
Chapter 9

Origins and Development
of Formal Methods

John V. Tucker

Abstract This chapter offers an historical perspective on the development
of Formal Methods for software engineering. It surveys some of the problems
and solution methods that have shaped and become our theoretical under-
standing and practical capability for making software. Starting in the 1950s,
the history is organised by the topics of programming, data, reasoning, and
concurrency, and concludes with a selection of notes on application areas rel-
evant to the book. Although the account emphasizes some contributions and
neglects others, it provides a starting point for studying the development of
the challenging and ongoing enterprise that is software engineering.

9.1 Where do Formal Methods for Software Engineering
Come From?

Let us look at early software and ask, how it was made and who for? Two
domains are well known: scientific software and business software—both were
pioneering, large scale and critically important to their users. Science and
business had a profound effect on the early development and adoption of
computing technologies, though what was computed was already computed
long before electronic computers and software emerged and changed the scale,
speed and cost of computation.

The initial development of programming was largely shaped by the need to
make computations for scientific, engineering and business applications. An
important feature of applications in numerical calculations and simulations
in science and engineering that is easily taken for granted is that the prob-
lems, theoretical models, algorithms and data are mathematically precise and
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well-studied. This means that programming is based on a firm understand-
ing of phenomena, its mathematical description in equations, approximation
algorithms for solving equations, and the nature of errors. To a large extent
the same can be said of business applications. In contrast, for the early appli-
cations of computers that were non-numerical there was little or no rigorous
understanding to build upon. In particular, there is a third domain for pio-
neering software, that of computer science itself, where the creation of high-
level programming languages and operating systems were truly new and even
more challenging! Whilst the physical and commercial worlds had models that
were known for centuries, the systems that managed and programmed com-
puters were unknown territory. Indeed for the 1970s and 1980s, Fred Brooks’
reflections [Bro75] on software engineering after making the operating system
OS/360 for the IBM 360 series was required reading in university software
engineering courses (see also [Bro87]). Formal Methods for software engineer-
ing begins in making software to use computers, with programming languages
and operating systems.

Formal Methods owe much to the failure of programmers to keep up with
the growth in scale and ambition of software development. A milestone in
the creation of the subject of software engineering were the discussions and
reports at a NATO Summer School at Garmisch, Germany, on the “software
crisis” in 1968; the dramatic term “software crisis” was coined by Fritz Bauer
(1924–2015) [NR69].1 One early use of the term is in the 1972 ACM Turing
Award Lecture by Edsger Dijkstra (1930–2002) [Dij72]:

“The major cause of the software crisis is that the machines have become several
orders of magnitude more powerful! To put it quite bluntly: as long as there were
no machines, programming was no problem at all; when we had a few weak com-
puters, programming became a mild problem, and now we have gigantic computers,
programming has become an equally gigantic problem.”

Among the responses to the crisis was the idea of making the whole pro-
cess of software development more “scientific”, governed by theoretically
well-founded concepts and methods. A metaphor and an aspiration was the
contemporary standards of engineering design, with its mathematical mod-
els, experimental discipline and professional regulation, as in civil engineer-
ing. Enter a new conception of software engineering whose Formal Methods
were to provide new standards of understanding, rigour and accountability in
design and implementation. Today, we can organise Formal Methods through
their systematic methodologies for design and validation, techniques for for-
mally modelling systems, software tools for exploring the models, and mathe-
matical theories about the models. In addition to this technical organisation,
Formal Methods can also be organised by their use in different application
domains. Here my emphasis is on original formal modelling techniques and
mathematical theories.
1 An account of the conference and copies of the proceedings are available at http://

homepages.cs.ncl.ac.uk/brian.randell/NATO.
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Certainly, Formal Methods based on fledgling theories about program-
ming existed before this conception of software engineering emerged. Ques-
tions about what a program is supposed to be doing, and to what extent
it is doing what it is supposed to do, are timeless. Thinking scientifically
about programming is an activity much older than software development—
thanks to Charles Babbage (1791–1871) and Ada Lovelace (1815–1852). We
will look at how and when some of the technical ideas in this book entered
software engineering. Technically, they can be grouped around programming ;
specifications of data; reasoning and proof ; and concurrency. Necessarily, my
historical observations are impressionistic and highly selective. However, they
should provide a useful foundation upon which understanding and experience
will grow.

9.2 Logic

A simple and profound observation is that programs are made by creating
data representations and equipping them with basic operations and tests
on the data—a programming concept called a data type. To understand a
program involves understanding

(i) how these representations and their operations and tests work;
(ii) how the operations and tests are scheduled by the control constructs to

make individual programs; and
(iii) how programs are organised by constructs that compose and modularise

programs to make software.

The issues that arise are fundamentally logical issues and they are addressed
by seeking better logical understanding of the program and its behaviour.
Most Formal Methods adapt and use logical and algebraic concepts, results,
and methods to provide better understanding of program behaviour. Thus,
it is in Formal Methods for reasoning—logic—are to be found the origins of
Formal Methods.

Computer science drew on many of the technical ideas in logic, espe-
cially for formalisms for describing algorithms: early examples are syntax
and semantics of first-order languages, type systems, decision problems, λ-
calculus, recursion, rewriting systems, Turing machines, all of which were
established in the 1930s, if not before. Later, after World War II, many more
logical theories and calculi were developed, especially in philosophy, where
subtle forms of reasoning—occurring in philosophical arguments rather than
mathematical proofs—were analysed formally: examples are modal and tem-
poral logics, which found applications in computer science much later.

Whilst it is true that many of Formal Methods come from mathematical
and philosophical logic, in virtually each case the logical concepts and tools
needed adaptation, extension and generalisation. Indeed, new mathematical
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theories were created around the new problems in computing: excellent exam-
ples are the theories of abstract data types and process algebra.

The case for mathematical logic as a theoretical science that is fundamental
to the future of computing was made eloquently by John McCarthy (1927–
2011) in a 1963 paper that has elements of a manifesto [McC63]:

“It is reasonable to hope that the relationship between computation and mathe-
matical logic will be as fruitful in the next century as that between analysis and
physics in the last. The development of this relationship demands a concern for
both applications and for mathematical elegance.”

Over fifty years later the fruitful relationship is thriving and is recog-
nised in computer science and beyond. Very advanced theories about data,
programming, specification, verification have been created—clearly estab-
lishing the connections envisioned by McCarthy. So, today, logical methods
are advanced and commonplace. Their origins and nature require explain-
ing to young computer scientists who encounter them as tools. In science,
there are few more dramatic examples of the fundamental importance of
research guided by the curiosity of individuals—rather than by the directed
programmes of companies, organisations and funding bodies—than the legacy
of logic to computer science.

