (to be discussed in Sect. 10.2.4) come in
addition with the interaction structure; they cannot exist without it.

The interaction structure of an organisation consists by definition of a number of
tree structures, as will become clear subsequently. The general understanding of a
tree structure is that it is a pair (P, R) where P is a set of things and R is a (binary)
relation over P, commonly called a part-of relation. For every (p1, p2) 2 R, it holds
that p1 is a part of p2. Conversely, p2 is commonly called the assembly of the things
x 2 P, for which it holds that (x, p2) 2 R. The leaves of the tree, that is, the things y in
P that have no parts, so for which there is no tuple (�, y) 2 R, are commonly called
(elementary) parts. All non-leaf things are commonly called assemblies.

An interaction tree (cf. Fig. 10.1, right side) is basically always extensible by
adding new transactor roles as components of the ‘leaf’ transactor roles. The tree
structure is a direct reflection of the Bill-of-Material (BoM) structure of the
corresponding product kinds.

Fig. 10.3 Examples of product structures

198 10 The OMEGA Theory: Understanding the Construction of Organisations

As an example, in the Pizzeria (cf. Chap. 14), the case kind is the sale. It serves as
the core entity type (cf. Chap. 8) in all four product kinds. The product structure is
shown in Fig. 10.3, (left side) whereas Table 10.1 contains the Transactor Product
Table. A product of the kind ‘[sale] is completed’ comprises three other products as
parts: ‘[sale] is paid’, ‘[sale] is prepared’, and ‘[sale] is delivered’. The last one is
optional (indicated by the cardinality range 0. . .1) because there are also walk-in
customers, for which there is no delivery transaction. Consequently, four speciali-
sations (cf. Chap. 6), or life phases, of the entity type sale are distinguished:
completed sale, paid sale, prepared sale, and delivered sale.

As another example to illustrate that product structures resemble BoM-like
structures, a part of the BoM of a bicycle (of some bicycle kind) is shown on the
right side of Fig. 10.3. It shows that a bicycle consists of one frame, one saddle, two
wheels (indicated by the minimum and maximum cardinality), one handlebar, etc.
Next, a wheel is an assembly of one rim, one hub, and 24 spokes (note: if no
cardinality range is indicated next to an initiator link, the default value 1. . .1 holds).
The product structure that corresponds with this BoM has the same shape. Only the
names of the parts would be replaced by “assembled bicycle”, “assembled wheel”,
“acquired spoke”, etc.

In order to express the coordination structures, we use the Coordination Structure
Diagram (CSD) (cf. Chap. 12); its legend is depicted in Fig. 10.4. The upper part
shows the three different sorts of transactor roles: the elementary transactor role, the
self-activating transactor role, and the composite transactor role.

As stated, the interaction structure of an organisation consists of a number of tree
structures. By definition, the top of such a tree is a self-activating transactor role.
However, because many business processes in an organisation originate from the
environment, the common way to represent the external ‘top’ transactor role of such
a business process kind in a CSD is the composite transactor role (Fig. 10.4, top
right).

Fig. 10.4 Legend of the Coordination Structure Diagram

10.2 Foundations 199

As shown in Fig. 10.3, a product, for example a PK01, may be composed of other
products; which means that actors AR01 have to initiate other transactions in order to
bring about a PK01. A possible sub-tree of the construct in the middle of Fig. 10.2, is
shown in Fig. 10.5. It should be read as follows. In order to produce a PK01, actors
AR01 need a PK02, a PK03, and a PK04. On their turn, actors AR02 need a PK05
and a PK06 to produce a PK02, actors AR03 need a PK08 and optionally (indicated
by the cardinality range 0. . .1) a PK07 to produce a PK03, and actors AR04 need a
PK08 and a PK09 to produce a PK04. Note that transactor role TAR08 is drawn
twice, to keep the diagram orderly, but there is only one transactor role TAR08. So,
transactions TK08 are initiated by either an actor AR03 or an actor AR04.

Fig. 10.5 Example of an interaction-based tree structure

Fig. 10.6 Narrowing down a scope of interest

200 10 The OMEGA Theory: Understanding the Construction of Organisations

A crucial point in the OMEGA theory is that at any level in an interaction tree, the
initiating actor basically does not care (and does not need to care) about what the
executing actor has to do in order to produce the agreed-upon product. To illustrate
this, at some point in time, the actor AR01 addresses herself/himself to the initiating
actor CTAR00 and declares the creation of a product PK01. What the actor AR01
actually has done during the execution phase of the transaction TK01, is to have
acquired a PK02, a PK03, and a PK04 in transactions TK02, TK03, and TK04,
respectively, as shown in Fig. 10.5. The transactor roles TAR02, TAR03, and
TAR04 are called sub-transactor roles of TAR01. Together they constitute the
sub-tree of TAR01. It is important to understand that every sub-transactor role
may have a sub-tree of transactor roles itself, but this sub-tree does not affect the
character of its products. Thus, it makes no difference for actor role AR01 whether
AR02 has to initiate transactions TK05 and TK06 for producing products PK02
or not. It will always be the (same) product kind that actors AR01 and actors AR02
negotiate about and come to agreement about in transaction processes of the
kind TK02. In a similar way, one may want to disregard the sub-tree of a
transactor role.

The interaction tree structures in an organisation may be quite deep, that is, have
many levels, in particular, if one includes the transactor roles in the I-organisation,
and even more if one also includes the transactor roles in the D-organisation
(cf. Chap. 11). Commonly, one would only consider the transactor roles in the
O-organisation, or at least start with them, as a consequence of abstracting from
the I- and the D-organisation. The reason for ‘hiding’ a part of a tree by means of a
composite transactor role, as CTAR00 in Fig. 10.5, may be that one wants to
disregard it for the moment, as discussed above, or that it falls outside the chosen
Scope of Interest (SoI).

In Figs. 10.6 and 10.7, the SoI as shown in Fig. 10.5 is narrowed down. The new
SoI consists of TAR02 and its components TAR05 and TAR06. For illustrative
purposes, the edges of the shapes in the corresponding part of the initial SoI are blue-
lined. Figure 10.7 displays the result. The name of the new composite transactor role
(CTAR02) is arbitrarily chosen.

Fig. 10.7 The new scope of interest

10.2 Foundations 201

As a practical example of the interaction structure of an organisation, Fig. 10.8
shows this structure for the GloLog enterprise (cf. Chap. 18). There are four business
process kinds, represented by four distinct interaction structures: the sales process,
the purchase process, the sea transport process, and the land transport process. The
case kind in these process kinds is respectively sale, purchase, ship content, and
container content. Only because of these different case kinds (i.e. entity kinds) does
one arrive at the four tree structures, as explained in Chap. 18. The left one is
initiated externally, as indicated by the composite transactor role CTAR01. The top
or root of the other trees is a self-activating transactor role. The company IES within
the GloLog enterprise comprises all white-coloured transactor role shapes. So, the
grey-coloured transactor role shapes are outside IES, but inside the scope of the
GloLog enterprise. The red colour of the diamonds indicates that the transactor roles
belong to the O-organisation of the GloLog enterprise. The structure with double-
lined boxes at the top of Fig. 10.8 does not belong to the CSD; it only serves to
clarify that there are four different business process kinds in the Glolog enterprise.
Together they bring about the products/services of the enterprise.

10.2.3 The Interstriction Structure

The second kind of link between transactor roles is the access link. It is presented in
Fig. 10.4, in the middle of the bottom part. As discussed in Chap. 11, access links are
the means to abstract from the realisation of an organisation, that is, from the

Fig. 10.8 The interaction structure in the GloLog enterprise

202 10 The OMEGA Theory: Understanding the Construction of Organisations

I-organisation, and subsequently from the D-organisation. Therefore, the right
understanding of the construct shown in the middle of Fig. 10.4 is that
actors AR01 are initiators in one or more informational transactions, through
which they acquire the knowledge of facts that are contained in transaction
bank TK02.

Actors AR01 need these facts in order to properly carry out transactions TK01.
To this end, they have (reading) access to the contents of transaction bank TK02. The
access link can also be understood as a restriction of the decision freedom of actors
AR01 by actors AR02, as discussed in Chap. 9. Therefore, the collective access links
in an organisation are called its interstriction structure.3 Interstriction is a passive
way in which actors in the O-organisation of an enterprise (cf. Chap. 11) influence
each other, in addition to the active way of interaction. In carrying out a transaction,
both the initiator and the executor need to keep track of the progress of the
transaction, and they may also need to know the histories of earlier transactions of
the same kind. Consequently, there is an access link ‘under’ every initiator link and
every executor link (cf. Fig. 10.1, left side). Although they are not made visible in the
CSD, they do also belong to the interstriction structure. The interstriction structure of
an organisation constitutes the state dependencies among the contained transaction
processes: the acts of the connected actors depend on the current state of the
connected transaction processes, that is, on the contents of the connected transaction
banks.

Figure 10.9 depicts the interstriction structure in the GloLog enterprise, in
addition to the interaction structure, which is presented in Fig. 10.8. It shows that
actors AR11 have access to transaction bank TK01, actors AR12 to transaction bank
TK03, and actors AR13 to transaction bank TK14.

Fig. 10.9 The interstriction structure in the GloLog enterprise

3The term ‘restriction’; originates from the Latin verb ‘stringere’, meaning trimming, curtailing.
The word ‘interstriction’ expresses that actors restrict each other’s decision freedom or ‘play
area’.

10.2 Foundations 203

10.2.4 The Interimpediment Structure

The third kind of link between transactor roles is the wait link. It is shown in
Fig. 10.4 on the right side of the bottom part, and it should be understood as follows.
The process of every transaction is a path, possibly including iterations, through the
complete transaction pattern (cf. Chap. 8). Every C-act is performed in response to a
C-event. The performer of the C-act may take some time before he/she responds, and
this time may even exceed the intended settlement time (cf. Chap. 8), because the
executor is autonomous. However, there can also be external conditions that force
the performer to wait. These conditions are represented by wait links.

Collectively, the wait links represent the interimpediment structure of an organi-
sation. The interimpediment structure constitutes the process dependencies among
the transaction processes: the acts of the connected actors are held up until a specific
state of the connected transaction process is reached.

The CSD in Fig. 10.10 shows the interimpediment structure in the GloLog
enterprise, in addition to the interaction structure. The left wait link expresses that
the transaction processes of transactions TK10 are dependent on the progress of
transactions TK02. More specifically, the continuation of every transaction TK10
has to wait for a specific progress in some transaction TK02. In a similar way, the
continuation of every transaction TK14 has to wait for a specific progress in trans-
actions TK03 (loading goods of purchases in containers). Next, the continuation of
transactions TK15 has to wait for a specific progress in transactions TK07 (release of
purchases by Customs), and the continuation of transactions TK17 must wait for
some progress in one or more (indicated by the cardinality range 1. . .�) transactions
TK15 (container transports).

In Fig. 10.11, the three coordination structures are combined, so that one gets a
comprehensive overview of the construction of the GloLog enterprise. The specific
meaning of the coordination structures is explained in Chap. 18.

Fig. 10.10 The interimpediment structure in the GloLog enterprise

204 10 The OMEGA Theory: Understanding the Construction of Organisations

10.3 Elaborations

10.3.1 Responsibility Ranges

As discussed in Chap. 8, the two participating actors in a transaction have their own
responsibility areas, which comprise the steps in the transaction process that each of
them is authorised to perform. As follows from the CTP in Fig. 8.10, the responsibility
area of the initiator comprises the steps rq, ac, rj, rv-rq and rv-ac (as well as allowing or
refusing revocations of the promise and the declare by the executor). The responsibility
area of the executor comprises the steps pm, dc, da, ex (the production act), rv-pm, and
rv-da (and allowing or refusing revocations of the request and the accept by the
initiator). Figure 10.12 shows how the notion of responsibility range can be based on
the notion of responsibility area. For example, the responsibility range of actors AR01
is indicated by the dotted-lined blue rectangle. As shown, it does not only consist of
the executor responsibilities in transactions TK01 (represented by the ‘lower’ half of
its transaction shape), but also of the initiator responsibilities in transactions TK02,
TK03, and TK04 (represented by the ‘upper’ halves of their transaction shapes).

Fig. 10.11 The combined coordination structures in the GloLog enterprise

Fig. 10.12 Responsibility range in a business process kind

10.3 Elaborations 205

This extended notion of responsibility holds for every node in the tree, except the
leaf nodes AR05, AR06, AR07, AR08, and AR09, because these actor roles have no
initiator roles (or because one has abstracted from the sub-trees). It clarifies that
actors AR01 must not only see to it that they act properly in carrying out transactions
TK01, but also in carrying out transactions TK02, TK03, and TK04. This implies
that they may have to exhort actors AR02, AR03, and AR04 to do their part of
transactions TK02, TK03, and TK04 properly. In more current practical terms:
actors AR01 are owner of the process in which products PK01 are brought about.
In addition, they are owner of these products, and thus (also) of the data concerning
them: the independent P-fact as well as the dependent P-facts that are created in
transactions TK01.

10.3.2 Business Process Modelling

Although the presentation of the three kinds of coordination structures in a CSD
provides a useful insight, it is often too concise for studying the business processes
in detail. Notably, it is not possible to represent, in a precise way, the
interimpediment structure (thus, the interprocess process dependencies), as well as
the intraprocess process dependencies and the initiations of transactions. In order to
do this, the Process Structure Diagram (PSD) (cf. Chap. 12) is introduced. Below,
the PSD of the sales process of the GloLog enterprise (cf. Chap. 18) is presented as
an example.

In Fig. 10.13, the corresponding part of interaction structure is included in the
so-called “click mode”: the right side of Fig. 10.2 with the two parts put together.
The grey-coloured thick lines correspond with the borders of the actor roles: they
separate the responsibility areas in a similar way as the ‘swim lanes’ in BPMN
[1]. The transaction kind shapes are drawn on these lines; above the line is the
responsibility area of the initiator, below the line is the responsibility area of the
executor. The disk of the transaction shape is stretched horizontally, which makes it
look like a ‘sausage’. The diamond represents the execution phase, the part of the
‘sausage’ to the left represents the order phase, and the part to the right represents the
result phase. Consequently, one may imagine a (non-proportional) time axis from
left to right.

Although the ‘sausage’ comprises all steps of the complete transaction pattern,
only the ones that are connected to steps in other transaction kinds are shown in a
PSD, and they are always put on the edge of the ‘sausage’. C-acts are represented by
small boxes and C-facts by small disks. The P-act is represented by a small grey box.

The PSD in Fig. 10.13 shows that transactions TK01 are initiated externally, thus
from a different process; this is indicated by the grey colour of the small disk that is
connected to [TK01/rq] by a response link. The response link corresponds with the
initiator link in the CSD. Likewise, there is a response link from (TK01/pm) to

206 10 The OMEGA Theory: Understanding the Construction of Organisations

[TK10/rq], expressing that transactions TK10 are initiated from the state promised of
the corresponding TK01. Because of this, every transaction TK10 is said to be
enclosed in a transaction TK01.

The wait link from (TK10/ac) to [TK01/ex] expresses that the enclosed transac-
tion TK10 must have reached the state (TK10/ac) before actor AR01 can proceed to
perform the P-act [TK01/ex]. The interprocess wait link in Fig. 10.10 from TK02 to
AR10 is made more precise in the PSD by the wait link from (TK02/ac) to [TK10/
ex]. It expresses that performing [TK10/ex] must wait until the corresponding
transaction TK02 has reached the state accepted. The grey colour of the small disk
indicates that (TK02/ac) is a state in a process of a different business process kind.

As explained in Chap. 9, the processes that are caused by a (discrete event)
system are sequences of events. In enterprises, these processes are commonly called
business processes. The adjective “business” is somewhat confusing, because it
refers to the function perspective on enterprises (cf. Chap. 7). Therefore, the term
“organisational process”would be more appropriate. Nevertheless, we will adopt the
term “business process”, while taking exclusively the construction perspective. As
illustrated by Fig. 10.11, the four interaction (tree) structures, together with the
related parts of the interstriction and the interimpediment structures, are the struc-
tures in which business processes take place. Therefore, we say that each of these
tree structures corresponds with a business process kind. Every business process
(instance) is some path through this structure, starting from the top transactor role
(by a request for a product), and, if successful, ending in the top transactor role
(by the acceptance of the product). As said, a business process kind corresponds with
a BoM-like product structure.

The atomic steps in every business process (instance) are coordination acts/facts
(cf. Chap. 8). Because they occur always in the universal pattern of the transaction,
these transactions may rightly be called the molecules of business processes. In Sect.
10.4.1, the structure view, as discussed above, will be compared with the currently
dominant flow view in business process modelling.

The case kind of every transaction kind in a business process kind, except the self-
activating transaction kind at the top, must be the same as the one at the level above
it, or be a part of it, like the frame in Fig. 10.3 is a part of a bicycle. If this condition is
not met, the case kinds are incompatible. As an illustration, the business process
structures that correspond with the product structures in Fig. 10.3 regard the same

Fig. 10.13 GloLog: PSD of
the sales process

10.3 Elaborations 207

case kind, or a part of it. If one is confronted with incompatible case kinds, the process
structure must be split into a number of other tree structures. Because of this incom-
patibility, there are four distinct case kinds in the GloLog enterprise (cf. Chap. 18): sale,
purchase, ship content, and container content. Consequently, there are four distinct
business processes, loosely coupled by access links and wait links.

10.3.3 Reference Models

The tree structures in business processes appear to contain similar patterns, which are
specific for the categories of products that they bring about. These distinctions exist
in addition to the product sorts that are discussed in the ALPHA theory
(cf. Chap. 11): original products, informational products, and documental products.
In Table 10.2, the distinct categories of product kinds are listed: creating and
changing, transporting and storing, transferring of ownership, and obtaining usu-
fruct. They can apply to tangible and to intangible things.

In the following sections, each of the four product categories from Table 10.2 is
discussed and exemplified. We do not claim that the table is exhaustive, only that it is
based on many years of solid practice. The corresponding business process patterns
may very well be considered as reference models of enterprise categories.

10.3.3.1 Creating and Changing

By creating and changing tangible things is understood: the making of new things
(things that didn’t exist before) or the extending, modifying, and repairing of things.
Examples of tangible things, commonly called goods, are bicycles, houses, and
sculptures. Things are often assemblies of other things, called their parts or compo-
nents. The assembly structure of things is often called a Bill of Material (BoM). On
the right side of Fig. 10.3, a typical BoM of a bicycle is shown.

Table 10.2 Product categories

tangible things intangible things

creating and changing manufacturing, changing,
repairing (movable and
immovable) goods

making and adjusting deci-
sions, advices, judgements, etc.

transporting and storing transporting and storing goods
or files

not applicable

transferring ownership buying/selling goods acquiring owner rights, paying,
trading shares

obtaining usufruct hiring/renting
space-time capacities

not applicable

208 10 The OMEGA Theory: Understanding the Construction of Organisations

In Chap. 8, the product of a transaction is defined as an independent production
fact, together with its dependent facts, and a product structure is defined as a tree of
independent production facts. The BoM of the bicycle in Fig. 10.3 becomes a
product structure when “bicycle” is replaced by “assembled bicycle”, “wheel” by
“assembled wheel”, “spoke” by “acquired spoke”, etc. Note that only the real ‘leaf’
parts, like the rim and the hub, are acquired (or taken from the shelf); all other parts
are assemblies. Figure 10.14 shows the CSD of the corresponding business process
kind.

The creating and changing of intangible things, like insurance policies, building
licences and judgements, are pretty much similar to what has been said about tangible
things. Only the number of levels in the product structure is commonly smaller.

10.3.3.2 Transporting and Storing

Transporting and storing are exclusively associated with tangible things. They
constitute the core of logistic operations. We have seen examples of such operations
in the GloLog enterprise, as presented in Sects. 10.2.2–10.2.4, and in Chap. 18. Like
it is the case for creating goods, the products in transporting and storing have also
BoM-like structures (cf. Fig. 10.5), and these structures can also easily be extended.
As an example in the GloLog enterprise, the completion of the land transport of a
container (cf. Fig. 10.8) consists of loading the container on a truck, actually
transporting the container from one location to another, and unloading the container.
Each of these transaction kinds may have a sub-tree. For example, transporting the
container may be decomposed into picking the container and putting it on a truck,
driving the truck to the premises of IES, and taking the container from the truck. It is

Fig. 10.14 Reference CSD for creating and changing

10.3 Elaborations 209

not so hard to imagine how each of these transaction kinds, on their turn, may be
further decomposed, if needed. Figure 10.15 exhibits the CSD of the resulting part of
the GloLog enterprise.

As explained by the FI theory (cf. Chap. 5), the form part of an information item is
inscribed in some physical substance. In modern digital technologies, the physical
substance is mostly electrical, magnetic, or optical. In the ALPHA theory
(cf. Chap. 11), the word “file” is used to refer to the collection of physical ‘inscrip-
tions’ that together carry a document (or data set). Files are transported and stored, in
much the same way as goods are transported and stored. Consequently, reference
models apply that are similar to the one shown in Fig. 10.15. For example, in order to
transport a file from your computer to another computer, a number of physical
actions must be performed, including the transmission of the file through a computer
network, like the Internet.

10.3.3.3 Transferring Ownership

In most civil codes, buying and selling are the dual notions (cf. Chap. 5) related to a
(legal) agreement or contract between two parties about the transfer of ownership of
tangible things from the seller to the buyer, commonly in exchange for an amount of
money. In the OMEGA theory, paying is considered a separate transaction because it
results in the creation of an original product, namely the transfer of ownership of an
amount of money. Omitting the payment transaction does not affect the transfer of
ownership of the goods. So, one can very well become owner of a thing without
doing something in return, which means getting the thing for free.

Fig. 10.15 Reference CSD of business process kinds for transporting and storing

210 10 The OMEGA Theory: Understanding the Construction of Organisations

As an example of the reference model that corresponds with the transfer of
ownership of things, Fig. 10.16 shows, on the left side, the general pattern of
transferring ownership. On the right side, the specific pattern for the case Pizzeria
(cf. Chap. 14) is shown. The transactor roles TAR01 and TAR03 represent, respec-
tively, the transfer of ownership of goods and the transfer of ownership of money. As
said, payments are not an inherent part of an ontological model. They occur if the
ownership transfer crosses the border of economic (or business) units (cf. Chap. 11).
Inside such a unit, there are no payments for services. Next, transactor roles TAR02
and TAR04 in Fig. 10.16 are considered enterprise specific. If the goods can be taken
from stock, there is no manufacturing (like the preparing of pizzas). And if the goods
are taken out by the customer, there is no delivering.

To illustrate how buying/selling things is conceived in the OMEGA theory,
transaction kind TK01 regards the fulfilment of the selling/buying contract, in this
case the transfer of ownership of pizzas. The transfer of ownership of the amount to
pay is represented by transaction kind TK03. Every TK03 is enclosed in a TK01.
Transactions TK01 have two other components: the preparing of the pizzas (TK02)
and the optional delivering of the pizzas to the customer’s place (TK04). Note that
the case kind in all product kinds is the same, namely the sale. Sale is the conception
of the product from the perspective of the supplier, as discussed in Chap. 5. From the
perspective of the buyer, it is a purchase.

10.3.3.4 Obtaining Usufruct

Next to the transfer of ownership of goods, which basically implies a permanent
right of usufruct of the owned goods, one may grant temporary usufruct of tangible
things. These things are always space-time resources, so things that one uses or
occupies for some time. Figure 10.17 exhibits the most general reference model. It is
a simple tree of which the top is the transaction kind TK01 (concluding of the

Fig. 10.16 Reference CSD of transferring ownership (left) and the Pizzeria example (right)

10.3 Elaborations 211

usufruct case). There are two enclosed transaction kinds: TK02 and TK03. In a
transaction TK02 (resource seizing), the user is requested to occupy the resource at
the agreed-upon beginning of the usufruct period. In a transaction TK03 (resource
releasing), the user is requested to release the occupied resource at the agreed-upon
ending of this period.

Concluding a usufruct case concerning tangible things, like cars, houses, rooms in
a hotel, and chairs in an aircraft, a stadium or a theatre, is commonly called renting.
As an example, if one rents a car, one gets the right to use the car for some period,
and if one books a seat on a flight, one gets the right to use a chair in the aircraft with
which the flight is carried out. Because payments are no inherent parts of ontological
models (cf. Chap. 11), they are omitted in Fig. 10.17.

Seizing and releasing space-time resources are commonly called checking-in and
checking-out, respectively. Checking-in means that one shows up, at the car rental
office, at the gate, or at the hotel, for actually driving, flying, or staying, respectively.
It corresponds with declaring that one has seized the resource, so with performing
the C-act [TK02/da]. Checking out corresponds with declaring that one has released
the resource, so with performing a [TK03/da].

To the reference CSD in Fig. 10.17 belongs a typical reference PSD, shown in
Fig. 10.18. What the PSD shows specifically is that the enclosed transactions TK02
(resource seizing) and TK03 (resource releasing) are initiated from the state of being
requested in the enclosing TK01. In addition, performing the act [TK03/rq] has to
wait for the being promised of the seizing (TK02/pm). After the releasing has also
been promised (TK03/pm), the transaction TK01 can be promised. Expressed in
more practical terms, concluding a usufruct case, like booking a seat on a flight or a

Fig. 10.17 Reference CSD and TPT for granting usufruct of tangible things

212 10 The OMEGA Theory: Understanding the Construction of Organisations

room in a hotel, implies that one has committed oneself to check-in and to check-out.
Not showing up for a check-in (called a no-show), means that the (in general scarce)
resource cannot be occupied by somebody else.

Figure 10.19 exhibits the reference model for car rental companies (cf. Chap. 15).
The general transaction kinds ‘resource seizing’ and ‘resource releasing’ are
replaced by the more specific ‘car taking’ and ‘car returning’. Likewise, ‘usufruct
case concluding’ is replaced by ‘car rental completing’. Because transactions of the
kind TK01 (car rental completing) take place between separate economic units
(namely the renter and Rent-A-Car), two payment transactor roles are added, one
for paying a deposit (TAR04) and one for paying the (final) invoice (TAR05), which
may include fines.

Fig. 10.18 Reference PSD for granting usufruct of tangible things

Fig. 10.19 Reference model of business process kinds in car rental companies

10.3 Elaborations 213

Next to the single obtaining of usufruct, like renting a car, there are contracts that
give one the right on multiple instances of usufruct. For example, by becoming
member of a tennis club, one acquires the right to play on the courts of the club as
often as one likes (provided there is a free court). Similarly, by subscribing to a
music streaming service, one can listen all day to one’s favourite music. In these
cases, there are two additional processes. The first one regards becoming a member
and the second one regards ending the membership. We will illustrate them for the
case Library (cf. Chap. 16). The CSD and the TPT are shown in Fig. 10.20. On the
left side of the diagram are the added transaction kinds membership starting (TK01)
and membership ending (TK02). Being member, one is authorised to initiate trans-
actions TK03 (loan concluding).

Actors AR03 will therefore check for every TK03 whether the membership under
which the borrower wants to borrow a book is a valid membership, that is, a
membership that is started and not yet ended. This is represented in Fig. 10.20 by
the access links from AR03 to TK01 and TK02. The general transaction kinds
‘resource seizing’ and ‘resource releasing’ (cf. Fig. 10.17) are replaced by the
more specific ones ‘book taking’ and ‘book returning’.

In contemporary business practice, there is a tendency to offer the usufruct of
things instead of transferring their ownership. Commonly, the usufruct is then called
a service. Renting cars is already a good example of providing and using services. In
many cities, one can nowadays also rent bikes, e-bikes, and scooters. Well-known
examples in the ICT business are Software as a Service (SaaS) and Platform as a
Service (PaaS).

Fig. 10.20 Reference CSD for libraries

214 10 The OMEGA Theory: Understanding the Construction of Organisations

10.3.3.5 The Ontology of Contracts

In the preceding subsections we have come across notions like sale (and purchase),
rental and membership. They are special kinds of the general notion of contract. A
contract is an agreement between parties in which the conditions regarding the
mutual delivery of services is stated. The transfer of ownership of a number of
pizza’s in exchange of the transfer of ownership of an amount of money is a typical
and well-known example of a contract. It is called a sale from the perspective of the
seller and a purchase from the perspective of the buyer (cf. Sect. 5.3). Both parties
may specify terms and conditions concerning such contracts. Consequently, we
speak of terms and conditions of sale, and of terms and conditions of purchase.
Moreover, Civil Codes usually contain sections in which the rights and duties of the
legal parties in legal/economic contracts are laid down.

A sale in the case Pizzeria (cf. Chap. 14) is a contract between the legal entity
Pizzeria and the legal entity customer. The first is represented by Mia and the second
by somebody in the role of customer. The sale entity, thus the contract, is created at
the moment that the request is performed, which means that the whole process of
performing the C-act is completed (cf. Fig. 8.5). The applicable terms and conditions
of sale are accessible to the customer, who is considered to comply with them when
he/she performs the request in a sale completing transaction. Among other things, it
implies that the customer will pay the money due once the payment is requested.
Private customers commonly have no terms and conditions of purchase but compa-
nies commonly do. If this is the case, the purchase terms and conditions are
considered to be known to the selling party, as they have to comply with them.

The compliance of a customer with terms and conditions of sale may be explicitly
assessed in the sincerity division of the assess part of the action rule for settling
customer requests, as discussed in Chap. 12. Customers who do not comply with the
rules are thus considered insincere, more specifically: untrustworthy. Likewise, the
compliance of a vendor with terms and conditions of purchase may be explicitly
assessed in the sincerity division of the action rule for settling the promise of vendors
to sell.

10.3.3.6 Enforcing Laws

Enforcing laws or rules is not a separate category in Table 10.2 but a combination of
the existing ones. Still, it seems worthwhile to devote a section to this topic because
it has quite some societal importance. To start with, there is no fundamental
difference between the enforcement of laws by the police and, for example, the
checking whether employees comply with the business rules that are in place.

There are always two processes. The first one is making laws or rules. It belongs
to the category of creating and changing (intangible) things in Table 10.2. Thus, the
reference model of Fig. 10.14 applies. The final product kind PK01 is a (societal) law
or a (business) rule. In terms of the MU theory (cf. Chap. 6), societal laws and

10.3 Elaborations 215

business rules are existence laws or occurrence laws concerning some world.
Collectively, these laws determine which states and which transitions are lawful.
Because of the basic autonomy of actors (cf. Chap. 8), laws can be disobeyed or
violated. Consequently, the P-world or C-world of an organisation can be in an
unlawful state. An example of violating a societal law is driving at a speed of
120 km/h where the speed limit is 90 km/h. An example of violating a business
rule is starting the membership of a tennis club for an 11-year-old child if the
minimum age is 12 years.

The second process in enforcing laws is about dealing with violations. According
to the PSI theory (cf. Chap. 8), in particular Habermas’ idea of discourse, the actor
who violates a rule is challenged to give account of the violation, that is, to explain
why he/she has deviated from the rule. In principle, there may be good reasons for
the violation. In the example of driving too fast, the driver could be a medical doctor
who is on her way to the hospital to give medical care to a road casualty. In the
example of the tennis club, the 11-year-old boy (whose name appears to be Rafael
Nadal) may be considered a very promising tennis player, who would otherwise go
to the rival tennis club in town. There must always be room for discussion and
discourse; this is a fundamental condition in Habermas’ theory. But, if the explana-
tion is unsatisfactory for the judging authority, measures may be taken.

There are two kinds of such measures. One aims at correcting the unlawful state.
It could be an option in the tennis club case. As explained in Chap. 8, this can be
achieved by revoking the promise of the tennis club official in the membership start
transaction. In the subsequent discussions (and possibly discourse), the tennis club
official has to convince the aspirant member that he/she is, on second thought, not
allowed to make him member of the club.

The other kind of measure aims at discouraging or prohibiting the unlawful state
from happening. It holds for the case of driving too fast, as well as for violating many
other societal laws. In general, two (original) transaction kinds are needed to take
this kind of measures. One is observing the violation of the law; the other is
effectuating the discouraging or the prohibiting. The common way of discouraging
future misbehaviour is by imposing a fine (with which you may be familiar in the
case of driving too fast). The common way of prohibiting misbehaviour is by
depriving the offender of her/his freedom, normally by imprisoning her/him. Note
that these transactions belong to the category of creating and changing.

10.4 Discussions

10.4.1 Structure Thinking Versus Flow Thinking

The dominant way of thinking in business process management, as exemplified by
the widespread approach named BPMN [1], is flow thinking. By this is meant that
one perceives a business process as a sequence of actions or tasks that affect an entity
or case, like a purchase or sale. The word “flow” refers to the ‘flowing’ of the cases
through the sequence of actions. Flows are not necessarily monolithic; it may also

216 10 The OMEGA Theory: Understanding the Construction of Organisations

consist of parallel (sub) flows. In the previous sections, we have introduced an
alternative way of thinking about business processes, which we refer to as structure
thinking. There are at least two situations in which flow thinking seems to be
insufficient.

The first one is the situation where there are different case kinds in a (monolithic)
process. This necessarily leads to splitting of the process into parallel cooperating
processes, loosely coupled by the interstriction structure and the interimpediment
structure. A good example of this situation is the GloLog enterprise, whose interac-
tion structure is shown in Fig. 10.8. The ‘main’ business process kind is the one that
is initiated by the client. The other three process kinds emerge from the necessity to
devise separate processes because of incompatible case kinds. Consequently, these
processes are initiated internally. The four process kinds together accomplish that, at
the end, the client gets the goods that he/she has ordered.

The second situation is when one wants to make major changes to a business
process kind. To illustrate this situation, let us have a look at Fig. 10.21, in which the
interaction structure of Fig. 10.5 is copied. When applying structure thinking, one
would get the next understanding of the whole process. It starts from an actor in
CTAR00, who performs a request for a TK01, directed to an actor AR01. In response
to it, the actor AR01 decides that he/she needs three other products in order to bring
about the requested PK01, namely a PK02, a PK03, and a PK04. So, the AR01
performs corresponding requests to an AR02, an AR03, and an AR04, respectively.
The bringing about of these products may be done in parallel, but there may also be
dependencies, like the ones we have seen in Fig. 10.15. On their turn, the actors
AR02, AR03, and AR04 need to start transactions in which products of the kinds
PK05, PK06, PK07, PK08, and PK09 are brought about. Because the PK07 is
optional, as indicated by the cardinality range 0. . .1, Fig. 10.21 shows, for the

Fig. 10.21 Structure thinking versus flow thinking

10.4 Discussions 217

sake of illustration, the situation in which no PK07 is needed. Note also that two
products PK08 are produced: one as part of a PK03 and one as part of a PK04.

When applying flow thinking, one would primarily follow the dotted brown lines
in the figure, and consequently would understand the whole process basically as the
next sequence of acts: [TK01/rq], [TK01/pm], [TK02/rq], [TK02/pm], [TK05/rq],
[TK05/pm], [TK05/da], [TK05/ac], [TK06/rq], [TK06/pm], [TK06/da], [TK06/ac],
[TK02/da], [TK02/ac], [TK03/rq], [TK03/pm], [TK08/rq], [TK08/pm], [TK08/da],
[TK08/ac], [TK03/da], [TK03/ac], [TK04/rq], [TK04/pm], [TK08/rq], [TK08/pm],
[TK08/da], [TK08/ac], [TK09/rq], [TK09/pm], [TK09/da], [TK09/ac], [TK04/da],
[TK04/ac], [TK01/da], [TK01/ac].

Two comments are in place. The first one is that in this sequence, the possible
parallel carrying out of transactions is ignored, just to keep it simple. The second
comment is that the acts are indicated by their names as transaction steps, just for the
sake of convenience. Other names would also be fine.

Let us point out two major drawbacks of flow thinking, and illustrate them using
the example above. The first drawback is that it is very hard, if not impossible, to
‘see’ what the consequences of changing a part of the process are for other parts. For
example, if one would like to replace the process of bringing about the component
PK04 in every PK02 by another process, this concerns two separated parts in the
sequence, namely the part that is represented by [TK04/rq] and [TK04/pm], and the
part represented by [TK04/da] and [TK04/ac]. Moreover, one must be aware that the
part in between these two, so the part that is represented by the sequence from
[TK08/rq] through [TK09/ac], may also need to be changed as a consequence of
changing the production of the PK04. One should also keep in mind that the
transactor roles in Fig. 10.16 are original ones, that is, they belong to the
O-organisation of an enterprise (cf. Chap. 11). But every actor role will have
sub-trees in the corresponding I-organisation and D-organisation. In the current
practice of business process modelling, such distinctions are not made, as discussed
in Sect. 10.3.2.

The second drawback of flow thinking is that it becomes soon unclear who is
responsible for what. Let us take as an example the part of the process that is
represented by the sequence [TK05/rq], [TK05/pm], [TK05/da], [TK05/ac],
[TK06/rq], [TK06/pm], [TK06/da], [TK06/ac]. Structure thinking tells us accurately
that an actor AR02 is responsible for performing the [TK05/rq], as well as the
[TK06/rq]. In the usual layout of workplaces, however, actors AR05 would be
located close to actors AR06, and actors AR05 would pass their work (the PK05s)
to actors AR06, which could easily lead to the idea in actors AR06 that they are
ordered to produce their PK06s by actors AR05. Imagine, as an example, a bicycle
factory where bicycles are assembled according to the BoM in Fig. 10.3 (right side).
The actor who completes the frame of the bicycle passes it to her/his ‘neighbour’
who mounts the saddle on the frame, etc. The possible confusion thus may be even
worsened by the fact that the message by which, for example, actors AR06 get the
request to bring about a product PK06 may be delivered by an actor in the
D-organisation (cf. Chap. 11).

218 10 The OMEGA Theory: Understanding the Construction of Organisations

10.4.2 Transforming Flows into Trees

As said, flow thinking may be useful, in particular when one wants to explain the
details of the implementation of business process kinds, but when it comes to
analysing, optimising, or (re)designing them, flow-based knowledge is insufficient.
An interesting question then is how one can transform flow structures into tree
structures. The answer is provided by the combined application of the OMEGA theory,
the PSI theory (cf. Chap. 8), and the ALPHA theory (cf. Chap. 11). Let us illustrate this,
using the Flow Charts of the case Volley [2], which are reproduced in Figs. 10.22,
10.23, 10.24, and 10.25. It is about becoming member of a tennis club. Applying the
ALPHA theory means distinguishing between the O-, the I-, and the D-organisation,
and subsequently abstracting from the I-organisation and the D-organisation, thus from
the realisation of the Volley enterprise. In Figs. 10.22, 10.23, 10.24, and 10.25,
documental (thus D-organisation) acts are indicated by the word “documental” and
informational (thus I-organisation) acts by the word “informational”, to which the letter
“P” (for production) or “C” (for coordination) may be added. Only to original (thus
O-organisation) acts do we apply in addition the PSI theory, which means that these
acts are labeled as transaction steps in the complete transaction pattern. Lastly, the
names of tacitly performed steps are put between “[” and “]”.

check info
in letter

[administrator]

Is the info
complete?

add IM nr.
and date

record application
in letter book

No

Yes

ask for
additional info

LETTER BOOK

archive
letter

archived
application
letter

begin

additional
info

[administrator]

[administrator]

[administrator]

[administrator]

receiving
application letter

[administrator]

Fig. 10.22 Case Volley—Flow Chart 1

10.4 Discussions 219

A

make first
invoice

[administrator]

invoice for
new member

sending
invoice

B

MEMBER
REGISTER

[administrator]

Fig. 10.23 Case Volley—Flow Chart 2

archived
application

letter

deciding about
enrollment

[secretary]

enrolled ?

stamp
new member

and date

making
refusal letter

Yes

No

new
membership

enter new
membership

MEMBER
REGISTER

calculate
membership fee

GENERAL
MEETING

RESOLUTIONS

enter fee in
member register

endA

refusal
letter

sending
refusal letter

[administrator]

[administrator]

[administrator]

[administrator]

[secretary]

[secretary]

MEMBER
REGISTER

Fig. 10.24 Case Volley—Flow Chart 3

220 10 The OMEGA Theory: Understanding the Construction of Organisations

Applying the OMEGA theory to the results of the analysis of the Flow Charts
yields the simple tree structure that is shown in Fig. 10.26. There are three actor
roles: CTAR00 (aspirant member), who is the initiator of transactions TK01 (mem-
bership starting), AR01 (membership starter), who is the executor of transactions
TK01 and initiator of transactions TK02 (membership payment), and AR02 (mem-
bership payer), who is the executor of transactions TK02. As shown, transactions
TK02 are enclosed in transactions TK01. The tree structure in Fig. 10.26 conforms to
the reference model for creating and changing (cf. Fig. 10.14).

B

enter payment in
member register

make
membership card

membership
card

sending of
membership card

end

[administrator]

[administrator]

[administrator]

MEMBER
REGISTER

receiving
copy of payment

[administrator]

Fig. 10.25 Case Volley—Flow Chart 4

Fig. 10.26 CSD of the enterprise Volley

10.4 Discussions 221

As extensively discussed in [2], the CSD of the enterprise Volley in Fig. 10.26,
shows more and at the same time less than the Flow Charts in Figs. 10.22, 10.23,
10.24, and 10.25. It shows more because it contains the complete transaction pattern of
both transaction kinds. An important practical consequence is that one is made aware
of the process ‘exceptions’, like the decline and the reject, and the four revocation
patterns. They are easily forgotten otherwise. In addition, one is made aware that
coordination acts can be performed tacitly. Tacitly performed acts are major causes of
business process failures in practice. A ‘no news is good news’ rule could be
economically justified in the past, it certainly is not anymore, given the modern ICT.

The CSD in Fig. 10.26 shows less because it is abstracted from the realisation and
implementation of the enterprise Volley, whereas the flow charts in Figs. 10.22,
10.23, 10.24, and 10.25 show realisation and implementation details. But, as one can
easily check, they are not complete. Every flow chart includes what the maker (the
analyst) has observed and has considered worthwhile to include. In contrast, the
realising of an enterprise’s O-organisation (thus the devising of its I- and D-organi-
sation) according to the ALPHA theory (cf. Chap. 11) is systematic and therefore
comprehensive, as is the implementation of all three aspect organisations.

10.4.3 The Loose Coupling of Processes

We have already said that the distinct interaction trees in an organisation are loosely
coupled through the existing interstriction and interimpediment structures. It means
that the distinct business process kinds influence each other through these structures,
but without the need to interact. The practical advantage is that each business process
can be re-designed (and subsequently re-engineered and re-implemented) indepen-
dently of the processes with which they are connected through these structures. Only
the interfaces, thus the access links and the wait links, must be properly dealt with.

The notion of loose coupling has a history in systems design that dates back to
1972, when David Parnas published his paper on the decomposing of (software)
systems into modules. It is included in [3]. Without calling it loose coupling, many
other researchers, like Edsger Dijkstra [4, 5] and Michael Jackson [6, 7], proceeded
in the same way. In hindsight, these authors can be considered the forerunners of
object-oriented programming and design. A more recent approach to the
modularisation of systems is Normalised Systems [8]. Although all of them focus
on software engineering, the applied principles of modular design have a broader
scope. The invariable key question is how to decompose a (too) complex system into
comprehensible, manageable, and maintainable parts (modules).

The OMEGA theory, as presented in this chapter, offers an approach to
modularising organisations, based on the tree structures that are inherent in the
products that are brought about. It is a most natural way to achieve maximum
cohesion within a process tree and minimum dependencies between them, as
extensively discussed in Sects. 10.2 and 10.3. As an additional illumination of the
soundness of the theory, let us study the consequences of the narrowing down of the

222 10 The OMEGA Theory: Understanding the Construction of Organisations

SoI in the case GloLog. To this end, Fig. 10.27 exhibits the narrowing down to the
sales and the purchase processes, thus excluding or ignoring the land transport
process and the sea transport process, indicated by the yellow-lined rectangle. This
rectangle cuts across several access links and wait links. The question now is how
these links must be represented in a CSD of the new SoI.

The access link from actor role AR12 to transaction kind TK03 can just be left out
because it represents an information need from outside the new scope. For similar
reasons, the wait link from TK03 to AR14, and the one from TK07 to AR15 can be
omitted. The only interdependency we have to take care of is the wait link from
TK15 to AR17. Figure 10.28 shows how this is done, namely by including the (now
external) transaction kind TK15. In order to illustrate access links to external
transaction kinds, the one to the multiple transaction kind MTK01 (cf. Chap. 12)
is included.

Fig. 10.27 Narrowing down the scope in the case GloLog (1)

Fig. 10.28 Narrowing down the scope in the case GloLog (2)

10.4 Discussions 223

10.4.4 The Practical Importance of the OMEGA Theory

The OMEGA theory is meant to be, and has also proven to be, an intellectual
instrument in discovering and profiting from the tree structures that exist in business
processes, once these processes have been understood in the ontological way as
provided by the PSI theory (cf. Chap. 8). The key concept on which the OMEGA
theory builds is the transactor role. It is the constructional building block of organi-
sations, and consequently of the business processes that become manifest when these
organisations are operational.

The understanding of a business process as a tree of transaction processes, in the
way discussed in Sect. 10.2.2, is probably the most important insight that the
OMEGA theory offers. Therefore, it was taken as the definition of business process.
The (interaction) tree structure resembles the product structure of the ‘top’ product in
the tree. Consequently, the core entity or case kind in each node of a tree must be the
same as the one in the higher node (the parent), or be a true part of it. Structure
clashes are solved by conceiving separate trees, as demonstrated for the case
GloLog. The provided insight is lacking in contemporary approaches to business
process modelling, like BPMN [1, 9], UML [10, 11], Aris [12], and Archimate
[13]. Concluding, it should not be a surprise that these approaches offer little help
when major process changes are at stake.

The tree structure also allows for a clear and precise discussion of the often
vaguely defined notions of process and data ownership (cf. Sect. 10.3.1). The
combination of tree thinking and flow thinking for practical business process
analysis was demonstrated in Sects. 10.4.1 and 10.4.2.

The second important insight is that the dependencies between (interaction) tree
structures can simply be expressed in an additional interstriction structure and an
additional interimpediment structure. The first one represents the state dependencies
among business processes; that is, the situations in which for performing a process
step, the state of another business process is taken into account. The second one
represents the process dependencies among business processes; that is, the situations
in which one has to wait for a specific progress in another business process to come
into being in order to perform a step (in the current process). The precise nature of
the impediments can be expressed in the PSD, as discussed in Sect. 10.3.2.

The third practical insight that the OMEGA theory provides is that, in practice,
there are only a few really different process structures. In Sect. 10.3.3, we have
called them reference models. They may remain a subject of ongoing research, but it
looks like one can do with a limited number of ‘fibre’ structures, on top of the
‘molecules’ and ‘atoms’ as presented in [14]. They can be used as building blocks to
construct the essential model of any enterprise in a short amount of time.

References

1. Mendling, J., & Weidlich, M. (2012). Business process model and notation 4th international
workshop. In Proceedings. Lecture notes in business information processing (p. 1). BPMN
2012, Vienna, Austria, September 12–13, 2012. Berlin: Springer.

224 10 The OMEGA Theory: Understanding the Construction of Organisations

2. Perinforma, A. P. C. (2015). The essence of organisation. Leidschendam: Sapio Enterprise
Engineering.

3. Parnas, D. L., Hoffman, D. M., & Weiss, D. M. (2001). Software fundamentals. In D. L. Parnas
(Ed.), Collected papers (xxiv, 664 p.). Boston: Addison-Wesley.

4. Dijkstra, E. W. (1970). Notes on structures programming.
5. Dijkstra, E. W. (1976). A discipline of programming (XVII, 217 p.). Prentice-Hall series in

automatic computation. Englewood Cliffs, NJ: Prentice-Hall.
6. Jackson, M. A. (1975). Principles of program design (xii, 299 p.). A P I C studies in data

processing. London: Academic.
7. Jackson, M. A. (1983). System development (XIV, 418 p.). Prentice-Hall International series in

computer science. Englewood Cliffs, NJ: Prentice/Hall International.
8. Mannaert, H., Verelst, J., & De Bruyn, P. (2016). Normalized systems – from foundations for

evolvable software toward a general theory for evolvable design. Kermt, Belgium: Koppa.
9. Dumas, M., et al. (2018). Fundamentals of business process management (2nd ed.). Berlin:

Springer.
10. ACM Digital Library. UML: Unified Modeling Language. In ACM Digital Library. s.n.: S.l.
11. Scott, K. (2001). UML explained (xviii, 151 p.). Boston: Addison-Wesley.
12. Scheer, A.-W. (1999). ARIS – Business process modeling (XIX, 218 S., 2nd. completely Rev.

and Enl. ed.). Berlin: Springer.
13. The Open Group. (2010). Archimate�� 1.0 specification? Technical standard technical stan-

dard (p. 1, 161 p.). Zaltbommel: Van Haren Publishing.
14. Dietz, J. L. G. (2003). The atoms, molecules and fibres of organizations. Data and Knowledge

Engineering, 47, 24.

References 225

Chapter 11
The ALPHA Theory: Understanding
the Essence of Organisations

Abstract The ALPHA theory, or organisational essence theory, is a theory about the
distinction of layers of transactor roles in an organisation, based on the sort of production
that transactors bring about: original, informational, or documental. Original production
comprises all production acts that result in original new facts. Examples are devising things,
deciding and judging, as well as manufacturing, transporting, and observing things. Infor-
mational production acts comprise remembering, computing and deriving facts, and sharing
(remembered or derived) facts. Documental production acts comprise saving, providing, and
transforming documents or data (containing facts), as well as storing, retrieving, copying,
transmitting, and destroying files. Accordingly, the organisation of an enterprise can be
partitioned into three partial organisations: the O-organisation (O from original), the
I-organisation (I from informational), and the D-organisation (D from documental). The
I-organisation supports the O-organisation by means of informational services (remember-
ing and sharing facts), and the D-organisation supports the I-organisation by means of
documental services (saving and providing data or documents). Because original acts are
the only acts that change the state of the ‘business’ world of an enterprise (i.e. the production
world of its O-organisation), they must be performed by human actors. For informational
and documental acts, it holds that they can be taken over by artefacts, notably ICT systems,
including AI-artefacts (like logistic control systems and robots). However, as pointed out in
the PSI theory, human actors are ultimately responsible and accountable for the acts of these
artefacts. The ontological model of an enterprise’s O-organisation is called its essential
model. Like every ontological model, it is abstracted from implementation, but it is also
abstracted from realisation, that is, from the supporting I- and D-organisation. Yet it contains
everything that is needed to understand the essence of an enterprise’s operation. In terms of
size, that is, the amount of diagrams, text, etc., the essential model is less than 5% of a
‘normal’ complete model of an enterprise. So, the ALPHA theory contributes to the generic
enterprise engineering goal of intellectual manageability by an unprecedented reduction of
complexity. The ALPHA theory also clarifies that every enterprise information system (EIS)
is nothing more or less than a part of I- and the D-organisation that support the
O-organisation, only implemented by using ICT. Thus, the (functional) requirements for
an EIS are contained in the essential model of the organisation.

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_11

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_11&domain=pdf

11.1 Introduction

The theory in this chapter is labeled A-theory. The Greek capital letter is pronounced
as ALPHA, an acronym for Abstraction Layers in Production for Holistic Analysis.
It concerns layers of transactors (cf. Chap. 8) that can be discerned in every
organisation. They exist next to the compositional trees that are discussed in
Chap. 10. The ALPHA theory is classified as an ontological theory in the framework
of theories, as presented in Chap. 4. Thus, it is a theory about the nature of things.

Three layers of transactors are distinguished, based on the three distinct sorts of
production acts (cf. Chap. 8): original, informational, and documental. The distinc-
tion corresponds to the distinct performa, informa, and forma levels in coordination.
Accordingly, the organisation of an enterprise can be layered into three partial
organisations: the O-organisation (O from original), the I-organisation (I from
informational), and the D-organisation (D from documental). The I-organisation
supports the O-organisation by means of informational services (remembering and
sharing facts), and the D-organisation supports the I-organisation by means of
documental services (saving and providing data or documents).

Original production acts result in original (new) production facts. Examples are
devising things, deciding and judging (all of them concerning intangible things), and
manufacturing, transporting, and observing things (all of them concerning tangible
things). Informational production acts comprise remembering facts, computing or
deriving facts, and sharing (remembered or derived) facts. Documental production
acts concern the signs (documents or data) that contain facts, including the physical
substances in which they are inscribed (cf. Chap. 5). Therefore, they comprise
saving, providing and transforming documents or data, as well as storing, retrieving,
copying, transmitting, and destroying files (both electronic and paper based).
Because original acts are the only acts that change the state of the ‘business’ world
of an enterprise (i.e. the production world of its O-organisation), they must be
performed by human actors. Informational and documental acts can be taken over
by artefacts, notably ICT systems, including AI-artefacts (like logistic control
systems and robots). However, as pointed out in Chap. 8, human actors are ulti-
mately responsible and accountable for the acts of these artefacts.

The remainder of the chapter is organised as follows. Section 11.2 (foundations)
starts with discussing the three organisational layers, as well as the corresponding
sorts of actors and products, on the basis of the semiotic ladder (cf. Chap. 5). Next,
the notion of the essential model of an enterprise is presented. Section 11.3 (elab-
orations) starts with deepening the key concepts that are discussed in Sect. 11.2.
Next, the notions of realisation and implementation are elaborated. It comprises a
discussion of the differences between actors and agents (artificial intelligence), and it
will lead to the understanding of (enterprise) information systems as inherent parts of
organisations. In Sect. 11.4 (discussions), two topics are addressed. One is the
distinction between an enterprise’s organisation and the boundary of its business,
thereby clarifying the notion of (in- and out-) sourcing. The other topic is the current
debate on AI and the position that is taken in this discussion by the discipline of
Enterprise Engineering (EE).

228 11 The ALPHA Theory: Understanding the Essence of Organisations

11.2 Foundations

11.2.1 The Organisational Layers

The FI theory (cf. Chap. 5) provides us with the semiotic ladder (cf. Fig. 11.1). It
clarifies the role of signs in the communication between human beings. Information
is defined as the means for communication. A unit of information, commonly called
an information item, is a dyad of content and form: the two parts are distinguishable
but not separable, like the two sides of a coin. The content of an information item is
the thought to be conveyed, and the form consists of perceivable formations (letters,
numerals, and other symbols), collectively called the sign. The content comprises
both the intention (or pragmatics) and the proposition (or semantics) of the thought,
and the form comprises both the formalism (or syntax) and the coding (or empirics)
of the sign. Signs are ‘inscribed’ in some physical substance, for example, on paper,
on clay tablets or in electromagnetic waves.

In accordance with the semiotic ladder, the PSI theory (cf. Chap. 8) distinguishes
three abilities of communicating subjects: the forma ability (to deal with empirics
and syntax), the informa ability (to deal with semantics and pragmatics), and the
performa ability (to deal with the social impact of communication). These abilities
are shown, on the right side of Fig. 11.1, as three shapes that human beings can take
on. The physical world (dealing with substances) is not covered by the performa-
informa-forma distinction. As clarified in Sect. 11.2.3, we consider it to be included
in the forma ability. The analogy with the Matryoshka (Russian nested doll) shapes
is used to illustrate that they must be understood as enclosed in each other, from top
to bottom, that is, they are scaled top-down.

In Chap. 8, the performa, informa, and forma abilities or shapes are used to clarify
the distinct levels in the process of performing coordination acts. Here, we will apply
them to clarify the distinction that can be made in every enterprise between three
organisational layers, based on the following three sorts of production acts: original,
informational (or infological), and documental (or datalogical). The terms
“infological” and “datalogical” are coined by Langefors [1]. For practical reasons,
we will use the more common synonyms “informational” and “documental”.

Fig. 11.1 The semiotic ladder

11.2 Foundations 229

A production act is called original if it creates new facts in the business world of
the enterprise (cf. Chap. 7). Examples of original acts are the decision by the
customer in a flower shop to buy a bouquet of flowers, and the subsequent decision
by the addressed salesperson to sell a bouquet of flowers to the customer.

A production act is called informational if it concerns the remembering, sharing,
or deriving of business facts (note: derivation comprises both mathematical compu-
tation and logical deduction). Shared facts may be original, thus created in an
original production act, or derived. Note that the derivation of facts does not change
the state of the world; it only leads to presenting the state in new, possibly more
intelligible or convenient ways. Computing the daily turnover of a flower shop is an
example of an informational act. It does not change the performed sales, but it
presents them in a more convenient way.

A production act is called documental if it concerns the saving and providing of
documents or data (which contain facts that need to be remembered). Also
transforming documents or data, like changing the docx format of a document to
PDF, is a documental act. Moreover, we consider documental acts to include
physical operations on the files that carry the documents or data. Examples of
these operations are storing, retrieving, copying, transmitting, and destroying. The
distinction between documents (or data) and files will be clarified in Sect. 11.2.3.

In Fig. 11.2, the total organisation of an enterprise is divided into three partial
organisations, in accordance with the distinction between original, informational,
and documental production. The three partial organisations are respectively called
O-organisation (from Original), I-organisation (from Informational), and D-orga-
nisation (from Documental). All original production acts are performed by actors in
the O-organisation (called O-actors for short), all informational production acts are
performed by actors in the I-organisation (called I-actors for short), and all docu-
mental production acts are performed by actors in the D-organisation (called

Fig. 11.2 The organisational layers

230 11 The ALPHA Theory: Understanding the Essence of Organisations

D-actors for short). The general relationship between the three partial organisations
is that the D-organisation supports the I-organisation, and that the I-organisation
supports the O-organisation. Conversely, the O-organisation uses (the services of)
the I-organisation, and the I-organisation uses (the services of) the D-organisation. In
Fig. 11.3, O-actors are represented by figurines with red hats, I-actors by figurines
with green hats, and D-actors by figurines with blue hats, like the gnomes in [2].

11.2.2 Organisational Layers and Sorts of Actors

As explained in Chap. 8, actors collaborate through carrying out transactions.
Corresponding with the distinction between the O-organisation, the I-organisation,
and the D-organisation, we distinguish between original or O-transactions, infor-
mational or I-transactions, and documental or D-transactions.

In addition to the transaction kinds that exist within the I-organisation, there are
two general I-transaction kinds between the O-organisation and the I-organisation,
as shown in Fig. 11.3: remembering facts and sharing facts. Transactions of these
kinds are initiated by O-actors and executed by I-actors. O-actors are able to do this
by taking on their informa shape (cf. Chap. 8). Similarly, there are two general
D-transaction kinds between the I-organisation and the D-organisation, as shown in
Fig. 11.3: saving documents (or data) and providing documents (or data). I-actors are
able to initiate transactions of these kinds by taking on their forma shape.

So, one of the services that the I-organisation offers to the O-organisation is that
O-actors can ask I-actors to remember (original) facts. This happens in remembering
transactions. Likewise, they can ask to share (original or derived) facts in sharing
transactions. The separation between creating facts and remembering created facts is
strict. By definition, O-actors create facts but do not remember them. If they want
facts to be remembered, they need to initiate a remembering transaction, and if they

Fig. 11.3 Organisational layers with corresponding O-, I-, and D-actors

11.2 Foundations 231

want to know facts, they need to initiate a sharing transaction. Note, however, that
this is a separation of actor roles, not of subjects (cf. Chap. 8). For example, the
salesperson in a flower shop fills the O-actor role seller when selling flowers, and in
this actor role he/she does not remember what has been sold. In order to have sales
facts remembered, he/she must ask an actor in the I-organisation to remember them.
But this I-actor may be the same person as the O-actor. Continuing the flower shop
example, the I-actor who has to remember the sales facts, may feel the need to
document these facts in order not to forget them. To this end, he or she may write
down sales facts and ask a D-actor to save the notes. Likewise, an I-actor may ask a
D-actor to provide saved documents or data. Both actors may be the same person,
and they may also be the same person as the I-actor.

To elaborate this, the figurines with the coloured hats in Fig. 11.3 are actors, thus
subjects in filling an actor role, not the actor roles. Consequently, the same subject
may be present in the O-organisation with a red hat, in the I-organisation with a
green hat, and in the D-organisation with a blue hat. This is very common, in all
enterprises. Sometimes, people perform original acts, sometimes informational, and
sometimes documental. But the distribution of these sorts of acts over individual
persons may differ substantially. People whose organisational function is to sell or to
purchase, for example, will mainly perform original acts (and then be an O-actor). In
contrast, accountants will mainly perform informational acts, like calculating (and
then be an I-actor), and the internal postmen will predominantly perform documental
acts, namely transporting letters and reports (and then be a D-actor).

11.2.3 Organisational Layers and Sorts of Production

Let us have a closer look now at the distinct kinds of production acts, and
corresponding products, as presented in Sect. 11.2.1, in order to get a deeper
understanding of the relationships between the O-organisation of an enterprise, on
the one hand, and its I- and D-organisation, on the other hand.

As explained in Chap. 8, the key characteristic of all original production acts is
that they result in new facts in the business world of the enterprise, that is, the
production world of its O-organisation. In Fig. 11.4, a distinction is made between
immaterial or intangible production (left side) and material or tangible production
(right side). Examples of immaterial production acts are all kinds of devising
(thinking up, designing), deciding, and judging. These acts create original business
facts, always and everywhere. They also constitute the majority of production acts in
contemporary enterprises. To illustrate this, every sale or purchase implies an original
decision by an authorised and responsible actor, and every advice or consultation is an
original judgement, which also requires an authorised and responsible executor.

Examples of material production acts are all manufacturing acts and all logistic
(physical) acts, like transporting. This is quite obvious. Less obvious may be that
observing or measuring things are also material acts. Let us take, as an example, the
measurement of water heights. Most people are able to ‘measure’ the water height in
rivers and canals by looking at the rulers that are placed on the sides, here and there.

232 11 The ALPHA Theory: Understanding the Essence of Organisations

These observations, however, have no significance for the decision by the captain of
a barge on the route to take through the waters. He or she needs an authorised
measurement, which is usually provided by a particular government agency. There
are authorised and responsible actors that determine the water heights. Skippers rely
on their authority and will hold them responsible, and possibly accountable, if things
go wrong. In our institutionalised modern societies, we want and need to do
‘business’ this way [3]. Therefore, the produced observations and measurements
are considered original facts.

The characteristic of all informational production acts is that they are immaterial.
This is implied by their nature. Informational acts are acts by the human mind, and
the resulting products are thoughts. Following the FI theory (cf. Chap. 5), we will
speak of conceptual facts rather than thoughts. These conceptual facts are either
original facts or derived facts.

Also documental production is, by nature, immaterial. As illustrated in Fig. 11.1,
it regards dealing with signs. More common words for signs are “documents” and
“data”, although few people would consider these words to be true synonyms. One
normally thinks of documents as of reports, books, or letters. The common charac-
teristic is that they are large amounts of signs (words) without much structure.
Likewise, one normally thinks of data as of structured signs, which mostly contain
factual information. Because the operations on documents and data are the same,
there is no reason, within the scope of the ALPHA theory, to make a distinction
between them. Nevertheless, we will continue to speak of documents and data,
preferably of documents and data sets, and to consider both as collections of data.

In [4], a partial organisation below the D-organisation is conceived in order to
deal properly with all material D-acts. Here we take an easier path; we consider the

Fig. 11.4 Organisational layers and sorts of production

11.2 Foundations 233

material operations on the carriers of documents and data sets to belong to docu-
mental production. As shown in Fig. 11.4, they comprise the storing, copying,
transmitting, destroying, and retrieving of files (the physical carriers of documents
and data sets). The distinction between documents or data sets, on the one hand, and
their physical carriers, thus files, on the other hand, is important. Every file is the
carrier of a document or a data set. Conversely, every document or data set may be
inscribed in a number of files, commonly called copies of the document or the data
set. A document or data set is saved by storing one or more files that carry the
document or data set, and it is provided by retrieving and transmitting files.Moreover,
only files can be destroyed, documents and data cannot. But, if all files that carry a
document or data set are destroyed, the document or data set is usually considered to
be lost (although there may be I-actors who still can recall their contents).

11.2.4 The Essential Model of an Enterprise

In Chap. 9, the essential model of a system is defined as an ontological model, thus a
model of its construction (cf. Chap. 7), that is fully abstracted from realisation and
implementation. More specifically, the prismanet of a system is called the essential
model of the system (within the PRISMAmeta model). Based on this notion, we will
develop in this section the notion of essential model for enterprises. Figure 11.5
illustrates what it means to abstract from realisation, that is, from the supporting
I-organisation and D-organisation, and thus to focus on the O-organisation.

