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Preface

This book presents challenging issues and current trends for designing human fall
detection and classification systems, as well as healthcare technologies, using
multimodal approaches. In healthcare, falls are frequent especially among elderly
people and it is considered a major health problem worldwide. Recently, fall
detection and classification systems have been proposed to address this problem,
and to reduce the time, a person fallen receives assistance. For a comprehensive
perspective of these healthcare technologies, the book is divided into two parts.

In the first part, human fall detection and classification systems are approached.
A holistic view, from the design process to the implementation, is considered in the
self-contained chapters presented. Moreover, these contributions mainly correspond
to the challenges, methodologies adopted and results of the international compe-
tition, namely Challenge UP—Multimodal Fall Detection that was held during the
International Joint Conference on Neural Networks (IJCNN) in 2019. Throughout
this part, many of the chapters include open coding. This gives readers and prac-
titioners the opportunity to be involved in the fall detection and classification
problem by hands-on experience. First, chapter “Open Source Implementation for
Fall Classification and Fall Detection Systems” presents a public multimodal
dataset for fall detection and classification systems, namely UP-Fall detection. This
dataset was part of the above-mentioned competition; thus, a concise tutorial on
how to manipulate and analyze it, as well as how to train classification models and
evaluate those using the dataset, for classification systems, is presented. In chapter
“Detecting Human Activities Based on a Multimodal Sensor Data Set Using a
Bidirectional Long Short-Term Memory Model: A Case Study,” authors propose a
deep learning model using bidirectional long short-term memory (Bi-LSTM) to
detect five different types of falls using a dataset provided by the Challenge UP
competition. The work corresponds to authors that won the third place. In contrast,
chapter “Intelligent Real-Time Multimodal Fall Detection in Fog Infrastructure
Using Ensemble Learning” presents a proposed methodology for conducting
human fall detection near real time by reducing the processing latency. This
approach considers distributing the fall detection chain over different levels
of computing: cloud, fog, edge and mist. In addition, chapter “Wearable Sensors
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Data-Fusion and Machine-Learning Method for Fall Detection and Activity
Recognition” presents a method for fall detection and classification using the
UP-Fall detection dataset. The authors present an interesting approach performing
unsupervised similarity search in order to find the most similar users to the ones in
test set, helping for parameter tuning. These authors won the first place in the
Challenge UP competition. In contrast to the above sensor-based approaches, in
chapter “Application of Convolutional Neural Networks for Fall Detection Using
Multiple Cameras,” authors present a fall detection system using a 2D convolu-
tional neural network (CNN) evaluating independent information of two monocular
cameras with different viewpoints, using the public UP-Fall detection dataset. The
results obtained show that the proposed approach detects human falls with high
accuracy, and it has comparable performance to a multimodal approach. Lastly,
chapter “Approaching Fall Classification Using the UP-Fall Detection Dataset:
Analysis and Results from an International Competition” presents the results of the
competition and the lessons learned during this experience. In addition, it discusses
trends and issues on human fall detection and classification systems.

On the other hand, the second part comprises a set of review and original
contributions in the field of multimodal healthcare. These works present trends on
ambient assisted living and health monitoring technologies considering the
user-centered approach.

Chapter “Classification of Daily Life Activities for Human Fall Detection:
A Systematic Review of the Techniques and Approaches” reviews the techniques
and approaches employed to device systems to detect unintentional falls. The
techniques are classified based on the approaches employed and the used sensors
and noninvasive vision-based devices. In chapter “An Interpretable Machine
Learning Model for Human Fall Detection Systems Using Hybrid Intelligent
Models,” authors propose a fall detection system based on intelligent techniques
using feature selection techniques and fuzzy neural networks. The authors highlight
the importance of feature selection techniques to improve the performance of hybrid
models. The main goal was to extract knowledge through fuzzy rules to assist in the
fall detection process. In chapter “Multi-sensor System, Gamification, and Artificial
Intelligence for Benefit Elderly People,” authors present a multi-sensory system into
a smart home environment and gamification to improve the quality life of elderly
people, i.e., avoiding social isolation and increasing physical activity. The proposal
comprises a vision camera and a voice device, and artificial intelligence is used in
the data fusion. Lastly, chapter “A Novel Approach for Human Fall Detection and
Fall Risk Assessment” proposes a noninvasive fall detection system based on the
height, velocity, statistical analysis, fall risk factors and position of the subject from
depth information through cameras. The system is then adaptable to the physical
conditions of the user.

We consider this book useful for anyone who is interested in developing human
fall detection and classification systems and related healthcare technologies using
multimodal approaches. Scientists, researchers, professionals and students will gain
understanding on the challenges and trends on the field. Moreover, this book is also
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attractive to any person interested in solving signal recognition, vision and machine
learning challenging problems given that the multimodal approach opens many
experimental possibilities in those fields.

Lastly, the editors want to thank Universidad Panamericana for all the support
given to this publication and the related research project that includes the organi-
zation of the international competition and the creation of the public dataset. The
editors also want to thank Editor Thomas Ditzinger (Springer) for his valuable
feedback and recognition to this work.