9.3 Specifying Programming Languages and Programs

What is a program? What does a program do? Formal Methods for developing
programs begin with the problem of defining programming languages. This
requires methods for defining

(i) the syntax of the language, i.e., spelling out the properties of texts that
qualify as legal programs of the language; and

(ii) the semantics of the language, i.e., giving a description of what con-
structs mean or what constructs do.

Formal Methods often make precise informal methods but in the case of
programming and programming languages there were few informal methods.

Early languages of the 1950s, like Fortran for scientific computation, and
the later Cobol for commercial data processing, established the practicality
and financial value of high-level machine-independent languages.2 But their
features were simple and, being close to machine architectures, their informal
descriptions were adequate for users and implementors. The need for more
expressive high-level languages presented problems. An early success was the
definition of the syntax of Algol 60 using mathematical models of grammars
[Nau+60, Nau62]. The method used was to become known as BNF notation,

2 By 1954 the cost of programming was becoming comparable with the cost of computer
installations, which was a prime motivation for IBM’s development of Fortran [Bac98].
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sometimes named after its creators John Backus (1924–2007) and Peter Naur
(1928–2016).

The definition of syntax took up some important ideas from linguistics
from the 1950s, where the search for a mathematical analysis of what is com-
mon to natural languages led to the formal grammars of Noam Chomsky
[Cho56, Cho59] and his four-level hierarchy. The BNF notation corresponded
exactly with Chomsky’s context-free grammars. The mathematical analysis
of languages defined by grammars was taken over by computer scientists,
motivated by parsing and translating programming languages. Its generality
enabled its applications to grow widely. The resulting formal language theory
was one of the first new scientific theories to be made by computer scientists.
It found its place in the computer science curriculum in the 1960s, symbolised
by the celebrated classic by Ullman and Hopcroft [UH69].3 The technical ori-
gins of Formal Methods for the syntax of natural and computer languages lie
in mathematical logic, especially computability and automata theory where
decision problems were a central topic and rewriting rules for strings of sym-
bols were well known as models of computation. Thus, the works of Alan
Turing and Emil Post (1897–1954) are an influence on theory-making from
the very beginning: see Greibach [Gre89] for an account of the development
of formal language theory.

The definition of the semantics of programming languages has proved to be
a much harder problem than that of syntax. One needs definitive explanations
for what programming constructs do in order to understand the implications
of choices in the design of languages, and the consequences for the programs
that may be written in them. A semantics is needed as a reference standard,
to guarantee the portability of programs and to reason about what programs
do.

Most programming languages are large and accommodate lots of features
that are thought to be useful in some way. This criterion of ‘usefulness’ varies
a great deal. Variants of features to allow programmers lots of choice add to
the size, and the interaction between features add to the semantic complex-
ity. Thus, semantic definitions of whole languages are awkward and are rarely
achieved completely in a formal way. However, the semantical analysis of lan-
guages that are focussed on a small number of programming constructs has
proved to be very useful—modelling constructs and their interaction in a
controlled environment, as it were. For example, simple languages contain-
ing just a few constructs can be perpetual sources of insights.4 Over many
years, these studies have led to ambitious attempts to find systematic meth-
ods for cataloging and predicting the semantic consequences of choosing con-
structs for programming languages. However, the basic approaches to defining

3 The following decade saw a rich harvest of textbooks on processing syntax, six by Ullman,
Hopcroft and Aho.
4 Imperative programming has at its heart a language containing only assignments,
sequencing, conditional branching and conditional iteration.
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formally the meaning of a programming language have been settled since the
1970s.

First, there are operational semantics, where the constructs are explained
using mathematical models of their execution. A natural form of operational
semantics defines an abstract machine and explains the behaviour of con-
structs in terms of changes of states of the machine. Operational semantics
aligns with interpreters. An important historical example are the Formal
Methods developed to define the semantics of the language PL/1 at the IBM
Vienna Laboratories. The PL/1 language was an important commercial devel-
opment for IBM, complementing the convergence of IBM users’ software and
machines represented by OS/360. PL/1—like OS/360—was a huge challenge
to the state of the art of its day. Starting in 1963, the language was developed
in New York and Hursley, UK. The task of providing a complete and precise
specification of the new language was given to Vienna in 1967, and led to
remarkable advances in our knowledge of programming languages, through
the work of many first-rate computer scientists (e.g., the contributions of
Hans Bekić (1936–1982) and Peter Lucas (1935–2015), see [BJ84]). Their
methods resulted in the Vienna Definition Language for the specification of
languages [Luc81].

Secondly, there are denotational semantics, where the constructs are
interpreted abstractly as so-called denotations, normally using mathemati-
cal objects of some kind. In a first attempt at this denotational approach,
Christoper Strachey (1916–1975) and Robert Milne made a huge effort to
develop such a mathematically styled semantics for languages. An early
important example of the application of the approach is Peter Mosses’s
semantics for Algol 60 [Mos74]. The mathematical ideas needed led to a new
semantic framework for computation called domain theory. This was based
upon modelling the approximation of information using orderings on sets; it
was proposed by Dana Scott (1932-) and developed by him and many oth-
ers into a large, comprehensive and technically deep mathematical subject.
Domains of many kinds were created and proved to be suited for defining
the semantics of functional languages where recursion is pre-eminent. Deno-
tational semantics also involve abstract meta-languages for the purpose of
description and translation between languages.

Thirdly, there are axiomatic semantics, where the behaviour of constructs
are specified by axioms. Axiomatic semantics defines the meaning of con-
structs by means of the logical formulae that correctly describe input-output
behaviours, or even the logical formulae that can be proven in some logic
designed around the language. Axiomatic semantics focus on what a pro-
grammer can know and reason about the behaviour of his or her programs.

An important development was the attempt by Robert Floyd (1936–2001)
to provide rules for reasoning on the input/output behaviour of flow charts
and Algol fragments [Flo67]. In these early investigations, the behaviour of a
program was described in terms of expressions of the form

{P}S{Q},
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where property P is called a pre-condition, S is a program, and property Q is
called a post-condition; the expressions came to be called Floyd-Hoare triples.
This means, roughly, if P is true then after the execution of S, Q is true.
There are different interpretations depending upon whether the pre-condition
P implies the termination of program S. If P implies the termination of
program S then the interpretation is called total correctness; and if P fails to
imply the termination of program S then the interpretation is called partial
correctness.

This approach to program specification was developed by Tony Hoare in
1969, in an enormously influential article on axiomatic methods. He proposed
to use proof systems tailored to the programming syntax as a way of specify-
ing programming languages for which program verification is a primary goal
[Hoa69]. At the time, this so-called Floyd-Hoare approach to verification was
seen as a high-level method of defining the semantics of a whole language for
the benefit of programmers. Called axiomatic semantics, it was applied to
the established language Pascal [HW73].