By understanding the construction and operation of the O-organisation, one
understands that part of an enterprise’s organisation that brings about its business.
As stated, the I-organisation supports the operation of the O-organisation, but it is
not part of it. Likewise, the D-organisation supports the I-organisation, but it is not

Fig. 11.5 Abstracting from realisation

234 11 The ALPHA Theory: Understanding the Essence of Organisations

part of it. For a full understanding of the operation of the O-organisation, we can
therefore confine ourselves to the interface between the O- and the I-organisation,
thus to the remembering and sharing transaction kinds between them, in addition of
course to understanding the internals of the O-organisation itself.

Ontologically spoken, all created facts, both coordination facts and production
facts, exist in the corresponding world, from their event time onward (cf. Chap. 8),
and they will exist forever. Therefore, the remembering transaction kinds in
Fig. 11.5 can be accommodated by considering created conceptual facts to be
‘stored’ in the ‘bank’ of the transaction kind in whose transactions they are created.
A transaction bank is the conceptual container of all facts that are created in the
carrying out of transactions of the concerned kind (cf. Chap. 10). In order to also
accommodate the sharing transaction kinds, we introduce the notion of access right.
Every actor role whose fillers need to know conceptual facts from a transaction bank,
has reading access to the bank. In Chap. 10, this access right is expressed by means
of an access link from the actor role to the transaction kind in whose transactions the
facts are created. In case one needs derived facts, the access links go to all transaction
banks in which the ‘ingredient’ original facts reside from which the derived facts are
obtained. To illustrate this, Fig. 10.9 is reproduced as Fig. 11.6.

As an example of an access link, let us explain the link from the self-activating
actor role AR11 to the transaction bank TK01, represented by the dashed line
between their shapes. Actors AR11 periodically compose purchase orders from
sales orders. To be able to do this, they need to know what sales orders are placed
(and not yet completed). These facts are contained in the transaction bank of TK01.

The ontological model of an enterprise’s O-organisation, including the ways in
which the remembering and sharing transactions are taken care of, is called the
essential model of the enterprise.

11.3 Elaborations

The discussions in Sect. 11.2 culminated in the notion of the essential model of an
enterprise, which is arrived at by abstracting from realisation and implementation. In
this section, we will investigate organisations the other way around, based on the

Fig. 11.6 Access links in the essential model of the GloLog enterprise

11.3 Elaborations 235

dissertation of De Jong [4]. First we will take up the task to clarify in detail how one
can systematically design the ontological models of the supporting I-organisation and
D-organisation, given the ontological model of the corresponding O-organisation.
This will be done in Sects. 11.3.1 and 11.3.2. In Sects. 11.3.3–11.3.6, we will discuss
how the ontological models of the three partial organisations can be implemented, in
order to arrive at a constructional model of an enterprise at such a level of detail that it
can be put into operation straightforwardly. Along the same lines of reasoning, the
notion of enterprise information system will be studied in Sect. 11.3.7.

11.3.1 Designing the Ontological Model
of the I-Organisation

As discussed in Sect. 11.2, the interface between an enterprise’s O-organisation and
I-organisation consists of two general transaction kinds: remembering and sharing.
In transactions of both kinds, the executor is an I-actor and the initiator is an O-actor
in her/his informa (green) shape (cf. Chap. 8). Remembering concerns the C-facts
and P-facts that the O-actor creates. Sharing concerns the C-facts and P-facts that the
O-actor needs to know.

AnO-actor does initiate transactions of these kinds when he/she is settling a trigger,
as discussed in the PSI theory (cf. Chap. 8) and the DELTA theory (cf. Chap. 9). As
also discussed in these theories, actors constantly loop through their operating cycles,
checking in every cycle whether there are triggers to settle. To this end, they have
permanent access to their agenda, through a sharing transaction kind. At the beginning
of a cycle, an actor selects an agendum to settle. There may be several simultaneous
agenda, but since they are not dependent on each other (cf. Chap. 9), they can be dealt
with concurrently. Next to knowing the agendum to be settled, O-actors must also
know the action rule to be executed. The next step is therefore to fetch the
corresponding action rule, through a sharing transaction. Action rules are also consid-
ered to be facts, but created by another part of the enterprise, outside the
O-organisation that we are focusing at. In order to illustrate how the interface between
an enterprise’s O-organisation and I-organisation looks like, Table 11.1 exhibits one of
the action rules for the case Rent-A-Car (cf. Chap. 15). Note that both the fetching of
the agenda and the fetching of the action rule are taken for granted.

The event part of the action rule begins with the when-clause. It specifies the
agendum to settle (in this case: ‘rental completing for [rental] is requested’). This
request is created by an actor who is filling the role of initiator in the transaction at
hand, and it is settled by the actor who is filling the role of executor (cf. Chap. 8). In
the first execution of the rule, a new instance of the core entity type, in this case
‘rental’, is created. The same instance is used in successive executions, for example,
as the effect of a discussion in the state ‘declined’. The event part also contains a
with-clause, in which the facts are specified that are provided, along with the request
fact. They are the properties or attributes of the core entity, in this case represented
by the value of [rental], so of a specific rental.

236 11 The ALPHA Theory: Understanding the Essence of Organisations

Table 11.1 Example of an action rule from the case Rent-A-Car

event part when rental completing for [rental] is requested
with

the starting day of [rental] is some day
the ending day of [rental] is some day
the renter of [rental] is some person
the deposit payer of [rental] is some person
the driver of [rental] is some person
the deposit payer of [rental] is some person
the car group of [rental] is some car group
the pick-up location of [rental] is some branch
the return location of [rental] is some branch

assess part share
the performer of the request is the renter of [rental];
the addressee of the request is a rental completer;
the starting day of [rental] is in the rental horizon of the year of
the starting day of [rental];

the ending day of [rental] is in the rental horizon of the year of
the ending day of [rental];

the ending day of [rental] is equal to or greater than
the starting day of [rental];

the duration of [rental] is less than or equal to the max rental
duration in the year of the starting day of [rental];

the expiration day of the driving license of the driver of [rental]
is equal to or greater than the ending day of [rental];

the number of free cars in the car group of [rental] on every day in
the rental period of [rental] is greater than zero

erahs

response part if performing the action after then is considered justifiable
then
remember

remember

rebmemer

promise rental completing for [rental]
to the renter of [rental]

request deposit paying for [rental]
to the deposit payer of [rental]
with the requested ot of rental paying for [rental] is Now;

the requested deposit amount of [rental] is equal to
the standard deposit amount for the car group of [rental]
in the year of the starting day of [rental]

rebmemer
else
remember
decline rental completing for [rental] to the renter of [rental]

with * reason for declining *
rebmemer

11.3 Elaborations 237

As said, the fetching of the agenda, including the dependent facts of the
core entity type, thus ‘rental’ in Table 11.1, is taken for granted. The same
holds for the evaluation of the predications, like <the starting day of [rental]
is some day>.

The assess part of an action rule is an expression of the action or business
rule that is in place. It is effectively a list of facts that must exist (i.e. must be
the case). The first two facts in the assess part of Table 11.1 concern the
coordination world, the others the production world. Note that most P-facts,
that is, facts in the production world, are derived facts; they need to be computed
by actors in the I-organisation. Obviously, precise specifications of these derived
fact types must be available to the I-actors. As explained in Chap. 12, producing
them is considered to be part of producing the so-called Fact Model. In order to
get to know the listed facts, the executing actor initiates corresponding sharing
transactions. This is indicated in the event part in Table 11.1 by the pair of
brackets “share” and “erahs”, printed in green, that enclose the facts to be
shared.

The response part starts with the sentence that expresses the human autonomy
of the executing actor. He/she is allowed to violate the business rule, but can be
held accountable for it (cf. Chap. 8). The remainder of the response part is a
formulation of the coordination acts that are performed as the outcome of executing
the action rule. In this case, it is either the promise in completing the rental,
followed by the request in a new transaction, namely the payment of the deposit,
or the decline of the request for completing the rental. Thus, the result is either two
C-events of which the C-facts are (rental completing for [rental] is promised) and
(deposit payment for [rental] is requested) or a C-event with C-fact (rental com-
pleted for [rental] is declined). After an agendum is settled, it is marked as such,
and this C-fact is remembered. In order to make the created C-events known to the
actors who have to settle them, the executing actor initiates the corresponding
remembering transactions. This is indicated in the event part in Table 11.1 by the
pair of brackets “remember” and “rebmemer”, printed in green, that enclose the
facts to be remembered. Note that a with-clause may be added to the results of the
action rule, in which the properties and attributes are listed that need also to be
remembered.

Table 11.2 Example of (a part of) an action rule from the case Rent-A-Car

event part when rental completing for [rental] is promised
while
share
deposit paying for [rental] is accepted
erahs

238 11 The ALPHA Theory: Understanding the Essence of Organisations

In action rule ARS-3 in Chap. 15, a while-clause is added to the when-
clause. It is shown in Table 11.2. This while-clause specifies that the execution
of the rule cannot take place before the fact in the while-clause has begun to
exist. In other words, the executing actor is held up in executing the rule until
this fact exists. Obviously, in order to get to know the fact (deposit paying for
[rental] is promised), it must be enclosed between the brackets “share” and
“erahs”.

The executing actor is now burdened with the task to constantly watch the
occurrence of the event in the while-clause for which he/she has to wait. The
DELTA theory (cf. Chap. 9) offers an elegant solution to this operational problem,
by means of the notion of trigger.

According to the PSI theory (cf. Chap. 8), the product of a successfully carried out
transaction begins to exist at the moment that the accept act is performed. Let us
investigate here what this means for the design of the I-organisation. In Table 11.3,
the action rule is presented in which a rental in the case Rent-A-Car is completed. If
the accept act is performed (the then-clause of the response part), the product of the
transaction must start to exist in the P-world at the same time. To indicate that this is
the case, a corresponding sentence (coloured red) is added to Table 11.3, for
clarification.

Table 11.3 Example of an action rule in which a product is created

assess part share
the performer of the declaration is the driver of [rental];
the addressee of the declaration is some rental completer;
the declared car of car returning for [rental]

is the promised car of car returning for [rental]
erahs

response part if performing the action after then is considered justifiable
then
remember
accept car returning for [rental] to the performer of the declaration
the car of [rental] is returned
remember
else
remember
reject car returning for [rental] to the performer of the declaration

remember

event part when car returning for [rental] is declared

11.3 Elaborations 239

We have clarified above how the general interface transaction kinds between an
enterprise’s O-organisation and I-organisation are put into effect in action rules,
using the case Rent-A-Car for illustration. In addition to these transaction kinds,
there are a number of other transaction kinds needed, which are internal to the
I-organisation, of which both the initiator role and the executor role are filled by
I-actors. Table 11.1 contains several examples of derived fact types for whose
derivation such transaction kinds are needed. One of them is the fact type <the
ending day of [rental] is equal to or greater than the starting day of [rental]>. This
is a rather simple logical computation. Another example <the number of free cars
in the car group of [rental] on every day in the rental period of [rental] is greater
than zero>. Computing the truth value of this predication is not trivial at all; it will
encompass various additional internal transaction kinds in the I-organisation, as one
can imagine.

As can be deduced from the action rule in Table 11.1, the unit of factual
knowledge to be remembered by I-actors is the coordination fact or C-fact for
short. This should not be a surprise, because the C-act/fact is the atomic element
of business processes, as discussed in Chap. 8. To clarify this, we reproduce in
Fig. 11.7 the structure of a C-act/fact, as presented in Fig. 8.17. The example C-act/
fact is taken from the first remembering act in the response part of Table 11.1. It
assumes that the subject Chiara fills the role of rental completer, that Jippe fills the
role of deposit payer, that it is about rental 31416, that the deposit amount to pay is
112.50 €, and that the operative (payment) day is 2458400 (on the Julian time scale).

The remembered C-fact is an agendum for Jippe in his role of deposit payer. It
will be shared with him at the right moment, that is, at the event time of the C-fact. In
order to settle the agendum, Jippe will also be supplied with the appropriate action
rule(s).

Fig. 11.7 The structure of a coordination act/fact

240 11 The ALPHA Theory: Understanding the Essence of Organisations

11.3.2 Designing the Ontological Model
of the D-Organisation

Thanks to the semiotic triangle (cf. Chap. 5), we have been able to abstract
completely from the sign aspect, that is, the form of information, and to focus on
the thought aspect, that is, its content. But, as said, content cannot exist without
form: information is the dyad of content and form. Let us therefore now study the
consequences of the acts of I-actors for the D-organisation of an enterprise.

As an intermediate step, imagine that all I-actors are human and that they all have
an unlimited capability of remembering facts and of computing derived facts. In such
a ‘utopian’ situation, the D-organisation does not need to save and provide docu-
ments (or data sets) containing the facts mentioned. It only needs to support the
communication between O- and I-actors in carrying out remembering and sharing
transactions.

The current reality in enterprises, however, is that people can or do not want to
rely on the rational capabilities of I-actors. At least for a large part, people want to
store, process, and retrieve data. For the majority of contemporary enterprises, it is
also impractical to have human beings remember all important facts, and conse-
quently need to ask, time and again, human actors for the information that one needs.
This problem can be solved by implementing I-actor roles using modern ICT. We
will elaborate it in Sect. 11.3.5.

In order to keep facts, they must be ‘documented’, meaning that they must be
expressed in some language and saved for future use. The language may be a natural
or a formal one, or something in between, like the structured English in the
expression of action rules, as shown in Tables 11.1, 11.2, and 11.3. Consequently,
I-actors, in their forma (blue) shape, need to initiate saving transactions in order to
keep documents or data sets for future use, and to initiate providing transactions in
order to get saved documents or data (cf. Fig. 11.4). The executors of these trans-
actions are D-actors. In addition, D-actors may need to transform data or documents.
An example in human communication is the transformation of English to Morse
code. An example in the exchange of data between computers is the transformation
from EBCDIC to ASCII.

In order to save documents or data sets, they need to be inscribed in some physical
medium, as discussed in Sect. 11.2.3. The results are files. Only on files can the
operations at the bottom right side of Fig. 11.4 be applied: storing, retrieving,
copying, transmitting, and destroying.

11.3.3 Actors and Agents

By devising the ontological model of a suitable I-organisation and subsequently the
ontological model of a suitable D-organisation for the O-organisation of an enter-
prise, the largest part of making the essential model of the enterprise work is done.

11.3 Elaborations 241

But we are not finished yet; the three ontological models must still be implemented.
Implementation basically means allocating proper technological means1 to the
elements of an ontological model. An important class of these elements are the
actor roles.

As clarified in Chap. 8, only subjects, that is, human beings can bear the
responsibility of actor roles. Therefore, a perfectly safe implementation of actor
roles would be to assign them exclusively to subjects. However, subjects are
outperformed, in orders of magnitude, by modern ICT artefacts in doing, for
example, documental work. So, the question is not whether using ICT is feasible
for implementing actor roles, but how we should understand this application of ICT,
and what the limits are. As the first step in answering the question, let us call an ICT
artefact filling an actor role an agent, like we have called a subject filling an actor
role an actor (cf. Chap. 8). The question then is what it means to have agents perform
the P-acts and C-acts, while keeping in mind that agents cannot be held accountable
for their deeds.2

11.3.3.1 Documental Transactions

We begin by answering the foregoing question with respect to D-transactions. The
only acceptable way of addressing the problem seems to be that there is no objection
to having agents carrying out D-transactions, but that there must always be an actor
who is ultimately responsible for the work and who can be held accountable for what
the agents do. As an illustrating example, let us consider the replacement of the
internal (paper-based) postal mail service in a company by an email system. Clearly,
the head of the internal postal mail service is held responsible and, if the need is
there, accountable for the (mal-)functioning of the system. He or she is the person
that one would address in case of a problem. In our view, the same functionary
should be addressed if the email system doesn’t function properly, because this
functionary has apparently decided to replace the implementation of the postal mail
system by a modern one. Naturally, if the cause of the problem is the ICT system,
this functionary would address, on her/his turn, the people who are responsible for
the technical performance of the ICT system. But he or she would have acted in a
similar way if there would have been ‘technical’ problems in the internal postal mail
service.

So, if one accepts the crucial idea of an actor bearing the ultimate responsibility,
and if one implements this solution properly, there is nothing that would withhold

1We intentionally speak of technological means instead of technology, although this meaning
inflation is quite common nowadays. We prefer to stick to the original meaning of the word
technology, which stems from its Greek origin: technè (meaning making) and logos (meaning
knowing). So technology is knowing how to make.
2I am aware that the issue of responsibility and accountability with respect to agents or to other
‘intelligent’ things is currently a topic of debate in the adoption of the achievements of AI. For the
moment, I choose to consider ‘intelligent’ things as unable to bear responsibility.

242 11 The ALPHA Theory: Understanding the Essence of Organisations

the use of agents in carrying out documental transactions, nowadays also called
Robotic Process Automation (RPA).3 For executing P-acts, this is fully clear,
whereas for performing C-acts we need some additional reasoning, because
C-facts are commitments between social individuals. The only acceptable solution
regarding C-acts seems to be that we consider agents to mimic actors. This philo-
sophical stance preserves the primacy of human beings to act as social individuals;
human beings possess exclusively the ability to enter into and comply with com-
mitments. It is also an effective measure to avoid the anthropomorphic trap. As
explained by psychology, anthropomorphism is the innate tendency of people to
attribute human traits to non-human things. As an example, people normally think
that there is nothing wrong with calling a bicycle or a laptop stupid. As long as one is
aware of producing anthropomorphic explanations concerning the behaviour of
non-human things, there is no objection. But the borderline is thin, very thin. Time
and again it appears to be too tempting for people to ascribe human traits to things.

11.3.3.2 Informational Transactions

Regarding I-transactions, the answer to the question whether agents can perform
P-acts and C-acts is similar to the answer given above. As an example for illustration,
recall what happened on 11 May 1997, when Gary Kasparov lost to Deep Blue.
Kasparov was upset, as seemed the entire chess world. There was even talk of the end
of chess, because what would be the point of playing chess when machines would
always win? Consider a simple counter example. For quite some time, people use
forklift trucks to lift heavy weights. Everyone would burst into laughter if a newspa-
per headline would read “weightlifter beaten by forklift truck”. So, why didn’t we do
the same when reading the headline “Gary Kasparov beaten by Deep Blue”? The only
reason why we didn’t is that we were not yet used to human chess players being
beaten by computers. But forklift trucks are not allowed into the Olympic Games, for
example. So, playing chess can still be an exciting pastime for people.

The key to dealing with artefacts properly is exactly the notion of mimicking. The
proper way of understanding Kasparov’s (alleged) defeat is that Deep Blue didn’t
play chess at all. It just did what is the only thing computers can do: computing. Any
further attribution of human-like qualities to the computer is walking in the anthro-
pomorphic trap. To be very precise, computing is actually an ability of human
(or other natural) intelligence. It is quite correct, and even advisable, to say that
computers don’t compute. The only thing they actually do, and at which they are
extremely good, is very fast manipulation of symbols, strictly following instructions.
Why then do we call these machines computers? There are two explanations. One is
our tendency to anthropomorphism, as discussed above. The other one is our equally
strong tendency to assign functional names to the things we use, in particular to the
artefacts we make, as discussed in Chap. 7. That’s why it is okay to say that
computers compute.

3https://irpaai.com/introduction-to-robotic-process-automation-a-primer/

11.3 Elaborations 243

https://irpaai.com/introduction-to-robotic-process-automation-a-primer/

11.3.3.3 Original Transactions

If it comes to performing original P-acts, like devising, deciding, judging, but also
like manufacturing, transporting, and observing (cf. Fig. 11.4), assigning artefacts to
actor roles is no option anymore. This strict position follows from the basic philo-
sophical position as presented in Chap. 8: our world is a socially constructed world
[3]. We assign actor roles to each other, and in doing so, we bestow each other with
authority and responsibility. Of course, people can and do make mistakes, but
accepting failures is part of the societal game. And for substantial misdemeanour,
we have our judicial system: we can and do bring people to the court; we can and do
condemn people; we can and do punish them. At the same time, we can and do have
compassion with the condemned; we can and do help them in becoming ‘normal’
members of the society again. In the light of this nucleus of modern social existence,
the crucial question is: could we ever treat artefacts (agents, robots) in a similar way?
This is one of the most difficult philosophical questions modern man has to face and
come to grips with. In our view, the only acceptable answer is no. The current
tendency to conceive agents as full-fledged social individuals is treading on thin ice.
An illustrating example is the decision by the government of Saudi Arabia to grant a
robot the same civil rights as human citizens.4 Declaring robots to be citizens, or
holding self-driving cars responsible for causing accidents, is not only thoughtless
but is also a dangerous idea. They could mark the dawn of a non-human era in
human history, possibly even the end of human civilisation.

The consequence of our strict position is that artefacts, notably ICT artefacts, may
be used to support O-actors to a large extent, but that they can never take over the
authority and responsibility that have been assigned to them. As an example for
illustration, a judge may be supported by all possible ‘intelligent’ advisors in arriving
at his or her judgement (and he or she better does so!), but the judgement is made by
an authorised human. Only he or she is responsible and can be held accountable.

Having said this, and having this strict position always in mind, there is a way of
co-existence with artefacts that can be acceptable in modern societies. It is the way
that we alluded to already, when discussing the use of artefacts in carrying out
documental and informational transactions. In the concrete example of the judicial
system, it would mean that a judge would be allowed to have ‘intelligent’ agents
produce facts that count as the judge’s decisions, but that the judge is ultimately
responsible and accountable. Actually, most Western countries apply this idea in the
case of traffic offences. There is nothing wrong with automatic jurisdiction in this
case, as long as the accused has the right to go against the decision. In terms of the
PSI theory: to revoke her/his implicit accept act (cf. Chap. 8).

4On 28 October 2017, Saudi Arabia declared a robot to be citizen (http://wgntv.com/2017/99/28/
meet-sophia-the-first-robot-declared-a-citizen-by-saudi-arabia/)

244 11 The ALPHA Theory: Understanding the Essence of Organisations

http://wgntv.com/2017/99/28/meet-sophia-the-first-robot-declared-a-citizen-by-saudi-arabia/
http://wgntv.com/2017/99/28/meet-sophia-the-first-robot-declared-a-citizen-by-saudi-arabia/

11.3.4 Implementing the D-Organisation of an Enterprise

In discussing the implementation of an organisation, we will start with the
D-organisation and then go up the cone in Fig. 11.5, thus addressing the
I-organisation and the O-organisation later.

From the discussion in Sect. 11.3.3, it is clear that carrying out D-transactions can
very well be mimicked by agents, as long as there is a clear sight on the (human)
actor who is responsible and accountable for their deeds. So, when taking this
precaution, there is no objection to having agents do all the work in
D-transactions. In other words, the D-organisation can be fully automated, if one
likes. But how should one proceed in achieving it? The answer to this question is
provided by the DELTA theory (cf. Chap. 9), notably the PRISMA model. As
discussed in Sect. 9.3.2, the generic transaction prismanet is the key to implementing
any organisation (O-, I-, or D-organisation) by means of ICT. There are only three
kinds of components that need to be implemented: processors, channels, and banks.
A processor is basically an algorithmic procedure that is activated by C-events in its
action channel, and that may be impeded by wait events in its impediment channels.
In order to get the information that is needed to execute the procedure, the processor
must have access to its inspection channels and its inspection banks. Channels can be
implemented by a bus that connects all processors, and through which the processors
can send C-facts to each other. In addition, these C-facts must be stored for future
inspection by the processor or by other processors. In a similar way, banks can be
implemented as directly accessible storages, like computer memories.

In Fig. 11.8, the generic transaction prismanet from the DELTA theory (Fig. 9.14)
is reproduced. Likewise, Fig. 9.15 is reproduced as Fig. 11.9.

Together, the pictures give the insight that we need for choosing the appropriate
ICT means in implementing the D-organisation. It tells us that agents, the replace-
ments of actors, are composed of 19 processors. They must be connected by some
sort of bus through which they can exchange the various kinds of C-facts, as
exhibited in Fig. 11.9. Note that actually five more processors are needed to deal
with the events in the external (grey-coloured) channels in Fig. 11.8. In addition,
some way of implementing banks is needed, for storing the resulting products, thus
the documents or data sets. This holds for every transaction kind in which the
composite processors, so the agents, are involved. Every agent is the executor of
one transaction kind, but it may be initiator of a number of transaction kinds
(cf. Chap. 10). In this way, arbitrarily large tree structures can be constructed. In
doing so, most of the external (grey-coloured) channels, mentioned earlier, become
internal channels, that is, of the kinds as shown in Fig. 11.9. But there will always be
some left as external channels. They are what one normally calls the input and output
terminals of a system.

11.3 Elaborations 245

As for the agents themselves, they can be implemented as computer programs. In
case of a procedural programming language, an agent is a collection of procedures,
one for every trigger kind that it should be able to respond to. In case of an object-
oriented language, it is a (composite) object class comprising a method for every
trigger kind. Of course, some work needs to be done, but the generality of the

Fig. 11.9 Composite processors as organisational building blocks

Fig. 11.8 The generic transaction prismanet

246 11 The ALPHA Theory: Understanding the Essence of Organisations

solution, as discussed above, makes that one can endlessly extend an implementation
in an almost effortless way, once the general solution is there. Applying ICT in this
way would be no less than a revolutionary breakthrough in computer programming,
at least as far as supporting business processes is concerned.

11.3.5 Implementing the I-Organisation of an Enterprise

What has been said in Sect. 11.3.4 regarding the D-organisation is in no way specific
for D-organisations, which means that it also holds for implementing
I-organisations. So, in implementing I-organisations, one can take advantage of
the knowledge and experience one has got in implementing D-organisations. But
there is an even greater advantage to be gained, since we know that the products of
the saving transactions and the providing transactions between the I-organisation
and the D-organisation concern facts that are created or used by O-actors, for
example the C-fact (rental completing for rental 1993 is requested), or the indepen-
dent P-fact <rental 1993 is completed> together with its dependent facts, like <the
renter of rental 1993 is Adam> and <the driver of rental 1993 is Eve>.

In such cases, one can profit from the verity that every information item is the
dyad of content and form. Concerning elementary facts, as in the examples above, it
would be sufficient that I-agents are told to remember facts, as well as to compute or
to share facts. Modern programming languages are already made for creating
I-agents. One doesn’t have to bother about how the forms of the facts are saved
and possibly transformed. In other words, the design of the D-organisation is taken
care of by the compiler or interpreter (and the computer platform). In Sect. 11.3.3,
we have referred to this ability of programming languages as the mimicking of
human rational abilities. Agents do not remember, compute and share facts in the
way humans do. They can only mimic these abilities by performing documental acts
in well-designed and well-controlled ways, ways that preserve the semantic meaning
of the data.

11.3.6 Implementing the O-Organisation of an Enterprise

As discussed in Sect. 11.3.3.3, one must be very careful in assigning actor roles in an
O-organisation to artefacts, but it is certainly possible. To illustrate this ‘relaxed’
position, we reproduce the prismanet diagram of a part of the Rent-A-Car organisa-
tion (Fig. 9.12) as Fig. 11.10. It is the PRISMA white-box model of the operations of
the actor role rental completer. The six processors can be implemented as computer
programs. The algorithm or logic is provided by the corresponding grey-box model.
To illustrate this, Table 9.2 exhibits the grey-box model of processor P1. The

11.3 Elaborations 247

performance rules are sufficiently formalised to express them in a programming
language.

As said, the channels can be implemented by a bus, which connects all pro-
cessors, and which transmits C-facts between the processors (including the environ-
mental ones, which are not shown in Fig. 11.10). Every processor will pick the ones
that it needs to process and ignore the other ones. As also said, the banks can be
implemented by the computer’s memory (and external storages if necessary). This
holds for bank B1 but also for the external multiple banks (MB1, MB2, and MB3),
which contain various facts that the processors need when being active. Together
with the channels C1, C2, and C3, they constitute the terminals of the exhibited
system, the connectors with the outside world.

In Fig.11.4, a distinction is made between material and immaterial production.
Examples of material P-acts are manufacturing, transporting, and observing. Exam-
ples of immaterial production acts are devising, deciding, and judging. One should be
aware that this distinction does not affect the nature of P-facts. Every P-fact is an
elementary state of affairs in the production world of an organisation, like every
C-fact is an elementary state of affairs in its coordination world (cf. Chap. 8).
Consequently, every P-fact (like every C-fact) is represented by a logical predicate,
and expressed in an elementary sentence. For example, the sentence “rental 1993 is

Fig. 11.10 Prismanet diagram of a part of the Rent-A-Car organisation

248 11 The ALPHA Theory: Understanding the Essence of Organisations

completed” expresses the fact that rental 1993 is completed, and the sentence “the
car of rental 1993 is returned” expresses the fact that the car of rental 1993 is
returned.

Let us have a closer look at these examples. The first sentence is a predication of
the entity rental 1993. Although this entity is for sure a concrete thing (cf. Chap. 5), it
is also intangible: one cannot grasp it or observe it. In contrast, the entity in the
predication<the car of rental 1993 is returned> is a particular car. Cars are tangible:
they can be grasped and observed. And of course, cars are also concrete things. As
follows from the examples, it doesn’t matter for the faculty of predications to
represent facts, that the predicated entities are material or immaterial. But for
creating the entities, the difference is quite relevant and important. Immaterial
(intangible) entities are created as just the result of a mental act. For example, as
soon as the C-fact (rental completing for rental 1993 is requested) is created, the
entity rental 1993 is also created, just by conceiving it. There is nothing else needed.
But creating a car is a different story. Like any material (tangible) thing, it needs to
be manufactured somehow. And as long as teleportation is not reality, returning a car
to a particular branch of Rent-A-Car implies the physical transport of the car to the
branch’s location.

So far so good, but what about tangible things that are the object of operations in
the lower right side of Fig. 11.4, that is, of operations like storing copying, trans-
mitting, and destroying? Indeed, we have labelled these operations documental, but
it appears that they can quite easily turn into original ones. As an example, the
transporting of folders (containing letters, forms, etc.) by the internal mail service is
clearly a documental material act. But what if such a folder contains peanuts?
Clearly, then the act cannot be labelled documental anymore, it has become an
original act of transporting goods. To elaborate the issue, let us use the ‘pie chart’ in
Fig. 11.11 for illustration. It shows clearly that material production in the
O-organisation and material production in the D-organisation border on one another.
By having the internal postman transport folders containing peanuts, we have

Fig. 11.11 Material and immaterial production

11.3 Elaborations 249

crossed the border. Let us cross the border once more, but now in the opposite
direction, that is, from the O-organisation to the D-organisation. An example of such
a crossing is the original creation of a document, like the writing of a book. There is
no doubt that in essence, writing a book (or any document) is an immaterial original
act. However, in order to communicate the contents, it has to be expressed in
sentences in some language, and these sentences must be inscribed in some physical
substance, like being printed on paper. This is basically the same thing as commu-
nicating facts by writing them down and having the forms be transported by the
postal mail service, or by entering them, via a keyboard, in a computer and having
them transmitted by email. But the difference is that the contents of the book are not
facts in some O-organisation, and therefore writing a book (or any other kind of
document) needs special attention.

For the sake of clarification, suppose we are studying an organisation in which
this P-fact can be created:<book title 23929 iswritten>. The entity book title 23929
consists of the text of the book, and it is this text that one wants to save, provide, and
possibly to transform (cf. Fig. 11.4 bottom left side). Another but similar example of
a P-fact is <technical drawing 9829 is made>. The entity technical drawing 9829
consists of ‘graphical text’, that is, expressions in some graphical language, and this
‘text’ must be saved, provided, and possibly transformed. Even though the ‘graph-
ical text’ could also be conceived as a data set, the meaning of the graphical
expressions is not relevant when the P-fact <technical drawing 9829 is made> is
created, like the meaning of the contents of book title 23929 is not relevant when the
P-fact <book title 23929 is written> is created.

Therefore, creating a book or a technical drawing, or any other document is, at the
documental level, similar to manufacturing a car, or any other material thing.
Material things need to have some place to be. For documents it holds that any file
in which they are inscribed also needs some physical place to be. And because of the
similarity to data sets, documents can very well be handled by the D-organisation of
an enterprise. We only have to allow that O-actors, in their forma (blue) shape,
initiate saving transactions as well as providing transactions with D-actors. So, this
we do. It would mean some modification of Figs. 11.4 and 11.5, but we leave them as
they are.

11.3.7 Enterprise Information Systems

From the time that the term “information system” became the common reference to
ICT applications that are intended to support people in organisations (around 1973),
its understanding, in Chap. 4 referred to as the information-centric view, has hardly
changed. The primal notion in this view is information, generally defined as the
representation of knowledge, while communication is subsequently defined as the
exchange of information.

250 11 The ALPHA Theory: Understanding the Essence of Organisations

As discussed in Chap. 4, one of the consequences of the information-centric view
is that developing (automated) information systems is considered something that
ICT professionals do ‘at home’, after having elicited requirements from the people in
the organisation, basically by interviewing these people. Once the system is built, it
is ‘implanted’ in the organisation. A widely acknowledged drawback of this
approach is that the delivered systems rarely meet the expectations of the users.
The main cause of this failure is that requirements’ determination is quite
ill-understood. Interviewing the members of an organisation for determining infor-
mation requirements is akin to asking the parts of a machine (like a car) what
information they need in order to properly operate and cooperate. Every embedded
software engineer would start to get an appropriate understanding of the machine for
which he/she is going to build supporting software. Based on this understanding,
he/she would specify the requirements for the software system to be built. He/she
knows that the parts could never tell you, even if they were able to speak. As a
consequence of the interviewing approach to requirements determination in the field
of enterprise information systems, relevant requirements are often missing, and
irrelevant ones are included. For obscure reasons, information system engineers
have never recognised the necessity to acquire first of all an appropriate understand-
ing of their primal objects of interest: enterprises. The extension of “information
system” to “enterprise information system” didn’t contribute to a better understand-
ing, only to a better delineation of the application area.

As explained in Chap. 4, the CIAO paradigm (Communication, Information,
Action, and Organisation) provides us with the communication-centric view on
information systems. It entails that they are integral parts of the supported organisa-
tions and that they will always be like this, regardless of the technology that is used
to implement them. The path to this new understanding was paved by the achieve-
ments in language philosophy, notably Speech Act Theory [5, 6] and in (social)
action theory, notably the Theory of Communicative Action [7]. Communication5 is
defined as the sharing of thoughts between subjects (human beings), and information
as the means for communication (cf. Chap. 5). The bottom line is that people, in
organisations and in society at large, have a need to communicate. Since it is
impossible to do this directly, they use the vehicle of information.

The new understanding emphasises informations systems and the supported
organisations being intrinsically intertwined. It also clarifies why information system
engineers should first of all study the construction and operation of the organisation
before designing information systems. Basically, the information system is already
there: it is an intrinsic part of the organisation. Consequently, the functional require-
ments are also already there. It is the task of the ‘new’ information system engineer
to find a better way of implementing the particular part of the organisation, most
likely by applying ICT.

5The English word ‘communicate’ comes from the Latin word ‘communicare’, which means
‘making something common’, ‘sharing something with somebody’. In a more specific sense, it
means ‘sharing thoughts’.

11.3 Elaborations 251

Actually, in the foregoing sections, when we discussed the deduction of the onto-
logical model of the I- and the D-organisation of an enterprise, we have already applied
this communication-centric view. The combined I-organisation and D-organisation
basically are the entire enterprise information system, because together they offer all
information services that the actors in the O-organisation need. The orange-lined shape
in Fig. 11.12 shows this crucial understanding: every enterprise information system is
some part of the enterprise’s I-organisation and the corresponding part of the
D-organisation. But what about the ‘automation’ of the O-organisation, in other
words, what about the replacement of O-actors by agents? Aren’t these agents part of
the enterprise information system? For sure they are because they cannot be elements of
the O-organisation so they must be elements of the I-organisation, as discussed in Sect.
11.3.3. The proper understanding of these agents is therefore that they are ‘sham red’:
they are green (informa) but they have a red (performa) skin, so to speak.

To illustrate this, suppose that we would fully automate the actor role rental
completer in the Rent-A-Car company (cf. Chap. 15). Then we must first extend the
I-organisation with an actor role that is a true copy of the O-actor role rental
completer. Next, we transform all action rules for this actor role into algorithms,
simply by replacing all occurrences of the line “if performing the action after then is
considered justifiable” by the line “if true”. The third step is to implement the actor
role, by means of ICT. As discussed in Sect. 11.3.6, this comes down to
implementing the prismanet that is shown in Fig. 11.11. The actor role rental
completer comprises the operations of the processors P1 through P6. In terms of
software engineering, it would be represented by a set of procedures if a procedural
language is used and by an object class if an object-oriented language is used. If, in
the new situation, a customer wants to rent a car, he or she addresses an agent in the
role rental completer (e.g. via a web page) to perform the request that is specified in
the when-clause in Table 11.1. The resulting C-fact (e.g. rental completing for rental
1993 is requested) is remembered by some agent and shared with the rental com-
pleter agent in order to settle it. The addressee of the response act, which is either the
request to pay for the rental or a decline of the request, is the (human) actor again.

O-
organisation

I-
organisation

saving providing

D-
organisation

sharingremembering

Fig. 11.12 The notion of enterprise information system

252 11 The ALPHA Theory: Understanding the Essence of Organisations

11.4 Discussions

11.4.1 The Boundary of an Enterprise

In [8], the term B-organisation (B from Business) of an enterprise is used instead of
O-organisation. This has led to quite some confusion since its publication, because
the delineation of the ontological model of an enterprise’s O-organisation (as well as
of the corresponding I- and D-organisation) does not necessarily coincide with the
institutional or legal boundary of the enterprise. Hereafter, we will discuss important
differences, which sometimes are quite subtle. As the leading example for illustra-
tion, we will use again the case Rent-A-Car (cf. Chap. 15).

In Fig. 11.13, the Coordination Model (cf. Chap. 12) of the O-organisation of the
case Rent-A-Car is represented. It is expressed in a Coordination Structure Diagram
(CSD) and a Transactor Product Table (TPT) (cf. Chap. 15). The focus in the chosen
SoI is determined by the white coloured actor role shapes, in accordance with the
system definition in Chap. 9. The notion of SoI is an important one. Practically
spoken, one always chooses some SoI, guided by the problems one wants to study.
During this study, one may get the need to adjust the SoI, by enlarging it or by
reducing it. This makes the ontological notion of an enterprise basically independent
of the legal and/or economic notion. Although it is not very likely that one goes
beyond the boundary of the enterprise (because the enterprise ‘has’ the problems to
be studied and has called in your help), it is not impossible to do it. An illustrating
example of this situation is the case GloLog, discussed in Chap. 10. The
O-organisation of GloLog covers several legal/economic enterprises.

Fig. 11.13 CSD and TPT of of Rent-A-Car

11.4 Discussions 253

But what then constitutes an enterprise? When does the focus in Fig. 11.13
coincide with the boundary of the enterprise Rent-A-Car, and thus comprise its
business? When would it be larger and when smaller? The key to answering these
questions is the sourcing of the actor roles, which is a matter of implementation, as
we have seen in Sects. 11.3.4–11.3.6. According to the description of the case Rent-
A-Car, the internal actor roles in Fig. 11.13, thus actor roles AR01, AR06, and
AR07, are filled by subjects who are employed by the company (who are on the
payroll). In contrast, the actor roles in the environment, thus AR02, AR03, AR04,
and AR05, are not filled by employees of the company. As for the external infor-
mation sources, the multiple transaction kinds MTK1, MTK2, and MTK3, both the
initiators and the executors are fully outside the focus. We will not elaborate them,
however. The focus in Fig. 11.13 is said to coincide with the organisation of the
legal/economic enterprise.

Now suppose that the directors of the company decide to outsource the transpor-
tation of cars between the branches, presumably for economic reasons, to the
company TransCar, which is specialised in transporting cars. This decision would
mean that actor roles AR06 and AR07 are no more filled by employees of Rent-A-
Car, but by employees of TransCar. Then the boundary of Rent-A-Car and the focus
in Fig. 11.13 do not coincide anymore, because actor roles AR06 and AR07 have
become environmental actor roles. However, the chosen SoI may still be an inter-
esting one, given the problems or issues at hand. Thus, actor roles AR06 and AR07
still belong to the ontological model of the chosen SoI.

Fig. 11.14 CSD and TPT of Rent-A-Car after outsourcing car transportations

254 11 The ALPHA Theory: Understanding the Essence of Organisations

Figure 11.14 contains the CSD and TPT of Rent-A-Car in the new situation.
Making actor roles AR06 and AR07 environmental actor roles is the first step in
establishing the new situation, in which TransCar takes care of the transportation of
cars between the branches of Rent-A-Car. But it is not enough. The salaries of the
employees of TransCar who fill actor roles AR06 and AR07 now are debit entries for
TransCar, as are various additional costs. These costs must somehow be covered by
payments made by Rent-A-Car. There are several options to arrange this. One of
them is that Rent-A-Car pays for every transportation. Then we would need to
extend the Coordination Model (CM) of Rent-A-Car with a payment transaction
kind in which TransCar is the initiator and Rent-A-Car the executor. But the two
companies could also agree on long-term cost coverages, which would lead to other
changes of the CM.

In addition, new implementations must be devised and made operational of the
access links that cross the (economic) border of the enterprise Rent-A-Car, as, for
example, the links from AR07 to TK01, TK02, and TK03.

Outsourcing actor roles is not limited to actor roles in the O-organisation. It may
also hold for actor roles in the I-organisation (like making statistics) and the
D-organisation (like document management). Also in these cases, the ontological
models of the I-organisation and the D-organisation will not change, only their
implementations.

11.4.2 The Debate on AI and the Position of EE

The advances in the field of artificial intelligence (AI) have taken an incredible pace
and the societal areas that are influenced by the achievements of AI increase at an
incredible pace too. Fortunately, there is also a critical debate going on about the
benefits as well as the threats of AI, on a worldwide scale. Even more importantly,
not only scientists and engineers participate in the debate but also influential voices
from other fields, notably philosophers. Among the recent influential contributions
are the ones by Yuval Harari [9] and Daniel Dennett [10].

In Sect. 11.3.3, we have already touched upon a few topics in the current debate
on AI. In what follows, we only want to summarise the position that is taken by the
field of EE. The current dominant line of reasoning of the proponents of AI is that if
the ‘intelligence’ of artefacts, in particular robots, keeps increasing, it will arrive at a
point where these artefacts could confidently be treated as fellow human beings, they
will even be a lot smarter than human beings. There are two serious flaws in this line
of reasoning.

The first one is the notion of intelligence itself. As pointed out in Sect. 11.3.3, the
human faculty of ‘intelligence’ can only be ascribed to ICT artefacts by way of an
anthropomorphic metaphor. Only in this perspective is it okay, for example, to call
your laptop stupid. But of course, laptops cannot be stupid nor can any other things,
natural or man-made. Stupidity is the exclusive privilege of human beings. Actually,
the term “artificial intelligence” is perfect, as long as one takes it literally, thus as

11.4 Discussions 255

long as one considers AI artefacts not really but artificially intelligent. In other words
their ‘intelligence’ is mimicked. An example that we have discussed in Sect. 11.3.3.2
is the mimicked ability of Deep Blue to play chess. As also pointed out in this
context, it is actually incorrect to say that computers compute. What these machines
do, and at which they are extremely good, is manipulating symbols according to
prescribed rules. This holds also for what are nowadays called self-learning
machines. The fact that these machines are able to generate such rules by and for
themselves doesn’t make them more than symbol manipulators.

The second serious flaw in the current debate on AI is that by merely increasing
the ‘intelligence’ of artefacts, they will at some stage of their development be able to
make decisions, like human beings do. The misunderstanding here is that making
decisions would be a matter of intelligence. It is not. Making decisions is a faculty of
human beings in their role of social individual, being able to enter into and comply
with commitments. The faculty is strongly connected to authority and responsibility
(and accountability), as explained by the PSI theory (cf. Chap. 8). This is exactly
why the recent granting of citizenship to a robot by the government of Saudi Arabia,
which we mentioned in Sect. 11.3.3.3, is a rather thoughtless act, if not stupid.

But, EE doesn’t have a monopoly on wisdom, and the insights may change in the
course of time. Therefore, we conclude with a quote by Stephen Hawkins: “AI will
be either best or worst thing for humanity”.

11.4.3 The Practical Importance of the ALPHA Theory

The ALPHA theory is meant to be, and has also proven to be, an intellectual
instrument in discovering and profiting from the three layers of transactions and
actors that exist in all organisations and business processes, once they have been
understood in the ontological way as provided by the PSI theory (cf. Chap. 8). The
key concept on which the ALPHA theory builds is the semiotic ladder (cf. Chap. 5).
It yields the distinction between these three human capabilities: performa, informa,
and forma. In the PSI theory, the distinction clarifies the process of coordination acts.
In the ALPHA theory, it gives rise to conceiving three aspect organisations in every
enterprise: the O-organisation, the I-organisation, and the D-organisation.

The crucial notion of the essential model of an enterprise is primarily rooted in
this distinction. It is the ontological model of the enterprise’s organisation (thus a
constructional model that abstracts from its implementation) that in addition
abstracts from its realisation (thus from the I- and the D-organisation,
cf. Fig. 11.5). The result is an ontological model of the O-organisation in which
the interface with the supporting I-organisation is taken care of in the next two ways.
First, the remembering transactions are covered by considering all created C-facts to
be stored in the transaction bank of the corresponding transaction kind. Second, the
sharing transactions are covered by considering actors to have reading access to the
transaction banks in which the facts that they need reside. Derived facts are defined
on the basis of these original facts.

256 11 The ALPHA Theory: Understanding the Essence of Organisations

The foremost practical importance of the ALPHA theory is in the PIF analysis
(PIF is the abbreviation of Performa-Informa-Forma), as discussed in [8] and in
Chap. 12. Applying the PIF analysis to narrative descriptions of organisations or
business processes, or to structured descriptions like Flow Charts or the diagram-
ming techniques of current BPM approaches (cf. Chap. 10), has proven to be a most
effective way of revealing the essence of organisations, provided it is combined with
the application of the transactor concept from the PSI theory and the tree structures
of business processes from the OMEGA theory. The resulting insight and overview,
and the short time in which an essential model can be produced are unprecedented.

Another practically important contribution of the ALPHA theory is the clarifica-
tion of the notion of enterprise information system (EIS), and consequently of the
way in which EISs should be developed, namely from the communication-centric
view on information systems, as discussed in Chap. 8. The emerging simple and
powerful understanding is that developing an EIS is the devising and engineering of
a new implementation of a part of the I- and D-organisation (cf. Fig. 11.12), no more
and no less. Only when taking this approach can one be confident that all functional
requirements are met, even those that are not mentioned by the interviewed
employees in the analysis phase, like the tacitly performed C-acts and the ‘excep-
tional’ declines, rejections, and revocations (cf. Chap. 8).

References

1. Langefors, B. R. (1973). Theoretical analysis of information systems. (489 p., 4th ed.). Lund:
Studentlitteratur; Auerbach.

2. Dietz, J. L. G. (2012). Red garden gnomes don’t exist. The Netherlands: Sapio Enterprise
Engineering. www.sapio.nl

3. Searle, J. R. (1995). The construction of social reality (xiii, 241 p.). New York: Free Press.
4. Jong, J. D. (2013). A method for enterprise ontology based design of enterprise information

systems. In Computer science. Delft University of Technology: Delft.
5. Austin, J. L. (1962). How to do things with words. Cambridge: Harvard University Press.
6. Searle, J. R. (1969). Speech acts: An essay in the philosophy of language (vii, 203 p.). London:

Cambridge University Press.
7. Habermas, J. (1986). The theory of communicative action. Cambridge: Polity Press.
8. Dietz, J. L. G. (2006). Enterprise ontology: Theory and methodology (xiii, 243 p.). Berlin:

Springer.
9. Harari, Y. N. (2017). Homo deus: A brief history of tomorrow (449 p., 1st U.S. ed.). New York:

Harper (an imprint of HarperCollins Publishers).
10. Dennett, D. C. (2017). From bacteria to Bach and back: The evolution of minds (xviii, 476 p.,

1st ed.). New York: W.W. Norton.

References 257

http://www.sapio.nl

Part III
Applications

I hear and I forget
I see and I remember
I do and I understand

(Confucius)

Part III regards the application of the theories in Part II in practice. Chapter 12
contains an extensive summary of the DEMO methodology, as well as the DEMO
Specification Language. In Chaps. 13 through 18, exercises are presented and
discussed of the use of DEMO to small cases. These exercises are particularly suited
for DEMO courses. In Chap. 19, eight practical applications of DEMO in various
industrial areas are reported. Chapter 20 is devoted to method engineering, more
precisely to combining DEMO with other methods, techniques or approaches.

Chapter 12
The DEMO Methodology

Abstract In this chapter DEMO (Design and Engineering Methodology for Organisations)
is presented, in order to produce the essential model of an enterprise, or in general of a Scope
of Interest (which may cover a part of one enterprise or of a network of enterprises). Like
every proper methodology, DEMO comprises a Way of Thinking (WoT), a Way of
Modelling (WoM), and a Way of Working (WoW). The WoT consists of the theories that
are discussed in part B of this book. The WoM consists of an integrated whole of four aspect
models: the Cooperation model (CM), the Action Model (AM), the Process Model (PM),
and the Fact Model (FM). The CM of a Scope of Interest (SoI) is the ontological model of its
construction, thus of the identified transactor roles and the coordination structures among
them. Three structures are distinguished: the interaction structure, the interimpediment
structure and the interstriction structure. The AM of an SoI is the ontological model of its
operation. For every internal actor role, it provides the rules that guide the role fillers in doing
their work. The guidelines for responding to coordination events are called action rules
(similar to business rules), the ones for performing production acts are called work instruc-
tions. The PM of an SoI is the ontological model of the state space and the transition space of
its coordination world. It contains the existence laws and occurrence laws for all internal and
border transactor roles. The PM connects the CM and the AM of an SoI as far as coordi-
nation is concerned. The FM of an SoI is the ontological model of the state space and the
transition space of its production world. It contains the existence laws and occurrence laws
for all identified entity types, value types, property types, attribute types, and event types.
The PM connects the CM and the AM of an SoI as far as production is concerned. All four
sub-models are expressed in the DEMO Specification Language (DEMOSL), which com-
prises diagrams, tables, and formal textual descriptions. For producing essential models of
enterprises, the WoW of DEMO offers the OER method (Organisational Essence Reveal-
ing). It consists of a number of steps in which the four aspect models are produced,
preferably in a spiral way.

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_12

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_12&domain=pdf

12.1 Introduction

Everyone who understands the EE theories, as discussed in Chaps. 5–11, truly and
thoroughly, disposes of the intellectual ability to ‘discover’ the organisational
essence of an enterprise and to analyse organisational problems accordingly. Yet,
most people appear to be uncomfortable with only theories in their toolbox, even if
they agree with Kurt Lewin’s adage “Nothing is more practical than a good theory”.
They like to have more concrete bridges to their practical work. With reference to the
CIAO tree in Fig. 4.1, they like to have methods that guide them in doing the work.

By amethod is commonly understood a systematic procedure for accomplishing a
task. Examples are teaching methods, learning methods, methods to develop soft-
ware, and methods to make lasagna. Next to “method”, there is the word “method-
ology”. By a methodology is commonly understood a system of methods, used in a
particular area of study or activity, whereas the original meaning is: doctrine or
principles of methods, specifically concerning scientific research. We will adopt the
first meaning while in addition requiring that a methodology is firmly rooted in
theoretical foundations, like the trunk of the CIAO tree in Fig. 4.1 is firmly rooted in
the EE theories. In Fig. 12.1, the so-called Five Ways Framework is presented, as an
aid to discussing methodologies. It is an adapted version of the one that is discussed
in [1].

The core of every methodology is a Way of Modelling (WoM) and a Way of
Working (WoW). By a WoM is meant a collection of meta models (cf. Chap. 6) that
guide one in understanding the system or situation (as-is or to-be). The WoW
comprises the method that is used for producing the models that constitute this
understanding, as well as the methods for bringing about devised changes.

The WoM and the WoW must firmly be rooted in a common Way of Thinking
(WoT), that is, in a theoretical foundation that is coherent and consistent, and that is
appropriate for the subject matter. Consequently, a methodology is defined as a
matching triple WoT, WoM, and WoW. It may be supplemented by a Way of
Organising (WoO) and a Way of Supporting (WoS). The WoO regards the
organising and managing of the application of the methodology, and the WoS
comprises (software) tools that support both the WoM and the WoW.

Way of
Modelling

Way of
Working

Way of Thinking

Methodology

Way of
Organising

Way of
Supporting

Fig. 12.1 The five ways framework

262 12 The DEMO Methodology

In the next section, DEMO, the principal methodology in Enterprise Engineering,
is introduced. In Sect. 12.3, the DEMO Specification Language and the four DEMO
meta models are presented, comprising together the WoM. The WoW for revealing
the essential model of an enterprise is discussed in Sect. 12.4. It is applied in the
cases that are discussed in Chaps. 13–20. The case Volley [2] is used as the example
for illustrating DEMO’s WoM andWoW. Section 12.5 deepens the understanding of
the PSI theory (cf. Chap. 8), and Sect. 12.6 contains the conclusions of the chapter.

The version of DEMO that is applied in this book is DEMO-4. Its predecessors
are DEMO-1, DEMO-2, and DEMO-3. There are no official publications on DEMO-
1. DEMO-2 and DEMO-3 are described in [2, 3], respectively.

12.2 DEMO: Essence and Simplicity

Simplicity is prerequisite to reliability
(Edsger W. Dijkstra)

DEMO (Design and Engineering Methodology for Organisations) is the result of
scientific research, constantly fed by practical applications, from 1990 to 1994 at the
University of Maastricht, and from 1995 to 2009 at Delft University of Technology.
Since 2010, its development takes place within the world-wide DEMO community.
From the late 1990s onward, courses in DEMO are taught under the auspices of the
Enterprise Engineering Institute (EEi).1 Alongside commercial courses, the meth-
odology is taught at several member institutes of the Ciao Network,2 as well as at
universities and polytechnic schools outside the network.

The motto of DEMO is “essence and simplicity”. The notion of essence is the one
as discussed in Part B, notably in the PSI, DELTA, OMEGA, and ALPHA theories. It
refers to the essential model of the organisation or Scope of Interest (SoI) that one
wants to study, in order to get deep insight into the problems one is facing, and
subsequently to solve them by means of re-design, re-engineering, and
re-implementation (cf. Fig. 4.17). In addition to presenting the essence of a problem
situation, it is crucial for a methodology to followOckham’s Razor3 and keep things as
simple as possible. This is of paramount importance for intellectually managing the
complexity of a problem situation, and of enterprises in general. In Chap. 3, five
intellectual techniques are presented that offer effective help in achieving essence and
simplicity. These techniques, for mnemonic reasons called sapiences, are summarised
in Fig. 12.2. They have been valuable principles in developing DEMO, and they have
proven to be equally valuable guidelines in applying the methodology.

1For more information, visit www.ee-institute.org
2The Ciao Network is an international group of researchers and practitioners who develop and
practise the discipline of Enterprise Engineering. For more information, visit www.ciaonetwork.org
3https://en.wikipedia.org/wiki/Occam%27s_razor

12.2 DEMO: Essence and Simplicity 263

http://www.ee-institute.org
http://www.ciaonetwork.org
https://en.wikipedia.org/wiki/Occam%27s_razor

Examples of the first sapience, separation of concerns, are making the distinction
between function and construction (cf. Chap. 7), distinguishing between production
and coordination (cf. Chap. 8), and distinguishing between the O-, the I-, and the
D-organisation of an enterprise (cf. Chap. 11). Examples of the second, use of
abstraction, are abstracting from the implementation of a system and in doing so
arriving at its ontology (cf. Chap. 9), as well as abstracting, in addition, from the
realisation of an enterprise and in doing so arriving at its essential model
(cf. Chap. 11). Examples of the third sapience, devising proper concepts, are the
transaction concept (cf. Chap. 8), as well as using and devising concepts like
membership, flight, sale and purchase, in formulating uniquely identifiable products.
We owe the three techniques above to Edsger Dijkstra, who provides convincing
applications of them in [4]. The fourth sapience, verification by instantiation, is an
indispensable intellectual technique for making sure that one really understands a
conceptual model at the schema (or meta model) level (cf. Chap. 6). It serves to
convince oneself that a produced essential model is a correct model in the applied
methodology. The technique has been articulated by Sjir Nijssen [5] for the field of
information systems engineering. The fifth sapience, validation from ontology,
serves to make sure that a produced essential model is a faithful conception of the
organisation that one wants to understand. It is made sure by systematically checking
for every ontological element whether it has a counterpart in reality. It is also a
valuable technique for discovering errors in the realisation and implementation of an
essential model.

Fig. 12.2 The five sapiences

FI, MU, TAO; PSI, DELTA, OMEGA, ALPHA

OER method

Cooperation Model
Process Model

Fact Model
Action Model

Way of
Modelling

Way of
Working

Way of Thinking

Methodology

Way of
Organising

Way of
Supporting

TOGAF
PRINCE2

Agile
…

DemoWorld
Plena

OpenModeling
…

Fig. 12.3 DEMO in the five ways framework

264 12 The DEMO Methodology

The development of DEMO was initially triggered by a dissatisfaction with the
state-of-the-art in requirements determination in the 1980s and 1990s, when the
information-centric view (cf. Chap. 4) was dominant. A satisfying solution to the
requirements determination problem had to wait for the communication-centric view
being conceived. Once DEMO was under construction, it became clear that it could
provide more benefits than only solving the requirements determination problem. As
an illustration, DEMO is (also) considered a coordination-based business process
modelling approach [6]. Therefore, the original reading of the acronym (Dynamic
Essential MOdelling) was replaced, around the year 2000, by the current one
(Design and Engineering Methodology for Organisation). The additional meaning
of the word “DEMO”, namely a shorthand for “demonstration”, expresses the
original mission of demonstrating that it is possible and crucial to base modelling
approaches on sound theoretical foundations.

Figure 12.3 exhibits the position of DEMO (DEMO-4) in the framework of
Fig. 12.1. The WoT comprises seven EE theories, the WoM consists of four models,
and there is one WoW. Together they offer the support that is needed to make
essential models of enterprises. The methodology does not include a specific WoO.
Therefore, Fig. 12.3 just shows a few candidate project management methods. As for
the WoS, several existing tools are listed.

Since the early 1990s, DEMO has been applied in thousands of practical projects,
and its further development is nurtured and steered by the feedback from these
experiences. Indeed, next to assisting the elicitation of requirements for information
systems development in an objective way, DEMO has proven to provide effective
help in organisational changes of any kind, from business process re-design and
re-engineering up to enterprise transformations, like mergers and acquisitions. The
key to exploring these, originally unanticipated, application areas, is the insight and
overview that DEMO models offer, due to the unprecedented reduction of complex-
ity that is made possible by being firmly rooted in the EE theories. Because of this
quality, DEMO has evidently shown to be virtually indispensable in major enterprise
change projects, such as the post-merger integration of the cargo divisions of Air
France and KLM [7] and the organisation of large civil engineering projects [8],
where the DEMO-based VISI method4 is an ISO approved standard.

Fig. 12.4 How DEMO reduces complexity. © Jan L.G. Dietz, reprinted with permission

4https://www.crow.nl/thema-s/bouwwerkinformatie/visi

12.2 DEMO: Essence and Simplicity 265

https://www.crow.nl/thema-s/bouwwerkinformatie/visi

In Chap. 2, three generic goals are presented for the discipline of enterprise
engineering: intellectual manageability, organisational concinnity, and social devo-
tion. The focus in this book is on intellectual manageability, understood as achieving
and maintaining insight and overview concerning enterprises and enterprise
changes, in order to master the complexities of the phenomena one faces. It is
achieved by a systematic reduction of complexity. Figure 12.4 illustrates this: the
detailed description of the business processes of an insurance company, laid down in
a document of over 200 pages, is ‘compressed’ by applying DEMO into an A3 size
graphical representation of the Cooperation Model of the company (cf. Sect. 12.3.2).
The reduction of complexity is notably achieved by the combined application of the
PSI, OMEGA, and ALPHA theories (cf. Chaps. 8, 10, and 11), as explained
subsequently.

First, by virtue of the transaction concept, a universal pattern is imposed on the
operational activities of an enterprise, yielding a reduction of complexity of at least
80% on average, since 19 concepts are replaced by one concept, as illustrated by the
complete transaction pattern (cf. Fig. 8.10). Second, the mind-bending railroad yard
images of flow-based business process models that most current process modelling
approaches come up with, are replaced by simple tree structures of transactor roles, as
discussed in Chap. 10. This replacement offers a substantial additional reduction of
complexity, estimated at 80%. Third, by systematically abstracting from implemen-
tation (i.e. from functionaries and departments, and from coordination and production
technology), as well as from realisation (i.e. from the I-organisation and the
D-organisation), another considerable reduction of complexity is achieved, also esti-
mated at 80%. So, an overall reduction of well over 95% (in terms of the size of model
expressions) is achieved. The resulting most important asset of DEMO to practitioners
is their readiness in unraveling the evermore obstinate tangle called reality.

12.3 The Way of Modelling

Models are green, diagrams are blue

Whenever we speak of an organisation, a particular Scope of Interest (SoI) is meant
(cf. Chap. 10). A SoI may cover (a part of) an enterprise or (a part of) a network of
enterprises. Within a SoI a focus organisation may be identified.

The ontological model of an organisation in DEMO consists of the integrated
whole of four aspect models, each taking a specific view on the organisation: the
Cooperation Model, the Action Model, the Process Model and the Fact Model.
Models constitute one’s understanding of a system or a situation.

The Cooperation Model (CM) of an organisation is a model of its construction
(cf. Chaps. 9 and 10), that is, of the identified transactor roles (the elements) and the
coordination structures (the influencing relationships) between them. A CM is
expressed in a Coordination Structure Diagram and a Transaction Product Table,
possibly supplemented by a Bank Contents Table and a Bank Access Table.

266 12 The DEMO Methodology

The Action Model (AM) of an organisation is a model of its operation, that is, the
manifestation of the construction in the course of time (cf. Chaps. 8 and 9). An AM is
represented by Action Rule Specifications and Work Instruction Specifications. The
first ones guide actors in performing coordination acts, the second ones guide them
in performing production acts.

The Process Model (PM) of an organisation is a model of the (business) processes
that take place as the effect of acts by actors. In systemic terms, it is a specification of
the state space and the transition space of the coordination world (cf. Chap. 9). A PM
is expressed in a Process Structure Diagram, optionally supplemented by a number
of Transaction Process Diagrams and a Create Use Table.

The Fact Model (FM) of an organisation is a model of the products of the
organisation (cf. Chap. 8). In systemic terms, it is a specification of the state space
and the transition space of the production world (cf. Chap. 9). An FM is expressed in
an Object Fact Diagram, supplemented by Derived Fact Specifications, and option-
ally supplemented by Existence Law Specifications.

The relationships between the four models are illustrated in Fig. 12.5. As illus-
trated by the triangular shape, and the division of this shape into the four
aspect models, the CM and the AM cover both coordination and production, while
the PM regards only coordination and the FM only production. The PM connects the
CM and the AM, as far as the coordination between actors is concerned. In a similar
way, the FM connects the CM and AM, as far as production is concerned. The AM is
the solid foundation on which the other three models are standing. In a sense, they
are already ‘contained’ in the AM, they only need to be ‘extracted’. Lastly, there is
nothing ‘above’ the CM.

Fig. 12.5 The integrated DEMO aspect models

12.3 The Way of Modelling 267

12.3.1 The DEMO Specification Language

As discussed in Chap. 6, and as exhibited specifically in Fig. 6.2, models have to be
expressed in some language in order to communicate them, both with others and
with oneself (for future use). In order to represent DEMO models, the DEMO
Specification Language (DEMOSL) has been developed [9]. The distinction
between models and representations is crucial (cf. Chap. 6); they constitute respec-
tively the semantics and the syntax of the language in which the models are
expressed. Expressions in DEMOSL are basically formal textual descriptions.
Therefore, its syntax is defined in the Extended Backus-Naur Form (EBNF), the
international standard syntactic meta language (ISO/IEC 14977). At the same time,
these formal textual expressions are intuitive: they look like structured English
sentences, which make them quite readable. Many formal textual expressions in
DEMOSL have also a graphical equivalent, because the appreciation of formal text
in the practice of EE is generally low, certainly by people without a logical/
mathematical background.

