
Chapter 7

Formal Methods for
Human-Computer Interaction

Antonio Cerone

Abstract Human-computer interaction adds the human component to the
operational environment of a system. Furthermore, the unpredictability of
human behaviour largely increases the overall system complexity and causes
the emergence of errors and failures also in the systems that have been
proved correct in isolation. Rather than trying to capture and model human
errors that have been observed in the past, as it has been done tradition-
ally in human reliability assessment, we consider cognitive aspects of human
behaviour and model them in a formal framework based on the CSP pro-
cess algebra. We consider two categories of human behaviour, automatic
behaviour, mostly representative of a user carrying out everyday activities,
and deliberate behaviour, mostly representative of an operator performing
tasks driven by specific goals set up within the purpose of a working con-
text. The human cognitive model is then composed with the physical inter-
face/system and with a number of environmental aspects, including available
resources, human knowledge and experience. Finally, the overall model is
analysed using model checking within the verification framework provided
by the Process Analysis Toolkit (PAT). The ATM case study from Chap. 3
and a number of other case studies illustrate the approach.

7.1 Human Errors and Cognition

You are back home from work, tired and hungry. Your partner welcomes you
announcing that a nice cake is coming out of the oven soon and, this time,
‘properly baked’. You sniff the air and perceive a light burning smell. You
then recall that last time the cake did not properly rise, probably because
the oven was kept open for too long while inserting the cake and thus the
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initial baking temperature was not high enough. Your partner is announcing
that this time there won’t be any problems with rising because

1. during the oven pre-heating phase, the temperature was set 20 degrees
higher than the temperature indicated in the cake recipe,

2. when such higher temperature was reached, the oven was opened and the
cake inserted (supposedly the opening of the oven would have decreased
the temperature 20 degrees down, to the one indicated in the recipe), and

3. after closing the oven the temperature setting was immediately lowered to
the value indicated in the recipe.

However, the burning smell you perceive is now getting stronger, clearly show-
ing that something went wrong in performing the three-step algorithm above,
which supposedly implement our ‘baking task’. Your partner swears that the
increase of 20 degrees is not too much, because it is a widely tested sug-
gestion from a cooking internet forum and it is confirmed by many positive
comments. Can you explain what went wrong? Well, there was some kind of
cognitive error during the task execution. But which error exactly?

Normally, cognitive errors occur when a mental process aiming at opti-
mising the execution of a task causes instead the failure of the task itself.
The existence of a cognitive cause in human errors started to be understood
already at the beginning of last century, when Mach stated: “knowledge and
error flow from the same mental sources, only success can tell the one from
the other” [Mac05]. But it took till the 1990s to understand that “correct
performance and systematic errors are two sides of the same coin” [Rea90].

In our cake baking example, the three-step algorithm that implements the
task is in principle correct, but the mental processes used to carry out the task
may lead to a cognitive error. In fact, it is the human cognitive processing that
does not perform the algorithm correctly, thus causing the error to emerge.
Here, the key design point is that we cannot expect human behaviour to adapt
to a specific algorithm when performing a task. It is instead the algorithm
that must realise the task by taking human performance into account.

In the rest of this section we will briefly review the research trends and
milestones in Formal Methods for HCI (Sect. 7.1.1) and state what we mean
for user (Sect. 7.1.1) and operator (Sect. 7.1.1). Section 7.2 introduces the
structure of human memory and its main cognitive processes and, in par-
ticular, short-term memory (STM), including alternative CSP-based mod-
els (Sect. 7.2.1), and long-term memory (LTM) and its further structuring
(Sect. 7.2.2). Section 7.3 illustrates how to formally model human behaviour
while Sect. 7.4 shows how to combine the model of the human component
and the model of the interface to produce the overall model of the interac-
tive system. Finally, Sect. 7.5 addresses the formal verification of the overall
interactive system model and delves into the formal analysis of soundness and
completeness of cognitive psychology theories; in Example 69.2 of Sect. 7.5.1
we will also reveal what cognitive error caused the cake to burn and why the
algorithm used by your partner caused such an error to emerge.
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7.1.1 Background

The systematic analysis of human errors in interactive systems has its roots
in Human Reliability Assessment (HRA) techniques [Kir90], which mostly
emerged in the 1980s. However, these first attempts in the safety assessment
of interactive systems were typically based on ad hoc techniques [Lev95],
with no efforts to incorporate a representation of human cognitive processes.
within the model of the interaction.

During the 1980s and 1990s, the increasing use of formal methods led
to more objective analysis techniques [Dix91] that resulted, on the one
hand, in the notion of cognitively plausible user behaviour, based on for-
mal assumptions to bind the way users act driven by cognitive processes
[BBD00] and, on the other hand, in the formal description of expected effec-
tive operator behaviour [PBP97] and the formal analysis of errors performed
by the operator as reported by accident analysis [Joh97]. Thus, research
in the formal analysis of interactive systems branched into two separate
directions: the analysis of cognitive errors of users involved in everyday-life
[Cer11, CB04, CE07, RCB08] and work-related [MRO+15, RCBB14] inter-
active tasks, and the analysis of skilled operator’s behaviour in tradition-
ally critical domains, such as transportation, chemical and nuclear plants,
health and defence [CCL08, CLC05, De 15, MPF+16, SBBW09]. The dif-
ferent interaction contexts of a user, who applies attention very selectively
and acts mainly under automatic control [Cer11, NS86], and an operator,
who deals with high cognitive load and whose attentional mechanisms risk to
be overloaded due to coping with Stimulus Rich Reactive Interfaces (SRRIs)
[SBBW09], have led to the development of distinct approaches, keeping sep-
arate these two research directions. However, users have sometimes to deal
with decision points or unexpected situations, which require a ‘reactivation’ of
their attentional mechanisms, and operators must sometime resort to automa-
tisms to reduce attentional and cognitive loads.

In this chapter we propose a modelling approach [Cer16] that unifies these
two contexts of human behaviour, which were traditionally considered sepa-
rately in previous literature, namely

• user, i.e., a human who performs everyday activities in a fairly automatic
way, and

• operator, i.e., a human who performs deliberate tasks making large use
of attention explicitly.

User

User refers to ordinary people carrying out everyday activities, such as baking
a cake, driving a car, using a smartphone, interacting with an ATM, etc.
During such activities, users perform tasks that are initially triggered by



348 A. Cerone

specific goals, and then normally proceed in a fairly automatic way until the
goal is accomplished.

As an example of everyday activity let us consider the natural language
description of the user interaction with an ATM in Example 65 [Cer11, Cer16].

Example 65: ATM Withdrawal Task

The user’s goal is ‘cash withdrawal’ and consists of the following basic
activities (listed in no specific order).
• When the interface is ready, the user inserts the card and keeps in

mind that the card has to be taken back at a later stage.
• When the interface requests a pin, the user enters the pin.
• When the cash has been delivered, the user collects the cash.
• When the card has been returned, the user collects the card and no

longer needs to remember to collect it.
The goal ‘cash withdrawal’ is achieved when the cash is collected.

Notice that there is .no specific order among the basic activities. The user
performs a specific basic activity depending on the observed state of the
interface associated with that activity. Normally, some ordering is driven by
the specific interface with which the user interacts. If we consider the general
ATM description in Example 36 from Chap. 3, we notice that all ATMs will
deliver the cash only after the user has inserted the card and entered the pin.
And, obviously, the card can only be returned after being inserted. Specific
ATMs impose further orderings, between card insertion and pin entering as
well as between card return and cash delivery. However, if you approach
the ATM to start an interaction and notice some cash already delivered,
and supposedly forgotten by the previous user, . . .you definitely collect it!
(independently of whether you give it to the bank or you keep it.) Thus
the basic activity of collecting cash may even be the first to occur while
performing the task.

Although the task described in Example 65 requires some practice or
training, during which the novice user performs deliberate actions, then,
after repeated interactions, sufficient knowledge, skill and familiarity will be
acquired, thus allowing the user to perform the task in a fairly automatic
way. For example, an expert user will automatically insert the card in the
right slot when the interface appears in the normal ready state, which the
user is familiar with (whatever such a state looks like), and without any need
to look for the appropriate slot (which is automatically reached by the hand
movement). Such an acquired automatic behaviour allows the user to per-
form the task efficiently and quickly. However automatic behaviour is also
the context in which typical cognitive errors analysed in previous research
are most likely to occur as we will see in Sect. 7.5.1.
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Furthermore, automatic behaviour is by no means purely reactive, but
actually features an implicit, latent form of attention. In this chapter, we
will see that, on various occasions during automatic behaviour, deliberate
and conscious low-level actions are still required and, when this happens,
attention becomes explicit and takes control. We will thoroughly explore the
mechanism of attention and we will see that, in some situations, it may also be
activated by the failure of those very expectations that the user has developed
through experience and training, thus leading to the emergence of cognitive
errors in the form of inappropriate deliberate responses.

Operator

Operator refers to a human who performs a task with a general purpose
whereby specific goals are set along the way. In this case, failing to achieve
the goal is not a task failure, provided the system state is still consistent
with the purpose. Examples are operators of an Air Traffic Control (ATC)
system, a nuclear power control room, a device to administer a therapy to a
patient and a machine of an industrial plant. The operator’s task is normally
a monitoring one, which requires the performance of deliberate actions when
the observed system behaviour is assessed as abnormal.

In Example 66 we consider the natural language description of a task of an
operator interacting with a ATC simulator, which shows position, direction
and speed of aircraft moving withing a specific sector of the air space [CCL08,
CLC05].

Example 66: ATC Task

The operator’s purpose is to ensure that the aircraft moving through
the sector remain horizontally separated by no less than the defined
minimum separation distance (5000 m): failure of this requirement is
called separation violation. Vertical separation is ignored by the simu-
lator. The operator can see position, direction and speed of the aircraft
on the screen. The operator’s task involves monitoring the movement of
aircraft on the screen, searching for pairs of aircraft that are in conflict,
that is, which may violate separation. This task comprises the following
subtasks:
• scan the screen searching for a pair to monitor as possibly being

in conflict,
• classify the pair as a conflict or a non conflict,
• prioritise the conflict by deciding whether there is a need for a

plan to resolve an identified conflict,
• decide an action to resolve the conflict, possibly defer it or reclassify

the conflict as a non conflict while trying to work out the plan of
action,
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• perform the action that has been decided, and
• new phase subtask whether to go back to scan the screen or per-

form an action that was previously deferred or exit the ATC operator
role by abandoning the purpose (end of the simulation session, which
in real-life would be the end of the operator shift).
Each subtask is driven by a goal, which is set deliberately under the

influence of the purpose. For instance, the scan the screen task is
driven by the deliberately set goal of identifying a part of the air space
where there might be a conflicting pair of aircraft. Such a goal has an
holistic flavour, since we cannot fully characterise all parameters that
the operator considers in order to identify the critical part of air space.
Furthermore, not being able to achieve the goal does not represent a task
failure, since it is possible that no pair of aircraft violates separation,
consistently with the ATC purpose.