The theoretical study of Floyd-Hoare logics that followed was also influ-
ential as it raised the standard of analysis of these emerging semantic meth-
ods. To use the current semantics of programs to prove soundness for logics
proved to be difficult and error prone. Stephen Cook (1939-) offered sound-
ness and completeness theorems for a Floyd-Hoare logic for a simple imper-
ative language based on first-order pre- and post-conditions in Floyd-Hoare
triples; these demonstrated that the known rules were correct and, indeed,
were “enough” to prove all those {P}S{Q} that were valid [Coo78].

Unfortunately, the completeness theorems required a host of special assump-
tions, essentially restricting them to programs on the data type of nat-
ural numbers, with its very special computability and definability prop-
erties. Indeed, the completeness theorems were difficult to generalise to
any other data type. The applicability of Floyd-Hoare logics attracted a
great deal of theoretical attention, as did their technical problems. The
development of Floyd-Hoare logics for new programming constructs grew
[Bak80, Apt81, Apt83, RBH+01]. However, the deficiencies in the complete-
ness theorems widened. The assertion language in which the pre- and post-
conditions were formalised was that of first-order logic, which was not expres-
sive of essential computational properties (such as weakest pre-conditions and
strongest post-conditions) for data types other than the natural numbers. One
gaping hole was the need to have access to the truth of all first-order state-
ments about the natural numbers—a set infinitely more uncomputable than
the halting problem (thanks to a 1948 theorem of Emil Post [Pos94]). Another
problem was a multiplicity of non-standard models of the data [BT82b], and
the failure of the methods applied to a data type with two or more base types
[BT84b].

A completeness theorem is much more than a confirmation that there are
enough rules in a proof system; it establishes precisely what semantics the
proof system is actually talking about—something immensely valuable, if



462 John V. Tucker

not essential, for a method for defining programming languages. In the case
of Floyd-Hoare logic for while programs, the semantics the proof system
is actually talking about was surprising [BT84a], for example, it was non-
deterministic.

The relationship between the three different methods of defining semantics
was addressed early on—e.g., by the former Vienna Lab computer scientist
Peter Lauer in [Lau71]—but the links between the semantics of programs
and the formal systems for reasoning were weak and error prone. For exam-
ple, a decade later, Jaco de Bakker (1939–2012) made a monumental study
of operational and denotational programming language semantics and their
soundness and completeness with respect to Floyd-Hoare logics in [Bak80].
Again the theory was limited to computation on the natural numbers. Later
the theory was generalised in [TZ88] to include abstract data types using an
assertion language that was a weak second-order language, and a lot of new
computability theory for abstract algebraic structures [TZ02].

The late 1960s saw the beginnings of an intense period of thinking
about the nature of programming and programs that sought concepts and
techniques that were independent of particular programming languages.
New methods for developing data representations and developing algorithms
focussed on a rigorous understanding of program structure and properties,
and became a loosely defined paradigm called structured programming. For
a classic example, in 1968, Edsger Dijkstra pointed out that the use of the
goto statement in programs complicated massively their logic, was a bar-
rier to their comprehension and should be avoided [Dij68c]. Throughout the
1970s, increasingly sophisticated views of programming and programs grew
into the new field of programming methodology, which was perfect for encour-
aging the growth of formal modelling and design methods. For example,
in the method of stepwise refinement an abstractly formulated specification
and algorithm are transformed via many steps into a concrete specification
and program, each transformation step preserving the correctness of the new
specification and program. This method of developing provably correct pro-
grams was promoted by Edsger Dijkstra [Dij76]. The abstract formulations
used novel computational concepts such as non-determinism in control and
assignments, concurrency, and abstract data type specifications to make high-
level descriptions of programs, and turned to the languages of mathematical
logic to formalise them. For example, a formal theory of program refinement
employing infinitary language and logic was worked out by Back [Bac80].

Many interesting new developments and breakthroughs in Formal Methods
have their roots in the scientific, curiosity-driven research and development we
have mentioned. For example, the specification languages and their associated
methodologies are intended to describe and analyse systems independently
of—and at a higher level of abstraction than is possible with—programming
languages. An early example is the Vienna Development Method (VDM),
which originates in the IBM Vienna Laboratory work on Formal Methods
and the exercise of developing a compiler—the Vienna Definition Language.
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The general applicability of VDM in software engineering was established by
Cliff Jones (1944-) and Dines Bjørner (1937-) [Jon80, Jon90, BJ82]. A second
example is the method Z, based on set theory and first-order logic, created
by Jean-Raymond Abrial (1938-); an early proposal is [ASM80]. Bjørner went
on to develop the influential RAISE (Rigorous Approach to Industrial Soft-
ware Engineering) Formal Method with tool support; his reflections on his
experiences with these enterprises are informative [BH92].

Ways of visualising large complex software documentation—whether require-
ments or specifications—and relating them to programming were developed:
to the venerable flowcharts were added: Parnas tables [Par01]; statecharts
[Har87]; and the Unified Modeling Language (UML) family of diagrams
[BJR96].

In hindsight, the influence of these semantic methods has been to establish
the problem of specifying and reasoning about programs as a central problem
of computer Science, one best tackled using Formal Methods based upon alge-
bra and logic. The mathematical theories and tools that were developed were
capable of analysing and solving problems that arose in programming lan-
guages and programming. Moreover, they also offered the prospect of working
on a large scale in practical software engineering, on realtime, reactive and
hybrid systems.

9.4 Specifications of Data

The purpose of computing is to create and process data. Of all the concepts
and theories to be found in Formal Methods to date, perhaps the simplest
and most widely applicable is the theory of abstract data types. The informal
programming idea of an abstract data type is based upon this:

Principle. Data—all data, now and in the future—consists of a set of objects
and a set of operations and tests on those objects. In particular, the opera-
tions and tests provide the only way to access and use the objects.

This informal notion can be found in Barbara Liskov and Steve Zilles 1974
article [LZ74].5 Liskov saw in abstract data types a fundamental abstrac-
tion that could be applied pretty much anywhere and would contribute to
the methodologies emerging in structured programming; more importantly
the abstraction could be implemented and a bridge formed between com-
putational structures and operations. Liskov designed CLU to be the first
working programming language to provide such support for data abstraction
[LSR+77, LAT+78]. Liskov’s thinking about abstract data types is focussed
by the construct of the cluster which, in turn, is inspired by the concepts of

5 Along with suggestions about encapsulation, polymorphism, static type checking and
exception handling!
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modularity + encapsulation.

These two concepts derive from David Parnas’ hugely influential ideas of
information hiding and encapsulation, with their emphasis on interfaces
separating modules, and specifications and their implementations [Par72a,
Par72b, Par01].