Consequently, DEMOSL diagrams must be understood as graphical representa-
tions of first-order logical formulas. In spite of the preference in practice for dia-
grams to formal text, there are limits to their expressive power: diagramming
techniques can easily become impractical if one has to remember (too) many
symbols and rules. Therefore, the DEMOSL diagrams are kept simple. What cannot
be said in a diagram must be said in additional (formal) textual expressions. As
indicated in Fig. 12.5, and as clarified by the FI theory (cf. Chap. 5), models are
green, whereas diagrams (and all other ways of expressing thoughts in communica-
ble things) are blue.

12.3.2 The Cooperation Model

The Cooperation Model (CM) of an SoI is the ontological model of its construction
(cf. Chaps. 9 and 10), thus the identified transactor roles and the coordination
structures among them. Actor roles within the focus organisation are called internal.
Transaction kinds of which both the initiator and the executor are internal actor roles,
are called internal. In case one of the actor roles is not internal, the transaction kinds
are called border transaction kinds and the non-internal actor role is called environ-
mental. There are three coordination structures among transactor roles
(cf. Chap. 10): the interaction structure, the interimpediment structure, and the
interstriction structure. The ways in which these structures can be expressed is
presented in [9].

268 12 The DEMO Methodology

The interaction structure consists of initiator links between transactor roles and
transaction kinds (note: the executor links are implicitly specified by the notion of
transactor role). Through this structure, trees of transactor roles emerge, as illustrated
by Fig. 12.6, which is a reproduction of Fig. 18.11. The initiator links are expressed
by solid lines between actor roles and transaction kinds. A cardinality range (k. . .n)
indicates how many transactions are enclosed (cf. Fig. 12.7).

The interimpediment structure consists of wait links from actor roles to transac-
tion kinds. A wait link expresses that actors in the connected actor role have to wait
for a specific progress in transactions of the connected transaction kind before they
can proceed with their work (in their own transactions). In other words, the initiators
or executors of these transactions impede actors in the connected actor role to carry
on as long as the wait condition (i.e. a particular progress) holds. A wait link is
expressed by a dashed arrow from a transaction kind to the impeded actor role. For
example, the wait link in Fig. 12.6 from TK02 to AR10 expresses that actors AR10
are impeded (hold up) in carrying out a transaction TK10 until a particular progress
is made in a transaction TK02.

If one abstracts from the realisation of the O-organisation of a SoI, and thus aims
at producing its essential model (cf. Chap. 11), a third coordination structure comes
on the scene. This interstriction5 structure consists of access links from actor roles to
transaction kinds, which are now conceived as transaction banks (cf. Chap. 10).
Access links are the ontological abstraction of the sharing transaction kinds between
the O-organisation and the I-organisation of the SoI (cf. Chap. 11). An access link
expresses that actors in the connected actor role have reading access to the contents
of the transaction bank (both to the C-facts and to the P-facts). Access links are
represented by dashed lines between actor roles and transaction kinds. For example,

Fig. 12.6 The three coordination structures in the GloLog enterprise

5The word ‘restriction’ originates from the Latin verb ‘stringere’, meaning trimming, curtailing. The
word ‘interstriction’ expresses that actors restrict each other’s decision freedom or ‘play area’.

12.3 The Way of Modelling 269

the access link in Fig. 12.6 from AR11 to TK01 expresses that actors AR11 are
allowed to inspect the contents of the bank TK01.

The CM of an organisation is expressed in a Coordination Structure Diagram
(CSD), supplemented by a Transactor Product Table (TPT), and a Bank Contents
Table (BCT). The TPT is a list of the identified internal and border transaction kinds,
their product kinds and their executor roles. Because the product kinds are identical
to the independent P-fact types in the FM, the TPT is called a cross-model table; it
bridges the CM and the FM. The BCT is also a cross-model table, bridging also the
CM and the FM, but in a different way.

The BCT of an organisation is a list of the P-fact types, both independent and
dependent (cf. Chap. 8), whose instances are created or used by the initiators and
executors in transactions of the identified transaction kinds. They are grouped
according to the transaction banks in which they are stored. P-fact types whose
instances are used within the organisation but created outside it, are also listed in
the BCT. Because one commonly doesn’t know the single transaction banks in
which they reside, these banks are combined into multiple transaction banks
(cf. Chap. 10).

The legend of the CSD is exhibited in Fig. 12.7, which is identical to Fig. 10.4.
The upper part shows the three different sorts of transactor roles: elementary, self-
activating and composite. As said, the interaction structure of an organisation
consists of a number of tree structures. By definition, the top of these trees is a
self-activating transactor role. The SoI commonly covers parts, that is, sub-trees, of
such trees. If this is the case, then the cut-off upper part of the tree is represented by a
composite transactor role, as discussed in Chap. 10. Most business processes in
enterprises originate in this way from the environment. The shapes and constructs
are considered to be sufficiently explained in Fig. 12.7.

Fig. 12.7 Legend of the Coordination Structure Diagram

270 12 The DEMO Methodology

Figure 12.8 exhibits the CSD, and Table 12.1 shows the TPT of the Volley
organisation, resulting from applying the OER method to the case description
(cf. Sect. 12.4). The red colour of the diamonds indicates that the transactor roles,
as well as the external transaction kinds, belong to the O-organisation of Volley.
Table 12.2 exhibits the corresponding BCT. In the second column, the entity types
and value types are indicated in capital (i.e. actually as object classes, cf. Chap. 5),

Fig. 12.8 CSD of the Volley organisation

Table 12.1 TPT of the Volley organisation

elorrotucexedniktcudorpdniknoitcasnart

TK01 membership starting
TK02 membership paying

PK01 [membership] is started
PK02 the first fee of [membership] is paid

AR01 membership starter
AR02 membership payer

Table 12.2 BCT of the Volley organisation

stcaftnedneped/tnednepedniknab

TK01 membership starting

TK02 membership paying

MTK01 persons facts

MTK02 Volley facts

MEMBERSHIP
[membership] is started

the starting day of [membership]
the member of [membership]
the amount to pay of [membership]

the first fee of [membership] is paid
the amount paid of [membership]

PERSON
the day of birth of [person]

YEAR
the minimal age in [year]
the annual fee in [year]
the max members in [year]

12.3 The Way of Modelling 271

and the event types by (unary) predicates concerning entity types. The dependent
fact type indications are indented. Variable names are placed between “[” and “]” as
discussed in [9]. Note that the BCT can only be completed when the FM is produced.

12.3.3 The Action Model

The Action Model (AM) of an organisation or SoI is the ontological model of its
operation (cf. Chaps. 8 and 9). For every internal actor role, it contains the rules
that guide the role fillers in doing their work. The guidelines for responding to
coordination facts (C-facts) are called action rules; the guidelines for performing
production acts (P-acts) are called work instructions. They are respectively
expressed in Action Rule Specifications (ARS) andWork Instruction Specifications
(WIS). Because work instructions are usually enterprise specific, we will not
elaborate on them. One should consider them as the detailed instructions for
accomplishing a certain production task, like the concluding of a rental contract
or the baking of an apple pie. Although work instructions are often expressed in
work flows, these work flows do not represent business processes, because busi-
ness processes only exist in the coordination world. Instead, such work flows
represent processes in the production world. In DEMO, only the final effect of
production processes is modelled: the resulting products of the transaction pro-
cesses (cf. Chap. 8).

Therefore, we will only present the specification of action rules hereafter. In
current practice, these rules are commonly called business rules.6 In principle,
there is an action rule for every kind of agendum (cf. Chap. 8) that actors in a
specific actor role have to deal with, while looping through their actor cycle
(cf. Chap. 8). The ‘exception’ states (declined, rejected, and the states in the
revocation patterns) are mostly ignored, because the response is much too depen-
dent on the topical situation. Consequently, the standard practice is to specify only
action rules for responding to events in the basic transaction pattern, in Fig. 12.9
indicated by the green line in the Complete Transaction Pattern (CTP), that is, for
the events (rq), (pm), and (da). Actors are basically autonomous in deciding how to
respond to coordination events, as well as how to perform production acts
(cf. Chap. 8). As a consequence, the ARS may be incomplete or even absent. In
such cases, the actors are supposed to base their decisions on their professional and
general knowledge.

The specification of an action rule is divided into three sequential parts: event
part, assess part, and response part. As an example, Fig. 12.10 exhibits an
action rule from the case Volley [2], following from the analysis of the case
description in Sect. 12.4. To emphasise the differences between the three parts,
the event part is coloured light-blue, the assess part light-tangerine, and the

6To be precise, they are the imperative business rules, as opposed to the declarative rules, which
consist of existence laws and occurrence laws (cf. Chap. 9).

272 12 The DEMO Methodology

response part light-green. The formal definition of action rules in EBNF is
presented in [9].

The event part comprises a when-clause, optionally supplemented by a with-
clause and a while-clause. In the when-clause, one states the type of the event that is
going to be settled; in the example it is the being requested of the starting of a (new)
membership of the tennis club. The product of such a transaction consists of the
independent P-fact ‘[membership] is started’ and a number of dependent P-facts.
Three of these dependent P-facts are specified in the with-clause: the person who will
be the member, the person who will be the payer (not necessarily the same person as
the member), and the day on which the membership will start (note that this is an
explicit specification of the operative time of the transaction’s product, cf. Sect. 8.
3.1). The optional while-clause specifies the event that impedes settling the event in
the when-clause. Then the rule cannot be executed until both events have occurred.
Thus, there may be several action rules for the same kind of event, but each of them
with a specific impeding event kind, for example, ARS-5 and ARS-7 in Chap. 15.
There cannot be two or more action rules that have the same when-clause and while-
clause. Otherwise said, actors never have to choose what rule to execute, there will at
most be one.

The assess part consists of a number of propositions whose truth value must be
determined. The propositions are divided in three, according to the three validity
claims in Habermas’ theory of communicative action (cf. Chap. 8): rightness,
sincerity, and truth. In the rightness division, the conditions are specified that must
apply to the participating actors, and that serve to ensure that they have the proper

Fig. 12.9 CTP with the transaction states for which action rules are commonly specified

12.3 The Way of Modelling 273

authority. In the given example, the performer of the request must be the person who
is mentioned as member in the with-clause of the event part, and the addressee must
be someone who is authorised to fill the actor role ‘membership starter’. The first
condition may look redundant, but it is not. If it would be omitted, anyone could
make the request. In addition, it forbids that the (aspirant) member delegates her/his
authority. Because the claim to sincerity is specific for the individual fillers of the
actor roles, it seems hard to make the sincerity division more precise than checking if
they seem to be trustworthy. However, if (formal) terms and conditions exist, one
can explicitly assess the compliance with these rules. Lastly, the propositions in the
truth division always regard the state of the production world. They serve to check
the possible violation of existence and occurrence rules in the production world. The
ones that are presented in Fig. 12.10 can easily be deduced from the case description.
The syntax is in accordance with DEMOSL-4 [9].

The response part starts with the most distinctive condition in DEMO action
rules, compared to other business rules approaches: ‘if performing the action after
then is considered justifiable’. This sentence expresses the fundamental autonomy of
the executor to decide what the best response is, given the specific case he/she is
dealing with. As discussed in Sect. 8.3, there may always be circumstances that play
a role but could not have been not foreseen when the action rule was designed. As an
example in the Volley organisation, someone could have applied for membership
who is still younger than the minimal age, but well-known already for her talent.
What is a wise decision then? Declining, thereby strictly following the business rule?
Or promising, a decision that could probably very well be justified with the board.

On the right side in Fig. 12.10, the C-acts/facts in the CTP are indicated
(cf. Chap. 8). From now on, we will refer to the combination of a C-act and its
resulting C-fact as a (transaction) process step.

Fig. 12.10 Example of an action rule specification (ARS)

274 12 The DEMO Methodology

12.3.4 The Process Model

The Process Model (PM) of an organisation or SoI is the ontological model of the
state space and the transition space (cf. Chap. 9) of its coordination world
(cf. Chap. 6). Regarding the state space, the PM contains, for all internal and all
border transaction kinds, the process step kinds as well as the applicable existence
laws (cf. Chap. 6), in full accordance with the CTP (cf. Fig. 12.9). Regarding the
transition space, the PM contains, for all transaction kinds, the process step kinds as
well as the applicable occurrence laws (cf. Chap. 6), including the cardinalities of the
occurrences, in full accordance with the CTP. The PM of an organisation connects its
CM and AM, as far as coordination is concerned (cf. Fig. 12.5).

A PM is represented in a Process Structure Diagram (PSD), optionally
supplemented by Transaction Process Diagrams and a Create Use Table. A PSD
shows the inter-transaction occurrence laws, that is, the laws that hold between
transactions of different kinds. They are expressed in two kinds of process links:
response links and wait links. The legend of these links is explained in Fig. 12.11.
Figure 12.12 exhibits the PSD of the business process kind that is constituted by the
transactor roles CTAR01, TAR01, and TAR02 in Fig. 12.8. We will use it to explain
the legend of a PSD in general.

The left part of Fig. 12.12 shows the tree structure from Fig. 12.8, but now in the
‘click’mode (cf. Chap. 10). The PSD in the right part of the figure is directly derived
from this representation. The disks of the transaction kind shapes are ‘stretched’
horizontally, thus becoming sausage-like shapes. One must consider these shapes to
contain the complete transaction pattern In particular, one must imagine that the
sausage shapes contain the standard pattern (in the middle of Fig. 12.9). In addition,

Fig. 12.11 Legend of the links in the PSD

Fig. 12.12 PSD of the membership process in Volley

12.3 The Way of Modelling 275

one must imagine a non-linear time axis from left to right in the sausage shapes. All
coordination acts in the order phase of a transaction are contained in the part of a
sausage shape to the left of the diamond. All coordination acts in the result phase of a
transaction are contained in the part of a sausage shape to the right of the diamond.
The diamond itself represents the execution phase.

The bold grey lines ‘behind’ the sausage shapes separate the responsibility area of
the initiator (above the line) from the responsibility area of the executor (below the
line). Only the coordination acts and facts that take part in the interactions between
the participating actors are drawn, always on the edge of the sausage shape. For
example, an aspirant member in the case Volley, thus a person in an elementary actor
role inside the composite transactor role CTAR01, performs a [TK01/rq] in response
to some (basically unknown) state in some (basically unknown) transaction. This
initial state is represented in Fig. 12.12 by the small grey-filled disk, and the C-act is
represented by the small box labeled “rq” on the edge of the shape of TK01. As
follows from the actual operations in Volley (cf. Sect. 12.4) or, more specifically,
from the action rule in Fig. 12.10, the addressed actor AR01 performs a [TK02/rq]
after having promised to carry out the TK01. This is represented by the response link
from (TK01/pm) to [TK02/rq]. The actor AR01 will then wait until the transaction
TK02 is completed, thus until the state (TK02/ac) is reached. This condition is
represented by the wait link from (TK02/ac) to [TK01/ex], expressed by the dotted
arrow from the disk labeled “ac” on the edge of the shape of TK02 to the grey-
coloured box at the border of the red-lined diamond. The box is coloured light-grey
to indicate that performing the P-act is basically unknown to the initiator of the
transaction TK01.

All possible connections between transaction kinds in a PSD are exhibited in
Fig. 12.13. In order to show that response links and wait links can apply both to the
order phase and to the result phase, they are drawn on both sides (u, v, w for the order
phase, and x, y, z for the result phase).

Both to response links and to wait links, cardinality constraints may apply. A
cardinality range k. . .n for a response link means that the C-act at the arrow side is
performed a minimum number of times k and a maximum number of times n. The
default value of k and n is 1; they are not indicated in a PSD. So, for example, the

Fig. 12.13 Possible connections between transaction kinds in a PSD

276 12 The DEMO Methodology

cardinality ranges that hold for the response link from (TK01/pm) to [TK02/rq] in
Fig. 12.12, and for the wait link from (TK02/ac) to [TK01/ex] are the default ones.

Figure 12.14 shows examples of non-default cardinality ranges, namely the range
0. . .�, which means that the act to perform or the state to wait for can occur not at all
or an indeterminate number of times. The figure exhibits the PSD of the car
transportation process in the case Rent-A-Car (cf. Chap. 15). It also shows how
self-activating transaction kinds and actor roles are represented in a PSD. As follows
from the case description, transactions TK07 are carried out daily. During the
carrying out of a TK07, a number (possibly zero) of transactions TK06 are initiated.
When they are all completed, the corresponding transaction TK07 can be completed.

As said, the PSD of a business process kind can be supplemented by one or more
Transaction Process Diagrams and a Create Use Table. A Transaction Process
Diagram (TPD) may be helpful to discuss the exact connections between two
transaction processes. Figure 12.15 exhibits an example from the case Volley. In
tangerine, the connections between the patterns of transaction kinds TK01 and TK02
are shown. In response to reaching the state (TK01/pm), the act [TK02/rq] is

Fig. 12.14 PSD of the car transportation process of Rent-A-Car

Fig. 12.15 TPD of (the standard pattern in) transaction kind TK01 of Volley

12.3 The Way of Modelling 277

performed. The performing of the P-act [TK01/ex] has to wait for the occurrence of
(TK02/ac), thus for the completion of the payment of the first fee (cf. Fig. 12.12).

A Create Use Table (CUT) shows in which transaction steps instances of the fact
types in the FM (cf. Sect. 12.3.5) are created (as an effect of performing the step) and
in which steps they are used (in order to settle the agendum). The CUT is a cross-
model table. It connects the PM and the FM. Note that the contents of a CUT is fully
determined by the AM of the considered organisation. As an example, Table 12.3
shows the CUT for the case Volley. All fact types, that is, entity types, value types,
event types, property types and attribute types, that occur in the FM are listed in the
first column of the table. In the second column, one indicates the acts by which facts
of the type in the left column are created. In the third column one indicates the
agenda in whose settling facts of the type in the left column are used, except for the
entity and value types since they are already indirectly used in the property and
attribute types.

For fact types whose instances are accessible in external transaction banks, the
indication in the second column is “<given externally>”. They are listed in the BCT
(cf. Table 12.2), and they are inspected in the assess part of the action rules
(cf. Fig. 12.10). For fact types whose instances are provided as parameter values
in the with-clause of a when-clause of an action rule concerning the C-event type in
the third column (cf. Sect. 12.3.3), the indication in the second column is
“<provided as parameter>”. Derived fact types are indicated by “<derived>”.
They have to be included in the Derived Fact Specifications, as part of the FM.

Table 12.3 CUT of the case Volley

gnilttesnehwdesugnimrofrepnidetaercepyttcaf-P

MEMBERSHIP
PAID MEMBERSHIP
PERSON
YEAR

[membership] is started
the first fee of [membership] is paid

the member of [membership]
the payer of [membership]
the starting day of [membership]
the day of birth of [person]
the minimal age in [year]
the max members in [year]
the annual fee in [year]
the amount to pay of [membership]
the amount paid of [membership]
the first fee of [membership]
the number of members on [day]
the age of [person] on [day]

TK01/rq
<derived>
<given externally>
<given externally>

TK01/ac
TK02/ac

<provided as parameter>
<provided as parameter>
<provided as parameter>
<given externally>
<given externally>
<given externally>
<given externally>
TK02/rq
TK02/da
<derived>
<derived>
<derived>

TK01/pm

TK01/rq, TK01/pm
TK01/rq, TK01/pm, TK01/da
TK01/rq
TK01/rq
TK01/rq
TK01/rq
TK01/rq

TK02/da
TK01/rq, TK02/da
TK01/rq
TK01/rq

278 12 The DEMO Methodology

12.3.5 The Fact Model

The Fact Model (FM) of an organisation is the ontological model of the state space
and the transition space (cf. Chap. 9) of its production world. Regarding the state
space, the FM contains entity types, value types, property types, and attribute types
that are relevant for the modelled organisation as well as the existence laws that
apply (cf. Chap. 6). An FM is the conceptual schema of the production world of the
modelled organisation, as far as the state space is concerned (cf. Chap. 6). Regarding
the transition space, an FM contains the event types and the occurrence laws that
apply (cf. Chap. 6). The FM of an organisation connects its CM and AM, as far as
production is concerned (cf. Fig. 12.5).

An FM is expressed in anObject Fact Diagram (OFD), supplemented by (textual)
Derived Fact Specifications (DFS). If needed, (textual) existence laws, and (textual)
occurrence laws may be added. Set theory and mathematical function theory help in
understanding the relationships between the schema level and the instance level of the
conceptual model of a world. The common way of representing sets in set theory is
the Venn Diagram. In such a diagram, the shape of a set is an oval; symbols within the
oval represent the elements of the set (cf. Fig. 12.16). The common way of
representing functions (or binary relations in general) is to extend the Venn Diagram
with connections between the elements of two sets. One set is called the domain of the
function, the other one the range. A function maps the elements in the domain to the
elements in the range. Figure 12.16 exhibits an extended Venn Diagram, representing
the function ‘has as renter’, having as domain the class RENTAL and as range the
class PERSON. The figure is considered to be self-explaining.

The mappings between these classes represent property types or attribute types,
depending on the kind of the range. Property types are expressed by lines between

Fig. 12.16 Venn Diagram notation of a (mathematical) function

12.3 The Way of Modelling 279

classes, As an example in Fig. 12.17, the property type ‘the member of [member-
ship] is [person]’ is a function that maps the class MEMBERSHIP to the class
PERSON. One should imagine that the line between the roundangles represents the
bunch of connections between elements in MEMBERSHIP and elements in PER-
SON. The “>” indicates that MEMBERSHIP is the domain of the function and
PERSON the range.

Attribute types can be represented in a simpler way, because they represent pure
(mathematical) functions, that is, functions of which the cardinality range at the
domain side is 0. . .�, and at the range side 1. . .1. Moreover, the range is always a
value class. The name of the attribute type is written in the roundangle of the class
that is its domain. To the right of it, the name of the value class that is the range of the
function is written, between “|” and “|”. As an example, the day of birth of a person is
an attribute type that has the entity class PERSON as its domain and the value class
TIME as its range. The measuring unit is ‘day’. Instead of writing “day of birth
{TIME : day}” in Fig. 12.17, the shorthand notation {DAY} is used [9].

Production event types are represented by diamonds, the universal symbol of
production (cf. Chap. 8). They are represented as unary predicates concerning an
entity type or class. For example, the event type ‘the first fee of [membership] is
paid’ concerns the entity type membership (or the entity class MEMBERSHIP). An
event type in the FM is identical to a product kind in the CM. Therefore, the product
kind identifier (e.g. PK02) is written in the diamond.

Derived entity types can often be specified graphically, as is done in Fig. 12.17
for started membership and paid membership. They allow for precise specifications
of the attribute types ‘starting day’ and ‘amount paid’: they are functions with as
domain the entity classes STARTED MEMBERSHIP and PAID MEMBERSHIP
respectively. Standard value classes like DAY and MONEY are assumed to be
implicitly present in every OFD. The value class YEAR is explicitly included in
the OFD in Fig. 12.17 because of the attribute types that have to be specified that
have YEAR as domain: ‘minimal age’, ‘annual fee’, and ‘max members’.

Fig. 12.17 OFD of the Volley organisation

280 12 The DEMO Methodology

An OFD also exhibits the existence laws that can conveniently be specified
graphically. For example, the OFD in Fig. 12.17 shows that the domain of the
property type ‘the member of [membership] is [person]’ is the class MEMBERSHIP
and that the range is PERSON. In addition, it shows that every membership has
exactly one person as its member, whereas a person can be member in 0, 1 or many
memberships. This follows from the (default) cardinality range. Existence laws that
cannot be specified graphically must be specified textually (cf. Chap. 21). Moreover,
an OFD exhibits the occurrence laws that can conveniently be specified graphically
(expressed by a dashed arrow). For example, the OFD in Fig. 12.17 shows that the
occurrence of an event of the type ‘the first fee of [membership] is paid’ precedes the
occurrence of the corresponding event of the type ‘[membership] is started’.

To complete the explanation of the OFD, the name of an entity class and the list of
attribute types that have this entity class as domain, is separated by a dotted line.
Lastly, external entity classes are coloured light-grey. Thus, PERSON is an external
entity class. It means that persons are created outside the scope of the modelled
organisation, but it must be possible to inspect their existence and to use their
properties or attributes, like the day of birth. All standard value classes, as presented
in [9], are external and thus also coloured light-grey. They are always available.

Derived (fact) types, of all kinds, that cannot be specified graphically, must be
specified textually. As follows from the CUT in Table 12.3 and the OFD in
Fig. 12.17, there are three attribute types in the case Volley that have to be specified
textually, as is done in Fig. 12.18. In this figure, days are values in the Julian time
dimension. So, the age of a person is expressed in the number of days that the person
exists; it may be transformed to years in the Gregorian calendar. The cardinality of a
set is the number of its elements. New members pay the proportional part of the
annual fee in the year that the membership starts.

Figure 12.18 also contains the business laws that apply to Volley. They are the
declarative counterparts of the (imperative) business rules [9] or action rules that are
discussed in Sect. 12.3.3. The reader is invited to check that these business laws are
correctly accommodated in the action rule in Fig. 12.10.

Fig. 12.18 Derived fact specifications and existence laws of the Volley organisation

12.3 The Way of Modelling 281

https://doi.org/10.1007/978-3-030-38854-6_21

What is essential is invisible to the eye
(Antoine de Saint Exupéry in ‘The Little Prince’)

12.4 The Way of Working

The method in DEMO that supports the making of essential models is called the
OER method (cf. Fig. 12.3). OER is an acronym of Organisational Essence Reveal-
ing. The notion of revealing is crucial. First, one does not devise an essential model
or create it in some other way; the operational essence is already present in the
running organisation, it only has to be revealed. Second, as the little prince articu-
lates beautifully in the book where the quote above is taken from, and as we less
poetically try to express in Fig. 12.19, what is essential in an organisation is the
wisdom and love that reside in the most inner selves of its members. However, we
may come close to it by observing the organisation through the glasses that are
constituted by the Way of Thinking as presented in part B. But how does one
proceed to reveal the essence of an organisation effectively and efficiently?

Recognising that the essence of an organisation or SoI inheres in its actors, the best
way of working is to address these people and to reveal the essence together with them.
By involving them, they will also feel appreciated and they will most likely support
your proposals to improve the organisation later. You will need them anyhow in the
end for validating your models. The second best option is to rely on written documen-
tation of the operational processes. It is second best for two reasons. First, there is most
likely a difference between the descriptions in the documentation and reality. Second,
you miss the positive effects of involving the ‘shop floor’ from the beginning.

Yet, the second best option, that is, basing oneself on written documentation, is
by far the most widely spread approach in practice. Therefore, we present the OER
method hereafter on the supposition that the starting point is written documentation,
which may also contain diagrams and tables next to text.

12.4.1 General Guidelines in the OER Method

Besides being an acronym, the name “oer” is a Dutch word meaning “original” as
well as “primitive”. Its translation in German, “ur”, is also used as a prefix in English,
like in “urtext”, meaning the original or earliest version of a text. Within the OER
method, theword “oer” has the specific connotation that one seeks to find the ‘original
version’ of an organisation: that what remains after all irrelevant details are removed
or, with reference to the ALPHA theory (cf. Chap. 11), after having abstracted
completely from realisation and implementation. A practical help is to assume that
the people in the organisation can only communicate by speaking to each other.

In addition to this general understanding of the OER method, one should also
have constantly the five sapiences (cf. Fig. 12.2) in mind when applying
it. Regarding the first one, separation of concerns, it is of utmost importance to

282 12 The DEMO Methodology

take and keep the constructional perspective (cf. Chap. 7). It means that one must
actively resist the natural human tendency to take the functional perspective. The
business of the enterprise one is studying (purpose, value, etc.) is at the moment
irrelevant. The focus is on construction and operation. It may help to imagine that
one is trying to understand an immense clockwork without being interested at all in
its being a clock (cf. Fig. 7.4).

As for the second sapience, use of abstraction, this is what one is doing partic-
ularly: abstracting from realisation, so from the I- and the D-organisation
(cf. Chap. 11) and from implementation, that is, from all technological means with
which the ‘clockwork’ is built. It includes the specific persons who currently fill the
actor roles. Although these people are of utmost importance in the preferred way of
applying the OER method, as discussed above, they may at the same time ‘hinder’
you in finding the actor roles in the O-organisation. The implementation of an
organisation also comprises things like hierarchical structures, divisions, depart-
ments etc., and functionary types, like managers, secretaries, purchasers and accoun-
tants, as well as, surprisingly perhaps, the economic boundary of the enterprise. As
pointed out in Sect. 11.4.1, the economic or legal border of an enterprise is basically
irrelevant for the essential operations that are carried out. In other words, one also
abstracts from the sourcing of actor roles. Actor roles that were initially internal may
have been outsourced in the course of time, or the other way around.

The need to apply the third sapience, devising proper concepts, may sound
somewhat weird. Why would one need to devise new concepts in revealing the
essence of an organisation? Shouldn’t they be there already? Yes, they should and
mostly they are, but sometimes the people in the enterprise need your help to ‘reveal’
these concepts and to find proper formulations. The case Volley, which we will use
for illustrating the OER method, contains a perfect example of the need to devise a
proper concept in a product kind, in order to make the key concept uniquely
identifiable. Devising proper concepts includes applying Ockham’s Razor
(cf. Sect. 12.2).

The fourth sapience, verification by instantiation, is a most important intellectual
technique for producing correct conceptual models. Many people think that they can
understand thoughts on the schema or type level (cf. Chaps. 5 and 6) without
verifying their understanding by concrete examples on the instance level. Humble-
ness, however, is not a demonstration of weakness. Being humble in conceptual
modelling means being aware that our mind is too small to keep track of the
implications that our thinking on the schema level generates. Fortunately, there is
an effective procedure to avoid mistakes. It is simply to provide instantiations of the
constructs at the schema or type level. As an example for illustration, in order to
verify that the (default) cardinality ranges for the property type ‘the member of
[membership] is [person]’ in the OFD in Fig. 12.17 are correct, one just produces a
so-called representative population of the type. This is a list of examples that
contains all possible combinations of values of the variables. In this case, a repre-
sentative population would be:

the member of membership 387 is Edward
the member of membership 387 is Linda
the member of membership 388 is Edward

12.4 The Way of Working 283

Next, one checks whether the produced instances of the fact type can co-exist,
that is, exist in the same state of the world. Then it becomes clear that the first two
instances cannot co-exist. Commonly, one then strikes out the second one, as is done
below:

the member of membership 387 is Edward
the member of membership 387 is Linda
the member of membership 388 is Edward

The remaining instances may co-exist perfectly well.7 By applying this simple
technique, one has convincingly verified that the indicated cardinality ranges (0. . .�
at the MEMBERSHIP side and 1. . .1 at the PERSON side) are what one intends.

If any of the five sapiences can be called the most important, it surely must be the
fifth: validation from ontology. The ontological model that one has come up with,
while having consciously and thoroughly applied the other sapiences, may be a
perfectly correct model in the DEMO WoT, but it may still be a false representation
of reality. Consequently, the model must be validated. As already hinted at in the
beginning of this section, the only reliable source to call in are the people on the
‘shop floor’, the people who fill the actor roles in the ontological model. All other
ways of validation are (very) second best and should therefore be avoided.

Finally, one always starts with determining the SoI (Scope of Interest) to which
the OER method will be applied. It follows from what one wants to do with the
resulting model (solving a specific problem, changing the organisation, etc.). While
producing the essential model, the SoI may turn out to be too small or too large.
Consequently, it may need to be broadened or narrowed (cf. Fig. 10.27).

informa

forma

performa

knowing and reasoning

handling documents and data

creating original products

formulating and educing thoughts

uttering and perceiving sentences

exposing and evoking
commitments

COORDINATION PRODUCTION

making decisions by the reason
and the heart

making decisions by the reason
and the heart

Fig. 12.19 The human abilities in coordination and production

7One might argue that it makes, practically spoken, no sense for a person to have two or more
memberships at the same time. The point, however, is only that there is no logical objections.

284 12 The DEMO Methodology

12.4.2 OER Step 1: Distinguishing
Performa-Informa-Forma

The first goal of applying the OER method is to determine the transaction kinds and
the actor roles (or the transactor roles for short) in the O-organisation of a chosen
Scope of Interest (SoI). A very helpful aid in achieving this goal is to distinguish
carefully between the Performa, Informa, and Forma shapes. Figure 12.19 resumes
these human abilities both for coordination and for production. They are discussed in
Chaps. 8 and 11, respectively. The most inner ability (the ‘blank’ me) is added to
emphasise the fundamental humanness of actors. OER step 1, also called the PIF
analysis (PIF from Performa-Informa-Forma), consists of traversing the available
documentation and marking pieces of text as expressing performa or informa or
forma matters. For illustrating the PIF analysis, we take the case Volley, as discussed
in [2]. Below, the narrative description of the case is copied.

One can become member of the tennis club Volley by sending a letter to the club
by postal mail. In the letter one has to mention one’s surname and first name, birth
date, gender, telephone number, and postal mail address (street, house number, zip
code, and town). Adam, the administrator of Volley, empties the mailbox daily and
checks whether the information provided is complete. If not, he makes a telephone
call to the sender in order to complete the data. Once a letter is complete, Adam
writes an incoming mail number and the date on the letter, records the letter in the
letter book, and puts it in a folder.

Every Wednesday evening, Adam takes the folder to Eve, the secretary of Volley.
He also takes the member register with him. If Eve decides that an applicant can
become member of Volley, she stamps ‘new member’ on the letter and writes the
date below it. She then hands the letter to Adam in order to add the new member to
the member register. This is a book with numbered lines. Each new member is
entered on a new line. The line number is the number by which the new member is
referenced in the administration. Next, Eve calculates the fee that the new member
has to pay for the remaining part of the calendar year. She asks Adam for the annual
fee, as decided at the general assembly, which Adam has recorded on a sheet of
paper. Then, she asks Adam to write down the amount in the member register.

If Eve does not allow an applicant to become member (e.g. because he or she is too
young or because the maximum number of members has been reached), Adam will
send a letter in which he explains why the applicant cannot (yet) become member of
Volley.

When all applications are processed, Adam takes the letters and the member
register home and prepares an invoice to all new members for the payment of the
first fee. He sends these invoices by postal mail. Payments have to be performed by
bank transfers.

As soon as a bank statement is received, Adam prints a card on which the member
number, the starting date, the name, the date of birth, the gender, and the residence
are mentioned. The card is sent to the new member by postal mail.

12.4 The Way of Working 285

The next step is to mark those pieces of text that seem to express the performa,
informa, or forma level in coordination or in production. Doing this yields the text
below. The uncoloured pieces are considered to be irrelevant for our purpose.

One can become member of the tennis club Volley by sending a letter to the club
by postal mail. In the letter one has to mention one’s surname and first name, birth
date, gender, telephone number, and postal mail address (street, house number, zip
code, and town). Adam, the administrator of Volley, empties the mailbox daily and
checks whether the information provided is complete. If not, he makes a telephone
call to the sender in order to complete the data. Once a letter is complete, Adam
writes an incoming mail number and the date on the letter, records the letter in the
letter book, and puts it in a folder.

Every Wednesday evening, Adam takes the folder to Eve, the secretary of Volley.
He also takes the member register with him. If Eve decides that an applicant can
become member of Volley, she stamps ‘new member’ on the letter and writes the
date below it. She then hands the letter to Adam in order to add the new member to
the member register. This is a book with numbered lines. Each new member is
entered on a new line. The line number is the number by which the new member is
referenced in the administration. Next, Eve calculates the fee that the new member
has to pay for the remaining part of the calendar year. She asks Adam for the annual
fee, as decided at the general assembly, which Adam has recorded on a sheet of
paper. Then, she asks Adam to write down the amount in the member register.

If Eve does not allow an applicant to become member (e.g. because he or she is
too young or because the maximum number of members has been reached), Adam
will send a letter in which he explains why the applicant cannot (yet) become
member of Volley.

When all applications are processed, Adam takes the letters and the member
register home and prepares an invoice to all new members for the payment of the
first fee. He sends these invoices by postal mail. Payments have to be performed by
bank transfers.

As soon as a bank statement is received, Adam prints a card on which the member
number, the starting date, the name, the date of birth, the gender, and the residence
are mentioned. The card is sent to the new member by postal mail.

Although the main goal of the PIF analysis is to find the performa parts, colouring
also the informa and forma parts may help in identifying them. At the same time, one
must be cautious. In particular, one must be attentive to avoid the so-called blue trap.
Sometimes, a piece of text expresses a forma level P-act, but is at the same time the
forma level of a C-act. A good example is the piece “sending a letter” in the first line.
In addition to being ‘blue’ production (right side of Fig. 12.19), it expresses the ‘blue’
way in which a request is done to becomemember (left side of Fig. 12.19). To indicate
the additional performa meaning, the text is underlined, as are the other pieces of text
that contain a blue trap. From now on, we consider them thus primarily as being ‘red’.

As said, the main goal is to find the performa parts in a description. Nevertheless,
being aware of the ‘green’ and ‘blue’ parts may help to achieve this goal. It is
certainly most helpful in the beginning. After one has got experience, it will suffice
to use only the red marker.

286 12 The DEMO Methodology

12.4.3 OER Step 2: Identifying Transaction Kinds
and Actor Roles

The next step of the OER method is to find the relevant transaction kinds, the
corresponding product kinds, and the executing actor roles, based on the ‘red’
parts in the PIF analysis, including the underlined ‘blue’ parts.

The part “become member of the tennis club Volley” obviously represents an
original product. Let us denote the corresponding transaction kind by “TK01”.
Although “sending a letter” certainly refers to a documental act, the most important
meaning is that it expresses a coordination act at the performa level: it is the request
in a transaction TK01. As follows from the standard transaction pattern
(cf. Fig. 12.15), the response to a request is either a promise or a decline. Although
the sentence “decides that an applicant can become member of Volley” could very
well express a P-act, it appears from the context that it expresses the promise to the
applicant that he/she will become member, so the [TK01/pm]. The alternative
response, the decline [TK01/dc] is expressed in the text parts “does not allow an
applicant to become member” and “will send a letter in which he explains why the
applicant cannot (yet) become member of Volley”. The piece of text “payment of the
first fee” obviously represents also an original product. Let us denote the
corresponding transaction kind by “TK02”. Next, although “sends these invoices”
certainly refers to a documental act, the most important meaning is that it implements a
C-act at the performa level: invoices are requests to pay, so a [TK02/rq]. Likewise, the
text “a bank statement is received” expresses the declaration in the payment transac-
tion [TK02/da], and the part “card is sent to” expresses the declaration in the
transaction in which one becomes member [TK01/da].

So far, we have identified two transaction kinds: TK01 and TK02, based on
indications in the narrative description of the corresponding P-act or product kind,
and on indications of several C-act kinds in each of them. The universality of the
transaction pattern makes us confident of these findings. Nevertheless, it is good to
look for the missing steps in the standard transaction pattern as well as for the steps
in the revocation patterns. Most likely, the answer to asking for the revocation
patterns is that they do not occur (which is not true). As for the missing steps in
the standard pattern, the conclusion is most likely that promises and acceptances are
performed tacitly (because they often are), and that the decline and the reject are
exceptions (really?).

Let us now try to find a proper formulation of the two product kinds. A first
attempt to formulate PK01 could be “[person] has become member”. This may look
okay but it isn’t. Suppose that a person called Anna applies to become member of
Volley. The corresponding product then would be “Anna has become member”.
Next, suppose that Anna leaves Volley after some time but later on wants to become
member again. Then the second product would be identical to the first one, namely
“Anna has become member”. The only way to solve this (well-known) problem
definitely, is to devise a new concept (cf. Fig. 12.2) that satisfies the requirement of
uniqueness. A proper candidate is the concept of membership. If we formulate PK01

12.4 The Way of Working 287

as “[membership] is started”, then Anna can become member of Volley as often as
she wants in the course of time; every time would be a different membership, but
with the same person as member. So, although the word “membership” is completely
lacking in the narrative description of Volley, the concept is quite needed to model
the operation of Volley properly. The reason why Adam and Eve seemingly don’t
need it is their old-fashioned way of bookkeeping, in which one can deliberately
insert and remove entries. Perhaps they have the concept of membership in mind, but
slumbering.

Fig. 12.21 The basic pattern of transactions TK02

Fig. 12.20 The basic pattern of transactions TK01

288 12 The DEMO Methodology

The second product kind (PK02) can properly be formulated now as “the first fee
of [membership] is paid”. The alternative way is to formulate PK02 for example as
“[fee payment] is done”. But then, a new entity type is introduced, with the inherent
property type “membership of fee payment”. Although this formulation is also fully
correct, it is recommended to adhere to the principle of minimality, also referred to as
Ockham’s Razor (cf. Sect. 12.2). In this way, the connection between PK01 and
PK02 is also immediately clear. The complete TPT of Volley is given in Table 12.1.

A practical help in identifying transaction kinds and the corresponding actor roles
(initiator and executor) is to use the basic transaction pattern, in the form that is shown
in Fig. 12.20, as a template, and to indicate in it the particular ways in which the four
basic steps are performed, as well as who the actor role fillers are, and to provide the
corresponding entry in the TPT. The results of a similar exercise for transactions of the
kind TK02 are presented in Fig. 12.21. These figures are not only helpful during the
analysis of the case but also during the validation of the resulting essential model and,
when applicable, during the discussion of the feasibility of suggested new ideas about
implementing the essential model. The basic pattern is drawn as a ‘cycle’.8 The upper
part represents the order phase and the lower part the result phase (cf. Chap. 8). The
order phase starts from the small disk above the state ‘accepted’ and ends in the state
‘promised’. The result phase starts from the small diamond below the state ‘promised’
and ends in the state ‘accepted’. The product is drawn in the middle of the ‘cycle’ in
order to express that all steps are about it. The acts in the left half are performed by the
initiator and those in the right half by the executor.

As an additional exercise in identifying transaction kinds and corresponding actor
roles from a narrative description, let us verify our conclusions by considering the
process of becoming member of Volley of a particular person, Anna. Below, we
present the possible interactions between her and Eve, who apparently is authorised
to fill actor role AR01 (we will come back to this). Anna fills role AR00 (the further
unknown role whose fillers are initiator in transactions TK01) within the composite
transactor role CTAR01. She also fills AR02 (cf. Fig. 12.8). Below, after every
uttered C-act, its normal form (cf. Chap. 8) is presented, supplemented by specific
facts, when needed.

The progress of the transaction process is shown in a self-explaining formulation
(in italics), followed by the indication of the C-fact kind, as for example (T01/rq).
Both to the performer and to the addressee, the actor role is added that they fill in the
C-act. The particular membership is denoted by “1087”.

Anna “I would like to become member of Volley, as soon as possible”

AR00/Anna : request : AR01/Eve : membership 1087 is started; the starting day is
asap

Eve “I am happy that you have chosen Volley, the best tennis club there is!”

8For the insiders: the figure is actually an STD (cf. Chap. 9).

12.4 The Way of Working 289

(By this expression, Eve confirms that she has understood Anna, i.e. there is
cognitive correspondence between them, cf. Fig. 8.5. But it is not a promise yet!)

membership start for membership 1087 is requested (TK01/rq)

From the facts in the current state of the production world of Volley, Eve finds out
that on the first day of the next month (which is the default starting day of member-
ships), Anna will be at least 12 years old (which is the current minimum age), and
that the maximum number will not be exceeded if she allows Anna to become
member.

Eve “I will see to it that you become member as per the first day of the next
month”.

AR01/Eve : promise : AR00/Anna : membership 1087 is started; the starting day
is the first day of the next month.

Anna “Great”.

(By this expression, Anna confirms that she has understood Eve’s promise)

membership start for membership 1087 is promised (TK01/pm)

Next, Eve computes that the first membership fee to be paid is € 75 (Note that this
is an informational transaction). Then she addresses Anna in Anna’s role AR02.

Eve “The fee for the remainder of this calendar year that you have to pay is € 75”.

AR01/Eve : request : AR02/Anna : the first fee of membership 1087 is paid; the
amount to pay is € 75; the operative time is asap

membership payment for membership 1087 is requested (TK02/rq)

Anna “I will do it right away”.

AR02/Anna : promise : AR01/Eve : the first fee of membership 1087 is paid; the
amount to pay is € 75; the operative time is now.

membership payment for membership 1087 is promised (TK02/pm)

Anna takes € 75 out of her wallet and hands it over to Eve. Note that performing
this act presupposes that the production act, so Anna’s decision to pay, is performed.

Anna “Here you are”.

AR02/Anna : declare : AR01/Eve : the first fee of membership 1087 is paid; the
amount paid is € 75; the operative time is now.

membership payment for membership 1087 is declared (TK02/da)

Eve “Thanks”.

AR01/Eve : accept : AR02/Anna : the first fee of membership 1087 is paid; the
amount paid is € 75; the operative time is now.

membership payment for membership 1087 is accepted (TK02/ac)

290 12 The DEMO Methodology

Because the condition of the first fee being paid is satisfied, Eve can now perform
the production act in the TK01 and declare the product (cf. Figs. 12.12 and 12.15).

Eve “Welcome as member of Volley, as per the first day of the next month”.

AR01/Eve : declare : AR00/Anna : membership 1087 is started; the starting day is
the first day of the next month.

membership start for membership 1087 is declared (TK01/da)

Anna “Thanks”.

AR00/Anna : accept : AR01/Eve : membership 1087 is started; the starting day is
the first day of the next month.

membership start for membership 1087 is accepted (TK01/ac)

From both exercises that we presented and discussed above, it becomes clear that
if one focuses on the O-organisation of an enterprise, one can straightforwardly
identify the key parts in its business process kinds, because they are composed of
transaction kinds and actor roles in the O-organisation. Recall that we abstract from
all enclosed informational and documental transaction kinds and actor roles that
realise these business processes (cf. Chap. 11).

The reason why we said earlier that Eve apparently is the authorised filler of
actor role AR01 is that she performs the production act in transactions TK01.
Performing the production act is a decisive indication for being the authorised filler
of an actor role. But she delegates part of her authority to Adam, as becomes clear
from the narrative description of the case. Delegations (cf. Sect. 8.3.3) can conve-
niently be represented in a (detailed) Authorisation Delegation Table (ADT). The
columns in an ADT contain tasks (process steps), the rows contain the performers
to which the task is authorised or delegated. Table 12.4 exhibits the detailed ADT
of the case Volley. The columns represent the process steps, which are the smallest
possible tasks in an organisation (cf. Chap. 8). As the performers of these tasks, the
two functionaries in Volley are mentioned. The ADT is extensively discussed
in [9].

A major help in identifying transaction kinds (and their executing actor roles) is
the insight that having found evidence for the existence of any of the steps in the
complete transaction pattern (CTP, cf. Fig. 8.10), implies having found the presence
of a transaction kind. By asking specific questions about the other steps in the CTP,
one collects confirmations of having indeed identified a new transaction kind.

Table 12.4 Detailed ADT of
the case Volley

T/P TK01/dc TK01/da TK02/rq

Secretary A A A

Administrator D D D

12.4 The Way of Working 291

12.4.4 OER Step 3: Composing the Essential Model

After having completed OER step 2, one has basically identified all transaction kinds
and their executing actor roles in the O-organisation of the SoI. It is now time to
build the DEMO model of it, thus the essential model of the SoI. During this step,
one may feel the need to broaden or narrow the scope. Broadening means that one
has to redo partly step 1 and step 2 in order to find the missing transactor roles.
Narrowing means leaving out transactor roles. Figure 12.22 summarises the ways in
which the four sub-models of an organisation are represented, in diagrams, tables,
and (formal) textual expressions. It is derived from Fig. 12.5 (note: the BAT is
discussed in [9]). It is recommended to build the four models (CM, AM, PM, and
FM) in a spiral way, extending all four models in every cycle. We will illustrate the
approach for the case Volley.

As soon as transaction kind TK01 is identified, and subsequently actor role AR01 is
defined as its executor role, we can produce the part of the CSD on the left side of
Fig. 12.23, consisting of transactor role TAR01, the external composite transactor role
CTAR01, and the initiator link with TK01. As discussed earlier, the initiator role in
transactions TK01 is assumed to be taken by actors who fill the (basically unknown)
actor role AR00, named “aspirant member”, which is contained in CTAR01.

Next, we can produce the part of the OFD that is shown on the right side of
Fig. 12.23. The event type ‘[membership] is started’ is identical to the product kind
PK01, as indicated in the red-lined diamond. These connections between the FM and
the CM are also expressed in the TPT (cf. Table 12.1). Although the column ‘executor
role’ in a TPT is, strictly spoken, redundant, we include for educational purposes: it
almost forces the modeller to give a name to the actor role that corresponds with the
names of the transaction and the product kind. In this way, one is encouraged to avoid
implementation-related names, like secretary or administrator, or Eve or Adam.

Object Fact
Diagram

OFD
DFS

Derived Fact
Specifications

Process Structure
Diagram

PSD
TPD

Transaction Process
Diagram

CUT

Create Use Table

TPT Transactor Product Table

BCT Bank Contents Table

ADT
Authorisation Delegation Table

Coordination Structure Diagram

CSD

ARS
Action Rule

Specifications

WIS
Work Instruction

Specifications

BAT Bank Access Table

Fig. 12.22 Ways of representing the four sub-models

292 12 The DEMO Methodology

Being guided by the transaction pattern, notably the standard transaction pattern
as shown in Fig. 12.15, we can now start to produce the first action rule of the AM,
that is, the rule that applies to settling requests in transactions TK01. It is shown
hereafter. As discussed in Chap. 8, a transaction process may contain iterations.
Consequently, action rules may be executed more than once. Therefore, only during
the first execution of the action rule below, a new membership is created.

when membership starting for [membership] is requested (TK01/rq)
with the member of [membership] is some person

 the payer of [membership] is some person
the starting day of [membership] is some day

assess rightness: the performer of the request is
the member of [membership];
the addressee of the request is a membership starter

sincerity: * the performer seems sincere in performing the request *
truth: the starting day of [membership] is

the of some month;
the age of the member of [membership] on the
starting day of [membership] is equal to or greater than
the minimal age in the year of the starting day

of [membership];
the number of members on the starting day of [membership]

is less than the max members in the year of
 the starting day of [membership]

if performing the action after then
then promise membership starting for [membership] [TK01/pm]

to the member of [membership]
else decline membership starting for [membership] [TK01/dc]

to the member of [membership]

Fig. 12.23 First cycle in spirally composing the essential model of Volley

12.4 The Way of Working 293

Traversing from top to bottom through the action rule, we find the next connec-
tions with the other models:

• The property type ‘member’ is already present in the OFD
• The property type ‘payer’ is already present in the OFD
• The attribute type ‘starting day’ is already present in the OFD
• Any person who fills actor role AR01 is a membership starter
• The age of a person is a derived fact, specified in Fig. 12.18
• The number of members on a day is a derived fact, specified in Fig. 12.18
• The external multiple transaction kind MTK01 (persons facts) is added to the

CSD, connected by an access link with actor role AR01. It contains facts of the
type ‘day of birth’

• The external multiple transaction kind MTK02 (Volley facts) is added to the
CSD, connected by an access link with actor role AR01. It contains facts of the
types ‘minimal age’, ‘annual fee’, and ‘max members’

The executor of the discussed action rule is the membership starter of the
membership. Normally, this property is included in the OFD, but for the sake of
convenience we have left it out. In the next cycle of the spiral approach, transaction
kind TK02 is added. Extending the four models, that is, the CM, AM, PM, and FM
accordingly, leads to the results that are presented in Figs. 12.8, 12.9, 12.10, 12.11,
12.12, 12.13, 12.14, 12.15, 12.17, and 12.18 and in Tables 12.1, 12.2, and 12.3. Note
that conceiving the specialisations STARTED MEMBERSHIP and PAID MEM-
BERSHIP (cf. Fig. 12.17) makes the OFD more precise. Note also that we have
skipped some parts of the complete model, like the CUT (cf. Table 12.3) in the first
cycle. In practice, these parts should also be added in every cycle.

12.4.5 OER Step 4: Validating the Essential Model

In the previous steps of the OER method, we have applied the first four sapiences
(cf. Fig. 12.2): separation of concerns (by taking exclusively the construction
perspective on the Volley enterprise), use of abstraction (by applying in particular
the PSI, the OMEGA, and the ALPHA theories), devising proper concepts (notably
in Sect. 12.4.3), and verification by instantiation (notably in Sects. 12.4.1 and
12.4.3). It is time now to practice the fifth sapience: validation from ontology.
Where verification of a model ensures that the model is correct according to the
applied methodology (thereby answering the question: is the model right?), valida-
tion ensures that a model offers a faithful understanding of the modelled piece of
reality (thereby answering the question: is it the right model?).

Validation in the OER method means that one leaves one’s desk with all
representations of the produced integrated essential model (CM, AM, PM, and
FM), that is, the diagrams and tables, and heads for ‘reality’. This comes basically
down to sitting together with the people on the ‘shop floor’, that is, the people who
fill the actor roles in the essential model. The recommended procedure is to study the

294 12 The DEMO Methodology

identified transactor roles one by one and to check the claims that the model
implicitly makes. As mentioned in Sect. 12.4.3, the basic pattern implementations
of the identified transactor roles (cf. Figs. 12.20 and 12.21) may be very helpful in
this step.

The first claim is the existence of the transaction kind itself. The main source for
validating it is the CM. Can (some of) the involved people confirm that they are
indeed carrying out transactions of the considered kind? Can they provide evi-
dences? Is the product kind formulated in such a way that they do understand it?
To illustrate this for the case Volley, one would sit together with Adam and Eve, put
Figs. 12.8, 12.9, 12.10, 12.11, 12.12, 12.13, 12.14, 12.15, 12.17, 12.18, 12.20, and
12.21, and Tables 12.1, 12.2, and 12.3 on the table and select transaction kind TK01
to start with. Both Adam and Eve can very well demonstrate that they carry out
transactions of this kind and, after having learnt that they are better-off by using the
concept of membership (cf. Sect. 12.4.3), and that they understand the product kind
PK01 ([membership] is started). For transaction kind TK02 similar questions hold.
In particular, the product kind PK02 (the first fee of [membership] is paid) seems
worth being discussed. Why not “[invoice] is paid” or “[payment] is done” or the
like? Both of these alternatives may be used. But then, a property type must be added
to the FM that constitutes the relationship with the membership. Moreover, if the
second alternative is chosen, how does one make sure that the first fee has been paid,
since it may obviously be paid in several payments.

The second claim concerns the interaction structure (cf. Sect. 12.3.2) in the
model. The main source for validation is again the CM. Can (some of) the involved
people confirm that they are executor in transactions of the considered kind, and thus
have the authority (cf. Sect. 8.3.3) to fill the corresponding actor role? Do they also
know whether their authority is acquired through authorisation or through delega-
tion? Next, can (some of) the involved people confirm that they are initiator in
transactions of the considered kind, and thus have the authority (cf. Sect. 8.3.3) to fill
the corresponding actor role? Are they aware that being initiator is an inherent part of
the authority to be executor in transactions of some (other) kind? As for the case
Volley, after an explanation of the difference between authorisation and delegation,
and of their relationships with responsibility and accountability (cf. Sect. 8.3.3),
Adam and Eve might be very happy to have the division of authority between them
illuminated.

The third claim concerns the interstriction structure (cf. Sect. 12.3.2). Next to the
CM, the AM is an important source for this validation. Can (some of) the involved
people confirm, in their role of executor of transactions of the considered kind, that
they need reading access to the transaction banks that are linked by access links to
the executing actor role they fill? A more precise confirmation can be achieved by
checking the BCT and the corresponding action rule(s) in the AM. As for the case
Volley, it is very likely that Adam understands that he (also) operates as an I-actor
and in this quality provides Eve with the information in the assess part of the action
rule in Fig. 12.10, as well as that Eve understands thoroughly that she takes care of
the response part of the action rule, including the delegation of the implementation
(i.e. sending the letter) of the decline act [TK01/dc] to Adam. Both will certainly also
understand the corresponding part of the BCT (cf. Table 12.2).

12.4 The Way of Working 295

The fourth claim concerns the interimpediment structure (cf. Sect. 12.3.2). Next
to the CM, the AM, and the PM are important sources for the validation. Can (some
of) the involved people confirm, in their role of executor of transactions of the
considered kind, that they have to wait until other transaction processes are in a
specific state? A more precise confirmation can be achieved by checking the
corresponding part in the PM, as well as by checking the corresponding action
rule(s) in the AM. Let us take the case Volley again for illustration. After having
explained to them the meaning of the PSD in Fig. 12.12, it is most likely that Adam
and Eve will understand the wait link from (TK02/ac) to [TK01/ex]. An extra
confirmation could be achieved by discussing the related action rule, but this rule
is not presented above (if you want to make your own confirmation, you are referred
to [2]).

The fifth claim concerns the complete transaction pattern (CTP, cf. Fig. 12.9).
The claim implies that all steps in the basic pattern (rq, pm, ex, da, ac) must be
performed in order to complete a transaction successfully, that the additional steps in
the standard pattern (dc and rj) should also be ‘standard procedure’ because they are
the logical alternatives to the pm and the ac respectively, and that the four revocation
patterns are always possible (and therefore should ideally be accommodated too).
Unfortunately, the practice of organising work is unruly. Looking at the current
organisation of Volley, and assuming that the narrative description in Sect. 12.4.2 is
accurate, one must observe that [TK01/pm] and [TK02/ac] are performed tacitly, that
[TK01/rj] is not addressed, and that revocations of the four basic C-acts (rq, pm, da,
ac) are not mentioned at all. It is very likely, therefore, that Adam and Eve, when
confronted with the latter, answer that such things never happen. So, this would be a
perfect opportunity to show them the case Fixit (cf. Chap. 13) and then to think up
various situations in which they also would need the revocation patterns.

The sixth claim concerns the completeness of the information requirements. Can
(some of) the involved people confirm, in their role of executor of transactions of the
considered kind, that they have access to every fact that they need to know through
the access links they have in the interstriction structure, thus that there is no missing
information? In addition to the interstriction structure, the BCT, the CUT, and the
FM may be helpful to confirm the completeness. Sure, an OFD is not the kind of
diagram that laymen easily and readily understand, but patient explanation and
exemplification may work magic. The sixth claim implies that the functional
requirements for any supporting ICT-application are there, in the essential model,
as discussed in Chap. 11.

12.5 Deepening the Insight into the PSI Theory

We are able now to produce verified and validated models of the essence of an
organisation within the DEMO methodology, and thus within the theoretical frame-
work of the preceding seven chapters. But what is the meaning of the four
sub-models, the CM, the AM, the PM, and the FM, for the detailed operations in
an organisation? How can we deepen our insight into them? To be more precise,

296 12 The DEMO Methodology

what is the implication of understanding an organisation’s essence for understanding
the individual acts that the workers in it perform?

Having, meanwhile, learned about the transactional structures that guide the acts
of the subjects (now conceived as actors), let us take the framework of Fig. 8.6 to
investigate these implications. Moreover, let us take the case Volley to illustrate our
findings. The framework in Fig. 8.6 is reproduced in Fig. 12.24.

In Fig. 12.25 a part of the FM in Fig. 12.17 is exhibited, expressed in GOSL
(cf. Chap. 6). We will use it as the (partial) conceptual schema of the production
world (PW) of Volley, in conformity with the MU theory (cf. Chap. 6). What the
schema tells us is that in a state of the PW of Volley, there are facts that represent the
existence of memberships and persons, there are facts that tell us which person is the
member of which membership, and there are facts that tell us which person is the
payer of a particular membership. Next, there is one event type, formulated as
‘[membership] is started’. Instances of this type correspond with the grey-coloured
diamonds in Fig. 12.24. Moreover, there are facts that represent the day of birth of
the existing persons, and facts that represent the starting day of the existing member-
ships. Recall that this day is the (intended) operative time (cf. Fig. 8.17) of the
independent P-facts of the type ‘[membership] is started’ (which equals the product
kind PK01 of transaction kind TK01). The event time, thus the point in time at which
the fact ‘[membership] is started’ comes into existence, is the time at which the
accept act is performed in the corresponding transaction TK01.

PRODUCTION
WORLD

COORDINATION
WORLD

production factscoordination facts

production

acts

coordination

acts

actor

actor

Fig. 12.24 The coordination world and the production world of an organisation

MEMBERSHIP PERSON

day of birth {DAY}

the member of
>

[membership] is [person]starting day {DAY}

01

the payer of
>

[membership] is [person]

[membership] is started

Fig. 12.25 Partial schema of the production world of Volley

12.5 Deepening the Insight into the PSI Theory 297

Let us therefore draw our attention now to the left part of Fig. 12.24, thus to the
coordination world (CW) of Volley. Figure 12.26 exhibits the (partial) conceptual
schema of the CW of Volley, expressed in GOSL (cf. Chap. 6). Note that it is
actually the conceptual schema for every coordination world because of the general
character of the transaction concept and the PSI theory (cf. Chap. 8). Note in addition
that only the bold and green-lined parts belong to the conceptual schema of the CW
of Volley, the other parts are added to make the schema better understandable.

What the schema tells us is that in every state of the CW of Volley, there exist
instances of the types transaction step and transaction. With reference to Sect. 12.4.3,
let us assume that transaction T-51917 is the transaction in which Anna becomes
member of Volley, so in which the product ‘membership 1087 is started’ is brought
about. Its transaction kind is TK01 (cf. Table 12.1). Let us also assume that one of
the steps in transaction T-51917 is TS-106539, and that the transaction kind step
kind of TS-106539 is TK01/rq. The performer of TS-106539 is AR00/Anna and the
addressee is AR01/Eve. Recall that a transaction step is the combination of a C-act
and its resulting C-fact (cf. Chap. 8). As an example, the transaction step TK01/rq is
the combination of the C-act [TK01/rq] and its resulting C-fact (TK01/rq).

The connection between the CW and the PW of Volley is brought about by the
added independent P-fact type at the right side of Fig. 12.26. The P-fact ‘member-
ship 1087 is started’ is an instance of the P-fact type ‘[membership] is started’. This
statement is equivalent saying that the P-fact kind of ‘membership 1087 is started’ is
‘[membership] is started’.

12.6 Conclusions

In this chapter, we have presented the DEMO methodology: the Way of Thinking,
the Way of Modelling, and the Way of Working. We have demonstrated how the
essential model of an enterprise can be produced by applying the methodology. Let
us summarise and emphasise three crucial properties.

Fig. 12.26 Partial schema of the coordination world of Volley

298 12 The DEMO Methodology

First, DEMO is at the same time a process modelling approach, a data modelling
approach, and a business rules modelling approach. Moreover, these approaches are
fully and properly integrated. In addition, DEMO offers the overarching Coopera-
tion Model, something that none of the current approaches to enterprise or
organisational modelling does.

Second, producing DEMO models is to a large extent a straightforward under-
taking. The essential model of an organisation is not the outcome of a creative action
nor something that one can have differences of opinion about. As said, the essence of
an organisation is already there, it only has to be revealed. By applying the OER
method properly, one gets it, irrespective of the person(s) who produce(s) it. If two
knowledgeable professionals would get the task of producing the essential model of
the same SoI, they will deliver the same model. If not, one of them (or both) is
mistaken. Only modelling approaches without a solid and proper theoretical foun-
dation allow for subjectivity and consequent boundless discussions about the cor-
rectness and rightness of a model.

Third, next to offering full confidence regarding the correctness (through verifi-
cation) and rightness (through validation) of a model, applying the OER method
assures one of the most valuable approval and support by the actors in the organi-
sation, the people ‘on the shop floor’.

References

1. Seligmann, P. S., Weijers, G. M., & Sol, H. G. (1989). Analyzing the structure of IS
methodologies – An alternative approach. In First Dutch Conference on Information Systems.
Amersfoort.

2. Perinforma, A. P. C. (2015). The essence of organisation. Leidschendam: Sapio Enterprise
Engineering.

3. Dietz, J. L. G. (2006). Enterprise ontology: Theory and methodology (xiii, 243 p.). Berlin:
Springer.

4. Dijkstra, E. W. (1976). A discipline of programming. Prentice-Hall series in automatic compu-
tation (XVII, 217 p.). Englewood Cliffs, NJ: Prentice-Hall.

5. Nijssen, G. M., & International Federation for Information Processing. (1976). Technical
Committee 2. InModelling in data base management systems: Proceedings of the IFIP Working
Conference on Modelling in Data Base Management Systems (vi, 418 p.). Amsterdam: North-
Holland (sole distributors for the U.S.A. and Canada, Elsevier/North-Holland).

6. Keen, P. G. W. (1997). The process edge: Creating value where it counts (xvii, 185 p.). Boston,
MA: Harvard Business School Press.

7. Op ’t Land, M., Zwitzer, H., Ensink, P., & Lebel, Q. (2009). Towards a fast enterprise ontology
based method for post merger integration. In SAC’09 (pp. 245–252). ACM: Hawaii.