Mexico City, Mexico
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Hiram Ponce
Lourdes Martínez-Villaseñor

Jorge Brieva
Ernesto Moya-Albor
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Challenges and Solutions on Human Fall
Detection and Classification

Throughout this part, human fall detection and classification systems are approached.
A holistic view, from the design process to the implementation, is considered in the
self-contained chapters presented. Moreover, these contributions mainly correspond
to the challenges, methodologies adopted and results of the international compe-
tition namely Challenge UP—Multimodal Fall Detection that was held during the
International Joint Conference on Neural Networks (IJCNN) in 2019.



Open Source Implementation for Fall
Classification and Fall Detection Systems
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Ernesto Moya-Albor and Jorge Brieva

Abstract Distributed social coding has created many benefits for software develop-
ers. Open source code and publicly available datasets can leverage the development
of fall detection and fall classification systems. These systems can help to improve
the time in which a person receives help after a fall occurs. Many of the simulated
falls datasets consider different types of fall however, very few fall detection systems
actually identify and discriminate between each category of falls. In this chapter, we
present an open source implementation for fall classification and detection systems
using the public UP-Fall Detection dataset. This implementation comprises a set of
open codes stored in a GitHub repository for full access and provides a tutorial for
using the codes and a concise example for their application.

Keywords Human fall detection · Human activity recognition · Ambient assisted
living ·Machine learning · Open coding
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1 Introduction

Distributed social coding has gained popularity in recent years enabling software
developers across the world to share their code and participate in different projects.
GitHub is actually themost popular social codingplatformandproject hosting service
[9]. GitHub has created many benefits for software developers. It has improved the
way professionals work, it provides a traceable project repository, it is a meeting
place for research communities with common interests, and it is also transforming
the learning experience for software developer newcomers [21].

With the aim of benefit the fall detection system developers community, in this
chapter, we present an open code project for fall detection and classification. There
is a lack of reference frameworks and very few publicly available datasets for fall
detection and classification. Open source code and publicly available datasets can
leverage the development of fall detection and fall classification systems. These kinds
of systems can reduce the time required for patient that suffer a fall to receivemedical
attention mitigating its consequence.

Thus, our goals are: (a) to promote sharing and reusing our UP-Fall Detection
and classification dataset [12] and open source code; (b) with social collaboration,
asses and improve the UP-Fall Detection dataset for multimodal fall detection and
classification systems; and (c) contribute to software developers community pro-
viding a framework for different experimentation for multimodal fall detection and
classification.

In this regard, it is possible to address different design issues in order to simplify
a fall detection and classification system:

• Select which sensors or combination of sensors are to be used
• Determine the best placement of the sources of information
• Select the most suitable machine learning classification method for fall detection
and classification and human activity recognition.

There are some examples of open source for fall detection published in GitHub
Development Platform. We reviewed the ones with more influence based on stars
given by the community. In [5], there is a GitHub repository available for real-time
activities of daily living (ADL) and fall detection implemented in TensorFlow. The
authors consider MobiFall dataset [18] for train and test which has 9 activities and
4 types of fall although all types are tagged as fall. The repository contains Python
programs for data load, train a model with RNN, and several utilities which can be
reused. Nevertheless, this code is poorly documented. The same authors also publish
code for ADL recognition and fall detection using Convolutional Neural Networks
(CNN) [6] using MobiFall [18] and SisFall [16] datasets for training and testing.
Code for building CNN model is available, but documentation is also scarce. Other
available projects also use Sisfall Dataset for model building like [3]. This project
includes Jupiter Notebooks for data preparation and threshold based classification,
code to implement three differentmachine learning classifiers (K-Nearest Neighbors,
Support Vector Machine, Neural Networks) and implementing fall detection with
Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) models.
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AnOpenCVproject to detect a person fall in videoswithHaarcascade is published
in [15]. It provide a very simple code based on Haarcascade. A fall detection Android
app based on accelerometer, gyroscope and magnetometer is published in [13]. With
this app it is possible to send SMS to the mobile numbers stored a SQLite Database.

From this review, we determine that there are very few reliable open source
projects for fall detection and none that also permit fall classification and human
activity recognition. All of the reviewed projects only include one modality of data,
mainly accelerometers, gyroscopes or cameras. Only one project enables implemen-
tation of three models based on machine learning classifiers.

Our proposal includes multiple modalities of source data collected in our own
publicly available UP-Fall Detection dataset [12], detailed code and documentation
for each phase of the processes of human activity recognition, fall detection and fall
classification, and code to implement four different classification methods (i.e. Ran-
dom Forest, Support Vector Machine, Multilayer Perceptron, K-nearest neighbors).

The rest of the chapter is organized as follows. Firstly, in Sect. 2, we overview
the fall detection and fall classification process. In Sect. 3, we describe the UP-
Fall Detection dataset. Then, in Sect. 4, we present our open code proposal for fall
detection and fall classification. Section5 shows a concise example on how to use
our framework. Lastly, Sect. 6 presents some discussion on the presented work.

2 Fundamentals of Fall Detection and Classification

Falls are a major problem specially among the elderly causing fractures and serious
injures [17]. The impact and consequences of fall can be reduced when the event is
detected and medical attention is provided rapidly.

