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The title page shows detail from the cover of the book “Rechnung auff der Linihen und Federn”
by Adam Ries, Sachsse, Erffurdt, 1529.1 It depicts the following scene: “A table-abacus competes
against longhand calculations using ‘Arabic’ numerals, which were still new in Europe. Either one
could trounce calculating by hand with Roman numerals—but which was faster? Are the coins a
wager on the outcome?”2

In his book Ries describes two practices: working with the calculation board (established practice)
and numerical calculations with digits (new practice). Historically, as we all know, the new practice
as the superior one took over.
In the same sense, the authors of this book hope that their advocated approach of utilising Formal
Methods in software engineering will prove to be of advantage and become the new standard.

1 Cover of the book “Rechnung auff der Linihen und Federn” by Adam Ries, Sachsse, Erffurdt,
1529. Digitized by SLUB Dresden.

Link to the image: http://digital.slub-dresden.de/id267529368/9.
Link to the rights notice: https://creativecommons.org/publicdomain/mark/1.0/.

2 See: https://www.computerhistory.org/revolution/calculators/1/38/139.

http://digital.slub-dresden.de/id267529368/9
https://creativecommons.org/publicdomain/mark/1.0/
https://www.computerhistory.org/revolution/calculators/1/38/139


Foreword by Manfred Broy

The development of programs and software engineering are fascinating technical
challenges. If software runs on a piece of hardware, if the hardware is embedded into
a cyber-physical system, and as soon as the system is started, a process is initiated
and the system shows some behaviour and—if designed and programmed in a careful
way—it performs a certain task and it generates a behaviour which fulfills specific
expectations.

As we have painfully experienced, software systems show a complexity, espe-
cially if they are large and used in complicated applications that are often beyond the
imagination of engineers. As a result, we all have learned towork and livewith imper-
fect software systems that often show behaviours and properties which are different
from what we expect and—in the worst case—do not perform the task software was
written for. This is unacceptable—not only in safety critical applications.

As a result, there is a lot of research to find better ways to engineer software
systems such that they become reliable and show high quality. High quality means
that they provide adequate user interfaces, guarantee the expected functionality, or,
even more, over-fulfill the purposes they are built for and that they behave never in
an incorrect way. For the engineering of such systems, a large number of proposals
have been published and also experimented with, in practice. Some of them being
quite useful and successful, others did not deliver what they promised.

An important observation is that computer programs and software in general
are formal objects. They are written in a formal language, they are executed on a
machine with a formal operational semantics, and each statement of the program-
ming language results in precisely defined behaviours of the machine (state changes,
input, and output) exactly determined by the software. In the end, strictly speaking,
software is just a huge formula—however, usually not written in the classical style
of mathematical formulas, but in the style of algorithmic languages. But, after all, it
is a formal object. This means that we are and should be able to provide a kind of
a formal theory that describes the elements of the programming languages and the
behaviour of programs that is expressed and generated by these elements.

This underlines that there is a difference between writing a text in a natural
language and writing a program. Soon, we have learned that writing a program

vii



viii Foreword by Manfred Broy

is error-prone. Too many things have to be kept in mind and thought of when writing
a line of program text such that it is very likely that what we are writing is sometimes
not what we want.

Here formal theories can help a lot to give a precise meaning and some deep
understanding, not only for programs and the behaviours they generate, but also for
specifications which formally describe certain aspects of program behaviour. The
main contribution of formalization is precision, abstraction, and helpful redundancy.
Redundancy means that we work out different—if possible formal—more adequate
formulations of specific aspects that support the concentration onto specific proper-
ties. This way, relevant aspects are represented in isolation to be able to study them
independently which may reduce complexity. This has led to a number of formal
theories addressing quite different aspects of programs including their functional
behaviour, quality issues, and questions of robustness.

This shows that theories providing formal foundations for formalisms, languages,
and also for methods in software construction are indispensable artifacts to support
software development.

In the academic community, having all this in mind, soon the term “Formal Meth-
ods” has been become popular. This term is carefully defined and explained in this
book. It is illustrated both by examples and use cases as well as by careful discussion
and proper definitions.

For Formal Methods, the challenge is to keep the balance between being formal
and providing methods. In this book, numerous examples are given for such a line of
attack, but we have to always keep in mind that it is dangerous to define a formalism
and to believe that this formalism is already a development method. However, here is
another challenge: in the details of the definitions of formalisms, we have to decide
about concepts that are critical and difficult. A simple example would be the use
of partial functions in specifications: as long as all functions are total, expressions
written with these functions have well-defined values. For partial functions, it gets
much trickier: what is the value of an expression when certain subexpressions are
built of partial functions which happen not to provide a result for this particular
application?What is the value of the overall expression then? Is it always undefined?
What are the rules to deal with this and to reason about it? Of course, there are
many different ways to provide a theory for expressions with partial functions, but
obviously not all of them are equally well-behaving and well-suited for engineering.
Therefore, when defining formal theories, a rich number of delicate questions have
to be solved—many of them related to the goal to use the formalism as an element
of a Formal Method.

Another example is how to represent concurrency. Concurrency is a fact of
everyday life. We are living in a concurrent world. Our software systems are
connected and run concurrently. There are a number of constructs that have been
invented to describe concurrent structures and concurrent processes of software
systems by formal theories, and again there are challenges—first of all, to come
up with a sound theory and a formal model and second to deal with the question
whether the theory is exactly addressing the structures and behaviours which are
typical for practical systems on one side and are easy to deal with on the other side.
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Therefore, it is a very valuable contribution of this book to present an interesting
selection of formal theories and to explain how they can be used in the context of
methods for software engineering. Certainly, this is a book highly relevant for people
interested in formal theories for software engineering usable as elements of methods.
It also addresses students in informatics who want to learn about this subject and,
even more, scientists who work on formal theories and methods.

I hope this book will also find interest by practical engineers to give them some
clue how formal foundations and rigorous methods could be combined to formal
methods to help them in their everyday development tasks.

July 2021 Manfred Broy

The original version of the book was revised: The Author names have been
updated on Springer Link for all chapters. The correction to the book is available
at https://doi.org/10.1007/978-3-030-38800-3_10

https://doi.org/10.1007/978-3-030-38800-3_10


Preface

De Omnibus Dubitandum—“Doubt Everything”

R. Descartes

This book is about Formal Methods in software engineering. Although software
engineering is nowadays a largely empirical science, its foundations rely on math-
ematics and logic. Ultimately, the task of a software engineer is to transform ideas
into programs. Ideas are by nature informal, and they are often vague and subjective.
In contrast, a program is a formal entity with a precise meaning, and this meaning
is independent of the programmer. Therefore, the transition from ideas to programs
necessarily involves a formalisation at some point. An early formalisation has several
benefits:

• It allows to formulate concepts on an abstract level;
• it is a means for unambiguous communication of ideas;
• it helps to resolve misunderstandings, thus preventing errors at a later stage; and
• it enables to gain insights by transformation, simulation, and proof.

Formal Methods are a way to realize these advantages in a rigorous process.
This book elaborates on several views of how to do this. In Chap. 1, we approach

a definition of what actually constitutes a Formal Method. The rest of the book is
structured into three parts: languages, methods, and application domains. These parts
represent different dimensions of the views:

1. A language is a means to formally describe ideas;
2. a method is a set of procedures for manipulating such descriptions; and
3. an application domain represents a concrete way in which real-life problems

drive the different views.

Each part consists of several chapters which are more or less independent.

xi



xii Preface

In the languages part, we present “classical” views on elements of computation.

Chapter 2: Logics are formal languages to describe reasoning.
Chapter 3: The process algebra Csp is a formal language to describe behaviours.

In the methods part, we discuss a variety of procedures.

Chapter 4: Casl is a computer supported method for the specification of software,
which is based on classical logic as discussed in the language part.

Chapter 5: Specification-based testing is a computer supported method for the
validation of software.

Finally, the application part provides three contributions to apply Formal Methods
to real-world problems.

Chapter 6: In the chapter on specification and verification of normative documents,
we discuss a way to reason about legal contracts with logic.

Chapter 7: In the chapter on Formal Methods for human-computer interaction, we
discuss how to capture cognitive theories with logic and CSP.

Chapter 8: In the chapter on formal verification of security protocols, we discuss
how to verify authentication properties with CSP.

These three chapters have in common that they present solutions to general challenges
in software engineering. These solutions are based on the application of one specific
Formal Method. It should be noted, though, that other Formal Methods would be
applicable to these challenges as well.

We conclude our book by providing a historical perspective on Formal Methods
for software engineering:

Chapter 9: In the chapter on the history of Formal Methods, John V. Tucker surveys
some of the problems and solution methods that have shaped and become the
theoretical understanding and practical capability for making software.

This is followed by some summarizing and reflecting remarks from the book authors.

Audience, Prerequisites, and Chapter Dependencies

This book addresses final year B.Sc. students, M.Sc. students, and Ph.D. students in
the early phases of their research. It is mainly intended as a underlying textbook for
a university course. Formal Methods are one means in software engineering that can
help ensure that a computer system meets its requirements. They can make descrip-
tions precise and offer different possibilities for analysis. This improves software
development processes, leading to better, more cost-effective, and less-error-prone
systems.

Due to their ubiquity, software failures are overlooked by society as they tend
to result in nothing more serious than delays and frustrations. We accept it as mere
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inconvenience when a software failure results in a delayed train or an out-of-order
cash machine or a need to repeatedly enter details into a website. However, the
problems of systems failures becomemore serious (costly, invasive, and even deadly)
as automatic control systems find their way into virtually every aspect of our daily
lives. This increasing reliance on computer systems makes it essential to develop
and maintain software in which the possibility and probability of hazardous errors
are minimised. Formal Methods offer cost-efficient means to achieve a high degree
of software quality.

However, in computer science and software engineering education, Formal
Methods usually play a minor role only.3 Often, this is due to the lack of suitable
textbooks. Typical questions an academic teacher faces when preparing such a course
include the following: Which of the many Formal Methods shall be taught? Will the
topics be relevant to mainstream students? Which examples and case studies should
be used? This book offers constructive answers to such questions. It does not focus
on one specific Formal Method, but rather provides a wider selection of them. For
each method, material from basic to a more advanced level is presented. Thus, the
teacher can choose to what depth a specific method shall be studied. All material is
illustrated by examples accessible to the target audience.

Moreover, for individual students, this book can serve as a starting point for their
own scientific work, e.g., in a thesis. Even if the reader does not plan to work directly
in one of the addressed areas, the book offers solid background knowledge of Formal
Methods as a whole.

We assume some basic knowledge of mathematical notation as taught in the first
two years of typical B.Sc. curricula in computer science or software engineering.
However, we will introduce all formal concepts from scratch, whenever they are
used. For the casual reader, the book contains an index, where one can look up the
defining page for each technical term.

Thematerial in Part I is foundational for the subsequent parts,whereas the chapters
in Parts II and III can be read in any order. General dependencies are depicted in
Fig. 1.

More specifically, dependency on the introduction is only from a motivational,
but not from a technical point of view. In reading the book, Part I can serve as a
“reference”, Part II and Part III depend on Part I only in some technical aspects. The
reader interested just in specific topics of these parts can safely start there and refer
to Part I only when needed.

Although the linear order of reading the chapters would be preferred, for readers
who want to focus on specific aspects, the authors suggest two possible alternative
paths through the book. Chapter 1 provides a common start to both.

The first path is for those who wish to stay with logic: Chapter 2 leads on to
Chap. 4 to provide a grounding in logic and the use in algebraic specifications.
Chapter 6 follows on as an area of application for modal logics.

3 See, e.g., Cerone et al.,Rooting FormalMethods within Higher Education Curricula for Computer
Science and Software Engineering, 2020, https://arxiv.org/abs/2010.05708.

https://arxiv.org/abs/2010.05708
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Fig. 1 Structure of the book

An alternative path starts with Chap. 3, thoroughly covering CSP both in theory
and practice. Chapter 5 offers a formal perspective on testing. Chapters 7 and 8
provide case studies both using CSP to demonstrate how the process algebra is
applied. Only the last part of Chap. 7 depends on logic, limited to temporal logic.

Chapter 9, written by our colleague John V. Tucker, puts the contents of the
previous chapters into the historical context. It can be read at any time and it is
independent of any of the other chapters.

The conclusion serves to summarise and remind the reader of the final message
of the book. It is the natural ending to any reading path.
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Book Use and Online Supporting Materials

This is not a typical software engineering book. Nor is it promoting a particular
formal approach as many books on the subject do. Formal methods are increasingly
acknowledged amongst thewider software community.However, there is no evidence
to suggest that they are widely adopted. It is this gap that this book is designed to
address. The use of tools is emphasised and supported; the expectation is that certain
parts are to be done rather than just read. Therefore, the authors have set up a website
for the book which contains exercises and links to tools. Currently, this website can
be accessed at

https://sefm-book.github.io.

Book History

The inception of this book is due to the first International School on Software Engi-
neering and Formal Methods held in Cape Town, South Africa, from late October
to early November of 2008, organised by Antonio on behalf of the United Nations
University International Institute for Software Engineering (UNU-IIST), which was
located in Macau, SAR China. The two-week school consisted of five courses on
the application of Formal Methods to software design and verification delivered to
an audience of graduate and research tudents from several African countries, who
were hosted by UNU-IIST. In line with the UNU-IIST mandate, the authors were
encouraged to find young minds taking up the challenge of Formal Methods and
demonstrating commitment to it. The book draws upon the topics of the school with
a similar audience in mind and a strong desire to make the subject more widely
accessible. Hence learning is promoted through examples running across the book.
The pedagogic style is largely owed to the instructional setting offered by the school.

Two more schools followed, in Hanoi, Vietnam, in November 2009, and in Thes-
saloniki, Greece, in September 2012, are also hosted by UNU-IIST. These events
provided additional opportunities for feedback and reflection from school partici-
pants. UNU-IIST hostedMarkus for oneweek in 2009. During that meeting, Antonio
andMarkus sketched the first structure of the book. UNU-IIST organised a one-week
workshop in August 2012 in Mezzana (Val di Sole), Italy. During this workshop, the
authors decided the final structure and content of the book. After the closing of UNU-
IIST in 2013, the authors continued the collaboration through regular virtual meet-
ings and some physical meetings in Coventry and Swansea, UK. Since January 2020,
AntonioCerone, School ofEngineering andDigital Sciences,NazarbayevUniversity,
Nur-Sultan, Kazakhstan, has been partly funded to work on the book by the Project
SEDS2020004 “Analysis of cognitive properties of interactive systems using model
checking”, Nazarbayev University, Kazakhstan (Award number: 240919FD3916).

During the years since theMezzana workshop, the book content has been updated
and widely tested in undergraduate and postgraduate courses by the authors and a

https://sefm-book.github.io


xvi Preface

number of their colleagues at various universities around the world. The intense
cycle of collaborative writing, internal reviewing, and in-class testing was followed
by an external reviewing process, in which the reviewers offered their reflections on
individual chapters and then incorporated in the final revision by the authors.

Author Team

The book’s content, organisation, and writing style were curated by the five book
authors. The author team reached out to John V. Tucker, who kindly accepted our
invitation to contribute a chapter on the origins and development of FormalMethods.
For the writing of some individual chapters, the author team invited Liam O’Reilly
for the chapter on algebraic specification in Casl and Hoang Nga Nguyen for the
chapter on formal verification of security protocols. The book authors are grateful
for their contributions, which made it possible for the book to appear in its current
form.

Swansea, UK
Nur-Sultan, Kazakhstan
Berlin, Germany
Gothenburg, Sweden
Coventry, UK
September 2021

Markus Roggenbach
Antonio Cerone

Bernd-Holger Schlingloff
Gerardo Schneider

Siraj Ahmed Shaikh
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Chapter 1

Formal Methods

Markus Roggenbach, Bernd-Holger Schlingloff, and Gerardo Schneider

Abstract Formal Methods are one means in software engineering that can
help to ensure that a computer system meets its requirements. Using exam-
ples from space industry and every programmer’s daily life, we carefully
develop an understanding of what constitutes a Formal Method. Formal
Methods can play multiple roles in the software design process. Some soft-
ware development standards actually require the use of Formal Methods for
high integrity levels. Mostly, Formal Methods help to make system descrip-
tions precise and to support system analysis. However, their application is
feasible only when they are supported by tools. Consequently, tool qualifi-
cation and certification play a significant role in standards. Formal Methods
at work can be seen in the many (academic) surveys, but also in numerous
published industrial success stories. Hints on how to study Formal Methods
in academia and on how to apply Formal Methods in industry conclude the
chapter.

1.1 What Is a Formal Method?

You have just bought a book on Formal Methods and are making holiday
plans in the Caribbean to read it on the beach. In order to guarantee the
reservation, your travel agent requires a deposit. You decide to pay electron-
ically via credit card.

When performing such a transaction, obviously you have certain expec-
tations on the electronic payment system. You don’t want the agent to be
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able to withdraw more than required. The agent wants at least the amount
which was asked for. Thus, both you and the agent expect that the payment
system gets its numbers right. The payment should go through—as, clearly,
your credit card is a valid one. Also, you don’t want too much information to
be disclosed, e.g., your PIN should stay secret. The transaction should solely
concern the holiday reservation, no further contracts shall follow from this.
Finally, you want to be able to use the system without the need to consult
a user manual of hundreds of pages. All these points are typical require-
ments for an electronic payment system. Formal Methods are one way how
software engineering can help to ensure that a computer system meets such
requirements.

So, what is a Formal Method? Instead of trying to start with a compre-
hensive definition of the term, we give two motivating examples.

1.1.1 An Application in Space Technologies

Formal Methods are often used in safety-critical areas, where human life
or health or a large sum of money depends on the correctness of software.
We start with an example from the largest aerospace project mankind has
endeavored so far.

Example 1: ISS Fault Tolerant Computer

The International Space Station (ISS) which was docked on Novem-
ber 2nd, 2000 (ISS-Expedition 1), has provided a platform to conduct
scientific research that cannot be performed in any other way.

At the heart of the ISS is a fault tolerant computer (FTC) “to be
used in the ISS to control space station assembly, reboost operations for
flight control and data management for experiments carried out in the
space station” [BKPS97].

In outer space, the probability of hardware faults due to radiation
is much higher than on earth. Thus, in the ISS-FTC there are four
identical interconnected hardware boards, which perform essentially the
same computation. A software fault management layer is responsible for
detecting, isolating, rebooting and reintegrating malfunctioning boards.

One problem in the design of this layer is the recognition of a faulty
board, since it not only can generate wrong messages, but also modify
messages of the other (correct) boards. To overcome this problem, a so-
called Byzantine agreement protocol is used, which abstractly models
the problem of distributed consensus in the presence of faults.

Lamport et al. use the following story to exemplify the distributed consensus
problem [LSP82]:
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We imagine that several divisions of the Byzantine army are camped outside an
enemy city, each division commanded by its own general. The generals can com-
municate with one another only by messenger. After observing the enemy, they
must decide upon a common plan of action. However, some of the generals may be
traitors, trying to prevent the loyal generals from reaching agreement. The generals
must have an algorithm to guarantee that

• A. All loyal generals decide upon the same plan of action.

The loyal generals will all do what the algorithm says they should, but the traitors
may do anything they wish. The algorithm must guarantee condition A regardless
of what the traitors do. The loyal generals should not only reach agreement, but
should agree upon a reasonable plan. We therefore also want to ensure that

• B. A small number of traitors cannot cause the loyal generals to adopt a bad
plan.

In Lamport’s paper, various pseudocode algorithms for this problem are
given and proven to be correct. For these proofs, certain assumptions about
the possible actions of the generals are made, e.g., that a traitorous general
may send different, contradicting messages (attack and retreat) to different
other divisions.

Even though Lamport et al. prove their algorithms to be correct, the ques-
tions on whether the communication by messengers can block (deadlock) or
the exchange of a message can lead to infinite internal chatter (livelock) in
the communication system are not in the scope of his consideration.

Example 1.1: ISS Fault Tolerant Computer – Findings

For the implementation of the fault management layer in the FTC, one
of the algorithms presented by Lamport et al. [LSP82] was coded in the
programming language Occam.

As mentioned above, the algorithm is proven to be correct, and
great care was taken to assure that the actual code matches the
pseudocode as closely as possible. However, this still did not guaran-
tee that the software worked as expected: in a series of publications
[BKPS97, BPS98, PB99], Buth et al. report that using code abstraction
into the process algebra Csp,
• “seven deadlock situations were uncovered”, and
• “about five livelocks were detected”
in the software of the FTC fault management layer.

The language Occam uses synchronous communication between tasks: the
sender of a message is blocked until the receiver is willing to pick up this
message. With such a communication paradigm, a deadlock can occur if two
actors send each other messages at the same time. Thus, even though the algo-
rithm on which the code is based was proven to be correct on the conceptual
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layer, there still was the possibility of errors in the underlying communication
layer.

In Chap. 3, which is devoted to the process algebra Csp, we will give
precise definitions of deadlock and livelock. Furthermore, we will provide
proof techniques to show their absence.

Problem
Statement

Algorithm in
Pseudocode

Properties in CSP

Abstraction in CSP

Implementation in
OCCAM

“invent &
verify”

manual
implementation

manual abstraction

automated
refinement
check with

FDR2

Fig. 1.1 The overall verification approach [BKPS97, BPS98, PB99]

Example 1.2: ISS Fault Tolerant Computer – Reflections

The programming language Occam has been designed as an implemen-
tation language for the process algebra Csp. Thus, it is rather easy to
abstract an Occam program, e.g., the fault management layer of the
FTC, into Csp. Compared to the original Occam program, the Csp
abstraction has a significantly reduced state space, since all computa-
tions that have nothing to do with the Byzantine agreement protocol
can be omitted. However, it still preserves the deadlocks and livelocks
of the original program.

Csp has a formal semantics and proof methods to verify properties.
In this example, the FDR tool was used to automatically analyse the
Csp code and thus—indirectly—the Occam program. If a deadlock or
livelock is found in the Csp abstraction, FDR generates a sequence of
events which exhibits the problem. Figure 1.1 shows the overall verifica-
tion approach. The sequence generated by FDR can be used to trace the
problem in the original code, which then can be analysed and corrected.
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Interestingly, most of the observed issues concerned the message exchange,
i.e., the layer which was not in the scope of the formal correctness proof of
the algorithm. This situation is rather typical in such a context. In Sect. 3.3,
we will discuss in more detail how to avoid such problems.

In Example 1, Formal Methods were used for quality assurance rather than
in the design and implementation phase. For the process algebra Csp, we will
discuss a different approach in Sect. 3.3. There, the idea is to automatically
translate a Csp model into a C++ program. Before translation, the model
can first be analysed using a model checker such as FDR. The C++ program
can then be enriched with additional functionality without compromising the
properties established earlier for the Csp model.

1.1.2 An Everyday Application

Our second example is from the area of formal languages and text processing.
It shows the importance of having a precise formal semantics even in common-
day tools such as text processing.

Example 2: Text Processing

Assume that we want to replace all occurrences of certain patterns in a
text, e.g., remove all comments from an HTML document. In HTML,
comments are marked beginning with ‘<!--’ and ending with ‘-->’.
Most editors offer a facility for replacement based on regular expressions,
that is, you may specify the symbol ‘*’ as a wildcard in the search. With
this, replacing ‘<!--*--’ by an empty string yields the desired result.

Regular replacements are a convenient tool for text processing. However,
the semantics (meaning) is not always easy to understand.

The wildcard sign is explained in the documentation of Word 2007 as

matching any string of characters. Word does not limit the number of characters
that the asterisk can match, and it does not require that characters or spaces reside
between the literal characters that you use with the asterisk.

For GNU Emacs, it is defined by the following explanation:

The matcher processes a ‘*’ construct by matching, immediately, as many repeti-
tions as can be found. Then it continues with the rest of the pattern. If that fails,
backtracking occurs, discarding some of the matches of the ‘*’-modified construct
in case that makes it possible to match the rest of the pattern.

These descriptions might or might not be intelligible to the ordinary
reader. However, if the text processing component is used as part of a safety-
critical tool chain, it is important that it has a clear semantics. Imagine that
the regular replacement is used for macro expansion as part of a compiler. In
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this case, it is essential that the result of any replacement command is unique
and predictable.

Example 2.1: Tool Experiments for Text Processing

What happens if we replace the wildcard sign ‘*’ by the single character
‘x’? As original text we take the string ‘abc’.
• In Word, the result of replacing ‘*’ by ‘x’ in ‘abc’ is ‘xxxx’;
• in Word, the same result is returned when taking the wildcard symbol

‘?@’;
• in Emacs, replacing ‘*’ by ‘x’ in ‘abc’ gives ‘abc’;
• in Emacs, replacing ‘.*’ by ‘x’ in ‘abc’ gives ‘x’.
This might come as a surprise.

The problem is that both for Word and Emacs, there is no formal semantics
of “replacement of regular expressions”. Whereas the syntax of admissible
regular expressions is (more or less) fixed in the documentation, the semantics
is only informally explained.

This example allows us to show the key ingredients of a Formal Method:
syntax, semantics and method.

Syntax

Syntactically, each Formal Method deals with objects from a formal lan-
guage. A formal language is a well-defined set of words from a given alphabet.
Usually it is defined by a grammar, which is a set of rules determining the
membership of the language.

There are also Formal Methods dealing with graphical objects (e.g., Petri
nets). In most of these cases, there is a textual description of these objects
as well (e.g., in XML). For such models, the syntax is fixed by a metamodel,
which determines membership of the class of graphical objects under consid-
eration.

Example 2.2: Syntax of Regular Expressions

Given an alphabet A, the language of regular expressions is given by
the following grammar:
• every letter from the alphabet is a regular expression.
• ∅ is a regular expression.
• if ϕ and ψ are regular expressions, then (ϕ ψ) and (ϕ+ψ) are regular

expressions.
• if ϕ is a regular expression, then ϕ∗ is a regular expression.

The same definition can be written in so-called Backus–Naur-Form
[Bac59]:
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RegexpA ::= A | ∅ | (RegexpA RegexpA) |
(RegexpA + RegexpA) | Regexp∗

A

According to this definition, each regular expression is a string which
contains only letters of the alphabet and the symbols ‘∅’, ‘(’, ‘)’, ‘+’
and ‘∗’ (the so-called Kleene-star).a Of course, for such a definition to
make sense, these symbols themselves must not be letters.b Backus–
Naur-Form (BNF) notation will be used also for several other formal
languages in this book.

a If the alphabet contains letters composed of several characters, there might be
several ways to parse a given string into a regular expression. For example, if A =
{a, aa}, then (aaa) could be read as (a aa) and (aa a). A solution to this problem
is to require appropriate white spaces in strings.
b To allow the use of special symbols in the alphabet, some tools use a ‘quot-
ing’ mechanism: ‘\+’ refers to the letter of the alphabet, whereas ‘+’ denotes the
symbol.

The benefit of having a ‘minimal’ syntax is that the definition of semantics
and proofs are simplified. For practical applications, often the core of a formal
language is extended by suitable definitions.

Example 2.3: Extended Syntax of Regular Expressions

Assume that the alphabet A = {a1, a2, . . . , an} is finite.
Most text processing systems allow the following abbreviations,

including the above mentioned ‘*’ and ‘.*’ notation of Word and GNU
Emacs. In this book, the symbol “�” stands for “equal by definition”
or “is defined as”.
• ε � ∅∗ (‘the empty word’),
• ϕ+ � (ϕ ϕ∗) (‘one or more repetitions of ϕ’)
• � � (((a1 + a2) + . . .) + an) (‘any letter’),
• ∗ � �∗ (‘any word’),
• ϕ? � (ε + ϕ) (‘maybe one ϕ’),
• ϕ0 � ε and ϕn � (ϕϕn−1) for any n > 0 (‘exactly n times ϕ’),
• ϕn

m � (ϕmϕ?n−m) for 0 ≤ m ≤ n (‘at least m and at most n ϕ’)
(Here we assume that {∅,+, ∗, (, ), ε, +, �, ∗, ?, n, n

m} ∩ A = ∅).

Semantics

In the context of Formal Methods, a formal language comes with a formal
semantics which explains the meaning of the syntactical objects (words or
graphs) under consideration by interpreting it in some domain.



8 M. Roggenbach, B.-H. Schlingloff, G. Schneider

The semantics identifies for each syntactical object a unique object in the
chosen interpretation domain. Probably the fundamental question which can
be answered by a semantics is: when can two different syntactical objects
be considered equal? For our regular expression case study this means to
determine when two different expressions are to be the same. As another
example from computer science, we would like to know whether two different
programs compute the same result.

Other questions include whether one object entails another one. For
instance, we would like to know whether one regular expression includes
another one, one program extends another one, or one specification refines
another one.

In contrast to syntax, the semantics of Formal Methods is not always
decidable. That is, membership of a word or model in the formal language
defined by a grammar or metamodel is usually trivial to decide. Semantical
equality, however, is often undecidable as can be seen by the example of
program equivalence.

There are three main ways of defining a semantics for formal languages:
denotational, operational, and axiomatic.

In denotational semantics the denotation of an object is defined. That is,
a denotational semantics is a function defining for each syntactic object an
object in some semantical domain. For example, a regular expression denotes
a language (a set of words) over the alphabet. That is, the semantical domain
for regular expressions is the set of all languages. As another example, a
program in a functional language denotes a function (set of tuples) from the
input parameters to the output type. In Chap. 3 we will discuss three different
denotational semantics for the process algebra Csp.

Example 2.4: Denotational Semantics of Regular Expressions

For any regular expression ϕ, we define the denoted language [[ϕ]] by the
following clauses:
• [[a]] � {a} for any a ∈ A. That is, the regular expression ‘a’ defines

the language consisting solely of the one-letter word ‘a’.
• [[∅]] � {}. That is, ∅ denotes the empty language.
• [[(ϕ ψ)]] � {xy | x ∈ [[ϕ]], y ∈ [[ψ]]}. That is, (ϕ ψ) denotes the

language of all words which can be split into two parts, such that the
first part is in the denotation of ϕ and the second in the denotation
of ψ.

• [[(ϕ + ψ)]] � [[ϕ]] ∪ [[ψ]]. That is, (ϕ + ψ) denotes the union of the
denotations of ϕ and ψ.

• [[ϕ∗]] � {x1 . . . xn | n ≥ 0, and for all i ≤ n, xi ∈ [[ϕ]]}.
That is, ϕ∗ denotes the language of all words which can be split into
a finite number of n parts, such that each part is in the denotation
of ϕ.
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With the special case n = 0, this definitions entails that for any ϕ,
the empty word (consisting of zero letters) is in [[ϕ∗]] .

Operational semantics describes the execution of the syntactic object by
some virtual machine. In our example, from each regular expression we
can construct an automaton accepting its language. For an imperative or
object-oriented programming language, the operational semantics defines,
for instance, the change of the memory content induced by an assignment. In
Chap. 3 we will discuss an operational semantics for the process algebra Csp.

Example 2.5: Operational Semantics of Regular Expressions

For any regular expression ϕ, we define an automaton A(ϕ), that is, a
graph (N,E, s0, SF ), where N is a nonempty set of nodes, E ⊆ (N ×
A × N) ∪ (N × N) is a set of (labelled) edges, s0 ∈ N is the initial node
and SF ⊆ N is the set of final nodes.
• A(a) � ({s0, s1}, {(s0, a, s1)}, s0, {s1}) for any letter a ∈ A.
• A(∅) � ({s0}, {}, s0, {}).
• If A(ϕ) = (Nϕ, Eϕ, s0,ϕ, SF,ϕ) and A(ψ) = (Nψ, Eψ, s0,ψ, SF,ψ)

(where we assume all elements to be disjoint), then A((ϕ ψ)) �
(Nϕ ∪ Nψ, Eϕ ∪ Eψ ∪ {(s, s0,ψ) | s ∈ SF,ϕ}), s0,ϕ, SF,ψ).

• A((ϕ + ψ)) is constructed from A(ϕ) and A(ψ) by A((ϕ + ψ)) �
(Nϕ ∪ Nψ ∪ {s0}, Eϕ ∪ Eψ ∪ {(s0, s0,ϕ), (s0, s0,ψ)}, s0, SF,ϕ ∪ SF,ψ),
where s0 is a new node not appearing in Nϕ or Nψ.

• If A(ϕ) = (N,E, s0,ϕ, SF ), then A(ϕ∗) � (N ∪{s0}, E∪{(s0, s0,ϕ)}∪
{(s, s0) | s ∈ SF }, s0, {s0}), where again s0 is a new node not appear-
ing in Nϕ.
A word w is generated or accepted by an automaton, if there is a path

from the initial node to some final node which is labelled by w. It is
not hard to see that for every regular expression ϕ the automaton A(ϕ)
accepts exactly [[ϕ]]. That is, denotational and operational semantics
coincide.

An axiomatic semantics gives a set of proof rules from which certain
properties of the syntactical object can be derived. For example, for regular
expressions an axiomatic semantics might consist of a list of rules allowing to
prove that two expressions are equal. For logic programming languages, the
axiomatic semantics allows to check if a query is a consequence of the facts
stated in the program. In Chap. 2 we will discuss a Hilbert-style proof system
for propositional logic, which—thanks to its correctness and completeness—
can also serve as axiomatic semantics of propositional logic.
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Example 2.6: Axiomatic Semantics of Regular Expressions

Axiomatic systems for equality of regular expressions were given by var-
ious authors [Sal66, Koz94, KS12]. We call an equation α = β derivable
and write 
 α = β, if it is either an instance of one of the axioms below
or follows from a set of such instances by a finite number of applications
of the below rules. Salomaa gives the following axioms
• 
 (α + (β + γ)) = ((α + β) + γ) , 
 (α (β γ)) = ((α β) γ)
• 
 (α (β + γ)) = ((α β) + (α γ)) , 
 ((α + β) γ = ((α γ) + (β γ))
• 
 (α + β) = (β + α) , 
 (α + α) = α , 
 (ε α) = α
• 
 (∅ α) = ∅ , 
 (α + ∅) = α
• 
 α∗ = (ε + (α∗ α)) , 
 α∗ = (ε + α)∗

and derivation rules

• If 
 α = β and 
 γ = δ, then 
 γ[α := β] = δ and 
 γ[α := β] = γ
• If 
 α = ((αβ) + γ) and not ε ∈ β, then 
 α = (γβ∗)

Here, γ[α := β] means γ with one or more occurrences of α replaced
by β. For the second rule, ε ∈ β means that

1. β is of form ρ∗ for some regular expression ρ, or
2. β is of form (ρ1 + ρ2) where ε ∈ ρ1 or ε ∈ ρ2, or
3. β is of form (ρ1 ρ2) where ε ∈ ρ1 and ε ∈ ρ2.

Without the restriction “not ε ∈ β” the rule would not be correct:
a∗ = (a∗a∗) + ∅, but not a∗ = (∅ a∗∗), since (∅ a∗∗) = ∅

It can be easily proven that [[α]] = [[β]] if 
 α = β, that is, the system is
correct with respect to the denotational semantics. The proof proceeds
by showing that all axioms are correct, and that the rules allow only to
derive correct equations from correct ones. In passing we mention that
the system also can be proven to be complete, that is, if [[α]] = [[β]] then

 α = β. Completeness usually is much harder to show than correctness.

Methods

A formal language is described by an unambiguous syntax and a mathemat-
ical semantics. For a Formal Method (as opposed to a formal language) it is
essential that there are some algorithms or procedures which describe what
can be done with the syntactic objects in practice. According to the Oxford
dictionary, a method is a particular procedure for accomplishing or approach-
ing something, especially a systematic or established one. A Formal Method
describes how to ‘work with the language’, that is, perform some activity
on its elements in order to achieve certain results. In general, this informa-
tion processing is some form of transformation (metamorphosis, Gestaltwand-
lung), where the syntactic objects are modified from one form to another.
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Usually, a formal language is designed for a specific purpose. For example,
a logical language is supposed to formalise human reasoning. A specification
language should allow to describe the functionality of a system. A program
formulated in a programming language should be executable on a machine. A
model expressed in some modelling language should help humans to under-
stand a concept or design.

The methods associated with a formal language usually are constructed
to support this purpose. For a logical language, the transformation can be
a calculus with which to derive theorems from axioms. For a specification
language, it can be a set of rules to transform a specification into an imple-
mentation. For programs written in any programming language, the execution
on a virtual machine can be seen as a form of transformation. For modelling
languages, model transformations allow to change between different levels of
abstraction.

In a Formal Method, the transformation must be according to fixed rules;
these rules operate on syntactical objects of the formal language under dis-
cussion, and result in some ‘insight’ about them. Such an insight might be
the result of the transformation, or the realisation that the (repeated) trans-
formation does not come to an end. Other insights we might want to achieve
are whether a program is correct with respect to its specification, or whether
one model refines another one.

Continuing our example, we show how regular expressions can be used in
everyday text processing.

Example 2.7: Regular Replacements

A frequent task while writing scientific articles is to consistently replace
certain text passages by others in the whole text. A replacement [α := β]
consists of a regular expression α and a word β over A. The word δ is the
result of the replacement [α := β] on a word γ, denoted as δ = γ[α := β]
if one of the following holds:
1. either there exist γ1, γ2 and γ3 such that

1.1. γ = γ1γ2γ3,
1.2. γ2 ∈ [[α]] \ [[ε]],
1.3. γ1 is of minimal length, that is, there are no γ′

1, γ′
2 and γ′

3 such
that γ = γ′

1γ
′
2γ

′
3, γ′

2 ∈ [[α]] \ [[ε]] and |γ′
1| < |γ1|,

1.4. γ2 is of maximal length, that is, there are no γ′
2 and γ′

3 such that
γ = γ1γ

′
2γ

′
3, γ′

2 ∈ [[α]] \ [[ε]] and |γ′
2| > |γ2|,

and δ = γ1β(γ3[α := β]), or
2. there are no γ1, γ2 and γ3 satisfying the above 1.1–1.4., and δ = γ.

The definition of the first case is recursive; it is well-defined because
condition 2. requires that γ2 is a nonempty string. Therefore, |γ3| < |γ|,
and the recursion must terminate.

As an application of regular replacement, we note that (p ⇒ (q ⇒
p))[(p + q) := (p ⇒ q)] = ((p ⇒ q) ⇒ ((p ⇒ q) ⇒ (p ⇒ q))).
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Coming back to our introductory tool experiments in Example 2.1, the
above definition determines:

• if the wildcard sign ‘*’ has been defined to express the iteration of the
empty word, then (abc)[ε∗ := x] = abc as condition 1.2 of Example 2.7 can
not be fulfilled;

• if the wildcard sign ‘*’ stands for ‘any word’, then (abc)[∗ := x] = x,
because the wildcard sign matches exactly ‘abc’ and therefore condition 1
of Example 2.7 is fulfilled with γ1 = ε, γ2 =′ abc′, and γ3 = ε.

Thus, the formal treatment allows to calculate a reliable result which is
independent from the particular text editor being used, and against which
the tools can be verified.

We now have discussed all ingredients of what constitutes a Formal
Method, and thus are in a position to give a definition.

Definition 1 A Formal Method M consists of three components:

• syntax,
• semantics, and
• method.

The syntax gives a precise description of the form of objects (strings or
graphs) belonging to M. The semantics describes the ‘meaning’ of the syntac-
tic objects of M, in general by a mapping into some mathematical structure.
The method describes algorithmic ways of transforming syntactic objects, in
order to gain some insight about them.

1.2 Formal Methods in Software Development

Having developed an understanding of what Formal Methods are, we now
consider their role in software development. To this end, we briefly recall
the notion of the software life cycle, describe how this cycle is realised, and
discuss where to use Formal Methods in the life cycles. While life cycle mod-
els describe development activities and their order, software development
standards give a legal framework prescribing which activities have to be per-
formed, including Formal Methods. This leads to a discussion of the main
purposes for the use of Formal Methods in systems development.
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1.2.1 The Software Life Cycle

A software life cycle (SLC) (also referred to as “software development life
cycle”, “software development process”, and “software process”) is a struc-
ture describing development, deployment, maintenance, and dismantling of
a software product. There are several models for such processes, describing
different approaches on how to develop software (waterfall, spiral, iterative,
agile development, etc.).

Our objective is to discuss the use of Formal Methods in the software
development process, independently of the model used, rather than to provide
a survey on such different models. For that reason we concentrate on the V-
model, and the general ideas behind agile methodologies.

The V-model

Models of software development often describe the development process as
being composed of separate phases. For example, there usually are a project
definition phase, an architectural and software design phase, a coding phase
and a testing phase. Traditionally, these phases are ordered sequentially,
which leads to the so-called waterfall model. In this model, the results of
one phase are starting points for the subsequent phase, like water falls from
one level to the next in a cascade. The waterfall model has several deficits
and today is considered to be archaic. Mainly, it does not pay respect to the
fact that quality assurance takes place on several levels. For instance, system
testing is considered with the systems specification, whereas in unit testing
individual units (methods, procedures, functions etc.) rather than the overall
system are checked.

Traditionally, the V-model usually has been depicted like the waterfall
model, however in the shape of a big V. The V-model has been developed
over many years in various versions. A newer version is the V-model XT
(for “eXtreme Tailoring”) [dBfI12], see Fig. 1.2. In particular, the German
federate office for information security (BSI) was a driving force in its elabora-
tion. In Germany, the V-model is mandatory for safety-critical governmental
projects. Instead of describing phases, the V-model XT describes states in
the development process. It refrains from prescribing a specific order to these
states.

Figure 1.3 hints at where and how validation and verification could be
used in the software development process according to the V-model XT. It
shows four design levels (from top to bottom: requirements, design specifi-
cation, architecture, and implementation). At each level, the realisation and
integration artefacts (on the right) should comply with the corresponding
specification and subdivision artefacts (on the left).
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Fig. 1.2 V-model XT [dBfI12]
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Fig. 1.3 Verification and validation in the V-model XT [dBfI12]

Many researchers and practitioners in software engineering differentiate
between ‘validation’ and ‘verification’ in the following way: validation tries
to answer the question

“Are we building the right product?”,

whereas verification is concerned with the question

“Are we building the product right?”

Thus, validation refers to the user’s needs according to the requests, while
verification checks that the specification is correctly implemented. In Fig. 1.3
this means that validation could be associated with the compliance between
‘contract awarded’ and ‘acceptance completed’, whereas verification concerns
the other compliances.

Note, however, that many researchers use a slightly different definition,
where validation is a general term covering all activities for checking that
the product is correct, while verification is used for the process of formally
proving that a program meets its specification. Since such a formal proof
requires formal languages, verification is only applicable at the three lower
levels of Fig. 1.3. This can be for establishing the horizontal compliances, for
refinement between different levels, or for proving properties about formal
artefacts.

Agile Development

Phase-based models of software development, such as the waterfall model,
have been criticised for a number of reasons. A main point is that each new
phase has to wait until the previous one is completed. This can lead to delays
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in the project. Moreover, if an error is detected it might be necessary to go
back to an earlier phase, causing further delays. Finally, the waterfall model
assumes that all system requirements are known from the very beginning of
the development. There is no provision to modify or extend requirements
during the process. This can be a severe restriction.

Therefore, many other process models have been proposed. A current trend
is to develop software in a manner where teams are small, the phases are not
clearly identified, and the user is represented in the whole process of soft-
ware development. This procedure has been called agile development [Coc00].
Design, development and testing are done almost simultaneously and in short
iterations.

In an agile development process, a natural way to work is to follow a test-
driven development approach [Bec02]. That is, before starting to write code,
tests for the system are produced. These tests represent user scenarios and
requirements for the system. As long as the code is non-existent or erroneous,
the tests will fail. Then the code is written in order to make the tests pass.
When all tests pass, one system development cycle is completed.

The Scrum management methodology identifies roles and responsibilities
in an agile development process [SB01]. It also defines activities like daily and
weekly meetings, where the basic unit of development is organised in project
time slots (sprints). Each time slot should produce a potentially deliverable
result (e.g., a piece of software).

In an agile process, roles (manager, analyst, programmer, tester, verifier
etc.) are frequently swapped amongst group members. Therefore, each devel-
oper should in principle have knowledge of all development activities in the
project. In particular, if Formal Methods are used, the group members should
know the capabilities and limitations of the available formal development
tools.

1.2.2 Formal Methods: When and Where

While process models describe development phases and their order, software
development standards give a legal framework prescribing which activities
have to be performed. For example, a standard might prescribe that “for
each phase of the overall . . .system and software safety lifecycles, a plan for
the verification shall be established concurrently with the development for the
phase. The verification plan shall document or refer to the criteria, techniques,
tools to be used in the verification activities.” [IEC10].

There are various standards on the development of software, e.g., EN-
50128, IEC-61508 and DO-178 B/C. Some of these standards prescribe
that Formal Methods are being used for high integrity levels. For example,
IEC 61508, the international standard on functional safety of electrical/elec-
tronic/programmable electronic safety-related systems, is a ‘meta-standard’,
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from which several other domain-specific standards are derived. In Part 7
(2010), Sect. C.2.4.1 it defines the aim of Formal Methods as “the develop-
ment of software in a way that is based on mathematics. This includes formal
design and formal coding techniques. . . . A Formal Method will generally offer
a notation (generally some form of discrete mathematics being used), a tech-
nique for deriving a description in that notation, and various forms of analysis
for checking a description for different correctness properties.” In Sect. B.2.2.
it states that “Formal Methods . . . increase the completeness, consistency or
correctness of a specification or implementation”.

However, the IEC 61508 standard also states that there can be disad-
vantages of Formal Methods, namely: “fixed level of abstraction; limitations
to capture all functionality that is relevant at the given stage; difficulty
that implementation engineers have to understand the model; high efforts
to develop, analyse and maintain model over the lifecycle of system; avail-
ability of efficient tools which support the building and analysis of model;
availability of staff capable to develop and analyse model.”

Several Formal Methods are described in the standard (CCS, CSP, HOL,
LOTOS, OBJ, temporal logic, VDM and Z). The use of Formal Methods is
recommended for achieving the highest safety integrity level (SIL 4), where
the average frequency of a dangerous failure of the safety function must be
provably less than 10−8/h, i.e., a failure may occur on average at most once
in 10,000 years of operation.

DO-333 is the Formal Methods supplement to DO-178C and DO-278A
for safety-critical avionics software. It defines Formal Methods as “mathe-
matically based techniques for the specification, development and verifica-
tion of software aspects of digital systems”. Formal Methods can be used to
“improve requirements, reduce error introduction, improve error detection,
and reduce effort”. The supplement further states that “the extent to which
Formal Methods are used [in the software development] can vary according
to aspects such as preferences of the program management, choice of tech-
nologies, and availability of specialised resources”.

Use of Formal Methods

The use of Formal Methods in software development is not constrained to a
specific process and life cycle model followed by a company. That is, Formal
Methods can be used with traditional as well as agile models. Moreover,
Formal Methods should not constitute separate phases or sprints, but should
rather be integrated as part of the general verification activities.

Mishra and Schlingloff [MS08] evaluate the compliance of Formal Methods
with process areas identified in CMMI-DEV, the capability maturity model
integration for development. Their result is that out of 22 process areas from
CMMI, six can be satisfied fully or largely with a formal specification-based
development approach. Notably, the process areas requirements management,
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product integration, requirements development, technical solutions, valida-
tion and verification are supported to a large extent. They also show the
possibility of automation in process compliance, which reduces the effort for
the implementation of a process model.

Formal Methods are used in system development for two main purposes:

1. as a means to make descriptions precise, and
2. to help in different kinds of analysis.

Concerning the first purpose, descriptions of interest include requirements,
specifications, and models, which appear at different levels and moments in
the life cycle. It is common practice to write software descriptions in natural
language. In spite of the apparent advantage of being written in a language
understandable to everybody, its inherent ambiguity and lack of precision
makes the realisation of such descriptions problematic.

The literature distinguishes between linguistic and domain-specific ambi-
guities. Kamsties et al. [KBP+01] provide the following examples: the 500
most used words in English have on average 23 meanings; the sentence “The
product shall show the weather for the next 24 h” exhibits the linguistic
ambiguity if the phrase ‘for the next twenty-four hours’ is attached to the
verb ‘show’ or to the noun ‘weather’; the sentence “Shut off the pumps if
the water level remains above 100 m for more than 4 s” is ambiguous as in
the given domain the term ‘water level’ can refer to the mean, the median,
the root mean square, or the minimum water level. An attempt to address
such problems is the use of controlled natural language. Here, the grammar
and vocabulary of natural language is restricted in order to avoid or reduce
ambiguity of sentences. Present day controlled languages, however, are often
felt to be either too restrictive or too informal to be practical. In this book we
advocate formal languages, which have a well-defined syntax and semantics.
They may be used to resolve such ambiguities and to achieve the required
level of precision.

To illustrate such a process of removing ambiguities, consider the regular
replacements discussed in Example 2. We showed that the informal descrip-
tion is ambiguous and can lead to unexpected results. In contrast, in Example
2.7 we formally defined γ[α := β] to be the word resulting from the word γ
by the replacement of a regular expression α with the word β. The formal
definition cares for all special cases; there is no need for explaining what, e.g.,
the replacement of the empty language by the empty string in a one-letter
word is. a[∅ := ε] has a well-defined meaning which can be derived from the
definition.

This book focuses largely on using Formal Methods in the second way,
i.e., to assist with analysis. The use of Formal Methods in Verification and
Validation (often abbreviated as V&V) is wide and includes techniques such
as static analysis, formal testing, model checking, runtime verification, and
theorem proving. All the above are complementary techniques to standard
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methods such as code review, testing and debugging. They increase the con-
fidence in the correctness of the software under consideration.

This is shown in the software development for the ISS as described in
Example 1. It illustrates how Formal Methods can help to analyse a system.
Given a system model, the model checker FDR could prove the presence of
several deadlocks and livelocks. This helped to improve the quality of the
safety-critical system.

Aligned with current practices in software development, Formal Methods
may be used from the very beginning (when a system is initially conceived) up
to the end (when the final product is shipped). Model checking, for instance,
does not require that a single line of code has been written: it may already be
used when the first formal specifications and high-level models are available.
As another example, runtime verification can be used in a pre-deployment
phase, when (part of) the code is ready to run, and even after deployment to
control/enforce desirable properties at runtime.

1.2.3 A Classification Scheme for Formal Methods

In Definition 1, we said that a Formal Method consists of syntax, semantics
and specific methods or algorithms. Thus, e.g., “CTL model checking” or “Z
theorem proving with HOL” are particular Formal Methods.

Although there has been quite a debate in the Formal Methods community
on the ‘right’ syntax, the ‘best’ semantics and the ‘most effective’ algorithms,
these aspects can be subsumed within other categories in a taxonomy of
Formal Methods.

In order to give an orientation, we provide a classification scheme which
allows to categorise each Formal Method along the following dimensions.

• Method definition—syntax, semantics and procedures as described
above.

– Syntactic aspects, e.g., whether the language allows user-defined mixfix
operators, linear or non-linear visibility, graphical or textual notation,
etc., are related to the usability-aspect of a Formal Method.

– Semantic aspects—which semantic domains are employed and how they
are characterised (denotational, operational, axiomatic semantics)—
determine the application range and underlying technology.

– Algorithmic aspects (describing what can be done with the method)
dominate the underlying technology and properties of concern. Typical
procedures include simulation and symbolic execution, model checking,
automated or interactive theorem proving, static analysis, refinement
checking, etc.
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• Application range—this dimension determines the application domain
(e.g., avionics, railway, finance) and the specific needs of this domain
(whether the systems are mainly reactive, interactive, real time, spatial,
mobile, service oriented, etc.)

• Underlying technology—this dimension notes how the method can be
realised. Technologies are, for example, SAT solving, logical resolution,
term rewriting, symbolic representation, etc.

• Properties of concern—This dimension categorises properties of the
systems which are the subject of the Formal Method and which are sup-
ported by the method (safety, liveness, fairness, security, consistency, func-
tional correctness, etc.)

• Maturity and applicability—this dimension describes how fit the
method is for actual use (universality, expressivity, usability, learning-
curve, intuitive level, tool support, etc.)

Each particular application of Formal Methods can be located within the
space that these dimensions span. For illustration, consider Example 1: the
language used in this example is the process algebra Csp, with its failures
semantics, and automated refinement checking as a procedure (see Fig. 1.1).
The application domain is that of fault-tolerant algorithms in aerospace. The
technology used in the FDR tool is the hierarchical compression of the state
space, a technique specific for this tool. Properties of concern are livelock and
deadlock. The case study was conducted in a collaboration between industry
and academia, since the abstraction process from Occam to Csp and the use
of FDR was outside the standard routine of the aeronautic engineers.

The second example from this chapter, regular replacement, can be clas-
sified as follows: the syntax is the language of regular expressions, with the
usual denotational (set-theoretic) semantics, and text transformation as a
procedure. Application domain are text editors or macro processors. There
is no specific technology involved with this example, as we refrain from giv-
ing an implementation; one possibility would be to use list processing in a
functional programming language. The property to be achieved is to give a
well-defined transformation, open to formal argument about the correctness
of any implementation. The Formal Method of regular expressions belongs
to the standard knowledge of computer science and is accessible at an under-
graduate level.

Of course, there are other dimensions which could be added to this
classification scheme. These include specification focussed versus analysis
focussed, correctness-by-construction versus design-and-proof-methodology,
lightweight versus heavyweight Formal Methods, etc.
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1.2.4 Tool Support for Formal Methods

Formal Methods usually start on the ‘blackboard’: toy examples are treated
in an exemplary way. With paper and pen one checks if a method works
out. In the long run, however, Formal Methods need tool support in order
to become applicable. This is the case as software systems are fundamentally
different compared to mathematical theories:

Numbers of axioms involved. In Chap. 4, we will formalise and ver-
ify control programs written in Ladder Logic. Here, each line of code
is represented by one logic axiom in the specification language Casl.
The toy example presented, a traffic light controller, cf. Example 44, has
about 10 lines of code, i.e., the model consists of about 10 Casl axioms.
Our approach scales up to actual railway interlockings. Such interlockings
describe for a railway station how to position the points and how to light
the signals in such a way that trains can move safely. A typical interlock-
ing program written in Ladder Logic consist out of 500–1500 lines of code,
i.e., its model has 500–1500 Casl axioms in its formalisation.
In contrast, the whole realm of group theory is based on three axioms only,
namely that the operation + is associative (axiom 1), that + has the unit
0 (axiom 2), and, finally, that every element has an inverse (axiom 3).
These example indicate that the number of axioms when applying For-
mal Methods is by magnitudes larger than the number of axioms involved
in mathematical theories. Consequently, tool support is needed in Formal
Methods for sheer book keeping.

Ownership and interest. The interlocking program for a railway station
is commissioned by a rail operator. Intellectual property rights ensure that,
besides the rail operator, only the company writing the code and the rail-
way authorities have access to design documents, code, and verification
documentation, etc. These artefacts are studied only when the software
lifecycle dictates it:

• during production by the company programming it,
• for acceptance by the company running the train station,
• for approval by the railway authorities, and
• when maintaining the code by a possibly different company hired for

the task.

Thus, any verification of a ladder logic program, say in Casl, will be
studied only at few occasions.
In contrast, group theory is public, its theorems and their proofs are pub-
lished in books and journals, everyone has access to them. The proofs of
group theory are taught for educational purposes at universities. Every
year, the fundamental theorems of group theory are proven and checked
in lecture halls all over the world.
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Many software systems are the intellectual property of a company. This
restricts access to the actual code; interest in their design is limited. Math-
ematical theories are part of the scientific process and publicly available.
There is scientific interest in them. Therefore, proofs related to a specific
software system are studied by few people only, and only when necessary—
while mathematical proofs are studied by many, over and over again. Con-
sequently, tools play the role of ‘proof checkers’ for quality control in For-
mal Methods.

Change of axiomatic basis. Every ten to fifteen years, the design of a
railway station changes. New safety regulations have to be implemented,
the station shall deal with more trains, new technology shall be introduced
such as the European Train Control System (ETCS). This requires changes
to the interlocking program and, consequently, to the proofs on it.
In contrast, mathematical theories are stable. Already in the 1830s Galois
worked with the axioms of group theory, which have not changed ever
since.
Requirements of software systems are bound to change in small time inter-
vals. This means that design steps involving Formal Methods need to be
repeated several times, sometimes already during the design phase, cer-
tainly when maintaining the system. Mathematical theories, however, are
stable over centuries. Consequently, tools are needed to help with manage-
ment of change in Formal Methods.

The technology underlying tools for Formal Methods is generic. The Het-
erogeneous Tool Set HeTS—to be discussed in Chap. 4 “Algebraic Specifica-
tion in Casl”—for example is a ‘broker’ which offers, amongst other func-
tionalities, translations from the language Casl to various tools. Yet another
example is the Process Analysis Toolkit PAT, which supports reasoning about
concurrent and real-time systems. Other tools have been built specifically for
one Formal Language. An example is the model checker FDR which has been
designed specifically for the process algebra CSP—see Chap. 3 “The process
algebra CSP”. The current trend in Formal Methods is to offer (integrated)
work environments for different Formal Languages and Methods, e.g., HeTS.

Tool Qualification

When software tools are used to validate software, the questions is, who is
validating the tools? In other words, for highly safety-critical systems there
needs to be evidence why the tools which are used in their development
should be trusted. There are two kinds of tools: for artefact generation and
for artefact validation. This holds for all artefacts occurring in the software
design cycle, e.g., binary code, program text, formal model, specification, or
even the user manual. In industry, there are contradicting views concerning
the importance of these tool classes. In some areas, generating tools are con-
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sidered to be more critical than validating tools, since they directly affect the
behaviour of the system. In other areas it is argued that faulty behaviour of
a generator can anyway be found by the validation tools, which therefore are
more critical.

If a generating tool is faulty, then the generated artefact will not corre-
spond to its source. In the case of executable code, e.g., this may mean that
the runtime behaviour is not as expected. In the case of a model transforma-
tion, the generated model might miss out on properties already established
for the source model.

Example 3: Public-Domain C Compilers

Yang et al. [YCER11] found more than 325 errors in public-domain C
compilers using a specialised compiler testing tool. They report:

“Every compiler we tested was found to crash and also to silently
generate wrong code when presented with valid input.”
“A version of GCC miscompiled this function:

1 int x = 4;
2 int y;
3
4 void foo (void) {
5 for (y = 1; y < 8; y += 7) {
6 int *p = &y;
7 *p = x;
8 }
9 }

When foo returns, y should be 11. A loop-optimisation pass deter-
mined that a temporary variable representing *p was invariant
with value x+7 and hoisted it in front of the loop, while retain-
ing a dataflow fact indicating that x+7==y+7, a relationship that
no longer held after code motion. This incorrect fact led GCC to
generate code leaving 8 in y, instead of 11.”

If a validation tool is inaccurate or faulty, there are two cases: the tool
might report an error where there is none (false positive), or the tool might
miss to report an error where there is one (false negative). For example,
an erroneous program verifier might fail to verify a correct program (false
positive), or it might claim to have found a proof for an incorrect program
(false negative). Often, false negatives are more critical than false positives
since they convey a deceptive certainty. False positives are a hassle, because
they need to be dealt with manually.
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To make this more concrete, consider the tool Cppcheck for static analysis
of C programs:

Example 4: Static Analysis of C Programs

When Cppcheck (Version 1.59) checks the following program, it issues
for line 5 the error message

Array ’x[7]’ accessed at index 13, which is out of bounds.
1 int main() {
2 int x[7];
3 int i = 13;
4 int flag; if (i<7) flag = 1; else flag = 0;
5 if (flag) x[i] = 0;
6 x[3] = 33; x[x[3]] = 0;
7 }
Since the assignment in line 5 is never executed, this is a false positive.

Surprisingly, this false positive disappears when we replace line 4 by the
equivalent

4 int flag = (i<7)?1:0;

Cppcheck does not issue an out-of-bounds warning for line 6. This is
a false negative, since the assignment x[33] = 0; clearly might cause
problems.

What are now the possibilities for the validation of tools? The usual
approach is to resort on tools which are proven-in-use, i.e., where experi-
ence from many previous projects suggests that the tool is ‘correct’. This is
especially the case for certain public-domain tools which have been applied by
many users for a long period of time. In order to claim that a tool is proven-
in-use, it is necessary to provide evidence in which comparable projects it was
used. As the above example of the GCC compiler error shows, proven-in-use
is no guarantee against subtle, hidden errors.

For new or newly introduced methods and tools, the proven-in-use prin-
ciple poses the problem of how to begin such a chain of trust. So, what to
do when proven-is-use is not applicable? In order to be allowed to use tools
which are not proven-in-use in a safety-oriented development, at least one
has to perform a tool qualification. That is, the tool has to be applied to a
number of selected examples under controlled conditions, where the tool’s
behaviour must be analysed and documented in detail. Tool certification is
the process of confirming the qualification by a designated authority. Usually
this is done only for tools to be applied in several different projects. The soft-
ware development standard DO-333, e.g., prescribes in detail how to qualify
and certify tools for different safety integrity levels in aerospace.
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Of course there is still a possibility that even certified tools might contain
errors. There are further methods that can improve the reliability of Formal
Methods tools.

In the case of generating tools, one possibility is to verify the genera-
tor itself. For instance, there are a number of research projects and results
dealing with compiler verification. One challenge here is that the correctness
argument needs to deal with several different languages: the language the
generator is written in, the source language, and the target language. Due
to the sheer size of the problem, often compiler verification is supported by
automated tools. Yet another possibility is to generate, besides the code, also
certain proof conditions from program annotations, which can be checked
automatically in the generated code with a suitable verification tool. This
way, if the compiler is faulty in its code generation part, this will be detected
by the following verification tool.

Both these suggestions to improve the dependability of generating tools
rely on the existence of correct verification tools. In order to increase the
trust in the correctness of verification tools themselves, one can run several
different provers on the same problem and compare their results. If at least
two of them agree, then, under the assumption that different tools do not
make the same mistake, the result is as given. If one prover claims to have
found a proof, while another one claims that the property is not valid, one
of them must be faulty.

Another approach to increase the trust in theorem provers is to augment
them with a proof checking component. For this, the prover must not only
give a boolean result but also produce some term which allows to check
whether the proof is a valid one.

1.3 Formal Methods in Practice

We present various case studies on the application of Formal Methods. These
come in two flavours: comparative case studies compiled by academics, and
the application of Formal Methods in industry.

1.3.1 Comparative Surveys and Case Studies

The Formal Methods community has compiled several surveys with the aim
of comparing different approaches for the application of Formal Methods in
various areas. The characteristic of these surveys is to discuss one coherent
example in the context of several Formal Methods.
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• Lewerentz and Lindner [LL95] discuss a production cell. This cell is consid-
ered to be safety critical, i.e., a number of properties must be enforced in
order to avoid injuries of people. The system is reactive, i.e., it has to react
permanently to changes of the environment. In principle this is a real-time
problem, as the reaction of the control software must be guaranteed within
a certain interval of time.

Example 5: Production Cell

“The production cell is composed of two conveyor belts, a positioning
table, a two-armed robot, a press, and a travelling crane. Metal plates
inserted in the cell via the feed belt are moved to the press. There, they
are forged and then brought out of the cell via the other belt and the
crane.” [LL95].

This case study reflects a typical scenario as it arises in industrial automation.
For this case study, various safety and liveness requirements are to be estab-
lished. Efficiency (w.r.t. production time) and flexibility (w.r.t. the effort it
takes to adapt a solution to changed requirements) should also be taken into
account. Besides presenting 18 contributions, the book includes a summary
and evaluation of the different solutions.

• Broy et al. [BMS96] study a memory cell which can be accessed by remote
procedure calls. Such a call is an indivisible action. A return is an atomic
action issued in response to a call. There are two kind of returns, normal
and exceptional. A return is issued only in response to a call.

Example 6: RPC Memory Cell

“The component to be specified is a memory that maintains the contents
of a set MemLocs of locations. The content of a location is an element
of a set MemVals. This component has two procedures. . . [Procedure]
Read returns the value stored in address loc. [Procedure] Write stores
the value val in address loc. The memory must eventually issue a return
for every Read and Write call.” [BMS96].

Broy et al. [BMS96] collect fifteen solutions in various Formal Methods,
including Petri nets, temporal and higher-order logics, various forms of tran-
sition systems or automata, and stream-based approaches.

• Abrial et al. [ABL96] study a classical control problem:
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Example 7: Steam-Boiler Controller

“[The steam-boiler control program] serves to control the level of water
in a steam-boiler. The program communicates with the physical units
through messages which are transmitted over a number of dedicated
lines connecting each physical unit with the control unit. . . . The pro-
gram follows a cycle and a priori does not terminate. This cycle takes
place each five seconds and consists of the following actions:
• Reception of message coming from the physical units.
• Analysis of informations which have been received.
• Transmission of messages to the physical units.” [Abr94].

Abrial et al. [ABL96], use Formal Methods for various purposes: formal
requirement specifications, intermediate refined models, analysis of system
properties, proofs, automated synthesis of conditions implying safety for
parameters of the controller, design or generation of executable code. The
overall twenty-one contributions used algebraic, logical, and operational lan-
guages similar to those treated in the subsequent chapters of this book.

• Frappier and Habrias [FH01] discuss a classical commercial software appli-
cation:

Example 8: Invoicing Software

“To invoice is to change the state of an order (to change it from the
state “pending” to “invoiced”). On an order, we have one and one only
reference to an ordered product of a certain quantity. The quantity
can be different to other orders. The same reference can be ordered
on several different orders. The state of the order will be changed into
“invoiced” if the ordered quantity is either less or equal to the quantity
which is in stock according to the reference of the ordered product.”
[FH01].

The volume collects specifications in the state-based methods Z and B, in the
event-based methods Action Systems, UML with a behaviour-driven method,
VHDL, Estelle, SDL, and E-Lotos, and in other formal approaches as CASL,
Coq, and Petri Nets.

• Jones and Woodcock [JW08] collect approaches to mechanise the proof of
correctness of the Mondex smart-card for electronic finance. This was one
of the first comparative case studies dealing with security issues.
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Example 9: Electronic Purse Mondex

“The system consists of a number of electronic purses that carry finan-
cial value, each hosted on a Smartcard. The purses interact with each
other via a communication device to exchange value. Once released into
the field, each purse is on its own: it has to ensure the security of all its
transactions without recourse to a central controller. All security mea-
sures have to be implemented on the card, with no real-time external
audit logging or monitoring.” [SCW00].

The methods applied to the Mondex case study are the Alloy model-finding
method, the KIV system, Event-B, UML and OCL, RAISE, and Z/Eves.

• Rausch et al. [RRMP08] document a competition on the so called Common
Component Modelling Example (CoCoME). Given a prescribed architec-
ture, the challenge lies in using a specific formalism for modelling and
analysing the CoCoME according to this architecture.

Example 10: CoCoME Trading System

The CoCoMe case study concerns a trading system as it can be observed
in a supermarket handling sales. At a Cash Desk the Cashier scans
the goods the Customer wants to buy and the paying (either by credit
card or cash) is executed. The central unit of each Cash Desk is the
Cash Desk PC which wires all other components with each other.
Also the software which is responsible for handling the sale process
and amongst others for the communication with the Bank is running
on that machine. A Store itself consists of several Cash Desks organ-
ised in Cash Desk Lines. A Cash Desk Line is connected to a Store
Server which itself is also connected to a Store Client. A set of Stores is
organised as an Enterprise where an Enterprise Server exists to which
all Stores are connected. (Formulated closely following Herold et al.
[HKW+07].)

Rausch et al. [RRMP08] documents more than ten formal component models
and their use in verification and quality prediction. A jury evaluation con-
cludes the volume. We discuss similar examples in Chap. 6 on “Specification
and Verification of Electronic Contracts”.

• Cortier and Kremer [CK11] collect several popular symbolic approaches
to formal security. Different research groups demonstrate their techniques,
taking a flawed public key protocol (and its correction) as a common exam-
ple:
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Example 11: Handshake Security Protocol

“The aim of the protocol is that A and B share a secret key s at the
end. Participant A generates a fresh session key k, signs it with his
secret key sk(A) and encrypts it using B’s public key pk(B). Upon
receipt B decrypts this message using the private secret key, verifies
the digital signature and extracts the session key k. B uses this key to
symmetrically encrypt the secret s.” [CK11].

This protocol shall provide secrecy: the secret s shall only be known to A
and B. The above handshake protocol, however, is vulnerable to a ‘man
in the middle’ attack. Various techniques are used to (automatically) find
this flaw and to prove that adding the identities of the intended participant
changes the protocol into a correct one. These techniques include rewrite
rules, Horn clauses, strand spaces, constraint systems, process algebra, and
Floyd–Hoare style logics. Further protocols are consider in order to demon-
strate the strengths of individual techniques. In Chap. 8 on the “Formal
Verification of Security Protocols” we verify a protocol for authentication.

For good reason, the above compilations refrain from giving a concrete
recommendation which method is ‘the best’. Similar to the problem of select-
ing a suitable programming language for a particular project, the suitability
of a method strongly depends on the context. For example, a method for
analysing functional correctness might not be suitable for deadlock analysis
of protocols.

1.3.2 Industrial Practice

Formal Methods play an increasing role in industrial practice: “yesterday’s
Formal Methods are today’s best practice”. For example, the theory of static
program analysis and abstract interpretation has been developed since the
mid-1970s. A first tool, Lint, for checking source code of C programs has
been released in 1979. Subsequently, more specialised tools for safety-critical
applications based on this theory were developed. Today, more than one hun-
dred tools for static code analysis exist, with varying strengths and applica-
tion ranges. However, static analysis is also performed in ordinary compilers:
the Java specification (for version 7 in Sect. 14.21.) requires that “it is a
compile-time error if a statement cannot be executed because it is unreach-
able” [GJBB13]. There are detailed instructions in the language definition on
how to figure out whether a statement is reachable; in general, this is a static
analysis task which is performed by the Java compiler.

In hardware design, modelling a chip lay out and checking it with model
checking and theorem proving (both techniques were developed during the
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1990s) is an established practice today. Graph grammars originated in the late
1960s; the theory of graph transformation provides the mathematical founda-
tion for code generators in current model-based development environments.
Existing standards, such as DO-333 (see Sect. 1.2.2), which was released in
2012, allow to replace informal validation steps such as code inspections, code
reviews, and testing by Formal Methods.

Knowledge transfer from academia, however, is a slow process in general.
The Formal Methods community itself reflects on this topic. We document
this reflection within the last twenty years. In 1990, Hall [Hal90] identifies
“Seven Myths of Formal Methods”: he argues that unrealistic expectations
can lead to the rejection of Formal Methods in industry, and presents a more
realistic picture of what Formal Methods can achieve. Five years later, Bowen
and Hinchey [BH95a] formulate “Seven more myths of Formal Methods”,
identify them as misconceptions, and conclude that “Formal Methods are not
a panacea, but one approach among many that can help to improve system
reliability”. Complementing this work, Bowen et al. [BH95b] formulate “Ten
Commandments of Formal Methods” which give guidelines of how to make
good use of Formal Methods. Ten years later, Bowen and Hinchey [BH06]
observe that the “application of formal methods has been slower than hoped
by many in the Formal Methods community” and conclude that, at least for
highly safety-critical systems, Formal Methods have found a niche. Over the
years, the perception of Formal Methods has become more positive. In 2011,
e.g., Barnes states that “the application of Formal Methods is a cost effec-
tive route to the development of high integrity software” [Bar11]. The 2020
white paper “Rooting Formal Methods within Higher Education Curricula
for Computer Science and Software Engineering” [CRD+20] argues:

• Current software engineering practices fail to deliver dependable software.

• Formal Methods are capable of improving this situation, and are beneficial and
cost-effective for mainstream software development.

• Education in Formal Methods is key to progress things.

• Education in Formal Methods needs to be transformed.

The “2020 Expert Survey on Formal Methods” [GBP20] compiles a collective
vision on the past, present, and future of FMs with respect to research,
industry, and education. They report: “A huge majority of 90% thinks the
use of Formal Methods will likely become more widespread in industry, while
only nine experts [out of 130] doubt this and four have no opinion.”

Success Stories

In order to support positive views on Formal Methods, we report on a number
of industrial experiments and experiences.
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Example 12: Model Checking at Intel

In 1993, Intel released the first Pentium� processor. Shortly afterwards,
a bug in the floating point arithmetic was detected, which caused wrong
computation results with certain division operations. As a consequence,
Intel had to exchange more than one million faulty processors, with cost
of more than 475 million dollars. Subsequently, Intel initiated major
changes in its validation technology and methodology. “Since 1995 Intel
engineers have been using formal verification tools to verify properties
of hardware designs” [Fix08]. In hardware design, bugs have tradition-
ally been detected by extensive testing, including pre-silicon simulation.
However, this procedure is rather slow, and there are too many input
combinations for an exhaustive testing. Therefore, Intel now employs
temporal logic model checking for this task. Here, a model of the sys-
tem (i.e., the hardware design) is compared with a formal specification
of system properties (see Chap. 2 on Logics). For describing hardware
properties, Intel developed the specification language ForSpec, which
was later made into the IEEE 1850 standard PSL (property specifica-
tion language). In this language, properties of floating point arithmetic
as required by the relevant IEEE 754 standard were formulated. As a
model, the register transfer level description of the design is used. Thus,
the verification is done with the same gate-level design that is used
for traditional dynamic validation. Given suitable model checking tools,
the verification is fast and can be easily done within the development
timeframe. Therefore, such a full formal verification of floating-point
processing units is now standard practice at Intel, see also the work of
Harrison [Har03b].

Regarding this case study, L. Fix [Fix08] of Intel remarks:

The barrier to moving from a limited deployment to wide spread deployment of
formal property verification in Intel was crossed mainly due to two developments: the
first was the introduction of ForSpec assertions inside the Verilog code, thus allowing
the designers to easily code and maintain the properties (assertions). The second
was the integration of the formal verification activity with other validation efforts.
In particular, the RTL designer had two reasons to annotate his/her code with
assertions. The assertions were always checked during simulation and in addition
the assertions served as assumptions and properties for formal verification. In case
an assertion was too complex to be verified formally it was still very useful as a
checker in simulation.

Example 13: Microsoft’s Protocol Documentation Program

Due to legal negotiation with the U.S. Department of Justice and the
EU, Microsoft decided to make available to competitors the interfaces
of certain client-server and server-server communication protocols used
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in the Windows operating system. In order not to disclose the source
code of the implementation, a series of technical documents were written
describing the relevant protocols. This documentation was quite exten-
sive, consisting of more than 250 documents with approximately 30,000
pages in all. The actual implementation of the protocols had previously
been released on millions of servers, as part of the Windows operating
system. To ensure that the informal specifications conform to the actual
code, in the Winterop project a formal model of the specification was
produced [GKB11]. For this, the specification language Spec# was used,
which is based on the notion of abstract state machine, with C# syn-
tax. The effort took more than 50 person-years to complete. From these
specifications, test cases were automatically generated by the tool Spec-
Explorer. These test cases could be executed with the existing imple-
mentation, exposing over 10,000 “Technical Document Issues” in the
specification [GKSB10]. The endeavour was such a big success, that
SpecExplorer was turned into a product which is now distributed as
a ‘power-tool’ add-on to the software development environment Visual
Studio.

Several other formal specification and verification project within
Microsoft have been done. Hackett et al. [HLQB] use the modular
checker HAVOC to check properties about the synchronisation proto-
col of a core Microsoft Windows component in the NT file system with
more than 300,000 lines of code and 1500 procedures. The effort found
45 serious bugs (out of 125 warnings) in the component, with modest
annotation effort.

Das [Das06] writes on Formal Methods at Microsoft:

“Today, formal specifications are a mandated part of the software development pro-
cess in the largest Microsoft product groups. Millions of specifications have been
added, and tens of thousands of bugs have been exposed and fixed in future versions
of products under development. In addition, Windows public interfaces are formally
specified and the Visual Studio compiler understands and enforces these specifica-
tions, meaning that programmers anywhere can now use formal specifications to
make their software more robust.”

Example 14: Electronic Voting

Secure communications have become fundamental to modern life for the
purposes of electronic commerce, online banking and privacy over the
Internet to name but a few applications. As a design problem, secu-
rity protocols have inspired the use of Formal Methods for well over
two decades. The distributed and parallel nature of communications
facilitated by protocols, along with various assurances desired, means
that designing secure message exchange is not straightforward. A good
example of this problem is electronic voting, which has a complex set
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of security and privacy requirements all of which must be guaranteed if
digital democracy is to be truly realised in the modern world.

An electronic voting system subject to formal scrutiny is the Prêt
à Voter system [RBH+09], which is essentially a multi-party crypto-
graphic protocol offering privacy, voter verifiability, coercion-resistance,
and receipt-freeness. Some of these properties have been subject to for-
mal examination, using various methods including process algebra and
refinement checks [HS12], and zero-knowledge proofs [KRT13], with the
ultimate goal to providing a formal proof of the relevant property.

An implementation of the Prêt à Voter system has been demonstrated
for the state of Victoria in Australia [BCH+12].

Undoubtedly some legal [DHR+12] and usability [SSC+12, SLC+11] chal-
lenges exist for such electronic voting systems. However, the above case study
demonstrates considerable progress for providing assurances to the govern-
ment and public to ensure confidence and trust in the election system.

Example 15: The Operating Systems seL4 and PikeOS

Formal verification of operating systems remains a difficult task to
achieve given the scale and complexity of the software involved. One
such attempt stands out to provide a benchmark of how Formal Meth-
ods have been effectively applied towards achieving such a goal. The L4
family of microkernels [Lie96] for embedded systems serves as an oper-
ating system with typical features of concurrency in terms of threading
and inter-process communication, virtual memory, interrupts and pro-
cess authorisation features.

A secured version of such an operating system, known as seL4
[KAE+10], has been established through formal specification and ver-
ification. Formal Methods have been applied at various levels of the
development of seL4. Starting with an abstract specification a proto-
type is generated in Haskell [KDE09], which is a functional and exe-
cutable language. This has the advantage of translating all data struc-
ture and implementation details desired for the final implementation.
The Haskell prototype is formalised using Isabelle/HOL, an interactive-
theorem prover allowing for machine-checking of proofs, and functional
correctness is demonstrated using refinement. A C implementation is
manually achieved from Haskell with a view to optimising the code for
better performance. The implementation is then translated into Isabelle
(using a formal semantics defined for a subset of C) for checking.

The methods used for seL4 have influenced the verification of PikeOS
[BBBB09], which is a commercial microkernel operating system based
on L4. Core parts of the embedded hypervisor, and, in particular, the
memory separation functionalities, have been formally verified using the
VCC verification tool. PikeOS is certified according to various safety
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standards and is used in several critical real-time applications, e.g., in
the integrated modular avionics modules of Airbus planes.

The German Verisoft project [Ver07] demonstrates that with present For-
mal Methods it is not only possible to verify an operating system, but that
the systematic use of computer-aided verification tools is possible throughout
all layers of abstractions.

Example 16: Model-Based Design with Certified Code Gener-
ation

Lustre is a synchronous data-flow programming language which evolved
in the 1980s from academic concepts similar to the ones existing in alge-
braic specification languages (see Chap. 3) [Hal12]. Its main focus was
programming reactive real-time systems such as automatic control and
monitoring devices. From the beginning, it had a strict denotational and
operational semantics. The formalism was very similar to temporal log-
ics (see Chap. 2) which allowed the language to be used for both writing
programs and for expressing program properties. In the mid-1980s, the
company Merlin Gerin (now Schneider Electric) in collaboration with
researchers from VERIMAG developed an industrial version of Lus-
tre for the development of control command software in nuclear power
plants. This version was called SAGA and provided a mixed textual/-
graphical syntax for the language as well as a simple code generator. In
order to further industrialise the tool, the company Verilog took over
SAGA, renamed it SCADE (for “Safety Critical Application Environ-
ment Development”) and adapted it to the needs of Aerospatiale (now
part of Airbus). In the aerospace domain, any tool used for the devel-
opment of a critical equipment must have at least the same quality as
the equipment itself. Therefore, the SCADE code generator KCG was
qualified according to the highest criticality level A. (In this qualifica-
tion, it was shown that the development processes for KCG conform
to the requirements of the standard; note that this does not amount
to a full compiler verification!) Verilog itself was acquired in 1999 by
Telelogic, a Swedish telecommunications tool provider (now IBM). In
2001, Esterel Technologies bought SCADE from Telelogic for 1.4 mil-
lion Euro. It extended SCADE by various additional components, e.g.,
the tool IMAGE by Thales for the design of the cockpit of the A380
aircraft, as well as formal verification technology, SysML support, and
software lifecycle management. In 2012, Esterel Technologies was taken
over by Ansys Inc. for the sum of 42 million Euro. Ansys plans to inte-
grate SCADE with its own tool Simplorer for modelling and simulating
physical systems.

Today, more than 230 companies in 27 countries use SCADE to
develop safety-critical control components. Success stories include the
use in the primary flight control system of the Airbus A380, the autopi-
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lot for several Eurocopter models, several nuclear power plants as well as
the interlocking and train control system of the Eurostar trains between
London and Paris.

Example 16 demonstrates that tools for Formal Methods not only signifi-
cantly contribute to system safety, but also can have a considerable market.

Example 17: Transportation Systems in France

The Paris Métro line 14 (Est-Ouest Rapide) was opened in 1998. It is
the fastest and most modern line in the Paris subway network, being
operated driverless, with a high train speed and frequency. For ensuring
the correctness of the control and signalling software, it was decided to
use the B method and the associated Atelier B programming tool.

The B method is based on the idea of refinement of abstract machines.
Mathematical specifications written in first-order logic are stepwise
refined, and it is proven that the refinement is coherent and includes
all the properties of the abstract machine. Throughout all of the devel-
opment steps the same specification language (B notation) is used. The
process of refinement is repeated until a deterministic, fully concrete
implementation is reached, which is then automatically translated into
Ada code.

In the above mentioned Méteor project, over 110,000 lines of B spec-
ifications were written, generating 86,000 lines of safety-critical Ada
code. With this model, 29,000 proofs were conducted. No bugs were
detected after the proofs, neither during the functional validation of the
software, during its integration in the train, during the on-site tests, nor
since the metro lines operate. The software is still operated in version
1.0 today, without any bug detected so far [LSGP07].

Other uses of the B method include the automatic train protection
system for the French railway company SNCF, which was installed on
6,000 trains since 1993. For the verification, 60,000 lines of B specifica-
tions and approximately 10,000 proofs have been written. In the Roissy
VAL project, an automatic pilot for a driverless shuttle in the Paris-
Roissy airport has been developed and verified with 180,000 lines of B
specification and 43,000 proofs.

In the report [BA05] of the Roissy VAL project mentioned in Example 17
the authors conclude:

The process described here is suitable for any industrial domains, not only for rail-
ways command/control software. Actually this process deals with designing procedu-
ral software based on logical treatments, not based on real or floating-point numbers.
It is all the more suitable that software specification can be easily formalised into
set-theoretical expressions.
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From the management point of view, the project went off according to the initial
schedule, although the software produced is quite large, thanks to a straightforward
process and efficient tools.

Every verification stage throughout the process was useful and led to early error
detection: analysis of software document specification, type checking, inspections,
proof of abstract model safety properties, refinement proof of correct implementa-
tion.

Section 1.3.4 of Garavel’s report [GG13] provides a collection of further
success stories.

1.3.3 How to Get Started

The previous sections give the right impression that the variety of Formal
Methods is overwhelming. This might leave the beginner or potential user to
be lost in the field. Which method shall be selected in a given context? We
discuss this question in two different scenarios. One possible scenario is that
of a research student learning a Formal Method. The other scenario is that
of a Formal Method to be selected in a specific industrial project.

Learning a Formal Method

For the first scenario, this book provides a good starting point. It offers a
non-representative selection of methods, where each chapter provides a solid
introduction to one method. Specialisation in one method is unproblematic,
as the foundations of Formal Methods are well connected. Concepts studied,
say, in the context of process algebra, are also to be found in temporal logics,
which again are closely connected to automata theory, and are applied, e.g.,
in testing. Within a discipline, there are often attempts to unify structural
insights. In logics, for example, the theory of institutions provides a general
framework in which logical properties can be studied in a uniform way (see
Chap. 2). The methodological approach to different Formal Methods often is
comparable. Consequently, one should not be afraid of intensively studying
one specific method, even if it is not in the direct line of one’s own research.

The best approach of studying a specific method is by example. One should
select a suitable case study of medium complexity (this book is full of these).
The first step is to formalise the case study, i.e., to transfer it into the language
of the chosen method. Already in this step one might find limitations or
restrictions that one would like to study further. The next step is to check
if the formalisation is an adequate representation of the case study. The
modelling of systems and of proof obligations needs to be faithful.

Now, it is time for reflection: what insight can be gained into the formal
representation with the chosen Formal Method? Here, one can try to derive
properties manually—using a calculus, or even directly applying the seman-
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tics. Only in the next step one should reproduce the manual results in tools,
if available. This order of first thinking and then using tools is important
for keeping one’s mind open to the possibilities of a Formal Method. Tools
usually cover only certain aspects, namely those most relevant to their devel-
opers. Experience suggests that such a case study-driven approach creates
good research topics.

Choosing a Formal Method in an Industrial Project

In the industrial scenario, it is often a challenge to choose an appropriate
Formal Method for a particular industrial problem. Factors to be considered
include

• the qualification and availability of staff,
• the degree of formalisation of existing documents,
• the development processes and capability maturities within the company,

and
• the available budget in relation with the expected benefits.

Moreover, for each Formal Method to be considered, the availability of
industrial strength tools is a decisive factor. In order to be usable for an
industrial project, a tool has to satisfy certain criteria.

• It needs to be supported: that is, during a certain amount of time (usually,
a time period well beyond the lifespan of the product, which can be several
years) there must be a reliable partner offering maintenance, error correc-
tion, adaptation to evolving platforms, further development, and advice
to users.

• It needs to be documented: that is, there must exist user manuals, online
help, training material, and coaching resources for the engineers who shall
use the tool. To this end, competences and skills profiles need to be estab-
lished.

• It needs to integrate smoothly into the existing development processes.
That is, exchange formats need to be available and translations between
different representations should exist or be easily implementable.

• Its use should be predictable: there need to be good arguments that the
intended task can be accomplished with the help of the tool, within a time
frame which is allocated in advance.

• In some cases, it even needs to be qualified: for the development of safety-
critical systems, it is not permitted to use an arbitrary tool; at least, an
analysis of capabilities and alternatives must be conducted.

One risk in selecting a Formal Method is that most practitioners tend to
favour their own area of expertise. Other approaches, which actually might
be better suited, are easily overlooked. Thus, it is a good idea to consult
several experts covering different areas.
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Having identified a suitable Formal Method, the next step is to carry out
a pilot project. Here, a small but relevant part of the problem is solved in
an exemplary way using the selected Formal Method. This involves thor-
ough time measurement and documentation for all activities that the Formal
Method incurs: modelling, installing the tools, using the tools, integrating
the tools, interpreting the results, etc. Reflecting upon this allows to check if
the chosen approach is indeed feasible. On the management level, the pilot
project then has to be evaluated as to whether it is an improvement with
respect to current practice. It should be both more effective, in that it allows
to achieve better results than previous methods, and more efficient, i.e., in
the long run it should offer a better cost/result ratio.

1.4 Closing Remarks

In this chapter we developed an understanding of the key ingredients of For-
mal Methods: syntax, semantics and method. The syntax is usually given in
Backus–Naur-Form; the semantics is mostly presented in either operational,
denotational, or axiomatic style; the method says how to work with the lan-
guage. Formal Methods are useful in classical as well as in agile software devel-
opment processes. They are used to achieve precision in design documents and
to support various forms of system analysis. International standards recog-
nise and recommend the use of various Formal Methods. In practise, Formal
Methods require tool support. As several academic and industrial success
stories demonstrate, Formal Methods play an increasing role in industrial
practice.

1.4.1 Current Research Directions

In this section we point out several challenges and current research topics for
Formal Methods.

Advancement. An account of the historical development of Formal Meth-
ods is given in Chap. 9. In this context, the question is whether there still is
a need for Formal Methods to evolve further. Considering computational
systems, we see that their size and complexity is ever increasing. Also,
computers for executing Formal Methods tools become more powerful.
However, the increase of the problem size often outgrows what tools can
handle. This is due to the fact that most algorithms in Formal Methods
are complex. As a consequence, there is a constant need to improve meth-
ods and tools. Therefore, the questions of how to develop ‘good’ Formal
Methods, i.e., Formal Methods which are efficient and usable, will stay.
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Integration. As was shown above, various formal software modelling tech-
niques have been developed. In systems’ design, these can be used to
describe different aspects of the very same system. In Example 1 (see
Sect. 1.1.1) concerning the ISS, for instance, the correctness of the fault
management layer was analysed using the process algebra Csp. In order
to guarantee a minimal throughput on the station’s MIL bus, Schlingloff
performed a stochastic analysis using Timed Petri-Nets [THSS98]. Gen-
erally, in such circumstances the question arises whether different mod-
els provide a consistent view of the system, and whether analysis results
for one aspect can be re-used and integrated into the analysis of other
aspects. Here, UML provides an integration of various modelling frame-
works. However, this integration is on the syntactical level only. Semantical
and methodological integrations are still being researched [KM18].

Industrial Practice. The long standing question of how to turn Formal
Methods into good industrial practice still remains a challenge. For exam-
ple, the aerospace standard DO-333, published in 2012, allows Formal
Methods to replace traditional engineering practice, e.g., in testing, code
inspection, and code review. However, there are not yet sufficiently many
qualified tools available. Moreover, it is not always clear where Formal
Methods offer better results than the established processes.

Parallelisation. Another current research trend is that the impending
multi/many core revolution poses the question of how to develop efficient
parallel algorithms. In Formal Methods, e.g., for model checking, SAT and
SMT solving, and automated theorem proving there are first proposals of
algorithms tailored towards the execution on multi/many core machines.

Re-use. Nowadays, systems are rarely constructed from scratch. New,
functionally increased and more complex software products are built on
top of existing ones. Systems are rather improved than newly developed,
i.e., there is a constant software evolution. Like other industrial products,
also software is designed in product lines. Formal Methods have not yet
come up with adequate techniques to reflect these development processes
by evolutionary modelling and verifying of systems. The main challenge is
how to re-use verification artefacts.

Compositionality. As systems become more and more complex and spa-
tially distributed, there is an increasing need to verify large, parallel sys-
tems. For example, there are Formal Methods being developed to deal
with service-oriented architectures, where autonomous software agents in
the Internet cooperate in order to achieve a certain task. Questions include
the interaction with an unknown, non-predictable environment, functional
correctness, quantitative analysis, verification of service level agreements,
and security (see Chap. 8).

Cyber-physical agents. Yet another challenge concerns the application
of Formal Methods in cyber-physical systems. These are ‘agent-based sys-
tems in the physical world’, i.e., intelligent sensor networks, swarms of
robots, networks of small devices, etc. Part of the problem is the com-
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bined physical and logical modelling. For modelling systems which have
both discrete and continuous state changes, hybrid automata have been
suggested as a formal framework. However, current methods are not yet
sophisticated enough to allow the verification of industrial strength appli-
cations. Additionally, cyber-physical systems have to deal with unreliable
communication, imprecise sensors and actors, faulty hardware etc. For each
of these problems, initial individual approaches are being developed, how-
ever, it is an open research topic to develop convincing Formal Methods
tackling them in combination.

Artificial intelligence and machine learning. Techniques based on arti-
ficial intelligence (AI) in general, and machine learning (ML) in partic-
ular, are massively being used in deployed software. Many applications
using AI/ML are safety-critical (e.g., autonomous cars), so correctness is
paramount. But the interaction between Formal Methods and AI/ML goes
beyond the standard ‘let us use a Formal Methods technique to prove the
correctness of this algorithm—which happens to use AI/ML.’ Indeed, the
use of AI/ML introduces new challenges for formal verification, in partic-
ular in the area of deep neural networks where sometimes an algorithm
has been learned without a clear understanding of the process of its cre-
ation. This makes it difficult to assert the correctness of the outcomes of
the algorithm, which might require transparency in the underlying mod-
els and the used techniques and methods for learning algorithms, that is
to get ‘explainable’ AI [Mol19]. Other interesting research directions are
the use of machine learning to improve Formal Methods [ALB18], and the
application of Formal Methods to AI/ML [HKWW17, SKS19, WPW+18].

Finally, we briefly mention further applications of Formal Methods beyond
software engineering, such as biological systems and, more recently, ecology,
economics and social sciences.

Biological systems. Formal Methods started to be used to model bio-
logical systems following 1998 Gheorghe Păun’s definition of P systems
[Pău98, Pău00], a computational model inspired from the way the alive
cells process chemical compounds in their compartmental structure. Vari-
ations of this model led to the birth of a research field known as mem-
brane computing [PRS09]. Although P systems were originally intended
as a biologically-inspired computational model, it was soon understood
that they could provide a modelling language to formally describe biolog-
ical systems and on which to base tools to reason about their evolution.
The Grand Challenge for computing that David Harel proposed in 2002
[Har03a] to model a full multicellular animal, specifically the C. elegans
nematode worm, as a reactive system led to the extension of various Formal
Methods, traditionally used in computer science, to make them suitable to
the modelling of biological systems. For example, the Performance Evalua-
tion Process Algebra (PEPA) [GH94] was extended in order to handle some
features of biochemical networks, such as stoichiometry and different kinds
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of kinetic laws, thus resulting in the Bio-PEPA language [CH09a], whose
models can be fed to PRISM [KNP10] for (stochastic) model checking.
Another development in this application area has been to move from the
modelling of a single organism to the modelling of population dynamics.
Some formal notations, such as the process algebra-based BlendX language
[DPR08], have been developed to model ecological systems consisting of
various populations (or ecosystems, in a wider context), aiming at over-
coming the technical and cultural gap between life scientists and computer
scientists [CS15]. The final objective of this modelling approach is not only
to understand the functioning of the ecosystem but also to test possible
control interventions on some of the system components aiming at perform-
ing adjustments to the system behaviour and evaluate the impact of such
intervention on the entire ecological system [CS15]. Examples are: pest
eradication [BCB+10], preservation/reintroduction of species [CCM+10],
disease control [CH09b] and even tumour control (a tumour can be seen
as an ‘ecosystem’ consisting of various populations of normal and mutant
cells) [SBMC15].

Economics. The most successful application of Formal Methods to eco-
nomics is in the area of business process management. Will van der Aalst
has been using variants of Petri nets to model enterprise resource planning
systems, cooperative work, resource allocation and inter-organisational
business processes [VDAS11]. It is in this application area that the two
analytical philosophies of the Formal Methods community and the data
mining/big data community are getting closer and closer. Rozinat and
Van der Aalst developed methodologies to perform conformance checking,
also called conformance analysis, that is, the detection of inconsistencies
between an a priori process model and an a posteriori model produced by
applying process mining to the corresponding execution log [Aal11, RA08].
The future of this approach goes well beyond the specific application to
business process management, in particular in humanities.

Social Sciences. In fact, conformance checking seems appropriate for the
analysis of social networks and peer-production systems, and the first
attempts in this direction have being done in the areas of collaborative
learning and OSS (Open Source Software) development [MCT15]. More
in general, data mining, text mining and process mining, through confor-
mance checking, can provide appropriate and effective validation tools for
formal models of social systems, opening the application of Formal Meth-
ods to the vast area of social sciences.
Another promising use of Formal Methods in social sciences is the mod-
elling of privacy. For example, privacy is an issue in sociology, politics,
and legislation. Formalising privacy policies and realising enforcing mech-
anisms is not easy. The challenges of privacy for Formal Methods have
been discussed for instance in [TW09]. Also, there is an increasing need for
technology-based solutions to help lawyers to draft and analyse contractual
documents, and citizens to understand the huge amount of different kinds
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of agreements and terms of services on paper and digital devices. Formal
Methods can play a crucial role in providing solutions to help handling
such complex documents (see Chap. 6).

The above items present opportunities for research on topics which are
both scientifically exciting and have a large impact on society. In order to start
such research, one can build upon the material presented in the subsequent
chapters.
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[Pău98] Gheorghe Păun. Computing with membranes. Technical Report 208, Turku
Centre for Computer Science, November 1998.
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and Zhe Xia. Prêt á voter with write-ins. In VoteID 2011, LNCS 7187, pages
174–189. Springer, 2012.

[THSS98] L. Twele, B-H. H. Schlingloff, and H. Szczerbicka. Performability analysis of
an avionics-interface. In Proc. IEEE Conf. on Systems, Man and Cybernetics,
1998.

[TW09] Michael Carl Tschantz and Jeannette M. Wing. Formal methods for privacy.
In FM’09, volume 5850 of LNCS, pages 1–15. Springer, 2009.

[VDAS11] Wil M. P. Van Der Aalst, and Christian Stahl. Modeling Business Processes:
A Petri Net-Oriented Approach. MIT Press, May 2011.

[Ver07] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert Schirmer and
Artem Starostin. The verisoft approach to systems verification. In Verified
Software: Theories, Tools, Experiments, Second International Conference,
VSTTE 2008, Toronto, Canada, October 6–9, 2008. Proceedings, volume
5295 of LNCS, pages 209–224. Springer, 2008. https://doi.org/10.1007/

978-3-540-87873-5_18.
[WPW+18] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana.

Formal security analysis of neural networks using symbolic intervals. In
USENIX’18, pages 1599–1614. USENIX Association, 2018.

[YCER11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in C compilers. SIGPLAN Not., 46(6):283–294, June 2011.

https://doi.org/10.1007/978-3-540-87873-5_18
https://doi.org/10.1007/978-3-540-87873-5_18


Part I
Languages



Chapter 2

Logics for Software Engineering

Bernd-Holger Schlingloff, Markus Roggenbach, Gerardo Schneider, and
Antonio Cerone

Abstract Logic is the basis for almost all formal methods in computer sci-
ence. In this chapter, we introduce some of the most commonly used log-
ics by examples. It serves as a reference for subsequent chapters. We start
with propositional logic, introduce its syntax, semantics, and calculus. Then
we extend our view of propositional logic as a so-called institution, discuss
model transformations and modular specifications. Subsequently, we turn to
first- and second-order logic and show how these can be obtained as natu-
ral extensions of propositional logic. Finally, we discuss non-classical logics:
multimodal and deontic logics to deal with alternative and subjective view-
points, respectively, and dynamic and temporal logics for reasoning about
time. The chapter concludes with an elaborate example of how to transform
an informal natural language description into a formal specification in linear
temporal logic.

2.1 Logic in Computer Science

Today’s your lucky day! You are the candidate in a big TV quiz show, and
so far you have mastered all challenges. In the final round, there are three

Bernd-Holger Schlingloff
Humboldt University and Fraunhofer FOKUS, Berlin, Germany

Markus Roggenbach
Swansea University, Wales, United Kingdom

Gerardo Schneider
University of Gothenburg, Sweden

Antonio Cerone
Nazarbayev University, Nur-Sultan, Kazakhstan

© Springer Nature Switzerland AG 2022, corrected publication 2022
M. Roggenbach et al., Formal Methods for Software Engineering,
Texts in Theoretical Computer Science. An EATCS Series,
https://doi.org/10.1007/978-3-030-38800-3 2

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38800-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-38800-3_2


50 B.-H. Schlingloff, M. Roggenbach, G. Schneider, A. Cerone

baskets, one of which contains the big prize, the other two being empty. The
quiz master gives you the following facts.

1. Either the prize is in the middle basket, or the right basket is empty.
2. If the prize is not in the left basket, then it is not in the middle.

Which basket do you choose?
This example is typical for a number of ‘logic puzzles’ which have been

popular since the middle of the 19th century. In this chapter we will show
how to formalize and solve such puzzles—not just for the sake of winning
in TV quiz shows, but also to construct software solutions for all sorts of
problems.

Seen from a hardware perspective, nowadays every ‘classical’ computer is
a binary device, built from switching elements which can be in one of two
states each—on or off, high or low, zero or one etc. Therefore, hardware can
be described and analysed with logical means.

From a software perspective, every programming language incorporates
some logic, e.g., propositional logic for Boolean conditions in control flow
decisions such as branches or loops. Thus, the study of logic is fundamental
for programming. There even are special programming languages like, e.g.,
PROLOG, in which logic is turned into a programming paradigm. For many
programming languages, there are special logics to express certain properties
of program phrases, e.g., pre- and postconditions. Examples include ACSL
for C, JML for Java, and Spark Ada.

Moreover, logic can be used as a means for specification of systems, inde-
pendent of the particular programming language. Examples are Casl (see
Chap. 4) and the Z, B, and Event-B specification languages. Given a system
specification, logic can be used to verify that a particular program is cor-
rect with respect to it. Specialised logics have been developed for this task,
including temporal and dynamic logics which are treated in this chapter.

From these examples it should be clear that there is not ‘one’ logic in
computer science, but many different logics are being used. Each of these can
be considered to be a Formal Method:

• The syntax of a logic usually is given by a small grammar which defines
the well-formed formulae.

• For the semantics, notions like “model”, “interpretation”, “satisfaction”
and “validity” are defined.

• The method usually includes ways to show which formulae are satisfied in
a given model, or valid in all models of a certain class.

Subsequently, we will show how logic as a formal method can be used to
solve some of the verification tasks mentioned above.
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2.2 Propositional Logic—An Archetypical Modelling
Language

Propositional logic can be considered to be the oldest language of formalised
reasoning, dating back to Aristotle and the medieval scholastics. Its basic
philosophy can best be described by Wittgenstein’s proverb “Die Welt ist
alles, was der Fall ist” (the world consists of all which is the case), i.e.,
the world can be considered as the set of all true propositions about it.
Propositions can be, e.g., “the sun is shining”, “John loves Mary”, or “one
plus two equals three”. Simple propositions can be combined by operators or
junctors to form more complex ones, e.g., “if the sun is shining, then there
are no clouds”. In software engineering, propositional logic can be used to
describe not only the actual world as it is, but also some artifacts which are
yet to be built. For example, we can specify the behaviour of software with
propositional formulae.

2.2.1 Example: Car Configuration

Before we go into details, we give a motivating example.

Example 18: Car Configuration

This example is inspired by certain car manufacturing software, see,
e.g., Volkswagen’s “My Configurations” [VW].

Most modern car models come in many variants. Choices include dif-
ferent colours, motors, gear shifts, tyres, audio equipment, etc. Advanced
models have dozens of features which lead to thousands of different com-
binations. Many car manufacturers provide a website where the poten-
tial customers can individually configure their cars. Of course, during
such a configuration, certain constraints have to be met. For example,
certain combinations of motor and transmission are disallowed. So, if the
customer decides on a certain motor, some options for the gears are no
longer available. Once the configuration is complete, the customer can
order the car; the description then is sent to the manufacturing plant
where the individual car is built according to the chosen specification.

What is behind the scene of such a scenario? We now develop the example
towards modelling and analysis with propositional logic.
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Example 18.1: Fixing the Language for Car Configurations

All possible attributes (colour, engine and transmission, tyres, etc.) of
a car can have one of a finite number of values. For example, the colour
can be red, blue, or green, the engine can use petrol or diesel fuel, the
gear shift can be automatic or manual, with four to six gears, etc.

Thus, for a specific car the ‘presence’ of a particular feature can be
‘true’ or ‘false’. This idea allows us to describe a car configuration as
a map from the set of attributes P into the set {true, false}. A pos-
sible configuration would be: (colour red=true, colour blue=false,
colour green=false, motor diesel=true, gearshift automatic = false,
. . .).

After the language for reasoning about the domain of discourse has been
fixed, it is possible to formulate properties in this language.

Example 18.2: Constraints on Car Configurations

Not all combinations of attributes are feasible.
• For example, a car cannot have two colours at the same time, or both

automatic and manual gear shift.
• Some low-power motors can be used with manual gear change only,

while other are built for manual or automatic transmission. For exam-
ple, an automatic gear shift is not available with the 59 kW Diesel
engine.

• A navigational system is only available with certain audio equipment,
at least the radio must have a CD or DVD drive to update the map
data.
There are many more of such constraints, typically in the order of

several hundreds. Given a set of proposition symbols for the various
attributes, we can formalise the constraints with propositional formulae:

•
⊕

(colour red, colour blue, colour green)
(This formula is short for the following one:
(colour red ∧ ¬colour blue ∧ ¬colour green) ∨ (¬colour red ∧
colour blue ∧ ¬colour green) ∨ (¬colour red ∧ ¬colour blue ∧
colour green) )

• (gearshift automatic ⊕ gearshift manual)
• (motor 59kW ⇒ (motor diesel ∧ ¬gearshift automatic))
• (navi ⇒ (audio cd ∨ audio dvd))

Given a formal specification, Formal Methods provide algorithms and tools
how to put it into practical use.



2 Logics for Software Engineering 53

Example 18.3: Satisfiability of Car Configurations

Many car manufacturers have web sites where customers can enter
wishes for their new cars. The configurator running in the background of
such a web site has built in a set of specification formulae such as above,
according to the manufacturer’s constraints. For each customer request,
it checks whether the chosen combination of attribute instances can be
realised such that all given constraints are respected, and displays the
remaining choices.

For example, a customer might enter colour red, audio dvd,
gearshift automatic, motor diesel and motor 59kW. In this case, the
configurator would detect that this set of wishes is inconsistent with the
constraint “no automatic gearshift with 59 kW motor”. It will report
this finding and allow the customer to revise the choices.

Technically, this check amounts to determining whether a given set
of propositional formulae is satisfiable, i.e., whether there exists a model
(car configuration) in which all constraints are met.

In the last few years, much effort has been put in efficient algorithms
for satisfiability checking; we will come back to this later.

2.2.2 Syntax and Semantics of Propositional Logic

Now we are ready to introduce the syntax and semantics of propositional
logic.

Definition 1 (Syntax of propositional logic) Assume we are given a finite set
of proposition symbols P.

We define the following set of formulae:

• Every p ∈ P is a formula.
• ⊥ is a formula.
• If ϕ and ψ are formulae, then (ϕ ⇒ ψ) is a formula.

In a computer science notation (Backus–Naur-form, see Example 2), this
definition can be written as

PLP ::= P | ⊥ | (PLP ⇒ PLP)

Note that the set of proposition symbols may be empty; in this case, the
only formulae which can be built according to the definition are ⊥, (⊥ ⇒ ⊥),
((⊥ ⇒ ⊥) ⇒ ⊥), (⊥ ⇒ (⊥ ⇒ ⊥)), etc.

This syntax is ‘minimalistic’ in the sense that it only contains the constant
⊥ and the junctor ⇒. This allows easy proofs by induction on the structure of
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a formula. Usually, some more propositional junctors (or boolean operators)
are being used, which can be introduced as abbreviations:

• ¬ϕ � (ϕ ⇒ ⊥)
• � � ¬⊥
• (ϕ ∨ ψ) � (¬ϕ ⇒ ψ)
• (ϕ ∧ ψ) � ¬(¬ϕ ∨ ¬ψ)
• (ϕ ⇔ ψ) � ((ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ))
• (ϕ ⊕ ψ) � (ϕ ⇔ ¬ψ)
•

⊕
(ϕ1, . . . , ϕn) �

∨
i≤n(ϕi ∧

∧
j≤n,j �=i ¬ϕj)

•
∨

i≤n ϕi � (
∨

i≤n−1 ϕi ∨ ϕn), if n > 0, and
∨

i≤0 ϕi � ⊥
• etc.

It should be mentioned that different formalisms use different symbols for
these junctors. For example, the Casl syntax (given in Chap. 4) uses false
and true instead of ⊥ and �, respectively. Implication is often written as
(ϕ → ψ), or (ϕ � ψ). For ¬, the symbols ! and − are being used. For ∨ and
∧, various representations are common, including or, |, +, \/ and and, &, ∗,
/\, and others.

The syntax requires parenthesis around binary junctors in order to make
each formula uniquely parseable. Usually, one fixes an order of precedence
between junctors by ¬ < ∧ < ⊕ < ∨ <⇒<⇔, declares binary junctors to
be left-associative and omits parentheses whenever appropriate.

In order to give a semantics (a meaning) to propositional formulae, we
observe that each proposition symbol describes some statement which may or
may not hold in the (actual or imagined) world. In a sense, the determination
which propositions are true and which are false models an actual or intended
state of affairs.

Definition 2 (Propositional model) A propositional model M is a function
P → {true, false} assigning a truth value to every proposition symbol.

The restriction to two truth values {true, false} is often attributed to
George Boole [Boo47]; thus, they are called boolean values. Note that if P
contains n different proposition symbols, then there are 2n different models.
Given a model M, the truth assignment can be extended to arbitrary formu-
lae. We define the validation relation |= between a model M and a formula
ϕ by the following clauses.

• M|=p if and only if M(p) = true,
• M /|=⊥, and
• M|=(ϕ ⇒ ψ) if and only if M |= ϕ implies M|=ψ.

That is, M |= (ϕ ⇒ ψ) if and only if M /|= ϕ or M |= ψ. If M |= ϕ, then we
say that M satisfies ϕ, or, equivalently, ϕ is valid in M.

For the junctors introduced as abbreviations above, we get

• M |= ¬ϕ if and only if M /|= ϕ,
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• M |= �,
• M |= (ϕ ∨ ψ) if and only if M |= ϕ or M |= ψ (or both),
• M |= (ϕ ∧ ψ) if and only if both M |= ϕ and M |= ψ,
• M |= (ϕ ⊕ ψ) if and only if M |= ϕ or M |= ψ, but not both,
• M |=

⊕
(ϕ1, . . . , ϕn) if and only if for exactly one i ≤ n it holds that

M |= ϕi.

The model checking problem is defined as follows: given a model M and a
formula ϕ, determine whether M |= ϕ. For propositional logic, this problem
can be solved with a complexity which is linear in the length of the formula
and the access time of the truth value of a proposition symbol in a model
(which is, depending on the representation of the model, typically either
constant or linear in the size of the model). Model checking for propositional
formulae involves parsing the formula according to its syntax, looking up
the values of the proposition symbols in the model, and then assigning the
truth value to compound formulae according to the above clauses. Detailed
pseudocode-algorithms for this task are given below.

Definition 3 (Satisfiability, Validity) Given any formula ϕ, we say that ϕ is
satisfiable if there exists a model M such that M |= ϕ. A formula ϕ which is
valid in every model is called universally valid or logically true or a tautology,
denoted by |= ϕ.

Clearly, each universally valid formula is satisfiable. Moreover, if ϕ is unsat-
isfiable, then ¬ϕ must be universally valid. The satisfiability problem SAT
problem is to find out whether any given formula is satisfiable; likewise, the
validity problem is to determine whether a given formula is universally valid.
Any algorithm which solves the satisfiability problem also is a solution to the
validity problem: in order determine whether |= ϕ it is sufficient to find out
whether ¬ϕ is satisfiable or not: If ¬ϕ is satisfiable, then there is a model M
such that M |= ¬ϕ; hence M /|= ϕ and thus ϕ cannot be universally valid.
If ¬ϕ is unsatisfiable, then for all models M we have M /|= ¬ϕ; hence for
all M we have M |= ϕ and thus ϕ is universally valid. In summary, ¬ϕ is
satisfiable if and only if ϕ is not universally valid; i.e., ϕ is universally valid
if and only if ¬ϕ is not satisfiable. Thus, given an algorithm for SAT, we can
find out whether a formula ϕ is universally valid by checking whether ¬ϕ is
unsatisfiable. Likewise, any algorithm for the validity problem can be used
as a solver for the satisfiability problem.

Satisfiability can be generalized and relativized to sets of formulae: let Γ
be any set of formulae and ϕ be a formula. We say that Γ is satisfiable, if
there is a model M satisfying all ψ ∈ Γ . Similarly, ϕ follows from Γ (written
as Γ � ϕ), if ϕ holds in every model M which satisfies all ψ ∈ Γ .1 Similar
to above, it holds that Γ � ϕ if and only if Γ ∪ {¬ϕ} is unsatisfiable.

1 Here, we use the symbol � for the semantic consequence relation between formulae,
which is different from the symbol |= for the satisfaction relation between a model and a
formula. For universal validity, the notions coincide: |= ϕ if and only if {} � ϕ.
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Example 18.4: Validation and Validity with Car Configurations

To illustrate these notions with the example, let’s assume that the set of
proposition symbols is P = {colour red, colour blue, colour green,
motor diesel, motor 59kW, gearshift automatic, gearshift manual,
navi, audio cd, audio dvd}, with M(colour red) = M(motor diesel)
= true, and M(p) = false for all other p ∈ P. Then
• M |=

⊕
(colour red, colour blue, colour green),

• M /|= (gearshift automatic ⊕ gearshift manual),
• M |= (motor 59kW ⇒ ¬gearshift automatic),
• (gearshift automatic ⊕ gearshift manual) is satisfiable,
• ((motor 59kW ⇒ ¬gearshift automatic)∧ motor 59kW∧

gearshift automatic) is unsatisfiable,
• |= (audio cd ∨ audio dvd ⇒ audio dvd ∨ audio cd),
• {(audio cd ⊕ audio dvd), audio dvd} is satisfiable, and
• {(audio cd ⊕ audio dvd), audio dvd} |= ¬audio cd.

In model theory, a set of formulae often is identified with the set of its
models. We write Mod(Γ ) � {M|M |= ψ for all ψ ∈ Γ} Clearly, Γ is sat-
isfiable if and only if Mod(Γ ) �= ∅, and Γ is universally valid if and only if
Mod(Γ ) is the set of all models for the given proposition symbols.

2.2.3 Propositional Methods

Various methods have been developed for propositional logic. In the following,
we discuss model checking, checking for satisfiability, and so-called deduction
systems.

Model Checking in Propositional Logic

Model checking is the task to determine the truth value of a formula in a
model: Given M and ϕ, does M |= ϕ hold? Often, it is possible to directly
follow the definition of |= for this task. However, depending how M and ϕ are
represented as data structures, there may be algorithmically different ways
to do so.

A propositional model is a mapping from proposition symbols to truth
values {true, false}. Usually, this mapping is given in a lookup data structure,
e.g., a hash table, such that access to the value of any proposition symbol is
in constant time. The formula may be given as a formula tree or in a linear
(string) representation. In the first case, we can employ a recursive descent
algorithm for model checking:
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Algorithm 1: Recursive Propositional Model Checking
input : Propositional model M, formula ϕ as a tree.
output: Is formula ϕ valid in model M, i.e., does M |= ϕ hold?

function modelcheckRec(M, ϕ)
if top(ϕ) = “p” then return M(p)
else if top(ϕ) = “⊥” then return false
else // top(ϕ) = “ ⇒”

if modelcheckRec (M, left(ϕ)) then return modelcheckRec (M, right(ϕ))
else return true

In the second case, we need a pushdown store of values {true, false} for
parsing the formula.

Algorithm 2: Iterative Propositional Model Checking.
input : Propositional model M, formula ϕ as a string of symbols.
output: Is formula ϕ valid in model M, i.e., does M |= ϕ hold?

function modelcheckIt(M, ϕ)
result := false;
while nonempty(ϕ) do

if first(ϕ) = “p” then result := M(p)
else if first(ϕ) = “⊥” then result := false
else if first(ϕ) = “ ⇒” then push(result, stack)
else if first(ϕ) = “)” then

if top(stack) = false then result := true;
pop(stack);

ϕ := rest(ϕ);

return (result)

The iterative algorithm assumes a syntactically correct (i.e., fully paren-
thesized) formula as input. “result” is a boolean variable for recording inter-
mediate results. An implication “(ϕ ⇒ ψ)” is processed as follows. No action
is required for the opening bracket “(”, checking just proceeds with subfor-
mula “ϕ”. If the implication sign “⇒” is found, the variable result contains
the value of ϕ, which is pushed onto the stack. Then, the subformula “ψ” is
checked. If the closing bracket “)” is found, result contains the value of ψ,
and the result of ϕ is on top of the stack. If ϕ is false, then (ϕ ⇒ ψ) is true,
hence result must be set accordingly. Otherwise, (ϕ ⇒ ψ) has the same value
as ψ, and nothing is to be done.
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Propositional Satisfiability

In contrast to the model checking problem, it is computationally much harder
to check whether a given formula is satisfiable: whereas in model checking,
the model is already given, for satisfiability we have to find out whether any
model satisfies the given formula. For a formula ϕ with n different proposition
symbols, there are 2n possible models. A nondeterministic algorithm could
‘guess’ a model M and then check that it indeed satisfies ϕ. In the literature,
SAT therefore is known as the generic NP-complete problem. On a present-
day deterministic machine, in the worst case all 2n different models have to
be checked, which yields an exponential complexity.

Algorithm 3: Propositional satisfiability.
input : Formula ϕ.
output: Is formula ϕ satisfiable, i.e., does M |= ϕ hold for some model M?

function SAT(ϕ)
forall models M do

if modelcheck(M, ϕ) then return true

else return false

Much work has been invested in the design of efficient SAT-solvers [BBH+09].
Examples include Chaff, MiniSAT, PicoSAT and others. There are annual
competitions to compare the performance of these tools on large formulae.

Deduction Systems for Propositional Logic

If the validity problem is too complex for fully automated tools, sometimes it
is possible to ‘manually’ construct a proof. For propositional logic, there exist
quite a few proof methods: axiomatic systems, tableaux systems, systems of
natural deduction, resolution systems, and others. Each such system describes
how to obtain a proof for a given propositional formula. There are two basic
ways of constructing a proof for formula ϕ. Either, one starts with a set
of valid formulae, and derives further valid formulae from these, until ϕ is
obtained. Or, one starts with ϕ, and iteratively decomposes it until only valid
constituents remain.

We give an example for the first of these methods. Our Hilbert-style proof
system for propositional logic is given by the following axioms and derivation
rule:

(weak) � (ϕ ⇒ (ψ ⇒ ϕ))
(dist) � ((ϕ ⇒ (ψ ⇒ ξ)) ⇒ ((ϕ ⇒ ψ) ⇒ (ϕ ⇒ ξ)))
(tnd) � (¬¬ϕ ⇒ ϕ)
(mp) ϕ, (ϕ ⇒ ψ) � ψ
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Here, the symbol � denotes derivability in the following sense. The first
three lines are axioms; they are known as weakening, distributivity, and ter-
tium non datur (law of the excluded middle), respectively. A propositional
formula is a substitution instance (or simply instance) of an axiom, if it can
be obtained by consistently replacing the symbols ϕ, ψ and ξ by propositional
formulae.