8. Pluijmert, N. J. (2017). VISI revisited. Lecture Notes in Business Information Processing, 284,
89–98.

9. Dietz, J. L. G. (2019). DEMO-4 specification language. Enterprise Engineering Institute.

References 299

Chapter 13
Exercise: Case Fixit

Abstract The case Fixit is an exercise in understanding and applying the full potential of
the complete transaction pattern, including the revocation patterns and the consequent
roll-backs of the main business process. The analysis of the case demonstrates and clarifies
that the complete transaction pattern covers all ‘exceptional’ situations, which, in current
practice, are commonly taking care of in separate business processes, thereby blurring the
inherent connections with other processes as well as the involved responsibilities. Under-
standing exceptions within this pattern not only helps actors in all enterprises to get a deeper
insight into the business processes they are involved in, it is also an invaluable intellectual
asset for the designers of business process management systems, specifically regarding the
design of the user–system interaction.

13.1 Introduction

The case Fixit is an exercise in understanding and applying the full potential of the
complete transaction pattern (CTP), including the revocation patterns and the conse-
quent roll-backs of the main transaction process (cf. Chap. 8). It demonstrates and
clarifies that the CTP covers all ‘exceptional’ situations, which, in current practice, are
commonly taken care of in separate business processes, thereby blurring the inherent
relationships with other processes as well as the involved responsibilities. The case
also elucidates that business processes consist in the first place of human interaction.

Section 13.2 contains the narrative description of the process of repairing a car in
the Fixit garage. It is the basis for applying the CTP to two transaction kinds: the
actual repair of a car and the payment of the repair. The analysis is presented in Sect.
13.3. and discussed in Sects. 13.4 and 13.5 contains the conclusions.

13.2 Narrative Description

John Smith collects his car from the Fixit garage where he had brought the car the day
before, because of a bumping noise he heard whenever he drove over a speed ramp.
On the invoice he has to pay, he sees that the two rear shock absorbers are replaced.
After having paid, John drives back home. At the first speed ramp, however, he hears
the same bumping noise again! John returns straight to the garage and tells the boss

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_13

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_13&domain=pdf

(Jack) about what happened, and that he will not accept this outcome of the repair.
Jack says that he will have another look at the problem. At the end of the day, Jack
calls John to tell that they have found the real cause of the problem: two loose bolts.
They will fix it first thing in the morning, after which John can collect the car. When
John presents himself again at the reception of Fixit the next day, Jack says that there
are no additional costs for the (second) repair. But that is not acceptable to John; he
doesn’t want to pay for the shock absorbers because that repair didn’t solve the
problem. After some discussion, they come to the agreement that John gets the new
shock absorbers for 60% of the original price.

13.3 Analysis of the Narrative Description

When applying the division into product categories (cf. Chap. 10) to the case Fixit, it
is clear that the case belongs to the category of creating and changing tangible things.
In addition, it comprises the transfer of ownership of an amount of money. Instead of
producing the complete essential model of the case, we will focus on two transaction
kinds: the repair fulfilment transaction kind and the repair payment transaction kind.
For the sake of simplicity we consider Jack, the boss, to be (also) the mechanic who
repairs the car. So, the initiator role in the repair fulfilment transaction is taken by
John and the executor role by Jack. In the repair payment transaction, the initiator is
Jack and the executor is John. Below, two complete transaction pattern diagrams are
shown, one for the repair fulfilment transaction, and one for the repair payment
transaction. In these diagrams we will picture the progress of the transaction
processes according to the case description.

Fig. 13.1 The repair fulfilment transaction—phase 1

302 13 Exercise: Case Fixit

In the first instance, the repair fulfilment transaction is completed successfully, as
exhibited in Fig. 13.1. The successful completion of the transaction is indicated by
the green lines and referred to as path 1. As discussed in Chap. 8, this path is often
called the success path or happy flow.

After having experienced that the problem has not been solved, John returns
straight to the garage and tells Jack about what happened, and that he will not accept
this outcome of the repair. With respect to the carried out transaction process
(cf. Fig. 13.1), it means that John regrets that he has accepted the result. With
hindsight he should have rejected it. Therefore, John revokes the acceptance of the
result. This is indicated in Fig. 13.2 by the tangerine lines and referred to as path
2. Note that the initial state of path 2 is the state (ac) in the standard pattern, and that
the condition for the process in the standard pattern of having reached at least state
(ac) is satisfied.

The two actors find themselves now in the discussion state (rv[ac]). In this
state, John has the opportunity to elucidate his dissatisfaction and Jack can
already offer to redo the repair, because he also wants the problem be solved.
Formally, it means that he allows the revocation and that the process in the

Fig. 13.2 The repair fulfilment transaction—phase 2

13.3 Analysis of the Narrative Description 303

standard pattern is rolled back to the state (da). The rolling back is indicated in
Fig. 13.2 by the dashed green lines. The acceptance by John of the result of the
repair transaction is thereby made ‘undone’. From the state (da), he can now
perform the act that, with hindsight, he should have performed right away,
namely the reject. This path 3 (represented by tangerine lines) is shown in
Fig. 13.3.

So, the two actors end up in the discussion state (rj). Because the problem and
the possible way out are extensively discussed already in the state (rv[ac]), there is
probably no need for an additional discussion. In order to be able to redo the
repair, Jack formally revokes his declaration in the repair fulfilment transaction,
which will of course be allowed by John. This is indicated in Fig. 13.4 by path
4, and expressed in the corresponding tangerine lines. It brings the process in the
standard pattern back to the state (pm). It expresses that Jack keeps his promise to
repair the car, but that he is now able to reconsider his initial diagnosis, find out

Fig. 13.3 The repair fulfilment transaction—phase 3

304 13 Exercise: Case Fixit

what really caused the bumping sound, and resolve it. The effect of the successful
revocation of the declare act is shown in Fig. 13.4. The roll-back is indicated in
Fig. 13.2 by the dashed green lines. Rolling back to the state (pm) implies
reversing the performed production act. It would imply that Jack takes the new
shock absorbers out. As we know, however, he doesn’t.

From the state (pm), Jack is now able to make another attempt to solve the
problem. In this second attempt he discovers that there are two loose bolts in the
suspension of the rear wheels. Because there do not seem to be other strange things,
he decides that fixing them must solve the problem, and so he does. This second
passing of the standard pattern is indicated in Fig. 13.5 by the blue lines and referred
to as path 5. Being convinced by Jack that there will now be no bumping anymore,
John accepts the result of the transaction.

Fig. 13.4 The repair fulfilment transaction—phase 4

13.3 Analysis of the Narrative Description 305

Fig. 13.5 The repair fulfilment transaction—phase 5

Fig. 13.6 The repair payment transaction—phase 1

306 13 Exercise: Case Fixit

Regarding the carried out payment transaction, John does not agree with it because
the new shock absorbers didn’t solve the problem. Figure 13.6 shows the happy flow
(path 1) in the repair payment transaction. In terms of the CTP, it means that John, with
hindsight, regrets to have promised to pay, in response to the request by Jack. The
formal next step for John is to revoke his promise in this transaction. This is exhibited
in Fig. 13.7 as path 2, represented by tangerine lines. The roll-back of the main
transaction process is indicated by the dashed green lines.

Note that the initial state of path 2 in the repair payment transaction is the state
(ac) in the standard pattern, and that the condition for the process in the standard
pattern of having reached at least state (pm) is satisfied. The two actors find
themselves now in the discussion state (rv[pm]). In this state, John has the
opportunity to elucidate his unwillingness to pay for the shock absorbers and
Jack can already start thinking of a way out of the disagreement.

As follows from the case description, Jack agrees with John’s viewpoint regard-
ing the payment for the shock absorbers and thus allows the revocation of the
request. Consequently, the process in the standard pattern (path 1) is rolled back to
the state (rq). From there, John can perform the act that, with hindsight, he should
have performed right away, namely the decline. This path 3 (represented by tanger-
ine lines) is shown in Fig. 13.8. In the discussion state (dc), John and Jack negotiate
about a fair price for the total repair, without needing to remove the new shock
absorbers. The result is that Jack gets them with 40% discount.

Fig. 13.7 The repair payment transaction—phase 2

13.3 Analysis of the Narrative Description 307

Fig. 13.8 The repair payment transaction—phase 3

Fig. 13.9 The repair payment transaction—phase 4

308 13 Exercise: Case Fixit

Based on the outcome of the negotiation, Jack performs a renewed request in the
repair payment transaction, with the agreed-upon reduced amount. This is indicated
in Fig. 13.8 by the tangerine-coloured path from (dc) via [rq] to (rq). In response to it,
John promises to pay this amount, after which the second passing of the transaction
pattern proceeds as indicated by path 4 in Fig. 13.9, represented by blue lines.

13.4 Discussion of the Analysis

The size of a case description apparently is not a reliable predictor of the size of its
analysis. In addition, you may have had a hard time to understand the analysis of the
case Fixit. Most likely, the difficulties are caused by being unfamiliar with the
presented thorough analyses of business processes. After some experience in apply-
ing the complete transaction pattern (CTP), as introduced and discussed in the PSI
theory (cf. Chap. 8), one will discover and agree that also the analysis of the case
Fixit is in accordance with the motto of DEMO: essence and simplicity. Moreover,
as you may know, none of the current BPM1 approaches [1] is able to provide the
insight that the presented analysis of the case Fixit offers. Let us therefore reflect on
it, thereby deepening the acquired insight and possibly offering new insights.

In the analysis of the repair fulfilment transaction, we have identified two revoca-
tions concerning the (first) passing of the standard transaction pattern. The first one is
the revocation of the accept act, so the [rv(ac)], and the second one is the revocation of
the declare act, so the [rv(da)]. The two revocation kinds often go together, because the
successful settlement of a [rv(ac)] ends up in the discussion state (rj), as exhibited in
Fig. 13.3. The executor (Jack in this case) may try to convince the initiator (John) that
there is nothing wrong with the produced product (the being fixed of the car by
replacing the shock absorbers) by performing again the declare act, but he will have no
success: John has experienced loud and clear that the bumping is not resolved. In many
other cases, however, like the café example in Chap. 8, such an attempt by the executor
may very well be successful, certainly if during the discussion in the state (rj) the
conditions for the payment transaction are made more attractive.

If renewing the declare act is no option, there is only one way out of the reject
state in a transaction process, which is revoking the declare act. After a successful [rv
(da)], the process in the standard pattern is rolled back to the state (pm), as
exemplified in Fig. 13.4. Rolling back a transaction process up to the order phase
logically implies ‘undoing’ the production act, but this may cause practical issues, as
in the case Fixit. Naturally, Jack is reluctant to remove the new shock absorbers and
replace the old ones. That would cost him a lot of (unpaid) time. So, he opts for
resolving the issue in the payment transaction. In the second passing of the standard
pattern, Jack fixes the loose bolts, as illustrated by Fig. 13.5.

1BPM is the abbreviation of Business Process Management. In the past decades it has become the
common denominator of approaches (methods, techniques, etc.) to the modelling, analysis, and
(re) design of business processes.

13.4 Discussion of the Analysis 309

In the analysis of the repair payment transaction, we have identified only one
revocation concerning the (first) passing of the standard transaction pattern, namely
the revocation of the promise act. This is the right action to take if the executor of a
transaction of this kind wants to undo or reverse a payment. One may think that
revoking the declare act may do the job but that is not true. It would only roll back
the process in the standard pattern to the state (pm), whereas changing the promise is
what the executor wants. Therefore, a roll-back up to the state (rq) is needed, which
is the effect of a successful [rv(pm)], as shown in Fig. 13.7. From this state, John
formally declines the request because the original request regards the full payment of
the shock absorbers. In the resulting discussion state (dc), John and Jack have the
opportunity to negotiate a new price for the repair, as we have seen above, after
which Jack performs a second request, with the reduced amount.

As we have seen above, rolling back a transaction process up to the order phase
logically implies ‘undoing’ the production act. Regarding the repair transaction, this
may have serious consequences (like removing the new shock absorbers). Regarding
the payment transaction, the practical issues are less problematic. Undoing the
performed (first) payment would mean giving back the paid amount to John. The
second request in the same transaction process would lead to the payment by John of
the reduced amount. The practical solution in most enterprises is to subtract the first
amount from the second one and to ask for paying the difference. Because in the case
Fixit, the result of the subtraction is negative, Jack ‘pays’ the difference to John.

13.5 Conclusions

Using the repair of a car as the example, we have demonstrated above how the CTP
helps in thoroughly understanding transaction processes, notably those paths that are
commonly called exceptions. However, despite the many exceptions that we have
come across, the case Fixit is not a special one at all. Exceptions occur in every
enterprise, every day. Therefore, the name is actually a misnomer. One better adopt
the CTP as the pattern for all transaction processes, and thus for all business
processes. Fortunately, most transaction processes follow (only) the happy flow.
Still, one must always be prepared for an ‘exception’.

Understanding exceptions within the framework of the CTP not only helps actors
in all enterprises to get a deeper insight into the business processes they are involved
in, it is also an invaluable intellectual asset for the designers of business process
management systems. If they base the user–system interaction on the CTP, they will
have anticipated every future ‘exception’.

Reference

1. Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. (2018). Fundamentals of business process
management. Berlin: Springer.

310 13 Exercise: Case Fixit

Chapter 14
Exercise: Case Pizzeria

Abstract The case Pizzeria is an exercise in understanding and applying the full potential
of abstracting from realisation and implementation, and thus focusing on the O-organisation
of an enterprise. In the course of its existence, the pizzeria passes through three phases. The
transition from the first to the second phase leads to a change in the essential model. The
change appears to have interesting consequences for the allocation of authority. Despite the
huge differences between the second and the third phase in terms of implementation, their
ontological models do not differ.

14.1 Introduction

The case Pizzeria is an exercise in understanding and applying the full potential of
abstracting from realisation and implementation, and thus focusing on the
O-organisation of an enterprise, as proposed by the ALPHA theory (cf. Chap. 11).
In terms of the categorisation of enterprises by the OMEGA theory (cf. Chap. 10),
the business of the pizzeria is the creation and the transfer of ownership of tangible
things (preparing and selling pizzas), as well as the transfer of ownership of
intangible things (paying).

Section 14.2 contains the narrative description of the operational activities in the
three phases of the Pizzeria. The analysis of the case is discussed in Sect. 14.3, while
some parts of the essential model are presented (cf. Chap. 12). In Sect. 14.4, this
model is extended. Section 14.5 contains the conclusions from the exercise.

14.2 Narrative Description

The Pizzeria Mama Mia was established in 1970 by the owner at the time, Mia, and
her son Mario. In the first phase of its existence there was only a takeaway service.
Customers could just walk in and make their wishes known at the counter or could
order by telephone. In both cases they had to take away the pizzas themselves. In
1980, an important new service was introduced: one could have the pizzas delivered

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_14

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_14&domain=pdf

home. To realise this service, Mia hired students on an hourly basis, who delivered
the pizzas on mopeds. That appeared to be a good decision: within a year, less than
20% of the orders were taken away by the customers themselves. Let us call the
situation from 1980 on the second phase of Mama Mia. The year 1990 marks the
start of the third phase, a time about which Mia still does not know whether she
should be glad or sad. The pizzeria was bought by a global chain of pizzerias, called
Domina. With the proceeds from the sale, Mia and Mario have returned home to
Italy. Rumour goes that they still do not really enjoy the ‘dolce far niente’. For each
of the three phases, the operational activities are described in detail below.

The First Phase
Customers present themselves at the counter of the pizzeria or make a telephone call.
In both cases, Mia writes down the name of the customer, the ordered items, and the
total price on an order form. On the counter lies a menu of the available pizzas and
their prices. Usually, she produces this list every year during the holiday. In the case
of an order by telephone, she also notes the telephone number. Moreover, she repeats
the ordered items and informs the customer about the price and the expected time
that the order will be ready. If needed, she also informs the customer about the
available assortment of pizzas.

The order forms have a serial number and are produced in duplicate: a white and a
pink copy. Mia slides the pink one through a hatch in the wall to the kitchen, where
Mario takes care of the baking. She keeps the white copy behind the counter. As
soon as Mario has finished an order, he slides the pizzas in boxes through the same
hatch to Mia, including the pink order copy. Mia then seeks the matching white
copy, hands it together with the boxes over to the customer, and waits for the
payment.

It can happen that Mario is not able to fulfil an order completely because of
missing ingredients. In such a case, he puts his head through the hatch and notifies
Mia of the problem. He then also returns the pink copy. If the customer is present in
the shop, Mia confers with him/her on what to do about it, and modifies the order. If
the customer is not present, which is of course the case for orders by telephone, she
modifies the order often at her own discretion. This leads sometimes to vigorous
debates in the pizzeria when the customer comes for taking away the pizzas. Thanks
to Mia’s temperament, she always comes to an agreement that is not disadvanta-
geous for her.

The Second Phase
The operations in this phase are basically similar to the operations in the first phase;
only the deliveries have been added. However, the big success of the new service has
made it necessary that a second baker be employed. His name is Giovanni. An extra
duplicate is added to the order forms; next to the white and the pink copies, there is a
blue one. If an order has to be delivered home, Mia writes down the delivery address
on the order form and slides both the white and the blue copy through a hatch to the
room where the students are waiting.

The student whose turn it is fills in her or his name on the blue copy and puts it in
a tray. He/she then waits for Mario or Giovanni to slide the pizzas, together with the

312 14 Exercise: Case Pizzeria

pink copy, through a hatch to the transporters’ room. Then, the student leaves with
the pizzas and the pink and white copies of the order form. At the customer’s
address, he/she hands over the pizzas and the white copy, and waits for the payment.
After the customer has paid and has signed the pink copy, the student goes back to
the pizzeria and hands the money and the pink copy over to Mia. The students use
their own mopeds as Mia did not want the trouble of having the pizzeria own the
mopeds.

The Third Phase
The takeover of Mama Mia by the Domina chain has brought a lot of changes to the
pizzeria. Mia and Mario have left, and Giovanni has become branch manager. Both
the inside and the outside of the building are modified so drastically that one cannot
find anything that reminds of the old days of the pizzeria; it has just become one of
the many Domina pizzerias. The assortment as well as the prices are determined by
the central office. There is a choice out of 12 kinds of pizza in three sizes: 25 cm
Classic Medium, 25 cm Pan Pizza Medium, and 35 cm Classic Large. The selection
is printed on colourful flyers, which are given to customers and dropped at locations
where one expects gatherings of young people. Giovanni manages about ten young-
sters on a part-time basis. Their function is either baker or deliverer. Baking is not
much of a job anymore; the pizzas are produced in automatic ovens. There is also no
more a separate kitchen and transporters’ room. The inside of the pizzeria is one big
open space, except for a small office for Giovanni. Everything carries the Domina
logo, including the mopeds, which are owned by the company now.

Both the bakers and the deliverers take orders from customers, of which over 90%
are placed through the webshop, with payment in advance. There is a fully auto-
mated order entry system that is integrated with other administrative functions. After
entering an order, stickers are automatically printed, which are put on empty boxes.
The stickers have the following information printed on them: the kind of pizza, the
order number, the total price, the name of the customer, and the delivery address.

As soon as a pizza is discharged by the baking machine, one of the bakers puts it
in the right box, which he or she takes from the rack in which they are stored. The
baker then enters a record of the baked pizza in the automatic order system. The
boxes of the same order are kept together on a large table with infrared lamps
hanging over them. If an order is complete, one of the deliverers takes the boxes
to the customer address. In case of a takeaway order, the deliverer hands the boxes
over to the customer, after he/she has paid, in cash or by bank transfer.

14.3 Analysis of the Narrative Description

Because it is not possible to question the employees of the pizzeria, we have to apply
the second best way of working, as discussed in Chap. 12, which is to study the case
description and to find clues for the presence of original (thus O-organisation)
transaction kinds and corresponding actor roles. We will do this below, paragraph

14.3 Analysis of the Narrative Description 313

after paragraph, while applying the OER method as much as possible in a spiral way
(cf. Chap. 12). The pieces of text that are taken from the case description, are written
in italics. Contrary to the analysis of the case Volley (cf. Chap. 12), we only mark the
pieces of text that indicate parts of the O-organisation of the pizzeria (in red).

14.3.1 Analysis of the First Phase

Although the very first part of the description does contain indications of essential
transaction kinds, we consider it primarily as introductory text. Therefore, we start
our analysis with the description under the heading “The first phase”.

Customers present themselves at the counter of the pizzeria or make a telephone
call. In both cases, Mia writes down the name of the customer, the ordered items,
and the total price on an order form. On the counter lies a menu of the available
pizzas and their prices. Usually, she produces this list every year during the holiday.
In the case of an order by telephone, she also notes the telephone number. Moreover,
she repeats the ordered items and informs the customer about the price and the
expected time that the order will be ready. If needed, she also informs the customer
about the available assortment of pizzas.

From the first piece of text in red, we identify a transaction step that we will label
TK01/rq. It concerns the ordering of pizzas by customers. Taking the perspective of
the executor of these transactions, we choose the concept of sale as the core entity
type, which leads to this formulation of the product kind PK01: “[sale] is com-
pleted”. Consequently, we choose “sale completing” as the name of TK01 and “sale
completer” as the name of the executing actor role AR01. As discussed in Chap. 8,
the promise act is mostly performed tacitly. This also holds true for [TK01/pm]. Yet,
one may consider the second sentence (“Mia writes down . . .”) an implicit evidence
of the promise act.

The second transaction kind that can be identified is contained in the second piece
of text in red. It concerns the determining of the available pizzas and their prices. For
the sake of convenience, we will disregard this transaction kind, and focus on the
operational activities.

The third transaction kind we identify is ‘hidden’ in the third piece of text in red.
It represents first of all clearly an informational transaction. However, in most shop
situations, telling of the (total) price of ordered items by the salesperson to the
customer also counts as performing the request act, in this case [TK03/rq], where
TK031 is the transaction kind number that we assign to it. We formulate the

1It sounds not logical to assign the number ‘03’ to the new transaction kind. However, there is
basically no logic in assigning numbers to transaction kinds and actor roles. There is only one
practical convention: the number of an actor role is the same as the number of the transaction kind of
which it is the executor. For example, the executing actor role of TK03 is AR03.

314 14 Exercise: Case Pizzeria

corresponding product kind PK03 as “[sale] is paid”, and name TK03 as “sale
paying”. The executing actor role is named “sale payer”. The formulation “[sale]
is paid” of the product kind is preferable to, for example, “[invoice] is paid” or
“[payment] is done”, for two reasons. First, by using the same entity type in the
‘component’ product PK03 as the one in the ‘assembly’ product PK01, the relation-
ship between TK01 and TK03 (TK01 encloses TK03) is elucidated. Second, all
other options have two drawbacks. One is that another core entity type has to be
added to the Fact Model (FM). The other is that the connection between this entity
type (so ‘invoice’ or ‘payment’) and ‘sale’ has to be clarified: whether there is one
invoice or payment per sale or can there be more than one, etc.

The order forms have a serial number and are produced in duplicate: a white and
a pink copy. Mia slides the pink one through a hatch in the wall to the kitchen, where
Mario takes care of the baking. She keeps the white copy behind the counter. As soon
as Mario has finished an order, he slides the pizzas in boxes through the same hatch
to Mia, including the pink order copy. Mia then seeks the matching white copy,
hands it together with the boxes over to the customer, and waits for the payment.

From the first red-coloured sentence in this paragraph we identify steps in trans-
actions of a new kind, which we will label TK02 and name “sale preparing”. The
corresponding product kind PK02 is formulated as “[sale] is prepared”, and the
executing actor role AR02 is named “sale preparer”. The action in the first part of the
sentence that we refer to counts as performing [TK02/rq] and the second part clearly
points at performing the production act, thus [TK02/ex].

The second piece of text in red expresses another step in transactions of the same
kind, namely the declaration act, thus [TK02/da]. The first part of the text is already a
sufficient indication of the act; the second part (including the pink order copy) is a
documental act that confirms it extra.

The third piece of text in red is a very short indication of the existence of
transactions of the kind TK03, of which we identified the request earlier.

It can happen that Mario is not able to fulfil an order completely because of
missing ingredients. In such a case he puts his head through the hatch and notifies
Mia of the problem. He then also returns the pink copy. If the customer is present in
the shop, Mia confers with her/him on what to do about it, and modifies the order. If
the customer is not present, which is of course the case for orders by telephone, she
modifies the order often at her own discretion. This leads sometimes to vigorous
debates in the pizzeria when the customer comes for taking away the pizzas. Thanks
to Mia’s temperament, she always comes to an agreement that is not disadvanta-
geous for her.

In the previous part of the analysis, we have identified the steps TK02/rq, TK02/
ex, and TK02/da. The promise, [TK02/pm], was apparently performed tacitly. This
can be deduced from the presence of the declaration act. In the first two red-coloured
sentences above, we identify a step from whose absence the promise may also be
deduced, namely from the decline act [TK02/dc]. Declining is precisely what Mario
does when he tells Mia that he cannot bake the requested pizzas, and returns the pink
copy of the order form in addition to it.

14.3 Analysis of the Narrative Description 315

Mia has a problem now. She has promised the customer, be it tacitly, that her/his
order will be executed and now she is faced with the impossibility to live up to
it. Her only option is to revoke the [TK01/pm], which she apparently does in the
remainder of the red-coloured text, and to discuss an adapted request in the
state (TK01/dc) where she and the customer have ended up (cf. Sect. 8.2.6). This
works well if the customer is present in the pizzeria, but not if the customer is waiting
at home. In that case, Mia quite boldly ‘speaks for the customer’ by personally
modifying the order.

The analysis so far leads to the TPT in Table 14.1 and the CSD in Fig. 14.1. The
border of the chosen organisation is the boundary of the enterprise (cf. Sect. 11.4.1).
Consequently, CTAR01 and AR03 are actor roles in the environment.

14.3.2 Analysis of the Second Phase

The major change in the second phase of the pizzeria is the option to have pizzas
delivered home. Hereafter, we will analyse the effects of this change on the
O-organisation of the pizzeria.

The operations in this phase are basically similar to the operations in the first
phase; only the deliveries have been added. However, the big success of the new
service has made it necessary that a second baker be employed. His name is

Table 14.1 TPT of the Pizzeria organisation (first phase)

transaction kind product kind executor role

TK01 sale completing PK01 [sale] is completed AR01 sale completer

TK02 sale preparing PK02 [sale] is prepared AR02 sale preparer

TK03 sale paying PK03 [sale] is paid AR03 sale payer

Fig. 14.1 Interaction structure of the Pizzeria organisation (first phase)

316 14 Exercise: Case Pizzeria

Giovanni. An extra duplicate is added to the order forms; next to the white and the
pink copies, there is a blue one. If an order has to be delivered home, Mia writes
down the delivery address on the order form and slides both the white and the blue
copy through a hatch to the room where the students are waiting.

From the first piece of text in red, we deduce that there is a new transaction kind,
which we will label TK04 and name “sale delivering”. The second piece of text in
red clearly indicates the performing of the request in transactions of this kind:
[TK04/rq]. As usual, there is no explicit promise; the absence of a decline upon
the request is sufficient evidence for Mia to deduce that the [TK04/pm] is performed
implicitly.

The other parts of the text above are about implementation (the presence of a
second baker) and about the D-organisation (the blue copy of the order form).

The student whose turn it is fills in her or his name on the blue copy and puts it in
a tray. He/she then waits for Mario or Giovanni to slide the pizzas, together with the
pink copy, through a hatch to the transporters’ room. Then, the student leaves with
the pizzas and the pink and white copies of the order form. At the customer’s
address, he/she hands over the pizzas and the white copy, and waits for the payment.
After the customer has paid and has signed the pink copy, the student goes back to
the pizzeria and hands the money and the pink copy over to Mia. The students use
their own mopeds as Mia did not want the trouble of having the pizzeria own the
mopeds.

The first piece of text in red may perfectly well be taken as an explicit [TK04/pm],
although Mia is not aware of it. In other words, the right part of the process of a
coordination act (cf. Fig. 8.5) is missing. This causes no problems, however.

In the second piece of text in red, we see the different way in which the declare act
[TK02/da] is performed: the pizzas are now shifted to the deliverer instead of to Mia.
As will be elaborated in Sect. 14.4.3, it means that Mia has apparently delegated a
part of her authority to the students.

In a similar way, the third piece of text in red tells us that Mia has apparently also
delegated another part of her authority to the students, namely the performing of the
act [TK01/da]. The signing by the customer of the pink copy (last piece of text in
red) counts as the acceptance of the completion of the order, thus the [TK01/ac].
Note that the addressee of this act is the student. A similar reasoning holds as for the
result part of TK01 as we applied to the result part of the payment transaction: the
declare act [TK01/da] is apparently delegated by Mia to the students.

Based on the analysis so far, we can produce the TPT in Table 14.2 and the CSD
in Fig. 14.2. They are identical to Table 8.2 and Fig. 8.15, respectively.

Table 14.2 TPT of the Pizzeria organisation (second phase)

transaction kind product kind executor role

TK01 sale completing PK01 [sale] is completed AR01 sale completer

TK02 sale preparing PK02 [sale] is prepared AR02 sale preparer

TK03 sale paying PK03 [sale] is paid AR03 sale payer

TK04 sale delivering PK04 [sale] is delivered AR04 sale deliverer

14.3 Analysis of the Narrative Description 317

Note that in Figs. 14.1 and 14.2, only the interaction structure is shown. The other
two structures in a CM (interstriction and interimpediment) will be discussed in Sect.
14.4, in addition to the other submodel, the PM.

14.3.3 Analysis of the Third Phase

Going from the second to the third phase was a major transition for the business and
the organisation of the pizzeria. Yet the number of changes that this transition
implies for the essential model is zero. In other words, the essential model of the
second phase also applies to the third phase. This holds certainly for the CM. In the
PM, there is a slight change, to be discussed in the next section.

But the I-organisation and in particular the D-organisation are very different, and
the implementation of all three aspect organisations (cf. Chap. 11) is vastly different
from the previous phases. The fact that they can be understood and evaluated from
almost the same essential model illustrates the power of the essential model.

14.4 Extending the Essential Model of the Pizzeria

14.4.1 The Cooperation Model

The starting point for producing the complete CSD of the pizzeria consists of the
TPT and the CSD that are presented in Table 14.2 and Fig. 14.2, respectively. As
discussed in Sect. 14.3.3, they also apply to the third phase. What needs to be done
now is adding the two other coordination structures: the interstriction structure and
the interimpediment structure.

The interstriction structure is represented by the access links (expressed in dashed
lines) in Fig. 14.3. There are four external multiple transaction kinds: MTK01 through

Fig. 14.2 Interaction structure of the Pizzeria organisation (second phase)

318 14 Exercise: Case Pizzeria

MTK04. Their sort is original, like the transaction kinds TK01 through TK04. Their
existence is determined on the basis of the case description, by lack of the AM and
FM. As explained in Chap. 10, they serve as transaction banks: containers of facts.

Transaction bank MTK01 contains facts like the available assortment of pizzas and
their prices. Such facts need to be accessible to AR01 and AR02, but also to the
customer (an actor role within CTAR01). Transaction bank MTK02 (persons facts)
needs to be inspected by actors AR01 in order to get or check customer information.
The same holds for actors AR04, who need to know, for example, the delivery
addresses. In addition, they need geographical information, which is most likely
accessed with handheld devices. In addition to constant access to the current assortment
of pizzas, actors AR02 need to be able to check the presence of sufficient ingredients
for preparing them. They do so by inspecting the contents of transaction bank MTK03.

Note that the actor roles that create the contents of the banks MTK01 through
MTK04 are intentionally not mentioned. In the CSD, one only expresses that the
contained facts are needed. One must also keep in mind that the initiators and
executors of transactions of the kinds TK01 through TK04 have reading access to
the contents of their ‘own’ banks. This is not explicitly shown in a CSD, however.

As for the interimpediment structure in the CM of the pizzeria, there are no
interprocess impediments; obviously, because there is only one business process,
namely the one represented by the transactor tree in Fig. 14.2.

The Bank Contents Table (BCT) is omitted by lack of the AM and the FM.

14.4.2 The Process Model

In this section, we present and discuss the PM of the pizzeria in the second phase of
its existence. The PSD shown in Fig. 14.4 is fully based on the CSD in Fig. 14.2 and
the case description.

Fig. 14.3 Complete CSD of the Pizzeria organisation (second phase)

14.4 Extending the Essential Model of the Pizzeria 319

As one may expect, the PSD shows the enclosing transaction kind TK01 (sale
completing), which encloses three other transaction kinds: TK02 (sale preparing),
TK03 (sale paying) and TK04 (sale delivering). Because there are no indications that
the initiation of transactions of the enclosed kinds is performed otherwise, we
assume that the ‘normal way’ holds (cf. Chap. 12), that is, that they are initiated
from the state promised (pm) of the corresponding transaction TK01. In other words,
as soon as the order taker has promised the customer to fulfil her/his wishes, the
enclosed transactions can be started. A cardinality range 0. . .1 is indicated next to the
response link from (TK01/pm) to [TK04/rq], as well as to the wait link from (TK04/
ac) to [TK01/ex]. It expresses that transaction TK04 is optional: not every sale is
delivered at the customer’s home.

All enclosed transactions (so TK02, TK03, and optionally TK04) must have been
carried out before the enclosing transaction (so TK01) can be completed. This
condition is represented by the wait links from (TK02/ac), (TK03/ac), and (TK04/
ac) to [TK01/ex]. It is an obvious condition since the products of the enclosed
transactions, that is, the PK02, PK03, and PK04, are components of the PK01, as
discussed in Chap. 10.

Basically, and ideally, enclosed transactions are carried out in parallel, thus
simultaneously, but this is not always possible. In the case Pizzeria, there are two
conditions that prevent the (ideal) full parallel carrying out of the transactions TK02,
TK03, and (optionally) TK04. The first is represented by the wait link from (TK03/
pm) to [TK02/rq]. It is a matter of policy of the pizzeria. The link expresses that the
order taker will only ask for preparing the pizzas of a sale if the customer has
promised to pay. This is a quite common condition in a sale situation. It is also quite
common that the seller deduces being satisfied of the aforementioned condition from
having accepted the claim to sincerity, meaning that the customer complies with the
general sale terms and conditions (see Chap. 15 for exemplifications). This promise
will be seldom made explicitly.

The other additional wait condition is the one from (TK02/ac) to [TK04/ex]. The
reason for the presence of this condition is purely a matter of logistics: one cannot
transport pizzas that are not yet prepared.

0..1

rq

pm

03

rq

rq

pm

ac rq 02rq
ac rq 04rq ac

01pmpm

pm

0..1

gnireviledelasgniraperpelasgniyapelas

sale completing

Fig. 14.4 PSD of the Pizzeria organisation (second phase)

320 14 Exercise: Case Pizzeria

14.4.3 Delegations in the Case Pizzeria

The major difference between the first and the second phase is the introduction of
home delivery. Ontologically, this is the addition of the (optional) transaction kind
TK04, as shown in the CSD (Fig. 14.2) and the PSD (Fig. 14.4) of the second phase.
But the change has drastic consequences for the implementation, notably the allo-
cation of authority. They are shown in the ADT (cf. Sect. 12.4.4) in Table 14.3.

The table tells us that the functionary order taker (filled by Mia in the first and the
second phase) is authorised to perform the declare act in transactions TK01 (sale
completing), as well as the accept act in transactions TK02 (sale preparing), TK03
(sale paying), and TK04 (sale delivering). These authorisations are marked by an “A”.
For takeaway orders there is no problem: the order taker can accept the preparing and
the paying and subsequently declare the transaction TK01 to be completed. However,
in case of home delivery, the delegations are needed that are marked by a “D”.

In transactions TK02 (sale preparing), it is not the order taker but the student who
accepts the pizzas from the kitchen. Next, in transactions TK03 (sale paying), it is the
student who accepts the payment from the customer, instead of the order taker. The
necessity of these delegations stems from the inability of the order taker to be in two
locations at the same time (in the pizzeria and at the customer’s home address). As
discussed in Chap. 8, these delegations presuppose that the authorised performer,
thus the order taker, shares with the delegated person, that is, the student, the norms,
and values that he/she applies in the delegated acts, so that everything runs as smooth
as without delegations.

In transactions TK04 (sale delivery), it is the customer who performs the accept
act, instead of the order taker. This is less strange than it may look, because it is also
the customer who performs the accept act in the enclosing TK01. Needless to say
that this act is performed tacitly, the customer is actually unaware of it. Next, it is
now the student who performs the declare act in these transactions instead of the
order taker. As soon as the student has performed the delegated [TK04/da] and
[TK03/ac] at the customer’s place, he/she performs the [TK01/da], while being
unaware of it, and drives back to the pizzeria.

14.5 Conclusions

We have demonstrated above that the case Pizzeria is an exercise in understanding
and applying the full potential of abstracting from realisation and implementation.

Table 14.3 ADT of the
Pizzeria organisation
(second phase)

T/P TK01/da TK02/ac TK03/ac TK04/ac

Customer D

Order taker A A A A

Baker

Student D D D

14.5 Conclusions 321

The analysis of the first phase (Sect. 14.3.1) is an example of applying the OER
method (cf. Chap. 12) in revealing the essential model of an enterprise from a
narrative description of its activities. Knowledge of the reference models, as
presented and discussed in Chap. 10, helps in finding the tree structure in
Fig. 14.1. By choosing the enterprise boundary (cf. Chap. 11) as the border of our
focus organisation, the payment transaction is part of the tree, and its executor role
(AR03) is consequently an environmental actor role. For similar reasons, the actor
role AR04, which is added in the model of the second phase, is an internal one: the
students are paid by the pizzeria.

The big transformation from being a small local pizzeria to being a branch of a
large pizzeria chain, with huge consequences for the way in which it is ‘organised’,
hardly has consequences for the essential model of the pizzeria. This is probably the
most important insight that the analysis of the case pizzeria offers to the reader.

Another remarkable insight may be the consequences of the apparently ‘simple’
extension of the business with home delivery for the allocation of authority (and the
necessary delegations). As illustrated by Table 14.3, these consequences are not
trivial at all. It also demonstrates the importance of the transaction pattern in
determining and discussing authorisation and delegation (cf. Chap. 8). Only on the
basis of deep knowledge of the transaction pattern can one understand the necessity
of some delegations of authority, which are only caused by the way in which the
ontological model is implemented.

322 14 Exercise: Case Pizzeria

Chapter 15
Exercise: Case Rent-A-Car

Abstract The case Rent-A-Car is an exercise in producing the essential model of an
enterprise that offers the usufruct of tangible things: Rent-A-Car is a company that rents cars
to customers. By applying the OER method to the narrative case description, one acquires
the knowledge to produce the essential model of the enterprise. All four aspect models (CM,
AM, PM, and FM) are presented. Together they constitute a coherent whole that offers full
insight into and overview over the essence of car rental companies. The produced action
rules can directly be transformed into executable computer code.

15.1 Introduction

The case Rent-A-Car (or RAC for short) is an exercise in producing the essential
model of an enterprise that offers the usufruct of tangible things (cf. Chap. 10). It is
an adapted version of the EU-Rent case as used by the Object Management Group in
their SBVR (Semantic of Business Vocabulary and Rules specification)1 undertak-
ing. For the purpose of illustrating ontological modelling, the original EU-Rent case
is much too tailored to the needs of data and rules-oriented modelling approaches
like NIAM,2 ORM [1], and RuleSpeak.3 Therefore, we have adapted it so that it is
suited for conceptual modelling in general, including business process modelling,
thus not only for the approaches mentioned.

Section 15.2 contains the narrative description of the RAC organisation. It is the
basis for applying the OER method in a spiral way, so going in every round through
all four steps and in doing so, extending the four aspect models, as discussed in
Chap. 12. The analysis is discussed in Sect. 15.3. The results of the first two
identified transaction kinds are represented in (preliminary) diagrams, tables, and

1For more information: https://www.omg.org/spec/SBVR/About-SBVR/
2https://en.wikipedia.org/wiki/Object-role_modeling
3http://www.rulespeak.com/en/

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_15

323

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_15&domain=pdf
https://www.omg.org/spec/SBVR/About-SBVR/
https://en.wikipedia.org/wiki/Object-role_modeling
http://www.rulespeak.com/en/

other ways of expression. The complete essential model is presented in Sect. 15.4,
while Sect. 15.5 contains the conclusions from the exercise.

15.2 Narrative Description

Rent-A-Car (or RAC for short) is a company that rents cars to persons, both private
ones and representatives of legal bodies, like companies. It was founded by the twin
brothers Janno and Ties back in the 1980s. They started to hire out their own (two)
cars, and they were among the first companies that allowed cars to be dropped off in
a different location than where they were picked up. To this end, Janno and Ties had
made agreements with students in several cities. For a small amount of money, a
student would await the arrival of a rented car, for example, at an airport, and drive it
back to the office of RAC, after which the student would go home by public
transport.

Currently, RAC operates from over 50 geographically dispersed branches in
Europe. Many cities have a branch, some even several, and there are branches
located near all main airports. One of the branches is the original office where
Janno and Ties started and where both are still around. Being mechanical engineers
by education, they love to drive and maintain cars, even though they now are the
managing directors of a million euro company.

The head of the front office of the home branch is Chiara. There are two more
desk officers working in this department. Customer orders are placed through
several channels: walk-in, telephone, website, and e-mail. Walk-in customers are
typically people who want to rent a car immediately. Through the other channels one
makes in general advance reservations, which have a future day as the starting day.
They can be made up to 200 days in advance; this time span is called the rental
horizon. RAC applies a maximum rental period (currently 10 days). In all cases, an
electronic rental form is filled out, either by the customer or by one of the desk
officers, as input to RACIS (RAC Information System). The next groups of data
must be provided:

RENTAL Identification number (automatically generated), starting day,
ending day, pick-up location, return location, car group.

RENTER Identification (passport or driving license), first name, last
name, address, day of birth, place of birth.

DEPOSIT PAYER Identification (passport or driving license), first name, last
name, address, day of birth, place of birth

INVOICE PAYER Identification (passport or driving license), first name, last
name, address, day of birth, place of birth.

DRIVER Driving license (also for identification), first name, last name.
FINANCIAL Rental rate per day (basically determined by the car group),

deposit amount.

324 15 Exercise: Case Rent-A-Car

The cars of RAC are divided into car groups. A car group may contain several car
types (brands and models). The common feature of the cars in a group is that they
have the same rental rate per day and the same deposit amount. The board of
directors, that is, Janno and Ties, decide which brands and models belong to
which group as well as what the rental rate and deposit amount is for every group.
Normally, they do this once a year together with general parameters like the
maximum rental duration and the rental horizon.

The renter has to sign the rental form (either manually or electronically in
RACIS). The signing does not only count as confirming her/his request to rent a
car, but also as the promise (by the deposit payer) to pay the deposit and the promise
(by the invoice payer) to pay the final invoice. The deposit has to be paid right away.
Note that the renter, deposit payer, invoice payer, and driver may be different people;
mostly, however, they are the same person.

As soon as the deposit is paid, a car is allocated to the rental, and the driver is
requested to take the car at the agreed-upon time, at the distribution department,
located at the backside of the building. If there is no car available of the contracted
group, a car from the next higher car group is selected. The driver will get this
‘upgraded’ car, for the price of the contracted group.

After the car of a rental has been returned, the invoice to be paid is prepared. In
addition to the rental charge, which equals the rental duration times the rental rate,
there may be a penalty charge for returning the car too late. It amounts to the number
of extra days times the late return penalty rate. In addition, the car may have been
returned at another branch than the contracted one. In that case, a location penalty
charge has to be paid. This amounts to the distance between the actual and the
contracted return branch times the penalty rate per kilometre. The paid deposit
amount is subtracted from the final sum.

The distribution department is also responsible for transporting cars between
branches, so that there are sufficient cars available for the upcoming rentals. To
this end, Mik schedules every morning the transportations that have to be performed
that day, in coordination with the other branches. The transportations are carried out
by all three of them, so also by Ferre and Carlo. That is why often some of them are
away from the office.

15.3 Analysis of the Narrative Description

Because it is not possible to involve the employees of RAC directly, we have to
apply the second best way of working, as discussed in Chap. 12. It is to study the
case description and to find clues for the presence of original (thus O-organisation)
transaction kinds and corresponding actor roles. We will do this below, paragraph
after paragraph. The pieces of text that are taken from the case description are written
in italics. We apply the OER method to the case RAC in a spiral way (cf. Chap.12).
Only the first two rounds, in which the transactor roles TAR01 and TAR04 are
identified, are dealt with extensively, that is, the corresponding parts of the four

15.3 Analysis of the Narrative Description 325

aspect models are presented and discussed. For the other rounds, we only identify the
transactor roles.

Rent-A-Car (or RAC for short) is a company that rents cars to persons, both
private ones and representatives of legal bodies, like companies. It was founded by
the twin brothers Janno and Ties back in the 1980s. They started to hire out their
own (two) cars, and they were among the first companies that allowed cars to be
dropped off in a different location than where they were picked up. To this end,
Janno and Ties had made agreements with students in several cities. For a small
amount of money, a student would await the arrival of a rented car, for example, at
an airport, and drive it back to the office of RAC, after which the student would go
home by public transport.

Although this piece of text does contain indications of essential transaction kinds,
we consider it primarily as introductory.

Currently, RAC operates from over 50 geographically dispersed branches in
Europe. Many cities have a branch, some even several, and there are branches
located near all main airports. One of the branches is the original office where
Janno and Ties started and where both are still around. Being mechanical engineers
by education, they love to drive and maintain cars, even though they are now the
managing directors of a million euro company.

As will become fully clear hereafter, the focus of our analysis will be the branch
of RAC that was the original office of the founders of the company. So, this will be
our Scope of Interest (SoI).

The head of the front office of the home branch is Chiara. There are two more desk
officers working in this department. Customer orders are placed through several
channels: walk-in, telephone, website, and e-mail. Walk-in customers are typically
people who want to rent a car immediately. Through the other channels one makes in
general advance reservations, which have a future day as the starting day. They can
be made up to 200 days in advance; this time span is called the rental horizon. RAC
applies a maximum rental period (currently 10 days). In all cases, an electronic rental
form is filled out, either by the customer or by one of the desk officers, as input to
RACIS (RAC Information System). The next groups of data must be provided:

RENTAL identification number (automatically generated), starting day,
ending day, pick-up location, return location, car group.

RENTER identification (passport or driving license), first name, last
name, address, day of birth, place of birth.

DEPOSIT PAYER identification (passport or driving license), first name, last
name, address, day of birth, place of birth.

INVOICE PAYER identification (passport or driving license), first name, last
name, address, day of birth, place of birth.

DRIVER driving license (also for identification), first name, last name.
FINANCIAL rental rate per day (basically determined by the car group),

deposit amount.

326 15 Exercise: Case Rent-A-Car

In the third and fourth sentences we find evidence of the main activity of RAC:
the renting of cars. Let us identify this transaction kind as TK01 and give it the name
“rental completing”. The red coloured text “Customer orders are placed” indicates
the C-act [TK01/rq] and “rent a car” the P-act [TK01/ex], as well as the whole
transaction kind. Let us formulate the corresponding product kind as “[rental] is
completed”, in DEMOSL [2]. So, every PK014 is an instance of renting a car by
some customer, who takes the initiator role in the transaction. As mentioned in the
first paragraph of the case description, a customer is either a natural person or a legal
person, whose legal existence is presumably laid down in an official commercial
register. Most civil codes allow for the registration of enterprises as legal entities. In
applying DEMO, however, we look for actor roles, the units of authority and
responsibility, and for subjects, that is, social individuals, who are authorised to
fill these roles. Therefore, only humans can be the (responsible) initiators of trans-
actions TK01. Likewise, the executor role in transactions TK01 is taken by
employees of RAC, not by the legal entity RAC. Thus, we identify the actor role
AR01. Let us give it the name “rental completer”. Actors AR01 are the executors of
transactions TK01. Because our SoI comprises the operational activities in (the home
branch of) the company RAC (as follows from the case description), AR01 is an
internal actor role. The initiators of transactions TK01 are outside the SoI. They are
the fillers of some unknown elementary actor role in the composite transactor role
CTAR01, which we give the name “renter”. Figure 15.1 exhibits the CSD and the
TPT of the discussed first part of the essential model of RAC.

The red coloured text “advance reservations” is also an indication of [TK01/rq].
Advance reservations are basically not different from ‘normal’ reservations. The
difference is only in the value of the operative time of the transaction product, as
discussed in Chap. 8.

The last part of the referred paragraph of the case description contains the facts
that are related to rentals. In the group RENTAL, there are the attributes ‘starting
day’ and ‘ending day’, as well as the properties ‘pick-up location’, ‘return location’,
and ‘car group’. Note that the identification number is not a property or attribute.
Names and identification numbers are ontologically irrelevant (cf. Chap. 5). From
the groups RENTER and DRIVER we distill the properties ‘renter’ and ‘driver’ of
rentals. The other data (identification, first name, last name, etc.) are either ontolog-
ically irrelevant or not necessary for the operations of RAC. Although there is no
explicit mentioning of it in the case description, we will assume that drivers have a
property ‘driving license’ and that the validity of the driver’s driving license is
checked at the start of a rental. In the group FINANCIAL we find that there is a fact
type ‘daily rental rate’. As shown in Fig. 15.3, it is an attribute of the aggregation of
the entity type ‘car group’ and the value type ‘year’.

4As discussed in Chap. 8, we will write ‘actors ARn’ as a shorthand for ‘actors filling actor role
ARn’, ‘transactions TKn’ as a shorthand for ‘transactions of the kind TKn’, and products PKn as a
shorthand for ‘products of the kind PKn’.

15.3 Analysis of the Narrative Description 327

Based on the analysis so far, we can specify the next action rule for settling
requests in transactions TK01, in DEMOSL [2]. Obviously, the action rule has to be
validated, like it holds for every part of every aspect model.

when rental completing for [rental] is requested (TK01/rq)
with the starting day of [rental] is some day

the ending day of [rental] is some day
the renter of [rental] is some person
the deposit payer of [rental] is some person
the driver of [rental] is some driver
the invoice payer of [rental] is some person
the car group of [rental] is some car group
the pick-up location of [rental] is some branch
the return location of [rental] is some branch

assess rightness: the performer of the request is the renter of [rental]
the addressee of the request is some employee

sincerity: � no specific condition �
truth: the starting day of [rental] is in the rental horizon of the year of

the starting day of [rental];
the ending day of [rental] is in the rental horizon of the year of

the starting day of [rental];
the ending day of [rental] is equal to or greater than the
starting day of [rental];

the duration of [rental] is less than or equal to the max rental
duration in the year of the starting day of [rental]

the expiration day of the driving license of the driver of [rental]
is equal to or greater than the ending day of [rental];

Fig. 15.1 CSD and TPT of the RAC organisation (first part)

328 15 Exercise: Case Rent-A-Car

the number of free cars in the car group of [rental] on every day
between the starting day of [rental] and the ending day
of [rental] is greater than zero

if performing the action after then is considered justifiable
then promise rental completing for [rental] [TK01/pm]

to the renter of [rental]
request deposit paying for [rental] [TK04/rq]

to the deposit payer of [rental]
with the requested ot of rental paying for [rental] is Now

the requested deposit amount of [rental] is equal to
the standard deposit amount for the car group of [rental]
in the year of the starting day of [rental]

else decline rental completing for [rental] [TK01/dc]
to the renter of [rental]
with � reason for declining �

After execution of the action rule, a particular employee is allocated to the rental
as its rental completer. As discussed in Chap. 12, the first condition in the rightness
division is not a trivial one. If it would be omitted, anyone could perform the
request.

The cars of RAC are divided into car groups. A car group may contain several
types (brands and models). The common feature of the cars in a group is that they
have the same rental rate per day. The board of directors, that is, Janno and Ties,
decide which brands and models belong to which group as well as what the rental
rate is for every group. Normally, they do this once a year together with general
parameters, like the maximum rental duration and the rental horizon.

Although making these decisions is certainly part of the complete essential model
of the RAC company, we consider it out of our SoI.

The renter has to sign the rental form (either manually or electronically in
RACIS). The signing does not only count as confirming her/his request to rent a
car, but also as the promise (by the deposit payer) to pay the deposit and the promise
(by the invoice payer) to pay the final invoice. The deposit has to be paid right away.
Note that the renter, deposit payer, invoice payer, and driver may be different
people; mostly, however, they are the same person.

The red coloured text “The deposit has to be paid right away” is a clear
indication of the existence of a new original transaction kind. Let us call it
TK04 and give it the name ‘deposit paying’. Next, let us formulate the product
kind PK04 as ‘the deposit of [rental] is paid’. The executor role is AR04, named
‘deposit payer’. The CSD and TPT of RAC, now augmented with transactor role
TAR04 is exhibited in Fig. 15.2.

15.3 Analysis of the Narrative Description 329

We specify the next action rule for settling declarations in transactions TK04:

when deposit paying for [rental] is declared (TK04/da)

assess rightness: the performer of the declaration is the deposit payer of [rental]
the addressee of the declaration is the rental completer
of [rental]

sincerity: � no specific condition �
truth: the declared ot of deposit paying for [rental] is within

the promised ot of deposit paying for [rental];
the declared deposit amount of deposit paying for [rental]

is equal to the promised deposit amount of deposit paying
for [rental]

if performing the action after then is considered justifiable
then accept deposit paying for [rental] [TK04/ac]

to the deposit payer of [rental]
else reject deposit paying for [rental] [TK04/rj]

to the deposit payer of [rental]
with � reason for rejecting �

The part of the FM that can be produced now is represented in an OFD
(Fig. 15.3), a BCT (Fig. 15.4) and a CUT (Fig. 15.5). In addition, the derived fact
types, which are used in presented parts of the AM, are specified.

Fig. 15.2 CSD and TPT of the RAC organisation (second part)

330 15 Exercise: Case Rent-A-Car

Fig. 15.3 OFD of the RAC organisation (first part)

Fig. 15.4 BCT of the RAC organisation (first part)

15.3 Analysis of the Narrative Description 331

Although there are attributes of persons, like the day of birth, mentioned in the
case description, they are not included in the FM, for the simple reason that they
don’t occur in any action rule. The corresponding Derived Fact Specifications (DFS)
are:

the duration of [rental] ¼ the ending day of [rental] minus the starting day of
[rental];

the number of free cars in the car group of [rental] on [day] ¼ � this a quite
complicated computation; by the number of free, that is, available, cars in a car
group is meant the number of free cars at the premises of the home branch of
RAC; one has to take into account the current and future rentals as well as the
transportation plans (as far as they exist) �

Fig. 15.5 CUT of the RAC organisation (first part)

Fig. 15.6 PSD of the RAC
organisation (first part)

332 15 Exercise: Case Rent-A-Car

Figure 15.6 exhibits the PSD of the RAC organisation for the part that we have
analysed up to now. On the left side, the tree structure from Fig. 15.2 is shown, but
now in the ‘click’ mode (cf. Chap. 10). The right side shows that transactions TK04
are initiated from the state promised in the corresponding TK01, in conformity with
the action rule for settling events TK01/rq above, and that actors AR01 must wait for
completing transactions TK01 until the corresponding transaction TK04 has been
accepted, in conformity with the action rule above for settling events (TK01/pm).

Let us proceed with the analysis of the remainder of the description. Their effect
on the models will be presented in Sect. 15.4.

As soon as the deposit is paid, a car is allocated to the rental, and the driver is
requested to take the car at the agreed-upon time, at the distribution department,
located at the backside of the building. If there is no car available of the contracted
group, a car from the next higher car group is selected. The driver will get this
‘upgraded’ car, for the price of the contracted group.

The text “a car is allocated” clearly indicates an original transaction kind.
However, for the sake of simplification we ignore it. Note that this transaction
kind would be enclosed in TK04. The text “the driver is requested to take the car”
is an indication of the presence of the transaction kind TK02, which we will name
“car taking”. Accordingly, PK02 is formulated as “the car of [rental] is taken” and
actor role AR02 is named “car taker”.

After the car of a rental has been returned, the invoice to be paid is prepared. In
addition to the rental charge, which equals the rental duration times the rental rate,
there may be a penalty charge for returning the car too late. It amounts to the
number of extra days times the late return penalty rate. In addition, the car may have
been returned at another branch than the contracted one. In that case, a location
penalty charge has to be paid. This amounts to the distance between the actual and
the contracted return branch times the penalty rate per kilometre. The paid deposit
amount is subtracted from the final sum.

There are two pieces of text that indicate the presence of essential
transaction kinds: “the car of a rental has been returned” and “invoice to be
paid”. Let us number the first one TK03 and name it “car returning”. The
corresponding actor role AR03 is named “car returner” and the product kind PK03
is formulated as “the car of [rental] is returned”. The second piece of red marked text
indicates the presence of transaction kind TK05, named “invoice paying” with
executor role AR05 “invoice payer”. The product kind PK05 is formulated as “the
invoice of [rental] is paid”. The rest of the text concerns informational things, from
which we abstract.

The distribution department is also responsible for transporting cars between
branches, so that there are sufficient cars available for the upcoming rentals. To this
end, Mik schedules every morning the transportations that have to be performed that
day, in coordination with the other branches. The transportations are carried out by
all three of them, so also by Ferre and Carlo. That is why often some of them are
away from the office.

15.3 Analysis of the Narrative Description 333

This last part of the case description contains two indications of original
transaction kinds, both not directly related to the four we have found up to now.
The text “transporting cars between branches” is an indication of the presence of
the transaction kind TK06, which we will name “transport completing”. Accord-
ingly, PK06 is formulated as “[transport] is completed” and actor role AR06 is
named “transport completer”. The text “schedules every morning
the transportations” is an indication of the presence of the transaction kind
TK07, which we will name “transport managing”. Apparently, transactions of
this kind are carried out daily. Thus, TK07 is a self-activating transaction kind:
during every instance of transaction kind TK07, so every day, a number of
transactions TK06 are initiated. Actor role AR07 is properly named “transport
manager”. Accordingly, PK07 is properly formulated as “transport managing for
[day] is done”.

15.4 The Complete Essential Model of RAC

15.4.1 The Cooperation Model

In Fig. 15.7, the CSD and the TPT of the RAC organisation are shown. It contains
two business processes (and thus transaction trees): on the left side the renting
process (comprising TAR01 and the enclosed TAR02, TAR03, TAR04, and

Fig. 15.7 CSD and TPT of the RAC organisation

334 15 Exercise: Case Rent-A-Car

TAR05); on the right side the car transporting process (comprising TAR07 and the
enclosed TAR06). The mutual influences between the two business processes
consist only of interstriction. There are no interimpediments. The transport manager
(AR07) needs access to TK01 (current rentals), TK02 (cars taken or to be taken), and
TK03 (cars returned or to be returned) in order to make the daily plan for
transporting cars.

There are three external information sources, represented by the multiple trans-
action banks MTK01 (facts about persons), MTK02 (facts about RAC), and MTK03
(geographical facts). As can be deduced from the AM, actors AR01 need access to
MTK01 and MTK02, while actors AR07 only need access to MTK02. Actors AR06
need to have access to MTK02 and MTK03 (e.g. through a navigator).

15.4.2 The Action Model

This section presents the Action Rule Specifications (ARS) for the coordination
events that the internal actor roles in RAC, that is, AR01, AR06, and AR07, have to
settle. As explained in Chap. 12 and in [2], an action rule is divided into three
consecutive parts: the event part (consisting of a when-clause, optionally
supplemented by a while- and/or a with-clause), the assess part (consisting of the
C-facts and P-facts to be assessed, grouped into the three validity claims), and the
response part (consisting of the acts to be performed, optionally supplemented by a
with-clause).

An action rule is a guideline for the addressed actor of a C-act in deciding how to
respond. In terms of the process of a coordination act (cf. Figs. 8.5 or 12.19), we
have arrived at the top-right part, the most inner self of the addressee. The standard
if-clause (if performing the action after then is considered justifiable) emphasises
that action rules are not algorithms but guidelines: the executing actor acts autono-
mously and thus may violate the rule (cf. Chap. 8).

ARS-1 (Executed by AR01)
The event to settle is the completing of a rental being requested (TK01/rq). In more
common language, someone wants to rent a car. The with-clause in the when-clause
specifies the properties of the rental that must be supplied.

The sincerity condition in the assess part says: � no specific condition �. This is
the usual formulation if there is no specific condition. It could very well be replaced
by, for example, � the renter agrees with the regulations of RAC �, provided that the
renter has to state her/his agreement with the regulations.

The response is either a promise or a decline, according to the CTP (cf. Chap. 8).
If it is a promise, then also the paying of the deposit is requested (cf. Fig. 15.6).

15.4 The Complete Essential Model of RAC 335

when rental completing for [rental] is requested (TK01/rq)
with the starting day of [rental] is some day

the ending day of [rental] is some day
the renter of [rental] is some person
the deposit payer of [rental] is some person
the driver of [rental] is some driver
the invoice payer of [rental] is some person
the car group of [rental] is some car group
the pick-up location of [rental] is some branch
the return location of [rental] is some branch

assess rightness: the performer of the request is the renter of [rental]
the addressee of the request is some employee

sincerity: � no specific condition �
truth: the starting day of [rental] is in the rental horizon of the year of

the starting day of [rental];
the ending day of [rental] is in the rental horizon of the year of

the starting day of [rental];
the ending day of [rental] is equal to or greater than the

starting day of [rental];
the duration of [rental] is less than or equal to the max rental

duration in the year of the starting day of [rental]
the expiration day of the driving license of the driver of [rental]

is equal to or greater than the ending day of [rental];
the number of free cars in the car group of [rental] on every day

between the starting day of [rental] and the ending day
of [rental] is greater than zero

if performing the action after then is considered justifiable
then promise rental completing for [rental] [TK01/pm]

to the renter of [rental]
request deposit paying for [rental] [TK04/rq]

to the deposit payer of [rental]
with the requested ot of rental paying for [rental] is Now

the requested deposit amount of [rental] is equal to
the standard deposit amount for the car group of [rental]
in the year of the starting day of [rental]

else decline rental completing for [rental] [TK01/dc]
to the renter of [rental]
with � reason for declining �

ARS-2 (Executed by AR01)
The event to settle is the deposit is paid being declared (TK04/da). The term “ot” in
the assess part is a shorthand for ‘operative time’ [2]. In this case, it is the point in
time at which the payment is actually done.