Similarly,

• The purpose of the operator of a nuclear plant control room is to ensure
the safe functioning of the plant. This purpose results in the monitoring
of all system readout, searching for readout configurations that may be
indicators of anomalies: goals are deliberately set in order to check specific
readout configurations but also, in a more holistic way, by considering
configurations which are not normally associated with anomalies and set
new subgoals to further investigate them.

• The purpose of the operator of a machine of an industrial plant is to fol-
low standard and specific operating procedures while using the machine.
The operator must make deliberate choices depending on the perceived
situation and consequently set goals that are consistent with the operat-
ing procedures. Furthermore, since operating procedures refer to generic
situations and are by no means exhaustive, the operator’s choices are not
made among a predefined set of possibilities, but normally require a global
assessment of the current situation.

We can conclude that an operator cannot automatically act in response to
observations, but has to globally assess the observed situation and make
informed, deliberate decisions on whether to act and what to do. Goals are
thus established throughout the process according to the purpose of the task.

7.2 Human Memory and Memory Processes

Following the information processing approach normally used in cognitive
psychology, we model human cognitive processes as processing activities that
make use of input-output channels, in order to interact with the external
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environment, and three main kinds of human memory, in order to store infor-
mation:

– sensory memory, where information perceived through the senses persists
for a very short time,

– short-term memory (LTM), also called working memory, which has a
limited capacity and where the information that is needed for processing
activities is temporarily stored with rapid access and rapid decay, and

– long-term memory (LTM), which has a virtually unlimited capacity
and where information is organised in structured ways, with slow access
but little or no decay [DFAB04].

A usual practice to keep information in memory is rehearsal. In particular,
maintenance rehearsal allows us to extend the time during which information
is kept in STM, whereas elaborative rehearsal allows us to transfer information
from STM to LTM.

7.2.1 Short-Term Memory and Closure

The limited capacity of short-term memory has been measured using exper-
iments in which the subjects had to recall items presented in sequence. By
presenting sequences of digits, Miller [Mil56] found that the average person
can remember 7±2 digits. However, when digits are grouped in chunks, as it
happens when we memorise phone numbers, it is actually possible to remem-
ber larger numbers of digits. Therefore, Miller’s 7±2 rule applies to chunks of
information and the ability to form chunks can increase people’s STM actual
capacity.

The limited capacity of short-term memory requires the presence of a
mechanism to empty it when the stored information is no longer needed.
When we produce a chunk, the information concerning the chunk compo-
nents is removed from STM. For example, when we chunk digits, only the
representation of the chunk stays in STM, while the component digits are
removed and can no longer be directly remembered as separate digits. Gen-
erally, every time a task is completed, there may be a subconscious removal
of information from STM, a process called closure: the information used to
complete the task is likely to be removed from STM, since it is no longer
needed.

We can use CSP to define a general STM model as shown in Example 67.

Example 67: Short-Term Memory: CSP Model

The STM model consists of n states STM i, with i = 1, . . . , n, where
– n is the STM maximum capacity,
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– action store represents the storage of a piece of information and
decreases the available capacity by one unit,

– action remove represents the removal of a piece of information and
increases the available capacity by one unit,

– action closure represents the occurrence of a closure, due to the suc-
cessful completion of the task, and completely clears STM, and

– action delay occurs every time STM is emptied and represents a time
delay following the successful or unsuccessful end of the task.

The empty STM of capacity 7 is modelled by process STMempty by
defining it as STM7:

STMempty = STM7;
STM7 = store -> STM6 []

delay -> STMempty []
closure -> delay -> STMempty;

STM6 = store -> STM5 [] remove -> STM7 []
delay -> STMempty []
closure -> delay -> STMempty;

...
STM2 = store -> STM1 [] remove -> STM3 []

delay -> STMempty []
closure -> delay -> STMempty;

STM1 = store -> STM0 [] remove -> STM2 []
delay -> STMempty []
closure -> delay -> STMempty;

STM0 = store -> STMmanagement []
remove -> STM1 []
delay -> STMempty []
closure -> delay -> STMempty;

STMmanagement = overloadedSTM -> delay -> STMempty;

The attempt to store information in a full STM is handled by pro-
cess STMmanagement, which in this example is associated with action
overloadedSTM followed by a delay.

Notice that this memory model does not include the representation of the
actual pieces of information that can be stored in STM. Information con-
tents need to be represented by further CSP processes, one for every possible
piece of information to define the two possible information states, stored and
not stored. These further processes must synchronise with the CSP process
in Example 67, thus resulting in a complex model, which is not easy to under-
stand and manage and has limited scalability.

In order to develop a more intuitive, manageable and scalable model,
we consider the CSP extension implemented in the Process Analysis Toolkit
(PAT) [PAT19]. In particular, PAT provides integer variables and arrays as
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syntactic sugar to define system states, without any need to explicitly rep-
resent such states as additional synchronising processes. Processes can be
then enabled by guards, which check the current values of variables, while
events are annotated with performed assignments to variables and, more in
general, with any statement block of a sequential program. Notice that the
statement block is an atomic action, i.e. it is executed until the end without
any interruption or interleaving. However, annotated events cannot synchro-
nise with events of other processes, i.e., the parallel composition operator
treats annotated events in the same way as the interleaving operator. PAT
also supports the definition of constants, either singulnnand or as part of an
enumeration, which associates consecutive integer numbers starting from 0
to the enumerated constants. For example

#define low 0;
#define medium 1;
#define high 2;

are three declarations of constants, which can be globally introduced in an
alternative way as the enumeration

enum {low, medium, high};

The most obvious array implementation of STM would use each position
of the array to store a piece of information. Thus the size of the array would
represent the STM maximum capacity. However, the retrieval of information
from STM would require to go through all elements of the array. Instead, we
consider the implementation in Example 67.1.

Example 67.1: Short-Term Memory: PAT Model

The STM model consists of an array stm whose capacity is given by the
number of possible pieces of information that can be stored. Such a num-
ber is defined as a constant InfoNumber, which, in this example, equals
10. The various pieces of information (e.g. Info) are introduced using
an enumeration. The STM maximum capacity is defined as a constant
M, which, in this example, equals 7.

enum { ... , Info , ... };

#define InfoNumber 10;
#define M 7;

var stmSize = M;
var stm[InfoNumber];

By default all positions of the array are initialised to 0. The storage of
information Info in the STM is performed by the occurrence of event
store which is enabled by guard stmSize < M , which ensure that the
STM is not full, and results in setting the Info-th position of array
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stm to 1 and incrementing variable stmSize. This is achieved with the
following construct:

[stmSize < M] store {stm[Info] = 1; stmSize++}

The retrival and removal of information Info from STM is performed by
the occurrence of event retrieve which is enabled by guard stm[Info]
== 1, which ensure that Info is in STM, and results in setting the
info-th position of array stm to 0 and decrementing variable stmSize.
This is achieved with the following construct:

[stm[Info] == 1] retrieve {stm[Info] = 0; stmSize--}

Closure is achieved by resetting the contents of all positions of the stm
array to 0 and assigning 0 to variable stmSize.

All aspects of closure implementation using PAT are explained in details in
Sect. 7.3.3.

7.2.2 Long-Term Memory

Long term memory is divided into two types.

• Declarative or explicit memory refers to our knowledge of the world
(‘knowing what’) and consists of the events and facts that can be con-
sciously recalled:

– our experiences and specific events in time stored in a serial form
(episodic memory), and

– structured record of facts, meanings, concepts and knowledge about the
external world, which we have acquired and organised through associa-
tion and abstraction (semantic memory).

• Procedural or implicit memory refers to our skills (‘knowing how’) and
consists of rules and procedures that we unconsciously use to do things,
particularly at the motor level.

Emotions and specific contexts and environments are factors that affect the
storage of experiences and events in episodic memory. Information can be
transferred from episodic to semantic memory by making abstractions and
building associations, whereas elaborative rehearsal facilitates the transfer of
information from STM to semantic memory in an organised form.

Note that also declarative memory can be used to do things, but in a very
inefficient way, which requires a large mental effort in using the short-term
memory (high cognitive load) and a consequent high energy consumption.
In fact, declarative memory is heavily used while learning new skills. For
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example, while we are learning to drive, ride a bike, play a musical instru-
ment or even when we are learning to do apparently trivial things, such as
tying a shoelace, we consciously retrieve a large number of facts from the
semantic memory and store a lot of information into STM. Skill acquisition
typically occurs through repetition and practice and consists in the creation
in procedural memory of rules and procedures (proceduralisation), which can
be then unconsciously used in an automatic way with limited involvement of
declarative memory and STM.

7.3 Human Behaviour and Interaction

In this section we present how to model the human components using PAT.

7.3.1 Input as Perceptions and Output as Actions

Input and output occur in humans through senses and the motor system. In
this chapter we give a general representation of input channels in term of
perceptions, with little or no details about the specific senses involved in the
perception, but with a strong emphasis on the semantics of the perception in
terms of its potential cognitive effects. For instance, if the user of a vending
machine perceives that the requested product has been delivered, the empha-
sis is on the fact that the perception of the product being delivered induces
the user to collect it and not on whether the user has seen or rather heard the
product coming out of the machine. We represent output channels in term of
actions. Actions are performed in response to perceptions.

In Example 65 of Sect. 7.1.1 we can identify a number of perceptions and
actions, which we describe in Example 65.1

Example 65.1: Perceptions and Actions

Perceptions:
cardR the interface is perceived ready,
pinR the interface is perceived to request a pin,
cashO the cash is perceived delivered, and
cardO the card is perceived returned.
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Actions:

cardI the user inserts the card,
pinE. the user enters the pin,
cashC the user collects the cash, and
cardC the user collects the card.

7.3.2 Cognitive Control: Attention and Goals

We have seen in Sect. 7.2.2 that skill acquisition results in the creation in
procedural memory of the appropriate rules to automatically perform the
task, thus reducing the accesses to declarative memory and the use of the
STM, and, as a result, optimising the task performance. Inspired by Norman
and Shallice [NS86], we consider two levels of cognitive control:

• automatic control is a fast processing activity that requires little or no
attention and is carried out outside awareness with no conscious effort
implicitly, using rules and procedures stored in the procedural memory,
and

• deliberate control is a processing activity triggered and focussed by
attention and carried out under the intentional control of the individual,
who makes explicit use of facts and experiences stored in the declarative
memory and is aware and conscious of the effort required in doing so.

For example, let us consider the process of learning to drive

Example 68: Learning to Drive a Car

Automatic control is essential in driving a car and, in such a context,
it develops throughout a learning process based on deliberate control:
during the learning process the driver has to make a conscious effort
to use gear, indicators, etc. in the right way (deliberate control) and
would not be able to do this while talking or listening to the radio.
Once automaticity in driving is acquired, the driver is aware of the high-
level tasks that are carried out, such as driving to office and stopping
along the way to buy a newspaper, but is not aware of low-level details
that automatically affect the action performance, such as changing gear,
using the indicator and the colour of the light, amber or red, while
stopping at a traffic light or even turning and whether stopping or not
at a traffic light (automatic control).
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Let us consider a narrative description of the baking task illustrated at the
beginning of Sect. 7.1 in terms of perception, actions and information stored
in and retrieved from the STM.