Example 19: Instances of Axioms

� ((p ⇒ q) ⇒ (q ⇒ (p ⇒ q))) is an instance of axiom (weak) (with
substitution [ϕ := (p ⇒ q), ψ := q])
� ((p ⇒ ((p ⇒ p) ⇒ p)) ⇒ ((p ⇒ (p ⇒ p)) ⇒ (p ⇒ p))) is an instance
of axiom (dist).

The fourth line of the Hilbert-style proof system is a derivation rule.
It is known as modus ponens and allows to derive new formulae from
given ones. This derivation rule consists of two formula schemes—called
the antecedents—on the left side of the derivation sign �, and one formula
scheme—the consequent—to its right. The notion of substitution instance for
derivation rules is the same as that for axioms; in fact, an axiom can be seen
as a derivation rule which has no antecedents.

Example 20: Instance of a Derivation Rule

p, (p ⇒ (p ⇒ p)) � (p ⇒ p) is an instance of (mp).

The notion of derivability is defined recursively. We say that a formula is
derivable, if it is either

• an instance of an axiom, or
• an instance of the consequent of the derivation rule, where all antecedents

are derivable.

If ϕ is derivable, we write � ϕ. In order to show that ϕ is derivable, we
have to give a derivation, that is, a finite sequence of formulae where each
formula in this sequence is either an instance of an axiom, or an instance of
the consequent of modus ponens, where all antecedents are already contained
in the list.

Example 21: Derivation of a Formula

We show that (p ⇒ p) is derivable, i.e., � (p ⇒ p):
(1) � (p ⇒ ((p ⇒ p) ⇒ p)) ⇒ ((p ⇒ (p ⇒ p)) ⇒ (p ⇒ p)) (dist)
(2) � (p ⇒ ((p ⇒ p) ⇒ p)) (weak)
(3) � ((p ⇒ (p ⇒ p)) ⇒ (p ⇒ p)) (1,2,mp)
(4) � (p ⇒ (p ⇒ p)) (weak)
(5) � (p ⇒ p) (3,4,mp)
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Often, it is not an easy task to find such a derivation; we challenge the
reader to prove the following:

� (p ⇒ ((p ⇒ q) ⇒ q))
� ((p ⇒ q) ⇒ ((q ⇒ r) ⇒ (p ⇒ r)))
� (p ⇒ ¬¬p))
� (p ⇒ (p ∨ q))
� ((p ∨ q) ⇒ (q ∨ p))

Hilbert-style deduction systems have been criticised for being unintuitive
and hard to use. In 1934, Gentzen proposed sequent calculi of natural deduc-
tion. Here, a sequent is a string Γ � ϕ, where Γ is a set of formulae and ϕ
is a formula. The idea is that Γ � ϕ is a syntactical counterpart of Γ � ϕ,
i.e., a formula is the (syntactic) consequence of a set of formulae if and only
if it (semantically) follows from these formulae. There is only one axiom:
Γ � ϕ, where ϕ ∈ Γ . Derivation rules are formulated as operator-introduction
and operator-elimination rules, and are usually written with a horizontal line
between the antecedences and consequence of the rule. There are four rules:

Γ � (ϕ ⇒ ψ) Γ ∪ {ϕ} � ψ
Γ � ϕ Γ ∪ {ϕ} � ψ Γ � ⊥ Γ ∪ {(ϕ ⇒ ⊥)} � ψ
—————– —————– ——— ————————–
Γ � ψ Γ � (ϕ ⇒ ψ) Γ � ϕ Γ � ψ
(⇒-elim) (⇒-intro) (“ex falso (“tertium non

quodlibet”) datur”)

These rules allow to depict a derivation as a tree of sequents. As an exam-
ple, we give a derivation of the formula (p ⇒ ((p ⇒ q) ⇒ q)):

{p, (p ⇒ q)} � (p ⇒ q) {p, (p ⇒ q)} � p
——————————————————— (⇒-elim){p, (p ⇒ q)} � q

——————————— (⇒-intro){p} � ((p ⇒ q) ⇒ q)
————————————— (⇒-intro){} � (p ⇒ ((p ⇒ q) ⇒ q))

Both Hilbert-style proof systems and natural deduction may not be opti-
mal for automated theorem proving. In 1960, Davis and Putnam proposed
theorem proving by resolution, which is based on the single rule

(ϕ ∨ ξ1 ∨ . . . ∨ ξn), (¬ϕ ∨ ψ1 ∨ . . . ∨ ψm) � (ξ1 ∨ . . . ∨ ξn ∨ ψ1 ∨ . . . ∨ ψm)

Since (¬ϕ ∨ ψ) is equivalent to (ϕ ⇒ ψ), modus ponens can be seen as the
special case of this rule where n = 0 and m = 1. Resolution theorem proving
has turned out to be very successful and still is at the heart of most modern
theorem provers.
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Given any proof system, logicians are usually interested in two questions:

Correctness: Are all provable formulae valid?
Completeness: Are all valid formulae provable?

For our Hilbert-style proof system, this amounts to showing that only valid
formulae are derivable, and that for any valid formula there exists a deriva-
tion. The first of these questions usually is easy to affirm (one wouldn’t want
to work with an incorrect proof system!), whereas the second one often is
more intricate. For reference purposes, we sketch the respective proofs; they
are not necessary for the rest of the book and can be safely skipped by the
casual reader.

Theorem 1 (Correctness of Hilbert-style proof system) Any derivable for-
mula is valid: if � ϕ, then |= ϕ.

Proof The proof is by induction on the length of the derivation. We show
that all instances of axioms are valid, and that the consequent of (mp) is
valid if both antecedents are. Consider the axiom (weak). Assume any model
M, and any substitution of propositional formulae ϕσ and ψσ for ϕ and ψ,
respectively. Then, M |= ϕσ or M /|= ϕσ, and likewise for ψσ. Thus, there
are four possibilities for the truth values of ϕσ and ψσ in M. We give a truth
table for these possibilities:

ϕσ ψσ (ψσ ⇒ ϕσ) (ϕσ ⇒ (ψσ ⇒ ϕσ))
false false true true
false true false true
true false true true
true true true true

Since in any case the value of (ϕσ ⇒ (ψσ ⇒ ϕσ)) is true, this instance
is valid. For axioms (dist) and (tnd), the argument is similar. For (mp),
assume that ϕσ and (ϕσ ⇒ ψσ) are derivable. According to the induction
hypothesis, ϕσ and (ϕσ ⇒ ψσ) are also valid. Therefore, M |= ϕσ and
M |= (ϕσ ⇒ ψσ) for any model M. From the definition, M |= (ϕσ ⇒ ψσ) if
and only if M /|= ϕσ or M |= ψσ. Therefore, M |= ψσ. Since we did not put
any constraint on M, it holds that |= ψσ. �
Theorem 2 (Completeness of Hilbert-style proof system) Any valid formula
is derivable: if |= ϕ, then � ϕ.

Proof We show that any consistent formula is satisfiable. A formula ϕ is said
to be consistent, if it is not the case that ¬ϕ is derivable. More generally, a
finite set of formulae Φ is consistent, if it is not the case that ¬

∧
ϕ∈Φ ϕ is

derivable. In other word, Φ is inconsistent, if � ¬
∧

ϕ∈Φ ϕ.
For the completeness proof, we first show that for any finite consistent set Φ

of formulae and any formula ψ it holds that Φ∪{ψ} or Φ∪{¬ψ} is consistent.
This fact is called the extension lemma. Assume for contradiction, that both
� ¬(

∧
ϕ∈Φ∪{ψ} ϕ) and � ¬(

∧
ϕ∈Φ∪{¬ψ} ϕ). According to the definition of

∧
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and ∧, this is the same as � ¬¬(
∧

ϕ∈Φ ϕ ⇒ ¬ψ) and � ¬¬(
∧

ϕ∈Φ ϕ ⇒ ¬¬ψ).
With (tnd) and (mp), we get � (

∧
ϕ∈Φ ϕ ⇒ ¬ψ) and � (

∧
ϕ∈Φ ϕ ⇒ ¬¬ψ).

Using also (dist) and (weak), we can show that � (
∧

ϕ∈Φ ϕ ⇒ ψ). The proof
system also allows to show � ((ϕ ⇒ ψ) ⇒ ((ϕ ⇒ ¬ψ) ⇒ ¬ϕ)). Therefore,
� ¬

∧
ϕ∈Φ, which is a contradiction to the consistency of Φ.

To continue with the completeness proof, let SF (ϕ) denote the set of all
subformulae of a given formula ϕ. That is, SF (ϕ) contains all constituents
according to the inductive definition of ϕ, including ϕ itself. For example,
if ϕ = ((p ⇒ q) ⇒ p), then SF (ϕ) = {ϕ, (p ⇒ q), p, q}. For any consistent
formula ϕ, let ϕ# be a maximal consistent extension of ϕ (i.e., ϕ ∈ ϕ#, and
for every ψ ∈ SF (ϕ), either ψ ∈ ϕ# or ¬ψ ∈ ϕ#). The existence of such a
maximal consistent extension is guaranteed by the above extension lemma.
However, for any given consistent formula, there might be many different
maximal consistent extensions. Any maximal consistent extension defines a
unique model: for a given ϕ#, the canonical model Mϕ# is defined by

Mϕ#(p) = true if and only if p ∈ ϕ#.

The truth lemma states that for any subformula ψ ∈ SF (ϕ) it holds that
Mϕ# |= ψ if and only if ψ ∈ ϕ#. The proof of this lemma is by induction on
the structure of ψ:

• Case ψ is a proposition: by construction of I.
• Case ψ = ⊥: in this case, Φ∪{ψ} cannot be consistent (� ¬(

∧
ϕ∈Φ ϕ∧⊥)).

• Case ψ = (ψ1 ⇒ ψ2): by induction hypothesis, Mϕ# |= ψi if and only if
ψi ∈ ϕ#, for i ∈ {1, 2}. Since ϕ# is maximal, either ψ ∈ ϕ# or ¬ψ ∈ ϕ#,
and the same holds for ψ1 and ψ2. There are four cases:
(i) ¬ψ1 ∈ ϕ# and ¬ψ2 ∈ ϕ#, (ii) ¬ψ1 ∈ ϕ# and ψ2 ∈ ϕ#, (iii) ψ1 ∈ ϕ#

and ¬ψ2 ∈ ϕ#, and (iv) ψ1 ∈ ϕ# and ψ2 ∈ ϕ#. In case (i) and (ii),
we have Mϕ# /|= ψ1, therefore Mϕ# |= ψ; and since ¬ψ1 ∈ ϕ# and
� (¬ψ1 ⇒ (ψ1 ⇒ ψ2)), we must have ψ ∈ ϕ# (or otherwise ϕ# would be
inconsistent). Likewise, in case (ii) and (iv), we have Mϕ# |= ψ2, therefore
Mϕ# |= ψ; and since ψ2 ∈ ϕ# and � (ψ2 ⇒ (ψ1 ⇒ ψ2)), we must have
ψ ∈ ϕ#. In case (iii), if Mϕ# |= ψ1 and Mϕ# /|= ψ2, then Mϕ# /|= ψ; and
from � (ψ1 ⇒ (¬ψ2 ⇒ ¬(ψ1 ⇒ ψ2))) we conclude that ¬ψ ∈ ϕ#.

Let ϕ be any consistent formula. By definition, ϕ ∈ ϕ# for any maximal
consistent extension ϕ# of ϕ. Therefore, Mϕ# |= ϕ. Hence we have shown
that any consistent formula is satisfiable. In other words, any unsatisfiable
formula is inconsistent. Let ϕ be any valid formula (|= ϕ). Then ¬ϕ is unsat-
isfiable, and therefore inconsistent. This means that � ¬¬ϕ. From this, with
(tnd) and (mp) we get � ϕ. �

Similar completeness proofs can be given for natural deduction and reso-
lution calculi.
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Correctness and completeness add up to the statement

� ϕ if and only if � ϕ.

In computer science, we are usually interested in consequences of a set Γ of
specification formulae. Therefore, we want to make sure that

Γ � ϕ if and only if Γ � ϕ.

It is not hard to see that the above proofs can be adapted to this case.

2.3 A Framework for Logics

The above discussion of propositional logic showed the typical elements that
constitute a logic. The syntax definition started with a set of proposition
symbols P. Often, this collection of symbols is called a signature. Relatively
to the signature P, the set of propositional formulae PLP was introduced.
Symbols need interpretation. This is where models come into play. Models
are the semantical side of a logic: each symbol gets an interpretation. In
propositional logic, models are functions P → {true, false} assigning a truth
value to every proposition symbol. Syntax and semantic level of a logic is
finally connected via a validation relation |=. Some people also speak of a
satisfaction relation. M |= ϕ holds if the formula ϕ is valid in the model M.

The notion of an institution by Goguen and Burstall [GB92] captures the
general idea of what a constitutes a logic. An institution consists of

• a signature Σ which collects the symbols available,
• a set of formulae For(Σ) defined relatively to the signature,
• a class of models Mod(Σ) which interpret the symbols, and
• a satisfaction relation |= ⊆ Mod(Σ) × For(Σ),

where furthermore the so-called satisfaction condition needs to be fulfilled—
which we will discuss in Sect. 2.3.1 below.

Given a logic with these four elements, one can state several algorithmic
questions on the relations between models and formulae:

Model checking problem. Given a model M and a formula ϕ, is it the
case that M |= ϕ?

Satisfiability problem. Given a formula ϕ, is there any model M such
that M |= ϕ holds?

Validity problem. Given a formula ϕ, does M |= ϕ hold for any model
M? This problem is dual to the satisfiability problem.

Uniqueness problem. Given a formula ϕ, is there one unique model M
satisfying this formula, i.e., are any two models for ϕ isomorphic (identical
up to renaming)? A specification formula with this property sometimes is
called monomorphic or categorical.
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Model checking and satisfiability for propositional logic have been consid-
ered above. Subsequently, we study possible relation between different mod-
els.

2.3.1 Specification

A typical way of using logic for specification is to say: all models that satisfy a
given set of formulae are considered to be ‘interesting’. Consider for instance
Example 18 on Car Configuration. When a customer has still some choices
left, one might be interested in the question: what car configurations can the
customer still choose? The customer might be interested in a minimal choice,
as it probably is the cheapest. The car seller, however, might be interested
in a maximal choice. This leads to several questions on logics:

1. How do models relate to each other? Is the relation between the models
compatible with the one defined by the logic?

2. Are we interested in all models, or just a selected ‘minimal’ or ‘maximal’
model?

These questions can be studied for logics in general. In this section we will
show how to answer these questions for Propositional Logic.

To address the first question, we relate models by the notion of a model
morphism:

Definition 4 (Model morphism for Propositional Logic) Let M1 and M2 be
models over the same signature P. There is a model morphism from M1 to
M2 if for all p ∈ P holds: M1(p) = true implies M2(p) = true.

The set of variables which are set to true is growing along a model morphism.
In other words: truth is preserved along a morphism. We write M1 ≤ M2 if
there is a model morphism from M1 to M2.

Example 18.5: Incomparable Models

Models are not necessarily comparable. Take the above signature P =
{colour red, colour blue, colour green, motor diesel, motor 59kW,
gearshift automatic, gearshift manual, navi, audio cd, audio dvd}
from the Car Configuration Example. Define M1(colour red) = true,
M1(p) = false for all other p ∈ P; define M2(motor diesel) = true
and M2(p) = false for all other p ∈ P. Then there is neither a morphism
from M1 to M2 nor a morphism from M2 to M1.

The relation ≤ is reflexive, transitive and antisymmetric:
Theorem 3 (Partial ordering of models by morphisms) Let M, M1, M2

and M3 be models over the same signature P. Then
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1. M ≤ M.
2. If M1 ≤ M2 and M2 ≤ M3, then M1 ≤ M3.
3. If M1 ≤ M2 and M2 ≤ M1, then M1 = M2.

Proof 1. holds trivially. For 2. let M1(p) = true for some p ∈ P. Then,
by M1 ≤ M2, we know that M2(p) = true. Moreover, by M2 ≤ M3, we
know that M3(p) = true. Thus, M1 ≤ M3. For 3. we argue as follows. If
M1 ≤ M2, then it holds that for all p with M1(p) = true, also M2(p) = true.
Similarly, if M2 ≤ M1 then for all p with M2(p) = true, also M1(p) = true.
Thus, M1(p) = true if and only if M2(p) = true. As a propositional model
is a total function from proposition symbols to truth values, this has as a
consequence that M1 = M2. �

The result in Theorem 3 (3.) is unusual for a logic. In general, models
mutually related by model morphisms need not be identical.

With the notion of a morphism available, there are now two ways to com-
pare models. The first one uses the logical formulae. Two models are defined
to be ‘equivalent’ if they validate the same set of formulae. The second way
is to use the notion of a morphism: two models are considered ‘equivalent’
if they cannot be distinguished by morphisms, i.e., in our context, if they
are identical. The following proposition shows that for PL these two notions
coincide:

Theorem 4 (Isomorphism property for PL) Let M1 and M2 be models over
the same signature P. Then the following holds:

{ϕ |M1 |= ϕ} = {ϕ |M2 |= ϕ} if and only if M1 = M2

Proof “⇐” holds trivially. For “⇒” we argue as follows. If M1 and M2

satisfy the same formulae, then in particular for all p ∈ Prop it holds that
M1(p) = M2(p). Thus, M1 = M2. �

Model morphisms can be used to determine the semantics of specifications,
i.e., descriptions of objects we are interested in. Consider a subsignature of our
above example P ′ = { navi, audio cd, audio dvd }. The customer has chosen
that she wants an audio cd, the company says that a car either plays cd or
dvd for audio, i.e., audio cd⊕audio dvd. In the specification language Casl,
which we will formally meet in Chap. 4, this specification can be written as
follows:

spec Car Config =
preds navi, audio cd, audio dvd : ()
• audio cd %(customer request)%

• (audio cd ∧ ¬ audio dvd) ∨ (audio dvd ∧ ¬ audio cd)
%(company setting)%

end
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The specification has the name Car Config. After the keyword preds we
declare the propositional signature. The requirements for the car are listed
after the bullet points. Within “%( ” and “ )%” we provide a name for the
axiom.

Of the eight potential models for P ′, the following two satisfy both formu-
lae:

navi audio cd audio dvd
M1 false true false
M2 true true false

With regards to morphisms, we have M1 ≤ M2. We now discuss the question
what the ‘intended meaning’ of the specification Car Config is.

In Casl, the meaning of a specification is the collection of all models which
satisfy all specification formulae:

ModCasl(Car Config)
= {M|M |= audio cd,M |= audio cd ⊕ audio dvd}
= {M1,M2}.

As the meaning of a specification may contain more than one model, this
kind of semantics for the specification language is called loose. There are two
other possible choices.

• The specification language can be defined such that it uses initial seman-
tics; that is, the meaning of a specification is the smallest model with
respect to the relation ≤. In Propositional Logic, this is the model with a
minimal number of propositional symbols set to true, which validates all
formulae in the specification. According to Theorem 3, there is at most
one such model. For the car configuration example, this is the car with a
minimal number of features:

Mod initial(Car Config)
= {M ∈ ModCasl(Car Config) |

for all models M′ ∈ ModCasl(Car Config) holds: M ≤ M′}
= {M1}.

• Alternatively, the semantics of a specification language can be defined to be
final ; that is, the meaning of a specification is the largest possible model
(with respect to model morphisms) validating the specification. Again,
from Theorem 3 it follows that there is at most one such model. This is
the car where a maximal number of features is incorporated:

Modfinal(Car Config)
= {M ∈ ModCasl(Car Config) |

for all models M′ ∈ ModCasl(Car Config) holds: M′ ≤ M}
= {M2}.
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Tucker & Bergstra have studied systematically which kind of data can be
described with initial, loose, and final semantics [BT87]. Algebraic specifica-
tion languages usually employ initial or loose semantics. Final semantics is
studied in the field of Coalgebra. Co-Casl [MSRR06] provides a specification
language which offers initial, loose, and final semantics. It is an open field for
research to study the interplay between these three approaches.

Modular Specification

Modularisation is important in specification practice. In the above Example
18 on car configuration, for instance, one would like to separate concerns: car
colours, car engines and gear shifts, and equipment can be treated indepen-
dent of each other. The overall car configuration then imports these three
specifications and deals with properties where colours, engines, and equip-
ment are combined:

spec Colors =
preds color red, color blue, color green : ()
• (color red ∧ ¬ color blue ∧ ¬ color green)

∨ (color blue ∧ ¬ color red ∧ ¬ color green)
∨ (color green ∧ ¬ color blue ∧ ¬ color red) %(only one color)%

end

spec Engines And Gearshifts =
preds motor diesel, motor 59kW : ()
preds gearshift automatic, gearshift manual : ()
• (gearshift automatic ∧ ¬ gearshift manual)

∨ (gearshift manual ∧ ¬ gearshift automatic)
%(automatic or manual)%

• motor 59kW ⇒ ¬ gearshift automatic
%(59kW engine has no automatic)%

end

spec Equipment =
preds navi, audio cd, audio dvd : ()
• (audio cd ∧ ¬ audio dvd) ∨ (audio dvd ∧ ¬ audio cd)

%(cd or dvd)%

end

spec Configuration =
Colors and Engines And Gearshifts and Equipment

then • motor diesel ⇒ ¬ audio dvd %(dvd not available with diesel engine)%

end
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All the above specifications have different signatures. In order to support
such modular specification approach, one needs to relate models over different
signatures which each other. The theory of institutions with its satisfaction
condition provides the foundations for this.

Definition 5 (Signature morphism for propositional logic) Let P and P ′ be
(not necessarily disjoint) sets of propositional symbols. A signature morphism
σ : P → P ′ is a function between these two sets.

We can lift the translation of the propositional symbols to formulae:
Definition 6 (Formula translation for propositional logic) Let σ0 : P → P ′

be a signature morphism. We inductively define a map σ : PLP → PLP′ :

• If ϕ = p for some p ∈ P: σ(ϕ) = σ0(p).
• σ(⊥) = ⊥.
• σ(ϕ ⇒ ψ) = σ(ϕ) ⇒ σ(ψ).

Signature morphisms allow us to rename symbols. Let

• P = {colour red, colour blue, colour green},
• P ′ = {red, blue, green},
• σ(colour red) = red, σ(colour blue) = blue, σ(colour green) =

green, and
• ϕ =

⊕
(colour red, colour blue, colour green).

Then σ(ϕ) =
⊕

(red, blue, green).
How does now the satisfiability of ϕ relate to the satisfiability of σ(ϕ)? Con-

cerning σ(ϕ), for instance M′ with M′(red) = true, M′(blue) = false and
M′(green) = false is a model. From this, we can obtain a model M of ϕ with
M(colour red) = true, M(colour blue) = false and M(colour green) =
false. There is a ‘construction principle’ behind this: for every variable p ∈ P,
we look up how M′ interprets its image σ(p) under the signature morphism
σ and define this value as the interpretation that model M gives to p.

Definition 7 (Reducts in propositional logic) Let σ : P → P ′ be a signature
morphism, and let M′ be a model over P ′. Its reduct M along σ is the model
over P, which is defined as

M(p) = M′(σ(p)).

We often write M′|σ for M.

With these definitions we can prove the main theorem of this section:
Theorem 5 (The satisfaction condition holds in propositional logic) Let P
and P ′ be sets of propositional symbols. Let σ : P → P ′ be a signature
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morphism. Then the following holds for all formulae ϕ ∈ PLP and for all
model M′ over P ′ :

M′|σ |= ϕ if and only if M′ |= σ(ϕ) (∗)

This property can be illustrated by the following diagram:

M′|σ M′

ϕ σ(ϕ)

|= |=

σ

|σ

Proof The proof is by induction on the structure of a formula ϕ. Base cases:

• Let ϕ = p ∈ P. By construction we have M′|σ(p) = M′(σ(p)). Thus,

M′|σ |= p if and only if M′|σ(p) = true = M′(σ(p)) if and only if
M |= σ(p).

• Let ϕ = ⊥. For all models M over P and M′ over P ′ holds: M �|=⊥ and
M′ �|=⊥ .

Induction step: Let ϕ = (ψ → ξ). M′|σ |= (ψ → ξ) holds by definition if and
only if

1. M′|σ �|= ψ or
2. M′|σ |= ψ and M′|σ |= ξ .

Applying the induction hypothesis to both cases, this is the case if and only
if

1. M′ �|= σ(ψ) or
2. M′ |= σ(ψ) and M |= σ(ξ).

This is equivalent to M′ |= σ(ψ → ξ). �
In logic, the equivalence (∗) is called satisfaction condition. It formalizes

the slogan

Truth is invariant under change of notation. [GB92]

Generally, the satisfaction condition is seen as an important check if a logic is
well designed. The satisfaction condition provides the theoretical foundation
for modular specification as we have seen in the example above. We will dis-
cuss modular specification further in Chap. 4 on Algebraic Specification. Note
that our discussion on institution theory followed a light weight approach,
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where we illustrate the main ideas in terms of Propositional logic. In gen-
eral, institution theory is formulated in the language of category theory, see,
e.g., [Fia05].

2.4 First- and Second-Order Logic

Subsequently, we give a short introduction to classical predicate logic, as a
natural extension of propositional logic. Readers who are familiar with first-
order logic can safely skip this section.

2.4.1 FOL

First-order logic, or FOL for short, has been ‘the’ language for the formal-
ization of mathematics. Let us start with an example.

Example 22: Strict Partial Order

A strict partial order is defined as a mathematical structure consisting
of a set and an relation on this set which is asymmetric and transitive.
A binary relation is asymmetric if no two element are mutually related;
and it is transitive if whenever you have any three elements of the set
where the first is related to the second and the second is related to the
third, then also the first is related to the third. If you have problems
understanding this sentence, look at the following elegant formulation
in FOL:

asymmetry: ∀x∀y(x ≺ y ⇒ ¬y ≺ x)
transitivity: ∀x∀y∀z((x ≺ y ∧ y ≺ z) ⇒ x ≺ z)

As a more practical example, we consider the task of building a house.

Example 23: Project Planning

When building a house, there are several activities which necessarily
must be completed in a certain order. E.g., the walls cannot be built as
long as the cellar is not completed, and the door and window frames can
not be built in as long as there are no walls. Other activities are inde-
pendent from each other. e.g., door and window frames can be mounted
concurrently, and electricity and plumbing are independent.

In a project planning software, the user can specify which activities
are dependent and which are independent. The software can construct
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a schedule of the overall project, if there is a strict partial order of all
activities which is consistent with these two relations.

Assume we are given a finite set of activities Act = {a1, . . . , an} and
two binary relations dep, ind ⊆ Act×Act . The question is whether there
exists a strict partial order ≺ consistent with these two relations, i.e.,
such that for all activities a and b it holds that

if (a, b) ∈ dep then a ≺ b (∗)
if (a, b) ∈ ind then ¬ a ≺ b (∗∗)

In order to construct a project schedule, planning software includes
a check for this. We now show that a solution exists if and only if the
following conditions are satisfied.
1. the transitive closure dep+ of dep ist asymmetric, i.e., for all a, b ∈

Act it holds that (a, b) ∈ dep+ implies (b, a) /∈ dep+, and
2. ind is a subset of the complement of dep+, i.e., if (a, b) ∈ ind, then

(a, b) /∈ dep+.
For one direction, assume that 1. and 2. above hold. We show that

the transitive closure dep+ of dep is a partial order satisfying (∗) and
(∗∗). By definition, dep+ is transitive, and by 1. it is asymmetric, hence
it is a partial order. Since dep ⊆ dep+, condition (∗) holds. (∗∗) follows
directly from 2.
For the other direction, assume that ≺ is a partial order satisfying (∗)
and (∗∗). We show that dep+ ⊆≺. If (a, b) ∈ dep+, then there are
a1, . . . , an such that a = a1, b = an, and for all i < n it holds that
(ai, ai+1) ∈ dep. From (∗) it follows that ai ≺ ai+1 for all i. Since ≺
is transitive, a1 ≺ an, i.e., a ≺ b. Hence if both (a, b) ∈ dep+ and
(b, a) ∈ dep+, it would follow that both a ≺ b and b ≺ a, contradicting
the asymmetry of ≺. Thus, dep+ is asymmetric, proving claim 1. If
(a, b) ∈ ind , then ¬ a ≺ b from (**). The assumption (a, b) ∈ dep+

would lead to the contradiction a ≺ b. Thus, claim 2. holds. �
Properties 1. and 2. can be checked algorithmically by constructing

the transitive closure of dep and checking whether it contains a loop or
a nonempty intersection with ind .

Subsequently, we formalize the concepts used above. The formulae defining
strict partial orders are made of various symbols: ≺, x, ∀, etc.

Definition 8 (First-order signature) A first-order signature Σ is a structure
Σ = (F ,R,V) consisting of

• a finite set F of function symbols, where each function symbol consists of
the name and the arity of the function. The arity is any cardinal number
designating the number of arguments of the function. Usually, the arity
is considered to be self-evident and omitted; if necessary, it is marked as
a superscript to the function name, e.g., f2. A 0-ary function is called a
constant;
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• a finite set R of relation symbols, where again each R ∈ R contains a name
and an arity. Relations with arity 2, 3, etc. are called binary, ternary, etc.; a
unary relation is called a predicate. Proposition symbols can be considered
to be 0-ary relation symbols; and

• a set V = {x, y, z, v, x1, . . .} of individual variables.

In the above mentioned strict partial ordering formulae, there are no function
symbols involved. The formulae contain only one binary relation symbol ≺,
and individual variables from the set V = {x, y, z}.
Definition 9 (First-order term) A first-order term over Σ is defined by the
following clauses.

• Each variable v ∈ V is a term.
• If t1, . . . , tn are terms and f is an n-ary function symbol from F , then

f(t1, . . . , tn) is a term.

In particular, this definition declares f() to be a term if f is a constant (a
function symbol without arguments). In this case, parentheses are usually
omitted. Binary function symbols are often written in infix-notation, i.e.,
(x + y) instead of +(x, y). In mathematical logic, this possibility is silently
assumed, whereas in formal specification languages such as Casl (see Chap.
4) it must be explicitly stated.

Since the definition is recursive, a term may contain another term, which
in turn contain yet another term, etc. In a mathematical context, terms
are, e.g., cos(x), (x + 5), or f(f(x + 1)). In programming languages, terms
are often called expressions; popular examples are (foo(x)+bar(y,z)) and
sort(myList).

Definition 10 (Atomic formula) A first-order atomic formula over Σ is
defined as follows.

• If t1, . . . , tn are terms and R is an n-ary relation symbol from R, then
R(t1, . . . , tn) is an atomic formula.

Again, if p0 ∈ R is a proposition symbol, in the atomic formula p() parenthe-
ses are omitted; similar to binary functions, also binary predicates are mostly
written in infix notation, e.g., (x ≺ y) instead of ≺ (x, y).

Typical atomic formulae are (x ≤ 5), even(abs(x)), or isSorted(myList).

Definition 11 (First-order formula) Given a signature Σ, a first-order for-
mula over Σ is defined by the following clauses.

• Each atomic formula over Σ is a formula.
• ⊥ is a formula, and (ϕ ⇒ ψ) is a formula, if ϕ and ψ are formulae.
• If x is an individual variable and ϕ is a formula, then ∃xϕ is a formula.
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As for propositional logic, we can write this definition in Backus–Naur-
form. TΣ denotes the set of terms over the signature Σ = (F ,R,V).

TΣ :: = V | F(TΣ , . . . , TΣ)
FOLΣ :: = R(TΣ , . . . , TΣ) | ⊥ | (FOLΣ ⇒ FOLΣ) | ∃V FOLΣ

∀xϕ is an abbreviation for ¬∃x¬ϕ. Of course, all propositional abbreviations
defined in previous sections can be used in FOL as well. In the formula
∃x(x < 5 ∧ y < x), the two occurrences of variable x are said to be bound
by the quantification ∃x. In contrast, variable y is free, i.e., not in the scope
of any quantification ∃y. A formula is called closed, if it contains no free
variables, i.e., if every occurrence of a variable x appears within the scope of
a quantification (∃x or ∀x).

Examples for first-order formulae are asymmetry and transitivity given
above.

Definition 12 (First-order model) A first-order model M for the signature
Σ = (F ,R,V) is a structure M = (U, I,v) consisting of

• a nonempty set U which is the universe of discourse,
• an interpretation function I, where

– I assigns an n-ary function I(f) : Un → U to every n-ary function
symbol f ∈ F , and

– I assigns an n-ary relation I(R) ⊆ Un to every n-ary relation symbol
R ∈ R,

and
• a variable valuation v : V → U assigning a value to each variable in the

signature.

Example 24: First-Order Model

As an example, consider the signature Σ = (F ,R,V) with F = {+},
R = {≺}, and V = {x, y, z}. A model for this signature is, e.g., M =
(U, I,v), with U = {Hugo,Erna}, I(+) is defined by Hugo + Hugo =
Erna + Erna = Hugo and Hugo + Erna = Erna + Hugo = Erna,
I(≺) = {(Hugo,Erna)}, and v(x) = v(y) = Hugo, and v(z) = Erna.

If M = (U, I,v), we often write M(f), M(R) and M(x) instead of I(f),
I(R), or v(x), respectively, to denote the ‘meaning’ of a function, relation or
variable in the model.

Definition 13 (Semantics of first-order terms) In order to define a semantics
of first-order formulae, we first have to declare what the ‘meaning’ of a term
is. Generally, each term denotes a value; that is, it is evaluated to an element
of the universe. The term valuation induced by a model M = (U, I,v) is
defined by



74 B.-H. Schlingloff, M. Roggenbach, G. Schneider, A. Cerone

v(f(t1, . . . , tn)) = (I(f))(v(t1), . . . ,v(tn)).

That is, in order to evaluate f(t1, . . . , tn), one has to apply the interpretation
of f to the valuations of t1 ,. . . , tn. For a term which is recursively built from
other terms, the evaluation has to follow this recursion.

Example 24.1: Evaluation

In our model, the term ((x + y) + z) is evaluated as v((x + y) +
z) = I(+)(v(x + y),v(z)), where v(x + y) = I(+)(v(x),v(y)) =
I(+)(Hugo,Hugo) = Hugo. Therefore v((x+y)+z) = I(+)(Hugo,Erna)
= Erna.

Definition 14 (Semantics of FOL) Similar to the propositional case, the
validation relation |= between a model M and a formula ϕ is defined by the
following clauses.

• M |= R(t1, . . . , tn) if and only if (v(t1), . . . ,v(tn)) ∈ I(R),
• M /|= ⊥, and
• M |= (ϕ ⇒ ψ) if and only if M |= ϕ implies M |= ψ.
• M |= (∃xϕ) if and only if M′ |= ϕ for some M′ = (U, I,v′) with

v′(y) = v(y) for all y �= x.

That is, M |= (∀xϕ) if and only if M′ |= ϕ for all M′ which differ from M
at most in the valuation of x.

Example 24.2: Validity

Our example model with I(≺) = {(Hugo,Erna)} satisfies all require-
ments for a strict partial order: it is asymmetric (if x ≺ y then v(x)
must be Hugo and v(y) must be Erna, and therefore y ≺ x does not
hold) and transitive (there is no valuation for y such that both x ≺ y
and y ≺ z: if x ≺ y then v(y) must be Erna, and if y ≺ z then v(y)
must be Hugo).

Having defined the semantics of formulae, as discussed above in Sect. 2.2.2,
we obtain a semantic consequence relation Γ � ϕ which allows one to carry
out proofs using models.

Example 25: A Semantic Proof

As an example, we show that every asymmetric relation is irreflexive.
That is, we show that M |= ∀x∀y(x ≺ y ⇒ ¬y ≺ x) implies M |=
¬∃x(x ≺ x). Assume to the contrary that M = (U, I,v) is a model
such that I(≺) is an asymmetric relation, which is not irreflexive. If
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M /|= ¬∃x(x ≺ x), then M |= ∃x(x ≺ x). That is, there is a valuation v′

such that M′ = (U, I,v′) and M′ |= (x ≺ x). Let a ∈ U be v′(x). Since
M′ |= (x ≺ x), we have (a, a) ∈ I(≺). Let M′′ = (U, I,v′′) be such that
v′′(x) = v′′(y) = a. By asymmetry we have M′′ |= (x ≺ y ⇒ ¬y ≺ x).
Therefore (a, a) ∈ I(≺) implies (a, a) �∈ I(≺). Since (a, a) ∈ I(≺), we
have (a, a) �∈ I(≺). This is a contradiction.

In order to extend our propositional Hilbert-style proof system for first-
order logic, we use the following axioms and derivation rules:

(prop) all substitution instances of axioms of propositional logic
(mp) ϕ, (ϕ ⇒ ψ) � ψ
(ex) � (ϕ[x := t] ⇒ ∃xϕ)
(part) (ϕ ⇒ ψ) � (∃xϕ ⇒ ψ), provided that x does not occur free in ψ

Axiom (prop) declares every formula to be derivable which can be
obtained from a propositional tautology by consistently replacing proposi-
tion symbols by first-order formulae. That is, in first-order proofs we do not
want to be bothered with having to prove propositional truths. (mp) is the
modus ponens rule which we introduced in the propositional calculus. (ex) is
the exemplification, which allows to deduct the existence of an object x with
a certain property ϕ from a specific example of an object with that property.
Here, ϕ[x := t] is the formula which is obtained from ϕ by replacing every
free occurrence of the variable x by the term t. (par) is the particularization
rule: if some statement follows from a particular instance of an existential
property, it also follows from the property itself, provided that it does not
refer to the particularities of the instantiation.

Axiom (ex) and rule (part) are often written in a universal fashion, where
they become instantiation axiom and generalization rule:

(in) � (∀xϕ ⇒ ϕ[x := t])
(gen) (ψ ⇒ ϕ) � (ψ ⇒ ∀xϕ), provided that x does not occur free in ψ

Intuitively, the generalization rule can be read as follows: if from ψ it follows
that a particular x has property ϕ, and ψ does not mention this x, then from
ψ it follows that all x must have property ϕ.

Example 26: A First-Order Derivation Proof

Using this calculus, we can derive the example property “every asym-
metric relation is irreflexive” formally as follows:

(1) ∀x∀y(x ≺ y ⇒ ¬ y ≺ x) (assumption)
(2) ∀y(x ≺ y ⇒ ¬ y ≺ x) (1, in[x:=x])
(3) (x ≺ x ⇒ ¬ x ≺ x) (2, in[y:=x])
(4) ((x ≺ x ⇒ ¬ x ≺ x) ⇒ (x ≺ x ⇒ ⊥)) (prop)
(5) (x ≺ x ⇒ ⊥) (3, 4, mp)
(6) (∃x x ≺ x ⇒ ⊥) (5, part)
(7) ¬ ∃x x ≺ x (6)



76 B.-H. Schlingloff, M. Roggenbach, G. Schneider, A. Cerone

It can be shown that the above Hilbert-style calculus is correct and complete,
i.e., all derivable formulae are valid, and all valid formulae can be derived. The
completeness proof proceeds as in the propositional case by constructing the
canonical model from a maximal consistent extension of a satisfiable formula.
For space reasons, it is omitted; the reader is referred to textbooks on logic.

As in the case of propositional logic, Hilbert-style axiom systems can
be hard to use. Finding a proof by natural deduction can be much easier.
Together with the propositional rules from above, the following sequent rules
yield a correct and complete natural deduction system for first-order logic.

Γ � ϕ[x := t] Γ ∪ {ϕ} � ψ Γ � ∀xϕ Γ � ϕ
——————– ——————– —————— ————–
Γ � ∃xϕ Γ ∪ {∃xϕ} � ψ Γ � ϕ[x := t] Γ � ∀xϕ
(ex) (part) (in) (gen)

In rule (part), we require that x does not occur freely in Γ or ψ; in rule
(gen), x must not occur freely in Γ .

Similarly to Propositional Logic, one can extend the First-Order Logic as
presented here towards a framework that allows for modular specification. To
this end, we need to define

• how to translate first-order signatures, terms and formulae,
• how to relate first-order models, and
• how to form the reduct of a first-order model along a signature translation.

With such notations in place, one can prove a satisfaction condition for first-
order logic similarly to the one stated in Theorem 5.

2.4.2 Second-Order Logic

First-order logic is well-suited to formalize most aspects of mathematical
reasoning. However, certain semantic concepts cannot be expressed with FOL
formulae.

Example 27: Total Orders

A strict linear or total order is a mathematical structure consisting of
a set and a binary relation, usually written <, which is asymmetric,
transitive and total (or trichotomous).

asymmetry: ∀x∀y(x < y ⇒ ¬ y < x)
transitivity: ∀x∀y∀z ((x < y ∧ y < z) ⇒ x < z)
totality: ∀x∀y((x �= y ⇒ (x < y ∨ y < x))

Asymmetry and transitivity clearly are first-order principles. In
totality, however, the special relation symbol “�=” is being used. For
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this relation, we usually assume that x = y means that x and y
denote the same object (element of the universe of discourse) and
x �= y, which is short for ¬ x = y, means that x and y are dif-
ferent objects. According to the semantics of FOL, however, in any
model the relation “=” is assigned an arbitrary binary relation. Con-
sequently, there will be many models satisfying asymmetry, transi-
tivity and totality, which do not match our intuition about a lin-
ear order. Take, for example, the model with U = {1, 2, 3}, I(<) =
{(1, 2), (2, 3), (1, 3)} and I(=) = {(1, 1), (2, 2), (3, 3), (1, 2)} (and hence
I(�=) = {(1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}). In this model, equality is not
even symmetric; yet all of the above axioms are satisfied.

With first-order formulae, we could force “=” to be an equiva-
lence relation (reflexive, symmetric, and transitive). Even with these
additional axioms, however, there will be strange interpretations, e.g.,
I(=) = U × U .

It can be shown that no finite set of FOL formulae can characterize equal-
ity on the universe in general. Therefore, in the logic FOL=

Σ (FOL with
identity) we add equalities as new atomic formulae.

FOL=
Σ :: = R(TΣ , . . . , TΣ) | (TΣ = TΣ) | ⊥ | (FOL=

Σ ⇒ FOL=
Σ) | ∃xFOL=

Σ

Semantically, for FOL=
Σ we add the clause

• M |= (t1 = t2) if and only if v(t1) = v(t2)

That is, (t1 = t2) holds in a model if t1 and t2 are evaluated to the same
element of the universe.

In FOL=, we can define properties which are beyond the expressiveness
of FOL. For example, the following formula states that the universe contains
exactly two elements:

∃x∃y(¬(x = y) ∧ ∀z(z = x ∨ z = y))

FOL= is very popular, especially in computer science; almost all auto-
mated theorem provers allow to use equality as a built-in relation. However,
adding equality to the syntax and semantics of the logic might appear like
a ‘cheap trick’. Logicians do not wish to extend the logic for every non-
expressible property with a new concept. What they would like is to be able
to write a formula which ‘defines’ equality. Attributed to Leibniz is the fol-
lowing extensionality principle:

Two objects are equal if they have all properties in common.

This principle involves ‘all properties’ an object can possibly have. Logically,
this is a quantification going beyond FOL. Second-order logic provides the
possibility to quantify also on predicates.
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Definition 15 (Syntax of MSO) A monadic second-order signature Σ is a
first-order signature Σ = (F ,R,V), where the set V is partitioned into a
set V0 = {x, y, z, . . .} of individual variables and a set V1 = {X,Y, P, . . .} of
(unary) predicate variables. Terms are built with relation symbols or predicate
variables, and atomic formulae are built from terms as above.

In second-order logic, quantification can be both on individual and predi-
cate variables:

TΣ :: = V0 | F(TΣ , . . . , TΣ)
MSOΣ :: = R(TΣ , . . . , TΣ) | V1(TΣ) | ⊥ | (MSOΣ ⇒ MSOΣ)

| ∃V0 MSOΣ | ∃V1 MSOΣ

In the syntax, we allowed unary predicate variables only; hence the logic is
called monadic second-order logic. In full second-order logic, quantification on
arbitrary n-ary relations is allowed. As an example for a syntactically correct
formula of MSO, consider the following principle of transfinite induction.

(TFI) ∀P (∀x(∀y(y < x ⇒ P (y)) ⇒ P (x)) ⇒ ∀xP (x))

To understand the meaning of this somewhat complex formula, we need to
define the semantics of the logic.
Definition 16 (Semantics of MSO) In a second-order model, the variable
valuation v : V → U ∪ 2U provides

• a value v(x) ∈ U to each individual variable x in the signature, and
• a value v(X) ⊆ U to each predicate variable X in the signature.

Now, the semantics of second-order quantification is straightforward:

• M |= (∃Xϕ) if and only if M′ |= ϕ for some M′ = (U, IF , IR,v′) with
v′(Y )=v(Y ) for all Y �= X.

That is, M |= (∀Xϕ) if and only if M′ |= ϕ for all M′ which differ from M
at most in the valuation of X.

With second-order logic, we can formulate Leibniz’ principle within the
logic:

∀x∀y(x = y ⇔ ∀P (P (x) ⇔ P (y)))

For further discussion of the Leibniz’ principle see, e.g., [For16].
Other properties which are undefinable in FOL but definable in second-

order logic include finiteness of the universe and mathematical induction.
For finiteness, there are several equivalent formulations. A popular one is

that a set is finite if and only if there exists a bijection onto some initial
segment of the natural numbers. Dedekind defined a set S to be finite if and
only if every injective function from S to S is also surjective. In second-order
logic, Dedekind’s definition could be formulated as follows:
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fun1 (f) � ∀x(S(x) ⇒ ∃y(S(y) ∧ f(x, y)))
fun2 (f) � ∀x∀y∀z(f(x, y) ∧ f(x, z) ⇒ y = z)
fun3 (f) � ∀x∀y(f(x, y) ⇒ S(x))
inj (f) � ∀x∀y∀z(f(x, z) ∧ f(y, z) ⇒ x = y)
surj (f) � ∀y(S(y) ⇒ ∃x(S(x) ∧ f(x, y)))
fin(S ) � ∀f(fun1 (f) ∧ fun2 (f) ∧ fun3 (f) ∧ inj (f) ⇒ surj (f))

Note that in this definition, second-order quantification is applied to the
binary relation symbol f . Hence this characterization is outside of MSO.

Mathematical induction is one of the most widely used proof principles for
properties of natural numbers. If one can show that property P holds for the
number 0, and that whenever P holds for any number i it also holds for the
successor i+1, then P holds for all natural numbers. This can be formulated
in monadic second-order logic as follows:

(MI) ∀P ( (P (0) ∧ ∀i(P (i) ⇒ P (i + 1))) ⇒ ∀iP (i))

Sometimes it is easier to read such a formula ‘in the opposite direction’: If
P holds for 0, but fails for some i > 0, then there must be some i where P
starts to fail, i.e., P (i) holds but P (i + 1) does not.

(MI’) ∀P (P (0) ∧ ∃i ¬P (i) ⇒ ∃i(P (i) ∧ ¬P (i + 1)))

The above principle (TFI) of transfinite induction is a generalisation of this
mathematical induction principle. If one can show that whenever property P
holds for all numbers smaller than x it also holds for x, then P holds for all
natural numbers. In other words, if P fails for some x, then there must be a
smallest such x where it fails:

(TFI’) ∀P (∃x¬P (x) ⇒ ∃x(¬P (x) ∧ ∀y(y < x ⇒ P (y))))

As an example which is more related to computer science, we can define the
reflexive transitive closure R∗ of a binary relation R in monadic second-order
logic. Call a set P of elements closed under R if whenever x in P and xRy,
then also y in P . As a formula this reads ∀x∀y((P (x) ∧ xRy) ⇒ P (y)). Now
mR∗n if every set P which contains m and is closed under R also contains n.

mR∗n ⇔ ∀P (P (m) ∧ ∀x∀y((P (x) ∧ yRx) ⇒ P (y)) ⇒ P (n))

This defines the reflexive-transitive closure R∗ of R as the minimal relation
which comprises identity and is closed under R. On natural numbers, the
“‘less or equal” relation ≤ is the reflexive transitive closure of the successor
relation +1.

m ≤ n ⇔ ∀P (P (m) ∧ ∀x(P (x) ⇒ P (x + 1)) ⇒ P (n))
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Therefore, the principle of mathematical induction is equivalent to the claim
that each natural number n is a reflexive transitive successor of 0:

∀n(0 ≤ n) ⇔ ∀P (P (0) ∧ ∀x(P (x) ⇒ P (x + 1)) ⇒ ∀nP (n))

Another interesting second-order property related to induction is term-
generatedness. Informally, it states that every object can be described by
a ground term, where a ground term is a term without variables. That is, a
ground term is a term which is built from constants and function applications
to other ground terms.

For example, in the signature where the set of functions consists of the
constant (0-ary function) c and the binary function symbol f the ground
terms include c, f (c, c), f (f (c, c), c), and f (c, f (c, c)).

Definition 17 (Term-generated model) A model is called term-generated, if
for any element k in the universe there exists a ground term t such that
I(t) = k.

This property can be formulated by a second-order formula. For sake of
simplicity, we give this formula only for the above signature which contains
exactly one constant c and one binary function f . The following property
holds in a model M if and only if it is term-generated.

∀P (P (c) ∧ ∀x∀y(P (x) ∧ P (y) ⇒ P (f(x, y))) ⇒ ∀xP (x)) (∗)

Note the similarity of this formula to the above induction principle: P (c) ∧
∀x(P (x) ⇒ P (f(x)) means that M(P ) contains M(c) and with every object
also all objects which can be obtained from M(c) by applying function M(f).
That is, M(P ) contains the interpretations of all ground terms in the sig-
nature. The formula (∗) states that any such P must contain all elements of
the universe. Stated negatively, M is not term-generated if and only if there
exists a set containing the interpretations of all ground terms, but not the
whole universe.

Definition 18 (Freely term-generated model) A model is called freely term-
generated, if for any element k in the universe there exists a unique ground
term t such that I(t) = k.

A model is freely term-generated, if it is term-generated and additionally
it holds that functions do not overlap and function applications to different
arguments yield different results. This can be expressed in FOL=, here again
for the above signature:

∀x, y(c �= f(x, y))
∧ ∀x1, x2, y1, y2(x1 �= x2 ∨ y1 �= y2 ⇒ f(x1, y1) �= f(x2, y2))

We will use the notions of term-generatedness and freely term-generatedness
in the next section on the formulation of the logic of Casl.
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2.4.3 The Logic of Casl

Whereas the above first- and second-order logics were designed to be as small
as possible to ease theoretical investigations, they are inconvenient for system
specification and verification. Therefore, various dialects and extensions of
these logics have been suggested, among them

• the program development languages “Vienna Development Method” VDM,
Z, B and Event-B,

• the OBJ family of languages, including CafeOBJ and Maude,
• the Meta-Environment ASF+SDF, which combines the “Algebraic Speci-

fication Formalism” ASF and the “Syntax Definition Formalism” SDF,
• the logics for program verification “ANSI/ISO C Specification Language”

ACSL and “Java Modelling Language” JML,

to name just a few. Here, we discuss the extension to first- and second-order
logics that were introduced with the algebraic specification language Casl
(to be discussed in Chap. 4). The material presented can be safely skipped
by the casual reader.

The “Common Algebraic Specification Language” Casl [Mos04, BM04] is
a specification formalism developed by the CoFI initiative [Mos97] through-
out the late 1990s and early 2000s. The aim of the CoFI initiative was to
design a Common Framework for Algebraic Specification and Development
in an attempt to create a de facto platform for algebraic specification. The
main motivation for the CoFI initiative came from the existence of a num-
ber of competing algebraic specification languages with varying levels of tool
support and industrial uptake.

The logic of Casl basically consists of many-sorted first-order logic with
equality, which allows for partial functions and also includes sort generation
constraints. In the following we introduce these concepts step by step, and
discuss finally syntax and semantics of Casl specifications.

Note that Casl also includes the concept of subsorting. Here, we refrain
of introducing this concept and refer to the literature [Mos04].

FOL with Sorts

One issue with FOL is that the universe of discourse is not structured.
Whereas this is mostly unproblematic for mathematical theories (which deal,
e.g., solely with natural or real numbers), computer science specifications
often refer to different sorts of data.
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Example 28: Lexicographic Order

As a practical application, let us consider a telephone book containing
a set of different names. If you want to write a program which lists
these names, usually you have to order them lexicographically. The lexi-
cographic order is a total order on the set of character strings over some
alphabet. The Latin alphabet {A, .. . , Z} is ordered by A < B < · · · <
Z. Building on this, the lexicographic order on strings can be defined as
follows: Let x � x1x2 . . . xm and y � y1y2 . . . yn be two strings. Then
x < y if and only if
• There exists a position i such that x and y are equal up to i, and

xi < yi (e.g., “bell”<“bet”), or
• x is an initial segment of y (e.g., “bet”<“better”).

Mathematically, this can be written as follows.

x1x2 . . . xm < y1y2 . . . yn if and only if
(∃i(i ≤ m ∧ i ≤ n ∧ xi < yi ∧ ∀j(j < i ⇒ xj = yj)
∨(m < n ∧ ∀j(j ≤ m ⇒ xj = yj)))

Note that the above is not a FOL formula, as, e.g., it makes use of
indexed variables in combination with the “. . .” notation—to be filled
with meaning by the human reader.

In this mathematical formulation, i and j range over natural num-
bers, x and y denote strings, and xi and yj are characters. The sym-
bols “<” and “≤” denote the ordering between integers, characters and
strings, respectively, i.e., these symbols are ‘overloaded’. However, each
variable is used to refer to objects of one type only.

In order to deal with these issues, one can introduce types into FOL.
Each variable ranges over a certain type. Functions and predicates have
argument types and result types. Using the sorts String and Nat , we
can formulate lexicographic ordering in many-sorted FOL=:

∀x : String ∀y : String .(x < y ⇐⇒
(∃i : Nat .(i ≤ min(length(x), length(y)) ∧ elem(x, i) < elem(y, i)

∧∀j : Nat .(j < i ⇒ elem(x, j) = elem(y, j)))
∨(length(x) < length(y)

∧∀j : Nat .(j ≤ length(x) ⇒ elem(x, j) = elem(y, j)))))

In the logic many-sorted FOL=, sort symbols are added to the signature
and relations, functions and variables are typed.

Definition 19 (Many-sorted signature) A first-order signature with sorts or
many-sorted signature Σ = (S,F ,R,V) consist of a nonempty finite set S
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of sort symbols (or type symbols2) and a first-order signature (F ,R,V). In
contrast to plain FOL, where each function just has an arity, with each f ∈ F
is associated a list of argument types, and a result type. A function symbol
named f with argument types (T1, . . . , Tn) and result type T is written as
f : T1 × . . . × Tn → T . Again, if the list of argument types is empty, then
f is called a constant symbol of type T . Similarly as with functions, in a
many-sorted signature each R ∈ R consists of a relation name and a list
of argument types, but no result type. A relation symbol sometimes is also
called a predicate symbol.3 Finally, each variable from V consists of a name
and a type. We write x : T for the variable with name x and type T .

The definitions of terms, atomic formulae and formulae of many-sorted
first-order logic are similar to the ones for normal first-order logic, with the
exception that each term must respect typing.

Definition 20 (Syntax of many-sorted FOL=) Terms and formulae of many-
sorted first-order logic are defined as follows.

• If x is the name of a variable of type T , then x is a term of type T .
• If t1, . . . , tn are terms of types T1, . . . , Tn, respectively, and f is the name

of an n-ary function symbol with argument types (T1, . . . , Tn) and result
type T , then f(t1, . . . , tn) is a term of type T .

• If t1 and t2 are terms of the same type, then t1 = t2 is an atomic formula.
• If t1, . . . , tn are terms of type T1, . . . , Tn, respectively, and R is the name

of an n-ary relation with argument types (T1, . . . , Tn), then R(t1, . . . , tn)
is an atomic formula.

• An atomic formula is a formula.
• ⊥ is a formula, and (ϕ ⇒ ψ) is a formula, if ϕ and ψ are formulae.
• If x is the name of a variable of type T , and ϕ is a formula, then ∃x : T . ϕ

is a formula.

Example 28.1: Lexicographic Order in Casl

Within this logic, we can precisely express the above example. In Casl
pretty printing it reads as follows (note that “.” is typeset as “•”):
spec LexicographicOrder =

sorts String, Nat, Char
ops min : Nat × Nat → Nat ;

length : String → Nat ;
elem : String × Nat → Char

preds < : Nat × Nat ;

2 In this book, the words “sort” and “type” are mutually exchangeable. Historically,
logicians prefer the word “type”, whereas computer scientists prefer to use the word
“sort”.
3 In Casl, the word “predicate” is used instead of the word “relation”. Thus, in algebraic
specifications we will use the words “relation” and “predicate” interchangeably.
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≤ : Nat × Nat ;
< : String × String ;
< : Char × Char

∀ x, y : String
• x < y

⇔ (∃ i : Nat
• i ≤ min(length(x ), length(y)) ∧ elem(x, i) < elem(y, i)

∧ ∀ j : Nat • j < i ⇒ elem(x, j ) = elem(y, j ))
∨ (length(x ) < length(y)

∧ ∀ j : Nat • j ≤ length(x ) ⇒ elem(x, j ) = elem(y, j ))
end

Definition 21 (Semantics of many-sorted FOL=) In a many-sorted model,
the universe of discourse is divided into sorts. That is, a model for many-
sorted FOL= contains in addition to its universe of discourse U , interpretation
function I and variable valuation v, a mapping T from sort symbols to
subsets of the universe.

Formally, M = (U, I,v, T ), where (U, I,v) is a first-order model, and
T : S → 2U . For each sort T , the set T (T ) ⊆ U is a non-empty set called the
carrier set of T in M.

Interpretation and valuation must respect the sorts declared in the signa-
ture:

• For f : T1 × . . .×Tn → T , the interpretation I(f) of f must be a function
from T (T1) × · · · × T (Tn) to T (T ).

• If R ∈ R has argument types (T1, . . . , Tn), then the interpretation I(R)
of R must be a subset of T (T1) × · · · × T (Tn).

• If the variable x has type T , then the valuation v(x) must be an element
of T (T ).

With these restrictions, each term of sort T evaluates to an element of
the carrier set of T . The validation relation M |= ϕ between model M and
formula ϕ is defined exactly as in first-order logic.

Considering just the expressiveness, multi-sorted FOL= is no more expres-
sive than pure FOL=: For any sort symbol T we could introduce a monadic
predicate isT and replace all formulae ∃x : T. ϕ by ∃x(isT (x)∧ϕ). However,
for practical applications, using sorts greatly increases the usability for sys-
tem specification and the readability of formulae. The situation is similar as
with programming languages: whereas in the early days each program vari-
able referred to ‘a machine word’, many modern programming languages rely
on some type system.
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Partial Functions

In mathematics and computer science, there are functions which are defined
only for certain arguments. A prominent example is the division function div
on naturals, which is undefined if the divisor is 0. Strictly speaking, division
is not a function on pairs of naturals, as in a function each input is related
to exactly one output. Another example would be the function which returns
the first element of a string, which is undefined for the empty string. In order
to deal with such a situation, there are several possibilities:

• One can restrict the domain to those arguments, where the function
returns a value; in our example, div : Nat × Nat \ {0} → Nat .

• One can extend the range by a value ω for ‘undefined’; in our example,
div : Nat × Nat → Nat ∪ {ω}

• One can introduce the new syntactic category of partial functions, where
in a partial function each input is related to at most one output; in our
example, div : Nat × Nat →? Nat

What the ‘best’ solution would be, depends on personal taste, the applica-
tion domain, and also the availability of tools. Casl offers total and partial
functions.

Definition 22 (Signature with partiality) A signature with partiality Σ =
(S,F t,Fp,R,V) is a signature where (S,F t,R,V) forms a many-sorted sig-
nature as above, and Fp is a set of partial function symbols. We require that
function symbols are either total or partial, i.e., there is no f with argument
types (T1, . . . , Tn) and result type T which is both in F t and Fp. A par-
tial function f ∈ Fp with argument types (T1, . . . , Tn) and result type T is
written as f : T1 × . . . × Tn →? T .

Example 29: Datatype of Strings in Casl

The datatype of Strings speaks about two kinds of data, namely data
can be a character Char or a string String. We denote the empty string
with the constant eps. It is possible to concatenate a character with
a string, in order to obtain a new string. We write concatenation as
an infix operation :: , which includes two placeholders: the first
for a character, the second for a string. We have two ‘decomposition’
methods for strings. The operation first returns the first character of
a non-empty string. first is a partial operation. Given a string s as its
parameter, the operation rest returns s without its first character. rest
is a total operation. Finally, there is a predicate symbol isEmpty, which
holds just for the empty string eps.

spec LooseString =
sorts Char ;

String
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ops eps : String ;
:: : Char × String → String ;

first : String →? Char ;
rest : String → String

pred isEmpty : String
∀ c : Char ; s : String
• isEmpty(s) ⇔ s = eps
• def first(s) ⇔ ¬ isEmpty(s)
• first(c :: s) = c
• rest(eps) = eps
• rest(c :: s) = s

end

Casl has a definedness predicate def on terms, which holds if a term
is defined. Using this predicate we state that first is defined for all non-
empty strings.

A model M = (U, I,v, T ) with partiality is a many-sorted model, where
each n-ary partial function symbol f : D1 × · · · Dn →? Dn+1 is interpreted
as a partial function I(f) : D1 × · · · Dn × Dn+1. This is a n + 1-ary relation
where from (x1, . . . , xn, y1) ∈ I(f) and (x1, . . . , xn, y2) ∈ I(f) it follows that
y1 = y2. If for some (x1, . . . , xn) there is a y such that (x1, . . . , xn, y) ∈ I(f),
we say that f is defined for (x1, . . . , xn), else undefined.

Terms with partiality are formed in the same way as many-sorted terms,
with function symbols from Fp ∪ Fp. Formulae are built in the same way as
many-sorted formulae.

Note that constants, which are 0-ary function symbols, can be defined or
undefined. Semantically, we will treat a term to be undefined in a model if
any of its arguments is undefined in this model. Sometimes this property
is called strictness. For a predicate to be true, we will require that all of
its arguments are defined. That is, P (t1, . . . , tn) is false if any of the ti is
undefined. An exception is equality: (t1 = t2) is true if and only if both terms
are undefined or both terms are defined and equal. In order to express that
a term t is defined, we introduce a special unary predicate def which is true
if and only if applied to a defined term. Note that in the presence of partial
function symbols, v itself is a partial function from terms to values. In this
case, variables can also be undefined.

Formally, the semantics is defined as follows:

Definition 23 (Semantics of many-sorted FOL= with partiality) Given a
model M = (U, I,v, T ) with partiality, we define:

• v(f(t1, . . . , tn)) =

⎧
⎨

⎩

y, if all v(t1), . . . ,v(tn) are defined, and
(v(t1), . . . ,v(tn), y) ∈ I(f)

undefined, otherwise
• M |= R(t1, . . . , tn) if and only if all v(t1), . . . ,v(tn) are defined and

(v(t1), . . . ,v(tn)) ∈ I(R).
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• M |= (t1 = t2) if and only if v(t1) and v(t2) are both undefined, or both
defined and v(t1) = v(t2).

• M |= def t if and only if v(t) is defined.
• M /|= ⊥, and
• M |= (ϕ ⇒ ψ) if and only if M |= ϕ implies M |= ψ.
• M |= ∃x : T.ϕ if and only if M′ |= ϕ for some M′ = (U, I,v′, T ) such

that for all y �= x it holds that v′(y) and v(y) are both undefined, or both
defined and v′(y) = v(y).

We illustrate this definition by continuing our example of the first function
on strings, namely the interplay of partiality with predicates and equality.

Example 29.1: Properties of Loose Strings

spec PropertyOfLooseStrings =
LooseStrings

then pred < : Char × Char %(any relation on Char)%

then %implies

∀ s, t : String
• first(s) < first(t) ⇒ ¬ isEmpty(s) %(*)%

end

In Casl, a set of axioms is separated from its semantic consequences
through the annotation implies. (For a further explanation of this con-
struct, see Chap. 4 on Casl.) The formula (*) is a logical consequence
of the specification LooseStrings extended by the operation < .
The predicate first(s) < first(t) is only true if both terms first(s) and
first(t) are defined. Therefore, first(s) < first(t) implies that s (and also
t) is not empty. If we would replace formula (∗) by the following

• first(s) = first(t) ⇒ ¬ isEmpty(s) %(**)%

then the specification would become inconsistent: if both s and t are
empty, then first(s) and first(t) are both undefined. Therefore, first(s) =
first(t) is true. However, ¬isEmpty(s) is false, hence (∗∗) is also false.

Sort Generation Constraints

Casl is intended to be a practical specification language. As such, it offers
simple syntactic means to express complex second-order properties such as
term-generatedness. To this end, Casl allows to declare generated and free
data types. We present the key ideas by examples; for technical details the
reader is referred to Mosses et al. [Mos04].
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Example 28 on lexicographic order uses the data type of strings. In contrast
to many programming languages, in Casl there are no predefined basic data
types that are part of the language definition. There is a library of such data
type definitions available ready for use, however, the specifiers can decide if
they want to import these or not.

Example 29.2: Casl Data Types

We first recapitulate how Strings have been defined in Example 29. Here,
we concentrate on part of the signature only:

spec String1 =
sort Char
sort String
ops eps : String ;

:: : Char × String → String
end

This signature declaration can be equivalently written using the Casl
type construct.

spec String2 =
sort Char
type String ::= eps | :: (Char ; String)

end

The type construct declares the sort String, and operations eps and
:: , which have the sort String as their result type.
The type construct can be qualified by the keyword generated:

spec String3 =
sort Char
generated type String ::= eps | :: (Char ; String)

end

This means that we are considering only models in which the sort
String3 is term-generated by eps, :: , and variables of sort Char.

Note that it is possible to declare further operations with result type
String3. However, these further operations don’t contribute to the
terms needed for generatedness.
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Alternatively, it is possible to qualify the type by the keyword free:

spec String4 =
sort Char
free type String ::= eps | :: (Char ; String)

end

This means that we are considering only models in which the sort
String4 is freely term-generated by eps, :: , and variables of sort
Char.

As these examples demonstrate, Casl offers handy syntax for the second-
order formulae discussed above in Sect. 2.4.

Example 28.3: Recursive Lexicographic Order in Casl

Utilizing strings as a freely generated type, and the partial function first
on strings, we can give a recursive definition of lexicographic order in
Casl, which resembles a recursive, functional program.
spec LexicographicOrder2 =

String4
then ops first : String →? Char ;

rest : String → String
∀ c : Char ; s : String
• ¬ def first(eps)
• first(c :: s) = c
• rest(eps) = eps
• rest(c :: s) = s
preds < : String × String ;

< : Char × Char ;
isEmpty : String

∀ s : String • isEmpty(s) ⇔ s = eps
∀ x, y : String
• isEmpty(x ) ∧ isEmpty(y) ⇒ ¬ x < y
• isEmpty(x ) ∧ ¬ isEmpty(y) ⇒ x < y
• ¬ isEmpty(x ) ∧ ¬ isEmpty(y) ⇒

(first(x ) < first(y) ⇒ x < y)
• ¬ isEmpty(x ) ∧ ¬ isEmpty(y) ⇒

(first(x ) = first(y) ⇒ rest(x ) < rest(y))
end

For the operations first and rest we write the axioms using ‘pat-
tern matching’. For first, we consider two cases: for eps, the result is
undefined; in the non-empty case we know that the string argument is
composed from a character and a string—and we return the character.
Analogously, we define rest for eps and the situation c::s.
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The lexicographic order < is also defined using ‘pattern matching’.
For empty strings x and y we do not have that x < y. For the empty
string it holds that eps < y, provided y is not empty. If both x and y are
non empty, there are two cases. In the first case, the first character of x
is smaller than the first character of y. Then we know that x < y. In the
second case, the first characters of x and y are identical. In this situation,
we have to consider what holds for the rest, i.e., rest(x ) < rest(y).

Thanks to term-generatedness, it is possible to give inductive proofs of
properties for such specifications.

The Semantics of Casl Specifications

The algebraic specification language Casl provides an intuitive syntax to
ease the writing of system specifications in logic. This makes it possible to
find potential mistakes in specifications already on the syntactic level. An
example of this would be a message such as “*** Error: unknown sort”.
Here, the static semantics of Casl allows to check whether a signature is
coherent and formulae are written using only the declared signature.

The result of the static analysis of a Casl specification is

• a first-order signature Σ = (S,F t,Fp,R,V) (see Definition 22) with
V = ∅. In the Casl context, such a signature is referred to as a tuple
(S, TF, PF, P ) with total function symbols TF = F t, partial function
symbols PF = Fp, and predicate symbols P = R, and

• a set of many-sorted closed formulae Φ over Σ, possibly including the sort
generation constraints generated and free.

The semantics of a Casl specification Sp with (Σ,Φ) is then given as the
model class of Φ with non-empty carrier sets:

Mod(Sp) � {M is a model over Σ |M |= Φ and M(s) �= ∅ for all s ∈ S}

There are many possibilities of how to define morphisms between models
of many-sorted FOL with partiality. In the context of Casl, the following
choice has been made:

Definition 24 (Model homomorphism) Let Σ = (S, TF, PF, P ) be a sig-
nature and M and N models over Σ. A many-sorted Σ-homomorphism
h : M → N is a family of functions h = (hs : Ms → Ns)s∈S with the
following three properties:

• Let f : T1 ×· · ·×Tn → T ∈ TF , and (a1, . . . , an) ∈ M(T1)×· · ·×M(Tn).
Then

hT (M(f)(a1, . . . , an)) = N (f)(hT1(a1), . . . , hTn
(an)).
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• Let f : T1 × · · · × Tn →? T ∈ PF , (a1, . . . , an) ∈ M(T1) × · · · × M(Tn),
and M(f)(a1, . . . , an) defined. Then

hT (M(f)(a1, . . . , an)) = N (f)(hT1(a1), . . . , hTn
(an)).

• Let p ∈ P have argument types T1, . . . , Tn, and (a1, . . . , an) ∈ M(T1) ×
· · · × M(Tn). Then

(a1, . . . , an) ∈ M(p) implies (hT1(a1), . . . , hTn
(an)) ∈ N (p).

In the Casl context, a model homomorphism preserves definedness of
partial functions and truth of predicates. A model isomorphism is a model
homomorphism in which all functions hs are bijective. The model class of
a specification is said to be monomorphic if and only if all models of the
specification are isomorphic to each other.

In this section, we described basic Casl specifications. Casl also includes
structured specifications and architectural specifications. For the semantics
of these constructs we refer to the literature [Mos04].

2.5 Non-Classical Logics

Classical logics (i.e., PL, FOL, MSO, and extensions thereof) have been
very successful as a basis for the formalization of mathematical reasoning.
Hence these logics are often referred to as “mathematical logic”. However,
for the formalization of other areas of interest, many competing approaches
have been proposed. The reason is that classical logics have a number of
shortcomings. Basically, they support a “static” view onto things only, lacking
(among other things)

• alternative aspects: Classical logic can describe how things are, but not
how they could be;

• subjective viewpoints: Personal and common knowledge, beliefs, obliga-
tions, and ambitions are not easily described in classical logics;

• dynamic aspects: To model a change of state in classical logics, time is
treated like any other relation parameter. This does not reflect the ubiquity
of time in, e.g., computer science applications;

• spacial aspects: Likewise, for reasoning about robot positions or distributed
computing, the location of objects plays a dominant role;

• resource awareness aspects: Dealing with objects which cease to exist or
come into existence is not easy in classical logics, since the universe of
discourse is fixed. However, it is essential when arguing about limited
resources.

For each of these aspects, special logics have been proposed which allow
a convenient modelling and arguing about systems in which the respective
aspect is important.
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2.5.1 Modal and Multimodal Logics

Modal logic is the logic of possibility and necessity. It started out as a syn-
tactical exercise when philosophers were asking questions such as

If it is necessarily the case that something is possibly true, does it follow that it is
possible that this thing is necessarily true?
E.g., if it necessarily is possible that tomorrow will be cloudy, is it possible that it
tomorrow will be necessarily cloudy?

In the beginning of the 20th century this was formalized with the operators
� (for “possibly”) and � (for “necessarily”).

Definition 25 (Syntax of modal logic) Given a propositional signature P,
the syntax of modal logic can be defined as follows.

MLP :: = P | ⊥ | (MLP ⇒ MLP) | �MLP

Of course, we use all abbreviations from propositional logic (∧,
∨

,⇔, etc.).
The � operator can be defined by �ϕ ⇐⇒ ¬�¬ϕ. That is, a sentence is
necessarily true if it is not the case that it could be possibly false.

With this syntax, the above question could be written as

(�� cloudy ⇒ �� cloudy)

Various deductions systems were proposed on top of propositional logic for
the derivation of such formulae. For example, the most basic modal proof
system uses the following axioms and rules:

Definition 26 (Axiomatic system for modal logic)

(PL) all propositional tautologies
(K) (�(ϕ ⇒ ψ) ⇒ (�ϕ ⇒ �ψ))
(N) ϕ � �ϕ
(MP) ϕ, (ϕ ⇒ ψ) � ψ

Here, a formula is a propositional tautology if it can be proven by propo-
sitional reasoning. Axiom (K) is named in honour of Saul Kripke. It can be
read as “if it is necessarily the case that ϕ implies ψ, and ϕ is necessarily
true, then also ψ must necessarily hold.”4

4 Due to this axiom, the logic sometimes is called “modal logic K”.
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Example 30: Derivation of a Modal Formula in K

With this proof system, we can, e.g., derive (�(p ∧ q) ⇒ �p):
(1) � ((p ∧ q) ⇒ p) (PL)
(2) � �((p ∧ q) ⇒ p) (1, N)
(3) � (�((p ∧ q) ⇒ p) ⇒ (�(p ∧ q) ⇒ �p)) (K)
(4) � (�(p ∧ q) ⇒ �p) (2,3,mp)

A number of additional axioms have been suggested. Originally, these
axioms have been motivated by questions of philosophical nature. Consider,
for example, the following ones.

(T) (�ϕ ⇒ ϕ)
(D) (�ϕ ⇒ �ϕ)
(4) (�ϕ ⇒ ��ϕ)
(B) (��ϕ ⇒ ϕ)
(5) (��ϕ ⇒ �ϕ)
One of these philosophical question was (T): what are the logical conse-

quences of the statement “if p is necessarily true, then p is true”? Each com-
bination of such and other axioms has been studied intensely with respect to
the question what can be derived.

Example 31: Derivation of a Modal Formula in T

Using just the (K) and (T) axioms, we can, e.g., derive (��p ⇒ p):
(1) � (�p ⇒ p) (T)
(2) � �(�p ⇒ p) (1, N)
(3) � (��p ⇒ �p) (2,K)
(4) � ((��p ⇒ �p) ⇒ ((�p ⇒ p) ⇒ (��p ⇒ p))) (PL)
(5) � ((�p ⇒ p) ⇒ (��p ⇒ p)) (3,4,MP)
(6) � (��p ⇒ p) (1,5,MP)

In the beginning of modal logic, researchers were busy to find out which
formulae could be syntactically derived from other axioms in this way. A
major step was the definition of a semantic foundation for modal logics by
Saul Kripke [Kri59]. He proposed that a model for modal logic consists of
a universe of possible worlds, a binary accessibility relation between these
worlds, and an interpretation which assigns a set of possible worlds to each
proposition symbol. With this semantics, �ϕ is true in some possible world w,
if ϕ is true in all possible worlds w′ which are accessible from w. Thus, modal
models basically are graphs, consisting of nodes (possible worlds) and edges
(the accessibility relation between possible worlds). Modal logic therefore is
well-suited to reason about all sorts of graph structures. Before giving the
formal definitions, we discuss a widely known graph structure.
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Example 32: Modelling the World Wide Web in Modal Logic

The world wide web consists of a large number of web pages, which are
connected via hyperlinks. Assume that you have a number of homepages,
which link to some pages with your hobbies and to pages with your work
projects. All pages with your hobbies link back to the homepage, as well
as to outside pages belonging to a club of which you are a member. Your
work pages contain links to themselves and to the home pages of your
lab.

The following set of modal formulae could describe this situation.
(isHome ⇒ (�isHobby ∧ �isWork))
(isHobby ⇒ (�isHome ∧ �isClub))
(isWork ⇒ (�isWork ∧ �isLab))

Questions you might be interested in asking about this structure
include:
• Are there no “dangling references”, i.e., does every page link to some

other page?
• Is it possible to come back from any page to a homepage?

Often, in practical applications, there is more than one accessibility rela-
tion. For example, in our model of the world wide web (see Example 32),
we might want distinguish between internal links (on the same server) and
external links (on a server outside of our control). This could be done by
having two different modal operators 〈int〉 and 〈ext〉, and by replacing, e.g.,
the second of the above formulae by

(isHobby ⇒ (〈int〉isHome ∧ 〈ext〉isClub))
The resulting logic is called multimodal logic (MML). Formally, it is defined
as follows.

Definition 27 (Syntax of multimodal logic) Given a signature Σ = (P,R)
of modal proposition symbols p ∈ P and relation symbols R ∈ R, the set of
formulae of MML is defined as follows.

MMLΣ :: = P | ⊥ | (MMLΣ ⇒ MMLΣ) | 〈R〉MMLΣ

The operator [R] is the dual of the operator 〈R〉, much the same as ∀ is
the dual of ∃. Formally, [R]ϕ is defined to be an abbreviation for ¬〈R〉¬ϕ.
The intended reading of 〈R〉ϕ is “there is a node accessible via R in which ϕ
holds”, and [R]ϕ reads “for all nodes accessible via R it holds that ϕ is true”.

This is made precise by the semantics of MML. A (modal) frame for the
modal signature Σ is a tuple (U, IR), where

• U is a nonempty set of possible worlds or evaluation points, and
• IR is a mapping R → 2U×U assigning a binary accessibility relation over

U to every relation symbol.

A model M for MML is a structure M = (U, IR, IP), where
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• (U, IR) is a modal frame, and
• IP is a mapping P → 2U assigning a set of possible worlds to each modal

proposition symbol. The intention is that IP(p) denotes those worlds
where the modal proposition p is true.

If there is only one accessibility relation, then these models are also called
Kripke-structures.

Given a multimodal formula ϕ, a model M, and an evaluation point w ∈ U ,
the validation relation M, w |= ϕ can be defined.

Definition 28 (Validation relation for multimodal logic)

• M, w |= p if and only if p ∈ w for p ∈ P,
• M, w /|= ⊥, and M, w |= (ϕ ⇒ ψ) if and only if M, w |= ϕ implies

M, w |= ψ, and
• M, w |= 〈R〉ϕ if and only if there exists w′ ∈ U such that (w,w′) ∈ IR(R)

and M, w′ |= ϕ.

From the definition of [R]ϕ it follows that

• M, w |= [R]ϕ if and only if for all w′ ∈ U such that (w,w′) ∈ IR(R) it
holds that M, w′ |= ϕ.

A formula is universally valid in a model, if it holds at every point:

• M |= ϕ if and only if M, w |= ϕ for every w ∈ U .

Example 32.1: Checking Links in the WWW Model

Assume the following MML-model M = (U, IR, IP , w0) for our frag-
ment of the world wide web:
• U = {w0, w1, w2, w3, w4 w5}
• IR(int) = {(w0, w2), (w0, w3), (w1, w2), (w1, w3), (w2, w0)}
• IR(ext) = {(w2, w4), (w3, w5), (w5, w5)}
• IP(isHome) = {w0, w1}, IP(isHobby) = {w2}, IP(isWork) =

{w3, w5}, IP(isClub) = {w2, w4}, IP(isLab) = {w5}
It is easy to see that all of the specification formulae given above

are universally valid in this model. A graphical description is as follows:

We can check whether there are no “dangling references” by evaluating
the formula (〈int〉� ∨ 〈ext〉�) for any w ∈ U . It turns out that this
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formula does not hold at w4, since there is no link from this node. Like-
wise, the formula [int ]〈int〉isHome expresses that every page reachable
by an internal link has an internal link to the homepage. This formula
is not satisfied at w0 and w1, since (w0, w3) and (w1, w3) ∈ IR(int), but
w3 does neither link back to w0 nor to w1. If we consider an alternative
model, where

• IR(int) = {(w0, w2), (w0, w3), (w1, w2), (w1, w3), (w2, w0), (w3, w1)}
and

• IR(ext) = {(w2, w4), (w3, w5), (w5, w5), (w4, w5)},

then all specification formulae and both properties are satisfied.

The semantics of MML described above suggests that formulae of multi-
modal logic can be translated into first-order logic. In fact, there is a standard
translation STw : MML → FOL, where modal propositions p ∈ P are unary
first-order predicates, and accessibility relation R ∈ R are binary first-order
relations. The translation yields a first-order formula with exactly one free
variable w.

• STw(p) = p(w)
• STw(⊥) = ⊥
• STw((ϕ ⇒ ψ)) = (STw(ϕ) ⇒ STw(ψ))
• STw(〈R〉ϕ) = ∃v (wRv ∧ STv(ϕ)),

where v is a new variable not appearing in STw(ϕ)

In principle, this translation uses a new variable for each modal operator.
By “re-using” bound variables, it suffices to use only the two variables w
and v. Thus, modal logic is embedded in the two-variable-fragment of FOL,
cf. [BdRV01].

2.5.2 Deontic Logic

Deontic logic is a branch of modal logic concerned, among other things,
with moral and normative notions like permission, prohibition, obligations,
optionality, power, indifference, immunity, etc. As any other logics, deontic
logic cares about the logical consistency of (some of) the above notions, but
also about the faithful representation of their intuitive meaning in different
real-life context, like law, moral systems, business organizations and security
systems.

Let us consider a first example on a workflow description of an airport
ground crew describing what to do during the check-in process.
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Example 33: Prescriptions for an Airport Ground Crew

1. The ground crew is obliged to open the check-in desk and request
the passenger manifest from the airline two hours before the flight
leaves.

2. The airline is obliged to provide the passenger manifest to the ground
crew when the check-in desk is opened.

The complete work description has several more clauses similar to the
above; the example will be continued in Chap. 6.
Below, we will show how the clauses may be formalised in deontic logic.

Our second example is part of a famous example in deontic logic on a
moral system.

Example 34: John’s Obligations for Partying

Mary is offering a party and has invited many friends, John among
them. As John is not very reliable, Mary has asked him to respect the
following agreement:
1. John ought to go to the party;
2. If John goes to the party, then he ought to tell them he is coming;
3. If John doesn’t go to the party, then he ought not to tell he is coming.

The above may be formalised in deontic logic.

There are many formal systems for deontic logic. In what follows we will
introduce Standard Deontic Logic (SDL). The starting point when defining
SDL was to take different modal logics and to make analogies between “neces-
sity” and “possibility”, with “obligation” and “permission”. Thus, the modal
operators � and � became “P” and “O”. However, this turned out to be
difficult as many of the rules in modal logic did not transfer to deontic logic
(as seen in the example below), though it was useful to make a start in
understanding these normative concepts.

In modal logic with axiom (T) the following holds:

• If p then �p (if p is true, then it is possible).
• If �p then p (if it is necessary that p, then p is true).

While this makes perfect sense for the interpretation of � and � as possibility
and necessity, it might not do so when considering possibility as permission
and necessity as obligation:

• If p then P p (if p is true, then it is permissible).
• If O p then p (if it is obligatory that p, then p is true).

This is clearly counter-intuitive as any obligation then must be satisfied, and
given any fact or action, it would be permissible.

We introduce now the syntax of the logic.
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Definition 29 (Syntax of SDL) Assume we are given a propositional signa-
ture P. The formulae of standard deontic logic are defined by

SDLP :: = PLP | (SDLP ⇒ SDLP) | P PLP

That is,

• if ϕ is a propositional formula, then P ϕ is an SDL formula, and
• every propositional combination of SDL formulae is an SDL formula.

In contrast to multimodal logic, in SDL the modalities cannot be nested, since
it appears pointless to state that “it is obligatory that it is obligatory that
something must be done.” Besides the usual derived operators inherited from
propositional logic (conjunction, disjunction, etc), the following additional
two modalities are useful:

O p � ¬P ¬p (obligation)

F p � ¬P p (= O ¬p) (prohibition)

From the above we also get the intuitive relation that being permitted is the
same as not being forbidden and vice-versa.

Example 33.1: Formalisation of the Ground Crew Procedure

The two clauses of Example 33 may be formalised in SDL as follows:
1. (flight leaves ⇒ (O desk opens ∧ O request man))
2. (desk opens ⇒ O provide man)
where flight leaves represents the fact that the flight leaves in at least
two hours, desk opens represents that “the ground crew opens the check-
in desk”, request man that “the ground crew requests the passenger
manifest from the airline”, and provide man “the airline provides the
passenger manifest to the ground crew”.

Note that going from a natural language description to a formal language is
a modelling task, so it usually involves abstraction and certain subjectivity.
It is worth noting the following in the example above: (i) As the logic is
untimed we cannot represent the temporal aspect of the flight leaving in
at least two hours; (ii) There is no notion of causality, thus both sentence
should be interpreted in a certain context (e.g., we know that desk opens
should happen only if flight leaves happens).

The following example shows a formalisation of an extension of Example 34.
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Example 34.1: Formalisation of John’s Obligations

Let us assume now that we add the following fact to the agreement
between Mary and John:
1. John does not go to the party

The above may be formalised in SDL as follows (including the agree-
ment):

1. O party
2. O(party ⇒ tell)
3. (¬party ⇒ O ¬tell)
4. ¬party

SDL has a Kripke-like modal semantics based on: (i) a set of possible worlds
(with a truth assignment function of propositions per possible world), and
(ii) an accessibility relation associated with the O-modality. The accessibility
relation points to ideal or perfect deontic alternatives of the current world,
and to handle violations of obligations and prohibitions the semantics needs
to be extended. Here, we will not present such a semantics; instead, we will
instead see in more detail a proof system for SDL.

Definition 30 The axiomatic system of SDL consists of the following axioms
and rules.

(PL) all propositionally valid formulae
(KO) (O(ϕ ⇒ ψ) ⇒ (O ϕ ⇒ O ψ)))
(DO) ¬O ⊥
(NO) ϕ � O ϕ
(MP) ϕ, (ϕ ⇒ ψ) � ψ

In fact, this axiomatic system is the same as for the classic modal logic
K (see Definition 26), with the additional axiom (DO). This axiom states
that it cannot be obligatory to do something impossible. E.g., it cannot be
obligatory to go and not go to the party.

Example 33.2: Deduction on the Ground Crew Procedure

We now present a small example for reasoning in deontic logic. Here,
we outline only the major steps, the complete proof could be written as
a Hilbert deduction as in Example 21.

Let us assume that the ground crew respects the two obligations on
their procedure, namely O desk opens and O request man. By adding
the fact that the departure time is two hours from now, we can assume
flight leaves. From (MP) and the fact flight leaves and the clause

flight leaves ⇒ (O desk opens ∧ O request man)
we know that the ground crew now has two obligations that we have
assumed are not violated. In this case we have two new facts: desk opens
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and request man. By (MP) again, applied to desk opens and
(desk opens ⇒ O provide man),

we can derive the obligation of the airline to provide the passenger
manifest, O provide man.

One of the main problems logicians face when formalising normative
notions is to avoid so-called puzzles and paradoxes. Some are logical para-
doxes, i.e., the formal system allows to deduce contradictory actions, others
are practical paradoxes (including the so-called “practical oddities”) where
we can get counterintuitive conclusions. For instance, given some facts in
SDL, we can deduce the obligation of doing something and at the same time
not doing it. This can be shown in the partying example.

Example 34.2: Reasoning on John’s Obligations

Let us consider the formalisation of the agreement between Mary and
John as presented in Example 34.1. Using the SDL axiomatic system,
we can derive the following:

(O tell ∧ O ¬tell)

This statement claims that John ought to tell, and at the same time
ought not to tell that he goes to the party. It is known as Chisholm’s
paradox [Chi63]. We refrain from giving a formal Hilbert-style derivation
and rather describe the reasoning in plain English.
• From 2 and KO, by MP , we get that (O party ⇒ O tell)
• From 1 and the above, by MP , we get O tell
• From 3 and 4, by MP , we get O ¬tell
• So, we can infer (O tell ∧ O ¬tell)

So, we can conclude that John is obliged to tell that he is coming to
the party, and at the same time that he must not tell about it.

This example shows that deontic logic as it was defined originally may
not be adequate in every context. However, it set the basis for subsequent
development of variants of the logic for specifying situations and properties
where paradoxes are avoided.

Let us finish our presentation on deontic logic with a discussion on some
philosophical issues concerning the logic. It has been observed that norms
as prescriptions for conduct are not true nor false. Now, if norms have no
truth-value, how can we reason about them and detect contradictions and
define logical consequence? This was a question that bothered many logicians
since the very beginning, as for many a logic should be concerned with a
formalisation of truth. Von Wright (summarising his own point of view and
interpreting early works in the area [Wri99]) has argued that logic has a
wider reach than truth, and thus norms and valuations are still subject to a
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logical view. Another interesting issue is the difference between prescriptive
and descriptive statements: while properties (e.g., as expressed in temporal
logics) are descriptive, norms (as expressed in deontic logic) are prescriptive.
In this introduction, we did not address the question how to represent what
happens when an obligation is not fulfilled or a prohibition is violated. This
question is relevant not only on normative (legal) system but also in software
engineering: we know that software systems are not only concerned with
normal (expected) behaviour, but also with exceptional (alternative) ones,
very often representing violations.

There are many variants of deontic logic, trying to address the different
issues discussed above. However, as of today there is no logic for normative
systems fully addressing all these problems. In Chap. 6 we will see a logic
which is especially suited for contract specifications.

2.5.3 Temporal Logic

In temporal logic the modal operators � and � are interpreted with respect
to the flow of time. That is, �ϕ means “it will eventually be the case that ϕ
holds”, and �ϕ stands for “it is always the case that ϕ holds”.5

Before giving the formal definitions, we start with a classical example.

Example 35: Dining Philosophers

Dijkstra introduced the famous dining philosophers problem [Dij71].

Five philosophers, numbered from 0 to 4, are living in a house where the
table is laid for them, each philosopher having his own place at the table.

Their only problem—besides those of philosophy—is that the dish served is a
very difficult kind of spaghetti, that has to be eaten with two forks. There are
two forks next to each plate, so that presents no difficulty: as a consequence,
however, no two neighbours may be eating simultaneously.

There are various ways that a philosopher could behave if hungry.
For example, a strategy would be to wait for the left fork to become
available, take it, wait for the right fork to become available, take it,
eat, and then put both forks back again. It is easy to see that if all

5 Some authors and most tools use F and G as a notation instead of � and �. In some
papers, F and G are used in addition to � and �, which then have a different meaning.
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philosophers strictly follow such a strategy it might end up in a situation
where all five philosophers are holding their respective left fork and are
waiting for the right fork to become available.

Another way would be to wait until both forks are available before
taking them. However, with this protocol it could be the case that some
philosopher never gets to eat, since either the left or right fork are always
taken.

The challenge is to find a way for the philosophers to take forks and
put them back again such that nobody starves.

In the formalization of such an example, temporal aspects play a crucial
role. Typical properties are that each philosopher will eventually be able to
eat, or that always at least two philosophers are not eating. More complex
properties include that a philosopher cannot start eating unless his neighbors
stop eating and release their forks.

Originally, temporal logic included only the operators � and � from modal
logic, with a temporal interpretation. Thus, �ϕ means that ϕ is eventually
true, or that ϕ holds at some time in the future. Dually, �ϕ means that ϕ is
always true, or that ϕ holds in all future time points.

In computer science, time is often regarded as progressing in discrete steps.
In particular, in a computation, in each state there is a next state which the
machine assumes. Thus, in this context it may be necessary to talk about
the next time point. In temporal logic, this was included as a separate modal
operator © (pronounced “next”).6

In his Ph.D. thesis, Kamp [Kam68] introduced a binary operator U and
showed that it is more expressive than the modal operators introduced above.
Intuitively, (ϕU ψ) means that ϕ will hold until the next time when ψ holds.
This operator can not be defined with �, � and ©. However, it is possible to
define the �-operator by �ϕ ⇐⇒ (�U ϕ). That is, ϕ will eventually hold
if and only if true holds (which is always the case) until some time when ϕ
holds.

Definition 31 (Syntax of linear temporal logic) Given a propositional signa-
ture P, the syntax of linear temporal logic can be defined as follows.

LTLP :: = PLP | (LTLP ⇒ LTLP) | © LTLP | (LTLP U LTLP)

As described above, �ϕ is an abbreviation of (�U ϕ). As in modal logic,
�ϕ stands for ¬�¬ϕ (which in turn stands for ¬(�U ¬ϕ)). That is, ϕ is
always true if it is not eventually false. Additionally, sometimes a “release”
operator is defined by (ϕRψ) � ¬(¬ϕU ¬ψ). Informally, this states that ψ
must hold up to and including the next occurrence of ϕ, if it exists; otherwise,
ψ must hold continuously. Thus, the occurrence of ϕ releases the obligation
that ψ must hold.

6 Some authors write Xϕ instead of ©ϕ.
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Linear temporal logic formulae usually are evaluated on infinite sequences
of propositional models. Assume that M = (M0,M1, . . .) is such a sequence,
where each Mi defines a mapping P �→ {true, false}. Then, Mi denotes
the suffix of the sequence M starting with the ith element. With this, the
semantics of LTL can be defined as follows.

Definition 32 (Semantics of linear temporal logic)

• M |= p if and only if M0(p) = true for p ∈ P.
• M /|= ⊥, and M |= (ϕ ⇒ ψ) if and only if M |= ϕ implies M |= ψ
• M |= ©ϕ if and only if M1 |= ϕ
• M |= (ϕU ψ) if and only if there exists i ≥ 0 such that Mi |= ψ, and

Mj |= ϕ for all 0 ≤ j < i.

From this definition it follows that

• M |= �ϕ if and only if there exists an i ≥ 0 such that Mi |= ϕ,
• M |= �ϕ if and only if for all i ≥ 0 it holds that Mi |= ϕ, and
• M |= (ϕR ψ) if and only if for all i ≥ 0 it holds that Mi |= ψ, or for some

i ≥ 0 it holds that Mi /|= ψ, and Mj |= ϕ for some 0 ≤ j < i.

In linear temporal logic, time-dependent properties of computational systems
can be elegantly formalized.

Example 35.1: Temporal Properties of the Dining Philosophers

To specify properties of the dining philosophers scenario, assume that
P contains for each i ∈ {0 . . . 4} the proposition symbols {philieating ,
forkiavailable, philihasLeftFork , philihasRightFork}.
(Ph 1) “If philosopher 0 has both left and right fork, in the next

moment (s)he will be eating”:
((phil0hasLeftFork ∧ phil0hasRightFork) ⇒ ©phil0 eating).

(Ph 2) “Whenever philosopher 0 has the left fork, in the next state
(s)he will eat or drop the fork”:

�(phil0hasLeftFork ⇒ ©(phil0 eating ∨ fork0available)).
(Ph 3) “If philosopher 0 is eating, (s)he will do so until making the

forks available”:
(phil0 eating ⇒ (phil0 eating U (fork0available∧fork1available)).

(Ph 4) “Philosopher 0 taking the right or philosopher 1 the left fork
releases the availability of fork 0”:

((phil0hasRightFork ∨ phil1hasLeftFork)R fork0available).
(Ph 5) “Always at most one of {philosopher 0, philosopher 1} is eat-

ing”:
�¬(phil0 eating ∧ phil1 eating).

(Ph 6) “Philosopher 0 will eventually be eating”:
�phil0 eating .
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(Ph 7) “Philosopher 0 will always eventually be eating”:
��phil0 eating .

That is, this philosopher will be eating infinitely often.

As axiomatic calculus for LTL, we can use the following axioms and rules:

(PL) all propositionally valid formulae
(K) (©(ϕ ⇒ ψ) ⇒ (©ϕ ⇒ ©ψ))
(U) (¬ © p ⇐⇒ ©¬p)
(Rec) ((ψ ∨ ϕ ∧ ©(ϕU ψ)) ⇒ (ϕU ψ))
(N) ϕ � ©ϕ
(MP) ϕ, (ϕ ⇒ ψ) � ψ
(Ind) ((ψ ∨ ϕ ∧ ©(ϕU ψ)) ⇒ χ) � ((ϕU ψ) ⇒ χ)

This axiomatic system is sound and complete, cf. [KM08].
Moreover, it is minimal in the sense that every axiom can be shown to

be independent from the others. However, it is not very convenient to use
in practical derivations. Without proof, we state that the following formulae
are derivable.

(F1) ((©ϕ ⇒ ©ψ) ⇐⇒ ©(ϕ ⇒ ψ))
(F2) (�(ϕ ⇒ ψ) ⇒ (�ϕ ⇒ �ψ))
(F3) ((�ϕ ⇒ �ψ) ⇒ �(ϕ ⇒ ψ))
(F4) ((�ϕ ∧ �ψ) ⇒ �(ϕ ∧ ψ))
(F5) ((��ϕ ∧ ��ψ) ⇐⇒ ��(ϕ ∧ �ψ))
(n) (�(ϕ ⇒ ©ϕ) ⇒ (ϕ ⇒ �ϕ)
(F6) (�ϕ ⇐⇒ (ϕ ∨ ©�ϕ))
(F7) (�ϕ ⇐⇒ (ϕ ∧ ©�ϕ))
(F8) (ϕU ψ) ⇐⇒ (ψ ∨ (ϕ ∧ ©(ϕU ψ))))
(F9) (ϕR ψ) ⇐⇒ (ψ ∧ (ϕ ∨ ©(ϕR ψ)))

The last four of these formulae are recursive characterizations of the tem-
poral operators. Since the formulae are valid, they can be used as additional
axioms to derive many interesting properties.

Example 35.2: A Temporal Logic Derivation

For example, we show that under the assumption (Ph 5) “Always at
most one of {philosopher 0, philosopher 1} is eating”, it holds that if
philosopher 0 is eventually continuously eating, philosopher 1 will starve:

(1) �¬(phil0 eating ∧ phil1 eating) (ass)
(2) �(phil0 eating ⇒ ¬phil1 eating) (1,PL)
(3) (�phil0 eating ⇒ �¬phil1 eating) (2,K)
(4) (��phil0 eating ⇒ ��¬phil1 eating) (3,K)
(5) (��¬phil1 eating ⇒ ¬��phil1 eating) (K)
(6) (��phil0 eating ⇒ ¬��phil1 eating) (4, 5,PL)
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Subsequently, we show how temporal logic can be used in the analysis of
reactive systems. We use LTL to specify and verify properties of systems
modeled in PAT, the Process Analysis Toolkit [PAT20]. PAT is a model
checker which uses CSP as a modelling language for systems, and LTL as a
specification language for properties.

In this chapter, we only give a first example. A more detailed presentation
of PAT for the verification of human-computer interfaces can be found in
Chap. 7.

Example 35.3: Dining Philosophers in PAT

Using a textual representation of CSP terms which is accepted by PAT,
the problem of the dining philosophers can be formulated as follows (the
code and description is mostly from the PAT online resources [PAT12]).

#define N 5;
Phil(i) = get.i.(i+1)%N -> get.i.i -> eat.i ->

put.i.(i+1)%N -> put.i.i -> Phil(i);
Fork(i) = get.i.i -> put.i.i -> Fork(i) []

get.(i-1)%N.i -> put.(i-1)%N.i -> Fork(i);
College() = ||x:{0..N-1} @ (Phil(x) || Fork(x));
#assert College() deadlockfree;
#assert College() |= []<> eat.0;
In this code, the global constant N, of value 5, denotes the number of

philosophers and forks. There are two sets of objects in the system, i.e.,
the philosophers and the forks. Each object is modelled as one process;
philosophers and forks are numbered from 0 to N-1. A philosopher is
described by the process Phil(i), where Phil is the process name and
i is a process parameter.

Event eat.i models the event of i-th philosopher starting to eat.
This event makes the proposition philieating true. Event get.i.i mod-
els the event of ith philosopher picking up the fork on his left hand side.
This event makes philihasLeftFork true and forkiavailable false. Event
put.i.i models the event of putting down the fork from the left hand
side. This event makes philihasLeftFork false and forkiavailable true.
% is the standard modulo-operator; therefore, event get.i.(i+1)%N
models the event of ith philosopher picking up the fork on his right
hand side. Similarly, event put.i.(i+1)%N models the event of philoso-
pher i putting down the right fork from the right hand side. These
events toggle the truth value of the propositions philihasRightFork and
fork(i+1)%N available, respectively.

Informally, process Phil(i) describes that the philosopher picks up
the fork to the right, then the fork to the left, eats, and then puts down
the forks in the same order.

The forks are modeled using the (external) choice operator []. Infor-
mally, it states that any fork can be picked up by the philosopher on the
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left or the one on the right. Notice that the events in processes Fork(i)
are the same as those in processes Phil(i).

Process College() models the whole system. || is the parallel
composition operator which indicates that all Phil(x)- and Fork(x)-
processes execute in parallel, synchronising on the common events.

The first assertion states that process College() is deadlock-free,
where deadlockfree is a reserved keyword. The second assertion is
an LTL formula which states that within process College(), always
eventually event eat.0 occurs. This is equivalent to stating that the
respective philosopher will not starve to death.

With this input, PAT will quickly find and output a situation where
the system deadlocks (and, thus, everybody starves). If we change the
order in which forks are picked up, i.e.,

Phil(i) = get.i.i -> get.i.(i+1)%N -> \dots

then the system is deadlock-free, but anyone philosopher may starve.
PAT will find such an execution sequence within a few milliseconds.

Notice that in PAT, events like eat.0 are used in formulae instead of
propositions like phil0 eating . We refrain from a formal semantics here and
rely on the reader’s intuition instead.

2.6 Closing Remarks

In this chapter, we gave an overview of different logics for modelling, specify-
ing, and analysing computational systems. Starting with propositional logic,
we introduced its syntax, semantics and methods for derivation and model
checking. We then gave an institutional treatment of propositional logic, in
order to illustrate the systematic construction underlying any specific logic
with this basic case. First- and second-order logic were introduced as natural
extensions, emphasizing which properties can and can not be expressed. We
described a particular logic as the one underlying the common algebraic spec-
ification language Casl. Finally, we gave a brief account of some non-classical
logics, viz. (multi-)modal, deontic, and temporal logics.

One may wonder why it is necessary to study such a variety of logics, why
not have “one logic for all purposes”. There are at least three reasons why it
is useful to know different logics:

• Firstly, as we have seen, logics greatly vary in their expressiveness. On
the one hand, a more expressive logic may be necessary to formalize a
certain property of interest. On the other hand, as a rule of thumb more
expressiveness leads to more complex reasoning methods.
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• Secondly, logics also vary in the intended application domain. Depending
on which aspect of a system is to be modelled, different logics may be
adequate. Thus, usability is an important criterion.

• Finally, tool support is essential for practical applications. There are SAT
and SMT solvers, automatic or interactive theorem provers, model check-
ers, model finders, consistency checkers, etc. These tools at least partially
automatise the reasoning methods available for a specific logic.

This chapter illustrates that the different logics presented allow to con-
cisely and precisely specify system properties. In general, choosing the “right”
specification logic for a problem at hand can be a challenge. With the help
of the material presented above, the reader should be well prepared for this
task.

2.6.1 Annotated Bibliography

The history of logic is often traced back to ancient Greece, in particular to
Aristotle (384-322 BC). That said, the use of logical proof and reasoning was
used as early as the 6th century BC both in the West and East. Indeed, there
were pre-Socratic philosophers in Greece who were using logical proofs (e.g.,
Thales and Pythagoras), and logical reasoning was already known in China
and India in that period.

An influential work connecting mathematics and logic was Boolean algebra
introduced by George Boole (1815–1864) in his first book The Mathematical
Analysis of Logic (1847), and further developed in his book An Investigation
of the Laws of Thought (1854).

Following Boole, the development of modern “mathematical” (or “sym-
bolic”) logic started in the late 19th century and early 1900s with the logicism
programme, which considers that some or all of mathematics may be reduced
to logic, or at least be modelled in logic. Advocators of this tradition where
Frege, Russell and Whitehead, based on pioneering work by Dedekind and
Peano. In 1888, Richard Dedekind (1831–1916) proposed an axiomatization
of natural-number arithmetic, and Giuseppe Peano (1858–1932) published
a simplified version of such axiomatization in his book The principles of
arithmetic presented by a new method (1889). This axiomatization became
known as Peano axioms. Peano is also well-known for providing a rigorous
and systematic treatment of mathematical induction. Gottlob Frege (1848–
1925) developed a formal system for logic in his book Begriffsschrift (1879).
The book Foundations of Arithmetic (1884) is considered a seminal work for
the logicist programme. Bertrand Russell (1872–1970) and Alfred Whitehead
(1861–1947) wrote Principia Mathematica (a three-volume work published
between 1910 and 1913), a landmark in classical logic with the aim to set the
logical basis for mathematics.
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Between 1910 and 1930s metalogic was developed, that is the study of the
metatheory of logic. Pioneers include David Hilbert (1862–1943), Leopold
Löwenheim (1878–1957) and Thoralf Albert Skolem (1887–1963), and most
notably Kurt Gödel (1906–1978) and Alfred Tarski (1901–1983) who worked
on the combination of logic and metalogic. One of the greatest achievements
in the history of logic is Gödel’s incompleteness theorem (1931).

Claude Shannon (1916–2001) made the connection between Boolean alge-
bra (logic) and electrical circuits of relays and switches, advancing the devel-
opment of the new discipline concerning hardware circuit design. This was
presented in his master thesis A Symbolic Analysis of Relay and Switching
Circuits (1937).

Two classical books on propositional and first-order logic are the Intro-
duction to Mathematical Logic by Church [Chu96] and First-order Logic by
Smullyan [Smu68]. For a comprehensive presentation of dynamic logic see the
book by Harel et al. [HTK00]. Concerning deontic logic see articles by von
Wright [Wri51, Wri99].

The use of temporal logic in computer science was introduced by Kröger
[Krö76] and Pnueli [Pnu77], who took inspiration from the work done in
philosophy by Prior and others. For a more extensive presentation of tem-
poral logic, including a proposal of a deductive system for the logic, see
the book series by Manna and Pnueli [MP92], and the book by Kröger and
Merz [KM08].

One of the first books on model checking was written by Clarke et
al. [CGP01], and a few more books have appeared after that presenting dif-
ferent techniques for software verification (e.g., by Baier and Katoen [BK08]
and by Peled et al. [PGS01]).

A good source for surveys, introductory presentations, and more advanced
material concerning many different logics, are the volumes and correspond-
ing chapters of various handbooks: Handbook of Logics in Computer Sci-
ence [AGM95], Handbook of Philosophical Logic [GG04], Handbook of Modal
Logic [BvBW07], and Handbook of Model Checking [CHVB18]. Finally, for a
historical presentation of logic, see the different volumes (1-11) of the Hand-
book of the History of Logic [GW09].

2.6.2 Current Research Directions

Current research in the field of logics for software engineering is well-
represented by the LICS (Logic in Computer Science) and CSL (Computer
Science Logic) conference series. There are also more specific conferences,
covering only some aspects of this chapter, such as deduction methods
(IJCAR, CAV, LPAR, TABLEAUX, FORTE, RTA, SAT), or non-classical
logics (AiML, DL, ICTL, TIME). More general conferences are dealing with
formal methods (SEFM, FM, iFM) and theoretical foundations of computer
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science (FOCS, MFCS, STACS, STOC, ETAPS). The European and North
American Summer Schools in Logic, Language and Information (ESSLLI and
NASSLLI) provide good opportunities for beginning Ph.D. students to get
an insight into special topics.

According to our personal view, the following major trends in this area
can be identified:

• Firstly, there is the never ending quest for new methods and tools in the
analysis of computational systems: algorithms for model checking, rewrit-
ing, satisfiability solving, game-based methods, etc.

• Secondly, researchers strive for more general, abstract results, e.g., by
means of category theory, to get a better understanding of general princi-
ples.

• Furthermore, there is a lot of research extending the scope of logical anal-
ysis to new types of computation: multi-agent systems, machine learning
and artificial intelligence, symmetric computation and quantum comput-
ing, etc.

• Finally, researchers are designing methods and tools for practical use to
solve problems which are of industrial interest, e.g., for security analysis.

Undoubtedly, logic is a necessary foundation for almost all research in
Formal Methods, and even computer science in general. Thus, studying logic
is certainly beneficial, even if the reader wants to make a contribution in a
different area.
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Chapter 3

The Process Algebra CSP

Markus Roggenbach, Siraj Ahmed Shaikh, and Antonio Cerone

Abstract Concerning distributed systems, process algebra plays a role simi-
lar to the one lambda calculus takes for sequential systems: phenomena such
as deadlock, fairness, causality can be made precise and studied within pro-
cess calculi. Furthermore, process algebra is applied in the modelling and
verification of industrial strength systems. This chapter introduces syntax,
semantics, and methods of the process algebra Csp and studies tool sup-
port for Csp including simulation, model checking, theorem proving and
code-generation. Examples studied include an automated teller machine, a
jet engine controller, a fault tolerant communication system, and a self-
stabilising system in the form of a mathematical puzzle. Advanced material
on the semantic models of Csp, process algebraic equations, denotational
semantics for recursive equations, and refinement based proof methods for
deadlock, livelock, and determinism conclude the chapter.

3.1 Introduction

Let’s start our discussion of Csp by taking a break. By the way, Csp stands
for “Communicating Sequential Processes”, and we will see in the subsequent
sections why this is an excellent name for this modelling language. Anyway,
to properly enjoy your free time, you go over to this nice, cosy bistro for,
say, a cup of coffee. This requires some interaction between you and the
waiter. The two of you have to arrange for ordering an item (“I want a cup of
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coffee, please.”), getting the item, handing over the coffee (“Here you are.”),
informing you about the price (“That’s 2 Euros.”), handing over an amount
(“Here you are.”), and, possibly, giving out change (“Here is your change.”).

Both of you run a ‘protocol’. Should your protocols fail to fit, the purchase
will not take place successfully. For instance, you might first want the item,
before to pay—while the waiter insists on payment first: that would lead to
a deadlock. Or, maybe to get the item, the waiter goes to the kitchen, gets
engaged in a never ending chat, and forgets to serve you. That would lead
to a livelock. Finally, the bistro might have the policy to serve tea instead
of coffee in case the kitchen runs out of coffee beans. That would make the
protocol non-deterministic.

Process algebra allows to model such protocols in a precise way. Further-
more, it provides definitions of mathematical strength for the above men-
tioned phenomena deadlock, livelock, and determinism. This is one require-
ment for the formal analysis of safety-critical systems, where deadlock and
livelock could have serious consequences. Additionally, process algebra has
tool support in the form of simulators, model checkers and theorem provers.
Finally, there are implementation strategies for process algebra: given a sys-
tem, modelled and analyzed within process algebra, this protocol can be
transformed into, say, Java code such the Java program exhibits the same
properties as the process algebraic model.

Typical applications of process algebra include protocols. These can, e.g.,
describe the interaction of humans with computers. Here, Csp is utilised,
e.g., to detect cognitive errors, see Chap. 7 on “Formal Methods for Human-
Computer Interaction”. Furthermore, Csp plays an important role in security
analysis, see Chap. 8 on “Formal Verification of Security Protocols”: using
Csp, in 1995, Gavin Loewe exhibited a flaw within the Needham Schroeder
security protocol for authentication and showed how to correct it. Further
applications of Csp include control systems (see Sect. 3.2.2 on modelling a jet
engine controller), distributed systems such as credit card systems [GRS04] or
railways [IMNR12], as well as distributed or parallel algorithms [IRG05]. On
the more fundamental level, for studying distributed systems, process algebra
plays a role like the lambda calculus does for sequential systems: phenomena
such as deadlock, fairness, causality can be made precise and studied within
process calculi.

In this chapter, we introduce the process algebra Csp, see, e.g., [Hoa85,
Ros98, Sch00, Ros10], in an example-driven approach. Section 3.2 shows how
to model systems in Csp, discusses how to give semantics to Csp, and how
to use Csp’s notions of refinement for verification purposes. In Sect. 3.3, we
discuss various Csp tools for simulation, model checking, theorem proving
and code generation. Finally, Sect. 3.4 provides advanced material on Csp,
including a presentation of the three standard models, algebraic laws, giving
semantics to recursion by using fixed point theory, and refinement based proof
methods for deadlock, livelock, and determinism analysis.



3 The Process Algebra CSP 115

3.2 Learning Csp

In this section we provide a set of case studies that illustrate Csp’s range
of applications. These case studies introduce core concepts of the language
in an example driven way: modelling an automated teller machine intro-
duces Csp’s syntax in an intuitive way and provides a basic understanding of
Csp’s constructs—see Sect. 3.2.1. While modelling a jet engine controller, we
develop first insights into Csp’s operational and denotational semantics—see
Sect. 3.2.2. Modelling buffers and later a communication system in Csp, we
discuss the concepts of refinement and verification—see Sect. 3.2.3.

3.2.1 ATM Example: Csp Syntax

We use the example of an Automated Teller Machine (ATM) in order to
introduce the language Csp. Starting with a simple ATM, we add function-
ality step by step, while staying roughly on the same level of abstraction.
We consider the description of the ATM in natural language, which we then
model in Csp. This allows us to illustrate the subtleties that are often missed
in natural language descriptions during system modelling.

The natural language description is italicised and is followed by a Csp
specification. At every stage we also present the grammar used to describe
the syntax of the language Csp.

Ordering Events, Recursion, and Process Names

We start with a description of the ATM in natural language.

Example 36: A Simple ATM

Initially the ATM shows a ready screen. A customer then proceeds to

• insert a bank card, and
• enter the pin for the card

following which the ATM will

• deliver cash to the customer, and
• return the bank card,

before getting ready for a new session.
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The first step in Csp modelling is to extract the events that define system
evolution. Example 36 explicitly mentions four events. We name them as
follows: cardI represents the insertion of the card by the customer and the
machine accepting it, pinE represents the user entering a pin to authenticate
themselves to the machine, cashO represents the machine delivering the cash,
and cardO represents the machine returning the card. A ready event is used
to represent a fresh session of the ATM when it is ready to serve a new
customer. These events constitute the alphabet of communications Σ that
the system can perform. For our model of the ATM we have

Σ = {cardI , pinE , cashO , cardO , ready}.

The above specification prescribes a certain order on these events. So, for
example, delivering cash requires the customer to insert a bank card first.
However, there is no order between the delivery of the cash and the return of
the card. Csp allows for specifying causal relationships using action prefix .
The Csp process Stop stands for a system that does not perform any events.

We are now ready to specify our first ATM process.

Example 36.1: Modelling Basic Cash Withdrawal

A single session of our simple ATM can be modelled as follows

ATM0 = ready → cardI → pinE → cardO → cashO → Stop

ATM0 starts with a ready event followed by the events cardI , pinE ,
cardO and cashO in this order, before it stops to engage in any further
event. There is no other order in which ATM0 is willing to engage in the
events of the alphabet Σ. This means the specified causal order is a total
one, in which any two events are related. This fails to be traceable back
to the natural language specification where there is no order prescribed
on events cardO and cashO as discussed above. However, this over
specification in ATM0 is justified as most ATMs operate as such.

ATM0 allows for a single session only. We overcome this by using
recursion in ATM1 :

ATM1 = ready → cardI → pinE → cardO → cashO → ATM1

ATM1 performs the same activities as ATM0 however after cashO it
starts over again.

Csp distinguishes between events and processes. Events are instantaneous
and mark system evolution. Processes represent system states.

When modelling in Csp, we are abstracting from time: the delay between
two events is unspecified. We only know that events are instantaneous and
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atomic in the sense that it is not possible to specify that other events may
occur ‘while event e is happening’.

The process Stop does not engage in any event. Given an event a and a
process P we write a → P to form a new process which is willing to engage
in event a and then behave as P . We write N = P to define the behaviour
of the process name N to be identical with the behaviour of the process P.
Should P contain the process name N the equation becomes a recursive one.
Recursion is how Csp expresses infinite behaviour.

The Csp syntax for processes seen so far can be summarised in the fol-
lowing grammar, which is defined relatively to an alphabet of events Σ and
a set of process names PN.

P :: = Stop
| a → P
| N

where a ∈ Σ, N ∈ PN . A process equation takes the form

N = P

where N ∈ PN and P as described by the above grammar.

Structuring the Alphabet Using Channels

Up to now, the alphabet of events is a plain set without any further structure.
In the case of the ATM, one might want to ‘tag’ the events with the name
of the interface at which they take place. Yet another motivation to give
structure to the alphabet is when one uses the same datatype in different
contexts. For example, on a more concrete level of abstraction, the value of a
PIN and the amount of cash might both be modelled as integers. Here, one
would like to add a tag in order to indicate whether an integer value is a PIN
or the amount of cash to dispensed. Csp offers the construct of a channel for
this purpose.

We give a bit more detail on how an ATM is structured:

Example 36.2: Distinguishing Communication Channels

An ATM has several interfaces: there is a Display, which can show the
ready message; there is a KeyPad, which allows the user to enter the
pin; there is a CardSlot, which takes the card in or gives the card back;
there is a CashSlot, which delivers the money.
We encode these different devices as channel names and specify:
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ATM2 = Disply .ready → CardSlot .cardI → KeyPad .pinE →
CardSlot .cardO → CashSlot .cashO → ATM2

ATM2 displays ready message at the Display, receives a cardI over the
CardSlot, etc.

When using channels, one forms composed events consisting of a channel
name c and the event e to be communicated. Syntactically, these components
are separated by “.”

Every channel c has a set of ‘basic’ events as its type T (c). In the above
example, the channel CardSlot has the type T (CardSlot) = {cardI , cardO}.
In Csp it is standard to write

events(c) � {c.x |x ∈ T (c)}
for a set of events associated with channel c. Given a list of channels c1, . . . , cn,
n ≥ 1, their combined events are given by

{| c1, . . . , cn |} � events(c1) ∪ . . . ,∪events(cn).