336 15 Exercise: Case Rent-A-Car

The response is either an accept or a reject, according to the CTP (cf. Chap. 8).

when deposit paying for [rental] is declared (TK04/da)

assess rightness: the performer of the declaration is the deposit payer of [rental]
the addressee of the declaration is the rental completer
of [rental]

sincerity: � no specific condition �
truth: the declared ot of deposit paying for [rental] is within

the promised ot of deposit paying for [rental];
the declared deposit amount of deposit paying for [rental]

is equal to the promised deposit amount of deposit paying
for [rental]

if performing the action after then is considered justifiable
then accept deposit paying for [rental] [TK04/ac]

to the deposit payer of [rental]
else reject deposit paying for [rental] [TK04/rj]

to the deposit payer of [rental]
with � reason for rejecting �

ARS-3 (Executed by AR01)
The event to settle is the completing of a rental being promised (TK01/pm). The
when-clause contains a while-clause, which means that the actual settlement of the
event has to wait until the event in the while-clause has occurred (cf. Fig. 15.9). As
soon as this is the case, the driver is asked to take the selected car. Although the
requested operative time of this car taking is the starting day of the rental, it may be
delayed by a late payment of the deposit (as expressed by the while-clause). The
selection of the car to be taken may be modelled as a separate transaction kind.

when rental completing for [rental] is promised (TK01/pm)
while deposit paying for [rental] is accepted (TK04/ac)

assess rightness: � no specific condition �
sincerity: � no specific condition �
truth: � no specific condition �

if performing the action after then is considered justifiable
then � select car for rental �

request car taking for [rental] [TK02/rq]
to the driver of [rental]
with the requested ot of car taking for [rental] is within

the starting day of [rental];
the requested car of car taking for [rental]
is the car of [rental]

15.4 The Complete Essential Model of RAC 337

ARS-4 (Executed by AR01)
The event to settle is the car taking of a rental being declared (TK02/da). The
response is either an accept or a reject, according to the CTP (cf. Chap. 8).

when car taking for [rental] is declared (TK02/da)

assess rightness: the performer of the declaration is the car taker of [rental]
the addressee of the declaration is the rental completer of [rental]

sincerity: � no specific condition �
truth: the declared ot of car taking for [rental] is within

the promised ot of car taking for [rental];
the declared car of car taking for [rental] is
the promised car of car taking for [rental]

if performing the action after then is considered justifiable
then accept car taking for [rental] [TK02/ac]

to the performer of the declaration
else reject car taking for [rental] [TK02/rj]

to the performer of the declaration
with � reason for rejecting �

ARS-5 (Executed by AR01)
The event to settle is again the completing of a rental being promised (TK01/pm), but
with another while-clause, meaning that the actual settlement of the event has to wait
until the event in the while-clause has occurred (cf. Fig. 15.9). As soon as the car
taking is accepted, the driver (in her/his role of car returner) is asked to return the car
on the ending day of the rental. From now on, the driver can use the car for the
duration of the rental.

when rental completing for [rental] is promised (TK01/pm)
while car taking for [rental] is accepted (TK02/ac)

assess rightness: � no specific condition �
sincerity: � no specific condition �
truth: � no specific condition �

if performing the action after then is considered justifiable
then request car returning for [rental] [TK03/rq]

to the car returner of [rental]
with the requested ot of car returning for [rental] is

on the ending day of [rental];
the requested car of car returning for [rental] is
the accepted car of car taking of [rental]

338 15 Exercise: Case Rent-A-Car

ARS-6 (Executed by AR01)
The event to settle is the car returning of a rental being declared (TK03/da). The
response is either an accept or a reject, according to the CTP (cf. Chap. 8).

when car returning for [rental] is declared (TK03/da)

assess rightness: the performer of the declaration is the driver of [rental];
the addressee of the declaration is the rental completer
of [rental]

sincerity: � no specific condition �
truth: the declared car of car returning for [rental]

is the promised car of car returning for [rental]

if performing the action after then is considered justifiable
then accept car returning for [rental] [TK03/ac]

to the driver of [rental]
else reject car returning for [rental] [TK03/rj]

to the driver of [rental]
with � reason for rejecting �

ARS-7 (Executed by AR01)
The event to settle is again the completing of a rental being promised (TK01/pm), but
with another while-clause, meaning that the actual settlement of the event has to wait
until the event in the while-clause has occurred (cf. Fig. 15.9). As soon as the car of
the rental is returned, the final invoice is prepared and handed over to the driver
(in her/his role of invoice payer). In order to pay back the deposit amount, the
corresponding TK04/rq is revoked.

when rental completing for [rental] is promised (TK01/pm)
while car returning for [rental] is accepted (TK03/ac)

assess rightness: � no specific condition �
sincerity: � no specific condition �
truth: � no specific condition �

if performing the action after then is considered justifiable
then request invoice paying for [rental] [TK05/rq]

to the invoice payer of [rental]
with the requested ot of invoice paying for [rental] is Now;

the requested invoice amount of [rental] is equal to
the rental charge of [rental]

revoke-request deposit paying for rental [TK04/rv-rq]

15.4 The Complete Essential Model of RAC 339

ARS-8 (Executed by AR01)
The event to settle is the invoice paying of a rental being declared (TK05/da). The
response is either an accept or a reject, according to the CTP (cf. Chap. 8).

when invoice paying for [rental] is declared (TK05/da)

assess rightness: the performer of the declaration is the invoice payer of [rental];
the addressee of the declaration is the rental completer
of [rental]

sincerity: � no specific condition �
truth: the declared ot of invoice paying for [rental] is within

the promised ot of invoice paying for [rental];
the declared invoice amount of invoice paying for [rental]

is equal to the promised invoice amount of invoice paying
for [rental]

if performing the action after then is considered justifiable
then accept invoice paying for [rental] [TK05/ac]

to the invoice payer of [rental]
else reject invoice paying for [rental] [TK05/rj]

to the invoice payer of [rental]
with � reason for rejecting �

ARS-9 (Executed by AR01)
The event to settle is again the completing of a rental being promised (TK01/pm), but
with another (the last) while-clause, meaning that the actual settlement of the event
has to wait until the event in the while-clause has occurred (cf. Fig. 15.9). As soon as
the final invoice is paid, the rental can be completed: creating the product and
declaring the completion. When the product is accepted by the renter, the rental is
truly completed. This act is, however, outside the SoI.

when rental completing for [rental] is promised (TK01/pm)
while invoice paying for [rental] is accepted (TK05/ac)

assess rightness: � no specific condition �
sincerity: � no specific condition �
truth: � no specific condition �

if performing the action after then is considered justifiable
then execute rental completing for [rental] [TK01/ex]

declare rental completing for [rental] [TK01/da]
to the renter of [rental]

340 15 Exercise: Case Rent-A-Car

ARS-10 (Executed by AR07)
We are now in the car transportation process (cf. Fig. 15.8). The event to settle is the
transport managing on a day being requested (TK07/rq). The action rule shows the
typical format of a self-activating actor role.

when transport managing for [day] is requested (TK07/rq)

assess rightness: the performer of the request is the transport manager
of [day] minus 1;
the addressee of the request is the transport manager of [day]

sincerity: � no specific condition �
truth: � no specific condition �

if performing the action after then is considered justifiable
then promise transport managing for [day] [TK07/pm]

to the performer of the request
request transport managing for [day] plus 1 (TK07/rq)

to the transport manager of [day] plus 1
else decline transport managing for [day] [TK07/dc]

to the performer of the request
with � reason for declining �

request transport managing for [day] plus 1 (TK07/rq)
to the transport manager of [day] plus 1

ARS-11 (Executed by AR07)
The response to a (TK07/pm) consists of a number of requests to transport a
particular car from some branch to some other branch (addressed to car transporters).

when transport managing for [day] is promised (TK07/pm)

assess rightness: the performer of the promise is the transport manager of [day];
the addressee of the promise is the transport manager of [day];

sincerity: � no specific condition �
truth: the number of cars-to-be-transported on [day] is

greater than zero

if performing the action after then is considered justifiable
then for each [car] in cars-to-be-transported on [day]

request transport completing for [transport] (TK06/rq)
to some transport completer
with the car of [transport] is [car];

the from-branch of [transport] is some branch;
the to-branch of [transport] is some branch

15.4 The Complete Essential Model of RAC 341

ARS-12 (Executed by AR07)
The event to settle is the transport managing on a day being promised. The while-
clause specifies that its actual settlement has to wait until the events in the while-
clause have occurred (cf. Fig. 15.8), which means that all transports for this day are
completed.

when transport managing for [day] is promised (TK07/pm)
while for each [car] in cars-to-be-transported on [day]

transport completing for [transport] is accepted (TK06/ac)

assess rightness: the performer of the promise is the transport manager of [day];
the addressee of the promise is the transport manager of [day]

sincerity: � no specific condition �
truth: � no specific condition �

if performing the action after then is considered justifiable
then execute transport managing for [day] [TK07/ex]

declare transport managing for [day] [TK07/da]
to the transport manager of [day]

Note: The derived fact type cars-to-be-transported-on [day] has to be defined yet.
This is done later on.

ARS-13 (Executed by AR07)
The event to settle is the transport managing on a day being declared (TK07/da). The
response is either an accept or a reject, according to the CTP (cf. Chap. 8). If it is
accepted (which is the normal case), the transport manager is relieved from her/his
responsibility regarding this instance of transport managing.

when transport managing for [day] is declared (TK07/da)

assess rightness: the performer of the declare is the transport manager of [day];
the addressee of the declare is the transport manager of [day]

sincerity: � no specific condition �
truth: � no specific condition �

if performing the action after then is considered justifiable
then accept transport managing for [day] [TK07/ac]

to the transport manager of [day]
else reject transport managing for [day] [TK07/rj]

to the transport manager of [day]
with � reason for rejecting �

342 15 Exercise: Case Rent-A-Car

ARS-14 (Executed by AR06)
This action rule as well as the next one (ARS-15) are quite straightforward. Actors
AR06 (car transporters) complete the car transports that they are requested to do.

when transport completing for [transport] is requested (TK06/rq)
with the car of [transport] is some car;

the from-branch of [transport] is some branch;
the to-branch of [transport] is some branch

assess rightness: the performer of the request is the transport manager of
the day of transport of [transport];
the addressee of the request is the transport completer
of [transport]

sincerity: � no specific condition �
truth: � no specific condition �

if performing the action after then is considered justifiable
then promise transport completing for [transport] [TK06/pm]

to the transport manager of the day of transport of [transport]
with the promised ot of [transport] is within the requested ot
of [transport]

else decline transport completing for [transport] [TK06/dc]
to the transport manager of the day of transport of [transport]
with � reason for declining �

ARS-15 (Executed by AR06)
when transport completing for [transport] is promised (TK06/pm)

assess rightness: the performer of the promise is the transport completer
of [transport];
the addressee of the promise is the transport manager of
the day of transport of [transport]

sincerity: � no specific condition �
truth: � no specific condition �

if performing the action after then is considered justifiable
then execute transport completing for [transport] [TK06/ex]

declare transport completing for [transport] [TK06/da]
to the transport manager of the day of transport of [transport]

ARS-16 (Executed by AR07)
The agendum or event to settle is a transport completing transaction being declared.
The response by the transport manager is either an accept or a reject, according to the
CTP (cf. Chap. 8). If it is accepted (which is the normal case, of course), the car
transporter is relieved of her/his responsibility with regard to the car transport.

15.4 The Complete Essential Model of RAC 343

when transport completing for [transport] is declared (TK06/da)

assess rightness: the performer of the declaration is the transport completer
of [transport];
the addressee of the declaration is the transport manager of
the day of transport of [transport]

sincerity: � no specific condition �
truth: the location of the car of [transport] is the to-branch

of [transport];
the declared ot of transport completing for [transport] is
within the promised ot of transport completing for [transport]

if performing the action after then is considered justifiable
then accept transport completing for [transport] [TK06/ac]

to the transport completer of [transport];
else reject transport completing for [transport] [TK06/rj]

to the transport completer of [transport]
with � reason for rejecting �

15.4.3 The Process Model

In Figs. 15.8 and 15.9, the PSDs of the two business processes of RAC are shown,
based on the CM in Sect. 15.4.1 and the AM in Sect. 15.4.2. The wait link from
(T04/ac) to [T02/rq] is a matter of policy of Rent-A-Car. It says that the deposit must
have been paid before the car of the rental can be taken. The wait links from (T02/ac)
to [T03/rq] and from (T03/ac) to [T05/rq] are a matter of (logistic) necessity. The
first says that a car must be taken before it can be returned. The second wait link
means that the car of a rental must have been returned before the final invoice can be
prepared and be requested to pay.

Fig. 15.8 PSD of the car
transporting process

344 15 Exercise: Case Rent-A-Car

F
ig
.1

5.
9

P
S
D
of

th
e
ca
r
re
nt
al
pr
oc
es
s

15.4 The Complete Essential Model of RAC 345

15.4.4 The Fact Model

In Figs. 15.10, 15.11, and 15.12, the OFDs of RAC are shown, based on the CM in
Sect. 15.4.1 and the AM in Sect. 15.4.2, followed by the Derived Fact Specifications
(DFS). Note that Figs. 15.10 and 15.12 could be combined (they both have
RENTAL as the core entity class). However, for the sake of convenience, they are
separated.

Fig. 15.11 OFD of the RAC organisation (2)

Fig. 15.10 OFD of the RAC organisation (1)

346 15 Exercise: Case Rent-A-Car

As an exercise in verifying the correctness of the OFDs, the reader is invited to
check that every fact type in the action rules (cf. Sect. 15.4.2) is represented in one of
the OFDs. The only fact types that are not represented are the derived fact types. The
corresponding derivation rules are provided in the following.

Derived Fact Specifications

the duration of [rental] ¼ the ending day of [rental] minus the starting day of
[rental]

the rental charge of [rental] ¼ the base charge of [rental] plus the fine charge of
[rental] minus the accepted deposit amount of [rental]

the base charge of [rental] ¼ the duration of [rental] times the daily rate of the car
group of [rental] in the year of the starting day of [rental]

the fine charge of [rental] ¼ the location fine of [rental] plus the late return fine of
[rental]

the location fine of [rental] ¼ the distance between the return location of [rental]
and the actual return location of [rental] times the location fine rate in the year of
the ending day of [rental]

the actual return location of [rental]¼ � the branch where the car has been returned �

the late return fine of [rental]¼ the day of return of [rental]minus the ending day of
[rental] times the late return fine rate in the year of the ending day of [rental]

Fig. 15.12 OFD of the RAC organisation (3)

15.4 The Complete Essential Model of RAC 347

the number of free cars in the car group of [rental] on [day]¼ � obviously, this is the
result of a non-trivial computation, taking also into account what the other
branches do � (see also Sect. 15.3)

cars-to-be-transported on [day] ¼ � obviously, this is the result of a non-trivial
computation, taking also into account what the other branches do �

15.5 Conclusions

As stated in the introduction, the case RAC is an exercise in modelling enterprises that
offer the usufruct of tangible things, in this case renting cars to customers. So,
basically, the construction as presented in Sect. 10.3.3.4 applies. Indeed, the left part
of the CSD in Sect. 15.4.1 is similar to the one in Fig. 10.20, as is the corresponding
part of the TPT. The second business process, concerning the transport of cars between
the branches of RAC is specific for rental car companies; it is not a general feature of
usufruct offering enterprises. Also the added external transaction banks and the
interstriction structure are specific for car rental companies.

The AM is fully based on the narrative description. No additional assumptions are
made (there was also no need to do this). Yet it has to be validated by the employees
of RAC. The rules are coherent and consistent and they offer the proper basis for
producing the PM and the FM, both connecting the AM and the CM (cf. Chap. 12).
However, if there is no need for a complete and formally specified AM, one may
produce the PM and FM without the AM, basing them on the CM and the narrative
description. This is a quite common practice.

The presented action rules can directly be transformed to executable program
code, in the way discussed, for example, in [3] and [4]. The result is a robust
computer application for car rental companies, supporting the standard transaction
pattern (cf. Chap. 8) of all identified transaction kinds. Because the conditions for
revocations are hard to anticipate, their executions can best rely on the skills of the
actors and the culture of the company. The AM is also suited to serve as the basis for
discrete event simulations, where one can ‘play’ with varying parameters (max
duration, relaxed payment conditions, etc.). Discrete event simulations, based on
DEMO models are extensively discussed in [5].

References

1. Halpin, T. A., & Morgan, T. (2008). Information modeling and relational databases (Morgan
Kaufmann series in data management systems) (2nd ed., xxvi, 943 p). Burlington, MA: Elsevier/
Morgan Kaufman.

2. Dietz, J. L. G. (2019). DEMO-4 specification language. Enterprise Engineering Institute.
3. van Kervel, S. J. H., Dietz, J. L. G., Hintzen, J., van Meeuwen, T., & Zijlstra, B. (2012).

Enterprise ontology driven software engineering. In ICSOFT 2012. SciTePress.
4. Barjis, J. A. (2008). The importance of business process modeling in software systems design.

Elsevier Science of Computer Programming, 71, 73–87.
5. Barjis, J. A. (2011). Enterprise modeling and simulation within enterprise engineering. Journal of

Enterprise Transformation, 1(3), 185–207.

348 15 Exercise: Case Rent-A-Car

Chapter 16
Exercise: Case Library

Abstract The case Library is an exercise in producing the essential model of an enterprise
that offers the obtaining of usufruct of tangible things (borrowing books) and the creating of
intangible things (starting and ending memberships). By applying the OER method to the
narrative case description, the information is achieved on the basis of which the essential
model is produced. The essential model is a stable beacon when discussing the impacts of
alternative ways of implementing it. Far-reaching changes in the operational activities
appear to have no or little impact on the essential model because they mainly regard
implementation matters. Special attention is given to showing how revocations can be
indicated in the process structure diagram.

16.1 Introduction

The case Library is an exercise in producing the essential model of an enterprise that
offers, in terms of the categories that are distinguished in Chap. 10, both the
obtaining of usufruct of tangible things (borrowing books) and the creating of
intangible things (starting and ending memberships).

Section 16.2 contains the description of the operational activities of the Library. It
is the basis for applying the organisational essence revealing (OER) method in a
spiral way, so going in every cycle through all four sub-models and, while doing so,
extending them (cf. Chap. 12). The analysis of the Library in its first phase is
discussed in Sect. 16.3, along with presenting the (parts of the) essential model in
diagrams, tables, and formal text. The analysis of the second phase is presented in
Sect. 16.4, with its consequences for the initial essential model. Section 16.5 con-
tains the conclusions from this exercise.

16.2 Narrative Description

Description of the First Phase
The Library described hereafter is a small public library. In the building in which it is
located, is a desk for lending books, called the out-desk, and a desk for returning

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_16

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_16&domain=pdf

books, called the in-desk. At a third desk, called the information desk, one can get
information about the opening hours, the library regulations, and the membership
fees. At the information desk is a desktop computer where members can browse
through the library catalogue to find the books they want to borrow.

In order to become member of the library, one has to present oneself at the
information desk and provide the next data to the staff member: surname, first name,
middle initials, city of residence, street name, house number, postal code, date of
birth, place of birth, and the starting day of the membership (which must be the first
day of a month in the Gregorian calendar). The provided data are entered into the
Library Information System (LIS). LIS automatically prints a membership card (with
a bar code), and an invoice for the fee of the first year. The amount to pay is
proportional to the remaining part of the year. From then on, membership fees are
invoiced annually.

New members also get a letter of welcome, informing them about the library
regulations that they are supposed to know. It is handed over to the new member
after payment of the first membership fee, in cash or by bank transfer (in which case
one has to provide a debit card). The minimal age for new members is 8 years.
Moreover, if a new member is under 18, an adult must be entered as the payer of the
fee, and one as the payer of possible fines.

Memberships are automatically extended every calendar year, until they are
explicitly ended by the member. The termination of a membership is always per
the 1st of January. In addition, the librarian decides every month about ending
memberships by the Library. Reasons for ending a membership in this way are,
for example, repeatedly late returns of books and/or refusals to pay the fee or the
incurred fines. If a membership is ended by the Library, the member may claim the
refund of the fee that has been paid for the remaining part of the current year.
Refunds are made in cash or by bank transfer.

Members are entitled to borrow books from the library. Books are put on shelves,
sorted by category and title. Normally, there are several copies of the same title.
Every book copy is uniquely identified by a bar code. It consists of the ISBN
(International Standard Book Number) and a serial number of the book copy. If
someone wants to borrow books, he/she has to take the books from the shelves to the
out-desk. There, one of the staff members scans the bar codes on the membership
card and on the books. These data are automatically entered into LIS, where a loan
contract for every borrowed book is created. After this process is finished, the
member can take the books along.

There is a maximum number of books that one can have in loan simultaneously,
and there is also a maximum loan period. Borrowed books must be returned within
this period. When a member returns one or more books, he/she goes to the in-desk
and hands the books to a staff member, who then scans the book codes and the
membership number, which are automatically entered into LIS. On the screen of the
computer, the staff member sees whether the loan period of a book is exceeded. If it
is, the fine to be paid is also shown. Fines have to be paid by the member right away
(in cash or by bank transfer).

350 16 Exercise: Case Library

Description of the Second Phase
After about ten flourishing years, the librarian decides to improve the services of the
library substantially by two major changes. The first is that one doesn’t need to visit
the library in order to become member. It can now be done from home via a web
extension of LIS. It implies, however, that payments can only be made by periodic
direct debits. Instead of a membership card, members can identify themselves in LIS
by means of a membership number and a password. Every member has a personal
section in LIS, called MyLIS.

The second major change regards the way in which books are issued and returned.
There are no more shelves with books in the library building. Instead there is a
central repository in the cellar, where book copies are automatically stored and
retrieved by a warehouse system.

Either from home, or from desktop computers in the library, one can browse
through the catalogue and select the books one wants to borrow. Like it was in the
first phase, a loan is created for every book copy. After finishing such a borrow
session, the borrowed books are automatically retrieved from the central repository
and put in a locker. The member has access to this locker by keying the membership
number and the password at the locker wall during five workdays. If the books are
not taken out within this period, they are put back in the repository. In addition, one
can opt for home delivery, but at an extra charge.

Returning books is made as easy as picking up. In the hall of the library building
is a conveyer belt on which one can put the returned books, one after the other. The
handling of the books, as well as the processing of the corresponding loan, are done
automatically. If a fine is incurred, the amount is automatically charged to one’s bank
account (also through direct debit). As an extra service, but at an additional charge,
one can opt to have the books collected at one’s home address.

16.3 Analysis of the First Phase

Because it is not possible to involve the employees of the Library directly, we have
to apply the second best way of working, as discussed in Chap. 12. It is to study the
case description and to find clues for the presence of original (thus O-organisation)
transaction kinds and corresponding actor roles. We will do this below, paragraph
after paragraph. The pieces of text that are taken from the case description are written
in italics. We apply the OER method to the case description in a spiral way
(cf. Chap. 12). All transaction kinds and involved actor roles are identified and
discussed, and most corresponding parts of the aspect models are presented. The
described operational processes determine the SoI and focus organisation. The actor
roles that are filled by employees of the Library are internal, all other ones are
external.

The Library described hereafter is a small public library. In the building in which
it is located, are a desk for lending books, called the out-desk, and a desk for

16.3 Analysis of the First Phase 351

returning books, called the in-desk. At a third desk, called the information desk, one
can get information such as the opening hours, the library regulations, and the
membership fees. At the information desk is a desktop computer where members can
browse through the library catalogue to find the books they want to borrow.

Although this piece of text does contain indications of essential transaction kinds,
we consider it primarily as introductory text.

In order to become member of the library, one has to present oneself at the
information desk and provide the next data to the staff member: surname, first name,
middle initials, city of residence, street name, house number, postal code, date of
birth, place of birth, and the starting day of the membership (which must be the first
day of a month in the Gregorian calendar). The provided data are entered into the
Library Information System (LIS). LIS automatically prints a membership card (with
a bar code), and an invoice for the fee of the first year. The amount to pay is
proportional to the remaining part of the year. From then on, membership fees are
invoiced annually.

In the first sentence we find, in red, evidence of one of the services that the library
offers: becoming member of the library. Let us identify this transaction kind as TK01
and give it the name “membership starting”, in accordance with the discussion of
how to model ‘becoming member’ in the case Volley (cf. Chap. 12). In the
subsequent sentences, one learns how a request to do so (thus a TK01/rq) must be
performed and what data one has to provide. Let us identify the corresponding
product kind as PK01 and formulate it as “[membership] is started” in DEMOSL
[1]. So, every PK01 is an instance of becoming member of the library by some
person. We identify the executor role as AR01 and call it “membership starter”. The
initiator role in transactions TK01 is filled by the aspirant members. Because this role
is clearly an environmental one (outside the chosen Scope of Interest), we consider it
to be contained in the composite transactor role CTAR01.

Clearly, becoming member of the library belongs to the category of creating
tangible things in the distinctions made in Chap. 10 (cf. Table 10.2). Consequently,
we can take the CSD in Fig. 10.6 as the reference model, although the tree we come
up with is quite small: there is only one transaction kind enclosed in TK01, which we
will call TK02. The presence of this transaction kind can be deduced from the piece
of text “invoice for the fee of the first year”. Let us identify the corresponding
product kind as PK02 and formulate it as “the fee for [membership] in [year] is
paid”. Adding “[year]” as the second entity variable, is a convenient way to deal with
the time aspect in memberships. The alternative way is to formulate PK02 for
example as “[fee payment] is done”. But then, one needs to introduce a new entity
type, with the inherent property types “membership of fee payment” and “year of fee
payment”. Although this formulation is also fully correct, it is recommended to
adhere to the principle of minimality, which is often referred to as Ockham’s Razor.1

1https://en.wikipedia.org/wiki/Occam%27s_razor

352 16 Exercise: Case Library

https://en.wikipedia.org/wiki/Occam%27s_razor

To accommodate the annual occurrence of transactions TK02, we deduce from
the same piece of text (being in addition confirmed by the fourth paragraph, to be
discussed later) the presence of a third transaction kind. Let us identify it as TK03,
name it “fee payment controlling”, and formulate the product kind PK03 as “fee
payment controlling for [year] is done”. The executing actor role, AR03, can
properly be named “fee payment controller”. As it holds for all repeating or periodic
activities, actors AR03 are not only the executors TK03 but also their initiators
(cf. Chap. 10).

Based on the analysis so far, we produce the first part of the CSD and the first part
of the TPT in Fig. 16.1. The access links can be deduced from the AM, of which one
rule is discussed later. The external facts are contained in the multiple transaction
kinds MTK01 through MTK03. In addition, we present the part of the FM that can
be deduced from our findings up to now in the OFD in Fig. 16.2. It shows the
presence of the core entity type membership (actually the entity class MEMBER-
SHIP), as well as the external entity type person and the (by definition external)
value type year. The property type ‘the member of [membership] is [person]’
determines who is the member of a membership. Note that every membership has
exactly one associated person as the member but that, conversely, a person may be
member in a number of memberships. Although this is not explicitly stated by the
case description (and thus has to be validated), it makes perfect sense: by having
several memberships simultaneously, one could have more books in loan simulta-
neously. We assume that the legal age (contained in MTK03) does not change more
than once in a year, like the facts that are determined by the Library, and contained in
MTK02 (like membership fee and minimal age). The annual fee payment is an
aggregation type of MEMBERSHIP and YEAR (cf. Chap. 6).

Fig. 16.1 CSD and TPT of the Library organisation (first part)

16.3 Analysis of the First Phase 353

The P-event kind PK01 (which is identical to the product kind PK01 in the
TPT) concerns the entity type membership, and the P-event kind PK03 concerns
the value type year. The entity type that the P-event kind PK02 concerns is the
aggregation of membership and year: every instance of PK02 regards one member-
ship and 1 year.

The attribute types that are listed in Fig. 16.2 can directly be deduced from the
part of the case description that we have analysed. Note that the entity type person
doesn’t have the attributes, surname, first name, and middle initials, for the simple
but crucial reason that they are not attributes but names. They just and only serve to
refer to particular persons, as discussed in Chap. 5. Names have no ontological
relevance, but they may of course very well occur in databases.

Next, the fact type ‘paid amount’ is an attribute type of the entity type
‘fee payment’, which is a specialisation of the aggregate entity type ‘member-
ship � year’. This specialisation can conveniently be defined graphically, as is
done in the OFD.

As an example of an action rule specification, we provide below the one for
dealing with requests for memberships. It is assumed that a new instance of mem-
bership is created as soon as the first request for it is performed. From then on the
membership is referred to by the entity variable [membership].

when membership starting for [membership] is requested (TK01/rq)
with the member of [membership] is some person

the payer of [membership] is some person
the starting day of [membership] is some day

place of residence {PLACE}
address {LOCATION}
day of birth {DAY}
place of birth {PLACE}

starting day {DAY}

{YEAR}

membership fee {MONEY}
minimal age {NUMBER}
legal age {NUMBER}

MEMBERSHIP x {YEAR}

paid amount {MONEY}

Fig. 16.2 OFD of the Library organisation (first part)

354 16 Exercise: Case Library

assess rightness: the performer of the request is themember of [membership]
the addressee of the request is a membership starter

sincerity: � no specific condition �
truth: the starting day of [membership] is the first day of some month;

the age of the member of [membership] on the starting day of
[membership] is equal to or greater than the minimal age

in the year of the starting day of [membership];
the age of the fee payer of [membership] on the starting day of

[membership] is equal to or greater than the legal age
in the year of the starting day of [membership];

if performing the action after then is considered justifiable
then promise membership starting for [membership] [TK01/pm]

to the performer of the request
else decline membership starting for [membership] [TK01/dc]

to the performer of the request

The first condition in the rightness division is not a trivial one (cf. Chap. 12).
If it is omitted, anyone could perform the request. After execution of the action
rule, a particular employee is allocated to the membership as its membership
starter.

New members also get a letter of welcome, informing them about the library
regulations that they are supposed to know. It is handed over to the new member
after payment of the first membership fee, in cash or by bank transfer (in which case
one has to provide a debit card). The minimal age for new members is 8 years.
Moreover, if a new member is under 18, an adult must be entered as the payer of the
fee, and one as the payer of possible fines.

The only ontologically interesting piece of text in this paragraph (marked in
red) does not lead to an extension of the essential model because transaction kind
TK02 (fee paying) has been identified already. The other parts of the text refer to
informational (. . . informing them about the library rules . . . and . . . an adult
must be entered as the payer . . .) or documental (. . . in cash or by bank transfer
. . .) matters.

Memberships are automatically extended every calendar year, until they are
explicitly ended by the member. The termination of a membership is always per
the 1st of January. In addition, the librarian decides every month about ending
memberships by the Library. Reasons for ending a membership in this way are
e.g. repeatedly late returns of books and/or refusals to pay the fee or the incurred
fines. If a membership is ended by the Library, the member may claim the refund of
the fee that has been paid for the remaining part of the current year. Refunds are
made in cash or by bank transfer.

16.3 Analysis of the First Phase 355

The red marked text in the first line indicates the presence of a fourth transaction
kind, which we will identify as TK04 and name “membership ending”. Let us
formulate the product kind PK04 as “[membership] is ended” and name the execut-
ing actor role (AR04) “membership ender”. A possible initiator of transactions TK04
is the member of the membership, thus an actor role within the composite transactor
role CTAR01. The other possible ender of memberships is the librarian. According
to the second part of text in red, he/she makes such decisions once per month.
Clearly, we need another self-activating actor role (like AR03) to model this
properly. Let us identify this actor role as AR05, name it “membership controller”,
name the corresponding transaction kind (TK05) “membership controlling”, and
formulate the product kind (PK05) as “membership controlling for [month] is done”.
The analysis up to now leads to the extension of the CM as presented in Fig. 16.3.
The access links to the external banks are omitted, in order to keep the diagram
readable. In order to specify access rights completely, we will introduce the Bank
Access Table later on.

Refunding the membership fee that has been paid for the remaining part of a
membership year means ontologically that the payer, that is, the actor AR02,
revokes her/his promise in the corresponding transaction TK02, followed by a
new transaction TK02 for the remaining amount to be paid, in much the same way
as the agreed-upon reduction of the price to pay for the repair in the case Fixit is
handled (cf. Chap. 13) (presented in Fig. 16.4). Path 1 (coloured green) represents
the successful payment of the fee for the current membership year, and

Fig. 16.3 CSD and TPT of the Library organisation (plus second part)

356 16 Exercise: Case Library

path 2 (coloured tangerine) represents the revoke by the payer of her/his promise
to pay. He/she does so in response to the declaration by the librarian that the
membership has been ended, thus to the C-event (TK04/da). The revoke may be
allowed by the librarian but it may as well be refused, for a valid reason, like a
behind on payment.

If it is refused, the main process of the transaction TK02 remains in the state (ac).
If it is allowed, this process will be rolled-back to the state (rq), from which the
payer can decline the (original) request. In the discussion state (dc), the parties agree
on the (reduced) amount that the payer has to pay, after which the librarian
performs a renewed request for the agreed upon amount. This is represented by
the tangerine-coloured path 3. Finally, the payer pays this amount, represented by
path 4 (in blue).

Rolling back the transaction process up to the state (rq), indicated by the dashed
green line, logically implies ‘undoing’ the production act. Undoing the performed
fee payment would mean giving back the paid amount to the payer. The second pass
of the same transaction process regards paying the reduced amount. The practical
solution is to subtract the first amount from the second one and to ask for paying the
difference. Because the result of the subtraction is negative, the librarian ‘pays’ the
difference to the payer.

Fig. 16.4 Claiming the refund of the paid membership fee

16.3 Analysis of the First Phase 357

The PM of the case Library, based on the analysis up to now, is represented by the
PSDs in Fig. 16.5. It shows how transactions TK02 are enclosed in transactions TK01
and TK03, and how memberships are ended by the librarian (bottom part). In blue, the
response link is added that represents the [rv-pm] act by the fee payer in the (last carried
out) TK02, in order to get a refund, after the membership has been ended by the
librarian (as stated earlier, endings of memberships by members are always per the 1st
of January). Although this revoke can be performed in any state of the main process, it
is most likely performed from the state (T04/ac), that is, when the membership is ended.
As shown, this link must also be drawn to the [rv-pm] act in the shape of TK02 in the
upper part of Fig. 16.5, because it can already happen in the first year.

Because the ending of memberships by the members themselves doesn’t have
enclosed transactions, the (trivial) corresponding PSD is not presented.

Members are entitled to borrow books from the library. Books are put on shelves,
sorted by category and title. Normally, there are several copies of the same title.
Every book copy is uniquely identified by a bar code. It consists of the ISBN
(International Standard Book Number) and a serial number of the book copy. If

Fig. 16.5 PSD of the Library organisation (first part)

358 16 Exercise: Case Library

someone wants to borrow books, he/she has to take the books from the shelves to the
out-desk. There, one of the staff members scans the bar codes on the membership
card and on the books. These data are automatically entered into LIS, where a loan
contract for every borrowed book is created. After this process is finished, the
member can take the books along.

This part of the case description regards the borrowing of books, which is a
specialisation of the general category of obtaining the usufruct of tangible things,2

according to the division in Chap. 10 (cf. Table 10.2). Therefore, we start from the
general reference model in Fig. 10.19 and its tailored variant in Fig. 10.21.

From the red-coloured parts in this piece of text we deduce indeed the presence of
two transaction kinds in the reference model. The first one is about concluding a loan
contract. Let us identify it as TK06 and name it “loan completing”. Next, let us name
the executor role (AR06) “loan completer” and formulate the product kind (PK06) as
“[loan] is completed”. Transactions TK06 enclose a transaction regarding the taking
along of borrowed books, as expressed by the third piece of text in red. Let us identify
it as TK07 and name it “book taking”. Next, let us name the executor role (AR07)
“book taker” and formulate the product kind (PK07) as “the book of [loan] is taken”.

Note that a loan concerns one book (copy), as also expressed in the second piece of
text above in red. As a general rule, and again as an application of Ockham’s Razor, it
is recommended to have one book per loan, one car per rental, one order entry per
order, etc. One may open, however, several loans, rentals, order entries, etc., simulta-
neously. The advantage is that one or more of the concurrent loans may be completed
(after having returned the related book) while the others still go on. So, if a member
borrows a number of books at the same time, an equal number of loans are created.

Note also that a formulation of PK07 such as “[book] is taken”, which one may be
inclined to choose as a first attempt, is incorrect. It would imply that every book
(copy) can only be taken once in its lifetime. This is obviously not what one wants.
The unsuitability of the formulation can easily be discovered by applying the
sapience ‘verification by instantiation’, which we applied before in verifying other
fact type formulations (cf. Chap. 12).

Based on the analysis above, we arrive at the extension of the CM of the Library,
as expressed in the CSD and the TPT in Fig. 16.6. It contains also the two transaction
kinds (and involved actor roles) that can be deduced from the part of the case
description above.

There is a maximum number of books that one can have in loan simultaneously,
and there is also a maximum loan period. Borrowed books must be returned within
this period. When a member returns one or more books, he/she goes to the in-desk
and hands the books to a staff member, who then scans the book codes and the
membership number, which are automatically entered into LIS. On the screen of the

2One might disagree with the tangibility of books since it is commonly not the physical represen-
tation of the contents that one is interested in, but the contents itself. That is why a digital
(electronic) representation (eBook or PDF) is often a good alternative. Nevertheless, we stick to
the case description, which is clearly about physical books. An additional argument to do this is that
the borrower of a book may have other affordances in mind than reading (cf. Chap. 7).

16.3 Analysis of the First Phase 359

computer, the staff member sees whether the loan period of a book is exceeded. If it
is, the fine to be paid is shown also. Fines have to be paid by the member right away
(in cash or by bank transfer).

The first and the second red-coloured piece of text in this paragraph indicate the
existence of another transaction kind. Let us identify it as TK08 and name it “book
returning”. Next, let us give the name “book returner” to the executor role (AR08)
and formulate the product kind (PK08) as “the book of [loan] is returned”. The third
piece of text in red gives rise to identifying transaction kind TK09, which we name
“penalty paying”, with product kind PK09, formulated as “the penalty of [loan] is
paid”. The executing actor role is AR09, named “penalty payer”. Figure 16.6
exhibits the consequent extension of the (final) CSD and TPT, following the
reference model in Fig. 10.21.

The figure also contains the (external) multiple transaction kinds MTK01 through
MTK03. They are the conceptual stores of facts that are created outside the chosen
SoI but needed by the internal actors. MTK01 contains facts about persons, like
place of residence and day of birth, and MTK02 contains facts that are created by
actors within the Library as a whole, but outside the chosen SoI. Examples are the
minimal age of members and the maximum loan period. Their values are typically
decided upon (annually) by the librarian. MTK03 contains the current legal age.

Fig. 16.6 Final CSD and TPT of the Library organisation

360 16 Exercise: Case Library

Figure 16.6 only shows the interaction structure, thus the set of initiator links
between the transactor roles. There are five trees, thus five business processes: TK01
with enclosed TK02, TK03 with enclosed TK02, TK04, TK04 with enclosed TK05,
and TK06 with enclosed TK07, TK08, and TK09. There appear to be no impediments
between these processes, so there are no process dependencies. There are, however,
quite some state dependencies, represented by the interstriction structure, which is
exhibited in Fig. 16.7. What is still missing in the figure is the access links from the
various actor roles to the external multiple transaction kinds MTK01, MTK02, and
MTK03. Adding these access links would make the CSD a mess of dashed lines,
however. Fortunately, there is an alternative way to indicate access links. It is the Bank
Access Table (BAT), as explained in [1]. Table 16.1 exhibits the BAT for the Library.
Next to showing which actor role has reading access to which transaction bank,
indicated by a “U” (for Use) at the crossing of the corresponding row and column,

Fig. 16.7 Final CSD plus interstriction structure

Table 16.1 BAT of the Library organisation

Bank
Actor

TK01 TK02 TK03 TK04 TK05 TK06 TK07 TK08 TK09 MTK01 MTK02 MTK03

AR01 Ex In U U U

AR02 Ex U

AR03 U In In, Ex U U U

AR04 U Ex U U U U

AR05 U In In, Ex U U

AR06 U U Ex In In In U U U

AR07 Ex U

AR08 Ex U

AR09 Ex U

CTAR01 In In U

CTAR02 In U

16.3 Analysis of the First Phase 361

“Ex” indicates the executor actor role and “In” an initiator role of a transaction kind.
Full insight into which actor roles use (the instances of) which fact types is gained
when also the Bank Contents Table (BCT) and the complete FM are available.

Figure 16.8 exhibits the PSD of the loan completion process (the right part of
Fig. 16.6). The main structure of this PSD is what one may expect: the transaction
kind TK06 (loan completing) has three enclosed transaction kinds: TK07 (book
taking), TK08 (book returning), and the optional TK09 (penalty paying). As
discussed in Chap. 10, transactions TK07 and TK08 are initiated from the state
requested in the enclosing transaction TK06. The transaction TK06 can be promised
when the enclosed TK07 and TK08 are promised. Transactions TK09 are initiated
from the state (TK01/pm), which is the usual case. Next, book returning cannot be
executed before book taking is finished, represented by the wait link from (TK07/ac)
to [TK08/ex] and penalty paying cannot be initiated before book returning is
finished, represented by the wait link from (TK08/ac) to [TK09/rq].

As said, the final and complete OFD is presented in Fig. 16.9. The left part was
already discussed earlier (cf. Fig. 16.2), except for the event type PK04 ([membership]
is ended) and the value class MONTH with the event type PK05 (membership
controlling for [month] is done). The two additions are considered to be self-explaining.

For the right part of Fig. 16.9 we provide the next explanation. The core entity
type is ‘loan’. The connection with the core entity type in the left part is constituted
by the property type ‘the membership of [loan] is [membership]’, of which the
domain is the object class LOAN and the range the entity class MEMBERSHIP.
There are four event types that concern loans: PK06 ([loan] is completed), PK07 (the
book of [loan] is taken), PK08 (the book of [loan] is returned), and PK09 (the
penalty of [loan] is paid). Note that the latter is optional, as follows from the PSD in
Fig. 16.8. Based on these event types, three specialisations of the entity type ‘loan’
are defined graphically: ‘taken loan’, ‘returned loan’, and ‘penalty paid loan’. They
serve to define precisely two property types and one attribute type.

Fig. 16.8 PSD of the Library organisation (second part)

362 16 Exercise: Case Library

pl
ac

e
of

 r
es

id
en

ce
 {

P
LA

C
E

}
ad

dr
es

s
{L

O
C

A
T

IO
N

}
da

y
of

 b
irt

h
{D

A
Y

}
pl

ac
e

of
 b

irt
h

{P
LA

C
E

}

{Y
E

A
R

}

m
em

be
rs

hi
p

fe
e

{M
O

N
E

Y
}

m
in

im
al

 a
ge

 {
N

U
M

B
E

R
}

la
te

 r
et

ur
n

pe
na

lty
 {

M
O

N
E

Y
}

m
ax

 b
oo

ks
 in

 lo
an

 {
N

U
M

B
E

R
}

m
ax

 lo
an

 p
er

io
d

{D
U

R
A

T
IO

N
}

le
ga

l a
ge

 {
N

U
M

B
E

R
}

M
E

M
B

E
R

S
H

IP
 x

 {
Y

E
A

R
}

A
N

N
U

A
L

F
E

E
 P

A
Y

M
E

N
T

pa
id

 a
m

ou
nt

 {
M

O
N

E
Y

}

pa
id

 a
m

ou
nt

 {
M

O
N

E
Y

}

st
ar

tin
g

da
y

{D
A

Y
}

F
ig
.1

6.
9

C
om

pl
et
e
O
F
D
of

th
e
L
ib
ra
ry

or
ga
ni
sa
tio

n

16.3 Analysis of the First Phase 363

The attribute type is ‘paid amount’, whose range is the value class MONEY. The
class may be refined to, for example, EURO (cf. Chap. 6), if needed. The two
property types are ‘the book of [taken loan] is [book]’ and ‘the book of [returned
loan] is [book]’. The range of both is the external entity class BOOK. Note that,
consequently, the returned book of a loan may be different from the taken book. This
can be determined when the book of a loan is returned. Most likely, one of the
(declarative) business rules of the Library is that the two books must be the same.

Next, there is an external entity class BOOK TITLE and a value class BOOK
CATEGORY. Every book (copy) is a book of some book title. Because one starts a
borrowing process by looking for a book of a specific book title, every loan has a
particular book title as one of its properties. Which book copy one takes home is
actually irrelevant. Finally, to every book title, one or more book categories are
assigned, such as novel, thriller, etc., and youth, adult, etc., as an aid in finding the
book titles one may want to read. Usually, the book categories are created by the
Publisher, but the Library may refine them and add categories.

16.4 Analysis of the Second Phase

Like it holds for the third phase of the case Pizzeria (cf. Chap. 14), the changes in the
second phase of the Library compared to the first phase seem to be substantially. Yet,
the implications for the essential model that we have produced for the first phase are
not dramatic. Let us investigate them by analysing the description of the second
phase, again paragraph by paragraph.

After about ten flourishing years, the librarian decides to improve the services of
the library substantially by two major changes. The first is that one doesn’t need to
visit the library in order to become member. It can now be done from home via a web
extension of LIS. It implies, however, that payments can only be made by periodic
direct debits. Instead of a membership card, members can identify themselves in LIS
by means of a membership number and a password. Every member has a personal
section in LIS, called MyLIS.

Using a web application to become member, instead of presenting oneself at the
desk in the library, is only a change in the way that the steps in transactions TK01 are
performed. So, it is only about the lower two levels in Fig. 8.5, thus about imple-
mentation. Automating transaction steps doesn’t affect the responsibilities of the
involved actors (cf. Chap. 11). Therefore, as an example, the popping up of a
message on the screen, saying that you have successfully become member of the
library, is the declare act in a TK01. The only difference with the way of doing this in
the first phase is that the aspirant member and the addressed desk officer communi-
cate via the web application. Note that the decision that you are member is not made
by the web application but the desk officer! The fact that you commonly don’t know
her/him doesn’t matter.

364 16 Exercise: Case Library

A similar reasoning holds for the new way of paying (by periodic direct debits),
and for using a password instead of a card for identifying oneself.

The creation of a personal section MyLis for members is primarily also a change
at the documental (or datalogical) level of communication. It may, however, in
addition be a change at the informational (or infological) level, namely if members
get access to information they didn’t have access to before.

The second major change regards the way in which books are issued and
returned. There are no more shelves with books in the library building. Instead
there is a central repository in the cellar, where book copies are automatically
stored and retrieved by a warehouse system.

In the first phase, one had to take the books to borrow from the shelves. Note that
we didn’t include this action in the essential model. If one wants, it would mean
building a sub-tree under transactor AR07 (book taker), in much the same way as the
logistic operations in the case GloLog can be extended (cf. Chaps. 10 and 18). The
same holds for modelling the way of working in the second phase (book copies are
automatically stored and retrieved). The colour purple (as the mix of red and blue)
is used to clarify that we are at the edge of ‘material production in the O-organisa-
tion’ and ‘material production in the D-organisation’ of the disk in Fig. 11.11. If only
hard copies are considered, we are in the O-organisation, but if electronic copies, like
eBooks or PDFs, are at stake, we are in the D-organisation (cf. Chap. 11).

Either from home, or from desk top computers in the library, one can browse
through the catalogue and select the books one wants to borrow. Like it was in the
first phase, a loan is created for every book copy. After finishing such a borrow
session, the borrowed books are automatically retrieved from the central repository
and put in a locker. The member has access to this locker by keying the membership
number and the password at the locker wall during five workdays. If the books are
not taken out within this period, they are put back in the repository. In addition, one
can opt for home delivery, but at an extra charge.

The first piece of text in red is about the logistic operations that we have already
discussed above. Because we only deal with hard copies, red is used instead of
purple. Accommodating the second piece of text in red would mean extending the
essential model with at least a delivery and a payment transactor kind.

Returning books is made as easy as picking up. In the hall of the library building
is a conveyer belt on which one can put the returned books, one after the other. The
handling of the books, as well as the processing of the corresponding loan, are done
automatically. If a fine is incurred, the amount is automatically charged to one’s
bank account (also through direct debit).

The first and second sentences regard the logistics that we have already discussed
above. Like it holds for becoming member via the web application, the blue-
coloured pieces of text regard only changes in the lower two levels in Fig. 8.5.

As an extra service, but at an additional charge, one can opt to have the books
collected at one’s home address.

16.4 Analysis of the Second Phase 365

This implies an extension of the essential model. There is an additional transactor
kind needed for transporting the books, and one for paying for this new service.

16.5 Discussion and Conclusions

There are two clusters of business processes in the case Library, one about starting
and ending memberships, and one about borrowing books. The product category of
the first is creating and changing (cf. Table 10.2) and the product category of the
second is obtaining usufruct. So, the reference model of libraries is a combination of
the one for clubs or associations in general, like the case Volley (cf. Chap. 12) and
the one for renting resources, like the case Rent-A-Car (cf. Chap. 15).

Applying Ockham’s Razor leads to conceiving only two core entity types:
membership and loan, as well as tailored subtypes, as shown in the OFD in
Fig. 16.9. It is the perfect starting point for designing a database as part of the
Library Information Systems (LIS), both in the first and in the second phase.

There are two issues that deserve special attention. One is the refund of member-
ship fees in case of the ending of a membership by the librarian. As elucidated in
Sect. 16.3, and more specifically in Fig. 16.4, refunding can elegantly be accommo-
dated if one conceives it (quite properly) as revoking the initial promise to pay the
last annual fee by the member. This illustrates once more the power of ontological
thinking in addressing practical problems.

The other subject is the particular way in which the transactions TK07 (book
taking), TK08 (book returning) are enclosed in a transaction TK06, as shown in
Fig. 16.8. It is a specialisation of the general case of seizing and releasing a (scarce)
resource, as discussed in Chap. 10. Requiring that both the seizing and the releasing
of a resource (in the case Library a book) are promised before the usufruct case
(in the case Library a loan) can be promised, emphasises that actions like checking-in
and checking-out are not non-committal. In this way, no-shows are discouraged
effectively. Both the step TK07/pm and the step TK08/pm are ‘heavy’ commitments.
If necessary, they also offer sufficient ground for legal follow-ups.

Reference

1. Dietz, J. L. G. (2019). DEMO-4 specification language. Enterprise Engineering Institute.

366 16 Exercise: Case Library

Chapter 17
Exercise: Case PoliGyn

Abstract The case PoliGyn is an exercise in producing the essential model of an enterprise
that offers creation of (tangible and intangible) things: producing diagnoses, and performing
clinical and sonographic examinations. The CM, PM, and FM are (partially) presented and
discussed. Three, basically general, topics are elaborated, because they have a typical role in
PoliGyn. The first topic has to do with the identification and formulation of product kinds.
The second one is the order in which enclosed transactions are carried out, and the third one
is the delegation of tasks.

17.1 Introduction

The case PoliGyn is an exercise in producing the essential model of an enterprise that
offers, in terms of the categories that are distinguished in Chap. 10, the creation of
(tangible and intangible) things.

Section 17.2 contains the narrative description of the operational activities in a
Policlinic Gynaecology. It is the basis for applying the OER method and producing
the essential model (cf. Chap. 12). The analysis of the narrative description is
discussed in Sect. 17.3, along with presenting parts of the CM and PM in diagrams
and tables. In Sect. 17.4, an exemplifying case is presented and analysed, which
leads to developing, partially, the FM of the policlinic. Section 17.5 contains the
discussion and conclusions of the exercise.

17.2 Narrative Description

The examination and treatment of patients in the Policlinic (or Outpatient Clinic)
Gynaecology, PoliGyn for short, always takes place through referral by a family
doctor. Therefore, the description of the processes in PoliGyn starts at the moment
that a patient visits her family Doctor. PoliGyn is a department of a hospital. One of
the other departments of the Hospital is the Sonographic Lab.

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_17

367

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_17&domain=pdf

Usually, the family doctor makes an appointment for her/his patient to visit a
gynaecologist by calling a desk assistant of PoliGyn. However, the patient can also
take the referral letter back home and make an appointment herself. The desk
assistant has access to an ICT-system, in which appointments are scheduled. If the
patient is pregnant, the desk assistant also makes an appointment with the Sono-
graphic Lab for a sonogram, preceding the appointment with the gynaecologist.

At the settled date and time, the patient checks in at the desk of PoliGyn. There
she receives her patient record. The record consists of a folder containing several
filled out forms and other kinds of reports. The referral letter from the family doctor
is also inserted. If a sonogram is needed, the patient goes first to the Sonographic
Lab, with her patient record. The produced sonogram is filed in the patient’s folder
by the sonographer.

Thereafter, the patient goes to the waiting room of PoliGyn and puts her patient
record in a tray that is meant for it. The tray is emptied regularly by an assistant who
delivers the correct patient records to the present gynaecologists. Every
gynaecologist has access to the automated appointment system and calls the patients
into her/his office in the order of appointment.

During the visit, the gynaecologist first diagnoses the patient’s problem. He or she
does so based on the information provided by the family doctor (in the referral
letter), the results of the sonographic examination (if applicable), and one or more
clinical examinations, including the anamnesis, that are performed on site.

After the patient’s problem is diagnosed, the gynaecologist discusses the possible
treatments with the patient, that is, the medical actions that can be taken in order to
solve the patient problem. The determination of the treatment, as well as its execu-
tion, however, falls outside the scope of the Case PoliGyn.

17.3 Analysis of the Narrative Description

Because it is not possible to question the employees of PoliGyn, we have to apply the
second best way of working, as discussed in Chap. 12. It is to study the narrative
description and find clues for the presence of original (thus O-organisation) trans-
action kinds and involved actor roles. We will do this below, paragraph after
paragraph. The pieces of text that are taken from the case description are written
in italics.

The examination and treatment of patients in the Policlinic (or Outpatient Clinic)
Gynaecology, PoliGyn for short, always takes place through referral by a family
doctor. Therefore, the description of the processes in PoliGyn starts at the moment
that a patient visits her family doctor. PoliGyn is a department of a hospital. One of
the other departments of the hospital is the Sonographic Lab.

Although this piece of text does contain indications of essential transaction kinds,
we consider it primarily as introductory. PoliGyn will be our focus organisation,
with the Sonographic Lab in its environment.

Usually, the family doctor makes an appointment for her/his patient to visit a
gynaecologist by calling a desk assistant of PoliGyn. However, the patient can also

368 17 Exercise: Case PoliGyn

take the referral letter back home and make an appointment herself. The desk
assistant has access to an ICT-system, in which appointments are scheduled. If the
patient is pregnant, the desk assistant also makes an appointment with the Sono-
graphic Lab for a sonogram, preceding the appointment with the gynaecologist.

The first piece of text in red (makes an appointment for her/his patient to visit a
gynaecologist) raises an interesting and crucial issue: what does making an appoint-
ment mean? Is it the product of a transaction or not? And consequently, are appoint-
ments entities or not? In current practice, many information analysts or architects
would be inclined to answer the last two questions in the positive. However, pure
ontological thinking leads us to a different conclusion, namely that making an
appointment is something in the order phase of a transaction. More precisely, it is
the request in a transaction concerning a product that the initiator wants the executor to
bring about, followed by the promise to do it. The notion of appointment refers
specifically to a future point in time at which the product must be brought about.

But what then is the product the red-coloured sentence is about? This is disclosed
in the fifth paragraph of the description: the patient problem being diagnosed. It was
hinted at already in the first paragraph. Thus, we have found the first transaction
kind. Let us identify it as TK01 and name it ‘patient problem diagnosing’ and let us
consequently name the executor role (AR01) ‘patient problem diagnoser’. The
initiator role is taken by some actor role, which we name ‘patient’, within the
environmental composite transactor role CTAR01.

Considering the patient to be the initiator of a transaction TK01 is a second
important point. Even if the appointment seems to be made by the family doctor
(after all, he/she calls the policlinic), the doctor has nothing more than a delegated
authority. We will come back to it later. As for the product kind (PK01), let us
formulate it simply as ‘[patient problem] is diagnosed’. So, ‘patient problem’ is a
core entity type in the production world of PoliGyn. Its instances are the distinct
cases of medical care in the policlinic. Every patient problem regards one patient, but
there may be several patient problems associated with the same patient.

It is easier now to understand the ontological meaning of the second piece of text
in red (makes an appointment with the Sonographic Lab for a sonogram). This is also
a request, but in another transaction kind, which is about making sonograms. Let us
identify it as TK02 and name it ‘sonographic examining’ and let us consequently
name the executor role (AR02) ‘sonographic examiner’. The product kind (PK02)
can be conveniently formulated as ‘[sonographic examination] is completed’. Nor-
mally, there is one sonographic examination per patient problem (or none, because it
is only needed if the patient is pregnant). The concrete outcome is one or more
sonograms.

The third interesting and non-trivial issue concerns the initiator role of trans-
actions TK02. One may be inclined to consider the desk assistant to fill this role.
However, on second thought this cannot be the case. As we will see, the desk
assistant has only delegated authority. The only feasible option is that the
gynaecologists have instructed the desk assistant to always also make an appoint-
ment for a sonogram when the patient is pregnant. So the initiators of transactions
TK02 are actors AR01, and every product PK02 is somehow a part of a product
PK01. Figure 17.1 shows the CSD and the TPT of the organisation of PoliGyn.

17.3 Analysis of the Narrative Description 369

At the settled date and time, the patient checks in at the desk of PoliGyn. There
she receives her patient record. The record consists of a folder containing several
filled out forms and other kinds of reports. The referral letter from the family doctor
is also inserted. If a sonogram is needed, the patient goes first to the Sonographic
Lab, with her patient record. The produced sonogram is filed in the patient’s folder
by the sonographer.

This paragraph offers no new information regarding the essential model. One
only reads things about its realisation and implementation. We will elaborate on
them later.

Thereafter, the patient goes to the waiting room of PoliGyn and puts her patient
record in a tray that is meant for it. The tray is emptied regularly by an assistant who
delivers the correct patient records to the present gynaecologists. Every
gynaecologist has access to the automated appointment system and calls the patients
into her/his office in the order of appointment.

This paragraph is also only about realisation and implementation.

During the visit, the gynaecologist first diagnoses the patient’s problem. He or
she does so based on the information provided by the family doctor (in the referral
letter), the results of the sonographic examination (if applicable), and one or more
clinical examinations, including the anamnesis, that are performed on site.

From the red-coloured piece of text, we deduce the presence of a transaction kind
TK03, which we name ‘clinical examining’. The executing actor role (AR03) is

sonographic
examiner

patient problem
diagnoser

clinical

Fig. 17.1 CSD and TPT of the PoliGyn organisation

370 17 Exercise: Case PoliGyn

named ‘clinical examiner’ and the product kind (PK03) is formulated as ‘[clinical
examination] is performed’. The CSD and TPT in Fig. 17.1 already contain this
transaction kind. The initiator is clearly AR01. Thus, transactions TK03 are enclosed
in a transaction TK01. Note that the role AR03 is filled by the gynaecologist.

The CSD in Figs. 17.1 and 17.2 only shows the interaction structure in the
CM. The interstriction structure is omitted for the sake of convenience. There is
obviously no (inter-process) impediment structure, since there is only one business
process.

After the patient’s problem is diagnosed, the gynaecologist discusses the possible
treatments with the patient, that is, the medical actions that can be taken in order to
solve the patient problem. The determination of the treatment, as well as its
execution, however, falls outside the scope of the Case PoliGyn.

This piece of text doesn’t lead to changes in the CM because the treatment of the
patient problem falls outside the chosen SoI.

Hereafter, we will elaborate only on issues that are mainly about realisation and
implementation. One of these issues is the order in which the enclosed transactions
TK02 and TK03 are carried out. According to the narrative description, the TK02
(completing the sonographic examination) must be carried out (if at all) before any
of the transactions TK03 (clinical examinations) are carried out. However, for actors
AR01 (patient problem diagnoser), the order is irrelevant. He/she waits until all
results are available and then decides on the diagnosis. Therefore, the described
order (first TK02) must be understood as dictated by the existence of a separate
Sonographic Lab. If the gynaecologist would dispose of her/his own sonographic
instrument (which is quite common nowadays), it is unlikely that some order would
be imposed.

The ontological unimportance of the order of transactions TK02 and TK03 is
clearly represented in the PSD of the PoliGyn organisation in Fig. 17.2. Transactions
of both kinds can be carried out in parallel. As follows from the narrative description,
the cardinality range of transactions TK02 is 0. . .1 (in other words, TK02 is
optional) and the cardinality range of transactions TK03 is 1. . .� (thus there may
be an arbitrary number of transactions TK03, but at least one).

patient problem diagnosing

sonographic
examining

clinical examining

Fig. 17.2 PSD of the PoliGyn organisation

17.3 Analysis of the Narrative Description 371

The other issue we had in mind when making the statement above about realisa-
tion and implementation is that the patient must apparently be present herself at the
location of the policlinic for carrying out transactions TK02 and TK03. More
accurately, her body must be available for examination. The essential model
(cf. Figs. 17.1 and 17.2) abstracts from such physical issues. Ontologically speaking,
actors can be at any location when entering into and complying with commitments,
in transactions of all kinds. The only prerequisite is that it is possible for them to
communicate. As a matter of fact, nowadays quite some diagnostic and therapeutic
actions are taken with the patient at distance.

In order to be explicit about the requirement that the body of the patient is present
on site, another transaction kind must be added, whose product is the delivery of the
patient’s body (excuse the weird phrasing) to the location of the policlinic and the
Sonographic Lab. Adding the transactor kind to the CSD and TPT leads to the
extensions as exhibited in Fig. 17.3.

In Chap. 12, the Authorisation Delegation Table (ADT) was introduced for the
purpose of showing precisely the delegation of authority between the functionaries
in an organisation. In Table 17.1, the ADT of PoliGyn is presented.

sonographic
examiner

patient problem
diagnoser

clinical patient
deliverer

Fig. 17.3 Extended CSD and TPT of the PoliGyn organisation

Table 17.1 ADT of the case PoliGyn

T/P TK01/rq TK01/pm TK02/rq TK02/pm

Patient A

Family doctor D

Desk assistant D D D

Gynaecologist A A

Sonographer A

372 17 Exercise: Case PoliGyn

There are four tasks where delegation takes place. The first one is performing the
request in transactions TK01. Contrary to about 50 years (and longer) ago, there is a
common understanding nowadays that the patient is a ‘client of age’ in health care.
Consequently, she is the authorised initiator of transactions TK01. So, if she lets the
family doctor make an appointment with the policlinic, she apparently delegates her
authority to perform this task. It is marked in the table by an “A” in the row Patient
and a “D” in the row Family Doctor, both in the column TK01/rq.

The second delegated task is the promise in transactions TK01. According to the
narrative description, this promise is performed by the desk assistant. But when one
puts the DEMO glasses on firmly, it becomes clear that it cannot be the case that the
desk assistant has the (primarily assigned) authority to perform the promise, because
the patient doesn’t seek to have her medical problem diagnosed by a desk assistant
but by a gynaecologist. The desk assistant is only an intermediary, a convenient way
for the policlinic (and for hospitals in general) to organise the making of appoint-
ments. Ontologically speaking, it is the gynaecologist who performs acts [TK01/pm],
but he/she has delegated this authority to the desk assistant, whom he/she also has
given her/his availability for visits. This is marked in the table by an “A” in the row
Gynaecologist and a “D” in the row Desk Assistant, both in the column TK01/pm.

The third delegated task is performing the request in transactions TK02, so in
making appointments with the Sonographic Lab. One may easily be set on the wrong
track by the narrative description. For similar reasons as those provided above, the
desk assistant cannot have the primary authority to perform acts [TK02/rq]. Next,
despite what we said about the patient being a ‘client of age’, she also cannot be the
authorised performer, although she accepts that making a sonogram is needed (if she
is pregnant). Clearly, it is the authority of the gynaecologist to perform acts [TK02/
rq], but he/she has delegated this authority to the desk assistant, presumably as one of
the instructions that belong to the delegation of the authority to perform the [TK01/
pm]. The situation is marked in the table by an “A” in the row Gynaecologist and a
“D” in the row Desk Assistant, both in the column TK02/rq.

The fourth delegated task is the promise in transactions TK02. Like it holds for
the promise in transactions TK01, it is performed by the desk assistant, however, by
virtue of a delegation of authority. In this case, the delegation comes from the
sonographer. For similar reasons of convenience, as discussed earlier, he/she has
instructed the desk assistant on how to make appointments, which implies that
he/she has delegated the authority to perform acts [TK02/pm] to the desk assistant.
It is marked in the table by an “A” in the row Sonographer and a “D” in the row Desk
Assistant, both in the column TK02/pm.

17.4 Analysis of a Patient Case

In order to validate and deeply understand an essential model, it is often helpful to
consider a representative instance of the business process, as presented in Figs. 17.1
and 17.2. We will do so in this section based on thought-up conversations. They start

17.4 Analysis of a Patient Case 373

in the consulting room of a family doctor, who calls the Policlinic Gynaecology.
During the call, a new instance of patient problem is created. Let us call it ‘patient
problem 7789’. After every conversation, its normal form (cf. Chap. 12) is presented.

Family Doctor: “I want to make an appointment with doctor Ross for Mrs. Lam. She
is pregnant”

Desk Assistant: “I will have a look at the schedule”

CTAR01/Family Doctor: request: AR01/desk assistant: patient problem 7789 is
diagnosed; the requested production time is asap

The answer by the desk assistant counts as having reached social correspondence
(cf. Fig. 8.5), by which the request is successfully performed. Both the family doctor
and the desk assistant have delegated authority to do what they do, as discussed in
the previous section.

patient problem diagnosing for patient problem 7789 is requested (TK01/rq)

Because the patient (Mrs. Lam) is pregnant, the desk assistant also makes an
appointment with the Sonographic Lab, following the instructions of the
gynaecologist. So there is also a request for a transaction TK02; however, performed
implicitly. It implies that a new instance of graphical examination is created. Let us
call it ‘graphical examination 1913’.

AR01/Desk Assistant: request: AR02/Desk Assistant: sonographic examination
1913 is completed; the requested production time is just before the requested
production time of the associated transaction TK01

completing sonographic examination 1913 is requested (TK02/rq)

Desk Assistant: “On August 4 at 10 o’clock the patient can visit Sonography and at
11 o’clock doctor Ross. Is that okay?”

Family Doctor: “Yes that’s fine”

There are two transaction steps performed in this conversation, one in the
transaction TK01 and one in the transaction TK02. Their normal forms are presented
hereafter. The answer by the family doctor counts as having reached social corre-
spondence (cf. Fig. 8.5), by which the request is successfully performed. Both the
family doctor and the desk assistant have delegated authority to do what they do, as
discussed in the previous section.