Example 69: Advanced Baking Task

Assuming that we have already put all ingredients in a bowl, the
sequence of activities (which may be further decomposed) is as follows.
1. All ingredients are mixed in the bowl.
2. When the mix is perceived having the right consistency, it is poured

in a tin.
3. The cake baking temperature is read on a recipe or retrieved from

LTM and it is then stored in STM.
4. It is planned to set initially a temperature higher than the baking

temperature.
5. The oven is switched on by setting the temperature higher than the

cake baking temperature, keeping in mind that the temperature will
have to be eventually lowered.

6. After the set temperature is reached, which is perceived through a
distinctive warning sound, the oven is opened, the tin is inserted in
the oven, the oven is closed and the timer is set, keeping in mind that
the cake will have to be eventually taken out of the oven.

7. The temperature setting is lowered to the cake baking temperature.
8. When the cake is baked, which is perceived through a distinctive

warning sound associated with the timer, the oven is switched off.
9. The cake is removed from the oven.

Perceptions are briefly stored in sensory memory and only relevant percep-
tions are transfered to STM using attention, a selective processing activity
that aims to focus on one aspect of the environment while ignoring others.
We can see this focussing activity as the transfer of the selected perception
from sensory memory to STM.

For both users and operators the top-level task can be decomposed in
a hierarchy of goals and tasks until reaching basic activities, which do not
require further decomposition and can be performed by executing a single
action.

In our model of cognitive behaviour we consider a set Π of perceptions, a
set Σ of actions, a set Γ of goals, a set Ξ of purposes, and a set Δ of pieces of
cognitive information. The information that can be processed by the human
memory is given by the set

Θ = Π ∪ Σ ∪ Γ ∪ Ξ ∪ Δ.

In our model, we assume that a piece of information in Θ may belong to one
or more of the following categories.
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• Perception transferred to STM (set Π): a perception transferred from
sensory memory to STM as the result of attention.

• Reference to the future (set Σ): an action to perform at some point in
the future.

• Cognitive state (set Δ): a description of the human knowledge about a
state of the task or of the system.

• Received/retrieved information (set Δ): a piece of information that
has been received (i.e., read or heard) or retrieved from LTM.

• Goal (set Γ ): the outcome of the task, which is initially in STM.
• Purpose (set Ξ): the underlying reason for performing the task, which

normally influences the goal.

All categories of information apart from purposes may be stored in STM.
Therefore STM ∈ 2Θ\Ξ .

Example 69.1: Categories of information

In the baking task we can distinguish the six possible categories of
information.
Perception transfered to STM

The perceived sound that the oven has reached the right tempera-
ture is transferred to STM in Activity 6 and will be then retrieved
once another task, which is carried out while waiting for the oven to
heat, has been completed or can be interrupted (which will occur in
Activity 6).

Reference to the future
References to the future action of lowering the temperature (to be
performed in Activity 7) and to the action of taking the cake out
of the oven (to be performed in Activity 9) are stored in STM in
Activities 5 and 6.

Cognitive state
Activities 2, 3 and 6 must store a cognitive state pointing at the
next basic activity in order to ensure the correct sequentialisation;
in addition Activity 3 must remove its cognitive state, stored by the
previous basic activity.

Received/retrieved information
The read/retrieved baking temperature (Activity 3) is transferred to
STM.

Goal and Purpose
The goal of having the cake baked is initially in STM and is influenced
by the purpose of baking the cake in a way that ensure proper raising.
Notice that all categories of information, except for the cognitive

state and purpose, are explicit in the narrative description.
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A task goal is formally modelled as

goal(info)

where info ∈ 2Θ\Γ \{∅} is a non-empty set of pieces of information except
goals.

Information info characterises the accomplishment of the goal, which
results in flashing out STM.

7.3.3 Automatic Control

In automatic control our behaviour is not affected by goals but is driven by
perceptions plus pieces of information ‘automatically’ stored in STM dur-
ing the top-level task processing. As an example of automatic control let us
consider the natural language description of driving a car.

Example 70: Car Driving

Suppose that during working days we always drive to our office, whereas
on Saturdays we drive to a supermarket, initially taking the same route
as to the office, but then turning into a different road.

It might sometimes happen, especially in a situation of high cognitive
load, that we actually drive to our office rather than to the supermar-
ket, as instead we intended. The underlying cognitive reason (genotype
error) of this observed error (phenotype error) is that our automatic
control (not driven by the goal to go to the supermarket) may not switch
to deliberate control (driven by the goal to go to the supermarket) when
we reach the intersection where the two routes diverge.

For each A ⊆ Θ we define Ā = {̄ı | i ∈ A, i /∈ Ξ ∪ Γ} and Â = A ∪ Ā.
Each element ı̄ ∈ Θ̄ denotes the absence of the piece of information i ∈ Θ.
Obviously ∅̂ = ∅̄ = ∅.

We model a basic activity under automatic control (automatic activity) as
a quadruple (perc, info1, info2, act), where

• perc ∈ Π is a perception,
• info1 ∈ 2Θ̂\Ξ\Γ is the information retrieved and removed from STM,
• info2 ∈ 2Θ\Ξ is the information stored in STM, and
• act ∈ Σ is a human action.

The quadruple (perc, info1, info2, act) is subsequently written as

info1 ↑ perc =⇒ act ↓ info2.



360 A. Cerone

We formally denote by none when a component of a basic activity is absent
(perception, action) or is the empty set (information).

Actions may involve an interaction with the system interface or be purely
human physical actions with no support from the system. A basic activity
whose action is an interaction is called interactive activity. A basic activity
whose action is a physical action is called physical activity. Information is
kept promptly available, while it is needed to perform the current top-level
task, by storing it in STM. A basic activity is enabled (and can be performed)
when

• info1 ∩ Θ ⊆ STM ,
• there exists info3 ⊆ Θ such that info1 ∩ Θ̄ = info3 and info3 ∩ STM = ∅,

and
• perc is available in the environment.

Thus the basic activity is triggered by the presence of info1 ∩ Θ in STM, the
absence of info3 ⊆ Θ from STM, with info3 = info1 ∩ Θ̄, and the presence of
perc in the environment.

The performance of the basic activity results in the removal of info1 ∩ Θ
from STM, the execution of action act and the storage of info2 in STM.
Therefore, in the absence of closure, the performance of the basic activity
changes the value of STM from STM to

STM ′ = (STM\info1) ∪ info2.

When goal(info) ∈ STM , the performance of the basic activity causes closure
if

info\Ξ ⊆ (STM\info1) ∪ info2 ∪ {perc, act}
where STM is the content of STM before the performance of the basic activ-
ity. In the presence of closure, the performance of the basic activity changes
the STM from STM to

STM ′ = (STM\{info1, goal(info)}) ∩ Γ ∪ info2.

Therefore, the closure is determined by the perception, the performance of the
action and some pieces of information in STM that make, possibly together
with some purposes, the argument of the goal. The closure causes the removal
from STM of all information except info2 and the non achieved goals. Note
that at least one component of the basic activity on the left of ‘=⇒’ and one
on its right have to be distinct from none. When the action is none and the
perception present, the basic activity is an automatic attentional activity, in
which implicit attention causes the transfer of a perception to STM. When
both the action and the perception are none, the basic activity is called
cognitive activity.

The automatic behaviour described in Example 65 is formalised in Exam-
ple 65.2
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Example 65.2: Automatic Behaviour

Let be
Perceptions: Π = {cardR, pinR, cashO, cardO},
Actions: Σ = {cardI, pinE, cashC, cardC},
Purposes: Ξ = ∅,
Cognitive Information: Δ = ∅,
Goals: Γ = {goal(cashC)},

Set Ξ is empty since the purpose is not relevant here.
A simple ATM task, in which the user has only the goal to withdraw

cash, is modelled by the following four basic activities:

1. none ↑ cardR =⇒ cardI ↓ cardC
2. none ↑ pinR =⇒ pinE ↓ none
3. none ↑ cashO =⇒ cashC ↓ none
4. cardC ↑ cardO =⇒ cardC ↓ none

The goal (‘to withdraw cash’) is formally modelled as

goal(cashC)

Initially the STM only contains the goal:

STM = {goal(cashC)}
All basic activities in this task are automatic interactive activities. A
reference to action cardC is stored in STM by Activity 1, which will
then be essential in enabling Activity 4. The goal is accomplished when
action cashC is performed in Activity 3.

Modelling Automatic Control using PAT

Example 65.3 illustrates how to use PAT to define the infrastructure to model
the closure phenomenon for the ATM task described in Example 65.2. The
task aims at achieving the goal of withdrawing cash (getCashGoal).

Example 65.3: Closure in Automatic Control using PAT

enum { getCashGoal };
enum { None,

CardR, PinR, CashO, StatO, CardO ,
CardI, PinE, CashC, CardC,
Interaction }; // 10 items
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#define G 1; // No. of goal
#define N 10; // No. of stm array positions
#define M 7; // STM maximum capacity

var stmGoal = [ 0 ];
var stm[N];
var stmSize;
var perc[N];

The storage of goal in STM is modelled by the one position array
stmGoal. The content of this position is initialised to 0. Arrays stm
and perc implement the STM non-goal contents and the perceptions
available in the environment, respectively.

The closure controls the removal of the achieved goal and the removal of
non-goal information in order to free memory space for further processing
towards the achievement of other goals. Example 65.4 illustrates how to use
PAT to model the removal of goal getCashGoal for the ATM task.

Example 65.4: Closure in Automatic Control using PAT

Closure() = ba-> (
[stmGoal[getCashGoal] == 1] cashC ->

achieveGetCash {stmGoal[getCashGoal] = 0;
stmSize--;} -> FlashOut() []

eact -> Closure() );
Event ba marks the beginning of the basic activity, eact marks the end
of the action, and event eba marks the end of the basic activity. Process
Closure is guarded by a condition on the presence of the goal in STM
(stmGoal[getCashGoal] == 1). When the action associated with the
goal is performed (cashC models that the cash is collected) the goal is
achieved (achieveGetCash) and removed from STM by changing to 0
the position of the stmGoal array corresponding to the achieved goal
(getCashGoal) and decrementing stmSize.

Example 65.5 illustrates how to use PAT to model the removal of the non-
goal information for the ATM task.

Example 65.5: Closure in Automatic Control using PAT

FlashOut() = closure { var cell = 0;
while (cell < M) {

if (stm[cell] == 1) {
stmSize--;

};
stm[cell] = 0 ;
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cell = cell + 1;
}

} -> eact -> Closure();
Process FlashOut clears the contents of the non-goal part of the STM
(array stm). In fact, the storage of goal in STM is separately imple-
mented by array stmGoal to ensure that closure does not remove goals
other that the achieved one.

Example 65.6 illustrates how to use PAT to initialise the task with the
appropriate goal for the ATM task.