Encapsulation means that the programmer in CLU can access data only
via the operations listed in the header of a cluster, and is ignorant of the
choices involved in data representations. This raises the question what, and
how, does the programmer know about the operations? The answer is by
giving axioms that specify the properties of the operations. Steve Zilles had
presented this idea using axioms that were equations in a workshop organised
by Liskov in 1973, where he defined a data type of sets. This is the start of the
emphasis on the algebraic properties of data types [Zil74, LZ75]. The notion
was designed to improve the design of programming languages—as in Liskov’s
CLU. It helped shape the development of modular constructs such as objects
and classes, e.g., in the languages C++ [Str80] and Eiffel [Mey91, Mey88].
But it did much more. It led to a deep mathematical theory, new methods
for specification and verification, and contributed spinouts seemingly removed
form abstract data types.

Soon abstract data types became a new field of research in programming
theory, as the Workshop in Abstract Data Types (WADT), begun and ini-
tially sustained in Germany from 1982, and the 1983 bibliography [KL83]
and bear witness.

The formal theory of data types developed quickly but rather messily.
The idea of abstract data type was taken up more formally by John Guttag
in his 1975 PhD (e.g., in [Gut75, Gut77]), and by others who we will meet
later. Guttag studied under Jim J Horning (1942–2013) and took some ini-
tial and independent steps toward a making a theory out of Zillies’s simple
idea [GH78]. As it developed it introduced a number of mathematical ideas
into software engineering: universal algebra, initial algebras, final algebras,
axiomatic specifications based on equations, term rewriting, and algebraic
categories. Most of these ideas needed considerable adaption or extension:
an important example is the use of many sorted structures—a topic barely
known in algebra. Experienced computer scientists, mainly at IBM Yorktown
Heights, began an ambitious research programme on Formal Methods for
data: Joseph Goguen (1941–2006), Jim Thatcher, Eric Wagner, Jesse Wright
formed what they called the ADJ Group and wrote about many of the basic
ideas needed for a fully formal theory of data in a long series of some 18 papers
[Gog89, GTW78, Wag01], though Goguen left the group to pursue other col-
laborations. Most of their work is unified by the fundamental notion of ini-
tiality, and the problems of specifying abstract data types using axioms made
of equations. The theory was elegant and very robust, and encouraged the
emergence of specification as an independent subject in software engineering.

Mathematically, the theory of abstract data types grew in scope and
sophistication. For example, Guttag and others had noted the relevance of
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the connection between computability and equations. Equations were used
by Kurt Gödel to define the computable functions in 1934; the technique
was suggested by Jacques Herbrand (1908–1931) and became a standard
method called Gödel-Herbrand computability. But the connection was too
removed from the semantic subtleties of specifications, e.g., as pointed out
by Sam Kamin in 1977 [Kam77]. A major classification programme on the
scope and limits of modelling abstract data types, and of making axiomatic
specifications for them, was created by Jan A Bergstra (1951-) and John
V Tucker (1952-), who discovered intimate connections between specifica-
tion problems and the computability of the algebraic models of the data
[BT87, BT82a, BT95]. Begun in 1979, some of the original problems were
settled relatively recently [KM14]. They exploited deeply the theory of com-
putable sets and functions to make a mathematical theory about digital
objects in general. For example, one of their results established that any
data type that could be implemented on a computer can be specified uniquely
by some small set of equations using a small number of auxiliary functions
[BT82a]: Let A be a data type with n subtypes. Then A is computable if, and
only if, A possesses an equational specification, involving at most 3(n + 1)
hidden operators and 2(n+1) axioms, which defines it under initial and final
algebra semantics simultaneously.

The theory also spawned algebraic specification languages and tools that
could be used on practical problems. For example, Guttag and Horning col-
laborated fruitfully on the development of the LARCH specification lan-
guages, based upon ideas in [GH82]. The LARCH specification languages
had a single common language for the algebraic specification of abstract data
types (called LSL, the Larch Shared Language), and various interface lan-
guages customised to different programming languages; there were also tools
such as the Larch Prover for verification. This was work of the 1980s, cul-
minating in the monograph [GH93]. Important systems tightly bound to the
mathematical theory are the OBJ family, which began early with OBJ (1976)
and led to CafeObj (1998), and Maude (1999); and the programming envi-
ronment generator ASF+SDF(1989) [BHK89]. Such software projects were
major undertakings: the Common Algebraic Specification Language CASL
used in this book began in 1995 and was completed in 2004 [Mos04]!

The development of specification languages demanded further extensions
and generalisations of the mathematical foundations; examples include new
forms of rewriting systems, the logic and algebra of partial functions, and
the theory of institutions. Some of these ingredients have led to substantial
theoretical textbooks, such as for term rewriting [Ter03], for abstract data
types [LEW96], and for institutions [ST12].

Partial functions arise naturally in computation when an algorithm fails to
terminate on an input; they have been at the heart of computability theory
since Turing’s 1936 paper. They also arise in basic data types of which the
most important examples are division 1/x, which is not defined for x = 0,
and the pop operation of the stack, which does not return data from an
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empty stack and so is not defined. Such partial functions cause difficulties
when working with equations and term rewriting; they are especially disliked
by theoreticians captivated by beauty of the algebraic methods applied to
total functions. Making partial operations total is an option, e.g., the idea of
introducing data to flag errors, but one that is not always attractive math-
ematically. As abstract data types and specification methods expanded in
the 1980s, issues of partiality could not be ignored. A good impression of the
variety of treatments of partiality that were becoming available can be gained
from Peter Mosses’s [Mos93], who was later to take on the task of manag-
ing the definition of Casl where decisions on partial semantics were needed.
Monographs [Bur86] and [Rei87] on partiality appeared in the decade. New
treatments continue to be developed such as [HW99], and the iconoclastic
but surprisingly practical and algebraically sound 1/0 = 0 of [BT07].

The theory of institutions was created by Joseph Goguen and Rod Burstall
with the aim of capturing the essence of the idea of a logical system and its
role in Formal Methods. The use of logical calculi was burgeoning and the
concept aimed to abstract away and become independent of the underlying
logical system; it did this by focussing on axioms for satisfaction. Institutions
could also describe the structuring of specifications, their parameterization
and refinement, and proof calculi. Institutions see the light of day through
the algebraic specification language CLEAR [BG80] and more independently
in [GB84]; Goguen and Burstall’s polished account appears only 12 years
later in [GB92]. A interesting reflection/celebration of institutions and related
attempts is [Dia12]. Institutions offer a general form of template for language
design, comparison and translation, albeit one that is very abstract. They
have been applied to modelling languages like UML and ontology languages
like OWL, and to create new languages for both such as the distributed ontol-
ogy, modelling and specification Language DOL [Mos17]. Specification as a
fundamental concept and as a subject in its own right was advanced by work
involving abstract data types. Unsurprisingly in view of the universal impor-
tance of data types, several areas in computer science first tasted Formal
Methods through abstract data types or benefitted from ideas and methods
spun out of its research. It was out of this research community came the first
use of Formal Methods for testing by Marie-Claude Gaudel (1946-) and her
coworkers in e.g., [BCF+86, Gau95].