Monitoring elderly for abnormal events has gained interest in the assisted living
community, so many fall detection and classification solutions are emerging. As
discussed above, opportune fall detection is important, but it is also necessary to
identify the type of fall. Different types of falls can provoke different types of injuries
[1]. A better medical response or prevention treatment can be provided if the type of
fall suffered is known. For instance, from the loss of consciousness it is more likely
that a lateral fall occurs. A slip is more probably to cause serious injuries because
the ease of breaking from a forward fall [17].

Likewise, fall prevention strategies can potentially be designed from analyzing the
relation between the type of falls with the resulting injuries [14]. In this section, we
briefly describe some fundamental concepts for better understanding fall detection
and fall classification systems and processes.
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Fig. 1 Activity recognition chain methodology

2.1 Fall Detection and Classification Processes

From the classification process point of view, fall detection is the task of discrimi-
nation between falls and activities of daily living (ADL). This means classifying a
new observation predicting only two classes namely fall or non-fall activities. On
the other hand, fall classification is the task of not only identifying a fall but also
categorizing the type of fall for example falling backward, falling forward, falling
while sitting, falling sideward, falling with knees, among others.

The processes of fall detection and fall classification are similar to human activity
recognition. Figure1 shows the activity recognition chain (ARC) approach proposed
by [4]. This methodology is often adopted to develop the workflow of a fall detection
and/or classification system. It consists mainly in five steps: (i) data acquisition, (ii)
windowing, (iii) feature extraction, (iv) feature selection and (v) activity models and
classification.

Data Acquisition

In the first step of fall detection and/or classification process, raw data is acquired
from one or more different types of sources. Fall detection and classification systems
can also differ depending mainly on the data acquisition system and algorithms
used to detect the fall. Fall detection and classification approaches can be based
on wearable sensors, and contextual sensors. The most commonly used wearable
sensors are accelerometers, gyroscopes most recently embedded in smart phones or
smart watches. Context-aware systems use sensors deployed in the environment like
cameras, floor sensors, infrared sensors, thermal sensors, pressure sensors, radar and
microphones among others [10]. According to Xu et al. [20] wearable sensors based
in accelerometers and Kinect are the most recent trends for fall detection. Interest in
multimodal approaches is rising in order to increase precision and robustness.

Windowing

A continuous sensor stream is obtained from data acquisition of the consecutive
activities performed by a person. There are different ways of data segmentation
of this data stream of time series. The most commonly used segmentation method
for activity recognition is windowing. A segment or window of the time series of
each attribute is mapped and label with a corresponding activity. A sliding window is
moved over the time series data so this segment is used in the next steps of the process.
The selection of the length of the window influences directly the performance of the
classifier because it produces different number of samples. A large window size
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can include several activities and a very short window may not provide sufficient
information.

Feature Extraction

The main motivation for extracting features from each time window is to obtain
quantitative measures that allow signals to be compared and in further step of feature
selection determine relevant information for the classification [11].

For each window, a feature extraction function is applied resulting in new features
describing the activity. A wide range of features can be used depending on the
modality of data acquisition. For signals for instance, statistical time domain and
frequency domain feature extraction methods are used.

Raw signals can be used for both fall detection and classification with deep learn-
ing techniques avoiding feature extraction and feature selection steps. Wang et al.
[19] point out some advantages of using deep learning for human activity recognition
given that features can be learned automatically instead of manually designed. Deep
generative models are able to exploit unlabeled data for model training.

Feature Selection

Many different features can be extracted from each time window. Nevertheless, the
higher the dimensionality of the feature space, more training is needed and more
computationally intensive becomes the classification [4]. Some features in the feature
dataset might be irrelevant or redundant. The goal of automatic feature selection
methods is to determine which features have more predictive power for classification
in order to decrease the dimensionality of the feature space. A good introduction for
feature selection and ranking is presented in [7].

Classification

Commonly used algorithms for fall detection are threshold-based, rule-based
and shape-based, and machine learning techniques. Conventional approaches
(i.e. threshold-based, rule-based and shape-based) are simpler to implement an less
computationally expensive, but the rate of false positives is an issue [10]. Machine
learning approaches obtain better performance results. The recent trend is to use
machine learning methods for fall detection and classification [20].

The most frequently used evaluation metrics for fall detection and classification
are accuracy,precision, sensitivity, specificity and F-measure.

2.2 Fall Detection and Classification Systems

Almost all of the simulated falls datasets consider more than one types of fall, how-
ever, very few fall detection systems actually identify and discriminate between each
category of falls [1].