Using this notation, we can write the alphabet of ATM2 in a structured way:

Σ = {|Display ,CardSlot ,KeyPad ,CashSlot |}
Communicating an event e over a channel c adds to the Csp grammar the

following primitives
P :: = . . .

| c.e → P

Process Termination and Sequential Composition

We enrich our ATM example by considering a ‘cancel’ button:

Example 36.3: Canceling a Session by Interrupt

The ATM behaves as before. Additionally, any time after inserting the
bank card and before retrieving the cash, the costumer has a choice to
cancel the session. Upon cancellation, the ATM returns the bank card
and is ready for a fresh session.

It is straightforward to model the effect of the cancel button:

SessionCancel = KeyPad .cancel → CardSlot .cardO → ATM3

In order to integrate SessionCancel into the ATM, we make use of the
Csp interrupt operator � , the Csp process Skip that indicates suc-
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cessful termination, and the operator o
9 for sequential composition of

processes.

Session = (KeyPad .pinE → Skip)�SessionCancel
SessionEnd = CardSlot .cardO → CashSlot .cashO → ATM3
ATM3 = Display .ready → CardSlot .cardI → Sessiono

9

SessionEnd

Before and after the event KeyPad.pinE, the customer can activate the
cancel button—see process Session. When Session terminates, i.e., there
was no interrupt, control is passed over to SessionEnd, which returns
the card and gives out the cash.

The process P �Q behaves as the process P unless a first event from Q is
performed after which Q determines the further behaviour. In Csp, the only
way to end the possibility of an interrupt is to terminate the process on the
left hand side of the interrupt operator, in our case the process Session. After
using termination for turning off the interrupt, we still want to continue. In
Csp, the process Skip does nothing but terminate. Sequential composition,
written as P o

9Q, behaves like process P, should P terminate, control is passed
over to process Q. In case P does not terminate, Q never gets activated.

In terms of methodology, using the interrupt operator has the advantage
that the interrupt behaviour is defined only once, in our example in the
process SessionCancel. Furthermore, there is a clear syntactic distinction
between normal behaviour and what shall happen in an exceptional case.
In order to define the ‘region’ in which the interrupt shall be possible we
introduced process names to denote system states. Giving names to system
states is a typical technique in specifying in process algebra.

One purpose of sequential composition is to resolve bindings, be it the
binding of values to variables (see Sect. 3.2.1 below) or the binding of an
interrupt to a process. Here the process Skip allows one to define the end
point of a binding. Furthermore, this process is useful in deadlock analysis
when one wants to indicate successful termination of a finite system run—in
contrast to getting stuck in a deadlock, which is equivalent to Stop.

The Csp operators of this section expand the grammar as follows:

P,Q :: = . . .
| Skip
| P o

9 Q
| P � Q

In the following sections we refrain from dealing with the cancel button in
order to keep the example focused upon the new operators used.
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Offering Choice to the Environment

Interactive systems, such as an ATM, usually offer several services. In the
case of an ATM, these services can include mobile phone top-up, printing a
mini-statement, on-screen balance, to name just a few. Here we show how to
deal with such choices.

Example 36.4: ATM with Customer Choice

Initially the ATM shows a ready screen. A customer then proceeds to
insert a bank card and enters the pin for the card following which the
ATM will offer the choice between cash withdrawal and checking the
balance.

In case of cash withdrawal, the ATM will deliver the cash to the cus-
tomer, return the bank card, and get ready for a new session.

In case of checking the balance, the ATM will display the account
balance, return the bank card, and get ready for a new session.

Csp external choice, written as P � Q, offers the initial events from both
these processes. Should the environment choose an initial event from P, P �Q
behaves like P, should the initial event be from Q, P � Q behaves like Q.

Example 36.5: ATM with Customer Choice in Csp

We extend our alphabet by suitable events, e.g., by adding the events
menu and accountBalance to the type of channel Display and by adding
a channel Buttons, and specify:

ATM4 = Display .ready → CardSlot .cardI
→ KeyPad .pinE → Display .menu
→ ( (Buttons.checkBalance → Display .accountBalance

→ CardSlot .cardO → ATM4 )
�

(Buttons.withdrawCash → CardSlot .cardO
→ CashSlot .cashO → ATM4 )

)

After displaying the menu, ATM4 offers two different behaviours. If the
customer presses the checkBalance button on the Keypad, the account
balance is displayed, the card returned, and the process starts over
again. If, however, the customer presses the withdrawCash, the process
behaves as seen before.

External choice can also be regarded as reading input from the environ-
ment. When the input is read over one channel c, this can be expressed in
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Csp by c?x → P (x) : initially, this process offers to engage in any event
c.e ∈ events(c), when the choice is made it binds x to e and behaves like
P . P ’s behaviour can depend upon the value of the variable x. Such a
variable x can be used, e.g., in the condition cond of the Csp conditional
if cond then P else Q, where P and Q are processes. Should cond evaluate
to true, if cond then P else Q behaves like P, otherwise like Q. When one
wants to express that one is ‘sending’ the event e over the channel c, one can
write c!e instead of c.e.

Example 36.6: Alternative Formulation in Csp

Replacing the external choice operator with channel input and condi-
tional, we specify a process which is equivalent to ATM4:

ATM5 = Display !ready → CardSlot .cardI
→ KeyPad .pinE → Display !menu
→ Buttons?x
→ if x = checkBalance then Balance else Withdrawal

Balance = Display !accountBalance → CardSlot !cardO → ATM5

Withdrawal = CardSlot !cardO → CashSlot !cashO → ATM5

Note how we again use process names in order to break up the process
ATM5 into sensible units. Rather than having names for all states, we
give names only for those which matter.

Yet another possibility to express the customer choice is the Csp prefix
choice operator ?x : A → P (x), which allows the environment to choose any
event e from the set A, binds x to this event, and then behaves like P (e).
Using this formulation, we can equivalently rewrite ATM5:

Example 36.7: Third Formulation in Csp

ATM5 ′ = Display !ready → CardSlot .cardI
→ KeyPad .pinE → Display !menu
→ ?x : {|Buttons|}
→ if x = Buttons.checkBalance then Balance

else Withdrawal

Note how the type of x changes in ATM5 ′ compared to ATM5 .
Tool support varies with regards to the prefix choice operator: Csp-

Prover supports it, while FDR does not.

Our above claim that ATM4 and ATM5 are equivalent can be established,
e.g., by using a model checker, see Sect. 3.3 on tool support of Csp. Such a
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proof, however, relies on a semantically founded understanding what it means
for two processes to be equivalent—see our discussion on semantics below,
especially on the three standard models of Csp, see Sect. 3.4.1. Though ATM4
and ATM5 are equivalent w.r.t. the three standard models, in general these
models have different distinguishing powers.

In this section, we extend our Csp grammar by the following primitives

P,Q :: = . . .
| ?x : A → P
| c?x → P
| c!e → P
| P � Q
| if cond then P else Q

Here, A is a set of events, c is a channel, x is a variable, e is an event, and
cond is a condition in a logic of choice (not determined by Csp).

Internal Choice, System Composition, Abstraction by Hiding

In the previous section we discussed how to let the environment make a
choice among offered events and how these choices determine how a process
proceeds. In contrast to this is the situation in which a process makes an
independent choice and thereby influences its environment.

We discuss this situation in the context of our ATM example:

Example 36.8: ATM with PIN Verification

Additionally to the above described functionality that only concerns the
dialog with the customer, an ATM includes a subsystem which deter-
mines if the entered PIN is a valid one. Should the entered PIN be
wrong, the ATM informs the user about this, and returns to the ready
state. In case the PIN is valid, the ATM proceeds as normal.

Our chosen level of abstraction focuses on the order of events rather on
details concerning data. Thus, in the context of the ATM, it is not desirable
to model an algorithm for PIN verification; we are interested only in the out-
comes, namely if the entered PIN is valid or not. Whenever a choice between
different options cannot be made on the information available, it becomes a
non-deterministic one, i.e., a choice which the process takes internally, with-
out a rationale that could be derived from the process’ observable history.
In Csp, the process P � Q models such behaviour: its behaviour is either as
prescribed by process P or as prescribed by process Q.
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Example 36.9: Abstract PIN Verification in Csp

Again, we assume a suitable alphabet to be available, e.g., that it
includes an event requestPCheck and that there is a channel Check on
which we can communicate events pinOK and pinWrong. In such a set-
ting PinVerification can be formulated as follows:

PinVerification = requestPCheck → comparePinWithCard
→ ((Check .pinOK → PinVerification)

�
(Check .pinWrong → PinVerification))

Upon request the process PinVerification decides if a PIN is correct and
is immediately ready for the next such check. Here, one can think of
the event requestPCheck as abstracting the ‘data transfer’ necessary to
provide enough information to perform the PIN verification.

The Oxford English dictionary defines a ‘system’ as “a set of things work-
ing together as part of . . . an interconnecting network”. Process algebra offers
parallel composition as a powerful means to assemble a system. In our ATM
example, one can consider PIN verification and user dialog as two ‘things’
connected by a ‘network’ for ‘working together’; coordination is needed on
the decision if a PIN is valid, however, for PIN verification it is insignificant
if the customer—after entering a valid PIN—chooses to withdraw cash or to
check the balance. In the Csp general parallel operator P [|A |]Q the syn-
chronisation set A ⊆ Σ contains the events that the processes P and Q have
to agree upon: in order to perform an event e ∈ A the processes P and Q
must both be willing to engage in e, however, P and Q can independently
engage in any event e /∈ A.

Other Csp parallel operators are:

• interleaving |||: the synchronisation set is empty;
• synchronisation ‖: the synchronisation set is the whole alphabet; and
• alphabetised parallel P [A ‖ B ]Q: the process P can only engage in events

from the set A, Q can only engage in events from the set B, the processes
P and Q synchronise on the events in the set A ∩ B.

With regards to concurrency, Csp takes the point of view that it is impos-
sible to observe the parallel execution of events, only one event can happen
at any time. This approach is called interleaving semantics, in contrast to
true concurrency semantics.
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Example 36.10: System Composition in Csp

The process UserDialog is similar to ATM5 from above:

UserDialog = Display .ready → CardSlot .cardI
→ KeyPad .pinE → requestPCheck
→ ((Check .pinOK → Services)

�

(Check .pinWrong → Display .messagePinWrong
→ UserDialog))

The difference is that UserDialog requests a PIN check after the PIN has
been entered on the keypad. It then offers the environment the choice
if the PIN was OK or not. Note that here we use the external choice
operator. In the positive case Services are offered, in the negative case
the user is informed that a wrong PIN was entered, and the UserDialog
goes back to the ready state. Services are as before:

Services = Display .menu
→ (CashWithdrawal � BalanceCheck)

BalanceCheck = Buttons.checkBalance → Display .accountBalance
→ CardSlot .cardO → UserDialog

CashWithdrawal = Buttons.withdrawCash → CardSlot .cardO
→ CashSlot .cashO → UserDialog

Having these two ‘things’ specified, namely PinVerification and User-
Dialog, we compose ATM6 to be the ‘system’, or, in the language of
Csp, the process that runs UserDialog and PinVerification in parallel:

ATM6 = UserDialog
[| {|requestPCheck ,Check |} |]
PinVerification

In order to define the synchronisation set, we make use of the {| |}
operator, which extracts the events from a given list of channels—see
Sect. 3.2.1 above. By abuse of notation, in the Csp context it is common
(and also supported by tools) to apply this operator also to single events
such as requestPCheck.

In ATM6 the communication between the user dialog and the PIN
verification is visible to and possibly open to manipulation by the out-
side world. In order to avoid this, we encapsulate the dialog by hiding
all events in the synchronisation set between these processes:

ATM7 = ATM6 \ {|requestPCheck ,Check , comparePinWithCard |}
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The process P \ A behaves like the process P where the events from the
set A ⊆ Σ are turned into internal ones, which are invisible to the outside.

In this section, we extend our Csp grammar by the following process con-
structions:

P,Q :: = . . .
| P � Q
| P [|A |]Q
| P [A ‖ B ]Q
| P ||| Q
| P ‖ Q
| P \ A

where A,B ⊆ Σ are a sets of events.

Parametrised Processes

Most ATMs offer the customer several attempts to enter the correct PIN.

Example 36.11: Three Attempts to Enter the Correct PIN

The ATM behaves as before, but now the customer has three attempts to
enter the correct PIN: in case that the PIN is valid, the customer is offered
the functionality as described before; in case that the PIN is incorrect and
the customer still has an attempt left, the ATM displays that the entered
PIN was wrong and gives the customer another opportunity to enter the
PIN; in case that the PIN is incorrect and the customer has no attempt left,
the ATM displays that the entered PIN was wrong, informs the customer
that the card is kept, and returns to the ready screen.

We model this behaviour in Csp by defining the process PinCheck
which takes the number of attempts that the customer has left as its
parameter:

UserDialog = Display .ready → CardSlot .cardI
→ PinCheck(3 )

PinCheck(n) = KeyPad .pinE → requestPCheck
→ ((Check .pinOK → Services)

�

(Check .pinWrong
→ if (n = 1)

then Display .messagePinWrong
→ Display .cardSwallowed
→ UserDialog

else Display .messagePinWrong
→ PinCheck(n − 1))

)
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All other processes are as above, as is the overall system composition.

ATM8 = UserDialog
[| {|requestPCheck ,Check |} |]
PinVerification

ATM9 = ATM8 \ {|requestPCheck ,Check , comparePinWithCard |}

Process parameters structure the name space relative to which the lan-
guage Csp is defined. In the above example n ranges over the integers, i.e.,
we introduce the (countably many) names

. . . , Pincheck(-1), PinCheck(0), PinCheck(1), . . .

For each of these, the equation PinCheck(n) = ... defines how the process
behaves. In ATM8, however, only finitely many of these are reachable, namely
PinCheck(1), PinCheck(2), and PinCheck(3). Processes can have an arbitrary
but finite number of parameters.

Any datatype can serve as a process parameter. The values of this type
can be part of the alphabet of communications, but—as the above example
demonstrates—this is not necessarily the case.

Process parameters use expressions of a datatype-specific sublanguage,
with type-specific operands and operators, as we know them from primitive
data types (int, bool, . . .) and abstract data types like lists, stacks, sets, bags.
The general convention is that the type-specific sublanguage is not part of the
Csp syntax. This is similar to UML/SysML, where expressions for guards,
operation bodies, and general actions are not part of the UML/SysML, but
‘opaque expressions’ that are interpreted in the context of the expression
language.

As illustrated in the example, the process parameter x of a process name
N on the left hand side on a process equation N(x) = P (x) can be used as
a variable in the process P (x) on the right hand side.

It is not necessary to expand our Csp grammar at this point. Introducing
process parameters provides more detail how the elements of the set of process
names PN look like. As the Csp grammar is defined relatively to PN, it needs
no change.

Renaming—More Than Just an Adaption of Names

Some ATMs can deal with different currencies, e.g., those placed at airports.

Example 36.12: Different Currencies via Renaming

The ATM behaves as before, but the user dialog offers the choice to
withdraw money in Euro, Sterling, or Dollar.
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This feature can be modelled using the Csp renaming operator
[[ ]]. Here, we expand the process on the righthandside of the equa-
tion for CashWithdrawal by three options to rename the event But-
tons.withdrawCash:

CashWithdrawal = (Buttons.withdrawCash → CardSlot .cardO
→ CashSlot .cashO → UserDialog)[[R]]

where the relation R is given as

R = {(Buttons.withdrawCash,Buttons.withdrawEuro),
(Buttons.withdrawCash,Buttons.withdrawSterling)
(Buttons.withdrawCash,Buttons.withdrawDollar)}

The effect is that the customer can choose among the Buttons to with-
draw money in Euro, Sterling, or Dollar. In each case, the card is
returned, cash is delivered, and the ATM starts over with the User-
Dialog.

This new process CashWithdrawal is the only change that we make
to ATM8 and ATM9 in order to obtain ATM10 and ATM11: it nicely
illustrates the power of a one to many renaming.

Looking at the example from a point of modelling, naturally there are
other, equivalent ways of how the desired effect can be achieved: as with
programming languages, also in specification languages there are many
different, equivalent ways to express one behaviour. Concerning the cho-
sen level of abstraction, one might criticise that the resulting ATMs are
kind of ‘imbalanced’: while the user can choose between different cur-
rencies, the machine just returns ‘cash’, not further differentiated into
different currencies. The reader might want to try to remedy this and
develop the example further.

In specification in general, renaming allows one to adjust the name-space
from one development to the name-space used in a different development,
i.e., renaming supports the re-use of specifications. In the context of Csp,
renaming can also be used to duplicate (see above) or to reduce behaviour.

Given a binary relation R on the alphabet of communications Σ, the pro-
cess P [[R]] behaves like P , however, whenever P is willing to engage in an event
a ∈ Σ, P [[R]] is willing to engage in all the events in {e ∈ Σ | (a, e) ∈ R}. The
process P [[R]] is well-formed only for relations R with the property that for
all e ∈ Σ there exists e′ ∈ Σ with (e, e′) ∈ R. In practice, one often defines
the relation R by stating only those pairs (e, e′) ∈ R where e �= e′.

In this section, we extend our Csp grammar by one process construction:

P :: = . . .
| P [[R]]

with R ⊆ Σ × Σ such that for all e ∈ Σ there exists e′ ∈ Σ with (e, e′) ∈ R.
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Replicated Processes

Upon starting an ATM first determines how many notes there are in its
various cash cartridges.

Example 36.13: ATM with Initialisation

The ATM has different cartridges for £5, £10 and £20 notes. Each
cartridge can determine how many notes it holds. When the ATM is
started, it first reads from the cartridges how many notes are available.
Then it behaves as described in Example 36.12.

For a single denomination d, say for £5 notes, the counter process
just communicates the quantity of notes of denomination d.

CartridgeCounter(d) = Quantity .d → CartridgeCounter(d)

The cartridges work in parallel, they are independent of each other, i.e.,
we can interleave the processes. We instantiate the process Cartrige-
Counter(x) for all elements of the set of denominations {five, ten, twenty}
and combine the resulting processes by interleaving:

CartridgeCounterS = |||x:setofDenominations CartridgeCounter(x)

We do not care about the order in which the ATM reads from the
cartridges. However, we want to ensure that it reads from all of them
once. The parameter X of the process Init is the set of denominations,
for which the quantity has still to be read. We instantiate the process
Quantity.x → Init(X\{x}) for all elements of the set X and combine
the resulting processes by external choice:

Init(X) = (�x:X Quantity.x → Init(X\{x}))
�

(X = {}) & ATM7

When the Boolean guard X = {} becomes true, the process behaves as
ATM7.

The final system consists of the cartridges running in parallel with
the initialisation process:

ATM12 = CartridgeCounterS
[| {|Quantity |} |]
Init(setofDenominations)

From a modelling point of view, again this example can be criticised
to be ‘imbalanced’: first we collect information on how many bank notes
the ATM has in different cartridges, later this information is not used
at all. The reader might want to try to remedy this and develop the
example further.
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Replicated process operators combine a family of (parametrised) processes
(P (x))x∈I over some index set I into one process, extending the underlying
binary operator to an operator that takes |I| many arguments. Replication
is possible for a number of binary Csp operators, including external choice,
internal choice, interleaving, general parallel, and alphabetised parallel.

The general pattern is that, given a binary operator op for which replica-
tion is possible, an expression

opx:{a1,...,an} P (x)

expands to
P (a1) op . . . op P (an) op Q

where Q is some suitably chosen ‘neutral’ process—in the case of the general
parallel we have Q � Skip—see Sect. B.2.2 for the details.

Note that the set index set {a1, . . . , an} might vary during process execu-
tion. This is the case in the above process Init(X) : X is the set of cartridges
that still have to communicate the number of notes available.

In the case of parallel operators, replicated process operators create |I|+1
many parallel processes. In contrast to this, in the case of choice operators,
replicated process operators create choice among |I|+1 many processes. After
this choice has been resolved, there is only one line of execution.

As syntactic sugar, Csp also includes a Boolean guard process cond &P
which expands to if cond then P else Stop.

In this section, we extend our Csp grammar by the following process con-
structions:

P,Q :: = . . .
| cond &P
| �x:I P (x)
| �x:I P (x)
| |||x:I P (x)
| [|A |] x:I P (x)
| [|A(x) |] x:I P (x)

where cond is a condition in a logic of choice (not determined by Csp), I is
an index set, A ⊆ Σ is a set of events, (P (x))x∈I is a family of processes,
(A(x))x∈I is a family of sets with A(x) ⊆ Σ for all x ∈ I.

The process �x:A P (x) is well-formed for A �= ∅. The processes |||x:I P (x),
[| A |] x:I P (x), and [| A(x) |] x:I P (x) are wellformed only for finite index
sets I. The process [| A(x) |] x:I additionally requires that, for all x ∈ I, the
alphabet of P (x) is a subset of A(x).

In the case of external and internal choice, replication allows to combine
infinite families of processes into one process. In the case of the replicated par-
allel operators, suitable algebraic laws concerning commutativity and asso-
ciativity ensure that the order in which the processes are combined does not
matter.
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3.2.2 Understanding the Semantics—Modelling a Jet
Engine Controller

Fig. 3.1 Activity diagram for manual ground start—Courtesy of Rolls-Royce
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Closely following an industrial case study on a jet engine controller
[HKRS09], we develop Csp’s operational and the denotational semantics.

Example 37: The Starting System of a Jet Engine

Starting a physical jet engine essentially involves three steps:
1. A motor—the so-called Starter—which is mechanically coupled to a

shaft of the engine, starts to rotate the engine.
2. When the shaft has reached a sufficient rotational speed, fuel is

allowed to flow to the combustion chamber and the engine lights up.
3. When the rotational speed of the engine reaches a threshold the

engine start is complete.

In modern aeroplanes, these steps are initiated and monitored by an Elec-
tronic Engine Controller (EEC). Such an EEC encapsulates all signalling
aspects of the engine; it controls, protects, and monitors the engine. Its con-
trol loop involves: reading data from sensors and other computer systems in
the aircraft, receiving commands from the pilot, calculating new positions of
the engine actuators, and issuing commands to the engine actuators. In its
monitoring function it transmits data about the engine condition and infor-
mation on any failures diagnosed on the electronics back to the aircraft. Here
we focus on the Starting System, one of the EEC’s many functionalities.

Example 37.1: Manual Ground Start

Figure 3.1 shows the internal logic of a so-called manual ground start
in the form of an activity diagram. These activity diagrams are for-
mulated in an informal, graphical specification language. This language
was specifically developed by Rolls-Royce in order to describe engine
controllers. This language uses symbols with the following meaning:

Start point of the activity diagram
End point of the activity diagram

Box–Used for encoding states as well as activities

Transition–checks for conditions
Error state

Switch in the cockpit

Switch in the cockpit, ignored by this activity digram

Displayed signal in the cockpit
Control flow in the EEC

This table was established by discussion with the Rolls-Royce engineers.
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In system design, one often considers what steps are needed in order to
reach a certain goal. In our case, one is interested in the sequence of events
that actually starts the engine and in the possibilities to interrupt this pro-
cedure:

Example 37.2: Use Cases of Starting the Jet Engine

Typical use-cases of this activity diagram are:
Use-Case 1: “Normal use” Upon switching the Engine Start to On, the

EEC will command the Starter Air Valve (SAV ) to be opened and
the starter motor is activated. If the pilot now switches the Fuel
Control Switch to Run the EEC commands the fuel to flow. If at this
point the Continuous Ignitions is still On the EEC ignites the motor
(not shown in the Figure) and begins to monitor the shaft speed of
the engine. Should this speed reach a certain threshold the starting
procedure is complete.

Use-Cases: “Interruptions” While the starting procedure is executed
by the EEC, the pilot can abort it by switching the Master Crank or
the Fuel Control to Off. If the pilot switches the Continuous Ignitions
to Off the starting procedure ends in an error state.

Let us analyse, what the physical entities of our system are:

Example 37.3: Physical Components

The Manual Ground Start diagram in Fig. 3.1 involves the interaction
of different, independently acting physical components: the first com-
ponent consists of the buttons, which the pilot switches in the cockpit.
The second component is the aeroplane electronics, which checks for the
aircraft condition and for the engine condition. The third component is
the decision flow to be implemented in the EEC.

In the following, we model the first and the third component in the lan-
guage CspM [Sca98]. Our model includes an interface for reading reports from
the aeroplane electronics. CspM is a machine readable version of Csp which
also includes language constructs for the description of data. This means espe-
cially that the alphabet of communications needs to be constructed as well.
The FDR webpages https://cocotec.io/fdr/ provide a syntax reference
for CspM .

We begin with the first component, namely the buttons that the pilot can
use to initiate or abort the starting process. Some of these are Switch Buttons.
Such buttons have two states: ON and OFF. Pressing a button in state OFF will
turn it ON, releasing a button in state ON will turn it OFF. In CspM we can
model such a button in the following way:

https://cocotec.io/fdr/
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Example 37.4: Switch Buttons in Csp

channel press, release
ButtonOFF = press -> ButtonON
ButtonON = release -> ButtonOFF

After the CspM keyword channel, one can declare a list of events. In our
example, we declare the events press and release. Each channel declaration
augments the currently defined alphabet by adding the defined constants
to it.

Fig. 3.2 Transition system of ButtonOFF

Our Csp specification behaves like the automaton shown in Fig. 3.2. This
connection is made more precise by the operational Csp semantics. The Csp
operational semantics takes Csp processes as states and defines transition
rules between them using firing rules:

(a → P ) a−→ P N τ−→ P
if there is an equation N = P

Provided that the preconditions (the text above the line and besides the
rule) of such a rule are fulfilled, there is a labelled transition between the
two states shown in the conclusion (the text below the line). There is exactly
one state for each process. The operational semantics, cf. Sect. 1.1.2, of a
given Csp process expression P is the smallest automaton generated from
P by the given rules. Often we call this automaton also a transition system.
Here, τ /∈ Σ is the so-called ‘silent’ event. τ represents a non observable, i.e.,
internal, step of the automaton. The transition from the state representing a
process name, take for example ButtonOff, to the state representing the rhs
of its defining equation, in our example press -> ButtonOn, is considered
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to be an non-observable one, i.e., we label it with τ. Section B.3 summarises
the Csp firing rules.

Following the edges of this automaton, we obtain the following observa-
tions:

1. 〈〉,
2. 〈press〉,
3. 〈press, release〉,
4. 〈press, release, press〉,
5. . . .

Here, we treat the label τ like the empty word with regards to concatena-
tion, i.e., it never appears in the list of observed events. Summarising, the
observations are

Obs = {w |w is prefix of a word in (press release)∗}
where (press release)∗ is a regular expression with ∗ as notation of Kleene’s
star. The denotational semantics, cf. Sect. 1.1.2, of a given Csp process
expression P describes the set of all possible observations. In our case, we are
interested in the sequences or traces that a process can perform. To this end,
we define a function tracesM (P ) by structural induction on the grammar of
process terms. As a parameter, it takes an interpretation M of the process
names N ∈ PN :

tracesM (a → P ) � {〈〉} ∪ {〈a〉 � s | s ∈ tracesM (P )}
tracesM (N) � M(N)

In the context of Csp, one usually writes the sign � for the concatenation of
two traces. As seen above, 〈〉 stands for the empty trace.

For a process equation N = P we require that

tracesM (N) = M(N) = tracesM (P ).

Section 3.4.3 will discuss the semantics of such (potentially) recursive equa-
tions. As semantics is defined using an equation, the typical three questions
appear:

1. Is there a solution to the equation?
2. Is the solution unique?
3. How can we construct the solution (should it exist)?

In the case that the solution exists, we write the semantics of N of a process
name as

traces(N)

i.e., without referring to the process interpretation M .
Coming back to our case study, we see that the pilot has several switch-

buttons in order to control the engine start. In order to model these, we
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instantiate ButtonON and ButtonOFF to form the different switch buttons
available in the cockpit for the Starting System. This is done by simply using
the Csp renaming operator, e.g., for MasterCrank:

Example 37.5: Master Crank Button in Csp.

channel mc_press, mc_release
MasterCrank =

ButtonOFF[[press <- mc_press, release <- mc_release]]

The operational semantics of renaming is

P
a−→ P ′

P [[R]] c−→ P ′[[R]]
ifaRc

P
τ−→ P ′

P [[R]] τ−→ P ′[[R]]

Its traces are given as

tracesM (P [[R]]) � {t | ∃s ∈ tracesM (P ) . sR∗t}
Here, sR∗t is the lifting of R from events to traces of events, see Sect. B.4.1
for its definition.

Example 37.6: Independent Buttons in Csp

The pilot can arbitrarily press and release the buttons shown in Fig. 3.1.
They are independent of each other. Thus, we model them as interleaved
processes:

Buttons = MasterCrank ||| MasterStart ||| EngineStart
||| FuelControl ||| ContIgnition

The textual explanation of the diagram in the Rolls-Royce documenta-
tion makes it clear that EngineStartOn is a push button with only one
state:

EngineStart = engineStartOn -> EngineStart

Here, we see one typical benefit of formal modelling: the used Formal Methods
forces one to clarify details. In our case, modelling in Csp requires us to
answer the question: “which events can happen in the system?” In case of a
Switch Button the answer is: press and release, in case of a Press Button
the answer is: press only. This leads to the insight, that the diagram in Fig.
3.1 depicts the buttons in a wrong way: it shows all of them with the same
rendering, although they are different.

We give here the firing rules for the general parallel operator. As seen
above, the interleaving operator can be defined in terms of general parallel
operator: P ||| Q � P [| ∅ |]Q.
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Internal events can be performed independently:

P
τ−→ P ′

P [| A |]Q τ−→ P ′ [|A |]Q
Q

τ−→ Q′

P [| A |]Q τ−→ P [| A |]Q′

Events outside the synchronisation set A can be performed independently:

P
a−→ P ′

P [| A |]Q a−→ P ′ [|A |]Qa ∈ Σ\A
Q

a−→ Q′

P [| A |]Q a−→ P [| A |]Q′ a ∈ Σ\A

Events in the synchronisation set A need to be synchronised:

P
a−→ P ′ Q

a−→ Q′

P [| A |]Q a−→ P ′ [|A |]Q′ a ∈ A

The denotational semantics is defined as follows:

tracesM (P [| A |]Q) �
⋃

{s [| A |] t | s ∈ tracesM (P ) ∧ t ∈ tracesM (Q)}

For each pair of traces s ∈ tracesM (P ) and t ∈ tracesM (Q) one forms a set
s [| A |] t. Such ‘overloading’ of operators is typical for denotational semantics
in general. The above clause uses the notation

⋃{xi | i ∈ I} �
⋃

i∈I xi. The
function [| A |] on traces has to mirror all possible combinations of when
a process can make progress. It is inductively defined by:

〈x〉 � t1 [| A |] 〈x〉 � t2 � {〈x〉 � u | u ∈ t1 [| A |] t2}
〈x〉 � t1 [| A |] 〈x′〉 � t2 � ∅
〈x〉 � t1 [| A |] 〈y〉 � t2 � {〈y〉 � u | u ∈ 〈x〉 � t1 [|A |] t2}
〈x〉 � t1 [| A |] 〈〉 � ∅
〈y〉 � t1 [| A |] 〈x〉 � t2 � {〈y〉 � u | u ∈ t1 [| A |] 〈x〉 � t2}
〈y〉 � t1 [| A |] 〈y′〉 � t2 � {〈y〉 � u | u ∈ t1 [| A |] 〈y′〉 � t2}∪

{〈y′〉 � u | u ∈ 〈y〉 � t1 [| A |] t2}
〈y〉 � t1 [| A |] 〈〉 � {〈y〉 � u | u ∈ t1 [| A |] 〈〉}

〈〉 [| A |] 〈x〉 � t2 � ∅
〈〉 [| A |] 〈y〉 � t2 � {〈y〉 � u | u ∈ 〈〉 [| A |] t2}
〈〉 [| A |] 〈〉 � {〈〉}

where x, x′ ∈ A ∪ {�}, y, y′ /∈ A ∪ {�}, x �= x′, and t1, t2 ∈ Σ∗ ∪ Σ∗�. The
event � will be discussed below. From now on, we refrain from presenting
the semantical clauses for the Csp traces semantics and refer the reader to
Sect. B.4.

Going on with our case study, we check next if the second component gives
an OK for the start:
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Example 37.7: Communicating with the Aeroplane Electronics

channel aircraftCondition: Bool
channel engineCondition: Bool
channel inhibitStart, startOK

CheckConditions =
aircraftCondition ? ac

-> engineCondition ? ec -> Checking(ac,ec)
[] engineCondition ? ec

-> aircraftCondition ? ac -> Checking(ac,ec)

Checking(ac,ec) = if (ac and ec)
then startOK -> SKIP
else InhibitStart

InhibitStart = inhibitStart -> SKIP

We read the aircraft condition and the engine condition in arbitrary
order. To this end, we use communication channels. In CspM , such
channels have a type, in our case the type Bool.

The operational rules on communication involving channels are:

(c?x → P (x)) c.a−→ P (x)[a/x]
a ∈ comms(c)

(c!a → P ) c.a−→ P

Here, comms are the values that one can communicate over the channel c,
in our example the Booleans; [a/x] stands for substituting a for x. Often,
channels are treated as syntactic sugar in Csp.

Example 37.8: Decomposing the Starting Sequence in Csp

The starting sequence can only proceed when the following events hap-
pens: (1) the checks for Aircraft and Engine condition have been suc-
cessful, (2) the pilot has issued the necessary starting commands. This
is captured in the Csp model in the following way:

(CheckConditions [| {|startOK|} |] StartInteractionEEC)
\ { startOK };

((Region ||| EngineStart) /\ Interrupts)

Interrupts = fc_release -> abortStart -> STOP
[] ci_release -> commandIGNoff -> STOP

Here, CheckConditions is the above process that checks for the Air-
craft and Engine condition. These checks run independently of the
StartInteractionsEEC, which model the pilot’s input, namely the
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cranking and the ignition commands. StartInteractionsEEC is sim-
ilar to CheckConditions, thus we omit its code.

Only when both checks have successfully been completed (signalled
by the event startOK), the dialogue with the engine can start. The
event startOK does not belong to the vocabulary of the EEC as shown
in Fig. 3.1. Thus, we better hide it. Region, finally, captures the actual
starting sequence. We will discuss its details below.

We interpret interrupt events fc release, and ci release to become
‘active’ only when the starting sequence has begun. We will discuss the
semantics of the interrupt operator below.

Naturally, the pilot will be able to press the button EngineStartOn
at any point of time during the starting sequence. From here onwards,
however, it does not have an effect at all: we capture this be adding this
button’s behaviour as an interleaving process.

Termination is an observable event in Csp. It is written � (pronounced
“tick”). The process Skip terminates immediately:

Skip �−→ Ω

where Ω is a special process term that is intended to represent any terminated
process. Using these notations, we can extend the operational semantics of
the renaming operator and the parallel operator.

Renaming has no effect on termination:

P
�−→ P ′

P [[R]] �−→ Ω

Concerning the parallel operator, we state first of all that each process can
terminate independently:

P
�−→ Ω

P [| A |]Q τ−→ Ω [| A |]Q
Q

�−→ Ω

P [| A |]Q τ−→ P [|A |]Ω
If both processes have terminated, indicated by the special state Ω, their
parallel composition can do so as well:

Ω [|A |]Ω �−→ Ω

Now let’s study sequential composition P o
9 Q. As long as P can perform

events different from �, this is what the combined process performs. Only,
when P terminates, the second process takes over:

P
x−→ P ′

P o
9 Q

x−→ P ′ o
9 Q

x �= � P
�−→ P ′

P o
9 Q

τ−→ Q
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Note, that we again use τ in order to provide a label for the control flow from
P to Q.

Hiding is simple when it comes to the operational semantics. Events to be
hidden are turned into a τ, all others remain:

P
x−→ P ′

P \ A
τ−→ P ′ \ A

x ∈ A
P

a−→ P ′

P \ A
a−→ P ′ \ A

a /∈ (A ∪ {�})

Hiding has no effect on termination, but we follow again the convention that
Ω represents all terminated processes (this is necessary, as the operational
rule for the termination of the parallel operator recognizes the termination
of the subprocesses by pattern matching with Ω):

P
�−→ P ′

P \ X
�−→ Ω

Example 37.9: The Actual Starting Procedure in Csp

After the pilot initiated the start and the aeroplane electronics agreed
that it is OK to start, the actual start procedure can follow:

datatype SAVMode = open | close
channel sav:SAVMode

StartInit = sav.open -> fc_press -> Fuel
[] fc_press -> sav.open -> Fuel

channel commandFuelON, commandIgnON

Fuel = commandFuelON -> commandIgnON -> SKIP
[] commandIgnON -> commandFuelON -> SKIP

Region = (StartInit /\
(mc_release -> abortStart -> STOP));

(MasterSpeed
|||
(ButtonON [[press < - mc_press,

release < - mc_release]]
)

)

The expected flow of events is that sav.open and fc press hap-
pen in any order. Then the process Fuel shall take over. Finally, the
MasterSpeed process is called, which models the final phase of the start-
ing procedure.
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While the StartInit process is running, it is possible to interrupt
it with a mc release command. However, when StartInit process has
terminated, this interrupt becomes disabled. The pilot, however, still
can release the MC, button— however now with no effect anymore: as
above, we model this by adding a process in interleaving.

In CspM it is possible to create new types using the keyword datatype. In
our simple case, this type consists of the two constants open and close. The
vertical bar | separates the alternatives of the CspM datatype construct.

The external choice operator chooses based on a visible event b ∈ Σ∪{�} :

P
b−→ P ′

P � Q
b−→ P ′

Q
b−→ Q′

P � Q
b−→ Q′

An internal event leaves the choice unresolved:

P
τ−→ P ′

P � Q
τ−→ P ′ � Q

Q
τ−→ Q′

P � Q
τ−→ P � Q′

At this point we can also illustrate the difference between the external choice
and the internal choice operator. The latter resolves the choice by performing
an internal event:

P � Q
τ−→ P P � Q

τ−→ Q

Note that in the traces semantics it is not possible to distinguish between
internal and external choice. The semantical clauses are identical:

tracesM (P � Q) � tracesM (P ) ∪ tracesM (Q)
tracesM (P � Q) � tracesM (P ) ∪ tracesM (Q)

More sophisticated denotational Csp semantics, e.g., the failures/divergences
semantics N and the stable failures semantics F , make more concise obser-
vations and are both able to distinguish between the two choice operators.

In an interrupt situation P �Q, the control remains with P as long as the
events are carried out with P . The moment, an observable event comes from
Q, however, the process Q takes over:

P
x−→ P ′

P �Q
x−→ P ′ � Q

x ∈ Σ ∪ {τ} Q
y−→ Q′

P �Q
y−→ Q′

y ∈ Σ

This results in a non-deterministic situation, should P offer the first events
possible for Q. The moment P or Q terminate, so does P � Q:

P
�−→ P ′

P � Q
�−→ Ω

Q
�−→ Q′

P � Q
�−→ Ω

This brings us to the end of our case study: we have seen all ingredients
necessary to model the manual ground start functionality of an EEC. Here,
we summarise our modelling approach:
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Example 37.10: Modelling Rules

1. Commands stated in oval boxes are modelled as events.
2. Transitions are checked in arbitrary order, i.e., it does not matter if

the left event or the right event happens first.
3. Components are modelled only once, i.e., there is one push button

process, which is then duplicated via renaming.
4. Same behaviour is modelled identically (“Monitor disengagement

speed” and “Monitor achieving idle” have the same control flow, are
depicted differently in Fig. 3.1, however, are modelled identically in
the Csp code).

5. The buttons in the cockpit are independent of each other. Further-
more, the buttons, the EEC, the aeroplane electronics, and the phys-
ical engine are independent entities.

6. Interrupts are realised via the Csp interrupt operator.

Such kind of rule set is useful whenever one models a concrete system. It
allows one to trace modelling decisions. Furthermore, it can serve as a refer-
ence point when discussing the question: “where do the axioms come from?”

Concerning our findings with regards to the jet engine controller, we can
state:

Example 37.11: Evaluation

Rolls-Royce uses activity diagrams as shown in Fig. 3.1 merely as
memos. The engineers share a common understanding of jet engines,
the activity diagrams serve more to trigger knowledge how the control
software works. Here, we list some of the shortcomings that we encoun-
tered during the modelling:
• Although the Engine Start is a momentary button and Master Crank

is a push button with two states both are shown with the same symbol
in the activity diagram. That the Engine Start is a momentary button
becomes clear from the textual description of the activity diagram.
This explains also why there is no interrupt related to this button.

• Although the commands Command IGN ON and Command IGN
OFF appear at first sight to be related, they are not: the command
Command IGN ON is given by the pilot in the cockpit while the
command Command IGN OFF is sent by the EEC to the engine.
Therefore, we model these commands via two different channels.

• As there is a command Command FUEL ON one would expect com-
mand Command FUEL OFF to appear in the activity diagram, e.g.,
when aborting the start. However, this is not the case.
Concerning the suitability of Csp, on the positive side we can men-

tion that the various Csp operators came very handy in the modelling
process. The interleaving operator, the sequential composition and the
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hiding operator allowed us to capture many system aspects in an elegant
way. On the negative side, the global state approach of Csp forced us
to explicitly have one process name per transition (arrow in the activity
diagrams). This allowed us to take care of or ignore state changes of the
buttons while following the control flow of the activity diagram. Overall,
however, Csp served well in modelling such a controller.

Modelling a system happens usually with a purpose. In our case the pur-
pose was to create a formal model in order to test the controller. For more
details, see [HKRS09]. Purposes for modelling include:

• Better understanding of the system (by, e.g., making it accessible to sim-
ulation).

• Clarification of an informal specification.
• Testing.
• Verification.
• Performance analysis.

In this section, we were using predominately the operational semantics to
provide an understanding of the various Csp operators. However, “Histor-
ically, the operational semantics of Csp was created to give an alternative
view to the already existing denotational models rather than providing the
intuition in the original design as it has with some other process algebras
such as CCS.” [Ros98].

3.2.3 Understanding Refinement—Modelling Buffers

Buffers are a commonly used notion in the theory of computer science. Albeit
simple, the concept is crucial to the design of data processing and commu-
nication. Buffers essentially serve as memory, temporarily holding some data
while being transferred from one place to another, usually as part of some
distributed computation within a local or networked system. Such a transfer
may involve data being moved to or from an I/O device, or transmitting or
receiving data on a communication network:

Example 38: Buffers

A buffer is typically characterised to serve data in the order of arrival,
useful where some queue of data is to be transferred. It operates on the
principles of first in first out (FIFO), assuming no reordering or loss.
Data may also be read and written at a different and variable rate. This
stands in contrast with related notions of cache and stack: while cache
is designed to allow data being written once and read multiple times,
stack operates on a last in first out (LIFO) principle.
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The rest of this section adopts the following approach: first, the charac-
teristic behaviour of buffers is formally specified. This helps to make explicit
the defining properties of a buffer. A most simple buffer is then described to
offer such properties by design. This serves as a generic buffer specification
for other complicated systems to satisfy. The notion of refinement is intro-
duced as a means to check against process-oriented specifications. Finally a
piped communication system is presented as a case for demonstration, where
the system is only deemed to be a buffer if it proves to be a refinement of a
simple characteristic buffer.

Characteristic Behaviour

For a process to pass as a buffer it must satisfy the defining properties:

Example 38.1: Buffers—Defining Properties

For some buffer B storing elements of a set M, channels read and write
serve the purpose of passing messages to and from it. The three prop-
erties understood as such for B are
1. input of messages on read channel and output on write channel with-

out loss or reordering,
2. available input of any messages on the read channel when the buffer

is empty, and
3. available output of some message on the write channel when the

buffer is non-empty.

The above can be stated formally. The first property can be expressed
using traces as observations:

Example 38.2: Buffers—First Defining Property

Given a Csp process B, it requires that for any trace the sequence of
values to appear on the channel write are a prefix and in the same order
of the values that appear on the channel read.

tr ∈ traces(B) =⇒ tr ↓ write ≤ tr ↓ read (3.1)

Given a channel c, the function ↓ is inductively defined as:

〈〉 ↓ c � 〈〉
(〈a〉 � tr) ↓ c �

{
m � (tr ↓ c) ; a = c.m for some m ∈ comms(c)
tr ↓ c ; else

The second property insists that when the queue is empty the process
must allow for any message on the input. This property can’t be expressed
with traces anymore. Traces record which observations can happen, however,
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not which observations must happen. The process P = Stop � (a → Stop),
for example, has the trace 〈a〉, however, if P internally decides to take the
left branch, a can’t happen.

Thus, we need a means to observe processes more specifically. To this end,
the theory of Csp considers the refusal sets of a process. Such a refusal set
is a set of events that a process can fail to engage in however long the events
are offered.

Consider once more the transition system of the process ButtonOFF as
shown in Fig. 3.2, cf. page 133. In such transition systems we distinguish
between stable and unstable states. A stable state has no outgoing transition
labelled with τ or �. A stable state s refuses any set X ⊆ Σ ∪ {�} of
visible events that are not the label of an outgoing transition. Such a set X is
called a refusal set. In our example, the process ButtonOFF has the alphabet
Σ = {press, release}. Here, we obtain:

• ButtonOff is unstable.
• press -> ButtonOn is stable and has the four refusal sets {}, {release},

{�} and {release,�}.
• ButtonOn is unstable.
• release -> ButtonOff is stable and has the four refusal sets {}, {press},

{�} and {press,�}.

In order to deal with termination, for an unstable state with an outgoing �
transition we record all X ⊆ Σ as refusal sets.

The definition of refusal sets has the following consequence: if X is a
refusal set of state s and Y ⊆ X, then also Y is a refusal set of s. There
is not necessarily a largest refusal set w.r.t. set inclusion. The process (a →
Stop) � (b → Stop) has two maximal initial refusal sets: {a,�} and {b,�}.

Now let us study which events the process ButtonOFF can refuse after
performing a certain trace. Starting at state ButtonOff, after observing the
empty trace 〈〉, the process is either in the state ButtonOff or—by per-
forming τ—in the state press -> ButtonOn. ButtonOFF has no refusal sets,
however press -> ButtonOn has the four refusal sets {}, {release}, {�}
and {release,�}. We combine this information to so-called failures:

• (〈〉, {}),
• (〈〉, {release},
• (〈〉, {�}), and
• (〈〉, {release,�}.

A failure is a pair consisting of a trace and a refusal set. In our example
we have: after performing 〈press〉, we are either in state ButtonOn or in
state release -> ButtonOff. ButtonOn has no refusal set, however release
-> ButtonOff has four refusal sets. Thus, the set of all failures with trace
〈press〉 is

{ (〈press〉, {}), (〈press〉, {press},
(〈press〉, {�}), (〈press〉, {press,�)}}.
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The set of all failures of a Csp process P is denoted with

failures(P ).

With the failures of a process at hand, we can express that a certain event,
say press, has to be possible after observing a certain trace, say 〈〉: press is
not an element of the refusal sets of the process ButtonOFF after observing
the trace 〈〉, formally:

(〈〉,X) ∈ failures(ButtonOFF) =⇒ press /∈ X.

Div

τ

Fig. 3.3 Transition system of Div

In the context of failures, there is a process called Div that plays a special
role. We add it to our grammar as one further option

P :: = . . .
| Div

though specifiers use it seldomly. Figure 3.3 shows the transition system
associated with it. As the only transition it has is labelled with τ , the only
observation one can make about Div is the empty trace, i.e., traces(Div) =
{〈〉}. As the only state it has is unstable and has no outgoing � transition,
it has no stable failures, i.e., failures(Div) = {}.

The failures of a process can either be obtained from the operational
semantics—as done above—or computed in a denotational way. We demon-
strate here that failures are powerful enough to distinguish between the inter-
nal and the external choice operator:

• In the case of internal choice, we simply take the union of the failures of
the constituent processes:

failures(P � Q) = failures(P ) ∪ failures(Q).

After performing a τ event in the transition system of P � Q, we reach
state P or state Q.

• In the case of external choice, initially all options of P and Q are
available—i.e., only the common refusal sets are those of the combined
process. When a non-empty trace has been performed, we take the refusals
of the individual processes after this trace. Finally, we have to deal with
termination: if P or Q can terminate, we can refuse the whole alphabet.
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failures(P � Q) = {(〈〉,X) | (〈〉,X) ∈ failures(P ) ∩ failures(Q)}
∪ {(s,X) | (s,X) ∈ failures(P ) ∪ failures(Q) ∧ s �= 〈〉}
∪ {(〈〉,X) | X ⊆ Σ ∧ 〈�〉 ∈ traces(P ) ∪ traces(Q)}.

Section B.4 compiles the clauses for the other operators.
Using failures, we can express the two missing buffer properties:

Example 38.3: Buffers—Second and Third Defining Property

Recall that the communications on the read and on the write channel
are collected in some set M, i.e., comms(read) = comms(write) = M.
When all messages read by the buffer have appeared as output, i.e.,
tr ↓ write = tr ↓ read, and hence the buffer is empty, then the buffer
can’t refuse any element of read.M = {read.m |m ∈ M}:

(tr,X) ∈ failures(B) ∧ tr ↓ write = tr ↓ read =⇒
read.M ∩ X = {} (3.2)

If the messages read by the buffer have not yet all appeared as output,
tr ↓ write < tr ↓ read, and hence the buffer is still not empty, then some
element of write.M is available for output:

(tr,X) ∈ failures(B) ∧ tr ↓ write < tr ↓ read =⇒
write.M � X

(3.3)

Here, s < t means: the trace s is a proper prefix of the trace t.
Property (3) is somewhat weaker than (2) as it insists on some output

to be available from the buffer as opposed to any input to it. This serves
to distinguish what the environment provides the buffer as an input
from what the buffer may offer as output. Characteristically the buffer
should output messages in the same sequence as they were input, which
is ensured by (1). Combining (1) and (3) it is possible to predict the
sequence of message that appear as output.

Essentially, requirement (1) is a safety property (slogan: “nothing ‘bad’
will ever happen”). It ensures that the sequence appearing as input is the
same sequence (or a prefix of) that appeared as output. Formulated as a
safety property one could state: it will never happen that the input sequence
(or a prefix of it) will re-ordered as an output. Requirements (2) and (3)
are liveness properties (slogan: “eventually, something ‘good’ will happen”).
Formulated as a liveness property, requirement (2) says: when the buffer is
empty, eventually it will read an input. Similarly, for (3) we can formulate:
when the buffer is non-empty, eventually, some output will happen. See the
classical 1985 paper “Defining Liveness” [AS85] for a thorough discussion of
the subject. Note the use of traces and failures in formalising these require-



3 The Process Algebra CSP 147

ments. With traces we state that undesirable events should not happen, with
failures we formulate that desirable events could happen.

Up to now we have formulated in the semantic domains of traces and
failures what a buffer should do. Here, we give a Csp process which has the
desired properties.

Example 38.4: A Simple BUFFER Process

The following process offers properties (1)--(3) by design.

BUFFER(〈〉) = read?m → BUFFER(〈m〉)
BUFFER(〈x〉 � q) =

(read?m → BUFFER(〈x〉 � q � 〈m〉) � Stop)
� write!x → BUFFER(q)

The buffer process BUFFER( ) has one parameter, which is the
sequence of messages currently in the queue. m and x range over the
set of allowable messages M ; q ranges over all finite sequences over M .

An empty buffer always allows a new message to be read in. A non-
empty buffer either accepts a new message on read or stops working,
however, it is not able to refuse to output on write. Requirement (2),
and thus Eq. (3.2), does not concern a non-empty buffer. Hence the use
of nondeterministic choice between accepting a fresh input or refusing it.

Initially, the queue of read message is empty:

BUFFER = BUFFER(〈〉)

It is one thing to claim that a process has certain properties. Yet, one
better proves that this is the case indeed:

Example 38.5: BUFFER has the Prefix Property

Property (3.1) is a consequence of the following invariant: for all traces
tr ∈ traces(BUFFER) and the state q of BUFFER( ) after performing
the trace tr it holds that

(tr ↓ write) � q = tr ↓ read .

Proof By induction on the length of tr.
In the case tr = 〈〉 the property holds obviously.
Now let tr = tr′ �a. By induction hypothesis, we have (tr′ ↓ write)�

q′ = tr′ ↓ read , where q′ is the state of the buffer after tr′.
If a = read .m for some m ∈ M, we obtain q = q′ � 〈m〉 and
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(tr ↓ write) � q

= (tr′ ↓ write) � q′ � 〈m〉
= (tr′ ↓ read) � 〈m〉
= (tr′ � 〈read .m〉) ↓ read
= tr ↓ read

If a = write.m for some m ∈ M, we know that q′ = 〈m〉 � q. We
compute

(tr ↓ write) � q

= (tr′ � 〈write.m〉) ↓ write) � q

= (tr′ ↓ write) � 〈m〉 � q

= (tr′ ↓ write) � q′

= tr′ ↓ read
= (tr′ � 〈write.m〉) ↓ read
= tr ↓ read

Now we look into the liveness properties:

Example 38.6: BUFFER has the Liveness Properties

For Property (3.2) and Property (3.3) we compute the failures of the
interesting states.

To Property (3.2): let tr be a trace of BUFFER. Let tr ↓ write =
tr ↓ read . Then the state q of BUFFER( ) after tr is 〈〉. The failures
of BUFFER(〈〉) are

failures(read?m → BUFFER(〈m〉)) =
{(〈〉,X) | {read .m |m ∈ M} ∩ X = {}} ∪ {(〈read .m〉 � s,X) | . . .}
I.e., Property (3.2) holds.
To Property (3.3): let tr be a trace of BUFFER. Let tr ↓ write <

tr ↓ read . Then the state of BUFFER( ) after tr is of the form 〈x〉� q.
We calculate the failures (s,X) with s = 〈〉 of this process. Let
• P � (read?m → BUFFER(〈x〉 � q � 〈m〉) � Stop) and
• Q � write!x → BUFFER(q).

Using these abbreviations we calculate:

• Consider P : We observe that Stop has all refusal sets: failures(Stop) =
{(〈〉,X) | X ⊆ A�}. As the internal choice operator takes the union
of the failures, for 〈〉 we have all refusal sets for P .

• The failures of Q are {(〈〉,X) | write.x /∈ X} ∪ {(〈write.x〉 � s,X) |
. . .}.

• Combining these failure sets we obtain:
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failures(P � Q)
= {(〈〉,X) | (〈〉,X) ∈ failures(P ) ∩ failures(Q)}

∪ {(s,X) | (s,X) ∈ failures(P ) ∪ failures(Q) ∧ s �= 〈〉}
∪ {(〈〉,X) | X ⊆ A ∧ 〈�〉 ∈ traces(P ) ∪ traces(Q)}

= {(〈〉,X) | (〈〉,X) ∈ failures(Q)}
∪ {(s,X) | . . . s �= 〈〉}
∪ {}.

Now assume that there exists some failure (〈〉,X) ∈ failures(P � Q)
with write.M ⊆ X. As failures sets are downward closed, then also
(〈〉, {write.x}) ∈ failures(P � Q). This, however, is not the case as
seen above. Thus, property (3.3) holds.

Refinement

There is an advantage to using a simple process description such as the one
for BUFFER: if the behaviour demonstrated by the process, in terms of the
traces and failures that it exhibits, is acceptable, then the process itself can
be used as a specification. Such a specification can then be used to check
typically larger or more complicated systems whether they demonstrate the
same behaviour. This is the general idea underlying the notion of refinement .

For a given specification described by some process P , another process Q
is said to meet the specification P if any trace of Q is also a trace of P . One
also says: P is refined by Q. Formally, this is defined as

P �T Q � traces(Q) ⊆ traces(P )

where P �T Q is pronounced Q trace-refines P . The fewer traces Q has the
more ‘refined’ it is. Q has fewer behaviours that can violate the specification
described by P . Following from this P �T Stop for any P , i.e., Stop is the
most trace refined process. Doing ‘nothing’ is always safe.

The notion of refinement extends to failures: if every trace tr of Q is
possible for P and every refusal after this trace is possible for P then Q
failures-refines P . Formally,

P �F Q � traces(Q) ⊆ traces(P ) ∧ failures(Q) ⊆ failures(P )

Csp refinement obeys a number of laws including

P � P (reflexive)
P � Q ∧ Q � R =⇒ P � R (transitive)
P � Q ∧ Q � P =⇒ P = Q (anti -symmetric)
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As these laws can be proven to hold in all Csp standard models, we omit the
index indicating the specific model. Furthermore, refinement is compositional
such that it is preserved by all operations of Csp. This means for any Csp
context F (.) where a process can be substituted,

P � Q =⇒ F (P ) � F (Q) (substitution)

Let’s look at an example refinement. We first specify a concrete system B:

Example 38.7: A Two-element Buffer

B = read?x → Bone(x)
Bone(x) = read?y → Btwo(x, y) � write!x → B
Btwo(x, y) = write!(x) → Bone(y)

While it is intuitively clear that B is a two element buffer, the question
is: do we have BUFFER �F B?

In order to answer this question, we state some algebraic laws of Csp,
which all are immediate consequences of the semantic clauses and the defini-
tion of refinement. Over the model F , the following algebraic laws hold for
refinement:

1. P � Q �F Q (int-choice refinement)
2. P � Stop = P (ext-choice unit)
3. P �F Div (div most refined process over F)
4. c?x → P (x) = c?y → P (y) (variable renaming)

For further discussions on the model F see Sect. 3.4.1. This chapter also
includes a discussion of algebraic laws, see Sect. 3.4.2.

Note that laws 2. and 4. both give rise to refinement laws. As refinement
is reflexive (P � P ), from P � Stop = P we obtain P � Stop � P , and also
from c?x → P (x) = c?y → P (y) we obtain c?x → P (x) � c?y → P (y).

For dealing with recursion, we state the following proof rule of fixed point
induction:

Let P = F (P ) and Q = G(Q) be two systems of process equations, where
P = (Pi)i∈I and Q = (Qi)i∈I are (possibly infinite) vectors of process names
over some index set I, and F = (Fi)i∈I and G = (Gi)i∈I are vectors of
component functions Fi and Gi, resp., which map a vector of process names to
Csp processes over a these names. Let P �X Q be defined as ∀i ∈ I. Pi �X Qi

for X ∈ {T ,F}. Then it holds:

• If Fi(P ) �T Gi(P ) for all i ∈ I, then P �T Q.
• If Fi(P ) �F Gi(P ) for all i ∈ I, then P �F Q.

The interested reader is referred to Roscoe’s book [Ros98], Sect. 9.2, for the
proof and further discussion of these rules.
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We illustrate this formulation of process equations by the following exam-
ple:

Example 38.8: Formulation as System of Process Equations

We can formulate both, the BUFFER process and the two element buffer
B as systems of process equations.

Both buffers can store elements from some set M. The words over
M, i.e., the set M∗ provides the index set common to both systems of
process equations.

In the case of the general BUFFER process, we take BUF =
(BUFw)w∈M∗ as the vector of names. We define the component func-
tions with the help of a vector of variables X = (Xw)w∈M∗ as follows.

F〈〉(X) = read?m → X〈m〉
F〈x〉�q(X) = (read?m → X〈x〉�q�〈m〉 � Stop)

� write!x → Xq

with x ∈ M, q ∈ M∗.
Similarly, in the case of the two element buffer B, we take B =

(Bw)w∈M∗ as the vector of names. We define for the two element buffer
with the help of a vector of variables Y = (Yw)w∈M∗ the following
system of equations:

G〈〉(Y ) = read?x → Y〈x〉
G〈x〉(Y ) = read?y → Y〈x,y〉 � write!x → Y〈〉
G〈x,y〉(Y ) = write!(x) → Y〈y〉

Now, we are missing out on equations for Gw for |w| ≥ 3 : the two
element buffer does not prescribe any behaviour in the case that three
or more elements have been stored. These states are no reachable from
the initial state of an empty buffer. However, formally we are required
to provide equations, when we want to relate the BUF process with our
two element buffer. Here we choose:

Gw(Y ) = Div

for w ∈ M∗, |w| ≥ 3. As Div is the most refined process over F , this
definition will ease our refinement proof.

Formulating our processes in the ‘right’ format for the fixpoint induction
rule involved

• finding a common index set,
• transforming process parameters to indices in order to formally obtain a

vector of process names,
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• explicitly formulating component functions, possibly adding such func-
tions.

Often, these transformations are obvious and there is no need to actually
carry them out. But in the beginning it helps to ‘stick to the rules’.

theorem BUFFER_ref_B: "ProcBUF <=F ProcB"

apply (unfold ProcBUF_def ProcB_def)

apply (rule cspF_fp_induct_cpo_ref_right[of _ _ "B_to_BUF"])

apply (simp_all)

apply (induct_tac p)

apply (simp_all)

(* length 0 *)

apply (cspF_unwind)

apply (cspF_hsf)+

(* length 1 *)

apply (cspF_unwind)

apply (cspF_hsf)+

apply (rule cspF_Int_choice_left1)

apply (rule cspF_decompo, auto)

(* length 2 *)

apply (cspF_unwind)

apply (cspF_hsf)+

apply (rule cspF_Int_choice_left2)

apply (simp)

done

Fig. 3.4 The proof from Example 38.9 as proof script in Csp-Prover

With these formulations, we are now prepared to carry out the proof:

Example 38.9: A Refinement Proof

With the notation established above, we want to show that
Fw(X) �F Gw(X) for all w ∈ M∗.

To this end, we consider the following four cases, which cover all w ∈
M∗ :
Case 1, |w| = 0, i.e., w = 〈〉 :

F〈〉(X) = read?m → X〈m〉
= read?x → X〈x〉 by (variable renaming)
= G〈〉(X).
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Case 2, |w| = 1 : Let w = 〈x〉 for some x ∈ M .

F〈x〉(X) = (read?m → X〈x〉�〈m〉 � Stop)
� write!x → X〈〉

�F (read?y → X〈x,y〉)
� write!x → X〈〉

by (int choice refinement), (substitution),
(variable renaming)

= G〈x〉(X)

Case 3, |w| = 2 : Let w = 〈x, y〉 for some x, y ∈ M .

F〈x,y〉(X) = (read?m → X〈x,y〉�〈m〉 � Stop)
� write!x → X〈y〉

�F Stop � write!x → X〈y〉
by (int choice refinement) and (substitution)

= write!x → X〈y〉 by (ext-choice unit)
= G〈x,y〉(X)

Case 4, |w| ≥ 3 : Let w = 〈x〉 � q for some x ∈ M, q ∈ M∗, |q| ≥ 2.

F〈x〉�q(X) = (read?m → X〈x〉�q�〈m〉 � Stop)
� write!x → Xq

�F Div by (div most refined process over F)
= G〈x〉�q(X)

The above proof also be carried out in Csp-Prover, cf. Fig. 3.4. Rule
cspF fp induct cpo ref right refers to fixec point induction. In the
case distinctions, (cspF unwind) represents the unfolding of the equa-
tions (i.e., going from the lhs of component function F to the rhs),
(cspF hsf)+ is a tactic that automatically applies a number of alge-
braic laws, however, sometimes one needs to be specific which algebraic
law shall be applied and to which argument (cspF Int choice left1—
chooses the first argument of the internal choice operator on the lhs of
an equation).

As refinement holds in all four cases, we know that BUF �F B. Now
let us consider the three defining properties of a buffer in the context of
process B:

For the first defining property, we have: let tr ∈ traces(B). As
BUF �F B we have tr ∈ traces(BUF ). For the traces of the BUF
process it holds that tr ↓ write ≤ tr ↓ read . Thus, the first defining
property holds for tr. The proofs for the second and third property are
analogous.

Thus, B has all the defining properties of a buffer.



154 M. Roggenbach, S. A. Shaikh and A. Cerone

The general idea a refinement P � Q in Csp is that properties established
for P are inherited by Q, as was the case in our buffer example. The general
pattern is: safety properties (‘nothing bad will ever happen’) are inherited in
trace refinement �T , while safety properties and liveness properties (‘even-
tually, something good will happen’) are inherited in failures refinement �F .
As model checking for trace refinement has a lower complexity than model
checking failures refinement, it is worth to have both refinements.

In a Csp refinement P � Q,

• one can see P as the specification of a property, and Q as the system model,
i.e., Csp captures properties and system model within one language. We
will discuss how to specify livelock, deadlock, and determinism in Csp in
Sect. 3.4.4.

• however, one can also think of P as the first model that one builds of a
system and analyses. Having established that P has the desired properties,
e.g., that P is deadlock free, one develops Q and shows via refinement that
Q keeps the desired properties. As P is less complex than Q, the hope
would be that analysing P is ‘easier’ than analysing Q.

• finally, one can perceive P as an abstraction of a system model Q, where
we leave out details from Q. As P is ‘less complex’, it will be easier to
analyse P.

A Communication System

Communication systems often form an important component of larger dis-
tributed processing systems where reliable movement of data from one part
of the system to the other is critical. From an abstract point of view, the
communication system shall behave like a buffer. In the following, we will
give a specific communication system and prove that it exhibits the buffer
properties described above.

Example 39: A Communication System

A typical communication system consists of three components: a sender,
a medium (e.g., a wireless network), and a receiver. The medium trans-
ports the messages, usually in an unreliable way.

Here, we give an example of a communication system COMM SYSTEM
with an imperfect medium, which is designed to communicate bits:

Example 39.1: A Communication System in Csp

COMM SYSTEM = (SNDR [|ToM |]MEDIUM ) [|FromM |]RCVR

where the communication sets are given as
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• ToM � {toMedium.0, toMedium.1} and
• FromM � {fromMedium.0, fromMedium.1}.

Processes SNDR and RCVR serve to interface with the medium:

SNDR = read?x → toMedium!x → SNDR
RCVR = fromMedium?x → write!x → RCVR

The MEDIUM is described below

MEDIUM 0 = toMedium?m →
( fromMedium!m → MEDIUM 0

� fromMedium!(1 − m) → MEDIUM 2)
MEDIUM n+1 = toMedium?m → fromMedium!m → MEDIUM n

MEDIUM = MEDIUM 0

The medium available is unreliable but somewhat predictable. Designed
to transmit a single bit at a time, it may or may not corrupt the
transmitted bit. Here, the expression 1 − m encodes flipping the bit.
If the medium corrupts the bit, it will transmit the next two bits cor-
rectly before being able to corrupt another one. In reality, a medium
might not be predictable to such an extent. A natural question is this
COMM SYSTEM behaves like a buffer with the above stated proper-
ties (3.1), (3.2), and (3.3). In Csp, this question can be expressed as a
refinement assertion. Concretely, we might try to find out if the system
behaves like a two place buffer, i.e., do we have B�F COMM SYSTEM \
(FromM ∪ ToM )? Note that this refinement could fail for two reasons:
the first is that the system fails to return the same element, the second is
that the system has a different capacity. These reasons are not exclusive.

Here, we use the hiding operator to abstract from the interaction with
the MEDIUM . Should this refinement hold, we inherit the properties
stated for BUFFER, i.e., all traces of the abstract COMM SYSTEM
have the “no loss & no reorder” property; if the MEDIUM is available,
the abstract COMM SYSTEM offers to read a bit; after the MEDIUM
has delivered a message, the abstract COMM SYSTEM offers to write
a bit.

Using a model checker, e.g., FDR, one obtains:

Example 39.2: The Communication System Is Flawed

We have B ��F COMM SYSTEM \ (FromM ∪ ToM ) as the process

COMM SYSTEM \ (FromM ∪ ToM )

has the trace
〈read .1,write.0〉
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i.e., the medium corrupts the transmitted message such that 1 is read
in but 0 is written out.

I.e., the first of the two reasons discussed above occurred.

To address this problem, we redesign the COMM SYSTEM . Even if it
is taken to be certain that every one of the three bits transmitted through
the medium is corrupted, the interfacing processes could be adapted to take
the best-of-three values. That is, necessarily assuming one out of three bits is
corrupted, any two values that match denote the original value transmitted.
To this end we modify the two interfacing processes:

Example 39.3: A Corrected Communication System

MSNDR = read?x → input!x → input!x → input!x → MSNDR
MRCVR = output?x → output?y → output?z →

if x == y then write!x → MRCVR
else write!z → MRCVR

With these modified processes, we form a new communication system—
without changing the MEDIUM :

MCOMM SYSTEM =
(MSNDR [|ToM |]MEDIUM ) [|FromM |]MRCVR

Using the model checker FDR, we obtain for this system:
1. B �F MCOMM SYSTEM \ (FromM ∪ ToM ) and
2. MCOMM SYSTEM \ (FromM ∪ ToM ) �F B,

i.e., the abstracted modified system behaves like a two place buffer.

3.3 The Children’s Puzzle or What Csp Tools Can Do

Fig. 3.5 Children’s Puzzle: illustration with five children
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In this chapter we analyze the Children’s Puzzle with various tools for
Csp. The puzzle belongs to the lore of mathematical riddles. It appears to
be impossible to name its inventor. One reference is [BPFS].

Example 40: The Children’s Puzzle

There are n ≥ 2 children sitting in a circle, each holding an even number
of candies.

The following two steps are repeated indefinitely:
Step 1: Every child passes half of their candies to the child on

her left.
Step 2: Any child who ends up with an odd number of candies is
given another candy by the teacher.

Figure 3.5 depicts an instance of the puzzle after Step 1.

We illustrate this puzzle by exploring it in a concrete setting:

Example 40.1: Example run

Say, there are three children with the names Berta, Emma, and Hugo.
Berta has Emma to her left, Emma has Hugo to her left, and Hugo has
Berta to his left. Initially, Berta does not hold any candies, Emma has
2 candies, and Hugo has 4 candies. One possible run looks as follows:

In the first round, in Step 1,
• Berta can’t pass any candies to Emma,
• Emma passes one candy to Hugo, and
• Hugo passes 2 candies to Berta.
Note that the puzzle does not prescibe any order in which the candies
are passed in Step 1.

In the first round, after Step 1,

• Berta holds 2 candies
(0 candies initially, 0 candies given away, 2 received from Hugo),

• Emma holds 1 candy
(2 candies initially, 1 given away to Hugo, 0 received from Berta),
and

• Hugo holds 3 candies
(4 candies initially, 2 given away to Berta, 1 received from Emma).

In the first round, in Step 2, the teacher

• does not give any candy to Berta as she holds an even number of
candies,

• gives one candy to Emma as she holds an odd number of candies,
and



158 M. Roggenbach, S. A. Shaikh and A. Cerone

• gives one candy to Hugo as he holds an odd number of candies.

In the first round, after Step 2,

• Berta holds 2 candies
(2 candies after Step 1, no candies from the teacher),

• Emma holds 2 candy
(1 candy after Step 1, one candy from the teacher), and

• Hugo holds 4 candies
(3 candies after Step 1, one candy from the teacher).

As steps are repeated indefinitely, this is only the beginning of one
run.

The puzzle does not prescribe any ‘synchronisation’ between the steps.
Our above ‘snapshots’ “after Step 1” and “after Step 2” are possible in a
run, however, do not happen in every run. In particular with many children, a
system run can inlude a ‘configuration’ in which children have completed sev-
eral rounds (i.e., passed their candies and received a refill from the teacher),
while there are children who not yet have passed any candy. It is this lack of
synchronisation that makes it a challenge to analyse the puzzle.

Natural questions on the puzzle include:

Example 40.2: Questions to the puzzle

• Will the teacher keep handing out more and more candies?
• Will an unequal distribution of candies eventually become an equal

one?

Our puzzle exhibits many characteristics typical of concurrent systems:
Scalability : The puzzle’s size, i.e., the number n of children involved, can
vary; Parameterisation: The initial distribution of candies can be chosen;
Local activity only: The children interact with their direct neighbours only,
there is no ‘broadcast’; Global result: The properties of interest concern the
system as a whole—one would like to prove them independent of size and
parameter.

3.3.1 The Arithmetic Side of the Puzzle

Usually, the Children’s Puzzle is analysed as a function, which is iterated on
a given initial distribution of candies. We observe:

Lemma 1 The maximum number of candies held by a single child never
increases; the minimum number of candies held by a single child never
decreases.
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Proof (The maximum never increases) Let 2M be the maximum number of
candies a child holds before Step 1 is carried out. Let c be one of the children.
Then child c holds 2K ≤ 2M candies. In Step 1, child c gives away K candies,
keeps K ≤ M candies, and receives L ≤ M candies. Thus, afterwards child
c holds K + L candies. Carrying out Step 2, i.e., filling up from the teacher
yields:

• If K = L = M or K = L = M − 1, then K + L is even. The child is not
given another candy. Thus, child c holds ≤ 2M candies.

• If K = M − 1, L = M or K = M, L = M − 1, then K + L is odd. The
child is given one candy. Thus, child c holds 2M candies.

• If K,L < M − 1, then child c holds K + L < 2M − 2 candies after Step 1.
As a child receives at most one candy, child c holds < 2M candies.

(The minimum never decreases.) Analogously. �
Corollary 1 The teacher will eventually stop handing out candies.

Lemma 2 Let 2m (2M) be the minimum (maximum) number of candies held
by a single child. Let m < M . The number of children holding 2m candies
decreases.

Proof We first argue that a child which holds 2k > 2m candies before Step
1 is carried out, never holds the minimum number after Step 1 and Step 2:
let c be such a child. In Step 1, child c gives away k candies, keeps k > m
candies, and receives l ≥ m candies. Thus, afterwards child c holds k+l > 2m
candies. Step 2 can only increase this number.

Now we study what happens with a child which holds 2m candies before
Step 1 is carried out. Let c be a such a child. In Step 1, child c gives away
m candies, keeps m candies, and receives l ≥ m candies. If l = m, child c
holds 2m candies, which is an even number. Thus, after Step 2 child c still
holds 2m candies. If l > m, child c holds m + l > 2m candies. Step 2 can
only increase this number.

As m < M there exists at least one child holding the minimum number of
candies with a neighbour to the right, who does not hold the minimum. �
Corollary 2 Eventually, all children will hold the same number of candies.

Proof Let m and M be as in Lemma 2. If m = M , there is nothing to prove.
If m < M , we know that after a finite number of carrying out Step 1

and Step 2, the number of children holding m candies will be zero. Lemma 1
states that the minimum never decreases. Thus, the new minimum must be
larger than m. Eventually, this will lead to an even distribution, as according
to Lemma 1 the maximum does not increase. �

Reflecting on our analysis, we observe: the proof arguments use arithmetic
only; concurrency does not play a role at all. Our analysis is based on two
(silent) assumptions: there is a global clock which synchronizes Step 1 and
Step 2; the exchange of candies is never blocked. If one wants to make the
underlying machine model explicit, one needs to formalise the puzzle.
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3.3.2 An Asynchronous Model of the Puzzle in Csp

In order to capture its concurrent aspect properly, we model our puzzle in
Csp. Here is the CspM code for three children who can hold up to four
candies:

fill(n) = if (n%2==0) then n else n+1

-- Communication in the system:

-- first parameter: position

-- second parameter: number of candies passed

channel c: {0..2}.{0..2}

-- The child processes:

-- p - position,

-- i - number of candies

Child(p,i) =

( c.(p+1)%3 ! (i/2)

-> c.p ? x -> Child(p, fill(i/2+x)))

[] ( c.p ? x

-> c.(p+1)%3 ! (i/2) -> Child(p, fill(i/2+x)))

-- 3 Children, holding 2*p candies each:

Children = || p:{0..2} @

[ {| c.p, c.(p+1)%3 |} ] Child(p,2*p)

Fig. 3.6 CspM model of the children’s puzzle

Example 40.3: The Puzzle in CspM

Figure 3.6 provides a CspM model of the children’s puzzle. Each of
the three children is represented by a parametrised process Child. The
first parameter p of Child is the identity or position of the child in
the system. The second parameter i of Child represents the number of
candies that it currently holds.

Passing a number k of candies from one child to another is modelled
as a communication of the value k via a channel c. There are three
channels c.0, c.1, and c.2, each connecting two children. Channel c.0
allows Child(2, ) to pass candies to Child(0, ), channel c.1 allows
Child(0, ) to pass candies to Child(1, ), and channel c.2 allows
Child(1, ) to pass candies to Child(2, ). Here we use as a wild-
card symbol for the number of candies: the channel connections are
independent of the number of candies the Child processes hold. As we
know from our mathematical proof, if initially the maximum number
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of candies a child holds is 4, then the number of candies that can be
passed is a number in the set {0, 1, 2}.

We implement the role of the teacher as a function fill. Note that
in CspM , the mod operator is written as % sign.

The children can pass candies in an arbitrary order: either, a child
first hands out half of her candies and then receives from the child to
her left, or the other way round.

The system Children then consists of the three processes. These are
Child(0,0), Child(1,2), and Child(2,4). They synchronise on the
channels ‘to their right’ to receive candies and ‘to their left’ to pass on
candies. We use the parametrised, general parallel operator in order to
form this system.

Note that our model is asynchronous, there is no global clock. The
number of times that the child processes have carried out Step 1 and
Step 2 can vary.

3.3.3 Analysing the Csp Model with Tool Support

Fig. 3.7 Simulation using the :probe command of FDR

With a simulator such as the tool ProBe we can explore a single run of
one instance of the puzzle. Figure 3.7 shows a run of the puzzle in ProBe.
Here, the puzzle consists of three children who initially are holding zero, two,
and four candies, respectively. After choosing the three exchanges c.0.2,
c.1.0, and c.2.1, the children hold two, two, and four candies. Selecting
furthermore always the first choice offered, eventually, we reach a state in
which all three children hold four candies.
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Example 40.4: Simulating the Puzzle

The simulation shows: for a specific size, for a specific initial candy dis-
tribution, and for a specific execution, eventually, all children hold four
candies. From the rules of our puzzle we know that exchanging further
candies will not change this state anymore. Thus, we can conclude: for
the specific instance of the puzzle and a selected run, we reach a ‘stable
state’.

We formulate the idea of ‘stability’ in Csp as follows:

StableAfter (n) = if n>0 then c.0 ? x -> StableAfter (n-1)
[] c.1 ? x -> StableAfter (n-1)
[] c.2 ? x -> StableAfter (n-1)

else Stable

Stable = c.0!2->Stable [] c.1!2->Stable [] c.2!2->Stable

For the first n steps, an arbitrary number of candies can be exchanged. Then,
however, the exchange of candies is restricted to two. The refinement state-
ment

assert StableAfter(3) [T= Children

over the traces model claims that the children exchange only two candies (if
at all) after three steps. As the children’s puzzle is also deadlock-free, i.e.,
always makes progress, proving the trace refinement StableAfter(n) [T=
Children is sufficient to establish stability after n steps.

Fig. 3.8 Model checking in FDR
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Example 40.5: Model Checking the Puzzle

With a model checker such as the tool FDR we can analyse all executions
possible in a specific instance of the puzzle. Typical questions are: is our
Csp model self stabilised, deadlock free, livelock free, or deterministic?
Fig. 3.8 shows the answers that FDR gives to these questions. Our model
does not stabilise after three or six steps, however, after nine and twelve
steps it is stable. Our model is deadlock free, it is livelock free, and it
is deterministic.

Fig. 3.9 Interactive proof in Csp-Prover

Example 40.6: Analysing the Puzzle with an Interactive The-
orem Prover

With an interactive theorem prover such as Csp-Prover [IR05, IR],
finally, we can gain a result as strong as Corollary 2, however, for the
asynchronous Csp model: the puzzle will stabilise for all numbers n ≥ 2
of children and for all initial candy distributions, see [IR08]. Figure 3.9
shows part of the proof.

This result comes at high costs though: the proof needs to be carried out
interactively, i.e., the user enters proof commands, which the proof engine
then executes in order to gain a new proof state. Developing the proof script
published by Yoshinao Isobe and Roggenbach [IR08] took about one man
month. The final script consists of several thousand lines of proof commands.
Running the script takes about half an hour of computation time on a 2.5
GHz Intel Core 2 Duo processor.

We have seen: with simulation we can analyse a single run of a system.
With model checking we can verify a single system. With interactive theorem
we can verify a parameterised class of systems.
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3.3.4 A Transformational Approach to Implementation

It is a long standing and still open research problem of how to link specifica-
tions written, e.g., in Csp with implementations written, e.g., in the program-
ming language C++. Here, ‘Invent & Verify’ and ‘Transformation’ are the
two standard approaches. In the first approach, the implementor ‘invents’ a
program and then establishes either by testing or by mathematical argument
that the implementation ‘fits’ to the specification. Testing approaches to Csp
are discussed, e.g., by Ana Cavalcanti and Temesghen Kahsai [CG07, KRS07].
The second approach, which we will follow here, ‘translates’ a given speci-
fication from a specification language into a programming language, in our
case from Csp into C++.

In the context of Csp, several techniques have been developed as link to a
programming language. They differ in methodology, preservation of seman-
tics, degree of automation, the supported language constructs, target lan-
guage, to name just a few criteria:

JCSP extends the programming language Java by a library of Csp con-
structs such as processes, (unidirectional) channels, parallel composition.
JCSP allows its user to program Java using Csp constructs to express
concurrency. For further information see [Wel, WBM07].

Magee/Kramer provide a set of informal translation rules in their book
“Concurrency” [MK06]. They link the process algebra FSP (a Csp dialect
designed for teaching purposes) to Java. The provided rules allow one to
develop Java programs with ‘the same properties’ as the FSP specifica-
tions.

CSP++ [Gar15, Gar05] is a tool which translates a sublanguage of CspM

into the programming language C++. Figure 3.10 shows the synthesis pro-
cess supported by CSP++: in order to capture the concurrent behaviour
of the system, the user writes a Csp specification. This specification can be
validated by simulation and analysis using standard Csp tools as discussed
above. This specification is then translated into CSP++ source code, which
is a C++ program using primitives provided by a C++ header files. The
CSP++ code can be compiled and linked in order to run on the target
computer. As a specialty, CSP++ offers to attach C++ functions to Csp
events.

Example 40.7: The Puzzle in CSP++

It is necessary to re-formulate our specification of the Children’s Puz-
zle in the Csp sublanguage supported by CSP++. We have to fix the
number of children to three and
• to replace the replicated parallel by the general parallel operator,
• to replace the indexed channels c.p by three individual channels, and
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Fig. 3.10 Software synthesis with CSP++ [Gar05]

• to implement the arithmetic given by the fill function by a process
Compute
Furthermore, we add a channel d in order observe the communica-

tions of the system:

channel c0, c1, c2 : {0..4}
channel d : {0..2}.{0..4}

Child(0,x) =
(c1!x/2 -> d.1.x/2 -> c0?y -> Compute(0,x/2,y))

[] (c0?y -> c1!x/2 -> d.1.x/2 -> Compute(0,x/2,y))

Child(1,x) =
(c2!x/2 -> d.2.x/2 -> c1?y -> Compute(1,x/2,y))

[] (c1?y -> c2!x/2 -> d.2.x/2 -> Compute(1,x/2,y))

Child(2,x) =
(c0!x/2 -> d.0.x/2 -> c2?y -> Compute(2,x/2,y))

[] (c2?y -> c0!x/2 -> d.0.x/2 -> Compute(2,x/2,y))

Compute(p,x,y) = if x+y==0 then Child(p,0)
else if x+y==1 then Child(p,2)
else if x+y==2 then Child(p,2)
else if x+y==3 then Child(p,4)
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else Child(p,4)

SYS = (Child(0,0) [|{|c1|}|] Child(1,2))
[|{|c0,c2|}|]

Child(2,4)

Using FDR, one can establish stability on this model as well.
Translation with CSP++ results in a C++ file of about 200 lines of

code. Running the resulting program yields the following output:

〈d.1.0, d.2.1, d.0.2, d.1.1, d.2.1, d.0.2, d.1.2, d.2.1, d.0.2, d.1.2, d.2.2, d.0.2〉
As expected, the system stabilizes after nine steps. The channels c0,

c1 and c2 are treated by CSP++ as internal events. There is a fixed
schedule selecting one possible execution path through the system.

Semantically, there are several fundamental questions concerning such
transformational approaches:

1. How does the approach select an subset of Csp processes? As Csp processes
can be non-deterministic and computers work in a deterministic fashion,
there are clearly Csp processes which can’t be implemented—the most
general livelock free process DivFAΣ, see Sect. 3.4.4, is an example.

2. Is there a well-defined semantical relation (refinement, simulation, . . .)
between the Csp specification and the implementation?

3. Does the translation preserve essential properties such as deadlock freedom
and livelock freedom?

Unfortunately, such questions are scarcely discussed in the literature on trans-
formations.

3.4 Semantics and Analysis

In this section, we are looking deeper into the ‘machinery’ of Csp.
Traditionally, the semantics of Csp is given in denotational style. In Sect.

3.4.1 we discuss the semantic domain, the notion of refinement, as well as
selected semantical clauses for the traces model T , the failures/divergences
model N , and the stable failures model F and relate these models with each
others.

In Sect. 3.4.2, we give a brief overview on the algebraic laws that hold
within Csp. These algebraic laws can be used to give Csp an axiomatic
semantics and are often used when analysing processes. The tool Csp-Prover
is based on these.
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Within Csp denotational semantics, recursive processes obtain their mean-
ing via fixed points. In Sect. 3.4.3, we discuss some basics of this approach.

Finally, in Sect. 3.4.4, we discuss how to analyse Csp processes for livelock,
deadlock, and determinism. The ‘trick’ behind these methods is always the
same: one encodes the property under discussion as a Csp process Prop and
shows that any process that refines Prop ‘inherits’ the desired property. Thus,
besides discussing important properties of processes, this section provides
‘blueprints’ of how to analyse Csp processes.

3.4.1 The Three Standard Models

Traditionally, the semantics of Csp is given in denotational style. To this end,
one chooses a set D of possible observations and defines a semantic function
[[ ]]D from the Csp syntax into D. Each Csp process P is assigned a set of
observations [[P ]]D ∈ D. Often, one speaks of a model D to denote both, the
domain and the semantic function.

Relatively to such a model D one can answer the questions:

• Are (the denotations) of processes P and Q equal? This equality is written
as

P =D Q.

• Is process P refined by process Q (with respect to D)? This refinement
statement is written as

P �D Q.

Both these questions can be formulated in terms of each other:
Lemma 3 Let D be a Csp model in which both two properties

P �D Q ⇐⇒ [[Q]]D ⊆ [[P ]]D (3.4)

[[P � Q]]D = [[P ]]D ∪ [[Q]]D. (3.5)

hold. Then the following equivalences are true:

1. P =D Q if and only if P �D Q ∧ Q �D P and
2. P �D Q if and only if P � Q =D P .

Proof Ad 1: clearly [[P ]]D = [[Q]]D if and only if [[P ]]D ⊆ [[Q]]D ∧ [[Q]]D ⊆ [[P ]]D.
Ad 2: “⇒” Let P �D Q. Then [[Q]]D ⊆ [[P ]]D. Thus [[P � Q]]D = [[P ]]D ∪

[[Q]]D = [[P ]]D. “⇐” By Contraposition. Let ¬(P �D Q), i.e., ¬([[Q]]D ⊆
[[P ]]D). Then there exists an observation q ∈ [[Q]]D with q /∈ [[P ]]D. For q it
holds that q ∈ [[P ]]D ∪ [[Q]]D = [[P � Q]]D. Thus P � Q �=D P . �
In all three standard models of Csp, the traces model T , the failures/diver-
gences models N , and the stable failures model F , properties (3.4) and (3.5)
both hold.
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Concerning binary relations such as refinement, the following definition is
standard.

Definition 1 (Partial order, bottom element) A partial order
(PO,≤) consists of

• a set PO and
• a relation ≤ ⊆ PO × PO which is

– reflexive, i.e., for all x ∈ PO : x ≤ x,
– antisymmetric, i.e., for all x, y ∈ PO : x ≤ y ∧ y ≤ x ⇒ x = y, and
– transitive, i.e., for all x, y, z ∈ PO : x ≤ y ∧ y ≤ z ⇒ x ≤ z.

A partial order with bottom element (PO,≤,⊥) consists of a partial order
(PO,≤) and

• an element ⊥ ∈ PO with ⊥ ≤ x for all x ∈ PO.

It turns out that refinement in all three standard models is a partial order.
In the following, we provide an overview of the three standard models

following the scheme below:

• Domain: There is a domain of possible observations, say the domain is
the set of all traces. However, not all sets of traces can be the observa-
tion of a Csp process. Thus, so-called healthiness conditions exclude such
impossible observations.

• Refinement: The notion of refinement P �D Q over D is defined. Some
domains have a most refined process or a least refined process, i.e., a
bottom or a top element w.r.t. the refinement order.

• Semantical clauses: Here we explain some typical semantical clauses of
the model.

• Relation to other models: We relate each new model to the models
introduced previously.

The Traces Model T

Domain. The traces model observes the finite sequences of events that a
process can engage with. The empty observation 〈〉 is always possible. If
there was an observation o = 〈a1, a2, . . . , ak−1, ak〉, obviously prior to o is
was possible to observe o′ = 〈a1, a2, . . . , ak−1〉. These considerations lead to
two healthiness conditions on trace observations: for all observations T it
holds that

T1 T �= ∅ and T is prefix-closed, i.e., ∀t ∈ T.s ≤ t ⇒ s ∈ T.

Here, s ≤ t stands for s is a prefix of t.
In contrast to other process algebras, Csp treats termination of processes:

the process Skip does nothing but to terminate; after termination of P the
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process P o
9 Q passes control to Q. On the semantic side, termination is rep-

resented as a special event � (pronounce “tick”). Concerning observations,
� can only happen at the end of a trace: after termination, a process does
not engage in any further events. Thus, the possible observations over an
alphabet Σ are given by

Σ∗� � Σ∗ ∪ {s � 〈�〉 | s ∈ Σ∗}.

Together with the two healthiness conditions, we obtain the Csp traces
domain as

T � {T ⊆ Σ∗� |T fulfills T1}.

Refinement over T is defined as

P �T Q ⇐⇒ [[Q]]T ⊆ [[P ]]T

i.e., T has property (3.4) stated in Lemma 3. We observe:

Theorem 1 �T is a partial order.

The definition of �T can be read: a process Q refines a process P if Q
exhibits at most P ’s executions. This is why the model T is concerned with
safety: if one has already proven for P that ‘nothing bad can happen’ (there
is no trace representing system failure), then any process Q that refines P
will have this property as well. Consequently, the process Stop, which has
only the empty trace as its denotation, refines all processes. The process

RUN With SkipΣ = (?x : Σ → RUN With SkipΣ) � Skip

has Σ∗� as its denotation, i.e., it is the least refined process over T .

Semantical clauses. In the context of the trace model T , one usually writes
traces( ) instead of [[ ]]T . traces( ) is defined inductively over the process
syntax. We present here some typical clauses, the full model is given in Sect.
B.4.

The process Stop admits only the empty trace as observation. Of the
terminating process Skip one can either observe the empty trace—before
termination—or the trace consisting of the termination symbol �.

traces(Stop) � {〈〉}
traces(Skip) � {〈〉, 〈�〉}

The multiple prefix operator ?x : X → P (x) offers to the environment all
events in X. When the environment has chosen a specific event, say a, the
process behaves as P (a) :

traces(?x : X → P ) � {〈〉} ∪ {〈a〉 � s | s ∈ traces(P [a/x]), a ∈ X}



170 M. Roggenbach, S. A. Shaikh and A. Cerone

Here, Csp uses the substitution [a/x] on the syntactic level in order to resolve
the binding of a to the variable x.

Csp internal choice is mapped to set union:

traces(P � Q) � traces(P ) ∪ traces(Q)

i.e., T has also property (3.5) of Lemma 3.
The clause for the Csp general parallel operator

traces(P [| A |]Q) �
⋃{s [| A |] t | s ∈ traces(P ) ∧ t ∈ traces(Q)}

is defined in terms of an interleaving function on the traces domain T —see
Sect. B.4 for its definition. This style is typical for denotational semantics
in general: for every operator in the syntax one defines a function on the
semantic domain.

Sequential composition P o
9 Q has all traces of P which do not terminate.

This is ensured by intersection with Σ∗. Furthermore, one obtains all traces
which are composed of terminating traces from P—but with � removed—and
traces from Q:

traces(P o
9 Q) � (traces(P ) ∩ Σ∗)

∪{s � t | s � 〈�〉 ∈ traces(P ), t ∈ traces(Q)}
The conditional operator exhibits yet another Csp specialty. Csp assumes

that there is a logic that allows one to formulate conditions ϕ. This logic,
however, is never made explicit. When Csp is integrated with data, as, e.g.,
in CspM [Sca98] or in Csp-Casl [Rog06], this logic and its evaluation rules
are made explicit. Here, we formulate only:

traces(if ϕ then P else Q) �
{

traces(P ) if ϕ evaluates to true
traces(Q) if ϕ evaluates to false

Like parallel composition, Csp renaming is defined utilising an operation
on the the traces domain:

traces(P [[R]]) � {t | ∃s ∈ traces(P ).sR∗t}
Given a relation R ⊆ Σ × Σ, R∗ ⊆ Σ∗� × Σ∗� is defined to be the smallest
set satisfying:

• (〈〉, 〈〉) ∈ R∗

• (〈�〉, 〈�〉) ∈ R∗

• (a, b) ∈ R ∧ (t, t′) ∈ R∗ ⇒ (a � t, b � t′) ∈ R∗

Semantical clauses need to respect the healthiness conditions of the
domain, i.e., given that the arguments are in the domain, their result needs
to be in the domain as well. Thus, the definition of each semantical clause
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comes with proof obligations. Let us consider these proof obligations in the
simple case of the prefix operator:

traces(a → P ) � {〈〉} ∪ {〈a〉 � s | s ∈ traces(P )}
Healthiness of this clause means to establish the following theorem:

Theorem 2 traces(a → P ) ∈ T for traces(P ) ∈ T .

Proof First, we show traces(a → P ) ⊆ Σ∗�, i.e., the symbol � appears only
at the end of the traces, if at all. Let t ∈ traces(a → P ). Then t takes one of
the following forms:

• t = 〈〉. We have 〈〉 ∈ Σ∗ and therefore 〈〉 ∈ Σ∗�.

• t = 〈a〉 � s. As s ∈ traces(P ) ⊆ Σ∗�, we have s ∈ Σ∗ or s ∈ Σ∗ � 〈�〉.
s ∈ Σ∗ implies 〈a〉 � s ∈ Σ∗; s ∈ Σ∗ � 〈�〉 implies 〈a〉 � s ∈ Σ∗ � 〈�〉.
Thus, in both cases we obtain t ∈ Σ∗�.

It remains to show that both parts of condition T1 hold for traces(a → P ).

To part 1: By definition 〈〉 ∈ traces(a → P ). Thus, traces(a → P ) �= ∅.
To part 2: Let t ∈ traces(a → P ). Then t takes one of the following forms:

• t = 〈〉. Then the only prefix of t is 〈〉, which by definition is in traces(a →
P ).

• t = 〈a〉 � s. Then a prefix p of t can take one of the following forms:

– p = 〈〉. By definition 〈〉 is in traces(a → P ).
– p = 〈a〉 � s′ for some prefix s′ of s. As s ∈ traces(P ) and traces(P ) is

prefix-closed, we have that s′ ∈ traces(P ). Thus, 〈a〉 � s′ ∈ traces(a →
P ). �

As demonstrated by the example of buffers, cf. Sect. 3.2.3, the traces
domain does not suffice to express all properties on traces, in which we might
be interested in. Thus, there have been a number of refined models that allow
for more detailed observation of processes.

The Failures/Divergences Model N

Domain. The failures/divergences model takes a closer look on processes than
the traces model T . It specifically records, which divergences a process has.
In a transition system, cf. Sect. 3.2.2, a divergent state is one, from which
it is possible to take an infinite number of τ transitions. If a system has
reached such a divergent state, it is possible that the system is internally
‘alive’ and changes it state forever, however without ever engaging in any
event observable from the outside. This is the reason why in such situation
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one also speaks of a livelock. In denotational semantics, a divergence of a
process is a trace, which in the transition system of this process leads to a
divergent state.

The model N takes the point of view that a process can’t be controlled
anymore after it has reached a divergent state. On the practical side, this
decision makes it easier to work with the model: there is no need to distinguish
between processes after they have diverged. The price for this has to be
paid on the theoretical side: the semantical clause for the hiding operator
is problematic (hiding is only defined for processes with a finitely branching
transition system), and the fixed point theory for partial orders, see Sect.
3.4.3, does not work as expected (N is a complete partial order only for
finite alphabets).

In N , the possible observations on a process P over an alphabet Σ are
given by a pair (F,D) = (failures⊥(P ), divergences(P )) with

• F ⊆ Σ∗� × P(Σ ∪ {�}) and
• D ⊆ Σ∗�.

As the model N has only one denotation after a divergence, its process deno-
tations (F,D) have to fulfill the healthiness conditions:

D1 D is extension closed, i.e., ∀s ∈ D ∩ Σ∗, t ∈ Σ∗�.s � t ∈ D.
D2 F includes all divergence related failures, i.e.,

∀s ∈ D,X ⊆ (Σ ∪ {�}).(s,X) ∈ F.

Furthermore, we do not distinguish how processes behave after successful
termination:

D3 s � 〈�〉 ∈ D ⇒ s ∈ D.

Given the failures of a process P , one can extract the traces that P can
perform:

traces⊥(P ) � {s | ∃X.(s,X) ∈ failures⊥(P )}
The index ⊥ in traces⊥(P ) and failures⊥(P ) indicates, that— thanks to the
conditions D1 and D2, resp.—we might record more traces and more refusal
sets than actually present in the transition system of the process P .

The following healthiness condition captures the interplay between traces
and refusals:

F3 Events, that can’t happen, need to be refused, i.e.,

∀(s,X) ∈ F, Y ⊆ Σ ∪ {�}.

(∀a ∈ Y.s � 〈a〉 /∈ traces⊥(F )) =⇒ (s,X ∪ Y ) ∈ F.

Here, by abuse notation, we apply traces⊥( ) to a failure set.
The model N has many more healthiness conditions, see Sect. B.4 for the

complete list.
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Refinement over N is defined as

P �N Q ⇐⇒ failures⊥(Q) ⊆ failures⊥(P ) ∧
divergences(Q) ⊆ divergences(P )

i.e., N has property (3.4) stated in Lemma 3. We observe:

Theorem 3 �N is a partial order.

The above refinement definition can be read as:

• Q exhibits at most P ′s executions (thanks to the definition of traces⊥( )),
• Q is more deterministic than P (see the definition of determinism in Sect.

3.4.4), and
• Q has less livelocks than P .

There is one ‘uncontrollable process’ Div. The process Div does nothing
and diverges immediately. Thus, it has all divergences and all failures. Its
denotation is

failures⊥(Div) � Σ∗� × P(Σ ∪ {�})
divergences(Div) � Σ∗�

i.e., it is the least refined process in N . In the traces models, Div is equivalent
to Stop, i.e., traces(Div) = {〈〉}. There is no most refined process in N .

Semantical clauses In contrast to Div, the process Stop has refusal sets only
for the empty trace and has no divergences:

failures⊥(Stop) � {(〈〉,X) |X ⊆ Σ ∪ {�}}
divergences(Stop) � ∅

Action prefix has the following clauses:

failures⊥(a → P ) � {(〈〉,X) |X ⊆ Σ ∪ {�}, a /∈ X}
∪ {(〈a〉 � s,X) | (s,X) ∈ failures⊥(P )}

divergences(a → P ) � {〈a〉 � t | t ∈ divergences(P )}
Initially, the process a → P can’t refuse a, i.e., eventually it has to perform
a. After the process has engaged in a, its refusals are those from P . The only
divergences of a → P are those that arise from P . The set of divergences of
a → P is empty if divergences(P ) = ∅.

Csp internal choice is mapped to set union in both components:

failures⊥(P � Q) � failures⊥(P ) ∪ failures⊥(Q)
divergences(P � Q) � divergences(P ) ∪ divergences(Q)

i.e., N has also property (3.5) of Lemma 3.
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The clauses for renaming are as follows:

failures⊥(P [[R]]) � {(s′,X) | ∃s.sR∗s′ ∧ (s,R−1(X)) ∈ failures⊥(P )}
∪ {(s,X) | s ∈ divergences(P [[R]]) ∧ X ⊆ Σ ∪ {�}}

divergences(P [[R]]) � {s′ � t | t ∈ Σ∗� ∧ ∃s ∈ divergences(P ) ∩ Σ∗.sR∗ s′}

Here, R−1(X) � {a | ∃a′ ∈ X.aR a′}. We read the failures clause as follows:
X is a refusal set of P [[R]] if its ‘reverse image’ R−1(X) is refused by P .
For the sake of healthiness condition D2, we also include all refusals for any
divergent trace. Concerning the divergence clauses, we get: if s is a divergence
from P that does not end with a �—encoded via s ∈ divergences(P ) ∩ Σ∗—
then we rename it via R∗ into s′ and obtain a divergence for P [[R]]. Note that
thanks to D3 we have that s � 〈�〉 ∈ D implies s ∈ D.

Over N , it is impossible to provide a general semantical clause that com-
putes the divergences of the process P \X. The problem is that hiding intro-
duces a divergence in P \ X when P can perform an infinite consecutive
sequence of events in X. The difficulty is that over N we consider only finite
traces, not infinite ones. However, it is possible to provide a semantical clause
for the subclass of finitely branching processes. For further discussion of this
matter see, e.g., [Ros98].

Relation to the traces model T . The traces of the model T are related with
the traces of the model N , also the failures as defined in Sect. 3.2.3 are related
with the failures of the model N . Given a process P , we have

traces⊥(P ) = traces(P ) ∪ divergences(P ) (3.6)

and

failures⊥(P ) = failures(P )
∪ {(s,X) | s ∈ divergences(P ),X ⊆ (Σ ∪ {�})} (3.7)

These connections between the models can be derived, e.g., from the oper-
ational semantics of Csp. As the operational models can be proven to coincide
with the denotational ones, it is justified to use these connections to establish
the following theorem:

Theorem 4 If divergences(P ) = ∅, then P �N Q ⇒ P �T Q.

Proof Let P �N Q. As divergences(P ) = ∅, we obtain divergences(Q) = ∅.
Therefore, traces⊥(P ) = traces(P ) and traces⊥(Q) = traces(Q). From
failures⊥(Q) ⊆ failures⊥(P ) we derive that traces⊥(Q) ⊆ traces⊥(P ). Com-
bining these arguments leads to traces(Q) = traces⊥(Q) ⊆ traces⊥(P ) =
traces(P ). �

Note that is it not possible to relax the precondition of Theorem 4. As Div
is the least refined process over N , we have, e.g., Div �N a → Stop. However,
traces(a → Stop) = {〈〉, 〈a〉} �⊆ {〈〉} = traces(Div) i.e., Div ��T a → Stop.
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By considering failures, the model N is capable of expressing liveness prop-
erties. In contrast the model T is limited to safety properties. Consequently,
trace refinement does not imply failure divergences refinement:

Example 41: Safety Does Not Imply Liveness

For our very first example on ATMs, we said it was safe to deliver cash
after the user has been authenticated by card and pin. We formulated
this ordering relation as a Csp process:

ATM0 = ready → cardI → pinE → cardO → cashO → Stop

Any process, which is a trace refinement of ATM0 , is safe in the above
sense, as it will respect the ordering of the events. On the intuitive level
Stop is safe, as it never delivers any cash. Formally, it holds that

ATM0 �T Stop,

as Stop is the most refined process over T .
However, the process Stop would not be an implementation that

anyone would be interested in: it never will deliver any cash. Failures
divergences refinement takes liveness into account, namely, that eventu-
ally something good will happen. Therefore, the model N allows us to
exclude the process Stop from the potential implementations. It holds
that

ATM0 ��N Stop.

We see this by considering the failures of both processes:
• (〈〉, {ready}) ∈ failures⊥(Stop) and
• (〈〉, {ready}) /∈ failures⊥(ATM0 ).
Thus, failures⊥(Stop) �⊆ failures⊥(ATM0 ).

As a result of Example 41, we formulate:
Corollary 3 There exist processes P and Q with P �T Q but P ��N Q.

The Stable Failures Model F

Domain. The stable failures model is an alternative to the failures/diver-
gences model. The underlying idea is to ignore that a process might diverge.
This can become handy, as it is sometimes possible to establish that a process
is divergence free as it does not include any operators that could contribute to
divergence. For instance, the divergence clause for the action prefix operator
is:

divergences(a → P ) � {〈a〉 � t | t ∈ divergences(P )}
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I.e., if P has no divergences, then a → P has no divergences. Thus, action
prefix does not contribute to divergence. Ignoring divergences not only sim-
plifies the semantical clauses, but also solves the above mentioned problem
with hiding. Furthermore, the treatment of recursive equations becomes ‘eas-
ier’. Finally, one should mention that over F we do not record more traces or
more refusal sets than actually present in the transition system of the process
P—as it was possibly the case over N .

In F , the possible observations on a process P over an alphabet Σ are
given by a pair (T, F ) = (traces(P ), failures(P )) with

• T ⊆ Σ∗� and
• F ⊆ Σ∗� × P(Σ ∪ {�}).

The traces component T is of a process P in F is identical with it semantics
over T . Thus, we have as healthiness conditions again:

T1 T �= ∅ and T is prefix-closed.

There is an interplay between failures sets and traces:

T2 (s,X) ∈ F ⇒ s ∈ T,

i.e., when we record a refusal X after trace s, then s is a trace recorded in
the traces component. Note that the converse it not necessarily true: should
a process be unstable after a trace s, we won’t record any refusal. Thus, in
F one can’t derive the traces of a process from its failures component.

The further healthiness condition deals with termination:

T3 (s � �) ∈ T ⇒ (s � �,X) ∈ F, X ∈ P(Σ ∪ {�}).

After termination, a process has all failures.
See Sect. B.4 for further healthiness conditions.

Refinement over F is defined as

P �F Q ⇐⇒ traces(Q) ⊆ traces(P ) ∧ failures(Q) ⊆ failures(P )

i.e., F has property (3.4) stated in Lemma 3. We observe:

Theorem 5 �F is a partial order.

The above refinement definition can be read as:

• Q exhibits at most P ′s executions and
• Q is more deterministic than P (see the definition of determinism in Sect.

3.4.4).

It might come as a surprise that the process Div is the most refined process
over F . Its semantics is:

traces(Div) � {〈〉}
failures(Div) � ∅
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i.e., the process does nothing and diverges immediately—as we record only
stable failures, Div has an empty failures component.

The process

RUN+
Σ = (?x : Σ → RUN+

Σ) � Stop � Skip

has (Σ∗�, Σ∗� × P(Σ ∪ {�}) as its denotation, i.e., it is the least refined
process over F .

Semantical clauses. We already have seen the semantical clauses for the traces
component of F . The failure clauses for the Csp operators are essentially the
same for F and N : the only difference is that we do not need to close under
the healthiness conditions D1 and D2.

For the process Stop, there is no change as it does not have any divergences:

failures(Stop) � {(〈〉,X) |X ⊆ Σ ∪ {�}}.
Similarly, no change is required for action prefix:

failures(a → P ) � {(〈〉,X) |X ⊆ Σ ∪ {�}, a /∈ X}
∪ {(a � s,X) | (s,X) ∈ failures(()P )}.

Again, Csp internal choice is mapped to set union:

failures(P � Q) � failures(P ) ∪ failures(Q)

i.e., F has also property (3.5) of Lemma 3.
Concerning renaming, we get a different clause:

failures(P [[R]]) � {(s′,X) | ∃s.sR∗s′ ∧ (s,R−1(X) ∈ failures(P )}
The reason for the difference is that we do not need to ‘close’ the failure set
for the sake of healthiness condition D2.

Hiding has an astonishing simple clause:

failures(P \ X) � {(s \ X,Y ) | (s,X ∪ Y ) ∈ failures(P )}.

For traces, hiding on the syntactic level has a counterpart on the semantics:

〈〉 \ X = 〈〉
(〈x〉 � t) \ X = t \ X (ifx ∈ X)
(〈y〉 � t) \ X = 〈y〉 � (t \ X) (ify /∈ X)

Relation to model F and model T . We first establish an algebraic law over
F :

Theorem 6 For all Csp processes P it holds: P � Div =F P.
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Proof As traces(P ) is non empty and prefix closed, we have 〈〉 ∈ traces(P )
and thus traces(P ) ∪ traces(Div) = traces(P ). As failures(Div) � ∅, we have
failures(P ) ∪ failures(Div) = failures(P ). �

This law does not hold over N . Take, for example, P = Stop. We have
divergences(Stop) = ∅, however, divergences(Stop � Div) = ∅ ∪ Σ∗� = Σ∗�.

Corollary 4 There exist Csp processes P with: P � Div �=N P.

Thanks to equations (3.6) and (3.7), we can prove that the models N and
F agree on divergence-free processes:
Theorem 7 If divergences(P ) = divergences(Q) = ∅, then P �N Q ⇔
P �F Q.

Proof “⇒” Let P �N Q. Then failures⊥(Q) ⊆ failures⊥(P ).
Concerning the traces component in F we compute: by the definition of

traces⊥( ) we have that failures⊥(Q) ⊆ failures⊥(P ) implies traces⊥(Q) ⊆
traces⊥(P ). Thanks to (3.6) and divergences(P ) = divergences(Q) = ∅ we
have traces⊥(P ) = traces(P ) and traces⊥(Q) = traces(Q). Thus we have:
failures⊥(Q) ⊆ failures⊥(P ) implies traces(Q) ⊆ traces(P ).

Concerning the failures component in F we compute: thanks to (3.7) and
divergences(P ) = divergences(Q) = ∅ we have failures⊥(P ) = failures(P )
and failures⊥(Q) = failures(Q). Thus failures⊥(Q) ⊆ failures⊥(P ) implies
failures(Q) ⊆ failures(P ).

Together, these two considerations result in P �F Q.
“⇐” Let P �F Q. Then failures(Q) ⊆ failures(P ).
Concerning the failures component in N we compute: thanks to (3.7) and

divergences(P ) = divergences(Q) = ∅ we have failures(P ) = failures⊥(P )
and failures(Q) = failures⊥(Q). Thus failures(Q) ⊆ failures(P ) implies
failures⊥(Q) ⊆ failures⊥(P ).

For the divergence component in N we have by assumption that the fol-
lowing holds: divergences(P ) = divergences(Q) = ∅.

Together, these two considerations result in P �N Q. �
As the model F in its traces component uses the same clauses as the model

T , we obviously have:

Theorem 8 P �F Q ⇒ P �T Q.

Concerning the inverse direction, with the help of Theorem 7 we can utilise
Example 41 again: both, ATM0 and Stop are divergent free processes. Thus,
ATM0 ��N Stop implies ATM0 ��F Stop. Following these considerations,
Example 41 provides a witness for:
Corollary 5 There exist processes P and Q such that P �T Q but P ��F Q.
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Reflection

One might wonder if it really is a good thing that there are these three
different and many more semantics for Csp. One can put this question into
an even wider context, as Rob van Glabbeek did in his classical account
[vG01], in which he studies the relationships between no less than 15 different
semantics for process calculi. And there are further more. Here, the question
arises how many semantics do we need, is the development of further semantic
models of process algebra ‘scientific nonsense’ / occupational therapy for
computer scientists?

The general observation concerning such semantics models is that their
development is driven by ‘necessities’: certain shortcomings of an existing
model are ‘patched’ by providing a new model. However, often this new model
comes at a ‘price’.

We illustrate this on the example of Csp. The traces model is fine when
one wants to study safety properties of systems. However, the traces model is
too weak to study liveness properties. Thus, when one wants to look, e.g., into
divergences, one needs a ‘refined’ view on processes. The failures/divergences
model provides such more fine grained view. However, this model runs into
problems with denotational semantics, e.g., it is impossible to provide a clause
for the hiding operator. This can be resolved by utilising the failures model,
however, this comes at the price that divergences can’t be studied in it,
though other liveness properties such as deadlocks can.

In the case of Csp, computer science has not been able to provide a single,
satisfactory model that could serve as semantical platform for all the analy-
sis methods one might be interested in. Thus, the pragmatic answer to the
above question is: one takes the ‘simplest’ model that allows one to apply
the method that delivers the analysis one is interested in. As there are clear
relationships between the models (see, e.g., the above theorems concerning
refinements, Theorems 4, 7, and 8), it is possible to combine results achieved
in different settings.

This situation is similar to the science of physics. When describing the
motion of macroscopic objects, from projectiles to parts of machinery, and
astronomical objects, classical mechanics is perfectly fine. However, when it
comes to aspects at small (atomic and subatomic) scales, quantum mechanics
is required. These two different theories are related. Most theories in classical
physics can be derived from quantum mechanics as an approximation valid
at large (macroscopic) scale.
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3.4.2 Algebraic Laws

Process algebras carry their name thanks to the rich set of algebraic laws that
allow one to transform processes, to refine processes, and to prove equality
between processes.

Csp has laws specific to certain models. Examples include:

• The traces model T treats internal choice and external choice in the same
way: P � Q =T P � Q.
This law does not hold in the failures/divergences model N and the stable
failures model F .

• In the stable failures model F one can never infer that a process is diver-
gence free: P � div =F P.
This law does not hold in the failures/divergences model N .

The index on the equal sign indicates in which model the law holds.
There are also laws which express general properties of Csp. Here, one

usually omits the index at the equal sign. The following laws hold in all the
three standard models of Csp, namely T , N and F :

• Congruence laws. The various process equivalences = are congruences,
e.g., if Q = R then P � Q = P � R.

• Laws involving single operators. The choice operators are idempotent,
i.e., P � P = P and P � P = P, symmetric, associative; external choice
has Stop as its unit, i.e., P � Stop = P.

• Interplay of different operators, e.g., distributivity laws. All Csp
operators distribute over internal choice, e.g., (P � Q) \ X = (P \ X) �
(Q \ X).

• Step laws. Each Csp operator has a step law. It gives the initial events
of the process formed by the Csp operator in terms of the initial events of
the constituent processes. As an example, we consider here the (relatively
simple) law of the external choice operator:

(? x : A → P (x)) � (? x : B → Q(x)) =
? x : (A ∪ B) →

(if (x ∈ A ∩ B) then P (x) � Q(x)
else if (x ∈ A) then P (x) else Q(x)).

Such laws can be proven to be sound relatively to a given denotational Csp
model. As an example, we manually prove the above step law of the external
choice operator in the stable failures model F . Here, we need to show: for all
choices of the alphabet Σ, for all choices of A ⊆ Σ and B ⊆ Σ, and for all
interpretations of the basic processes P (x) and Q(x) in the semantic domain
of F we have:

traces(Ext(A,P,B,Q)) = traces(Step(A,P,B,Q)) (#1)
failures(Ext(A,P,B,Q)) = failures(Step(A,P,B,Q)) (#2)
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where Ext(A,P,B,Q) (Step(A,P,B,Q)) denotes the lhs (rhs) of the step law for
external choice. We consider the proof of (#2) only. Here, we compute the sets
failures(Ext(A,P,B,Q)) and failures(Step(A,P,B,Q)) by applying the semantic
clauses of the model F . After some simplifications we obtain:

failures(Ext(A,P,B,Q)) =
{(〈〉,X) | A ∩ X = ∅} ∪ {(〈〉,X) | B ∩ X = ∅}∪
{(〈a〉 � t,X) | a ∈ A ∧ (t,X) ∈ failures(P (a))}∪
{(〈a〉 � t,X) | a ∈ B ∧ (t,X) ∈ failures(Q(a))} (#3)

failures(Step(A,P,B,Q)) =
{(〈〉,X) | (A ∪ B) ∩ X = ∅}∪
{(〈a〉 � t,X) | a ∈ A ∪ B ∧

if (a ∈ A ∩ B) then (t,X) ∈ failures(P (a)) ∪ failures(Q(a))
else if (a ∈ A) then (t,X) ∈ failures(P (a))
else (t,X) ∈ failures(Q(a))} (#4)

Using standard arguments on sets, one can show that the sets (#3) and
(#4) are indeed equal and that therefore the step law holds in F .

In contrast to this approach, one can mechanise such proofs, e.g., with
Csp-Prover. Figure 3.11 shows a proof-script in Csp-Prover proving the above
step law. The sets of failures of the both processes, i.e., (#3) and (#4), are
automatically derived in Csp-Prover, see the lines 9 and 12. This is a powerful
technique. Deriving the denotations of processes according to the semantical
clauses of a Csp model is a tedious but error prone and complex task—note
that the sets (#3) and (#4) are already simplified versions of the sets derived
from the semantical clauses. See the paper by Isobe and Roggenbach [IR07]
for a more detailed discussion of such proofs. Mistakes found in published
algebraic laws for Csp, see e.g., [IR06], demonstrate that presentations of
Csp models and axiom schemes will only be ‘complete’ once they have been
accompanied by mechanised theorem proving.

The above proofs concern the soundness of the laws. Yet another question
how many laws one actually needs, if the given laws characterise equality
in the chosen Csp model, i.e., if they are complete. Early approaches to
completeness restrict Csp to finite non-determinism over a finite alphabet
[Ros98]. For the stable failures model F , Isobe and Roggenbach give a com-
pleteness result for Csp with unbounded non-determinism over an alphabet
of arbitrary size using about 80 algebraic laws [IR06].

3.4.3 Foundations: Fixed Points

We now set out to address our questions concerning the semantics of recursive
equations stated in Sect. 3.2.2. We begin our excursion with a seemingly
simple example:
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1 lemma cspF Ext choice step:
2 "(? x:A -> P(x)) [+] (? x:B -> Q(x)) =F[M,M]
3 ? x:(A Un B) -> (IF (x : A Int B) THEN P(x) |~| Q(x)
4 ELSE IF (x : A) THEN P(x) ELSE Q(x))"
5 apply (simp add: cspF cspT semantics)
6 apply (simp add: cspT Ext choice step)
7 apply (rule order antisym, auto)
8 (* ⊆ *)
9 apply (simp add: in traces in failures)

10 apply (auto)
11 (* ⊇ *)
12 apply (simp add: in traces in failures)
13 apply (elim disjE conjE exE, force+)
14 apply (case tac "a : B", simp all add: in failures)
15 apply (case tac "a : A", simp all add: in failures)
16 done

Fig. 3.11 A proof script in Csp-Prover for the step law of the external choice

Example 42: A Recursive Equation

A fundamental challenge to semantics in general is: how can we give
semantics to a recursive definition such as

P = a → P

Here, the behaviour of the process P on the left hand side is defined
using the behaviour of the process P on the right hand side. One reading
of such an equation is: we are interested in a denotation for P which
remains unchanged when applying the prefix function to it. In other
words: we are looking for a fixed point.