The design of better language constructs was a motivation for abstract
data types, and the initial concerns with abstraction, modularity, reuse, and
verification have proved to be timeless and very general. Inherent in thinking
about data abstraction are ideas of genericity. With a background in abstract
data types, David Musser (who had worked with John Guttag), Deepak
Kapur (who had worked with Barbara Liskov) and Alex Stepanov proposed
a language Tecton [KMS82] for generic programming in 1982. Stepanov went
on to design of the standard template library (STL) for C++, i.e., the C++
standard collection classes, which has been influential in the evolution of C++
and other languages. Generic programming is a programming paradigm based
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that focuses on finding the most abstract formulations of algorithms and then
implementing efficient generic representations of them; it leads to libraries
of re-usable domain-specific software. Much of these language developments
took place in industrial labs, starting with the General Electric Research
Center, New York.

Like grammars and automata, abstract data types are timeless scientific
ideas.

9.5 Reasoning and Proof

Despite the fact that logic is fundamentally about reasoning and logic was
so influential in computing, reasoning about programs was slow to gather
momentum and remained remote from practical software development. The
mathematical logician and computer pioneer Alan Turing applied logic in his
theoretical and practical work and, in particular, addressed the logical nature
of program correctness in an interesting report on checking a large routine
in 1949, see [MJ84]. In 1960, John McCarthy drew attention to proving cor-
rectness [McC62]: “Primarily, we would like to be able to prove that given
procedures solve given problems” and, indeed:

“Instead of debugging a program, one should prove that it meets its specification,
and this proof should be checked by a computer program. For this to be possible,
formal systems are required in which it is easy to write proofs.”

Earlier, we noted the rise of such formal systems for program correctness
after Floyd and Hoare in the late 1960s, motivated by the needs of users of
programs.

The development of reasoning about programs has followed three paths.
First, there was the development of logics to model and specify computational
properties, such as program equivalence and correctness. To add to the selec-
tion of first-order and second-order logics mentioned, temporal logics were
proposed by Burstall [Bur74] and Kröger [Krö77, Krö87]; and, earlier, in a
particularly influential 1977 article about properties arising in sequential and,
especially, concurrent programming, Amir Pnueli (1941–2009) applied linear
temporal logic (LTL) [Pnu77].

The second path is the formulation of special methodologies and languages
for constructing correct programs. One example is design-by-contract, associ-
ated with Bertrand Meyer’s language Eiffel. In this object-oriented language,
software components are given verifiable interface specifications, which are
styled contracts; these specifications augment abstract data types with pre-
conditions, postconditions and invariants. Another example is Cliff Jones’ rely
guarantee methods for designing concurrent programs, originating in [Jon81].
Rely guarantee methods are designed to augment Floyd-Hoare triples to con-
trol information about the environment of a parallel program. The method
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is discussed in Willem Paul de Roever’s substantial work on concurrency
[RBH+01]. Building in annotations such as pre and post conditions into
languages is gaining interest when developing and maintaining high-quality
software. The Microsoft programming language Spec# is an extension of the
existing object-oriented .NET programming language C# that adds this fea-
ture to methods, together with relevant tools [BLS05]. The pre and post
condition annotations support the concept of APIs in programming, though
algebraic specifications seem more appropriate [BH14].

The third path is the development of software to support verification such
as theorem provers—both general and specialised—and model checkers. The-
orem provers are systems that can prove statements based upon the language
and rules of a formal logic. Experiments with making theorem provers for
mathematical purposes started early and continues to be a driving force in
their development, but already in the 1960s their potential for use in software
development was recognised. An excellent introduction to their development
is [HUW14].

One family tree of theorem provers with verifying computer systems in
mind begins with Robin Milner (1934–2010) and his development of the Logic
for Computable Functions (LCF) for computer assisted reasoning; see [Gor00]
for a detailed account. Milner was initiated into theorem proving through
working on David Cooper’s 1960s programme to make software for reasoning
about programs (e.g., equivalence, correctness) using first-order predicate
logic and first-order theories, programmed in the language POP-2 [Coo71].
Cooper experimented with programming decision procedures and was the
first to implement Presburger’s Theorem on arithmetic with only addition
[Coo72]. In a telling reflection in 2003, Milner observed

“I wrote an automatic theorem prover in Swansea for myself and became shattered
with the difficulty of doing anything interesting in that direction and I still am. ...
the amount of stuff you can prove with fully automatic theorem proving is still very
small. So I was always more interested in amplifying human intelligence than I am
in artificial intelligence.” [Mil03].

Milner’s LCF is the source of the functional programming language
ML—for Meta Language—which plays a pivotal role in many subsequent
approaches to reasoning, as well as being a functional language of great
interest and influence in its own right. LCF is a source for several major
theorem proving tools that qualify as breakthroughs in software verification,
such as HOL and Isabelle. Mike Gordon (1948–2017) created and developed
HOL over decades and demonstrated early on the value of theorem provers in
designing hardware at the register transfer level, where errors are costly for
manufacturers and users. The long road from HOL verifications of experimen-
tal to commercial hardware, and its roots in scientific curiosity, is described
in the unpublished lecture [Gor18].

Other contemporary theorem provers that delivered significant milestones
in applications are Robert S Boyer and J Strother Moore’s theorem prover
[BKM95] and John Rushby’s PVS [ORS92]. The Boyer-Moore system, offi-
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cially known as Nqthm, was begun in 1971 and over four decades accom-
plished a number of important verifications including a microprocessor [Hun85]
and a stack of different levels of software abstraction [Moo89]; the later indus-
trial strength version ACL2 provided verifications of floating point for AMD
processor implementations [MLK96]. PVS appeared in 1992 but is one of a
long line of theorem provers built and/or developed at SRI, starting with
Jovial in the 1970s [EGM+79]. The aim of PVS is provide a general working
environment for system development using Formal Methods, in which large
formalizations and proofs are at home. Thus, PVS combines a strong specifi-
cation language and proof checker, supported by all sorts of tools and libraries
relevant to different application areas. The progress of PVS was influenced
by work for NASA and is now very widely used [ORS+95, Cal98].

Theorem provers based on quite different logics have also proved success-
ful. An intuitionistic logic created in 1972 to model mathematical statements
and constructive reasoning by Per Martin-Löf (1942-) based on types is the
basis for many theorem provers and programming languages. Robert Consta-
ble developed Nuprl, first released in 1984 [Con86], and others based upon
dependent type theories and functional programming have followed, such as
Coq [BC04] and Agda [BDN09]. The use of types goes back to logic and
Bertrand Russell (1872–1970)—see [Con10].