Hsieh et al. [8] presented a fall characteristics collection system for fall pre-
vention strategies based on threshold methods. They analyzed data from a tri-axial
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accelerometer worn in the waist of six young adults. Their approach allows to clas-
sify eight different types of falls. Aziz and Robinovitch [2] proposed a system based
for determining the causes of falls based on three-dimensional accelerometers worn
in different body placements. Sixteen youn adults simulated falls due to slips, trips
and other imbalance causes. In [1], Albert et al. presented a solution for fall clas-
sification based on accelerometers embedded in mobile phone. For their study 15
subjects simulated four different types of falls–left and right lateral, forward trips,
and backward slips–while wearing mobile phones. Activities of daily living were
recorded from nine subjects for ten days. They used Five different classification
algorithms for detection and classification: Naïve Bayes, Decision trees, Support
Vector Machines, Sparse Multinomial Logistic Regression, and k-nearest neighbors.
Their results obtained 98% accuracy for fall detection and 99% accuracy for fall
classification. Vavoulas et al. [18] developed a dataset based on inertial sensors from
smartphones to enable the comparison of fall detection, fall classification and hu-
man activity recognition algorithms. They collected data from 24 volunteers who
recorded four types of falls and nine activities of daily living.

3 Description of the UP-Fall Detection Dataset

Asdescribed above, this chapter presents the pipeline ofmultimodal fall classification
and detection systems. To do so, this chapter uses the UP-Fall Detection dataset [12]
for that purpose.

This is a public large dataset comprising a set of 44 raw sensor- and camera-based
signals, of recordings of non-overlapping simple human daily activities and falls.
These actions were performed by 17 healthy young subjects without any impair-
ments (1.66± 0.05 m height and 66.8± 12.88 kg weight), 9 males and 8 females,
ranging from 18 to 24years old. A total of 11 activities/falls were recorded, during
three attempts (trials). The dataset provides five types of falls (falling forward using
hands, falling forward using knees, falling backward, falling sideward, and falling
attempting to sit in an empty chair) and six daily activities (walking, standing, sitting,
picking up an object, jumping, and laying), as summarized in Table1. All falls were
simulated by self-generation of the subjects. These falls were collected in the same
direction (right-to-left).

The dataset was collected with three different modalities: wearable sensors, am-
bient sensors and cameras. Five inertial measurement units (IMUs) of three-axis
accelerometer, three-axis gyroscope and one ambient light sensor, were placed in the
body of the subjects, i.e. neck, waist, left wrist, right pocket and left ankle. Also, a
brainwave sensor was located in the forehead. The ambient sensors comprised six
pairs of infrared proximity devices, in grid formation, were placed around the central
location of the action performances, such that they can detect the presence or absence
of a person in the environment. Lastly, two cameras, one in lateral view and one in
front view of the motion of the subjects, were located in the scene. After synchro-
nization, cleaning and pre-processing, the dataset comprised 296,364 samples of raw
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Table 1 Types of activities and falls in the dataset

Type Description Activity ID

Fall Forward using hands 1

Forward using knees 2

Backward 3

Sideward 4

Attempting to sit in an empty
chair

5

Daily activity Walking 6

Standing 7

Sitting 8

Picking up an object 9

Jumping 10

Laying 11

Fig. 2 Layout of the sensors and cameras used in the UP-Fall Detection dataset, adopted from [12]

sensor and camera signals, collected at 18 Hz. Figure2 shows the layout of all the
sensors and cameras used for creating the dataset.

The dataset is organized in two parts. The first part contains all the raw sensor
signals and camera images. The second part contains a processed dataset of features.
These features were extracted from the raw sensor signals in three different window-
ing sizes: 1-second, 2-second and 3-second time lengths. This windowing process
was done with 50% of overlapping. The features correspond to twelve measurements
in time: mean, standard deviation, root mean square, maximal amplitude, minimal
amplitude, median, number of zero-crossing, skewness, kurtosis, first quartile, third
quartile and median auto-correlation. In addition, six frequency features over the fast
Fourier transform of the signals were also extracted: mean, median, entropy, energy,
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principal frequency and spectral centroid. Similarly, visual features were extracted
from the raw images using a simple optical flow method, as reported in [12]. These
visual features were extracted between two sequential images. After that, 1-second,
2-second and 3-second (with 50% of overlapping) windowing procedures were also
computed.

For a complete description of the UP-Fall Detection dataset, it can be found in
[12]. The dataset is publicly available at: http://sites.google.com/up.edu.mx/har-up/.

4 Open Code for Fall Detection and Classification

To simplify the process of developing a fall detection and classification system,
we created a set of open codes in Python to download, handle and test our Fall-UP
Detection dataset. These codes can be found in our GitHub repository: https://github.
com/jpnm561/HAR-UP.

4.1 Setting up the Environment

Before starting, it is important to clone or download the repository. To do so, simply
go to the GitHub repository https://github.com/jpnm561/HAR-UP and click on the
Clone or donwload button. Copy all the files in your local computer and open Python.

After copying the files in a computer, the repository will be organized in seven
folders, as follows:

• Database download – codes for accessing to the dataset repository.
• Feature extraction – codes for using our own feature dataset from sensor signals.
• CameraOF (optical flow) – codes for using the optical flow based visual features.
• Binary features – codes for converting the feature dataset useful to fall detection
systems.

• Feature selection – codes for reducing the dimensions of the feature dataset.
• Training – codes for training machine learning models using a simple approach
of splitting data into train and test sets.

• K-cross validation – codes for training machine learning models using the k-fold
cross-validation approach.