Denotational semantics works with at least two standard fixed point theo-
ries in order to deal with recursion: (i) partial orders in combination with
Tarski’s fixed point theorem and (ii) metric spaces in combination with
Banach’s fixed point theorem. Csp makes use of both approaches. In this
section, we study the above equation in the context of the partial order
approach.

We observe that the traces domain T together with set-inclusion ⊆ as
ordering relation forms a partial order with bottom element (T ,⊆, {〈〉}) : set-
inclusion is reflexive, antisymmetric, and transitive; furthermore, {〈〉} ⊆ T
for all T ∈ T as elements of T are required to be non-empty and prefix-closed.

Definition 2 (Upper bound, least upper bound) Let (PO,≤) be a partial
order, let X ⊆ PO be a set of elements.

1. An element u ∈ PO is called an upper bound for X if for all x ∈ X .x ≤ u.
2. An element lub ∈ PO is called a least upper bound for X if it is an upper

bound for X and for all ub ∈ {u ∈ PO | ∀x ∈ X .x ≤ u} holds: lub ≤ ub.

In the context of the traces domain T , let
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• S � {〈〉, 〈a〉}—i.e., the denotation of the process a → Stop—and
• T � {〈〉, 〈b〉}—i.e., the denotation of the process b → Stop.

Now consider the set X � {S, T}. It has U � {〈〉, 〈a〉, 〈b〉}— i.e., the deno-
tation of the process a → Stop � b → Stop —as an upper bound. U is also
the least upper bound of X: let V be an upper bound of X. Then 〈〉 ∈ V
and 〈a〉 ∈ V thanks to S ⊆ V , 〈〉 ∈ V and 〈b〉 ∈ V thanks to T ⊆ V . Thus,
U ⊆ V.

Definition 3 (ω-Chain, ω-complete partial order)

1. Let (PO,≤) be a partial order. Let C = (ci)i∈N be a sequence in PO, i.e.,
ci ∈ PO for all i ∈ N. Such a sequence C is called a ω-chain, if ci ≤ ci+1

for all i ∈ N.
2. A partial order (PO,≤) is called ω -complete if every ω-chain has a least

upper bound, i.e., for all ω-chains C = (ci)i∈N holds: {ci ∈ C | i ∈ N} has
a least upper bound.

Example 42.1: A Ω-Chain over T with a Least Upper Bound

Consider the sequence S in the traces domain T with
• s0 = {〈〉}—i.e., the denotation of the process Stop.
• s1 = {〈〉, 〈a〉} —i.e., the denotation of the process a → Stop.
• s2 = {〈〉, 〈a〉, 〈a, a〉} —i.e., the denotation of the process a → a →

Stop.
• . . .

This sequence is a ω-chain, as si ⊆ si+1 for all i ∈ N. It has the set a∗

as its upper bound. a∗ is also the least upper bound: let V be an upper
bound of (Si)i∈N. Let t ∈ a∗. Then t is a sequence of a certain number
of a’s, say of k a’s. Thus, t ∈ sk. As V is an upper bound of (si)i∈N, we
know that sk ⊆ V. Consequently, t ∈ V .

Theorem 9 (T ,⊆) is a ω-complete partial order.

Proof We already proved above that (T ,⊆) is a partial order. It remains to
consider ω-completeness.

Let C = (ci)i∈N be a ω-chain. Define U �
⋃

i∈N
ci. We claim that U is the

least upper bound of C. To this end we have to show that (i) U ∈ T , (ii) U
is an upper bound of C, and (iii) that U indeed is the least upper bound.

To (i): U is non-empty as the ci are non-empty. Now let t ∈ U be a trace
and let s ≤ t be a prefix of t. Then there exists some i ∈ N such that t ∈ ci.
As ci is prefix-closed, we have s ∈ ci and thus s ∈ U.

To (ii): by construction we have ci ⊆ U for all i ∈ N.
To (iii): let V be an upper bound of C. Let s ∈ U be a trace. Then there

exists some i ∈ N such that s ∈ ci. As V is an upper bound of C, we have
ci ⊆ V and, consequently, also s ∈ V. Thus, U ⊆ V. �
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In order to characterise a class of functions that has fixed points, we define:

Definition 4 (Continuous function) Let (PO,≤) be a ω-complete partial
order. A function f : PO → PO is continuous if for all ω-chains C = (ci)i∈N

in PO the following holds:

1. lub(f(C)) exists and
2. lub(f(C)) = f(lub(C)).

Continuous functions are monotonic:

Lemma 4 (Monotonicity) Let (PO,≤) be a ω-complete partial order. Let
f : PO → PO be a continuous function. Then a ≤ b implies f(a) ≤ f(b) for
all a, b ∈ PO.

Proof Let a ≤ b. Define a ω-chain C = (ci)i∈N by setting c0 � a, cj � b for
all j ≥ 1. Clearly, lub(C) = b. As f is continuous, lub(f(C)) exists and we
have lub(f(C)) = f(lub(C)) = f(b). As f(b) is an upper bound of f(C), we
have f(a) ≤ f(b). �

Example 42.2: Action Prefix Is Continuous over T
We want to show that the functions

fa :
{T → T

X �→ {〈〉} ∪ {〈a〉 � s | s ∈ X}
—which underly the semantic clause of the action prefix operator—
are continuous for a ∈ Σ. In Theorem 2 we already proved that the
functions fa indeed map into T .

Let a ∈ Σ. Let C = (ci)i∈N be a ω-chain over T . We claim that
the observation U �

⋃
i∈N

fa(ci) is the least upper bound of fa(C) =
(fa(ci))i∈N. :
To 1. First, we show that U ∈ T . Concerning the first condition of

T1, U is non-empty as 〈〉 ∈ U. Concerning the second condition of
T1, let t ∈ U and let s ≤ t. If s = 〈〉, we are done as by construction
〈〉 ∈ U. If s �= 〈〉 we have t �= 〈〉. Thus, there exists some t′ such that
t = 〈a〉 � t′ with t′ ∈ ci for some i ∈ N. As s ≤ t, there also exists
an s′ with s = 〈a〉 � s′ and s′ ≤ t′. As ci ∈ T , ci is prefix-closed, i.e.,
s′ ∈ ci. Thus, s = 〈a〉 � s′ ∈ fa(ci) ⊆ U.
Next, we observe that U is an upper bound for fa(C) : By definition
of U , we have that fa(ci) ⊆ U for all i ∈ N.
Finally, let V be an upper bound for fa(C). Let t ∈ U. Then there
exists an i ∈ N with t ∈ f(ci). As f(ci) ⊆ V, we have t ∈ V . Thus,
U ⊆ V, i.e., U is the least upper bound of fa(C).
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To 2. Using the construction of the least upper bound of C from the
proof of Theorem 9, we have to show that fa(

⋃
i∈N

ci) =
⋃

i∈N
fa(ci).

This holds, as on both sides fa is applied to each element of ci, i ∈ N.

Continuous functions on pointed cpos have fixed points:

Theorem 10 (Kleene’s Fixed Point Theorem) Let (PO,≤,⊥) be a ω-
complete partial order with bottom element. Let f : PO → PO be a con-
tinuous function. Then

lub(((fn(⊥))n∈N))

is the least fixed point of f.

Proof We first prove that (fn(⊥))n∈N is a ω-chain. As ⊥≤ x for all x ∈ PO,
we have especially ⊥≤ f(⊥). Applying Theorem 4 yields: fn(⊥) ≤ fn+1(⊥)
for all n ∈ N. As f is continuous, this ω-chain has a least upper bound, i.e.,
lub((fn(⊥))n∈N) exists.

Next we consider that lub((fn(⊥))n∈N) is indeed a fixed point of f :

f(lub((fn(⊥))n∈N))
= lub((fn+1(⊥))n∈N) thanks to continuity
= lub((fn(⊥))n∈N). adding the bottom element

Finally, we show that lub((fn(⊥))n∈N) is the smallest fixed point of f . Let
x be a fixed point of f, i.e., f(x) = x. We know ⊥≤ x. Applying Theorem 4
to this yields: fn(⊥) ≤ fn(x) = x for all n ∈ N, i.e., x is an upper bound of
(fn(⊥))n∈N. Thus, lub((fn(⊥))n∈N) ≤ x. �

Note that the smallest fixed point of a continuous function f is unique.
Assume that u and v are both smallest fixed points of f . Then u ≤ v, as v a
the smallest fixed point. But also v ≤ u, as u is a smallest fixed point. With
antisymmetry, we obtain: u = v.

Using Theorem 10, we can study how to give semantics to recursive process
definitions:

Example 42.3: Semantics of a Recursive Equation

We are now in the position to give a semantics M(P ) to the process
name P such that the semantics of P makes the equation P = a → P
true on the semantic level. Recall the semantic clauses:

tracesM (a → P ) � {〈〉} ∪ {〈a〉 � s | s ∈ tracesM (P )}
tracesM (n) � M(n)

We want to determine a value M(P ) with

tracesM (P ) = tracesM (a → P )
= fa(tracesM (P ))
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By choosing M(P ) to be the smallest fixed point of fa we can answer
our questions stated in Sect. 3.2.2:
1. Is there a solution to the equation?

Yes. fa is continuous and thus has a fixed point according to Theorem
10.

2. Is the solution unique?
Yes. We are choosing the smallest fixed point.

3. How can we construct the solution (should it exist)?
Theorem 10 provides a construction of the fixed point. The sequence
S from above is the ω-chain that provides the least fixed point, which
we computed to be a∗.

Note that fixed points are not necessarily unique: the equation P = P
(with identity as its underlying function) has all elements of a semantic
domain, say of the traces domain T , as its solutions. Only by taking the
smallest one we make the solution unique, namely to be {〈〉} over T .

The theory developed so far works for functions in one argument (i.e.,
action prefix) and one variable (i.e., one equation). In order to cater for more
complex situations, one needs to consider products of ω-complete partial
orders, continuous functions in several arguments, and the composition of
continuous functions. The subject of domain theory provides constructions
and solutions to these question of denotational semantics, see e.g., [Win93].

Without proof we quote results as presented in Roscoe’s book [Ros98]:
Theorem 11 (Ω-Completeness of domains and continuity of the semantic
functions)

• The model T is a cpo w.r.t. ⊆ as ordering relation and with [[Stop]]T as
bottom element.
The model F is a cpo w.r.t. ⊆ × ⊆ as ordering relation and with [[Div]]F
as bottom element.
If one restricts the alphabet Σ to be finite, the model N is a cpo w.r.t.
⊇ × ⊇ as ordering relation and [[Div]]N as bottom element.

• Over T and F , the semantic functions underlying action prefix, external
choice, internal choice, general parallel, sequential composition, renaming,
and hiding are continuous w.r.t. ⊆ and ⊆ × ⊆ as respective ordering
relations.
If one restricts the alphabet Σ to be finite, this holds also over N w.r.t.
⊇ × ⊇ as ordering relation. Here, the hiding operator over N is only
defined when applied to finitely non-deterministic processes.

Note that Roscoe works with directed sets rather than with ω-chains. How-
ever, as ω-chains are special directed sets, Roscoe’s results carry over to our
slightly simpler setting.

With this result we conclude: choosing the smallest fixed point guaranteed
by Kleene’s theorem gives semantics to all recursive process equations over
the models T and F , and also—under some restrictions—over the model N .
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3.4.4 Checking for General Global Properties

This section provides analysis methods for general properties of parallel sys-
tems. We define what it means for a process to be deadlock free, livelock free,
or deterministic. For each of these properties we then present a characterisa-
tion in terms of Csp refinement. Full proofs are provided.

Livelock

A process is said to diverge or livelock if it reaches a state from which it may
forever compute internally through an infinite sequence of invisible events.
This is clearly a highly undesirable feature of the process, described by some
as “even worse than deadlock” [Hoa85]. Livelock may invalidate certain anal-
ysis methodologies, see, e.g., the one presented in this section concerning
determinism. Livelock is often caused by a bug in modeling. The possibility
of writing down a divergent process arises from the presence of two con-
structs in Csp: hiding and recursion. Let us, for example, consider the pro-
cess P = a → P , which performs an unbounded number of a’s. If one now
conceals the event a in this process, i.e., one forms P = (a → P ) \ a, it no
longer becomes possible to observe any behaviour of this process.

In Csp, the process Div represents this phenomenon: immediately, it can
refuse every event, and it diverges after any trace. In the model N , the
denotation of Div is given by

divergences(Div) := Σ∗�

failures⊥(Div) := Σ∗� × P(Σ�)

Div represents an un-controllable process: it has all possible traces and can
refuse all events. Conditions D1 and D2 of the failures/divergences model
ensure that s ∈ divergences(P ) implies {t | s � t ∈ divergences(P )} = Σ∗�

and {(t,X) | (s � t,X) ∈ failures⊥(P )} = Σ∗� × P(Σ�). This justifies the
definition:

Definition 5 (Livelock-freedom/divergence-freedom) A process P is said to
be livelock-free (divergence-free) if and only if divergences(P ) = ∅.

Theorem 12 (N -refinement preserves livelock-freedom) Let P and Q be pro-
cesses such that P is livelock-free and P �N Q. Then Q is livelock-free.

Proof We show: if P �N Q and Q has a livelock, then P has a livelock.
Let Q have a livelock. Then divergences(Q) �= ∅. As P �N Q, also
divergences(P ) �= ∅. �

The set of all livelock-free processes has a maximal element, namely the
process DivFΣ :
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Definition 6 (Most general livelock-free process) Relatively to an alphabet
Σ we define the process

DivFΣ = �{a → DivFΣ | a ∈ Σ} � Skip � Stop

If the alphabet Σ is clear from the context we omit the index Σ and just
write DivF .

Theorem 13 (DivF is livelock-free) The process DivF is livelock-free.

Proof As neither Stop, nor Skip have any divergences, and the prefix operator
does not contribute to divergences, we obtain divergences(DivF ) = ∅. �
Theorem 14 (DivFA is maximal among the livelock-free processes) Let P
be livelock free. Then DivF �N P.

Proof Let DivF ��N P. As failures(Stop) = {(〈〉,X) | X ⊆ Σ�} and
failures(P � Q) = failures(P ) ∪ failures(Q) we have that failures(DivF ) =
A∗� ×P(Σ�). Thus, failures(P ) ⊆ failures(DivF ). Therefore, we must have
divergences(P ) �⊆ divergences(DivF ) = ∅, i.e., divergences(P ) �= ∅. Thus, P
has a livelock. �

The theorems of these section provide a sound and complete proof method
for livelock analysis:

Corollary 6 (Livelock analysis)
A process P is-livelock free if and only if DivF �N P.

Deadlock

In Csp, deadlock is represented by the process Stop. Let Σ be the communi-
cation alphabet. Then the process Stop has

({〈〉}, {(〈〉,X) |X ⊆ Σ�}) ∈ P(Σ∗�) × P(Σ∗� × P(Σ�))

as its denotation in F , i.e., the process Stop can perform only the empty
trace, and after the empty trace the process Stop can refuse to engage in all
sets of events.

Stop denotes an immediate deadlock. In general, a process P is considered
to be deadlock free, if the process P after performing a trace s never becomes
equivalent to the process Stop. More formally:

Definition 7 (Deadlock-freedom) A process P is said to be deadlock-free if
and only if

∀s ∈ Σ∗.(s,Σ�) /∈ failures(P ).
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The omission of all proper subsets of Σ� is justified as in the model F the
set of stable failures is required to be closed under subset-relation: (s,X) ∈
failures(P ) ∧ Y ⊆ X ⇒ (s, Y ) ∈ failures(P ). Definition 7 can be read as:
before termination, the process P can never refuse all events; there is always
some event that P can perform.

Theorem 15 (F-refinement preserves deadlock-freedom) Let P and Q be
processes such that P is deadlock-free and P �F Q. Then Q is deadlock-
free.

Proof We show: if P �F Q and Q has a deadlock, then P has a deadlock. Let
Q have a deadlock, i.e., there exists s ∈ Σ∗ with (s,Σ�) ∈ failures(Q). As
P �F Q, we know that failures(Q) ⊆ failures(P ). Thus (s,Σ�) ∈ failures(P )
and P has a deadlock. �

The set of all deadlock-free processes has a maximal element, namely the
process DFΣ :
Definition 8 (Most general deadlock-free process) Relatively to an alphabet
Σ we define the process

DFΣ = �{a → DFΣ | a ∈ Σ} � Skip

If the alphabet Σ is clear from the context we omit the index Σ and just
write DF .

Theorem 16 (DF is deadlock-free) The process DF is deadlock-free.

Proof We calculate the semantics of DF in the stable failures model F . The
process has all traces, as it can perform all events as well as Skip at any time:

traces(DF ) = Σ∗�.

The failures of action prefix are failures(a → P ) = {〈〉,X) |X ⊆ Σ� −{a}}∪
{〈a〉 � s,X) | (s,X) ∈ failures(P )}.

The failures of Skip are failures(Skip) = {〈〉,X) |X ⊆ Σ}∪{〈�〉,X) |X ⊆
Σ�}.

The failures of the internal choice operator are given by the union of the
failures of its component processes. Thus,

failures(DF ) = {(t,X) | t ∈ Σ∗, X ⊆ Σ ∨ ∃a ∈ Σ. X ⊆ Σ� − {a}}
∪ {(t � 〈�〉,X) | t ∈ Σ∗,X ⊆ Σ�}.

(3.8)
I.e., after a non-terminating trace s, DF never has Σ� as its refusal set.
Thus, DF is deadlock free. �

This said, we know that a process P is deadlock free if DF �F P . However,
is any deadlock free process P a refinement of DF? This is the case as the
following theorem shows:
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Theorem 17 (DFA Is Maximal Among Deadlock-Free Processes) Let P be
deadlock free. Then DF �F P.

Proof We have to show that traces(P ) ⊆ traces(DF ) and that failures(P ) ⊆
failures(DF ). The first inclusion is trivial, as traces(DF ) = Σ∗�, i.e.,
traces(DF ) consists of all possible traces—see the proof of Theorem 16. The
second inclusion holds for a similar reason: let (s,X) ∈ failures(P ). If s is
a non-terminating trace, i.e., s ∈ Σ∗, then X needs to be a proper sub-
set of Σ�—otherwise P would have a deadlock. Thus, we know that either
X ⊆ Σ� − {a} or X ⊆ Σ. These failures are included in the failures(DF )—
see the first line of Eq. 3.8. If s is a terminating trace, i.e., s = s′ � 〈�〉 with
s′ ∈ Σ∗, then (s′ � 〈�〉,X) ∈ failures(DF ) according to the second line of
Eq. 3.8. �

The theorems of these section provide a sound and complete proof method
for deadlock analysis:

Corollary 7 (Deadlock analysis) A process P is deadlock free if and only if
DF �F P.

Determinism

Non-determinism is a phenomenon considered by most Formal Methods for
reactive systems. In Csp it is represented by the internal choice operator.

This operator can be of good use, e.g., when specifying properties, or when
describing systems on high level of abstraction. For instance, both the pro-
cesses DivF and DF make use of non-determinism in order to specify the
properties livelock-freedom and deadlock-freedom, resp. In system specifica-
tion, we used non-determinism in the process PinVerification, cf. Example
36.9. There, the reason for specifying with non-determinism was the level
of abstraction: we refrained from modelling the details of the verification
process, i.e., we were leaving its details to further development.

The Csp operator of hiding is often seen as an abstraction operator: when
the events leading to specific states are ‘removed’, the choice between these
states can become a non-deterministic one. Take for instance the process P =
(a → Stop � b → c → Stop). It is deterministic thanks to using the external
choice operator. However, over N and F we have that P \{a, b} =F,N Stop�
c → Stop, i.e, hiding turns a deterministic process into a non-deterministic
one.

The physical computers that we are using are deterministic machines.
Thus, when we want to model on implementation level we usually want our
processes to be deterministic ones. In the following, we discuss of how to
investigate if a process is deterministic.

Definition 9 A process P is (internally) non-deterministic if there exists a
trace s ∈ Σ∗ and a communication a ∈ Σ such that
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1. s � 〈a〉 ∈ traces(P ) and
2. (s, {a}) ∈ failures(P ).

I.e., the process P is at the same time willing to engage in a and to refuse a.
We say that a process is deterministic if it is not non-deterministic.

Following an idea from Ranko Lazić, published by Bill Roscoe in [Ros03],
we express a check for determinism via refinement. Given a livelock free
process P, we construct two new processes Spec and G(P ) such that P is
deterministic if and only if Spec �F G(P ) holds.

Let Σ be an alphabet of communications. We define two copies of Σ,
namely Σ.1 = {a.1 | a ∈ Σ} and Σ.2 = {a.1 | a ∈ Σ}. We define a process
Monitor over Σ.1 ∪ Σ.2 as

Monitor =?x.1 : Σ.1 → x.2 → Monitor

The process Monitor first offers all events in Σ.1. After it received such an
event a.1, it communicates its counterpart a.2 ∈ Σ.2 and behaves again like
Monitor.

Let P be a process over Σ. From P we construct a copy P.1 over Σ.1. To
this end, we rename all events a ∈ Σ to a.1 ∈ Σ.1. Analogously we construct
a copy P.2 over Σ.2:

P.1 = P [[a.1/a | a ∈ Σ]]
P.2 = P [[a.2/a | a ∈ Σ]]

With the help of these processes we define

G(P ) = (P.1 ||| P.2) ‖ Monitor

G(P ) works as follows: process P.1 selects a communication a.1. The
Monitor receives a.1 and sends an a.2 to P.2. If P.2 is deterministic, then
P.2 accepts a.2 and P.1 can send the next event. However, if P.2 is non-
deterministic, then P.2 can refuse to engage in a.2 which leads G(P ) to dead-
lock.

We exploit this possibility of a deadlock to construct the refinement check.
To this end we define a process Spec over Σ.1 ∪ Σ.2. Spec can immediately
deadlock, it can, however, also perform an event from Σ.1 and then become
Spec′. Spec′ can perform an event from Σ.2 and become Spec, however, it
has no deadlock state. Thus, Spec never has a deadlock after a trace of odd
length:

Spec = (�{a.1 → Spec′ | a.1 ∈ Σ.1}) � Stop
Spec′ = �{a.2 → Spec | a.2 ∈ Σ.2}

Theorem 18 (Determism check) Let P be a livelock-free process. Let G(P )
and Spec be as above. P is deterministic if and only if Spec �F G(P ).

Proof We first determine the stable failures semantics of Spec.
Its traces are all sequences in which the elements of Σ.1 and Σ.2 alternate:
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traces(Spec) = {p ≤ t | t ∈ {〈x.1〉 � 〈y.2〉 |x.1 ∈ Σ.1, y.2 ∈ Σ.2}∗}
After a trace of even length, it has all failures due to the process Stop.

After a trace of odd length, it can refuse termination, all elements of Σ.1,
and all elements of Σ.2 but one:

failures(Spec) =
{(s,X) | s ∈ traces(Spec), length(s) even, X ⊆ (Σ.1 ∪ Σ.2)�}

∪ {(s,X) | s ∈ traces(Spec), length(s) odd,
∃a.2 ∈ Σ.2.X ⊆ (Σ.1 ∪ Σ.2 − {a.2})�}

Now let us consider the stable failures semantics of G(P ):
The traces of G(P ) are a subset of the traces of Monitor as the out-most

operator of G(P ) is the synchronous parallel operator with the semantics
traces(Q ‖ R) = traces(Q) ∩ traces(R). The traces of Monitor are

traces(Monitor) = {p ≤ t | t ∈ {〈a.1〉 � 〈a.2〉 | a ∈ Σ}∗},

which is a subset of traces(Spec). Overall, we obtain:

traces(G(P )) ⊆ traces(Monitor) ⊆ traces(Spec).

Thus, the traces part of the F-refinement always holds.
Now let us consider the failures of G(P ). First we compute the failures for

synchronous parallel from the clause from general parallel:

failures(Q ‖ R)
= {(u, Y ∪ Z) | (u, Y ) ∈ failures(Q) ∧ (u,Z) ∈ failures(R)

∧u ∈ traces(Q) ∩ traces(R)}
The failures of Monitor are

failures(Monitor)
= {(s,X) | s ∈ traces(Monitor), lenght(s) even,

X ⊆ Σ.2�}
∪ {(s, Y ) | s ∈ traces(Monitor), length(s) odd,

∃a.1 ∈ Σ.1.s = s′ � 〈a.1〉 ∧
Y ⊆ (Σ.1 ∪ Σ.2 − {a.2})�}.

Next, we compute the failures for interleaving from the clause of general
parallel:

failures(Q ||| R)
= {(u, Y ∪ Z) | Y − {�} = Z − {�},

∃s, t.(s, Y ) ∈ failures(Q) ∧ (s, Z) ∈ failures(R)
∧u ∈ s ||| t}
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As Spec has all failures after an even length trace—see above—we only
need to consider odd length traces in our proof.

“⇒” Let Spec �� G(P ). From the above considerations we know that this
can only be the case if failures((P.1 |||P.2) ‖ Monitor) �⊆ failures(Spec). Even
more precisely we know that the reason for the non-inclusion must have the
form (s, (Σ.1 ∪ Σ.2)�) where s is a trace of odd length.

According to Monitor, the last element of an odd length trace must end
with a communication in Σ.1. Thus, there exist s′ and a.1 such that s =
s′�〈a.1〉 and s′ is an even length trace. Due to the trace semantics of Monitor
we know that s′ = 〈a1.1, a1.2, . . . , an.1, an.2〉 for some events a1, . . . , an ∈
Σ, n ≥ 0. Let t = 〈a1, . . . , an〉. Then t.1 ∈ traces(P.1) and t.2 ∈ traces(P.2).
Furthermore, we know that t.1�〈a.1〉 ∈ traces(P.1). Thus, we obtain t�〈a〉 ∈
traces(P ).

As the failures of Monitor after an odd length trace can maximally have
(A.1 ∪ A.2 − {a.2})� as their refusal set, P.1 ||| P.2 must have contributed
the set {a.2} as a refusal after s. Thus, P.2 must have the failure (t.2, {a.2}).
Consequently P must have the failure (t, {a}).

Thus, P is non-deterministic.
“⇐” Let P be non-deterministic. Then there exist a trace s = 〈a1, . . . , an〉

and a communication a such that s � 〈a〉 ∈ traces(P ) and (s, {a}) ∈
failures(P ). As P.1 and P.2 are obtained by P via bijective renaming, we
know that s.1 � 〈a.1〉 ∈ traces(P.1) and (s.2, {a.2}) ∈ failures(P.2). By con-
struction, 〈a1.1, a1.2, . . . , an.1, an.2〉�〈a.1〉 ∈ traces(P.1|||P.2). P.1 refuses all
the events from Σ.2. Thus, (s.1� 〈a.1〉, {a.2}) ∈ failures(P.1). Consequently,

(〈a1.1, a1.2, . . . , an.1, an.2〉 � 〈a.1〉, {a.2}) ∈ failures(P.1 ||| P.2).

Obviously, 〈a1.1, a1.2, . . . , an.1, an.2〉 � 〈a.1〉 ∈ traces(Monitor) and it has
odd length. According to our above computation of the semantics for Monitor
holds:

(〈a1.1, a1.2, . . . , an.1, an.2〉�〈a.1〉, (Σ.1∪Σ.2−{a.2})�) ∈ failures(Monitor).

This results in

(〈a1.1, a1.2, . . . , an.1, an.2〉 � 〈a.1〉, (Σ.1 ∪ Σ.2)�)
∈ failures((P.1 ||| P.2) ‖ Monitor).

Consequently, failures((P.1 ||| P.2) ‖ Monitor) �⊆ failures(Spec). �
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3.5 Closing Remarks

This chapter introduced the process algebra Csp as means to model and
analyse concurrent systems.

Concerning learning Csp, cf. Sect. 3.2, the ATM example introduced the
syntax of the language. Based on the jet engine controller example, the seman-
tic concepts of Csp were sketched, namely its operational and denotational
semantics. Using the Buffer example, the need for extending observations
from traces to failures was demonstrated. Also, together with the Communi-
cation System example, the idea of refinement was introduced.

Utilising the Children’s Puzzle, cf. Sect. 3.3, the power of different tools
realising the methods part of Csp was discussed: with simulation one can
obtain results on a single run, with model checking one can analyse all runs
of a system, with theorem proving one can analyse a class of systems. Finally,
using tools such CSP++ it is possible to automatically translate Csp pro-
cesses into programs in a programming language.

The section on semantics and analysis, cf. Sect. 3.4, finally provides point-
ers to the more advanced theory of Csp: its denotational and axiomatic
semantics, and how to develop analysis methods.

3.5.1 Annotated Bibliography

Process algebra emerged as branch of computer science in the 1970s. Tony
Hoare’s text book “Communicating Sequential Processes” [Hoa85] from 1985
made Csp accessible to a wider audience. Alternative approaches to the
subject include Robin Milner’s Calculus of communicating systems (CCS)
[Mil89] and the “Algebra of Communicating Processes” (ACP) [BK84] by
Jan Bergstra and Jan Willem Klop. These three ‘classical process algebras’
are extended by the topic of mobility in Milner’s π-calculus [MPW92].

Main text books for Csp include, besides Hoare’s seminal contribution,
“The theory and practice of concurrency” [Ros98] (there is improved and cor-
rected version from 2005 available electronically) and “Understanding Con-
current Systems” [Ros10] by Bill Roscoe, and “Concurrent and Real-time
Systems: the Csp Approach” [Sch00] by Steve Schneider.

The literature on Csp and process algebra is vast. Concerning process
algebra semantics in general, van Glabbeek provides a survey on “The Lin-
ear Time-Branching Time Spectrum” [vG01]. In [SNW96], Sassone et al.
give a classification using category theory. The timelessness of the various
Csp semantics is topic of Roscoe’s paper “The Three Platonic Models of
Divergence-Strict Csp” [Ros08]. In [Ros03], Roscoe studies how to encode
properties into Csp refinement checks. Reports on industrial applications of
Csp can be found, e.g, in [BKPS97, BPS98, PB99, Win02, IMNR12]. The
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applications of Csp in human computer interaction is topic of Chap. 7. The
Csp approach to security is documented in Chap. 8.

3.5.2 Current Research Directions

Current research on Csp still concerns its foundations, see the above men-
tioned paper on “platonic Csp models” [Ros08]. There is also ongoing work
on making automatic verification more efficient and thus to make the for-
mal verification of concurrent system scalable, see, e.g., [AGR19]. Another
stream is, as for nearly all specification formalisms, the question of how
Csp specifications relate to implementations. Transformational approaches
include JCSP [Wel, WBM07] and CSP++ [Gar15, Gar05]—see Sect. 3.3.4.
Another paradigm is to systematically test from Csp specifications, see, e.g.,
[CG07, KRS07, KRS08]. The third stream of current research concerns Csp
extensions. One longstanding question is how to deal with data in the con-
text of Csp. CspM [Sca98] includes a functional programming language for
data description. CIRCUS, see, e.g., [OCW09], combines the Z formalism
with Csp, Csp-OZ [Fis97] provides a combination with Object-Z. Csp-Casl
[Rog06] uses the algebraic specification language Casl (see Chap. 4) for data
specification. Another longstanding topic is the extension of Csp by time.
Here, Schneider’s book [Sch00] presents an established and well worked-out
setting. Work by, e.g., Ouaknine and Worrel [OW03], however, demonstrates
that fundamental questions concerning timed Csp models are still open.
Other Csp extensions offer primitives that allow one to model hybrid sys-
tems [LLQ10], probabilistic systems [AHTG11], or to combine event based
and state based reasoning [ST05].
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Chapter 4

Algebraic Specification in CASL

Markus Roggenbach and Liam O’Reilly

Abstract Algebraic specification is a specification technique that provides a
formal basis for the systematic development of software systems. By devel-
oping a Telephone Database in a formal way, syntax, semantics and prag-
matics of the language Casl are introduced by example. As techniques to
ensure software quality, we discuss how to prove consistency of requirements
in Casl and how to test programs against Casl specifications. On the exam-
ple of so-called Ladder Logic programs, which are in widespread use in control
applications, we demonstrate how Casl can be used for program verification.
Finally, we provide an overview of Casl’s specification structuring mecha-
nisms, which—in principle—can be applied to any specification language.
Typical properties of abstract data types are established through automated
theorem proving over structured Casl specifications.

4.1 Introduction

Your aunt Erna has one of her generous days, promises to buy you a smart-
phone, and asks: “which phone do you want?” You explain to her what fea-
tures are important to you, but leave it to her to pick the phone—after all,
she is being generous enough. So, you might state that you want a specific
brand, you have ideas concerning the tech-spec of the cameras, e.g., how
many cameras there should be and and how many pixels they should have,
weight and size of the phone, as well as the battery life, etc.

Your smart-phone description can be seen as a typical algebraic specifica-
tion. Namely, rather than describing how the object of your desire shall be
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built (exact camera part, which specific battery to put in, how the phone is
built internally in order to be light enough, etc.), you are speaking just about
the properties that the phone is supposed to have. In terms of algebraic spec-
ification, you are stating axioms that shall hold. Any phone that has these
properties, i.e., for which the stated axioms hold, would satisfy you. This is
typical for algebraic specification, which usually is classified as a ‘property-
oriented’ Formal Method, in contrast to ‘model-oriented’ methods—further
discussion on taxonomy can be found in Sect. 1.2.3. What you have done is to
narrow down the set of all smart-phones to a pool of acceptable ones. In terms
of algebraic specification, the ‘meaning’, i.e., semantics of your smart-phone
description, is the collection of all smart-phones which fulfill your wishes.

After studying the pool of acceptable smart-phones, you might discover
that it contains some you actually don’t like. In that case, you would start to
add further axioms to narrow things down. This is not without risk, however,
you might end up with an empty pool because your demands can’t be fulfilled.
In algebraic specification, in this case one speaks of an empty model class.

For simple specifications of this kind, natural language will suffice. How-
ever, for building complex technical systems, tool support is needed to analyze
various aspects of a specification, e.g., the model class of what one has speci-
fied. In this chapter we will study the algebraic specification language Casl,
which allows one to write logical axioms and comes with tool support for
parsing, static analysis, theorem proving, and testing—to name just a few.

As illustrated in the introduction to this book in Chap. 1, Formal Methods
can play many roles in the software life-cycle. For this chapter, we have chosen
some of the many ways that algebraic specification can facilitate software
engineering, namely how to formulate concise requirements, how to analyze
requirements for consistency, how to apply automated random testing for
quality assurance in an invent & verify software production process, and how
to use it to verify software designs.

This chapter will emphasise specification practice, where a naive under-
standing of logic will suffice. A discussion of the theoretical background
of the logic underlying Casl can be found in Sect. 2.4.3. Casl uses the
logic SubPCFOL=, i.e., we have a first-order logic (“FOL”) with subsort-
ing (“Sub”), partiality (“P”), sort generations constraints (“C”) and equality
(indicated by =) available. In this chapter we will not consider subsorting.
We will look into the sublanguage PCFOL= of Casl.

This chapter is organised as follows. First, we introduce Casl syntax and
semantics; discuss how to use automated theorem proving to establish prop-
erties of specifications; and show how to test Java programs against Casl
specifications. Then—inspired by an industrial application of Formal Meth-
ods –we illustrate how Casl can be used to verify control programs. We
conclude this chapter by discussing some of the various specification struc-
turing mechanisms that Casl offers.
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4.2 A First Example: Modelling, Validating,
Consistency Checking, and Testing a Telephone
Database

Our first example demonstrates that algebraic specification can be similar to
functional programming: we use terms in order to build up a system history
and—by giving axioms—we define a reduction strategy on these terms (c.f.,
Sect. 4.2.1). Concerning software engineering (c.f., Sect. 1.2.1) we demonstrate
that the resulting Casl specification can serve two different purposes: The
Casl specification can be used for

• Validation—in Sect. 4.2.2 we validate our specification against use cases;
in Sect. 4.2.3 we check that the requirements stated do not contain con-
tradictions.

• Verification—in Sect. 4.2.4 we automatically test if various Java implemen-
tations meet our specification.

4.2.1 Modelling

We start with an informal description of a system that we want to design:

Example 43: A Telephone Database

Write a Java program that implements a telephone database with
• Name and
• Number
as entries. The operations shall include functions such as update, lookUp,
delete, and a test isEmpty . The Name shall act as a key.

Casl Signatures

The first step in algebraic modelling is to develop a suitable signature. What
are the symbols needed to describe the system and its intended properties?
To this end, one can use the following rules of thumb:

• sort symbols provide a classification of the data involved, they provide a
‘type system’ for the domain under discussion;

• function symbols represent computations, in Casl they are classified into

– total function symbols—one assumes in the model that the computation
always returns a result—and



204 M. Roggenbach, L. O’Reilly

– partial function symbols;

• predicate symbols represent tests.

Developing a good signature is a challenging step when modelling with alge-
braic specification.

Example 43.1: Signature

The above narrative explicitly speaks about different kinds of data,
namely about “Name” and “Number”. Furthermore, we decide to rep-
resent the state of the system as “Database”. We choose these to be
the sorts involved. Besides the computations update, lookUp, delete,
we define a constant “initial” to represent the state of the database in
the beginning. Finally, we provide a test “isEmpty” that shall hold if
there are no entries stored in the database.

This results in the PCFOL= signature ΣDatabase = (S, TF, PF, P )
with
• S = { Database, Name, Number }
• TF = { initial:Database,

update: Database × Name × Number → Database,
delete: Database × Name → Database}

• PF = { lookUp: Database × Name →? Number}
• P = { isEmpty: Database }

In Casl, we can declare this signature as follows:

spec DatabaseSignature =
sorts Database, Name, Number
ops initial : Database;

lookUp : Database × Name →? Number ;
update : Database × Name × Number → Database;
delete : Database × Name → Database

pred isEmpty : Database
end

Casl specifications start with the keyword spec. They have a name, in
the example Database-Signature, which is separated with an equal sign
from the specification body. After the keyword sorts (or, equivalently, sort)
one declares sort symbols. After the keyword ops (or, equivalently, op), one
declares function symbols including their arity. For partial function symbols,
the arrow is decorated with a “?” in order to indicate partiality. After the
keyword pred (or, equivalently, preds) one declares predicate symbols and
their arity. It is optional to close a Casl specification with the keyword
end—see Appendix C for the Casl grammar.
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The specification Database-Signature has the signature ΣDatabase =
(S, TF, PF, P ) as part of its so-called static semantics. The Casl semantics
is defined in a way that a phrase (w.r.t. the Casl grammar) is mapped to a
mathematical structure (e.g., a set or a tuple of values, a function, a relation)
as its semantics: the sort declaration

sorts Database, Name, Number

has as the mathematical structure a set of sort symbols as its static semantics,
the specification Database-Signature has as the mathematical structure
a PCFOL= signature as part of its static semantics.

In passing we note that Casl signatures do not include variables as defined
for first-order signatures in Definition 8. There are various schools of how to
define logics. In the chapter on logic we followed one school (variables are
included), the design of Casl follows a different school (variables are not
included). It is the case that certain theorems on Casl hold only as variables
are not part of the signature. Later on, we will the an example of this in
Theorem 1, in Sect. 4.3.2.

Casl Formulae

The next step in modelling is to give axioms in the form of PCFOL= formulae,
which define the interplay between the operation and predicate symbols.

Example 43.2: Axioms

With the operation symbols initial and update we construct a table.
This table can be inspected with lookUp, manipulated with delete, and
checked with isEmpty.

spec Database =
sorts Database, Name, Number
ops initial : Database;

lookUp : Database × Name →? Number ;
update : Database × Name × Number → Database;
delete : Database × Name → Database

pred isEmpty : Database
∀ db : Database; name, name1, name2 : Name;
number : Number
• ¬ def lookUp(initial, name) %(non def initial)%

• name1 = name2
⇒ lookUp(update(db, name1, number), name2 ) = number

%(name found)%

• ¬ name1 = name2
⇒ lookUp(update(db, name1, number), name2 )

= lookUp(db, name2 )
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%(name not found)%

• delete(initial, name) = initial %(delete initial)%

• name1 = name2
⇒ delete(update(db, name1, number), name2 )

= delete(db, name2 )
%(delete found)%

• ¬ name1 = name2
⇒ delete(update(db, name1, number), name2 )

= update(delete(db, name2 ), name1, number)
%(name not found)%

• isEmpty(db) ⇔ db = initial %(def isEmpty)%

end

spec OneSort =
sort s

end

Taking the operations initial and update as constructors, our axioms
systematically cover how the operations lookUp and delete and the pred-
icate isEmpty interact with them:

• In the state initial the database shall have no entries. Consequently,
observing this state with the lookUp function yields no result—
see %(non def initial)%. When there is at least one entry in the
database, we might obtain a result when observing it: Should the
most recent entry match the lookUp request, the number of the
entry is to be returned—see %(name found)%; otherwise, we have
to inspect the previous entries—see %(name not found)%.

• Deleting an entry in the initial state shall have no effect—see
%(delete initial)%. When the database has at least one entry, and
the most recent entry is for the name which we want to delete,
we take this entry away and look for further, earlier entries—see
%(delete found)%. If the most recent entry, however, was not for
the name to be deleted, the most recent entry is preserved and we
look for earlier entries—see %(name not found)%.

• Finally, only the initial database is empty—see %(def isEmpty)%.

In our setting, axioms in Casl are PCFOL= formulae. They are stated in
the Casl specification text after a bullet point “•”. Variables can be declared
in one go for several axioms, e.g., ∀ db : Database; name, name1, name2 :
Name; number : Number . However, it is equally possible to declare the vari-
ables for every axiom separately. For reference, axioms can be given a label,
e.g., %(name not found)%. In the Casl static semantics, the phrases deriv-
able from the non-terminal FORMULA of the Casl grammar yield PCFOL=

formulae.
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Definition 1 (Casl static semantics) Given a Casl specification sp, its
static semantics is

• a PCFOL= signature Σ(sp) and
• a finite set of PCFOL= formulae Ax(sp).

Model Semantics of Casl Specifications

Given a signature, a model is a mathematical structure which interprets all
symbols of the signature: sort symbols have sets as their interpretation—
often, we speak of them as carrier sets—function symbols have functions as
their interpretation, and predicate symbols have predicates as their
interpretation—see Sect. 2.4.1 in Chap. 2 for further details. There is a vali-
dation relation |= that expresses if in a model M a formula ϕ is valid; if this
is the case, we write M |= ϕ—again, see Chap. 2 for further details. Using
these notions, we can define the Casl model semantics:

Definition 2 (Casl model semantics) Given the static semantics, the model
semantics of sp is defined as

Mod(sp) � {Σ(sp)-model M | M |= Ax(sp)
and all carrier sets in M are non empty}

Thus, Casl has loose semantics, cf. Sect. 2.3.1.

The requirement of non empty carrier sets simplifies reasoning on Casl
specifications. The formula T (for “true”) holds in all Casl models. However,
if we would allow a model M with Ms = ∅, the formula ∃x : s • T would not
hold. That is, for a model with an empty carrier set it is possible that adding
a quantification can change truth though the quantified variable does not
appear in the formula. This choice of Casl is in line with the definition of a
first-order model that we gave in Sect. 2.4, Definition 12.

In passing, we mention that—in strict mathematical terms—the above col-
lection Mod(sp) of the models of a specification sp forms a class, rather than
a set. Thus, a Casl specification has a model class as its model semantics.

For the interested reader we give a brief discussion of the topic. A class is
a collection of sets; the precise definition of a class depends on the founda-
tion context, e.g., Zermelo-Fraenkel set theory (where they appear indirectly
only) or Von Neumann-Bernays-Gödel set theory (where they are ‘first class’
citizens).

An initial motivation for distinguishing between the notions of class and
set is Russell’s paradox: Let S be the collection of all sets. Consider the
“collection”

R � {X |X ∈ S,X /∈ X}. (4.1)
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Then R is not a set: assume that R was a set; then either R ∈ R or R /∈ R; if
R ∈ R, then we have by (4.1) that R /∈ R—contradiction; if R /∈ R, then we
have by (4.1) that R ∈ R—contradiction as well; thus, our assumption must
have been wrong, i.e., R is not a set. Consider now the Casl specification

spec OneSort =
sort s

end

which declares one sort only and states no axioms. From the collection of all
its models we can form the collection of all sets. It holds that

S = {M(s) |M ∈ Mod(OneSort)} ∪ {∅} (4.2)

Now, Mod(OneSort) can’t be a set: assume it was be a set; then S must
be a set too, as it is formed by rules from naive set theory (projection to
a component, union of two sets); but then R must be a set as well, as it is
again formed according to the rules of naive set theory (forming a new set
by restriction); as seen above, R is not a set; thus, Mod(OneSort) is not a
set. Thus, in general Mod(sp) is a class rather than a set.

Historical note. Bertrand Russell (1872–1970), the inventor of this paradox,
was a philosopher, mathematician and a global intellectual from an English,
aristocratic family, who happened to have been born in South Wales and
lived the last part of his life in Snowdonia, in North Wales, UK.

4.2.2 Validating

Above, we have developed a specification, i.e., a description of a class of
models of the software we intend to write. The question is: is our specification
in agreement with our intentions? To answer this question one should validate
the specification. One possibility to do so is to (i) populate the specification
with concrete entities and then to (ii) check if these entities “behave” in the
expected way.

Example 43.3: Validating I—Concrete Use Cases

Following the above approach, we provide constants Hugo and Erna of
sort Name and constants N4711 and N17 of sort Number. As Casl has
loose semantics, we have to state an axiom %(Hugo different from Erna)%

to ensure that the two symbols are interpreted differently. This first step
results in the following specification:

spec UseCaseSetup = Database
then ops Hugo, Erna : Name;

N4711, N17 : Number
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• ¬ Hugo = Erna %(Hugo different from Erna)%

end

In the second step we can state how we expect our telephone database
to behave. Note that the stated properties go well beyond the narrative
with which we started. In the narrative, we associate a certain meaning
with names such as update, lookUp, etc., where one often refrains from
stating this explicitly. When writing a formal specification, this meaning
needs to be made precise.

spec UseCase = UseCaseSetUp
then %implies

• ¬ lookUp(initial, Hugo) = N17
%(lookUp on initial not equal to 17)%

• ¬ def lookUp(initial, Hugo) %(lookUp on initial undefined)%

• lookUp(update(initial, Hugo, N4711 ), Hugo) = N4711
%(lookUp stores values)%

• lookUp(update(update(initial, Hugo, N4711 ), Erna, N17 ),
Hugo)

= N4711 %(update does not overwrite)%

• ¬ def lookUp(update(initial, Erna, N17 ), Hugo)
%(lookUp is not defined without update)%

• ¬ isEmpty(update(update(initial, Hugo, N4711 ), Erna, N17 ))
%(updating leads to a non empty database)%

• isEmpty(initial) %(the initial database is empty)%

• isEmpty(delete(update(initial, Hugo, N4711 ), Hugo))
%(deleting all entries leads to an empty database)%

end

Using the Heterogeneous Tool Set Hets [MML07] and the auto-
mated theorem prover SPASS, we can prove that our specification
has all the intended properties—see Fig. 4.1: in the “Goals” column,
all of our intended properties are ticked with a “+”, indicating that
SPASS could derive them from the given axiomatic basis; the sub-
window in the right lower corner displays for the highlighted goal
deleting all entries leads to an empty database, which axioms of
the specification SPASS was using in order to establish this goal as a
theorem.

The tool Hets1 reports the proof status as follows: “A proved goal is indi-
cated by a “+”, a “-” indicates a disproved goal, a space denotes an open
goal, and a “x” denotes an inconsistent specification”.2 An open goal can
arise from the fact that first-order logic is undecidable; another reason can

1 Available at http://hets.eu.
2 See the HETS User Guide, available at https://sefm-book.github.io.

http://hets.eu
https://sefm-book.github.io
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Fig. 4.1 Snapshot of Hets validating the database specification with the theorem prover
SPASS

be that neither the goal nor its negation is a consequence of the specifica-
tion. If a goal is a consequence of the specification, however, appears open in
SPASS this is usually for the reason that the search space that is too large:
the theorem prover SPASS could not cover in within the allotted time set by
the user or with the available memory.

The above specifications show that in Casl one can structure specifica-
tions, namely one can import named specifications and then extend them
after the keyword then. In UseCaseSetup we first import the specification
Database, which we then extend by entities that populate the sorts. For the
time being, we will use the Casl structuring constructs import and exten-
sions in a naive way. They can be flattened out as follows: an import can
be resolved by substituting the specification text for the name; the keyword
then can be removed by stitching specification parts together. In Sect. 4.4
we will discuss the Casl structuring language in detail.

More concisely, regarding the static and the model semantics of Casl, this
naive view results in:

• the signature of the above specification is the union of all symbols declared
in the various parts;

• the axioms of the specification are given by the union of all axioms stated
in the various parts;

• the model class of the specification consists of all models for the signature
in which the axioms hold.
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We can annotate an extension with the keyword %implies provided that
this extension consists of axioms only. This is the case in the above example
of the specification UseCase. The axioms stated after the then %implies do
not further restrict the model class. They are expected to be a consequence
of the specification up to this point. More precisely it shall hold:

Mod(sp) = Mod(sp then %implies sp′)

The annotation triggers tools to treat the axioms stated in sp′ as intended
consequences of sp, i.e., as theorems that shall be proven using the axioms
stated in sp.

Concerning the question of validating a specification, the fundamental
question is when to stop validating. Are eight axioms enough? Would twenty
axioms give a better assurance that the specification expresses what we want?
This question is still an open research topic.

We can, for example, consider an abstract property such as the commuta-
tivity of the update operation:

Example 43.4: Validating II—an Abstract Property

We would expect that we can swap the order in which we enter two
pieces of data into the database, provided the data concerns different
names.

spec AbstractProperty =
Database

then %implies

∀ db : Database; name1, name2, name3 : Name;
number1, number2 : Number
• lookUp(update(update(db, name1, number1 ),

name2, number2 ),
name3 )

= lookUp(update(update(db, name2, number2 ),
name1, number1 ),

name3 )
if ¬ name1 = name2

%(specialised update commutativity)%

end

By loading the above specification into Hets, SPASS easily proves
%(specialised update commutativity)% is a consequence of the database
axioms, and hence displays a “+” indicating so.

As a reminder, the model class of a specification consists of all models for
the signature in which the axioms hold. With this in mind, given a specifica-
tion of the form
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sp then %implies sp′

where—for the sake of argument—sp′ contains a single formula ϕ, there are
four possibilities of how ϕ can relate to the axioms of sp :

Ax(sp) |= ϕ Ax(sp) |= ¬ϕ status of ϕ

does not hold does not hold undetermined
does hold does not hold theorem
does not hold does hold counterexample
does hold does hold irrelevant, as Ax(sp) is inconsistent

The first row concerns a situation, where the specification needs to be
further developed in order to let ϕ either hold or not hold (there are models of
the specification where ϕ holds, and there are models where ϕ does not hold).
The second row concerns the situation which we have been using for validation
thus far: we confirmed with theorem proving that a property that we were
expecting to hold is actually a consequence of the axioms we wrote. The third
row concerns a situation in which validation fails. Rather than confirming
the expectation, we have to learn that we got our axioms wrong. The fourth
row indicates a situation in which the development has gone wrong: there
are no models, i.e., what has been specified cannot be implemented. The
specification is said to be inconsistent. We study this situation in the next
section.

Note that a timeout when attempting to prove a property does not indicate
which row of the table one is in.

We conclude the section with an example illustrating the situation when
the status of ϕ is undetermined.

Example 43.5: Validation III—An Undetermined Property

We study a property concerning equality of databases, which at first
glance one might expect to hold.

spec UndeterminedProperty = Database
then %implies

∀ db : Database; name1, name2 : Name;
number1, number2 : Number
• update(update(db, name1, number1 ), name2, number2 )

= update(update(db, name2, number2 ), name1, number1 )
if ¬ name1 = name2

%(general update commutativity)%

• ¬ (update(update(db, name1, number1 ), name2, number2 )
= update(update(db, name2, number2 ), name1, number1 )
if ¬ name1 = name2 )

%(negation of general update commutativity)%

end
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SPASS neither proves %(general update commutativity)% nor its negation
because both do not logically follow from the specification (timeout in
both cases). This shows that the %implies is incorrectly placed here.
Either Database should be further developed or the formula %(general

update commutativity)% should be revisited.
In the following we give an outline of two models of the specification

Database that illustrates the situation.
A model where %(general update commutativity)% does not hold is given

when the sort Database is represented by lists. Here, we find two
databases, i.e., lists, which are different though they give back the same
values under lookUp:

〈(hugo, 4711), (erna, 17)〉 �= 〈(erna, 17), (hugo, 4711)〉
As lists, they are different. However, they map the same numbers to the
names under lookUp.

A model where %(general update commutativity)% does hold is given
when the sort Database is represented by maps:

{
erna → 17,
hugo → 4711

}

As a map has unique keys with updates overwriting, we can give only
one representation, i.e., %(general update commutativity)% holds.

Let us reflect upon the property %(general update commutativity)% that we
tried to show in the above example. The property actually concerns the
database representation in computer memory, namely that ‘semantically’
identical databases have a unique representation. The Database specifica-
tion does not prescribe such a property. It is rather on a more abstract level
that is concerned with the interplay of the operators and deliberately leaves
representation questions open. Usually, decisions on data representation are
taken late in a software design process.

4.2.3 Consistency Checking

Another question is if the specification Database is consistent, i.e., if its
model class is non empty. As all formulae are true relative to the empty
model class, all the above validation effort would be in vain for an inconsistent
specification.

Definition 3 (Consistent specification) A Casl specification sp is called con-
sistent, if and only if Mod(sp) �= ∅.
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In order to prove consistency, one thus has to provide a model of the spec-
ification. For simple specifications, this can be done manually or by making
use of a so-called model finder such as Darwin. For complex specifications,
Lüth et al. have implemented a Casl consistency checker [LRS04], which is
based on a consistency calculus that allows one to reduce the question of
consistency for a complex specification to the question of consistency for a
simpler specification.

For our example, we first explicitly define an element of the model class:

Example 43.6: Consistency—Manual Proof

We first provide an algebra for the signature of the specification Use-
CaseSetup: The state of the database encodes for which name there
has been an update. In the carrier sets, we provide two names only and
there is just one number. We define the functions using value tables,
where the symbol ⊥ indicates undefinedness.
• M(Database) � {empty, h stored, e stored, e and h stored}.
• M(Name) � {h, e}.
• M(Number) � {∗}.
• M(initial) � empty.
• M(Hugo) � h; M(Erna) � e.
• M(N4711) � M(N17) � ∗.
• M(isEmpty) � {empty}.
• The functions are defined in through the following tables:

M(lookUp) empty h stored e stored e and h stored
h ⊥ ∗ ⊥ ∗
e ⊥ ⊥ ∗ ∗

M(update) empty h stored e stored e and h stored
h, ∗ h stored h stored e and h stored e and h stored
e, ∗ e stored e and h stored e stored e and h stored

M(delete) empty h stored e stored e and h stored
h empty empty e stored e stored
e empty h stored empty h stored

Then we prove that all axioms of UseCaseSetup hold in M: Clearly,
%(Hugo different from Erna)% and %(non def initial )% hold in M.
Let us now consider the axiom %(name found)%:

name1 = name2 ⇒
lookUp(update(db,name1,number),name2) = number
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In order to make name1=name2 true, we choose without loss of gen-
erality ν(name1) = ν(name1) = h for the variable evaluation ν.
Inspecting the table for update, we observe that M(update)(d, h, ∗) ∈
{h stored, eAndh stored} for all d ∈ M(Database) = {empty, h stored,
e stored, eAndh stored}. Inspecting the table for lookUp, we obtain that
M(lookUp)(d, h) = ∗ for d ∈ {h stored, eAndh stored}. M(Number) =
{∗} consists of a single value only. Thus we obtain ν(number) = ∗ as the
only possible interpretation. Thus, the axiom %(name found)% holds
in M. The other axioms can be proven similarly.

Thus, by definition of the model semantics of Casl we have that
M ∈ Mod(UseCaseSetUp), i.e., that Mod(UseCaseSetUp) �= ∅, i.e.,
UseCaseSetUp is consistent.

The above model M might have come as a surprise. All its carrier sets are
finite. The carrier set of Database indicates only if the database is empty, or
that something is stored for h, indicated by value h stored, etc. One would
expect a database to store actual data and not simply a flag indicating that
data has been stored.

However, up to now there have been no properties stated on what kind
of names or numbers the database shall deal with. Concerning the software
development process, the above database specification is still on the require-
ments level, i.e., many design decisions have still to be taken, e.g., the con-
crete data formats for the sorts Name and Number. This level of abstraction is
achieved by under-specification, i.e., the stated axioms allow ‘different’ imple-
mentations, including the intended one, but also not yet excluding “strange”
models such as M. As seen above, already such an under-specified, formal
requirement specification is useful: it can be validated to exhibit expected
properties, as demonstrated for the specification Database.

Proving that all the axioms hold in a model is a tedious, time consuming,
and error prone process. Thus, tool support would be worthwhile. In the
following we discuss how to use theorem proving for this task. To this end,
we (i) encode a (finite) model in Casl (up to isomorphism, see Sect. 2.3.1),
and (ii) prove that this model has the desired properties.

Given a Σ = (S, TF, PF, P ) and a Σ-model M for a signature with finite
carrier sets, we can represent M in a Casl specification spM as follows:

Algorithm 4: Model Encoding
input : Σ-model M with finite carrier sets
output: Casl specification where all models are isomorphic to M

Encode the carrier sets using so-called free types
Declare all operation symbols
Encode all constant and function interpretations of M

in the form of value tables entries
Declare all predicate symbols

and encode all predicate interpretations of M as equivalences
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The following example illustrates the algorithm:

Example 43.7: Consistency—Automated Proof

Applying the above algorithm to the model M from the previous exam-
ple box results in the following Casl specification.

spec MyModel =
%% encoding the carrier sets using ”free types”:

free type Database ::= empty | h stored | e stored
| e and h stored

free type Name ::= h | e
free type Number ::= ∗

%% declaring ”initial” and its interpretation:

op initial : Database
• initial = empty
. . .
%% declaring ”lookUp” and encoding its value table:

op lookUp : Database × Name →? Number
%% first row:

• ¬ def lookUp(empty, h)
• lookUp(h stored, h) = ∗
• ¬ def lookUp(e stored, h)
• lookUp(e and h stored, h) = ∗
%% second row:

• ¬ def lookUp(empty, e)
• ¬ def lookUp(h stored, e)
• lookUp(e stored, e) = ∗
• lookUp(e and h stored, e) = ∗
. . .
%% declaring ”isEmpty” and its extent:

pred isEmpty : Database
• ∀ d : Database • isEmpty(d) ⇔ d = empty

end

Now that we have encoded our model, we need to link it to the
axioms. To this end we write a Casl view:

view consistency : UseCaseSetUp to MyModel end

This view claims that all axioms of UseCaseSetUp hold in MyModel.
Using the theorem prover SPASS, one can discharge all arising proof
obligations.

This results in a second proof that UseCaseSetUp is consistent:
As MyModel is consistent by construction, and Mod(MyModel) |=
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Ax(UseCaseSetUp)—established by proving the view to be correct
with the a theorem prover—we have that UseCaseSetUp is consistent.

The above example makes use of the Casl free type construct. In general,
this so-called sort generation constraint is an abbreviation for some signature
declarations accompanied by higher order formulae. In our context, we use
the free type only as a useful abbreviations for elements of first-order logic,
e.g.,

free type Name ::= h | e

is a shorthand for

sort Name
ops h, e : Name
• ¬ h = e %(no confusion)%

• ∀ x : Name • x = h ∨ x = e %(no junk)%

i.e., it declares a sort name Name, it declares constants h and e of type Name,
ensures that the declared constants are pairwise different %(no confusion)%

and that the carrier set of Name includes only the interpretation of these
constants %(no junk)%. For more details, see Definition 18 in Chap. 2.

Another Casl element is the view specification. A view has a name,
in our case consistency, and links two specifications with each other, a
source specification, in our case UseCaseSetUp, and a target specification,
in our case MyModel. A view holds if each model of the target specification
is a model of the source specification. In the case that source and target
specification have different signatures, one considers the reduct of each model
of the target specification.

Thus, we have now seen two ways of producing proof obligations in Hets:
the Casl view and the Casl extension then %implies. It is up to the spec-
ifier which element to use. A view has the advantage that the properties
stated in the source specification can be used in the context of different ver-
ifications. In contrast, properties stated after a then %implies are part of
the specification to be verified.

The final new Casl element are comments to the specification text. They
start with %% and last to the end of the line.

Reflecting on the above model encoding algorithm, given a model M over
a signature Σ = (S, TF, PF, P ), by construction spM has the signature Σ′ =
(S, TF ∪ {x : s |x ∈ M(s), s ∈ S}, PF, P ), and M′ ∈ Mod(spM), where M′

is identical to M on the symbols from Σ and M′(x : s) = x for x ∈ M(s),
s ∈ S. The consistency of spM can be proven with the consistency calculus
for Casl presented in [RS01]. Yet another approach to consistency can be
found in [CMM13].
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4.2.4 Testing Java Implementations

ConGu [CLV10] is a tool that allows for automated random testing of Java
code from algebraic specifications via run-time monitoring. ConGu defines a
sublanguage of Casl, however, with a different concrete syntax.

In general, random testing is considered to be weak compared to more
involved testing approaches (see, e.g., Chap. 5). However, when guided by
axioms, as in ConGu, it turns out to be a powerful verification technique (as
understood in the context of Software Engineering, cf. Sect. 1.2.1). A similar
approach is also used by the tool JUnit-Quickcheck [HNSA16].

Testing Setup

When performing automated random testing using ConGu, the following four
components are needed:

C-1 An algebraic specification written in the bespoke input language of
ConGu;

C-2 a system under test (SUT) in the form of an implementation in Java;
C-3 a refinement mapping that defines the syntactic relationship between

the specification and the system under test; and
C-4 a so-called random-runner, which is a Java main method. This runner

generates and executes random method calls with random data on the
SUT.

In the following we will introduce these components for our example.

Algebraic Specification in ConGu (Component C-1)

ConGu requires for partial functions an explicit characterisation of their
domain.

Example 43.8: Adapting Casl to ConGu

We definitionally extend our database specification by a predicate
contains which holds whenever the partial function lookUp is defined:

spec DatabaseForCongu =
Database

then %def

pred contains : Database × Name
• ∀ db : Database; name : Name

• contains(db, name) ⇔ def lookUp(db, name)
then %implies

∀ db : Database; name, name1, name2 : Name;
number : Number
• ¬ contains(initial, name) %(contains never holds for initial)%
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• contains(update(db, name1, number), name2 )
if name1 = name2 ∨ contains(db, name2 )

%(contains behaves like lookUp)%

end

The two new axioms %(contains never holds for initial)% and %(contains

behaves like lookUp)% are consequences of this definitional extension and
can be proven automatically with Hets.

Now that all partial functions have corresponding definedness predicates,
we can translate from Casl to ConGu with simple syntactic changes.

System Under Test—Biven as a Class (Component C-2)

The database can be implemented in Java in multiple ways. However, each
function and each predicate in the signature of the specification requires a
corresponding public Java method. We collect these in the skeleton class
representing the implemented datatype (SUT).

For run-time monitoring, ConGu requires that the SUT overrides the
method equals, since equality used in the axioms is translated into calls
to the Java equals method. Implementation of the Clonable interface and
corresponding clone methods are required in the case that the objects of the
class under test are mutable. In our case this involves providing two methods:

• equals—This is called by ConGu in run-time monitoring in order to check
for equality of objects representing the states of the SUT.

• clone—This is used to duplicate a mutable object.

Example 43.9: Skeleton Class File

public class Database implements Cloneable {

public Database () {...}

public void delete(String name) {...}

public void update(String name , String number) {...}

public String lookup(String name) {...}

public Database clone () {...}

public boolean equals(Object other) {...}

public String toString () {...}

public boolean contains(String name) {...}

private Set <String > getNames () {...}

}

The constructor Database() corresponds to the constant initial.
getNames is a utility method which computes the set of names in a
given database. It is used by the equals method to test equality of
databases. The omitted code within the methods is the implementation
of the SUT.



220 M. Roggenbach, L. O’Reilly

Refinement Msapping (Component C-3)

ConGu uses a symbol mapping from the algebraic to the Java world. This
is realised via a so-called refinement map which maps symbols of the algebraic
specification (sorts, functions and predicates) to Java identifiers (classes and
methods, respectively). This mapping also includes parameters. This allows
for different orders of parameters in the specification and the SUT.

Example 43.10: ConGu Refinement Mapping

refinement

Name is String

Number is String

Database is Database {

initial: --> Database

is Database ();

update: Database name:Name number:Number --> Database

is void update(String name , String number);

lookup: Database name:Name -->? Number

is String lookup(String name);

delete: Database name:Name --> Database

is void delete(String name);

contains: Database name:Name

is boolean contains(String name);

}

end refinement

The SUT can consist out of several classes. Here, these are the standard
String class and our Database implementation.

Random-Runner (Component C-4)

A so-called random-runner is required when ConGu is used to perform
automated random testing. The random-runner creates a randomly running
SUT that can be monitored. To this end, the runner randomly calls the
various methods of the SUT with random data.

Database Implementations: Linked List and Binary Search Tree

One possible implementation of our database could use a linked list to store
the entries (pairs of name and phone number). With a correct implementation
using the linked list approach one might obtain the following error-free output
from the random runner:
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Example 43.11: Monitoring of Linked List Implementation

Database before: Head -> null

Updating: Hugo to the number 959

Database after: Head -> Hugo :959 -> null

Database before: Head -> Hugo :959 -> null

Updating: Hugo to the number 254

Database after: Head -> Hugo :254 -> null

Database before: Head -> Hugo :254 -> null

Updating: Alice to the number 637

Database after: Head -> Alice :637 -> Hugo :254 -> null

With a correct implementation using the binary search tree (BST)
approach one might obtain the following error-free output from the random
runner:

Example 43.12: Monitoring of BST Implementation

Database before: Empty tree

Updating: Fred to the number 290

Database after: Fred :290

Database before: Fred :290

Updating: Erwin to the number 680

Database after: Fred :290

-> Erwin :680

-> null

Database before: Fred :290

-> Erwin :680

-> null

Updating: Hugo to the number 528

Database after: Fred :290

-> Erwin :680

-> Hugo :528

(ConGu’s output has been slightly adapted for space considerations.)

Linked-Lists and Binary Search Trees are just two of the many data struc-
tures that can be used to implement a database. The above examples demon-
strate that there can be several different correct implementations for one
algebraic specification.
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Finding Bugs

There might be a bug in the implementation that uses a Linked List:

Example 43.13: A Bug in the Use of the Linked List

The implemented lookup method returns the phone number of the last
node in the list that matches the given name. This works fine as long as
there is only one entry per name in the list. However, when the update
method does not delete old entries then the invariant is violated under
which the lookup method works correctly:

public void update(String name , String number) {

// Bug: The programmer forgets to write the following:

// this.delete(name);

Entry entry = new Entry(name , number);

this.linkedList.insert(entry);

}

ConGu can find such a bug with random testing. In our experiments it
was detected after randomly executing about 10 tests. Below is a
typical error report:

Database before: Head -> Erwin :857 -> Hugo :293 -> null

Updating: Erwin to the number 413

Exception in thread "main"

runtime.exceptions.PostconditionException : Axiom:

(lookup(update(db , name1 , number), name2) = number)

if

(name1 = name2);

from Database

Context variables:

name1 : Name;* = "Erwin"

name2 : Name;* = "Erwin"

number : Number ;* = "413"

db : Database ;* = "Head -> Erwin :857 -> Hugo :293

-> null"

Context term nodes:

update(db , name1 , number) = "Head -> Erwin :413 ->

Erwin :857 -> Hugo :293 -> null"

lookup(update(db , name1 , number), name2) = "857"

When entering the specification into the ConGu system, the specifier might
make a typo such as forgetting a negation or adding one:

Example 43.14: A Bug in the Specification

By forgetting the negation in the condition of the “name not found”
axiom, the specifier actually produces an inconsistent specification.
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// Name not found

lookup(update(db , name1 , number), name2) =

lookup(db , name2) if name1 = name2;

ConGu can find such a bug with random testing. In our experiments it
was detected after randomly executing about 2 tests. Below is a
typical error report:

Database before: Head -> Hugo :144 -> null

Updating: Hugo to the number 832

Exception in thread "main"

runtime.exceptions.PostconditionException : Axiom:

(lookup(update(db , name1 , number), name2) =

lookup(db , name2)) if (name1 = name2);

from Database

Context variables:

name1 : Name;* = "Hugo"

name2 : Name;* = "Hugo"

number : Number ;* = "832"

db : Database ;* = "Head -> Hugo :144 -> null"

Context term nodes:

update(db , name1 , number) = "Head -> Hugo :832 -> null"

lookup(update(db , name1 , number), name2) = "832"

lookup(db , name2) = "144"

In practice, applying random testing with ConGu appears to be an effective
means to detect errors, be them in the implementation or the specification.
In our experience, the additional cost of applying ConGu in a programming
project is small provided there already is an algebraic specification available.

Random testing (via monitoring) with ConGu is sound, i.e., any error
reported is an actual instance of non conformance. This holds under the
following assumptions:

• the implementations of the equals and clone methods are correct (clone
is only required for mutable SUTs); and

• the ConGu tool has been correctly implemented—see the discussion of tool
qualification in Sect. 1.2.4.

However, note that random testing does not come with any guarantee of
mathematical strength, that a mistake or underlying bug will be discovered,
i.e., it is not complete.

4.2.4.1 ConGu Semantically

Both Casl and ConGu take the approach of so-called loose semantics—see
the definition under “Model semantics of Casl specifications” in Sect. 4.2.1.
This approach is discussed in Sect. 2.3.1 in the Chap. 2, “Logics for Software
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Engineering”. A Java SUT represents one model in the class of all possible
models. It is said to be correct if it falls within the model class of the speci-
fication. The ConGu publications provide technically detailed discussions of
the link between the world of abstract data types and their implementation
in Java that justify the run-time monitoring approach taken. In Chap. 5 on
Testing, we will discuss a different approach for test generation from algebraic
specifications, where we detail how to relate specifications and programs.

4.2.5 The Story so Far

We have explored basic Casl specifications (as opposed to structured Casl
specifications coming up in Sect. 4.4) in syntax and semantics. To this end,
we have run through a full exercise from specifying the system informally
as a narrative, through building a formal Casl model, validating the model
against informal specification (narrative), asserting the model’s healthiness
by checking its consistency, and finally, to testing if Java implementations
conform to our formal model. These elements form a typical “invent and
verify” lifecycle when one builds a system from scratch with Formal Methods.

4.3 Verification of Ladder Logic Programs

This section provides a case study within the propositional sublanguage
of Casl. We demonstrate a modelling and verification technique originally
developed for the verification of so called railway interlocking computers, see,
e.g., [Jam10, JR10, JLM+13]. Here we use as an example a pelican crossing
in order to demonstrate ladder logic verification. Our example as well as our
discussion of Programmable Logic Controllers closely follows [JR10].

Example 44: Pelican Crossing

A Pelican crossing (PEdestrian LIght CONtrolled Crossing), see Fig. 4.2,
allows pedestrians to safely cross a flow of traffic. Such crossings have
two masts each with the following components:
• a traffic facing set of lights consisting of 3 coloured lights (red, amber,

and green) to control traffic.
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Fig. 4.2 A Pelican crossing. R, A, and G represent red, amber and green lights, respec-
tively

• a pedestrian facing set of lights consisting of 2 coloured lights (nor-
mally, a green pedestrian pictogram and a red pedestrian pictogram)
to allow pedestrians to cross safely.

• a means for visually impaired pedestrians, e.g., a buzzer, used to
indicate it is safe to start crossing.

• a button, used by pedestrians to request to cross the road.

Pelican crossings use the following sequence of lights for traffic:

Active Light Meaning
Red Stop
Flashing amber Continue if crossing is clear
Green Go
Amber Prepare to stop

For pedestrians, pelican crossing use the following sequence of lights:

Active Light Meaning
Green pictogram Cross the road
Flashing green pictogram Don’t cross as traffic will

continue shortly
Red pictogram Don’t cross and wait

The non visual indicator is active when the pedestrian green pictogram
is lit (non flashing).
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These two sequences are synchronised:

Pelican crossings are safety critical systems: A malfunction, such as show-
ing green on both traffic and pedestrian lights simultaneously, may result in
death or serious injury to people. In the following, we demonstrate how to
verify in Casl the control program of a pelican crossing for a safety condition.

Example 44.1: Safety Conditions

We consider two safety conditions, one for the pedestrian facing set of
lights and one for the traffic facing set of lights: In each set of lights,
there is exactly one light active (i.e., lit or flashing) at any time.

It is clear that whilst the above are necessary safety conditions they are by
no means sufficient. In verification practice, finding the ‘right’ safety condi-
tions is an art. Risk analysis techniques can support the process of identifying
which safety conditions are most important.

4.3.1 Programmable Logic Controllers (PLCs)

A Programmable Logic Controller (PLC), see, e.g., [Bol06], would be a nat-
ural choice of how to implement the light sequences of a Pelican Crossing.
The operation of a PLC is best described in terms of an imperative program:

Algorithm 5: PLC Operation
input : Sequence of values
output: Sequence of values

initialisation
while (true) do

read (Input) %% read
(*) State’ ← ControlProgram(Input, State) %% process

write (Output’) & State ← State’ %% update
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After initialisation of the system’s state, the PLC runs in a non terminating
loop. This loop consists of three steps: First, the PLC reads Input, a set of
values; based on this Input and the PLC’s current State, the PLC computes
its next state State’ which also includes some Output’ values; finally, the
PLC writes Output’ and updates its state.

Ladder Logic, defined in the IEC standard 61131 [IEC03], is a graphi-
cal programming language for PLCs. It gets its name from the ladder like
appearance of its programs and is widely used, e.g., in train control systems.
From a mathematical point of view, Ladder Logic is a subset of Propositional
Logic. In Ladder Logic, Input, State and State’ are sets of Boolean variables,
where Output is a subset of State (and Output’ is a subset of State’).

In the context of PLCs programmed in Ladder Logic, there is a variety of
common initialisation procedures. One of these is to set all state variables to
false and run the program once.

Algorithm 6: PLC Initialisation
input : none
output: none

set to false (State)
State’ ← Program(Input, State) %% process
State ← State’

Note that, as the input variables are not set in this procedure, usually a
Ladder Logic program has several initial states.

4.3.2 Ladder Logic

Avoiding a plethora of syntax definitions and transformations, we refrain
from discussing the graphical form of a program in Ladder Logic. We rather
define its equivalent in Propositional Logic. Below we give a Ladder Logic
control program of a Pelican crossing written in Casl:

Example 44.2: Ladder Logic Control Program

spec TransitionRelation =
preds button, request, old sh, old sl, sh, sl, pg, pgf, pr, tg,

ta, tr, taf : ()
preds button’, request’, old sh’, old sl’, sh’, sl’, pg’, pgf’, pr’,

tg’, ta’, tr’, taf ’ : ()
• old sh’ ⇔ sh
• old sl’ ⇔ sl
• sh’ ⇔ (old sh’ ∧ ¬ old sl’ ) ∨ (¬ old sh’ ∧ old sl’ )
• sl’ ⇔ (old sh’ ∧ ¬ old sl’ ) ∨ (¬ request ∧ button ∧ ¬ old sl’ )
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• request’
⇔ (button ∧ ¬ old sh’ ) ∨ (button ∧ ¬ old sl’ )

∨ (request ∧ ¬ button ∧ ¬ old sh’ )
∨ (request ∧ ¬ button ∧ ¬ old sl’ )

• pg’ ⇔ old sh’ ∧ ¬ old sl’
• pgf’ ⇔ old sh’ ∧ old sl’
• pr’ ⇔ ¬ old sh’
• tg’ ⇔ (¬ old sh’ ∧ ¬ old sl’ ) ∨ (¬ button ∧ ¬ request)
• ta’ ⇔ ¬ old sh’ ∧ old sl’
• tr’ ⇔ old sh’ ∧ ¬ old sl’
• taf ’ ⇔ old sh’ ∧ old sl’

end

The above specification TransitionRelation declares a number of
propositional variables button, request, . . . , each with a primed coun-
terpart button’, request’, . . .In Casl, propositional variables are 0-ary
predicates. This declaration is followed by a sequence of axioms. Each
axiom is a faithful representation of one so-called rung of a Ladder Logic
program. Details on the encoding of Ladder Logic in Propositional Logic
can be found, e.g., in the survey by James et al. [JLM+13].

Explained on an intuitive level, our Ladder Logic program has one
input variable, namely button. The state of this variable represents if
a pedestrian has pressed the button at either pedestrian light during
the previous cycle of the PLC. The program also includes a number
of pure state variables, namely request, old sh, old sl, sh, sl. For the
output variables, we use the following naming scheme: prefix p stands
for pedestrian light, prefix t for traffic light; the suffixes are given by the
following table:

suffix meaning
g light shows green
r light shows red
a light shows amber
gf light shows flashing
af light shows amber flashing

When one of these variables is true, the corresponding light is lit.
As an example of how to read the control program, consider the last

axiom or ‘rung’ of TransitionRelation, namely

• taf ’ ⇔ old sh’ ∧ old sl’

This axiom can be read as: if in current cycle of the PLC both state
variables old sh’ and old sl’ are true, then the traffic light will show
amber flashing in the next cycle.
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Our program abstracts from the question of how long a traffic light
shall stay green or red. In order to deal with time, PLCs offer special
boolean variables for setting a timer and for obtaining the information
that a fixed time interval has passed.

In the following, we will make use of a number of notations: for a given
propositional formula ϕ, the function vars returns the set of propositional
variables appearing in ϕ; we use “prime” to generate a fresh variable. V ′ =
{v′ | v ∈ V } denotes the set of all fresh variables obtained from a set of
variables V .

Definition 4 (Ladder logic formulae) A ladder logic formula ψ (relative to
a finite set of input variables I and a finite set of state variables C with
I ∩ C = ∅) is a propositional formula

ψ ≡ ((c′
1 ⇔ ψ1) ∧ (c′

2 ⇔ ψ2) ∧ . . . ∧ (c′
n ⇔ ψn))

where n ≥ 0 and the ψi, 1 ≤ i ≤ n, are propositional formulae, such that the
following conditions hold:

1. For all 1 ≤ i ≤ n : c′
i ∈ C ′.

2. For all 1 ≤ i, j ≤ n : if i �= j then c′
i �= c′

j .
3. For all 1 ≤ i ≤ n : vars(ψi) ⊆ I ∪ {c′

1, . . . c
′
i−1} ∪ {ci, . . . cn}.

Thanks to the three conditions on variables, the equivalence symbol (⇔) in
a Ladder Logic formula can be read as variable assignment in an imperative
program. This is justified, as Ladder Logic programs can be seen as a chain
of so-called definitional extensions.

Definition 5 (Conservative and definitional extension) In Casl, the anno-
tation

sp then %cons sp′

holds if each model of sp can be expanded to a model of sp then sp′. Fur-
thermore, the annotation

sp then %def sp′

holds if each model of sp can be uniquely expanded to a model of sp then sp′.

Similar to %implies, the annotations %cons and %def express proof obli-
gations. Hets interfaces with a number of theorem provers to discharge the
proof obligations arising from the annotations %implies; the Casl Consis-
tency Checker [LRS04] implements a calculus that directly deals with %cons

and %def .
Before we discuss the application of these semantical annotations, we intro-

duce some of Casl’s syntactic sugar. For the sake of readability, in Casl it
is possible to declare and define predicate symbols in one single step—see the
below example. After the keyword pred one can write
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p(v1,1, . . . , v1,m1 : s1; . . . ; vn,1, . . . , vn,mn
: sn) ⇔ F (4.3)

(n ≥ 0; mi > 0 and si are sort names for 1 ≤ i ≤ n; vi,j are variable names
for 1 ≤ i ≤ n, 1 ≤ j ≤ mi; F is a formula in first-order logic) The equivalence
is universally quantified over the declared argument variables (which must
be distinct, and are the only free variables allowed in F ).

Analogously, after the keyword op one can write

f(v1,1, . . . , v1,m1 : s1; . . . ; vn,1, . . . , vn,mn
: sn) : s = T

The equation is universally quantified over the declared argument variables
(which must be distinct, and are the only free variables allowed in T ).

Example 44.3: The Ladder Logic Program as a Sequence of
Definitional Extensions

Using these new syntactical means, the specification TransitionRe-
lation can be more concisely written as:

spec TransitionRelationAlternative =
preds button, request, old sh, old sl, sh, sl, pg, pgf, pr, tg,

ta, tr, taf : ()
then %def

pred old sh’ () ⇔ sh;
then %def

pred old sl’ () ⇔ sl ;
then %def

pred sh’ () ⇔ (old sh’ ∧ ¬ old sl’ ) ∨ (¬ old sh’ ∧ old sl’ );
. . .
then %def

pred taf ’ () ⇔ old sh’ ∧ old sl’ ;
then %cons

pred button’ : ()
end

In the transformation from TransitionRelation to Transition-
RelationAlternative we apply two principles:

• In each definitional extension, we declare and define one new proposi-
tional variable. Theorem1 below proves that the extensions are actu-
ally definitional ones.

• In the conservative extension, we declare one new propositional vari-
able and leave its interpretation open. Thus, no models are lost in
the extension.

Note that such a transformation is possible for any Ladder Logic pro-
gram.
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The following theorem3 has been stated as rule (def1) in the consistency
calculus by Roggenbach and Schröder [RS01]:
Theorem 1 If BI is an operation or a predicate definition for a symbol which
is new over a specification sp, then the annotation def holds in

sp then %def BI.

Proof We prove the theorem only for the case that BI is a predicate definition
as given in equivalence 4.3 for a predicate symbol p. The case of an operation
definition is analogous.

Let M be a model of sp. Define for each element e ∈ M(s1)m1 × . . . ×
M(sn)mn a variable evaluation νe with νe(vi,j) = e(

∑i−1
k=1 mk)+j , i.e., the vari-

able vi,j obtains under νe the component with index (
∑i−1

k=1 mk)+ j from the
vector e. Define

• M ′(p)(e) = ν�
e(F ) and

• M ′(x) = M(x) for symbols x �= p.

M ′ clearly is a model of sp then %def BI: by construction, equivalence 4.3
holds over M ′. Furthermore, there is no other model M ′′ of the specification
of sp then %def BI, which is identical with M on the symbols of sp: choosing
a value M ′′(p)(e) different from M ′(p)(e) would falsify equivalence 4.3. Thus,
the extension is a definitional one. �

4.3.3 The Automaton of a Ladder Logic Formula

One can associate an automaton with a ladder logic formula. This automaton
has interpretations of the set of propositional variables I ∪C as its states, i.e.,
the configurations of the PLC. In order to define the automaton’s transition
relation, we introduce paired valuations. Here, the function unprime deletes
the prime from a variable.

Definition 6 (Paired valuations) Given a finite set of input variables I, a
finite set of state variables C, and valuations μ, ν : (I ∪C) → {0, 1} we define
the paired valuation μ ; ν : (I ∪ C ∪ I ′ ∪ C ′) → {0, 1} where

μ ; ν(x) =

{
μ(x) if x ∈ I ∪ C

ν(unprime(x)) if x ∈ I ′ ∪ C ′.

The models M of our Casl specification are exactly these paired valuations
μ ; ν.

3 Note that this theorem relies on the fact that Casl signatures do not include variables.
This is in contrast to signatures as introduced in Chap. 2.
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Example 44.4: A Model of our Casl Specification

The models of our Casl specification TransitionRelation are maps

M : {button, request . . . , taf ′} → {0, 1}
i.e., interpretations of all propositional variables, the primed and the
unprimed ones, declared in the specification with the truth values 0—
for false—and for 1—true. For example, consider the model M with

M(old sh) = 0 M(old sl) = 0
M(sh) = 0 M(sl) = 0 M(request) = 0 M(button) = 0
M(tr) = 0 M(ta) = 0 M(taf) = 0 M(tg) = 1
M(pr) = 1 M(pg) = 0 M(pgf) = 0

M(old sh′) = 0 M(old sl′) = 0
M(sh′) = 0 M(sl′) = 1 M(request) = 1 M(button′) = 1
M(tr′) = 0 M(ta′) = 0 M(taf ′) = 0 M(tg′) = 1
M(pr′) = 1 M(pg′) = 0 M(pgf ′) = 0

Model M obviously fulfills the first rung of our specification Transi-
tionRelation, namely

• old sh’ ⇔ sh
It is easy but laborious to check that M also fulfills all other axioms. It
also is an easy exercise to decompose M into two evaluations μ and ν
such that M = μ ; ν.

The automaton of a ladder logic formula is defined as follows:
Definition 7 (Automaton) Given a ladder logic formula ψ over I ∪ C, we
define the automaton

A(ψ) = (S, S0,→)

where

• S = {μ |μ : I ∪ C → {0, 1}} is the set of states,

• μ
ν(I′)−→ ν if μ ; ν |= ψ, defines the transition relation, and

• S0 = {ν | ∃μ : μ |= ¬C, μ ; ν |= ψ} gives the set of initial states.
Here, ¬C expands to

∧
c∈C ¬c.

The automaton might have more than one start state as the computation
of the set of initial states only sets the state variables C, the input variables
I can take any value. The automaton A(ψ) is finite; it has 2|I∪C| states.

Naturally, a PLC should never stop. In our formalisation in terms of an
automaton we can prove this property. Note how the proof makes use of the
syntactic structure of a Ladder Logic formula.
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Theorem 2 Let ψ be a ladder logic formula. Let μ be a state in A(ψ). Then

there exists a state ν such that μ ; ν |= ψ, i.e., it holds that μ
ν(I′)−→ ν.

Proof (Sketch) By induction on size n of a ladder logic formula. Assume the
claim holds for length i. Given an evaluation μi for Vi = I ∪ {c′

1, . . . , c
′
i−1} ∪

{ci, . . . , cn} we set μi+1(x) = μ(x) for x ∈ Vi, μi+1(c′
i+1) = 1 if μi |= ψi+1

and μi+1(c′
i+1) = 0 if μi �|= ψi+1. �

The above proof is just a reformulation of the our observation that Ladder
Logic programs can be considered as a sequence of definitional and conserva-
tive extensions. Another interpretation of this theorem is: Ladder Logic pro-
grams can never state inconsistent requirements on the transition relation.
This is in contrast to, e.g., the B method, see, e.g., [Abr10]. B also specifies an
automaton. When working with B, however, one needs first to prove that the
axioms specifying the transitions do not contradict each other. Coming back
to Casl, this theorem means: The specification of a Ladder Logic program
is always consistent, i.e., it has a non empty-model class consisting out of all
the transitions of the automaton.

Example 44.5: The Automaton for TransitionRelation

Figure 4.3 shows the reachable states of the automaton constructed from
TransitionRelation. For ease ease of reading some variable values
have been excluded from the state. The convention is to show the values
of sh, sl, request, button as a four-tuple in this order, followed by the
names of the those lights which are true in the given state. Initial states
are marked by an ingoing arrow starting from a black dot.

4.3.4 Inductive Verification of Ladder Logic Programs

With the associated automaton in mind, we can now formalise safety condi-
tions for our PLC as propositional formulae and make precise, what safety
verification shall mean.

Example 44.6: Our Safety Properties

For the Pelican Crossing, we were interested in two safety conditions: “In
each set of lights, there is exactly one light active (i.e., lit or flashing)
at any time”. These can now be expressed as properties in propositional
logic that shall hold in each state of the automaton.

For traffic lights, exclusively one out of tg, ta, tr, taf shall be true:
• (tg ∧ ¬ ta ∧ ¬ tr ∧ ¬ taf ) ∨ (¬ tg ∧ ta ∧ ¬ tr ∧ ¬ taf )

∨ (¬ tg ∧ ¬ ta ∧ tr ∧ ¬ taf ) ∨ (¬ tg ∧ ¬ ta ∧ ¬ tr ∧ taf )



234 M. Roggenbach, L. O’Reilly

Respectively, for pedestrian lights, exclusively one out of pg, pgf, pr
shall be true:

• (pg ∧ ¬ pgf ∧ ¬ pr) ∨ (¬ pg ∧ pgf ∧ ¬ pr)
∨ (¬ pg ∧ ¬ pgf ∧ pr)

We can manually check that this holds for the automaton depicted
in Fig. 4.3.

0000, tg, pr

0111, tg, pr

1010, ta, pr1011, ta, pr

1110, tr, pg1111, tr, pg

0000, taf, pgf0001, taf, pgf

0

1

0

1

01

0

1 0

1

0

1 0

1

1

0

1

0

Fig. 4.3 The finite automaton associated with the Casl specification TransitionRela-
tion
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More formally, we define the verification problem for a ladder logic formula
ψ for a verification condition ϕ:

Definition 8 (The verification problem for ladder logic programs)

A(ψ) |= ϕ

if and only if for all reachable states μ of A(ψ) we have μ |= ϕ.

There are a number of different approaches of how to solve this verification
problem. These include inductive verification, bounded model checking, and
temporal induction. We will focus here on inductive verification only, but
want to point out that the other two can equally be encoded in Casl.

Inductive verification checks if an over approximation of the reachable
state space is safe. The idea is verify two conditions:

1. Show that all initial states are safe.
2. Show that the following holds for all states s: If s is safe, then all successors

of s are safe as well.

The over approximation happens in the second step: here one considers all
sfae states rather than the reachable ones only. This idea makes inductive
verification a very efficient approach involving at most two calls to a theorem
prover. However, the price of this is that one might have to deal with false
positives—i.e., the verification might fail due to an unreachable safe state
which has an unsafe successor.

Let Ψ represent the Ladder Logic program, including the variable decla-
rations, let ϕ be the safety property of concern formulated over unprimed
variables, and let ϕ′ be the safety property formulated over primed variables.
Then we can encode inductive verification in Casl as follows:

spec InitialStatesAreSafe = Ψ then • ∧
c∈C ¬c

then %implies

• ϕ′

end

spec TransistionsAreSafe = Ψ
then %implies

• ϕ ⇒ ϕ′

end
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In the following, we illustrate inductive verification for our example:

Example 44.7: Initial States are Safe

In order to verify that initial states are safe, we negate all state
variables—as prescribed in Definition 7—and check if our safety prop-
erties hold for all primed variables:

spec InitialStatesAreSafe =
TransitionRelation

then • ¬ request ∧ ¬ sh ∧ ¬ sl ∧ ¬ old sh ∧ ¬ old sl ∧ ¬ pg
∧ ¬ pgf ∧ ¬ pr ∧ ¬ tg ∧ ¬ ta ∧ ¬ tr ∧ ¬ taf

then %implies

• (tg’ ∧ ¬ ta’ ∧ ¬ tr’ ∧ ¬ taf ’ ) ∨ (¬ tg’ ∧ ta’ ∧ ¬ tr’ ∧ ¬ taf ’ )
∨ (¬ tg’ ∧ ¬ ta’ ∧ tr’ ∧ ¬ taf ’ )
∨ (¬ tg’ ∧ ¬ ta’ ∧ ¬ tr’ ∧ taf ’ )

%(initial states are safe for vehicles)%

• (pg’ ∧ ¬ pgf’ ∧ ¬ pr’ ) ∨ (¬ pg’ ∧ pgf’ ∧ ¬ pr’ )
∨ (¬ pg’ ∧ ¬ pgf’ ∧ pr’ )

%(initial states are safe for pedestrians)%

end

Using Hets, we can see that both safety properties hold.

Some safety conditions hold for the over approximation of the state space:

Example 44.8: The Automaton is Safe w.r.t. Pedestrian Lights

We encode the inductive exploration of the state space as an implication:
should the state given through the unprimed variables be safe, then the
state given through the primed variables is safe as well.

spec TransitionsAndPedestrianSafety =
TransitionRelation

then %implies

• (pg ∧ ¬ pgf ∧ ¬ pr) ∨ (¬ pg ∧ pgf ∧ ¬ pr)
∨ (¬ pg ∧ ¬ pgf ∧ pr)
⇒ (pg’ ∧ ¬ pgf’ ∧ ¬ pr’ ) ∨ (¬ pg’ ∧ pgf’ ∧ ¬ pr’ )

∨ (¬ pg’ ∧ ¬ pgf’ ∧ pr’ )
%(safety is preserved for pedestrians)%

end

Using Hets, we can see that this safety property holds.

However, for other safety conditions, due to the over approximation of the
state space, inductive certification might fail:
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Example 44.9: The Induction Step Fails for Vehicles

Using the same encoding method of the induction step for the safety
condition on traffic lights results in:

spec TransitionsAndTrafficSafety =
TransitionRelation

then %implies

• (tg ∧ ¬ ta ∧ ¬ tr ∧ ¬ taf ) ∨ (¬ tg ∧ ta ∧ ¬ tr ∧ ¬ taf )
∨ (¬ tg ∧ ¬ ta ∧ tr ∧ ¬ taf ) ∨ (¬ tg ∧ ¬ ta ∧ ¬ tr ∧ taf )
⇒ (tg’ ∧ ¬ ta’ ∧ ¬ tr’ ∧ ¬ taf ’ )

∨ (¬ tg’ ∧ ta’ ∧ ¬ tr’ ∧ ¬ taf ’ )
∨ (¬ tg’ ∧ ¬ ta’ ∧ tr’ ∧ ¬ taf ’ )
∨ (¬ tg’ ∧ ¬ ta’ ∧ ¬ tr’ ∧ taf ’ )

%(safety is preserved for vehicles)%

end

Using Hets, we can see that this safety property does not hold.

Conceptually, there can be many reasons for inductive verification to fail:

1. We have a wrong model: i.e., the translation of the Ladder Logic Program
into Propositional Logic went wrong.

2. We made a modelling error when expressing the safety condition in Propo-
sitional Logic.

3. The failure is due to a false positive.
4. There actually is a mistake in the Ladder Logic program.
5. The programmer of the Ladder Logic program deliberately violated the

safety condition—e.g., for some optimisation purpose, justified by domain
knowledge.

It is up to the verifier to carefully work out, what the reason actually is.
That is, scientifically Ladder Logic verification through inductive verification
is solved: we know how to do it and automated tools often scale to real world
problems. However, to be practically applicable, also the error analysis needs
to be automated. The first two items above need to be addressed by thor-
ough engineering. The third item possibly requires verification approaches to
complement inductive verification. One can always make a first attempt with
inductive verification (as it is computationally ‘cheap’). Should inductive ver-
ification fail, one runs a computationally more expensive approach in order
to further investigate. Such approaches include, e.g., inductive verification
(see below) and the IC3 algorithm [Bra12]. The fourth concerns the quality
control process that we actually want to establish. The fifth is an example
of industrial practices and theoretical considerations in opposition when it
comes to the question of safety.
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Inductive Verification with Invariants

As demonstrated in Example 44.9 above, inductive verification might unex-
pectedly fail (we could verify by manually inspecting the automaton that
the safety condition concerning vehicles holds for our ladder logic program).
However, this does not necessarily imply that the safety condition does not
hold on the reachable states, i.e., the ones we are interested in. In verification
practice, one often works with invariants to mitigate such situations. Invari-
ants are formulae that hold in all reachable states (and possibly others). In
order to establish that a formula is an invariant, we can, e.g., use inductive
verification.

With an invariant, verification becomes:

1. Show that all initial states are safe.
2. Show that the following holds for all states s: If s is safe and the invariant

holds in s, then all successors of s are safe as well.

Let I be an invariant, then we encode verification with an invariant as
follows:

spec InitialStatesAreSafe = Ψ then • ∧
c∈C ¬c

then %implies

• ϕ′

end

spec TransitionsAreSafeWithInvariant = Ψ
then %implies

• ϕ ∧ I ⇒ ϕ′

end

In general, invariants are hard to find. They might arise from the appli-
cation domain (e.g., a Ladder Logic program reads from a sensor a value in
{0, 1, . . . , 5} and uses three boolean variables v2v1v0 to represent the binary
value of the read-in integer—i.e., the values 110 and 111 will never appear in
the reachable states) or be a property of the program itself: there is a rich
literature on automatic invariant detection of programs.

Example 44.10: Safety Holds Also for Traffic Lights

By analysing our Ladder Logic program with the help of Karnaugh
maps, we visually spotted a candidate for an invariant:

¬ (¬ button ∧ ¬ request ∧ (sh ∨ sl))

With the help of this formula, we want to establish that safety is pre-
served for vehicles.

With inductive verification, one can prove that the above formula
is an invariant. Concerning Step 1 of inductive verification, we have
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seen in Example 44.7 that the initial states are safe for vehicles. Thus, it
remains to show that safety for vehicles is preserved under the invariant.

spec TransitionsAreSafeUnderInvariant =
TransitionRelation

then %implies

• ¬ (¬ button ∧ ¬ request ∧ (sh ∨ sl))
∧ ((tg ∧ ¬ ta ∧ ¬ tr ∧ ¬ taf ) ∨ (¬ tg ∧ ta ∧ ¬ tr ∧ ¬ taf )

∨ (¬ tg ∧ ¬ ta ∧ tr ∧ ¬ taf ) ∨ (¬ tg ∧ ¬ ta ∧ ¬ tr ∧ taf ))
⇒ (tg’ ∧ ¬ ta’ ∧ ¬ tr’ ∧ ¬ taf ’ )

∨ (¬ tg’ ∧ ta’ ∧ ¬ tr’ ∧ ¬ taf ’ )
∨ (¬ tg’ ∧ ¬ ta’ ∧ tr’ ∧ ¬ taf ’ )
∨ (¬ tg’ ∧ ¬ ta’ ∧ ¬ tr’ ∧ taf ’ )

%(safety is preserved for vehicles under an invariant)%

end

Using Hets, we can show that this property holds, i.e., safety holds also
for traffic lights.

Note that in the above example we carefully established first that the
invariant holds in all reachable states. Had we not done this, we might have
added a formula that restricts the reachable states. In that case, we could
have produced a false negative, i.e., we could have said that the system is
safe as we found it to be safe for a subset of the reachable states.

4.4 Structuring Specifications

Programming in the small and programming in the large has been an estab-
lished topic since the mid 1970s. Paraphrasing DeRemer and Kron [DK76],
programming languages require primitives such as assignment, conditional,
loop for writing functions and procedures in a module (in the small). But
they also need a “module interconnection language” for knitting those mod-
ules together (in the large). Within Casl we already have used the then
construct in order to form larger specifications from smaller ones.

When choosing a programming language for a specific project, not only
the programming paradigm is important but also which standard libraries
and third party modules are available. The same holds for specification. The
specifier does not want to re-invent the wheel. Thus, a specification language
ought to support libraries and provide constructs to utilise library contents.

Casl has taken the idea of structured specifications further than any other
specification language, and is thus, exemplary. Beyond that, the Casl struc-
turing operators have been developed in such a way that any specification
language can re-use them—provided its semantics has been written in a
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certain style. Namely, in Casl, all structuring operators have ‘institution-
independent’ semantics, c.f. Sect. 2.3. Their definition recurs only on the
building blocks that are present in all institutions and refrain from utilising
notions specific to a particular institution. Thus, given any concrete institu-
tion, these operators are available.

Structuring specifications is considered ‘good practice’ for many reasons.
These include:

• Separation of concerns: Different parts or aspects of the system appear
in different specifications. This allows specifier and reader to focus on the
system part or aspect of concern. It reduces the complexity (measured,
e.g., in the numbers of axioms) of a single specification and thus might
increase the likelihood to get the specification right.

• Re-use of specification-text: Named specification texts can be used in
different contexts. This increases efficiency when writing and when main-
taining specifications: axioms need to be written only once, and manage-
ment of change is eased (if an axiom needs updating, there is only one
place that needs changing).

• Theorem proving: There are proof calculi for structured specifications
that distribute proof obligations along the specification structure. When
analysing systems, this can help in identifying which part of the overall
specification went wrong in the case that a proof fails.

Up to now, we have studied what one might want to call algebraic spec-
ification ‘in the small’, i.e., we have modeled and analyzed systems that we
expressed as a single Casl specification. Even in this, for practicality we
allowed ourself to ‘import’ named specifications and to ‘extend’ these. Now,
we shall explore specification ‘in the large’, i.e., we will study how simple
specifications can be combined to form more complex ones.

CASL structuring includes a variety of constructions of which we will
study:

• Named specification—to create a named entity for use in different contexts;
• Extension—keyword then—to enhance a given specification;
• Union—keyword and—to share properties between two specifications;
• Renaming—keyword with—to adapt symbol names;
• Hiding—keyword hide—to get rid of unwanted symbols;
• Libraries—keyword library—to allow collections of named specifications;

and
• Parametrisation—to enable the re-use of a construction principle of data

types in different situations.

Most of these specification operations do not change expressivity of the lan-
guage, i.e., there exist ‘unstructured’, ‘flat’ specifications with the same model
class. However, it turns out that hiding increases the expressivity.

In the following, we will exemplify how one can make good use of these
structuring operations. The library of Casl Basic Datatypes, Part V in
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[Mos04],4 provides a rich collection of further examples on the use of these
specification building operators, the CoFi Note M-6 “Methodological guide-
lines”5 discusses how to make ‘good’ use of these operators.

4.4.1 Extension

Extensions—keyword then—enhance a given specification by adding new
symbols and or new axioms to it. We write

Sp then Sp′

for specification Sp′ extending specification Sp. It is a Casl convention to
bracket sequences of extensions to the left, i.e., Sp then Sp′ then Sp′′ = {Sp
then Sp′ } then Sp′′. Here, { and } are the Casl symbols to group specifi-
cations. Often, Sp′ is not a specification on its own but rather a specification
fragment. Take for instance the following example:

Example 45: Extending Partial to Total Orders

A partial order is a binary relation, which is reflexive and transitive.
In the context of a partial order, one often speaks about the infimum
(supremum) of two elements: that largest (smallest) element that is
smaller (larger) than these two elements. A typical example of a partial
order are sets ordered by subset-inclusion. The infimum of two sets is
given by their intersection, the supremum is given by their union. Note
that for two elements there might not be an infimum (supremum), i.e.,
infimum (supremum) is a partial operation.

spec PartialOrder =
sort Elem
pred ≤ : Elem × Elem
∀ x, y, z : Elem
• x ≤ x
• x ≤ y ∧ y ≤ z ⇒ x ≤ z
ops inf, sup : Elem × Elem →? Elem
∀ x, y, z : Elem
• inf (x, y) = z

⇔ z ≤ x ∧ z ≤ y ∧ ∀ t : Elem • t ≤ x ∧ t ≤ y ⇒ t ≤ z
• sup(x, y) = z

⇔ x ≤ z ∧ y ≤ z ∧ ∀ t : Elem • x ≤ t ∧ y ≤ t ⇒ z ≤ t
end

4 Available at https://github.com/spechub/Hets-lib.
5 Available at https://sefm-book.github.io.

https://github.com/spechub/Hets-lib
https://sefm-book.github.io
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Two disjoint sets are not ordered by set inclusion. That is, they are
incomparable. This is different for the natural numbers. There we have
the situation that any two natural numbers are in an ordering relation.
If this property holds of a partial order, one also speaks of a total order.
In total orders, it makes sense to speak about the min (max) of two
elements. It turns out that—given the extra axiom for total orders—the
definitions of inf (sup) and min (max) coincide:

spec TotalOrder =
PartialOrder

then ∀ x, y : Elem • x ≤ y ∨ y ≤ x
ops min, max : Elem × Elem → Elem
∀ x, y : Elem
• min(x, y) = x when x ≤ y else y
• max (x, y) = x when y ≤ x else y

then %implies

∀ x, y : Elem
• min(x, y) = inf (x, y) %(min=inf)%

• max (x, y) = sup(x, y) %(max=sup)%

end

Using Hets, we can prove that these two equations hold.

In the above example, the first extension within the specification
TotalOrder extends the specification PartialOrder by three axioms and
two new symbols. These three axioms make use of the ≤ symbol although it
is not declared within the first extension—the symbol is imported from Par-
tialOrder. In this sense, the first extension is not a specification of its own,
but a fragment that only makes sense together with another specification.
The same holds for the second extension.

4.4.2 Union

Unions—keyword and—share properties between two specifications. We
write

Sp1 and Sp2

for taking the union of specification Sp1 and specification Sp2. The and
operator is associative.

Example 46: Building Up an Asymmetric Relation with Union

Relations are everywhere. For example, the integers are ordered by the
< relation.
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spec Relation =
sort Elem
pred ∼ : Elem × Elem

end

No integer is smaller than itself. Such relations are called irreflexive.

spec IrreflexiveRelation = Relation
then ∀ x : Elem • ¬ x ∼ x
end

For integers it is also the case that its ordering relation < is transitive:

spec TransitiveRelation = Relation
then ∀ x, y, z : Elem • x ∼ y ∧ y ∼ z ⇒ x ∼ z
end

For integers it also holds that if a number is smaller than the other, the
reverse it never the case. Such relations are called ‘asymmetric’:

spec AsymmetricRelation = Relation
then ∀ x, y : Elem • ¬ x ∼ y if y ∼ x
end

It turns out that our observation on the integers is a general one: when-
ever a relation is both irreflexive and transitive, it is asymmetric.

spec StrictOrder =
IrreflexiveRelation and TransitiveRelation

then %implies

AsymmetricRelation
end

Using Hets, we we can prove that all axioms stated in the specification
AsymmetricRelation hold.

In the above example, we observe that, e.g., the sort symbol Elem is
declared twice when taking the union, once in the specification Irreflex-
iveRelation and once in the specification TransitiveRelation. The
resulting signature of the union will have the symbol Elem only once. The
reason for this is that in Casl the signature of the union is obtained by the
ordinary union of the signatures (not their disjoint union). Thus all occur-
rences of a symbol in the specifications are interpreted uniformly (rather than
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being regarded as homonyms for potentially different entities). This is known
in Casl as the ‘same name, same thing’ principle.

Also note that the union operator has a higher precedence than the exten-
sion operator, i.e., Sp1 and Sp2 then Sp′ = {Sp1 and Sp2} then Sp′.

When forming the union of two specifications, naturally the consistency of
the resulting specification is a concern. In the above example, we know that
there was no problem as the integers with < are a model of both, Irreflex-
iveRelation and TransitiveRelation. In specification practice, unions
are often a source of inconsistency due to ‘interaction’ between axioms com-
ing from different specifications.

4.4.3 Renaming

Renamings—keyword with—change the symbols of a specification. Given a
specification Sp, we write

Sp with SY1 → SY ′
1 , . . . , SYn → SY ′

n

n ≥ 1, for obtaining a new specification, which is like Sp but with symbol
SYi consistently changed into symbol SY ′

i , for i = 1 . . . n. The → symbol is
expressed in the concrete syntax as |->.

Example 47: Lists Satisfy the Monoid Axioms

Monoids are algebraic structures that are often found in data types.
Usually, monoids are written multiplicatively with the * operation:

spec Monoid =
sort S
ops 1 : S ;

∗ : S × S → S
• ∀ x : S • 1 ∗ x = x %(1 is left unit)%

• ∀ x : S • x ∗ 1 = x %(1 is right unit)%

• ∀ x, y, z : S • x ∗ (y ∗ z ) = (x ∗ y) ∗ z %(monoid associativity)%

end
Lists are one of the data types with monoid structure: the empty list [] is
the unit element of the append operation ++ , the append operation
is associative:

spec List =
sort Elem
free type List ::= [] | :: (Elem; List)

then %def

op ++ : List × List → List
∀ L, M : List ; e : Elem



4 Algebraic Specification in CASL 245

• [] ++ L = L %%(++ empty list)%%

• (e :: L) ++ M = e :: (L ++ M ) %%(++ non−empty list)%%

end

We first generate lists as a free type. Then, we definitionally extend this
specification: for each alternative of the free type, we give one axiom,
namely one that says how the append operation works with the empty
list [], and one axioms that says how the append operation works with
non empty lists, i.e., lists which have the form e :: L.

Using renaming, we can now express our expectation that lists are
indeed monoids. First, we check with Hets the result of the renaming:

Monoid with S → List, 1 → [], ∗ → ++

Inspecting the theory of the resulting specification with Hets, we obtain:

sorts List

op [] : List

op __++__ : List * List -> List

forall x : List . [] ++ x = x

forall x : List . x ++ [] = x

forall x, y, z : List . x ++ (y ++ z) = (x ++ y) ++ z

Having verified that the renaming produces what was expected (the
monoid axioms are now written using the signature elements from lists),
we can state that Lists are Monoids:

spec ListsAreMonoids = List
then %implies

Monoid with S → List, 1 → [], ∗ → ++
end

However, to our disappointment, the theorem prover SPASS only shows
a timeout and appears not to be able to prove this property.

The reason why SPASS can’t prove the property is that SPASS is a first-
order theorem prover while the sort generation constraint from the free type
is a higher order formula. When Casl specifications are translated by Hets
into the language of SPASS, the higher order axioms of the free types are
omitted. Without the higher order axiom it is not possible to prove that Lists
are a monoid: the induction principles required are not available.

However, it is safe to add the required induction principles (which are for-
mulae in first-order logic) to the List specification: we know that the induc-
tion principles are a consequence of the sort generation constraint coming
with the free type.
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Example 47.1: Induction Proof with SPASS

Our specification comes in several parts:
1. we import the List specification;
2. we add an induction axiom so that SPASS can prove that [] is a right

unit to the append operation ++;
3. with the induction axiom around, we expect that SPASS will be able

to prove both, induction case and induction step for associativity;
4. then we add an induction axiom so that SPASS can prove that the

append operation ++ is associative;
5. with these theorems and induction axioms available, SPASS should

manage to prove that lists form a monoid.

spec ListWithInductionPrinciples = List
then • ([] ++ [] = []

∧ ∀ M : List ; e : Elem
• M ++ [] = M ⇒ (e :: M ) ++ [] = e :: M )

⇒ ∀ M : List • M ++ [] = M
%(induction axiom for right unit)%

then %implies

∀ L, M, N : List ; e : Elem
• [] ++ (M ++ N ) = ([] ++ M ) ++ N

%(induction base for assoc)%

• ∀ K : List ; e : Elem
• ∀ M, N : List

• K ++ (M ++ N ) = (K ++ M ) ++ N
⇒ (e :: K ) ++ (M ++ N ) = ((e :: K ) ++ M ) ++ N

%(induction step for assoc)%

then • ((∀ M, N : List • [] ++ (M ++ N ) = ([] ++ M ) ++ N )
∧ ∀ K : List ; e : Elem

• ∀ M, N : List
• K ++ (M ++ N ) = (K ++ M ) ++ N

⇒ (e :: K ) ++ (M ++ N ) = ((e :: K ) ++ M ) ++ N )
⇒ ∀ L, M, N : List • L ++ (M ++ N ) = (L ++ M ) ++ N

%(induction axiom for assoc)%

then %implies

Monoid with S → List, 1 → [], ∗ → ++
end

The first thing to note is that the two inductions schemes that we
add in part 2 and in part 4 do not change the model class: they are
consequences of the free type that we used in order to specify the sort
List. However, SPASS is not capable of proving them, as SPASS is a
first-order prover. With these additional axioms in place, SPASS proves
the desired result that lists are monoids.
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This specification demonstrates two ‘tricks’ in first-order theorem
proving.

The first trick is to add suitable induction axioms. This is applied
when considering the right unit property. For a manual proof by induc-
tion we would consider the two cases:

1. Base Case: [] ++[] = [].
2. Induction Step: provided it holds that M ++[] = M for all lists M ,

we can show that (e :: M) ++[] = (e :: M) for all e ∈ Elem, i.e., for
lists that are longer by one element.

Axiom %(induction axiom for right unit)% states that proving base case and
step case suffices to establish the required law.

We apply the first trick also for associativity. For a manual proof by
induction we would consider the two cases:

1. Base Case: [] ++(M ++N) = ([] ++M) ++N for all lists M,N .
2. Induction Step: provided it holds that K++(M ++N) = (K++M)+

+N for all lists K,M,N , we can show that (e :: K) ++(M ++N) =
((e :: K) ++M) ++N for all e ∈ Elem.

Axiom %(induction axiom for assoc)% states that proving base case and
step case suffices to establish the required law.

The second trick is to ask SPASS to prove suitable intermediate lem-
mas. Axioms %(induction base for assoc)% and %(induction step for assoc)%

are such lemmas. The idea is to reduce the search space for SPASS and
to provide the prover with suitable intermediate results that help to
establish the desired theorem. While it might be natural for a human to
decompose the premise of %(induction axiom for assoc)% and to prove both
cases separately, SPASS fails to spot this. However, SPASS is capable
to first prove both these axioms, and then to prove from them that the
append operation is associative.

Reflecting on the second trick, one could think of kind of a ‘distance’
between the given axiomatic basis and the proof goal. If the distance is
small enough, SPASS can automatically find the proof. If the distance
is too big, one needs to split it into several parts. If the splitting is done
in a suitable way, SPASS will be capable to prove the overall goal in a
step wise manner.

The above example shows that ‘automated theorem proving’ might not be
as automated as one would like it to be. In theorem proving practice, it often
is the case that one needs to find suitable lemmas and with these pave the
way for the theorem prover. Nonetheless, the example also demonstrates that
the theorem prover is of great help: none of the base or step cases needed
to be manually proven—it was rather enough to state them. Thus, loads of
tedious steps were taken care of by the theorem prover. It was enough to
‘sketch’ the proof.
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Coming back to the Casl structuring operations, it should be noted that
renamings are not required to be injective, i.e., it is possible to collapse sym-
bols, e.g., two different sorts can be united. This can be useful: e.g., at an
early development stage, one establishes several categories of identifiers, say,
for post codes and the name of people; at a later design stage, one decides
that both of these identifiers should simply be strings and not to be treated
in a different way. Naturally, such non injective renamings are a potential
source of inconsistency.

4.4.4 Libraries

Libraries—keyword library—collect named specifications. Specifications
within one library can refer to each other. In a library, it is also possible
to import named specifications from another library.

Given a string LN , and named Casl specification definitions LI1 , . . . , LI n,
n ≥ 0, then

library LN LI1 . . .LIn

is a library formed out of these specifications.
In order to import named specifications IN 1, . . . , IN n, n ≥ 1, from another

library LN , we write

from LN get IN1 , . . . , INn end

where the keyword end is optional.
There is also the possibility to change the names of the imported specifi-

cations via a renaming. Such imports can appear anywhere in a library, i.e.,
a library, with regards to the concepts that we consider here, is an arbitrary
sequence of named specifications and import statements. However, note that
Casl libraries work with linear visibility, e.g., given a sequence IN 1, . . . , IN n,
of named specifications, the name of specification IN i can only be used in
specifications IN j with j > i.

Casl comes with a comprehensive library of basic data types. These
include standard types such as numbers, characters, lists, bags, graphs, . . . ,
for more details see [Mos04].6

Example 47.2: Lists with a Length Function

We have compiled all specifications of this section into one library with
the name ExamplesForStructuringOperations.

A typical operation on lists is to compute how many items they con-
tains. This requires the sort of natural numbers to be available. Here,

6 Available at https://github.com/spechub/Hets-lib.

https://github.com/spechub/Hets-lib
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we can utilise the natural numbers as defined in the CASL library of
Basic Datatypes, c.f. [Mos04].

The natural number specification from the Casl Basic Datatypes
is monomorphic, i.e., it has only one model up to isomorphism, see
Sect. 2.3.1. It comes with operations and predicates as expected, i.e.,
there are operations for basic arithmetic, min for the minimum, max for
the maximum, and the ordering relations <, ≤, >, and ≥ are defined,
besides many others.

library ExamplesForStructuringOperations
. . .
from Basic/Numbers get Nat

spec ListWithLength = List then Nat
then %def

op length : List → Nat
∀ L : List ; e : Elem
• length([]) = 0 %(length empty list)%

• length(e :: L) = length(L) + 1 %(length non−empty lists)%

end

4.4.5 Parameterisation and Instantiation

Specifications can take other specifications as their formal parameter. A
generic specification is written:

spec SN [SP1] . . . [SPn] = SP end

where SN is a specification name, SPi, i = 1 . . . n, n ≥ 0 and SP are Casl
specifications. The semantics of this generic specification is given by transla-
tion to already discussed structuring constructs, namely it is the semantics
of

{SP1 and . . . and SPn} then SP.

Example 47.3: Sorted Lists

Sorted lists provide a typical example of why one would like to write
a parameterised specification: neither the list construction, nor the
property ‘sorted’ depends on what kind of data the lists are formed
of. The only requirement is that the data which we organise as lists
is totally ordered: syntactically the axioms concerning the property
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‘sorted’ depend on an ordering relation ≤; semantically, lists will be
totally ordered if the data is.

spec SortedList[TotalOrder] = List
then %def

pred sorted : List
∀ e, f : Elem; l : List
• sorted([])
• sorted(e :: [])
• sorted(e :: (f :: l)) ⇔ e ≤ f ∧ sorted(f :: l)

end

The specification SortedList takes the specification TotalOrder
from Example 45 as a parameter and builds upon the specification List
from Example 47. Note that both specifications, TotalOrder and
List, are declaring the sort Elem—this poses no problem: Casl applies
the principle “same name same thing”, i.e., several declarations of the
same symbol name are legitimate.