AR01/Desk Assistant: promise: CTAR01/Family Doctor: patient problem 7789 is
diagnosed; the promised production time is August 4 at 11 o’clock

patient problem diagnosing for patient problem 7789 is promised (TK01/pm)

AR02/Desk Assistant: promise: AR01/Desk Assistant: sonographic examination
1913 is completed; the promised production time is August 4 at 10 o’clock

374 17 Exercise: Case PoliGyn

completing sonographic examination 1913 is promised (TK02/pm)

The following conversations takes place in the hospital where the patient
addresses an assistant at the desk of the policlinic, on August 4, well before
10 o’clock.

Assistant: “Here is your patient record. Take it with you to the Sonographic Lab.
Thereafter put it in the tray over there and take a seat in the waiting room”

Patient: “Ok, thanks. I am glad I could come so soon because I am a little worried”

During this conversation, no essential process steps are performed. With refer-
ence to the CSD in Fig. 17.2, one may interpret the patient’s turning up as the
declaration in the transaction TK04.

The following conversation takes place after the sonogram has been made.

Sonographer: “Mrs. Lam, here is your folder, including the results of the sono-
graphic examination”

Patient: “Thanks”

AR02/Sonographer: declare: AR01/gynaecologist: sonographic examination 1913 is
completed; the declared production time is August 4 at 10:15 h.

completing sonographic examination 1913 is declared (TK02/da)

Although he/she is speaking to her, the sonographer is not addressing the patient
in this transaction step but the gynaecologist, because he/she is the authorised
initiator. The patient is nothing more than a courier who brings the document
containing the message (TK02/da) to the gynaecologist. Therefore, the answer
“Thanks” can only be interpreted, if one likes to, as expressing the willingness by
the patient to transport the folder. Note that the acceptance of the TK02 by the
gynaecologist is performed tacitly.

The following conversation takes place in the consulting room of the
gynaecologist after all needed clinical examinations are finished.

Patient: “I think I feel much better than during the previous pregnancy”
Gynaecologist: “The baby is okay but you suffer from irregular blood loss. It is not a

serious problem, however. I suggest that you come back in a month”

AR01/gynaecologist: declare: CTAR01/patient: patient problem 7789 is diagnosed;
the declared production time is August 4 at 11:15 h.

patient problem diagnosing for patient problem 7789 is declared (TK01/da)

The utterance by the patient has no relevant meaning for the business process. It
must be considered as a personal or social expression of her feelings. The utterance
by the gynaecologist is first of all the declare act in the transaction TK01: he/she has
made a definite decision on the diagnosis of the patient problem. In addition, he/she
suggests the patient to come back for another consult. It is up to the patient whether

17.4 Analysis of a Patient Case 375

to follow up the advice or not. The acceptance in the transaction TK01 by the patient
is performed tacitly, which is quite usual since she doesn’t have the medical
knowledge to argue about it.

For the correct understanding of the business process in PoliGyn it may be helpful
to provide and analyse the FM, in addition to the presented CM and PM. To this end,
the OFD of PoliGyn is shown in Fig. 17.4.

There are three core entity types: ‘patient problem’, ‘sonographic examination’,
and ‘clinical examination’. Instances of these types are created by the PoliGyn
organisation (in the broad sense, thus including the Sonographic Lab). There is
one external entity type (‘person’), and there are two external value types: ‘medical
diagnostic code’ and ‘medical examination code’, both of the sort categorial
(cf. Chap. 21). Note that we adopt the habit in medicine to speak of codes, whereas
these codes are actually the names of categories or kinds (cf. Chap. 5). Moreover, in
the OFD two abbreviations are used for the sake of convenience: MDC for ‘medical
diagnostic code’, and MEC for ‘medical examination code’.

Each of the core entity types has its own (production) event kind: PK01 ([patient]
problem is diagnosed), PK02 ([sonographic examination] is completed), and PK03
([clinical examination] is performed). They represent the coming into existence of
unique instances of the respective types. So, once more, a patient problem is specific
for the patient and the diagnosis made. During the same patient’s visit, one or more
other (also unique) patient problems may be identified and diagnosed. Similarly, the
instances of the entity type ‘sonographic examination’ are unique. They are made for
a specific patient problem. Next, the instances of the entity type ‘clinical

sonographic examination clinical examination

Fig. 17.4 OFD of the PoliGyn organisation

376 17 Exercise: Case PoliGyn

https://doi.org/10.1007/978-3-030-38854-6_21

examination’ are also unique, and related to a specific patient problem. Conversely,
however, several clinical examinations may be performed in support of the diagnosis
of one patient problem.

Lastly, the extensions of the graphically defined subtypes ‘diagnosed patient
problem’, ‘completed sonographic examination’, and ‘clinical examination’ are the
proper domains of the mentioned attribute types (cf. Chap. 12).

17.5 Discussion and Conclusions

In Sect. 17.1, the business process in PoliGyn is classified as belonging to the
category of creating (tangible and intangible) things. The diagnosis of the patient
problem is a typical example of an intangible thing. Taking a cervical smear (as one
of the clinical examinations) is a typical example of a tangible thing. Although the
chosen category is perfectly applicable to the case PoliGyn, the reader could also
have thought of the category of obtaining usufruct, because the ‘usage’ of the doctor
and the sonographer looks quite like the usage of scarce resources. On further
consideration, however, these ‘usages’ appear to be different. The doctor and the
sonographer are not seized and released, as, for example, the cars in the case Rent-A-
Car (cf. Chap. 15) are. Instead, the doctor and the sonographer are requested to bring
about something (a diagnosis, an examination). In order to do this, the patient has to
appear at an agreed-upon time and place (to check-in as it is called in the narrative
description). To emphasise this prerequisite, we have presented the CSD in
Fig. 17.3, where there is an explicit transaction kind that represents satisfying the
condition of physical presence.

The case PoliGyn is not very suitable for applying Ockham’s Razor in order to
minimise the number of core entity types, as we did, for example, in the cases Rent-
A-Car and Library (cf. Chaps. 15 and 16). Even the optional sonographic examina-
tion is not a good candidate to be linked one-to-one to a patient problem, so that one
could speak of the sonographic examination of a patient problem. In medicine,
actions are basically contingent on the situation at hand. As an example, the
sonographer may decide on the spot to make extra sonograms, in addition to the
one that is the norm.

Three things have received special attention in the analysis in Sect. 17.3. One is
the identification and formulation of the product that the patient is seeking for. At
first sight, it looks like it is to see the gynaecologist. On closer look, it appears that
determining or diagnosing the patient problem is more accurate.

The second special thing is the order in which the enclosed transactions TK02 and
TK03 are carried out. Although the current implementation requires a specific order,
from a purely ontological point of view there is no preference. The (optional)
transaction TK02 and the (deemed necessary) transactions TK03 must all be com-
pleted before the enclosing TK01 (diagnosing the patient problem) can be
completed.

17.5 Discussion and Conclusions 377

The third quite specific issue in the case PoliGyn is the delegations of authority.
Like it holds for the case Pizzeria (cf. Chap. 14), most of them are needed for logical
or logistic reasons, namely the delegation of the tasks [TK01/pm], [TK02/rq], and
[TK02/pm]. The delegation of performing [TK01/rq] by the patient to the family
doctor is a rather fascinating one. It is the result of the becoming ‘grown-up’ of the
patient in health care in the past decades (at least in the Western world). He or she is
not only the object of medical care.

378 17 Exercise: Case PoliGyn

Chapter 18
Exercise: Case GloLog

Abstract The case GloLog is an exercise in producing the essential model of an enterprise
that offers the transporting and storing of tangible things: goods, containers, ships. The CM,
PM, and FM of the GloLog organisation are presented and discussed. Emphasis is put on
four topics. The first is the unavoidable need to conceive notions that are not present in the
narrative description, but that are nevertheless ontologically crucial: the container content
and the ship content. The second is the necessary existence of four distinct, only ‘loosely
coupled’, business processes. The necessity stems from the incompatibility of the case cycles
in these processes: sale, purchase, container content, and ship content. The third topic is the
distribution of responsibilities: the ontologically necessary ones, as represented in particular
by the CM, cannot easily be traced back to the narrative description of the case. The fourth
topic is the current implementation of the essential model. Without the help of the essential
model, it is almost impossible to clarify the role of the many parties involved and the many
document kinds used (respectively to point at their redundancy).

18.1 Introduction

The case GloLog is an exercise in producing the essential model of an enterprise that
offers, in terms of the categories that are distinguished in Chap. 10, the transporting
and storing of tangible things. It is a slightly adapted version of a case that is studied
and analysed in [1].

Section 18.2 contains the narrative description of the operational activities in a
conglomerate of enterprises, collectively called GloLog. It is the basis for
applying the OER method and producing the essential model (cf. Chap. 12).
The analysis of the narrative description is discussed in Sect. 18.3, along with
presenting parts of the CM in diagrams and tables. In Sect. 18.4, the essential
model is extended with the corresponding PM and FM. In Sect. 18.5, the
differences are discussed between the implementation that one would expect,
based on the essential model, and the actual implementation. In Sect. 18.6, the
current operational problems are addressed. Section 18.7 contains the conclu-
sions of the exercise.

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_18

379

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_18&domain=pdf

18.2 Narrative Description

General
The case Global Logistics, or GloLog for short, involves logistic operations
between countries in the Far-East and The Netherlands. It is coordinated by a
firm called Import Export Services (IES for short). One of the tasks of IES is to
import consumer electronics products from the Far East for European dealerships
(sales companies as well as business groups). The products are transported in
containers by ship. IES coordinates the process from sale to delivery of goods to
the client, while using the services of a selection of other enterprises. To smoothly
operate the transportation of the goods, not only the physical container movements
must be executed smoothly, fast, and accurately, but also the information
exchanges around it.

Figure 18.1 illustrates the enterprises that are involved, including IES, and
how they are related in the physical as well as the information logistics
processes. The goods move from the supplier via a shipping company (the
ship), a stevedore (the container transshipment in the port of Rotterdam), and
a land transportation company (transport from the port of Rotterdam) to IES,
which takes responsibility for temporary storage and eventual delivery to the
client. The ship broker and the shipping agent play a coordinating role, whilst
Customs plays an authoritative role. The last three organisations also have
employees in the harbour area, accommodated in the terminal office. Between
the different organisations, information is exchanged through telephone, telex,
fax, and courier, in order to make sure goods reach their destination as fast as
possible.

Fig. 18.1 Relationships between the involved enterprises

380 18 Exercise: Case GloLog

In the 3 years prior to the time to which this case description applies, the
volume of trade has doubled to 4000 containers per year (which is about 800,000
m3). But the pressure of competition on IES is also large. Therefore, the
company is looking at steps that increase the quality of the company’s logistics
services and decrease costs. It is expected that a decrease in the distribution time
will lead to a decrease in costs, in particular because less storage costs will be
incurred. In addition, it is expected that redesign of the current business pro-
cesses will lead to lower processing costs, particularly in terms of time spent per
container.

The Global Business Processes
The chain of logistic actions can be described in short as follows. IES processes
orders of its clients and places a combined order at a supplier in the Far East. The
supplier composes the corresponding shipment, packs it into one or more containers,
and brings them to a shipping company, where the containers are loaded on a ship.
When the ship is fully loaded, it sails to the harbour of Rotterdam where it is
unloaded by the stevedore. Then the containers are picked up by trucks from a
land transporter and brought to IES, where the goods are unloaded from the
containers. The trucks take the empty containers back to the stevedore. Finally, the
client orders are delivered by the IES delivery service. It takes quite some care to
ensure this process runs smoothly. We are faced with the following activities and
responsibilities:

• IES initiates the shipments and verifies (and corrects if necessary) the shipping
documents sent by the supplier, passes these on to the shipping agent, receives the
goods and eventually delivers these to the clients. IES plans the container
transportation and informs the shipping agent when and where which containers
must be picked up.

• The ship broker transfers information to Customs, IES, and the shipping agent,
regarding the shipments and the expected arrival times of a ship as well as the
time of unloading containers from the ship.

• The stevedore unloads the containers and makes agreements with the shipping
company about where and when this is done. The stevedore stores containers on
its own grounds until they are picked up by trucks from the land transporter.

• The shipping agent takes care of the handling of the containers by Customs. After
the release of the containers, the shipping agent organises the container transpor-
tation, in conformity with the planning of IES, from the stevedore’s grounds to
IES. To this end, the shipping agent makes agreements with the land transporter
about which container must be picked up where and at what time, and supplies the
land transporter with the documents for picking up the containers from the
stevedore.

• The terminal office accommodates the offices of Customs, the ship brokers and
shipping agents in the harbour area.

18.2 Narrative Description 381

The Business Processes in Detail
Clients of IES place client orders with IES. Based on these orders, IES periodically
places a supply order with a supplier. The supplier prepares a shipment for
every supply order, which can take up one or more containers. Depending on the
harbour from which the order is shipped, the supplier draws up a Waybill
(from Singapore) or a Bill of Lading (from Tokyo). A Waybill is a transport
document registered under a name, which means that the receiver who is stated
on the document must prove her/his identity to be able to receive the shipment.
A Bill of Lading (BoL) is “to bearer”; it is the official proof of ownership of the
shipment. Both transport documents state which containers they concern, the content
of these containers, who is the supplier and who is the receiver, the identification of
the transportation overseas, and the parties that must be informed of the arrival of the
containers in the harbour . The transport documents (Waybills or BoLs) are sent,
together with the remaining documents (invoices and packing lists), to IES per
courier. This takes approximately 2 days; the transportation overseas takes roughly
3 weeks. IES administers every Waybill or BoL, verifies whether it corresponds with
placed supply orders, makes copies and sends the documents to the shipping agent.

Between 2 and 7 days before arrival of a ship, the ship broker receives the
manifest with information regarding the precise cargo on the ship from the shipping
company. Every article on board has an article description and a unique article
number in this document. A manifest is around 2000 pages on average. On the basis
of this manifest, the ship broker draws up a general declaration (GD) which is sent to
Customs. The GD is a list of the Waybill- or BoL-numbers of the shipments on
board. The ship broker also draws up pre-arrival notices (PaN), which are sent to the
receivers mentioned in the manifest.

The shipping agent receives the shipment documents from IES (and other orga-
nisations which have shipments on the ship), checks whether these are complete and
archives them under the name of the concerned ship. Close to the arrival time of the
ship in the harbour, the shipping agent draws up the documents that the truck drivers
need in order to receive a container from the stevedore and to drive to IES. It
concerns the following documents:

• For every container, the shipping agent produces a CMR (Contrat de Transport
International de Marchandises par Route), a European cargo document that must
be carried by a truck driver during land transportation.

• For a shipment with a BoL, the BoL is traded by a courier at the ship broker for a
delivery order. The ship broker makes a delivery order for every container
mentioned in the BoL, upon presentation of which the container can be picked
up at the stevedore’s premises. For shipments with a Waybill, the presentation of
a copy of the Waybill and a proof of identity as the transporter, suffices for the
handover of the shipment.

• For every container, a Customs document must be drawn up on which the data
about the goods are stated, as specified in the Waybill or BoL, as well as the GD
number and the article numbers.

382 18 Exercise: Case GloLog

The correct receipt of these documents is not always simple. Next to the article
description, the PaN usually (but not always) also contains the article number and the
GD number. Sometimes, the shipping agent does not receive a PaN at all because the
company is not mentioned in the manifest as one of the parties involved. The article
numbers and the GD number are generally also mentioned on the delivery orders.
However, for shipments with a Waybill, no delivery orders are made. In such a case,
the shipping agent has telephone contact with the ship broker to complete the
information necessary for the preparation of the Customs documents.

Using the GD, Customs checks the correctness of the specified data on the
Customs documents supplied by the shipping agent, and inspects, if thought oppor-
tune, the content of the containers. If the data do not exactly correspond, the shipping
agent must provide an explanation. If everything is in order, Customs sends a release
statement together with stamped Customs documents to the shipping agent, who
then informs IES which containers have been released.

IES determines when the land transport of the released containers can best
take place, keeping in mind the urgency of the different shipments and the
available unloading capacity at their own grounds, and passes the resulting
schedule on to the shipping agent. Based on the planning of IES, the shipping
agent gives transportation instructions to the land transporter. These instructions
are confirmed by fax; a copy is faxed to the terminal office. The truck driver
presents the confirmation fax to the shipping agent’s terminal office and
receives—provided that the fax corresponds with the copy at the terminal
office—the necessary Customs documents, CMR, and Waybill or delivery
order. Upon presentation of the CMR and Waybill or delivery order, the steve-
dore loads the container onto the delivery truck, whereafter the driver drives to
IES. IES receives the container and the accompanying documents, unloads the
container contents, checks the shipments for completeness and possible damages,
stores the goods, and eventually delivers the client orders at the dealerships with
IES’ own delivery service.

The Current Task Execution
In this section, the previously mentioned tasks of IES and the shipping agent will be
elaborated at the task level of individual employees. At the location of IES, there are
three employees (referred to as A, B, and C) involved in the receipt of and the
administrative settlement of shipments.

Employee A processes the documents that are sent, via a courier, by the
supplier in the Far East. The number of sets (BoL or Waybill with packing list,
invoice, and other documents) in a courier consignment varies from 1 to 12. The
sets are sorted and copied, after which the documents that are necessary for the
shipping agent are sent, together with an accompanying letter, in a folder by
postal mail to the head office of the shipping agent in Rotterdam (documents
that are ready before 16 o’clock are delivered around 11 o’clock on the
following working day). The information on the BoLs or Waybills is inserted
into the IES database system. For every consignment, a hard copy file (called

18.2 Narrative Description 383

“on-the-way-archive”) is kept with the order form from the supplier, copies of
the transportation documents, and the corresponding print-out from the database
system.

In agreement with the inventory department of IES, employee B makes the
container planning based on the expected arrival times of the ships, PaNs, and the
release by the shipping agent. This planning is communicated to the shipping agent
by telephone, and confirmed by fax. The planned pick-up times for the containers are
filed and a note is made on the planning board. In addition, employee B daily picks
up all the files of the containers which are expected that day from the ‘on-the-way-
archive’. Using the database system, an arrival announcement (AA) is written and
passed on to employee C.

Every time a container is delivered by the land transporter, employee C finds the
AA concerned, inspects the shipment and sends the AA together with the documents
delivered by the truck driver back to employee B. In the case of damage or loss,
he/she includes an incident report.

Employee B compares these documents to those in the ‘on-the-way-archive’
(and reports possible irregularities to employee A), makes copies of the Customs
documents and archives these in the file. Those documents that eventually need to
be delivered to the client are sent to the order department of IES, together with a
copy of the order form. The dispatched container is then erased from the planning
board.

At the shipping agent’s office in Rotterdam two employees are involved, referred
to as D and E. Employee D executes the tasks necessary for the clearance of a
container to IES. Employee E executes the tasks concerned with the organisation of
the transport from the harbour in Rotterdam to the location of IES.

Employee D checks the documents (BoL or Waybill, packing lists, and invoices)
which come in from IES on a daily basis, inputs the data into their own computer
system, and archives the documents in the file of the concerned ship. For every
container, the computer prints out a CMR. Next, employee D processes the PaNs
coming in from the ship broker. Sometimes, the PaN contains all the data needed for
making the Customs document for the shipment in question, in which case this is
done directly.

Approximately two days before arrival of a ship, employee D makes an inquiry
with the ship broker about the availability of the delivery orders. As soon as these are
ready to be picked up, the BoLs are taken to the ship broker and traded for the
delivery orders. Dropping off the BoLs and picking up the delivery orders is carried
out by a courier of the shipping agent who drives to the office of the ship broker by
motorbike twice a day.

Based on the delivery orders, employee D prepares the Customs documents if
these are not complete yet. If necessary, a phone call is made to the ship broker
for the article number and the GD number for the orders without a Waybill (thus
those without a delivery order). The Customs documents with the corresponding
delivery orders and CMRs are then brought to Customs at the terminal office by

384 18 Exercise: Case GloLog

motorbike. After release of a container, Customs gives the documents to the
employees of the shipping agent at the terminal office where they are later picked
up by one of the land transporter drivers. Customs informs the shipping agent’s
head office per telex that the container is released. A few times a day, employee
D checks whether releases have been sent in through telex; if this is the case, an
informing fax is sent to IES.

Employee E processes the container planning and transmits it to the shipping
agent. He/she searches for the concerned documents and makes agreements per
telephone with the land transporter about which truck will pick up which container.
For every container employee E makes an agreement in the form of a transportation
order. This order is faxed to the land transporter and to their employees at the
terminal.

A truck driver working for the land transporter drives into the terminal
grounds around the agreed-upon time, walks into the terminal office, picks up
the documents from the shipping agent’s employees (which he/she only receives
if the fax corresponds with the one that is faxed to the terminal office by
employee E), drives to the stevedore’s grounds and, upon showing the Waybill
or delivery order, receives the container and finally delivers it together with the
documents at IES.

Current Problems and Failures
IES strives to have all containers at their establishment within 5 workdays after
arrival of the ship. The average time it takes in practice is about 5 days; around a
third of all containers is delivered later (see Fig. 18.2). As can be deduced from the
process descriptions, the distribution time in Fig. 18.2 coheres with a large number
of factors. To gain insight into the time span of the different steps in the process, a
test was done with a random sample of 200 containers and a number of time intervals
were defined, as shown in Figs. 18.3, 18.4, 18.5, 18.6, and 18.7. In all these figures,
the horizontal axis shows the number of workdays and the vertical axis shows the
number of containers.

IES insists that the transport documents sent by suppliers be at IES seven
workdays before the arrival of a ship. Figure 18.3 illustrates that this norm is
not met by one-fifth of the containers in the random sample. From one shipment
(two containers), the documents even arrived at IES 1 day after the arrival of the
ship!

Figure 18.4 exhibits the distribution of the number of workdays that pass between
the moment that a ship arrives in Rotterdam and the moment that the containers are
released by the shipping agent. The random sample also shows that Customs
sometimes approves a shipment before the ship has arrived. It holds for approxi-
mately 60% of the containers. Noteworthy are the containers that are approved
13 and 19 workdays, respectively, after arrival. The two shipments in question
were heavily delayed as a result of communication problems between the ship broker
and the shipping agent.

18.2 Narrative Description 385

To determine to what extent the time of release by the shipping agent depends on
the moment of release by Customs, date stamps on Customs documents were used to
determine the time between the arrival of the ship and the release by Customs. This is
illustrated in Fig. 18.5. Comparison of Figs. 18.4 and 18.5 has brought us to study
the time difference between release by Customs and release by the shipping agent

Fig. 18.2 Time between arrival of a ship and delivery of the containers

Fig. 18.3 Time between receipt of the documents by IES and arrival of the ship

Fig. 18.4 Time between arrival of the ship and release by shipping agent

386 18 Exercise: Case GloLog

more closely. This difference is illustrated in Fig. 18.6. The figure indicates that the
release of a quarter of the containers is passed on by the shipping agent to IES on the
same day as when they are approved by Customs. In less than 10% of the cases more
than 1 day passes.

Fig. 18.5 Time between arrival of ship and release by Customs

Fig. 18.6 Time between release by Customs and release by shipping agent

Fig. 18.7 Time between printing of the Customs document and release by Customs

18.2 Narrative Description 387

Figure 18.7 illustrates the difference between the day that the Customs documents
are printed and the day that Customs approves the shipment. Thus, the graph gives
an indication of the speed with which Customs works. One should note, however,
that the printed date on the Customs document does not always correspond with the
day that it is sent. It often occurs that the Customs document cannot be fully filled in
on the day of printing because the GD number or the article number must still be
requested at the ship broker. The document can then only be presented at Customs
later; thus Fig. 18.7 suggests a longer processing time than it is in reality.

As is indicated in Sect. 18.2, IES thinks that they can decrease costs by decreasing
the distribution time of the containers. The relationship between distribution time
and costs is most clear when one looks at the demurrage costs: when containers stay
on the terminal for more than 3 workdays, IES is charged about 100 euros per
container per day. The second factor of importance is the interest burden: as the
shipment concerns rather valuable goods (the average container cargo is worth
around half a million euro), a day’s delay at an interest rate of 6% per year comes
down to about 80 euros per container per day. However, the cutting of this cost
would not benefit IES, but the supplier. As a third factor, the labour costs can be
considered. It seems obvious that improvements in efficiency in the business pro-
cesses lead to a cut in work time and thus a decrease in labour costs. However, as is it
is difficult to prove that 25% less work also leads to a 25% decrease in labour costs
(it remains questionable whether the labour force could be decreased by one person),
this factor weighs less heavily than the other two.

Next to these three factors, which IES believes to be able to cut costs on, the
following costs are also worth mentioning: the transportation per ship from the Far
East to Rotterdam (about 5000 euros per container); the transport per truck from
Rotterdam to IES (about 400 euros per container); the sending of documents per
courier from the Far East to IES (about 150 euros per shipment).

18.3 Analysis of the Narrative Description

Because it is not possible to involve the employees in the various enterprises within
GloLog, we have to apply the second best way of working, as discussed in
Chap. 12. It is to study the narrative description and find clues for the presence
of original (thus O-organisation) transaction kinds and actor roles. We will do this
below, paragraph after paragraph. The pieces of text that are taken from the case
description are written in italics. Only the text in Sect. 18.2.3 is taken into account;
the preceding subsections are merely a summary of it, and Sect. 18.2.4 is merely
about the realisation and implementation of the processes that are described in
Sect. 18.2.3.

Clients of IES place client orders with IES. Based on these orders, IES
periodically places a supply order with a supplier. The supplier prepares a
shipment for every supply order, which can take up one or more containers.
Depending on the harbour from which the order is shipped, the supplier draws

388 18 Exercise: Case GloLog

up a Waybill (from Singapore) or a Bill of Lading (from Tokyo). A Waybill is a
transport document registered under a name, which means that the receiver who
is stated on the document must prove her/his identity to be able to receive the
shipment. A Bill of Lading (BoL) is “to bearer”; it is the official proof of
ownership of the shipment. Both transport documents state which containers
they concern, the content of these containers, who is the supplier and who is the
receiver, the identification of the transportation overseas and the parties that
must be informed of the arrival of the containers in the harbour. The transport
documents (Waybills or BoLs) are sent, together with the remaining documents
(invoices and packing lists), to IES per courier. This takes approximately 2 days;
the transportation overseas takes roughly 3 weeks. IES administers every Way-
bill or BoL, verifies whether it corresponds with placed supply orders, makes
copies and sends the documents to the shipping agent.

From the first piece of text in red (Clients of IES place client orders with IES), we
deduce the existence of an original transaction kind regarding the processing of
client orders. Let us identify it as TK01 and name it “sale completing”, as we did for
the case Pizzeria (cf. Chap. 14). We use the word “sale” instead of “client order” to
emphasise that the transaction concerns a complete sale of IES, not only the order
phase. We name the executing actor role AR01 accordingly “sale completer” and
formulate the corresponding product kind PK01 as “[sale] is completed”. The
initiating actor role is, as usual (cf. Chaps. 8 and 10), an unknown role within a
composite transactor role, which we will identify as CTAR01 and simply name
“client”.

The next red-coloured piece of text (IES periodically places a supply order with a
supplier) hints to the existence of two additional transaction kinds. The first concerns
the processing of purchases. We use the word “purchase” instead of “supply order”
to emphasise that the transaction concerns a complete purchase by IES, not only the
order phase (cf. Chap. 5). We identify it as TK02 and name it “purchase complet-
ing”. Consequently, we name the executing actor role AR02 “purchase completer”
and formulate the corresponding product kind PK02 as “[purchase] is completed”.
The third original transaction kind represents the periodic initiation of transactions
TK02. Let us identify it as TK11 and name it “purchase controlling”. Accordingly,
the self-initiating executor role AR11 is named “purchase controller”. The product
kind PK11 is properly formulated by “purchase controlling for [period] is done”.
The length of the period doesn’t matter. It can be daily, or weekly, etc. It can even
have non-fixed periods, since the production time of the next one is set during the
execution of the current transaction TK11 (cf. Chap. 8).

The third piece of text in red (prepares a shipment for every supply order)
certainly hints also at an original transaction kind; but the question is how to
conceive it and consequently how to formulate its product kind. By applying the
sapience ‘Devising proper concepts’ (cf. Chap. 12), we conclude that we don’t
need an entity type shipment, because there is a one-to-one relationship between
purchases and shipments. Let us therefore identify the transaction kind as TK03
and name it “purchase loading”. It concerns the loading of the goods of a
purchase in one or more containers, as indicated by the fourth red-coloured

18.3 Analysis of the Narrative Description 389

piece of text (can take up one or more containers). Accordingly, the executing
actor role AR03 is named “purchase loader” and the product kind PK03 is
formulated as “[purchase] is loaded”. The initiators of transactions TK03 are
clearly actors AR02, as a loaded purchase is a sub-product of a completed
purchase.

The last interesting piece of text, occurring twice, is “the transportation over-
seas”. It gives rise to conceiving an original transaction kind regarding the transport
of containers by ship. We identify it as TK14 and name it “sea transport completing”.
Accordingly, we name the executing actor role AR14 “sea transport completer”, and
formulate the product kind PK14 as “[sea transport] is completed”. It implies the
movement of a number of containers, by ship, from a harbour in the Far East to the
harbour of Rotterdam.

But who is the initiator of transactions TK14? In other words, who orders a
ship to sail? The narrative description of the case doesn’t give a clue (also the
parts that we have skipped don’t). So, we have to rely on what is most likely
(and, of course, validate the decision!), which is that the initiator is a self-
activating actor role who periodically checks whether a ship can be sent off.
Let us identify it as AR12 and name it “sea transport controller”. Consequently,
we name the related transaction kind TK12 “sea transport controlling” and we
formulate the product kind PK12 as “sea transport controlling for [period] is
done”. The length of the period is determined by the shipping company, and it
need not be fixed, as discussed above.

Between 2 and 7 days before arrival of a ship, the ship broker receives the
manifest with information regarding the precise cargo on the ship from the shipping
company. Every article on board has an article description and a unique article
number in this document. A manifest is around 2000 pages on average. On the basis
of this manifest, the ship broker draws up a general declaration (GD) which is sent
to Customs. The GD is a list of the Waybill- or BoL-numbers of the shipments on
board. The ship broker also draws up pre-arrival notices (PaN), which are sent to
the receivers mentioned in the manifest.

This text is only about informational and documental matters. There are no
indications of essential transactor roles.

The shipping agent receives the shipment documents from IES (and other orga-
nisations which have shipments on the ship), checks whether these are complete and
archives them under the name of the concerned ship. Close to the arrival time of the
ship in the harbour, the shipping agent draws up the documents that the truck
drivers need in order to receive a container from the stevedore and to drive to IES. It
concerns the following documents:

• For every container, the shipping agent produces a CMR (Contrat de Transport
International de Marchandises par Route), a European cargo document that
must be carried by a truck driver during land transportation.

• For a shipment with a BoL, the BoL is traded by a courier at the ship broker for a
delivery order. The ship broker makes a delivery order for every container
mentioned in the BoL, upon presentation of which the container can be picked

390 18 Exercise: Case GloLog

up at the stevedore’s premises. For shipments with a Waybill, the presentation of
a copy of the Waybill and a proof of identity as the transporter, suffices for the
handover of the shipment.

• For every container, a Customs document must be drawn up on which the data
about the goods are stated, as specified in the Waybill or BoL, as well as the GD
number and the article numbers.

This text is mainly about informational and documental matters. There are,
however, indications of the existence of transaction kinds concerning the transport
of containers over land. They are marked in red. For a full understanding of the land
transport process, we need more information, however. By taking into account
already some information from the last paragraph, we can conclude that there must
be a transactor role tree that is similar to the one we have found for the sea transport
process. So, we identify a transaction kind TK15 and name it “land transport
completing”. Accordingly, we identify its executing actor role AR15 and name it
“land transport completer” and we formulate the product kind PK15 as “[land
transport] is completed”. Where a sea transport is about the movement of all
containers on a ship, a land transport is about the movement of one container on a
truck.

Similarly, we need a self-activating actor role as the initiator of transactions
TK15. Let us identify it as AR13 and name it “land transport controller”.
Consequently, we name the related transaction kind TK13 “land transport con-
trolling” and we formulate the product kind PK13 as “land transport controlling
for [period] is done”. The length of the period is determined by IES (as will be
discussed later).

Using the GD, Customs checks the correctness of the specified data on the
Customs documents supplied by the shipping agent, and inspects, if thought oppor-
tune, the content of the containers. If the data do not exactly correspond, the
shipping agent must provide an explanation. If everything is in order, Customs
sends a release statement together with stamped Customs documents to the shipping
agent, who then informs IES which containers have been released.

From the red-coloured pieces of text, we deduce the presence of two original
transaction kinds: one regarding the (physical) inspection by Customs of con-
tainers, and one regarding the release of containers, also by Customs. We skip the
first one (and provide later the justification of the skipping), identify the second one
as TK07, and name it “purchase releasing”. Accordingly, we name the executing
actor role AR07 “purchase releaser” and formulate the product kind PK07 as
“[purchase] is released”. The reason for “purchase releasing” instead of “container
content releasing” is that the initiator of transactions TK07 is obviously actor role
AR02 (purchase completer), as it is in the interest of AR02 to get the goods of a
purchase released by Customs. The releasing of the individual containers of a
purchase could be modelled by a transactor role ‘container content releaser’,
enclosed by TAR07 (cf. Fig. 18.8). Consequently, as long as the contents of one
of the containers, containing goods of a purchase, cannot be released, the whole
purchase cannot be released.

18.3 Analysis of the Narrative Description 391

IES determines when the land transport of the released containers can best
take place, keeping in mind the urgency of the different shipments and the
available unloading capacity at their own grounds, and passes the resulting
schedule on to the shipping agent. Based on the planning of the IES, the
shipping agent gives transportation instructions to the land transporter. These
instructions are confirmed by fax; a copy is faxed to the terminal office. The
truck driver presents the confirmation fax to the shipping agent’s terminal office
and receives—provided that the fax corresponds with the copy at the terminal
office—the necessary Customs documents, CMR, and Waybill or delivery order.
Upon presentation of the CMR and Waybill or delivery order, the stevedore
loads the container onto the delivery truck, whereafter the driver drives to IES.
IES receives the container and the accompanying documents, unloads the con-
tainer contents, checks the shipments for completeness and possible damages,
stores the goods, and eventually delivers the client orders at the dealerships with
IES’ own delivery service.

The text above is full of hints at original transaction kinds. The first one can
be found in “IES determines when the land transport of the released containers
can best take place”. Later in the text, the outcome of the determination is
called planning or schedule. The question then is whether making a planning or
a schedule is an original transaction. In Chap. 17, a similar problem is
discussed, namely making appointments in a policlinic. There, the conclusion
is that making appointments (for doing things later) only concerns the order
phase of a transaction. The same reasoning holds for making plannings or
schedules. It is generating requests for bringing about products at some future
point in time. Like scheduling classes for a school, making a transportation
planning is not something trivial at all, but the point is that the result is not a
change of the state of the production world (cf. Chap. 8). Concluding, the
red-coloured piece of text above regards the initiation of transactions in which
containers are transported. Let us identify the transaction kind as TK08 and
name it “container content transporting” and let us formulate the product kind
PK08 as “[container content] is transported”. The executing actor role AR08 is
named “container content transporter”. The initiating actor role is clearly AR15
(land transport completer).

The second piece of text in red, “Based on the planning of the IES, the shipping
agent gives transportation instructions to the land transporter”, doesn’t add some-
thing essentially new, it only tells us that requesting actors AR08 to carry out
transactions TK08 is delegated by IES to the shipping agent. We will elaborate on
this later.

From the third piece of text in red (the stevedore loads the container onto the
delivery truck), we deduce the presence of transaction kind TK16 ‘container content
loading’, of which the executor role AR16 is named ‘container content loader’. The
product kind PK16 is accordingly formulated as “[container content] is loaded”. The
next red-coloured piece of text (the driver drives to IES) confirms the existence of
transactions TK08, which we have identified already.

392 18 Exercise: Case GloLog

From the third piece of text in red (unloads the container contents, checks the
shipments for completeness and possible damages, stores the goods) we deduce that
there is a new transaction kind, which we identify as TK09 and name “container
content unloading” by which is meant the emptying of a container. The other actions
are considered to be enclosed in a transaction TK09. Accordingly, the executing
actor role AR09 is named “container content unloader” and the product kind PK09 is
formulated as “[container content] is unloaded”. Like it holds for transactions TK16
and TK08, transactions TK09 are initiated by actors AR15 (land transport
completer).

The last piece of text in red (delivers the client orders at the dealerships) hints at
the existence of a transaction kind that concerns the transport of goods of a sale to
the client. Let us identify it as TK10 and name it “sale transporting”. Accordingly,
the executing actor role AR10 is named “sale transporter”, and the product kind
PK10 is formulated as “[sale] is transported”. The right initiator role for trans-
actions TK10 is AR01 (sale completer), as a transported sale is a sub-product of a
completed sale.

The results of the analysis above are represented in the CSD in Fig. 18.8. The
tree with double-lined boxes at the top of Fig. 18.8 only serves to clarify that
there are four different business processes in the Glolog enterprise. The white-
coloured transactor roles constitute the responsibility range (cf. Chap. 10) of the
enterprise IES. The other transactor roles are environmental or external
(cf. Chap. 10).

Fig. 18.8 CSD of the interaction structure of the GloLog organisation

18.3 Analysis of the Narrative Description 393

The top of the sales process is an actor role within the composite actor role
CTAR01. The top of the other three processes are self-activating actor roles:
AR11 (purchase controller), AR12 (sea transport controller), and AR13 (land
transport controller). As explained in Chap. 10, the reason for having these four
processes is the presence of four distinct core entity or case kinds that the
GloLog organisation deals with: sales, purchases, ship contents, and container
contents.

In Table 18.1, the TPT of the GloLog organisation is shown, corresponding with
the CSD in Fig. 18.8. It is revealed from the analysis of the narrative description as
presented above. Each of the core case kinds (sale, purchase, container content, ship
content) has its own process cycle. Therefore, they cannot be combined in one
process. The cycle of the sales process has the highest frequency. The purchase
process has a lower frequency, because a purchase encompasses a number of sales.
The frequency of the land transport process is on average a bit higher than the one of
the purchase process, because the goods of a purchase comprise one or more
container contents. The frequency of the sea transport process is by far the lowest
one since the charge of a ship comprises in general a huge number of container
contents.

At first sight, the presence of transaction kind TK17 (and the actor role AR17)
may seem redundant. It is very appropriate, however, to include it. This becomes
evident if one asks the question: “When can an actor AR02 confidently decide that a
purchase is completed?” The only reasonable answer is that he/she can do so after
the purchase is loaded (PK03), is shipped (PK17), and is released by Customs
(PK07). By being shipped is meant delivered at the location of IES. The (true) fact
that AR17 is dependent on the progress of other processes (the sea transport process
and the land transport process) does not affect the need for the existence of TK17, in
order to make the purchase process tree self-contained. This is an important property
of transactor role trees (cf. Chap. 10). There are no interactions between these trees,
only interstrictions and interimpediments. Lastly, a purchase (PK03) being loaded
includes that the containers are brought to the premises of the shipping company.

Table 18.1 TPT of the GloLog organisation

transaction kind product kind executor role

TK01 sale completing
TK02 purchase completing
TK03 purchase loading
TK04 ship content loading
TK05 ship content transporting
TK06 ship content unloading
TK07 purchase releasing
TK08 container content transporting
TK09 container content unloading
TK10 sale transporting
TK11 purchase controlling
TK12 sea transport controlling
TK13 land transport controlling
TK14 sea transport completing
TK15 land transport completing
TK16 container content loading
TK17 purchase shipper

PK01 [sale] is completed
PK02 [purchase] is completed
PK03 [purchase] is loaded
PK04 [ship content] is loaded
PK05 [ship content] is transported
PK06 [ship content] is unloaded
PK07 [purchase] is released
PK08 [container content] is transported
PK09 [container content] is unloaded
PK10 [sale] is transported
PK11 purchase controlling for [period] is done
PK12 sea transport controlling for [period] is done
PK13 land transport controlling for [period] is done
PK14 [sea transport] is completed
PK15 [land transport] is completed
PK16 [container content] is loaded
PK17 [purchase] is shipped

AR01 sale completer
AR02 purchase completer
AR03 purchase loader
AR04 ship content loader
AR05 ship content transporter
AR06 ship content unloader
AR07 purchase releaser
AR08 container content transporter
AR09 container content unloader
AR10 sale transporter
AR11 purchase controller
AR12 sea transport controller
AR13 land transport controller
AR14 sea transport completer
AR15 land transport completer
AR16 container content loader
AR17 purchase shipper

394 18 Exercise: Case GloLog

A tree of processes in the category ‘transporting and storing’ can generally be
extended by conceiving sub-products of the current ‘leaf’ products. As an example,
one can sensibly conceive three sub-product kinds, and the corresponding transac-
tion kinds, of a transaction PK14 ([sea transport] is completed): PK04 ([ship content]
is loaded), PK05 ([ship content] is transported), and PK06 ([ship content] is
unloaded). The addition of these ‘leaves’ is already contained in the CSD in
Fig. 18.8. Note that there is a one-to-one correspondence between sea transports
and ship contents, as shown in the OFD in Fig. 18.16.

The processes shown in Fig. 18.8 constitute the SoI of the case GloLog. As said,
the white-coloured transactor roles constitute the responsibility range (cf. Chap. 10)
of the enterprise IES. So, if one would like to focus on IES, the sea transport process
seems to be irrelevant. Seems, though, because there are other relationships with this
process. One of kind of these relationships is included in the interstriction structure,
as expressed in Fig. 18.9. Note that all external transaction kinds/banks are omitted,
for the sake of simplicity. Including them would make the CSD unnecessarily
complicated for the purpose of the exercise.

The interstriction structure of an SoI shows the mutual state dependencies of the
distinct business processes. The access link from AR11 to TK01 expresses that
actors AR11 need to know the sales that must be settled, thus from which purchases
must be composed. Upon every self-activation, the actor AR11 ‘sees’ the requested
and promised transactions TK01 and decides to initiate a transaction TK02 or not.
The access link from AR12 to TK03 expresses that actors AR12 need to know the
purchases that are loaded in containers and thus from which a ship content must be
composed. Upon every self-activation, AR12 ‘sees’ the completed, that is, accepted,
transactions TK03 and decides whether to initiate a transaction TK14 or not. The
access link from AR13 to TK14 expresses that actors AR13 need to know which
containers are waiting in the harbour, ready for land transport. Upon every self-
activation, the actor AR13 ‘sees’ the completed transactions TK14 and decides to
initiate none, one or more transactions TK15.

The CSD in Fig. 18.10 exhibits the interprocess interimpediment structure in the
GloLog enterprise. It shows the mutual process dependencies of the distinct business
processes in a global way. The details are expressed in the PM, to be discussed in
Sect. 18.4. The wait link from TK02 to AR10 expresses that carrying through
transactions TK10 has to wait for a specific progress in the transaction TK02 that
comprises the specific sale to be transported. The transactions TK10 can already be
requested and promised for some time, but they are impeded to proceed until the
corresponding transaction TK02 is finished.

We have seen that actors AR12 base the decision to start transactions T14 on the
contents of transaction bank TK03, that is, the purchases of which the goods are
loaded or are scheduled to be loaded. The wait link from TK03 to AR14 expresses
that carrying out transactions TK14 is impeded until the corresponding transactions
TK03 are finished. The wait link from TK07 to AR15 represents the condition that
purchases must be released before the land transport can be carried out. Note that the
transactions TK15 can already have been requested (and promised) because AR13
knows that the finishing of the TK07 is coming. Lastly, the wait link from TK15 to

18.3 Analysis of the Narrative Description 395

AR17 expresses that a purchase can be declared shipped as soon as the land transport
of the container contents that consists of the goods of the purchase is completed. The
cardinality range 1. . .� expresses that the purchase may comprise more than one
container content.

In Fig. 18.11, the three organisational structures, as shown in Figs. 18.8, 18.9, and
18.10, are combined, so that one gets a comprehensive overview of the construction
of the GloLog enterprise, that is, of the existing transactor roles and of the coordi-
nation structures between them.

Fig. 18.9 CSD of the GloLog organisation plus interstriction structure

Fig. 18.10 CSD of the GloLog organisation plus interimpediment structure

Fig. 18.11 The combined coordination structures in the GloLog organisation

396 18 Exercise: Case GloLog

18.4 Extending the Essential Model

In this section, the PM of the GloLog organisation is presented, based on the CM and
the narrative description. Since there are four business processes, following from the
analysis in Sect.18.3, there are four PSDs. The first one is exhibited in Fig. 18.12. It
is the PSD of the sales process, together with the corresponding part of the CSD in
the ‘click’mode (cf. Chap. 10). The enclosing of a TK10 in a TK01 is in the standard
way: from being promised of the TK01, the TK10 is requested, and the TK10 must
be accepted before the TK01 can be finished. The explanation of the interprocess
wait link from (TK02/ac) to [TK10/ex] is as follows.

As soon as a TK01 is promised, and the sale thus can become part of a purchase,
the corresponding delivery of the goods is requested from the delivery service of
IES, so that the people there know that, in the future, goods have to be transported.
However, there is a logistic constraint, which is that the goods of the sale must be
present on the location of IES. This condition is perfectly represented by the being
completed of the purchase in which the sale is contained. The wait link in Fig. 18.12
is a more precise representation of the wait link from TK02 to AR10 in Fig. 18.10.

The PSD of the purchase process is shown in Fig. 18.13, accompanied by the
corresponding part of the CSD in the ‘click’mode (cf. Chap. 10). The process model
is basically standard. Only the enclosing of transactions TK03, TK17, and TK07
needs explanation. The PSD shows that the transactions TK03, TK17, and TK07
within a transaction TK02 are initiated simultaneously, namely as soon as the state
(TK02/pm) is reached. However, the order of carrying out TK03 and TK17 is strictly
sequential, as indicated by the wait link from (TK03/ac) to [TK17/ex]. The reason is
the obvious logistic constraint that a purchase must be completely loaded in con-
tainers and that these are brought to the shipping company before it can be shipped.

One might expect a similar wait link from (TK17/ac) to [TK07/ex], but there is no
ontological imperative to do so. Like the making of echograms in the case PoliGyn
(cf. Chap. 17) does not necessarily precede the (other) examinations, the releasing of
a container content by Customs does not necessarily have a precedence condition,
except perhaps that the corresponding TK03 (purchase loading) is finished. As
mentioned in Sect. 18.2.5, “ . . . Customs sometimes approve a shipment before
the ship has arrived. It holds for approximately 60% of the containers”. Conse-
quently, there are hardly any logistic constraints for Customs to release shipments.

The other interprocess constraint is that the goods of the purchase must have been
delivered (TK15/ac) before the purchase can be completed [TK02/ex]. Having

Fig. 18.12 PSD of the sales
process

18.4 Extending the Essential Model 397

reached the state (TK15/ac) means that the containers containing the goods of the
purchase where TK02 is about, are present at the location of IES. It is a logical
logistic prerequisite for finishing the transaction TK02. Because the goods of a
purchase may be stored in several containers, the cardinality of the wait link is
1. . .�. It means that all containers in which there are goods of the purchase where the
TK02 is about, are emptied. The wait link is a more precise representation of the wait
link from TK15 to AR02 in Fig. 18.10.

Despite these logistic constraints, the purchase process is ontologically optimal,
that is, the duration of a transaction TK02 is the shortest possible, because of the
parallel initiation of the enclosed transactions TK03, TK17, and TK07. The practical
meaning of it is that the order phase of the TK17 can already be carried through
before the TK03 is finished. In other words, actors AR17 can be fully prepared and
ready to start the execution of the TK17. A similar reasoning holds for transaction
TK07. The enclosing of transaction kind TK02 in TK11 is the standard way of
modelling periodic activities.

Figure 18.14 exhibits the PSD of the sea transport process, together with the
corresponding part of the CSD in the ‘click’mode (cf. Chap. 10). The process model
is basically standard. Only the enclosing of transactions TK04, TK05, and TK06
needs explanation. The PSD shows that the transactions TK04, TK05, and TK06
within a transaction TK14 are initiated simultaneously, namely as soon as the state
(TK14/pm) is reached. However, the order of their executions is strictly sequential,
as indicated by the wait link from (TK04/ac) to [TK05/ex] and the one from (TK05/
ac) to [TK06/ex]. The reason is the obvious logistic constraint that a ship must be
completely loaded, that is, contain the corresponding ship content (TK04/ac) before
it can sail to its destination (TK05), and it must have arrived at the destination
(TK05/ac) before its content can be unloaded (TK06).

Fig. 18.13 PSD of the purchase process

398 18 Exercise: Case GloLog

The interprocess wait link from (TK03/ac) to [TK04/rq] expresses that containers
cannot be put on the ship if they have not been loaded. The wait link is a more
precise representation of the wait link from TK03 to AR14 in Fig. 18.10.

Despite these logistic constraints, the process is ontologically optimal, that is, the
duration of a transaction TK14 is the shortest possible, because of the parallel
initiation of the enclosed transactions TK04, TK05, and TK06. The practical mean-
ing of it is that the order phase of the TK05 and the TK06 can already be carried
through before the TK04 is finished. In other words, the actors AR05 and AR06 can
be fully prepared and ready to start the execution of the TK05 and TK06, respec-
tively. The enclosing of transaction kind TK02 in TK11 is the standard way of
modelling periodic activities.

The PSD of the land transport process, together with the corresponding part of the
CSD in the ‘click’ mode (cf. Chap. 10), is shown in Fig. 18.15. Like the ones for the
purchase process and the sea transport process, the model is basically standard,
except the enclosing of transactions TK16, TK08, and TK09 in a transaction TK15.
The PSD shows that these transactions are initiated simultaneously, namely as soon
as the state (TK15/pm) is reached. However, the execution order of the TK16, TK08,
and TK09 is, for purely logistic reasons, sequential, as indicated by the wait link
from (TK16/ac) to [TK08/ex] and the one from (TK08/ac) to [TK09/ex].

The interprocess wait link from (TK07/ac) to [TK16/rq] expresses that a purchase
must be released (by Customs) before its containers can be loaded. The wait link is a
more precise representation of the wait link from TK07 to AR15 in Fig. 18.10.

Also the land transport process is ontologically optimal, that is, the duration of a
transaction TK15 is the shortest possible, because of the parallel initiation of the
enclosed transactions TK16, TK08, and TK09, despite the fact that they are carried
out sequentially. The practical meaning of it is that the order phase of the TK08 and

Fig. 18.14 PSD of the sea transport process

18.4 Extending the Essential Model 399

the TK09 can already be carried through before the TK16 is finished. In other words,
the actors AR08 and AR09 can be fully prepared and ready to start the execution of
the TK08 and TK09, respectively.

The second model to be presented in this section is the FM of the GloLog organi-
sation, as far as it can be deduced from the CM and the narrative description (by lack of
the AM). The OFD is given in Fig. 18.16. Note that it represents the global FM: it only
contains the property types that can be deduced from the narrative description.

The core entity types (represented by white-coloured roundangles) can directly be
taken from the TPT in Table 18.1: sale, purchase, container content, ship content, sea
transport, and land transport. Their product kinds correspond with the ones in the
TPT (cf. Table 8.1). The entity types (actually classes) that are represented by grey-
coloured roundangles are external to the modelled processes.

The concepts ‘sale’ and ‘purchase’ are straightforward, they have uniquely identi-
fiable instances, which means that although the contents of two sales or two purchases
may be exactly the same, they are two distinguishable things. With respect to
containers and ships, however, we need to conceive new concepts in order to
distinguish the different contents they may have in the course of time (presupposing
that containers and ships are reused!). So, it would be incorrect to formulate, for
example, PK16 as “[container] is loaded”, although the people involved most likely
will say that they have loaded a container. However, what they actually mean to say is
that they have loaded a container with its current content. Thus, we need the concept of
container content (in addition to the concept of container). Therefore, PK16 has been
formulated as “[container content] is loaded”, PK08 as “[container content] is
transported”, and PK09 as “[container content] is unloaded”. In a similar way, one
needs to conceive the notion of ship content (next to the notion of ship). Likewise, the
product kinds PK04, PK05, and PK06 are respectively formulated as “[ship content] is
loaded”, “[ship content] is transported”, and “[ship content] is unloaded”.

Fig. 18.15 PSD of the land transport process

400 18 Exercise: Case GloLog

F
ig
.1

8.
16

O
F
D
of

th
e
G
lo
L
og

or
ga
ni
sa
tio

n

18.4 Extending the Essential Model 401

The other two entity types that need further explanation are sea transport and land
transport. By a sea transport is understood moving a specific set of containers over
sea that together contain the ship content to be transported (which is the sum of the
separate container contents). Consequently, there is a one-to-one correspondence
between sea transports and ship contents. This is indicated in the OFD by the 1. . .1
cardinality range at the domain side of the property type ‘[sea transport] regards [ship
content]’.

By a land transport is understood moving a specific container, containing the
container content to be transported over land. Consequently, there is a one-to-one
correspondence between land transports and container contents. This is indicated in
the OFD by the 1. . .1 cardinality range at the domain side of the property type ‘[land
transport] regards [container content]’.

In addition to the discussed core entity types, the external entity types ‘client’,
‘article’, ‘container’, and ‘ship’ are needed, as well as the (external) value type
‘period’. We assume that all (production) event types are sufficiently discussed
above, so that we can confine ourselves to explaining the remaining property types
in the OFD.

The property type ‘the client of [sale] is [client]’ specifies the dealership of IES
that is the client in the sale, and the property type ‘the article of [sale] is [article]’
specifies the article which the sale is about. One of the obvious attribute types of
‘sale’ therefore is the number of items ordered (of the related article). Note that every
sale concerns one article. It is the result of applying Ockham’s Razor, fully compa-
rable to its application in the case Library (cf. Chap. 16). The property type ‘[sale] is
part of [purchase]’ serves to specify the set of sales in a purchase.

The property type ‘[container content] contains goods of [purchase]’ specifies the
purchase of which goods are contained in the container content, and the property
type ‘[container content] is part of [ship content]’ serves to specify the set of
container contents in a ship content. The property type ‘[container content] is carried
by [container]’ specifies the specific container carrying the goods of a container
content. As said, containers are assumed to be reused and thus to carry many
different contents in their lifetime. Likewise, the property type ‘[ship content] is
carried by [ship]’ specifies the specific ship carrying the goods of a ship content.

There are two additional property types that may be interesting for the operational
activities in the enterprise GloLog. One concerns the ship with which a particular sea
transport is executed. The other concerns the container with which a particular land
transport is executed. Both property types can be derived from existing types. Here
are the formal Derived Fact Specifications in DEMOSL (cf. Chap. 21):

the ship of [sea transport] is [ship] � [sea transport] regards [ship content] and [ship
content] is contained in [ship]

the container of [land transport] is [container] � [land transport] regards [container
content] and [container content] is contained in [container]

402 18 Exercise: Case GloLog

https://doi.org/10.1007/978-3-030-38854-6_21

18.5 The Implementation of GloLog

When comparing the essential model of GloLog, as far as we have revealed it in the
preceding sections, with the narrative description in Sect. 18.2, two things catch the
eye. One is the quite remarkable difference between the concepts on which the
narrative description is based and the ones on which the essential model is built.
Probably most notable are the concepts ‘container content’ and ‘ship content’. We
consider this matter to be sufficiently dealt with in Sects. 18.3 and 18.4. The other
notable issue is the almost ungraspable way in which the essential model is
implemented. This holds in particular for the allocation of authorisations to the
various stakeholders (including the possible delegations) and for the many docu-
ments that serve to facilitate the communication between the stakeholders. We will
try to clarify them subsequently.

Table 18.2 Global (left) and detailed (right) ADT of the GloLog organisation

18.5 The Implementation of GloLog 403

While reading the narrative description in Sect. 18.2, one gets a picture about who
is responsible for what, that appears to be quite misleading, namely, rather different
from what the essential model tells us. In order to investigate the issue, we present
the global ADT (cf. Chap. 21) of the GloLog organisation in Table 18.2 (left side).
On the horizontal axis, the distinct actor roles (AR01–AR17) are listed, and on the
vertical axis are the stakeholders (as shown in Fig. 18.1, except the client because the
actor roles filled by this stakeholder are outside the SoI). Note that the stakeholders
are complete enterprises (companies) instead of functionaries, like in the example
ADT in Chap. 21. This explains already the fact that several actor roles are filled by
the same enterprise.

An “A” at the crossing of a column (actor role) and a row (enterprise) means that
subjects in the enterprise are the primary authorised fillers of the actor role. These
allocations can quite straightforwardly be deduced from the narrative description,
while having the CM in mind. What strikes one probably most, is that the rows ‘ship
broker’, ‘terminal office’, and ‘shipping agent’ do not contain an “A”. Regarding the
terminal office, this is not surprising because the terminal office is not a distinct
enterprise but a housing facility for employees of several enterprises. Most alloca-
tions are straightforwardly deducible from the narrative description, but some need
further illumination.

The “A” at the crossing of column AR16 and row ‘stevedore’, means that the
stevedore is considered to be the authorised filler of actor role AR16. However, this
allocation is questionable since there are two opposing statements in the narrative
description. In Sect. 18.2.3, we find the sentence: “Upon presentation of the CMR
and Waybill or delivery order, the stevedore loads the container onto the delivery
truck, whereafter the driver drives to IES”. This sentence could be considered in
conflict with the sentence “To this end, the shipping agent makes agreements with
the land transporter about which container must be picked up where and at what
time, and supplies the land transporter with the documents for picking up the
containers from the stevedore”, in Sect. 18.2.2. The question thus is whether
‘picking up’ a container implies loading the container on the truck or not. The
narrative description provides no conclusive answer. Therefore, the question can
only be answered by validating the two statements in practice. So, either the “A” at
the crossing of column AR16 and row ‘stevedore’ is correct or the “A” should be
moved to the crossing with row ‘land transporter’.

Regarding the ship broker and the shipping agent, they clearly fill mainly
informational or documental actor roles (informing others, handling documents,
etc.). Only the shipping agent appears to have also delegated authorisations, two
by the supplier and one by IES. They are represented in the detailed ADT in
Table 18.2 (right).

The first delegation of authority by the supplier concerns ordering Customs to
release (the containers of) purchases, so performing acts [TK07/rq]. It can be deduced
from the pieces of text “The shipping agent takes care of the handling of the containers
by Customs”, and “Using the GD, Customs checks the correctness of the specified
data on the Customs documents supplied by the shipping agent, and inspects, if
thought opportune, the content of the containers. If the data do not exactly correspond,

404 18 Exercise: Case GloLog

https://doi.org/10.1007/978-3-030-38854-6_21
https://doi.org/10.1007/978-3-030-38854-6_21

the shipping agent must provide an explanation. If everything is in order, Customs
sends a release statement together with stamped Customs documents to the shipping
agent, who then informs IES which containers have been released”, in Sect. 18.2.3.
The question, however, is whether the shipping agent and the supplier (and Customs
as the executor of transactions TK07 for that matter) are aware of it.

The second delegation of authority by the supplier concerns the acceptance of
purchase releases by Customs, that is, the performing of acts [TK07/ac]. It can be
deduced from the sentence “If everything is in order, Customs sends a release
statement together with stamped Customs documents to the shipping agent, who
then informs IES which containers have been released”, in Sect. 18.2.3. Clearly, the
primary authorised party is the supplier, because AR02 is rightly the initiator of
transactions TK07. For practical reasons, however, the accept act in these trans-
actions is delegated to the shipping agent.

The delegation of authority by IES concerns requesting the land transporter to
pick up containers at the premises of the stevedore, that is, the performing of acts
[TK16/rq]. It can be deduced from the sentence “Based on the planning of IES, the
shipping agent gives transportation instructions to the land transporter”, in Sect.
18.2.3. As discussed earlier, a planning is not an ontological product but a set of
requests to complete land transports, each having a specific production time.

The other implementation issue that makes it hard to comprehend fully the
operations in the GloLog organisation is the many documents that serve to facilitate
the communication between the stakeholders. Let us, therefore, investigate the main
document kinds that are mentioned in the narrative description in Sect. 18.2 and try
to indicate their role in the identified transaction kinds.

Client Order Form
A document of this kind is produced for every sale. The submitting (by the client)
and receiving (by IES) of a filled out client order form is considered to count as
performing the act [TK01/rq] in transactions TK01 (sale completing). Such a request
is presumably followed by a tacitly performed promise.

Supply Order Form
A document of this kind is produced for every purchase. The submitting (by IES)
and receiving (by the supplier) of a filled out supply order form counts as performing
the act [TK02/rq] in transactions TK02 (purchase completing), presumably followed
by a tacitly performed promise.

Shipment Form
A document of this kind is produced for every shipment, which corresponds one-to-
one with a purchase. It is created by the supplier, and it contains information about
the purchased goods and the containers in which they are stored. There are two
sub-kinds of the shipment form: Waybill and Bill of Lading. On a Waybill, the
customer is mentioned (in our case: IES) as the owner of the goods. On a Bill of
Lading, no owner of the shipment is mentioned, which means that the bearer of the
document is considered to be the owner. Produced by the supplier, shipment
forms are used specifically by actors AR07 (Customs) and actors AR15 (land
transporters).

18.5 The Implementation of GloLog 405

Manifest
A document of this kind is produced by the shipping company for every ship
content. In a manifest, all goods in all shipments on board are listed, including
their article number (as used by the supplier), as well as the numbers of the Waybills
or the Bills of Lading of all shipments.

General Declaration (GD)
A document of this kind is produced for every ship content by the ship broker, on the
basis of the copy of the manifest that it has got. Basically, a general declaration is a
list of the numbers of the Waybills or Bills of Lading of the included shipments. The
GD is specifically used by Customs.

Pre-arrival Notices (PaN)
A document of this kind is produced for every ship content by the ship broker,
presumably also on the basis of the copy of the manifest that it has got. A copy is sent
to the parties that have already also got a copy of the manifest. It is unclear what need
the PaN serves.

Customs Document
A document of this kind is produced for every container content by the shipping
agent, on the basis of the applicable shipment forms and general declaration.
Presumably, the document is sent to Customs. One may consider the sending
(by the shipping agent) and the receiving (by Customs) of the Customs document
of a container content as the request of a customer (in this case: IES) to release the
container contents in a purchase, thus as performing the act [TK07/rq]. Note that a
TK07 concerns all container contents in a purchase.

Delivery Order
A document of this kind is produced by the ship broker for every container content in
a shipment with a Bill of Lading. The truck driver needs it to get the corresponding
container from the stevedore. For shipments with a Waybill, presenting a copy of it
suffices, provided the truck driver can identify herself/himself. One may consider
presenting the delivery order or Waybill by the truck driver to the stevedore as
requesting to load the container on the truck, thus to perform the act [TK16/rq].

CMR
A document of this kind is produced for every container content by the shipping
agent, presumably on the basis of the manifest. The CMR is an obligatory European
land transport document.

In the discussion of the kinds of documents above we have indicated whether the
handing over of a document appears to (or seems to) count as performing a
coordination act (or C-act). In such cases, a part of the document would represent
(C- and P-) facts that are made known to the settler of the related C-event though the
with-clause of the when-clause of the action rule that applies to settling the C-event.
Unfortunately, we cannot be more precise about it, because the Action Model
(AM) of the GloLog organisation is lacking.

All other parts of the discussed documents concern either facts that are taken into
account in the assess parts of the action rules in the AM (cf. Chap. 21), or facts that

406 18 Exercise: Case GloLog

https://doi.org/10.1007/978-3-030-38854-6_21

are not used at all, and thus redundant. Again, we cannot be more precise, because
the AM is lacking.

The interstriction structure (cf. Fig. 18.9) comprises three access links. The link
from AR11 to TK01 appears to be implemented by sharing the client order forms
between the sale completer and the purchase controller. The implementation of the
access link from AR12 to TK03 is unclear. The narrative description only tells us
that loaded containers are brought to the location of the shipping company. Note that
there must be in addition some kind of overall agreement between IES and the
shipping companies that the latter take care of the sea transport of these containers.
The link from AR13 to TK14 is implemented by providing AR13 with the manifest
of a ship content and possibly also the pre-arrival notices. There are actually many
more access links, namely to external (multiple) transaction kinds. However, these
are omitted for the sake of simplicity.