Model checkers seek to find when a formula ϕ is satisfiable in a model. The
verification technique is particularly suited to concurrency where formulae
in temporal logic can express properties such as mutual exclusion, absence
of deadlock, and absence of starvation, and their validity tested in a state
transition graph, called a Kripke structure. For such concurrency problems,
linear temporal logic (LTL) was applied by Amir Pnueli; the logic contained
operators F (sometimes) and G (always), augmented with X (next-time) and
U (until) and the program proofs were deductions in the logic. In 1981 the
value and efficiency of satisfiability was established by Edmund M Clarke and
Allen Emerson [CE81] and, independently, by Jean-Pierre Queille and Joseph
Sifakis [QS82] who showed how to use model checking to verify finite state
concurrent systems using temporal logic specifications. For example, Clarke
and Emerson used computation tree logic (CTL) with temporal operators A
(for all futures) or E (for some future) followed by one of F (sometimes), G
(always), X (next-time), and U (until). Personal accounts of the beginnings
of model checking are [Cla08] by Clarke and [Eme08] by Emerson. For an
introduction to temporal logic methods see the monograph [DGL16].

The role of logic is to express properties of programs in logical languages
and to establish rules for deducing new properties from old. To make a pro-
gram logic, such as a Floyd-Hoare logic, typically there are two languages
and sets of rules—the language of specifications and the language of pro-
grams. It is possible to combine specifications and programs into a single
formal calculus, and there are plenty of formal systems that seem to possess
such unity. Given that the calculi are intended for reasoning about programs,
the complicating factor is what is meant by programs. In such calculi using
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abstract models of algorithms is practical, but using programming languages
with their syntactic richness is not. This approach to verification impinges on
the distinction between algorithm and program. Verifying algorithms is dis-
tinct from verifying programs. A significant example of this view of reasoning
is Leslie Lamport’s work on concurrent and distributed algorithms that cul-
minates in a calculus called the Temporal Logic of Actions (TLA) in which
formulae contain temporal logic operators with actions to model algorithms
[Lam94].

In recalling these Formal Methods and tools we have neglected to track
their progress in application. A useful early account of their path toward
breakthroughs in theorem proving and model checking is [CW96].

9.6 Concurrency

Concurrency in computing refers to the idea that two or more processes exist,
that they are taking place at the same time and communicating with one
another. The phenomenon is ubiquitous in modern software, but it can take
on many forms and leads to very complicated behaviour. Analysing, and to
some extent taming, the logical complexity of concurrency has been another
significant achievement of Formal Methods over the past 50 years.

Early on concurrency was found to be fundamental in the design of oper-
ating systems, where in the simplest of machines many processes need to be
running at the same time, monitoring and managing the machine’s resources,
computations, input-output, and peripherals. Until quite recently, there was
one processor that had to schedule all instructions so as to create and main-
tain an approximation to simultaneous operation. The solution was to break
up the different processes and interleave their instructions—the processor
speed being so great that for all practical purposes the effect would be simul-
taneous operation. This technique later became known as the arbitrary inter-
leaving of processes.

The problems that arose from this necessary concurrency in operating sys-
tems required computer scientists to isolate the phenomenon and to create
special constructs such as Dijkstra’s semaphore for the THE multiprogram-
ming system [Dij63, Dij68a, Dij68b]. The topic was soon central to research in
programming methodology. Programming concurrency led to all sorts of spe-
cial algorithmic constructs and reasoning techniques initially to extend the
Formal Methods that had bedded down for sequential languages. An impor-
tant paper extending Floyd-Hoare style verification to parallel programs is
[OG76]. But parallelism also demanded a substantial rethink of how we spec-
ify semantics. Gordon Plotkin’s introduction of the method of what became
called structural operational semantics (SOS) in 1980 [Plo04a, Plo04b] is
something of a milestone, evident in his elegant semantics for the concurrent
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language Csp [Plo83]. But more radical approaches to semantic modelling
were needed to understand the fabulously complicated behaviours.

An important insight of work on concurrency was this:

Principle. For logical purposes, concurrency as implemented by the inter-
leaving of processes could be defined by reducing it to non-determinism.

Specifically, the instructions were split up and groups of instructions from
each sequence were processed but one could not know which groups would be
scheduled when, only that the order within each sequence would be preserved.

Later, special small concurrent languages were developed, such as Tony
Hoare’s first formulation of Csp in 1978 [Hoa78]. The semantics was difficult
to define, and program verification was even more problematic but achieve-
ments were (and continue to be) made. Parallel programs are much more
complicated than sequential. Difficulties arise because of a global memory
that is shared between parallel programs, or because programs have local
memories and have to pass messages between them when executed in parallel;
communications can be synchronous or asynchronous. All sorts of new general
computational phenomena arise, such as deadlock and livelock. A valuable
guide is [RBH+01], which also contains a substantial gallery of photographs
of contributors to the verification of concurrent programs; and textbooks such
as [AO91, ABO09].

For the theoretician, a radical and influential departure from the down
to earth methods of Floyd-Hoare triples was needed. To raise the level of
abstraction of thought from concrete languages to purely semantic models
of the amazingly varied and complex behaviour possible in the execution of
independent programs that can and do communicate. This change of thinking
can be found in the attempt by Hans Bekić to create an abstract theory of
processes in the IBM Vienna Laboratory in 1971 [Bek71], work that has
become more widely known thanks to [BJ84]. The key point is that thinking
about processes replaces the focus on input and output that dominates earlier
semantic modelling and is needed in Floyd-Hoare specifications.

A search began for an analogous calculus for concurrent processes. Influ-
enced by the purity of lambda calculus for the definition of functions, a
major development were the early attempts of Robin Milner, who essentially
launched the search with his Calculus of Communicating Systems (CCS) of
1980 [Mil80]. Among a number of innovations:

(i) Milner, like Bekić, thought about the notion of process in an abstract
way; a process is a sequence of atomic actions put together by operations of
some kind in a calculus—rather like the notion of string as a concatenated
sequence of primitive symbols equipped with various operations.

(ii) Milner solved the problem of finding operators to make a calculus that
focussed on the troublesome problem of communication between processes.



472 John V. Tucker

The idea of a process calculus led Tony Hoare to re-analyse the ideas of
his Csp language [Hoa78] and create a new calculus called (for a period)
Theoretical Csp.

These calculus approaches took off with new energy and in all sorts of
new directions. The sharpness of the mathematical tools uncovered a wide
spectrum of semantics for concurrent processes. The relationship between
processes, especially their equivalence, emerged as a fundamental but very
complex topic. There were many ways of viewing processes and their equiva-
lence in formal calculi, for the world has many systems. Milner’s longstanding
interest [Mil70, Mil71a, Mil71b] in the idea of a process simulating another
was a basic idea of CCS. In contrast, Hoare’s Csp compared processes by
notions of refinement.