For simplicity, we consider specification instantiation only for specifications
with one formal parameter, i.e., specifications of the form

spec SN [FP ] = SP end

In order to instantiate this parameterised specification with a Casl specifi-
cation AP as the actual parameter, we write

SN [AP fit SY1 → SY ′
1 , . . . , SYn → SY ′

n ]

n ≥ 0, where the symbol SYi from the signature of the formal parameter
specification shall be ‘identified’ with the symbol SY ′

i from the signature
of the actual parameter specification, 0 ≤ i ≤ n. Again, the semantics of
instantiation can be expressed by translation to already discussed structuring
constructs, namely it is the semantics of

{{FP then SP} with SY1 → SY ′
1 , . . . , SYn → SY ′

n} and AP.

Instantiating a formal parameter FP with an actual parameter AP comes
with a proof obligation, namely one needs to show that the model class of
the actual parameter is included in the model class of the formal parameter
(after suitable renaming), i.e., one needs to discharge the proof obligation

AP then %implies {FP with SY1 → SY ′
1 , . . . , SYn → SY ′

n}.

See the Casl reference manual [Mos04] for a thorough discussion of instan-
tiation, including the general case of instantiating specifications with several
parameters.
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Example 47.4: Instantiation of Sorted Lists

We can instantiate our parameterised specification SortedList, e.g.,
with the natural numbers as specified in the Casl Basic Datatypes:

spec SortedNatList =
SortedList
[Nat fit sort Elem → Nat, ops inf → min, sup → max ]

end

We need to map the sort symbol Elem from TotalOrder to the sort
symbol Nat from Nat, further the specification TotalOrder includes
the operation symbols inf and sup which—as proven in Example 45—
can be identified with min and max, resp.

We refrain from discharging the proof obligations arising from this
instantiation: using SPASS they could be proven inductively, following
the ideas discussed in Example 47.1.

One subtle point with parameterisation and instantiation concerns the
requirement that the actual parameter and the body of the parameterised
specification must not share symbols. We briefly illustrate this by example
and hint at the Casl construct that deals with this situation.

Example 47.5: Sorted Lists with Length

In Example 47.2, we gave gave a specification of lists equipped with a
length operation. Naturally, we could write a parameterised specification
of sorted lists, which also includes this operation:

spec SortedListWithLengthNoNat[TotalOrder] =
ListWithLength and SortedList[TotalOrder]

end

Note, that again the “same name same thing” principle applies to this
specification: there are numerous elements declared and stated several
times in SortedListWithLengt.

When we now try to instantiate SortedListWithLengtNoNat
with the the specification Nat, we obtain the error message:

Symbols shared between actual parameter and body must be in formal param-
eter.

The specification Nat is the actual parameter. Also, it is part of List-
WithLength, i.e., part of the body of SortedListWithLength.
Thus, all symbols of Nat are shared.
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In order to allow for such instantiations in Casl, one has to provide
a specification that includes the shared symbols as a special ‘parameter’
after the keyword given:

spec SortedListWithLength[TotalOrder] given Nat =
ListWithLength and SortedList[TotalOrder]

end

Here, we take the specification Nat itself as the specification with the
shared symbols. With this construction we can write the desired instan-
tiation:

spec SortedNatListWithLength =
SortedListWithLength
[Nat fit sort Elem → Nat, ops inf → min, sup → max ]

end

4.4.6 Hiding

The previously shown operators for structuring specifications share the prop-
erty that they do not change the expressivity of the specification language
used, i.e., for all specifications formed with these structuring operators, there
exists a specification without structuring operators which has the same model
class. This is not the case for the hiding operator. The hiding operator actu-
ally increases the expressivity of Casl, i.e., it allows to specify data types
that can’t be specified in Casl without hiding.

Hiding—keyword hide—removes symbols of a specification. Given a spec-
ification Sp, we write

Sp hide SY1 . . . , SYn

n ≥ 1, for obtaining a new specification, which is like Sp but with the symbols
SY1 to SYn removed. Note that sometimes more symbols than listed will be
removed in order to obtain a signature after hiding. Consider, for instance,
the following example:

spec Hugo =
sorts s, t
op o : s → t

end

spec Erna = Hugo hide t end
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Here, specification Erna is defined by hiding sort t in specification Hugo.
The signature of Erna consists only out of the sort symbol s, the operation
symbols o is hidden as well, although it is not part of the symbol list. The
reason for this is that applying o results in an element of sort t—which has
been removed from the signature.

In passing we mention that there are several interpretations possible to
what is means to ‘remove’ a symbol from the theory. The distributed ontol-
ogy, modelling, and specification language DOL has four constructs for this
[MCNK15].

It has been a long standing question in algebraic specification, what data
types, i.e., classes of algebras closed under isomorphism—see Sect. 2.3.1—can
be expresses using algebraic specification. Bergstra and Tucker give system-
atic answers to this in their paper “Algebraic specification of computable
and semi-computable data types” [BT87]. They show as Theorem 4.1 the
following result:

Example 48: Algebra Without Specification in Equational
Logic

In Casl, one can specify natural numbers with a square function:

spec NewNat =
free type Nat ::= 0 | suc(Nat)
op 1 : Nat = suc(0)
ops + , ∗ : Nat × Nat → Nat
op square : Nat → Nat
∀ n, m : Nat
• 0 + n = n
• suc(m) + n = suc(m + n)
• 0 ∗ n = 0
• suc(m) ∗ n = n + (m ∗ n)
• square(n) = n ∗ n

end

Using the hiding operator, we can remove the + and the ∗ operation
from the signature

spec MyDataType =
NewNat hide + , ∗

end

Utilising Hets we can obtain the Theory of MyDataType and see that
indeed MyDataType has the desired signature:
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sort Nat

op 0 : Nat

op 1 : Nat

op square : Nat -> Nat

op suc : Nat -> Nat

Bergstra and Tucker prove now that there is no specification in equa-
tional logic (with initial semantics) that has the same model class as
MyDataType [BT87].

4.5 Closing Remarks

In this chapter, we discussed the Formal Method algebraic specification using
the example of the language Casl and its tooling environment Hets. We pre-
sented Casl syntax through various examples and discussed how to model
systems and how to validate specifications. Casl semantics is given by the
model class of a specification. Such a model class can be empty. In this con-
text, we introduced the notion of consistency. Furthermore, specifications
can be extended. Extensions can have different properties which Casl cap-
tures through the annotations implies, def, and cons. These properties are
expressed over the model classes of structured Casl specifications. Algebraic
specification methods discussed include

• model encoding in order to prove consistency,
• automated theorem proving, and
• random testing.

Concerning the relation between specification and programming, we demon-
strated that they overlap: the Casl specification of a Ladder Logic program
and the program itself are semantically ‘the same’. The section on structured
specification demonstrated how many operations one can think of in order to
‘knit’ small specifications together to larger ones.

The methods of this chapter are universal. With the basics of algebraic
specification—signatures as interfaces, axioms as ‘rules’ for invoking opera-
tions, algebras as implementations—we have an intellectual means of a math-
ematical nature to design, model, and analyse data wherever we find it, now
and in the future. New data arises daily as software engineers develop and
maintain applications, as software is invading and automating more and more
aspects of life, for example in industrial production, surveillance, medical and
environmental practice.
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4.5.1 Annotated Bibliography

Classical texts on algebraic specification include the books by Ehrig and Mahr
[EM85, EM90] as well as the edited volume by Astesiano, Kreowski, and
Krieg-Brückner [AKKB99]. The book by Loeckx, Ehrich and Wolf [LEW97]
provides an accessible discussion of concepts central to algebraic specification,
with a focus on questions of theoretical nature. Sannella and Tarlecki have
written probably the most comprehensive compendium on the subject [ST12].

The theory of institutions, which provides the accepted method of seman-
tics definition in algebraic specification, is discussed in the book by Dia-
conescu [Dia08] as well as in the book by Sannella and Tarlecki [ST12].

The Casl Reference Manual [Mos04] is the authoritative handbook on
Casl; the Casl User Manual [BM04] provides an example based overview
on the language. Mossakowski, Meader, and Lüttich provide a scientific dis-
cussion of their Hets tool in their publication [MML07]—though Hets dates
back to the early 2000s, it is still maintained and subject to further devel-
opments. The user interface of Hets represents structured specifications as
development graphs [MAH06].

Other algebraic specification languages include ASF-SDF [BHK89], Cafe-
OBJ [DF98], and Maude [CDE+07, Ölv17].

4.5.2 Current Research Directions

Some researchers, among them even a few who shaped the field, perceive
algebraic specification as a closed chapter in the history of science, coming as
a nicely wrapped-up parcel where all conceivable structural results have been
achieved and light has been shone into all corners. From our perspective, this
is a misconception and large parts of the landscape remain unexplored if only
seen from the right angle. In the following, we will point the reader to some
of these uncharted territories.

As for nearly all specification languages, the link between algebraic speci-
fication and modelling as well as programming could be stronger:

• In a formally based software development, a still open issue is how to
semantically combine an algebraic specification language and a behavioural
modelling language [RBKR20], or an algebraic specification language and
a programming language. The most obvious approach here would be to
‘transport’ the modelling or programming language into the realm of alge-
braic specification. To this end, one would capture the semantics of the
modelling or programming language as a so-called institution and provide
suitable mappings to express the semantical relations between modelling,
programming and specification.



256 M. Roggenbach, L. O’Reilly

• Algebraic specification is strong when it comes to modularisation and
architectural specification. However, notions from software engineering
such as components, objects and generics still need further consideration
for proper integration of algebraic specification, modelling and program-
ming.

• With regards to testing, we considered random testing in ConGu. Oth-
ers have suggested methods of how to generate test cases based on the
axioms stated in an algebraic specification. In Sect. 5.4 “Using Algebraic
Specifications for Testing”, we describe such an approach based on the
work of Gaudel [BGM91]. However, it is still a challenge to generate con-
crete values for a signature with axioms for applying data driven testing
in practice.

The above mentioned ‘institutionalisation’ of non algebraic specification
languages—i.e., capturing the semantics of specification languages in the
mathematical framework of a so-called institution—promises a rich perspec-
tive in software development [KMR15]. Institutions are the accepted method
of semantics definition in algebraic specification. Institutionalising comes with
the objectives (1) to allow for semantic preserving translation between differ-
ent specification formalisms and (2) to enrich specification formalisms with
the rich structuring mechanisms available, e.g., in Casl. There are two differ-
ent driving forces for the first objective: often, one needs different specification
languages to capture the distinct aspects of a system—having translations
available allows for heterogeneous specification; such translations allow for
the comparison of formalisms, e.g., in terms of expressivity. Concerning the
second objective, we observe that, while almost all programming languages
have structure, too many (non algebraic) specification languages don’t and
the specifier has to write large, monolithic texts. This makes specification
practice hard and limits adoption of Formal Methods.

Concerning methodology, like nearly all Formal Methods, algebraic spec-
ification suffers from being applied in a too ‘heavy’ way. There is a silent
expectation that one has to specify the model class to the last detail rather
than just to focus on a few but critical properties. This has led to a lack of
light-weight integration into tools and methodologies. Examples which would
lend themselves to such ‘light-weight’ algebraic specification include domain
engineering [Bjø17] and generic programming [SM09].
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Chapter 5

Specification-Based Testing

Bernd-Holger Schlingloff and Markus Roggenbach

Abstract In this chapter, we apply Formal Methods to software and systems
testing. After some introductory remarks on the importance of software test-
ing in general, and formal rigour in particular, we give a typical example of a
computational system as it occurs as part of a bigger system. We show how to
formally specify and model such a system, how to define test cases for it, and
how to monitor testing results with temporal logic. In order to do so, we use
simplified state machines from the unified modelling language UML2. With
the example, we describe the underlying methodology of test generation and
discuss automated test generation methods and test coverage criteria. We
present Tretmans’ classical conformance testing theory, and Gaudel’s theory
of test generation from algebraic specifications. Finally, we discuss available
tools, and point to research topics in the area of specification-based testing.

5.1 The Role of Testing in Software Design

Imagine that you have a friend who is an engineer and a hobby pilot. She
invites you to a trip on her brand-new self designed airplane. When you look
puzzled, she tells you not to worry—although never tested, the whole plane
had been thoroughly simulated during development. With some reluctance,
you agree to join her on the maiden flight, so the two of you take off. In the
air, the left wing makes some funny noises. When you analyze the source,
you notice that the wing flaps are frequently deployed and undeployed. You
land and check the flap motors and cables, but cannot find any problem. So,
the problem must be in the control software. You wonder how to locate the
problem. Together with your friend, you set up a hardware-in-the-loop test
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environment, where the aircraft sensors (wind speed, angle of attack, and lift
coefficient) and actuators (flap motors) are connected to the software in a
simulation. Yet, all of your random simulation runs do not exhibit the motor
behaviour which you experienced while flying the plane. Thus, you begin to
think about systematic ways to construct test cases.

This chapter is concerned with the application of Formal Methods to soft-
ware and systems testing. For a long time, testing had been considered to
be an inherently informal activity: after a program was written by a team
of proficient programmers, the testers would have to sit down and do some
experiments with it in order to detect potential errors. Program design and
implementation was considered to be a superior activity which required high
skills and formal rigour, whereas testing was seen as an inferior activity which
was left to those who were not capable of writing good program code. With
ever increasing complexity, competition, and quality demands, this situation
has changed. Nowadays, often programming and bug fixing is considered to
be something which can be left to third parties, but testing of complex inter-
actions and making sure that the delivered software is free of faults is of
utmost importance. With this change of attitude, the need for formal rigour
in software testing began to rise. The term “software crisis” had been coined
in the late 1960s, when the cost of producing software exceeded that of buying
hardware. Today, we are facing a similar “software quality crisis”: For many
systems, the cost of verification and validation exceeds the cost of actual
programming by a large amount. Thus, improved and more efficient methods
are needed for guaranteeing that a program meets its specification.

One of the most common methods for quality assurance of computational
systems is testing. Often, it is stated that testing is just a substitute for formal
verification with the claim that “testing can be used to show the presence
of bugs, but never to show their absence” [Dij70]. However, this viewpoint is
not quite correct. Firstly, as we will show in Sect. 5.4 later on, in combination
with theorem proving, testing can very well be used to show the absence of
errors in a particular piece of code.

Secondly, each verification activity only considers a certain aspect of a
computational system. So far, no computational system exists for which all
constituent layers (application program, middleware, operating system, hard-
ware, and development tools) have been formally specified, let alone verified.
Thus, the verification of a particular component only shows the absence of
errors in that component, not in the complete system. As an example, even if
we have verified a particular sorting algorithm, we cannot be sure whether a
payroll program using that algorithm will issue the correct paychecks. Testing
considers a system within its environment; i.e., testing the sorting algorithm
within the payroll program can reveal all sorts of problems caused by the
interaction of components.

Thirdly, contrasting verification and testing per se is not adequate, because
the two techniques try to answer different questions. In formal verification,
an algorithm or program is shown to be correct with respect to a formal
specification; i.e., one mathematical object is compared to another one. In
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testing, an actual system (i.e., a material object in the physical world) is
examined as to whether it conforms to the user’s expectations. Thus, in
verification we try to answer the question whether two mathematical objects
are equivalent, whereas in testing we are concerned with the question whether
the behaviour of a physical system matches our ideas about it.

It follows that testing and verification are not mutually replaceable: formal
verification is necessary in order to increase the confidence in a particular
software module or algorithm, whereas testing is necessary in order to predict
the behaviour of the actual code on a computer or a computational device
(i.e., a physical system). Thus, testing and verification are complementary
techniques in quality assurance.

We favour the following definition:

Definition 1 Testing is the process of systematically experimenting with a
material object (in the physical world) in order to establish its quality.

According to this definition, testing is a dynamic activity, where a subject
(the tester) interacts with an object (the system under test, SUT). To achieve
some results, the SUT must be executed. This puts testing in contrast to
other activities in software quality assurance such as static analysis, abstract
interpretation, formal verification, or model checking. In these, the program
code is analysed as a mathematical object.

In this book, the system under test always is some information-processing
device or some executable binary code on a computer. However, much of the
theoretical background also applies to other sorts of testing, e.g., the testing
of cable cars or musical instruments.

In general, we distinguish between an experiment, which is a singular activ-
ity not necessarily related to quality, and a test, which is a systematic set of
experiments to find out the quality of a system. According to standard defini-
tions, quality is “the degree of accordance to the intention or specification”.
That is, there is no absolute notion of quality (and, probably, no “best”
quality), but quality is always relative to somebody’s conception of an ideal
appearance or workmanship. Correspondingly, there are many possible qual-
ity measures:

• functionality, usefulness, usability,
• efficiency (with respect to time, space or money),
• reliability, availability, maintainability, safety, and security,
• robustness/stability,
• portability, modularity, extensibility,
• . . .

For each of these quality measures and any given system, a value can be
determined via testing. Hence there are many variants of testing: functional
testing, performance testing, robustness testing, etc. The most important
quality criterion of software, however, is correctness, i.e., the absence of fail-
ure. Thus, in this chapter we only consider testing a computational system
for correctness.
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Fig. 5.1 Errors, faults and failures

To do so, we need to discuss the meaning of the words ‘correctness’ and
‘failure’. A failure is a deficit with respect to the intended functionality of
a system. That is, a failure is a deviation of the actual behaviour of the
system from the specified or required one. A failure of the system may cause
an incident or accident, i.e., a negative effect onto the environment of the
system, especially onto people. It is caused by a fault or defect, which is a
wrong state of the system, due to a flaw in the design or manufacturing
process. Each fault can be traced back to some human error or mistake, that
is, a misconception about the system to be built or operated. As a mnemonic,
‘an error can lead to a fault, and a fault can lead to a failure” (see Fig. 5.1).1

In order to find errors via testing, it is important that the ‘right’ con-
ception is made explicit. That is, it is impossible to test the correctness of
a program without being given a specification which describes the intended
‘correct’ behaviour. Often, specifications are given only implicitly, or impre-
cisely. Examples of badly formulated requirements are “the system shall never
crash”, “it must always react to user input”, “there should not be any error
messages”, and similar. Here, it is unclear to which time period ‘never’ and
‘always’ refer to (not in a hundred years?); thus, such requirements can not
be tested. Other bad (untestable) formulations include “the system should be
as fast as possible”, “the system must achieve a feasible cost/benefit ratio”,
or “the security of the system must be properly maintained”. Here, we do
not know what is ‘possible’ and ‘feasible’, or which security threats need to
be considered.

Hence in order to set up a proper test for a system, it is necessary to provide
a specification which is precise, unambiguous, and has a clear semantics.
In the previous chapters, formal languages were introduced which allow to
formulate systems properties in such a way. In this chapter, we will show how
these formalisms can be used for testing.

In the above definition, testing was defined to be a systematic experiment,
that is, there must be some systematics which the experiments follow. There
are two main paradigms for such a systematics: The structure of the test
suite can be derived from the structure of the SUT, or from the structure of
the specification. The former paradigm in known as code-based testing, the
latter is called specification-based testing. Code-based testing is also known
as white-box testing, since the code must be revealed to the test developers.

1 Here, we deviate from some parts of the literature where the words ‘error’ and ‘fault’ are

interchanged; for us, an error (occurring in the human mind) is more fundamental than a

fault (occurring in an artefact).
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Fig. 5.2 Classification of testing methods

Accordingly, specification-based testing is sometimes called black-box testing,
since the SUT is treated as a ‘black box’, whose interior is hidden from the
tester’s view.

In industrial practice, specification documents are mostly written in nat-
ural language and structured into requirements. Each requirement consists
of one or a few sentences and describes a single functionality of the SUT.
Within specification-based testing, most practitioners use this structuring to
derive test cases: For each requirement, there is at least one test case to check
whether it is correctly implemented. More formal approaches identify certain
keywords in the specification, describing actors, actions, methods, interfaces,
data items etc. Test cases are structured according to the available groups of
keywords.

Requirements can be denoted in the form of formal models, in some suit-
able modelling language such as CSP or UML. In model-based testing, such
models are used to automatically derive test cases. Requirements can also
be formulated as axioms, e.g., in algebraic specifications, as described in
Chap. 4. Test generation methods using such specifications sometimes are
called axiom-based testing. Figure 5.2 gives a rough classification of testing
method, according to the source which is used for the generation of test cases.

5.2 State-Based Testing

As we have seen in the previous chapters, there are two dimensions in the
formal specification of systems, which could be called space and time. Specifi-
cation formalisms such as algebraic specification or first-order logic are well-
suited to describe the structural aspects of a system. In contrast, process
algebras and temporal logics focus on the dynamic aspects, on the change of
the system’s state in time.

This section deals with the generation of tests for reactive systems from
state-based models and specification formalisms. In order to understand how
test cases can be generated from such models, we first present a method of
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modelling reactive systems with UML state machines. Then, we will discuss
different test generation algorithms and test coverage criteria.

5.2.1 Modelling Stateful Systems

For a first example, we consider a simple switch as it is contained in many
video camera models of a major brand. The switch is used to turn the device
on and off, as well as to choose certain settings.

Example 49: VCR Switch

The VCR power switch under consideration is laid out as a non-locking
slide switch. From its normal position, it can be pushed in two directions
(up and down); it always returns to its normal (middle) position. The
manual explains: “You need to slide the POWER switch repeatedly to
select the desired power mode to record or play. . . .To turn the power on,
slide the POWER switch down. To enter the recording or playing mode,
slide the switch repeatedly until the respective lamp for the desired
power mode lights up. To turn off the power, slide the POWER switch
up.”

According to this description, the device has several power modes
which can be selected with the switch. However, the description leaves
open some questions, e.g., which power modes exist, which is the ini-
tial mode after turning the power on, or on the exact sequence of modes
which is assumed when sliding the switch repeatedly down. Some exper-
iments reveal that the device will always start in “record” mode, and
that repeatedly pushing the switch down cycles through the three power
modes “memory”, “play”, and back to “record”. Intuitively, record mode
is for video recording, memory mode for taking pictures and play mode
for viewing recorded material.

This example is typical for a number of similar systems. Their main char-
acteristic is that they are stateful reactive systems. That is, the system can be
in any one of a number of states. It continuously reacts to stimuli from the
environment: In any state, given a certain input, it produces a designated
output and takes a transition into a new state. Many different formalisms
have been suggested for the modelling of stateful reactive systems, including
finite automata, process algebras (see Chap. 3 on CSP), Petri nets, and oth-
ers. Testing with CSP is discussed, e.g., by Cavalcanti and Hierons [CH13].
For this example, we will use UML2 state machines.

The Unified Modeling Language UML is a standardised, general-purpose
language for modelling all sorts of computational systems. It comprises a set
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of graphic notation elements which can be combined according to the syntax
rules given in the UML meta model.

• A UML state machine consists of a nonempty set of regions.

– Each region contains a number of vertices and transitions.
· A vertex can be a state or a pseudostate.

· A state can be a simple state, a composite state or a submachine
state. A submachine state contains again a UML state machine,
and a composite state may contain one or more regions. This
allows hierarchical structuring of state machines.

· A pseudostate can be used to indicate a special point in a com-
putation. We will use only initial pseudostates which are entered
upon start of a component; besides that, there are fork, join, junc-
tion, choice, entry point, exit point, and terminate pseudostates.

· A transition is a connection from a source vertex to a target vertex.
It can contain a number of triggers, a guard, and an effect.
· A trigger references an event, for example, the reception of a

message or the execution of an operation.
· A guard can be any UML constraint, i.e., a boolean condition on

certain variables (for instance, class attributes).
· An effect can be any UML behaviour. For example, an effect can

be the assignment of a value to an attribute, the triggering of an
event, or the execution of yet another state machine.

In the graphical representation of state machines, a transition with
trigger t, guard g and effect e is labelled by t[g]/e. All three ele-
ments (trigger, guard and effect) are optional, each one can be omit-
ted. An empty trigger means that the transition is to be taken imme-
diately when the state is entered, and an empty guard is equivalent
to the guard true.

For specification-based testing, it is important to describe the behaviour of
the system under test in a formal way, such that there are no more ambiguities
or vaguenesses in the description. In order to come up with such a formal
description, we recommend a procedure consisting of three steps:

Step 1. Definition of interfaces;
Step 2. Definition of operating modes; and
Step 3. Definition of transitions.

In Step 1, external interfaces of the system under consideration are identi-
fied. There are two categories of external interfaces: those where the environ-
ment sends a signal or trigger to the system under test, and those where the
system sends a response to such a stimulus. (In the context of automated test-
ing it is often confusing to talk about ‘input’ and ‘output’, because an input
to the system under test is an output by the environment and vice versa. We
thus prefer to call the interface categories “ENV2SUT” and “SUT2ENV”,
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respectively.) As a convention, we identify elements of ENV2SUT with a
question mark (?), and system actions in SUT2ENV with an exclamation
mark (!).

Example 49.1: Modelling the VCR Switch: Interfaces

In the case of the VCR power switch, the SUT is the (software of the)
VCR; we consider the user interface consisting of the physical slide
switch and the LEDs as belonging to the environment of the SUT.

The user has two possible actions to perform: pushing the switch up
or down. We call these events up and dn, respectively. Thus ENV2SUT=
{up?, dn?}.

The system can react by transitioning into the respective camera
mode and lighting up appropriate lights. In our case, there are three
LEDs, each of which can be either on or off. This can be expressed in
different ways: There could be signals “LEDi is turned on” and “LEDi is
turned off”, or “on/off for LEDi is toggled” (i ∈ {1, 2, 3}). Alternatively,
we could imagine that the LED control is a vector of three boolean vari-
ables, which is set by a single command. For sake of demonstration, we
choose the last alternative. That is, SUT2ENV= {000!, 100!, 010!, 001!}.
Here, 000! means that all LEDs are off, 100! indicates that exactly the
first LED is on, etc.

Step 2 is to fix the components and major operating modes of the system.
A component may be a physically or logically coherent part of the SUT. Each
mode is characterized by the main functions performed during operation in
this mode, and by the range of possibilities offered to the user.

Example 49.2: Modelling the VCR Switch: Modes

The video camera contains, amongst other components, the switch and
the LEDs as described above. It can be on or off, and when it is on,
it can be in mode rec, mem or play. We take these as the modes of
the VCR switch. Each of the modes offers different functions to the
user: In record mode the video head is spinning and it is possible to
record a video signal. In memory mode it is possible to take a photo.
In play mode the LCD screen is activated and it is possible to view the
recordings.

In Step 3 we have to group the modes, identify which transitions occur,
and to construct a state machine diagram for the system.
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Fig. 5.3 UML state machine for the camera switch

Example 49.3: Modelling the VCR Switch: Transitions

According to the informal specification, event dn leads from off to on,
and up leads from on to off. Furthermore, repeated occurrences of dn
cycle through rec, mem and play. In Fig. 5.3 we decided to place the
three operating modes rec, mem and play as states in a region within
state on. That way, the event up leads to off from any of these states.

Note that the semantics of UML determines that ‘unexpected’ events are
skipped. That is, if the machine is, e.g., in state off and an up-event is
received, it just stays in this state and the event is discarded.

The model in Fig. 5.3 can be seen as a formalisation of the informal require-
ments given in Example 49. It describes the intended behaviour of the switch,
giving a precise meaning to phrases like ‘repeatedly’ or ‘desired mode’. Usu-
ally, a UML state machine is an abstraction of an actual target system (in
our case, a video camera recorder). Such an abstraction can be used in two
ways:

• for constructing the target system by a stepwise refinement process, and
• as a source for the generation of test cases for the target system.

The first of these uses is known as ‘model-based design’ (MBD), whereas
the second one has been called ‘model-based testing’ (MBT).2 In this chapter,
MBT is discussed.
2 Note that the use of the word ‘model’ significantly differs here from its use in logic.
In MBD/MBT, a model is defined to be a purposeful abstraction of some target system,
whereas in logic a model is a semantical structure for the evaluation of formulae.
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SUT Characteristics Test Case

functional tuple (input, output)
reactive sequence
nondeterministic decision tree
parallel partial order
interactive test script or program
real-time timed event structure
hybrid set of real-valued functions

Fig. 5.4 Different SUT aspects and corresponding test cases

5.2.2 Test Generation for State-Based Systems

There are various notions of what a test case is. In the most general sense, a
test case is the description of a (single) experiment with the SUT. A test suite
is a set of test cases; it describes a cohesive set of experiments. Depending
on the aspect of a system under test that is to be considered, test cases can
have several forms—see Fig. 5.4, which is taken from a survey by one of the
authors [WS11].

For the time being, we restrict our attention to the testing of determinis-
tic reactive systems. Thus, in this section, we consider test cases which are
sequences. (Later on, for conformance testing of nondeterministic systems, we
will generate test cases which are trees. In Sect. 5.4, we will generate input
values as test cases for functional programs.) In the most general setting, a
test case for a reactive system is a sequence of events. Here, an event can be
any action from the tester, which serves as a stimulus for the SUT. Addition-
ally, an event could also be an observable reaction of the SUT: an expected
response from the SUT, an observable behaviour, a visible transition, state
or configuration, etc.

For our purposes, a test case is a finite path of input and output actions
in the state machine. In other words, a state machine is transformed into
a directed graph. In this graph, we consider finite paths from the initial
state. The labels on the transitions of such a path form a test case. The test
generator constructs a test suite for a predefined set of test goals. A test goal
could be, e.g., to reach a certain state or transition in the machine. A goal
is covered by a test suite if there is a test case in the suite such that the
goal is contained in the test case. Different test generators support different
coverage criteria; a detailed discussion can be found in Sect. 5.2.4 below. For
example, for the criterion “all-states” a test suite with only one test case is
sufficient:

{ (dn?, 100!, dn?, 010!, dn?, 001!) }.
The criterion “all-transitions” is still satisfied by a one-element test suite:

{ (dn?, 100!, dn?, 010!, dn?, 001!, dn?, 100!, up?, 000!) }.
If we require “decision coverage”, a test generator will yield a test suite where
all branches in the model are contained:
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{ (dn?, 100!, up?, 000!),
(dn?, 100!, dn?, 010!, up?, 000!),
(dn?, 100!, dn?, 010!, dn?, 001!, up?, 000!),
(dn?, 100!, dn?, 010!, dn?, 001!, dn?, 100!) }.

These test suites can be executed on any implementation of the VCR
switch. Each test case serves as an experiment which the test system per-
forms with the system under test, providing it with stimuli and observing
the responses. For example, in our VCR switch a test execution would con-
sist of subsequently pushing the switch in the specified directions and noting
down the resulting LED patterns. The execution of a test case passes, if the
SUT shows the specified behaviour; otherwise it fails.

With such a setting, there are some issues to be considered. Firstly, not
all test generators provide test cases in the form of input-output sequences.
Some tools might not allow to view outputs, but to observe the configuration
in which the SUT currently is. (A configuration differs from a state in the
fact that qualified names of substates are used.) That is, the “all-states” test
case from above is given as

{ (off, dn?, on.rec, dn?, on.mem, dn?, on.play) }.
In order to execute such a test case, we have to conceive means in the SUT
to observe in which state or configuration it is. In the example, this can be
inferred from the state of the LEDs; in general we might have to provide
additional test interfaces to the SUT.

Secondly, and more important, we have not taken into account nondeter-
minism. A state machine is called deterministic, if for every configuration and
every input there is at most one enabled transition; i.e., the successor config-
uration is uniquely determined. If the specification is nondeterministic, then
the SUT may have several alternatives how to react to a given stimulus in a
given state. Therefore, it may be necessary to consider several alternative test
cases at the same time while executing tests. This may cause computational
overhead; it can be hard to determine according to which of the alternatives
the SUT actually reacts. To avoid this overhead at test execution time, often
it is required that test specifications must be deterministic.

Thirdly, in specification-based testing we assume that the internal imple-
mentation of the SUT is hidden from the tester. Test cases are derived from
the specification, without resorting to the program code of the SUT. Some-
times, this is referred to as ‘black-box testing’ as opposed to ‘white-box test-
ing’ or ‘code-based testing’. Therefore, testing can never be used to give
any guarantees about a system’s behaviour. A malicious implementer might
always design the SUT such that all specified test cases pass, yet the sys-
tem shows some unwanted behaviour in untested parts.3 As a less drastic
example, if the SUT is implemented using a nondeterministic choice between
two alternative paths, it may choose one of those arbitrarily often. Then, the

3 This fact has been used in the past by some car manufacturers to illegally program
different behaviour for the carburettor when the car is under test or on the road.
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tester can never be sure whether the other path has been exercised. However,
this situation changes if certain assumptions about the SUT can be made.
We will discuss this so-called conformance testing in Sect. 5.3 below.

5.2.3 Monitoring of Execution Traces

So far, we have derived different sets of test cases from a state machine model
of the SUT. The next step is to defined how the execution of a test case is to
be evaluated. In Sect. 5.3, we will assume that a test case yields the “pass”
verdict if and only if the observations described in the test case can be made
during the execution. Here, we will take the more general point of view of
specification-based testing. In this view, desired properties of the system under
test are formulated in a logical specification language. Whether the execution
of a test case at an SUT passes or fails is determined by this specification
and is independent of the way of how the test case has been generated.

An execution trace, or simply trace, is the sequence of events obtained by
executing a test case. In general, the test oracle is the part of the test system
which determines whether a trace satisfies the given properties or not. In
other words, the test oracle issues a test verdict for a given trace.

For example, we might want to check that “whenever the switch is pushed
up, the power will be turned off”, “The operating mode ‘play’ is reached
by repeatedly sliding the POWER switch down at most three times”, or
“whenever the VCR switch is pushed down, one of the lamps is lit until it is
slid up again”.

Such properties can be conveniently denoted in linear temporal logic (LTL,
cf. Chap. 2). In order to formalize the properties in LTL, we have to fix the
proposition alphabet P. Here, again, we have to consider which elements of
the SUT can be observed by the tester. One approach is to use the interfaces
“ENV2SUT” and “SUT2ENV” as the set of basic propositions. Thus, e.g.,
000! indicates that the VCR turns off, and 001! that it changes into play
mode. With these, the above properties can be written as follows.

�(up? ⇒ © 000!)

�(dn? ⇒ ©(001! ∨ ©(dn? ⇒ ©(001! ∨ ©(dn? ⇒ © 001!)))))

�(dn? ⇒ ©(¬ 000! W up?))

In the last of these formulae, we are using an unless-operator rather than
an until, since we cannot guarantee that the generated test sequences always
end in the off-state.

The test oracle takes these formulae and checks whether they are satisfied
by the execution sequences which are obtained by running the tests on the
SUT. Subsequently, we give an algorithm for checking a test execution trace
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with an LTL formula. The algorithm is a straightforward translation of the
semantics of LTL, where the temporal formulae are ‘unwound’ according to
the recursive characterizations

�ϕ ⇔ (ϕ ∨ ©�ϕ), and
(ϕU ψ) ⇔ (ψ ∨ (ϕ ∧ ©(ϕU ψ))).

Algorithm 7: Monitoring test executions

function monitor(σ, ϕ) // Precondition: length(σ) ≥ 1
if ϕ = ⊥ then return ⊥
else if ϕ = p then return (σ0 = p) // σ0 is the first element of σ
else if ϕ = (ϕ1 ⇒ ϕ2) then

if monitor (σ, ϕ1) = ⊥ then return �
else return monitor (σ, ϕ2)

else if ϕ = ©ϕ1 then
if length(σ) = 1 then return ⊥
else return monitor (σ(1), ϕ1) // σ(1) is σ without the first element

else if ϕ = �ϕ1 then

if monitor (σ, ϕ1) = ⊥ then return ⊥
else return monitor (σ(1), �ϕ1)

else if ϕ = �ϕ1 then
if monitor (σ, ϕ1) = � then return �
else if length(σ) = 1 then return ⊥
else return monitor (σ(1), �ϕ1)

else if ϕ = (ϕ1 U ϕ2) then

if monitor (σ, ϕ2) = � then return �
else if monitor (σ, ϕ1) = ⊥ then return ⊥
else if length(σ) = 1 then return ⊥
else return monitor (σ(1), (ϕ1 U ϕ2))

In this basic form, with nested temporal formulae (e.g., (ϕ1 U (ϕ2 U ϕ3))))
the algorithm may traverse the given execution sequence several times. It
can be improved somewhat by separating the present- and future-part of ϕ
in each step and traversing σ only once. More precise, every LTL formula
ϕ can be written as a boolean combination of formulae ϕi and ©ψj , where
the ϕi do not contain temporal operators and thus can be evaluated in σ0. If
this yields no result, then ψj can be evaluated recursively on σ(1). Havelund
and Rosu [HR01] describe an efficient implementation of this idea with the
rewriting tool MAUDE.

The result of Algorithm 7 is not necessarily the same as the result of model
checking the formula with the state machine. Model checking determines
whether the formula is satisfied for all possible paths of the state machine. In
testing, we are evaluating the oracle formulae with actual runs of the SUT,
not with some abstract model.
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5.2.4 Test Generation Methods and Coverage Criteria

There are various ways how to generate test cases from UML state machines
or other formal models. Let us assume that the purpose of test generation is
to find a test suite where each state of the UML state machine appears at
least once. That is, we are trying to satisfy the “all-states” coverage criterion.
Thus, for each state we have to find a sequence of events which will trigger
transitions leading into that state. There are several ways of doing so: We can
employ a forward-directed search, starting with the initial configuration and
employing a depth-first or breadth-first search for the goal. Alternatively,
we can use a backward search, starting with the goal and stepwise going
backward in order to find the initial configuration. Dijkstra’s single-source
shortest path algorithm assigns for each node in a graph its distance from a
particular node via a greedy search. Such an assignment can be used in the
backward search: Instead of choosing any predecessor, we select one with a
minimal distance to the initial state. Of course, if a state is already covered,
it is not necessary to cover it twice. Therefore, we have to maintain a list of
covered test goals.

The pseudocode of this algorithm is given in Algorithm 8 on the next page.
In this code, length is a mapping (e.g., an array) from states to N0 ∪ ∞,
giving for each state s the length of the shortest path from the initial state
s0 to s. prev and trans are mappings from states to states and transitions,
respectively, giving for each state the previous state from which, and the
transition by which it is reached on the shortest path. In the first phase,
the algorithm calculates the values for length, prev and trans via greedy
breadth-first search. Then, in the second phase, the algorithm outputs the
test cases, starting with the path to the most distant state which has not
been covered.

Obviously, since in general a model may contain cycles, it may have
infinitely many runs. If there are finitely many states, then there is a finite
test suite which covers all of these states. However, potentially infinitely many
test cases could be derived from a cyclic model. In order to be able to exe-
cute the generated test suite within a finite amount of time, a finite subset
of all possible test cases must be selected. Model coverage criteria can help
to estimate to which extent the generated test suite reaches a certain testing
goal. Typical model coverage criteria for UML state machines or Finite State
Machine testing models are

• all-states: for each state of the state machine, there is a test case which
contains this state,

• all-transitions: the same for each transition of the state machine,
• all-events: the same for each event in the alphabet, which is used in at

least one transition,
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Algorithm 8: Test generation by Dijkstra’s shortest path calculation
input : state machine with states S, initial state s0
output: set of test sequences TS
data : prev[s]: previous node in path from s0 to s,

trans[s]: transition from prev[s] to s,
length[s]: length of shortest path from s0 to s,
U is the set of states which have not been treated yet.

U ← S // all states initially in U ;

foreach s ∈ U do
prev[s] ← undef // previous state unknown;
trans[s] ← undef;
length[s] ← ∞ // unknown length from s0 to s;

length[s0] ← 0 // length from s0 to s0 is 0;

while(U 
= ∅) select s ∈ U such that length[s] is minimal
(i.e., ∀s′ ∈ U (length[s′] ≥ length[s])) // (initially, s = s0);
remove s from U // s has been treated;
foreach transition t from s to s′ do

if s′ ∈ U then
// s′ is reached from s via t with length[s] + 1;
if length[s] + 1 < length[s′] then

// A shorter path to s′ has been found;
prev[s′] ← s ;
trans[s′] ← t ;
length[s′] ← length[s] + 1

TS ← ∅; U ← S; // Re-initializing U ;
while(U 
= {s0}) select s ∈ U such that length[s] is maximal
// for minimizing the number of test cases;
create new empty test sequence σ;
while (// (or, equivalently, prev[s] 
= undef))s 
= s0 remove s from U;
insert trans[s] at the front of σ TS ← TS ∪ σ;
return TS;

• depth-n: for each run (s0, a0, s1, a1, . . . , an−1, sn) of length at most n from
the initial state there is a test case containing this run as a subsequence,
and

• all-n-transitions: for each run of length n from any state s ∈ S, there
is a test case which contains this run as a subsequence (all-2-transitions
is also known as all-transition-pairs; all-1-transitions is the same as all-
transitions, and all-0-transitions is the same as all-states).

Algorithm 8 constructs a test suite satisfying the all-states criterion. It can
be easily modified to the all-transitions and all-events criterion. The all-events
criterion can be regarded as a minimum in black-box testing processes. It
requires that every input is activated at least once, and every possible output
is observed at least once. If there are input actions which have never been
tried, we cannot say that the system has been thoroughly tested. If there
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are specified output reactions which could never be produced during testing,
chances are high that something is wrong with the implementation. The all-
states and all-transitions criteria are related; clearly, if the state machine
is connected, than any test suite satisfying the all-transitions criterion also
satisfies the all-states criterion. In technical terms, all-transitions subsumes
all-states. Likewise, all-transitions subsumes all-events. In a state machine
with n states and m events, the all-transitions criterion can require up to m∗
(n− 1) test cases. For practical purposes, besides the all-transitions criterion
often the depth-n criterion is used, were n is set to the diameter of the
model, i.e., the length of the longest run in which no state appears twice.
Alternatively, n can be set to the (estimated) diameter of the SUT. The
criterion all-n-transitions is quite extensive; for n ≥ 3 this criterion often
results in a huge test suite. Clearly, all-n-transitions subsumes depth-n, and
all-(n + 1)-transitions subsumes all-n-transitions.

Automated test generation algorithms strive to produce test suites sat-
isfying a certain coverage criterion. Therefore, the choice of the coverage
criterion has significant impact on the particular algorithm and the resulting
test suite. However, none of the above criteria uniquely defines a test suite.
For the criterion depth-n there is a unique minimal test suite, namely the set
of all runs of length n, plus the set of all maximal runs (which end in a state
from which there is no transition) of length smaller than n. This set can be
easily constructed via depth-first search.

For the other coverage criteria mentioned above, the existence of a minimal
test suite can not be guaranteed. For the actual execution of a test suite, its
size is an important figure. The size of a test suite can be measured in several
ways:

• the number of all events, i.e., the sum of the length’s of all test cases,
• the cardinality, i.e., the number of test cases in the test suite,
• the number of input events, or
• a combination of these measures.

At first glance the complexity of the execution of a test suite is determined
by the number of all events which occur in it. However, often it is a very costly
operation to reset the SUT after one test in order to run the next test; hence
it is advisable to minimize the number of test cases in the test suite. Likewise,
for manual test execution, the performance of an input action can be much
more expensive than the observation of output reactions; hence the number
of (manual) inputs must be minimized.
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Fig. 5.5 The validation triangle

5.3 Conformance Testing

In Sect. 5.2.1 we remarked that for an SUT which is completely unknown we
can never hope to prove that a test suite exercises all parts of the implemen-
tation. A main question raised by this observation is the following.

When could we say that a test suite is ‘complete’?

To answer this question, we assume for the moment the viewpoint that the
intended behaviour of an SUT is entirely defined by the specification. That
is, an implementation is correct for a specification if and only if it exhibits
all of the specified behaviour, and nothing else.

Having fixed a suitable definition of correctness, we can formulate two
fundamental properties a test suite should possess:

• each correct implementation should pass the test suite (Soundness), and
• each implementation which is not correct with respect to the specification

should fail (Exhaustiveness).

A test suite which is sound and exhaustive is called complete for a specifi-
cation.4 In other words, given an implementation im, specification sp and a
test suite ts which is complete for sp, im is correct for sp if and only if im
passes ts. We depict this so-called “validation triangle” in Fig. 5.5.

Each test suite ts induces an equivalence relation on the set of all imple-
mentations: im1 is ts-equivalent to im2 if im1 passes ts if and only if im2

passes T . Given a specification sp, im1 is testing-equivalent to im2 if for any
complete test suite ts for sp, im1 is ts-equivalent to im2. Testing equivalence
gives a behavioral way to characterize the class of implementations which are
correct with respect to a given specification.

Yet, in order to make the definitions precise, we need to clarify what
the observable, specified behaviour of an implementation is. When should an
SUT “pass” or “fail” a test case? In the previous subsection, we defined model

4 Note that this convention differs slightly from the use of the terms in logic, where a cal-
culus is called sound if all provable statements are true, and complete if all true statements
are provable.
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coverage criteria for state machine testing models. That is, the specification
consists of a state machine, from which a test suite is derived. We assumed
that the observable behaviour is defined by the states and transition of the
specification. That is, we assumed that we can observe in which state of the
testing model the SUT currently is. A complete test suite would consist, e.g.,
of all sequences of states and transitions in the specification. A test case
passes, if the respective sequence is observable while running the SUT. This
assumption leads to a very strict correctness notion: Basically, here an SUT
is correct for a specification if and only if its behaviour can be described by
a state machine which is isomorphic to the specification, i.e., has the same
states and transitions. If the SUT itself is given as a state machine, then
it must be isomorphic to the specification. (Here, we disregard the case of
two ‘identical’ transitions connecting the same states with the same trigger,
guard and effect.)

However, the assumption of observability of all internal states of an SUT
may be too strong. We might, e.g., be only able to observe the transition
labels (trigger, guard and effect). In this case, a complete test suite checks
if implementation and specification are trace-equivalent, i.e., have the same
executions. A question which still has to be discussed in this setting is whether
we can observe silent transitions, which have no trigger and effect.

Or, we might be able to observe whether a trace is completed in the spec-
ification and/or the implementation. Yet another option is whether we can
observe that specification or implementation refuse to do certain actions at
some stage. This leads to yet another equivalence relation induced by the
notion of a complete test suite. There have been many different testing equiv-
alences defined and analyzed in the literature, e.g., [dNH83, Abr87, CH93].

The most general view on testing is that the SUT is a black box to which
a tester can send arbitrary inputs, and observe only the outputs produced as
a reaction. Thus, for UML, certain triggers are declared to be inputs from
the tester to the SUT, and certain actions are declared to be outputs to the
tester. On one hand, the tester can send an input to the SUT at any time,
but does not know how this input is processed, or whether it is processed at
all. On the other hand, the tester can observe the outputs of the SUT when
they are produced, but does not know whether the SUT will emit an output
or not. Alternatively, we might say that by a suitable timeout mechanism the
tester is also able to observe whether the SUT sends an output or not, i.e.,
whether the SUT is quiescent.

In his dissertation and subsequent work [Tre93, Tre96], Tretmans formal-
ized this approach in terms of Input-Output Transition Systems (IOTS).

Definition 2 (Input-Output Transition System, IOTS) An IOTS S is a struc-
ture S = (S, I,O,Δ, s0), where

• S is a countable, nonempty set of states,
• L = I ∪ O is a countable set of labels or observable actions, where i ∈ I is

an input and o ∈ O is an output to the transition system (I ∩ O = ∅),
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• Δ ⊆ S × (L ∪ {τ}) × S is the transition relation, τ �∈ L is the silent event,
and

• s0 is the initial state.

In this definition, the silent event τ stands for some non-observable,
internal action of the system. A transition (s, μ, s′) ∈ Δ is denoted as
s

μ−→ s′. A computation of the IOTS S is a finite sequence of transi-
tions s0

μ1−→ s1
μ2−→ · · · μn−1−→ sn−1

μn−→ sn. As a shorthand, we write

s0
μ1·····μn−−−−−→ sn. The relation s

μ∗
−→ s′ is naturally extended to arbitrary

states s, s′ ∈ S. (For the definition of ∗ see Example 2 in Chap. 1). We
require that any IOTS contains only reachable states, i.e., for all s ∈ S

there exists a computation s0
μ∗
−→ s ending in s. For technical reasons,

we also require that there are no infinite silent computations in a transi-
tion system, i.e., no sequences s0

τ−→ s1
τ−→ s2

τ−→ · · · . In particular, this
means that there are no τ -loops, i.e., no state s such that s

τ∗
−→ s. A trace

is the sequence of non-τ labels of a computation; it captures the observable
aspects only. Formally, trace(s0

a1·μ2···μn−−−−−−→ sn) = a1·trace(s1
μ2···μn−−−−→ sn), and

trace(s0
τ ·μ2···μn−−−−−−→ sn) = trace(s1

μ2···μn−−−−→ sn). The set of traces from state
s ∈ S is denoted by traces(s). The traces of the IOTS (S, I,O,Δ, s0) are
those from the initial state: traces((S, I,O,Δ, s0)) = traces(s0). Two IOTS
(S, I,O,Δ, s0) and (S′, I, O,Δ′, s′

0) with the same set of labels are called
trace-equivalent, if traces(s0) = traces(s′

0). Following Tretmans [Tre96], we
use the subsequent notation.

s
a=⇒ s′ iff ∃s1, s2(s

τ∗
−→ s1 ∧ s1

a−→ s2 ∧ s2
τ∗
−→ s′)

s
a1·····an=====⇒ s′ iff ∃s0, . . . , sn(s = s0 ∧ s0

a1=⇒ s1
a2=⇒ · · · an=⇒ sn ∧ sn = s′)

(Here, as always, ‘iff’ is short for ‘if and only if’.) Thus, traces(s) = {μ∗ ∈
L∗ | ∃s′(s

μ∗
=⇒ s′)}. Talking about IOTS, we are not only interested in what

the system can do, but also in what it can not do. An IOTS is called (strongly)
input-enabled, if in any state any input signal can be sent to it. Formally, this
holds if for all s ∈ S and i ∈ I there is an s′ ∈ S such that s

i−→ s′. Thus, in
an input-enabled IOTS, all inputs are possible in any state. Even if it is input-
enabled, a system may refuse to give certain outputs after a computation.
This is denoted as follows.

(s after σ refuses A) iff ∃s′(s σ=⇒ s′ ∧ ¬∃μ ∈ A, s′′ ∈ S.(s′ μ
=⇒ s′′)).

In testing, we can assume that it is possible to observe that a system refuses
to give certain outputs. Two IOTS s and s′ are called testing equivalent,
if for all σ ∈ L∗ and A ⊆ O it holds that (s after σ refuses A) iff
(s′ after σ refuses A). Testing equivalence is a stronger notion than trace
equivalence: If two systems are testing equivalent, then they have the same
traces. There are efficient graph-search algorithms to determine whether two
given IOTS are testing equivalent [Tre08].
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Often, we are not interested in the equivalence of two specifications. We
are given a specification sp, which is explicitly stated as an IOTS, and an
implementation im, which is a black box. Then, im correctly implements
sp, if any observable behaviour of im is allowed by sp. A first approach on
formalizing this notion is the so-called trace preorder:

(im ≤tr sp) iff (traces(im) ⊆ traces(sp)).
However, this definition does not take into respect refusals. An implementa-
tion which refuses to do anything would be correct for every specification.
Assuming that we can observe the absence of outputs after a sequence of inter-
actions, we may revise this notion. A trace is quiescent if it may lead to a state
from which the system cannot proceed without inputs from its environment,
i.e., a state where it refuses all outputs. Formally, the set of quiescent traces
from state s is defined by Qtraces(s) = {σ ∈ L∗ | (s after σ refuses O)}.
The input-output-testing preorder is defined as follows:

(im ≤iot sp) iff (im ≤tr sp) and (Qtraces(im) ⊆ Qtraces(sp)).
We introduce the special label δ /∈ L to denote quiescence. Given any state
s ∈ S, we define the possible outputs at this state by out(s) = {δ}, if there is no
s′ ∈ S and o ∈ O such that s

o=⇒ s′, else out(s) = {o ∈ O | ∃s′ ∈ S.(s o=⇒ s′)}.
Furthermore, the possible outputs after performing trace σ are given by

out(s after σ) =
⋃{out(s′) | s

σ=⇒ s′}. It is not hard to prove that for input-
enabled im and sp,

(im ≤iot sp) iff ∀σ ∈ L∗ (out(im after σ) ⊆ out(sp after σ)).
Tretmans defines several other, similar testing preorders. The first one is
called I/O-conformance and defined by

(im ioconf sp) iff ∀σ ∈ traces(sp) (out(im after σ) ⊆ out(sp after σ)).
The intuition is that an implementation can conform to a specification, even
if the specification is not input-enabled. If, for example, σ �∈ traces(sp), where
σ = σ′i and i ∈ I, then out(sp after σ) = ∅, whereas out(im after σ) could
be nonempty. Thus, (im ≤iot sp) would not hold, whereas (im ioconf sp)
could still be the case. Hence (im ioconf sp) does not imply (im ≤iot sp).
On the other hand, (im ≤iot sp) clearly implies that (im ioconf sp).

I/O-conformance assumes that the tester can observe quiescence at the
end of a test. By a suitable timeout mechanism, it may also be possible to
observe quiescence during the execution of a test case. In order to formalize
an appropriate testing preorder, Tretmans introduces suspension transitions.
Given an IOTS S = (S, I,O,Δ, s0), we define the suspension transition sys-
tem Sδ = (S, I,Oδ,Δδ, s0), where δ �∈ L is the new symbol for quiescence,
Oδ = O ∪ {δ}, and Δδ = Δ ∪ {(s, δ, s) | ¬∃o ∈ O, s′ ∈ S.(s o=⇒ s′)}. That is,
if state s is quiescent in S, then out(s) = {δ} in Sδ. With this definition, the
suspension traces of S are just the traces of Sδ. The testing preorder ioco is
defined via the suspension transition system:

(im ioco sp) iff ∀σ ∈ traces(spδ) (out(imδ after σ) ⊆ out(spδ after σ)).
Intuitively, (im ioco sp), if and only if
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• if im may produce output o after trace σ, then sp can produce o after σ,
and

• if im cannot produce any output after trace σ, then sp cannot produce
any output after σ.

Since Sδ is an ‘enhanced’ version of S, the ioco relation is finer than
ioconf: (im ioco sp) implies (im ioconf sp), but not vice versa.

Example 49.4: VCR Switch as IOTS

In order to demonstrate some of these concepts, we give an abstract
model of a switch related to our VCR switch Example 49.1 (see also
Fig. 5.3). The abstract model has only two modes: off and on. The
events dn? and up? turn the device on and off, and trigger the LED set-
tings 100! and 000!, respectively. In the on mode, further dn? events
change the settings of the LEDs (amongst other things). Since in con-
trast to UML state charts, an IOTS has no complex transition labels, we
have to insert additional states. This leads to the following specification
sp abstract.

This specification is not input-enabled; however, we could easily
make it input-enabled by declaring that unexpected inputs are simply
neglected. That is, for every state s ∈ S and i ∈ I such that there is no
transition s

i−→ s′, we add a transition s
i−→ s.

In the next step, we can refine the on mode to include minor modes.
This results in the specification sp refined.
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Now, the following can be checked:
• traces(sp refined) ⊆ traces(sp abstract).
• (sp refined ≤ sp abstract) for ≤∈ {≤ior,≤iot, ioconf , ioco}.
• None of the inverse relations holds.

Here, we consider sp refined as an implementation for the specifica-
tion sp abstract, and vice versa. This is justified, as we are seeing an
implementation as a black box—and, naturally, an IOTS can serve as a
black box.

For a further negative example, consider that we add a transition
on

τ−→ on2off to sp abstract. This could model, e.g., a battery failure,
when the machine automatically shuts down and switches off all LEDs.
Now, even though trace-preorder still holds, the refined specification no
longer conforms to this modified abstract specification.

The ioco relation can be used to define test sets for a given specification
and black-box implementation. As mentioned above on Sect. 5.2.2, we assume
that the specification is deterministic in the sense that for any s ∈ S and
a ∈ L there is at most one s′ such that s

a=⇒ s′. (Note that both sp abstract
and sp refined in the above example are deterministic.)

A test case for the IOTS S = (S, I,O,Δ, s0) is a finite tree, where the
leafs are labelled by {pass, fail}, and the non-leaf nodes are labelled by states
from S. Formally, a test case for S is a finite transition system T = (ST , O ∪
{δ}, I,ΔT , sT

0 ) such that

1. for every s ∈ ST there is a unique finite path from sT
0 to s (tree property),

2. there is a mapping ι : ST → (S ∪ {pass, fail}) with ι(sT
0 ) = s0,

3. if ι(sT ) = s and out(s) = {o1, . . . , on}, where s
oi=⇒ si, then sT has at least

n children sT
1 , . . . , sT

n such that sT oi−→ sT
i and ι(sT

i ) = si or ι(sT
i ) = pass.

4. if ι(sT ) = s and o ∈ (O \ out(s)), then there is a child s′ ∈ ST such that
sT o−→ s′ and ι(s′) = fail .

5. if ι(sT ) = s, then for at most one i ∈ I such that s
i=⇒ si, there is a child

sT
i ∈ ST such that sT i−→ sT

i and ι(sT
i ) = si.

6. if ι(sT ) = s and out(s) �= {δ}, then sT has a child sT such that sT δ−→ sT
i

and ι(sT
i ) = fail .

A test case thus is a partial ‘unfolding’ of the specification, and is used to
test the implementation. In the test case, the role of input and output is
reversed with respect to the specification: each output of the specification
(and, thus, the system under test) is an input for the test case, and vice
versa. Clause (3) of the above asserts that if the specification/implementation
allows to produce an output μ, then the test case can consume this μ as an
input. Clause (4) guarantees that an output which is not allowed by the
specification, if produced by the implementation, leads to a failed test case.
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Clause (5) allows to send an input to the system under test from the test case,
which is foreseen by the specification. With clause (6), it is guaranteed that
the implementation may not deadlock in a situation where the specification
allows an output. This reflects the assumption that a non-reaction of the
system under test can be observed via a timeout-mechanism.

Example 49.5: A Test Case for the VCR Switch as IOTS

Consider the example IOTS from above. A test case for this specification
could be, e.g., the following.

Informally, this test case sends a dn event to the SUT, checks whether
it produces the LED pattern 100, and then sends an up and checks for
000. If the SUT shows a wrong LED pattern or does not react at all,
the test fails

For executing such a tree test case with a black-box implementation, the
test harness can

• send an input to the implementation (according to Clause (5), there is at
most one possibility to do so),
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• wait for an output or timeout from the implementation and proceed
accordingly, or

• pass or fail the test execution if a leaf is reached.

Algorithm 9: Conformance test generation
input : IOTS S, initial state s0
output: Test case (tree) T
data : U the set of tree nodes which have not been treated yet.

Start with a one-node tree T consisting of a root sT0 labelled with s0;
U ← {sT0 };
while(U 
= ∅) select sT ∈ U and let s be the label of sT ;
remove sT from U;
foreach o ∈ O do

create a child cT of sT such that sT
o−→ cT ;

if s
o
=⇒ s′ then

begin

label cT with s′ and put it in U;
or

label cT with pass

else label cT with fail;

if ∃o ∈ O, s′ ∈ S.(s
o
=⇒ s′) then

create a child cT of sT such that sT
o
=⇒ cT , label cT with fail

if ∃i ∈ I, s′ ∈ S.(s
i

=⇒ s′) then
begin

select some i ∈ I such that (s
i

=⇒ s′);

create a child cT of sT such that sT
i−→ cT ;

label cT with s′ and put it in U;
or
do nothing

return T;

Clauses (3)–(6) from above can be seen as a (nondeterministic) procedure
for generating tests from a specification. A pseudocode formulation of this
procedure is given in Algorithm 9. In the algorithm, each of the possible
resolutions of the or statement gives rise to a different test case. It can be
shown that the set of all test cases which can be produced according to this
procedure is complete (i.e., sound and exhaustive, cf. Fig. 5.5). That is, if
ts(sp) is the set of test cases which is derived from specification sp with
Algorithm 9, then any implementation im passes ts(sp) if and only if (im
ioco sp).

Even if the number of states in a specification sp is finite, there may be
infinitely many test cases for sp, if sp contains at least one cycle. That is,
in general the size of the complete test suite ts(sp) is infinite. This holds
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since we may cover each state on the cycle an arbitrary number of times.
The question arises, which number of test cases is ‘sufficient’ to establish
that an implementation im conforms to sp? We have remarked above, that
without any knowledge of the internal structure of the SUT, we can never be
sure that we have covered all relevant parts. However, there are reasonable
assumptions which can be made on this structure. One such assumption is
that the SUT can faithfully be represented by a finite IOTS. That is, for any
unknown system under test, there exists a (still unknown) finite IOTS which
exhibits the same behaviour. The length of the maximal path in which no
state is repeated is called the diameter of the IOTS. Thus, the basic testing
hypothesis is that each SUT can be represented by an IOTS which has a
finite diameter.

Another assumption which in some cases is reasonable is that the SUT is
deterministic, i.e., repeatedly given the same input sequence from the initial
state will drive the SUT through the same sequence of internal states and
transitions. An observation to be made about this is that if sp is finite and
acyclic, then only finitely many test cases can be derived from it. Based
on this observation, for deterministic implementations, test case selection
can be based on unwinding of the specification. In particular, Simao and
Petrenko [dSSP14] assume the following:

1. the implementation has at most as many states as the specification,
2. if in any state there is a conflict between an input and an output, then the

input is selected (so-called input-eagerness).

It is shown that under these assumptions, a finite and complete test suite for
ioco can be derived by unwinding the specification.

5.4 Using Algebraic Specifications for Testing

A different approach to specification-based testing is via abstract data types.
Whereas the above automata-based approach seems to be more oriented
towards reactive systems, the algebraic approach is more oriented towards
functional computations. The Casl language, see Chap. 4, allows to specify
a program by a first-order signature, i.e., with functions and relations, plus
additional first-order axioms. In Sect. 4.2.4 we described how to test Java
implementations against algebraic specifications. In this section, we elabo-
rate on this approach.
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Example 50: Days-in-Month Function

As an example, consider the problem of determining the number of
days in a month. That is, the function “dim” (“days in month”) takes
as input a month, i.e., a natural number between 1 and 12, and a year
in the Gregorian calendar (i.e., a natural number greater than 1582). It
calculates the number of days in that particular month. This result can
be used, e.g., to check whether a given birth date is valid or not.

For the definition of the dim-function, we need an auxiliary predicate
stating whether a given year is a leap year. A year is a leap year if it is
evenly divisible by 4; however, if the year can be evenly divided by 100,
it is not a leap year, unless the year is also evenly divisible by 400.

To specify this example in CASL, we rely on the sorts Nat and List
from the standard library. Month and Year can be defined as subsorts
of Nat. isLeapYear then is a predicate and dim an operation in this
specification.

from Basic/Numbers get Nat
from Basic/StructuredDatatypes get List

spec DaysInMonth = Nat and List[Nat fit sort Elem �→ Nat ]
then sort Month = {n : Nat • 1 ≤ n ∧ n ≤ 12}

sort Year = {n : Nat • 1583 ≤ n}
pred isLeapYear : Year
∀ y : Year • isLeapYear(y)

⇔ (y mod 4 = 0 ∧ y mod 100 > 0) ∨ y mod 400 = 0
op dim : Month × Year → Nat
∀m : Month; y : Year
• m ε [ 1, 3, 5, 7, 8, 10, 12 ] ⇒ dim(m, y) = 31
• m ε [ 4, 6, 9, 11 ] ⇒ dim(m, y) = 30
• isLeapYear(y) ⇒ dim(2 as Month, y) = 29
• ¬ isLeapYear(y) ⇒ dim(2 as Month, y) = 28

end

There are many different ways to implement such a dim-function (and
many ways to implement it incorrectly). For example, you might want to try
the term (cf. [McE14])

28 + (m + �m/8�) % 2 + 2 % m + 2 ∗ �1/m� + (m == 2) ∗ isLeapY ear(y)

Assume that we are given a program realizing the dim-function. However,
the program is given as a binary file only, that is, we do not have access to the
source code. Thus, we can not verify whether it conforms to the above Casl
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specification DaysInMonth. How could we test this implementation? Which
test cases would be appropriate? Which tests would be sufficient? When does
a test case pass or fail?

For programs realizing a function, a test case is considered to be a tuple of
input values for the function parameters. The expected output is determined
by the test oracle. Which tuples are to be considered for testing the dim-
function? Typical examples would be, e.g., the tuples of input values (1, 1970),
(12, 2000), and (6, 999999). Clearly, since the year is given as an integer, there
are infinitely many possibilities. One could argue whether a date with a year
smaller than 1583 constitutes a valid test case. The specification does not
allow such inputs, dim is a total function on its input domains. Yet, the
infinite complexity still remains. If we restrict attention to a finite interval
(say, [1583..MAX VALUE ] with MAX VALUE = 231 − 1), there are 12 ∗
(231 −1584) ≈ 2.5∗1010 test cases. However, depending on the programming
environment, even this large set might be too restricted: In languages like
C and Java, we can also input numbers greater than MAX VALUE, and
the result is an integer according to the internal binary encoding. Moreover,
some environments allow to pass to a function arguments of wrong type,
or more arguments than specified. In such settings, e.g., dim(−1,“abc”) and
dim(12, 2000, 17) would be valid test cases.

Similar to state-based coverage criteria, data-based test coverage cri-
teria have been defined. A typical method is to split a linearly ordered
domain into ranges, and select values from the boundaries of these par-
titions. For example, it would be possible to split the integer range into
(MIN VALUE , 0), [0, 1582), and [1583,MAX VALUE ) to test the parame-
ter “Year”. Another method would be to partition a data domain into equiv-
alence classes, and to make sure that at least one representative is selected
from each equivalence class. In our example, we could split the domain Month
into {1, 3, 5, 7, 8, 10, 12}, {4, 6, 9, 11} and {2}, and choose one month of each
partition. Yet another method uses classification trees, where data values are
categorized according to different attributes, and representatives from each
classification are chosen [GG93]. Here, test cases would be, e.g., “a February
in a leap year”, “an invalid month in a negative year”, etc.

Though testing using such coverage criteria is often applied in practice,
this form of testing should not be considered formal: it has little mathemat-
ical foundations. In contrast to this, in a seminal paper Gaudel describes
a theoretical foundation for test case generation from algebraic specifica-
tions [Gau95]. In this approach, test cases are ground instances of the speci-
fication axioms.

In logic, a ground term is a term without variables, i.e., a term which is
formed by using only function and constant symbols (compare Definition 17).
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Example 51: Ground Terms in a Specification of N

In the context of our above Casl specification DaysInMonth, we
import a specification of natural numbers Nat. The specification includes
the Casl code:
free type Nat ::= 0 | suc(Nat)

This line of code declares the constant symbol 0 and a unary func-
tion symbol suc. With these symbols, we can form, e.g., the ground
terms 0, suc(0) and suc(suc(0)). Using additional constants and func-
tions together with parsing annotations, Casl allows to represent such
ground terms in the more usual, decimal representation as 0, 1, and
2—see above.

Given a universally quantified logical formula ϕ = ∀x1, . . . , xn ψ, a ground
instance of ϕ is obtained by consistently substituting each occurrence of a
variable xi in ψ by a ground term ti.

For example, consider the formula

∀ m : Month; y : Year • m ε [ 4, 6, 9, 11 ] ⇒ dim(m, y) = 30

Ground instances of this formula are, e.g.,

• 0 ε [ 4, 6, 9, 11 ] ⇒ dim(0, 0) = 30
• 1 ε [ 4, 6, 9, 11 ] ⇒ dim(1, 2000) = 30
• 4 ε [ 4, 6, 9, 11 ] ⇒ dim(4, 2001) = 30

The first of these instances has a mistake in the types of the arguments m
and y. In the Casl semantics, 0 as Month and 0 as Y ear are undefined,
since Month and Y ear are subtypes of Nat which do not include 0. The
result of calling a function on an undefined value is undefined. Therefore,
dim(0, 0) is undefined. In the second instance, the antecedent evaluates to
false. Thus, the formula is true regardless of the result of dim(1, 2000), and
there is nothing to test. However, the third instance leads to a ‘meaningful’
test: We can call the function dim in the implementation with the arguments
4 and 2001, and check whether the result is 30.

In general, the goal of specification-based testing is to determine whether
a given specification sp is correctly implemented by a (black-box) system
under test im. Subsequently, we discuss what this means if sp is an algebraic
specification. Usually, an algebraic specification language like Casl consists
of formulae in some extended first-order logic. Recall that a first-order signa-
ture Σ = (F ,R,V) consists of a set of function symbols F , relation symbols
R, and variable symbols V, see Definition 8. (Predicates are unary relations,
and constants are 0-ary functions.) Consider an algebraic specification sp in
the signature Σ, and assume that Fsp ⊆ F and Rsp ⊆ R are the functions
and relations specified by sp. A specification formula is a universally quanti-
fied formula ϕ = ∀x1, . . . , xn ψ(x1, . . . , xn) in the specification language. In
testing from algebraic specifications, a test case for Fsp ⊆ F and Rsp ⊆ R
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is defined to be any ground instance ψ(t1, . . . , tn) of such a specification for-
mula.

For such a test case to be executable, the system under test im must
provide an implementation f im for each function f ∈ Fsp, and p im for each
relation in p ∈ Rsp. Here, ‘provide’ means that the function or relation can
be called from the tester with appropriate arguments, and returns a result.
In the case of a relation, the result is a boolean value. If the call of the
function or relation causes the implementation to go into an infinite loop or
throw an error, the result is undefined. (Detecting an infinite loop can be
approximated by a suitable time-out mechanism, see also Sect. 5.3 above). In
our example, the specification defines the predicate isLeapYear and function
dim. The implementation must provide isLeapYear and dim.

There are also other symbols occurring in the specification formulae, e.g.,
f ∈ (F \ Fsp), p ∈ (R \ Rsp), boolean connectors, equality, and maybe
other primitives of the specification language. These must be available in the
testing framework (e.g., JUnit), independent of the system under test. In
our example, these other functions include the constants 0, 1, 2001, the mod
function, testing whether an element is in a list, etc.

Even if the testing framework provides all these functionalities, it may
not be able to evaluate all kinds of formulae. If the test case, which is a
ground instance of a specification formula, contains free variables, then it is
unclear which values to assign to them. Moreover, if the test case contains
an existentially quantified subformula, it may be hard to decide whether it
holds or not. For example, consider the formula

∀x∃y(y > x ∧ prime(y) ∧ prime(y + 2)).
Ground instances of this formula are, for every n ∈ N

∃y(y > n ∧ prime(y) ∧ prime(y + 2)).
In order to evaluate such a formula, the tester would have to construct a
prime twin bigger than n, which is trivial for n = 10, somewhat hard for
n = 106, and a currently open challenge for n = 1010

6
. Therefore, usually it

is required that the test case is a quantifier- and variable-free formula of the
specification logic. Such test cases can be evaluated by Algorithm 10.

Here are a few remarks on this algorithm.

• Formally, constants are 0-ary functions; thus, no special clause needs to
be given in the algorithm. Similar, as in classical propositional logic, it is
sufficient to give evaluation rules for ⊥ and implication. All other Boolean
operators can be defined from these two, see Sect. 2.2.

• The algorithm is closely related to the semantics of first-order terms and
predicates (Definitions 13 and 14). Thus, many authors consider the imple-
mentation to be a first-order model of a specification. We will come back
to this point below.

• We evaluated equality of terms as “equal for the test system”. That is, if
the test system can not observe any difference in their values, the terms
are considered to be equal. In some languages like Java or C, there is a
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Algorithm 10: Evaluation of a test case in an SUT
Given symbols f ∈ Fsp and p ∈ Rsp , let fim and pim be the implementation of f
and p in the system under test;

and for f ∈ (F − Fsp) and p ∈ (R − Rsp) , let ftf and ptf be the function f and
predicate p in the testing framework, respectively

function eval termim (t)
input : Term t, where t = f(t1, . . . , tn)
result : Value of t, or undef if no value can be obtained

let et1 = eval termim (t1), . . . , etn = eval termim (tn);
if one of et1, . . . , etn is undef then return undef
else if f ∈ (F \ Fsp) (i.e., f is ‘built-in’) then

return ftf (et1, . . . , etn)

else if f ∈ Fsp (i.e., f is implemented in the SUT) then
call fim in the SUT with parameters (et1, . . . , etn);
if call has a timeout or exception then return undef
else return the result obtained by this call

function evalim (ψ)
input : Quantifier- and variable-free formula ψ
result : Evaluation of ψ (true or false)

if ψ = ⊥ then return false
else if ψ = (ψ1 =⇒ ψ2) then

if evalim (ψ1) = false then return true else return evalim (ψ2)

else if ψ = p(t1, . . . , tn) then
let et1 = eval termim (t1), . . . , etn = eval termim (tn);
if one of et1, . . . , etn is undef then return false
else if p ∈ (R \ Rsp) (i.e., p is ‘built-in’) then

return ptf (et1, . . . , etn)

else if p ∈ Rsp (i.e., p is implemented) then

call pim in the SUT with parameters (et1, . . . , etn)
if call has a timeout or exception then return false
else return the result obtained by this call

else if ψ = (t1 = t2) then

let et1 = eval termim (t1) and et2 = eval termim (t2);
if both et1 and et2 are defined and equal then return true
else if both et1 and et2 are undef then return true
else return false

distinction between a reference to an object (a pointer) and the object
itself (e.g., a list). That is, two different references might denote the same
object, and the same reference might denote two different objects. Here,
we defer the decision of what is considered equal to the test system.

• With respect to undefined values, the evaluation algorithm is based on the
semantics of Casl. There are other choices. In particular, in Casl all func-
tions are strict: they return undefined if any argument is undefined. Most
programming languages include non-strict operations, where the result is
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determined by evaluating arguments only when needed. That is, in these
languages the function

foo(x, y) = if (x == 0) then y else x
is not the same as the Casl function bar specified by

• (x = 0) ⇒ bar(x, y) = y
• ¬(x = 0) ⇒ bar(x, y) = x

since for y undefined, foo(1, y) yields 1 whereas bar(1, y) yields undefined.
• The type system of most specification logics (including Casl) is rather

rigid, whereas the type system of the programming environment may be
more liberal. For example, in Java, one could implement the dim func-
tion by a method int dim(int m, int y) with integer arguments. This
would allow the calls dim(0,0) and dim(-1, 1582) with parameters out-
side the range of Month and Year . As another example, in C, one could
write a function int fun(int n, ...) which takes a variable number of
arguments. Legal function calls would then be, e.g., fun(1, 2) and fun(3,
1, 2, 3). In testing from algebraic specifications, such calls, however, will
never be issued by the testing framework, as they are no well-formed terms
of the specification logic. In other words, robustness testing is not in the
scope of this approach.

The test verdict is the result of the execution of a test case with a particular
system under test. Our algorithm for evaluating a specification formula in
the implementation allows to define the test verdict in a natural way. A test
case, i.e., a ground instance ψ(t) of a specification formula ∀x ψ(x), yields
the verdict pass for an implementation im, if the evaluation evalim(ψ(t))
results in true. Otherwise it yields fail. Therefore, a method for testing
from algebraic specifications is to obtain test cases as ground instances from
algebraic specifications and to evaluate these with the implementation.

However, this method only makes sense if the implementation follows a
certain basic principle. Consider the following (faulty) Java implementation
of the function isLeapY ear:

static boolean x = true;
static boolean isLeapYear (int y){

return ((y%400==0)?true:(y%4==0)?(y%100!=0):(x=!x));}

For this implementation, the statement

System.out.print(isLeapYear(2001) == isLeapYear(2001));

prints false to standard output. This is because the implementation of
isLeapY ear has a side-effect in x: multiple calls of isLeapY ear with iden-
tical arguments might yield different results. However, in the specification
the ground equation isLeapY ear(2001) = isLeapY ear(2001) is always true.
Therefore, the system under test must not only provide implementations of
all functions and relations in Fps and Rsp, respectively, but these imple-
mentations must behave like mathematical functions and relations. This is
reflected in the following assumption.
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Fundamental testing assumption When testing a program against an
algebraic specification, the result of evaluating a function or predicate
depends only on the actual parameters provided. That is, a function/pred-
icate always yields the same result when called with the same values, inde-
pendent of the context.

(Note that in programming language theory, the property that a function has
no side-effects is sometimes called referential transparency .)

An algebraic specification sp in the signature Σ = (F ,R) (with V = ∅),
specifies functions Fsp ⊆ F and predicates (relations) Rsp ⊆ R. The system
under test provides implementations for all function symbols in Fsp and for
all relation symbols in Rsp. For test execution, the test system must provide
functions and relations for (F \ Fsp) and (R \ Rsp), respectively. Thus, the
fundamental testing assumption must hold for both, the test system and the
system under test.

The fundamental testing assumption can only hold if implementation and
test system are deterministic. That is, this testing approach is not suited,
e.g., for the test of parallel programs, where the result of a function call may
depend on the specific interleaving of threads in the scheduler. It is possible
to extend the theory such that this case can be handled as well.

Furthermore, in testing, we assume that the test system itself is correct.
The question how to test a test system is out of scope for the present expo-
sition. However, we need to define what it means for an implementation im
to be correct with respect to an algebraic specification sp. Recall the notion
of a first-order model M for a signature Σ = (F ,R,V) from Sect. 2.4.1. This
is a structure M = (U, I,v) consisting of a nonempty set U , the universe of
discourse, an interpretation I for function and relation symbols, and a vari-
able valuation v. We define the first-order model Mim = (U, I,v) associated
with the implementation im as follows:

• The universe U consists of all results which could possibly be obtained by
the test system (either by using functions of the test system itself or by
calling functions from the implementation):

U = {x | ∃ ground term t.(eval termim(t) = x)}.
From this, it follows that U usually contains the undefined value undef.

• The interpretation I(f) of a function symbol is the function implemented
in the implementation im or in the test system:

I(f)(t1, . . . , tn) = eval termim(f(t1, . . . , tn)).
Similarly, the interpretation I(p) of a relation symbol is the relation imple-
mented in im or in the test system:

I(p)(t1, . . . , tn) ⇔ evalim(p(t1, . . . , tn)).
• Since an algebraic specification has no free variables, we can select any

u ∈ U and let v(x) = u for all x ∈ V.

Lemma 1 (a) For Mim = (U, I,v) as defined above and any ground term t
it holds that I(t) = eval termim(t). (b) For any ground formula ψ it holds
that Mim |= ψ if and only if evalim(ψ) = true.
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This lemma follows from the construction of Mim and the definition of the
evaluation algorithm eval termim and evalim . It relies on the fact that with
respect to undefined values, the algorithm reflects the semantics of terms and
predicates in Casl. Formally, Lemma 1 can be shown by inductions on t and
ψ. Intuitively, it states that im passes exactly those tests which hold in Mim .

We can now formulate the notion of correctness of an implementation
w.r.t. an algebraic specification. Let Ax(sp) denote the set of all axioms
(specification formulae) in sp, as in Definition 1 from Chap. 4.
Definition 3 Implementation im is defined to be correct w.r.t. the algebraic
specification sp, if the corresponding model Mim is a model of the specifica-
tion, i.e., if Mim |= Ax(sp).

Here are some remarks on this definition.

• Since the model associated with an implementation depends on the possi-
ble observations which the test system can make, correctness also depends
on the test system.

• Our notion of correctness is consistent with the usual notion of refinement
between specifications: Specification sp′ is a refinement of specification sp,
if all models of sp′ are also models of sp, i.e., if {M | M |= Ax(sp′)} ⊆
{M | M |= Ax(sp)}. With the implementation im, there is associated
the model Mim . Now im is correct w.r.t. sp according to our definition,
if and only if Mim ∈ {M | M |= Ax(sp)}, that is, if and only if im is a
refinement of sp.

• Our above example specification DaysInMonth has (up to isomorphism)
just one model MDaysInMonth. Therefore, any implementation im of DaysIn-
Month is correct, if Mim is isomorphic to MDaysInMonth. However, if we
would omit any of the four defining clauses of the dim function, there
would be many non-isomorphic models. Hence there would also be many
different implementations of this function which are correct. Any imple-
mentation which is correct for the original DaysInMonth is also correct
for such a “relaxed” specification.

• In our definition of Mim , the universe consists of all values which can be
obtained by the evaluation of a ground term. As a border case, in Casl a
specification may have no ground terms at all.

Example 52: Semigroup in Casl

Consider the specification of a semigroup in Casl.
spec SemiGroup =

sort S
op + : S × S → S
∀ x, y, z : S • x + (y + z ) = (x + y) + z

end
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Since this specification has no constant symbols, its set of ground
terms is empty.

In this case, MSemiGroup is not well-defined, since the universe U would
be the empty set. In specification logics, and in particular in Casl, this is
not allowed—for a discussion see Sect. 4.2. Therefore, our definition of cor-
rectness of an implementation w.r.t. spec SemiGroup is meaningless. We
could as well say that any implementation is correct w.r.t. this specifica-
tion, since there are no ground formulae to test it. Nevertheless, it can be
useful to write such a specification. Many data structures in computer sci-
ence are associative, and proofs about the correctness of a program or pro-
gram transformations might rely on this fact. In Sect. 4.2.4, we show how
to automatically generate random test cases from a specification, which
are not based on ground terms. This random testing approach can be used
to test implementations of, e.g., SemiGroup. Here, we are aiming at the
development of complete test suites.

Recall from Sect. 5.3 above that a test suite ts is called complete, if it
is sound and exhaustive. It is sound if each correct implementation passes,
and exhaustive if each incorrect implementation fails. Fundamental questions
in testing are whether complete test suites exist and how they can be con-
structed. Whether a finite complete test suite exists is an additional question.

In test generation from algebraic specifications, a test case is a ground
instance of a universally quantified specification formula. Let the ‘full’ test
suite ts full(sp) of specification sp be the set of all these ground instances.
Assuming that the set of ground terms is nonempty, we may ask: Does
ts full(sp) constitute a complete test suite?

Of course, the answer to this question depends on the type of formulae
which are allowed in the specification. It turns out that if we restrict our
attention to universally quantified specification formulae ∀x1, . . . , xn ψ, where
ψ is quantifier-free, we can prove completeness of ts full(sp):

Theorem 1 im is correct w.r.t. sp, if and only if im passes ts full(sp).

Intuitively, this theorem holds since in term-generated models, a univer-
sally quantified formula ∀x1, . . . , xn ψ(x1, . . . , xn) is equivalent to the (pos-
sibly infinite) set of formulae {ψ(t1, . . . , tn) | t1, . . . , tn are ground terms}.
However, since the proof is not self-evident, we give a sketch.
Proof Soundness (“only if”) is more or less obvious, since it follows from
the instantiation principle of first-order logic (see Sect. 2.4.1): |= (∀xψ(x) ⇒
ψ(t)). According to Definition 3 above, im is correct w.r.t. sp, if and only
if Mim |= Ax(sp). Assume Mim |= Ax(sp), and let T ∈ ts full(sp) be a
test case. We have to show that im passes T . We know that there exists
a formula ϕ = ∀x1 . . . xn ψ(x1, . . . , xn) ∈ Ax(sp), such that T is a ground
instance ψ(t1, . . . , tn) of ϕ. Since Mim |= Ax(sp), in particular it holds that
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Mim |= ϕ. It follows that Mim |= ψ(t1, . . . , tn). According to the definition
of evalim , this means that evalim(ψ(t1, . . . , tn)) = true, i.e., im passes T .

For exhaustiveness, we need the fact that Mim is term-generated. Assume
that im passes tsfull(sp), i.e., for every T ∈ ts full(sp) it holds that evalim(T ) =
true. From Lemma 1 it follows that Mim |= T , where Mim = (U, I,v) is con-
structed as described above. We have to show that Mim |= Ax(sp). Assume
for contradiction that Mim �|= Ax(sp), e.g., Mim �|= ∀x1, . . . xn ψ(x1, . . . , xn).
Then there exist u1 . . . un ∈ U and M′

im = (U, I,v′), where v′ = v except
that v′(x1) = u1, . . . ,v′(xn) = un, and that M′

im �|= ψ(x1, . . . , xn). Since
Mim is term-generated, for every u ∈ U there exists a ground term t with
v(t) = u. Since ground terms contain no variables, for any ground term t we
have v(t) = v′(t). Therefore, for every u ∈ U there exists a ground term t
with v′(t) = u. Thus, we have M′

im �|= ψ(t1, . . . , tn). Since ψ(t1, . . . , tn) does
not contain any of x1, . . . , xn and v′ differs from v at most in the assignment
of x1, . . . , xn, it follows that Mim �|= ψ(t1, . . . , tn). This is a contradiction,
since ψ(t1, . . . , tn) ∈ ts full(sp) and Mim |= ts full(sp). �

If the specification sp contains at least one constant, and a function which
can be repeatedly applied to this constant, then the set of ground terms is
infinite. In such a case, the full test suite tsfull(sp) can have infinitely many
test cases. Consequently, it cannot be effectively executed.

Thus, the question arises of how tsfull(sp) can be reduced to a finite
and small size, without sacrificing completeness. To this end, Gaudel et
al. [BGM91] introduce a mechanism: by making a reasonable hypothesis on
the SUT, the test designer can exclude certain test cases. Starting with a
complete test suite and assuming a number of test hypotheses, it is possible
to obtain a finite, practically applicable test suite. As the original test suite
was complete, and the hypotheses can be justified, the resulting finite test
suite is complete as well.

In other words, if an SUT passes the resulting reduced test suite, its cor-
rectness w.r.t. the specification is proven. This contradicts Dijkstra’s slogan
(quoted in the introduction to this chapter) that “program testing can be
used to show the presence of bugs, but never to show their absence”. With
the approach described here, testing can be used to show the absence of bugs
in a given program.

In general, a test hypothesis is a logical formula which limits the range of
a quantifier. Consider the specification formula ϕ = ∀x ψ(x), where x is from
a certain domain Δ (e.g., the natural numbers). A regularity hypothesis is a
statement of the form “if ψ holds for all x from a certain subdomain δ ⊆ Δ,
then ψ holds for all x ∈ Δ”. In first-order logic, this can be written as

(∀x(δ(x) ⇒ ψ(x)) ⇒ ∀x ψ(x)).
As a side-remark, note that with the choice of δ(x) = ∀y(y < x ⇒ ψ(y)), this
formula yields the principle of transfinite induction (cf. Sect. 2.4.2):

(∀x(∀y(y < x ⇒ ψ(y)) ⇒ ψ(x)) ⇒ ∀x ψ(x)).
However, usually δ will not hearken back to ψ. A regularity hypothesis can
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also be formulated as follows: “if ψ fails for some x ∈ Δ, then it must also
fail for some x ∈ δ”. If this hypothesis holds, then it is sufficient to test ψ(x)
for all x ∈ δ to find out whether or not ψ(x) holds for all x ∈ Δ.

To make the hypothesis effective, δ should be ‘much smaller’ than Δ. How-
ever, the choice of δ is not arbitrary, and the validity of the test hypothesis
must be shown by some other means than testing.

Example 50.1: Regularity Hypothesis for the dim-Function

For example, consider the specification formula
ϕ = ∀y(isLeapY ear(y) ⇒ dim(2, y) = 29).

A typical test case (ground instance) would be, e.g.,
(isLeapY ear(0) ⇒ dim(2, 0) = 29).

However, testing the function dim with input Year smaller than 1583
may be irrelevant. The specification restricts valid input values to years
after the Gregorian calendar reform. Therefore, we make the assump-
tion:

isLeapY ear(y) evaluates to false for y < 1583.
First, let us convince ourselves that this is indeed a regularity hypoth-
esis: Let ψ(x) = (isLeapY ear(x) ⇒ x ≥ 1583), and δ(x) = (x ≥ 1583).
Then (∀x(δ(x) ⇒ ψ(x)) ⇒ ∀x ψ(x)) becomes (∀x((x ≥ 1583) ⇒
(isLeapY ear(x) ⇒ x ≥ 1583)) ⇒ ∀x(isLeapY ear(x) ⇒ x ≥ 1583)),
which is logically equivalent to ∀x(x < 1583 ⇒ ¬ isLeapY ear(x)).

There is no guarantee that this regularity hypothesis is correct: It
could very well be that a faulty implementation sets, e.g., isLeapY ear(0)
to true. However, if the test hypothesis can be justified (e.g., by
looking at the code of isLeapYear(y), then the full test suite can be
reduced to values y ≥ 1583: With the hypothesis, e.g., the test case
(isLeapY ear(0) ⇒ dim(2, 0) = 29) is equivalent to true and there is no
need to execute it.

An obvious question now is whether we can find another regularity hypoth-
esis, which limits the range of the parameter y towards large numbers. Per-
haps surprisingly, the answer is negative. In fact, analysing the specification,
we see that no implementation on a physical machine can ever be correct for
it. This holds for any specification involving the free type Nat. The speci-
fication requires that there are infinitely many objects of this type, whereas
any physical implementation obviously can provide only finitely many such
objects, cf. Definition 18 in Chap. 2.

Thus, we have to change the specification to
sort Y ear = {n : Nat | 1583 ≤ n ∧ n ≤ MAX VALUE}

With this modification of the specification we can make a similar regularity
hypothesis as above, and thus obtain a finite and complete test suite.

Yet, this test suite is still not practical; it is way too large to be executed
in practice. Thus, we continue developing further hypotheses. Let again be
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ϕ = ∀x ψ(x), where x is from a certain domain Δ. A uniformity hypothesis
for ϕ on a subdomain δ ⊆ Δ states that the system under test behaves
‘uniformly’ with respect to ϕ for all x ∈ δ. The claim is that “if ψ(x) holds
for any value x ∈ δ, then ψ(x) holds for all x ∈ δ”. In first-order logic, this is

(∃x(δ(x) ∧ ψ(x)) ⇒ ∀x (δ(x) ⇒ ψ(x))), or, equivalently,
∀x(δ(x) ⇒ (ψ(x) ⇒ ∀x (δ(x) ⇒ ψ(x)))).

If the uniformity hypothesis holds, then it suffices to test any x ∈ δ in order to
establish ψ for all x ∈ δ: We can choose an arbitrary representative x ∈ δ and
test whether ψ(x) passes. If so, then according to the uniformity hypothesis,
the test ψ(x) passes for all x ∈ δ. Thus, there is no need to execute the
respective test cases. If not, then we have found a value where ψ(x) fails,
thus the test suite fails.

As above, a uniformity hypothesis must be justified by some other means
than testing.

Example 50.2: Uniformity Hypothesis for the dim-Function

For our example specification, a typical uniformity hypothesis is
“isLeapY ear(y) behaves uniformly for all y > 1582, which are divisible
by 400”.
Here, ‘uniformly’ means that the same statements in the program graph
are executed in the same order, but with different values. A justifica-
tion for this hypothesis could be given by program analysis. Formally,
for this uniformity hypothesis, let δ(y) = (y > 1582 ∧ y mod 400 = 0),
and ψ(y) = (isLeapY ear(y) ⇐⇒ (y mod 4 = 0 ∧ y mod 100 >
0) ∨ (y mod 400 = 0)). Then the hypothesis becomes

∃y > 1582.(y mod 400 = 0 ∧ isLeapY ear(y)) ⇒
∀y > 1582.(y mod 400 = 0 ⇒ isLeapY ear(y)).

Thus, it suffices to test, e.g., isLeapY ear(2000). If it passes, then
isLeapY ear(y) must also pass for y = 1600, 2000, 2400, etc.

In order to further reduce the size of the test suite, other uniformity
hypotheses can be made. An example would be “isLeapY ear(y) behaves
uniformly for all y > 1582, which are not divisible by 4”. But, we need to
make sure that the justification is valid. As a counter-example, consider
“isLeapY ear(y) behaves uniformly for all y > 1582, where y is divisi-
ble by 100”. For a correct implementation, this hypothesis can not be
justified, as e.g., y = 2000 and y = 2100 need to be treated differently.

5.5 Tool Support for Testing

For formal methods in software engineering, tool support is an essential ingre-
dient. Software tools can help in those activities which are too tedious or
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demanding for humans, or which have to be done over and over again. In
professional software testing, several activities have to be performed:

• Test planning: It must be determined what the scope of the testing
process is, which goals are targeted by the testing activities, and when
and where the testing should take place.

• Test design: Abstract test cases for the identified testing goals must be
described. These abstract test cases can be denoted in informal, semi-
formal, formal, or even executable notation.

• Test development: Test data must be assembled and/or selected from
an existing pool. Furthermore, abstract test cases and concrete test data
must be combined into executable test scripts.

• Test execution: The test cases must be executed, i.e., the SUT must be
connected to the test system, it must be started, stimuli must be sent to
the SUT, and responses of the SUT must be observed (and maybe logged).

• Test evaluation: For each test, it must be determined whether it has
passed or failed. If a test case has failed, appropriate development activities
must be triggered.

• Test assessment: It must be decided when testing is to be stopped, and
whether the determined goals have been reached.

• Test documentation: Test results must be documented and archived.
Often, specific formats for test documentation are prescribed here.

• Test lifecycle management: It must be planned how testing activities
integrate into the development process (code-first or test-first approach,
agile or phase-based testing, incremental or continuous testing processes,
etc.)

• Test management: Roles and responsibilities of people involved in the
testing must be assigned and administered.

• Test tool selection: It must be determined which software tools to use
for which testing tasks.

• Test tool administration: The selected tools must be procured, installed,
and maintained.

When it comes to test automation, most software engineers focus on auto-
mated test execution. However, all of the above activities can be supported
by appropriate tools, and can be automated to a certain extent. For example,
test planning can be supported by project management tools; test develop-
ment can be supported by automatic test data generators and automated
scripting engines; and test evaluation can be automated by an executable
test oracle, e.g., based on Algorithm 7 or Algorithm 10.

Popular testing tools can be classified into the following categories:

• Test design tools,
• capture-replay tools, GUI testing tools,
• test drivers, tools for automated test execution,
• test coverage analysis tools,
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Fig. 5.6 A typical industrial tool landscape for model-based testing

• test suite management tools, application life-cycle management tools,
• defect tracking tools,
• unit testing tools,
• integration testing tools,
• load, stress and performance testing tools, and
• bundled tool suites.

For each of these categories, dozens of tools are available, both com-
mercially and from academic providers. Specification-based testing tools are
mostly in the category “test design tools”. In fact, test generation from for-
mal specifications can be seen as a kind of automated test design. However,
the LTL monitoring approach described in Sect. 5.2.3 is an automated test
evaluation.

Model-based testing tools usually consist of two subcomponents:

(a) A graphical editor or modelling environment which allows to draw models
and check their syntax, and

(b) a test generator transforming the model into abstract test cases according
to certain quality criteria.

A typical test tool landscape including a model-based testing tool is
depicted in Fig. 5.6. Core components are shaded in grey, whereas report-
ing features are depicted in white.

Here, a requirements management tool is used to elicit, document, ana-
lyze and control the intended capabilities of a system. These requirements are
used as a basis for modelling the system; elements in the model are linked
to requirements and vice versa. This allows to trace the use of requirements
in the system’s development. The model can be executed in a suitable sim-
ulator, which allows to animate it and validate whether it conforms to the
expectations. The test generation component of the model-based testing tool
transforms the model into a test suite. It may contain a reporting component,
which measures model or requirements coverage and helps to trace require-
ments in the test suite. Results of test case generation are handed over to
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a test management system and a test execution engine. The test execution
engine is responsible for the connection of the testing system with the sys-
tem under test. It replaces abstract events by concrete signals, messages,
parameters or procedure calls, invokes the SUT with these concrete stimuli,
and records its responses. The test management system keeps track of which
tests have been executed with which results, and which requirements have
been tested. If a test case fails, then it files a ticket with an appropriate defect
tracking system. Optional features of the test management system are auto-
mated reporting of test goals, test plans, and test results; the test execution
engine may produce log-files of test execution and SUT test coverage.

5.6 Closing Remarks

In this chapter, we looked at the fundamentals of specification-based test-
ing. With the help of a small example, we studied modelling techniques such
as labelled transition systems, and UML state machines. We gave specifica-
tions in linear temporal logic, and discussed algorithms for test generation
and monitoring. Then, we studied conformance testing in more detail. We
defined several conformance relations between specification and implementa-
tion, and showed how to generate complete test suites from the specification.
Subsequently, we considered test generation from algebraic specifications. We
showed that ground terms can be used as test cases for functional programs,
where the set of all ground equations forms a complete test suite. Then,
we showed how to reduce the size of this test suite to finite by appropriate
hypotheses about the system under test. Finally, we discussed engineering
tools to augment the activities in the testing process.

5.6.1 Annotated Bibliography

In this section, we discuss the background and historical development of
some of the concepts in this chapter. The origins of testing are as old as
programming itself: From the very beginning, programs had not only to
be designed, but also to be tested. However, there was no real distinction
between programming, debugging, monitoring, verification, validation and
testing of software. Testing was integrated in the overall topic of ‘quality
control’ [Jur51]. Folklore [MG] claims that the first dedicated software test-
ing team was formed in 1958 for the Project Mercury, the first human space
flight program of the United States. The 1961 book “Computer Programming
Fundamentals” [LW61] reports on the respective experiences in a separate
chapter on software testing.
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An early technical paper on the systematics is the 1967 IBM white paper
“Evaluation of the Functional Testing of Control Programs” [Elm67], which
calls for a more scientific approach to software testing. One of the first books
dedicated especially to the topic of software testing are the proceedings of
the 1972 Chapel Hill Symposium on “Program Test Methods” [Het73].

In 1979, Glenford Myers described software testing as an ‘art’ [Mye79].
This still very readable book remarks that testing is different from debugging,
since it is addressing a different question (not where, but whether a program
contains errors). It is also different from verification, since the goal is to detect
errors, not to show their absence: “A successful test case is one that detects
an as-yet undiscovered error”. The main motivation of a tester therefore is
to find errors in a program, not to show or bring about its correctness. This
observation lead to a revival of research in the foundations of software testing.
Today, there is a wealth of textbooks available for software testing. Here, we
only mention the undergraduate text by Jorgensen [Jor95], the comprehensive
volume by Mathur [Mat08], the classic textbook by Beizer [Bei90], and the
introduction by Ammann and Offutt [AO08]. For the interested reader, it is
easy to find other literature which is maybe more adept to the personal taste.
There are also various curricula in testing, elaborated by the International
Software Testing Qualifications Board (ISTQB). These can be used to prepare
for a “certified tester” qualification [GVEB08, KL16].

The description of program control structures by state-transition systems
dates back to the 1950s [RS59]. The idea to use such formalisms also for
test generation appeared already in the 1970s. The main applications in
those years were in the field of testing the logic of integrated circuits and
telecommunication protocols. The main modelling paradigms were finite state
machines, Petri nets and specialized formalisms like the ITU-T Specification
and Description Language (SDL). In telecommunications, it is essential that
each communicating device conforms to the specified protocol. Thus, the
telecommunication standardisation industry was amongst the first to define
reference test suites and models for testing.

In the late 1990s it was understood that this approach can be effectively
used for practically all types of software, including operating systems, com-
pilers, data base management systems and others [Jor95]. Thus, the term
‘model-based testing’ was coined [AD97]. This new approach set the task
to seek more adequate modelling paradigms for the new classes of tar-
get systems. Thus, formalisms like the unified modelling language (UML)
and, later on, the UML testing profile (UTP) were defined [OMG13]. In
the mid-2000s, model-based testing became a hype both in academia and
industry. In 2004, the first workshop dedicated to model-based testing was
held in Barcelona [PPS15]. A graduate-level textbook on model-based test-
ing was composed from lectures at a Dagstuhl seminar [BJK+05]. Commer-
cial tools like Conformiq [Hui07], UniTesk [BKKP02], and RT-tester [Pel13]
were developed. Consequently, one of the first textbooks on practical model-
based testing was based on a tools approach [UL07]. A more scientific
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collection focussing also on the theoretical background deals with applica-
tions im embedded systems [ZSM11].

Conformance testing can be seen as a special branch of specification-
based testing. Brinksma and Tretmans [BT00] give an annotated bibliog-
raphy on the history of conformance testing with transition systems up to
the year 2000. A good survey on IOCO testing can be found in [Tre08]. Proof-
supported testing from algebraic specifications was proposed by Marie-Claude
Gaudel in 1994 [Gau95]. Subsequently, a large number of articles appeared
following up on this approach. Since 2007, the TAP conference is devoted to
the convergence of proofs and tests [GM07].

5.6.2 Current Research Directions

Within the last decade, specification-based testing, and its industrial variant
model-based testing, has become a well-established formal method which is
used in practical applications on a regular basis. However, the development
of the underlying theory is not yet finished. In particular, topics of ongoing
interest include

• the search for specification languages for test generation, which are more
abstract, yet easy to understand;

• the adaptation of algorithms and tools to deal with specification for-
malisms which are widely used in industry;

• more efficient methods for test generation in terms of fault detection capa-
bilities and test execution times;

• the increase of automation in model-based testing, e.g., to automatically
generate SUT adapters;

• the integration of specification-based testing with various other formal
methods such as static analysis and program verification; and

• the integration of test generation tools into continuous development envi-
ronments and application lifecycle management tool chains.

Even though the methods described in this chapter are regularly used for
industrial systems, there are several areas in which the theory still needs
to be developed. One such area is the testing of distributed and collabora-
tive systems. Consider, e.g., a group of (human or machine) agents working
together to achieve a common goal. Here, each agent can be modelled and
tested according to the methods described in this chapter. The environment
of one agent are all other agents, plus the context in which the whole group
is working. For testing the interaction between two agents, protocol testing
methods can be applied. However, elaborated methods for testing the emerg-
ing behaviour of the whole group are lacking.

The problem is made even more complex if the agents are adaptive and
change their behaviour over time. This may be the case, e.g., because they
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employ learning algorithms. In such a case, often it is already a problem how
to describe the intended functionality. For example, consider a deep neural
network for character recognition. In order to formally specify the system
goals, we need to describe the shape of letters in a general way. However, for
most characters (e.g., letter ‘a’) there are border cases which may or may not
be recognized as an ‘a’. Yet, the test has to assign a verdict whether the letter
recognition works as intended. A first approach to test such systems would
be to determine a ‘corridor of admissible behaviour’ and to test whether the
system stays within this corridor. However, a formal theory for the test of
evolving systems has yet to be developed.

Another ‘hot’ topic is security testing. Verification of security protocols is
discussed in Chap. 8. As systems are becoming more and more complex, there
are more and more possible attacks. Testing a system for vulnerabilities is
an open-ended game between intruders and defenders: Whenever one hole is
fixed, others open. In particular with large-scale distributed systems used by
many people, robustness against malicious attacks, confidentiality, authen-
tication and accountability are predominant issues. Currently, most people
are relying on processes and policies to assure the security of systems. Secu-
rity qualification is mostly done with manual or informal methods (audits,
reviews, assessments, vulnerability scans, penetration tests etc.). There are
some approaches for testing certain security-related features, e.g., in smart-
cards. An interesting idea in this context is to use techniques from machine
learning and artificial intelligence also for the construction of test suites.
However, missing is a general framework for the selection and execution of
security tests.
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Chapter 6

Specification and Verification of
Normative Documents

Gerardo Schneider

Abstract This chapter is concerned with the formal specification and verifi-
cation of normative documents, that is, documents containing what is manda-
tory, permitted and prohibited. In computer science and software engineering,
these documents are usually referred as contracts. As the application domain
is quite vast, we give a high level description of a general approach to the
field, and we provide few motivating examples from different domains, after
clarifying on the notion of ‘contract’. We proceed then with the presentation
of the formal language CL and we show which kind of analysis may be done
on CL contracts, focusing mainly on the analysis of normative conflicts.

6.1 Contracts: Help or Trouble?

You got your new smart phone and decided to download as many free appli-
cations as possible. Since you do not have time nor patience, you simply click
on the ‘agree’ button of all the agreements without reading them. At the
end of the month when you got the bill for the use of Internet traffic, you
get a shock on the high bill. After a careful enquire you get to know that
one particular application was not free after all. You cancel it, but there is
a cancelation fee to be paid. Nothing can be done as you have ‘consciously
and willingly’ given your consent.

You travel to Brazil and you brought your smart phone with you. You
have agreed to a special offer with your provider on the price and roaming
policies when abroad, which stipulated among other things that you could
enjoy free Internet access up to 100 Mb after 20:00. You enjoy your life
drinking caipirinha, going to the beach, dancing samba, and uploading all
your nice photos to Facebook and writing comments about your day, doing it
at night benefiting from the offer of your phone provider. However, when you
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come home and the first after-holidays bill comes, you cannot believe the 4
digits bill you get from your phone provider, mainly due to roaming abroad.
When asking for details you were told that the contract stipulated, among
other things: (i) Brazil did not qualify for the special offer; (ii) some days you
spent a bit more than 100 Mb, and the cost per additional Mb was 10 EUR.
After being told that, you spent hours going into the contract and you did
indeed find something about the above. It took you even more hours and the
help of a lawyer to check out all the conditions.

The above scenarios (both adaptations of real life cases) show the impor-
tance, for the bad more than good, of ‘contracts’.

Could the bad outcome be foreseen and prevented? Would it have been
possible to get a warning about the agreement not being valid in Brazil
automatically, or when the amount downloaded comes close to 100 Mb?

Now imagine that you are a lawyer and you need to modify existing con-
tracts, adding or deleting clauses for different clients. Though your work is
typically reviewed by you and colleagues to be sure they are correct and
without conflictive clauses, it happens from time to time that mistakes are
overlooked. After few years without any problem arising from a given con-
tract, you are suddenly in court trying to defend the impossible given that
your legal document is flawed. In case of contradictory clauses, which clause
should be taken into account? Is the contract suddenly declared void? Who
is liable? Would it be possible to have an intelligent editor to help lawyers
draft contracts allowing for the possibility to detect inconsistencies, conflic-
tive clauses, etc?

Though we will not be able to address and answer in detail all the above
questions, in what follows we present work addressing issues related to the
specification and analysis of contracts, or more generally of normative doc-
uments, that is, documents containing what is mandatory, permitted and
prohibited.

In next section we give a high level description of a general approach to the
field, and we provide few motivating examples from different domains, after
clarifying on the notion of ‘contract’. We proceed then with the presentation
of the formal language CL (Sect. 6.4), and we show in Sect. 6.5 which kind
of analysis may be done on CL contracts, focusing mainly on the analysis of
normative conflicts. We finish with a reflection on the content of the chapter,
suggestion for further reading, an extensive annotated bibliography, and a
brief description of current research trends.

6.2 What Are Contracts?

In this section we start with an informal discussion on what we mean by
contract in the context of computer science and software engineering. We
proceed by presenting three motivating examples concerning the specification
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and verification of contracts, and we finish with the presentation of an ideal
framework concerning contract specification and analysis.

6.2.1 On the Notion of Contract

According to the Webster’s online dictionary1 a contract is a “binding agree-
ment between two or more persons that is enforceable by law”. In the context
of computer science and software engineering, however, the term contract
has mostly been used not according to the common meaning of the word.
We thus find the use of the term, among other things, to: (i) denote pre-
/post-conditions and invariants (e.g., programming-by-contracts and JML);
(ii) describe how services interact by defining service level agreements (e.g.,
WS-Agreement); (iii) denote behavioural interfaces component-based sys-
tems, to characterise a component based on the way it communicates with
its environment.; (iv) regulate parties’ ideal mode of interaction in protocols;
(v) model and regulate social behaviour in multi-agent systems.

In this chapter we are not concerned with software contracts in the above
sense, as we do not want to reason about programs, services, components,
etc., but rather write, analyse and monitor the contracts themselves (which
describe and prescribe behaviour about software systems).

We aim at having a formalisation at a certain level of abstraction of doc-
uments containing prescriptive information in the form of rules or norms.
So, in the rest of this chapter we will use the term ‘contract’ in a very large
sense, meaning any document containing norms specifying what are the obli-
gations, prohibitions, and permissions of the different parties involved, as well
as what is to be done in case of specific violations. Our definition of contract
includes, among others, legal (contractual) documents, requirements in soft-
ware engineering, workflow and work procedure descriptions, and regulatory
documents.

In what follows we will provide a couple of motivating examples to show
the generality of this definition.

6.2.2 Motivating Examples

Workflow Specifications

A workflow specification (description of a work) may be considered as a
normative text describing the tasks to be performed for a specific job, and

1 http://www.websters-online-dictionary.org.

http://www.websters-online-dictionary.org
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prescribing procedures of normal and abnormal situations. We show in Exam-
ple 53 part of the description of an airline ground-crew working procedure.

Example 53: Airline Ground Crew Work Description

The following example is from the Fenech, Pace and Schneider [FPS09a].

1. The ground crew is obliged to open the check-in desk and request the passenger
manifest from the airline two hours before the flight leaves.

2. The airline is obliged to provide the passenger manifest to the ground crew when
opening the desk.

3. After the check-in desk is opened the check-in crew is obliged to initiate the check-
in process with any customer present by checking that the passport details match
what is written on the ticket and that the luggage is within the weight limits. Then
they are obliged to issue the boarding pass.

4. If the luggage weights more than the limit, the crew is obliged to collect payment
for the extra weight and issue the boarding pass.

5. The ground crew is prohibited from issuing any boarding passes without inspecting
that the details are correct beforehand.

6. The ground crew is prohibited from issuing any boarding passes before opening
the check-in desk.

7. The ground crew is obliged to close the check-in desk 20 min before the flight is
due to leave and not before.

8. After closing check-in, the crew must send the luggage information to the airline.
9. Once the check-in desk is closed, the ground crew is prohibited from issuing any

boarding pass or from reopening the check-in desk.
10. If any of the above obligations and prohibitions are violated a fine is to be paid.

Among other things, we might be interested to analyse such workflows in
order to detect whether the tasks are doable, there are no contradictions, and
eventually simulate abnormal situations. Additionally it could be interesting
to determine responsibilities for different tasks.

Legal Documents

Legal documents, including different kind of contractual documents, are com-
plex. They must be as precise as possible while at the same time being open
to different interpretations in case of specific instantiations. They should also
be as complete as possible while keeping in mind that too many exceptions for
specific cases might compromise readability. Briefly, it can take an enormous
amount of time to write, read, understand and analyse such documents.

The contract shown in Example 54 stipulates the obligations and rights of
an internet provider and a client of the service.

Though a complete analysis of legal documents seems to be too ambitious,
the same kind of analysis may be practical for other normative documents like
workflow specifications or simpler regulations. Moreover, whenever contracts
are concerned with computer-mediated transactions (i.e., where transactions
are performed by software systems), it could be of great help to have a runtime
monitor (extracted from the legal description) to ensure that the contract
is being satisfied, or otherwise to detect violations, and also to determine
liabilities and causalities.
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Example 54: Contract Between Internet Provider and Client

The following clauses are from Pace, Prisacariu and Schneider [PPS07].
This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. [name], from now on referred to as the Client.

INTRODUCTION

3. The Provider is obliged to provide the Internet Services as stipulated in this
Agreement.

5. DEFINITIONS

5.1.10. Internet traffic may be measured by both Client and Provider by means
of Equipment and may take the two values high and normal.

OPERATIVE PART

7. CLIENT’S RESPONSIBILITIES AND DUTIES

7.1. The Client shall not:
7.1.1. supply false information to the Client Relations Department of the

Provider.
7.2. Whenever the Internet Traffic is high then the Client must pay [price] imme-

diately, or the Client must notify the Provider by sending an e-mail speci-
fying that he will pay later.

7.3. If the Client delays the payment as stipulated in 7.2, after notification he
must immediately lower the Internet traffic to the normal level, and pay
later twice (2 ∗ [price]).

[...]

8. CLIENT’S RIGHTS

8.1. The Client may choose to pay either: (i) each month; (ii) each three (3)
months; (iii) each six (6) months.

9. PROVIDER’S SERVICE

[...]
10. PROVIDER’S DUTIES

10.1 The Provider takes the obligation to return the personal data of the client
to the original status upon termination of the present Agreement, and after-
wards to delete and not use for any purpose any whole or part of it.

10.2 The Provider guarantees that the Client Relations Department, as part
of his administrative organisation, will be responsive to requests from the
Client or any other Department of the Provider, or the Provider itself
within a period less than two (2) hours during working hours or the day
after.

11. PROVIDER’S RIGHTS

11.1. The Provider takes the right to alter, delete, or use the personal data of the
Client only for statistics, monitoring and internal usage in the confidence of
the Provider.

11.2. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:

11.2.2. suspend Internet Services immediately if Client is in breach of Clause 7.1;

13. TERMINATION

13.1. Without limiting the generality of any other Clause in this Agreement the
Client may terminate this Agreement immediately without any notice and
being vindicated of any of the Clause of the present Agreement if:

13.1.1 the Provider does not provide the Internet Service for seven (7) days con-
secutively.

13.2. The Provider is forbidden to terminate the present Agreement without pre-
vious written notification by normal post and by e-mail.

13.3. The Provider may terminate the present Agreement if:
13.3.1 any payment due from Client to Provider pursuant to this Agreement

remains unpaid for a period of fourteen (14) days;

16. GOVERNING LAW

[...]
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Terms of Service

Probably everybody has had the frustrating experience of having to accept an
agreement, called terms of service or ToS, before being allowed to download
an application on an electronic media (e.g., smart phone). In such cases, the
standard behaviour usually is not to read the agreement, but simply click on
the ‘agree’ button, knowing that otherwise it will not be possible to use the
application.

Given the time constraints we are under today, it could be highly desirable
to have the possibility to simply press a button ‘Quick Analysis’ before engag-
ing in accepting any agreement, so that a quick analysis of the document is
performed. This analysis might for instance highlight our obligations, and
describe briefly under which conditions they are enacted. Also, it could allow
the user to make a quick query on specific questions, for instance “What is
the worst case scenario if I do breach the agreement”.

6.3 A Framework for Specification and Analysis of
Contracts

We present in this section a conceptual framework to handle electronic (and
legal) contracts (see Fig. 6.1). A contract written in natural language is suc-
cessfully refined towards a formal language which might be analysed statically
and at runtime (flow from right to left in the figure). A scenario highlighting
a typical use of the framework is described in what follows.2

Fig. 6.1 High-level description of a contract analysis framework

2 In subsequent sections we will develop the concepts mentioned in the framework and
present them in more details.
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1. A contract is written in natural language (NL), as for instance English, by
an end-user (e.g., a lawyer) and fed into the framework (NLCon).

2. The contract is automatically translated into a structured restricted ver-
sion of English (Controlled Natural Language – CNL), by the module NL
to CNL, obtaining the contract CNLCon.

3. The CNLCon contract is then transformed into a formal version by the
CNL to FL module, into what is called the electronic contract (or eCon
for short).

4. eCon is then analysed by using the Contract Analyser module. The anal-
yser will check the contract against predefined properties (e.g., absence
of normative conflicts: it does not contain contradictory obligations, pro-
hibitions nor permissions), also allowing the verification of the contract
against user-defined properties (Prop), as for instance that it is never the
case that if the provider is obliged to pay clients based on a number of
clicks on advertisements, then the provider always pays the same amount.
The user might perform queries in the query language QL (e.g., what are
all the client’s obligations and under which conditions are they enacted).

5. In case of errors (contradictions, properties not satisfied, etc.), the Con-
tract Analyser gives a counter-example CEx, which is analysed by the
Counter-example Analyser. This module translates the counter-example
into a format understandable by the end-user, showing where the prob-
lem might be. With the help of the module the user will try to identify
the problem in NLCon, modifying the original contract and restarting the
process again if necessary.

6. If the Contract Analyser does not find any problem (and after the user
is satisfied with the performed queries), the contract is then approved
(AeCon), and a runtime monitor Mon is automatically obtained from it.
This is performed by the Monitor Generator module, which might use
some predefined libraries Lib to compute algorithmic procedures implicitly
stated in the contract (e.g., average values, percentages per given time-
periods), not possible to be extracted automatically.

7. The Contract Analyser could also be used at runtime whenever the user is
confronted for the first time with a contract or agreements to accept. Users
will have the possibility to launch queries (as done statically) to quickly
highlight what are the important clauses concerning themself, and decide
whether to agree or not. [Not explicitly represented in the picture.]

8. The runtime monitor Mon is run in parallel with the underlying software
system Sys.

9. The Runtime Violation Analyser detects when the contract is violated and
uses the history of the transaction to analyse it at runtime (eventually
canceling the transaction, giving a warning, or performing any previously
defined operation).

10. The result provided by the Runtime Violation Analyser, the file Log, will be
passed to the Static Violation Analyser so the end-user can analyse it off-
line to further determine what where the causes and who was responsible
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for the contract violation. A decision then must be taken according to
the obtained information. The Log file will contain all the history of the
transaction (not only the violation) making it possible for the end-user to,
for instance, determine liabilities and analyse customers behaviour.

Note that the Runtime part of the framework is only valid for the case
of dealing with computer mediated transactions. The Static part is valid for
any kind of (legal) contract.

A full realisation of the framework presented above is a challenging task,
most of it is still ongoing research. In the rest of this chapter we will present
a small part of such long-term vision. We start by presenting the formal
language CL, as a candidate for the eCon in the framework.

6.4 The CL Language

We present here the formal language CL, designed with the aim to formalise,
at a certain level of abstraction, normative texts containing clauses determin-
ing the obligations, permissions and prohibitions of the involved parties. CL
is strongly influenced by dynamic, temporal, and deontic logic (cf. Sect. 2.5).
It is an action-based language meaning that the modalities are applied to
actions and not to state-of-affairs. In particular, it is possible to express
complex actions in the language by using operators for choice, sequence, con-
junction (concurrency) and the Kleene star (see Example 2). Besides, the
language allows to specify penalties (reparations) associated to the violation
of obligations and prohibitions.

6.4.1 Syntax

We start with the syntax of CL and provide a brief intuitive explanation of
its notations and terminology. A discussion on CL semantics will be given
later in this section. A contract in CL may be obtained by using the syntax
shown in Fig. 6.2.