18.6 Solving the Current Problems and Failures

In Sect. 18.2.5, the current operational problems and failures are presented. Also
without the help of the essential model of the GloLog organisation, it is not very
difficult to suggest sensible and effective changes in the organisation in order to
drive out the current malfunctions. Common sense immediately tells us that it must
be able to reduce the number of involved parties and the number of document kinds.
But when it comes to selecting the parties to be excluded and the document kinds to
be removed, and to fully justify the proposed changes as well, one needs a firm grip
to hold. And there is no firmer grip than the essential model, for the simple reason
that it abstracts from the things that one wants to change.

Thus, any implementation of the GloLog organisation that is derived systemat-
ically from the essential model, will do the job, and will in addition sharply clarify
who is responsible for what (and which competences are needed to bear the
responsibility), as well as why the actors need the information they have access
to. Moreover, the business processes are already optimised at the ontological level,
as illustrated by the PSDs in Sect. 18.4. Of course, there are always practical issues
one has to handle. For example, there may be huge resistance against abandoning the
pre-arrival notices or the CMR, as well as against skipping the involvement of the
ship broker and the shipping agent. Be that as it may, the improvement target that
was mentioned in Sect. 18.2.5, namely that the receipt of the corresponding docu-
ments should at least be 7 days before the arrival of a container in the harbour of
Rotterdam, can be met easily by the following measures:

• Make the contents of the transaction banks (including the external ones that we
have left out for the sake of simplicity) accessible to all actors in the SoI as
determined in the preceding sections.

• Only communicate by means of the existing documents (like the Waybill, the Bill
of Lading and the CMR) if it is legally obligatory.

18.6 Solving the Current Problems and Failures 407

• Automate all communication as far as possible. Then the ship broker and the
shipping agent will automatically disappear from the picture. As for the shipping
agent, the assigned delegations (cf. Sect. 18.5) can be taken back without problems.

In addition, the problems that are represented by Figs. 18.4, 18.5, 18.6, and 18.7
are all of a purely informational nature. Therefore, they will be solved by taking the
measures suggested above.

18.7 Conclusions

The case of the GloLog enterprise, from which we started the analysis and the
discussion of possible improvements, is certainly outdated. Nowadays, global logis-
tics operations are automated to a very large extent, both in terms of the physical
handling of containers, and in terms of the communication between the involved
parties and the storage of data. The point is, however, whether the particular
implementation of the processes that one has chosen and installed, can be justified
as the best one that could have been chosen. This is quite another story.

Founding the GloLog exercise on the ‘outdated’ implementation has made it
anyhow easy to reveal the essential model of the GloLog organisation, while
following the OER method (cf. Chap. 12). One of the outcomes that may be startling
for many readers is the presence of four ‘loosely coupled’ distinct business pro-
cesses, because of their incompatible case cycles. Although the most common way
of understanding the logistic process is the one that is shown in Fig. 18.1, this is a
fallacious representation. The ‘decouplings’, as presented in the CSD (cf. Fig. 18.8),
must anyway exist in any implementation, but they may be hidden.

The narrative description in Sect. 18.2 hardly clarifies authorisation and delega-
tion, which means that in the current ‘outdated’ practice, it must be quite unclear to
many involved parties who is responsible for what (if they would give the issue a
thought). Although one may wish otherwise, this indefiniteness is not ‘automati-
cally’ removed by a new state-of-the-art implementation.

In order to keep the analysis and the discussion of the case GloLog within limits,
they have been less extensive than those in the other exercises (cf. Chaps. 13–17).
Also the absence of payments between the involved enterprises may have surprised
(business-oriented) readers. Yet, we believe that the analysis of the case GloLog and
its results convincingly clarify that DEMO can very well be applied to what one
commonly calls ‘real life’ situations. For certain, the chapter demonstrates that
ontological thinking can provide unexpected and deep insights.

Reference

1. den Hengst-Bruggeling, M. (1999). Interorganizational coordination in container transport.
Doctoral thesis in Faculty of TPM. Delft: Delft University of Technology.

408 18 Exercise: Case GloLog

Chapter 19
Real-Life Applications of DEMO

Abstract A number of real-life applications of the DEMO methodology are presented,
varying in size and impact, and in the industrial area that they concern. The selected
applications are: (1) The VISI Standard in Civil Engineering, (2) Getting firm grip on
software development, (3) Agile Law Making, (4) Enterprise Transformation, (5) Designing
Data Warehouses, (6) Enterprise Ontology based Process Simulation, (7) Designing Digital
Document Archives, and (8) Air France KLM Cargo—post merger decision making. All
applications are reported in the STARR framework.

19.1 Introduction

In the following sections, seven appealing real-life applications of DEMO are
presented and discussed. They are selected from a much larger collection of inter-
esting practical studies. The ones that could not be included in this chapter are
published on a freely accessible website (being announced on www.ee-institute.org).
The following DEMO-applications are discussed in this chapter (their respective
authors appearing in brackets):

Section 19.2 The VISI Standard in Civil Engineering
(Hans Mulder, Niek Pluijmert)

Section 19.3 Getting firm grip on software development (Joost Vermolen)
Section 19.4 Agile Law Making (Mariette Lokin)
Section 19.5 Enterprise Transformation (Eduard Babkin)
Section 19.6 Designing Data Warehouses (Peter Kuipers, Henri Oostindie, Peter

Kurstjens)
Section 19.7 Enterprise Ontology based Process Simulation (Sergio Guerreiro)
Section 19.8 Designing Digital Document Archives (Rob Stapper, Peter Hoving)
Section 19.9 Air France KLM Cargo—post merger decision making (Martin Op

’t Land)

All applications are reported in the STARR framework (Situation, Task,
Approach, Results, Reflection):

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_19

409

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_19&domain=pdf
http://www.ee-institute.org

The Situation in which the case is positioned. It includes, but is not limited to, the
context of the case organisation (e.g. market, competition), the characteristics of the
case organisation (facts and figures), its challenges and opportunities, important
stakeholders, the reason why the project was initiated, a history of earlier
attempts, etc.

The Task that has been conducted. It includes, but is not limited to, the goals and
objectives of the project, its budget and timelines, special requirements, the roles of
the various stakeholders, etc.

The Approach taken to conduct the task. It includes, but is not limited to, the
method used, the various steps in this method, the paradigm or underlying philos-
ophy of the approach/method, the products and deliverables, the way in which the
project was planned and managed, the risk management approach and the tools
used, etc.

The Results of the project. It includes, but is not limited to, the actual benefits for
the case organisation and the stakeholders, a cost/benefit analysis, the extent to
which the case organisation was actually transformed, etc.

A Reflection on the case. It includes, but is not limited to, a discussion about the
faced challenges, the way in which the existing methods, frameworks, etc., aided in
dealing with these challenges, omissions and limitations found, thoughts on how to
‘fix’ such omissions and limitations, etc.

Right after the section heading, the name and email address of the contributor
(s) is/are mentioned, so that one can directly make contact if one desires to do so.
Note that always the DEMO-4 terminology is used (cf. Chap. 12), also if earlier
versions of DEMO are actually applied. All references to publications are put
together at the end of the chapter.

19.2 The VISI Standard in Civil Engineering

Hans Mulder (hans.mulder@viagroep.nl) and Niek Pluijmert (pluijmert@inqa.nl)

DEMO is a miracle of simplicity
(Henk Schaap, project manager VISI)

Situation
VISI is the name of an initiative in the practice of civil engineering in The Nether-
lands, taken in 1996 in order to improve the communication between the parties in
large civil engineering projects (building highways, bridges, tunnels, airports, sea-
ports, dikes, etc.). There have been two unsuccessful predecessors with the same
goal. The first one, in the 1970s, tried to set standards for the forms (order forms,
invoice forms, forms of various progress reports, etc.) that were exchanged between

410 19 Real-Life Applications of DEMO

mailto:hans.mulder@viagroep.nl
mailto:pluijmert@inqa.nl

the parties in a project. Because a solid ground for evaluating form designs was
lacking, every party considered their design the best. Therefore, the initiative became
a failure. The second attempt, performed in the 1980s, tried to develop and set an
EDI standard for data exchange. In hindsight, one can say that both initiatives failed
because the abstraction level was too low. In the so-called VISI core team who took
the third initiative, in 1996, the key players in civil engineering projects were
represented, including Rijkswaterstaat (RWS), a Dutch governmental agency, the
main customer in such projects.

Task
The task that the core team had set itself in 1996 was to develop a standard for the
communication between the parties in civil engineering projects so that the set-up
time of these projects would be shortened considerably, and that failures during the
execution, due to miscommunication, would be minimised. It was also recognised
that supporting software should be developed so that the effort for all parties to adopt
the standard would be as little as possible. Because the two earlier failures had a
severe negative impact on the mutual trust of the parties and their willingness to go
on a new expedition, utmost attention had to be given to create broad support and to
keep everyone on board during what would certainly be a long and difficult journey.
But the core team had no clue yet how to go about it.

Approach
In the fall of 1997, several members of the core team attended an introductory course
in DEMO at Delft University of Technology. In a short meeting afterwards with the
authors of this book, the first step was set towards a long-term collaboration and to
the adaptation of DEMO as the methodology for developing the VISI standard.
Based on previous experiences, we were able to convince the core team that it is
possible to have one general collaboration model for all civil engineering projects,
something that was not believed to be possible because of the large variety of
building works.

The concepts that convinced them are the ones introduced in Chap. 8: the actor
role (notably it being the unit of authority, responsibility, and competence) and the
transaction kind (as a standard pattern for coordinating work).

The next important issue was to devise the path towards the adoption of the rather
revolutionary new way of thinking about conducting civil engineering projects. To
this end, a careful plan was made to introduce the new concepts in the civil
engineering world, and explanatory visualisations were made by professional illus-
trators. One of them is shown in Fig. 19.1.1 It was used to clarify the ‘role-playing’
when executing a DEMOmodel. The different cap kinds represent the different actor
roles that the subjects have been assigned.

1Taken from https://www.bimloket.nl/VISI

19.2 The VISI Standard in Civil Engineering 411

https://www.bimloket.nl/VISI

Results
The main result of the efforts of the core team is that VISI is used in practice as an
open standard (for over 15 years now), not only in large civil engineering projects,
but increasingly also in house-building projects, and even beyond the area of civil
and constructional engineering. This is not surprising, since the core of VISI, the
transaction pattern is a general pattern of human cooperation, independent of the
kind of products that the cooperation is about. A key advantage that users recog-
nise and appreciate is that the usage of VISI, supported by one of the software
packages, provides one with a complete and well-structured archive of the actual
course of a project. VISI-archives are treasures of data, amenable to various
analyses, for example through process mining, with the aim to improve the
conducting of future projects. Since 2012, VISI is also the base of an international
standard (ISO 29481-2).

Fig. 19.1 Example of a clarifying VISI illustration

412 19 Real-Life Applications of DEMO

Several software companies have developed VISI supporting software pack-
ages. One of the interesting outcomes of the analysis (through process mining) of
the VISI-archives produced by these software packages is that not all of them
followed strictly the transaction pattern. In other words, the developers neglected
part of the requirements. Obviously, these failures are corrected.

Initially, only the standard transaction pattern (cf. Fig. 8.8) was adopted by the
core team, and consequently included in the requirements to the software devel-
opers. Fortunately, in the course of time, it has become clear to the managing
institute of the VISI standard that the complete transaction pattern, that is, includ-
ing the revocation patterns (cf. Fig. 8.10) should be adopted and forcibly
implemented in the supporting software packages. In VISI 3.0, this will have
been accomplished.

The application of VISI has proven to result in the completion of large projects
within time and budget. Recent illustrating examples are the building of the main
railway stations in Rotterdam and Delft (www.architectuur.nl 2-2015). Some key
publications concerning VISI are: [1–3].

Reflection
VISI offers a communication standard that provides insight into the organisation of
construction projects, in particular into the various actor roles (responsibilities) and
the project structure. The benefits of VISI include considerable reductions of
operational costs, lead time, and failure costs. The standard provides clarity,
certainty, and steering aid. Management and employees always have access to
up-to-date reports such as time sheets and weekly reports.

The practical usefulness of the DEMO transaction pattern is beyond doubt.
However, the simplifications that were initially made to it by the VISI core team,
have led to some frustration in practice: ‘obvious’ and ‘natural’ courses of action in
human cooperation appeared not to be possible. As Albert Einstein or William of
Ockham (the right source is unclear) said: everything should be made as simple as
possible, but not simpler. Fortunately, the problems will be solved in a future version
of VISI.

Another cause of resistance and misunderstanding with respect to VISI is the
initial overemphasis on the layout of the messages by which the coordination acts
in the transaction pattern are performed. It has led to the widespread misunder-
standing that VISI is foremost a document exchange and management system.
Certainly, it can also be used as such, but it has a much larger potential: it is a
theoretically well-founded and practically highly useful means of organising
human cooperation and decision making in large and complex projects. Supported
by a proper software package, the resulting VISI-archive offers full transparency of
the actual course of a project, also in case the project managers would have liked
less. . .

19.2 The VISI Standard in Civil Engineering 413

http://www.architectuur.nl

19.3 Getting Firm Grip on Software Development

Joost Vermolen (joost.Vermolen@formetis.nl)

Situation
In 2012, ForMetis was asked to support one of the largest energy players in the
Netherlands: Endinet. Endinet operates in the energy market for the supply of gas
and electricity to citizens and enterprises. A transition is underway where the energy
grid operator and energy supplier are split up into different legal entities due to EU
regulations.

There is a need for a central shared information repository system, called Central
Connections Register, which captures all customer information and contracts for gas
and electricity. The grid operator and the energy supplier, as well as some sub-
contractors, must have access to the system.

Task
The existing system, which was supplied by ForMetis in an earlier stage to support
the process of connecting clients to the energy network (gas and electricity) should
evolve into a new system that supports this need. The situation seemed to be a good
starting point to introduce the Enterprise Engineering approach (cf. Chap. 2). At
the time, ForMetis was working on the implementation of the DEMO engine [4] to
generate application software directly from the DEMO models (cf. Chap. 12) of an
enterprise. The task ahead seemed to be ideal for introducing and testing the
engine.

The task was to rebuild the existing system but keep its data intact and redesign it
to meet the new regulations and to support the workforce of the organisation with a
workflow that could be fully audited by the supervisor and that would guide the
employees through the new way of working. It would be a challenging task because
the timeline was strict; little room was left for making mistakes.

Approach
When the project was initiated, several key players of the organisation were trained
to elicit the functional specifications for the overall system that met their future
needs. This was quite a time-consuming task with room for ambiguity due to a lack
of supervision that oversees the problems that may arise. There was also no objective
method to measure the quality of the specifications. Next, project management was
based on the Waterfall Model where specifications are frozen after they have reached
their final stage. This made the timeline even more challenging.

When the implementation phase began, we found that turning a “functional
description into a functioning construction” was hard to accomplish. This is where
the project needed some pragmatism. The way to solve these misfits was to gradually
turn project management into a more agile approach with close links between the
implementors and the staff that provided the functional specification. This approach
helped enormously to speed up the implementation phase; however, there was a
problem that budgets based on supplier offers regarding the earlier functional
specifications, were no longer realistic regarding the amount of hours spent.

414 19 Real-Life Applications of DEMO

mailto:joost.Vermolen@formetis.nl

Results
Relying on the DEMO methodology during the implementation of our part of the
system has helped us to get a good overall view of the functionalities that should be
supported and the possible pitfalls that we had to overcome. The outcome is that
we were the only partners that delivered the functioning system on time despite the
short timeframe. During this stage there were serious doubts by the project
manager whether our approach was the right choice, but when all parts were put
together he had to admit that it really worked. The main publications are [5]
and [6].

After the project was completely delivered, we got complimented for both the
flexibility of the system and the rigidness of the guidance for the employees to use
the system. The department manager told us they could just pick new staff and they
would be up and running after half-day’s training.

The DEMO Engine holds track of every step in every transaction, which makes
auditing easy. Endinet appeared to be the first grid operator that fully complied with
the reporting requirements of the governing bodies.

In addition, we conducted a process mining project and found that there were
some stages in the overall process that needed attention. Among others, we found
that the ‘Chinese Wall’ between executer and controller had been breached, and that
parts of the process were not logical, even contra-productive. Fixing the flaws led to
several efficiency gains.

Reflection
The lack of a method to safeguard the quality of functional specifications mentioned
earlier, can be tackled by DEMO. In later research and practical experience we have
found that generating a DEMO model based on these specifications can help to find
omissions and ambiguous situations.

Creating an efficient and elegant user-interface that supports the transaction
pattern (cf. Chap. 8) is a challenge and will remain so if we reflect on the past and
current implementation. With the help of UX-UI experts and suggestions from
clients, we are still seeking for a generic solution that we can use in forthcoming
projects.

On numerous occasions we got “squashed” between user’s wishes and the need
for a consistent software construction. Users often wanted pragmatic shortcuts that
led to conflicts between the Coordination World and the Production World. Keeping
those worlds clearly separated, or wisely connected by the DEMO Action Model
(cf. Chap. 12), helps to overcome these misfits.

Introducing Enterprise Engineering, in particular the DEMO methodology works
only if you fully understand the benefits, and if you are able to communicate the
benefits with the manager(s) who are responsible for keeping the project on time and
within budget.

We see it as a reward for our work, that for the ongoing integration of the total
system, Endinet has asked Formetis to take care of it, because we could do it in such
an elegant and flexible way.

19.3 Getting Firm Grip on Software Development 415

19.4 Agile Law Making

Mariette Lokin (m.h.a.f.lokin@vu.nl)

Situation
A large part of Dutch legislation is implemented in ICT systems. Due to the
massiveness that large government agencies have to deal with, the use of ICT to
perform their statutory tasks—further referred to as digital execution—has become
indispensable. In order to implement the continuous flow of new legislation
quickly and efficiently in their ICT systems, various methods of systems develop-
ment are used, under the heading knowledge-based working. The essence of this
approach is that knowledge from legislation (rules, data, process steps) is no longer
hard coded and thus ‘locked up’ in the system, but shaped into knowledge models,
forming the basis for modular ICT services. In doing so, government agencies aim
to increase the agility of the ICT systems and thus of the implementation of
legislation.

In recent decades, a great deal of research has been carried out to find ways of
supporting knowledge-based working, for example by displaying knowledge in a
formalised way, supporting the conversion to automatically executable specifica-
tions. However, a method for clarifying the meaning of the legislation is still lacking.

Task
The goal of the performed PhD research [7] was to develop an approach for agile law
making, not only aiming at legislation as a product, but also as a process. This led to
the following central research question: To what extent and in what way can digital
execution of legislation by national government agencies be taken into account in
the legislative process?

Agile legislation has two dimensions: (1) a product that is clear in terms of
structure and meaning, to allow the knowledge required for digital execution to be
easily distilled from it; (2) a process that integrates the design of digital execution.

These dimensions have been elaborated in an approach for clarifying the
meaning of legislation, consisting of three elements: a language model, a legisla-
tive vocabulary, and the application of linked data. Furthermore, possible
supporting tools and adjustments in the co-operation between actors in the legis-
lative process, necessary for successful application of the approach, have been
described. This case report focuses on the language model, which is partly based
on DEMO.

Approach
Legislation is structured in chapters, paragraphs, articles, article parts, etc. (referred
to as formal structure) and in content elements, such as types and structure of legal
norms (referred to as material structure). With regard to the content elements, it
contains many ambiguities and implicit relations, impeding the conversion to digital
execution. The question is whether it is possible to clarify this meaning in the process
of drafting legislation, and in the text of the legislation itself (not only in explanatory
memoranda).

416 19 Real-Life Applications of DEMO

mailto:m.h.a.f.lokin@vu.nl

In order to answer this question, an analysis of the formal and the material
structure of legislation has been made, based on the Dutch design requirements
for law drafters, and on literature. As the material structure is essential for the
design of ICT-driven decision making, it has been further elaborated on the basis
of the fundamental legal relations theory of Hohfeld [8] and (its application in)
approaches for requirements engineering. As these focus on the legal relations in
legislation, another method was needed to distinguish elements related to
process and data in legislation. In this, DEMO was found to be very suitable, as
legislation bears all the elements of performa, informa, and forma (cf. Chap. 11).
Based on the analysis, a language model has been created through which the
wording of legal concepts in legislation can be provided with a coloured label
(marked as annotation) that unambiguously expresses these concepts. The shades
of the colours used for the labels match the colours of performa (red), informa
(green), and forma (blue).

Results
The language model has been applied to several types of legal provisions in
(amongst others) Dutch tax legislation, Aliens Act and Civil and Penal Code. The
annotations proved to ameliorate the insight into the meaning of the legislation, both
for purposes of digital execution and for manual execution (drafting of instructions,
manuals etc.).

In the PhD research, the model has been applied using a regular word processor
(Word), which sets limits to its application. It requires multiple acts by the law
drafter and is therefore time consuming. However, software applications and tech-
niques are available that may serve as a basis for efficient and effective use of the
model. The thesis shows how they can be (further) developed into a special law
editor, enabling optimal use of the language model.

Reflection
Application of the language model—and through this, the principles of DEMO—in
the legislative process, can help to improve the translation of legislation into
specifications for ICT systems and work processes. The challenge for successfully
implementing the model lies mainly in the changes it requires in the law-drafting
process. The worlds of law drafters and system designers are still ‘physically’ and
‘mentally’ separated: there is no structural and direct co-operation between these two
parties.

Also in the administrative and political arena, the influence of technology on the
design and execution of legislation—to be regarded as an independent technological
rationality in the process—is not always valued. It is necessary to bridge this gap
between ‘language’ and ‘technology’, by establishing a different way of working
among the various actors in the legislative process. The research report [7] also
contains an approach for this, based on agile design methods in ICT.

The need for change is acknowledged by the Dutch Council of State (the highest
advisory board on legislation of the government), which in a recent advice on
digitisation of government (citing the PhD research) emphasised its importance for
safeguarding a legitimate and just government performance.

19.4 Agile Law Making 417

19.5 Enterprise Transformation

Eduard Babkin (eababkin@hse.ru)

Situation and Task
This contribution concerns a small private company providing various car repairing
services to individual car owners in a large industrial city in Russia. The position of
the company is stable enough to think about change. The company management
would like to have a reliable method of supporting the related decision making. It
was proposed to evaluate several transformation alternatives using generic principles
of agile enterprise transformation [9–11] and DEMO (cf. Chap. 12). The transfor-
mation towards an agile enterprise should include the design and evaluation of
several transformation scenarios that will strengthen its position in the market,
open new business opportunities, and improve the economic figures.

Approach
Given the objectives above, a combined approach was proposed in order to trans-
form the present structure of the enterprise, namely a combination of DEMO and the
theory of transaction costs [12], to have a single and quantitative approach. For
estimating the transaction costs, an extension to DEMO was developed: the Trans-
action Cost Table. On the basis of this table, the CSD (cf. Chap. 12) was extended to
indicate the costs for each actor role and each transaction kind. At the border of the
organisation, the total costs of the transformation are specified as well. The result is
the extended CSD of the current (AS-IS) enterprise (Fig. 19.2).

Using a brainstorming technique, a set of eight semi-structured proposals for
restructuring the company was produced. Further evaluation of the proposals was
performed by the owners of the company. They selected four proposals for detailed
modelling and analysis:

• Removing car washing from the services of the enterprise
• Becoming a car insurance agent
• Opening a spare parts store
• Starting to sell occasions

For each of the four selected proposals, a corresponding CM (cf. Chap. 12) was
designed, as the TO-BE model. For a correct estimation of the incurred costs, a
business analyst studied statistical data on the market segments of repair, insurance,
car sales, and sales of car parts. For each proposal, a Transaction Cost Table was
produced as well as the corresponding extended CSD. The resulting tables and
diagrams were presented to the company’s stakeholders. During the meeting, the
forecasts of some types of costs were slightly adjusted, and the final versions of the
models were taken as the basis for the selection of the best transformation variant.
The final decision was to implement transformations needed for becoming (also) a
car insurance agent. This option was recognised as the simplest one, and with the
lowest implementation costs. The estimated increase in revenues was 8%.

418 19 Real-Life Applications of DEMO

mailto:eababkin@hse.ru

Reflection
The budget of the project included the salary of one business-analyst, who used a
set of general-purpose software tools. For drawing the DEMO diagrams, MS Visio
was used. Costs calculations were produced in MS Excel. The project lasted
7 months with an average occupancy of the business-analyst of about 12 h per
week. In 2017, the company successfully implemented the selected transformation
option.

The concepts of DEMO and the abstraction levels were appreciated and fully
accepted by the company stakeholders. The results of the cost estimation using the
proposed approach were recognised as accurate and appropriate. The constructional
changes took place in accordance with the proposed TO-BE DEMO model. The
actual costs of restructuring are very close to the predicted values. From the
modelling point of view, extensions to DEMO were proposed and a method for
estimating costs of changes was developed.

Two typical situations were observed that occurred during the transformation.
The first is that after a transformation involving many transaction kinds and actor
roles, usually a new transaction kind was suggested: maintaining the enterprise
activity in accordance with the DEMOmodel. It means that the company understood
that after the transformation, it is necessary to spend effort and time on assuring that
the enterprise’s construction actually fits the TO-BE model. The second situation is
that when transferring an internal transaction kind to the border (which means
outsourcing the transaction kind to external actors), or even or removing it

Fig. 19.2 Fragment of the extended CSD of the AS-IS enterprise model

19.5 Enterprise Transformation 419

completely, new risks arise, and as a consequence, new transaction costs, such as the
risks of litigation, the risk of loss of partners, etc.

19.6 Designing Data Warehouses

Peter Kuipers (peter.kuipers@live.nl), Henri Oostindie (henri.oostindie@nippur.nl),
and Peter Kurstjens (peter.kurstjens@qosqo.nl)

Situation
The case concerns a pharmaceutical wholesale company for public pharmacies. It is
going through a major transition due to the acquisition of another pharmaceutical
wholesale company for hospital pharmacies and almost 100 new public pharmacies.
From a small wholesale company with a low-experienced ICT organisation and a
tailor-made ERP system to support sales, logistics, and procurement, it suddenly
became a midsize wholesale company that needed to comply with new, severer
regulations.

A stress test of the existing ERP system showed it would not be able to process
the increased amount of sales order lines, almost twice the current volume, as a
consequence of the acquisition. A project was started to completely change the
supporting ICT application infrastructure. This infrastructure should be built around
a standard ERP system with an ESB to integrate the different applications and a data
hub to support the applications with the standardised and quality-insured data.
Furthermore, a data warehouse needed to be developed to provide the organisation
with accurate management information and also enable integration with the data hub
for master data management.

Knowledge about the business processes and the way the custom-built ERP
system was set up existed mainly in the heads of a few business experts. No
documentation was available. The business culture was informal, no-nonsense,
and pragmatic. Most project members were external. The technical management of
applications, databases, and infrastructure was outsourced to third parties. Gover-
nance and project steering came from the board of the company.

Task
The task to be executed is the delivery of a data warehouse, data hub, and the support
of the data migration and data cleansing of the overall program. It is assigned to the
data team, a small project team within the overall program, which is also responsible
for managing the master data. The business analysis has not been completed when
development started. There is no overall functional design for the master data.
Management does not take ownership and the deadlines are based on external
factors, instead of on what would be realistic for the project and the organisation.
Moreover, the budget was fixed by the board.

Approach
Enterprise Engineering is chosen as the paradigm to tackle the task, and DEMO was
selected as the methodology (cf. Chap. 12). The first step is to create a CM of the
whole organisation and to identify all master data objects. Since the business

420 19 Real-Life Applications of DEMO

mailto:peter.kuipers@live.nl
mailto:henri.oostindie@nippur.nl
mailto:peter.kurstjens@qosqo.nl

analysis is done parallel to the development, reverse engineering on the existing
applications will be applied to gather information for filling in the FM (cf. Chap. 12).
The FM is built with Sparx Enterprise Architect and the source systems are reverse
engineered utilising automation tool Quipu,2 supplied by QOSQO.3 The required
ETL code will be generated with Quipu also, making sure that overnight changes in
the whole OTAP environment will be captured and information will directly be
available for analysis. The data hub supports both the master data management and
migration environment.

Results
With the start of the essence of the organisation with DEMO and the needed result
for the data warehouse and concepts for the data hub, we had a solid foundation to
create the needed structure with Sparx and the needed management information with
Quipu, as well as the foundation and environment to be able to do effective master
data management. Because of the lack of validation of the CM, the governance for
the different concepts, their definitions and business rules, the parallel development,
testing, and implementation, we were on the one hand flexible, but on the other
constantly shooting at a moving target.

What we did achieve, however, was:

• Providing insight into the structure and the definitions of business information.
• Showing the lack of governance, whereas management and ownership of the

business data are crucial.
• Providing insight into how master data objects are created, changed, and ended

and who is responsible for which data. However, without actual ownership, the
insight is not enough to make effective changes.

• Providing insight into data owners: what data am I responsible for, who can have
access to the data, and to whom will the data be distributed to?

• A successful data migration, successful synchronisation of article and stock data
between two ERP systems running in parallel, as well as providing information
from the data warehouse solution to support process enhancement and bug fixing
in the newly live ERP system.

Reflection
As is the case in many projects, the governance and approval steps are vital for good
understanding and acceptance of the organisation. The force of moving on because
of deadlines is also here a big pitfall. Without a validated CM, the use of the
corresponding FM as the basis of the business warehouse is not a solid one. We
should have insisted on validating the CM with the business before moving on.

As already mentioned, the major frustrating circumstances were that management
did not take ownership, and that the deadlines were based on external factors instead
of on what would be realistic for the project and the organisation.

2https://quipu.nl/
3http://www.datawarehousemanagement.org

19.6 Designing Data Warehouses 421

https://quipu.nl/
http://www.datawarehousemanagement.org/

19.7 Enterprise Ontology Based Process Simulation

Sérgio Guerreiro (sergio.guerreiro@tecnico.ulisboa.pt)

Situation
The case at stake is an agri-food industrial company focusing on the transformation
of fresh fruits to preparations that are sold to other companies. Its clients are
industries of milk-based products, ice creams, cakes, and beverages products.

To guarantee the product quality, fruit producers are subject to a ratification
process before starting to supply fruit. Fruit passes through three stages: (1) raw
material, (2) ingredients after raw material preparation, and (3) finished product after
ingredients transformation.

Before the end consumer is reached, a complex value chain is executed including
the actor roles of client, fruit producer, raw material receptionist, ingredient preparer
(e.g. weighing and cleaning), ingredient transformer (e.g. mixing components,
adding water, sugar or other products accordingly with the recipe), finished product
transporter and storage company (when the agri-food company is not able to locally
store all the production). The production starts when a client order is received (produ
ce to order policy). Then, five stages are performed: receiving, supplying, ingredi-
ents preparation, ingredients transformation, and dispatch. Besides selling to other
companies, a small part of finished products is directly sold to the end consumer.

Task
The project has been conducted to identify the following two objectives: (1) being
able to simulate business transactions redesign that maximise value for the company,
and (2) supporting management with an approach that is able to estimate the
non-observable steps of operational business transactions.

The project involved students that were developing their master thesis on a one
semester basis, and the main coordinator of the project.

Approach
Methodologically, a non-documented landscape was presented to the students. The
operation of the company was demonstrated in the facilities along with the
organisational structure, goals, and ICT main components. Moreover, face-to-face
and electronic meetings were established to elicit the detailed requirements of the
business processes. From here, the Universe of Discourse (UoD) was documented
for future reference. No matter the effort done to clarify the UoD, we observed that
an essential description able to avoid misunderstandings was lacking.

To address this limitation, it was decided that an ontological model of the UoD
using DEMO will be designed. During the initial meeting to design the core business
transactions, many design options were possible. This results from the nature of the
previously enunciated problem, for instance, with regard to the client/supplier
perspectives that led to an inconsistent information ownership. The DEMO models
were presented in a workshop session where the advantages and pitfalls of each
model were discussed. This discussion was facilitated by the essential description

422 19 Real-Life Applications of DEMO

mailto:sergio.guerreiro@tecnico.ulisboa.pt

offered by DEMO. And, a final DEMO model was then reached as the result of
group discussion.

Afterwards, the parameters for the simulation tool were estimated in an iterative
process by the research team. At this stage, the company’s knowledge about their
past experiences was of key importance to estimate the main simulation parameters.
To obtain this knowledge, non-structured questions were posed to the company, for
instance, during the last year, how many trucks had problems while transporting the
finish product to storage?

For the simulation tool, the following software solutions were used:

• http://www.graphviz.org/ for visualization
• APPLtoolkit—Approximate pomdp planning (appl) toolkit for processing of

Partially Observable Markov Decision Processes, as available at https://github.
com/petercaiyoyo/appl

• GNU Octave for results processing
• Matlab, from MathWorks, for processing the Markov Decision Processes

Results
The main results that were delivered to the organisation are: (1) the DEMO CM,
consisting of a CSD and aTPT (cf. Chap. 12), of the main business transactions,
relevant for stakeholders’ awareness and discussion; and (2) two simulation tools to
evaluate the delivered business transactions’ value. The main publications for these
results are: [13] and [14].

Reflection
The benefits obtained are manifold. The solution proposed for the company
empowered the managers with pertinent information about the gaps of business
transactions steps that occur during operation due to the occurrence of workarounds.
In these circumstances, managers are able to decide about the future steps of the
business transactions using a decision map that encompasses all the possible future
combinations regarding the value delivered for the company. These results are
possible due to the deep detail that is offered by the DEMO models, which consti-
tutes a consistent set of business transactions prescribed for this specific
organisation.

The attempted intersection between Enterprise Ontology and Operational
Research shows that a discrete model of the core operation of the organisation
allows for the application of already known approaches for estimation of future
behaviour. It has been identified that stochastic approaches could offer a partial
solution for the problem at hand, which could be further improved if combined with
other solutions, for example, human decision.

The simulation tools still demand a large estimation effort that requires
specialised human intervention. For future development, machine learning tech-
niques that are able to estimate the configuration of business transaction behaviour
might be considered. Data sets from operation of the business transactions performed
by the organisation will be required to train, for example, a neural network. The
overall proposed benefit is to minimise the error associated with the human estima-
tion process.

19.7 Enterprise Ontology Based Process Simulation 423

http://www.graphviz.org/
https://github.com/petercaiyoyo/appl
https://github.com/petercaiyoyo/appl

19.8 Designing Digital Document Archives

Rob Stapper (r.stapper@belastingdienst.nl) and Peter Hoving
(pl.hoving@belastingdienst.nl)

Situation
The business processes in the Dutch Tax Office require information from documents
that reside in external document sources. These are physical documents and the
amount is huge. In order to make them more easily accessible to the business
processes, it was decided to create a local digital document archive containing copies
of relevant documents in PDF. Considering the amount of documents and the fact that
a large part of the source documents will never be accessed, it was also decided not to
scan all the documents in one big blow but to build the archive over time on an ad hoc
base. Each time when a document is needed that isn’t available in the local digital
archive, a request is sent to the document source for a digitalised copy. The external
document source is willing to deliver the copies under the following conditions:

• A digitalised copy of a document is in principle only requested once.
• On delivery of the digitalised document, the source doesn’t have to refer to the

original request, so that the source can decide to send digitalised documents on
their own initiative, to anticipate possible future requests.

Staff members in the business processes can subscribe to newly received
digitalised documents that comply with provided specifications. Once a new
digitalised document is received, all the subscribers, whose specifications the doc-
ument complies with, will receive a message. This way they will be informed about
newly received relevant documents all the time. The requester of a digitalised
document from the source is automatically subscribed to documents with the same
specifications.

Task
The development team is a small team within an overall program. It is responsible
for the design and construction of the software for the interaction with the external
document source. There is a vague idea of the interaction with the external document
source, but the interaction messages with the external document source are
completely defined. There is no view on how to handle exceptional situations.
Business management is represented by a business analyst without any knowledge
of DEMO, but with thorough knowledge of the business requirements and the ability
to decide quickly on design issues.

Approach
Enterprise Engineering is chosen as the paradigm and DEMO as the methodology.
The analysis is done from a product-driven approach. Starting with an inventory of
the products to be delivered from within the scope, we worked our way back to the
products to be obtained from outside the scope, meanwhile recognising intermediate
products, each product eventually resulting in a transaction kind. This way, the
structure of the CM is determined by the products and their cohesion instead of some
process description.

424 19 Real-Life Applications of DEMO

mailto:r.stapper@belastingdienst.nl
mailto:pl.�hoving@belastingdienst.nl

For instance, one of the delivery products we found can be described as a ‘copy of
a at most one time at the external document source requested digital document copy’.
Analysing this back resulted in the need for a ‘digital document copy from the
document source’, a ‘digital document copy database’, a ‘digital document copy
request database’, and a less obvious product: ‘digital document copy recording’, a
service on behalf of the external document source.

One other delivery product we found can be described as a ‘subscription to digital
document copy receptions’. Analysing this one back made us realise that one
product can result into the delivery of multiple other products over time. Therefore,
we modelled it as a transaction kind that allows for it.

Results
Before starting the ICT implementation of the business processes, its complete
essential model was produced: the CM, PM, FM, and AM (cf. Chap. 12), and
accepted by the business owner. During the ICT implementation no extra essential
business information was needed. This demonstrates the completeness of the DEMO
methodology. Non-functionals like data sizes and the number of occurrences were
added at the start of the ICT implementation.

The essential model was represented in Word, Power Point, and Excel. This way
we would be more flexible. Since the project wasn’t too big, manually keeping the
model consistent would be doable. We also made a Function Point Analysis based
on the essential model. It turned out to be quite straightforward.

The ICT-implementation was done in an agile way. The project was fully steered
by the essential model. Every transaction kind led to a story that was to be built.
Every transaction kind was tested and accepted individually by the business. There
was no need for the business to wait for the complete project to be finished before
testing the system functionally. How agile can it get? The project results are
published in [15] as an example of a ‘good place’ project environment.

Reflection
Asking the business her acceptance of the essential model as a starting point for the
ICT-implementation was a bit of a leap of faith for them. An essential model is a
Business model, not an ICT-specific model. The essential model was used as starting
point for the ICT development project, not as deliverable. A proper essential model
provides all the essential domain knowledge for a domain-model-driven and agile
ICT development. Not only can it be used for specifying the ICT products, it can also
be used for steering the ICT development project.

The essential model looks like an interesting base for a Function Point Analysis
(FPA) on the ICT system. Doing an essential model driven FPA could prevent
counting over-complexity of the ICT-implementation as user functionality. This
needs further investigation.

Manually maintaining a consistent Enterprise Ontology requires a lot of effort
when the scope becomes bigger. Proper tooling is strongly recommended when the
scope gets bigger.

19.8 Designing Digital Document Archives 425

19.9 Air France KLM Cargo: Post Merger Decision
Making

Martin Op ’t Land (martin.optland@capgemini.com)

Situation
In 2005, Air France Cargo and KLM Cargo merged into AFKL Cargo, which is now
the no. 1 European carrier of international air freight, serving more than 400 desti-
nations, with local presence in 100 countries. After the merger, the following
activities were integrated into a single organisation: Sales, Customer Service
(CSO), Revenue Management (RM), Marketing, and Network Development. The
operational services (OPS) remained in the original organisations. Since then several
attempts were made to move towards a joint ICT systems portfolio (ICT integration).

After some initial studies, the ICT integration was defined as the transition from
the legacy environments of Air France (AF) and KLM (KL) to a new ICT environ-
ment, to be achieved in three steps: (1) the already integrated commercial organisa-
tion, (2) the OPS, (3) the remaining legacy systems.

Air freight is a dynamic business area. The booking of freight for a specific flight
usually takes place shortly before departure: the last ones may come in a few hours
before. Bookings are evaluated in a revenue management process for profitability.
This industry characteristic leads to a highly dynamic process during the final days
before flight departure, involving continuous communication and trade-offs between
CSO, RM, and OPS. One of the key considerations in moving towards a new
common revenue management system as a first step was the potential impact of
that new revenue management system on the operational process in the last 24 h.

Task
To ensure well-founded decision making regarding the ICT integration, its basis
should be neutral with respect to the merging parties, and enable comparison of the
AS IS and TO BE situations. The way of thinking and modelling of DEMO
(cf. Chap. 12) was selected, notably, for its implementation neutrality. This resulted
in the following assignment: “Within 6 weeks, create neutral and sustainable DEMO-
models of the Cargo business, for the current processes in AF and KL. Show in these
models: (1) the essential business transaction kinds between commercial and opera-
tional domains, with a focus on the last 24 hours before departure; (2) the mapping of
the actor roles and transaction kinds on the current AF and KL organisations; (3) the
ICT systems that support these transactions; (4) the critical design and migration issues
within the preferred scenario and their proposed solution.”

Approach
To answer the practical questions about organisation and ICT implementations, actor
roles and transaction kinds can be systematically mapped to organisational units and
ICT applications [16], in order to find the situations where (1) an actor role is
implemented in different organisational units, (2) an actor role is supported by different
ICT systems, and (3) actor roles have demanding Quality of Business requirements.

To achieve sufficient buy-in of the resulting analysis on operational integrity,
political and organisational sensitive issues should be open to discussion based on

426 19 Real-Life Applications of DEMO

mailto:martin.optland@capgemini.com

observed facts. To this end we developed a four-step approach: (1) creation and
validation of the CM; (2) creation of “implementation mappings” of the AS IS situation
for the organisation and the ICT systems; (3) identification of critical transaction kinds
and its design and migration issues based upon multiple AS IS implementations of the
organisation and the ICT systems, and a demanding Quality of Business; (4) evaluation
and interpretation of the results in preparation for decision making.

A key role in drafting the CM and creating implementation mappings was played
by business event traces. During international workshops, shop floor employees
(from both AF and KL) systematically answered for each DEMO coordination step
(e.g. “request”, “promise”) who in the organisation is addressing who, what ICT
system is used in that step, and what Quality of Business is needed and what is
delivered. This built a solid foundation for validating the DEMO models, the
organisational accountabilities and responsibilities and the actual use of the ICT
application landscapes.

AFKL-CARGO

CA01

Customer

T16

Shipment S has been
accepted

T26

Shipment S has been
collected

A18

Capacity
ForecasterT18

Physical Capacity PhC for
flight F has been forecasted

CA04

Authorities

A04

Order
Taker

T04

Order O has been accepted

T22

Flight F has been handled

A19

Flight
Handling
Planner

T19

Handling H for Flight F has
been planned

A47

Shipment
Deliverer

A08

Rate Setter T08

Rate R has been set

A03

Demand
Forecaster

T03

Demand D for Flow F has
been forecasted

A09

Commercial
Policy
Maker

 T09

Commercial Policy CP has
been set

A10

Technical
Capabiliy
planner

T10

Standard Technical
Capability STC has been

provided

T06

Flight Profile FP for Flight F
has been created

A06

Flight
Profiler

A13

Capacity
Booker

T13

Capacity C has been booked

A23

Shipment
Execution
Monitor

T23

Execution of Shipment S
has been monitored

A16

Shipment
Acceptor

T34

Shipment S has been
cleared

A22

Flight
Handler

CA08

Flight
Executor

T37

Shipments {S} for Flight F
have been handed over to

Flight Executor FE

T38

Shipments {S} from Flight F
have been checked-in from

Flight Executor FE

A38
Shipment
In Checker

T42

ULD U has been built

A42

ULD
Builder

T47

Shipment Delivery SD has
been planned

T46

ULD U has been transported
from/to the ramp

A46

Ramp
Transporter

Fig. 19.3 Part of the CSD of the AFKL Cargo organisation

19.9 Air France KLM Cargo: Post Merger Decision Making 427

Results
Within the set time frame of 6 weeks and about 65 man-days, AFKL Cargo was able
to reach consensus on (1) the DEMO CM as the first neutral and correct model of the
essence of its business, and (2) the (very) different implementations of the CM in AF
and KL, both in terms of organisation and ICT. Although AF and KL had not
cooperated before the merger, the DEMO model appeared to be valid for both
airlines. Figure 19.3 exhibits a part of the original CM, consisting of 49 transactor
roles and 203 access links. It shows clearly the vital nature of transaction kind T13
(capacity booking), having no less than five initiating actor roles (A04, A06, A16,
A19, A23). Note that the diagram in Fig. 19.3 is made in DEMO-2; it may therefore
not directly be comprehensible to the reader.

Next, the six critical transactions kinds for the 24 h before departure were
determined. By making for the corresponding actor roles actor sheets per organisa-
tion (AF or KL) and migration step (AS IS to several TO BE’s), management was
able to get a clear insight into the impact of the proposed scenario for implementing
new ICT systems, and to detect opportunities for simplification of the cases where
actor roles were filled by more departments than expected.

Reflection
The DEMO-CM is adopted and appreciated by AFKL Cargo as the first neutral and
shared language for discussing the essence of the organisation, and for devising
change scenarios. It was also delivered fast, yielding a high Return On Modelling
Effort [16]. The key success factors of the conducted project are:

• The intrinsic preciseness of the CM offers a natural and shared stop criterion for
the level of detail and enables unambiguous metrics.

• The CM is a neutral model without an AF or KL bias, allowing objective
comparison of the different implementation scenarios up to the executive level.

• There existed already a well-educated DEMO-staff on KL-side.
• Directly listening to the operational floor people gave a solid and indisputable

underpinning of the conclusions.
• The use of business event traces in identifying actual implementations.
• Early visualising of the results, facilitating communication on management and

executive level.

Since DEMO is a ‘rational’ methodology, emotional and political issues can
easily be ignored. This could be overcome by combining DEMO with ‘softer’
approaches. In addition, we recommend to explain the impact of the clarity, neu-
trality, and preciseness of DEMO to all key stakeholders in order to enable them to
choose whether they want this clarity now and, if so, to let them actively determine
the required boundary conditions, for example, in building support and buy-in.

The CM can serve as a ‘language’ for the whole integration program of AF and
KL, including future mergers and alliances, possibly supplemented with the PM and
FM, to ensure well-founded discussions on process and data ownership. The CM is
also expected to contribute to well-founded business service and component iden-
tification in the SOA-world, which is a vital part of AF-KL’s ICT strategy.

428 19 Real-Life Applications of DEMO

References

1. Mulder, J. B. F. (2006). Rapid enterprise design. In Faculteit Elektrotechniek, Wiskunde en
Informatica (p. 160). Delft: Delft University of Technology.

2. Pluijmert, N. J. (2017). VISI revisited. Lecture Notes in Business Information Processing, 284,
89–98.

3. Terlouw, L., & Mulder, J. B. F. (2015). Process mining met VISI. The Netherlands: CROW
Magazine.

4. van Kervel, S. J. H., Dietz, J. L. G., Hintzen, J., van Meeuwen, T., & Zijlstra, B. (2012).
Enterprise ontology driven software engineering. In ICSOFT 2012. SciTePress.

5. Dudok, E., Guerreiro, S., Babkin, E., Pergl, R., & van Kervel, S. J. H. (2015). Enterprise
operational analysis using demo and the enterprise operating system. Cham: Springer.

6. Hintzen, J., van Kervel, S. J. H., van Meeuwen, T., Vermolen, J., & Zijlstra, B. (2014). A
professional case management system in production, modeled and implemented using DEMO.
In 8th TEEWorkshop: Transformation & Engineering of Enterprises; CBI conference. Geneva.

7. Lokin, M. H. A. F. (2018). Wendbaar wetgeven – de wetgever als systeembeheerder. In
Faculteit der Rechtsgeleerdheid (p. 390). Amsterdam: Vrije Universiteit Amsterdam.

8. Hohfeld, W. N., & Cook, W. W. (1919). Fundamental legal conceptions as applied in judicial
reasoning, and other legal essays (114 p.). New Haven, CT: Yale University Press

9. Op’ t Land, M. (2006). Applying architecture and ontology to the splitting and allying of
enterprises: Problem definition and research approach. Berlin: Springer.

10. Op ’t Land, M., Proper, E., Waage, J., Cloo, C., & Steghuis, C. (2009). Enterprise architec-
ture—Creating value by informed governance (Enterprise Engineering). Berlin: Springer
Nature.

11. Tsourveloudis, N., & Valavanis, K. (2002). On the measurement of enterprise agility. Journal of
Intelligent and Robotic Systems, 33(3), 329–342.

12. Commons, J. R. (1990). Institutional economics: Its place in political economy. New Bruns-
wick, NJ: Transaction.

13. Guerreiro, S. (2019). (Re) designing business processes using Markov theory and constrained
state, transition and actor role spaces. International Journal of Knowledge-Based Organiza-
tions, 9(2), 43–61.

14. Guerreiro, S. (2017). Designing a decision-making process for partially observable environ-
ments using Markov theory. Cham: Springer.

15. Stockbroekx, S. (2019). The intelligent digital transformation. Antwerp: Antwerp Management
School.

16. Op ’t Land, M. (2008). Applying architecture and ontology to the splitting and allying of
enterprises. Delft: Delft University of Technology.

References 429

Chapter 20
DEMO Enhanced Method Engineering

Abstract In this chapter, a number of contributions are presented wherein DEMO is used
in combination with an existing and well-accepted approach or activity in the broad field of
enterprise engineering, all resulting in improving the quality of the other approach or
activity. The selected contributions are: (1) DEMO enhanced Agile Software Development,
(2) DEMO enhanced Lean Six Sigma (3) DEMO enhanced BPMN, (4) DEMO enhanced
software testing, and (5) DEMO enhanced mining.

20.1 Introduction

Under the heading “DEMO Enhanced Method Engineering” we present in this
chapter a number of applications of DEMO of which the common denominator is
that they try to improve the effectiveness of some other approach in the broad field of
enterprise engineering.

In Sect. 20.2, titled “DEMO Enhanced Agile Software Development”, Marné de
Vries (University of Pretoria, South-Africa) discusses how the DEMO CM
(cf. Chap. 12) can help to keep overview in situations that are basically addressed
by applying the story-card method, which is quite popular in agile methodologies.
Without such an overview, one easily loses sight of what one is doing.

In Sect. 20.3, titled “DEMO Enhanced Lean Six Sigma”, Roland Ettema (Open
University, The Netherlands) discusses the improvement of analyses with Lean Six
Sigma by combining it with DEMO, notably in finding the real causes of quality
problems that appear from correlations-based analysis.

BPMN is a popular business modelling technique, but it suffers from a lack of
formality. In Sect. 20.4, titled “DEMO Enhanced BPMN”, Steven van Kervel
(Formetis, The Netherlands) and Hans Mulder (VIAgroep, The Netherlands) discuss
the current drawbacks of BPMN and explain how BPMN can profit from the
combination with DEMO.

In Sect. 20.5, titled “DEMO Enhanced Software Testing”, René Ceelen (Test
Monitor, The Netherlands) explains convincingly the benefits of using the complete
transaction pattern (cf. Chap. 8) to set up acceptance performance testing of appli-

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6_20

431

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38854-6_20&domain=pdf

cation software. The study thereby demonstrates once more the practical value of the
pattern: considering all steps, also the ‘exceptional’ ones, thus the decline and reject
and the revocations.

Process mining is a popular analysis technique, but its application suffers from a
lack of semantics of the ‘mined’ acts or events. In Sect. 20.6, titled “DEMO
Enhanced Mining”, Linda Terlouw (ICRIS, The Netherlands) shows how DEMO,
in particular the complete transaction pattern (cf. Chap. 8), can help in solving this
problem. She also appeals for further research of the subject in order to improve
insight into organisational problems, notably logistics problems.

The Coordination Structure Diagrams (cf. Chap. 12) that are shown in Figs. 20.1
and 20.4, differ from the ones that are presented in Chap. 10. The reason is that they
are expressed in DEMOSL-2, as presented in [1].

20.2 DEMO Enhanced Agile Software Development

Marné de Vries (marne.devries@up.ac.za)

20.2.1 Introduction

Enterprises of today need to ensure that they expand their information system
landscape in a dynamic, but coherent and integrated way. Modern software devel-
opment methodologies have already moved away from the autocratic, plan-driven
approaches of the past towards light-weight and agile methodologies that are
iterative and incremental. Since agile software development methods were originally
intended for small teams, several challenges emerged when agile practices were
applied at scale [2].

Enterprise size is one of many scaling factors that need to be considered when
adopting an agile methodology at an enterprise. Agile methods and practices may
have to be tailored for contexts where scaling factors apply, especially regarding the
elicitation and management of requirements [2]. Since additional requirements
elicitation practices should be incorporated when scaling factors apply, we believe
that the DEMO CM (cf. Chap. 12) could be used to represent a blue print of
enterprise operation, a foundation for eliciting requirements and developing
supporting information systems. The purpose is not to demonstrate how the CM
solves all challenges associated with different kinds of scaling factors. Rather, we
acknowledge that the CM will only become useful within agile development con-
texts if one or more scaling factors apply, since more advanced requirements
elicitation and management is needed when scaling factors apply. The CM has the
potential to address three main criteria regarding requirements elicitation and man-
agement requirements when scaling factors apply: (1) representing the big picture,

432 20 DEMO Enhanced Method Engineering

mailto:marne.devries@up.ac.za

(2) creating a shared understanding of the big picture, and (3) providing sufficient
structure to ensure traceability of requirements [3].

Yet, agile development stakeholders have different roles and therefore require
methods and practices that encourage collaboration, which are easy to understand,
and relate to a concrete world [4], rather than the abstract concepts encapsulated in
the CM. Hence, we prompted the need to develop an additional method, called the
story-card method, to facilitate cognitive understanding of the abstract concepts of
the CM [3].

20.2.2 The Story-Card Experiment

The story-card method starts with the story-paradigm of agile methodologies,
extracting parts of the enterprise implementation story, linking the story parts to
transaction kinds that are included in a CSD (cf. Chap. 12). We demonstrate the
story-card method based on the following narrative for an existing enterprise imple-
mentation: “Every year, in consultation with the CEO, the enterprise designer selects
members for an enterprise governance committee, capturing the selected members
on our enterprise design application (EDA). The selected members should also
indicate their willingness to become members of the committee. Later, the enterprise
designer refers back to the information about selected members to request from
every selected member to participate at a workshop. The purpose of the workshop
(a periodic event) is that the entire committee evaluates enterprise governance
concepts. When committee members arrive at the workshop, the enterprise designer
first ensures that all members state their participation by signing an attendance
register before the workshop can start. The workshop assistant also captures the
attendance data on EDA. The selected committee members often become involved
in other projects and then need to resign from the committee. In that case, the
enterprise designer consults/communicates with the CEO to replace the committee
member, i.e. re-selecting a member.”

Based on the narrative, Fig. 20.1 provides a graphical representation of a CSD
that consists of four original transaction kinds and four actor roles. Partially
explaining the constructs, the actor role ‘annual member selector’ initiates trans-
actions ‘annual member selection’. The same actor role is also the executor of this
transaction kind. Furthermore, it initiates transactions ‘committee membership
starting’. Often, created C- or P-facts (cf. Chap. 8) need to be shared with other
actor roles (interstriction). Thus, additional access links are used to indicate access to
transaction banks. For instance, the actor role ‘governance concepts evaluator’ needs
to have access to the facts that are contained in the bank ‘committee membership
starting’, since the governance concepts evaluator has to involve members that have
already committed themselves to becoming members of the committee.

20.2 DEMO Enhanced Agile Software Development 433

In [3] we presented the story-card method, based on the same narrative. We also
evaluated the story-card method, where 21 participants applied the method. The story-
card method specifies 5 inputs and 10 method steps. The inputs are: (1) flat working
space, such as table or white board, (2) A1 paper, (3) sticky notes of two different
colours (red and yellow), (4) a black pen, (5) a colleague’s inputs. The method steps:

• Step 1: Inquire from a colleague to explain a short process (about 10–15 activities)
that he or she is involved in. Ensure that the process incorporates the use of
information technology (e.g. the process followed from requesting vacation leave
up to receiving notification about the approval of the request). Explain to your
colleague that he or she needs to write the tasks (verb + noun) on yellow sticky
notes and position the notes in sequence of occurrence, left to right on a flat
working space (e.g. desk or white board).

• Step 2: Take a picture (photo) of the process. (Note that this step was only
inserted to ensure that participants that were involved to evaluate the method
provided evidence about the initial process.)

• Step 3: Discuss with your colleague all actor roles and write down composite
actor roles on yellow sticky notes, adding a smiley face, keeping actor roles aside.

• Step 4: Explain the red-green-blue triangle of production acts (cf. Fig. 11.4), also
explaining the universal transaction pattern for actor-collaboration regarding
production acts (cf. Chap. 8).

• Step 5: Have a discussion with your colleague as to identify original
production acts from his/her process (as mapped out with sticky notes in Step 4).

• Step 6: Classify (in collaboration with your colleague) remaining acts as coordi-
nation acts versus production acts.

• Step 7: Remove the original production act notes from the flat surface and phrase
appropriate transaction kind descriptions (using adjective + noun) on red sticky
notes that are positioned as diamonds on your A1 paper. Collapse initial produc-
tion act notes underneath re-phrased transaction kind notes.

• Step 8: The remaining activities on your working space should be coordination
acts or informational/documental production acts. Remove each of the remaining
notes on your working surface and collapse them underneath the appropriate
re-phrased transaction kind (red diamond notes) on your A1 paper.

annual
member
selector

annual
member
selection

committee-
membership

starter

committee-
membership

starting

workshop
participator

workshop
participation

governance
concepts
evaluator

governance
concepts
evaluation

Some enterprise operations

Fig. 20.1 Elementary CSD modelled for the scope “some enterprise operations”

434 20 DEMO Enhanced Method Engineering

• Step 9: Position the yellow actor role notes on the A1 paper, drawing in (with a
black pen) the initiator roles (+ initiator links) and the executing roles (+ executor
links) to the transaction kinds, completing the CSD.

• Step 10: Validate your composite CSD with your colleague.

Based on our narrative and an application of the story-card method, Fig. 20.2
presents the result for performing Steps 1–3, whereas Fig. 20.3 resulted from
performing Steps 4–10.

Fig. 20.2 Example of a process to demonstrate method steps 1–3.©Marné de Vries, reprinted with
permission

Fig. 20.3 Example of a process to demonstrate method steps 4–10. © Marné de Vries, reprinted
with permission

20.2 DEMO Enhanced Agile Software Development 435

The composite actor roles in Fig. 20.3 would require additional work,
transforming them into a network of elementary actor roles. Thus, the yellow sticky
notes at the bottom of the diamond-shaped transaction kinds need to be removed
from the diagram, whereas the composite actor roles positioned above the diamond-
shaped transaction kinds need to be replaced with elementary actor roles. An
example of an elementary CSD is presented in Fig. 20.1.

20.2.3 Conclusions

Software development projects at scale involve multiple stakeholders that need to
have a common understanding of the enterprise operational context, sharing a
common big picture as part of requirements elicitation. DEMO’s CSD is useful for
representing the enterprise operational context, that is, removing unnecessary clutter
of technology implementation detail. Theory indicates that the abstract CM/CSD
concepts are concise and used in a consistent way. Yet, agile methodologies require
models that encourage collaboration, are easy to understand, and relate to a concrete
world, rather than an abstract world. Software development stakeholders need to
relate the abstract concepts of the CM/CSD back to a concrete world. The story-card
method facilitates collaboration and translation of a concrete world into more
abstract (and concise) concepts [3]. The story-card method also improves the possi-
bility of adopting the CM/CSD at an enterprise as a means to represent a common
understanding of the enterprise operational context. Participants that were involved
in the evaluation of the story-card method represented various different industries
and roles [3]. Therefore, we believe that the story-card method would be useful
within various different contexts, including contexts where scaling factors apply.

20.3 DEMO Enhanced Lean Six Sigma

Roland Ettema (roland.Ettema@gmail.com)

20.3.1 Introduction

Merck is a worldwide pharmaceutical company with a research lab and plant for the
production of birth control pills in the Netherlands. The company struggled for quite
some time with an order reliability problem. Three attempts were made already to
tackle the problem, by applying Lean Six Sigma1 (LSS), when the author was called
in to assist in the fourth attempt. As the starting point, order reliability was defined
(in a CTQ-Tree) as delivering the correct amount of birth control pills on the agreed
delivery date. In LSS, a defect order is an order for which the actual amount of pills

1https://www.leansixsigmainstitute.org

436 20 DEMO Enhanced Method Engineering

mailto:roland.Ettema@gmail.com
https://www.leansixsigmainstitute.org

delivered and/or the actual delivery date fall outside a specified deviation, which is
10% for the promised amount, and 30 days for the promised date at Merck.

In the stable market situation of the past, Merck achieved an order reliability
above 95%, corresponding with 3.2 sigma. In the current turbulent market, it stays
below 72%, corresponding with 2.1 sigma. The sigma value expresses how tightly
the values of a quality variable are clustered around the mean. It means that the
spread of the quality variable values in the stable market situation was more tightly
clustered around the mean than in the unstable situation. Or, in terms of LSS, the
company was more in control in the past than presently. In other words, while the
general cause of low order reliability was known, it remained unclear why Merck
had difficulties in adapting to the market turbulence.

20.3.2 The Case Study

We interviewed the lean six sigma project members from the previous initiatives to
learn from the choices that were made in the past. They reported difficulties in
identifying appropriate cause-and-effect relationships, and referred to the difficulty
of identifying a ‘stable’ set of process variables, which means that they could not
identify a limited set of the most significant and influential process variables.

To cope with this problem, in the fourth initiative we introduced a classification
scheme containing ten ‘reason codes’ representing kinds of reasons why a defect
happens. With the help of the scheme, we observed the order fulfilment for 3 months.
We noted down each defect order, we recorded the reason and classified it using the
scheme. After the observation period and the analysis of the observations, we
determined the process variables that had the most influence on the quality variables.
This information was presented as a table consisting tuples of variables, where each
tuple represents the association between a quality variable (qv) and a process
variable (pv), shown in Table 20.1.

To reveal the interactions and mechanisms that facilitate the detected associations
(e.g.<qv1, pv1.1>), we sought support in modelling the organisation of Merck with
DEMO (cf. Chap. 12). We identified the transaction kinds and actor roles in the part
of the organisation dealing with order fulfilment.

Table 20.1 Associations in Merck’s order fulfilment organisation

qv Pv Occurrence DEMO Value range

qv1 Correct amount [T11] � >10% promised amount
pv1.1 rc1_planning_error 30 % of rc1 [A04] �45% < qv1 > 0%

pv1.2 rc7_artwork_change 45 % of rc7 [A05] 0% < qv1 > 30%

qv2 On time [T11] � >30 days promised date
pv2.1 rc1_release_delay 42% of rc1 [A06] �5 days < qv2 > +15days

pv2.2 rc1_production_delay 21% of rc1 [A03] �5 days < qv2 > +25 days

pv2.3 rc7_ship_doc_delay 25% of rc7 [A08] 0 days < qv2 > + 15 days

pv2.4 rc7_approval delay 20% of rc7 [A08] 0 days < qv2 > + 7 days

20.3 DEMO Enhanced Lean Six Sigma 437

We produced the CSD and the TRT. In Fig. 20.4, the CSD is shown augmented
with a mapping of the results in Table 20.1 to the corresponding DEMO elements.
This is shown in red in the CSD and explained in Table 20.2. The rationale behind
the mapping is to identify the transaction kinds and actor roles that control the values
of the quality variables and process variables in run-time.

The presented augmented CSD is the result of a mapping activity wherein we
mapped variables on actor roles using objective criteria. Otherwise, the mapping
would be arbitrary, unguided, and not reproducible. We agreed on three mapping

Fig. 20.4 Augmented CSD of the order fulfilment organisation

Table 20.2 Augmentation details of the order fulfilment organisation

RC Causes
Occ.
(%)

1A Release delay (PI capacity or artwork related) 42

1B Planning error, packaging material shortage, bulk shortage, order rework 30

1C Production delays, technical problems 21

7A Artwork changes (folding carton, leaflets) not on time, artwork approvals
delayed, or artwork discussions on release. Optimisation of the artwork change/
COP planning processes

45

7B Import/Export documents on time (L/C; Import Licence; HUB Invoices)
Request at earliest point, strict error checking and follow-up

25

7C Waiting for approval of the customer for shipment 20

438 20 DEMO Enhanced Method Engineering

rules. The first states: “Every variable is managed; one actor role is responsible for
its values”. The second states: “A variable is a subject within a transaction: the
initiator and executor are only successful when they agree on the variable’s
value”. The third rule states: “A variable is only mapped once”. This constrained
mapping leads to an augmented CSD (cf. Fig. 20.4) and a corresponding mapping
table (cf. Table 20.2). The augmented CSD shows—in our view—all the entities
and activities that are involved in the associations between the quality variables
and the process variables. The occurrence rate column in Table 20.2 indicates the
portion of a particular process variable that is mentioned in the observations as a
cause.