In the emerging process theory, notions of system equivalence soon mul-
tiplied taking many subtly different forms [Gla96]. David Park (1935–1990)
introduced a technical notion into process theory called bisimulation [Par81].
Ideas of bisimulation focus on when two systems can each simulate the oper-
ation of the other. Bisimulation in concurrency also took on many forms and,
indeed unsurprisingly, bisimulation notions suitably generalised were found
to have wide relevance [Rog00]. Bisimulation stimulated interest in apply-
ing and developing new semantic frameworks for computation, such as game
semantics [Cur03] and coalgebraic methods [San11, SR11].6

De Bakker and Zucker took the process notion and created a new theory
of process specification based on metric space methods for the solution of
equations [BZ82]. They were inspired technically by Maurice Nivat’s lectures
on formal languages based on infinite strings [Niv79] where the languages
were defined using fixed points provided by the Banach contraction theorem.
The metric space theory of processes expanded providing an alternate theory
of nondetermisitic processes [BR92].

An important advancement of the nascent theory was to refine further
the fundamental issues that the principle demanded, non-determinsim and
sequencing. A pure form of process theory called Algebra of Communicating
Processes (ACP) was created by Jan Bergstra and Jan Willem Klop in 1982.
They viewed processes algebraically and axiomatically: a process algebra was
a structure that satisfied the axioms of ACP, and a process was simply an
element of a process algebra! In particular, the axioms of ACP were equations
that defined how operators made new processes from old. The equations made
ACP subject to all sorts of algebraic constructions such as initial algebras,
inverse limits etc. Thus, ACP took an independent direction, inspired by the
world of abstract data types and rewriting. Interestingly, ACP was developed
along the way of solving a problem in de Bakker-Zucker process theory (on
fixed points of so called non-guarded equations). It was Bergstra and Klop
who first coined the term process algebra in this first publication [BK82]. The
term later came to cover all work at this level of abstraction. Their theory was

6 Just as studies of recursive definitions of higher types in programming languages led to
the semantic framework of domain theory.
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extended with communication and provided a third effective way of working
with concurrency [BK84].

These theories were not without software tools. The basic science of model
checking was the basis of a range of useful tools. An early example is the
Concurrency workbench of 1989, which was able to define behaviours in an
extended version of CCS, or in its synchronous cousin SCCS, analyse games
to understand why a process does or does not satisfy a formula, and derive
automatically logical formulae which distinguish non-equivalent processes.
Model checking technologies lie behind tools for mature concurrent process
algebras. Another early influential tool is SPIN by Gerard Holtzman, which
has been extended significantly and has become well-known [Hol97, Hol04].
For Csp, the refinement checker FDR is also such a tool [Ros94]. For the
process algebra ACP, μCRL and its successor mCRL2 [GM14] offers simula-
tion, analysis and visualization of behaviour modelled by ACP; its equational
techniques also include abstract data types.

Within ten years of Milner’s CCS, substantial textbooks and monographs
became available, many of which have had revisions: for the CCS family
[Mil89, Hen88], for the Csp family [Hoa85, Ros97, Ros10], and for the ACP
family [BW90, Fok00, BBR10]; and a major Handbook of Process Algebra
[BPS01] was created.

Semantic modelling often leads to simplifications that are elegant and long
lasting and reveal connections with other subjects that are unexpected. The
operational semantics of processes revealed the very simple and invaluable
idea of the labelled transition system. The axiomatic algebraic approach led
to stripped down systems of axioms that capture the essence of concurrent
phenomena. However, algebraic methods are so exact and sensitive that many
viable formulations of primitive computational actions and operations on
processes were discovered and developed—we have mentioned just CCS, Csp
and ACP families of theories. Each of these families have dozens of useful
theories that extend or simplify their main set of axioms in order to model new
phenomena or case studies. For instance, in different ways process algebras
were extended with basic quantitive information such as time (e.g., [MT90b,
Low95, BB96]), and probabilities (e.g., [GJS90, BBS92, MMS+96]), often
starting with Milner’s CCS family of processes. The addition of a concept of
mobility was quite complicated, this being first attempted by Robin Milner
et al. in the π calculus in 1992 [MPW92].

The diversity of theories of concurrent processes soon became evident, it
took years to come to terms that this diversity is inherent. A useful overview
of the history of these three process algebras is [Bae05]. The semantic tools
that were created or renovated by concurrency research and simplified by use
are sufficiently well understood to have found their way into basic courses in
computer science (e.g., first year undergraduate [MS13]).
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9.7 Formal Methods Enter Specialist Areas

The early development of Formal Methods focussed on general problems of
programming and as they matured they were applied in and influenced spe-
cialist areas of software and hardware engineering, especially where the formal
tools were discovered to be effective, or the problems to be in need of deep
understanding or radical ideas.

Integrated circuit design. The development of Very Large Scale Integration
(VLSI) technologies enabled chips to be designed using software tools, fab-
ricated in large or small numbers, and so deployed with low cost. Explor-
ing application specific hardware to transform performance—e.g., in signal
and graphics processing—led to widespread interest in the customisation of
chips. This opened up hardware design to the ideas, methods and theories
in algorithm design and structured programming of the 1970s. The interest
of computer scientists were aroused by an influential text-book by Carver A.
Mead and Lynn Conway [MC80], which discussed algorithms and a modular
design methodology. Formal Methods were particularly relevant to structured
VLSI design because correctness issues loomed large: (i) hardware once made
cannot be easily changed and so errors are costly to repair; (ii) customised
hardware is needed to control physical processes and so human safety is
an explicit concern; (iii) architectures of hardware are often more regular
and simpler logically than those of software and are more amenable to the
application of formal modelling and reasoning techniques. Using the the-
orem provers Boyer-Moore and Gordon’s HOL to model and verify CPUs
were breakthroughs in theorem proving. A survey that emphasises the direct
influence of Formal Methods on progress made in hardware design in the
decade is [MT90a].

Safety critical systems. The essential role of software engineering in automa-
tion is another example. The automation of industrial plant in the 1960s,
such as in steel making, has expanded to a wide range of machines and
systems, such as aeroplanes, railways, cars, and medical equipment, where
the safety of people is—and very much remains—an important worry. The
use of Formal Methods in the development of such systems is now well
established in an area called safety-critical software engineering. An impor-
tant event in Formal Methods for safety-critical computing was the intro-
duction of new software engineering standards for military equipment and
weapons. In 1986, the UK’s Ministry of Defence circulated its Defence Stan-
dard 00-55. Its strong requirements made it controversial and it was not
until 1989 that the Ministry published as Interim standards Defence Stan-
dard 00-55. The Procurement of Safety Critical Software in Defence Equip-
ment, see [Tie92].7 Relevant for this application domain of automation and

7 Along with Defence Standard 00-55 there was an umbrella standard for identifying and
reducing risks and so to determine when 00-55 would apply. The standards have been
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safety critical computing in general are the Formal Methods for hybrid sys-
tems.