Example 65.6: Closure in Automatic Control using PAT

Goals() = [stmSize < M && stmGoal[getCashGoal] == 0]
getCash {stmGoal[getCashGoal] = 1;

stmSize++} -> Goals() []
[stmGoal[getCashGoal] == 1] ba -> eba -> Goals();

Process Goals initialises the task by adding the goal (getCashGoal) to
the STM by setting to 1 the corresponding position of the stmGoal array
and incrementing stmSize, provided that the STM does not exceeds its
maximum capacity (stmSize < M).

In general, the storage of goals in STM is modelled by array stmGoal, whose
positions are initialised to 0.

Example 65.7 illustrates how to use PAT to model the basic activities for
the ATM task described in Example 65.4.

Example 65.7: Automatic Control Task using PAT

Task() = ba -> (
[stmSize < M && perc[CardR] == 1]

cardI -> eact -> store {stm[CardC] = 1; stmSize++}
-> eba -> Task() []

[perc[PinR] == 1]
pinE -> eact -> eba -> Task() []

[perc[CashO] == 1]
cashC -> eact -> eba -> Task() []

[stmSize > 0 &&
perc[CardO] == 1 && stm[CardC] == 1]
retrieve {stm[CardC] = 0; stmSize--}
-> cardC -> eact -> eba -> Task()

);

User() = Closure() || Goals() || Task();
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Each basic activity info1 ↑ perc =⇒ act ↓ info2 is defined by one choice of
the Task process. The choice is a process guarded by

• condition perc[P] == 1, if perc 
= none, where P is the position of array
perc that implements perception perc,

• condition stmSize > n, if n+1 is the number of pieces of information in
info1, and one condition stm[I] == 1, for each piece of information i ∈
info1, if info1 
= none, where I is the position of array stm that implements
i, and

• condition stmSize < M-n, where M is the maximum capacity of STM, if n
is the cardinality of info2\info1.

The first event of the process implements action act. Annotated actions store
and retrieve contain the assignments described in Example 67.1

Process User is the parallel composition of the three processes defined in
Examples 65.4 and 65.7

Notice that the use of events eact and eba forces the closure to occur
between the action performance and the storage of information in STM. In
this way, the same basic activity that causes closure and removal of a goal or
subgoal may also store a new goal or information in STM.

In Sect. 7.4 we will see how to combine this user model with an interface
model. Then, in Sect. 7.5.1 we will show how to use model checking to formally
verify properties of such an overall system.

7.3.4 Deliberate Control

In deliberate control, the role of the goal is not only to determine when
closure should occur but also to drive the task: we act deliberately to achieve
goals. Thus basic activities are not only driven by perceptions and non-goal
information stored in STM, but also by one specific goal stored in STM. A
typical case of deliberate behaviour is problem solving, in which the task goal
is normally reached through a series of steps involving the establishing of
subgoals. Achieving the subgoal takes the operator somehow closer to the
task goal until this can be achieved directly. This process is illustrated in
Example 71.

Example 71: Moving a Box

We need to move a box from point A to point B. The box is full of items.
If the box is light enough then we just move it. Otherwise we have first
to empty it, then move it and finally fill in it again. Emptying the box
is a subgoal that allows us to move a heavy box.

In Example 71 we can identify a number of perceptions and actions as
described in Example 71.1
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Example 71.1: Perceptions and Actions

Perceptions:
light the box is perceived light;
heavy the box is perceived heavy.

Actions:

moveBox the human moves the box;
emptyBox the human empties the box;
fillBox the human fills in the box.

Cognitive information:

boxMoved the fact that the box has been moved with its contents;
boxEmptied the fact that the box is empty;
boxMovedEmpty the fact that the box has been moved without

its contents.

We model a basic activity under deliberate control (deliberate activity) as
a quintuple (goal(info), perc, info1, info2, act), where

• goal(info) ∈ Γ is the driving goal,
• perc ∈ Π is a perception,
• info1 ∈ 2Δ̂\Ξ\Γ is the information retrieved and removed from STM,
• info2 ∈ 2Δ\Ξ is the information stored in STM, and
• act ∈ Σ is a human action.

As above, the tuple is denoted as a rule:

goal(info) : info1 ↑ perc =⇒ act ↓ info2.

If info1 = none, the model of the basic activity can be shortened as

goal(act) ↑ perc =⇒ act ↓ info2

As for automatic activities, also a deliberate activity is

– interactive when its action is an interaction,
– physical when its action is a purely physical action,
– attentional when the action is none and the perception is present, and
– cognitive when both the action and the perception are none.

The basic activity is enabled (and can be performed) when

• {goal(info′)}∪(info1∩Δ) ∈ STM , with info ⊆ info′ and info\Ξ = info′\Ξ,
• info1 ∩ Δ̄ /∈ STM , and
• perc is available in the environment.
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The first condition means that the goal in STM is the same as the one in the
basic activity apart from some additional purposes. In fact, on the one hand,
a specific purpose ξ ∈ Ξ does not prevent goals for less specific purposes to
be used, since they will still get closer to the goal for purpose ξ, on the other
hand, goals for more specific purposes should not be used, since they might
take far away from the goal for purpose ξ. The performance of the basic
activity and the closure are the same as in the case of automatic control.

The automatic behaviour described in Example 71 is formalised in Exam-
ple 71.2

Example 71.2: Deliberate Behaviour

Let be
• Π = {light, heavy},
• Σ = {moveBox, emptyBox, fillbox},
• Ξ = ∅,
• Γ = {goal(boxMoved), goal(boxEmptied)},
• Δ = {boxMoved, boxEmptied, boxMovedEmpty} ∪ Γ ∪ Π ∪ Σ.

Set Ξ is empty since the purpose is not relevant here.
The task is modelled by the following seven basic activities:

1. goal(boxMoved) ↑ light =⇒ none ↓ light
2. goal(boxMoved) ↑ heavy =⇒ none ↓ heavy
3. goal(boxMoved) : light ↑ none =⇒ moveBox ↓ boxMoved
4. goal(boxMoved) : heavy ↑ none =⇒ none ↓ goal(boxEmptied)
5. goal(boxEmptied) ↑ none =⇒ emptyBox ↓ boxEmptied
6. goal(boxMoved) :

boxEmptied ↑ none =⇒ moveBox ↓ boxMovedEmpty
7. goal(boxMoved) :

boxMovedEmpty ↑ none =⇒ fillBox ↓ boxMoved

The task goal is formally modelled as

goal(boxMoved)

and requires the use of subgoal

goal(boxEmptied).

Initially the STM only contains the task goal:

STM = {goal(boxMoved)}

Example 71.3 shows the usage of STM while performing the task modelled in
Example 71.2 with a heavy box.
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Example 71.3: STM usage in Deliberate Behaviour

Initially STM contains the goal of moving the box (goal(boxMoved)).
The evolution of the content of STM is driven by the deliberate control
activities in LTM as described in Example 71.2.
• STM = {goal(boxMoved)}

2. goal(boxMoved) ↑ heavy =⇒ none ↓ heavy
• STM = {goal(boxMoved), heavy}

4. goal(boxMoved) : heavy ↑ none =⇒ none ↓ goal(boxEmptied)
• STM = {goal(boxMoved), goal(boxEmptied)}

5. goal(boxEmptied) ↑ none =⇒ emptyBox ↓ boxEmptied
(Goal goal(boxEmptied) achieved and removed due to closure)

• STM = {goal(boxMoved), boxEmptied}
6. goal(boxMoved) :

boxEmptied ↑ none =⇒ moveBox ↓ boxMovedEmpty
• STM = {goal(boxMoved), boxMovedEmpty}

7. goal(boxMoved) :
boxMovedEmpty ↑ fillBox =⇒ moveBox ↓ boxMoved

(Goal goal(boxMoved) achieved and removed due to closure)
• STM = {boxMoved}

After the fact that the box is heavy (heavy) is internalized through
Activity 2, the performance of Activity 4 determines the addition of
the new goal goal(boxEmptied) to STM and Activity 4 determines the
achievement of such a goal. Then Activity 6 determines the moving
of the box and, finally, Activity 7 its refilling. The final mental state
is the awareness that the box has been moved, which is modelled by
the presence of cognitive state boxMoved in STM. All goals have been
removed from STM once achieved.

Modelling Deliberate Control using PAT

Example 71.4 illustrates how to use PAT to model the closure phenomenon
for the task described in Example 71.3.

Example 71.4: Closure in Deliberate Control using PAT

enum { boxMovedGoal, boxEmptiedGoal};
enum { None,

Heavy, Light,
moveBox, emptyBox, fillBox,
BoxMoved, BoxEmptied, BoxMovedEmpty,
Interaction }; // 10 items
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#define G 2; // No. of goal
#define N 10; // No. of stm array positions
#define M 7; // STM maximum capacity

var stmGoal = [ 0 , 0 ];
var stm[N];
var stmSize;
var perc[N];
var info[N];

Closure() = ba-> (
[stmGoal[boxMovedGoal] == 1 &&

(info[boxMoved] == 1 || stm[BoxMoved])]
achieveBoxMoved {info[BoxMoved] = 0;

stmGoal[BoxMoved] = 0;
stmSize--;} -> FlashOut() []

[stmGoal[boxEmptiedGoal] == 1 &&
(info[boxEmptied] == 1 || stm[BoxEmptied])]

achieveBoxMoved {info[BoxEmptied] = 0;
stmGoal[BoxEmptied] = 0;
stmSize--;} -> FlashOut() []

eact -> Closure() );

FlashOut() = closure { var cell = 0;
while (cell < M) {

if (stm[cell] == 1) {
stmSize--;

};
stm[cell] = 0 ;
cell = cell + 1;

}
} -> eact -> Closure();

Goals() =
[stmSize < M && stmGoal[BoxMovedGoal] == 0]

move {stmGoal[BoxMovedGoal] = 1;
stmSize++} -> Goals() []

[stmGoal[BoxMovedGoal] == 1] ba -> eba -> Goals() []
[stmSize < M && stmGoal[BoxEmptiedGoal] == 0]

move {stmGoal[BoxEmptiedGoal] = 1;
stmSize++} -> Goals() []

[stmGoal[BoxEmptiedGoal] == 1] ba -> eba -> Goals();

Array info implements the possibility that the information associated with
the goal achievement is a new piece of information stored in STM by the basic
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activity. Thus not only the position of the stmGoal array corresponding to the
achieved goal is changed to 0 but also the same position of array info. This
is followed by the execution of process FlashOut, which clears the contents
of the non-goal part of STM (array stm).