We will work with different codes stored in these folders. We assume that readers
are familiar with Python and the scikit-learn library.

http://sites.google.com/up.edu.mx/har-up/
https://github.com/jpnm561/HAR-UP
https://github.com/jpnm561/HAR-UP
https://github.com/jpnm561/HAR-UP
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4.2 Useful Definitions

We define some useful variables to manage and query the dataset. Throughout this
chapter, the following variables are present:

n_sub – integer array indicating the first and last subject(s) when calling a
function

n_act – integer array indicating the first and last activitieswhen calling a function
n_trl – integer array indicating the first and last trial(s) when calling a function.

As seen later, features were extracted using a windowing method. In this case,
the window length and the overlapping size are required to use the data. Thus, the
following variable is considered:

t_window – string array indicating the window length and overlapping size in
seconds

Three options can be used:

’1&0.5’ – it refers to 1-second window length with 0.5 seconds on overlapping
’2&1’ – it refers to 2-second window length with 1 second on overlapping
’3&1.5’ – it refers to 3-second window length with 1.5 seconds on overlapping.

We integrate four different machine learning models for classification and detec-
tion. The variable associated to the type of model is:

methods – string array indicating the acronym of the model.

Four options can be used:

’RF’ – random forest
’SVM’ – support vector machines
’MLP’ – multilayer perceptron
’KNN’ – k-nearest neighbors.

Lastly, one of the goals of the UP-Fall Detection dataset is to provide different
modalities while gathering data during the experiments. In that sense, it is important
to retrieve data associated to one or a combination of more of these modalities. We
use the following variable to set the modes:

concept – string array indicating the type of modality or combination of those.

Four options can be used:

’IMU’ – inertial measurement units (all places in body)
’Head’ – brainwave signal from helmet
’Vision’ – cameras
’IR’ – infrared sensors as ambient measures.
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Combinations of concepts can be done using the underscore symbol (_) between
concepts. For example,’IMU_Head_IR’means the combinationof all IMUsignals
and the brainwave signal and the infrared sensors.

In addition, the IMU sensors can be retrieved separately from the location into
the body, using the following string concepts:

’IMU-Ankle’ – IMU signals from left ankle location
’IMU-Belt’ – IMU signals from waist location
’IMU-Neck’ – IMU signals from neck location
’IMU-RightPocket’ – IMU signals from right pocket location
’IMU-Wrist’ – IMU signals from left wrist location.

4.3 Dataset Download Process

The UP-Fall Detection dataset is hosted on Google Drive. Thus, it is requiured
to set up the Google Drive’s API in Python. To do so, it needs the installation
of PyDrive in the local Python environment (further information can be found
in https://pythonhosted.org/PyDrive/). This can be done by running the following
command in the Python terminal:

$ pip install PyDrive

After that, it is required to enable Google Drive’s API in a personal Google ac-
count,make aproject andget a client IDandclient secret (i.e. these canbedownloaded
in a JSON file as ’client_secrets.json’).1

To avoid errors, and constant authorization checks via browser, it is encour-
aged to make a YAML file called ’settings.yaml’ in the root directory, where
’client_secrets.json’ file should also be stored. This YAML file should have the
following content:

client_config_backend: file

client_config:

client_id: #your client id should be here

client_secret: #your client secret should be here

save_credentials: True

save_credentials_backend: file

save_credentials_file: credentials.json

get_refresh_token: True

1For further instructions on how to enable the Google Drive’s API, go to: https://pythonhosted.org/
PyDrive/quickstart.html.

https://pythonhosted.org/PyDrive/
https://pythonhosted.org/PyDrive/quickstart.html
https://pythonhosted.org/PyDrive/quickstart.html
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oauth_scope:

- https://www.googleapis.com/auth/drive

- https://www.googleapis.com/auth/drive.install

4.3.1 Downloading All Dataset

Todownload thewhole dataset, including all IMUsignals, brainwave signals, infrared
sensor signals and videos from cameras, it can be done using the file ’DataBase-
Download » Downloader_pydrive.py’. The following instructions will download
the dataset in the directory specified in the ParentFolder folder of path:

path = ’ParentFolder//’

dataBaseDownload(path)

After completion, all files will be located in path and the program will print the
output files downloaded, as follows:

ParentFolder\

\Subject#\

\Activity#\

\Trial#\

\downloadedFile(1)

...

\donwnloadedFile(i)

From the above, dataBaseDownload() downloads the raw dataset. But, it
can be called the featureDownload() function to download the feature dataset
(see Sect. 4.4).

4.3.2 Downloading the Dataset by Subject, Activity and Trial

By default, dataBaseDownload() retrieves the whole dataset. However, it is
also possible to download specific chunks of data using the variablesn_sub,n_act
and n_trl for subjects, activities and trials, respectively. These variables are integer
arrays representing the start and end indexes of any of these variables, like:

n_sub = [start,end] – subset from subject start to subject end
n_act = [start,end] – subset from activity start to activity end
n_trl = [start,end] – subset from trl start to trl end.