Safety critical software engineering needs to grow as automation deepens
its hold on our work places, infrastructure, homes and environment, and soft-
ware is desired that is smart in making anticipations. But human safety is
not merely a matter of exact specifications that are correctly implemented.
Human safety is dependent on good design that understands the human in
the context.

Human-computer interaction. The field of human-computer interaction (HCI)
has also experimented with Formal Methods to explore and improve design
of systems. HCI developed in the 1970s influenced by an assortment of
emerging display and text processing systems and cognitive psychology e.g.,
[CEB77, CMN83]. The first formal techniques that were tried were state dia-
grams [Par69] and grammars [Rei81, Mor81, Shn82], which were applied to
user behaviour, e.g., to model sequences of actions on a keyboard and other
input devices. The important exemplar of the text editor had been treated
as a case study in Formal Methods research [Suf82]. HCI interest in formal
methods begins in earnest in the mid 1980s with Alan Dix, Harold Thim-
bleby, Colin Runciman, and Michael Harrison [DR85, DH86, Thi86, Dix87],
and the formal approach is evident in Thimbleby’s influential text [Thi90].
These beginnings are brought together in some early books [TH90, Dix91],
and the growth and present state of Formal Methods in HCI is charted in the
substantial Handbook of Formal Methods in Human-Computer Interaction
[WBD+17], e.g., in expository chapters such as [OPW+17]. A particularly
interesting and growing area is HCI for safe technologies for healthcare. There
is a great deal of software and hardware involved in the treatment of patients
in hospital, and at home, and their effectiveness and safety are an serious
issue because of the low quality of their design and user experience [Thi19].

Security. Lastly, with our capabilities and our appetite to connect together
software devices come deep worries about security. These worries are affecting
much software engineering as the need to identify and work on vulnerabilities
on legacy and new software becomes commonplace. Access control, broadly
conceived, is an important area for security models that codify security poli-
cies. For a system or network they specify who or what are allowed to access
the system and which objects they are allowed to access. Access problems
are encountered in the design of early operating systems, of course. The
1973 mathematical model that Bell and Padula designed for military appli-
cations was particularly influential that was developed and deployed in many
security applications [BLaP73, BLaP76]. However, John McLeans’s formal
analysis [McL87], some 14 years later, revealed technical problems with the

revised several times subsequently and the explicit requirement for Formal Methods has

been removed.
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model that were controversial. Formal Methods were attracting attention in
what was a small but growing computer security community.

Another example of early pioneering formal work is Dorothy Denning’s
formal studies of information flow [Den76, DD77]. Rather abstractly, data
is assumed to be classified and that the classification is hierarchical. The
relationship between two types of data in the hierarchy is represented by
an ordering, and so the classification forms an ordered structure that is a
lattice. Information can only flow in one direction, from lower to higher,
or between equal, classifications. Later, Goguen and Meseguer also made
a telling contribution with their simple criterion for confidentiality based
on classifying the input-output behaviour of an automaton, called the non-
interference model [GM82, GM84]. An impression of the early use of Formal
Methods in tackling security problems can be gained from [Lan81], and Bell’s
reflections [Bel05].

A natural source of vulnerabilities is communication between processes.
Communication protocols were a primary source of case studies for devel-
oping process algebras from the beginning. Early security applications of
Formal Methods to such problems can be found in the mid 1990s: in [Low96],
Gavin Lowe uses the concurrent process algebra Csp and its model refinement
checker FDR to break and repair the then 17-year old Needham-Schroeder
authentication protocol [NS78] that aims to check on the identities of pro-
cesses before they exchange messages. There is so much more on all these
issues, of course.

Although Formal Methods have been applied in many domains of program-
ming, there are some where they have found few applications. One striking
example is scientific computation. This is because the various scientific and
engineering fields are firmly based on rigorous mathematical models and tech-
niques well studied in Analysis, Geometry and Probability, and programmers
are necessarily scientists and engineers with focussed on data and what it
might indicate. However, growth in the appetite for detail in software simu-
lation, in the complexity and longevity of software, and the logical challenges
of programming the parallel architectures of supercomputers, is stimulating
interest in software engineering for science and engineering domains. A pio-
neering example of the application of Formal Methods to numerics is [Hav00].

9.8 In Conclusion

So where do Formal Methods for software engineering come from? Although
Formal Methods are tools for software developers to solve problems set by
users in many domains, they largely arose in solving problems of computer
science. The problems were recognised and explored theoretically. The early
theory-makers collected and adapted tools from logic and algebra, and from
them they forged new mathematics, new theories and new tools. Often they
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found what they needed in small neglected corners of logic and algebra. The
theory-makers were driven to speculate and experiment with ideas, sometimes
behind and sometimes in front of the technologies of the day. It started with
the specification of programming languages—syntax and semantics. As our
understanding grew, languages developed alongside Formal Methods. Soft-
ware tools of all kinds demand languages for descriptions. That digital com-
putation is in its nature logical and algebraic was understood early on—it
is clear in Turing’s view of computation. That logical and algebraic theories
could be so expanded and refined to embrace practical large scale hardware
and software design, and the immense and diverse world of users, is a remark-
able scientific achievement, one that is ongoing and is at the heart of research
and development of Formal Methods.

However, from the beginning, the speed of innovation in software and
hardware has been remarkable—as any history of computer science since
the 1950s makes clear. This relentless development generates productivity
for users, profit for innovators, and challenges for regulators. It has certainly
outstripped the complex and patient development of the underlying science of
software engineering, e.g., in safety and especially security. Formal Methods
have come a long way and have mastered many theoretical and practical
problems of enormous complexity and significance. They are the foundations
for an enduring science of computing.

On a personal note, I thank Markus Roggenbach for his invitation and
encouragement to write this account of the origins and early development of
formal Formal Methods for software engineering. I have benefitted from infor-
mation and advice from Antonio Cerone, Magne Haveraaen, Faron Moller,
Bernd-Holger Schlingloff, Harold Thimbleby, and Henry Tucker. I find myself
a witness to many of the technical innovations that make up the story so far.
I know that this first hand experience has led to bias toward some achieve-
ments and to neglect of others, but hopefully I—and certainly others—will
have opportunities to correct my shortcomings. This survey has been shaped
by the themes of this textbook, and the extensive Formal Methods archives
in Swansea University’s History of Computing Collection. As my efforts here
suggests, deeper histories will be needed as the subject matures, our under-
standing grows, and breakthroughs mount up.
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