Example 71.5 illustrates how to model Example 71.2 in PAT:

Example 71.5: Deliberate Control Task using PAT

Task() = ba -> (
[stmGoal[BoxMovedGoal] == 1 &&
stmSize < M && perc[Light] == 1]

newInfo {info[Light] = 1}
-> eact -> store {stm[Light] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stmSize < M && perc[Heavy] == 1]

newInfo {info[Heavy] = 1}
-> eact -> store {stm[Heavy] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stm[Light] == 1 && stmSize < M]

moveBox -> newInfo {info[boxMoved] = 1}
-> eact -> store {stm[boxMoved] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stm[Heavy] == 1 && stmSize < M]

eact -> store {stmGoal[BoxEmptiedGoal] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxEmptiedGoal] == 1 && stmSize < M]
emptyBox -> newInfo {info[boxEmptied] = 1}
-> eact -> store {stm[boxEmptied] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stm[boxEmptied] == 1 && stmSize < M]

moveBox -> newInfo {info[boxMovedEmpty] = 1}
-> eact -> store {stm[boxMovedEmpty] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stm[boxMovedEmpty] == 1 && stmSize < M]

fillBox -> newInfo {info[boxMoved] = 1}
-> eact -> store {stm[boxMoved] = 1; stmSize++}
-> eba -> Task() []

);

User() = Closure() || Goals() || Task();
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For each choice of the process corresponding to basic activity

goal(info) : info1 ↑ perc =⇒ act ↓ info2

for each piece of information i ∈ info2, the possibility that the information
i is associated with the goal achievement is implemented by the assignment
info[I] = 1, where I is the position of array info that implements i.

7.3.5 Operator’s Deliberate Behaviour

Operator’s behaviour is mainly deliberate. Although there is normally a pre-
fixed sequence of basic activities through which the operator needs to go, each
of these activities is driven by a specific goal to be accomplished. However,
the operator task does not have a top-level goal. Instead it has a purpose,
which influences all goals established (and accomplished) during the task
performance.

The ‘scan the screen’ operator’s subtask informally described in Exam-
ple 66 may be formalised as in Example 66.1.

Example 66.1: ‘Scan the Screen’ Operator’s Subtasks

Let be
• Π = {globalV iew, needsFurtherInvestigation, nothingAbnormal},
• Σ = {moveBox, emptyBox, fillbox},
• Ξ = {atcPurpose},
• Γ = {goal(atcPurpose, identifiedPart),

goal(atcPurpose, assessedPart)}
• Δ = {identifiedPart , assessedPart, investigatedPart} ∪ Γ ∪ Π ∪ Σ.
The task is modelled by the following four basic tasks:

1. goal(atcPurpose, identifiedPart) ↑ globalV iew
=⇒ identifiedPart ↓ goal(actPurpose, assessPart)

2. goal(atcPurpose, assessedPart) ↑ needsFurtherInvestigation
=⇒ none ↓ goal(atcPurpose, investigatedPart)

3. goal(atcPurpose, assessedPart) ↑ nothingAbnormal
=⇒ none ↓ goal(atcPurpose, identifiedPart)

Initially
STM = {goal(atcPurpose, identifiedPart)}

Through a global perception of the screen the operator identifies a
part of the screen in which there might be a conflict (Activity 1) and
sets the subgoal to assess that part (goal(actPurpose, assessPart)),
while the closure due to the storage of information identifiedPart causes
the removal of goal goal(atcPurpose, identifiedPart). If the part of the
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screen is perceived as in need of further investigation, then subgoal
goal(actPurpose, assessPart) is established (Activity 2). If, instead,
nothing abnormal is noticed, then subgoal goal(actPurpose, assessPart)
is established. In both cases, the closure due to the storage of informa-
tion assessPart causes the removal of goal goal(atcPurpose, assessPart)
(Activity 3).

The purpose is present in STM as argument of some goals, as long as the
operator is engaged in the task.

The ‘new phase’ operator’s subtask informally described in Example 66
may be formalised as in Example 66.2.

Example 66.2: ‘New Phase’ Operator’s Substask

Let be
• Π = {endTask},
• Σ = ∅,
• Ξ = {atcPurpose},
• Γ = {goal(atcPurpose, newPhase),

goal(actPurpose, identifyPart),
goal(atcPurpose, actedOnPair)

• Δ = {newPhase} ∪ Γ ∪ Π ∪ Σ.
The task is modelled by the following three basic tasks:

1. goal(atcPurpose, newPhase) ↑ none
=⇒ none ↓ goal(actPurpose, identifyPart)

2. goal(atcPurpose, newPhase) ↑ none
=⇒ none ↓ goal(atcPurpose, actedOnPair)

3. goal(atcPurpose, newPhase) ↑ endTask
=⇒ none ↓ newPhase

Initially
STM = {goal(atcPurpose, newPhase)}

In Activity 3 the closure due to the storage of information newPhase
causes the removal of goal goal(atcPurpose, newPhase), which is the
only goal in STM influenced by purpose atcPurpose. Therefore, any
trace of the purpose disappears from STM.

7.3.6 Switching Process Control

Familiar perceptions provide a mechanism to switch from deliberate control
to automatic control. In an environment, with familiar perception, such as
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the ones provided by an ATM, the user behaviour proceeds independently
of the goal that has triggered it. However, during automatic behaviour there
are situations in which the cognitive control must switch back to deliberate
control.

This situation is illustrated by Example 65.8, which extends the Exam-
ple 65.2 by considering two possible goals ‘cash withdrawal’ and ‘statement
printing’ for the ATM task.

Example 65.8: Automatic and Deliberate Behaviour

Let be
• Π = {cardR, pinR, selR, cashO, statO, cardO},
• Σ = {cardI, pinE, cashS, statS, cashC, statC, cardC},
• Ξ = ∅,
• Γ = {goal(cashC), goal(statC)}.
• Δ = Γ ∪ Π ∪ Σ ∪ {interaction}.

Set Ξ is empty since the purpose is not relevant here.
A simple ATM task, in which the user has only the goal to withdraw

cash, is modelled by the following four basic tasks:

1. goal(cashC) : interaction ↑ none =⇒ none ↓ interaction
2. goal(statC) : interaction ↑ none =⇒ none ↓ interaction
3. interaction ↑ cardR =⇒ cardI ↓ cardC, interaction
4. interaction ↑ pinR =⇒ pinE ↓ interaction
5. goal(cashC) ↑ selR =⇒ cashS ↓ none
6. goal(statC) ↑ selR =⇒ statS ↓ none
7. interaction ↑ cashO =⇒ cashC ↓ interaction
8. interaction ↑ statO =⇒ statC ↓ interaction
9. cardC, interaction ↑ cardO =⇒ cardC ↓ interaction

Perception selR denotes that the ATM requests the user to select the
transaction between ‘cash withdrawal’ and ‘statement printing’. Per-
ception statO denotes that the statement has been delivered. Actions
cashS and statS are the user’s selections of ‘cash withdrawal’ and ‘state-
ment printing’, respectively. Information interaction models the cogni-
tive state of the user interacting with the ATM; it is initially absent
from STM.

The behaviour starts under deliberate control with one of the two
possible goals, goal(cashC) (‘cash withdrawal’) or goal(cashC) (‘state-
ment printing’) determining the beginning of the interaction (Activities
1 and 2, respectively) by storing interaction in STM. The storage of
interaction in STM activates the automatic control driven by percep-
tions until perception selR requires a decision about which transaction
to select. Activities 5 and 6 determine the decision based on the goal in
STM, thus under deliberate control. After the decision has been made,
automatic control is restored for the rest of the task.
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Example 65.9 illustrates how to use PAT to define the infrastructure and
model the closure phenomenon for the ATM task described in Example 65.8.

Example 65.9: Closure in Automatic Control using PAT

enum { getCashGoal , getStatGoal};
enum { None,

CardR, PinR, SelR, CashO, StatO, CardO ,
CardI, PinE, CashS, StatS, CashC, StatC, CardC,
Interaction }; // 15 items

#define G 1; // No. of goal
#define N 15; // No. of stm array positions
#define M 7; // STM maximum capacity

var stmGoal = [ 0 , 0];
var stm[N];
var stmSize;
var perc[N];

Closure() = ba-> (
[stmGoal[getCashGoal] == 1] cashC ->

achieveGetCash {stmGoal[getCashGoal] = 0;
stmSize--;} -> FlashOut() []

[stmGoal[getStatGoal] == 1] cashC ->
achieveGetCash {stmGoal[getStatGoal] = 0;

stmSize--;} -> FlashOut() []
eact -> Closure() );

FlashOut() = closure { var cell = 0;
while (cell < M) {

if (stm[cell] == 1) {
stmSize--;

};
stm[cell] = 0 ;
cell = cell + 1;

}
} -> eact -> Closure();]

Goals() =
[stmSize < M && stmGoal[getCashGoal] == 0 &&
stm[Interaction] == 0] getCash {stmGoal[getCashGoal] = 1;

stmSize++} -> Goals() []
[stmGoal[getCashGoal] == 1] ba -> eba -> Goals() []
[stmSize < M && stmGoal[getStatGoal] == 0 &&
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stm[Interaction] == 0] getCash {stmGoal[getStatGoal] = 1;
stmSize++} -> Goals() []

[stmGoal[getStatGoal] == 1] ba -> eba -> Goals();

With respect to Example 65.4, processes Closure and Goals have the addi-
tional choice for the new goal. Moreover, guards in process Goals also include
a condition on the absence of interaction from STM: initially there is no
goal in STM and the role of process Goals is to establish one goal non deter-
ministically, when the user in not interacting with the ATM.

Example 65.10 illustrates how to use PAT to model the basic activities for
the ATM task described in Example 65.8.

Example 65.10: Automatic Control Task using PAT

Task() = ba -> (
[stmGoal[getCashGoal] == 1 && stm[Interaction] == 0] eact

-> store {stm[Interaction] = 1;
stmSize++} -> eba-> Task() []

[stmGoal[getStatGoal] == 1 && stm[Interaction] == 0] eact
-> store {stm[Interaction] = 1;

stmSize++} -> eba-> Task() []
[stm[Interaction] == 1 && stmSize < M &&
perc[CardR] == 1] cardI
-> eact -> store {stm[CardC] = 1; stmSize++}
-> eba -> Task() []

[stm[Interaction] == 1 &&
perc[PinR] == 1] pinE
-> eact -> eba -> Task() []

[stm[Interaction] == 1 &&
perc[CashO] == 1] cashC
-> eact -> eba -> Task() []

[stm[Interaction] == 1 &&
perc[StatO] == 1] statC
-> eact -> eba -> Task() []

[stm[Interaction] == 1 && stmSize > 0 &&
perc[CardO] == 1 && stm[CardC] == 1]
retrieve {stm[CardC] = 0; stmSize--} -> cardC
-> eact -> eba -> Task()

);

User() = Closure() || Goals() || Task();
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7.4 Interface/System Model

In Sect. 7.3.1 we have defined perceptions to characterise the human input
channel and actions to characterise the human output channels, with actions
performed in response to perceptions. This describes the human perspective
of input/output channels. From a machine perspective, we can also say that
a user perception refers to an interface output, which acts as a stimulus for
the human. During the interaction, such an output is normally the reaction
of the interface to the action performed by the human.

Hence we identify a visible state created by an interface or system with the
perception it produces in humans. For example, the interface state created by
the action of giving change, performed by the interface of a vending machine,
is identified with the perception (sound of falling coins or sight of the coins)
produced.

Example 65.11 models one possible ATM interface to support the ATM
task described in Example 65.8.