The possible integers to use in these variables depend on the number of subjects,
activities and trials. Thus, the possible numbers of n_sub are 1-17. The numbers
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of n_act are 1-5 for types of falls, 6-11 for daily activities and 20 for other
activities. And, the numbers of n_trl are 1-3.

For example, to get the data for subjects 1, 2, 3, 7, 10 and 11, it is possible to use
the following commands:

dataBaseDownload(path, n_sub=[1,3])

dataBaseDownload(path, n_sub=[7,7])

dataBaseDownload(path, n_sub=[10,11])

To get the data for subject 1 with activities 4, 5, 6 and 7 for trials 2 and 3, then
the following code will do it:

dataBaseDownload(path, n_sub=[1,1], n_act=[4,7], n_trl=[2,3])

4.3.3 Downloading the Dataset by Modality

The dataset is organized in raw signals acquired from sensors and those acquired
from cameras. This information is containing in two formats as below:

• CSV files – these contain sensor data from five IMUs, one brainwave sensor, and
six infrared sensors.

• ZIP files – these contain recorded videos from two cameras (lateral and front
views).

By default, dataBaseDownload() downloads all CSV and ZIP files. How-
ever, this can be modified when calling the function.

The following code downloads sensor signals in CSV files:

dataBaseDownload(path, cameras = False)

The following code, in contrast, downloads recorded videos in ZIP files:

dataBaseDownload(path, csv_files = False)

The following code downloads the recorded videos associated to one camera. It
uses the variable n_cam with [1,1] representing the lateral view (camera 1) and
[2,2] representing the frontal view (camera 2):

dataBaseDownload(csv_files=False, n_cam=[1,1])

dataBaseDownload(csv_files=False, n_cam=[2,2])
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4.4 Feature Extraction

The UP-Fall Detection dataset also contains a feature dataset. This information was
previously calculated and then added to the dataset repository. It considers temporal
and frequential features, as reported and implemented in [12]. This dataset contains
the features extracted in windows with overlapping of 50%. Three different window
lengths were set up: 1-second, 2-second and 3-second. For each window configura-
tion, the data was synchronized.

The following section explains how to download this feature dataset and how to
manipulate it accordingly to prepare the data for any convenience. However, if a
different feature extraction is required, then this should be customized from the raw
dataset downloaded in Sect. 4.3.

4.4.1 Downloading the Feature Dataset

The feature dataset is organized into the following files:

• CSV files for sensors – it contains the features extracted from IMUs, brainwave
sensor and infrared sensors. These files can be found for the three window length
configurations.

• ZIP files for cameras – it contains the optical flow extracted from two consecutive
images in the video recordings. The optical flow is stored in two decomposition
motions: horizontal (u) and vertical (v).

• CSV files for compressed images – it contains the components of optical flow
values arranged by columns, using a 20× 20 resized images; for both cameras.

• CSV files for mean compressed images – it contains the mean components of
optical flow values, per window. These values come from the 20× 20 resized
images; for both cameras. These files can be found for the three window length
configurations.

To download the feature dataset, it can be done using the file ’DataBaseDownload
» Downloader_pydrive.py’. The following instructions will download the dataset
in the directory specified in the ParentFolder folder of path:

path = ’ParentFolder//’

featureDownload(path)

All files will be located in path and the program will print the output filenames,
as follows:
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ParentFolder\
\Subject#\

\Activity$\
\Trial%\

\Subject#Activity$Trial%Features1&0.5.csv
\Subject#Activity$Trial%Features2&1.csv
\Subject#Activity$Trial%Features3&1.5.csv
\CameraFeaturesSubject#Activity$Trial%.csv
\Subject#Activity$Trial%CameraFeatures1&0.5.csv
\Subject#Activity$Trial%CameraFeatures2&1.csv
\Subject#Activity$Trial%CameraFeatures3&1.5.csv

It is important to notice that the above instruction downloads all CSV files. ZIP
files are avoided on purpose.

It is possible to specify the window length configuration for downloading the
dataset. This can be done using the variable t_window, like:

featureDownload(path,t_window = [’1&0.5’,’2&1’])

The above instruction will download the feature dataset only for 1-second and
2-second window length configurations.

4.4.2 Other Options to Download the Feature Dataset

The following code downloads the feature dataset avoiding features taken fromsensor
data:

featureDownload(path, csv_files=False)

To avoid resized optical flow files from cameras, do:

featureDownload(path, cameras=False)

To avoid the mean taken from the resized optical flow files:

featureDownload(path, feat_cam_OF=False)

To allow downloading the ZIP files from cameras:

featureDownload(path, Complete_OF=True)

Also, it is possible to choose a specific files associated to one camera, as follows:

featureDownload(path, Complete_OF=True, n_cam =[1,1])

featureDownload(path, Complete_OF=True, n_cam =[2,2])
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In the last two code lines, the first only downloads information from camera 1
(lateral view) and the second instruction only downloads data from camera 2 (front
view).

4.4.3 Crafting the Feature Dataset

If the above feature dataset is not convenient, there is also possible to create a custom
feature dataset. Thus, it is possible to manipulate the raw dataset (see Sect. 4.3)
for preparing the features for further processing. This manipulation can be done in
terms of the window length configuration, the types of sensors, features, subjects,
activities and trials. The following explanation uses the file ’FeatureExtraction
» featureExtraction.py’.