A CL contract is written as a conjunction of clauses representing (con-
ditional) normative expressions, as specified by the initial non-terminal C
in the definition. The first line of the definition shows that a contract can
be an obligation (CO), a permission (CP ), a prohibition (CF ), a conjunction
of two clauses, or a clause preceded by the dynamic logic square brackets.
� and ⊥ are the trivially satisfied and violating contracts, respectively. O,
P and F are deontic modalities (see Sect. 2.5.2); the obligation to perform a
complex action α is written as OC (α), showing the primary obligation to per-
form α, and the reparation contract C if α is not performed. This represents
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C := CO | CP |CF | C ∧ C | [β]C | � | ⊥
CO := OC(α) | CO ⊕ CO

CP := P(α) | CP ⊕ CP

CF := FC(α)

α := 0 | 1 | a | α&α|α.α | α + α

β := 0 | 1 | a | β&β|β.β | β + β | β∗

Fig. 6.2 CL syntax

what is usually called a Contrary-to-Duty (CTD) as it specifies what is to
be done if the primary obligation is not fulfilled. The prohibition to perform
a complex action α is represented by the expression FC (α), that specifies
also the contract to be enacted in case the prohibition is violated (the con-
tract C); this is called Contrary-to-Prohibition (CTP). Both CTDs and CTPs
are useful to represent normal (expected) behaviour as well as the alterna-
tive (exceptional) behaviour. P(α) represents the permission of performing a
given complex action α. As expected there is no associated reparation, as a
permission cannot be violated.

We have so far mentioned ‘complex actions’ without defining them. At the
bottom of Fig. 6.2 it is possible to see the BNF for actions, where α and β
represent regular expressions with and without the Kleene star, respectively.
The Kleene star (∗), used to model repetition of actions, is not allowed inside
the deontic modalities, though they can be used in dynamic logic-style con-
ditions. Indeed, action β may be used inside the dynamic logic modality (the
bracket [·]) representing a condition in which the contract C must be executed
if β is performed.

The binary constructors (&, ., and +) represent concurrency (also called
synchrony), sequence and choice over basic actions, respectively. Compound
actions are formed from basic actions by using these operators. Conjunction
of clauses can be expressed using the ∧ operator; the exclusive choice oper-
ator (⊕) can only be used in a restricted manner. 0 and 1 are two special
actions that represent the impossible action and the skip action (matching
any action), respectively.

The concurrency operator & should only be applied to actions that can
happen simultaneously. To respect this constraint, the software engineer
should make explicit which actions are mutually exclusive. In CL this is done
by defining the following relation between actions: a#b if and only it is not
the case that a&b. Examples of such actions would be “the ground crew opens
the check-in desk”, and “the ground crew closes the check-in desk”.

An important note on the above is that in CL it is not possible in general
to have a modular (compositional) way of writing specifications. Very often
the natural language description has implicit dependencies (in the form of
using words as ‘it’, ‘that’, ‘the above’, etc.), or explicit dependencies making
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reference to specific clauses by name or number. In CL the user must find
and write down such dependencies explicitly.

We show in Example 55 the formalisation of natural language sentences in
the formal language CL.

Example 55: Airport Ground Crew

Let us consider the following clause of the ground crew example:

The ground crew is obliged to open the check-in desk and request the passenger
manifest two hours before the flight leaves.

Taking a to represent “two hours before the flight leaves”, b to be
“the ground crew opens the check-in desk”, and c to be “the ground
crew requests the passenger manifest”, then this could be written in CL
as

[a]O(b&c).

Let us now consider the following additional clause imposing a penalty
in case the above clause is not respected:

If the ground crew does not do as specified in the above clause, then a penalty
should be paid

Assuming that p represents the phrase “paying a fine”, we would
write all the above, in combination with the previous formalisation in
CL, as

[a]OO(p)(b&c).

6.4.2 Semantics

As we have discussed in the introduction to Formal Methods (cf. Sect. 1.1.2)
there are three main ways of giving semantics to a formal language: opera-
tional, denotational and axiomatic. The choice on which style to use depends
on different factors, ranging from a personal taste to more complex technical
reasons.

CL has been given three different semantics: (i) an encoding into the μ-
calculus; (ii) a trace semantics; (iii) a Kripke semantics. The three may be
seen as variants of denotational semantics, though the trace semantics might
be seen as a low-level operational semantics.

In what follows we will only present in more detail the trace semantics, as
this is the one used for the conflict analysis further developed in next section.
The other two semantics will be briefly sketched at the end of this section.
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6.4.2.1 CL Trace Semantics

A trace semantics usually gives us information about the traces (or sequences
of actions) that are valid, or accepted, by any formula (expression) of a logic
(formal language).

Originally, the trace semantics for CL was developed with the sole purpose
of being able to explain monitoring aspects. For that, it was defined over
infinite sequences of actions, and did not contain any information on whether
the action was mandatory, permitted, or prohibited, or none of the above.
However, it was realised later that in order to use the trace semantics for a
certain kind of analysis (namely conflict analysis), it should be modified so
that:

1. it contains deontic information (including permissions); and
2. it ‘accepts’ finite prefixes.

We present in what follows a trace semantics for CL which takes into account
the above two requirements.

For a contract with action alphabet Σ, we will introduce the deontic alpha-
bet Σd consisting of Oa, Pa and Fa for each action a ∈ Σ, in order to represent
which normative behaviour is enacted at a particular moment. Given a set
of concurrent actions α, we will write Oα to represent {Oa | a ∈ α}.

Given a CL contract C with action alphabet Σ, the semantics will be
expressed in the form σ, σd � C, where σ is a finite trace of sets of concur-
rent actions in Σ and σd is a finite trace consisting on sets of sets (needed
to distinguish choices from conjunction) of deontic information in Σd. The
statement σ, σd � C is said to be well-formed if length(σ) = length(σd); in
what follows we will consider only well-formed semantic statements.

Intuitively, a well-formed statement σ, σd � C will correspond to the state-
ment that action sequence σ is possible under (will not break) contract C,
with σd being the deontic statements enforced from the contract.

Example 56 shows some traces for two different contracts.

Example 56: CL Trace Semantics

Let us consider the contract

C = [a]O(b) ∧ [b]F(b).

According to the contract, we have that σd = 〈{∅}, {{Ob}}〉, and given
the trace σ = 〈{a}, {b}〉, it is the case that σ, σd � C.

The contract
C ′ = F(c) ∧ [1](O(a) ∧ F(b))

stipulates that it is forbidden to perform action c and that after
the execution of any action, there is an obligation to perform an
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a (while prohibiting the execution of b). We can thus write σd =
〈{{Fc}}, {{Oa}, {Fb}}〉. The contract allows the execution of actions a
and b concurrently, and then a concurrently with c (σ = 〈{a, b}, {a, c}〉),
and we have that σ, σd � C ′.

Note that the presentation of the traces σ and σd suggests that both traces
are paired position-wise as they have the same length. Though this is true
to some extent, it might help to ‘read’ the traces in the following way: first
consider the first element of the σd trace, then the first of the σ trace, and
successively. That is, in the first contract given in Example 56, we should read
the whole judgment as explained in what follows. At the beginning there is no
normative constraint (first element of the trace σd being {∅}). Then after a
is executed (first element of the σ trace being {a}) we have that the contract
stipulates an obligation of executing action b (second element of the trace
σd being {{Ob}}). We then have that b is executed (second element of the σ
trace being {b}), which is in accordance with the corresponding obligation at
that moment in σd.

In Example 56.1 below we show a trace for a contract containing the obli-
gation of a choice. The choice is expressed at the trace level by having a set
containing a set with the normative concepts affected by the choice (in this
case, 2 obligations).

Example 56.1: CL Trace Semantics (continued)

Let us consider the contract

C ′′ = [a]O(b + c) ∧ [b]F(b).

If we consider first that an a is performed, then only the obligation to do
b or c remains (the prohibition is thus discarded since no b did happen).
From this point on, any trace continuation performing b or c would be
acceptable. Thus, for

σ = 〈{a}, {b}〉 and σd = 〈{∅}, {{Ob, Oc}}〉
we have that σ, σd � C ′′.

Given two traces σ1 and σ2, we will use σ1;σ2 to denote their concatena-
tion, and σ1∪σ2 (provided the length of σ1 is equal to that of σ2) to denote the
point-wise union of the traces: 〈σ1(0)∪σ2(0), σ1(1)∪σ2(1), . . . σ1(n)∪σ2(n)〉.
CL trace semantics is shown in Fig. 6.3. We give an intuitive explanation of
the semantics in what follows (note that we do not present the trivial cases
of actions 0 and 1).
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σ, σd � C if length(σ) = length(σd) = 0 (6.1)

σ, σd � � if σd(0) = ∅ and σ(1..), σd(1..) � � (6.2)

σ, σd � C1 ∧ C2 if σ, σ′
d � C1 and σ, σ′′

d � C2 and σd = σ′
d ∪ σ′′

d (6.3)

σ, σd � C1 ⊕ C2 if (σ, σd � C1 and σ, σd � C2) or (σ, σd � C2 and σ, σd � C1)(6.4)

σ, σd � [ε]C if σ, σd � C (6.5)

σ, σd � [α&]C if (α& �⊆ σ(0) ⇒ σ, σd � �) and (6.6)

(α& ⊆ σ(0) ⇒ (σd(0) = ∅ and σ(1..), σd(1..) � C)) (6.7)

σ, σd � [α&]C if (α& ⊆ σ(0) ⇒ σ, σd � �) and (6.8)

(α& � σ(0) ⇒ (σd(0) = ∅ and σ(1..), σd(1..) � C)) (6.9)

σ, σd � [β;β′]C if σ, σd � [β][β′]C (6.10)

σ, σd � [β + β′]C if σ, σd � [β]C ∧ [β′]C (6.11)

σ, σd � [β∗]C if σ, σd � C ∧ [β][β∗]C (6.12)

σ, σd � OC(α&) if σd(0) = Oα& and (6.13)

(α& ⊆ σ(0) ⇒ σ(1..), σd(1..) � �) and (6.14)

(α& �⊆ σ(0) ⇒ σ(1..), σd(1..) � C) (6.15)

σ, σd � OC(α;α′) if σ, σd � OC(α) ∧ [α]OC(α′) (6.16)

σ, σd � OC(α + α′) if σ, σd � O�(α) ∧ O�(α′) ∧ [α + α′]C (6.17)

σ, σd � FC(α&) if σd(0) = Fα& )81.6(dna

(α& ⊆ σ(0) ⇒ σ(1..), σd(1..) � C) and (6.19)

(α& � σ(0) ⇒ σ(1..), σd(1..) � �) (6.20)

σ, σd � FC(α;α′) if σ, σd � F⊥(α) or σ, σd � [α]FC(α′) (6.21)

σ, σd � FC(α + α′) if σ, σd � FC(α) ∧ FC(α′) (6.22)

σ, σd � P(α&) if σd(0) = Pα& and σ(1..), σd(1..) � � (6.23)

σ, σd � P(α;α′) if σ, σd � P(α) ∧ [α]P(α′) (6.24)

σ, σd � P(α + α′) if σ, σd � P(α) ∧ P(α′) (6.25)

Fig. 6.3 The deontic trace semantics of CL

Basic conditions: Figure 6.3 shows at line (6.1) that empty traces satisfy
any contract.

Done, Break: The simplest definitions are those of the trivially satisfiable
contract �, and the unsatisfiable contract ⊥. In the case of ⊥, only an
empty sequence will not have yet broken the contract, while in the case of
�, any sequence of actions satisfies the contract (whenever no obligation,
prohibition, or permission is present on the trace). See Fig. 6.3 line (6.2).

Conjunctions: For the conjunction of two contracts, the action trace must
satisfy both contracts and the deontic traces are combined point-wise, as
shown in Fig. 6.3 line (6.3).

Exclusive disjunction: Figure 6.3 line (6.4) displays the case for the dis-
junction, which is similar to conjunction. Note that the rule is valid only
for C1 and C2 being both of the form CO or CP . In the rest of this chapter
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we will write C1 ⊕ C2 with the understanding that the above restriction
applies.

Conditions: Conditions are handled structurally. It has been shown that
there exists a normal form such that concurrent actions can be pushed to
the bottom level [KPS08]. See Fig. 6.3 lines (6.5)–(6.12).

Obligations: Obligations, like conditions, are defined structurally on
action expressions. The base case of the action simply consisting of a con-
junction of actions can be dealt with by ensuring that if the actions are
present in the action trace, then the contract is satisfied, otherwise the
reparation is enacted. The case for the sequential composition of two action
sequences is handled simply by rewriting into a pair of obligations. The
case of choice (+) is the most complex one, in which we have to consider the
possibility of having either obligation satisfied or neither satisfied, hence
triggering the reparation. (Recall that the star operator cannot appear
within obligations.) See Fig. 6.3 lines (6.13)–(6.17).

Prohibitions: The semantics for prohibitions is similar to obligations,
with the difference that prohibition of a choice is more straightforward
to express. See Fig. 6.3 lines (6.18)–(6.22).

Permissions: See Fig. 6.3, (6.23)–(6.25) for the semantics of permissions.

In Sect. 6.5.1 we will see how the trace semantics presented here is suitable
for conflict detection.

6.4.2.2 Other Semantics for CL

Why are there so many semantics for CL? There are practical reasons to
have different semantics. As we have already discussed, the trace semantics
is useful for monitoring purposes, and for certain kind of analysis where a full
(Kripke) semantics is not needed, as for the detection of normative conflicts.

The encoding into the μ-calculus (or in general into another logic) is use-
ful to study expressiveness of the language, and to get a way to semantically
prove things about the language by using the proof engine (or model-based
approach) of the target logic (μ-calculus in this case). Given the non-standard
combination of deontic, dynamic and temporal operators with regular expres-
sions over actions, the semantics is in general non-compositional and thus
rewriting rules are given so CL expressions are preprocessed before giving
the encoding.

The Kripke semantics is the semantics of the language as it unambiguously
gives the meaning of each CL expression not by means of interpreting it into
another logic or formal language, but rather by using the standard world
semantics used in modal logics. Many of the ‘properties’ of the language are
somehow forced in the semantic definition, making it impossible to derive
many of the well known paradoxes inherited from the normative deontic
notions. This semantics is thus very complicated and not easy to understand
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or manipulate in manual proofs. However, it could be used as the basis of an
ad hoc model checker for CL, provided a decision procedure exists.

6.5 Verification of CL Contracts

We can perform different kinds of analysis on contracts. For CL contracts in
particular, there is work showing the feasibility of performing conflict anal-
ysis, model checking, and runtime verification. In the rest of this section we
will focus on the first, only giving a short overview on the other two.

6.5.1 Conflict Analysis of CL Contracts

We show in what follows an informal presentation on the usefulness of the
trace semantics presented above to detect conflicts.

Let C = [a]O(b) ∧ [b]F(b) be a contract defined over the action alpha-
bet {a, b}. Our aim is to check whether contract C has normative conflicts.
Let us assume for the moment that the trace semantics is based on infi-
nite sequences and does not have any information about the deontic modali-
ties associated with actions. So, the traces ‘accepted’ by the contract C are
{〈a, b, any〉 | any = (a+b)ω}∪{〈b, a, any〉 | any = (a+b)ω}. According to the
semantics, no trace starting with action {a, b} (i.e., with a and b occurring
concurrently) will be accepted by the contract, since this would imply a con-
tract violation due to the enacted conflicting obligation and prohibition. Even
more, due to the lack of deontic information in the trace, it is not possible
to identify the possible occurrence of a normative conflict. When performing
a conflict analysis we would like to have a witness of such a conflict, and
in particular a systematic way to obtain an automaton that recognises such
prefixes containing conflicts. So, it is clear that such ‘trace semantics’ needs
to be modified, namely with:

1. the addition of deontic information (which obligations, permissions and
prohibitions are satisfied at any moment);

2. the addition of a trace semantics for permission (this is not necessary in
principle for a trace semantics only for monitoring purposes); and

3. the addition of the possibility to ‘accept’ certain finite prefixes (in order
to get the witness for conflicts).

This is exactly what we have done in the previous section. Having the basis
for our conflict analysis, we proceed now with a more detailed explanation
on how the verification is done.
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6.5.1.1 Formal Definition of Conflict-Free Contracts

Conflicts in normative texts comes in four different flavours. The first two are
when at a given moment the same action is under the scope of two opposite
deontic modalities. This happens when one is being obliged and forbidden to
perform the same action (e.g., O(a)∧F(a)), and when one is being permitted
and forbidden to perform the same action (e.g., P(a) ∧ F(a)). In the former
we would end up in a situation where whatever is performed will violate the
contract. The latter case does not necessarily correspond to a real conflict
but rather a potential one: if the permission is exercised then a conflict will
occur.

The remaining two kinds of conflicts occur when certain modalities are
applied to two mutually exclusive actions generating real or potential norma-
tive conflicts. This happens when obligations are applied to mutually exclu-
sive actions (e.g., O(a)∧O(b) with a#b), and similarly with permissions and
obligations (e.g., P(a) ∧ O(b) with a#b). Note that we have not included as
potentially conflictive the case of permissions of mutually exclusive actions.
Whether this is indeed a case to be considered or not is a philosophical
question. In any case this case could be added to our analysis without incon-
venience.

Example 57 shows the importance of the (temporal) relation between sen-
tences, and the vulnerability of abstraction in modelling and specification.

Example 57: Normative Conflicts in Airport Ground Crew

Let us consider the two following sentences taken from Example 53:

- The ground crew is obliged to open the check-in desk and request the pas-
senger manifest from the airline two hours before the flight leaves.
- The ground crew is obliged to close the check-in desk 20 min before the flight
is due to leave and not before.

Though these two sentences would be considered to be conflict-free
by any human, a machine trying to automatically parse these sentences
would have to be ‘aware’ that the first sentence refers to actions hap-
pening before the action specified in the second sentence.

If the sentences are represented in a formal language where time is
abstracted away, then this time dependency is lost and the sentences
would be considered to be in conflict (as the ground crew would be
obliged to open the check-in desk and obliged to close it).

Let us come back to our main aim, that is to detect normative conflicts on
CL contracts. Example 58 shows the connection between traces and conflicts.
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Example 58: Traces and Conflicts in CL
Let us consider again the CL contract

[a]O(b) ∧ [b]F(b)

with allowed actions a and b. It is clear that both traces σ1 = 〈{a}, {b}〉
and σ2 = 〈{b}, {a}〉 satisfy the contract. However, any trace starting
with concurrent actions {a, b} (e.g., 〈{a, b}, {b}〉) will not be accepted
by the contract since any action following it will violate either the obli-
gation to perform b or the prohibition from performing b. In this case,
since unspecified, the reparation is the ⊥ clause which cannot be satis-
fied regardless of what action is performed.

We have so far reasoned about conflicts in CL in a completely informal
manner. In order to have a formal treatment of conflicts we should first define
the notion of conflict-free contract. We do so at the semantic level, as shown
in the following definition.

Definition 1 For a given trace σd of a contract C, let D,D′ ⊆ σd(i) (with
i ≥ 0). We say that D is in conflict with D′ if and only if there exists at least
one element e ∈ D such that:

e = Oa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b)),
or e = Pa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b)),
or e = Fa ∧ (Pa ∈ D′ ∨ Oa ∈ D′).

A contract C is said to be conflict-free if for all traces σ and σd such that
σ, σd � C, then for any D,D′ ⊆ σd(i) (0 ≤ i ≤ len(σd)), D and D′ are not in
conflict.

Definition 1 formalises the four cases of conflicts we have previously dis-
cussed, presented in a more concise manner (each line of the definition
presents the case for each one of the three deontic modalities).

In the following example we show how to see a normative conflict in a CL
expression, by inspecting a trace.

Example 59: Normative Conflicts in CL
Let us consider the contract

C = [a]O(b + c) ∧ [b]F(b).

We can show that C is not conflict-free (i.e., there is at least one conflict)
since 〈{a, b}, {b}〉, 〈{∅}, {{Ob, Oc}, {Fb}}〉 � C, and there are D,D′ ⊆
σd(1) such that D and D′ are in conflict. To see this, let us take D =
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{Ob, Oc} and e = Ob. We have then that for D′ = {Fb}, Fb ∈ D′

(satisfying the first line of Definition 1).

In this subsection we have characterised the notion of conflict in contracts
by analysing the set of traces accepted by the contract. In order to get a
decision procedure (an algorithm) to detect conflicts in CL contracts, we will
take an automata-based approach. In the following subsection we will show
how this automata is generated from a CL formula.

6.5.1.2 Conflict-Aware Automata for CL Contracts

We now show how to generate a finite-state automaton from a CL contract C.
The automaton is defined so that the language accepted by the automaton
corresponds to the traces given by the semantics of the contract. We also
define the notion of conflict in the generated automaton.

Definition 2 Given a contract C over an action alphabet Σ and corre-
sponding deontic alphabet Σd, we can construct an automaton A(C) =
〈S,A&, s0, T, V, l, δ〉 where:

• S is the set of states,
• A& is the set of concurrent actions from Σ,
• s0 is the initial state,
• T ⊆ S × A& × S is the set of labelled transitions,
• V is a special violation state,
• l is a function labelling states with the CL clause that holds in that state

(l : S → CL), and
• δ : S → 2Σd is a function labelling states with the set of deontic notions

that hold in that state.

We say that a run (sequence of states) is accepted by the automaton if
none of the states of the run is V . Similarly, we say that the automaton
accepts a word w, consisting of a sequence of actions, if none of the actions of
w is the label of a transition which target state containing V , in which case
we write Accept(A(C), w). Note that the automaton is deterministic.

We are not only interested in providing a definition of automata accepting
exactly those traces that are ‘accepted’ by CL, but also in giving an algorith-
mic procedure to construct such automata, described in what follows.

The construction of our automata uses a residual contract function f that,
given a CL formula C and an action α, will return the clause that needs to
hold in the following step (after ‘consuming’ the action). The definition of f
is shown in Fig. 6.4.

In this definition, the binary operator α/β (‘tail’ ) is used which gives the
tail of α if its head matches β. It is inductively defined as follows:
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α′
&/α& = ε if α′

& ⊆ α&, otherwise 0
(0;α)/α& = 0
(1;α)/α& = α

(α;α′)/α& = (α/α&);α′

(α + α′)/α& = α/α& + α′/α&

Here are some examples for the tail operator.

• (a; b)/a = b
• ((a; b) + (a; c))/a = b + c.

f : CL × A& → CL
f(�, ϕ) = �
f(⊥, ϕ) = ⊥

f(C1 ∧ C2, ϕ) = f(C1, ϕ) ∧ f(C2, ϕ)

f(C1 ⊕ C2, ϕ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� if (f(C1, ϕ) = � ∧ f(C2, ϕ) = ⊥)∨
(f(C1, ϕ) = ⊥ ∧ f(C2, ϕ) = �)

⊥ if (f(C1, ϕ) = f(C2, ϕ) = �)∨
(f(C1, ϕ) = f(C2, ϕ) = ⊥)

f(C1, ϕ) ⊕ f(C2, ϕ) otherwise

f([α&]C, ϕ) =
{

C if α& ⊆ ϕ
� otherwise

f([α&]C, ϕ) =
{

C if α& � ϕ
� otherwise

f([α;α′]C, ϕ) =

{
C if (α;α′)/ϕ = 0

[(α;α′)/ϕ]C otherwise
f([α + α′]C, ϕ) = f([α]C, ϕ) ∧ f([α′]C, ϕ)

f([β;β′]C, ϕ) = f([β][β′]C, ϕ)
f([β + β′]C, ϕ) = f([β]C ∧ [β′]C, ϕ)

f([β∗]C, ϕ) = f(C ∧ [β][β∗]C, ϕ)

f(OC(α&), ϕ) =
{ � if α& ⊆ ϕ

C otherwise
f(OC(α;α′), ϕ) = f(OC(α) ∧ [α]OC(α′), ϕ)

f(OC(α + α′), ϕ) =

⎧⎨
⎩

� if f(O⊥(α), ϕ) = � or f(O⊥(α′), ϕ) = �
C if f(O⊥(α), ϕ) = ⊥ and f(O⊥(α′), ϕ) = ⊥
OC(α + α′/ϕ) otherwise

f(FC(α&), ϕ) =
{

C if α& ⊆ ϕ
� otherwise

f(FC(α;α′), ϕ) = f([α]FC(α′), ϕ)
f(FC(α + α′), ϕ) = f(FC(α) ∧ FC(α′))

f(P(α&), ϕ) = �
f(P(α · α′), ϕ) = f(P(α) ∧ [α]P(α′), ϕ)

f(P(α + α′), ϕ) = f(P(α) ∧ P(α′), ϕ)

Fig. 6.4 The residual contract function f

The algorithm for computing the residual function is not very complex,
but it has a lot of cases and small subtleties making it difficult to understand.
So, instead of explaining it in detail we rather give an illustrative example
on a simple CL formula on how it works (see Example 60).
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Example 60: Using the Residual Contract Function

Let us consider the CL contract C � [a]O(b) ∧ [b]F(b). The application
of f to contract C and action a, f(([a]O(b) ∧ [b]F(b)), a), will give the
conjunction of the application of f to both conjunct subformulae:

f(([a]O(b)), a) ∧ f([b]F(b)), a)

By applying the definition of f again to the first conjunct, we get:

f(([a]O(b)), a) = O(b)

as it matches the first occurrence of f([α&]C,ϕ). Continuing now with
the second conjunct (same part of the definition applies), we get:

f([b]F(b)), a) = �
We thus have that:

f(([a]O(b) ∧ [b]F(b)), a) = O(b)

which is in accordance with the intuition that if action a happens, then
the obligation to do b is enacted and the rest of the contract is ‘forgot-
ten’.

The residual function f is just auxiliary; the automaton is built using the
construction function fc shown in Fig. 6.5 This functions takes as argument
the initial state of the automaton s0 (where l(s0) = C). Besides the residual
function f , fc uses function fd (shown in Fig. 6.6) that adds all the relevant
deontic information to each state (we take α& to be equal to a1& . . . &an).

fc(s) = if l(s) = 1 then
T := T ∪ (s, 1, s)

if l(s) = 0 then
V := s
T := T ∪ (V, 1, V )

otherwise ∀a ∈ A&

if ∃ s′ ∈ S s.t. l(s′) = f(l(s), a)
then T := T ∪ (s, a, s′)
otherwise
new s′
l(s′) := f(l(s), a)
S := S ∪ s′
T := T ∪ (s, a, s′)
d(s′) := fd(l(s′))
fc(s′)

Fig. 6.5 The construction function fc
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fd(C1 ∧ C2) = fd(C1) ∪ fd(C2)
fd(O(α&)) = {{Oa1}, . . . , {Oan}}
fd(F(α&)) = {{Fa1}, . . . , {Fan}}
fd(P(α&)) = {{Pa1}, . . . , {Pan}}
fd(O(α + α′)) = {x ∪ y | x ∈ fd(O(α))

and y ∈ fd(O(α′))}
fd( otherwise ) = ∅

Fig. 6.6 The deontic labelling function fd

Note that we have omitted the case for ⊕ in the deontic labelling function
description. In practice, two different automata are created for each one of
the choices, and the analysis proceeds as usual. Also note that there is no
explicit labelling function for F (α + α′) and P (α + α′), since these cases are
reduced to conjunction.

We will not give a detailed reading of the main and auxiliary algorithms,
but rather provide examples to get a feeling on how they work.

Example 61 provides a discussion on the automaton construction for con-
tract C � [a]O(b) ∧ [b]F(b).

Example 61: Building the Automaton for a Contract

Let us consider again the contract [a]O(b) ∧ [b]F(b). The automaton is
constructed by applying fc to the state s0, where l(s0) = [a]O(b) ∧
[b]F(b). Every possible transition is created (in this case, transitions
labelled with a, b and a&b) from this state to a new state labelled with
the result of applying function f to the original formula and the label
of the transition as parameters. Thus, the state that is reached with
the transition labelled with action a is f([a]O(b) ∧ [b]F(b), a) = O(b). If
there is another state with the same label, the transition will connect
to the existing state and the new one will be discarded (this ensures
termination). If there is no such a state, fc is then recursively called on
this new state. Eventually we either reach a satisfying state, a violating
state, or a state already labeled with the formula.

The automaton corresponding to the contract of Example 61 is shown in
Fig. 6.7. Note that what is written in each state is the subformula remaining to
be satisfied. Formally speaking, each state will be ‘marked’ with the deontic
information as defined by the function fd. So, O(a) is a syntactic expression
in CL, while Oa is the corresponding ‘marking’ at the state saying there is
an obligation of doing a.
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Fig. 6.7 Automaton for [a]O(b) ∧ [b]F(b)

Since our objective is to find conflicts by analysing the constructed automa-
ton, we need to define what a conflict is at the automaton level. The definition
is straightforward and it is very similar to the definition given for CL traces.

Definition 3 Given a state s of an automaton A(C), let D,D′ ⊆ fd(s). We
say that D is in conflict with D′ if and only if there exists at least one element
e of D such that:

e = Oa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b)),
or e = Pa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b)),
or e = Fa ∧ (Pa ∈ D′ ∨ Oa ∈ D′).

An automaton A(C) is said to be conflict-free if for every state s ∈ S and for
any D,D′ ⊆ fd(s), D and D′ are not in conflict.

Example 62 shows how this definition of conflict is applied to a given
automaton.

Example 62: Conflicts on Automata

The automaton shown in Fig. 6.7 is not conflict-free, since there exists a
state which is not conflict-free. Consider that s is the double-lined state
labelled with O(b)∧F(b), then fd(s) = {{Ob}, {Fb}}. Using Definition 3,
let e = Ob. For this state to be conflict-free, any subset D ∈ fs(s) should
not contain Fb, which is not the case.
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6.5.1.3 Conflict Detection Algorithm

The main algorithm takes a contract written in CL and decides whether the
given contract may reach a state of conflict. Once the automaton was gener-
ated from the contract as explained above, the conflict detection algorithm
simply consists of a standard forward or backward reachability analysis look-
ing for states containing conflicts. This analysis is based on a fixed-point
computation as usually done for model checking.3

Example 63: Detecting Conflicts on Automata

Performing reachability analysis on the CL contract we have seen in a
previous example, whose automaton is shown in Fig. 6.7, would identify
that the state labelled O(b)∧F(b), reachable from the initial state upon
receiving action a&b, is conflictive as it contains the deontic information
{{Ob}, {Fb}}.

Example 63 shows how the algorithm determines the sequence of actions
leading to the contradictory state for the contract discussed in Example 62.

6.5.1.4 Correctness of the Algorithm

We will not prove the correctness and completeness of the algorithm in detail,
but we will show the essential steps to do so. We first need to prove the
following auxiliary results: (i) the traces accepted by the automaton coincide
with those ‘accepted’ by the contract in CL (according to the trace semantics);
(ii) a contract C in CL is conflict-free if and only if the generated automaton
A(C) is conflict-free. The first part is stated as follows.

Lemma 1 Given a CL contract C, the automaton A(C) accepts all and only
those traces σ that satisfy the contract:

σ, σd � C if and only if Accept(A(C), σ).

The proof is based on a long and tedious induction on the structure of the
formula, proving that fc (and the auxiliary functions f and fd) are complete
and correct.

Note that our algorithm checks that no state contains a conflict rather than
checking all possible satisfying runs. In order to prove that this is correct we
need to prove that we generate only and all the reachable states.

3 In this book, we do not explain how model checking algorithms for temporal logics work;
we refer the reader to any standard book on the topic, e.g, [CGP99].
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Proposition 1 The function fc generates all and only reachable states.

Based on the above proposition and the definition of conflict at the trace
and the automaton level, we can prove that the automata construction func-
tion preserves conflict-freedom, and that no spurious conflicts are generated.

Lemma 2 A contract C written in CL is conflict-free if and only if the
automaton A(C) is conflict-free.

With the above auxiliary results, and the correctness and completeness
proofs of standard forward reachability analysis, we can finally prove our
main result.

Theorem 1 The CL conflict detection algorithm is correct and complete.

Termination is trivially guaranteed since the generated automaton is finite
and the reachability analysis is based on a standard computation.

6.5.1.5 The Conflict Analyser CLAN

The techniques and algorithms for conflict detection on CL contracts have
been implemented in the prototype tool CLAN [FPS09c]. The user inputs a
CL contract and the set of mutually exclusive actions, and CLAN generates
the automaton, performs the analysis described in the previous subsection,
and in case of conflicts provides counter-examples.

As a final remark on CLAN, it is worth noting that based on the existing
algorithm, CLAN could easily be extended to perform additional analyses,
detecting: (i) superfluous clauses; (ii) states labelled with a deontic notion
multiple times; (iii) what it is enforced after a sequence of actions; (iv) what
actions would lead to a specific obligation; (v) overlapping clauses; and (vi)
clauses repeating similar deontic properties.

6.5.2 The AnaCon Framework

AnaCon [ACS12] is a framework where normative texts are written in Con-
trolled Natural Language (CNL) and automatically translated into the for-
mal language CL using the Grammatical Framework (GF). In AnaCon, CL
expressions are analysed for normative conflicts by the CLAN tool, which
gives counter-examples in cases where conflicts are found.

AnaCon takes as input a text file containing the description of a contract
in two parts:

1. the contract itself written in CNL; and
2. a list of mutually exclusive actions.
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Fig. 6.8 Sample contract file in AnaCon format

Figure 6.8 shows a sample of the input file to the framework, containing part
of the description of what an airline ground crew should do before flights
leave (more on CNL later in this section).

The system is summarised in Fig. 6.9, where arrows represent the flow of
information between processing stages. (For space considerations the picture
is shown in 2 columns with the understanding that the flow continues from
the bottom of the left figure to the up right part of the right figure.)

Fig. 6.9 AnaCon processing workflow

AnaCon essentially consists of a translation tool written in GF, the conflict
analysis tool CLAN, and some script files used to connect these different
modules together. The typical system workflow is as follows:

1. The user starts with a contract (specification, set of requirements, etc.)
in plain English, which must be rewritten in CNL. This is primarily a
modelling task, (currently) done manually. It requires no technical skills
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from the user, but it does demand a knowledge of the CNL syntax and
the set of allowed verbs.

2. The CNL version of the contract in AnaCon text format (Fig. 6.8) is then
passed to the AnaCon tool, which begins processing the file.

3. The clauses in the contract are translated into their CL equivalents using
GF. This translation is achieved by parsing the CNL clauses into abstract
syntax trees, and then re-linearising these trees using the CL concrete
syntax.

4. From the resulting CL clauses, a dictionary of actions is extracted. Each
action is then automatically renamed to improve legibility of the resulting
formulae, and a dictionary file is written. The list of mutually exclusive
actions from the CNL contract is verified to make sure that each individual
action actually does appear in the contract.

5. Using the renamed CL clauses from the previous step and the list of mutu-
ally exclusive actions, an XML representation of the contract is prepared
for input into the CLAN tool.

6. This XML contract is then passed for analysis to CLAN via its command-
line interface, which checks whether the contract contains normative con-
flicts. If no such conflicts are found, the user is notified of the success. If
CLAN does detect any potential conflicts, the counter-example trace it
provides is linearised back into CNL using the GF translator in the oppo-
site direction. The dictionary file is used to re-instate the original action
names.

7. The user must then find where the counter-example arises in the original
contract. This last step must again be carried out manually, by following
the CNL trace and comparing with the original contract.

We have seen the contract language CL and the conflict detection tool
CLAN; in what follows we will briefly describe the two missing components
of AnaCon, namely our CNL and GF.

6.5.2.1 Controlled Natural Language

Controlled Natural Languages (CNLs) are artificial languages engineered to
be simpler versions of plain natural languages such as English. This simplic-
ity is achieved by carefully selecting the vocabulary and by restricting the
language’s grammar, and also by not being generic but rather considering a
specific application domain. Unlike plain natural languages, the simplifica-
tions applied to CNLs usually allow for a formal processing while remaining
easy to understand by speakers of the original parent natural language.

As usual in Formal Methods, the more expressive the CNL is, the more
complex is its automation of analysis. So, the language designer needs to
find a good trade-off between expressiveness and formalisation, which is also
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affected by the richness of the parent natural language and the specific for-
malism in which the CNL is defined [WAB+10].

Among other applications, CNLs are useful when considering human-
machine interactions which aim for an algorithmic treatment of language.
One must answer the following questions when designing a CNL [WAB+10]:

1. Who are the intended users?
2. What is the main purpose of the language?
3. Is the language domain-dependent?

In our concrete setting our answers are:

1. The intended user is any person writing normative texts.
2. The main purpose of the language is that it is close enough to English as

to be understood by any person, yet at the same time structured in such
a way that its translation into CL is feasible.

3. The language is not specifically tailored for an application domain, how-
ever, it should be easy to parse it in such a way that obligations, permis-
sions and prohibitions are easily identified.

We will not detail the whole CNL used in AnaCon but rather give a brief idea
on some of its basic constructs, namely actions and some of the normative
modalities.

Since the objective is to translate the CNL into CL we take actions as the
most primitive elements in our CNL. In natural language actions correspond
to sentences stating who is doing what, roughly following the English sentence
structure:

<sub ject> <verb> <object>

More complex structures as adverbs, prepositional phrases, etc., cannot be
expressed in CL, so we omit them from the CNL altogether. Still, since we
permit the subject and the object to be free text, the user has the freedom
to include more information than just the noun phrase of the subject or the
object. It is also possible to have ditransitive verbs, that is, verbs with more
than one object. In this case we simply insert both objects in the free text
slot for the object. If the verb is intransitive (without objects) then we can
just leave the object slot empty. However, the slot for the verb is not free
text and must come from a set of predefined verbs. While we do not have
to analyse the subject and the object slots, the ability to analyse the verb
is important since modal verbs like must and may have a special meaning in
our context.

When analysing an action, we must be able to correctly identify the begin-
ning and the end of each slot, which is difficult when there are free text slots.
Our simple solution is to require that the object and subject must be sur-
rounded with curly braces, so the user actually writes:
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{ the ground crew} opens { the check−in desk}

Actions can be combined in sequences, conjunctions, disjunctions, etc.
using different keywords in the CNL. For instance, in Example 64 we show
how the conjunction of two obligations is expressed in CNL.

Example 64: Natural Language versus Controlled Natural Lan-
guage

Let us consider the following sentence in natural language:

The ground crew is obliged to open the check-in desk and request the passenger
manifest two hours before the flight leaves.

Using the CNL defined in AnaCon, this would be re-written as:

i f { the f l i g h t } l e a v e s { in two hours } then both
− { the ground crew} must open { the check−in desk}
− { the ground crew} must r eques t { the passenger mani f e s t }

We can now build more complex sentences by adding modalities for obli-
gations, permissions and prohibitions. For instance, if we take the action “the
ground crew opens the desk”, then the different modalities may be written in
one of the following ways:

• Obligation:
{the ground crew} must open {the desk}

{the ground crew} shall open {the desk}

{the ground crew} is required to open {the desk}

• Permission: {the ground crew} may open {the desk}

it is optional for {the ground crew} to open {the desk}

• Prohibition: {the ground crew} must not open {the desk}

{the ground crew} shall not open {the desk}

In the case of obligations and prohibitions, the user can specify a repara-
tion clause which must be hold if the contract is violated. In the CNL the
reparation is introduced with comma and the keyword otherwise after the
main action. For example:

{ the ground crew} must open { the desk } , o the rw i se
{ the ground crew} must pay {a f i n e }

Here we can have an arbitrarily long list of clauses, which are applied in the
order in which they are written. The last clause is not followed by otherwise,
which indicates that its reparation is ⊥.

Even though the structure of the CNL version is noticeably less natural,
it is sufficient for our purposes to be merely close enough to English as to be
understood by any non-technical person.
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6.5.2.2 The Grammatical Framework

We have introduced the formal language CL and a CNL tailored to be trans-
lated into (and from) CL, but we have not explained how this bi-directional
translation is done. For that we use of the Grammatical Framework (GF)
[Ran11] as a grammar formalism and runtime parser/lineariser for convert-
ing between CNL and CL.

GF is a logical framework allowing to define logics and languages tai-
lored for specific purposes. It is equipped with mechanisms for mapping
abstract logical expressions to a concrete language. While the logical frame-
work encodes the language-independent structure (ontology) of the current
domain, all language-specific features can be isolated in the definition of the
concrete language. In other words, the definitions in the logical framework
comprise the abstract syntax of the domain, while the concrete syntax is kept
clearly separated.

Since GF has both a parser and a lineariser, the abstract syntax can serve
as an interlingua: when a sentence is parsed from the source language, then
the meaning of the sentence is extracted as an expression in the abstract
syntax. The abstract expression then can be linearised back into some other
language and this gives us bi-directional translation between any two concrete
languages. In AnaCon, we have two concrete syntaxes – one for English (CNL)
and one for the source language of CLAN (CL).

Another important advantage of GF from an engineering point of view
is the availability of the Resource Grammar Library (RGL) [Ran09]. Since
every domain is logically different, it is also necessary to define different
concrete syntaxes. When these are natural languages, then it means that
a lot of tedious low-level details like word order and agreement have to be
implemented again and again for each application. Fortunately, RGL provides
general linguistic descriptions for several natural languages which can be
reused by using a common language independent API. We implemented the
AnaCon syntax for English by using this library, which both simplifies the
development and makes it easy to port the system to other languages.

6.5.2.3 Case Studies

AnaCon has been applied to the two of the motivating examples presented
in Sect. 6.2.2 (Examples 53 and 54). In both cases the process started by
first manually translating the document in natural language into our CNL.
AnaCon was then applied and many conflicts were detected. A careful anal-
ysis of the first counter-examples gave an idea on whether the problem was
at the original document (a real conflict), or at the CNL (due to a wrong
modelling). At the beginning most of the conflicts detected were due to a
wrong modelling, so after few iterations to get a good CNL, the conflicts
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that occurred where due to ambiguities in the way the original documents
were written.

We briefly present in what follows a summary of the result of applying
AnaCon to Example 53. (A full description of the case studies is reported in
[ACS13].) We start by showing the modelling and re-writing process of the
example. Let us consider two clauses from the specification and show their
equivalent CNL representations.

Original: The ground crew is obliged to open the check-in desk and request the
passenger manifest from the airline two hours before the flight leaves.

CNL:

i f { the f l i g h t } l e a v e s { in two hours } then
{ the ground crew} must open { the check−in desk} and
{ the ground crew} must r eques t { the passenger mani f e s t from
the a i r l i n e }

For this clause, AnaCon gives the following CL formula as output:

CL: [b3]O(a7&b2)

where from the dictionary file (automatically generated by AnaCon) we see
that:

b3 = { the f l i g h t } l e ave { in two hours }
a7 = { the ground crew} open { the check−in desk}
b2 = { the ground crew} r eque s t { the passenger mani f e s t from
the a i r l i n e }

We show in what follows an example of a conjunction over clauses.

Original: Once the check-in desk is closed, the ground crew is prohibited from
issuing any boarding pass or from reopening the check-in desk.

CNL:

i f { the ground crew} c l o s e s { the check−in desk} then both
− { the ground crew} must not i s s u e {boarding pass }
− { the ground crew} must not reopen { the check−in desk}

AnaCon gives the following CL formula as output (again generating the
corresponding action names in the dictionary file):

CL: [b6]((F(a1))∧(F(a4)))

Though we have taken the above two examples individually, in practice
we should consider set of clauses when writing the CNL as clauses often refer
to and depend on each other. When read in natural language, the reader can
easily make the connections between the different clauses, but when it comes
to modelling the contract formally these need to be handled explicitly.

As an example, clause 10 in the example specifies a CTD for violating any
part of the contract. Thus combining clauses 1, 8, 9, and 10 from the contract
in Example 53 we obtain:
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CNL:

i f { the f l i g h t } l e a v e s { in two hours } then each o f
− { the ground crew} must open { the check−in desk}

and { the ground crew} must r eques t
{ the passenger mani f e s t from the a i r l i n e }

− i f { the ground crew} c l o s e s { the check−in desk} then
each o f
− { the ground crew} must send { luggage in fo rmat ion to

a i r l i n e }
− { the ground crew} must not i s s u e {boarding pass }
− { the ground crew} must not reopen { the check−in desk}

which results in the following CL formula:

CL: [b4]((O(b1&a2))∧[b6]((O(b2))∧((F(a1))∧(F(a4)))))

When processed with AnaCon, the first conflicting state reported was reached
after a single action:

1 counter example found
Clause :

( ( (O( a7&b2 ) ) (Oa3 ) ) ˆ ( ( (Oa2) (Ob1 ) ) ˆ ( ( [ a7 ] ( (O( a6 . ( b4 . ( a8 . a5 )
) ) ) (Ob7 ) ) ) ˆ ( ( (F( b5 ) (Oa3 ) ) ˆ ( ( (Ob6) (Oa3 ) ) ˆ ( ( [ b6 ] ( Oa9 ) ) ˆ ( (
[ b6 ] ( Fa1 ) ) ˆ ( [ b6 ] ( Fa4 ) ) ) ) ) ) ) ) )

Trace :
1 . the f l i g h t l eave in two hours

The counter-example above contains 2 parts: (i) a CL formula, and (ii)
a trace in CNL. The first part is the formula representing the state of the
automaton where the normative conflict happens, which is not particularly
interesting to the end user. The second part is a linearisation of the output
of CLAN showing what is the sequence of actions leading to the conflict; in
this case only one.

A quick analysis of the original contract reveals that the two mutually
exclusive actions opening the check-in desk and closing the check-in desk were
erroneously set as mandatory at the same level in the contract. This was a
modelling error, and was corrected in a second version of the CNL.

A second version was then rewritten, and the process applied again. After
few iterations were more conflicts are found, we arrived to the following
rewriting of the final part of the contract:

CNL:

i f { the a i r l i n e crew} prov ide s { the passenger mani f e s t to the
ground crew} then each o f

− f i r s t { the check−in crew} must i n i t i a t e { the check−in
p roce s s } . . .
− i f { the f l i g h t } l e a v e s { in 20 mins} then both

− { the ground crew} must c l o s e { the check−in desk}
− i f { the ground crew} c l o s e s { the check−in desk} then
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each o f
− { the ground crew} must send { the luggage in fo rmat ion

to the a i r l i n e }
− { the ground crew} must not i s s u e {boarding pass }
− { the ground crew} must not reopen { the check−in desk}

Generated CL: [a6]((O(a9&...))∧
([a5]((O(b6))∧[b6]((O(b2))∧((F(a7))∧(F(a4)))))))

Finally, after the iteration process described above we arrived at a final
version of the contract without conflicts.

6.5.3 Runtime Verification of Contracts

By definition a contract may be violated, so we should provide means to
monitor contracts at runtime. How to obtain a monitor from a given contract?
Would it be possible to use the automaton from conflict analysis presented
in Sect. 6.5.1? The answer is yes and no. It is indeed possible for some simple
contracts to reuse the automaton as a monitor, though this is not the case in
general. The main reason for that is that a monitor needs to: (i) be sufficiently
concrete as to refer to the actual ‘actions’ in the system being monitored (for
instance, refer to real methods calls); and (ii) be able to monitor not only
actions but also computations (for instance compute averages, percentages,
etc.).

So, though in theory it might be possible to extract a monitor from a CL
contract (and indirectly then from a CNL) as done for conflict analysis, there
still is a gap to make the approach practical, and more research is needed in
order to give a satisfactory solution.

6.5.4 Model Checking Contracts

In order to perform model checking of contracts we have to: (i) get a Kripke
structure (or a special kind of automaton, usually a Büchi automaton) of the
contract; (ii) write what we want to prove on a property language (usually
some kind of temporal logic); and (iii) encode everything on an existing model
checker (or develop an ad hoc model checker for our specific language, proving
that it is indeed possible).

There is no ad hoc model checker for CL. However, it is possible to provide
a rather involved encoding into existing model checkers, and perform model
checking of CL contracts by following these steps:

1. Model the conventional contract (in natural language) as a CL expression.
2. Translate the CL specification into Cμ (a variant of the μ-calculus).
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3. Obtain a Kripke-like model (LTS) from the Cμ formula.
4. Translate the LTS into the input language of the model checker NuSMV.
5. Perform model checking using NuSMV:

5.1 check that the model is ‘good’; and
5.2 check some properties about the parties.

6. In case of a counter-example given by NuSMV, interpret it as a CL clause
and repeat the model checking process until the property is satisfied.

7. If needed be rephrase the original contract and repeat the process.

The above has been done for the contract shown in this chapter as Example 54
[PPS07].

6.6 Closing Remarks

In this chapter we have presented the formal language CL for specifying
normative texts. We have also shown that CL has different semantics, and
that in particular the trace semantics is useful for monitoring purposes and
as the basis for a conflict detection algorithm. We have introduced AnaCon, a
framework where contracts are written in a CNL, translated into CL using GF
and analysed for conflict using CLAN. We have finished by briefly mentioning
how to perform runtime verification and model checking on CL contracts.

6.6.1 Annotated Bibliography

The notion of programming-by-contracts (or design by contract) has been
introduced by B. Meyer as early as 1986 [Mey86]. Other notions of contracts
as metaphor are JML [BCC+03]), Code Contracts [Log13]), and the notion
of service contract specification languages in Service-Oriented Architectures
(e.g., ebXML [ebx], WSLA [wsl], and as service level agreements (e.g., WS-
Agreement [wsg]).

Pace and Schneider provide an extensive discussion on the semantical chal-
lenges in defining a formal language for contracts [PS09a].

The definition of the formal language CL for specifying (untimed) contracts
(cf. Sect. 6.4) was mainly taken from [PS09b] (see also [PS07, PS12] as well as
Prisacariu’s PhD thesis [Pri10]). A prototype of the conflict analyser for CL,
the tool CLAN, is described by Fenech et al. [FPS09c]. A first trace semantics
for CL has been introduced with the main aim of being used for monitoring
purposes [KPS08]. The semantics was modified to make it also suitable for
conflict analysis [FPS09a] (Sect. 6.4.2.1 is mostly based on the later paper).
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Section 6.5 is based on [KPS08, FPS09a]. See [PPS07] for more details about
model checking CL contracts (cf. Sect. 6.5.4).

Dı́az et al. introduced the formal graphical language C-O Diagrams,
extending CL among other things with real-time constraints (see [DCMS14]
for an extended and updated version) [MCDS10]. Camilleri et al. [CPS14]
presented a CNL for C-O Diagrams following a similar approach as the one
presented in this chapter for CL.

This idea of using a CNL as a natural language-like interface for a formal
system is not new. In particular, see the Attempto controlled natural language
[FKK08], which has played an influential role in the development of the area.

Initial work showing the feasibility to relate CL and a CNL has been imple-
mented in the tool AnaCon [ACS13, ACS12]. A more detailed description of
this framework as well as its application to the two case studies appearing in
this chapter (cf. Examples 53 and 54) appears in [ACS13, MRS11].

More recently, Camilleri et al. have defined a new CNL for C-O Diagrams
and developed a proof-of-concept web-based tool to transform normative doc-
uments in natural language into a formal representation. That way it is pos-
sible to perform syntactic and semantic queries, the latter via a translation
into UPPAAL timed automata [CGS16, CS17, CHS18, Cam17].

For more details on the Grammatical Framework, see [Ran11].
This chapter has focused on CL and related tools. The area is, however,

quite broad and it is difficult to give an exhaustive list of related work. In what
concerns the formalisation of normative concepts in general using deontic
logic and other formalisms, see for instance publications appearing in the
series of conferences DEON [Deo19], Jurix [AR19] and ICAIL [ICA19], and
in the Journal of Artificial Intelligence and Law [Jou19]. For examples of the
use of CNL for other formal contracts languages see, for instance, [AGP16,
CCP16, ACP18]. See also papers appearing in the CNL workshops [DWK18].

6.6.2 Current Research Directions

The specification and analysis of normative documents (including electronic
and legal contracts) is an active research area still at the edge of the state-of-
the-art. We could take the contract analysis framework depicted in Fig. 6.1
to guide our discussion on research trends and challenges.

The first challenge is concerned with natural language processing: how
to go from a contract written in natural language to a CNL version. Today
this is mostly done manually. A first step into this direction is the work by
Camilleri et al. that uses the Stanford parser to extract relevant information
used to build a CNL [CGS16, CS17, CHS18]. The process is semi-automatic
and requires a post-processing that requires knowledge of the grammar of the
CNL as well as of the underlying translation process. The aim would be to
increase automation, for instance by using machine learning techniques.
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The CNL as presented here could be improved to be more expressive,
for instance by considering the possibility of describing temporal and timing
issues. Also a better treatment of a sentence being able to identify subjects
would be a step towards liability analysis. Similarly, having a richer CNL is
of no use if the formal language to which this is translated (in this chapter,
CL) is not rich enough as to capture real-time issues. C-O Diagrams are
definitively an improvement in this sense, but more research is needed in this
direction.

Enriching the formal language comes also with the challenge of defining
better and richer analysis tools (beyond the conflict detection we have pre-
sented). A rich property and query language would be required, as well as
algorithmic solutions (and tools) to analyse contracts.

We know that obtaining a runtime monitor directly from the contract is not
easy. Current solutions only work for simple contracts; as soon as contracts
refer to complex computations, existing techniques are not applicable. We
have already mentioned that the automata obtained from CL contracts are
too abstract to be directly used as monitors, and cannot handle complex
algorithmic content. This might require the definition of richer libraries with
standard computations, and more sophisticated algorithms to plug in such
libraries in the monitor extraction process.

Finally, more research needs to be conducted towards the analysis of con-
tracts at runtime. Once a violation is detected it is important to be able to
detect liabilities and causalities. Digital forensics is also an interesting direc-
tion: how can the logs of the monitors be used as legal evidence in disputes
concerning liabilities?
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Chapter 7

Formal Methods for
Human-Computer Interaction

Antonio Cerone

Abstract Human-computer interaction adds the human component to the
operational environment of a system. Furthermore, the unpredictability of
human behaviour largely increases the overall system complexity and causes
the emergence of errors and failures also in the systems that have been
proved correct in isolation. Rather than trying to capture and model human
errors that have been observed in the past, as it has been done tradition-
ally in human reliability assessment, we consider cognitive aspects of human
behaviour and model them in a formal framework based on the CSP pro-
cess algebra. We consider two categories of human behaviour, automatic
behaviour, mostly representative of a user carrying out everyday activities,
and deliberate behaviour, mostly representative of an operator performing
tasks driven by specific goals set up within the purpose of a working con-
text. The human cognitive model is then composed with the physical inter-
face/system and with a number of environmental aspects, including available
resources, human knowledge and experience. Finally, the overall model is
analysed using model checking within the verification framework provided
by the Process Analysis Toolkit (PAT). The ATM case study from Chap. 3
and a number of other case studies illustrate the approach.

7.1 Human Errors and Cognition

You are back home from work, tired and hungry. Your partner welcomes you
announcing that a nice cake is coming out of the oven soon and, this time,
‘properly baked’. You sniff the air and perceive a light burning smell. You
then recall that last time the cake did not properly rise, probably because
the oven was kept open for too long while inserting the cake and thus the
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initial baking temperature was not high enough. Your partner is announcing
that this time there won’t be any problems with rising because

1. during the oven pre-heating phase, the temperature was set 20 degrees
higher than the temperature indicated in the cake recipe,

2. when such higher temperature was reached, the oven was opened and the
cake inserted (supposedly the opening of the oven would have decreased
the temperature 20 degrees down, to the one indicated in the recipe), and

3. after closing the oven the temperature setting was immediately lowered to
the value indicated in the recipe.

However, the burning smell you perceive is now getting stronger, clearly show-
ing that something went wrong in performing the three-step algorithm above,
which supposedly implement our ‘baking task’. Your partner swears that the
increase of 20 degrees is not too much, because it is a widely tested sug-
gestion from a cooking internet forum and it is confirmed by many positive
comments. Can you explain what went wrong? Well, there was some kind of
cognitive error during the task execution. But which error exactly?

Normally, cognitive errors occur when a mental process aiming at opti-
mising the execution of a task causes instead the failure of the task itself.
The existence of a cognitive cause in human errors started to be understood
already at the beginning of last century, when Mach stated: “knowledge and
error flow from the same mental sources, only success can tell the one from
the other” [Mac05]. But it took till the 1990s to understand that “correct
performance and systematic errors are two sides of the same coin” [Rea90].

In our cake baking example, the three-step algorithm that implements the
task is in principle correct, but the mental processes used to carry out the task
may lead to a cognitive error. In fact, it is the human cognitive processing that
does not perform the algorithm correctly, thus causing the error to emerge.
Here, the key design point is that we cannot expect human behaviour to adapt
to a specific algorithm when performing a task. It is instead the algorithm
that must realise the task by taking human performance into account.

In the rest of this section we will briefly review the research trends and
milestones in Formal Methods for HCI (Sect. 7.1.1) and state what we mean
for user (Sect. 7.1.1) and operator (Sect. 7.1.1). Section 7.2 introduces the
structure of human memory and its main cognitive processes and, in par-
ticular, short-term memory (STM), including alternative CSP-based mod-
els (Sect. 7.2.1), and long-term memory (LTM) and its further structuring
(Sect. 7.2.2). Section 7.3 illustrates how to formally model human behaviour
while Sect. 7.4 shows how to combine the model of the human component
and the model of the interface to produce the overall model of the interac-
tive system. Finally, Sect. 7.5 addresses the formal verification of the overall
interactive system model and delves into the formal analysis of soundness and
completeness of cognitive psychology theories; in Example 69.2 of Sect. 7.5.1
we will also reveal what cognitive error caused the cake to burn and why the
algorithm used by your partner caused such an error to emerge.
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7.1.1 Background

The systematic analysis of human errors in interactive systems has its roots
in Human Reliability Assessment (HRA) techniques [Kir90], which mostly
emerged in the 1980s. However, these first attempts in the safety assessment
of interactive systems were typically based on ad hoc techniques [Lev95],
with no efforts to incorporate a representation of human cognitive processes.
within the model of the interaction.

During the 1980s and 1990s, the increasing use of formal methods led
to more objective analysis techniques [Dix91] that resulted, on the one
hand, in the notion of cognitively plausible user behaviour, based on for-
mal assumptions to bind the way users act driven by cognitive processes
[BBD00] and, on the other hand, in the formal description of expected effec-
tive operator behaviour [PBP97] and the formal analysis of errors performed
by the operator as reported by accident analysis [Joh97]. Thus, research
in the formal analysis of interactive systems branched into two separate
directions: the analysis of cognitive errors of users involved in everyday-life
[Cer11, CB04, CE07, RCB08] and work-related [MRO+15, RCBB14] inter-
active tasks, and the analysis of skilled operator’s behaviour in tradition-
ally critical domains, such as transportation, chemical and nuclear plants,
health and defence [CCL08, CLC05, De 15, MPF+16, SBBW09]. The dif-
ferent interaction contexts of a user, who applies attention very selectively
and acts mainly under automatic control [Cer11, NS86], and an operator,
who deals with high cognitive load and whose attentional mechanisms risk to
be overloaded due to coping with Stimulus Rich Reactive Interfaces (SRRIs)
[SBBW09], have led to the development of distinct approaches, keeping sep-
arate these two research directions. However, users have sometimes to deal
with decision points or unexpected situations, which require a ‘reactivation’ of
their attentional mechanisms, and operators must sometime resort to automa-
tisms to reduce attentional and cognitive loads.

In this chapter we propose a modelling approach [Cer16] that unifies these
two contexts of human behaviour, which were traditionally considered sepa-
rately in previous literature, namely

• user, i.e., a human who performs everyday activities in a fairly automatic
way, and

• operator, i.e., a human who performs deliberate tasks making large use
of attention explicitly.

User

User refers to ordinary people carrying out everyday activities, such as baking
a cake, driving a car, using a smartphone, interacting with an ATM, etc.
During such activities, users perform tasks that are initially triggered by



348 A. Cerone

specific goals, and then normally proceed in a fairly automatic way until the
goal is accomplished.

As an example of everyday activity let us consider the natural language
description of the user interaction with an ATM in Example 65 [Cer11, Cer16].

Example 65: ATM Withdrawal Task

The user’s goal is ‘cash withdrawal’ and consists of the following basic
activities (listed in no specific order).
• When the interface is ready, the user inserts the card and keeps in

mind that the card has to be taken back at a later stage.
• When the interface requests a pin, the user enters the pin.
• When the cash has been delivered, the user collects the cash.
• When the card has been returned, the user collects the card and no

longer needs to remember to collect it.
The goal ‘cash withdrawal’ is achieved when the cash is collected.

Notice that there is .no specific order among the basic activities. The user
performs a specific basic activity depending on the observed state of the
interface associated with that activity. Normally, some ordering is driven by
the specific interface with which the user interacts. If we consider the general
ATM description in Example 36 from Chap. 3, we notice that all ATMs will
deliver the cash only after the user has inserted the card and entered the pin.
And, obviously, the card can only be returned after being inserted. Specific
ATMs impose further orderings, between card insertion and pin entering as
well as between card return and cash delivery. However, if you approach
the ATM to start an interaction and notice some cash already delivered,
and supposedly forgotten by the previous user, . . .you definitely collect it!
(independently of whether you give it to the bank or you keep it.) Thus
the basic activity of collecting cash may even be the first to occur while
performing the task.

Although the task described in Example 65 requires some practice or
training, during which the novice user performs deliberate actions, then,
after repeated interactions, sufficient knowledge, skill and familiarity will be
acquired, thus allowing the user to perform the task in a fairly automatic
way. For example, an expert user will automatically insert the card in the
right slot when the interface appears in the normal ready state, which the
user is familiar with (whatever such a state looks like), and without any need
to look for the appropriate slot (which is automatically reached by the hand
movement). Such an acquired automatic behaviour allows the user to per-
form the task efficiently and quickly. However automatic behaviour is also
the context in which typical cognitive errors analysed in previous research
are most likely to occur as we will see in Sect. 7.5.1.
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Furthermore, automatic behaviour is by no means purely reactive, but
actually features an implicit, latent form of attention. In this chapter, we
will see that, on various occasions during automatic behaviour, deliberate
and conscious low-level actions are still required and, when this happens,
attention becomes explicit and takes control. We will thoroughly explore the
mechanism of attention and we will see that, in some situations, it may also be
activated by the failure of those very expectations that the user has developed
through experience and training, thus leading to the emergence of cognitive
errors in the form of inappropriate deliberate responses.

Operator

Operator refers to a human who performs a task with a general purpose
whereby specific goals are set along the way. In this case, failing to achieve
the goal is not a task failure, provided the system state is still consistent
with the purpose. Examples are operators of an Air Traffic Control (ATC)
system, a nuclear power control room, a device to administer a therapy to a
patient and a machine of an industrial plant. The operator’s task is normally
a monitoring one, which requires the performance of deliberate actions when
the observed system behaviour is assessed as abnormal.

In Example 66 we consider the natural language description of a task of an
operator interacting with a ATC simulator, which shows position, direction
and speed of aircraft moving withing a specific sector of the air space [CCL08,
CLC05].

Example 66: ATC Task

The operator’s purpose is to ensure that the aircraft moving through
the sector remain horizontally separated by no less than the defined
minimum separation distance (5000 m): failure of this requirement is
called separation violation. Vertical separation is ignored by the simu-
lator. The operator can see position, direction and speed of the aircraft
on the screen. The operator’s task involves monitoring the movement of
aircraft on the screen, searching for pairs of aircraft that are in conflict,
that is, which may violate separation. This task comprises the following
subtasks:
• scan the screen searching for a pair to monitor as possibly being

in conflict,
• classify the pair as a conflict or a non conflict,
• prioritise the conflict by deciding whether there is a need for a

plan to resolve an identified conflict,
• decide an action to resolve the conflict, possibly defer it or reclassify

the conflict as a non conflict while trying to work out the plan of
action,
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• perform the action that has been decided, and
• new phase subtask whether to go back to scan the screen or per-

form an action that was previously deferred or exit the ATC operator
role by abandoning the purpose (end of the simulation session, which
in real-life would be the end of the operator shift).
Each subtask is driven by a goal, which is set deliberately under the

influence of the purpose. For instance, the scan the screen task is
driven by the deliberately set goal of identifying a part of the air space
where there might be a conflicting pair of aircraft. Such a goal has an
holistic flavour, since we cannot fully characterise all parameters that
the operator considers in order to identify the critical part of air space.
Furthermore, not being able to achieve the goal does not represent a task
failure, since it is possible that no pair of aircraft violates separation,
consistently with the ATC purpose.

Similarly,

• The purpose of the operator of a nuclear plant control room is to ensure
the safe functioning of the plant. This purpose results in the monitoring
of all system readout, searching for readout configurations that may be
indicators of anomalies: goals are deliberately set in order to check specific
readout configurations but also, in a more holistic way, by considering
configurations which are not normally associated with anomalies and set
new subgoals to further investigate them.

• The purpose of the operator of a machine of an industrial plant is to fol-
low standard and specific operating procedures while using the machine.
The operator must make deliberate choices depending on the perceived
situation and consequently set goals that are consistent with the operat-
ing procedures. Furthermore, since operating procedures refer to generic
situations and are by no means exhaustive, the operator’s choices are not
made among a predefined set of possibilities, but normally require a global
assessment of the current situation.

We can conclude that an operator cannot automatically act in response to
observations, but has to globally assess the observed situation and make
informed, deliberate decisions on whether to act and what to do. Goals are
thus established throughout the process according to the purpose of the task.

7.2 Human Memory and Memory Processes

Following the information processing approach normally used in cognitive
psychology, we model human cognitive processes as processing activities that
make use of input-output channels, in order to interact with the external
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environment, and three main kinds of human memory, in order to store infor-
mation:

– sensory memory, where information perceived through the senses persists
for a very short time,

– short-term memory (LTM), also called working memory, which has a
limited capacity and where the information that is needed for processing
activities is temporarily stored with rapid access and rapid decay, and

– long-term memory (LTM), which has a virtually unlimited capacity
and where information is organised in structured ways, with slow access
but little or no decay [DFAB04].

A usual practice to keep information in memory is rehearsal. In particular,
maintenance rehearsal allows us to extend the time during which information
is kept in STM, whereas elaborative rehearsal allows us to transfer information
from STM to LTM.

7.2.1 Short-Term Memory and Closure

The limited capacity of short-term memory has been measured using exper-
iments in which the subjects had to recall items presented in sequence. By
presenting sequences of digits, Miller [Mil56] found that the average person
can remember 7±2 digits. However, when digits are grouped in chunks, as it
happens when we memorise phone numbers, it is actually possible to remem-
ber larger numbers of digits. Therefore, Miller’s 7±2 rule applies to chunks of
information and the ability to form chunks can increase people’s STM actual
capacity.

The limited capacity of short-term memory requires the presence of a
mechanism to empty it when the stored information is no longer needed.
When we produce a chunk, the information concerning the chunk compo-
nents is removed from STM. For example, when we chunk digits, only the
representation of the chunk stays in STM, while the component digits are
removed and can no longer be directly remembered as separate digits. Gen-
erally, every time a task is completed, there may be a subconscious removal
of information from STM, a process called closure: the information used to
complete the task is likely to be removed from STM, since it is no longer
needed.

We can use CSP to define a general STM model as shown in Example 67.

Example 67: Short-Term Memory: CSP Model

The STM model consists of n states STM i, with i = 1, . . . , n, where
– n is the STM maximum capacity,
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– action store represents the storage of a piece of information and
decreases the available capacity by one unit,

– action remove represents the removal of a piece of information and
increases the available capacity by one unit,

– action closure represents the occurrence of a closure, due to the suc-
cessful completion of the task, and completely clears STM, and

– action delay occurs every time STM is emptied and represents a time
delay following the successful or unsuccessful end of the task.

The empty STM of capacity 7 is modelled by process STMempty by
defining it as STM7:

STMempty = STM7;
STM7 = store -> STM6 []

delay -> STMempty []
closure -> delay -> STMempty;

STM6 = store -> STM5 [] remove -> STM7 []
delay -> STMempty []
closure -> delay -> STMempty;

...
STM2 = store -> STM1 [] remove -> STM3 []

delay -> STMempty []
closure -> delay -> STMempty;

STM1 = store -> STM0 [] remove -> STM2 []
delay -> STMempty []
closure -> delay -> STMempty;

STM0 = store -> STMmanagement []
remove -> STM1 []
delay -> STMempty []
closure -> delay -> STMempty;

STMmanagement = overloadedSTM -> delay -> STMempty;

The attempt to store information in a full STM is handled by pro-
cess STMmanagement, which in this example is associated with action
overloadedSTM followed by a delay.

Notice that this memory model does not include the representation of the
actual pieces of information that can be stored in STM. Information con-
tents need to be represented by further CSP processes, one for every possible
piece of information to define the two possible information states, stored and
not stored. These further processes must synchronise with the CSP process
in Example 67, thus resulting in a complex model, which is not easy to under-
stand and manage and has limited scalability.

In order to develop a more intuitive, manageable and scalable model,
we consider the CSP extension implemented in the Process Analysis Toolkit
(PAT) [PAT19]. In particular, PAT provides integer variables and arrays as
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syntactic sugar to define system states, without any need to explicitly rep-
resent such states as additional synchronising processes. Processes can be
then enabled by guards, which check the current values of variables, while
events are annotated with performed assignments to variables and, more in
general, with any statement block of a sequential program. Notice that the
statement block is an atomic action, i.e. it is executed until the end without
any interruption or interleaving. However, annotated events cannot synchro-
nise with events of other processes, i.e., the parallel composition operator
treats annotated events in the same way as the interleaving operator. PAT
also supports the definition of constants, either singulnnand or as part of an
enumeration, which associates consecutive integer numbers starting from 0
to the enumerated constants. For example

#define low 0;
#define medium 1;
#define high 2;

are three declarations of constants, which can be globally introduced in an
alternative way as the enumeration

enum {low, medium, high};

The most obvious array implementation of STM would use each position
of the array to store a piece of information. Thus the size of the array would
represent the STM maximum capacity. However, the retrieval of information
from STM would require to go through all elements of the array. Instead, we
consider the implementation in Example 67.1.

Example 67.1: Short-Term Memory: PAT Model

The STM model consists of an array stm whose capacity is given by the
number of possible pieces of information that can be stored. Such a num-
ber is defined as a constant InfoNumber, which, in this example, equals
10. The various pieces of information (e.g. Info) are introduced using
an enumeration. The STM maximum capacity is defined as a constant
M, which, in this example, equals 7.

enum { ... , Info , ... };

#define InfoNumber 10;
#define M 7;

var stmSize = M;
var stm[InfoNumber];

By default all positions of the array are initialised to 0. The storage of
information Info in the STM is performed by the occurrence of event
store which is enabled by guard stmSize < M , which ensure that the
STM is not full, and results in setting the Info-th position of array
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stm to 1 and incrementing variable stmSize. This is achieved with the
following construct:

[stmSize < M] store {stm[Info] = 1; stmSize++}

The retrival and removal of information Info from STM is performed by
the occurrence of event retrieve which is enabled by guard stm[Info]
== 1, which ensure that Info is in STM, and results in setting the
info-th position of array stm to 0 and decrementing variable stmSize.
This is achieved with the following construct:

[stm[Info] == 1] retrieve {stm[Info] = 0; stmSize--}

Closure is achieved by resetting the contents of all positions of the stm
array to 0 and assigning 0 to variable stmSize.

All aspects of closure implementation using PAT are explained in details in
Sect. 7.3.3.

7.2.2 Long-Term Memory

Long term memory is divided into two types.

• Declarative or explicit memory refers to our knowledge of the world
(‘knowing what’) and consists of the events and facts that can be con-
sciously recalled:

– our experiences and specific events in time stored in a serial form
(episodic memory), and

– structured record of facts, meanings, concepts and knowledge about the
external world, which we have acquired and organised through associa-
tion and abstraction (semantic memory).

• Procedural or implicit memory refers to our skills (‘knowing how’) and
consists of rules and procedures that we unconsciously use to do things,
particularly at the motor level.

Emotions and specific contexts and environments are factors that affect the
storage of experiences and events in episodic memory. Information can be
transferred from episodic to semantic memory by making abstractions and
building associations, whereas elaborative rehearsal facilitates the transfer of
information from STM to semantic memory in an organised form.

Note that also declarative memory can be used to do things, but in a very
inefficient way, which requires a large mental effort in using the short-term
memory (high cognitive load) and a consequent high energy consumption.
In fact, declarative memory is heavily used while learning new skills. For
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example, while we are learning to drive, ride a bike, play a musical instru-
ment or even when we are learning to do apparently trivial things, such as
tying a shoelace, we consciously retrieve a large number of facts from the
semantic memory and store a lot of information into STM. Skill acquisition
typically occurs through repetition and practice and consists in the creation
in procedural memory of rules and procedures (proceduralisation), which can
be then unconsciously used in an automatic way with limited involvement of
declarative memory and STM.

7.3 Human Behaviour and Interaction

In this section we present how to model the human components using PAT.

7.3.1 Input as Perceptions and Output as Actions

Input and output occur in humans through senses and the motor system. In
this chapter we give a general representation of input channels in term of
perceptions, with little or no details about the specific senses involved in the
perception, but with a strong emphasis on the semantics of the perception in
terms of its potential cognitive effects. For instance, if the user of a vending
machine perceives that the requested product has been delivered, the empha-
sis is on the fact that the perception of the product being delivered induces
the user to collect it and not on whether the user has seen or rather heard the
product coming out of the machine. We represent output channels in term of
actions. Actions are performed in response to perceptions.

In Example 65 of Sect. 7.1.1 we can identify a number of perceptions and
actions, which we describe in Example 65.1

Example 65.1: Perceptions and Actions

Perceptions:
cardR the interface is perceived ready,
pinR the interface is perceived to request a pin,
cashO the cash is perceived delivered, and
cardO the card is perceived returned.
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Actions:

cardI the user inserts the card,
pinE. the user enters the pin,
cashC the user collects the cash, and
cardC the user collects the card.

7.3.2 Cognitive Control: Attention and Goals

We have seen in Sect. 7.2.2 that skill acquisition results in the creation in
procedural memory of the appropriate rules to automatically perform the
task, thus reducing the accesses to declarative memory and the use of the
STM, and, as a result, optimising the task performance. Inspired by Norman
and Shallice [NS86], we consider two levels of cognitive control:

• automatic control is a fast processing activity that requires little or no
attention and is carried out outside awareness with no conscious effort
implicitly, using rules and procedures stored in the procedural memory,
and

• deliberate control is a processing activity triggered and focussed by
attention and carried out under the intentional control of the individual,
who makes explicit use of facts and experiences stored in the declarative
memory and is aware and conscious of the effort required in doing so.

For example, let us consider the process of learning to drive

Example 68: Learning to Drive a Car

Automatic control is essential in driving a car and, in such a context,
it develops throughout a learning process based on deliberate control:
during the learning process the driver has to make a conscious effort
to use gear, indicators, etc. in the right way (deliberate control) and
would not be able to do this while talking or listening to the radio.
Once automaticity in driving is acquired, the driver is aware of the high-
level tasks that are carried out, such as driving to office and stopping
along the way to buy a newspaper, but is not aware of low-level details
that automatically affect the action performance, such as changing gear,
using the indicator and the colour of the light, amber or red, while
stopping at a traffic light or even turning and whether stopping or not
at a traffic light (automatic control).
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Let us consider a narrative description of the baking task illustrated at the
beginning of Sect. 7.1 in terms of perception, actions and information stored
in and retrieved from the STM.

Example 69: Advanced Baking Task

Assuming that we have already put all ingredients in a bowl, the
sequence of activities (which may be further decomposed) is as follows.
1. All ingredients are mixed in the bowl.
2. When the mix is perceived having the right consistency, it is poured

in a tin.
3. The cake baking temperature is read on a recipe or retrieved from

LTM and it is then stored in STM.
4. It is planned to set initially a temperature higher than the baking

temperature.
5. The oven is switched on by setting the temperature higher than the

cake baking temperature, keeping in mind that the temperature will
have to be eventually lowered.

6. After the set temperature is reached, which is perceived through a
distinctive warning sound, the oven is opened, the tin is inserted in
the oven, the oven is closed and the timer is set, keeping in mind that
the cake will have to be eventually taken out of the oven.

7. The temperature setting is lowered to the cake baking temperature.
8. When the cake is baked, which is perceived through a distinctive

warning sound associated with the timer, the oven is switched off.
9. The cake is removed from the oven.

Perceptions are briefly stored in sensory memory and only relevant percep-
tions are transfered to STM using attention, a selective processing activity
that aims to focus on one aspect of the environment while ignoring others.
We can see this focussing activity as the transfer of the selected perception
from sensory memory to STM.

For both users and operators the top-level task can be decomposed in
a hierarchy of goals and tasks until reaching basic activities, which do not
require further decomposition and can be performed by executing a single
action.

In our model of cognitive behaviour we consider a set Π of perceptions, a
set Σ of actions, a set Γ of goals, a set Ξ of purposes, and a set Δ of pieces of
cognitive information. The information that can be processed by the human
memory is given by the set

Θ = Π ∪ Σ ∪ Γ ∪ Ξ ∪ Δ.

In our model, we assume that a piece of information in Θ may belong to one
or more of the following categories.
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• Perception transferred to STM (set Π): a perception transferred from
sensory memory to STM as the result of attention.

• Reference to the future (set Σ): an action to perform at some point in
the future.

• Cognitive state (set Δ): a description of the human knowledge about a
state of the task or of the system.

• Received/retrieved information (set Δ): a piece of information that
has been received (i.e., read or heard) or retrieved from LTM.

• Goal (set Γ ): the outcome of the task, which is initially in STM.
• Purpose (set Ξ): the underlying reason for performing the task, which

normally influences the goal.

All categories of information apart from purposes may be stored in STM.
Therefore STM ∈ 2Θ\Ξ .

Example 69.1: Categories of information

In the baking task we can distinguish the six possible categories of
information.
Perception transfered to STM

The perceived sound that the oven has reached the right tempera-
ture is transferred to STM in Activity 6 and will be then retrieved
once another task, which is carried out while waiting for the oven to
heat, has been completed or can be interrupted (which will occur in
Activity 6).

Reference to the future
References to the future action of lowering the temperature (to be
performed in Activity 7) and to the action of taking the cake out
of the oven (to be performed in Activity 9) are stored in STM in
Activities 5 and 6.

Cognitive state
Activities 2, 3 and 6 must store a cognitive state pointing at the
next basic activity in order to ensure the correct sequentialisation;
in addition Activity 3 must remove its cognitive state, stored by the
previous basic activity.

Received/retrieved information
The read/retrieved baking temperature (Activity 3) is transferred to
STM.

Goal and Purpose
The goal of having the cake baked is initially in STM and is influenced
by the purpose of baking the cake in a way that ensure proper raising.
Notice that all categories of information, except for the cognitive

state and purpose, are explicit in the narrative description.
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A task goal is formally modelled as

goal(info)

where info ∈ 2Θ\Γ \{∅} is a non-empty set of pieces of information except
goals.

Information info characterises the accomplishment of the goal, which
results in flashing out STM.

7.3.3 Automatic Control

In automatic control our behaviour is not affected by goals but is driven by
perceptions plus pieces of information ‘automatically’ stored in STM dur-
ing the top-level task processing. As an example of automatic control let us
consider the natural language description of driving a car.

Example 70: Car Driving

Suppose that during working days we always drive to our office, whereas
on Saturdays we drive to a supermarket, initially taking the same route
as to the office, but then turning into a different road.

It might sometimes happen, especially in a situation of high cognitive
load, that we actually drive to our office rather than to the supermar-
ket, as instead we intended. The underlying cognitive reason (genotype
error) of this observed error (phenotype error) is that our automatic
control (not driven by the goal to go to the supermarket) may not switch
to deliberate control (driven by the goal to go to the supermarket) when
we reach the intersection where the two routes diverge.

For each A ⊆ Θ we define Ā = {̄ı | i ∈ A, i /∈ Ξ ∪ Γ} and Â = A ∪ Ā.
Each element ı̄ ∈ Θ̄ denotes the absence of the piece of information i ∈ Θ.
Obviously ∅̂ = ∅̄ = ∅.

We model a basic activity under automatic control (automatic activity) as
a quadruple (perc, info1, info2, act), where

• perc ∈ Π is a perception,
• info1 ∈ 2Θ̂\Ξ\Γ is the information retrieved and removed from STM,
• info2 ∈ 2Θ\Ξ is the information stored in STM, and
• act ∈ Σ is a human action.

The quadruple (perc, info1, info2, act) is subsequently written as

info1 ↑ perc =⇒ act ↓ info2.
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We formally denote by none when a component of a basic activity is absent
(perception, action) or is the empty set (information).

Actions may involve an interaction with the system interface or be purely
human physical actions with no support from the system. A basic activity
whose action is an interaction is called interactive activity. A basic activity
whose action is a physical action is called physical activity. Information is
kept promptly available, while it is needed to perform the current top-level
task, by storing it in STM. A basic activity is enabled (and can be performed)
when

• info1 ∩ Θ ⊆ STM ,
• there exists info3 ⊆ Θ such that info1 ∩ Θ̄ = info3 and info3 ∩ STM = ∅,

and
• perc is available in the environment.

Thus the basic activity is triggered by the presence of info1 ∩ Θ in STM, the
absence of info3 ⊆ Θ from STM, with info3 = info1 ∩ Θ̄, and the presence of
perc in the environment.

The performance of the basic activity results in the removal of info1 ∩ Θ
from STM, the execution of action act and the storage of info2 in STM.
Therefore, in the absence of closure, the performance of the basic activity
changes the value of STM from STM to

STM ′ = (STM\info1) ∪ info2.

When goal(info) ∈ STM , the performance of the basic activity causes closure
if

info\Ξ ⊆ (STM\info1) ∪ info2 ∪ {perc, act}
where STM is the content of STM before the performance of the basic activ-
ity. In the presence of closure, the performance of the basic activity changes
the STM from STM to

STM ′ = (STM\{info1, goal(info)}) ∩ Γ ∪ info2.

Therefore, the closure is determined by the perception, the performance of the
action and some pieces of information in STM that make, possibly together
with some purposes, the argument of the goal. The closure causes the removal
from STM of all information except info2 and the non achieved goals. Note
that at least one component of the basic activity on the left of ‘=⇒’ and one
on its right have to be distinct from none. When the action is none and the
perception present, the basic activity is an automatic attentional activity, in
which implicit attention causes the transfer of a perception to STM. When
both the action and the perception are none, the basic activity is called
cognitive activity.

The automatic behaviour described in Example 65 is formalised in Exam-
ple 65.2
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Example 65.2: Automatic Behaviour

Let be
Perceptions: Π = {cardR, pinR, cashO, cardO},
Actions: Σ = {cardI, pinE, cashC, cardC},
Purposes: Ξ = ∅,
Cognitive Information: Δ = ∅,
Goals: Γ = {goal(cashC)},

Set Ξ is empty since the purpose is not relevant here.
A simple ATM task, in which the user has only the goal to withdraw

cash, is modelled by the following four basic activities:

1. none ↑ cardR =⇒ cardI ↓ cardC
2. none ↑ pinR =⇒ pinE ↓ none
3. none ↑ cashO =⇒ cashC ↓ none
4. cardC ↑ cardO =⇒ cardC ↓ none

The goal (‘to withdraw cash’) is formally modelled as

goal(cashC)

Initially the STM only contains the goal:

STM = {goal(cashC)}
All basic activities in this task are automatic interactive activities. A
reference to action cardC is stored in STM by Activity 1, which will
then be essential in enabling Activity 4. The goal is accomplished when
action cashC is performed in Activity 3.

Modelling Automatic Control using PAT

Example 65.3 illustrates how to use PAT to define the infrastructure to model
the closure phenomenon for the ATM task described in Example 65.2. The
task aims at achieving the goal of withdrawing cash (getCashGoal).

Example 65.3: Closure in Automatic Control using PAT

enum { getCashGoal };
enum { None,

CardR, PinR, CashO, StatO, CardO ,
CardI, PinE, CashC, CardC,
Interaction }; // 10 items
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#define G 1; // No. of goal
#define N 10; // No. of stm array positions
#define M 7; // STM maximum capacity

var stmGoal = [ 0 ];
var stm[N];
var stmSize;
var perc[N];

The storage of goal in STM is modelled by the one position array
stmGoal. The content of this position is initialised to 0. Arrays stm
and perc implement the STM non-goal contents and the perceptions
available in the environment, respectively.

The closure controls the removal of the achieved goal and the removal of
non-goal information in order to free memory space for further processing
towards the achievement of other goals. Example 65.4 illustrates how to use
PAT to model the removal of goal getCashGoal for the ATM task.

Example 65.4: Closure in Automatic Control using PAT

Closure() = ba-> (
[stmGoal[getCashGoal] == 1] cashC ->

achieveGetCash {stmGoal[getCashGoal] = 0;
stmSize--;} -> FlashOut() []

eact -> Closure() );
Event ba marks the beginning of the basic activity, eact marks the end
of the action, and event eba marks the end of the basic activity. Process
Closure is guarded by a condition on the presence of the goal in STM
(stmGoal[getCashGoal] == 1). When the action associated with the
goal is performed (cashC models that the cash is collected) the goal is
achieved (achieveGetCash) and removed from STM by changing to 0
the position of the stmGoal array corresponding to the achieved goal
(getCashGoal) and decrementing stmSize.

Example 65.5 illustrates how to use PAT to model the removal of the non-
goal information for the ATM task.

Example 65.5: Closure in Automatic Control using PAT

FlashOut() = closure { var cell = 0;
while (cell < M) {

if (stm[cell] == 1) {
stmSize--;

};
stm[cell] = 0 ;
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cell = cell + 1;
}

} -> eact -> Closure();
Process FlashOut clears the contents of the non-goal part of the STM
(array stm). In fact, the storage of goal in STM is separately imple-
mented by array stmGoal to ensure that closure does not remove goals
other that the achieved one.

Example 65.6 illustrates how to use PAT to initialise the task with the
appropriate goal for the ATM task.

Example 65.6: Closure in Automatic Control using PAT

Goals() = [stmSize < M && stmGoal[getCashGoal] == 0]
getCash {stmGoal[getCashGoal] = 1;

stmSize++} -> Goals() []
[stmGoal[getCashGoal] == 1] ba -> eba -> Goals();

Process Goals initialises the task by adding the goal (getCashGoal) to
the STM by setting to 1 the corresponding position of the stmGoal array
and incrementing stmSize, provided that the STM does not exceeds its
maximum capacity (stmSize < M).

In general, the storage of goals in STM is modelled by array stmGoal, whose
positions are initialised to 0.

Example 65.7 illustrates how to use PAT to model the basic activities for
the ATM task described in Example 65.4.

Example 65.7: Automatic Control Task using PAT

Task() = ba -> (
[stmSize < M && perc[CardR] == 1]

cardI -> eact -> store {stm[CardC] = 1; stmSize++}
-> eba -> Task() []

[perc[PinR] == 1]
pinE -> eact -> eba -> Task() []

[perc[CashO] == 1]
cashC -> eact -> eba -> Task() []

[stmSize > 0 &&
perc[CardO] == 1 && stm[CardC] == 1]
retrieve {stm[CardC] = 0; stmSize--}
-> cardC -> eact -> eba -> Task()

);

User() = Closure() || Goals() || Task();
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Each basic activity info1 ↑ perc =⇒ act ↓ info2 is defined by one choice of
the Task process. The choice is a process guarded by

• condition perc[P] == 1, if perc 
= none, where P is the position of array
perc that implements perception perc,

• condition stmSize > n, if n+1 is the number of pieces of information in
info1, and one condition stm[I] == 1, for each piece of information i ∈
info1, if info1 
= none, where I is the position of array stm that implements
i, and

• condition stmSize < M-n, where M is the maximum capacity of STM, if n
is the cardinality of info2\info1.

The first event of the process implements action act. Annotated actions store
and retrieve contain the assignments described in Example 67.1

Process User is the parallel composition of the three processes defined in
Examples 65.4 and 65.7

Notice that the use of events eact and eba forces the closure to occur
between the action performance and the storage of information in STM. In
this way, the same basic activity that causes closure and removal of a goal or
subgoal may also store a new goal or information in STM.

In Sect. 7.4 we will see how to combine this user model with an interface
model. Then, in Sect. 7.5.1 we will show how to use model checking to formally
verify properties of such an overall system.

7.3.4 Deliberate Control

In deliberate control, the role of the goal is not only to determine when
closure should occur but also to drive the task: we act deliberately to achieve
goals. Thus basic activities are not only driven by perceptions and non-goal
information stored in STM, but also by one specific goal stored in STM. A
typical case of deliberate behaviour is problem solving, in which the task goal
is normally reached through a series of steps involving the establishing of
subgoals. Achieving the subgoal takes the operator somehow closer to the
task goal until this can be achieved directly. This process is illustrated in
Example 71.

Example 71: Moving a Box

We need to move a box from point A to point B. The box is full of items.
If the box is light enough then we just move it. Otherwise we have first
to empty it, then move it and finally fill in it again. Emptying the box
is a subgoal that allows us to move a heavy box.

In Example 71 we can identify a number of perceptions and actions as
described in Example 71.1
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Example 71.1: Perceptions and Actions

Perceptions:
light the box is perceived light;
heavy the box is perceived heavy.

Actions:

moveBox the human moves the box;
emptyBox the human empties the box;
fillBox the human fills in the box.

Cognitive information:

boxMoved the fact that the box has been moved with its contents;
boxEmptied the fact that the box is empty;
boxMovedEmpty the fact that the box has been moved without

its contents.

We model a basic activity under deliberate control (deliberate activity) as
a quintuple (goal(info), perc, info1, info2, act), where

• goal(info) ∈ Γ is the driving goal,
• perc ∈ Π is a perception,
• info1 ∈ 2Δ̂\Ξ\Γ is the information retrieved and removed from STM,
• info2 ∈ 2Δ\Ξ is the information stored in STM, and
• act ∈ Σ is a human action.

As above, the tuple is denoted as a rule:

goal(info) : info1 ↑ perc =⇒ act ↓ info2.

If info1 = none, the model of the basic activity can be shortened as

goal(act) ↑ perc =⇒ act ↓ info2

As for automatic activities, also a deliberate activity is

– interactive when its action is an interaction,
– physical when its action is a purely physical action,
– attentional when the action is none and the perception is present, and
– cognitive when both the action and the perception are none.

The basic activity is enabled (and can be performed) when

• {goal(info′)}∪(info1∩Δ) ∈ STM , with info ⊆ info′ and info\Ξ = info′\Ξ,
• info1 ∩ Δ̄ /∈ STM , and
• perc is available in the environment.
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The first condition means that the goal in STM is the same as the one in the
basic activity apart from some additional purposes. In fact, on the one hand,
a specific purpose ξ ∈ Ξ does not prevent goals for less specific purposes to
be used, since they will still get closer to the goal for purpose ξ, on the other
hand, goals for more specific purposes should not be used, since they might
take far away from the goal for purpose ξ. The performance of the basic
activity and the closure are the same as in the case of automatic control.

The automatic behaviour described in Example 71 is formalised in Exam-
ple 71.2

Example 71.2: Deliberate Behaviour

Let be
• Π = {light, heavy},
• Σ = {moveBox, emptyBox, fillbox},
• Ξ = ∅,
• Γ = {goal(boxMoved), goal(boxEmptied)},
• Δ = {boxMoved, boxEmptied, boxMovedEmpty} ∪ Γ ∪ Π ∪ Σ.

Set Ξ is empty since the purpose is not relevant here.
The task is modelled by the following seven basic activities:

1. goal(boxMoved) ↑ light =⇒ none ↓ light
2. goal(boxMoved) ↑ heavy =⇒ none ↓ heavy
3. goal(boxMoved) : light ↑ none =⇒ moveBox ↓ boxMoved
4. goal(boxMoved) : heavy ↑ none =⇒ none ↓ goal(boxEmptied)
5. goal(boxEmptied) ↑ none =⇒ emptyBox ↓ boxEmptied
6. goal(boxMoved) :

boxEmptied ↑ none =⇒ moveBox ↓ boxMovedEmpty
7. goal(boxMoved) :

boxMovedEmpty ↑ none =⇒ fillBox ↓ boxMoved

The task goal is formally modelled as

goal(boxMoved)

and requires the use of subgoal

goal(boxEmptied).

Initially the STM only contains the task goal:

STM = {goal(boxMoved)}

Example 71.3 shows the usage of STM while performing the task modelled in
Example 71.2 with a heavy box.
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Example 71.3: STM usage in Deliberate Behaviour

Initially STM contains the goal of moving the box (goal(boxMoved)).
The evolution of the content of STM is driven by the deliberate control
activities in LTM as described in Example 71.2.
• STM = {goal(boxMoved)}

2. goal(boxMoved) ↑ heavy =⇒ none ↓ heavy
• STM = {goal(boxMoved), heavy}

4. goal(boxMoved) : heavy ↑ none =⇒ none ↓ goal(boxEmptied)
• STM = {goal(boxMoved), goal(boxEmptied)}

5. goal(boxEmptied) ↑ none =⇒ emptyBox ↓ boxEmptied
(Goal goal(boxEmptied) achieved and removed due to closure)

• STM = {goal(boxMoved), boxEmptied}
6. goal(boxMoved) :

boxEmptied ↑ none =⇒ moveBox ↓ boxMovedEmpty
• STM = {goal(boxMoved), boxMovedEmpty}

7. goal(boxMoved) :
boxMovedEmpty ↑ fillBox =⇒ moveBox ↓ boxMoved

(Goal goal(boxMoved) achieved and removed due to closure)
• STM = {boxMoved}

After the fact that the box is heavy (heavy) is internalized through
Activity 2, the performance of Activity 4 determines the addition of
the new goal goal(boxEmptied) to STM and Activity 4 determines the
achievement of such a goal. Then Activity 6 determines the moving
of the box and, finally, Activity 7 its refilling. The final mental state
is the awareness that the box has been moved, which is modelled by
the presence of cognitive state boxMoved in STM. All goals have been
removed from STM once achieved.

Modelling Deliberate Control using PAT

Example 71.4 illustrates how to use PAT to model the closure phenomenon
for the task described in Example 71.3.

Example 71.4: Closure in Deliberate Control using PAT

enum { boxMovedGoal, boxEmptiedGoal};
enum { None,

Heavy, Light,
moveBox, emptyBox, fillBox,
BoxMoved, BoxEmptied, BoxMovedEmpty,
Interaction }; // 10 items
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#define G 2; // No. of goal
#define N 10; // No. of stm array positions
#define M 7; // STM maximum capacity

var stmGoal = [ 0 , 0 ];
var stm[N];
var stmSize;
var perc[N];
var info[N];

Closure() = ba-> (
[stmGoal[boxMovedGoal] == 1 &&

(info[boxMoved] == 1 || stm[BoxMoved])]
achieveBoxMoved {info[BoxMoved] = 0;

stmGoal[BoxMoved] = 0;
stmSize--;} -> FlashOut() []

[stmGoal[boxEmptiedGoal] == 1 &&
(info[boxEmptied] == 1 || stm[BoxEmptied])]

achieveBoxMoved {info[BoxEmptied] = 0;
stmGoal[BoxEmptied] = 0;
stmSize--;} -> FlashOut() []

eact -> Closure() );

FlashOut() = closure { var cell = 0;
while (cell < M) {

if (stm[cell] == 1) {
stmSize--;

};
stm[cell] = 0 ;
cell = cell + 1;

}
} -> eact -> Closure();

Goals() =
[stmSize < M && stmGoal[BoxMovedGoal] == 0]

move {stmGoal[BoxMovedGoal] = 1;
stmSize++} -> Goals() []

[stmGoal[BoxMovedGoal] == 1] ba -> eba -> Goals() []
[stmSize < M && stmGoal[BoxEmptiedGoal] == 0]

move {stmGoal[BoxEmptiedGoal] = 1;
stmSize++} -> Goals() []

[stmGoal[BoxEmptiedGoal] == 1] ba -> eba -> Goals();

Array info implements the possibility that the information associated with
the goal achievement is a new piece of information stored in STM by the basic
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activity. Thus not only the position of the stmGoal array corresponding to the
achieved goal is changed to 0 but also the same position of array info. This
is followed by the execution of process FlashOut, which clears the contents
of the non-goal part of STM (array stm).

Example 71.5 illustrates how to model Example 71.2 in PAT:

Example 71.5: Deliberate Control Task using PAT

Task() = ba -> (
[stmGoal[BoxMovedGoal] == 1 &&
stmSize < M && perc[Light] == 1]

newInfo {info[Light] = 1}
-> eact -> store {stm[Light] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stmSize < M && perc[Heavy] == 1]

newInfo {info[Heavy] = 1}
-> eact -> store {stm[Heavy] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stm[Light] == 1 && stmSize < M]

moveBox -> newInfo {info[boxMoved] = 1}
-> eact -> store {stm[boxMoved] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stm[Heavy] == 1 && stmSize < M]

eact -> store {stmGoal[BoxEmptiedGoal] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxEmptiedGoal] == 1 && stmSize < M]
emptyBox -> newInfo {info[boxEmptied] = 1}
-> eact -> store {stm[boxEmptied] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stm[boxEmptied] == 1 && stmSize < M]

moveBox -> newInfo {info[boxMovedEmpty] = 1}
-> eact -> store {stm[boxMovedEmpty] = 1; stmSize++}
-> eba -> Task() []

[stmGoal[BoxMovedGoal] == 1 &&
stm[boxMovedEmpty] == 1 && stmSize < M]

fillBox -> newInfo {info[boxMoved] = 1}
-> eact -> store {stm[boxMoved] = 1; stmSize++}
-> eba -> Task() []

);

User() = Closure() || Goals() || Task();
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For each choice of the process corresponding to basic activity

goal(info) : info1 ↑ perc =⇒ act ↓ info2

for each piece of information i ∈ info2, the possibility that the information
i is associated with the goal achievement is implemented by the assignment
info[I] = 1, where I is the position of array info that implements i.

7.3.5 Operator’s Deliberate Behaviour

Operator’s behaviour is mainly deliberate. Although there is normally a pre-
fixed sequence of basic activities through which the operator needs to go, each
of these activities is driven by a specific goal to be accomplished. However,
the operator task does not have a top-level goal. Instead it has a purpose,
which influences all goals established (and accomplished) during the task
performance.

The ‘scan the screen’ operator’s subtask informally described in Exam-
ple 66 may be formalised as in Example 66.1.

Example 66.1: ‘Scan the Screen’ Operator’s Subtasks

Let be
• Π = {globalV iew, needsFurtherInvestigation, nothingAbnormal},
• Σ = {moveBox, emptyBox, fillbox},
• Ξ = {atcPurpose},
• Γ = {goal(atcPurpose, identifiedPart),

goal(atcPurpose, assessedPart)}
• Δ = {identifiedPart , assessedPart, investigatedPart} ∪ Γ ∪ Π ∪ Σ.
The task is modelled by the following four basic tasks:

1. goal(atcPurpose, identifiedPart) ↑ globalV iew
=⇒ identifiedPart ↓ goal(actPurpose, assessPart)

2. goal(atcPurpose, assessedPart) ↑ needsFurtherInvestigation
=⇒ none ↓ goal(atcPurpose, investigatedPart)

3. goal(atcPurpose, assessedPart) ↑ nothingAbnormal
=⇒ none ↓ goal(atcPurpose, identifiedPart)

Initially
STM = {goal(atcPurpose, identifiedPart)}

Through a global perception of the screen the operator identifies a
part of the screen in which there might be a conflict (Activity 1) and
sets the subgoal to assess that part (goal(actPurpose, assessPart)),
while the closure due to the storage of information identifiedPart causes
the removal of goal goal(atcPurpose, identifiedPart). If the part of the
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screen is perceived as in need of further investigation, then subgoal
goal(actPurpose, assessPart) is established (Activity 2). If, instead,
nothing abnormal is noticed, then subgoal goal(actPurpose, assessPart)
is established. In both cases, the closure due to the storage of informa-
tion assessPart causes the removal of goal goal(atcPurpose, assessPart)
(Activity 3).

The purpose is present in STM as argument of some goals, as long as the
operator is engaged in the task.

The ‘new phase’ operator’s subtask informally described in Example 66
may be formalised as in Example 66.2.

Example 66.2: ‘New Phase’ Operator’s Substask

Let be
• Π = {endTask},
• Σ = ∅,
• Ξ = {atcPurpose},
• Γ = {goal(atcPurpose, newPhase),

goal(actPurpose, identifyPart),
goal(atcPurpose, actedOnPair)

• Δ = {newPhase} ∪ Γ ∪ Π ∪ Σ.
The task is modelled by the following three basic tasks:

1. goal(atcPurpose, newPhase) ↑ none
=⇒ none ↓ goal(actPurpose, identifyPart)

2. goal(atcPurpose, newPhase) ↑ none
=⇒ none ↓ goal(atcPurpose, actedOnPair)

3. goal(atcPurpose, newPhase) ↑ endTask
=⇒ none ↓ newPhase

Initially
STM = {goal(atcPurpose, newPhase)}

In Activity 3 the closure due to the storage of information newPhase
causes the removal of goal goal(atcPurpose, newPhase), which is the
only goal in STM influenced by purpose atcPurpose. Therefore, any
trace of the purpose disappears from STM.

7.3.6 Switching Process Control

Familiar perceptions provide a mechanism to switch from deliberate control
to automatic control. In an environment, with familiar perception, such as
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the ones provided by an ATM, the user behaviour proceeds independently
of the goal that has triggered it. However, during automatic behaviour there
are situations in which the cognitive control must switch back to deliberate
control.

This situation is illustrated by Example 65.8, which extends the Exam-
ple 65.2 by considering two possible goals ‘cash withdrawal’ and ‘statement
printing’ for the ATM task.

Example 65.8: Automatic and Deliberate Behaviour

Let be
• Π = {cardR, pinR, selR, cashO, statO, cardO},
• Σ = {cardI, pinE, cashS, statS, cashC, statC, cardC},
• Ξ = ∅,
• Γ = {goal(cashC), goal(statC)}.
• Δ = Γ ∪ Π ∪ Σ ∪ {interaction}.

Set Ξ is empty since the purpose is not relevant here.
A simple ATM task, in which the user has only the goal to withdraw

cash, is modelled by the following four basic tasks:

1. goal(cashC) : interaction ↑ none =⇒ none ↓ interaction
2. goal(statC) : interaction ↑ none =⇒ none ↓ interaction
3. interaction ↑ cardR =⇒ cardI ↓ cardC, interaction
4. interaction ↑ pinR =⇒ pinE ↓ interaction
5. goal(cashC) ↑ selR =⇒ cashS ↓ none
6. goal(statC) ↑ selR =⇒ statS ↓ none
7. interaction ↑ cashO =⇒ cashC ↓ interaction
8. interaction ↑ statO =⇒ statC ↓ interaction
9. cardC, interaction ↑ cardO =⇒ cardC ↓ interaction

Perception selR denotes that the ATM requests the user to select the
transaction between ‘cash withdrawal’ and ‘statement printing’. Per-
ception statO denotes that the statement has been delivered. Actions
cashS and statS are the user’s selections of ‘cash withdrawal’ and ‘state-
ment printing’, respectively. Information interaction models the cogni-
tive state of the user interacting with the ATM; it is initially absent
from STM.

The behaviour starts under deliberate control with one of the two
possible goals, goal(cashC) (‘cash withdrawal’) or goal(cashC) (‘state-
ment printing’) determining the beginning of the interaction (Activities
1 and 2, respectively) by storing interaction in STM. The storage of
interaction in STM activates the automatic control driven by percep-
tions until perception selR requires a decision about which transaction
to select. Activities 5 and 6 determine the decision based on the goal in
STM, thus under deliberate control. After the decision has been made,
automatic control is restored for the rest of the task.
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Example 65.9 illustrates how to use PAT to define the infrastructure and
model the closure phenomenon for the ATM task described in Example 65.8.

Example 65.9: Closure in Automatic Control using PAT

enum { getCashGoal , getStatGoal};
enum { None,

CardR, PinR, SelR, CashO, StatO, CardO ,
CardI, PinE, CashS, StatS, CashC, StatC, CardC,
Interaction }; // 15 items

#define G 1; // No. of goal
#define N 15; // No. of stm array positions
#define M 7; // STM maximum capacity

var stmGoal = [ 0 , 0];
var stm[N];
var stmSize;
var perc[N];

Closure() = ba-> (
[stmGoal[getCashGoal] == 1] cashC ->

achieveGetCash {stmGoal[getCashGoal] = 0;
stmSize--;} -> FlashOut() []

[stmGoal[getStatGoal] == 1] cashC ->
achieveGetCash {stmGoal[getStatGoal] = 0;

stmSize--;} -> FlashOut() []
eact -> Closure() );

FlashOut() = closure { var cell = 0;
while (cell < M) {

if (stm[cell] == 1) {
stmSize--;

};
stm[cell] = 0 ;
cell = cell + 1;

}
} -> eact -> Closure();]

Goals() =
[stmSize < M && stmGoal[getCashGoal] == 0 &&
stm[Interaction] == 0] getCash {stmGoal[getCashGoal] = 1;

stmSize++} -> Goals() []
[stmGoal[getCashGoal] == 1] ba -> eba -> Goals() []
[stmSize < M && stmGoal[getStatGoal] == 0 &&
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stm[Interaction] == 0] getCash {stmGoal[getStatGoal] = 1;
stmSize++} -> Goals() []

[stmGoal[getStatGoal] == 1] ba -> eba -> Goals();

With respect to Example 65.4, processes Closure and Goals have the addi-
tional choice for the new goal. Moreover, guards in process Goals also include
a condition on the absence of interaction from STM: initially there is no
goal in STM and the role of process Goals is to establish one goal non deter-
ministically, when the user in not interacting with the ATM.

Example 65.10 illustrates how to use PAT to model the basic activities for
the ATM task described in Example 65.8.

Example 65.10: Automatic Control Task using PAT

Task() = ba -> (
[stmGoal[getCashGoal] == 1 && stm[Interaction] == 0] eact

-> store {stm[Interaction] = 1;
stmSize++} -> eba-> Task() []

[stmGoal[getStatGoal] == 1 && stm[Interaction] == 0] eact
-> store {stm[Interaction] = 1;

stmSize++} -> eba-> Task() []
[stm[Interaction] == 1 && stmSize < M &&
perc[CardR] == 1] cardI
-> eact -> store {stm[CardC] = 1; stmSize++}
-> eba -> Task() []

[stm[Interaction] == 1 &&
perc[PinR] == 1] pinE
-> eact -> eba -> Task() []

[stm[Interaction] == 1 &&
perc[CashO] == 1] cashC
-> eact -> eba -> Task() []

[stm[Interaction] == 1 &&
perc[StatO] == 1] statC
-> eact -> eba -> Task() []

[stm[Interaction] == 1 && stmSize > 0 &&
perc[CardO] == 1 && stm[CardC] == 1]
retrieve {stm[CardC] = 0; stmSize--} -> cardC
-> eact -> eba -> Task()

);

User() = Closure() || Goals() || Task();
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7.4 Interface/System Model

In Sect. 7.3.1 we have defined perceptions to characterise the human input
channel and actions to characterise the human output channels, with actions
performed in response to perceptions. This describes the human perspective
of input/output channels. From a machine perspective, we can also say that
a user perception refers to an interface output, which acts as a stimulus for
the human. During the interaction, such an output is normally the reaction
of the interface to the action performed by the human.

Hence we identify a visible state created by an interface or system with the
perception it produces in humans. For example, the interface state created by
the action of giving change, performed by the interface of a vending machine,
is identified with the perception (sound of falling coins or sight of the coins)
produced.

Example 65.11 models one possible ATM interface to support the ATM
task described in Example 65.8.

Example 65.11: Old ATM Interface using PAT

ATMold() =
atomic{ [perc[CardR] == 1] cardI ->

readCard {perc[CardR] = 0 ;
perc[PinR] = 1} -> ATMold() } []

atomic{ [perc[PinR] == 1] pinE ->
readPin {perc[PinR] = 0 ;

perc[SelR] = 1} -> ATMold() } []
atomic{ [perc[SelR] == 1] cashS ->

setCashS {perc[SelR] = 0 ;
perc[CashO] = 1} -> ATMold() } []

atomic{ [perc[SelR] == 1] statS ->
setStatS {perc[SelR] = 0 ;

perc[StatO] = 1} -> ATMold() } []
atomic{ [perc[CashO] == 1] ( cashC ->

detectCashC {perc[CashO] = 0;
perc[CardO] = 1} -> ATMold() ) } []

atomic{ [perc[StatO] == 1] statC ->
detectStatC {perc[StatO] = 0;

perc[CardO] = 1} -> ATMold() } []
atomic{ [perc[CardO] == 1] cardC ->

detectCardC {perc[CardO] = 0} ->
reset {perc[CardR] = 1} -> ATMold() ) };

A simple interface may be modelled by a choice between all possible transi-
tions. Each choice is guarded by the source state of the transition, normally
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represented by the perception provided to the user. The first event of the
choice to be performed is the synchronisation event that models the inter-
action of the human (events CardI, PinE, CashS, StatS, CashC, StatC and
CardC in Example 65.11). Each synchronisation event is followed by the ‘local’
interface event that modifies the interface state by assigning 0 to the source
state and 1 to the target state. These local events my be split to increase
the readability of the model, as it happens in the last choice of the ATMold
process in Example 65.11.

In order to keep the synchronisation event and the associated interface
events as an one atomic action, we use the atomic process construct available
in PAT. The atomic keyword associates higher priority with a process: if the
process has an enabled event, the event will execute before any events from
non atomic processes. Moreover, the sequence of statements of the atomic
process is executed as one single step, with no interleaving with other pro-
cesses.

The ATM interface modelled in Example 65.11 was very common in the
past. However, it was observed that delivering cash or statement before
returning the card sometimes caused the user error of forgetting the card.
This error is due to the fact that once the goal of collecting the cash or the
statement is achieved, STM may be flashed out by the closure phenomenon
thus losing some information, possibly including the reference to the action
to collect the card. The discovery of this error led to the development of
a new ATM interface that returns the card before delivering cash or state-
ment. In terms of interface model this means that the user’s selection of a
transaction, although it results in the same user perception of seeing the
card returned, should determine two distinct state transitions depending on
whether the user selects ‘cash withdrawal’ or ‘statement printing’. The new
state will then produce the appropriate perception at a later stage.

In general, when dealing with a fairly complex behaviour, possibly result-
ing from the parallel composition of several subsystems, it is necessary to
consider internal system states, which do not present themselves as human
perceptions. Therefore, in addition to the perc array to implement percep-
tion, we also use an array state to implement internal states.

Example 65.12 models the new ATM interface.

Example 65.12: New ATM Interface using PAT

var state[N];

ATMnew() =
atomic{ [perc[CardR] == 1] cardI ->

readCard {perc[CardR] = 0;
perc[PinR] = 1} -> ATMnew() } []

atomic{ [perc[PinR] == 1] pinE ->
readPin {perc[PinR] = 0;
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perc[SelR] = 1} -> ATMnew() } []
atomic{ [perc[SelR] == 1] cashS ->

setCashS {perc[SelR] = 0; perc[CardO] = 1;
state[CashO] = 1} -> ATMnew() } []

atomic{ [perc[SelR] == 1] statS ->
setStatS {perc[SelR] = 0; perc[CardO] = 1;

state[StatO] = 1} -> ATMnew() } []
atomic{ [state[CashO] == 1 && perc[CardO] == 1] cardC ->

detectCardC {perc[CardO] = 0; perc[CashO] = 1;
state[CashO] = 0} -> ATMnew() } []

atomic{ [state[StatO] == 1 && perc[CardO] == 1] cardC ->
detectedCardC {perc[CardO] = 0; perc[StatO] = 1

state[StatO] = 0;} -> ATMnew() } []
atomic{ [perc[CashO] == 1] cashC ->

detectCashC {perc[CashO] = 0} ->
reset {perc[CardR] = 1} -> ATMnew() } []

atomic{ [perc[StatO] == 1] statC ->
detectCashC {perc[StatO] = 0} ->
reset {perc[CardR] = 1} -> ATMnew() }; };

7.4.1 Experiential Knowledge and Expectations

Section 7.2 illustrated various kinds of memory, which play different roles in
processing information. Then in Sects. 7.3.3 and 7.3.4 we described automatic
and deliberate behaviour, respectively, and provided a formal notation (and
its implementation in PAT) to model basic activities under these two forms of
cognitive control. If we wish to associate the location of the rules that model
basic activities with distinct parts of the human memory, we can imagine that
they are stored in LTM and, more specifically, that automatic basic activities
are stored in procedural memory and deliberate basic activities are stored in
semantic memory.

We have also mentioned that information may be transferred from sensory
memory to STM through attention while facts and knowledge may be trans-
ferred from semantic memory to STM. We must add that information may
flow from STM to LTM, first to episodic memory, and then produce changes
to semantic and procedural memory. In fact, automatic and deliberated basic
activities are created through a long-term learning process. In general, users
make large use of deliberate activities while learning a task and, during the
learning process, they create automatic rules in procedural memory to replace
the less efficient rules in semantic memory. However, although automatic con-
trol is efficient and requires less STM usage than deliberate control, it may
result inappropriate in some situation. In such a case, experiential knowledge
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already stored in the LTM may be used to solve the situation. Norman and
Shallice [NS86] propose the existence of a Supervisory Attentional System
(SAS), sometimes also called Supervisory Activating System, which becomes
active whenever none of the automatic tasks are appropriate. The activation
of the SAS is triggered by perceptions that are assessed as danger, novelty,
requiring decision or are the source of strong feelings such as temptation and
anger. The SAS is an additional mechanism to switch from automatic to
deliberate control.

In Sect. 7.3.6 we described how to model the switching from automatic
to deliberate control due to a required decision. Now we consider how such
switching may occur due to the user’s assessment of perceptions as the result
of acquired experiential knowledge. Example 65.13 extends Example 65.9 with
the infrastructure for representing factual and experiential knowledge and the
mechanisms to assess perception and produce an appropriate response based
on experiential knowledge.

Example 65.13: Closure with Experiential Knowledge

enum { safe , danger }; // assessment
enum { normal , abort }; // response
var assessment = safe;
var response = normal;

enum { getCashGoal , getStatGoal};
...

Closure() = ba-> (
[response == normal && stmGoal[getCashGoal] == 1]

cashC ->
achieveGetCash {stmGoal[getCashGoal] = 0;

stmSize--;} -> FlashOut() []
[response == normal && stmGoal[getStatGoal] == 1]

cashC ->
achieveGetCash {stmGoal[getStatGoal] = 0;

stmSize--;} -> FlashOut() []
eact -> Closure() );

FlashOut() = ...

Goals() = ...

Variable assessment records the assessment of the user’s perception following
the user’s action. We enumerate only two possible values: safe means that the
perception will not affect the user’s automatic control, wheras danger means
that the perception requires a switch to deliberate control and an appropriate
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response, which will be assigned to variable response, whose possible values
are normal and abort. Initially variable assessment has value safe and
variable response has value normal.

Variable assessment is set depending on the user’s expectation. We use
additional processes to constrain the user’s behavior depending on expecta-
tions. Such processes are specific to the considered interface/system. Exam-
ple 65.14 defines the constraints for the ATM.

Example 65.14: Constraints Modelling Expectations

ExpectOld() = ba ->
( eba -> ExpectOld() []

cashS -> eba ->
( [perc[CashO] == 1]

cashExpectMet -> ExpectOld() []
[perc[CardO] == 1]

cashExpectFailed {assessment = danger}
-> ExpectOld() ) []

statS -> eba ->
( [perc[StatO] == 1]

statExpectMet -> ExpectOld() []
[perc[CardO] == 1]

statExpectFailed {assessment = danger}
-> ExpectOld() )

ExpectNew() = ba ->
( eba -> ExpectNew() []

cashS -> eba ->
( [perc[CardO] == 1]

cardExpectMet -> ExpectNew() []
[perc[CashO] == 1]

cardExpectFailed -> ExpectNew() ) []
statS -> eba -> ( [perc[CardO] == 1]

cardExpectMet -> ExpectNew() []
[perc[StatO] == 1]

cardExpectFailed -> ExpectNew() )
);

);
The above model caters for two different user expectations. The

first one is ExpectOld, where a user used to interact with the old
ATM expects to see the cash or statement delivered after selecting
‘cash withdrawal’ or ‘statement printing’; such expectations are not met
(cashExpectMet or statExpectMet, respectively) if the card is returned
instead. The second one is ExpectNew, where a user used to interact
with the new ATM expects to see the card returned after selecting
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‘cash withdrawal’ or ‘statement printing’; such expectations is not met
(cardExpectMet) if the cash or statement is delivered instead.

Example 65.15 extends Example 65.10 by including the appropriate guards
on the assessment of the perception and an abortSession event which assigns
abort to the response variable when the assessment of the perception is
danger.

Example 65.15: Task with Response to Perception Assessment

Task() = ba -> (
[assessment == safe &&
stmGoal[getCashGoal] == 1 && stm[Interaction] == 0] eact
-> store {stm[Interaction] = 1;

stmSize++} -> eba-> Task() []
[assessment == safe &&
stmGoal[getStatGoal] == 1 && stm[Interaction] == 0] eact
-> store {stm[Interaction] = 1;

stmSize++} -> eba-> Task() []
[assessment == safe &&
stm[Interaction] == 1 && stmSize < M &&
perc[CardR] == 1] cardI
-> eact -> store {stm[CardC] = 1; stmSize++}
-> eba -> Task() []

[assessment == safe &&
stm[Interaction] == 1 &&
perc[PinR] == 1] pinE
-> eact -> eba -> Task() []

[assessment == safe &&
stmGoal[getCashGoal] == 1 && perc[SelR] == 1] cashS
-> eact -> eba -> Task() []

[assessment == safe &&
stmGoal[getStatGoal] == 1 && perc[SelR] == 1] statS
-> eact -> eba -> Task() []

[assessment == safe &&
stm[Interaction] == 1 &&
perc[CashO] == 1] cashC
-> eact -> eba -> Task() []

[assessment == safe &&
stm[Interaction] == 1 &&
perc[StatO] == 1] statC
-> eact -> eba -> Task() []

[assessment == safe &&
stm[Interaction] == 1 && stmSize > 0 &&
perc[CardO] == 1 && stm[CardC] == 1]
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retrieve {stm[CardC] = 0; stmSize--} -> cardC
-> eact -> eba -> Task()

[assessment == danger &&
stm[Interaction] == 1 && perc[CardO] == 1 ]
abortSession {assessment = safe;

response = abort} -> cardC
-> eact -> eba -> Task() []

[assessment == danger &&
stm[Interaction] == 1 && perc[CardO] == 0 ]
abortSession {assessment = safe;

response = abort}
-> eact -> eba -> Task()

);

User() = Closure() || Goals() || Task();

The response to a danger (guard assessment == danger) is to col-
lect the card (event cardC), if this is perceived (guard perc[CardO] ==
1), and abort the interaction session (event abortSession, which set
response to abort) or just abort the interaction section if the cards is
not perceived (guard perc[CardO] == 0), while variable assessment
is reset to safe. Although normally the danger assessment is due to
the perception of the card, not considering the assessment of danger
possibly due to other reasons would be an overspecification.