Example 65.11: Old ATM Interface using PAT

ATMold() =
atomic{ [perc[CardR] == 1] cardI ->

readCard {perc[CardR] = 0 ;
perc[PinR] = 1} -> ATMold() } []

atomic{ [perc[PinR] == 1] pinE ->
readPin {perc[PinR] = 0 ;

perc[SelR] = 1} -> ATMold() } []
atomic{ [perc[SelR] == 1] cashS ->

setCashS {perc[SelR] = 0 ;
perc[CashO] = 1} -> ATMold() } []

atomic{ [perc[SelR] == 1] statS ->
setStatS {perc[SelR] = 0 ;

perc[StatO] = 1} -> ATMold() } []
atomic{ [perc[CashO] == 1] ( cashC ->

detectCashC {perc[CashO] = 0;
perc[CardO] = 1} -> ATMold() ) } []

atomic{ [perc[StatO] == 1] statC ->
detectStatC {perc[StatO] = 0;

perc[CardO] = 1} -> ATMold() } []
atomic{ [perc[CardO] == 1] cardC ->

detectCardC {perc[CardO] = 0} ->
reset {perc[CardR] = 1} -> ATMold() ) };

A simple interface may be modelled by a choice between all possible transi-
tions. Each choice is guarded by the source state of the transition, normally
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represented by the perception provided to the user. The first event of the
choice to be performed is the synchronisation event that models the inter-
action of the human (events CardI, PinE, CashS, StatS, CashC, StatC and
CardC in Example 65.11). Each synchronisation event is followed by the ‘local’
interface event that modifies the interface state by assigning 0 to the source
state and 1 to the target state. These local events my be split to increase
the readability of the model, as it happens in the last choice of the ATMold
process in Example 65.11.

In order to keep the synchronisation event and the associated interface
events as an one atomic action, we use the atomic process construct available
in PAT. The atomic keyword associates higher priority with a process: if the
process has an enabled event, the event will execute before any events from
non atomic processes. Moreover, the sequence of statements of the atomic
process is executed as one single step, with no interleaving with other pro-
cesses.

The ATM interface modelled in Example 65.11 was very common in the
past. However, it was observed that delivering cash or statement before
returning the card sometimes caused the user error of forgetting the card.
This error is due to the fact that once the goal of collecting the cash or the
statement is achieved, STM may be flashed out by the closure phenomenon
thus losing some information, possibly including the reference to the action
to collect the card. The discovery of this error led to the development of
a new ATM interface that returns the card before delivering cash or state-
ment. In terms of interface model this means that the user’s selection of a
transaction, although it results in the same user perception of seeing the
card returned, should determine two distinct state transitions depending on
whether the user selects ‘cash withdrawal’ or ‘statement printing’. The new
state will then produce the appropriate perception at a later stage.

In general, when dealing with a fairly complex behaviour, possibly result-
ing from the parallel composition of several subsystems, it is necessary to
consider internal system states, which do not present themselves as human
perceptions. Therefore, in addition to the perc array to implement percep-
tion, we also use an array state to implement internal states.

Example 65.12 models the new ATM interface.

Example 65.12: New ATM Interface using PAT

var state[N];

ATMnew() =
atomic{ [perc[CardR] == 1] cardI ->

readCard {perc[CardR] = 0;
perc[PinR] = 1} -> ATMnew() } []

atomic{ [perc[PinR] == 1] pinE ->
readPin {perc[PinR] = 0;
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perc[SelR] = 1} -> ATMnew() } []
atomic{ [perc[SelR] == 1] cashS ->

setCashS {perc[SelR] = 0; perc[CardO] = 1;
state[CashO] = 1} -> ATMnew() } []

atomic{ [perc[SelR] == 1] statS ->
setStatS {perc[SelR] = 0; perc[CardO] = 1;

state[StatO] = 1} -> ATMnew() } []
atomic{ [state[CashO] == 1 && perc[CardO] == 1] cardC ->

detectCardC {perc[CardO] = 0; perc[CashO] = 1;
state[CashO] = 0} -> ATMnew() } []

atomic{ [state[StatO] == 1 && perc[CardO] == 1] cardC ->
detectedCardC {perc[CardO] = 0; perc[StatO] = 1

state[StatO] = 0;} -> ATMnew() } []
atomic{ [perc[CashO] == 1] cashC ->

detectCashC {perc[CashO] = 0} ->
reset {perc[CardR] = 1} -> ATMnew() } []

atomic{ [perc[StatO] == 1] statC ->
detectCashC {perc[StatO] = 0} ->
reset {perc[CardR] = 1} -> ATMnew() }; };

7.4.1 Experiential Knowledge and Expectations

Section 7.2 illustrated various kinds of memory, which play different roles in
processing information. Then in Sects. 7.3.3 and 7.3.4 we described automatic
and deliberate behaviour, respectively, and provided a formal notation (and
its implementation in PAT) to model basic activities under these two forms of
cognitive control. If we wish to associate the location of the rules that model
basic activities with distinct parts of the human memory, we can imagine that
they are stored in LTM and, more specifically, that automatic basic activities
are stored in procedural memory and deliberate basic activities are stored in
semantic memory.

We have also mentioned that information may be transferred from sensory
memory to STM through attention while facts and knowledge may be trans-
ferred from semantic memory to STM. We must add that information may
flow from STM to LTM, first to episodic memory, and then produce changes
to semantic and procedural memory. In fact, automatic and deliberated basic
activities are created through a long-term learning process. In general, users
make large use of deliberate activities while learning a task and, during the
learning process, they create automatic rules in procedural memory to replace
the less efficient rules in semantic memory. However, although automatic con-
trol is efficient and requires less STM usage than deliberate control, it may
result inappropriate in some situation. In such a case, experiential knowledge
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already stored in the LTM may be used to solve the situation. Norman and
Shallice [NS86] propose the existence of a Supervisory Attentional System
(SAS), sometimes also called Supervisory Activating System, which becomes
active whenever none of the automatic tasks are appropriate. The activation
of the SAS is triggered by perceptions that are assessed as danger, novelty,
requiring decision or are the source of strong feelings such as temptation and
anger. The SAS is an additional mechanism to switch from automatic to
deliberate control.

In Sect. 7.3.6 we described how to model the switching from automatic
to deliberate control due to a required decision. Now we consider how such
switching may occur due to the user’s assessment of perceptions as the result
of acquired experiential knowledge. Example 65.13 extends Example 65.9 with
the infrastructure for representing factual and experiential knowledge and the
mechanisms to assess perception and produce an appropriate response based
on experiential knowledge.

Example 65.13: Closure with Experiential Knowledge

enum { safe , danger }; // assessment
enum { normal , abort }; // response
var assessment = safe;
var response = normal;

enum { getCashGoal , getStatGoal};
...

Closure() = ba-> (
[response == normal && stmGoal[getCashGoal] == 1]

cashC ->
achieveGetCash {stmGoal[getCashGoal] = 0;

stmSize--;} -> FlashOut() []
[response == normal && stmGoal[getStatGoal] == 1]

cashC ->
achieveGetCash {stmGoal[getStatGoal] = 0;

stmSize--;} -> FlashOut() []
eact -> Closure() );

FlashOut() = ...

Goals() = ...

Variable assessment records the assessment of the user’s perception following
the user’s action. We enumerate only two possible values: safe means that the
perception will not affect the user’s automatic control, wheras danger means
that the perception requires a switch to deliberate control and an appropriate
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response, which will be assigned to variable response, whose possible values
are normal and abort. Initially variable assessment has value safe and
variable response has value normal.

Variable assessment is set depending on the user’s expectation. We use
additional processes to constrain the user’s behavior depending on expecta-
tions. Such processes are specific to the considered interface/system. Exam-
ple 65.14 defines the constraints for the ATM.

Example 65.14: Constraints Modelling Expectations

ExpectOld() = ba ->
( eba -> ExpectOld() []

cashS -> eba ->
( [perc[CashO] == 1]

cashExpectMet -> ExpectOld() []
[perc[CardO] == 1]

cashExpectFailed {assessment = danger}
-> ExpectOld() ) []

statS -> eba ->
( [perc[StatO] == 1]

statExpectMet -> ExpectOld() []
[perc[CardO] == 1]

statExpectFailed {assessment = danger}
-> ExpectOld() )

ExpectNew() = ba ->
( eba -> ExpectNew() []

cashS -> eba ->
( [perc[CardO] == 1]

cardExpectMet -> ExpectNew() []
[perc[CashO] == 1]

cardExpectFailed -> ExpectNew() ) []
statS -> eba -> ( [perc[CardO] == 1]

cardExpectMet -> ExpectNew() []
[perc[StatO] == 1]

cardExpectFailed -> ExpectNew() )
);

);
The above model caters for two different user expectations. The

first one is ExpectOld, where a user used to interact with the old
ATM expects to see the cash or statement delivered after selecting
‘cash withdrawal’ or ‘statement printing’; such expectations are not met
(cashExpectMet or statExpectMet, respectively) if the card is returned
instead. The second one is ExpectNew, where a user used to interact
with the new ATM expects to see the card returned after selecting
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‘cash withdrawal’ or ‘statement printing’; such expectations is not met
(cardExpectMet) if the cash or statement is delivered instead.

Example 65.15 extends Example 65.10 by including the appropriate guards
on the assessment of the perception and an abortSession event which assigns
abort to the response variable when the assessment of the perception is
danger.

Example 65.15: Task with Response to Perception Assessment

Task() = ba -> (
[assessment == safe &&
stmGoal[getCashGoal] == 1 && stm[Interaction] == 0] eact
-> store {stm[Interaction] = 1;

stmSize++} -> eba-> Task() []
[assessment == safe &&
stmGoal[getStatGoal] == 1 && stm[Interaction] == 0] eact
-> store {stm[Interaction] = 1;

stmSize++} -> eba-> Task() []
[assessment == safe &&
stm[Interaction] == 1 && stmSize < M &&
perc[CardR] == 1] cardI
-> eact -> store {stm[CardC] = 1; stmSize++}
-> eba -> Task() []

[assessment == safe &&
stm[Interaction] == 1 &&
perc[PinR] == 1] pinE
-> eact -> eba -> Task() []

[assessment == safe &&
stmGoal[getCashGoal] == 1 && perc[SelR] == 1] cashS
-> eact -> eba -> Task() []

[assessment == safe &&
stmGoal[getStatGoal] == 1 && perc[SelR] == 1] statS
-> eact -> eba -> Task() []

[assessment == safe &&
stm[Interaction] == 1 &&
perc[CashO] == 1] cashC
-> eact -> eba -> Task() []

[assessment == safe &&
stm[Interaction] == 1 &&
perc[StatO] == 1] statC
-> eact -> eba -> Task() []

[assessment == safe &&
stm[Interaction] == 1 && stmSize > 0 &&
perc[CardO] == 1 && stm[CardC] == 1]
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retrieve {stm[CardC] = 0; stmSize--} -> cardC
-> eact -> eba -> Task()

[assessment == danger &&
stm[Interaction] == 1 && perc[CardO] == 1 ]
abortSession {assessment = safe;

response = abort} -> cardC
-> eact -> eba -> Task() []

[assessment == danger &&
stm[Interaction] == 1 && perc[CardO] == 0 ]
abortSession {assessment = safe;

response = abort}
-> eact -> eba -> Task()

);

User() = Closure() || Goals() || Task();

The response to a danger (guard assessment == danger) is to col-
lect the card (event cardC), if this is perceived (guard perc[CardO] ==
1), and abort the interaction session (event abortSession, which set
response to abort) or just abort the interaction section if the cards is
not perceived (guard perc[CardO] == 0), while variable assessment
is reset to safe. Although normally the danger assessment is due to
the perception of the card, not considering the assessment of danger
possibly due to other reasons would be an overspecification.