By augmenting the CSD, we created an artefact that combined two kinds of
evidence: statistics and organisational modelling with DEMO, thereby finding
causal inference support. We learned that several self-activating actor roles are
not driven directly by other transactions, but use the available information to
determine something, such as an optimal delivery deadline. If we take a closer
look at the interstriction structure (cf. Chap. 10) to understand the operation of the
organisation, we see how actors rely heavily on information in the transaction
banks.

To understand the operation of the causal mechanism that prevents Merck to
adapt to the turbulence of the market we asked ourselves: ‘are the self-initiating
actors informed about the values of the process variables?’ This question was raised
when an employee expressed doubts about the availability of such information and
suggested that informed decision making might be at risk. By using feedback from
employees, we could expose multiple limitations in the interstriction structure for the
self-activating actors in Merck that prevents the self-activating actors to adapt to
changed market circumstances.

20.3.3 Conclusions

We have explained the flexibility of interpreting associations and background
information from employees in DEMO aspect models. By applying enterprise
engineering in this LSS initiative, we concluded that actor role A01 ‘Order Com-
pleter’ has no access to relevant information, which causes issues for order reliabil-
ity, since A01 is restricted to the information available in the available information
system. More specifically, information concerning stock values, planning, and
information concerning production delays are not accessible by A01. It is vital that
this information is available, to ensure that the delivery date and volume in T01 are
feasible.

The focus in regular lean six sigma projects on correlations is useful to isolate and
to demarcate the phenomenon to be diagnosed. However, correlations are not

20.3 DEMO Enhanced Lean Six Sigma 439

sufficient to support a causal description for the phenomenon to be explained. What
is needed after the identification of the associational model is an understanding and
identification of the organisational entities that should be changed to remedy a
problematic phenomenon.

In this case study, a DEMO model was used precisely for this purpose. Further-
more, background information from employees was included in this Enterprise
Engineering approach to reveal the mechanism behind the experienced quality
problem. From a methodological perspective, the explanations in the diagnosis
were subject to statistical, epistemic, and ontological evaluation. All three evalua-
tions were present in this case, respectively from using LSS, from DEMO, and from
the coherence between the types of evidence obtained (the association and interac-
tion models). The main reference of the presented case study is [5].2

20.4 DEMO Enhanced BPMN

Steven van Kervel (steefk22@telenet.be) and HansMulder (hans.mulder@viagroep.nl)

20.4.1 Introduction

Business Process Modelling Notation (BPMN) is an industry standard for workflow
procedures, supported by the Object Management Group (OMG).3 Workflow is a
very important technology for achieving business goals in terms of efficiency and
effectiveness of their production, while complying with boundary requirements for
governance, risk, and compliance [6].

Practice shows, however, that the development of workflow procedures for
non-trivial business processes is extremely complex and error-prone. Typically,
only the so-called ‘happy flow’ is modelled. Most of the non-happy process execu-
tion must be done ad hoc and ‘outside’ the business procedure, which is of course an
‘unhappy’ situation. Most novices in workflow development are tempted and con-
vinced by the easy way a trivial workflow procedure can be developed and executed
using today’s BPMN suites. The GUIs are of a high quality and the applied BPMN
concepts fit intuitively very well to the ‘ideas’ or ‘understandings’ of the modellers.
Illustrative examples are “This looks like somebody swimming next to others in a
swimming pool, so let’s call it a swim lane” and “Here somebody is doing some-
thing, let’s call it an activity”. This is the way things become manifest to the naive

2https://repository.uantwerpen.be/docman/irua/83230a/141806.pdf
3http://www.omg.org

440 20 DEMO Enhanced Method Engineering

mailto:steefk22@telenet.be
mailto:hans.mulder@viagroep.nl
https://repository.uantwerpen.be/docman/irua/83230a/141806.pdf
http://www.omg.org

observer. However, as extensively discussed in [7], this is deeply flawed because it is
not how things in the real world are.

20.4.2 Critical Evaluations of BPMN

Business process languages, in general, and BPMN in particular, have serious
drawbacks: the absence of formal semantics, a limited potential for verification,
and a message-oriented approach, and the inability to model multi-party
collaborations [7].

The lack of formal semantics in BPMN is caused by the heterogeneity of its
constructs and the absence of an unambiguous definition of the notation. In contrast
to the comprehensively documented syntactic rules, the semantic meaning of the
constructs is dispersed throughout the specification document in plain text. BPMN
has been critically evaluated within several theoretical frameworks.

The first one is Workflow Patterns [7]. The results of the evaluation indicate that
the resource perspective is only supported in a limited way; the data perspective
is not fully covered as opposed to the control flow perspective, which is fully
supported.

The second evaluation is made by applying the Representation Theory, using the
BWW-ontology as a framework. The following findings are reported [7]:

• Concerning ontological completeness, it can be concluded that BPMN lacks
representations of state, history, and system structure.

• Regarding construct excess (i.e. BPMN constructs not representing any BWW
construct), a number of BPMN constructs have no real-world meaning. An
example is Text Annotation.

• Concerning construct overload (i.e. a BPMN construct maps to more than one
BWW construct), lanes and pools map to multiple BWW constructs.

• Regarding construct redundancy (i.e. one BWW construct maps to more than one
BPMN construct), a transformation can be represented by an activity, a task, a
collapsed sub-process, an expanded sub-process, and a transaction. Next, a BWW
event can be modelled in BPMN as a start event, an intermediate event, an end
event, a message event, a timer event, an error event, a cancel event, a compen-
sation event, and a terminate event.

In comparison with other BPM techniques, which are also evaluated within the
BWW framework, BPMN appears to be ontological complete, but it lacks clarity of
the constructs. Therefore, the use of BPMN can easily lead to complete, but unclear
and potentially ambiguous representations of real-world domains.

A third evaluation framework is the Semiotic Quality Framework, which is
based on seven general quality aspects. It identifies five criteria to assess the
quality of conceptual modelling languages. Applying the framework to BPMN

20.4 DEMO Enhanced BPMN 441

suggests that BPMN can easily be learned for simple use, and is easy to
understand [7]:

• Domain Appropriateness (how suitable is a language for use within different
domains): BPMN is suited to model the functional perspective. However, it is not
suited to model organisational structures and resources, functional breakdowns,
data and information models, strategy, and business rules.

• Participant Language Knowledge Appropriateness (participants know the lan-
guage and are able to use it): graphical elements of BPMN are clear and easy to
learn.

• Knowledge Externalisability Appropriateness (participants’ ability to express
their relevant knowledge using the modelling language): BPMN is appropriate
to model business processes, although it will be very difficult to incorporate
knowledge that goes beyond business processes.

• Comprehensibility Appropriateness (audience should be able to understand as
much as possible of the language): this category can be divided into understand-
ing the language concepts and understanding the notation. Regarding the latter,
readers can easily recognise the basic types of elements as these types are limited
in number, intuitive, and very distinguishable from each other. Regarding the
language concepts, it is suggested that these are descriptive, accurate, easy to
understand, and well defined.

• Technical Actor Interpretation Appropriateness (language suitable for
automatic reasoning): it is said that business process diagrams in BPMN are
‘with a few exceptions easily translatable to BPEL (Business Process Execution
Language)’.4

Given the fact that BPMN has some significant drawbacks mainly due to ambig-
uous and unclear descriptions of their constructs, we present hereafter a first study
into alleviating these drawbacks by combining BPMN with DEMO. The study
consists of applying BPMN to the case Pizzeria (cf. Chap. 14) and discussing the
outcome with the modelling results of the case in DEMO.

20.4.3 The Case Study

In Fig. 20.5, the business process of the Pizzeria (first phase) is modelled in BPMN.
While doing this, several issues occurred, mainly due to the ambiguous semantics
of the BPMN constructs. For example, how should one model the payment request
by Mia to the customer? Two options exist: one can model it as an intermediate
message event or as an activity. The same ambiguity pops up when modelling
the ‘Process Pizza’ sub-process: which activities should be part of this sub-process
and why?

4https://www.oasis-open.org/committees/tc_home.php?wg_abbrev¼wsbpel

442 20 DEMO Enhanced Method Engineering

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

F
ig
.2

0.
5

B
P
M
N

m
od

el
of

th
e
C
as
e
P
iz
ze
ri
a

20.4 DEMO Enhanced BPMN 443

More generally, which activities should be part of the business process model is
to a large extent a subjective opinion of the modeller in BPMN. Aside from revision
by end users or other stakeholders, there is no foundation to verify that the model is
complete.

Next, there are multiple options to model contacting the customer when some
ingredients are missing. Because Mia is the intermediary who has to transfer the
customer’s preference to Mario, this interaction should be modelled within Mia’s
lane. Instead of the option we chose in Fig. 20.5, one could also use signalling
intermediate events. Again, no preference could be identified from the case descrip-
tion. Finally, the lack of support for the data perspective prohibits a clear overview of
the process. For example, the only option that is available to state that an order
consists of one or more pizzas is using a text annotation.

An extensive discussion of the way in which a DEMO enhanced version of
BPMN could be applied in order to alleviate the identified drawbacks of BPMN is
provided in [7]. In includes discussions of the benefits and drawbacks with two
distinct groups of potential users: software developers, and business people. Most
drawbacks were indicated by the software developers who need more rigour and
details in order to use BPMN models as input for producing supporting software. In
contrast, the business people pointed out that the use of the core set is sufficient and
convenient for modelling concise models, easy to understand by ‘the business’. This
is also illustrated by the fact that they actually only used a subset of BPMN
constructs.

20.4.4 Conclusions

Obviously, BPMN models lack the distinctions as made by the PSI theory
(cf. Chap. 8), the OMEGA theory (cf. Chap. 10) and the ALPHA theory
(cf. Chap. 11). Therefore, it does not make sense to compare the process model in
Fig. 20.5 with the one in Fig. 14.4. BPMNmodels are not ontological models, that is,
abstracted from implementation. They are also not essential, that is, in addition
abstracted from realisation. Finally, and as said above, the process model in Fig. 20.5
concerns the ‘happy flow’. No attention is paid to the ‘unhappy’ acts of declining a
request, and rejecting a declaration, let alone the four revocation options.

The DEMO methodology, with its underlying theories, provides a formal
foundation to BPMN models. Applying DEMO results in high-quality models.
It is possible to derive BPMN models from DEMO models, thereby preventing
the occurrence of potential anomalies. Moreover, revising existing BPMN models
with the help of DEMO can be used to verify completeness and consistency
of the modelled business processes, resulting in BPMN models with fewer
anomalies. Further research is needed to produce practical guidelines for BPMN
modellers.

444 20 DEMO Enhanced Method Engineering

20.5 DEMO Enhanced Software Testing

René Ceelen (rceelen@testmonitor.com) and Hans Mulder (hans.mulder@viagroep.nl)

20.5.1 Introduction

Software acceptance testing is commonly performed as a kind of black-box testing: a
developed software system is compared to the initial requirements and the current
needs of its end users or, in the case of a contracted program, to the specifications in
the contract. The outcome of an acceptance test is usually the basis for customers on
which to determine whether they accept or reject the software product. Thus,
acceptance testing is categorically different from other types of testing, where the
intent is basically to reveal errors [8].

Software acceptance testing addresses major functional and performance require-
ments, man–machine interactions, specified system constraints, as well as the exter-
nal interfaces of the system. The major guide for software acceptance testing is the
system requirements document and the primary focus is on usability and reliability.5

There is currently no industry-wide standard for software acceptance testing. There-
fore, in practice, most testing methods are based on best practices. Examples of
widely used methods are ISQTB,6 UTAUT,7 and TMAP.8 These methods do not
adopt the Enterprise Engineering perspective, and thus do not use ontological
models as the starting point for acceptance testing.

20.5.2 The Experiment

By means of a practical case, we investigated the possible advantages or disadvan-
tages of applying enterprise ontological models in software acceptance testing. We
applied two types of minimised software acceptance tests (cf. Fig. 20.6): the
traditional way (T-way), which is a practical combination of TMAP and ISTQB,
and the Enterprise Ontology way (EO-way), both on the same case. The case is about
a client who bought a new automated information system to handle its most
important business processes. After several workshops with the supplier and
employees of the client company to categorise the parameters of the information

5IEEE: Std 829-Standard for Software Test Documentation. (1983).
6ISTQB: http://www.isqtb.org 06 (2010).
7IEEE: IEEE Standard 610.12-1990, IEEE Standard Glossary of Software, Engineering Terminol-
ogy. (1990).
8IEEE: Std 1012-Standard for Software Verification and Validation Plans. (1986).

20.5 DEMO Enhanced Software Testing 445

mailto:rceelen@testmonitor.com
mailto:hans.mulder@viagroep.nl
http://www.isqtb.org/

system, a software acceptance test had to be arranged. In this phase, the experiment
started.

To compare both ways of testing, two different working approaches were
accomplished. The T-way started with analysing the business processes to be
handled and dividing them into smaller activities. These activities constitute the
basis for the test scenarios. After the test scenarios were completed, the detailed test
steps were built, after which the acceptance test could be executed. The EO-way
started with building the implementation independent Construction Model (CM) and
Process Model (PM) of the business processes to be handled (cf. Chap. 12). Every
identified transaction kind in the CM got a complete transaction pattern in the PM:
both the ‘success flow’ and the ‘not success flow’, containing all ‘exceptions’
(cf. Chap. 8).

This was the first difference between the two ways of software acceptance testing.
The second difference was the way of working in analysing the system documenta-
tion. In the T-way, the documentation was read to check and upgrade the detailed test
activities. In the EO-way, we built in addition the Fact Model (FM) to ensure the
right entity types and fact types were included in the detailed test activities. All test
activities were linked to one or more acceptance criteria, based on ISO91269 and
customer needs (cf. Table 20.3).

Workshops between key users Company X and consultants Company Y

1
Enterprise
Analysis

2
Requirements

Analysis

3
Risk

Analysis

4
Acceptance

Criteria

5
Testbase

6
Run & Results

T-way

1
Enterprise
Analysis

2
Requirements

Analysis

3
Risk

Analysis

4
Acceptance

Criteria

5
Testbase

6
Run & Results

EO-way

Case Results

Fig. 20.6 Way of working “traditional way” and “enterprise ontology way”

9https://www.iso.org/standard/22749.html

446 20 DEMO Enhanced Method Engineering

https://www.iso.org/standard/22749.html

The complete database of test results of all testers was analysed and presented in a
final judgement session. The results of both methods were based on the same
acceptance criteria, as shown in Table 20.3. Figure 20.7 shows the findings of the
two groups of testers.

The most striking difference is in the criterion Traceability: 75% of all instruc-
tions were indicated by the testers in the EO-way as ‘non acceptable’ versus 11% by
the testers in the T-way. The difference can be explained as follows. In the EO-way,
one looks for the presence of all steps in the complete transaction pattern

Table 20.3 Elements of ISO9126 software quality

100%

50%

10%

0%
15% 5% 30% 30% 20%

Importance of the quality criteria

Te
st

 r
es

ul
ts

EO EO EO EO EOT T T T T

56% 31% 18%

9%

29% 29% 62% 55% 75%

11%

“gap”

“fit”

S
tability

U
nderstandibality

F
unctionality

O
perational

F
unctionality
F

inancial

Traceability

Fig. 20.7 Results based on acceptance criteria T-way and EO-way

20.5 DEMO Enhanced Software Testing 447

(cf. Chap. 8), thus, for example, including the revocation patterns. What the testers
found is that many of them were not, or not properly, addressed in the software. This
is not surprising because such options are commonly forgotten in the functional
requirements specifications, for the simple reason that ‘this never happens’ in our
company.

The results on the other criteria differ as must as on Traceability, but we may
safely conclude that the EO-way outperforms the T-way in finding lacking func-
tionalities, errors, and weaknesses. In addition, we observed that the communication
between the participants in the EO-way of working was more focused on the
software acceptance testing process and on the primary requirements of the com-
pany. Our (educated) guess is that this is caused by the completeness and clarity of
the DEMO models.

20.5.3 Conclusions

As we have demonstrated above, basing software acceptance testing on DEMO
models, thus on implementation independent ontological models of the business
process to be supported or handled, has the advantage that one finds much more
defects than without doing this. The explanation is simple and clear: the DEMO
models, in particular the PM, are based on the theoretically complete transaction
pattern, and thus lead to testing the presence of all of them in the software. The most
widely used test techniques in practice nowadays, as discussed in Sect. 20.5.1, do not
have such a rigid theoretical foundation.

Therefore, when using normative guidance for the development and acceptance
of IT systems and both “groups” have the same guidance, we observed the accep-
tance rate of information systems to be higher.

20.6 DEMO Enhanced Mining

Linda Terlouw (linda.terlouw@icris.nl)

20.6.1 Situation

Many organisations face difficulties getting the right material to the right place at the
right moment for carrying out preventive and corrective maintenance to their
machines. Preventive maintenance deals with inspecting the current state of a
machine, detecting potential problems, and cleaning/replacing items before defects
occur. It is scheduled after a certain fixed period or after a certain amount of usage
(e.g. working hours of a factory machine or vehicle mileage). Corrective mainte-
nance deals with fixing a machine after a defect has occurred. The demand for items
is now less predictable, but quick delivery is as important. Items may be stored at

448 20 DEMO Enhanced Method Engineering

mailto:linda.terlouw@icris.nl

different locations, with different transportation times: the project location (for
instance, a construction area or an offshore location), the mechanics workplace
(for instance, a garage or a hangar), a local warehouse, a central warehouse, or a
warehouse of the supplier.

Organisations must find a balance between inventory costs and service level to
the mechanics needing the items. Too little inventory may lead to unnecessary
downtime of machines and mechanics waiting instead of working; too much inven-
tory leads to high storage costs, less money available for other business activities,
and higher risk of items becoming obsolete, damaged, or stolen.

20.6.2 Task

The task we were faced with was to find the bottlenecks in logistics processes that
lead to unnecessary downtime of machines. The task included determining which
items should be kept in inventory, and in what amount, to provide an optimal service
level to mechanics for preventive and corrective maintenance.

20.6.3 Approach

We extracted data from ERP systems (Infor, SAP, and tailor-made systems), com-
bined these data with data from other enterprise information systems and converted
them to a structure suitable for process mining [9]. We mined processes using the
inductive mining algorithm [10] to get a first insight into the process. This enabled us
to discover: the most frequent activities and process paths, the dependencies between
different activities/events, and the time between activities/events.

This type of process mining, however, does not take into account the semantics of
the acts/events. Therefore, we combined process mining with DEMO (cf. Chap. 12),
notably the PSI theory (cf. Chap. 8), to get a better understanding of the semantics of
the business process. We annotated acts/events as either coordination or production
acts/events following the complete transaction pattern. This way we could easily
detect which business transactions were executed as they should be and which
transactions failed somehow.

To find an optimal inventory level, we introduced ideas from Lean Six Sigma on
this topic. We used a continuous review model (inventory can be ordered at any
moment). We determined for each item type when new items should be ordered and
how many, by calculating the inventory reorder point and the optimum order
quantity. The inventory reorder point is the level of inventory at which the inventory
should be replenished to make sure a certain service level can be guaranteed.
Commonly, a higher variation in demand leads to a higher inventory level. In our
cases we assumed we cannot influence the demand or the variation (though this
might be possible by analysing the maintenance process).

20.6 DEMO Enhanced Mining 449

20.6.4 Result

We made custom DEMO enhanced process mining visualisations (cf. Fig. 20.8) for
presenting logistics processes. It enabled us to show the process to domain experts in
a way that reflects their way of thinking in coarse-grained business transactions
instead of fine-grained acts/events registered in IT systems.

The visualisations show the following metrics per business transaction kind: the
total number of successfully executed basic transaction patterns, total number of
failed transactions (due to decline, reject, or revocation), the average duration of the
transaction (when item is delivered from inventory or backorder), the median
duration of the transaction (when item is delivered from inventory or backorder),
and the survival curve (how many cases are still ‘in the transaction’ after a certain
period).

Because DEMO processes have a tree structure, we can compare the metrics of an
individual business transaction to those of the complete process (which is the root
transaction kind). The bars of the metrics in the different transaction kinds are
therefore made relative to the values of the metrics of the root transaction kind.
We can now easily see which transactions take up most time and which fail
frequently. We can show this visualisation for all types of items, but of course we
can also slice it for a specific type. When we do this we can view an additional
visualisation that shows inventory-related information as depicted in Fig. 20.9. In

Fig. 20.8 Success rate and duration of business transactions in local warehouse picking

450 20 DEMO Enhanced Method Engineering

this figure, we see the monthly number of item requests from mechanics for a certain
item type.

The inventory reorder points for service levels of 80, 95, and 99% are calculated
automatically. The results can be compared with the actual inventory level to save
costs and improve maintenance processes.

20.6.5 Reflection

We have presented above a way to combine fully automated process discovery with
manually adding annotations for taking into account the semantics of acts/events in
DEMO. We did not only focus on analysing the logistics process itself, but also on
determining the optimal inventory level to guarantee a certain service level. We see
several ways of further improving our approach.

First, we would like to make a distinction between the different reasons why a
business transaction may ‘fail’ (currently we only distinguish between succeeded
and failed). Is it because of a decline, a reject, or a revocation? This can give a better
understanding to an organisation of why things go wrong and what to do about it.

A second improvement is to find a way of dealing with declined, rejected and
revoked transactions in determining the optimal inventory reorder point. At the
moment we exclude them from the calculation, but this is not in all cases the best
way to deal with them.

A third improvement is to automatically mine relationships between business
transactions, and to see where transactions do not proceed as planned.

Fig. 20.9 Actual inventory level compared to service level reorder points

20.6 DEMO Enhanced Mining 451

References

1. Dietz, J. L. G. (2006). Enterprise ontology: Theory and methodology (xiii, 243 p.). Berlin:
Springer.

2. Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for large-
scale agile transformations: A systematic literature review. Journal of Systems and Software,
119, 87–108.

3. De Vries, M. (2018). DEMO and the story-card method: Requirements elicitation for agile
software development at scale. In 11th IFIP WG 8.1 working conference on the Practice of
Enterprise Modelling.

4. Patton, J., & Economy, P. (2014).User story mapping: Discover the whole story, build the right
product. Sebastopol: O’Reilly Media.

5. Ettema, R. W. (2016). Using triangulation in Lean Six Sigma to explain quality problems. The
Netherlands, Belgium: Radboud University Nijmegen, University of Antwerp.

6. Dudok, E., Guerreiro, S., Babkin, E., Pergl, R., & van Kervel, S. J. H. (2015). Enterprise
operational analysis using DEMO and the enterprise operating system. Cham: Springer
International.

7. Van Nuffel, D., Mulder, H., & Van Kervel, S. (2009). Enhancing the formal foundations of
BPMN by enterprise ontology. Berlin: Springer.

8. Hsia, P., & Kung, D. (1997). Software requirements and acceptance testing. Annals of Software
Engineering, 3, 291–317.

9. van der Aalst, W. P. M. (2011). Process mining—Discovery, conformance and enhancement of
business processes. Berlin: Springer.

10. Leemans, S. J. J., Fahland, D., & van der Aalst, W. M. P. (2014). Discovering block-structured
process models from event logs containing infrequent behaviour. Cham: Springer.

452 20 DEMO Enhanced Method Engineering

Glossary1

Abstract object Through reasoning by analogy with concrete objects, abstract
objects are the bare individuals that constitute the core of abstract things, and
thus are taken as their identity (Chap. 5).

Abstract thing Through reasoning by analogy with concrete things, abstract things
are abstract objects with features. In contrast to concrete things, abstract things
only exist in the mind. Examples of abstract things are numbers and booleans, but
also lines and circles (Chap. 5).

Access link A link between an actor role and a transaction kind, indicating that
fillers of the actor role have (reading) access to the facts in the transaction bank of
the transaction kind. Consequently, an access link represents the existence of one
or more sharing transaction kinds between the O-organisation and the I-organi-
sation of an enterprise (Chap. 10).

Act The atomic unit of action in systems. Two kinds of acts are distinguished:
coordination acts and production acts. Acts are performed by actors (Chap. 8).

Actagenic conversation A business conversation in which the participants strive to
reach consensus about a product that one of them is going to bring about at the
other’s request (Chap. 8).

Action rule A guideline for actors to settle agenda. An action rule consists of three
consecutive parts: the event part, the assess part, and the response part. Action
rules are the imperative equivalent of existence laws and occurrence laws
(Chaps. 8 and 12). [See also Work instruction]

Actor A subject in her/his filling of an actor role. An actor is referred to by a tuple
<actor role, subject>, commonly noted down as <actor role>/<subject>
(Chap. 8).

1Hereafter, the definitions of the key terms in Enterprise Ontology, as used in this book, are
summarised in alphabetical order. At the end of every entry the chapter is indicated between
‘(“and”)’ where the term is defined.

© Springer Nature Switzerland AG 2020
J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-38854-6

453

https://doi.org/10.1007/978-3-030-38854-6

Actor role The term ‘actor role’ has two interpretations. The constructional inter-
pretation is that it represents the authority to perform the coordination acts and
the production act within the responsibility area of the executor, in transactions
of the transaction kind to which the actor role is linked by an executor link. The
operational interpretation is that it represents the guidelines, ranging from culture
(norms and values) to specific action rules and work instructions, that actors
filling the actor role apply when they carry out transactions (Chap. 10).

Addressee [property of coordination act] the actor to whom the coordination act is
addressed (Chap. 8).

Agenda Plural of agendum. At every point in time, every actor disposes of her/his
agenda (Chap. 8).

Agendum A coordination event to which the addressee of the corresponding
coordination act has to respond (Chap. 8).

Aggregate A complex of concrete things that is not able to act, that is, to bring
about changes in some world (Chap. 6). [See also System]

Aspect model Partial ontological model of an organisational layer. An aspect
model takes a specific view on the organisational layer and is therefore in itself
not a complete ontological model (Chap. 12).

Assess part The part of an action rule containing the propositions regarding the
state of the coordination world and the production world to be evaluated
(Chap. 12).

Attribute Instance of an attribute type (Chap. 6).
Attribute type A binary type. The extension of an attribute type is a mapping from

a concrete or abstract class, called the domain of the attribute type, to an abstract
object class, called its range. Cardinality ranges indicate the exact nature of the
mapping: 0. . .1, 0. . .�, 1. . .1, 1. . .�, or �. . .� (Chap. 6).

Authorisation One of the two ways in which authority can be assigned to subjects.
The other way is delegation. Through authorisation, a subject gets the authority to
fill a complete actor role (Chap. 8).

Authority The right to perform one or more specific coordination acts (and
possibly also the production act) in transactions of some transaction kind.
Authority can be assigned to a subject through authorisation or delegation
(Chap. 8). [See also Responsibility and competence]

Business Term to refer to the function perspective on an enterprise, in particular the
function as perceived by its customers (Chap. 7). [See also Organisation]

Business conversation A conversation that takes place in an institutional setting,
and of which the participants aim at achieving a common goal. Four kinds of
business conversations are distinguished: actagenic conversations, factagenic
conversations, reversiogenic conversations, and cogitatiogenic conversations
(Chap. 8).

Business process A sequence of process steps, which are steps in transactions of
the transaction kinds that are contained in a business process kind in the O-orga-
nisation of an enterprise (Chap. 10).

454 Glossary

Business process kind A set of O-transactor roles (possibly only one) and the
interaction structure between them, together constituting a tree structure. Every
transactor role in the tree is enclosed in a transactor role on the next higher level
(except the ‘highest’ one), and encloses one or more transactor roles on the next
lower level (except the ‘lowest’ ones) (Chap. 10).

Causal link Link between a coordination act and its resulting coordination fact,
indicating that the fact is the immediate result of performing the act (Chap. 8).

Claim to rightness One of the three validity claims in a coordination act. The claim
to rightness regards the authority of the performer to perform the act (Chap. 8).

Claim to sincerity One of the three validity claims in a coordination act. The claim
to sincerity concerns the sincerity of the performer in performing the act
(Chap. 8).

Claim to truth One of the three validity claims in a coordination act. The claim to
truth concerns the (potential) existence of the concerned product (Chap. 8).

Cogitatiogenic conversation A business conversation in which the participants
strive to reach consensus about an idea or plan for future action (Chap. 8).

Cognitive correspondence The mutual understanding of actors concerning a coor-
dination act at the informa level of communication. Cognitive correspondence is
reached if the addressee thinks he/she has understood the semantic content of the
communicated coordination fact correctly. Success or failure is conveyed by a
confirmation or a disconfirmation (Chap. 8).

Commitment The being bound by the performer of a coordination act to its
intention. A commitment implies that the performer has the moral obligation to
let her/his future actions be in agreement with the intention (Chap. 8).

Communication The sharing of thoughts between subjects. It is brought about by
exchanging information (Chap. 4).

Competence The collective capabilities of a subject that makes him/her eligible to
be assigned one or more actor roles (Chap. 8). [See also Authority and
responsibility]

Complex A collection of related abstract things or concrete things. Two kinds of
complexes are distinguished: systems and aggregates (Chap. 6).

Composite transactor role A collection of transactor roles, connected by initiator
links, and possibly also by access links and wait links (Chap. 10).

Conceptual complex The conceptualisation of a concrete complex as the result of
applying a conceptual schema, to which the concrete complex conforms. It
consists of a number of conceptual facts (Chap. 6).

Conceptual fact The thought that emerges in the mind when a type is applied to a
thing. If the thing is a single concrete thing, the fact is an entity or a value. If the
thing is a pair of things, the fact is a property or an attribute. Formally, a
conceptual fact is a (unary or binary) predication of a conceptual object (Chap. 5).

Conceptual model A conceptual complex that is taken as a model of a concrete
complex. The model constitutes the understanding of the concrete complex within
the applied conceptual schema (Chap. 6).

Conceptual object The representation in the mind of a concrete object (Chap. 5).

Glossary 455

Conceptual schema A coherent collection of related types. A conceptual schema
works as a mental lens through which one perceives concrete complexes and
subsequently creates corresponding conceptual complexes in the mind. If the
concrete complex is a world, the conceptual schema determines the state space
and the transition space of the world (Chap. 6). [See also Type]

Concrete complex A concrete complex is either a (concrete) system or a (concrete)
aggregate (Chap. 6).

Concrete fact A state of affairs in the world of a concrete system. Although facts
only exist in our mind [see conceptual fact], people appear to be so used to
assuming the existence of a reality, independently of the minds of individual
subjects, that we will adopt this philosophical stance and assume the existence of
‘objective’ concrete facts. A basic prerequisite to this assumption is that the
involved people apply the same conceptual schema (Chap. 5).

Concrete object The bare individual that constitutes the core of a concrete thing
and therefore is taken as the identity of the thing (Chap. 5). [See also Abstract
object]

Concrete thing A concrete object with features. Concrete things are the constitut-
ing elements of a world. A distinction is made between tangible concrete things,
like roses and cars, and intangible concrete things, like purchases and rentals
(Chap. 5). [See also Abstract thing]

Construction There are two fundamentally different perspectives on every system:
the construction perspective and the function perspective. In the construction
perspective one considers the composition, the environment, and the structure of
the system, without any interest in the function(s) it may offer (Chap. 7).

Coordination act An act in a business conversation. It has four components or
properties: performer, intention, addressee, and product. The result of a success-
fully performed coordination act is the immediate creation of the corresponding
coordination fact (Chap. 8). [See also Process step]

Coordination event The coming into existence of a coordination fact (Chap. 8).
Coordination fact State element in a coordination world. It has four components:

performer, intention, addressee, and product. A coordination fact is the immedi-
ate result of a performed coordination act. (Chap. 8). [See also Process step]

Coordination world One of the two worlds in which the elements in a system cause
transitions (Chap. 8). [See also Production world]

Creation time [Attribute of fact] The point in time at which a fact is created. It is
less than or equal to the event time at which it comes into existence (Chap. 8).

D-actor (role) [Shorthand for actor (role) in the D-organisation of an enterprise]
D-organisation (D from documental) The organisational layer of the organisation

of an enterprise in which documental production takes place. The ontological
model of a D-organisation comprises a number of D-transactor roles and the
coordination structures between them. The D-organisation supports the I-orga-
nisation by providing documental services (Chap. 11).

D-transaction (kind) [Shorthand for transaction (kind) in the D-organisation of an
enterprise]

456 Glossary

D-transactor (role) [Shorthand for transactor (role) in the D-organisation of an
enterprise]

Data set A structured collection of signs. Examples of data sets are customer data,
article data, and sales data (Chap. 11).

Declared type A type in a conceptual schema that is declared to be contained in the
conceptual schema (Chap. 6). [See also Derived type]

Delegation An authorisation may include the right of the authorised person to
delegate a part of the assigned authority to other subjects. Commonly, delegation
concerns a limited number of process steps of some transaction kind (Chap. 8).

Dependent production fact A production fact that comes into existence dependent
on, and together with, an independent production fact (Chap. 8).

Derived type A type in a conceptual schema that is defined on the basis of other
(declared or derived) types (Chap. 6). [See also Declared type]

Discussion state Transaction state in which the initiator and the executor have to
‘sit together’ and discuss the cause of having ended up in this state, as well as how
to proceed. The standard transaction pattern has two discussion states: ‘declined’
and ‘rejected’. The four revocation patterns have the discussion state ‘revoked’
(Chap. 8).

Document An unstructured collection of signs. Examples of documents are reports,
books, and letters (Chap. 11).

Documental production In every enterprise, three sorts of production can be
distinguished: original, informational, and documental. Documental production
comprises saving, transforming, and providing documents or data sets, as well as
storing, retrieving, copying, transmitting, and destroying files (Chap. 11).

Enterprise The general term to refer to any kind of collaborative activity by human
beings. An enterprise commonly is, but need not necessarily be, an economic
and/or legal body. Examples of enterprises are: companies, governmental agen-
cies, health care institutions, sports clubs, and building projects. Every enterprise
has a business and an organisation (Chap. 8).

Entity A typed concrete thing. Examples of tangible entities are roses and cars;
examples of intangible entities are purchases and rentals (Chap. 5).

Essential model The essential model of a Scope of Interest is defined as the
ontological model of its O-organisation (Chap. 11).

Event The coming into existence of a fact. Events occur instantly, meaning that
their duration falls within one time unit (Chap. 6).

Event part The part of an action rule containing the agendum to be settled when
executing the action rule (Chap. 12).

Event time [Attribute of event] The point in time at which an event occurs, and thus
a fact comes into existence (Chap. 8).

Execution phase The transaction phase in which the executor performs the pro-
duction act. It starts when the transaction state ‘promised’ is reached and it ends
when the production act is performed (Chap. 8).

Executor One of the two roles that actors have in a transaction; the other role is
initiator. The executor in a transaction is authorised and responsible for

Glossary 457

performing the coordination acts in the executor’s responsibility area of the
complete transaction pattern (Chap. 8).

Executor link A link between an actor role and a transaction kind, indicating that
actors in the actor role are authorised executor in transactions of the transaction
kind (Chap. 8).

Existence law A (first order) logical formula determining the lawfulness of states in
a world (Chap. 6). [See also Occurrence law]

Extension The extension of a type is the set of objects that are the identities of the
things conforming to the type (Chap. 5). [See also Intension]

Fact State element in a world (Chap. 6); the result of an act (Chap. 8).
Factagenic conversation A business conversation in which the participants strive

to reach consensus about the production fact that one of them has brought about
on the other’s request (Chap. 8).

File A physical embodiment of a document or data set. Examples of files are
collections of ink marks on paper and optical marks on disk or tape. A document
or data set may be inscribed in many files called its copies (Chap. 11).

Focus organisation The part of a Scope of Interest where the focus is on
(Chap. 10).

Forma Term to refer to the general competence of a subject to perform coordina-
tion acts at the forma level of communication, as well as documental production
acts (Chaps. 8 and 11). [See also Informa and performa]

Forma condition The collective prerequisites for reaching notational correspon-
dence in performing a coordination act (Chap. 8).

Forma level The level of communication in performing a coordination act at which
the performer and the addressee strive for notational correspondence (Chap. 8).

Function There are two fundamentally different perspectives on every system: the
construction perspective and the function perspective. In the function perspective
on an enterprise one considers the functions of the enterprise as perceived by its
various stakeholders (Chap. 7). [See also Business and service]

I-actor (role) [Shorthand for actor (role) in the I-organisation of an enterprise]
I-organisation (I from informational) the organisational layer of the organisation

of an enterprise in which informational production takes place. The ontological
model of an I-organisation comprises a number of I-transactor roles and the
coordination structures between them. The I-organisation supports the O-orga-
nisation by providing informational services (Chap. 11).

I-transaction (kind) [Shorthand for transaction (kind) in the I-organisation of an
enterprise]

I-transactor (role) [Shorthand for transactor (role) in the I-organisation of an
enterprise]

Independent production fact The core of the product that is brought about in a
transaction. It comes into existence as the direct effect of the accept act by the
initiator. It is represented by a unary fact (like ‘sale 1618 is delivered’) or a binary
fact (like ‘the fee for membership 387 in year 2019 is paid’) (Chap. 8). [See also
Dependent production fact]

458 Glossary

Informa Term to refer to the general competence of a subject to perform coordi-
nation acts at the informa level of communication, as well as informational
production acts (Chaps. 8 and 11). [See also Forma and performa]

Informa condition The collective prerequisites for reaching cognitive correspon-
dence in performing a coordination act (Chap. 8).

Informa level The level of communication in performing a coordination act at
which the performer and the addressee strive for cognitive correspondence
(Chap. 8).

Information The expression by a subject of thought(s) in a form that is perceivable
to other subjects, and that consequently can be communicated (Chap. 4).

Informational production In every enterprise, three sorts of production can be
distinguished: original, informational, and documental. Informational production
comprises remembering, recalling, and computing facts (Chap. 11).

Initiator One of the two roles that actors can have in a transaction; the other role is
executor. The initiator in a transaction is authorised and responsible for
performing the coordination acts in the initiator’s responsibility area of the
complete transaction pattern (Chap. 8).

Initiator link A link between an actor role and a transaction kind, indicating that
actors in the actor role are authorised initiator in transactions of the transaction
kind (Chap. 8).

Intension The intension of a class is the type to which the things that have the
objects in the class as their identities, conform (Chap. 5). [See also Extension]

Intention [Attribute of coordination act] the social disposition of the performer of
a coordination act towards the addressee, with respect to a product. Examples of
intentions are ‘request’, ‘promise’, ‘decline’, ‘declare’, ‘accept’, ‘reject’
(Chap. 8). [See also Commitment].

Interaction structure One of the three coordination structures in an organisation.
It consists of the initiator links between transactor roles (Chap. 10).

Interimpediment structure One of the three coordination structures in an organi-
sation. It consists of wait links between transactor roles (Chap. 10).

Interstriction structure One of the three coordination structures in an organisa-
tion. It consists of access links between transactor roles (Chap. 10).

Medium level The level of communication in performing a coordination act at
which the performer transmits the file to the addressee that carries the document
or data set (possibly containing only one sentence) that must be made perceivable
to the addressee (Chap. 8).

Model Any subject using a complex A that is neither directly nor indirectly
interacting with a complex B, to obtain knowledge about the complex B, is
using A as a model of B (Chap. 6). [See also Conceptual model]

Multiple transaction kind A collection of transaction kinds. Multiple transaction
kinds may be useful if one does not (need to) know exactly the constituent
transaction kinds (e.g. because they are outside the Scope of Interest) (Chap. 10).

Notational correspondence The degree of mutual understanding of a coordination
act at the forma level of communication. Notational correspondence is reached if

Glossary 459

the addressee thinks he/she has understood the form of the message correctly. An
example of a form is a sentence in English. Success or failure is conveyed by a
confirmation or a disconfirmation (Chap. 8).

O-actor (role) [Shorthand for actor (role) in the O-organisation of an enterprise]
O-organisation (O from original) The organisational layer of the organisation of

an enterprise in which original production takes place. The ontological model of
an O-organisation comprises a number of O-transactor roles and the coordina-
tion structures between them (Chap. 11).

O-transaction (kind) [Shorthand for transaction (kind) in the O-organisation of an
enterprise]

O-transactor (role) [Shorthand for transactor (role) in the O-organisation of an
enterprise]

Object The bare individual that constitutes the core of a thing and therefore is taken
as the identity of the thing. An object is abstract or concrete (Chap. 5).

Occurrence law A (first order) logical formula determining the lawfulness of
transitions in a world (Chap. 6). [See also Existence law]

Ontological model A conceptual model of the construction and the operation of a
system that is fully abstracted from its implementation (Chap. 9).

Operating principle [property of system] The mechanism that makes a system
‘tick’. The operating principle of organisations is the ability and readiness of the
actors in the organisation to enter into and comply with commitments regarding
the bringing about of products (Chap. 8).

Operation The operating mode of the construction of a system. It means that the
elements in the system are performing acts (Chap. 9).

Operative time [attribute of product] The time period2 during which the product
of a transaction is operative or valid (Chap. 8).

Order phase The transaction phase in which the initiator and the executor strive to
reach consensus about the product that the executor is going to bring about. It
starts by performing the ‘request’ act and ends in the state ‘promised’. Ending up
in the state ‘declined’ means that the transaction is in a deadlock (Chap. 8).

Organisation Term to refer to the construction perspective on an enterprise
(Chap. 7). [See also Business]

Organisational layer The organisation of an enterprise consists of three
organisational layers: the O-organisation, the I-organisation, and the D-organi-
sation. The D-organisation supports the I-organisation by documental services.
The I-organisation supports the O-organisation by informational services
(Chap. 11).

Original production In every enterprise, three sorts of production can be distin-
guished: original, informational, and documental. Original production comprises

2As discussed in the DELTA theory (Chap. 9), every point in time is actually a time period, but
possibly very small. This holds always for the attribute event time. The operative time, however,
may be so large (minutes, hours, days) that one preferably speaks of a time period.

460 Glossary

manufacturing, transporting, observing, deciding, and judging. They all result in
the creation of (new, original) facts (Chap. 11).

Performa Term to refer to the general competence of a subject to perform coordi-
nation acts at the performa level of communication, as well as original produc-
tion acts (Chaps. 8 and 11). [See also Forma and informa]

Performa condition The collective prerequisites for reaching social correspon-
dence in performing a coordination act (Chap. 8).

Performa level The level of communication in performing a coordination act at
which the performer and the addressee strive for social correspondence
(Chap. 8).

Performer [Property of coordination act] the performing actor of a coordination
act (Chap. 8).

Point in time A particular value on a time scale, expressed in one of the
corresponding time units. Examples: week 36 [week], today [day], tomorrow at
11:25 h [minute] (Chaps. 6, 8, 9 and 12).

Process A sequence of events in a world, commonly including the sequence of the
causing acts in the corresponding (discrete event) system (Chaps. 8 and 9).

Process step The atomic building block of a transaction process. It consists of a
coordination act and its resulting coordination fact. Every process step is of a
specific process step kind (Chap. 8).

Process step kind [attribute of process step] A process step kind is defined by two
properties: a transaction kind and an intention. If ‘TK01’ denotes a particular
transaction kind and ‘rq’ denotes the intention ‘request’, then ‘TK01/rq’ denotes a
process step kind (Chap. 8).

Product [property of coordination act] The product of a coordination act consists
of an independent production fact together with the associated dependent pro-
duction facts (Chap. 8).

Product kind [attribute of product] Products of the same product kind are brought
about in transactions of the same transaction kind. Examples of product kinds
are: ‘[membership] is started’, ‘[rental] is completed’, ‘the fee for [membership]
in [year] is paid’. The variables in the formulation of a product kind are place-
holders for entities (Chap. 8).

Production act The act in a transaction by which the executor brings about the
product of the transaction (Chap. 8). [see also Transaction pattern]

Production fact State element in a production world. A production fact is the result
of performing a production act. More precisely: the result of a production act is a
state of affairs in the production world that gives rise to a number of conceptual
facts representing the state of affairs (Chap. 8). [See also Product]

Production world One of the two worlds in which the elements in a system cause
transitions (Chaps. 8 and 9).

Property Instance of a property type (Chap. 6).
Property type A binary fact type. The extension of a property type is a mapping

from a concrete class, called the domain of the property type, to a concrete class,

Glossary 461

called the range of the property type. Cardinality ranges indicate the exact nature
of the mapping: 0. . .1, 0. . .�, 1. . .1, 1. . .�, or �. . .� (Chap. 6).

Providing transaction kind The general D-transaction kind in which documents
or data sets containing facts regarding the production world of an enterprise’s
O-organisation are provided by D-actors to I-actors; the initiator role is taken by
an I-actor in her/his documental or ‘blue’ shape, and the executor role by a
D-actor (Chap. 11). [See also Saving transaction kind]

Remembering transaction kind The general I-transaction kind in which facts
regarding the production world of an enterprise’s O-organisation are made
known by O-actors to I-actors in order to remember them; the initiator role is
taken by an O-actor in her/his informational or ‘green’ shape, and the executor
role by an I-actor (Chap. 11). [See also Sharing transaction kind]

Response link A link between a coordination fact and a coordination act, indicat-
ing that the coordination act is performed in response to the coordination event
through which the coordination fact has come into existence (Chap. 8).

Response part The part of an action rule containing the act(s) to be performed in
response to settling the agendum in the event part (Chap. 12).

Responsibility Disposition of a subject to be committed to the coordination acts
he/she has performed, as well as the agenda he/she has to respond to. Authority
and responsibility are like the two sides of a coin (Chap. 8). [See also Authority
and competence]

Responsibility area The set of process steps in the (complete) transaction pattern
for the performing of which either the initiator or the executor is responsible.
Consequently, a distinction is made between the responsibility area of the initiator
and the responsibility area of the executor (Chap. 8).

Responsibility range The set of process steps in the (complete) transaction pattern
for the performing of which the fillers of an actor role are responsible, both as
executor in transactions of the corresponding transaction kind, and as initiator in
transactions of enclosed transaction kinds (Chap. 10).

Result phase The transaction phase in which the initiator and the executor strive to
reach consensus about the product that the executor has brought about. It starts by
performing the ‘declare’ act and ends in the state ‘accepted’ (Chap. 8).

Reversiogenic conversation A business conversation in which the participants
strive to agree on reverting (turning back) the current state in an actagenic
and/or a factagenic conversation, in which they (also) participate (Chap. 8).

Revocation Every step in the basic transaction pattern (so ‘request’, ‘promise’,
‘declare’ or ‘accept’) can be revoked, at any time and from any state in the main
transaction process. The effect of a successful revocation is that the state of the
main process is ‘rolled-back’ to the previous basic state (accepted ! declared,
declared ! promised, promised ! requested, requested ! initial state)
(Chap. 8). [See also Reversiogenic conversation]

Revocation pattern A pattern of process steps through which one can revoke one
of the steps in the basic transaction pattern (Chap. 8). [See also Revocation]

462 Glossary

Saving transaction kind The general D-transaction kind in which documents or
data sets containing facts regarding the production world of an enterprise’s
O-organisation are given by I-actors to D-actors in order to save them; the
initiator role is taken by an I-actor in her/his documental or ‘blue’ shape, and
the executor role by a D-actor (Chap. 11). [See also Providing transaction kind]

Scope of Interest (SoI) The delineation of the (part of the) enterprise or the
collection of enterprises that one wants to study (Chap. 10).

Self-activating actor role An actor role is called self-activating if its fillers are
initiator as well as executor of the same transaction (Chap. 10).

Sentence The syntactic form in which thoughts, especially facts, are expressed
(Chaps. 5 and 8).

Service The functional appearance of a product to its consumers (Chap. 8).
Sharing transaction kind The general I-transaction kind in which facts regarding

the production world of an enterprise’s O-organisation are made known by
I-actor to O-actors; the initiator role is taken by an O-actor in her/his informa-
tional or ‘green’ shape, and the executor role by an I-actor (Chap. 11). [See also
Remembering transaction kind]

Social correspondence The degree of mutual understanding of a coordination act
at the performa level of communication. Social correspondence is reached if the
addressee thinks he/she has understood the intention of the message correctly.
Success or failure is conveyed by a confirmation or a disconfirmation (Chap. 8).

State At any point in time, a world is in some state, defined as the set of facts that
have come into existence up to (and including) the point in time (Chaps. 6, 8 and
9).

Subject A human being in her/his quality of social individual, in particular her/his
ability to enter into and comply with commitments (Chap. 8).

Subsystem A thing x is a subsystem of a system y if and only if x is a system, and
if C (x) ⊆ C (y); E (x) ⊆ (C (y) \ (C (x)) [E (y); S (x) ⊆ S (y) (Chap. 9).

System A complex of concrete things that is able to act, that is, to bring about
changes in the corresponding world. Formally, a (homogeneous) system can be
defined as a triple (C, E, S), where C is a set of concrete things of the same
category, called the composition of the system; E is a set of concrete things of the
same category as the elements in C, called the environment of the system; S is a
set of influencing bonds among the elements in C and between them and the
elements in E, called the structure of the system (Chap. 9). [See also Aggregate]

Thing An object together with its features. Only through the features can a thing be
known or recognised. The features may change in the course of time; the object
always remains the same. A distinction is made between abstract things and
concrete things (Chap. 5)

Time scale A division of a (discrete and linear) time dimension in consecutive
pieces of equal length (duration), called time units (Chaps. 9 and 12).

Time unit The unit for indicating or measuring amounts of time on a time scale.
The length of a time unit depends on the needed precision. Examples: day, hour,
minute, second (Chaps. 9 and 12). [See also Point in time]

Glossary 463

Transaction The building block of business processes. The result of a successfully
carried out transaction is the coming into existence of a product. Every transac-
tion is of a specific transaction kind (Chap. 8).

Transaction bank The conceptual store associated with a transaction kind, in
which all coordination facts and all production facts are stored in all of its carried
out transactions (Chap. 10).

Transaction kind [attribute of transaction] There are two interpretations of the
term transaction kind: the constructional interpretation and the operational inter-
pretation. In the constructional interpretation, it represents the complete transac-
tion pattern. Examples of transaction kinds: membership_starting,
rental_completing. Transactions of the same transaction kind concern products
of the same product kind. In the operational interpretation, the transaction kind is
conceived as a transaction bank (Chaps. 8 and 10).

Transaction pattern A structured collection of process steps, alternately taken by
actors in two roles: one fills the initiator role and the other the executor role in the
transaction. The basic transaction pattern consists of the process steps ‘request’,
‘promise’, ‘declare’, and ‘accept’ (Note: in between the promise and the declare
act, the production act is performed; it precedes immediately and unconditionally
the declare act, but it is not considered a process step itself). The standard
transaction pattern contains in addition the process steps ‘decline’ and ‘reject’.
The complete transaction pattern consists of the standard transaction pattern and
the four revocation patterns (Chap. 8).

Transaction phase A transaction process consists of three consecutive phases: the
order phase, the execution phase, and the result phase. They may partly or
wholly be ‘repeated’ as the effect of revocations (Chap. 8).

Transaction process A sequence of process steps within the complete transaction
pattern. Process steps of the same kind may occur multiple times, as the effect of
revocations (Chap. 8).

Transaction state The state of a transaction (process) is defined as the most
recently performed process step (Chap. 8).

Transactor role Since every actor role is connected by an executor link with
exactly one transaction kind (and vice versa), the combination of the two
constitutes a transactor role (Chap. 8).

Transition A change of state of a world (Chaps. 6 and 9).
Type A prescription of form (both concrete and abstract). Type works like a

template that can be applied to things or pairs of things. If and when the form
of a thing (or a pair of things) conforms to an applied type, a fact starts to exist.
The fact is an instance of the type. A distinction is made between conceptual facts
and concrete facts (Chap. 5).

Validity claim In performing a coordination act, three validity claims are raised by
the performer and validated by the addressee: the claim to rightness, the claim to
sincerity, and the claim to truth. The response to a coordination event will depend
on the degree to which the three validity claims are accepted by the addressee
(Chap. 8). [See also Action rule]

464 Glossary

Value (1) A typed abstract thing. Values are commonly ordered in value scales.
Examples of values are days, meters, and boolean values (Chaps. 6 and 12).

Value (2) The intensity of the experience that is evoked in a subject’s mind by the
recognition of an affordance. This notion of value is commonly expressed in
economic or monetary terms (Chap. 7).

Value scale An ordered class of values (according to definition 1). A value scale
has a dimension (like time, length, mass, temperature, or money) and a scale unit
(like minute, meter, gram, degree Celsius, or euro) (Chaps. 6 and 12).

Wait link A link between a coordination fact to a coordination act, indicating that
performing the coordination act must wait until the coordination fact does exist,
that is, the corresponding event has occurred (Chaps. 10 and 12).

Work instruction Guideline for performing a production act (Chap. 12). [See also
Action rule]

World With every system, a world is associated in which the effects of the acts by
(the elements in) the system take place. More specifically, the effect of an act is
the creation of a fact in the system’s world (Chaps. 6, 8, and 9).

Glossary 465

	Preface
	Acknowledgements
	Contents
	About the Authors
	Abbreviations
	Part I: Introduction
	Chapter 1: A History of Organisation and ICT
	References

	Chapter 2: Introduction to Enterprise Engineering
	References

	Chapter 3: Introduction to Enterprise Ontology
	3.1 About Intellectual Manageability
	3.2 The Philosophical Background of Enterprise Ontology
	3.3 The Importance of Enterprise Ontology
	3.4 The Urgent Need for Enterprise Ontology
	References

	Part II: Theories
	Chapter 4: The Enterprise Engineering Theories
	4.1 Introduction
	4.2 The CIAO Paradigm
	4.2.1 From Information-Centric to Communication-Centric
	4.2.2 Communicative Action
	4.2.3 Implications for Information, Action, and Organisation

	4.3 Overview of the EE Theories
	4.4 Summaries of the EE Theories
	4.4.1 The FI Theory
	4.4.2 The MU Theory
	4.4.3 The TAO Theory
	4.4.4 The PSI Theory
	4.4.5 The DELTA Theory
	4.4.6 The OMEGA Theory
	4.4.7 The ALPHA Theory
	4.4.8 The BETA Theory
	4.4.9 The IOTA Theory
	4.4.10 The NU Theory
	4.4.11 The SIGMA Theory

	References

	Chapter 5: The FI Theory: Understanding Factual Knowledge and Information
	5.1 Introduction
	5.2 Foundations
	5.2.1 The Semiotic Triangle
	5.2.2 The Semiotic Ladder
	5.2.3 Things and Objects
	5.2.4 Factual Information
	5.2.5 The Creation of Types
	5.2.6 The Subtype Relation

	5.3 Elaborations
	5.3.1 Functional Types
	5.3.2 Sameness and Change
	5.3.3 Composition and Decomposition
	5.3.4 Dual Notions

	5.4 Discussions
	5.4.1 The Layout of Forms
	5.4.2 Value Types in Programming and Modelling Languages

	References

	Chapter 6: The MU Theory: Understanding Models and Modelling
	6.1 Introduction
	6.2 Foundations
	6.2.1 The Notion of Model
	6.2.2 The Model Triangle
	6.2.3 The General Conceptual Modelling Framework

	6.3 Elaborations
	6.3.1 The General Ontology Specification Language
	6.3.2 The Textual Formalism of GOSL
	6.3.3 The Graphical Formalism of GOSL
	6.3.4 Standard Value Types
	6.3.5 The Meta Schema

	6.4 Discussions
	6.4.1 Comparison of the GCMF with Other Approaches
	6.4.2 The Confusion that Is Caused by O-O Thinking

	References

	Chapter 7: The TAO Theory: Understanding Function and Construction
	7.1 Introduction
	7.2 Foundations
	7.2.1 The Notion of Affordance
	7.2.2 Artefacts
	7.2.3 Function and Construction
	7.2.4 Experience and Value

	7.3 Elaborations
	7.3.1 Constructional and Functional (De)composition
	7.3.2 Composition and Decomposition of Enterprises
	7.3.3 The Role of Function and Construction in System Design

	7.4 Discussions
	7.4.1 The Subjective Nature of Functional Models
	7.4.2 Can One Map Functional Models to Constructional Models?
	7.4.3 The Importance of Ontological Modelling
	7.4.4 The TAO Theory and the TAO Philosophy

	References

	Chapter 8: The PSI Theory: Understanding the Operation of Organisations
	8.1 Introduction
	8.2 Foundations
	8.2.1 Recapitulation of the CIAO Paradigm
	8.2.2 Work Is Production Plus Coordination
	8.2.2.1 Production Acts and Facts
	8.2.2.2 Coordination Acts and Facts

	8.2.3 The Process of a Coordination Act
	8.2.4 Business Conversations
	8.2.5 Business Transactions
	8.2.6 Transaction Patterns
	8.2.6.1 The Basic Transaction Pattern
	8.2.6.2 The Standard Transaction Pattern
	8.2.6.3 The Complete Transaction Pattern
	8.2.6.4 The Revocation of an Acceptance
	8.2.6.5 The Revocation of a Declaration
	8.2.6.6 The Revocation of a Promise
	8.2.6.7 The Revocation of a Request
	8.2.6.8 The Operating Principle of Organisations

	8.2.7 The Notion of Transactor

	8.3 Elaborations
	8.3.1 Time Aspects of Transactions
	8.3.2 The Operating Cycle of Actors
	8.3.3 Human Qualities in Transactions
	8.3.3.1 Authority
	8.3.3.2 Responsibility
	8.3.3.3 Accountability
	8.3.3.4 Competence

	8.4 Discussions
	8.4.1 Striving for Consensus and Culture
	8.4.2 Other Approaches to Organisations as Social Systems
	8.4.3 The Practical Importance of the PSI Theory

	References

	Chapter 9: The DELTA Theory: Understanding Discrete Event Systems
	9.1 Introduction
	9.2 Foundations
	9.2.1 Systems Thinking
	9.2.1.1 Introduction
	9.2.1.2 The Ontological System Concept

	9.2.2 Conceptual Models of Concrete Systems
	9.2.2.1 Introduction
	9.2.2.2 The Black-Box Model
	9.2.2.3 The Grey-Box Model
	9.2.2.4 The White-Box Model

	9.2.3 The PRISMA Model
	9.2.3.1 Introduction
	9.2.3.2 The PRISMA Grey-Box Model
	9.2.3.3 The PRISMA White-Box Model
	9.2.3.4 The Prismanet Diagram

	9.3 Elaborations
	9.3.1 Specification of the PRISMA Model of Rent-A-Car
	9.3.1.1 The White-Box Model of Rent-A-Car
	9.3.1.2 The Grey-Box Model of Rent-A-Car

	9.3.2 The Generic Transaction Prismanet
	9.3.3 The C4E Quality Aspects

	9.4 Discussions
	9.4.1 Implications of the DELTA Theory for Software Engineering
	9.4.2 Prismanets and Petri Nets
	9.4.3 The Petri Net and the DEMO Process Model

	References

	Chapter 10: The OMEGA Theory: Understanding the Construction of Organisations
	10.1 Introduction
	10.2 Foundations
	10.2.1 The Organisational Building Block
	10.2.2 The Interaction Structure
	10.2.3 The Interstriction Structure
	10.2.4 The Interimpediment Structure

	10.3 Elaborations
	10.3.1 Responsibility Ranges
	10.3.2 Business Process Modelling
	10.3.3 Reference Models
	10.3.3.1 Creating and Changing
	10.3.3.2 Transporting and Storing
	10.3.3.3 Transferring Ownership
	10.3.3.4 Obtaining Usufruct
	10.3.3.5 The Ontology of Contracts
	10.3.3.6 Enforcing Laws

	10.4 Discussions
	10.4.1 Structure Thinking Versus Flow Thinking
	10.4.2 Transforming Flows into Trees
	10.4.3 The Loose Coupling of Processes
	10.4.4 The Practical Importance of the OMEGA Theory

	References

	Chapter 11: The ALPHA Theory: Understanding the Essence of Organisations
	11.1 Introduction
	11.2 Foundations
	11.2.1 The Organisational Layers
	11.2.2 Organisational Layers and Sorts of Actors
	11.2.3 Organisational Layers and Sorts of Production
	11.2.4 The Essential Model of an Enterprise

	11.3 Elaborations
	11.3.1 Designing the Ontological Model of the I-Organisation
	11.3.2 Designing the Ontological Model of the D-Organisation
	11.3.3 Actors and Agents
	11.3.3.1 Documental Transactions
	11.3.3.2 Informational Transactions
	11.3.3.3 Original Transactions

	11.3.4 Implementing the D-Organisation of an Enterprise
	11.3.5 Implementing the I-Organisation of an Enterprise
	11.3.6 Implementing the O-Organisation of an Enterprise
	11.3.7 Enterprise Information Systems

	11.4 Discussions
	11.4.1 The Boundary of an Enterprise
	11.4.2 The Debate on AI and the Position of EE
	11.4.3 The Practical Importance of the ALPHA Theory

	References

	Part III: Applications
	Chapter 12: The DEMO Methodology
	12.1 Introduction
	12.2 DEMO: Essence and Simplicity
	12.3 The Way of Modelling
	12.3.1 The DEMO Specification Language
	12.3.2 The Cooperation Model
	12.3.3 The Action Model
	12.3.4 The Process Model
	12.3.5 The Fact Model

	12.4 The Way of Working
	12.4.1 General Guidelines in the OER Method
	12.4.2 OER Step 1: Distinguishing Performa-Informa-Forma
	12.4.3 OER Step 2: Identifying Transaction Kinds and Actor Roles
	12.4.4 OER Step 3: Composing the Essential Model
	12.4.5 OER Step 4: Validating the Essential Model

	12.5 Deepening the Insight into the PSI Theory
	12.6 Conclusions
	References

	Chapter 13: Exercise: Case Fixit
	13.1 Introduction
	13.2 Narrative Description
	13.3 Analysis of the Narrative Description
	13.4 Discussion of the Analysis
	13.5 Conclusions
	Reference

	Chapter 14: Exercise: Case Pizzeria
	14.1 Introduction
	14.2 Narrative Description
	14.3 Analysis of the Narrative Description
	14.3.1 Analysis of the First Phase
	14.3.2 Analysis of the Second Phase
	14.3.3 Analysis of the Third Phase

	14.4 Extending the Essential Model of the Pizzeria
	14.4.1 The Cooperation Model
	14.4.2 The Process Model
	14.4.3 Delegations in the Case Pizzeria

	14.5 Conclusions

	Chapter 15: Exercise: Case Rent-A-Car
	15.1 Introduction
	15.2 Narrative Description
	15.3 Analysis of the Narrative Description
	15.4 The Complete Essential Model of RAC
	15.4.1 The Cooperation Model
	15.4.2 The Action Model
	15.4.3 The Process Model
	15.4.4 The Fact Model

	15.5 Conclusions
	References

	Chapter 16: Exercise: Case Library
	16.1 Introduction
	16.2 Narrative Description
	16.3 Analysis of the First Phase
	16.4 Analysis of the Second Phase
	16.5 Discussion and Conclusions
	Reference

	Chapter 17: Exercise: Case PoliGyn
	17.1 Introduction
	17.2 Narrative Description
	17.3 Analysis of the Narrative Description
	17.4 Analysis of a Patient Case
	17.5 Discussion and Conclusions

	Chapter 18: Exercise: Case GloLog
	18.1 Introduction
	18.2 Narrative Description
	18.3 Analysis of the Narrative Description
	18.4 Extending the Essential Model
	18.5 The Implementation of GloLog
	18.6 Solving the Current Problems and Failures
	18.7 Conclusions
	Reference

	Chapter 19: Real-Life Applications of DEMO
	19.1 Introduction
	19.2 The VISI Standard in Civil Engineering
	19.3 Getting Firm Grip on Software Development
	19.4 Agile Law Making
	19.5 Enterprise Transformation
	19.6 Designing Data Warehouses
	19.7 Enterprise Ontology Based Process Simulation
	19.8 Designing Digital Document Archives
	19.9 Air France KLM Cargo: Post Merger Decision Making
	References

	Chapter 20: DEMO Enhanced Method Engineering
	20.1 Introduction
	20.2 DEMO Enhanced Agile Software Development
	20.2.1 Introduction
	20.2.2 The Story-Card Experiment
	20.2.3 Conclusions

	20.3 DEMO Enhanced Lean Six Sigma
	20.3.1 Introduction
	20.3.2 The Case Study
	20.3.3 Conclusions

	20.4 DEMO Enhanced BPMN
	20.4.1 Introduction
	20.4.2 Critical Evaluations of BPMN
	20.4.3 The Case Study
	20.4.4 Conclusions

	20.5 DEMO Enhanced Software Testing
	20.5.1 Introduction
	20.5.2 The Experiment
	20.5.3 Conclusions

	20.6 DEMO Enhanced Mining
	20.6.1 Situation
	20.6.2 Task
	20.6.3 Approach
	20.6.4 Result
	20.6.5 Reflection

	References

	Glossary