7.4.2 Environment and Overall System

Until now we have considered the following components of the overall system:

– the user’s behaviour

User() = Closure() || Goals() || Task();

consisting of the infrastructure for STM (process Closure) and goals (pro-
cess Goals) and the human task process Task (see Examples 65.7, 71.5,
65.10 and 65.15),

– the interface or system (see Examples 65.11 and 65.11), and
– the user’s experiential constraints (see Example 65.14).

However, as illustrated in Example 65.16 there are further aspects of the
environment that influence the interaction and thus ought to be part of the
modelled overall system:

• the initial interface/system state,
• the availability of resources, and
• the user’s knowledge.
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Example 65.16: Closure in Automatic Control using PAT

InitState() = initialization {perc[CardR] = 1} -> Skip();

HasCard() = cardI -> NoCard();
NoCard() = cardC -> HasCard();

Resources() = HasCard();

KnowsPin() = pinE -> KnowsPin();

Knowledge() = KnowsPin();

User() = Closure() || Goals() || Task();

Environment() = User() || Resources() || Knowledge() ;

SysOld() = InitState() ; ( Environment() || ATMold() );
SysNew() = InitState() ; ( Environment() || ATMnew() );

UserOld() = Environment() || ExpectOld();
UserNew() = Environment() || ExpectNew();

SysOldUserOld() = InitState() ; ( UserOld() || ATMold() );
SysOldUserNew() = InitState() ; ( UserNew() || ATMold() );
SysNewUserNew() = InitState() ; ( UserNew() || ATMnew() );
SysNewUserOld() = InitState() ; ( UserOld() || ATMnew() );

Aspects of the environment are the following.

– Initial interface state. We assume that the interface is initially request-
ing a card. This is expressed by process InitState, which performs
event initialization to set variable perc[CardR] to 1 and termi-
nate successfully. This process is sequentialised with the main overall
system process.

– Availability of resources. An essential resource for the task is the bank
card, which has to be available for the user: process Resources consists
of two states describing the availability (HasCard) and non availability
(NoCard) of the card.

– User’s knowledge. The user must know the pin in order to perform the
task. In our example we implicitly assumed that the user knows the
pin, thus process KnowsPin models only the correct pin in terms of
event pinE. However, we might want to consider also the case of using
a wrong pin, in order to explore its impact on the interaction and the
emergent errors This would require a more sophisticated version of
process KnowsPin.
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Finally, the overall system is modelled by processes SysOld and SysNew,
corresponding to the two possible interfaces, but with no assumptions on
the user’s experiential knowledge, and by processes SysOldUserOld and
SysOldUserNew, SysNewUserNew and SysNewUserOld, which include
constraints on user expectations.

7.5 Model Checking Analyses

From an analytical point of view we focus on two aspect: overall system verifi-
cation and task failure analysis. First, in Sect. 7.5.1 we illustrate how to verify
whether the design of the interface and the other environment components
addresses cognitive aspects of human behaviour such as closure phenom-
ena and user expectations that trigger the SAS to activate attention (overal
system verification). Then, in Sect. 7.5.2, we consider patterns of behaviour
featuring persistent operator errors may lead to a task failure.

7.5.1 Overall System Verification

Model checking techniques provide an effective analytical tool to exhaustively
explore the system state space and capture the behaviour that emerges from
the combination of several system components. Closure, automatic behaviour,
expectancy and attention are phenomena that represent distinct components
of human cognition and action, and their combination results in an apparently
holistic ways of performing tasks. In this context model checking can be
used to capture errors that emerge when environment design, which includes
physical devices, interfaces and their operational environment, cannot deal
with the closure phenomena, or when the outcome of the interaction between
automatic behaviour and environment does not meet human expectations.
We use Linear Temporal Logic (LTL), as described in Sect. 2.5.3, to specify
system properties and then we use PAT model checking capabilities to verify
such properties on the CSP model. PAT support the definition of assertions
of the form

#assert system |= property

where system is the model we aim to verify and property is a property
expressed in LTL. The PAT model checker verifies whether the property is
valid on the model and, if not, provides a counterexample. The counterexam-
ple provided by the model checking analysis can then be exploited to improve
the environment design.
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We consider three kinds of properties:

• Functional correctness the user or operator can always complete the task
by successfully accomplishing the goal,

• Non-functional correctness in spite of successfully accomplishing the goal,
the system may violate some non-functional properties (e.g. the user of an
ATM forgets the card after collecting the cash), and

• Cognitive Overload the STM is overloaded above a considered upper limit,
which may lead to a failure in accomplishing the goal when the STM is
loaded by additional uncompleted tasks.

We illustrate the functional correctness in Example 65.17

Example 65.17: Functional Property Verification using PAT

Since there are two possible goals, to get cash and to get a state-
ment, functional correctness aims to verify for each interface design,
whether there are cognitive errors that may prevent the user from col-
lecting the cash and from collecting the statement. The property that
the user is always able to collect the cash can be expressed by formalis-
ing that “a user who selects ‘cash’ will collect the cash before the end of
the interaction section”. Since the end of the interaction section may be
characterised as the beginning of a new interaction section, which occurs
when a card is inserted again, we can say that “a user who selects ‘cash’
will collect the cash before a card is inserted”. Furthermore “the user
collects the cash before a card is inserted” can also be expressed as “no
card is inserted until the user collects the cash”. Finally, our original
property can be expressed as “if a user selects ‘cash’ then no card is
inserted until the user collects the cash”, which can be immediately
translated into LTL. Similarly, the properties that the user is always
able to collect the statement can be expressed by formalising that “a
user who selects ‘statement’ will collect the statement before the end of
the interaction section” or equivalently as “if a user selects ‘statement’
then no card is inserted until the user collects the statement”, which
again can be immediately translated into LTL.

#assert SystemNewUserNew() |=
[] ( cashS -> ( ! cardI U cashC ) );

#assert SystemNewUserNew() |=
[] ( statS -> ( ! cardI U statC ) );

#assert SystemOldUserNew() |=
[] ( cashS -> ( ! cardI U cashC ) );

#assert SystemOldUserNew() |=
[] ( statS -> ( ! cardI U statC ) );
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#assert SystemNewUserOld() |=
[] ( cashS -> ( ! cardI U cashC ) );

#assert SystemNewUserOld() |=
[] ( statS -> ( ! cardI U statC ) );

#assert SystemOldUserOld() |=
[] ( cashS -> ( ! cardI U cashC ) );

#assert SystemOldUserOld() |=
[] ( statS -> ( ! cardI U statC ) );

The PAT model checker shows all systems except SystemNewUserOld
to be functionally correct. In fact, although the new design of the ATM
works in an ideal world where all ATMs are designed according to the
new criterion, there are still some ATMs, especially in the developing
world, that are designed according to the old criterion. Thus we can
imagine that a user from one of such countries, while visiting a coun-
try where all ATMs are designed according to the new criterion, is
likely to assess the early return of the card as a danger and is prone
to abandon the interaction forgetting to collect the cash. This situa-
tion is formalised by the counterexample returned in the verification of
SystemNewUserOld.

In general, when the system behaviour consists of a loop of user sessions
each characterised by a begin event and there are two events choose and
accomplish which characterise the choice and accomplishment of the goal,
then functional correctness can be expressed as

#assert system |= [] choose -> ( ! begin U accomplish )).

In some cases, also non-functional properties may be characterised in this
way. For example, in the case of safety properties, there might be a system
internal event internal, rather than a user’s choice, as a precondition for the
user not to lose some owned resource currently used by the system. If return
is the event characterising the return of the resource to the user, then the
safety property can be expressed as

#assert system |= [] internal -> ( ! begin U return ));

We illustrate the verification of safety in Example 65.18

Example 65.18: Safety Property Verification using PAT

As an example of nonfunctional correctness we consider the safety
property that aims to verify, for each interface design, whether there are
cognitive errors that may prevent the user from collecting the returned
card.

#assert SystemNewUserNew() |=
[] ( readCard -> ( ! cardI U cardC ) );



386 A. Cerone

#assert SystemOldUserNew() |=
[] ( readCard -> ( ! cardI U cardC ) );

#assert SystemNewUserOld() |=
[] ( readCard -> ( ! cardI U cardC ) );

#assert SystemOldUserOld() |=
[] ( readCard -> ( ! cardI U cardC ) );

The PAT model checker shows that the safety property is valid with
the new ATM (SystemNewUserNew and SystemNewUserOld) and not
with the old ATM (SystemOldUserOld and SystemOldUserOld), inde-
pendently of the user experience. The counterexample captures possible
post-completion errors in using the old design of the ATM and shows
that such errors cannot occur in the new design of the ATM.

We can now understand what cognitive error caused the cake of Example 65
to burn and why the algorithm used by your partner caused such an error to
emerge. This is illustrated in Example 69.2.

Example 69.2: Why Cakes and Engines Burn

The baking tasks is divided in two separate parts, with a long period
in between that is likely to be devoted to many other tasks. Each part
is actually a task in itself with a specific goal. The goal of the first task
is achieved when the cake is inserted in the oven and the oven is closed
(Activity 6), thus causing STM closure. Therefore, the subsidiary task
of lowering the temperature setting may be forgotten (Activity 7), with
the result that the cake burns.

The obvious solution to this problem is to swap Activity 6 and Activ-
ity 7, thus preventing the occurrence of a post-completion error. The
problem here is not in the interface, but in the algorithm, that is, the
protocol that is used to carry out the task. This subtle form of post-
completion error is difficult to eliminate in practice, since the solution
count on the human to strictly adhere to a given protocol.

For example, on 24 May 2013, the fan cowl doors of an aircraft were
left unlatched on both engines after completing scheduled maintenance
(forgetting this subsidiary task after the achievement of the maintenance
goal). As the aircraft departed London Heathrow Airport, the fan cowl
doors from both engines detached, puncturing a fuel pipe on the right
engine and damaging the airframe and some aircraft systems. While
the flight returned to Heathrow an external fire developed on the right
engine, which was then shut down. The aircraft managed to safely land
using the left engine. All the passengers and crew evacuated the aircraft
via the escape slides.
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Cognitive load expresses the amount of information stored in STM at a given
time. Thus cognitive overload occurs when the amount of information stored
in STM is above a considered upper limit. We illustrate the analysis of cog-
nitive overload in Example 65.19

Example 65.19: Cognitive Overload Analysis using PAT

As an example of cognitive overload we consider an upper limit of 5
piece of information stored in STM.,

#define cognitiveOverload (stmSize > 5);

#assert SystemNewUserNew() |= [] ! cognitiveOverload;
#assert SystemOldUserNew() |= [] ! cognitiveOverload;
#assert SystemNewUserOld() |= [] ! cognitiveOverload;
#assert SystemOldUserOld() |= [] ! cognitiveOverload;

PAT provides a define construct to define constants. This can be used to
define boolean constants to be used as proposition within assertions, as in
Example 65.19. This way, the model checker can determine the mental capa-
bilities an operator has to possess to avoid cognitive overload.

7.5.2 Task Failures Analysis

The purpose of the operator’s behaviour is to prevent the system from reach-
ing a failure state. In this case the unwanted result of the interaction is the
task failure. Although it is acceptable that the operator makes errors, since
recovery from errors is always possible, if this recovery does not occur and
the operator persists in making errors, then the system will eventually reach
a failure state.

Applied psychology uses experiments, natural observation and other data
gathering instruments to identify and categorise the operator’s patterns of
behaviour that may lead to a task failure. The goal of this kind of studies
is to capture all possible patterns of behaviour that may lead to a task fail-
ure in order to design system controls, support tools, environment settings
and working schedules that prevent operators from entering such dangerous
patterns of behaviour.

Formal methods can support applied psychology by verifying whether
the decomposition of a task failure into patterns of behaviour is sound
and complete. The task failure F and its empirically defined decomposition
D = {P1, . . . Pn} into patterns of behaviour can be formalised in LTL. The
decomposition D is

– sound if each of the Pi is sufficient to cause the task failure F , and
– complete if one of the Pi is necessary to cause the task failure F .
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Then model checking can be used to verify the soundness of the decomposition
∧

P∈D
(P ⇒ F )

and the completeness of the decomposition

F ⇒
∨

P∈D
P

We informally illustrate this methodology in Example 66.3.

Example 66.3: Task Failure Analysis using PAT

We can characterise a separation violation as an operator who persis-
tently misses the intention to carry out a specific action to solve the
conflict [CCL08, CLC05]. We distinguish between intention and action
to be able to model an unintended action that does not match the inten-
tion [Rea90]. Although this is not part of our analysis, such a mismatch
would be relevant in the analysis of errors induced by a specific inter-
face design, which could be carried out on this case study by introducing
alternative interface designs and using our formal cognitive framework
as in the ATM case study.

The formalisation of the ATC task failure decomposition suggested
by Lindsay and Connelly [LC02] is
1. Failure of scanning when the operator fails to monitor a specific

part of the interface, thus missing possible conflicts,
2. Persistent mis-classification when the operator persistently clas-

sifies as a non conflict what is actually a conflict,
3. Persistent mis-prioritisation when the operator persistently gives

a low priority to a conflict, thus missing to solve it, and
4. Defer action for too long when the operator persistently delays

to implement an already developed plan to solve a conflict.
Model checking analysis using PAT shows that decomposition of the

task failure is sound but not complete. The counterexample shows that
the definition of persistent mis-classification by Lindsay and Connelly
mixes two different kinds of behaviour, one fully characterising per-
sistent misclassification and the other being a part of another property
which was not captured through empirical analysis. This property, which
we call Contrary decision process, occurs when a conflict is persis-
tently reclassified as a non conflict. Once such a property is added to
the decomposition and the notion of persistent misclassification is rede-
fined in a way that does not overlap with it, the decomposition becomes
complete.
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7.6 Closing Remarks

In this chapter, we presented a formal approach to the specification, mod-
elling and analysis of interactive systems in general and, more specifically, of
human-computer interaction. Systems are modelled using the CSP extension
implemented in the Process Analyzer Toolkit (PAT), properties are speci-
fied using temporal logic formulae, either on states or events, and analysis is
carried out by exploiting the model checking capabilities of PAT.

The approach is illustrated through two classical examples. The Auto-
mated Teller Machine (ATM) example was already introduced in Chap. 3
and is used in this chapter to illustrate the automatic behaviour of a user
who carries out everyday activities with just implicit attention, but who may
resort to explicit attention when in need of making a decision, driven by the
task goal, or when realising the occurrence of an anomalous situation, such
as a danger. Both functional properties, such as being enabled to achieve the
goal (withdrawing cash or printing a statement, in the case of the ATM), and
safety properties (remembering to collect the card, in the case of the ATM)
are analysed. The Air Traffic Control (ATC) system example is introduced
in this chapter to illustrate the deliberate behaviour of an operator who per-
forms a task with a general purpose, whereby specific goals are set along the
way. Although, in general, failing to achieve the goal is not a task failure,
provided the system state is still consistent with the purpose, a pattern of
behaviour featuring persistent operator errors may indeed lead to a task fail-
ure. In this context, model checking is used to support applied psychology
by analysing an empirically defined decomposition of the task failure into
patterns of behaviour, in order to verify whether the decomposition is sound
and complete.

7.7 Annotated Bibliography

There is a large number of textbooks on human-computer interaction. The
most comprehensive and appropriate to provide an accessible introduction
to the concepts used in this chapter are by Dix et al. [DFAB04], by Preece,
Rogers and Sharp [PRS17] and by Thimbleby [Thi07]. The first has an empha-
sis on modelling. It provides an extensive introduction to human behaviour
and interaction from a cognitive science perspective and also presents, mostly
at an intuitive level, a variety of formal approaches for dealing with some
aspects of HCI and tackling specific challenges. The second has an emphasis
on designing for user experience. It is intended as a book for practition-
ers and has a broader scope of issues, topics and methods than traditional
human-computer interaction textbooks, with a focus on diversity of design
and evaluation process involved. However, it is less concerned with cognition



390 A. Cerone

than the book by Dix et al. The third draws on sound computer science
principles, with a strong formal methods flavour. It uses state machines and
graph theory as a powerful and insightful way to analyse and design bet-
ter interfaces and examines specific designs and creative solutions to design
problems

Looking more specifically at modelling cognition, historical but still actual
works are by Newell and Simon [NS72], Card et al. [CEB78]. In a later work
Card, Moran and Newel [CMN83] introduced a somehow formal notation,
which inspired, on the one hand, the development of a plethora of cognitive
architectures over the last 40 years and, on the other hand, the use of formal
methods in HCI.

Kotseruba and Tsotsos published a broad overview of these last 40 years of
cognitive architectures [KT18], featuring 84 cognitive architectures and map-
ping them according to perception modality, implemented mechanisms of
attention, memory organisation, types of learning, action selection and prac-
tical applications. A similar, but less comprehensive survey by Samsonovich
[Sam10] collects the descriptions of 26 cognitive architectures submitted by
the respective authors. Finally, Laird et al. [LLR17] focus on three among the
most known cognitive architectures, ACT-R, Soar and Sigma, and compare
them based on their structural organisation and approaches to model core
cognitive abilities.

In 1991 two nice surveys on the first formal approaches in HCI were com-
piled by Haan, van der Veer and van Vliet [GdHvV91], based on a psychology
perspective, and by Dix [Dix91], based on a computer science perspective.
Although the scientific community working on the use of formal methods in
HCI is quite small, there have been a number of significant results over the last
20 years. Such results mainly appear in the proceedings of the international
workshops on on Formal Methods for Interactive Systems (FMIS), which run
from 2006, though not every year, and in journal special issues associated
with such workshop. Some of these special issues and other papers in the
area appeared in the journal Formal Aspects of Computing. Two important
collection of works on formal methods approaches to HCI have been recently
edited by Weyers, Bowen, Dix and Palanque [WBDP17] and by Oulasvirta,
Kristensson, Bi and Howes [OKBH18].

7.7.1 Current Research Directions

The way the validity of both functional and nonfunctional properties is
affected by user behaviour is quite intricate. It may seem obvious for func-
tional properties that an interactive system can deploy its functionalities
only if it is highly usable. However, usability may actually be in conflict with
functional correctness, especially in applications developed for learning or
entertainment purpose. More in general, high usability may be in conflict
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with user experience, whereby the user expects some challenges in order to
test personal skills and knowledge, enjoy the interaction and avoid boredom.
Usability is also strictly related to critical nonfunctional properties such as
safety [CCL08] and security [CE07]. Such relationship is actually two ways.
On one side improving usability increases safety and/or security [CCL08]. On
the other side introducing mechanisms to increase safety and/or security may
reduce usability, and as a result, may lead to an unexpected global decrease
in safety [IBCB91] and/or security [CE07]. Investigating such complex rela-
tionships is an important research direction.

In the real world humans frequently have to deal with operating environ-
ments that

1. continuously produce, change and invalidate human expectations as part
of an evolutionary learning process [Cer16, IBCB91],

2. deploy constraining social contexts [IBCB91] and cultural differences
[Hei07], and

3. provide a large amount of stimuli, which are perceived through several
modalities at the same time and interpreted and combined according to
temporal and contextual constraints (multimodal interaction) [CFG07].

The formal approach proposed in this chapter as well as all approaches that
aim at applying formal methods to generic HCI problems presuppose that

1. expectation are a priori constraints rather than part of a learning process,
2. cognitive behavior depends on a specific social and cultural context, and
3. human cognition and actions are directly triggered by isolated perceptions.

Therefore, it is important to

1. define cognitive mechanisms that build

• expectations in semantic memory out of experience stored in episodic
memory, and

• procedures in procedural memory out of knowledge stored in semantic
memory,

thus mimicking the information flow from STM first to episodic memory
and then to LTM (see Sect. 7.4.1),

2. enable multiple, interacting instantiations of cognitive architectures as part
of a complex sociotechnical system, and

3. define, at the cognitive architecture level, mechanisms for the fusion of
multiple modalities.

These objectives may not be easily accomplished using formal notations with
limited data structures such as CSP, even in the extended form provided by
PAT. A more sophisticated modelling language with extensive data struc-
tures, possibly featuring an object-oriented paradigm, is needed. With this
aim in mind the Maude rewrite system [Ö17] has been proposed as a possible
candidate [Cer18, BMO19]. Furthermore, the definition of the Behavioural
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and Reasoning Description Language (BRDL) [Cer20] and its implementa-
tion using Real-Time Maude [CO20] have recently paved the way for the
insilico simulation of experiments carried out in cognitive psychology with
human subjects [CM21] as well as the simulation of long-term human learn-
ing processes [CP21].

Furthermore, the intrinsic unpredictability of human behaviour requires
the validation of any a priori model on real data. Using text mining tech-
niques and appropriate ontologies, abstract event logs that match the rep-
resentation used in the cognitive model could be extracted from the dataset
and used to constrain the model before performing formal verification. This
could be done at different levels, from a correspondence one-to-one between
real interaction history and constraints to the representation of a set of real
interaction histories with a single constraint.

Finally, the use of formal methods for system modelling and analysis
requires high expertise in mathematics and logic, which is not common among
typical users, such as interaction design and usability experts as well as psy-
chologists and other social scientists. Therefore, the development of tools that
address the need and skills of such typical users is essential for the acceptance
and diffusion of formal methods in the HCI area.
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and analysis of safety-critical human multitasking. Innovations in Systems
and Software Engineering, 2019.

[CB04] Paul Curzon and Ann E. Blandford. Formally justifying user-centred design
rules: a case study on post-completion errors. In Integrated Formal Methods,
LNCS 2999, pages 461–480. Springer, 2004.

[CCL08] A. Cerone, S. Connelly, and P. Lindsay. Formal analysis of human operator
behavioural patterns in interactive surveillance systems. Softw. Syst. Model.,
7(3):273–286, 2008.

[CE07] Antonio Cerone and Norzima Elbegbayan. Model-checking driven design of
interactive systems. In Proceedings of FMIS 2006, volume 183 of Electronic
Notes in Theoretical Computer Science, pages 3–20. Elevier, 2007.

[CEB78] S.K. Card, W.K. English, and B.J. Burr. Evaluation of mouse, rate-controlled
isometric joystick, step keys, and text keys for text selection on a CRTl.
Ergonomics, 21:601–613, 1978.

[Cer11] Antonio Cerone. Closure and attention activation in human automatic
behaviour: A framework for the formal analysis of interactive systems. In Proc.
of FMIS 2011, volume 45 of Electronic Communications of the EASST, 2011.

[Cer16] Antonio Cerone. A cognitive framework based on rewriting logic for the anal-
ysis of interactive systems. In Software Engineering and Formal Methods,
LNCS 9763, pages 287–303. Springer, 2016.

[Cer18] Antonio Cerone. Towards a cognitive architecture for the formal analysis of
human behaviour and learning. In STAF collocated workshops, LNCS 11176,
pages 216–232. Springer, 2018.



7 Formal Methods for Human-Computer Interaction 393

[Cer20] Antonio Cerone. Behaviour and reasoning description language (BRDL). In
Javier Camara and Martin Steffen, editors, SEFM 2019 Collocated Workshops
(CIFMA), LNCS 12226, pages 137–153. Springer, 2020.

[CFG07] M.C. Caschera, F. Ferri, and P. Grifoni. Multimodal interaction systems: infor-
mation and time features. International Journal of Web and Grid Services,
3(1):82–99, 2007.

[CLC05] Antonio Cerone, Peter Lindsay, and Simon Connelly. Formal analysis of
human-computer interaction using model-checking. In Proc. of SEFM 2005,
pages 352–361. IEEE, 2005.

[CM21] Antonio Cerone and Diana Murzagaliyeva. Information retrieval from seman-
tic memory: BRDL-based knowledge representation and Maude-based com-
puter emulation. In SEFM 2020 Collocated Workshops (CIFMA), LNCS
12524, pages 159–175. Springer, 2021.

[CMN83] S.K. Card, T.P Moran, and A. Newell. The Psychology of Human-Computer
Interaction. Laurence Erlbaum, 1983.

[CO20] Antonio Cerone and Peter Csaba Ölveczky. Modelling human reasoning in
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[Ö17] Peter Csaba Ölveczky. Designing Reliable Distributed Systems — A Formal
Methods Approach Based on Executable Modeling in Maude. Springer, 2017.

[OKBH18] Antti Oulasvirta, Per Ola Kristensson, Xiaojun Bi, and Andrew Howes, edi-
tors. Computational Interaction. Oxford University Press, 2018.

[PAT19] PAT: Process Analysis Toolkit. User manual (online version). http://pat.

comp.nus.edu.sg/wp-source/resources/OnlineHelp/htm/index.htm, 1 Dec
2019.

[PBP97] P. Palanque, R. Bastide, and F. Paterno. Formal specification as a tool for
objective assessment of safety-critical interactive systems. In Proc. of INTER-
ACT 1997, pages 323–330. Chapman and Hall, 1997.

[PRS17] Jennifer Preece, Yvonne Rogers, and Helen Sharp. Interaction Design —
beyond human-computer interaction. Wiley, 5th edition, 2017.
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Chapter 8

Formal Verification of Security
Protocols

Markus Roggenbach, Siraj Ahmed Shaikh, and Hoang Nga Nguyen

Abstract Security protocols address the question of how one communicates
‘securely’ in an untrusted ‘hostile’ environment. This chapter introduces the
general notions of cryptography, communication protocols, security goals, and
security protocols. Taking the Needham-Schroeder authentication protocol as
an example, the chapter demonstrates that it is difficult to get the design of
security protocols ‘right’. This raises the need for a rigorous approach to
analysing security protocols at a design level. To this end, the chapter dis-
cusses the Csp approach of modelling security protocols, security properties,
and when a protocol satisfies a desired property. It then presents two differ-
ent approaches for protocol analysis: (1) an automated approach via model
checking, where the challenge lies in finding the right coding tricks in order to
‘tame’ state space explosion; and (2) a manual approach using rank functions,
where the challenge lies in finding a suitable protocol invariant.

8.1 Introduction

Let’s start with a fairy tale. “In days of yore and in times and tides long gone
before there dwelt in a certain town of Persia two brothers one named Kasim
and the other Ali Baba.”1

Markus Roggenbach
Swansea University, Wales, United Kingdom

Siraj Ahmed Shaikh
Coventry University, Coventry, United Kingdom

Hoang Nga Nguyen
Coventry University, Coventry, United Kingdom

1 See https://www.pitt.edu/~dash/alibaba.html#burton for the full text of this story.

© Springer Nature Switzerland AG 2022, corrected publication 2022

M. Roggenbach et al., Formal Methods for Software Engineering,
Texts in Theoretical Computer Science. An EATCS Series,
https://doi.org/10.1007/978-3-030-38800-3 8

395

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38800-3_8&domain=pdf
https://www.pitt.edu/~dash/alibaba.html#burton
https://doi.org/10.1007/978-3-030-38800-3_8


396 Markus Roggenbach, Siraj Ahmed Shaikh, and Hoang Nga Nguyen

“Open Sesame!”, shouts Ali Baba in this famous tale of Ali Baba and the
Forty Thieves from the Arabian Nights, where these are the magic words that
open the treasure cave. As the tale goes, Ali Baba follows a group of forty
thieves to the cave where they hide their loot, and he overhears the magic
words, which are key to opening the cave. Later, Kasim, Ali Baba’s brother,
also gets the magic words as he overhears him to say “Open Sesame” to get
into the cave. In his haste and excitement over the riches, Kasim ends up
forgetting the magic words to get out of the cave once he is in.

Kasim meets his fate and gets killed in the cave by the thieves once they
find him. Ali Baba ends up getting rich and happy eventually. The moral of
the story is that effective key management is key to security and safety! And
of course greed does not serve one well.

Three important security principles emerge from the story:

– First, challenge and response is used to open the cave door. Only the one
who can say the magic words can enter or leave the cave. This is a simple
example of a challenge response protocol, where the challenge is the door
only opens in response to a magic word (password), and the valid response
is the password “Open Sesame!”.

– Secondly, eavesdropping is always a possibility, as it was for Ali Baba and
Kasim.

– Thirdly, the perfect cryptography assumption is made, i.e., the cave can’t be
fooled. There is no other way to open the door but to say “Open Sesame!”.

This chapter introduces an important application of Formal Methods:
the design and verification of security protocols. Such protocols are used to
provide properties such as authentication, confidentiality, integrity or non-
repudiation.

Security protocols underpin a number of common technologies in everyday
use. An electronic purse, cf. Example 9, is one application where all financial
transactions are conducted over a protocol with desired security properties.
Similarly, electronic voting, cf. Example 14, relies on security protocols to
ensure, e.g., secrecy of the vote, i.e., only the voter knows who they voted,
and privacy of voters, i.e., if they have participated in the election or not.

Among the many formalisms suitable to address the challenge of security
protocol verification, we choose the process algebra Csp as the underlying
formalism for this chapter, see Chap. 3 for a thorough introduction to Csp; an
understanding of the syntax as provided in Sect. 3.2.1 and the traces model as
provided in Sect. 3.2.2 would suffice for this chapter. As distributed systems,
security protocols belong to the natural remit of process algebra. Over the
years, in particular the Csp community has made significant contributions to
the verification of security protocols and has developed a rich set of analysis
methods, cf. Sect. 8.7.1.

Section 8.2 introduces the reader to the basic principles of security. Sec-
tion 8.3 introduces the Needham-Schroeder authentication protocol, discusses
why it fails to provide authentication, and presents the Needham-Schroeder-
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Lowe protocol, which corrects the discussed flaw. In Sect. 8.4, we introduce
the Csp approach of how to formally model authentication and security pro-
tocols in general. Such models open the possibility to rigorously reason and
prove protocols with respect to desired properties. Section 8.5 applies model
checking to the Needham-Schroeder authentication protocol and shows how
a counter example trace is automatically found. It also provides a correct-
ness result for the Needham-Schroeder-Lowe protocol under the assumption
that an attacker uses a limited number of reasoning steps only. In contrast,
Sect. 8.6 utilises the so-called Rank-Function Theorem to give a manual cor-
rectness proof of the Needham-Schroeder-Lowe protocol, without making any
assumptions w.r.t. the number of an attacker’s reasoning steps.

8.2 Basic Principles

This section lays out some fundamental principles: these are basica notations
of cryptography, cf. Sect. 8.2.1, security principles, cf. Sect. 8.2.2, and security
protocols, cf. Sect. 8.2.3.

8.2.1 Cryptography

The term cryptography is derived from the Greek word kryptos, meaning hid-
den. A related notion cryptanalysis is to do with analysing hidden information
with intent to uncover it. Both cryptography and cryptanalysis are branches
of cryptology , which is the science of hiding. The purpose of cryptography is
to hide the content of a message so that it is not revealed to everyone. This
is made possible by converting the message from its original form, known as
plaintext , to a distorted incomprehensible form known as ciphertext . The pro-
cess of converting plaintext to ciphertext is called encryption and the process
of converting ciphertext back to plaintext is called decryption. Encryption
and decryption operations are implemented in the form of algorithms known
as cryptographic algorithms or cryptosystems, where plaintext (or ciphertext)
and encryption (or decryption) keys are parameters. Most cryptosystems are
based on assumptions that certain problems such as, e.g., factorisation of
numbers, are hard problems in terms of complexity theory. We denote a
ciphertext produced as a result of encrypting a plaintext message m using
an encryption key k as {m}k.

A ciphertext {m}k shall ensure that only those possessing key k are able to
decrypt the ciphertext and access m in plaintext form. In practice ciphertexts
may be open to manipulation, as the legacy of the Data Encryption Standard ,
or DES, reminds us. DES was introduced in the 1970s as an encryption algo-
rithm; as of late 1990s it has been considered to be vulnerable to brute-force
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attacks; consequently it has been replaced by the Advanced Encryption Stan-
dard , or AES. For the purposes of analysis of security protocols, assumptions
are often made on cryptography. This helps abstract away from cryptographic
weaknesses. Throughout this chapter, we take the perfect encryption assump-
tion, which says all cryptographic methods perform as they are described
to do so. Cryptography is therefore assumed to be perfect, that is to say,
no plaintext, partly or wholly, can be derived from a ciphertext unless the
appropriate decryption key for the ciphertext is known. Taking the perfect
encryption assumption helps to separate concerns: the focus is only on those
attacks which manipulate the protocol; attacks on messages are not consid-
ered.

Not only does the possession of the key, therefore, becomes essential to the
retrieval of plaintext from a ciphertext, it also provides us with the means to
dictate who can, or cannot, retrieve it; equally, the possession of a key enables
the generation of a ciphertext using that key. Both concepts are exercised in
the design of security protocols to implement the principles discussed previ-
ously. Two forms of cryptography are commonly distinguished:

• Shared-key cryptography provides a system where the encryption key and
the corresponding decryption key are the same. If a message m is encrypted
with key k then the same key k is used to decrypt {m}k to retrieve m in
plaintext form. This is a conventional form of cryptography and is in use
where two communicating entities already share a secret key to communi-
cate secret messages. A typical example in use these days is the AES, see
above.

• Public-key cryptography makes use of a pair of corresponding encryption
and decryption keys that are different, such that the possession of the
encryption key does not allow any knowledge of the decryption key. The
system allows an entity to possess a pair of such keys where the encryption
key is made public, called the public key, while the decryption key is kept
private to the entity, called the private key. For such a system to work, it
is essential that the private key remains private to the entity.
For an entity A, we denote public and private kEys as pkA and skA.
A message m encrypted with A’s public key as {m}pkA could only be
decrypted using A’s private key skA, where

{{m}pkA}skA = m (8.1)

This allows any entity to send private messages to A without the need for
sharing a key between them.
Another useful application of public key cryptography is to allow for sign-
ing messages, i.e., a message m is encrypted with A’s private key as
{m}skA

. This could only be decrypted using A’s public key pkA, where

{{m}skA
}pkA

= m (8.2)
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This allows any entity A to sign a message, where anyone can verify that
the message originated from A.

Closely following [CLRS09], we provide an example of a public key cryp-
tosystem.

Example 72: RSA Public Key Cryptosystem

RSA (Rivest-Shamir-Adleman) is a public key cryptosystem, for which
a participant creates the pair of public and secret keys as follows:
1. Select at random two large prime numbers p and q with p �= q.
2. Let n � pq.
3. Select a small odd number e which is relatively prime to (p−1)(q−1),

i.e., the only natural number that divides both of them is 1.
4. Compute d as the the multiplicative inverse of e modulo (p−1)(q−1),

i.e., de = 1 mod (p − 1)(q − 1).
5. The pair (e, n) is the public key.
6. The pair (d, n) is the secret key.

Given a message m ∈ {0, . . . , n − 1}, we define

• {m}e,n � me mod n and
• {m}d,n � md mod n.

With these definitions, both Eqs. (8.1) and (8.2) hold [CLRS09].

We mention in passing that in cryptography the above discussed ‘text-
book RSA’ is perceived not to be secure. It suffers from the following attack:
given an encrypted message {m}pk, an attacker can ‘guess’ a message m′

and check if {m′}pk = {m}pk. To prevent such and other attacks, in practice
RSA is often complemented with a so-called Optimal Asymmetric Encryp-
tion Padding (OAEP). OAEP adds an element of randomness and turns a
deterministic encryption scheme into a probabilistic one; further it prevents
partial decryption of cipher texts.

Often, shared-key and public-key cryptography are used in tandem. For
instance, the network protocol suite IPSec and the security protocol TLS use
public-key cryptography when establishing a fresh session key for subsequent
shared-key encrypted communications to leverage the advantages of both,
while avoiding the drawbacks of each.

8.2.2 Principles of Security

We introduce a few core principles on which security properties are based
[SC14].
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• Confidentiality is an assurance on the secrecy of data. Data is said to be
confidential to a set of entities if it is only available to those entities, and
not disclosed to any other outside of the set. This is an important principle
as it allows for some information to be exclusively shared on the basis of
which further security principles can be achieved.

• Integrity is an assurance that data is not modified or manipulated in any
way from inception. Any such modification may be intentional by an unau-
thorised entity attempting to achieve a malicious purpose, or accidental,
for example, due to the medium of communication.

• Availability is an assurance that data is available when needed. An intruder
can’t prevent an authorised user from accessing or modifying data.

The three principles above provide a coarse classification for a range of
security properties. In this chapter, we concern ourselves with authentication,
which is a property that stems from integrity [SC14].

Authentication is used to refer to data or entity authentication. Data
authentication ensures that some data seemingly coming from an entity A,
has certainly come from A and no other entity. Entity authentication pro-
vides a similar guarantee on the identity of an entity, such that if B believes
that it is communicating with some entity A, then it is indeed A that B
is communicating with. Data integrity together with entity authentication
guarantees data authentication.

Example 73: Online Auction Site

Some of the security principles can be illustrated in online auction sites
such as eBay.

During an auction, the identities of bidders have to be kept confiden-
tial to ensure the seller or other bidders are not able to determine who
is interested or who they are up against. Disclosure of bidder identities
could lead to violation of bidder privacy or coercion.

The amount of each bid needs to preserve integrity in line with the
expectations of the bidders. Each bid is a commitment from the bidder
to the price they are willing to pay. Malicious modification of the amount
of the bid could either lead the bidder to lose the auction if it is reduced,
or force the bidder to pay more than committed if it is increased.

The seller needs the guarantee that each bid is authenticated, that is
it is actually coming from the rightful bidder. False bids injected into
the auction will not lead to a sale given the bidder never committed.

The online auction provider needs to ensure the website remain
equally available for all bidders to bid at any time before the auction
closes.

Of course there are other critical properties for online auctions but
we have mentioned only the ones relevant to the chapter.
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8.2.3 Security Protocols

A communication protocol is an agreed sequence of actions performed by
two or more communicating entities in order to accomplish a purpose, for
example fault tolerance over a noisy communication medium. Such protocols
are critical to connectivity at every level, from cellular devices to Internet of
Things (IoT). One example of a protocol is the well-known Internet Protocol
(IP), which serves to address device interfaces, packages data into acceptable
chunks for transfer, and routes data packets across the globe. In this chapter
protocols are informally described using the notation given

(i) A → B : m

This simply denotes that in the ith step of a protocol entity A sends a mes-
sage m destined for entity B. We use A, B and C throughout the chapter as
participant entities. Message can consist of several parts which are concate-
nated. We write message concatenation with a ’.’, e.g., m1.m2 is a message
consisting of two messages m1 and m2. In order to avoid brackets, we use the
convention that concatenation is a left-associative operator.

A security protocol is a communication protocol that provides assurance
on security. To this end, such a protocol may use cryptography as a building
block towards achieving one or more security principles; note however that
cryptography alone may not suffice to achieve a principle.

Example 74: A Simple Security Protocol

Going back to Example 11 from Chap. 1, we can formulate the protocol
description given there in natural language in more formal terms:

“The aim of the protocol is that A and B share a secret key s at
the end. Participant A generates a fresh session key k, signs it with
his secret key sk(A) and encrypts it using B’s public key pk(B). Upon
receipt B decrypts this message using the private secret key, verifies
the digital signature and extracts the session key k. B uses this key to
symmetrically encrypt the secret s.” [CK11].

Using the notation introduced above, we can write this protocol as
follows:

(1) A → B : {{k}sk(A)}pk(B)

(2) B → A : {s}k
Note, that this notation does not take care of actions that a partic-

ipant is performing after receiving a message, e.g., the activity “upon
receipt B decrypts this message” is abstracted from.
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It is important to introduce the notion of an intruder here. Security proto-
cols operate in environments where intruders also operate. Essentially, intrud-
ers are legitimate users who may operate to achieve malicious goals. These
include spoofing (appearing as some other user) or capturing confidential
data (which they are not authorised to access), ultimately to achieve some
advantage. A successful realisation of such an attempt is an attack .

The capabilities of such an intruder are important to comprehend to ensure
that protocols are designed to withstand attacks that such intruders can
launch. One model of an intruder is presented by Dolev and Yao [DY83],
which allows it to

– block messages, where a message is withheld from recipients;
– replay messages, where an old message could be retransmitted to a recipient

of choice;
– spoof messages, where messages are constructed to falsely appear to come

from a different source;
– manipulate messages, where multiple messages could be assembled into one

or deassembled into fragments of choice; and
– encrypt or decrypt messages, however only where the intruder is in posses-

sion of the relevant keys (perfect encryption assumption).

Assuming such an intruder, the protocol shown in Example 74 above is
not secure:

Example 74.1: Man in the Middle Attack

The protocol is vulnerable to a so-called “man in the middle” attack
where the intruder breaches security by intercepting messages and
manipulating them:

(1.1) A → I : {{k}sk(A)}pk(I)
(2.1) I(A) → B : {{k}sk(A)}pk(B)

(2.2) B → I(A) : {s}k
The attack goes as follows: participant A wants to talk to participant I.
However, I is an intruder. Rather than responding to A, participant I is
initiating a conversation with another participant B. To this end, par-
ticipant I decrypts the message it receives and obtains {k}sk(A)—that
is possible as I knows its own private key and thus can apply equation
(8.1)—and encrypts {k}sk(A) with the public key of a participant B
whom I would like to speak with, pretending to be A. I sends this mes-
sage to B, pretending to be A. This is expressed by the notion I(A). B
verifies that the message came from A: first by decrypting it with sk(B)
and then using pk(A) and Eq. (8.2) to check that the message k ‘makes
sense’, i.e., is a legitimate session key. Then B sends the secret key s to
I, in the belief to speak with A. This is expressed in step (2.2) as I(A).
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I can decrypt this message, as it can obtain k by applying Eq. 8.2: it
can decrypt {k}sk(A) using A’s public key.

In this example, the intruder I was using the ability to encrypt or
decrypt messages as any other protocol participant.

Some authors consider more powerful intruder models, where the intruder
has more capabilities, in particular w.r.t. the perfect encryption assump-
tion. For instance, Schneider [Sch02] demonstrates how the intruder could
be allowed to manipulate composition of messages through the exclusive-or
function. Compared to the Dolev-Yao model, the intruder is therefore given
further capability to interfere with protocol messages.

8.3 Needham-Schroeder Protocol for Authentication

This chapter introduces the original Needham-Schroeder protocol [NS78]
(short: N-S protocol) as one of the earliest authentication protocols. The
protocol was designed to provide mutual entity authentication to a pair of
participants. This is followed by Gavin Lowe’s attack [Low95] on the proto-
col, which demonstrates the challenge of getting the design of such protocols
correct with respect to their authentication goals. Then the amended version,
often known as the Needham-Schroder-Lowe protocol (short: N-S-L protocol),
is described.

The design of authentication protocols is often based on a challenge-
response mechanism where an authenticating entity A sends out a challenge
to some entity B being authenticated and expects a response, which is some
manipulated form of the challenge value that only B can generate. This design
principle is often referred to as authentication by correspondence [Gol03].
Such manipulation between the challenge and response forms of the messages
could be achieved using cryptography. Some renowned examples of authen-
tication protocols based on the correspondence principle include Kerberos2

(derived from the Needham-Schroeder protocol), RADIUS (described by a
number of documents issued by the Internet Engineering Task Force IETF)
and IPSec (also standardized by IETF). Such protocols can offer different
guarantees on authentication. Lowe [Low97b] lays out a hierarchy of such
guarantees, out of which we introduce two, closely following Lowe.

Definition 1 (Aliveness) We say that a protocol guarantees to an initiator
A aliveness of another entity B if, whenever A (acting as initiator) completes
a run of the protocol, apparently with responder B, then B has previously
been running the protocol.

Aliveness therefore serves the simple purpose of confirming to an initiator
that a responder is alive and responding in some protocol run. However, there

2 http://web.mit.edu/kerberos/.

http://web.mit.edu/kerberos/
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are no guarantees to the initiator with whom the responder is running the
protocol with. This is the weakest of the authentication guarantees suggested
by Lowe. Some protocols may serve this guarantee from a responder to an
initiator, in which case we speak of aliveness as well.

On the other hand the strongest of Lowe’s guarantees is presented below.

Definition 2 (Injective agreement) We say that a protocol guarantees to an
initiator A injective agreement with a responder B on a set of data items ds
if, whenever A (acting as initiator) completes a run of the protocol, appar-
ently with responder B, then B has previously been running the protocol,
apparently with A, and B was acting as responder in his run, and the two
agents agreed on the data values corresponding to all the variables in ds, and
each such run of A corresponds to a unique run of B.

Injective agreement ensures that both protocol participants are engaged
in the same run with each other, every time the protocol is run. Additionally,
every run provides explicit agreement on any parameters of the protocol.
Essentially, this serves for mutual authentication between A and B.

Strong guarantees such as injective agreement above require some mech-
anism to ensure uniqueness of protocol runs. To ensure that a response is
fresh, and not a replay from a previous run of the protocol between some A
and B, a random value is often used, referred to as a nonce. At the start of
every run, A would generate a fresh nonce NA and include it in the challenge
it sends to B. Upon receipt of a response from B, A would check for the
value of the nonce to ensure it is the same. This provides A with a guarantee
that B has engaged in this fresh run of the protocol. This is important where
protocols are designed to run several times; in such a situation the attacker
could replay an older message and use it to deceive a participant.

For the purposes of this chapter, we consider nonces as arbitrary values
for single use. We assume that nonces are

– fresh every time they are generated;
– unpredictable such that no participant can determine the value of a nonce

yet to appear; and
– not able to reveal the identity of the participant that produced the nonce.

For protocol implementation nonces are typically realised as randomly gener-
ated numbers. How to realise random number generators, and how to prove
that they match the criteria listed above, is beyond the scope of this chapter.

One of the first authentication protocols was presented by Needham and
Schroeder [NS78] in 1978. It became the basis for the well-known Kerberos
protocol widely used in a range of applications including imap, POP, SMTP,
FTP, SSH and Microsoft applications.
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Example 75: Needham-Schroeder Protocol

The protocol provides two participants A and B to authenticate to each
other using public-key cryptography. A shortened three-message version
of the protocol is presented below. The original seven-message version of
the protocol [NS78] includes additional messages where A and B simply
communicate with a trusted server to obtain public keys for each other;
the heart of the protocol remains the same in the shortened version.

(1) A → B : {NA.A}pkB

(2) B → A : {NA.NB}pkA

(3) A → B : {NB}pkB

A initiates the protocol by sending out an encrypted message to B
including its own identity concatenated with a freshly generated nonce
NA. The message is encrypted with public key pkB of B so only B can
read it (using the corresponding private key). B responds by generating
a fresh nonce NB and sends it back to A along with NA. The message is
encrypted with public key pkA of A so only A can read it. The second
message allows A to authenticate B as it confirms NA to be the nonce
that it originally sent out to B. A responds with the final message of
the protocol including only NB and encrypting it with pkB , back to B,
which allows B to authenticate A.

The protocol aims to satisfy injective agreement; the two nonces by
A and B are the respective data items that both participants agree on
in each run.

In 1995, Lowe presented a man in the middle attack on the N-S proto-
col [Low95]. Such an attack allows an attacker to impersonate one partici-
pant in a session with another and serves to demonstrate the subtleties of
designing such protocols.

Example 75.1: Lowe’s attack on the N-S protocol

Lowe’s attack involves two runs of the protocol involving an intruder I.
As in Example 74.1, we denote I pretending to be A as I(A).

(1.1) A → I : {NA.A}pkI

(2.1) I(A) → B : {NA.A}pkB

(2.2) B → I(A) : {NA.NB}pkA

(1.2) I → A : {NA.NB}pkA

(1.3) A → I : {NB}pkI

(2.3) I(A) → B : {NB}pkB
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The first run of the protocol shows A initiating an honest run with
I with a fresh nonce NA. Before I responds, it initiates a second run
of the protocol with B, pretending to be A, and forwards NA to B by
encrypting it with pkB . B responds to the request by encrypting NA

and a fresh nonce NB , and encrypting it with A’s public key pkA. At
this stage, B believes that it is taking part in a run with A, whereas A
believes that it is taking part in a run with I ; note that NB is of the
form that does not convey to A the identity of the entity that generated
the nonce.

For B to be assured that it communicates with A, it waits for the
final message of the protocol. To mislead B, I relays the response from
B onwards to A in response to the earlier run of the protocol. A finds
the message as expected and returns NB encrypted with pkI , which I is
able to decrypt. I encrypts it with pkB to send it onwards to B as part
of the final message of the second run. As a result of this, B is misled
to believe that it has just completed a protocol run with A.

Lowe’s attack shows that the protocol fails on injective agreement
between A and B. Injective agreement insists that the responder B has
to be running the protocol with A, which has shown to be not the case.

For the intruder to complete the last step (2.3) of the manipulated
run, it needs A to decrypt B ’s nonce. Hence the attack cannot be fulfilled
without A’s engagement. Therefore, despite of the attack, A’s aliveness
is guaranteed to B.

The attack demonstrates how the protocol fails to achieve the goal of
mutual authentication between the two participants.

Lowe [Low95] presents a modification to the original protocol, aptly known
as the Needham-Schroeder-Lowe protocol (short: N-S-L protocol), to address
the flaw demonstrated in Example 75.1

Example 76: Needham-Schroeder-Lowe Protocol

The modification involves including the identity of the responding par-
ticipant in the second message of the protocol, which allows the iden-
tities of both participants to be made explicit in encrypted messages.
This prevents I from simply forwarding the message received from B in
the second run of the protocol attack as a response back to A in the first
run as shown in Example 75.1; ultimately, this prevents A to send out
a response in the first run that I uses to manipulate B and successfully
complete the attack. The modified version of the protocol is as follows.

(1) A → B : {NA.A}pkB

(2) B → A : {B.NA.NB}pkA

(3) A → B : {NB}pkB
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Injective agreement ought to be guaranteed given that B explicitly
states its identity in Step (2) of the protocol, to avoid manipulation
of the message in other interleaving runs.

Clearly, designing such protocols is a challenge. Lowe’s attack on the N-S
protocol appeared some seventeen years later from the publication of its
design. This begs the question therefore, how does one check for correctness
of protocols with respect to the desired security properties? Indeed, this is
the central motivation underlying this chapter. The approach presented in
the rest of the chapter allows us to formally model security protocols, and
effectively verify their properties with respect to desired guarantees.

8.4 Formal Specification of Protocols and Properties

The design of authentication protocols is difficult to get correct as Sect. 8.3
demonstrates. This raises the need for a rigorous approach to analysing the
design of such protocols. This section presents a framework to express authen-
tication properties as formal specifications for protocols in Csp. Following sec-
tions present approaches to verify such specifications. Section 8.4.1 discusses
the underlying abstraction principles, Section 8.4.2 defines the message space
for protocol descriptions, Sect. 8.4.3 describes how to model protocol partic-
ipants in the context of a reliable network. Naturally, to assume a reliable
network is unrealistic. Consequently, Sect. 8.4.4 provides a formalisation of
the Dolev-Yao model in Csp. Section 8.4.5 presents a formal specification of
authentication in terms of correspondence.

8.4.1 Protocol Abstraction Through Use of Symbolic
Data

Up to now, we studied protocols presented in an informal protocol notation.
Now we want to provide formal models in Csp. This will allow us to actually
prove properties.

The formal models in Csp will capture the message exchange between
the protocol participants on some level of abstraction. Note that exchange of
messages between computers on the technical side is quite a complex task in
itself: the Open Systems Interconnection model3 defines seven different layers
of message exchange. The new abstraction here concerns data. Up to now,
one could think of concrete data being exchanged in between participants,
e.g., in the context of RSA a key could be a sequence of 2048 bits. Now we will

3 https://www.iso.org/standard/20269.html.

https://www.iso.org/standard/20269.html
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abstract from these concrete values by defining symbols representing data in
order to simplify protocol analysis.

Whenever one describes a system on two different levels of abstraction, say
a concrete model CM and and abstract model AM , one can link these two
levels in the following way. An abstraction is called sound w.r.t. a property
ϕ if

AM |= ϕ =⇒ CM |= ϕ.

An abstraction is called complete w.r.t. a property ϕ if

CM |= ϕ =⇒ AM |= ϕ.

Sound abstractions allow one to establish system properties by carrying out
system analysis on the abstract, i.e., simpler system.

In order to ease protocol analysis, we apply a data abstraction as follows:

1. We represent the set of all participants by two users and one intruder.
2. We represent the set of all keys by the keys associated with these three

participants; we encode the perfect encryption assumption by ensuring
that between theses values only Eqs. (8.1) and (8.2) hold.

3. We represent the set of nonces by one nonce for each participant, which is
used only once in the protocol run.

Using this data abstraction, it is assumed that the abstract Csp models are
sound and complete w.r.t. the protocols presented in the informal protocol
notation. As the protocol notation is an informal one, we can’t connect the
concrete and the abstract level by a proof. In principle it would be possible
to also provide formal models of protocols on the concrete level. However,
in the literature the assumption is that the above presented abstraction is a
trivial one, i.e., it would not be worth to provide a formal proof for it.

In passing, we would like to mention that Ranko Lazić has worked on data
abstraction in Csp [Laz99]. With his techniques, one could provide a non-
symbolic model of a security protocol in Csp and try to prove that—w.r.t.
selected security properties—a symbolic Csp model is sound and correct.

8.4.2 Message Space

The message space of a protocol is the set of all messages that can appear
in any run of the protocol. This space usually has a structure. In general,
one considers the following sets: U denotes a set of protocol participants that
may run it, N is a set of all nonces and K is a set of all cryptographic keys
that can be used by participants. Thus the set of all atoms A is defined as

A ::= U | N | K
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In the context of cryptophic protocols, it is usual to construct the message
space with notation borrowed from grammars; alternatively, one could write
a disjoint union rather than “|”.

Given these atoms A, the message space M containing all messages that
may ever appear in a protocol run is given by the grammar

M ::= A | {M}K | M.M
There are three cases: messages can be atoms, messages can be encrypted
under some key, and messages can be paired.

Example 75.2: Message Space of the N-S Protocol

For the N-S protocol the atoms of the message space are given as follows:
U � {A,B, I}
N � {NA, NB , NI}
K � {pkA, pkB , pkI , skA, skB , skI}

Examples of messages that can be formed include A, {NA.A}pkB
, and

A.B. Note that the message space is infinite thanks to both, encryption
and pairing.

The pairing operator is binary. In order to avoid writing brackets, we
assume that it is left-associative, i.e., its operands are grouped from the left.
This allows us to write messages such as B.NA.NB without brackets, knowing
it stands for (B.NA).NB .

8.4.3 Protocol Participants in a Reliable Network

When analysing security protocols in Csp, the behaviour of the participants
is usually represented by processes. Participants can communicate over chan-
nels, over which they can send messages (denoted as ‘!’) or on which they
can receive messages (denoted by ‘?’). Channels have a name, e.g., send, and
consist of several components, which are separated by ‘.’ (for selecting a spe-
cific channel), ‘!’ indicates sending a value and ‘?’ indicates receiving a value
and binding it to a variable. We will apply the following naming conventions:
on a send channel, the first component is the sender, the second component
the receiver; on a receive channel, the first component is the receiver, the
second component the sender; on both channels, the third component is for
the actual message.

In our example below we use three operators for describing protocol par-
ticipants:

• The Stop operator, which denotes the process that does not do anything,
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• The action prefix operator a → P , which describes a process that first
engages in the event a and then behaves like P , and, finally,

• The external choice operator

�x∈XP (x)

which denotes a collection of processes P (x) for x ∈ X, one of which will
be executed.
Note that as we will be working over the traces model, external and internal
choice are the same. In the literature on modelling security protocols in
Csp usually the external choice operator is used, even when conceptually
the choice is an internal one.

In order to model communication networks and the composition of the
overall system, we use two operators:

• The generalised parallel operator P [|Channels |]Q combines two processes
P and Q to a new process representing a system, in which P and Q
exchange messages over communication channels listed in Channels.

• The interleaving operator |||U∈X U combines all processes listed in the set
X to a new process representing a system, in which the processes of X run
independently of each other.

For a more thorough introduction to Csp see Chap. 3.
In order to demonstrate the attack on the N-S protocol, it suffices that

the participants run only one instance of the protocol. With the channels and
the above listed operators, we can model the participants of the N-S protocol
and a reliable network as follows:

Example 75.3: Modelling the participants of the N-S protocol

The initiator A can choose to run the protocol with any other protocol
participant b ∈ U :

A = �b∈U,b �=A send.A.b!{NA.A}pkb
→

receive.A.b?{NA.n}pkA
→

send.A.b!{n}pkb
→ Stop

Given a chosen participant b, the process follows the specified protocol
conforming to the sequence of messages required. b and n are variables:
b is bound to a specific value at the beginning of the process, n is bound
to a specific value when A receives a message in the second step. After
running the protocol once A stops. Similarly for process B :

B = receive.B?a?{n.a}pkB
→

send.B.a!{n.NB}pka
→

receive.B.a?{NB}pkB
→ Stop
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Here, n and a are variables. Both a and n are bound when B receives
its first message. The question mark before the a indicates that a is
a variable. The Csp process B is only prepared to receive messages if
both occurrences of a in receive.B?a?{n.a}pkB

have the same value. In
receive.B.a?{NB}pkB

we write a ‘?’ in front of {NB}pkB
, though the

process B is only willing to receive this specific value and no binding to
a variable takes place.

Note that each message in the protocol corresponds in Csp to one
send and one receive action in different processes.

We model a ‘secure’ Network as a process that receives messages,
passes them on to the intended receiver, and then starts over again:

Network = send?i?j?m → receive!j!i!m → Network

Protocol participants and network then can be composed together to a
system, e.g, to the system being composed from A and B :

System = (|||U∈{A,B}U) [| send, receive |]Network

All participants run independently of each other (|||U∈{A,B}U), how-
ever they communicate over the Network using the send and receive
channels.

Figure 8.1 provides a visualisation of the communication structure
within this System. Participants A and B have each two send and
receive channels to and from the Network . As there is no participant I,
the Network is free to use the channels to or from I, though they are
not connected with any process.

A

B

Network

send.A.B

send.A.I

receive.A.B

receive.A.I

send.B.A

send.B.I

receive.B.A

receive.B.I

send.I.A

send.I.B

receive.I.A

receive.I.B

Fig. 8.1 Communication structure of (|||U∈{A,B}U) [| send, receive |]Network
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This modelling makes use of Csp pattern matching: a process is only will-
ing to receive those messages that match the specified pattern. This abstracts
from implementation details such as first receiving a message, then decrypting
and analysing it, before possibly rejecting it.

8.4.4 Modelling the Intruder and the Network

Recall that the Dolev-Yao model allows an intruder to block, replay, spoof
and manipulate messages that appear on any public communication channel.
A generates � relation can be used to characterise the message manipulation
that the intruder is capable of. Figure 8.2 presents the rules that define this
relation.

Given a set S ⊆ M of messages, the generates relation � ⊆ P(M)×
M is the smallest relation closed under the following rules:

1. if m ∈ S then S � m
2. if S � m and S � k then S � {m}k
3. if S � {m}pkb

and S � skb then S � m

4. if S � m1.m2 then S � m1 and S � m2

5. if S � m1 and S � m2 then S � m1.m2

Fig. 8.2 Rules for generating messages using the � ⊆ P(M) × M relation

The relation characterises the intruder’s message manipulation. For a given
set S of intruder’s knowledge, the intruder can generate any message it is
aware of (Rule 1). The intruder can encrypt (Rule 2) or decrypt (Rule 3),
can pair (Rule 4) or unpair messages (Rule 5) it is aware of.

Note that we realise only Eq. (8.1) in the intruder. Equation (8.2) does not
play a role in Lowe’s attack nor is it used anywhere in the protocol. Schneider
proves that the N-S-L protocol is also secure if the intruder has the added
capability of using Eq. (8.2) [Sch98b]. For demonstrating the principles of
protocol analysis, it suffices to consider Eq. 8.1 only.

The literature may include an additional property:

if S � m and S ⊆ S′ then S′ � m.

This rule says that any growth in knowledge from S to S′ allows the intruder
to generate from S′ at least as many messages as from S. As this property is
a consequence of other stated rules it is excluded.
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Example 75.4: Working with the generates relation

In the N-S protocol, initially the intruder knows all participants as well
as the public keys of all participants and its own secret key skI . Thus,
its initial set of knowledge is

Init � {A,B, I, pkA, pkB , pkI , skI}.

In step (1.1) of the protocol run in Eample 75.1, the intruder receives
the message {NA.A}pkI

. This increases the intruder’s knowledge to a
set denoted as IK as follows:

IK = Init ∪ {{NA.A}pkI
}.

With IK the intruder can decrypt the message {NA.A}pkI
:

• we have {NA.A}pkI
∈ IK and thus IK � {NA.A}pkI

using Rule 1,
• we have skI ∈ IK and thus IK � skI using Rule 1, and
• thus we obtain IK � NA.A using Rule 3.

Furthermore, the intruder can encrypt the message NA.A with B ’s
public key, as pkB ∈ IK and Rule 2 allows for encryption.

An Intruder process is introduced to model the capabilities of a Dolev-
Yao intruder. A set of messages IK constitutes as intruder knowledge that
the process is parameterised with:

Intruder(IK ) =(send?i?j?m → Intruder(IK ∪ m)) (8.3)
�

(�i,j∈U,IK�m receive!i!j!m → Intruder(IK ))

The process models what the intruder is capable of and as such

• receive m, sent by i to j on send, and then behave as an intruder with m
added to its knowledge, or

• send any message m, generated under � from set IK, to any i pretending
to come from any j along receive.

IK builds up as the intruder observes traffic passing through the network,
hence simply

Intruder = Intruder(Init)

Here, Init is the intruder’s initial knowledge. In the context of the N-S and
the N-S-L protocols, Init refers to the set given in Example 75.4.

We compose a network NET containing all protocol participants commu-
nicating with each other over a medium that is completely under the control
of the Dolev-Yao intruder:

NET = (|||U∈U,U �=IU) [| send, receive |] Intruder
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NET is modelled to force all participants to synchronise with the Intruder
over the send and receive channels. Such a model of the network allows the
intruder to have Dolev-Yao capabilities to:

– block messages, through simply allowing the intruder a choice to forward
any message it receives on the send channel on to the receive channel, which
it may not do so,

– replay messages, where any message the intruder holds in IK can be retrans-
mitted over the receive channel to any participant of choice apparently
coming from any other, and

– spoof, manipulate, encrypt or decrypt messages from IK under the gener-
ates relation � to forward on to the receive channel to any participant of
choice apparently coming from any other.

Furthermore, the intruder process is capable to act as protocol participant I:

Example 75.5: The intruder as a protocol participant

We consider all messages from a ‘normal’ protocol run, where the
intruder using its identity I would like to initiate authentication, say
with participant B :
• In the first step, the intruder would send the message {NI .I}pkB

to
B. As I,NI , pkB are initially known to the intruder process, it is
capable of forming this message and communicating it to B via the
channel message receive.B.I.

• In the second step, the intruder ought to receive a message {NI .n}pkI

from B. The intruder listens to the channel send.B.I and is willing to
receive any message. According to the protocol, B sends {NI .NB}pkI

.
The intruder can decrypt this message using skI , and adds NB to its
knowledge base.

• Having NB in its knowledge base from the second step, the intruder
can form the message {NB}pkB

and send it to B via the channel
receive.B.I.

Similarly, the intruder can take on the role of the follower process, e.g.,
can participate in a run of the N-S protocol for A initiating authentica-
tion with I.

We use trace semantics to formally express the relation between authen-
ticatee and authenticator. The underlying idea is to make explicit a partici-
pant’s involvement in their run of the protocol with respect to a corresponding
participant.
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Example 75.6: The N-S protocol attack in Csp trace semantics

We can now formally study the N-S attack:

NET = (A ||| B) [| send, receive |] Intruder
Compared with the setting of Example 75.3, now the intruder process
replaces the network component.

The process NET has many traces including the one from the man
in the middle attack demonstrated in Example 75.1:

〈 send .A.I .{NA.A}pkI
,

recv .B .A.{NA.A}pkB
,

send .B .A.{NA.NB}pkA
,

recv .A.I .{NA.NB}pkA
,

send .A.I .{NB}pkI
,

recv .B .A.{NB}pkB
〉

Analysing this trace, the above described deception can no be detected
easily. The reason is that it does not include the beliefs of the partici-
pants, namely whom A and B are believing to run the protocol with.

Example 75.6 shows that taking the traces of a security protocol as they
are can make it difficult to analyse the protocol for authentication. In such
circumstances, one often ‘enriches’ such model of a system in order to indicate
particular behaviours of interest. In the next section we will use ‘signal events’
to indicate what stage of the protocol a participant has reached through a
protocol run.

8.4.5 Formalising Authentication

To make explicit the role of protocol participants, signal events are defined
[SBS09] as a structure to indicate the status of a participant. This technique
is known as instrumentation. In instrumentation, signal events are added to a
process in order to allow for more fine grained observations. When one makes
use of instrumentation, it is important to check that the chosen instrumen-
tation does not alter the original behaviour, i.e., after instrumentation, all
original behaviours must remain possible, and no new behaviours are added.

For the purpose of analysis in this chapter, we use a set S of signals:

S ::= Running .U .U .N | Commit .U .U .N
Each of the two event values is meant to indicate a particular stage in a pro-
tocol run: a Running signal indicates that an authenticatee (being authen-
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ticated) is engaged in some protocol run; a Commit signal acknowledges
successful authentication on behalf of an authenticator in a protocol run. For
a pair of participants engaged in a protocol run, it follows that Running is
always expected to precede Commit.

We illustrate the use of signals in the example below.

Example 75.7: Instrumenting the N-S protocol

We instrument the N-S protocol from Example 75. We first extend the
protocol notation by including the relevant signals for each step:

(1) A → B : {NA.A}pkB
Running .B.A.NA

(2) B → A : {NA.NB}pkA
Commit .A.B.NA,Running .A.B.NB

(3) A → B : {NB}pkB
Commit .B.A.NB

The signal Running .B.A.NA indicates that B believes it is being
authenticated to A with nonce NA serving as the unique challenge.
The corresponding Commit .A.B.NA signal indicates A’s belief that it
has authenticated B in this run. Conversely A’s authentication to B is
captured using the second pair of signals. This instrumentation can be
realised as follows:

A = �b∈U,b �=A send.A.b!{NA.A}pkb
→

receive.A.b?{NA.n}pkA
→

Commit .A.b.NA →
Running .A.b.n →
send.A.b!{n}pkb

→ Stop

B = receive.B?a?{n.a}pkB
→

Running .B.a.n →
send.B.a!{n.NB}pka

→
receive.B.a.{NB}pkB

→
Commit .B.a.NB → Stop

The N-S protocol shall provide mutual authentication, therefore there
are two authentication attempts in one protocol run.

The first of these attempts is:
– B’s signal Running.B.A.NA says that B believes it is running the

protocol with A,
– this ought to correspond with A’s subsequent signal Commit.A.B.NA,

which says that A believes it has authenticated B.
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The second of these attempts is:

– A’s signal Running.A.B.NB says that A believes it is running the
protocol with B,

– this ought to correspond with B’s subsequent signal Commit.B.A.NB ,
which says that B believes is has authenticated A.

We distinguish the two attempts by annotating the signal data using
nonces.

Naturally, authentication properties would always be expressed over the
beliefs of honest participants. Therefore, our use of instrumentation focusses
on honest participants. It does not allow us to express any guarantees on
behalf of the intruder.

We formalise authentication in terms of signals using trace specifications.
Definition 3 (a precedes b) Let a and b be some events, let tr be a trace.
We say that a precedes b in tr , if any occurrence of event b is preceded by
an occurrence of event a, i.e.,

∀tr′.tr′ � 〈b〉 ≤ tr =⇒ a ∈ tr′

Here, � stands for concatenation of traces, 〈 〉 is a constructor that turns a
single event into a one element trace, s ≤ t holds if s is a prefix of t, and
a ∈ tr holds if event a occurs in the trace tr.

Once a predicate is defined on a single trace, we can lift it to a predicate
on processes:
Definition 4 (The sat relation) A process P satisfies a precedes b if this
predicate holds for every trace tr of P :

P sat a precedes b ⇐⇒ ∀tr ∈ traces(P ). a precedes b

Without explicitly giving procedures of encoding protocols in Csp and
then instrumenting them with signals, we provide formal definitions of dif-
ferent levels of authentication.

Definition 5 (Formal definition of aliveness) For A authenticating some B,
a protocol P satisfies aliveness if for P extended with signals the following
holds:

P sat Running.B.X.n precedes Commit.A.B.m

where X is an arbitrary participant, and n,m are some nonces.

Note that in Definition 5, the nonces n and m may not be the same. This
definition only guarantees to A that B has run the protocol at some stage,
which is what aliveness stipulates in Definition 1.

Definition 6 (Formal definition of injective agreement) For A authenticat-
ing some B using nonce NA as a challenge, a protocol P satisfies injective
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agreement if for P extended with signals, where A will only commit once
with NA, the following holds:

P sat Running.B.A.NA precedes Commit.A.B.NA

Corresponding to Definition 2, this formal specification insists that both
A and B are engaged in the same run and aware of each other. The insistence
on the agreement on data values is met through the use of the same nonce.
The uniqueness assumption on nonces implies uniqueness of runs.

Definition 3 defines a relatively weak relationship between a and b, namely,
it insists only that there is an a event happening before a b event can occur.
However, it allows for many b events to occur afterwards. In the application
to authentication, this means that one Running event can be followed by
many Commit events.

To guarantee injective agreement, as is the objective of Definition 6, having
several commit events following one run event needs to be excluded. We
exclude this by saying that the instrumentation of participant A is allowed
only once to send a Commit event with a particular nonce NA.

8.5 Protocol Analysis by Model Checking

In the following, we model security prototols in the machine readable version
CspM 4 of Csp. This means especially that the alphabet of communications
needs to be constructed as well. The tool FDR (Failures Divergence Refine-
ment) provides a number of automated analysis methods. Here, we will use
a check on trace refinement, i.e., we utilise the tool in order to automati-
cally check if all traces of a formal model of a security protocol are traces of
a property specification. Concretely, we will discuss the encoding of the N-S
protocol and of the aliveness and injective agreement properties in CspM . Our
encoding is inspired by the principles underlying the tool Casper5 [Low97a].

The modelling of security protocols in CspM involves quite a number
of intricate coding tricks, both on the encoding of data in the functional
programming language that is part of CspM , and on the encoding of processes
in Csp. Thus, this section requires good knowledge of Csp and CspM .

These coding tricks address a number of challenges: how to obtain a finite
set of messages, how to ensure that there are only finitely many messages
that the intruder can derive, and, finally, how to deal with the intruder’s
huge state space. We will discuss this to some detail.

4 https://cocotec.io/fdr/.
5 https://www.cs.ox.ac.uk/gavin.lowe/Security/Casper/.

https://cocotec.io/fdr/
https://www.cs.ox.ac.uk/gavin.lowe/Security/Casper/
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8.5.1 Encoding the Message Space in CspM

The first step in making our Csp specification of a security protocol machine
readable is to represent its message space (cf. Sect. 8.4.2). To this end, CspM
offers syntax to describe the Csp alphabet in form of a functional program-
ming language. This includes (among many other features) the possibility
to define (recursive) data types, provides a built-in generic type for forming
sequences, supports set comprehension, and allows one to define functions
using pattern matching.

Using CspM , we can represent the message space of Example 75.2 as
follows:

Example 75.8: Message space of the N-S protocol in CspM , first
attempt

We first describe data used in the protocol:

datatype USER = A | B | I
datatype NONCE = NA | NB | NI
datatype KEY = PKA | PKB | PKI | SKA | SKB | SKI
PKEY = { PKA, PKB, PKI }
SKEY = { SKA, SKB, SKI }

pk(A) = PKA pk(B) = PKB pk(I) = PKI
sk(PKA) = SKA sk(PKB) = SKB sk(PKI) = SKI

The datatypes USER, NONCE, and KEY consist of the constants listed. For
instance, USER comprises of the three values A, B and I. There are two
sets of keys, the set PKEY collects all public keys, the set SKEY collects
all private keys. Finally, there are functions pk and sk. pk associate
participants with their public keys. sk associate public keys with their
secret counterparts. Based on this data, we compile the message space:

datatype MESSAGE = User.USER | Nonce.NONCE | Key.KEY |
Enc.KEY.MESSAGE | Sq.Seq(MESSAGE)

The datatype MESSAGE comprises the atomic messages, where construc-
tors User, Nonce, and Key indicate from which set they are coming.
It also comprises compound messages, where the constructor Enc indi-
cates encrypting a message with a key, and the constructor Sq indicates
pairing of messages. For pairing, we are using CspM ’s predefined con-
structor Seq, i.e., we implement the paring operator with an associative
one. This fits with our use of the pairing operator as a left-associative
one. The datatype MESSAGE is recursive and infinite.
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Infinite data types such as MESSAGE are legitimate CspM specifications.
However, when simulating or model checking a process, FDR diverges over
infinite data enumerating all possible events. For this reason, we define a
finite set of messages those that can be exchanged in one run of the N-S
protocol with three participants.

Example 75.9: Message space of the N-S protocol in CspM ,
second attempt

Building upon the datatypes from Example 75.8 up to MESSAGE as a
prefix, we define:

datatype MESSAGE_LABEL = Msg1 | Msg2 | Msg3

MSG1_CONT = { Enc.pkb.(Sq.<Nonce.na, User.a>) |
pkb <- PKEY, na <- NONCE, a <- USER }

MSG1_BODY = { (Msg1, c) | c <- MSG1_CONT }

MSG2_CONT = { Enc.pka.(Sq.<Nonce.na, Nonce.nb>) |
pka <- PKEY, na <- NONCE, nb <- NONCE }

MSG2_BODY = { (Msg2, c) | c <- MSG2_CONT }

MSG3_CONT = { Enc.pkb.(Sq.<Nonce.nb>) |
pkb <- PKEY, nb <- NONCE }

MSG3_BODY = { (Msg3, c) | c <- MSG3_CONT }

MSG_CONT = Union({MSG1_CONT, MSG2_CONT, MSG3_CONT})
MSG_BODY = Union({MSG1_BODY, MSG2_BODY, MSG3_BODY})

In order to obtain a finite message space, for each of the three message
types exchanged in the protocol, we construct a set of messages that
includes all messages that could possibly be exchanged by that stage
of the protocol run. We label these messages with Msg1, Msg1, or Msg3
respectively.

We discuss our encoding for the first message only. In the protocol
as presented in Example 75 this message is

{NA, A}pkB

i.e., it is an encrypted message, where the key is pkB , and the con-
tent consists of pairing up the nonce NA and the entity name A. The
structure of the message is given by

Enc.pkb.(Sq.<Nonce.na, User.a>)
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Note the symbols < and >, which are used as sequence constructors in
CspM . The variables pkb, na, and a are bound to the following specific
values

pkb <- PKEY, na <- NONCE, a <- USER

i.e., pkb can be any public key, na can be any nonce, and a can be any
user. Finally, this set of messages is wrapped up as

MSG1_BODY = { (Msg1, c) | c <- MSG1_CONT }

Similar constructions are applied to the messages in the second and third
steps. Finally, we construct sets MSG CONT and MSG BODY, that contain
all possible message contents and message bodies respectively.

This message space is a finite one. This is due to the finiteness of the
domains we start with, and due to using only constructions that, given
finite sets as parameters, result in a finite set.

8.5.2 Protocol Encoding

Encoding (instrumented) protocols in CspM is more or less straight forward:

Example 75.10: The N-S protocol in CspM

channel send : USER . USER . MSG_BODY
channel recv : USER . USER . MSG_BODY

channel running, commit : USER . USER . NONCE

User_A =
[] b : diff(USER,{A}) @
send.A.b.(Msg1, Enc.pk(b).(Sq.<Nonce.NA, User.A>))
-> [] nb : NONCE @
recv.A.b.(Msg2, Enc.PKA.(Sq.<Nonce.NA, Nonce.nb>))
-> send.A.b.(Msg3, Enc.pk(b).(Sq.<Nonce.nb>))
-> STOP

...
Network = send?a?b?m -> recv.b.a.m -> Network

System =
(User_A ||| User_B) [| {|send, recv|} |] Network



422 Markus Roggenbach, Siraj Ahmed Shaikh, and Hoang Nga Nguyen

The process User A directly encodes the three steps in which partici-
pant A is engaged in, where the choice operators are restricted to finite
sets, ensuring finite branching.

The system composition with parallel operators uses the CspM con-
struct {|send, recv|}, which denotes the set of all events that can be
communicated over the channels send and recv.

8.5.3 Encoding the Intruder in CspM

The challenge in encoding the intruder as a Csp process is how to represent
the intruder’s growing knowledge. This knowledge ranges over all the user
names, the nonces, the keys, as well as all the messages that can be formed
from these. For the case of the N-S protocol, this is a finite set because of our
construction in Example 75.9. The size of this set, still substantially large,
provides a challenge for model checking; managing its size is therefore key.

In the N-S protocol, the potential knowledge of the intruder is a subset of
all facts:

Example 75.11: Potential intruder knowledge

Fact = Union(
{ {|User|}, {|Nonce|}, {|Key|},
{Enc.k.(Sq.<Nonce.n, User.u>) |

k <- PKEY, n <- NONCE, u <- USER },
{Enc.k.(Sq.<Nonce.n, Nonce.n’>) |

k <- PKEY, n <- NONCE, n’ <- NONCE},
{Enc.k.(Sq.<Nonce.n>) |

k <- PKEY, n <-NONCE }}

In our first encoding of the intruder, see Eq. 8.3, the intruder process was
parameterised over the set of facts known in a particular state. Thus, there
is an exponential number of states, as there are 2|Fact| subsets. Inspired by
the Casper tool, we represent the facts by having |Fact| many processes that
are running in parallel. Each of these can be in two states, i.e., we still have
an exponentiell size of states. However, by using parallel composition, we
play to the strength of model checking in FDR. The intruder has some initial
knowledge IK.

Example 75.12: Knowledge representation by parallel pro-
cesses

In the beginning the intruder knows all public keys, its own secret key
and nonce, as well as the names of all users (cf. Example 75.1):

Init = {Key.PKA, Key.PKB, Key.PKI,



8 Formal Verification of Security Protocols 423

Key.SKI, Nonce.NI,
User.A, User.B, User.I}

Intruder(K) =
|| F : Fact @ [KnownAlpha(F)]
if member(F,K) then Known(F) else Unknown(F)

The replicated alphabetised parallel || F:Fact @ [KnownAlpha(F)]
creates |Fact| many processes. These processes take either the form
Known(F) or Unknown(F). This state depends whether the fact F belongs
to the set K. The processes are synchronised over sets KnownAlpha(F).
Section B.1 provides a concise definition of the replicated operator in
particular of the synchronisation sets between the processes.

KnownAlpha(F) =
Union({

{ send.x.y.(Msg1,F) | x <- USER, y <- USER,
member(F, MSG1_CONT)},

...
{ recv.x.y.(Msg3,F) | x <- USER, y <- USER,

member(F, MSG3_CONT)},
{ infer.F.r |

r <- rules_match_head(F,Deduction_Rules) },
{ infer.rule_head(r).r |

r <- rules_contain_body(F,Deduction_Rules) }
})

The synchronisation sets KnownAlpha(F) allows the F process to engage
in

• any event on the send channel, where F is part of the message content;
or

• any event on the recv channel, where F is part of the message content.

The process can further engage in

• any event on the infer channel, where F is deduced; or
• any event on the infer channel, where F is part of the body of a rule.

The first two cases allow ‘listening’ to communication, the latter two
participation on the inference of facts.

The intruder has capabilities as described in the Dolev-Yao model. Figure
8.2 describes the intruder’s deduction capabilities. Rules 2 and 5 of the of
the Dolev-Yao model allow for infinitely many derivations and thus infinitely
many different facts in the message space as defined in Sect. 8.4.2. In our
encoding in CspM , we are working with finitely many facts only. Thus, we will
limit these derivations to finitely many, taking into account that participants
can run the protocol at most once.



424 Markus Roggenbach, Siraj Ahmed Shaikh, and Hoang Nga Nguyen

In a nutshell, the intruder can combine or encrypt, and decompose or
decrypt, messages based on known facts. This can be encoded by sets of
rules in CspM for the the N-S protocol as follows:

Example 75.13: Encoding the intruder’s deduction capabilities

The intruder’s deduction rules are encoded as pairs, where the first
component is the conclusion of the rule, and the second component is
its condition. The operational interpretation of a rule is: if only the
facts stated in the condition are known, then it is possible to deduce
the conclusion.

Msg1_Encryption_Deduction_Rules =
{ (Enc.k.(Sq.<Nonce.n, User.u>),

{Key.k, Nonce.n, User.u}) |
k <- PKEY, n <- NONCE, u <- USER }

...

Encryption_Deduction_Rules =
Union({Msg1_Encryption_Deduction_Rules,

Msg2_Encryption_Deduction_Rules,
Msg3_Encryption_Deduction_Rules})

Msg1_Decryption_Deduction_Rules =
{ (Nonce.n ,

{Enc.k.(Sq.<Nonce.n, User.u>), Key.sk(k)}) |
k<-PKEY, n <- NONCE, u <- USER }

...

Decryption_Deduction_Rules =
Union({Msg1_Decryption_Deduction_Rules,

Msg2_Decryption_Deduction_Rules,
Msg3_Decryption_Deduction_Rules})

Deduction_Rules =
Union({Encryption_Deduction_Rules,

Decryption_Deduction_Rules})

The rules are formed along the three message types. The set of
Deduction Rules is the union of all these rules.

Note that we only encode encryption with a public key and decryp-
tion with a secret key, i.e., we realise Eq. 8.1, but ignore Eq. 8.2.
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In the chosen encoding approach, there are |Fact| many processes. These
processes are either in the Known state or in the Unknown state, representing
the current intruder’s knowledge. Every message that the intruder listens
to on the network potentially increases this knowledge, i.e., the state of a
process changes from Unknown to Known or remains as Known. Furthermore,
the intruder can apply inference rules. This is encoded via a synchronisation
between processes in state Known: provided the intruder knows all facts in
the condition, the process encoding the fact stated in the rule’s conclusion
can change from Unknown to Known. The intruder can send those messages
which are known.

Example 75.14: Inference modelled by synchronization

We declare a channel infer to make learning observable as a commu-
nication.

channel infer : Fact . Deduction_Rules

rule_head((f,_)) = f
rule_body((_,bs)) = bs

rules_match_head(h,Rs) = {r | r <- Rs, rule_head(r) == h}
rules_contain_body(b,Rs) = { r | r <- Rs,

member(b, rule_body(r))}

There are four functions that decompose rules: to return a rule’s head
or body, and to obtain rules matching a given head or body. Here, the
“ ” is a wildcard symbol, that acts as a placeholder for any value in the
appropriate domain.

Unknown(F) =
(member(F, MSG1_CONT) &
[] x : diff(USER, {I}),

y : USER @ send.x.y.(Msg1,F) -> Known(F))
[] ... []
([] r : rules_match_head(F,Deduction_Rules) @
infer.F.r -> Known(F))

An F-process in state Unknown can listen to any message containing F
that is communicated via the send channel in the network and switch
to state Known. Provided F can be inferred, an F-process can turn into
state Known.

Known(F) =
(member(F, MSG1_CONT) &

(([] x : USER, y : USER @
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send.x.y.(Msg1,F) -> Known(F)) []
([] x : USER, y : USER @

recv.x.y.(Msg1,F) -> Known(F))))
[]...[]
([] r : rules_contain_body(F,Deduction_Rules) @

infer.rule_head(r).r -> Known(F))

An F-process in state Known can listen to any message containing F that
is communicated via the send channel or send any message containing F
involving arbitrary users as senders and receivers. As the intruder keeps
their knowledge, an F-process in state Known always remains in state
Known.

An F-process in state Known can synchronize with other processes in
state Known to infer knowledge.

Building over the message space, the protocol participants and the intruder
encoded in CspM , it becomes straightforward to compose the overall system.

Example 75.15: N-S protocol in CspM

We abstract the Intruder process in two ways: we hide all events on
the infer channel; we optimise the resulting process with a CspM spe-
cific function chase, which does not effect the traces of the system but
reduces computational overhead.

IntruderHideInfer = chase(Intruder(Init) \ {| infer |})

Unsecure_System = (User_A ||| User_B)
[| {|send, recv|} |]
IntruderHideInfer

The N-S protocol in CspM is then the parallel composition of the two
users together with the abstracted Intruder process—like in Example
75.6. We call it Unsecure System, as we know that the protocol fails to
provide authentication.

8.5.4 Encoding and Verifying the Security Properties

Having encoded the system under consideration, the next step is to encode
the security property we are interested in.
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Example 75.16: Aliveness and Injective Agreement in CspM

We define a generic process Precedes over a two element alphabet {e, d}
such that

Precedes(e,d) sat e precedes d

We use the predefined CspM RUN process that in each step offers all
the events which are element of its parameter set.

Precedes(e,d) = e -> RUN({e,d})

Note that over an alphabet with two elements {e, d}, any trace that
fulfills e precedes d needs to begin with e: suppose a trace t would
start with d, then the property would not hold for the first element of
t. When a trace has e as its first element, it will fulfill the property e
precedes d regardless of what follows.

The encoding of aliveness and injective agreement in CspM follows
Definitions 5 and 6. The external choice operator in the process encoding
aliveness allows to choose any participant as a partner.

Aliveness(a,b) = [] x : USER, n : NONCE, m : NONCE @
Precedes(running.b.x.n, commit.a.b.m)

InjectiveAgreement(a,b,na) =
Precedes(running.b.a.na, commit.a.b.na)

Having now encoded both the system and the security properties in CspM ,
we can set up the model checking:

Example 75.17: Model Checking the N-S protocol

AlphaAliveness(a,b) = { running.b.x.n, commit.a.b.m |
x <- USER, n <- NONCE, m <- NONCE }

assert Aliveness(A,B) |||
RUN(diff(Events,AlphaAliveness(A,B)))
[T= Unsecure_System

The assert keyword declares a refinement statement, in our case
using the [T= keyword for traces refinement. Here we investigate if the
Unsecure System satisfies the aliveness property for A authenticating B.
We check if the Unsecure System refines the Aliveness(A,B) process.
For the refinement check, the alphabet of the processes on both sides
of the refinement sign needs to be identical. We let Aliveness(A,B)
interleave with a RUN process, where the alphabet of the RUN process
consists of Events—all events possible—except those which belong to
the alphabet of the Aliveness(A,B) process, i.e., AlphaAliveness.
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The model checker confirms that both refinements hold, i.e., with
Aliveness(A,B) and Aliveness(B,A). Thus, we have an automated
proof for the claim that the N-S protocol offers aliveness.

However, setting up model checking for injective agreement leads to
a violation of the refinement:

assert InjectiveAgreement(B,A,NB) |||
RUN(diff(Events,AlphaInjectiveAgreement(B,A,NB)))
[T= Unsecure_System

The model checker FDR provides a counter example to this assertion:

send.A.I.(Msg1, Enc.PKI.Sq.<Nonce.NA, User.A>)
recv.B.A.(Msg1, Enc.PKB.Sq.<Nonce.NA, User.A>)
running.B.A.NA
send.B.A.(Msg2, Enc.PKA.Sq.<Nonce.NA, Nonce.NB>)
recv.A.I.(Msg2, Enc.PKA.Sq.<Nonce.NA, Nonce.NB>)
commit.A.I.NA
running.A.I.NB
send.A.I.(Msg3, Enc.PKI.Sq.<Nonce.NB>)
recv.B.A.(Msg3, Enc.PKB.Sq.<Nonce.NB>)
commit.B.A.NB

This counter example is exactly the attack as discussed in Example
75.1, provided we disregard the signal events due to instrumentation.
Note that by looking at the messages, we still can’t be sure who was
actually initiating them. For instance, message exchange (2.1) I →
B : {NA, A}pkB

from Example 75.1 appears in the counter example
as recv.B.A.(Msg1, Enc.PKB.Sq. < Nonce.NA, User.A >), i.e., the intruder
impersonates participant A. This is possible as, in the Dolev-Yao model,
the intruder has control over the network.

Concerning the property that we want to check, this counter example
ends with the signal commit.B.A.NB, though the signal running.A.B.NB
has not appeared. In other words, participant B believes it has commu-
nicated with A, while A has not engaged with B.

The model checker successfully finds the man in the middle attack
from Example 75.1.

Applying the same encoding techniques to the N-S-L protocol allows to
analyse N-S-L protocol as well. Overall we obtain:

Theorem 1 (Model checking results)

1. The N-S protocol does not provide injective agreement.
2. The N-S-L protocol provides the injective agreement property to initiator

A and responder B and vice versa, under the assumption that the imple-
mented inference relation is complete w.r.t. derivations for Fact.
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Proof By model checking—see above. �
In the above encoding in CspM , we implemented an inference mechanism

mimicking the generates relation �. It is obvious that the CspM inference is
sound in the following sense:

Let m ∈ Fact and K ⊆ Fact, then it holds:
If the CspM inference can derive m from K, then K � m.

However, it is unclear if the converse direction holds, i.e., if the inference
mechanism implemented in CspM is complete. The CspM inference can only
make Fact many inference steps: there are only Fact many processes, each
of which can only once turn from unknown to known—made visible by the
infer event. However, a derivation K � m can use any number of inference
steps. If one assumes completeness of CspM inference, then the intruder
implemented in CspM has the same capabilities as the Dolev-Yao intruder
and Theorem 1 shows that there is no attack possible on the N-S-L protocol.

8.6 Protocol Analysis by Theorem Proving

This section presents an alternative to the previously discussed model check-
ing approach to verification. When using model checking, it is a challenge
to encode security protocols in such a way that their state spaces does not
become too large. Though the Casper tool automates the translation of pro-
tocols into CspM , there is no guarantee that the generated CspM model
will be small enough for successful verification with FDR. An alternative
that does not suffer from the state space explosion problem is Schneider’s
rank function approach [Sch98b]. The approach has been realised within the
interactive theorem prover PVS [ES05]. This allows, in principle, to prove a
protocol to be correct using two encodings in two different tools, one of these
encoding is via model checking in FDR, the other encoding is via theorem
proving in PVS. Use of multiple tools to demonstrate correctness helps to
strenghten trust in the result, cf. section “Tool qualification” in Chap. 1.

8.6.1 Rank Functions

A rank function is a function from the message space M extended by signals
S to the set {0, 1}, i.e.,

ρ : M ∪ S → {0, 1}
Rank functions are used to partition the message space, namely into messages
of rank 0 and messages of rank 1. Rank 1 is assigned to messages that are
‘allowed’ to be seen by the intruder, and rank 0 to those that are ‘forbidden’
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to be seen by the intruder. The idea is that message of rank 1 can be ‘freely
circulated’ and won’t give the intruder any knowledge that could be used to
compromise security. In a protocol run the intruder’s knowledge shall remain
of rank 1.

So, for example, the identities of protocol participants are always assumed
to be known by all participants. Hence we can assign them rank 1: ρ(U) � 1.
Public keys are always known and hence are assigned rank 1. Private keys of
honest users however are assumed to be never compromised, hence they have
rank 0. Naturally, the intruder knows its own private key, thus it gets rank
1. For the N-S-L protocol, this would mean:

ρ(k) �
{

0 ; k = skA ∨ k = skB
1 ; otherwise

Also the signals that we introduced in order to analyse protocols will be
assigned a rank. We will give the full details of a rank function later in the
chapter.

Note that the original theory was introduced using the integers as the
domain of rank functions. This might help in developing rank function. How-
ever, there is a general result stating that the existence of a rank function
into {0, 1} is a necessary and sufficient condition for existence of a suitable
rank function into the integers [HS05].

A given rank function can be lifted from atomic events to composed ones.
The rank of a composed event c.m, where c is a channel and m is a message,
is the rank of message m passed on channel c:

ρ(c.m) � ρ(m).

The rank of a set S is the rank of the element in the set with the lowest rank:

ρ(S) � min{ρ(s) | s ∈ S}.

The rank of a sequence tr is the rank of the element in the sequence with the
lowest rank:

ρ(tr) � min{ρ(s) | s in tr}.

We define min{} � 1, i.e., it is the maximum value that a rank function can
take.

A process P maintains ρ if it does not introduce a message of rank 0
after receiving messages of rank 1 only, i.e., it never ‘leaks a secret’. More
formally:

Definition 7 (Maintains rank)

P maintains ρ
⇔

∀tr ∈ traces(P ).ρ(tr � receive) = 1 =⇒ ρ(tr � (send ∪ S)) = 1
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where P is a process and ρ is a rank function. The channels receive and send
are seen here as sets of events that can be communicated over them. The
function restrict denoted by � projects an arbitrary trace to a trace containing
only elements that belong to a given set A. It is defined as follows:

〈〉 � A � 〈〉; (〈a〉 � tr) � A �
{ 〈a〉 � (tr � A) if a ∈ A

tr � A if a /∈ A

8.6.2 The Rank Function Theorem

In order to state the main result of this chapter, we generalise the precedes
predicate from pairs of events to pairs of event sets.

Definition 8 (R precedes T) Let R and T be some disjoint sets of events.

1. Let tr be a trace. We say that R precedes T in tr , if any occurrence of
an event b ∈ T is preceded by an occurrence of an event a ∈ R, i.e.,

∀b ∈ T, tr′.tr′ � 〈b〉 ≤ tr =⇒ ∃a ∈ R.a ∈ tr′

2. A process P satisfies R precedes T if this predicate holds for every trace
tr of P :

P sat R precedes T ⇐⇒ ∀tr ∈ traces(P ) .R precedes T

If we want to study the behaviour of a process P up to the first appearance
of an event from R, this can be expressed in Csp as

P [| R |]Stop
The process Stop does not engage in any event. The synchronous parallel
operator [| R |] says that events in the set R need to be synchronised, i.e., they
can happen only if both processes are willing to engage in them. Therefore
as long as events are not from R any event in which P [| R |]Stop engages
is coming from P . If P wants to engage in an event from R, it is blocked
by Stop. The above construction ‘preserves’ all traces of P up until the first
appearance of an event from R.

Network restriction and precedes predicates are closely related:

Theorem 2 (Linking “precedes” with network restriction) With the nota-
tions as above it holds that

P sat R precedes T ⇔ ∀tr ∈ traces(P [| R |]Stop)).tr � T = 〈〉.
Proof “⇒” Let tr ∈ traces(P [|R |]Stop)). Then tr � R = 〈〉, as Stop does
not engage in any event and thus blocks the execution of events in the set
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R. We have to show that tr does not contain an event from T . Assume, that
tr contains some event b from T . Then there exists tr′ � 〈b〉 ≤ tr. Then, by
assumption, there must occur some a ∈ R in tr′. Contradiction to tr � R = 〈〉.

“⇐” Let tr ∈ traces(P ). Assume that R precedes T does not hold for
tr. Then there exists some tr′ � 〈b〉 ≤ tr with b ∈ T such that for all
a ∈ R it holds that a does not occur in tr′. As tr′ � 〈b〉 ≤ tr, we have
tr′ � 〈b〉 ∈ traces(P )—this holds as the Csp traces semantics is prefix closed.
Then tr′ � 〈b〉 ∈ traces(P [| R |]Stop). However, tr′ � 〈b〉 � T �= 〈〉, as b ∈ T.
Contradiction. �

Theorem 2 provides a general strategy for security properties that can be
characterised by a precedes predicate. Consider the network NET restricted
by a particular set R, i.e., the process NET [|R |]Stop; if this process has no
traces in which events from T occur, the protocol is correct; otherwise it is
not correct.

The following theorem, originally stated in [Sch98a], turns this idea into
an effective proof method for security protocol analysis. It essentially reduces
the analysis for the precedes predicate to the analysis of the maintains rank
property.

For the formulation of this theorem, we—like in our protocol encoding in
CspM for the sake of model checking—distinguish between the user name,
e.g., A,B, I ∈ U , and the Csp process User i that says how user i behaves in
the context of the protocol.

Theorem 3 (Rank Function Theorem) Consider the following network:

NET = (|||i∈UUser i [| send, receive |] Intruder(Init),
where

• U is a finite set of user names,
• S̄ is some finite set of channel names for signal events,
• User i is a process that describes how participant i behaves, where

– User i can send messages on channel send.i,
– User i can receive messages on channel receive.i,
– User i can report progress to the environment by sending signals on

channel signal.i,
– the alphabet of User i is a subset of

{send.i.u.m, receive.i.u.m, signal.i.u.m |u ∈ U ,m ∈ M, signal ∈ S̄},
and

• the Intruder process is given by
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Intruder(IK ) = (send?i?j?m → Intruder(IK ∪ {m}))
�

(�i,j∈U,IK�m receive.i.j!m → Intruder(IK ))

where Init ⊆ M is the initial knowledge of the intruder.

If for some disjoint sets of events R and T there is a rank function

ρ : M ∪ {signal.i.j.m | i, j ∈ U ,m ∈ M, signal ∈ S̄} → {0, 1}
satisfying

(R1) ∀m ∈ Init.ρ(m) = 1
(R2) ∀S ⊆ M,m ∈ M.(∀m′ ∈ S.ρ(m′) = 1 ∧ S � m) =⇒ ρ(m) = 1
(R3) ∀t ∈ T.ρ(t) = 0
(R4) ∀i ∈ U .User i [| R |]Stop maintains ρ

then NET sat R precedes T .

Proof Assume for constructing a contradiction that (R1), (R2), (R3) and
(R4) hold but not NET sat R precedes T . Then we know by Theorem 2
that there exists a trace tr ∈ traces(NET [| R |]Stop)) such that tr � T �= 〈〉,
i.e., tr includes some events from T. Let tr′ be the prefix of tr that ends
with the first event of rank 0 in tr. We know that tr includes events of
rank 0, as tr includes some events from T and events from T have rank
0 thanks to (R3). By construction, the trace tr′ has the form tr0 � 〈e〉,
where ρ(tr0) = 1 and ρ(e) = 0. As the Csp traces semantics is prefix closed,
tr′ ∈ traces(NET [| R |]Stop).

Now consider the last event e of tr′. Considering the alphabet of the net-
work, this event is of the form

• receive.i.j.x,
• send.i.j.x, or
• signal.i.j.x

for some i, j, and x.

Case 1: tr′ ends with an event e = receive.i.j.x
By construction of the network, such an event can only happen as a syn-

chronisation in which the Intruder process participates. For the trace tr′,
the knowledge of the Intruder is given by Init ∪ (tr0 � send), i.e., its ini-
tial knowledge enlarged by the traffic the Intruder process was listening to
on the send channel. Thanks to (R1), the messages in Init have rank 1.
We know ρ(tr0) = 1. Therefore, ρ(tr0 � send) = 1. Thus, thanks to (R2),
ρ(receive.i.j.x) = 1. Contradiction to ρ(e) = 0.

Case 2: tr′ ends with an event e = send.i.j.x or e = signal.i.j.x.
By construction of the network, any occurrence of an event in the set

{sendi, receivei, signali} requires interaction of the process User i. Thus,
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tri = tr′ � {sendi, receivei, signali} ∈ traces(Useri [| R |]Stop). Thanks to
(R4), Useri [| R |]Stop maintains ρ. Thus, as in tri we have only messages
of rank 1 on the receive channel, ρ(e) = 1. Contradiction to ρ(e) = 0. �

In the context of security protocol analysis, Theorem 3 has the following
interpretation: the condition R1 of the theorem ensures the intruder should
not be in possession of any messages of rank 0 to start with; R2 ensures
that given a set of messages of positive rank the intruder should only be able
to generate messages (under the generates relation �) of rank 1; R3 ensures
events in T are of rank 0; and R4 checks for every protocol participant that
its corresponding process maintains ρ given restriction on R.

Note that condition R4 requires us to look at individual processes only:
while the result holds for the network NET , i.e., for protocols like N-S or
N-S-L, condition R4 deals with sequential processes only that represent the
protocol participants. Overall, we do not have to consider processes running
in parallel. This eases the analysis considerably.

8.6.3 Applying the Rank Function Theorem

In this section we focus on proving that the N-S-L protocol provides injective
agreement. We will also briefly discuss where the proof fails in the case of the
N-S protocol.

First, let’s take a look at the instrumented N-S-L protocol. Here, we con-
sider only the Csp specifications for participants A and B, as instrumentation
does neither change the intruder process nor the network composition. We
instrument the protocol for proving B authenticating A using nonce NB as a
challenge. This means by Definition 6 that we aim to prove that the protocol
satisfies the two properties:

• Running .A.B.NB precedes Commit .B.A.NB and
• nonce NB is used only once.

The Rank Function Theorem can be utilised to check the precedes property.
That nonce NB is used only once is a consequence of our assumptions on
nonces, cf. Sect. 8.3.

Example 76.1: The N-S-L protocol instrumented

A Running signal indicates that an authenticatee (being authenticated)—
in this case A—is engaged in some protocol run. A Commit signal
acknowledges successful authentication on behalf of an authenticator—
in this case B—in a protocol run.

For A this results in the following placement of signals:
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A = �b∈U,b �=A send.A.b!{NA.A}pkb
→

receive.A.b?{b.NA.n}pkA
→

Running .A.b.n →
send.A.b!{n}pkb

→ Stop

Instrumenting B requires to add a Commit signal:

B = receive.B?a?{n.a}pkB
→

send.B.a!{B.n.NB}pka
→

receive.B.a?{NB}pkB
→

Commit .B.a.NB → Stop

Rather than using the instrumented processes A and B from Example 76.1
directly for our analysis, we are replacing them with different processes that
are better suited for the analysis. In Example 76.2 for process A we are using
a semantically equivalent process, and for process B we are using a refined
process B̂, i.e., B̂ has less behaviours.

Example 76.2: Protocol participants for rank function analysis

The Csp trace semantics is a linear time semantics. Thus, the point
where a process is branching does not matter. This allows us to move
the choice which nonce we are receiving to the beginning of the process.
We equivalently rewrite the process A into A = �b∈U,b �=A,n∈N Ā(b, n)
where

Ā(b, n) � send.A.b!{NA.A}pkb
→

receive.A.b?{b.NA.n}pkA
→

Running .A.b.n →
send.A.b!{n}pkb

→ Stop

For protocol runs, in which the event Commit .B.A.NB does not
occur, the property Running .A.B.NB precedes Commit .B.A.NB holds.
Thus, to prove that the N-S-L protocol provides the injective agreement
property to initiator A and responder B, it suffices to analyse only those
protocol runs in which the event Commit .B.A.NB occurs. Only process
B engages in Commit events. B engages in the event Commit .B.A.NB

if a = A. Thus, it suffices to analyse

(A ||| B̂) [| send, receive |] Intruder(Init)
where
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B̂ � receive.B.A?{n.A}pkB
→

send.B.A!{B.n.NB}pkA
→

receive.B.A?{NB}pkB
→

Commit .B.A.NB → Stop

Constructing a Rank Function

The first step in applying Theorem 3 is to provide a rank function.
Theorem 2 serves as a guiding principle to assign ranks to the message

space: messages that are allowed to appear in the restricted network have rank
1, while messages that ought not to appear get rank 0. Another principle is
to have as few ‘secrets’ as possible, i.e., messages of rank 0. This eases dealing
with the proof obligations arising from Theorem 3.

Finding a rank function that satisfies the theorem’s conditions is a chal-
lenge. However, heuristic approaches to constructing rank functions can
assist [SBS06]. Rank functions are not unique: there can be more than one
rank function that fulfills the theorem’s condition. Note that rank functions
are constructed to support the analysis of a given property. Should one wish
to analyse the same protocol for a different property, it follows that a different
rank function is probably needed.

As discussed above, we want to prove that the instrumented N-S-L protocol
from Example 76.1 has the property

B authenticates A using nonce NB ,

i.e., formally, that the following relation holds:

NET sat Running.A.B.NB precedes Commit.B.A.NB .

In our proof we need to restrict the network by the set R � {Running .A.B.NB}
and to choose the set T � {Commit .B.A.NB}. Specifically to this guarantee,
we define a rank function, closely following [HS05].

Example 76.3: A rank function for the N-S-L protocol

ρ(U) � 1

ρ(K) �
{

0 ; if k ∈ {skA, skB}
1 ; otherwise

ρ(N ) �
{

0 ; if n = NB

1 ; otherwise
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ρ({m}pkb
) �

{
1 ; if b = A,m ∈ B.N .NB

ρ(m) ; otherwise

ρ({m}skb
) �

{
0 ; if b = A,m ∈ {B.N .NB}pkA

ρ(m) ; otherwise

ρ(S) �
{

0 ; if s = Commit .B.A.NB ;
1 ; otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}
The specific rationale behind this definition is as follows:
• The protocol participants are all expected to be known, so that any

participant can initiate communication with any other. Hence rank
1 is assigned to all values in U .

• We assume that all secret keys of honest users remain private. Hence
rank 0 is assigned to them. The intruder knows its own secret key,
thus ρ(skA) = 1. All public keys have rank 1.

• As nonce NB is used for authentication, it is assigned rank 0. For the
chosen guarantee, all other nonces can be assigned rank 1.

• When in dialog with participant A, in its second step participant B
circulates the message {B.NA.NB}pkA

, thus we assign such messages
rank 1 and explicitly set the decryption of these messages to rank 0.
The rank of all other messages depends on their contents only.

• Theorem 2 requires signals in set T to be of rank 0: consequently
we assign ρ(Commit .B.A.NB) = 0; all other signals can be freely
circulated and hence assigned rank 1.

• In order to deal with the pairing function, we say that a pair of
messages has rank 0 when one of the messages involved has rank 0.

One can prove by induction on the message structure that the target
domain of ρ is indeed {0, 1}.

Given a rank function, applying Theorem 3 means to check if the theo-
rem’s four conditions are all fulfilled. We will do this in turn for each of the
conditions.

Checking for R1

Example 76.4: Condition R1 holds for the N-S-L protocol

According to Example 75.4 for both the N-S and the N-S-L protocol the
set Init is given by

Init � {A,B, I, pkA, pkB , pkI , skI}.

All elements of Init are of rank 1. Thus, the condition is satisfied.
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Checking for R2

Let us recall the rules as stated in Fig. 8.2:

1. m ∈ S then S � m
2. S � m and S � k then S � {m}k
3. S � {m}pkb

and S � skb then S � m
4. S � m1.m2 then S � m1 and S � m2

5. S � m1 and S � m2 then S � m1.m2

When deriving messages using these rules, we count the application of one
rule as one step. This allows us to check property R2 by induction on the
length of the derivation.

Example 76.5: Condition R2 holds for the N-S-L protocol

Let S ⊆ M with ρ(S) = 1. Let S � m. We want to show that ρ(m) = 1.

Induction base: Only rule (1) is applicable. If m ∈ S, then by assump-
tion ρ(m) = 1.

Induction hypothesis (I.H.): We have ρ(m) = 1 for all messages m
derived with up to n rule applications, n ≥ 1.

Induction step: The message m has been derived with n+1 rule appli-
cations, n ≥ 1.

Case S � {m}k by rule (2):
Then there exist shorter derivations S � m and S � k. By I.H.
we know ρ(m) = ρ(k) = 1. By definition of ρ, we know that k ∈
{pkA, pkB , pkI , skI}. We consider two cases:
• k ∈ {pkA, pkB , pkI}. If m ∈ B.N .NB and k = pkA, we have

ρ({m}k) = 1. Otherwise, ρ({m}k) = ρ(m) = 1, by I.H.
• k = skI : Then ρ({m}skI

) = ρ(m) = 1, by I.H.

Case S � m by rule (3):
Then there exist shorter derivations S � {m}pkb

and S � skb for some
b ∈ U . By I.H. we know ρ({m}pkb

) = ρ(skb) = 1. Thus, skb = skI and
b = I. According to the definition of ρ, for b = I we have ρ({m}pkI

) =
ρ(m). We know by I.H. that ρ({m}pkI

) = 1. Therefore, ρ(m) = 1.

Case S � m1 or S � m2 by rule (4):
Then there exists a shorter derivation with S � m1.m2. By I.H. it
holds that ρ(m1.m2) = 1. By definition of ρ, we have ρ(m1.m2) =
min{ρ(m1), ρ(m2)}. It follows that ρ(m1) = ρ(m2) = 1.
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Case S � m1.m2 by rule (5):
Then there exist shorter derivations with S � m1 and S � m2. By I.H.
it holds that ρ(m1) = ρ(m2) = 1. Thus, by definition of ρ, we have
ρ(m1.m2) = min{ρ(m1), ρ(m2)} = 1.

Checking for R3

The only event in set T is the signal event Commit .B.A.NB , which has rank
0. Thus, the condition is satisfied.

(stop-law)
Stop [| R |]Stop = Stop

(input-law)

(c?x : T → P (x)) [| R |]Stop = c?x : U → (P (x) [| R |]Stop),
where U = T\{t | c.t ∈ R}

(output-law)

send.x.y.m → P [| R |]Stop
=

{
Stop ; if send.x.y.m ∈ R

send.x.y.m → (P [| R |]Stop) ; otherwise

(signal-law)

(s → P ) [| R |]Stop =
{

Stop ; if s ∈ R
s → (P [| R |]Stop) ; otherwise

Here, s is an arbitrary signal event.

(distr-law)

(�i∈IP (i)) [| R |]Stop = �i∈I(P (i)) [| R |]Stop)

Fig. 8.3 CSP laws concerning restriction

Checking for R4

In order to check for condition R4, there are two calculi that support dis-
charging this proof obligation. The first calculus deals with network restric-
tion: given a process involving a restriction operator, this calculus allows us
to derive an equivalent Csp process without restriction operator. The second
calculus supports us in checking if a Csp process maintains rank. It reduces
the proof obligation “maintains rank” over a ‘complex’ process to a proof
obligation over a simpler process and the checking of some side conditions.
Thanks to these two calculi, it is often possible to discharge proof obligation
R4 in an, admittedly lengthy, however rather mechanical way.
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Checking for R4—Dealing with the Network Restriction

Figure 8.3 collects a number of algebraic laws that hold for restriction (over
the Csp traces model T ). Chapter 3 discusses how to develop and prove such
Csp laws. Furthermore, the following theorem holds:

Theorem 4 (Restriction with disjoint event set) If R ∩ α(P ) = ∅ then
P [|R |]Stop = P, where α(P ) denotes the alphabet of process P .

Applying the calculus provided by these laws, and also taking Theorem 4
into account, we compute restriction free processes associated with the pro-
cesses describing the behaviour of participants A and B under restriction:

Example 76.6: Restricting participants A and B̂

The processes Ā(b, n) are generic in two variables, namely in the user
name b ∈ {B, I} and in the nonce n ∈ {NA, NB , NI}. We consider two
cases:

Case 1: b = B and n = NB .

Ā(B,NB) [|Running .A.B.NB |]Stop

= (send.A.B!{NA.A}pkB
→

receive.A.B?{B.NA.NB}pkA
→

Running .A.B.NB →
send.A.B!{NB}pkB

→ Stop) [|Running .A.B.NB |]Stop

= send.A.B!{NA.A}pkB
→

receive.A.B?{B.NA.NB}pkA
→ Stop

Here, we first apply the (output-law), followed by the (input-law) (note
that the process is willing to engage in only one specific event here),
and finally the (signal-law).

Case 2: b �= B or n �= NB .
We address this case by applying Theorem 4:

Ā(b, n) [|Running .A.B.NB |]Stop = Ā(b, n)

Combining the two cases we obtain:
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A [|Running .A.B.NB |]Stop

= (Ā(B,NA) � . . . � Ā(I,NI)) [|Running .A.B.NB |]Stop

= (Ā(B,NA) [|Running .A.B.NB |]Stop)
� . . . �
(Ā(I,NI) [|Running .A.B.NB |]Stop)

= (send.A.B!{NA.A}pkB
→

receive.A.B?{B.NA.NB}pkA
→ Stop)

�

(�b�=B∨n�=NB
Ā(b, n))

We first rewrite process A into six processes combined by external
choice, one process for each possible behaviour of A; then we apply
the (distr-law) and bring the restriction into the scope of each of the
subprocesses; these subprocesses can be analysed according to the two
cases, which gives the overall result.

It follows from Theorem 4 that B̂ [|Running .A.B.NB |]Stop = B̂ as
the event Running .A.B.NB does not occur in process B̂.

Checking for R4—Checking for Maintains Rank

There is a calculus that, for sequential processes, checks if a process pre-
serves rank or not. This provides an easy method to analyse the behaviour
of protocol participants. Theorem 5 presents some selected rules.

Theorem 5 (Proof rules) The proof rules stated in Fig. 8.4 are correct.

Proof By definition, a process P maintains ρ if

∀tr ∈ traces(P ).ρ(tr � receive) = 1 =⇒ ρ(tr � (send ∪ S)) = 1.

(stop-rule) We have traces(Stop) = {〈〉}. For the trace 〈〉 it holds:

ρ(〈〉 � receive) = 1 ⇒ ρ(〈〉 � (send ∪ S)) = 1
⇔ ρ(〈〉) = 1 ⇒ ρ(〈〉) = 1
⇔ � ⇒ �
⇔ �

(output-rule) Let tr ∈ traces(send.x.y.m → P ).
Case 1: If tr = 〈〉, then the claim holds, see the proof for the stop rule.
Case 2: If tr �= 〈〉, then there exists some tr′ ∈ traces(P ) such that tr =
send.x.y.m � tr′. Let P maintains ρ and ρ(m) = 1. With this we obtain:
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(stop-rule)
Stop maintains ρ

(output-rule)
P maintains ρ, ρ(m) = 1

send.x.y.m → P maintains ρ

(signal-rule)
P maintains ρ, ρ(data) = 1
event.data → P maintains ρ

Here, event ∈ Running.U .U ∪ Commit .U .U .

(input-rule)
∀y, m ∈ M.ρ(m) = 1 ⇒ (P (y, m) maintains ρ)

receive.x?y?p → P (y, p) maintains ρ

Here, M is a set of messages, that the process is willing to receive: Csp
uses pattern matching to determine this set. We write p for such a pattern
and define M = {m ∈ M | m matches p}.

(choice-rule)
∀j ∈ J.Pj maintains ρ

�j∈JPj maintains ρ

Fig. 8.4 Proof rules for maintaining rank

• For the left side of the implication it holds:
(send.x.y.m � tr′) � receive) = tr′ � receive and thus
ρ(send.x.y.m � tr′) � receive)) = ρ(tr′ � receive).

• For the right side of the implication it holds that,

ρ(send.x.y.m � tr′) � (send ∪ S))
= min(ρ(send.x.y.m), ρ(tr′ � (send ∪ S)))
= min(1, ρ(tr′ � (send ∪ S)))
= ρ(tr′ � (send ∪ S)).

Thus,
ρ(tr � receive) = 1 ⇒ ρ(tr � (send ∪ S) = 1

⇔ ρ(tr′ � receive) = 1 ⇒ ρ(tr′ � (send ∪ S) = 1
⇔ P maintains ρ.

P maintains ρ holds as it is a premise of the rule.

(signal-rule) Analogously to the (output-rule).

(input rule) Let tr ∈ traces(receive.x?y?p → P (y, p),
Case 1: If tr = 〈〉, then the claim holds, see the proof for the stop rule.
Case 2: If tr �= 〈〉, then there exists some tr′ ∈ traces(P ) such that
tr = receive.x.y.m � tr′ for some y and m. Let ∀y,m ∈ M.ρ(m) = 1 ⇒
(P (y,m) maintains ρ.

Case 2.1: If ρ(m) = 0, then ρ(receive.x.y.m � tr′) � receive = 0 and the
implication holds as the premise is wrong.
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Case 2.2: If ρ(m) = 1, we obtain that ρ(receive.x.y.m) � tr′ � receive =
min(1, ρ(tr′ � receive)) = ρ(tr′ � receive). We also have receive.x.y.m � tr′ �
(send ∪ S) = tr′ � (send ∪ S). With this we compute:

ρ(receive.x.y.m � tr′) = 1 ⇒ ρ(receive.x.y.m � tr′ � (send ∪ S)) = 1
⇔ ρ(tr′ � receive) = 1 ⇒ ρ(tr′ � (send ∪ S)) = 1
⇔ P (y,m) maintains ρ.

According to the rule’s premise, P (y,m) maintains ρ holds for all y and m
with ρ(m) = 1.

(choice-rule) Let tr ∈ traces(�j∈JPj). Then there exists a k ∈ J such
that tr ∈ traces(Pk), as traces(�j∈JPj) =

⋃
j∈J traces(Pj). We know that

∀j ∈ J.Pj maintains ρ. Thus, in particular for k we have Pk maintains ρ.
�

Now we apply the proof rules given in Theorem 5 to check if the restricted
processes maintain rank.

Example 76.7: The processes for A maintain rank

Based upon the results of Example 76.6, for participant A we distinguish
three cases.

Case 1: b = B,n = NB .
The process to consider is:

Ā(B,NB) [|Running .A.B.NB |]Stop
= send.A.B!{NA.A}pkB

→
receive.A.B?{B.NA.NB}pkA

→ Stop

ρ({B.NA.NB}pkA
) = 1. As Stop maintains ρ (stop-rule), we know that

receive.A.B?{B.NA.NB}pkA
→ Stop

maintains ρ (input-rule). We compute

ρ({NA.A}pkB
) = ρ(NA.A) = min{ρ(NA), ρ(A)} = min{1, 1} = 1.

Thus, applying the (output-rule) we conclude that Ā(B,NB) maintains
ρ.
Case 2: b = I, n = NB .

The process to consider is:

Ā(I,NB) [|Running .A.B.NB |]Stop
= send.A.I!{NA.A}pkI

→
receive.A.I?{I.NA.NB}pkA

→
Running .A.I.NB →
send.A.I!{NB}pkI

→ Stop
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1. ρ({I.NA.NB}pkA
) = min{ρ(I), ρ(NA), ρ(NB)} = min{1, 1, 0} = 0.