7.4.2 Environment and Overall System

Until now we have considered the following components of the overall system:

– the user’s behaviour

User() = Closure() || Goals() || Task();

consisting of the infrastructure for STM (process Closure) and goals (pro-
cess Goals) and the human task process Task (see Examples 65.7, 71.5,
65.10 and 65.15),

– the interface or system (see Examples 65.11 and 65.11), and
– the user’s experiential constraints (see Example 65.14).

However, as illustrated in Example 65.16 there are further aspects of the
environment that influence the interaction and thus ought to be part of the
modelled overall system:

• the initial interface/system state,
• the availability of resources, and
• the user’s knowledge.
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Example 65.16: Closure in Automatic Control using PAT

InitState() = initialization {perc[CardR] = 1} -> Skip();

HasCard() = cardI -> NoCard();
NoCard() = cardC -> HasCard();

Resources() = HasCard();

KnowsPin() = pinE -> KnowsPin();

Knowledge() = KnowsPin();

User() = Closure() || Goals() || Task();

Environment() = User() || Resources() || Knowledge() ;

SysOld() = InitState() ; ( Environment() || ATMold() );
SysNew() = InitState() ; ( Environment() || ATMnew() );

UserOld() = Environment() || ExpectOld();
UserNew() = Environment() || ExpectNew();

SysOldUserOld() = InitState() ; ( UserOld() || ATMold() );
SysOldUserNew() = InitState() ; ( UserNew() || ATMold() );
SysNewUserNew() = InitState() ; ( UserNew() || ATMnew() );
SysNewUserOld() = InitState() ; ( UserOld() || ATMnew() );

Aspects of the environment are the following.

– Initial interface state. We assume that the interface is initially request-
ing a card. This is expressed by process InitState, which performs
event initialization to set variable perc[CardR] to 1 and termi-
nate successfully. This process is sequentialised with the main overall
system process.

– Availability of resources. An essential resource for the task is the bank
card, which has to be available for the user: process Resources consists
of two states describing the availability (HasCard) and non availability
(NoCard) of the card.

– User’s knowledge. The user must know the pin in order to perform the
task. In our example we implicitly assumed that the user knows the
pin, thus process KnowsPin models only the correct pin in terms of
event pinE. However, we might want to consider also the case of using
a wrong pin, in order to explore its impact on the interaction and the
emergent errors This would require a more sophisticated version of
process KnowsPin.
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Finally, the overall system is modelled by processes SysOld and SysNew,
corresponding to the two possible interfaces, but with no assumptions on
the user’s experiential knowledge, and by processes SysOldUserOld and
SysOldUserNew, SysNewUserNew and SysNewUserOld, which include
constraints on user expectations.

7.5 Model Checking Analyses

From an analytical point of view we focus on two aspect: overall system verifi-
cation and task failure analysis. First, in Sect. 7.5.1 we illustrate how to verify
whether the design of the interface and the other environment components
addresses cognitive aspects of human behaviour such as closure phenom-
ena and user expectations that trigger the SAS to activate attention (overal
system verification). Then, in Sect. 7.5.2, we consider patterns of behaviour
featuring persistent operator errors may lead to a task failure.

7.5.1 Overall System Verification

Model checking techniques provide an effective analytical tool to exhaustively
explore the system state space and capture the behaviour that emerges from
the combination of several system components. Closure, automatic behaviour,
expectancy and attention are phenomena that represent distinct components
of human cognition and action, and their combination results in an apparently
holistic ways of performing tasks. In this context model checking can be
used to capture errors that emerge when environment design, which includes
physical devices, interfaces and their operational environment, cannot deal
with the closure phenomena, or when the outcome of the interaction between
automatic behaviour and environment does not meet human expectations.
We use Linear Temporal Logic (LTL), as described in Sect. 2.5.3, to specify
system properties and then we use PAT model checking capabilities to verify
such properties on the CSP model. PAT support the definition of assertions
of the form

#assert system |= property

where system is the model we aim to verify and property is a property
expressed in LTL. The PAT model checker verifies whether the property is
valid on the model and, if not, provides a counterexample. The counterexam-
ple provided by the model checking analysis can then be exploited to improve
the environment design.
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We consider three kinds of properties:

• Functional correctness the user or operator can always complete the task
by successfully accomplishing the goal,

• Non-functional correctness in spite of successfully accomplishing the goal,
the system may violate some non-functional properties (e.g. the user of an
ATM forgets the card after collecting the cash), and

• Cognitive Overload the STM is overloaded above a considered upper limit,
which may lead to a failure in accomplishing the goal when the STM is
loaded by additional uncompleted tasks.

We illustrate the functional correctness in Example 65.17

Example 65.17: Functional Property Verification using PAT

Since there are two possible goals, to get cash and to get a state-
ment, functional correctness aims to verify for each interface design,
whether there are cognitive errors that may prevent the user from col-
lecting the cash and from collecting the statement. The property that
the user is always able to collect the cash can be expressed by formalis-
ing that “a user who selects ‘cash’ will collect the cash before the end of
the interaction section”. Since the end of the interaction section may be
characterised as the beginning of a new interaction section, which occurs
when a card is inserted again, we can say that “a user who selects ‘cash’
will collect the cash before a card is inserted”. Furthermore “the user
collects the cash before a card is inserted” can also be expressed as “no
card is inserted until the user collects the cash”. Finally, our original
property can be expressed as “if a user selects ‘cash’ then no card is
inserted until the user collects the cash”, which can be immediately
translated into LTL. Similarly, the properties that the user is always
able to collect the statement can be expressed by formalising that “a
user who selects ‘statement’ will collect the statement before the end of
the interaction section” or equivalently as “if a user selects ‘statement’
then no card is inserted until the user collects the statement”, which
again can be immediately translated into LTL.

#assert SystemNewUserNew() |=
[] ( cashS -> ( ! cardI U cashC ) );

#assert SystemNewUserNew() |=
[] ( statS -> ( ! cardI U statC ) );

#assert SystemOldUserNew() |=
[] ( cashS -> ( ! cardI U cashC ) );

#assert SystemOldUserNew() |=
[] ( statS -> ( ! cardI U statC ) );
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#assert SystemNewUserOld() |=
[] ( cashS -> ( ! cardI U cashC ) );

#assert SystemNewUserOld() |=
[] ( statS -> ( ! cardI U statC ) );

#assert SystemOldUserOld() |=
[] ( cashS -> ( ! cardI U cashC ) );

#assert SystemOldUserOld() |=
[] ( statS -> ( ! cardI U statC ) );

The PAT model checker shows all systems except SystemNewUserOld
to be functionally correct. In fact, although the new design of the ATM
works in an ideal world where all ATMs are designed according to the
new criterion, there are still some ATMs, especially in the developing
world, that are designed according to the old criterion. Thus we can
imagine that a user from one of such countries, while visiting a coun-
try where all ATMs are designed according to the new criterion, is
likely to assess the early return of the card as a danger and is prone
to abandon the interaction forgetting to collect the cash. This situa-
tion is formalised by the counterexample returned in the verification of
SystemNewUserOld.

In general, when the system behaviour consists of a loop of user sessions
each characterised by a begin event and there are two events choose and
accomplish which characterise the choice and accomplishment of the goal,
then functional correctness can be expressed as

#assert system |= [] choose -> ( ! begin U accomplish )).

In some cases, also non-functional properties may be characterised in this
way. For example, in the case of safety properties, there might be a system
internal event internal, rather than a user’s choice, as a precondition for the
user not to lose some owned resource currently used by the system. If return
is the event characterising the return of the resource to the user, then the
safety property can be expressed as

#assert system |= [] internal -> ( ! begin U return ));

We illustrate the verification of safety in Example 65.18

Example 65.18: Safety Property Verification using PAT

As an example of nonfunctional correctness we consider the safety
property that aims to verify, for each interface design, whether there are
cognitive errors that may prevent the user from collecting the returned
card.

#assert SystemNewUserNew() |=
[] ( readCard -> ( ! cardI U cardC ) );
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#assert SystemOldUserNew() |=
[] ( readCard -> ( ! cardI U cardC ) );

#assert SystemNewUserOld() |=
[] ( readCard -> ( ! cardI U cardC ) );

#assert SystemOldUserOld() |=
[] ( readCard -> ( ! cardI U cardC ) );

The PAT model checker shows that the safety property is valid with
the new ATM (SystemNewUserNew and SystemNewUserOld) and not
with the old ATM (SystemOldUserOld and SystemOldUserOld), inde-
pendently of the user experience. The counterexample captures possible
post-completion errors in using the old design of the ATM and shows
that such errors cannot occur in the new design of the ATM.

We can now understand what cognitive error caused the cake of Example 65
to burn and why the algorithm used by your partner caused such an error to
emerge. This is illustrated in Example 69.2.

Example 69.2: Why Cakes and Engines Burn

The baking tasks is divided in two separate parts, with a long period
in between that is likely to be devoted to many other tasks. Each part
is actually a task in itself with a specific goal. The goal of the first task
is achieved when the cake is inserted in the oven and the oven is closed
(Activity 6), thus causing STM closure. Therefore, the subsidiary task
of lowering the temperature setting may be forgotten (Activity 7), with
the result that the cake burns.

The obvious solution to this problem is to swap Activity 6 and Activ-
ity 7, thus preventing the occurrence of a post-completion error. The
problem here is not in the interface, but in the algorithm, that is, the
protocol that is used to carry out the task. This subtle form of post-
completion error is difficult to eliminate in practice, since the solution
count on the human to strictly adhere to a given protocol.

For example, on 24 May 2013, the fan cowl doors of an aircraft were
left unlatched on both engines after completing scheduled maintenance
(forgetting this subsidiary task after the achievement of the maintenance
goal). As the aircraft departed London Heathrow Airport, the fan cowl
doors from both engines detached, puncturing a fuel pipe on the right
engine and damaging the airframe and some aircraft systems. While
the flight returned to Heathrow an external fire developed on the right
engine, which was then shut down. The aircraft managed to safely land
using the left engine. All the passengers and crew evacuated the aircraft
via the escape slides.
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Cognitive load expresses the amount of information stored in STM at a given
time. Thus cognitive overload occurs when the amount of information stored
in STM is above a considered upper limit. We illustrate the analysis of cog-
nitive overload in Example 65.19

Example 65.19: Cognitive Overload Analysis using PAT

As an example of cognitive overload we consider an upper limit of 5
piece of information stored in STM.,

#define cognitiveOverload (stmSize > 5);

#assert SystemNewUserNew() |= [] ! cognitiveOverload;
#assert SystemOldUserNew() |= [] ! cognitiveOverload;
#assert SystemNewUserOld() |= [] ! cognitiveOverload;
#assert SystemOldUserOld() |= [] ! cognitiveOverload;

PAT provides a define construct to define constants. This can be used to
define boolean constants to be used as proposition within assertions, as in
Example 65.19. This way, the model checker can determine the mental capa-
bilities an operator has to possess to avoid cognitive overload.

7.5.2 Task Failures Analysis

The purpose of the operator’s behaviour is to prevent the system from reach-
ing a failure state. In this case the unwanted result of the interaction is the
task failure. Although it is acceptable that the operator makes errors, since
recovery from errors is always possible, if this recovery does not occur and
the operator persists in making errors, then the system will eventually reach
a failure state.

Applied psychology uses experiments, natural observation and other data
gathering instruments to identify and categorise the operator’s patterns of
behaviour that may lead to a task failure. The goal of this kind of studies
is to capture all possible patterns of behaviour that may lead to a task fail-
ure in order to design system controls, support tools, environment settings
and working schedules that prevent operators from entering such dangerous
patterns of behaviour.

Formal methods can support applied psychology by verifying whether
the decomposition of a task failure into patterns of behaviour is sound
and complete. The task failure F and its empirically defined decomposition
D = {P1, . . . Pn} into patterns of behaviour can be formalised in LTL. The
decomposition D is

– sound if each of the Pi is sufficient to cause the task failure F , and
– complete if one of the Pi is necessary to cause the task failure F .
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Then model checking can be used to verify the soundness of the decomposition
∧

P∈D
(P ⇒ F )

and the completeness of the decomposition

F ⇒
∨

P∈D
P

We informally illustrate this methodology in Example 66.3.

Example 66.3: Task Failure Analysis using PAT

We can characterise a separation violation as an operator who persis-
tently misses the intention to carry out a specific action to solve the
conflict [CCL08, CLC05]. We distinguish between intention and action
to be able to model an unintended action that does not match the inten-
tion [Rea90]. Although this is not part of our analysis, such a mismatch
would be relevant in the analysis of errors induced by a specific inter-
face design, which could be carried out on this case study by introducing
alternative interface designs and using our formal cognitive framework
as in the ATM case study.

The formalisation of the ATC task failure decomposition suggested
by Lindsay and Connelly [LC02] is
1. Failure of scanning when the operator fails to monitor a specific

part of the interface, thus missing possible conflicts,
2. Persistent mis-classification when the operator persistently clas-

sifies as a non conflict what is actually a conflict,
3. Persistent mis-prioritisation when the operator persistently gives

a low priority to a conflict, thus missing to solve it, and
4. Defer action for too long when the operator persistently delays

to implement an already developed plan to solve a conflict.
Model checking analysis using PAT shows that decomposition of the

task failure is sound but not complete. The counterexample shows that
the definition of persistent mis-classification by Lindsay and Connelly
mixes two different kinds of behaviour, one fully characterising per-
sistent misclassification and the other being a part of another property
which was not captured through empirical analysis. This property, which
we call Contrary decision process, occurs when a conflict is persis-
tently reclassified as a non conflict. Once such a property is added to
the decomposition and the notion of persistent misclassification is rede-
fined in a way that does not overlap with it, the decomposition becomes
complete.
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7.6 Closing Remarks

In this chapter, we presented a formal approach to the specification, mod-
elling and analysis of interactive systems in general and, more specifically, of
human-computer interaction. Systems are modelled using the CSP extension
implemented in the Process Analyzer Toolkit (PAT), properties are speci-
fied using temporal logic formulae, either on states or events, and analysis is
carried out by exploiting the model checking capabilities of PAT.

The approach is illustrated through two classical examples. The Auto-
mated Teller Machine (ATM) example was already introduced in Chap. 3
and is used in this chapter to illustrate the automatic behaviour of a user
who carries out everyday activities with just implicit attention, but who may
resort to explicit attention when in need of making a decision, driven by the
task goal, or when realising the occurrence of an anomalous situation, such
as a danger. Both functional properties, such as being enabled to achieve the
goal (withdrawing cash or printing a statement, in the case of the ATM), and
safety properties (remembering to collect the card, in the case of the ATM)
are analysed. The Air Traffic Control (ATC) system example is introduced
in this chapter to illustrate the deliberate behaviour of an operator who per-
forms a task with a general purpose, whereby specific goals are set along the
way. Although, in general, failing to achieve the goal is not a task failure,
provided the system state is still consistent with the purpose, a pattern of
behaviour featuring persistent operator errors may indeed lead to a task fail-
ure. In this context, model checking is used to support applied psychology
by analysing an empirically defined decomposition of the task failure into
patterns of behaviour, in order to verify whether the decomposition is sound
and complete.

7.7 Annotated Bibliography

There is a large number of textbooks on human-computer interaction. The
most comprehensive and appropriate to provide an accessible introduction
to the concepts used in this chapter are by Dix et al. [DFAB04], by Preece,
Rogers and Sharp [PRS17] and by Thimbleby [Thi07]. The first has an empha-
sis on modelling. It provides an extensive introduction to human behaviour
and interaction from a cognitive science perspective and also presents, mostly
at an intuitive level, a variety of formal approaches for dealing with some
aspects of HCI and tackling specific challenges. The second has an emphasis
on designing for user experience. It is intended as a book for practition-
ers and has a broader scope of issues, topics and methods than traditional
human-computer interaction textbooks, with a focus on diversity of design
and evaluation process involved. However, it is less concerned with cognition
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than the book by Dix et al. The third draws on sound computer science
principles, with a strong formal methods flavour. It uses state machines and
graph theory as a powerful and insightful way to analyse and design bet-
ter interfaces and examines specific designs and creative solutions to design
problems

Looking more specifically at modelling cognition, historical but still actual
works are by Newell and Simon [NS72], Card et al. [CEB78]. In a later work
Card, Moran and Newel [CMN83] introduced a somehow formal notation,
which inspired, on the one hand, the development of a plethora of cognitive
architectures over the last 40 years and, on the other hand, the use of formal
methods in HCI.

Kotseruba and Tsotsos published a broad overview of these last 40 years of
cognitive architectures [KT18], featuring 84 cognitive architectures and map-
ping them according to perception modality, implemented mechanisms of
attention, memory organisation, types of learning, action selection and prac-
tical applications. A similar, but less comprehensive survey by Samsonovich
[Sam10] collects the descriptions of 26 cognitive architectures submitted by
the respective authors. Finally, Laird et al. [LLR17] focus on three among the
most known cognitive architectures, ACT-R, Soar and Sigma, and compare
them based on their structural organisation and approaches to model core
cognitive abilities.

In 1991 two nice surveys on the first formal approaches in HCI were com-
piled by Haan, van der Veer and van Vliet [GdHvV91], based on a psychology
perspective, and by Dix [Dix91], based on a computer science perspective.
Although the scientific community working on the use of formal methods in
HCI is quite small, there have been a number of significant results over the last
20 years. Such results mainly appear in the proceedings of the international
workshops on on Formal Methods for Interactive Systems (FMIS), which run
from 2006, though not every year, and in journal special issues associated
with such workshop. Some of these special issues and other papers in the
area appeared in the journal Formal Aspects of Computing. Two important
collection of works on formal methods approaches to HCI have been recently
edited by Weyers, Bowen, Dix and Palanque [WBDP17] and by Oulasvirta,
Kristensson, Bi and Howes [OKBH18].

7.7.1 Current Research Directions

The way the validity of both functional and nonfunctional properties is
affected by user behaviour is quite intricate. It may seem obvious for func-
tional properties that an interactive system can deploy its functionalities
only if it is highly usable. However, usability may actually be in conflict with
functional correctness, especially in applications developed for learning or
entertainment purpose. More in general, high usability may be in conflict
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with user experience, whereby the user expects some challenges in order to
test personal skills and knowledge, enjoy the interaction and avoid boredom.
Usability is also strictly related to critical nonfunctional properties such as
safety [CCL08] and security [CE07]. Such relationship is actually two ways.
On one side improving usability increases safety and/or security [CCL08]. On
the other side introducing mechanisms to increase safety and/or security may
reduce usability, and as a result, may lead to an unexpected global decrease
in safety [IBCB91] and/or security [CE07]. Investigating such complex rela-
tionships is an important research direction.

In the real world humans frequently have to deal with operating environ-
ments that

1. continuously produce, change and invalidate human expectations as part
of an evolutionary learning process [Cer16, IBCB91],

2. deploy constraining social contexts [IBCB91] and cultural differences
[Hei07], and

3. provide a large amount of stimuli, which are perceived through several
modalities at the same time and interpreted and combined according to
temporal and contextual constraints (multimodal interaction) [CFG07].

The formal approach proposed in this chapter as well as all approaches that
aim at applying formal methods to generic HCI problems presuppose that

1. expectation are a priori constraints rather than part of a learning process,
2. cognitive behavior depends on a specific social and cultural context, and
3. human cognition and actions are directly triggered by isolated perceptions.

Therefore, it is important to

1. define cognitive mechanisms that build

• expectations in semantic memory out of experience stored in episodic
memory, and

• procedures in procedural memory out of knowledge stored in semantic
memory,

thus mimicking the information flow from STM first to episodic memory
and then to LTM (see Sect. 7.4.1),

2. enable multiple, interacting instantiations of cognitive architectures as part
of a complex sociotechnical system, and

3. define, at the cognitive architecture level, mechanisms for the fusion of
multiple modalities.

These objectives may not be easily accomplished using formal notations with
limited data structures such as CSP, even in the extended form provided by
PAT. A more sophisticated modelling language with extensive data struc-
tures, possibly featuring an object-oriented paradigm, is needed. With this
aim in mind the Maude rewrite system [Ö17] has been proposed as a possible
candidate [Cer18, BMO19]. Furthermore, the definition of the Behavioural
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and Reasoning Description Language (BRDL) [Cer20] and its implementa-
tion using Real-Time Maude [CO20] have recently paved the way for the
insilico simulation of experiments carried out in cognitive psychology with
human subjects [CM21] as well as the simulation of long-term human learn-
ing processes [CP21].

Furthermore, the intrinsic unpredictability of human behaviour requires
the validation of any a priori model on real data. Using text mining tech-
niques and appropriate ontologies, abstract event logs that match the rep-
resentation used in the cognitive model could be extracted from the dataset
and used to constrain the model before performing formal verification. This
could be done at different levels, from a correspondence one-to-one between
real interaction history and constraints to the representation of a set of real
interaction histories with a single constraint.

Finally, the use of formal methods for system modelling and analysis
requires high expertise in mathematics and logic, which is not common among
typical users, such as interaction design and usability experts as well as psy-
chologists and other social scientists. Therefore, the development of tools that
address the need and skills of such typical users is essential for the acceptance
and diffusion of formal methods in the HCI area.
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