Thus,
P1 � receive.A.I?{I.NA.NB}pkA

→
Running .A.I.NB →
send.A.b!{NB}pkI

→ Stop

maintains ρ (input-rule).
2. ρ({NA.I}pkI

) = 1. As P1 maintains ρ, send.A.b!{NA.A}pkb
→ P1

maintains ρ (output-rule).

Case 3: b ∈ {B, I}, n ∈ {NA, NI}.
The processes to consider are

Ā(b, n) [|Running .A.B.NB |]Stop
= send.A.b!{NA.A}pkb

→
receive.A.b?{b.NA.n}pkA

→
Running .A.b.n →
send.A.b!{n}pkb

→ Stop

1. Stop maintains ρ according to the (stop-rule).
2. For n ∈ {NA, NI}, we have ρ({n}pkb

) = 1. As Stop maintains ρ, we
have that P1(b, n) � send.A.b!{n}pkb

→ Stop preserves ρ (output-
rule).

3. ρ(Running .A.b.n) = 1. As P1(b, n) maintains ρ, we also have that
P2(b, n) � Running .A.b.n → P1(b, n) maintains ρ (signal-rule).

4. As n �= NB , we have that {b.NA.n}pkA
/∈ B.N .NB . Thus, the rank

of the received message is

ρ({b.NA.n}pkA
)

= min{ρ(b), ρ(NA), ρ(n)}
= min{1, 1, 1}
= 1.

As P2(b, n) maintains ρ, also P3(b, n) � receive.A.b?{b.NA.n}pkA
→

P2(b, n) maintains ρ (input-rule).
5. ρ({NA, A}pkb

) = min{ρ(NA), ρ(A)} = min{1, 1} = 1.
As P3(b, n) maintains ρ, also send.A.b!{NA, A}pkb

→ P3(b, n) main-
tains ρ (output-rule).

Bringing the cases together:
We have:

• Ā(B,NB) maintains ρ,
• Ā(I,NB) maintains ρ, and
• Ā(b, n) maintains ρ for all b ∈ {B, I} and n ∈ {NA,NI}.
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Therefore we know that

A [|Running .A.B.NB |]Stop
maintains ρ (choice-rule).

After the analysis of A, we now analyse the relevant part of B :

Example 76.8: The process B̂ maintains rank

Recall the process under consideration:

B̂ = receive.B.A?{n.A}pkB
→

send.B.A!{B.n.NB}pkA
→

receive.B.A?{NB}pkB
→

Commit .B.A.NB → Stop

1. ρ({NB}) = ρ(NB) = 0.
Thus, Q1 � receive.B.A?{NB}pkB

→ Commit .B.A.NB → Stop
maintains ρ (input-rule).

2. ρ({B.n.NB}pkA
) = 1 for all n ∈ N .

As Q1 maintains ρ, also Q2(n) � send.B.A!{B.n.NB}pkA
→ Q1

maintains ρ for all n ∈ N (output-rule).
3. As Q2(n) maintains ρ for all n ∈ N , receive.B.A?{n.A}pkB

→ Q3(n)
maintains ρ (input-rule).

Overall, this analysis shows that B̂ maintains ρ.

As conditions R1 to R4 hold we conclude that the N-S-L protocol satisfies
that B authenticates A using nonce NB . Similarly, one can establish that A
authenticates B using nonce NA.

Theorem 6 (Theorem proving result) The N-S-L protocol provides the injec-
tive agreement property to initiator A and responder B.

Proof By manual proof—see above. �
Note that—as was to be expected—the proof fails for the N-S protocol

when using the above function ρ : in the second step of the N-S protocol,
participant B sends the message {n.NB}pka

. For this message it holds that
ρ({n.NB}pka

) = ρ(n.NB) = min{ρ(n), 0} = 0. Therefore, B does not main-
tain ρ and Theorem 3 does not apply. Of course, this result only shows that
the proof fails with this specific rank function. However, as we know from the
previous section on model checking, the N-S protocol fails to provide injec-
tive agreement. Therefore, there does not exist a rank function that allows
to prove the N-S protocol to be correct.
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8.7 Closing Remarks

We have introduced the notion of a security protocol as a means to establish
security properties such as authentication. Examples demonstrated that even
without ‘breaking’ the cryptosystem it is possible to successfully attack secu-
rity protocols, i.e., even when assuming perfect encryption it matters which
messages are exchanged. While security protocols utilise cryptographic prim-
itives, their analysis is a scientific area different from cryptanalysis.

As Formal Methods we used the process algebra Csp with model checking
and theorem proving. Thanks to Csp’s primitives to send and receive values
over communication channels, it is straightforward to give a formal model
of the participants and their communication. Csp’s parallel operators allow
to compose a network of participants. Thanks to Csp’s choice operator, a
Dolev-Yao intruder can easily be expressed.

As for authentication properties, we demonstrated two ways to formalise
them. We could encode them as properties of traces with the help of a pre-
cedes predicate, i.e., we were expressing them on the semantic level of Csp,
cf. Definitions 5 and 6. But we also could characterise them as a refinement
statement with respect to specific Csp processes, i.e., on the syntactic level
of Csp, cf. Example 75.16.

The chapter discussed two proof methods: model checking, Sect. 8.5, and
theorem proving, Sect. 8.6. These methods can be considered to be ‘comple-
mentary’ to each other:

• With model checking, it is ‘easy’ to find counter examples, i.e., to prove
that a property does not hold. However, it can be a challenge to find an
encoding that circumvents the state space explosion problem. It is often the
case that the model checker times out when trying to prove the correctness
of a protocol, i.e., it is ‘hard’ to prove that a property holds.
The encoding of the N-S protocol in CspM was far more complex than
our original encoding of the protocol in Csp. One reason for the addi-
tional complexity arose from the need to provide a formal model for the
data used: messages were restricted to those which actually could appear
in a single run. Yet another challenge was to encode the intruder. As the
model checker FDR is optimised to analysing processes running in parallel,
we encoded the intruder’s reasoning on facts through process synchroni-
sation. The result in Theorem 1 that the N-S-L protocol is correct with
regards to a Dolev-Yao intruder holds only under the assumption that the
implemented inference relation is complete with respect to derivations for
Fact.

• With theorem proving, it is ‘easy’ to prove a security property, provided
one has ‘guessed’ a rank function for which the four conditions of Theorem
3 hold. The correctness result in Theorem 6 for the N-S-L protocol holds
for a Dolev-Yao intruder without making any further assumptions.
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While establishing R1 to R4 for a rank function requires ‘manually inten-
sive’ and ‘lengthy’ proofs, thanks to the two presented calculi these proofs
require ‘little’ ingenuity and are therefore ‘well suited’ for automation
through proof tactics in an interactive theorem prover.
However, when the property does not hold, one has to argue that all pos-
sible rank functions fail one of the conditions R1–R4. To establish such a
result would be a real challenge, i.e., it is ‘hard’ to prove that a security
property does not hold.
Note that Theorem 3 provides a sound, however, not a complete proof
method, i.e., it is not necessarily the case that there exists a rank function
if a property holds for a security protocol.

As the size of the state space does not play a role in the rank function
approach, it actually has been extended to deal with multiple runs [Sch98b].
An intruder might collect more information listening to several protocol runs
compared to listening to only one as in our analyses. Possibly, this larger
knowledge could be exploited for ‘more informed’ attacks. With model check-
ing, considering multiple runs would increase the state space, and could pos-
sibly lead to a timeout. Consequently, many protocol analyses with model
checking are restricted to the single run scenario. The question under which
circumstances ‘single run security’ implies ‘multiple run security’ is still open
for research.

In a nutshell, the choice of the method depends on the hypothesis one
wants to establish: if the hypothesis is “the protocol is flawed”, model check-
ing is well suited to establish it; if the hypothesis is “the protocol is correct”,
theorem proving is suitable.

8.7.1 Annotated Bibliography

Concerning the process algebra Csp, the book “The Modelling and Anal-
ysis of Security Protocols: The Csp Approach” [RSG+00] provides a good
overview on the techniques that one can apply to protocol analysis in the
context of Csp.

When model checking security protocols with FDR, the informal specifi-
cation needs to be converted into an appropriate script that FDR takes as an
input. In order to assist in the generation of such machine-readable script,
Gavin Lowe [Low97a] has developed a specialist tool, Compiler for the Analy-
sis of Security Protocols, better known as Casper, to convert informal protocol
specification into a script that can be processed by FDR.

The insight gained into the design of a protocol due to rank functions
analysis is invaluable. Constructing a rank function, however, is not always
trivial and remains arduous. Heuristic approaches to constructing rank func-
tions assist in the manual process of verification [SBS06]. This still leaves the
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problem of verifying arbitrarily large networks where assignment of ranks to
messages is not straightforward; a decision procedure exists that attempts to
address the problem by reducing it to the verification of a network with lim-
ited number of protocol runs, and as a result, a smaller message space [HS05].
Handling arbitrarily large networks is still a challenge [HS02, HS06]. Rank
functions have been extended to handle a biometric-based authentication
protocol for mobile nodes operating over a 3G telecommunication net-
work [SD06, DS07b]. A different line of enquiry deals with group authen-
tication protocols involving human ‘channels’ (relying on manual interac-
tion) [NR06].

The tasks of modelling security protocols and the manual checking of proof
conditions to prove the formal correctness of such protocols remain labour
intensive and error-prone. Over the years, this has encouraged the use of
machine assistance for such analyses in an attempt to reduce the possibility
of human-error, mechanising repetitive procedures and, consequently, adding
speed to the overall process. Rank functions analysis has benefited from a
bespoke tool known as RankAnalyzer [Hea00] and the use of the general-
purpose theorem-proving Proof Verification System (PVS) tool [ES05].

The formal analysis of security protocols has developed into a comprehen-
sive body of knowledge, building on a wide variety of formalisms and treat-
ing a diverse range of security properties. The book “Formal Models and
Techniques for Analyzing Security Protocols” [CK11] provides an overview
covering various modelling and verification techniques. The paper “Compar-
ing State Spaces in Automatic Security Protocol Analysis” [CLN09] provides
some comparison from a tool perspective. There are a number of tools avail-
able for symbolic security protocol analysis, of which we want to mention a
few:

• Scyther is a tool for the automatic verification of security protocols. It
allows for standard analysis with respect to various adversary models.

• Tamarin is a theorem prover for the symbolic modeling and analysis of
security protocols. Protocols and adversaries are specified by giving rewrite
rules. Security properties are modelled as trace properties and are checked
against the traces of the transition system.

• ProVerif is an automatic cryptographic protocol verifier based on a rep-
resentation of the protocol by Horn clauses. It can be used to establish
properties such as secrecy (the adversary cannot obtain the secret), strong
secrecy (the adversary does not see the difference when the value of the
secret changes), and authentication.
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8.7.2 Current Research Directions

This chapter has demonstrated the use of the Dolev-Yao intruder model. An
area of further research aims to extend the boundaries of this model and to
incorporate further properties of existing cryptographic primitives and handle
new primitives. This is critical if protocols with real-world complexity are to
be analysed for even more sophisticated attacks. The rank functions approach
has been extended to analyse protocols relying on algebraic properties of
exclusive-or (XOR) primitives used to combine messages [Sch02], and for
protocols making use of the Diffie-Hellman scheme [DS07a].

Handling security properties other than authentication is also of interest.
Some work in this area has dealt with anonymity [SS96], perfect forward
secrecy [DS05], non-repudiation [Sch98a] and temporal aspects of security
properties [ES00]; as new properties permanently emerge there is an ongoing
need to address these new properties.

Another area of research belongs to emerging scenarios for security pro-
tocols operating in pervasive environments, where location and attribute
authentication properties, along with nodes with limited processing abilities,
are modelled for.

One example of this can be found in RFID technology as is used, e.g., in
supply chains. RFID tags have limited computational capabilities and power
supply. Thus, RFID technology relies on specific protocols. For many of these
protocols it is not known if they achieve the desired security services, while
for many of them attacks have been demonstrated [VDR08]. Manik Lal Das
et al. give an analysis of an RFID authentication scheme in the context of
the internet of things [DKM20].

Another example are Industrial Internet of Things (IIoT) edge security
challenges, e.g., when it comes to data integrity. An attacker might alter
data from sensors, thus let automation and decision making come to wrong
conclusions or degrade network performance. As IIoT networking and devices
are heterogenous and resource-constrained, deploying standard security pro-
tocols is challenging. Thus, many IIoT networks are operating unprotected.
Developing and analysing suitable protocols is an ongoing research topic, see,
e.g., [CGBK20]. Yet another topic is how to guarantee security in heteroge-
nous settings, when IIoT networks consists of edge nodes running various
different protocols.
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[CK11] Véronique Cortier and Steve Kremer, editors. Formal Models and Techniques

for Analyzing Security Protocols. IOS Press, 2011.
[CLN09] Cas J. F. Cremers, Pascal Lafourcade, and Philippe Nadeau. Comparing state

spaces in automatic security protocol analysis. In Formal to Practical Security,
LNCS 5458. Springer, 2009.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 2009.

[DKM20] Manik Lal Das, Pardeep Kumar, and Andrew Martin. Secure and privacy-
preserving RFID authentication scheme for internet of things applications.
Wirel. Pers. Commun., 110(1):339–353, 2020.

[DS05] Rob Delicata and Steve A. Schneider. Temporal rank functions for forward
secrecy. In 18th IEEE Computer Security Foundations Workshop. IEEE Com-
puter Society, 2005.

[DS07a] Rob Delicata and Steve Schneider. An algebraic approach to the verification
of a class of Diffie-Hellman protocols. International Journal of Information
Security, 6(2-3):183–196, 2007.

[DS07b] Christos K. Dimitriadis and Siraj A. Shaikh. A biometric authentication pro-
tocol for 3G mobile systems: Modelled and validated using CSP and rank
functions. International Journal of Network Security, 5(1), 2007.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans.
Inf. Theor., 29(2):198–208, 1983.

[ES00] Neil Evans and Steve Schneider. Analysing time dependent security properties
in CSP using PVS. In ESORICS, LNCS 1895. Springer, 2000.

[ES05] Neil Evans and Steve A. Schneider. Verifying security protocols with PVS:
widening the rank function approach. J. Log. Algebr. Program., 64(2):253–
284, 2005.

[Gol03] D. Gollmann. Authentication by correspondence. IEEE Journal on Selected
Areas in Communications, 21(1):88–95, 2003.

[Hea00] James Heather. Using rank functions to verify authentication protocols. PhD
thesis, Royal Holloway University of London, 2000.

[HS02] James Heather and Steve Schneider. Equal to the task? In ESORICS, LNCS
2502. Springer, 2002.

[HS05] James Heather and Steve Schneider. A decision procedure for the existence of
a rank function. Journal of Computer Security, 13(2):317–344, 2005.

[HS06] James Heather and Steve Schneider. To infinity and beyond or, avoiding the
infinite in security protocol analysis. In ACM Symposium on Applied Com-
puting, pages 346–353. ACM, 2006.
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Wrapping up



Chapter 9

Origins and Development
of Formal Methods

John V. Tucker

Abstract This chapter offers an historical perspective on the development
of Formal Methods for software engineering. It surveys some of the problems
and solution methods that have shaped and become our theoretical under-
standing and practical capability for making software. Starting in the 1950s,
the history is organised by the topics of programming, data, reasoning, and
concurrency, and concludes with a selection of notes on application areas rel-
evant to the book. Although the account emphasizes some contributions and
neglects others, it provides a starting point for studying the development of
the challenging and ongoing enterprise that is software engineering.

9.1 Where do Formal Methods for Software Engineering
Come From?

Let us look at early software and ask, how it was made and who for? Two
domains are well known: scientific software and business software—both were
pioneering, large scale and critically important to their users. Science and
business had a profound effect on the early development and adoption of
computing technologies, though what was computed was already computed
long before electronic computers and software emerged and changed the scale,
speed and cost of computation.

The initial development of programming was largely shaped by the need to
make computations for scientific, engineering and business applications. An
important feature of applications in numerical calculations and simulations
in science and engineering that is easily taken for granted is that the prob-
lems, theoretical models, algorithms and data are mathematically precise and
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well-studied. This means that programming is based on a firm understand-
ing of phenomena, its mathematical description in equations, approximation
algorithms for solving equations, and the nature of errors. To a large extent
the same can be said of business applications. In contrast, for the early appli-
cations of computers that were non-numerical there was little or no rigorous
understanding to build upon. In particular, there is a third domain for pio-
neering software, that of computer science itself, where the creation of high-
level programming languages and operating systems were truly new and even
more challenging! Whilst the physical and commercial worlds had models that
were known for centuries, the systems that managed and programmed com-
puters were unknown territory. Indeed for the 1970s and 1980s, Fred Brooks’
reflections [Bro75] on software engineering after making the operating system
OS/360 for the IBM 360 series was required reading in university software
engineering courses (see also [Bro87]). Formal Methods for software engineer-
ing begins in making software to use computers, with programming languages
and operating systems.

Formal Methods owe much to the failure of programmers to keep up with
the growth in scale and ambition of software development. A milestone in
the creation of the subject of software engineering were the discussions and
reports at a NATO Summer School at Garmisch, Germany, on the “software
crisis” in 1968; the dramatic term “software crisis” was coined by Fritz Bauer
(1924–2015) [NR69].1 One early use of the term is in the 1972 ACM Turing
Award Lecture by Edsger Dijkstra (1930–2002) [Dij72]:

“The major cause of the software crisis is that the machines have become several
orders of magnitude more powerful! To put it quite bluntly: as long as there were
no machines, programming was no problem at all; when we had a few weak com-
puters, programming became a mild problem, and now we have gigantic computers,
programming has become an equally gigantic problem.”

Among the responses to the crisis was the idea of making the whole pro-
cess of software development more “scientific”, governed by theoretically
well-founded concepts and methods. A metaphor and an aspiration was the
contemporary standards of engineering design, with its mathematical mod-
els, experimental discipline and professional regulation, as in civil engineer-
ing. Enter a new conception of software engineering whose Formal Methods
were to provide new standards of understanding, rigour and accountability in
design and implementation. Today, we can organise Formal Methods through
their systematic methodologies for design and validation, techniques for for-
mally modelling systems, software tools for exploring the models, and mathe-
matical theories about the models. In addition to this technical organisation,
Formal Methods can also be organised by their use in different application
domains. Here my emphasis is on original formal modelling techniques and
mathematical theories.
1 An account of the conference and copies of the proceedings are available at http://

homepages.cs.ncl.ac.uk/brian.randell/NATO.

http://homepages.cs.ncl.ac.uk/brian.randell/NATO
http://homepages.cs.ncl.ac.uk/brian.randell/NATO
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Certainly, Formal Methods based on fledgling theories about program-
ming existed before this conception of software engineering emerged. Ques-
tions about what a program is supposed to be doing, and to what extent
it is doing what it is supposed to do, are timeless. Thinking scientifically
about programming is an activity much older than software development—
thanks to Charles Babbage (1791–1871) and Ada Lovelace (1815–1852). We
will look at how and when some of the technical ideas in this book entered
software engineering. Technically, they can be grouped around programming ;
specifications of data; reasoning and proof ; and concurrency. Necessarily, my
historical observations are impressionistic and highly selective. However, they
should provide a useful foundation upon which understanding and experience
will grow.

9.2 Logic

A simple and profound observation is that programs are made by creating
data representations and equipping them with basic operations and tests
on the data—a programming concept called a data type. To understand a
program involves understanding

(i) how these representations and their operations and tests work;
(ii) how the operations and tests are scheduled by the control constructs to

make individual programs; and
(iii) how programs are organised by constructs that compose and modularise

programs to make software.

The issues that arise are fundamentally logical issues and they are addressed
by seeking better logical understanding of the program and its behaviour.
Most Formal Methods adapt and use logical and algebraic concepts, results,
and methods to provide better understanding of program behaviour. Thus,
it is in Formal Methods for reasoning—logic—are to be found the origins of
Formal Methods.

Computer science drew on many of the technical ideas in logic, espe-
cially for formalisms for describing algorithms: early examples are syntax
and semantics of first-order languages, type systems, decision problems, λ-
calculus, recursion, rewriting systems, Turing machines, all of which were
established in the 1930s, if not before. Later, after World War II, many more
logical theories and calculi were developed, especially in philosophy, where
subtle forms of reasoning—occurring in philosophical arguments rather than
mathematical proofs—were analysed formally: examples are modal and tem-
poral logics, which found applications in computer science much later.

Whilst it is true that many of Formal Methods come from mathematical
and philosophical logic, in virtually each case the logical concepts and tools
needed adaptation, extension and generalisation. Indeed, new mathematical
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theories were created around the new problems in computing: excellent exam-
ples are the theories of abstract data types and process algebra.

The case for mathematical logic as a theoretical science that is fundamental
to the future of computing was made eloquently by John McCarthy (1927–
2011) in a 1963 paper that has elements of a manifesto [McC63]:

“It is reasonable to hope that the relationship between computation and mathe-
matical logic will be as fruitful in the next century as that between analysis and
physics in the last. The development of this relationship demands a concern for
both applications and for mathematical elegance.”

Over fifty years later the fruitful relationship is thriving and is recog-
nised in computer science and beyond. Very advanced theories about data,
programming, specification, verification have been created—clearly estab-
lishing the connections envisioned by McCarthy. So, today, logical methods
are advanced and commonplace. Their origins and nature require explain-
ing to young computer scientists who encounter them as tools. In science,
there are few more dramatic examples of the fundamental importance of
research guided by the curiosity of individuals—rather than by the directed
programmes of companies, organisations and funding bodies—than the legacy
of logic to computer science.

9.3 Specifying Programming Languages and Programs

What is a program? What does a program do? Formal Methods for developing
programs begin with the problem of defining programming languages. This
requires methods for defining

(i) the syntax of the language, i.e., spelling out the properties of texts that
qualify as legal programs of the language; and

(ii) the semantics of the language, i.e., giving a description of what con-
structs mean or what constructs do.

Formal Methods often make precise informal methods but in the case of
programming and programming languages there were few informal methods.

Early languages of the 1950s, like Fortran for scientific computation, and
the later Cobol for commercial data processing, established the practicality
and financial value of high-level machine-independent languages.2 But their
features were simple and, being close to machine architectures, their informal
descriptions were adequate for users and implementors. The need for more
expressive high-level languages presented problems. An early success was the
definition of the syntax of Algol 60 using mathematical models of grammars
[Nau+60, Nau62]. The method used was to become known as BNF notation,

2 By 1954 the cost of programming was becoming comparable with the cost of computer
installations, which was a prime motivation for IBM’s development of Fortran [Bac98].
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sometimes named after its creators John Backus (1924–2007) and Peter Naur
(1928–2016).

The definition of syntax took up some important ideas from linguistics
from the 1950s, where the search for a mathematical analysis of what is com-
mon to natural languages led to the formal grammars of Noam Chomsky
[Cho56, Cho59] and his four-level hierarchy. The BNF notation corresponded
exactly with Chomsky’s context-free grammars. The mathematical analysis
of languages defined by grammars was taken over by computer scientists,
motivated by parsing and translating programming languages. Its generality
enabled its applications to grow widely. The resulting formal language theory
was one of the first new scientific theories to be made by computer scientists.
It found its place in the computer science curriculum in the 1960s, symbolised
by the celebrated classic by Ullman and Hopcroft [UH69].3 The technical ori-
gins of Formal Methods for the syntax of natural and computer languages lie
in mathematical logic, especially computability and automata theory where
decision problems were a central topic and rewriting rules for strings of sym-
bols were well known as models of computation. Thus, the works of Alan
Turing and Emil Post (1897–1954) are an influence on theory-making from
the very beginning: see Greibach [Gre89] for an account of the development
of formal language theory.

The definition of the semantics of programming languages has proved to be
a much harder problem than that of syntax. One needs definitive explanations
for what programming constructs do in order to understand the implications
of choices in the design of languages, and the consequences for the programs
that may be written in them. A semantics is needed as a reference standard,
to guarantee the portability of programs and to reason about what programs
do.

Most programming languages are large and accommodate lots of features
that are thought to be useful in some way. This criterion of ‘usefulness’ varies
a great deal. Variants of features to allow programmers lots of choice add to
the size, and the interaction between features add to the semantic complex-
ity. Thus, semantic definitions of whole languages are awkward and are rarely
achieved completely in a formal way. However, the semantical analysis of lan-
guages that are focussed on a small number of programming constructs has
proved to be very useful—modelling constructs and their interaction in a
controlled environment, as it were. For example, simple languages contain-
ing just a few constructs can be perpetual sources of insights.4 Over many
years, these studies have led to ambitious attempts to find systematic meth-
ods for cataloging and predicting the semantic consequences of choosing con-
structs for programming languages. However, the basic approaches to defining

3 The following decade saw a rich harvest of textbooks on processing syntax, six by Ullman,
Hopcroft and Aho.
4 Imperative programming has at its heart a language containing only assignments,
sequencing, conditional branching and conditional iteration.
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formally the meaning of a programming language have been settled since the
1970s.

First, there are operational semantics, where the constructs are explained
using mathematical models of their execution. A natural form of operational
semantics defines an abstract machine and explains the behaviour of con-
structs in terms of changes of states of the machine. Operational semantics
aligns with interpreters. An important historical example are the Formal
Methods developed to define the semantics of the language PL/1 at the IBM
Vienna Laboratories. The PL/1 language was an important commercial devel-
opment for IBM, complementing the convergence of IBM users’ software and
machines represented by OS/360. PL/1—like OS/360—was a huge challenge
to the state of the art of its day. Starting in 1963, the language was developed
in New York and Hursley, UK. The task of providing a complete and precise
specification of the new language was given to Vienna in 1967, and led to
remarkable advances in our knowledge of programming languages, through
the work of many first-rate computer scientists (e.g., the contributions of
Hans Bekić (1936–1982) and Peter Lucas (1935–2015), see [BJ84]). Their
methods resulted in the Vienna Definition Language for the specification of
languages [Luc81].

Secondly, there are denotational semantics, where the constructs are
interpreted abstractly as so-called denotations, normally using mathemati-
cal objects of some kind. In a first attempt at this denotational approach,
Christoper Strachey (1916–1975) and Robert Milne made a huge effort to
develop such a mathematically styled semantics for languages. An early
important example of the application of the approach is Peter Mosses’s
semantics for Algol 60 [Mos74]. The mathematical ideas needed led to a new
semantic framework for computation called domain theory. This was based
upon modelling the approximation of information using orderings on sets; it
was proposed by Dana Scott (1932-) and developed by him and many oth-
ers into a large, comprehensive and technically deep mathematical subject.
Domains of many kinds were created and proved to be suited for defining
the semantics of functional languages where recursion is pre-eminent. Deno-
tational semantics also involve abstract meta-languages for the purpose of
description and translation between languages.

Thirdly, there are axiomatic semantics, where the behaviour of constructs
are specified by axioms. Axiomatic semantics defines the meaning of con-
structs by means of the logical formulae that correctly describe input-output
behaviours, or even the logical formulae that can be proven in some logic
designed around the language. Axiomatic semantics focus on what a pro-
grammer can know and reason about the behaviour of his or her programs.

An important development was the attempt by Robert Floyd (1936–2001)
to provide rules for reasoning on the input/output behaviour of flow charts
and Algol fragments [Flo67]. In these early investigations, the behaviour of a
program was described in terms of expressions of the form

{P}S{Q},
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where property P is called a pre-condition, S is a program, and property Q is
called a post-condition; the expressions came to be called Floyd-Hoare triples.
This means, roughly, if P is true then after the execution of S, Q is true.
There are different interpretations depending upon whether the pre-condition
P implies the termination of program S. If P implies the termination of
program S then the interpretation is called total correctness; and if P fails to
imply the termination of program S then the interpretation is called partial
correctness.

This approach to program specification was developed by Tony Hoare in
1969, in an enormously influential article on axiomatic methods. He proposed
to use proof systems tailored to the programming syntax as a way of specify-
ing programming languages for which program verification is a primary goal
[Hoa69]. At the time, this so-called Floyd-Hoare approach to verification was
seen as a high-level method of defining the semantics of a whole language for
the benefit of programmers. Called axiomatic semantics, it was applied to
the established language Pascal [HW73].

The theoretical study of Floyd-Hoare logics that followed was also influ-
ential as it raised the standard of analysis of these emerging semantic meth-
ods. To use the current semantics of programs to prove soundness for logics
proved to be difficult and error prone. Stephen Cook (1939-) offered sound-
ness and completeness theorems for a Floyd-Hoare logic for a simple imper-
ative language based on first-order pre- and post-conditions in Floyd-Hoare
triples; these demonstrated that the known rules were correct and, indeed,
were “enough” to prove all those {P}S{Q} that were valid [Coo78].

Unfortunately, the completeness theorems required a host of special assump-
tions, essentially restricting them to programs on the data type of nat-
ural numbers, with its very special computability and definability prop-
erties. Indeed, the completeness theorems were difficult to generalise to
any other data type. The applicability of Floyd-Hoare logics attracted a
great deal of theoretical attention, as did their technical problems. The
development of Floyd-Hoare logics for new programming constructs grew
[Bak80, Apt81, Apt83, RBH+01]. However, the deficiencies in the complete-
ness theorems widened. The assertion language in which the pre- and post-
conditions were formalised was that of first-order logic, which was not expres-
sive of essential computational properties (such as weakest pre-conditions and
strongest post-conditions) for data types other than the natural numbers. One
gaping hole was the need to have access to the truth of all first-order state-
ments about the natural numbers—a set infinitely more uncomputable than
the halting problem (thanks to a 1948 theorem of Emil Post [Pos94]). Another
problem was a multiplicity of non-standard models of the data [BT82b], and
the failure of the methods applied to a data type with two or more base types
[BT84b].

A completeness theorem is much more than a confirmation that there are
enough rules in a proof system; it establishes precisely what semantics the
proof system is actually talking about—something immensely valuable, if
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not essential, for a method for defining programming languages. In the case
of Floyd-Hoare logic for while programs, the semantics the proof system
is actually talking about was surprising [BT84a], for example, it was non-
deterministic.

The relationship between the three different methods of defining semantics
was addressed early on—e.g., by the former Vienna Lab computer scientist
Peter Lauer in [Lau71]—but the links between the semantics of programs
and the formal systems for reasoning were weak and error prone. For exam-
ple, a decade later, Jaco de Bakker (1939–2012) made a monumental study
of operational and denotational programming language semantics and their
soundness and completeness with respect to Floyd-Hoare logics in [Bak80].
Again the theory was limited to computation on the natural numbers. Later
the theory was generalised in [TZ88] to include abstract data types using an
assertion language that was a weak second-order language, and a lot of new
computability theory for abstract algebraic structures [TZ02].

The late 1960s saw the beginnings of an intense period of thinking
about the nature of programming and programs that sought concepts and
techniques that were independent of particular programming languages.
New methods for developing data representations and developing algorithms
focussed on a rigorous understanding of program structure and properties,
and became a loosely defined paradigm called structured programming. For
a classic example, in 1968, Edsger Dijkstra pointed out that the use of the
goto statement in programs complicated massively their logic, was a bar-
rier to their comprehension and should be avoided [Dij68c]. Throughout the
1970s, increasingly sophisticated views of programming and programs grew
into the new field of programming methodology, which was perfect for encour-
aging the growth of formal modelling and design methods. For example,
in the method of stepwise refinement an abstractly formulated specification
and algorithm are transformed via many steps into a concrete specification
and program, each transformation step preserving the correctness of the new
specification and program. This method of developing provably correct pro-
grams was promoted by Edsger Dijkstra [Dij76]. The abstract formulations
used novel computational concepts such as non-determinism in control and
assignments, concurrency, and abstract data type specifications to make high-
level descriptions of programs, and turned to the languages of mathematical
logic to formalise them. For example, a formal theory of program refinement
employing infinitary language and logic was worked out by Back [Bac80].

Many interesting new developments and breakthroughs in Formal Methods
have their roots in the scientific, curiosity-driven research and development we
have mentioned. For example, the specification languages and their associated
methodologies are intended to describe and analyse systems independently
of—and at a higher level of abstraction than is possible with—programming
languages. An early example is the Vienna Development Method (VDM),
which originates in the IBM Vienna Laboratory work on Formal Methods
and the exercise of developing a compiler—the Vienna Definition Language.
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The general applicability of VDM in software engineering was established by
Cliff Jones (1944-) and Dines Bjørner (1937-) [Jon80, Jon90, BJ82]. A second
example is the method Z, based on set theory and first-order logic, created
by Jean-Raymond Abrial (1938-); an early proposal is [ASM80]. Bjørner went
on to develop the influential RAISE (Rigorous Approach to Industrial Soft-
ware Engineering) Formal Method with tool support; his reflections on his
experiences with these enterprises are informative [BH92].

Ways of visualising large complex software documentation—whether require-
ments or specifications—and relating them to programming were developed:
to the venerable flowcharts were added: Parnas tables [Par01]; statecharts
[Har87]; and the Unified Modeling Language (UML) family of diagrams
[BJR96].

In hindsight, the influence of these semantic methods has been to establish
the problem of specifying and reasoning about programs as a central problem
of computer Science, one best tackled using Formal Methods based upon alge-
bra and logic. The mathematical theories and tools that were developed were
capable of analysing and solving problems that arose in programming lan-
guages and programming. Moreover, they also offered the prospect of working
on a large scale in practical software engineering, on realtime, reactive and
hybrid systems.

9.4 Specifications of Data

The purpose of computing is to create and process data. Of all the concepts
and theories to be found in Formal Methods to date, perhaps the simplest
and most widely applicable is the theory of abstract data types. The informal
programming idea of an abstract data type is based upon this:

Principle. Data—all data, now and in the future—consists of a set of objects
and a set of operations and tests on those objects. In particular, the opera-
tions and tests provide the only way to access and use the objects.

This informal notion can be found in Barbara Liskov and Steve Zilles 1974
article [LZ74].5 Liskov saw in abstract data types a fundamental abstrac-
tion that could be applied pretty much anywhere and would contribute to
the methodologies emerging in structured programming; more importantly
the abstraction could be implemented and a bridge formed between com-
putational structures and operations. Liskov designed CLU to be the first
working programming language to provide such support for data abstraction
[LSR+77, LAT+78]. Liskov’s thinking about abstract data types is focussed
by the construct of the cluster which, in turn, is inspired by the concepts of

5 Along with suggestions about encapsulation, polymorphism, static type checking and
exception handling!
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modularity + encapsulation.

These two concepts derive from David Parnas’ hugely influential ideas of
information hiding and encapsulation, with their emphasis on interfaces
separating modules, and specifications and their implementations [Par72a,
Par72b, Par01].

Encapsulation means that the programmer in CLU can access data only
via the operations listed in the header of a cluster, and is ignorant of the
choices involved in data representations. This raises the question what, and
how, does the programmer know about the operations? The answer is by
giving axioms that specify the properties of the operations. Steve Zilles had
presented this idea using axioms that were equations in a workshop organised
by Liskov in 1973, where he defined a data type of sets. This is the start of the
emphasis on the algebraic properties of data types [Zil74, LZ75]. The notion
was designed to improve the design of programming languages—as in Liskov’s
CLU. It helped shape the development of modular constructs such as objects
and classes, e.g., in the languages C++ [Str80] and Eiffel [Mey91, Mey88].
But it did much more. It led to a deep mathematical theory, new methods
for specification and verification, and contributed spinouts seemingly removed
form abstract data types.

Soon abstract data types became a new field of research in programming
theory, as the Workshop in Abstract Data Types (WADT), begun and ini-
tially sustained in Germany from 1982, and the 1983 bibliography [KL83]
and bear witness.

The formal theory of data types developed quickly but rather messily.
The idea of abstract data type was taken up more formally by John Guttag
in his 1975 PhD (e.g., in [Gut75, Gut77]), and by others who we will meet
later. Guttag studied under Jim J Horning (1942–2013) and took some ini-
tial and independent steps toward a making a theory out of Zillies’s simple
idea [GH78]. As it developed it introduced a number of mathematical ideas
into software engineering: universal algebra, initial algebras, final algebras,
axiomatic specifications based on equations, term rewriting, and algebraic
categories. Most of these ideas needed considerable adaption or extension:
an important example is the use of many sorted structures—a topic barely
known in algebra. Experienced computer scientists, mainly at IBM Yorktown
Heights, began an ambitious research programme on Formal Methods for
data: Joseph Goguen (1941–2006), Jim Thatcher, Eric Wagner, Jesse Wright
formed what they called the ADJ Group and wrote about many of the basic
ideas needed for a fully formal theory of data in a long series of some 18 papers
[Gog89, GTW78, Wag01], though Goguen left the group to pursue other col-
laborations. Most of their work is unified by the fundamental notion of ini-
tiality, and the problems of specifying abstract data types using axioms made
of equations. The theory was elegant and very robust, and encouraged the
emergence of specification as an independent subject in software engineering.

Mathematically, the theory of abstract data types grew in scope and
sophistication. For example, Guttag and others had noted the relevance of
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the connection between computability and equations. Equations were used
by Kurt Gödel to define the computable functions in 1934; the technique
was suggested by Jacques Herbrand (1908–1931) and became a standard
method called Gödel-Herbrand computability. But the connection was too
removed from the semantic subtleties of specifications, e.g., as pointed out
by Sam Kamin in 1977 [Kam77]. A major classification programme on the
scope and limits of modelling abstract data types, and of making axiomatic
specifications for them, was created by Jan A Bergstra (1951-) and John
V Tucker (1952-), who discovered intimate connections between specifica-
tion problems and the computability of the algebraic models of the data
[BT87, BT82a, BT95]. Begun in 1979, some of the original problems were
settled relatively recently [KM14]. They exploited deeply the theory of com-
putable sets and functions to make a mathematical theory about digital
objects in general. For example, one of their results established that any
data type that could be implemented on a computer can be specified uniquely
by some small set of equations using a small number of auxiliary functions
[BT82a]: Let A be a data type with n subtypes. Then A is computable if, and
only if, A possesses an equational specification, involving at most 3(n + 1)
hidden operators and 2(n+1) axioms, which defines it under initial and final
algebra semantics simultaneously.

The theory also spawned algebraic specification languages and tools that
could be used on practical problems. For example, Guttag and Horning col-
laborated fruitfully on the development of the LARCH specification lan-
guages, based upon ideas in [GH82]. The LARCH specification languages
had a single common language for the algebraic specification of abstract data
types (called LSL, the Larch Shared Language), and various interface lan-
guages customised to different programming languages; there were also tools
such as the Larch Prover for verification. This was work of the 1980s, cul-
minating in the monograph [GH93]. Important systems tightly bound to the
mathematical theory are the OBJ family, which began early with OBJ (1976)
and led to CafeObj (1998), and Maude (1999); and the programming envi-
ronment generator ASF+SDF(1989) [BHK89]. Such software projects were
major undertakings: the Common Algebraic Specification Language CASL
used in this book began in 1995 and was completed in 2004 [Mos04]!

The development of specification languages demanded further extensions
and generalisations of the mathematical foundations; examples include new
forms of rewriting systems, the logic and algebra of partial functions, and
the theory of institutions. Some of these ingredients have led to substantial
theoretical textbooks, such as for term rewriting [Ter03], for abstract data
types [LEW96], and for institutions [ST12].

Partial functions arise naturally in computation when an algorithm fails to
terminate on an input; they have been at the heart of computability theory
since Turing’s 1936 paper. They also arise in basic data types of which the
most important examples are division 1/x, which is not defined for x = 0,
and the pop operation of the stack, which does not return data from an
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empty stack and so is not defined. Such partial functions cause difficulties
when working with equations and term rewriting; they are especially disliked
by theoreticians captivated by beauty of the algebraic methods applied to
total functions. Making partial operations total is an option, e.g., the idea of
introducing data to flag errors, but one that is not always attractive math-
ematically. As abstract data types and specification methods expanded in
the 1980s, issues of partiality could not be ignored. A good impression of the
variety of treatments of partiality that were becoming available can be gained
from Peter Mosses’s [Mos93], who was later to take on the task of manag-
ing the definition of Casl where decisions on partial semantics were needed.
Monographs [Bur86] and [Rei87] on partiality appeared in the decade. New
treatments continue to be developed such as [HW99], and the iconoclastic
but surprisingly practical and algebraically sound 1/0 = 0 of [BT07].

The theory of institutions was created by Joseph Goguen and Rod Burstall
with the aim of capturing the essence of the idea of a logical system and its
role in Formal Methods. The use of logical calculi was burgeoning and the
concept aimed to abstract away and become independent of the underlying
logical system; it did this by focussing on axioms for satisfaction. Institutions
could also describe the structuring of specifications, their parameterization
and refinement, and proof calculi. Institutions see the light of day through
the algebraic specification language CLEAR [BG80] and more independently
in [GB84]; Goguen and Burstall’s polished account appears only 12 years
later in [GB92]. A interesting reflection/celebration of institutions and related
attempts is [Dia12]. Institutions offer a general form of template for language
design, comparison and translation, albeit one that is very abstract. They
have been applied to modelling languages like UML and ontology languages
like OWL, and to create new languages for both such as the distributed ontol-
ogy, modelling and specification Language DOL [Mos17]. Specification as a
fundamental concept and as a subject in its own right was advanced by work
involving abstract data types. Unsurprisingly in view of the universal impor-
tance of data types, several areas in computer science first tasted Formal
Methods through abstract data types or benefitted from ideas and methods
spun out of its research. It was out of this research community came the first
use of Formal Methods for testing by Marie-Claude Gaudel (1946-) and her
coworkers in e.g., [BCF+86, Gau95].

The design of better language constructs was a motivation for abstract
data types, and the initial concerns with abstraction, modularity, reuse, and
verification have proved to be timeless and very general. Inherent in thinking
about data abstraction are ideas of genericity. With a background in abstract
data types, David Musser (who had worked with John Guttag), Deepak
Kapur (who had worked with Barbara Liskov) and Alex Stepanov proposed
a language Tecton [KMS82] for generic programming in 1982. Stepanov went
on to design of the standard template library (STL) for C++, i.e., the C++
standard collection classes, which has been influential in the evolution of C++
and other languages. Generic programming is a programming paradigm based
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that focuses on finding the most abstract formulations of algorithms and then
implementing efficient generic representations of them; it leads to libraries
of re-usable domain-specific software. Much of these language developments
took place in industrial labs, starting with the General Electric Research
Center, New York.

Like grammars and automata, abstract data types are timeless scientific
ideas.

9.5 Reasoning and Proof

Despite the fact that logic is fundamentally about reasoning and logic was
so influential in computing, reasoning about programs was slow to gather
momentum and remained remote from practical software development. The
mathematical logician and computer pioneer Alan Turing applied logic in his
theoretical and practical work and, in particular, addressed the logical nature
of program correctness in an interesting report on checking a large routine
in 1949, see [MJ84]. In 1960, John McCarthy drew attention to proving cor-
rectness [McC62]: “Primarily, we would like to be able to prove that given
procedures solve given problems” and, indeed:

“Instead of debugging a program, one should prove that it meets its specification,
and this proof should be checked by a computer program. For this to be possible,
formal systems are required in which it is easy to write proofs.”

Earlier, we noted the rise of such formal systems for program correctness
after Floyd and Hoare in the late 1960s, motivated by the needs of users of
programs.

The development of reasoning about programs has followed three paths.
First, there was the development of logics to model and specify computational
properties, such as program equivalence and correctness. To add to the selec-
tion of first-order and second-order logics mentioned, temporal logics were
proposed by Burstall [Bur74] and Kröger [Krö77, Krö87]; and, earlier, in a
particularly influential 1977 article about properties arising in sequential and,
especially, concurrent programming, Amir Pnueli (1941–2009) applied linear
temporal logic (LTL) [Pnu77].

The second path is the formulation of special methodologies and languages
for constructing correct programs. One example is design-by-contract, associ-
ated with Bertrand Meyer’s language Eiffel. In this object-oriented language,
software components are given verifiable interface specifications, which are
styled contracts; these specifications augment abstract data types with pre-
conditions, postconditions and invariants. Another example is Cliff Jones’ rely
guarantee methods for designing concurrent programs, originating in [Jon81].
Rely guarantee methods are designed to augment Floyd-Hoare triples to con-
trol information about the environment of a parallel program. The method
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is discussed in Willem Paul de Roever’s substantial work on concurrency
[RBH+01]. Building in annotations such as pre and post conditions into
languages is gaining interest when developing and maintaining high-quality
software. The Microsoft programming language Spec# is an extension of the
existing object-oriented .NET programming language C# that adds this fea-
ture to methods, together with relevant tools [BLS05]. The pre and post
condition annotations support the concept of APIs in programming, though
algebraic specifications seem more appropriate [BH14].

The third path is the development of software to support verification such
as theorem provers—both general and specialised—and model checkers. The-
orem provers are systems that can prove statements based upon the language
and rules of a formal logic. Experiments with making theorem provers for
mathematical purposes started early and continues to be a driving force in
their development, but already in the 1960s their potential for use in software
development was recognised. An excellent introduction to their development
is [HUW14].

One family tree of theorem provers with verifying computer systems in
mind begins with Robin Milner (1934–2010) and his development of the Logic
for Computable Functions (LCF) for computer assisted reasoning; see [Gor00]
for a detailed account. Milner was initiated into theorem proving through
working on David Cooper’s 1960s programme to make software for reasoning
about programs (e.g., equivalence, correctness) using first-order predicate
logic and first-order theories, programmed in the language POP-2 [Coo71].
Cooper experimented with programming decision procedures and was the
first to implement Presburger’s Theorem on arithmetic with only addition
[Coo72]. In a telling reflection in 2003, Milner observed

“I wrote an automatic theorem prover in Swansea for myself and became shattered
with the difficulty of doing anything interesting in that direction and I still am. ...
the amount of stuff you can prove with fully automatic theorem proving is still very
small. So I was always more interested in amplifying human intelligence than I am
in artificial intelligence.” [Mil03].

Milner’s LCF is the source of the functional programming language
ML—for Meta Language—which plays a pivotal role in many subsequent
approaches to reasoning, as well as being a functional language of great
interest and influence in its own right. LCF is a source for several major
theorem proving tools that qualify as breakthroughs in software verification,
such as HOL and Isabelle. Mike Gordon (1948–2017) created and developed
HOL over decades and demonstrated early on the value of theorem provers in
designing hardware at the register transfer level, where errors are costly for
manufacturers and users. The long road from HOL verifications of experimen-
tal to commercial hardware, and its roots in scientific curiosity, is described
in the unpublished lecture [Gor18].

Other contemporary theorem provers that delivered significant milestones
in applications are Robert S Boyer and J Strother Moore’s theorem prover
[BKM95] and John Rushby’s PVS [ORS92]. The Boyer-Moore system, offi-
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cially known as Nqthm, was begun in 1971 and over four decades accom-
plished a number of important verifications including a microprocessor [Hun85]
and a stack of different levels of software abstraction [Moo89]; the later indus-
trial strength version ACL2 provided verifications of floating point for AMD
processor implementations [MLK96]. PVS appeared in 1992 but is one of a
long line of theorem provers built and/or developed at SRI, starting with
Jovial in the 1970s [EGM+79]. The aim of PVS is provide a general working
environment for system development using Formal Methods, in which large
formalizations and proofs are at home. Thus, PVS combines a strong specifi-
cation language and proof checker, supported by all sorts of tools and libraries
relevant to different application areas. The progress of PVS was influenced
by work for NASA and is now very widely used [ORS+95, Cal98].

Theorem provers based on quite different logics have also proved success-
ful. An intuitionistic logic created in 1972 to model mathematical statements
and constructive reasoning by Per Martin-Löf (1942-) based on types is the
basis for many theorem provers and programming languages. Robert Consta-
ble developed Nuprl, first released in 1984 [Con86], and others based upon
dependent type theories and functional programming have followed, such as
Coq [BC04] and Agda [BDN09]. The use of types goes back to logic and
Bertrand Russell (1872–1970)—see [Con10].

Model checkers seek to find when a formula ϕ is satisfiable in a model. The
verification technique is particularly suited to concurrency where formulae
in temporal logic can express properties such as mutual exclusion, absence
of deadlock, and absence of starvation, and their validity tested in a state
transition graph, called a Kripke structure. For such concurrency problems,
linear temporal logic (LTL) was applied by Amir Pnueli; the logic contained
operators F (sometimes) and G (always), augmented with X (next-time) and
U (until) and the program proofs were deductions in the logic. In 1981 the
value and efficiency of satisfiability was established by Edmund M Clarke and
Allen Emerson [CE81] and, independently, by Jean-Pierre Queille and Joseph
Sifakis [QS82] who showed how to use model checking to verify finite state
concurrent systems using temporal logic specifications. For example, Clarke
and Emerson used computation tree logic (CTL) with temporal operators A
(for all futures) or E (for some future) followed by one of F (sometimes), G
(always), X (next-time), and U (until). Personal accounts of the beginnings
of model checking are [Cla08] by Clarke and [Eme08] by Emerson. For an
introduction to temporal logic methods see the monograph [DGL16].

The role of logic is to express properties of programs in logical languages
and to establish rules for deducing new properties from old. To make a pro-
gram logic, such as a Floyd-Hoare logic, typically there are two languages
and sets of rules—the language of specifications and the language of pro-
grams. It is possible to combine specifications and programs into a single
formal calculus, and there are plenty of formal systems that seem to possess
such unity. Given that the calculi are intended for reasoning about programs,
the complicating factor is what is meant by programs. In such calculi using
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abstract models of algorithms is practical, but using programming languages
with their syntactic richness is not. This approach to verification impinges on
the distinction between algorithm and program. Verifying algorithms is dis-
tinct from verifying programs. A significant example of this view of reasoning
is Leslie Lamport’s work on concurrent and distributed algorithms that cul-
minates in a calculus called the Temporal Logic of Actions (TLA) in which
formulae contain temporal logic operators with actions to model algorithms
[Lam94].

In recalling these Formal Methods and tools we have neglected to track
their progress in application. A useful early account of their path toward
breakthroughs in theorem proving and model checking is [CW96].

9.6 Concurrency

Concurrency in computing refers to the idea that two or more processes exist,
that they are taking place at the same time and communicating with one
another. The phenomenon is ubiquitous in modern software, but it can take
on many forms and leads to very complicated behaviour. Analysing, and to
some extent taming, the logical complexity of concurrency has been another
significant achievement of Formal Methods over the past 50 years.

Early on concurrency was found to be fundamental in the design of oper-
ating systems, where in the simplest of machines many processes need to be
running at the same time, monitoring and managing the machine’s resources,
computations, input-output, and peripherals. Until quite recently, there was
one processor that had to schedule all instructions so as to create and main-
tain an approximation to simultaneous operation. The solution was to break
up the different processes and interleave their instructions—the processor
speed being so great that for all practical purposes the effect would be simul-
taneous operation. This technique later became known as the arbitrary inter-
leaving of processes.

The problems that arose from this necessary concurrency in operating sys-
tems required computer scientists to isolate the phenomenon and to create
special constructs such as Dijkstra’s semaphore for the THE multiprogram-
ming system [Dij63, Dij68a, Dij68b]. The topic was soon central to research in
programming methodology. Programming concurrency led to all sorts of spe-
cial algorithmic constructs and reasoning techniques initially to extend the
Formal Methods that had bedded down for sequential languages. An impor-
tant paper extending Floyd-Hoare style verification to parallel programs is
[OG76]. But parallelism also demanded a substantial rethink of how we spec-
ify semantics. Gordon Plotkin’s introduction of the method of what became
called structural operational semantics (SOS) in 1980 [Plo04a, Plo04b] is
something of a milestone, evident in his elegant semantics for the concurrent
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language Csp [Plo83]. But more radical approaches to semantic modelling
were needed to understand the fabulously complicated behaviours.

An important insight of work on concurrency was this:

Principle. For logical purposes, concurrency as implemented by the inter-
leaving of processes could be defined by reducing it to non-determinism.

Specifically, the instructions were split up and groups of instructions from
each sequence were processed but one could not know which groups would be
scheduled when, only that the order within each sequence would be preserved.

Later, special small concurrent languages were developed, such as Tony
Hoare’s first formulation of Csp in 1978 [Hoa78]. The semantics was difficult
to define, and program verification was even more problematic but achieve-
ments were (and continue to be) made. Parallel programs are much more
complicated than sequential. Difficulties arise because of a global memory
that is shared between parallel programs, or because programs have local
memories and have to pass messages between them when executed in parallel;
communications can be synchronous or asynchronous. All sorts of new general
computational phenomena arise, such as deadlock and livelock. A valuable
guide is [RBH+01], which also contains a substantial gallery of photographs
of contributors to the verification of concurrent programs; and textbooks such
as [AO91, ABO09].

For the theoretician, a radical and influential departure from the down
to earth methods of Floyd-Hoare triples was needed. To raise the level of
abstraction of thought from concrete languages to purely semantic models
of the amazingly varied and complex behaviour possible in the execution of
independent programs that can and do communicate. This change of thinking
can be found in the attempt by Hans Bekić to create an abstract theory of
processes in the IBM Vienna Laboratory in 1971 [Bek71], work that has
become more widely known thanks to [BJ84]. The key point is that thinking
about processes replaces the focus on input and output that dominates earlier
semantic modelling and is needed in Floyd-Hoare specifications.

A search began for an analogous calculus for concurrent processes. Influ-
enced by the purity of lambda calculus for the definition of functions, a
major development were the early attempts of Robin Milner, who essentially
launched the search with his Calculus of Communicating Systems (CCS) of
1980 [Mil80]. Among a number of innovations:

(i) Milner, like Bekić, thought about the notion of process in an abstract
way; a process is a sequence of atomic actions put together by operations of
some kind in a calculus—rather like the notion of string as a concatenated
sequence of primitive symbols equipped with various operations.

(ii) Milner solved the problem of finding operators to make a calculus that
focussed on the troublesome problem of communication between processes.
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The idea of a process calculus led Tony Hoare to re-analyse the ideas of
his Csp language [Hoa78] and create a new calculus called (for a period)
Theoretical Csp.

These calculus approaches took off with new energy and in all sorts of
new directions. The sharpness of the mathematical tools uncovered a wide
spectrum of semantics for concurrent processes. The relationship between
processes, especially their equivalence, emerged as a fundamental but very
complex topic. There were many ways of viewing processes and their equiva-
lence in formal calculi, for the world has many systems. Milner’s longstanding
interest [Mil70, Mil71a, Mil71b] in the idea of a process simulating another
was a basic idea of CCS. In contrast, Hoare’s Csp compared processes by
notions of refinement.

In the emerging process theory, notions of system equivalence soon mul-
tiplied taking many subtly different forms [Gla96]. David Park (1935–1990)
introduced a technical notion into process theory called bisimulation [Par81].
Ideas of bisimulation focus on when two systems can each simulate the oper-
ation of the other. Bisimulation in concurrency also took on many forms and,
indeed unsurprisingly, bisimulation notions suitably generalised were found
to have wide relevance [Rog00]. Bisimulation stimulated interest in apply-
ing and developing new semantic frameworks for computation, such as game
semantics [Cur03] and coalgebraic methods [San11, SR11].6

De Bakker and Zucker took the process notion and created a new theory
of process specification based on metric space methods for the solution of
equations [BZ82]. They were inspired technically by Maurice Nivat’s lectures
on formal languages based on infinite strings [Niv79] where the languages
were defined using fixed points provided by the Banach contraction theorem.
The metric space theory of processes expanded providing an alternate theory
of nondetermisitic processes [BR92].

An important advancement of the nascent theory was to refine further
the fundamental issues that the principle demanded, non-determinsim and
sequencing. A pure form of process theory called Algebra of Communicating
Processes (ACP) was created by Jan Bergstra and Jan Willem Klop in 1982.
They viewed processes algebraically and axiomatically: a process algebra was
a structure that satisfied the axioms of ACP, and a process was simply an
element of a process algebra! In particular, the axioms of ACP were equations
that defined how operators made new processes from old. The equations made
ACP subject to all sorts of algebraic constructions such as initial algebras,
inverse limits etc. Thus, ACP took an independent direction, inspired by the
world of abstract data types and rewriting. Interestingly, ACP was developed
along the way of solving a problem in de Bakker-Zucker process theory (on
fixed points of so called non-guarded equations). It was Bergstra and Klop
who first coined the term process algebra in this first publication [BK82]. The
term later came to cover all work at this level of abstraction. Their theory was

6 Just as studies of recursive definitions of higher types in programming languages led to
the semantic framework of domain theory.
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extended with communication and provided a third effective way of working
with concurrency [BK84].

These theories were not without software tools. The basic science of model
checking was the basis of a range of useful tools. An early example is the
Concurrency workbench of 1989, which was able to define behaviours in an
extended version of CCS, or in its synchronous cousin SCCS, analyse games
to understand why a process does or does not satisfy a formula, and derive
automatically logical formulae which distinguish non-equivalent processes.
Model checking technologies lie behind tools for mature concurrent process
algebras. Another early influential tool is SPIN by Gerard Holtzman, which
has been extended significantly and has become well-known [Hol97, Hol04].
For Csp, the refinement checker FDR is also such a tool [Ros94]. For the
process algebra ACP, μCRL and its successor mCRL2 [GM14] offers simula-
tion, analysis and visualization of behaviour modelled by ACP; its equational
techniques also include abstract data types.

Within ten years of Milner’s CCS, substantial textbooks and monographs
became available, many of which have had revisions: for the CCS family
[Mil89, Hen88], for the Csp family [Hoa85, Ros97, Ros10], and for the ACP
family [BW90, Fok00, BBR10]; and a major Handbook of Process Algebra
[BPS01] was created.

Semantic modelling often leads to simplifications that are elegant and long
lasting and reveal connections with other subjects that are unexpected. The
operational semantics of processes revealed the very simple and invaluable
idea of the labelled transition system. The axiomatic algebraic approach led
to stripped down systems of axioms that capture the essence of concurrent
phenomena. However, algebraic methods are so exact and sensitive that many
viable formulations of primitive computational actions and operations on
processes were discovered and developed—we have mentioned just CCS, Csp
and ACP families of theories. Each of these families have dozens of useful
theories that extend or simplify their main set of axioms in order to model new
phenomena or case studies. For instance, in different ways process algebras
were extended with basic quantitive information such as time (e.g., [MT90b,
Low95, BB96]), and probabilities (e.g., [GJS90, BBS92, MMS+96]), often
starting with Milner’s CCS family of processes. The addition of a concept of
mobility was quite complicated, this being first attempted by Robin Milner
et al. in the π calculus in 1992 [MPW92].

The diversity of theories of concurrent processes soon became evident, it
took years to come to terms that this diversity is inherent. A useful overview
of the history of these three process algebras is [Bae05]. The semantic tools
that were created or renovated by concurrency research and simplified by use
are sufficiently well understood to have found their way into basic courses in
computer science (e.g., first year undergraduate [MS13]).
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9.7 Formal Methods Enter Specialist Areas

The early development of Formal Methods focussed on general problems of
programming and as they matured they were applied in and influenced spe-
cialist areas of software and hardware engineering, especially where the formal
tools were discovered to be effective, or the problems to be in need of deep
understanding or radical ideas.

Integrated circuit design. The development of Very Large Scale Integration
(VLSI) technologies enabled chips to be designed using software tools, fab-
ricated in large or small numbers, and so deployed with low cost. Explor-
ing application specific hardware to transform performance—e.g., in signal
and graphics processing—led to widespread interest in the customisation of
chips. This opened up hardware design to the ideas, methods and theories
in algorithm design and structured programming of the 1970s. The interest
of computer scientists were aroused by an influential text-book by Carver A.
Mead and Lynn Conway [MC80], which discussed algorithms and a modular
design methodology. Formal Methods were particularly relevant to structured
VLSI design because correctness issues loomed large: (i) hardware once made
cannot be easily changed and so errors are costly to repair; (ii) customised
hardware is needed to control physical processes and so human safety is
an explicit concern; (iii) architectures of hardware are often more regular
and simpler logically than those of software and are more amenable to the
application of formal modelling and reasoning techniques. Using the the-
orem provers Boyer-Moore and Gordon’s HOL to model and verify CPUs
were breakthroughs in theorem proving. A survey that emphasises the direct
influence of Formal Methods on progress made in hardware design in the
decade is [MT90a].

Safety critical systems. The essential role of software engineering in automa-
tion is another example. The automation of industrial plant in the 1960s,
such as in steel making, has expanded to a wide range of machines and
systems, such as aeroplanes, railways, cars, and medical equipment, where
the safety of people is—and very much remains—an important worry. The
use of Formal Methods in the development of such systems is now well
established in an area called safety-critical software engineering. An impor-
tant event in Formal Methods for safety-critical computing was the intro-
duction of new software engineering standards for military equipment and
weapons. In 1986, the UK’s Ministry of Defence circulated its Defence Stan-
dard 00-55. Its strong requirements made it controversial and it was not
until 1989 that the Ministry published as Interim standards Defence Stan-
dard 00-55. The Procurement of Safety Critical Software in Defence Equip-
ment, see [Tie92].7 Relevant for this application domain of automation and

7 Along with Defence Standard 00-55 there was an umbrella standard for identifying and
reducing risks and so to determine when 00-55 would apply. The standards have been
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safety critical computing in general are the Formal Methods for hybrid sys-
tems.

Safety critical software engineering needs to grow as automation deepens
its hold on our work places, infrastructure, homes and environment, and soft-
ware is desired that is smart in making anticipations. But human safety is
not merely a matter of exact specifications that are correctly implemented.
Human safety is dependent on good design that understands the human in
the context.

Human-computer interaction. The field of human-computer interaction (HCI)
has also experimented with Formal Methods to explore and improve design
of systems. HCI developed in the 1970s influenced by an assortment of
emerging display and text processing systems and cognitive psychology e.g.,
[CEB77, CMN83]. The first formal techniques that were tried were state dia-
grams [Par69] and grammars [Rei81, Mor81, Shn82], which were applied to
user behaviour, e.g., to model sequences of actions on a keyboard and other
input devices. The important exemplar of the text editor had been treated
as a case study in Formal Methods research [Suf82]. HCI interest in formal
methods begins in earnest in the mid 1980s with Alan Dix, Harold Thim-
bleby, Colin Runciman, and Michael Harrison [DR85, DH86, Thi86, Dix87],
and the formal approach is evident in Thimbleby’s influential text [Thi90].
These beginnings are brought together in some early books [TH90, Dix91],
and the growth and present state of Formal Methods in HCI is charted in the
substantial Handbook of Formal Methods in Human-Computer Interaction
[WBD+17], e.g., in expository chapters such as [OPW+17]. A particularly
interesting and growing area is HCI for safe technologies for healthcare. There
is a great deal of software and hardware involved in the treatment of patients
in hospital, and at home, and their effectiveness and safety are an serious
issue because of the low quality of their design and user experience [Thi19].

Security. Lastly, with our capabilities and our appetite to connect together
software devices come deep worries about security. These worries are affecting
much software engineering as the need to identify and work on vulnerabilities
on legacy and new software becomes commonplace. Access control, broadly
conceived, is an important area for security models that codify security poli-
cies. For a system or network they specify who or what are allowed to access
the system and which objects they are allowed to access. Access problems
are encountered in the design of early operating systems, of course. The
1973 mathematical model that Bell and Padula designed for military appli-
cations was particularly influential that was developed and deployed in many
security applications [BLaP73, BLaP76]. However, John McLeans’s formal
analysis [McL87], some 14 years later, revealed technical problems with the

revised several times subsequently and the explicit requirement for Formal Methods has
been removed.
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model that were controversial. Formal Methods were attracting attention in
what was a small but growing computer security community.

Another example of early pioneering formal work is Dorothy Denning’s
formal studies of information flow [Den76, DD77]. Rather abstractly, data
is assumed to be classified and that the classification is hierarchical. The
relationship between two types of data in the hierarchy is represented by
an ordering, and so the classification forms an ordered structure that is a
lattice. Information can only flow in one direction, from lower to higher,
or between equal, classifications. Later, Goguen and Meseguer also made
a telling contribution with their simple criterion for confidentiality based
on classifying the input-output behaviour of an automaton, called the non-
interference model [GM82, GM84]. An impression of the early use of Formal
Methods in tackling security problems can be gained from [Lan81], and Bell’s
reflections [Bel05].

A natural source of vulnerabilities is communication between processes.
Communication protocols were a primary source of case studies for devel-
oping process algebras from the beginning. Early security applications of
Formal Methods to such problems can be found in the mid 1990s: in [Low96],
Gavin Lowe uses the concurrent process algebra Csp and its model refinement
checker FDR to break and repair the then 17-year old Needham-Schroeder
authentication protocol [NS78] that aims to check on the identities of pro-
cesses before they exchange messages. There is so much more on all these
issues, of course.

Although Formal Methods have been applied in many domains of program-
ming, there are some where they have found few applications. One striking
example is scientific computation. This is because the various scientific and
engineering fields are firmly based on rigorous mathematical models and tech-
niques well studied in Analysis, Geometry and Probability, and programmers
are necessarily scientists and engineers with focussed on data and what it
might indicate. However, growth in the appetite for detail in software simu-
lation, in the complexity and longevity of software, and the logical challenges
of programming the parallel architectures of supercomputers, is stimulating
interest in software engineering for science and engineering domains. A pio-
neering example of the application of Formal Methods to numerics is [Hav00].

9.8 In Conclusion

So where do Formal Methods for software engineering come from? Although
Formal Methods are tools for software developers to solve problems set by
users in many domains, they largely arose in solving problems of computer
science. The problems were recognised and explored theoretically. The early
theory-makers collected and adapted tools from logic and algebra, and from
them they forged new mathematics, new theories and new tools. Often they
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found what they needed in small neglected corners of logic and algebra. The
theory-makers were driven to speculate and experiment with ideas, sometimes
behind and sometimes in front of the technologies of the day. It started with
the specification of programming languages—syntax and semantics. As our
understanding grew, languages developed alongside Formal Methods. Soft-
ware tools of all kinds demand languages for descriptions. That digital com-
putation is in its nature logical and algebraic was understood early on—it
is clear in Turing’s view of computation. That logical and algebraic theories
could be so expanded and refined to embrace practical large scale hardware
and software design, and the immense and diverse world of users, is a remark-
able scientific achievement, one that is ongoing and is at the heart of research
and development of Formal Methods.

However, from the beginning, the speed of innovation in software and
hardware has been remarkable—as any history of computer science since
the 1950s makes clear. This relentless development generates productivity
for users, profit for innovators, and challenges for regulators. It has certainly
outstripped the complex and patient development of the underlying science of
software engineering, e.g., in safety and especially security. Formal Methods
have come a long way and have mastered many theoretical and practical
problems of enormous complexity and significance. They are the foundations
for an enduring science of computing.

On a personal note, I thank Markus Roggenbach for his invitation and
encouragement to write this account of the origins and early development of
formal Formal Methods for software engineering. I have benefitted from infor-
mation and advice from Antonio Cerone, Magne Haveraaen, Faron Moller,
Bernd-Holger Schlingloff, Harold Thimbleby, and Henry Tucker. I find myself
a witness to many of the technical innovations that make up the story so far.
I know that this first hand experience has led to bias toward some achieve-
ments and to neglect of others, but hopefully I—and certainly others—will
have opportunities to correct my shortcomings. This survey has been shaped
by the themes of this textbook, and the extensive Formal Methods archives
in Swansea University’s History of Computing Collection. As my efforts here
suggests, deeper histories will be needed as the subject matures, our under-
standing grows, and breakthroughs mount up.
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[AO91] Krzysztof Apt and Ernst-Rüdiger Olderog, Verification of Sequential and Con-
current Programs, Springer, 1991.



478 John V. Tucker

[Apt81] Krzysztof Apt, Ten years of Hoare’s logic: A survey – Part I, ACM Transactions
on Programming Languages and Systems, 3 (4) (1981), 431–483.

[Apt83] Krzysztof Apt, Ten years of Hoare’s logic: A survey – Part II: Nondeterminism,
Theoretical Computer Science, 28 (1-2) 1983, 83–109.

[ASM80] Jean-Raymond Abrial, Stephen A Schuman, and Bertrand Meyer, A specifica-
tion language, in A M Macnaghten and R M McKeag (editors), On the Con-
struction of Programs, Cambridge University Press, 1980.

[Bac80] Ralph-Johan Back, Correctness Preserving Program Refinements: Proof The-
ory and Applications, Mathematical Centre Tracts 131, Mathematical Centre,
Amsterdam, 1980.

[Bac98] John Backus, The history of Fortran I, II, and III, IEEE Annals of the History
of Computing, 20 (1998) (4), 68–78.

[Bae05] Jos C.M. Baeten, A brief history of process algebra, Theoretical Computer Sci-
ence, 335 (2-3) (2005), 131–146.

[Bak80] Jaco de Bakker, Mathematical Theory of Program Correctness, Prentice-Hall
International Series in Computer Science, 1980.

[BB96] Jos C.M. Baeten and Jan A. Bergstra, Discrete time process algebra, Formal
Aspects of Computing, 8 (1996) (2), 188–208.

[BBR10] Jos C M Baeten, T. Basten, and M.A. Reniers, Process Algebra: Equational The-
ories of Communicating Processes, Cambridge Tracts in Theoretical Computer
Science 50, Cambridge University Press, 2010.

[BBS92] Jos C M Baeten, Jan A Bergstra, and Scott A. Smolka, Axiomatising proba-
bilistic processes: ACP with generative probabilities, in CONCUR 92, Lecture
Notes in Computer Science 630, Springer, 1992, 472–485.

[BBS95] Jos C M Baeten, Jan A Bergstra, and Scott A. Smolka, Axiomatizing probabilis-
tic processes: ACP with generative probabilities, Information and Computation,
121(1995) (2), 234–254.
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A brief postponement
Brings the most distant goal within reach.

B. Brecht

Challenge

The challenge of software engineering has been acknowledged for decades.
The latter half of the last century saw the costs of software development
start to rise as the cost of computer hardware was falling. Over the years,
software development projects have overrun on time and resources, running
risks of non-delivery and unmanageability; cost overruns remain considerably
high even by conservative estimates [JMO06]. The quality of software pro-
duced is also of concern. Found to be error-prone, non-compliant, low quality
and non maintainable, credible efforts to survey software problems over the
years show that the situation persists [Neu06]. Languages and tools may have
changed with new application domains, but practically all modern software
still contains subtle errors.

The situation has contributed to a sense of software crisis, noted as such
early on by community and industry leaders [NR69, Dij72]. The term has
since been somewhat associated to the debate on software industry. It is rea-
sonable to presume the state of software engineering will continue this course
unless methods and practices are addressed. The question is how long is the
crisis to last? This book is motivated by the very challenge and has set out to
address the fundamental need for clear and coherent reasoning. The premise
however is beyond past debate. A new era has dawned with breakthroughs
in electronics and communications, and a wider acceptance of software tech-
nology. As modern applications evolve, the demands on software to comply
with increasing expectations grow. As such three trends have emerged over
the recent years.

© Springer Nature Switzerland AG 2022
M. Roggenbach et al., Formal Methods for Software Engineering,
Texts in Theoretical Computer Science. An EATCS Series,
https://doi.org/10.1007/978-3-030-38800-3

489

https://doi.org/10.1007/978-3-030-38800-3


490 Authors’ Conclusion

– Modern computing is becoming pervasive [Sat01]. No longer is software
sitting comfortably on desktops, but seamlessly dispersed across urban and
household installations, needing to be open to cross-layer configuration and
communication. This is truly a reflection of the service-oriented world that
software has to serve.

– Software is increasingly designed to support critical systems, which require
safety and reliability guarantees to be predicated over execution. Admit-
tedly, margins of errors on such systems, from jet engine controllers to
programmable syringe pumps, are intolerable.

– User centricity is vital. As systems become more interactive, how they
appear to and engage end-users has received more attention than ever
before [Dix10]. More so, user interface design is subject to cognitive rea-
soning to allow for better and safer human-computer interaction, with the
ultimate goal of being error-free. This has implications for software design
and development; users have become insiders to the process in essence.

Readers would recognise these influences over the many examples of appli-
cations spread across the preceding chapters. Such trends only add to the
challenge of software engineering, as they bring increased complexity in
requirements and specification, added layers of abstraction for design, and
the potential for subtle errors at the implementation stage. The message of
this book is clear: Formal Methods are a step in the direction of address-
ing the software engineering challenge. Evidence suggests that they offer a
clear beneficial impact on quality of the software produced, and time and
cost incurred in the process [WLBF09]. A mathematical underpinning of the
engineering process allows for explicit requirements to be expressed, precise
specifications to be derived, critical properties proved using some form of
theorem-proving or model checking, and the final outcome to be compre-
hensively tested. At each stage, Formal Methods allow for ambiguity to be
addressed and rigour applied to provide some assurance in the final prod-
uct. Undoubtedly, successful adoption depends on the application of Formal
Methods only at a selected stage of the engineering process, so as to provide
assurance where it is most needed and avoid additional cost where possible.

Contribution

We intended to present Formal Methods to the reader with a careful balance
of depth and breadth.

Part I took the reader through two formal languages. Logic is an obvious
choice to lay down the basics of formal reasoning as it underpins rational
thought. The process algebraic language of Csp allows one to study typi-
cal phenomena of parallel systems, including non-determinism, livelock, and
deadlock.
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Part II moved the attention on to practical methods employed. The pur-
pose has been to show how Formal Methods address aspects of the develop-
ment lifecycle. Chapter 4 presented the reader with an algebraic specification
language developed in response to a need for a common framework by the
research community. Chapter 5 demonstrated the utility of Formal Methods
for software testing, to show that systematic treatment of testing can be used
to demonstrate the correctness of software.

Part III of the book was intended to show the application of Formal Meth-
ods to a diverse set of domains. Chapter 6 has explored the notion of contracts
and components as used in distributed systems. Chapter 7 tackled interac-
tive systems which are increasingly subject to rigorous treatment given their
relevance to safety-critical applications from air traffic control to automated
teller machines. Chapter 8 presented the challenge of designing security proto-
cols. As they increasingly underpin electronic communication infrastructure
to provide authentication, confidentiality and other important properties,
security protocols have historically been difficult to design and prove for cor-
rectness.

Chapter 9 finally provided a historical perspective for Formal Methods, to
allow the reader to develop a wider mindset about the interrelations between
different schools of thought.

Takeaways for the Reader

The 2020 white paper “Rooting Formal Methods within Higher Education
Curricula for Computer Science and Software Engineering” [CRD+20] makes
the following propositions:

• Current software engineering practices fail to deliver dependable software.

• Formal methods are capable of improving this situation, and are beneficial and
cost-effective for mainstream software development.

• Education in formal methods is key to progress things.

• Education in formal methods needs to be transformed.

With this textbook we hope to have helped improving this situation. In par-
ticular, we argue that Formal Methods have come out of the niche of safety
critical applications, and that it is reasonable to apply them also in main-
stream software development.

For the academic teacher, our book offers an example driven approach
for teaching the subject. It puts an emphasis on the application of Formal
Methods, while still preserving mathematical rigour. The book describes a
selected set of Formal Methods in one integrated setting.

For students of software engineering, the book offers an accessible account
to understand what Formal Methods are about. Studying this book should
enable them to apply various Formal Methods to concrete software engineering
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challenges. As different Formal Methods share foundations, we hope that the
material of this book will allow the reader to comprehend the essence of
newly encountered Formal Methods. In the same spirit, we hope that study-
ing our book may encourage the reader to undertake own research in Formal
Methods for software engineering.
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Appendix A

Syntax of the Logics in this Book

Here, we give an overview of the syntax of the various logics and formalisms
used in this book. Moreover, we provide examples for each formalism.

The symbol “�” stands for “equal by definition” or “is defined as”.

A.1 Regular Expressions

Syntax

Let A = {a1, . . . , an} be a finite alphabet, i.e., a set of letters.
RegexpA ::= A | ∅ | (RegexpA RegexpA) |

(RegexpA + RegexpA) | Regexp∗
A

Abbreviations

• ε � ∅∗ (the empty word)
• ϕ+ � (ϕ ϕ∗) (one or more repetitions of ϕ)
• � � (((a1 + a2) + . . .) + an) (any letter)
• ∗ � �∗ (any word)
• ϕ? � (ε + ϕ) (maybe one ϕ)
• ϕ0 � ε and ϕn � (ϕϕn−1) for any n > 0 (exactly n times ϕ)
• ϕn

m � (ϕmϕ?n−m) for 0 ≤ m ≤ n (at least m and at most n ϕ)

Examples

• (a∗b) (a sequence of a followed by b)
• (ε + a+) (arbitrary many a, same as a∗)
• �33 (any three-letter word)
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A.2 Propositional Logic

Syntax

Let P = {p1, . . . , pn} be a finite set of proposition symbols. The symbol ‘⊥’
is called falsum, and ‘⇒’ is called implication.
PLP ::= P | ⊥ | (PLP ⇒ PLP)

Abbreviations

• ¬ϕ � (ϕ ⇒ ⊥) (negation)
• � � ¬⊥ (verum)
• (ϕ ∨ ψ) � (¬ϕ ⇒ ψ) (disjunction)
• (ϕ ∧ ψ) � ¬(¬ϕ ∨ ¬ψ) (conjunction)
• (ϕ ⇔ ψ) � ((ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)) (equivalence)
• (ϕ ⊕ ψ) � (ϕ ⇔ ¬ψ) (exclusive-or)
•

⊕
(ϕ1, . . . , ϕn) �

∨
i≤n(ϕi ∧

∧
j≤n,j �=i ¬ϕj) (choice)

•
∨

i≤n ϕi � (
∨

i≤n−1 ϕi ∨ ϕn), if n > 0, and
∨

i≤0 ϕi � ⊥
•

∧
j≤n,j �=i ϕj � (

∧
j≤n−1,j �=i ϕj ∧ ϕn), if i �= n, and

∧
j �=j ϕj � �

Example formulae

• ((⊥ ⇒ ⊥) ⇒ ⊥)
• (p ⇒ (p ∨ q))
• (motor 59kW ⇒ ¬gearshift automatic)

A.3 First- and Second-Order Logic

Basic First-Order logic

Syntax

Let Σ = (F ,R,V) be a first-order signature (function symbols, relation sym-
bols, variables). The symbol ‘∃’ is called the existential quantifier.

Terms: TΣ ::= V | F(TΣ , . . . , TΣ)
FOLΣ ::= R(TΣ , . . . , TΣ) | ⊥ | (FOLΣ ⇒ FOLΣ) | ∃V FOLΣ
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Abbreviation

• ∀xϕ � ¬∃x¬ϕ (universal quantifier)

Example formulae

• ∀x∃y(p(x) ⇒ q(x, y))
• (∃x∀y p(x, y) ⇒ ∀y∃x p(x, y))
• ∀x∃y eq(y, f(x))
• (Hugo ≺ (Erna + Hugo))

First-order logic with equality

Syntax

Assume the symbol “=” (equals) is not part of the signature.
FOL=

Σ ::= R(TΣ , . . . , TΣ) | (TΣ = TΣ) | ⊥ | (FOL=
Σ ⇒ FOL=

Σ) | ∃V FOL=
Σ

Example formulae

• ((a = b) ∧ (b = c) ⇒ (a = c))
• f(x) = x2 + 2 ∗ x + 1
• ∀x∃y (y = f(x))
• ∃x∃y (¬(x = y) ∧ ∀z(z = x ∨ z = y))

Many-sorted FOL=

Syntax

In many-sorted logic, the universe is structured into different sorts S, each
function symbol and variable is of a dedicated sort, and arguments of func-
tions and relations must respect the sort constraint.

Example formulae

• ∃x : String . (length(x) = 0) (where 0 : Nat , and length : String → Nat .)
• ∀x : Person.∃y : Year . (y = birth(x)) (where birth : Person → Year .)
• ∀x : float. ∃y : int. (Math.round(x) = y)
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FOL with Partiality

Syntax

A first-order signature with partiality Σ = (S,F t,Fp,R,V) distinguishes
between total function symbols F t and partial function symbols Fp. The
unary predicate def indicates whether a function result is defined or not.

Example formulae

• ∀x : real .
√

x > 0 (where
√· : real →? real)

• ∀x : real . (x > 0 ⇒ √
x > 0)

• ∀x : real . (def
√

x ⇔ x ≥ 0)
• ∀s : String . (¬isEmpty(rest(s)) ⇒ def first(rest(s)))
• ∀s : String . ∀c : Char . (isEmpty(s) ⇒ ¬(first(s) = c))

Monadic second-order logic

Syntax

Monadic second order logic allows quantification both of individual variables
x ∈ V0 and of (unary) predicate variables P ∈ V1.
TΣ ::= V0 | F(TΣ , . . . , TΣ)
MSOΣ ::= R(TΣ , . . . , TΣ) | V1(TΣ) | ⊥ | (MSOΣ ⇒ MSOΣ)

| ∃V0 MSOΣ | ∃V1 MSOΣ

Abbreviation

• ∀P ϕ � ¬∃P ¬ϕ (universal second-order quantifier)

Example formulae

• ∀x∃P (P (x) ∧ ∀y(P (y) ⇒ R(x, y)))
• ∀x∀y (eq(x, y) ⇔ ∀P (P (x) ⇔ P (y)))
• ∀P (∀x(∀y(y < x ⇒ P (y)) ⇒ P (x)) ⇒ ∀xP (x))
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A.4 Non-Classical Logics

Modal Logic

Syntax

The symbol ‘�’ is called modal possibility or diamond operator.

MLP ::= P | ⊥ | (MLP ⇒ MLP) | �MLP

Abbreviation

• �ϕ � ¬�¬ϕ (modal necessity or box operator)

Example formulae

• ��� p
• (p ⇒ �� p)
• (�� cloudy ⇒ �� cloudy)

Multimodal logic

Syntax

In multimodal logic, there is one diamond operator for each accessibility
relation R ∈ R.

MMLΣ ::= P | ⊥ | (MMLΣ ⇒ MMLΣ) | 〈R〉MMLΣ

Abbreviation

• [R]ϕ � ¬〈R〉¬ϕ (multimodal box operator)

Example formulae

• 〈a〉〈b〉[a] p
• (〈a〉p ⇒ 〈b〉 p)
• (isHobby ⇒ (〈int〉 isHome ∧ 〈ext〉 isClub))
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Deontic logic

Syntax

In deontic logic, the modal possibility operator is interpreted as permission
‘P’. Nesting of modalities is not allowed.

SDLP ::= PLP | (SDLP ⇒ SDLP) | P PLP

Abbreviations

• O p � ¬P¬ p (obligation operator)
• F p � ¬P p (prohibition operator)

Example formulae

• (buy ⇒ (P use ∧ O pay))
• (O q ∧ O¬ q)
• (flight leaves ⇒ (O desk opens ∧ O request man))

Linear temporal logic

Syntax

LTL has besides the modal next-operator ‘©’ the binary until-operator ‘U ’.
LTLP ::= PLP | (LTLP ⇒ LTLP) | © LTLP | (LTLP U LTLP)

Abbreviations

• �ϕ � (�U ϕ) (eventually- or sometime-operator)
• �ϕ � ¬�¬ϕ (globally- or always-operator)

Example formulae

• (� sleeping ⇒ © sleeping)
• (�(ϕ ⇒ ©ϕ) ⇒ (ϕ ⇒ �ϕ)
• ((ψ ∨ ϕ ∧ ©(ϕU ψ)) ⇒ (ϕU ψ))
• �� phil0 eating



Appendix B

Language Definition of CSP

B.1 Syntax

B.1.1 Processes

The Csp syntax is given by the following grammar, which is defined relatively
to an alphabet of events Σ and a set of process names PN . After the %% we
list the name of the process and give its representation in CspM .

P, Q ::= Stop %% deadlock process STOP

| Skip %% terminating process SKIP

| Div %% diverging process
| N %% process name N

| a → P %% action prefix a -> P

| ?x : A → P %% prefix choice
| c.a → P %% channel communication c.a -> P

| c?x → P %% channel input c?x -> P

| c!a → P %% channel output c!a -> P

| P � Q %% external choice P [] Q

| P � Q %% internal choice P |~| Q

| if cond then P else Q %% conditional if cond then P

else Q

| cond & P %% guarded process cond & P

| P o
9 Q %% sequential composition P; Q

| P � Q %% interrupt P /\ Q

| P [| A |] Q %% general parallel P [|A|] Q

| P [ A ‖ B ] Q %% alphabetised parallel P [A||B] Q

| P ||| Q %% interleaving P ||| Q

| P ‖ Q %% synchronous parallel P [| Events |] Q

| P \ A %% hiding P \ A

| P [[R]] %% renaming
| �i∈IPi %% replicated external choice []i:I@P(i)

| �j∈JPj %% replicated internal choice |~|j:J@P(j)

| |||i∈IPi %% replicated interleaving |||i:I@P(i)

| [| A |] i∈IPi %% replicated general parallel [|A|]i:I@P(i)

| ‖i∈I(Ai, Pi) %% replicated alphabetised ||i:I@[A(i)]P(i)
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where

• a ∈ Σ,
• N ∈ PN ,
• c is a channel, a ∈ T (c)—the type of c—and events(c) ⊆ Σ (cf. Sect.

3.2.1),
• cond is a condition in a logic of choice (not determined by Csp),
• A,B ⊆ Σ,
• R ⊆ Σ × Σ such that for all a ∈ Σ there exists a′ ∈ Σ with (a, a′) ∈ R,
• I is a finite index set, (Pi)i∈I is a family of processes, (Ai)i∈I is a family

of sets with Ai ⊆ Σ for all i ∈ I,
• J is a non-empty index set, (Pj)j∈J is a family of processes.

The CspM column has been left blank in several cases:

• To the best of our knowledge, the prefix choice operator ?x : A → P has no
counterpart in CspM (though in case of a finite set A it can be simulated
via replicated external choice).

• Renaming is written in CspM as

P [[a <- b]]

where a and b are events. CspM offers a rich comprehension syntax for
expressing complex renaming—see, e.g., the FDR user manual or th book
A.W. Roscoe, The theory and practice of concurrency, Prentice Hall, 1998,
for a documentation of this syntax.

• The CspM process CHAOS is similar to Div, however, can’t terminate as it
is defined as

CHAOS (A) = (�a∈A a → CHAOS (A)) � Stop

Note that—in order to keep the language manageable in the context of a brief
introduction—we refrain from introducing a number of Csp constructs such
as multi channels (allowing multiple data transfers in a single event), linked
parallel, untimed timeout etc.

B.1.2 Operator Precedences

In order to reduce the number of brackets needed, the following operator
precedence is generally assumed for Csp operators:

• Renaming binds tighter than
• prefix, guard, and sequential composition bind tighter than
• interrupt, external choice, internal choice bind tighter than
• the parallel operators bind tighter than
• conditional.
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B.1.3 Process Equations

A process equation takes the form

N = P

where N ∈ PN and P is as described by the above grammar.

B.2 Semantics

B.2.1 Static Semantics

Csp static semantics concerns aspects of the language such as the scope of
variables, the relation between synchronisation sets and process alphabets,
and that process names have a unique definition.

Csp distinguishes between two kinds of variables, which we call static and
dynamic. Static variables are bound by replicated operators, and by process
names occurring on the lhs of an equation; they are not affected by process
termination. Dynamic variables are bound by prefix choice and channel input;
their binding lasts up to process termination.

Synchroniation sets and processes in alphabetised parallel are related as
follows:

• The process P [A ‖ B ]Q is wellformed if the alphabet of P is a subset of
A and the alphabet of Q is a subset of B.

• The process ‖i∈I(Ai, Pi) is wellformed, if for all i ∈ I, the alphabet of Pi

is a subset of Ai.

A system of equations is wellformed, if there is exactly one equation for
each occurring process name.

B.2.2 Syntactic Sugar

Semantically, several operators introduced above are syntactic sugar. Some
of them expand directly:

• c?x → P � ?y : events(c) → P [value(y)/x] where value(c.a) = a
• c!a → P � c.a → P
• cond &P � if cond then P else Stop
• P [A ‖ B ]Q � P [| A ∩ B |]Q
• P ||| Q � P [| ∅ |]Q
• P ‖ Q � P [|Σ |]Q
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Note that channels are syntactic sugar.
Some replicated operators are defined inductively over the number of ele-

ments in the finite index set I:

• �i∈IPi � Pk �
(
�i∈I\{k}Pi

)
(for k ∈ I)

where �i∈{}Pi � Stop

• |||i∈IPi � Pk |||
(
|||i∈I\{k}Pi

)
(for k ∈ I)

where |||i∈{}Pi � Skip
• [| A |] i∈IPi � Pk [| A |]

(
[|A |] i∈I\{k}Pi

)
(for k ∈ I)

where [| A |] i∈{}Pi � Skip

• ‖i∈I(Ai, Pi) � Pk [Ak ‖
⋃

i∈I\{k} Ai ]
(
‖i∈I\{k}(Ai, Pi)

)
(for k ∈ I)

where ‖i∈{}(Ai, Pi) � Skip.
The choice to set ‖i∈{}(Ai, Pi) � Skip is in accordance with the FDR
documentation and also agrees with Csp algebraic laws. However, FDR
operation is different. It appears to be ‖i∈{}(Ai, Pi) � RUN ext Skip(A),
where

RUN ext Skip(A) = (?x : A → RUN ext Skip(A)) � Skip

Note that prefix choice and replicated internal choice are part of the core
language rather than syntactic sugar. Both these operators allow for infinite
branching in Csp.

B.2.3 Core Language

P,Q ::= Stop %% deadlock process
| Skip %% terminating process
| Div %% diverging process
| N %% process name
| a → P %% action prefix
| ?x : A → P %% prefix choice
| P � Q %% external choice
| P � Q %% internal choice
| if cond then P else Q %% conditional
| P o

9 Q %% sequential composition
| P � Q %% interrupt
| P [| A |]Q %% general parallel
| P \ A %% hiding
| P [[R]] %% renaming
| �j∈JPj %% replicated internal choice
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B.3 Operational Semantics

The definitions presented subsequently closely follow the book A.W. Roscoe,
The theory and practice of concurrency, Prentice Hall, 1998.

For ease of presentation, we assume the following implicit typing for the
labels of transitions:

• a ∈ Σ—i.e., a is an element of the alphabet.
• b ∈ Σ ∪ {�}—i.e., b stands for an observable event.
• x ∈ Σ ∪ {τ}—i.e., x stands for a non-terminating event.

Furthermore, we add the state Ω representing a process after termination.
This special state helps to treat termination in the case of the parallel oper-
ator. Note that the semantics has the property that the state Ω can only be
reached by transitions labelled with �.

• Stop—deadlock process.
This process has no firing rule.

• Skip—successfully terminating process.

Skip �−→ Ω

• Div—diverging process.

Div τ−→ Div
• N—process name.

N
τ−→ P

if there is an equationN = P

• a → P—action prefix.

(a → P ) a−→ P

• ?x : A → P—prefix choice.

(?x : A → P ) a−→ P [a/x]
a ∈ A

• P � Q—external choice.

P
b−→ P ′

P � Q
b−→ P ′

Q
b−→ Q′

P � Q
b−→ Q′

P
τ−→ P ′

P � Q
τ−→ P ′ � Q

Q
τ−→ Q′

P � Q
τ−→ P � Q′

• P � Q—internal choice.

P � Q
τ−→ P P � Q

τ−→ Q
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• if cond then P else Q—conditional.

if cond then P else Q
τ−→ P

if cond evaluates to true

if cond then P else Q
τ−→ Q

if cond evaluates to false

• P o
9 Q—sequential composition.

P
x−→ P ′

P o
9 Q

x−→ P ′ o
9 Q

P
�−→ P ′

P o
9 Q

τ−→ Q

• P �Q—interrupt.

P
x−→ P ′

P � Q
x−→ P ′ �Q

Q
b−→ Q′

P � Q
b−→ Q′

P
�−→ P ′

P �Q
�−→ Ω

Q
τ−→ Q′

P � Q
τ−→ P �Q′

• P [|A |]Q—general parallel.

P
a−→ P ′, Q

a−→ Q′

P [| A |]Q a−→ P ′ [| A |]Q′
a ∈ A

P
a−→ P ′

P [|A |]Q a−→ P ′ [| A |]Q
a ∈ Σ\A

Q
a−→ Q′

P [| A |]Q a−→ P [| A |]Q′
a ∈ Σ\A

P
τ−→ P ′

P [| A |]Q τ−→ P ′ [| A |]Q
Q

τ−→ Q′

P [| A |]Q τ−→ P [| A |]Q′

P
�−→ Ω

P [| A |]Q τ−→ Ω [| A |]Q
Q

�−→ Ω

P [|A |]Q τ−→ P [|A |]Ω

Ω [| A |]Ω �−→ Ω

• P \ A—hiding.

P
a−→ P ′

P \ A
τ−→ P ′ \ A

a ∈ A
P

x−→ P ′

P \ A
x−→ P ′ \ A

x /∈ A

P
�−→ P ′

P \ A
�−→ Ω
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• P [[R]]—relational renaming.

P
a−→ P ′

P [[R]] c−→ P ′[[R]]
ifaRc

P
τ−→ P ′

P [[R]] τ−→ P ′[[R]]

P
�−→ P ′

P [[R]] �−→ Ω

• �j∈JPj—replicated internal choice.

�j∈JPj
τ−→ Pk

k ∈ J

B.4 Denotational Semantics

In the context of Csp denotational semantics the following notations are
standard:

• Σ : alphabet of events.
• Σ� � Σ ∪ {�} : alphabet of events extended by the termination event �.
• Σ∗ : all non-terminating traces over Σ.

• Σ∗� � Σ∗ ∪ {s � 〈�〉 | s ∈ Σ∗}: all ‘interesting’ traces over Σ, i.e., the
non-terminating and the terminating ones.

B.4.1 The Traces Model T

In the traces model T the denotation of a process P over an alphabet Σ is a
set of traces T = traces(P ) with

• T ⊆ Σ∗�.

The Domain T and Its Ordering

• Healthiness condition on process denotations T :

T1 T �= ∅ and T is prefix-closed, i.e., ∀s ∈ Σ∗�, t ∈ T . s ≤ t =⇒ s ∈ T

• Domain: T � {T ⊆ Σ∗� |T fulfills T1}.
• T is a complete partial order with bottom element: (T ,⊆, traces(Stop)).
• Traces refinement:

– P �T Q ⇐⇒ [[Q]]T ⊆ [[P ]]T .
– The process Stop refines all processes.
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– The process RUN With SkipΣ = (?x : Σ → RUN With SkipΣ) � Skip
is the least refined process.

Semantic Clauses

The function traces( ) maps Csp processes to observations in the traces
domain T . traces( ) is defined relatively to a function M : PN → T that
gives interpretations to process names. While we write tracesM ( ) in the main
text, it is common practice to omit the index M when writing semantical
clauses.

traces(Stop) � {〈〉}
traces(Skip) � {〈〉, 〈�〉}
traces(Div) � {〈〉}
traces(N) � M(N)
traces(a → P ) � {〈〉}

∪ {〈a〉 � s | s ∈ traces(P )}
traces(?x : A → P ) � {〈〉}

∪ {〈a〉 � s | s ∈ traces(P [a/x]) ∧ a ∈ A}
traces(P � Q) � traces(P ) ∪ traces(Q)
traces(P � Q) � traces(P ) ∪ traces(Q)

traces(if cond then P else Q) �
{
traces(P ) ; cond evaluates to true
traces(Q) ; otherwise

traces(P o
9 Q) � (traces(P ) ∩ Σ∗)

∪ {s � t | s � 〈�〉 ∈ traces(P )∧
t ∈ traces(Q)}

traces(P �Q) � traces(P )
∪ {s � t | s ∈ traces(P ) ∩ Σ∗∧

t ∈ traces(Q)}
traces(P [|A |]Q) �

⋃
{s [| A |] t | s ∈ traces(P )∧

t ∈ traces(Q)}
traces(P \ A) � {s \ A | s ∈ traces(P )}
traces(P [[R]]) � {t | ∃s ∈ traces(P ). sR∗t}
traces(�j∈JPj) �

⋃
j∈J traces(Pj)

The auxiliary notations t1 [| A |] t2, t \ A, and R∗ are defined as follows:

• Given traces t1, t2 ∈ Σ∗� and a set A ⊆ Σ, t1 [|A |] t2 is inductively defined
by:
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〈〉 [| A |] 〈〉 � {〈〉}
〈〉 [| A |] 〈x〉 � t2 � ∅
〈〉 [| A |] 〈y〉 � t2 � {〈y〉 � u | u ∈ 〈〉 [| A |] t2}

〈x〉 � t1 [| A |] 〈〉 � ∅
〈x〉 � t1 [| A |] 〈x〉 � t2 � {〈x〉 � u | u ∈ t1 [|A |] t2}
〈x〉 � t1 [| A |] 〈x′〉 � t2 � ∅
〈x〉 � t1 [| A |] 〈y〉 � t2 � {〈y〉 � u | u ∈ 〈x〉 � t1 [|A |] t2}
〈y〉 � t1 [| A |] 〈〉 � {〈y〉 � u | u ∈ t1 [| A |] 〈〉}
〈y〉 � t1 [| A |] 〈x〉 � t2 � {〈y〉 � u | u ∈ t1 [| A |] 〈x〉 � t2}
〈y〉 � t1 [| A |] 〈y′〉 � t2 � {〈y〉 � u | u ∈ t1 [|A |] 〈y′〉 � t2}

∪ {〈y′〉 � u | u ∈ 〈y〉 � t1 [|A |] t2}

where x, x′ ∈ A ∪ {�}, y, y′ /∈ A ∪ {�}, and x �= x′.
• Given a trace t ∈ Σ∗� and a set A ⊆ Σ, (t \ A) is inductively defined by:

〈〉 \ A � 〈〉

(〈x〉 � t) \ A �
{

t \ A if x ∈ A

〈x〉 � (t \ A) otherwise

• Given a relation R ⊆ Σ×Σ, R∗ ⊆ Σ∗�×Σ∗� is defined to be the smallest
set satisfying:

– (〈〉, 〈〉) ∈ R∗

– (〈�〉, 〈�〉) ∈ R∗

– (a, b) ∈ R ∧ (t, t′) ∈ R∗ =⇒ (a � t, b � t′) ∈ R∗

B.4.2 The Failures/Divergences Model N

In the failures/divergences model N , the denotation of a process P over an
alphabet Σ is given by a pair (F,D) = (failures⊥(P ), divergences(P )) with

• F ⊆ Σ∗� × P(Σ�) and
• D ⊆ Σ∗�.

Some healthiness conditions over N recur to the function traces⊥( ) :
Σ∗� × P(Σ�) → Σ∗�, defined as follows:

traces⊥(F ) � {s | ∃X ⊆ Σ∗�. (s,X) ∈ F}

The Domain N and Its Ordering

• Healthiness conditions on process denotations (F,D):
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F1 traces⊥(F ) �= ∅ and traces⊥(F ) is prefix-closed, i.e.,
∀s ∈ Σ∗�, t ∈ traces⊥(F ) . s ≤ t =⇒ s ∈ traces⊥(F )

F2 ∀(s,X) ∈ F, Y ⊆ Σ� . Y ⊆ X =⇒ (s, Y ) ∈ F
F3 ∀(s,X) ∈ F, Y ⊆ Σ�.

(∀b ∈ Y . s � 〈b〉 /∈ traces⊥(F )) =⇒ (s,X ∪ Y ) ∈ F

F4 ∀s ∈ Σ∗ . s � 〈�〉 ∈ traces⊥(F ) =⇒ (s,Σ) ∈ F

D1 D is extension closed, i.e., ∀s ∈ D ∩ Σ∗, t ∈ Σ∗� . s � t ∈ D
D2 ∀s ∈ D, X ⊆ Σ� . (s,X) ∈ F

D3 ∀s ∈ Σ∗ . s � 〈�〉 ∈ D =⇒ s ∈ D

• Domain: N � { (F,D) ⊆ (Σ∗� × P(Σ�)) × Σ∗� |
(F,D) fulfills F1, F2, F3, F4, D1, D2, D3}

• For finite Σ it holds that N is a complete partial order with bottom
element:

(N ,⊇ × ⊇, (failures⊥(Div), divergences(Div)).

• Failures/divergences refinement:

– P �N Q ⇐⇒ failures⊥(Q) ⊆ failures⊥(P ) ∧
divergences(Q) ⊆ divergences(P )

– There is no most refined process over N .
– The process Div is the least refined process.

Semantic Clauses

Together, the functions failures⊥( ) and divergences( ) map Csp processes
to observations in the failures/divergences domain N . These functions are
defined relatively to a function M = (Mfailures⊥ ,Mdivergence) : PN → N
that gives interpretations to process names. While we write failures⊥,M ( )
and divergencesM ( ) in the main text, it is common practice to omit the
index M when writing semantical clauses.

In the context of semantic clauses over N we overload the function
traces⊥( ) such that it takes Csp processes as its input:

traces⊥(P ) � {s | ∃X.(s,X) ∈ failures⊥(P )}

In some cases, e.g., for the external choice operator, the expressions deter-
mining the function failures⊥( ) utilise the function divergences( ). In spite
of this, we always first present the function computing the failures followed
by the presentation of the function computing the divergences.

The definition of the renaming operator applies the inverse of a binary
relation R to a set X:

R−1(X) � {a | ∃a′ ∈ X.aR a′}.
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As in N it is in general not possible to give the correct value for the hiding
operator, we do not give a clause for it. We refrain from giving a semantic
clause for the interrupt operator in N .

failures⊥(Stop) � {(〈〉,X) |X ⊆ Σ�}
divergences(Stop) � {}
failures⊥(Skip) � {(〈〉,X) |X ⊆ Σ} ∪ {(〈�〉,X) |X ⊆ Σ�}
divergences(Skip) � {}
failures⊥(Div) � Σ∗� × P(Σ�)
divergences(Div) � Σ∗�

failures⊥(N) � Mfailures⊥(N)
divergences(N) � Mdivergences(N)
failures⊥(a → P ) � {(〈〉,X) |X ⊆ Σ� ∧ a /∈ X}

∪ {(〈a〉 � s,X) | (s,X) ∈ failures⊥(P )}
divergences(a → P ) � {〈a〉 � t | t ∈ divergences(P )}
failures⊥(?x : A → P ) � {(〈〉,X) |X ⊆ Σ� ∧ X ∩ A = {}}

∪ {(〈a〉 � s,X) | a ∈ A ∧
(s,X) ∈ failures⊥(P [a/x])}

divergences(?x : A → P ) � {〈a〉 � t | a ∈ A ∧ t ∈ divergences(P [a/x])}

failures⊥(P � Q) � {(〈〉,X) | (〈〉,X) ∈
failures⊥(P ) ∩ failures⊥(Q)}

∪ {(t,X) | t �= 〈〉 ∧
((t,X) ∈ failures⊥(P ) ∨
(t,X) ∈ failures⊥(Q))}

∪ {(〈〉,X) |X ⊆ Σ� ∧
(〈〉 ∈ divergences(P ) ∨
〈〉 ∈ divergences(Q))}

∪ {(〈〉,X) |X ⊆ Σ ∧
(〈�〉 ∈ traces⊥(P ) ∨
〈�〉 ∈ traces⊥(Q))}

divergences(P � Q) � divergences(P ) ∪ divergences(Q)
failures⊥(P � Q) � failures⊥(P ) ∪ failures⊥(Q)
divergences(P � Q) � divergences(P ) ∪ divergences(Q)

failures⊥(if cond then P else Q) �

⎧
⎨

⎩

failures⊥(P ) ; cond
evaluates to true

failures⊥(Q) ; otherwise

divergences(if cond then P else Q) �

⎧
⎨

⎩

divergences(P ) ; cond
evaluates to true

divergences(Q) ; otherwise
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failures⊥(P o
9 Q) � {(s,X) | s ∈ Σ∗∧

(s,X ∪ {�}) ∈ failures⊥(P )}
∪ {(s � t,X) | s � 〈�〉 ∈ traces⊥(P ) ∧

(t,X) ∈ failures⊥(Q)}
∪ {(s,X) | s ∈ divergences(P o

9 Q) ∧
X ⊆ Σ�}

divergences(P o
9 Q) � divergences(P )

∪ {s � t | s � 〈�〉 ∈ traces⊥(P ) ∧
t ∈ divergences(Q)}

failures⊥(P [| A |]Q) � {(u, Y ∪ Z) |Y,Z ⊆ Σ�∧
Y \(A ∪ {�}) = Z\(A ∪ {�}) ∧
∃s, t ∈ Σ∗�. u ∈ (s [| A |] t) ∧

(s, Y ) ∈ failures⊥(P ) ∧
(t, Z) ∈ failures⊥(Q)}

∪ {(u, Y ) |u ∈ divergences(P [|A |]Q) ∧ Y ⊆ Σ∗�}
divergences(P [| A |]Q) � {u � v | v ∈ Σ∗�∧

∃s ∈ traces⊥(P ), t ∈ traces⊥(Q).
u ∈ (s [| A |] t) ∩ Σ∗∧
(s ∈ divergences(P ) ∨
t ∈ divergences(Q))}

failures⊥(P [[R]]) � {(s′,X) | ∃s.sR∗s′ ∧
(s,R−1(X)) ∈ failures⊥(P )}

∪ {(s,X) | s ∈ divergences(P [[R]]) ∧
X ⊆ Σ�}

divergences(P [[R]]) � {s′ � t | ∃s ∈ divergences(P ) ∩ Σ∗.
sR∗ s′ ∧ t ∈ Σ∗�}

failures⊥(�j∈JPj) �
⋃

j∈J failures⊥(Pj)
divergences(�j∈JPj) �

⋃
j∈J divergences(Pj)
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B.4.3 The Stable Failures Model F

In the stable failures model F the denotation of a process P over an alphabet
Σ is a pair (T, F ) = (traces(P ), failures(P )) with

• T ⊆ Σ∗� and
• F ⊆ Σ∗� × P(Σ�).

The Domain F and Its Ordering

• Healthiness conditions on process denotations (T, F ):

T1 T �= ∅ and T is prefix-closed, i.e., ∀s ∈ Σ∗�, t ∈ T . s ≤ t =⇒ s ∈ T
T2 ∀(t,X) ∈ Σ∗� × P(Σ�) . (t,X) ∈ F =⇒ t ∈ T

T3 ∀t ∈ Σ∗,X ⊆ Σ� . t � 〈�〉 ∈ T =⇒ (t � 〈�〉,X) ∈ F
F2 ∀(s,X) ∈ F, Y ⊆ Σ� . Y ⊆ X =⇒ (s, Y ) ∈ F
F3 ∀(s,X) ∈ F, Y ⊆ Σ�.

(∀b ∈ Y . s � 〈b〉 /∈ T ) =⇒ (s,X ∪ Y ) ∈ F

F4 ∀s ∈ Σ∗ . s � 〈�〉 ∈ T =⇒ (s,Σ) ∈ F

• Domain:

F � { (T, F ) ⊆ Σ∗� × (Σ∗� × P(Σ�)) |
(T, F ) fulfills T1, T2, T3, F2, F3, F4}.

• F is a complete partial order with bottom element:

(F ,⊆ × ⊆, (traces(Div), failures(Div))

.

• Refinement:

– P �F Q ⇐⇒ traces(Q) ⊆ traces(P ) ∧ failures(Q) ⊆ failures(P )
– The process Div refines all processes.
– The process RUN+

Σ = (?x : Σ → RUN+
Σ) � Stop � Skip is the least

refined process. Over F this process can equivalentely be represented
by CHAOS tick = (� x : Σ@x → CHAOS tick) � Stop � Skip. As
CHAOS tick solely is built using the internal choice operator, in proofs
it behaves ‘better’ than its counterpart RUN+

Σ .

Semantic Clauses

Together, the functions traces( ) and failures( ) map Csp processes to obser-
vations in the stable failures domain F . These functions are defined relatively



512 B Language Definition of CSP

to a function M = (Mtraces ,Mfailures) : PN → F that gives interpretations
to process names. While we write tracesM ( ) and failuresM ( ) in the main
text, it is common practice to omit the index M when writing semantical
clauses.

The definition of the renaming operator applies the inverse of a binary
relation R to a set X:

R−1(X) � {a | ∃a′ ∈ X.aR a′}.

Again, we refrain from giving a semantic clause for the interrupt operator
in F .

traces(Stop) � {〈〉}
failures(Stop) � {(〈〉,X) |X ⊆ Σ�}
traces(Skip) � {〈〉, 〈�〉}
failures(Skip) � {(〈〉,X) |X ⊆ Σ}

∪ {(〈�〉,X) |X ⊆ Σ�}
traces(Div) � {〈〉}
failures(Div) � {}
traces(N) � Mtraces(N)
failures(N) � Mfailures(N)
traces(a → P ) � {〈〉}

∪ {〈a〉 � s | s ∈ traces(P )}
failures(a → P ) � {(〈〉,X) | a /∈ X}

∪ {(〈a〉 � t′,X) | (t′,X) ∈ failures(P )}
traces(?x : A → P ) � {〈〉}

∪ {〈a〉 � s | a ∈ A ∧
s ∈ traces(P [a/x])}

failures(?x : A → P ) � {(〈〉,X) |A ∩ X = ∅}
∪ {(〈a〉 � t′,X) | a ∈ A ∧

(t′,X) ∈ failures(P [a/x])}
traces(P � Q) � traces(P ) ∪ traces(Q)
failures(P � Q) � {(〈〉,X) | (〈〉,X) ∈

failures(P ) ∩ failures(Q)}
∪ {(t,X) | t �= 〈〉 ∧

(t,X) ∈ failures(P ) ∪ failures(Q)}
∪ {(〈〉,X) |X ⊆ Σ ∧

〈�〉 ∈ traces(P ) ∪ traces(Q)}
traces(P � Q) � traces(P ) ∪ traces(Q)
failures(P � Q) � failures(P ) ∪ failures(Q)
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traces(if cond then P else Q) �
{
traces(P ) ; cond evaluates to true
traces(Q) ; otherwise

failures(if cond then P else Q) �
{
failures(P ) ; cond evaluates to true
failures(Q) ; otherwise

traces(P o
9 Q) � (traces(P ) ∩ Σ∗)

∪ {s � t | s � 〈�〉 ∈ traces(P ) ∧ t ∈ traces(Q)}
failures(P o

9 Q) � {(t1,X) | t1 ∈ Σ∗ ∧ (t1,X ∪ {�}) ∈ failures(P )}
∪ {(t1 � t2,X) | t1 � 〈�〉 ∈ traces(P )∧

(t2,X) ∈ failures(Q)}

traces(P [| A |]Q) �
⋃

{s [| A |] t | s ∈ traces(P ) ∧ t ∈ traces(Q)}
failures(P [|A |]Q) � {(u, Y ∪ Z) |Y \ (A ∪ {�}) = Z \ (A ∪ {�})∧

∃t1, t2. u ∈ t1 [|A |] t2 ∧
(t1, Y ) ∈ failures(P ) ∧ (t2, Z) ∈ failures(Q)}

traces(P \ A) � {s \ A | s ∈ traces(P )}
failures(P \ A) � {(t \ A, Y ) | (t, Y ∪ A) ∈ failures(P )}
traces(P [[R]]) � {t | ∃s ∈ traces(P ) : sR∗t}
failures(P [[R]]) � {(t,X) | ∃t′. (t′, t) ∈ R∗ ∧

(t′, R−1(X)) ∈ failures(P )}
traces(�j∈JPj) �

⋃
j∈J traces(Pj)

failures(�j∈JPj) �
⋃

j∈J failures(Pj)
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Concrete CASL Syntax

In this appendix we provide a grammar for the concrete syntax of the dis-
cussed sublanguage of Casl. The grammar of the full language can be found
in Peter D. Mosses, Casl Reference Manual, Springer, 2004. We take the
freedom to resolve some chain rules, to add a start symbol, to simply the
grammar of terms as well as the lexical syntax. However, overall our presen-
tation follows closely the one of the Casl reference manual. We also use the
following conventions established in the Casl context:

• Nonterminal symbols are written as uppercase words, possibly hyphenated,
e.g., SORT, BASIC-SPEC.

• Terminal symbols are written as either:

– lowercase words, e.g., free, op; or
– special sequences of characters that are enclosed in double-quotes, e.g.,

".", "::=".

• Optional symbols are followed by a / , e.g., end/. Options of terminal
symbols are also separated by a / , e.g., sort/sorts.

• Alternative sequences are separated by vertical bars, e.g., true | false.
• Repetitions are indicated by ellipsis ... when between symbols; ellipses

are also used to indicate omissions to the grammar when at the end of an
alternative.

• Production rules are written with the nonterminal symbol followed by ::=,
followed by one or more alternatives.

The lexical syntax of identifiers is given by the nonterminal symbol WORD.
A WORD must start with a letter, and must not be a reserved key word.

Our grammar offers minimal structuring only—for the concrete syntax of
structuring operations see the Casl reference manual.
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C.1 Specifications

NAMED-SPEC ::= spec SPEC-NAME "=" BASIC-SPEC end/

| spec SPEC-NAME "="

SPEC-NAME then...then SPEC-NAME

then

BASIC-SPEC then...then BASIC-SPEC end/

SPEC-NAME ::= WORD

C.2 Signature Declarations

BASIC-SPEC ::= BASIC-ITEMS...BASIC-ITEMS

BASIC-ITEMS ::= SIG-ITEMS

| ...

SIG-ITEMS ::= sort/sorts SORT-ITEM ";"...";" SORT-ITEM ";"/

| op/ops OP-ITEM ";"...";" OP-ITEM ";"/

| pred/preds PRED-ITEM ";"...";" PRED-ITEM ";"/

SORT-ITEM ::= SORT ","..."," SORT

OP-ITEM ::= OP-NAME ","..."," OP-NAME ":" OP-TYPE

| ...

OP-TYPE ::= SOME-SORTS "->" SORT

| SOME-SORTS "->?" SORT

| SORT

| "?" SORT

SOME-SORTS ::= SORT "*"..."*" SORT

PRED-ITEM ::= PRED-NAME ","..."," PRED-NAME ":" PRED-TYPE

| ...

PRED-TYPE ::= SORT "*"..."*" SORT | "()"

SORT ::= WORD

OP-NAME ::= WORD

PRED-NAME ::= WORD

C.3 Formulae

We extend the notion of BASIC-ITEMS by constructs for formulae:

BASIC-ITEMS ::= ...

| forall VAR-DECL ";"...";" VAR-DECL

"." FORMULA "."..."." FORMULA ";"/

| axiom/axioms FORMULA ";"...";" FORMUA ";"/

| ...

VAR-DECL ::= VAR ","..."," VAR ":" SORT

FORMULA ::= PRED-NAME "(" TERM ","..."," TERM ")"

| TERM "=" TERM

| TERM "=e=" TERM

| def TERM

| true
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| false

| not FORMULA

| FORMULA "/\" ... "/\" FORMULA

| FORMULA "\/" ... "\/" FORMULA

| FORMULA "=>" FORMULA

| FORMULA if FORMULA

| FORMULA "<=>" FORMULA

| QUANTIFIER VAR-DECL ";"...";" VAR-DECL "." FORMULA

| "(" FORMULA ")"

| ...

QUANTIFIER ::= forall | exists

| ...

TERM ::= OP-NAME

| OP-NAME "(" TERM ","..."," TERM ")"

VAR ::= WORD

C.4 Sort Generation Constraints

We extend the notion of BASIC-ITEMS by a construct for writing a sort gen-
eration constraint:

BASIC-ITEMS ::= ...

| free type SORT "::=" ALTERNATIVE "|"..."|" ALTERNATIVE

| ...

ALTERNATIVE ::= OP-NAME "(" COMPONENT ";"...";" COMPONENT ")"

| OP-NAME

| ...

COMPONENT ::= OP-NAME ":" SORT ","..."," OP-NAME ":" SORT

| SORT

| ...
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business, 456

numerical, 455
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Constant, 71, 83
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design-by-contract, 467

rely guarantee method, 467
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cryptosystem, 397
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event, 116
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model checking, 163
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non-deterministic, 190

parametrised processes, 126

process, 116

recursion, 117, 181

refinement, 149
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theorem proving, 163

trace refinement, 149
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action prefix, 116

alphabetised parallel, 123

boolean guard, 129
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div, 145, 187

external choice, 120

general parallel, 123

hiding, 125

interleaving, 123

interrupt, 119

prefix choice, 121

process name, 117, 119

reading on channel, 121

renaming, 127

replicated process operators, 129

sending on channel, 121

sequential composition, 119

skip, 119

stop, 116, 188

synchronous parallel, 123

CSP semantics

concatenation of traces �, 134

denotational, 134, 167

empty trace 〈〉, 134

failure, 144

failures/divergences model N , 171

failures/divergences refinement �N , 173

healthiness condition on a domain, 168

lifting a relation, 135

operational, 133

precedes predicate, 417, 431

proper prefix of a trace, 146

recursive equation, 134

refinement, 167

refusal set, 144

relating N and F , 178

relating T and F , 178
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stable failures model F , 175
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traces model T , 168

traces refinement �T , 169

unstable state, 144
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D

Data Encryption Standard, 397

Data type, 457, 463
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formal theory, 464
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partial function, 465
structuring, 466
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theory of institutions, 466

Decryption, 397
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Deontic logic, 314

Deontic modalities, 314, 315
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axiom, 59
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Dolev Yao intruder model, 402

E

Encryption, 397

Error, 262
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385
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human error, 345, 347
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systematic error, 346
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F

Failure, 262

Fault, 262
Fault tolerance, 2

Final semantics, 66
First-order term, 72
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Formal method, 1, 12
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Frame, 94
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function name, 71
function symbol, 71

partial function, 85
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long-term memory (LTM), 351, 354, 377
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I
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K
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M
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Message encryption, 397

Message space, 408
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finite set, 420

message encryption, 409
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Method, 10, 50
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Model

first-order model, 73
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propositional model, 54

second-order model, 78
UML2 model, 265
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propositional model checking, 56
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Modelling purpose, 142

Modelling rules, 141
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Monomorphic, 63
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isomorphism, 64, 91
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Nondeterminism, 269
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O
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Partiality, 85, 465
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Perfect encryption assumption, 398
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