The basic instruction for extracting features is extraction(), and it requires
two specify both the path of the raw dataset and the path in which the features will
be stored in the local computer:

d_base_path = ’ParentFolder_raw//’

features_path = ’ParentFolder_features//’

extraction(d_base_path,features_path)

The parent folder of the raw dataset will remains unchangable, but a new parent
folder will be created to storing the feature dataset, as shown in the output log:

ParentFolder_raw\
\Subject#\

\Activity$\
\Trial%\

\Subject#Activity$Trial%.csv
ParentFolder_features\

\FeaturesTIMEWINDOW.csv
\Subject#\

\Activity$\
\Trial%\

\Subject#Activity$Trial%FeaturesTIMEWINDOW.csv

By default, features are calculated using the three window length configurations:
’1&0.5’, ’2&1’ and ’3&1.5’. However, it is possible to alter these calcula-
tions when calling the function extraction() to compute one or a combination
of window length configurations. For example, the following code can be used in
calculation of 1-second and 2-second window length configurations:

extraction(d_base_path,features_path,t_window = [’1&0.5’,’2&1’])

Moreover, it is possible to use the variable t_window to compute new window
lengths using the instruction:

t_window = ’w&o’
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Where, w refers to an integer value corresponding to the window length and o
means a float value corresponding to the half of value of w with one decimal. For
example, if it is required to calculate feature extraction in 4-second windows (and
50% of overlapping), then the following command will do:

extraction(d_base_path,features_path,t_window = [’4&2’])

Furthermore, the function extraction() extracts 18 features from 42 sensors
(no cameras). But if required, it can be limited to calculate some of the features from
some of the sensors. To do so, it should be modified the file ’FeatureExtraction
» SFt_List.py’ which contains the whole list of sensors and features computed.

The extraction of features can also be limited to a subset of subjects, activities
and/or trials. The following code exemplifies how to modify the extraction()
function:

extraction(d_base_path,features_path, n_sub=[1,1], n_act=[4,7], single_f=False)
extraction(d_base_path,features_path, n_sub=[4,7], n_act=[4,7], single_f=False)

The code above will extract features from subjects 1, 4, 5, 6 and 7, only for activi-
ties 4, 5, 6 and 7 and the trials 1, 2 and 3. Notice that there is a flag value single_f
that specifies that for each execution of extraction() the output files should be
retained. In other words, if this that value is not set to False, then the output file
from the first code line will be overwritten by the second output file.

4.5 Feature Selection

Feature selection is an optional step. However, it is recommended for minimizing
the training data size and for selecting the most predictive features in the models.

A feature selection procedure is implemented in the GitHub repository, using the
file FeatureSelection »FeaturePreSelection.py. It is one possibility to get reducing
the number of features in the dataset. In this case, the procedure consists of doing
three experiments that independently rank the features by the predictive power over
a built model.

These experiments are: (i) the creation of an extra trees classifier with 250 esti-
mators and no random state, (ii) a linear support vector machines model with L2-
regularization as penalty, and (iii) a recursive feature elimination with random forest
as classifier.

Then, an array of 100 features (or 30% of all features if there are less than a
hundred) by each experiment are returned. These arrays are compared and, then, it
shows the selected features and the frequency that they appeared in the arrays. At
last, the most frequent features (i.e. those selected in two or more experiments) are
selected. This can be simply done by calling the preSelection() function.
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preSelection(concept)

The variable concept refers to a list of strings representing the types of modali-
ties or specific sensors required for the experimentation (see Sect. 4.2). For example,
the next instruction specifies that only the features corresponding to the IMUs from
left ankle and right pocket are taken into account in the feature selection, in order to
evaluate which features are better for each concept:

concept = [’IMU-Ankle’,’IMU-RightPocket’]

preSelection(concept)

At each experiment, a model is built and the features are evaluated by adding one-
by-one. To do so, the GitHub repository implements the random forest model using
the file FeatureSelection » RandomForest_Selection.py. To measure the accuracy
of the model, a score is calculated using the function sel_Scores(). By default,
scores are computed as a binary classification. But, it can be modified for multiclass
classification, as shown below:

sel_Scores(concept,binary=False)

The following example shows how to modify the file RandomForest_Selec-
tion.py for implementing a random forest using two windows: 1-second window,
taken every 0.5 seconds; and 2-second window taken every second. This example
uses a non-binary classification dataset and two experiments: selected IMU features
(’IMU’) and selected right-pocket IMU features (’IMU-RightPocket’).

def main():

concept = [’IMU’,’IMU-RightPocket’]

sel_RF(concept, t_window=[’1&0.5’,’2&1’])

sel_Scores(concept, t_window=[’1&0.5’,’2&1’], binary=False)

if __name__ == "__main__":

main()

It is important to say that this file uses the pre-selection features computed with
preSelection(). Thus, after using this function, the output files of the pre-
selected features should be located in the following path:

ParentFolder\
\createFolder.py
\RandomForest_Selection.py
\IMU\

\1&0.5\
\PreSelectedFTS_1&0.5_IMU.csv

\2&1\
\PreSelectedFTS_2&1_IMU.csv

\IMU-RightPocket\
\1&0.5\
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\PreSelectedFTS_1&0.5_IMU-RightPocket.csv
\2&1\

\PreSelectedFTS_2&1_IMU-RightPocket.csv

At the end of execution of the file RandomForest_Selection.py, a set of output
files will be created, as shown below:

ParentFolder\
\IMU\

\1&0.5\
\PreSelectionReport_1&0.5_IMU.csv
\PreSelectionReport_1&0.5_IMU.png
\PreSel_RF_outputs\

\Output1.csv
\Output2.csv
...
\OutputN.csv

\2&1\
\PreSelectionReport_2&1_IMU.csv
\PreSelectionReport_2&1_IMU.png
\PreSel_RF_outputs\

\Output1.csv
\Output2.csv
...
\OutputN.csv

\IMU-RightPocket\
\1&0.5\

\PreSelectionReport_1&0.5_IMU-RightPocket.csv
\PreSelectionReport_1&0.5_IMU-RightPocket.png
\PreSel_RF_outputs\

\Output1.csv
\Output2.csv
...
\OutputN.csv

\2&1\
\PreSelectionReport_2&1_IMU-RightPocket.csv
\PreSelectionReport_2&1_IMU-RightPocket.png
\PreSel_RF_outputs\

\Output1.csv
\Output2.csv
...
\OutputN.csv

4.6 Training a Fall Detection System

A fall detection system consists of determining if a person falls or not during a period
of time. From the computational point of view, this is a binary classification problem
between fall or no-fall. In this regard, the training of a binary classifier model is
required. This is done using the file Training » BC_Training.py. In this repository,
the raw or feature dataset is split into 70% for training and 30% for testing.

The following example shows how to call the function for training the model
using only Random Forest (RF) in two different windows: 1-second and 2-second
window length configurations. Two experiments are set up using all features related
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to the IMU signals (’IMU’) and only the selected right pocket IMU features (’IMU-
RightPocket’).

def main():
concept = [’IMU’,’IMU-RightPocket’]
BC_Training(concept, t_window=[’1&0.5’,’2&1’], methods=[’RF’])
BC_Scores(concept, t_window=[’1&0.5’,’2&1’], methods=[’RF’])

if __name__ == "__main__":
main()

After the execution of the file BC_Training.py, this will create a set of files in
the following paths:

ParentFolder\
\IMU\

\AvgConfusionMatrix_RF_IMU.jpg
\Score_Mean_IMU.jpg
\Score_StandardDeviation_IMU.jpg
\Score_IMU_temp.csv
\1&0.5\

\AvgConfusionMatrix_1&0.5_RF_IMU.jpg
\Score_1&0.5_RF_IMU.csv
\RF\

\Result_1&0.5_RF_1.csv
\Result_1&0.5_RF_2.csv
...
\Result_1&0.5_RF_10.csv

\2&1\
\AvgConfusionMatrix_2&1_RF_IMU.jpg
\Score_2&1_RF_IMU.csv
\RF\

\Result_2&1_RF_1.csv
...
\Result_2&1_RF_10.csv

\IMU-RightPocket\
\AvgConfusionMatrix_RF_IMU-RightPocket.jpg
\Score_Mean_IMU-RightPocket.jpg
\Score_StandardDeviation_IMU-RightPocket.jpg
\Score_IMU-RightPocket_temp.csv
\1&0.5\

\AvgConfusionMatrix_1&0.5_RF_IMU-RightPocket.jpg
\Score_1&0.5_RF_IMU-RightPocket.csv
\RF\

\Result_1&0.5_RF_1.csv
...
\Result_1&0.5_RF_10.csv

\2&1\
\AvgConfusionMatrix_2&1_RF_IMU-RightPocket.jpg
\Score_2&1_RF_IMU-RightPocket.csv
\RF\

\Result_2&1_RF_1.csv
...
\Result_2&1_RF_10.csv

As shown, the resulting validation data set are stored (in CSV files), the scores
calculated (in CSV files), the confusion matrix (in JPG files) and the bar graphs of
all scores (in JPG files).



22 H. Ponce et al.

4.6.1 Data Augmentation in Binary Classes

In the case of fall detection system, classification models might fail because the
number of windows representing falls are more less than the number of windows
representing no-falls. In such that case, it is important to implement strategies to
balance the data for training classification models.

One implementation is data augmentation. In theGitHub repository, this is done by
doubling the number of falls (i.e. it repeats thewindows representing falls) and taking
away randomly two-thirds of the windows representing no-falls. This procedure
enhances the data for training and creates CSV files for this dataset.

Open the file BinaryFeatures » incrementFalls.py. It is possible to call the
function imcrementFalls for creating an augmented dataset of particular sen-
sors and/or window length configurations. The following example shows the code for
data augmentation in two different windows: 1-second and 2-second window length
configurations. Two experiments are set up using all features related to the IMU sig-
nals (’IMU’) and only the selected right pocket IMU features (’IMU-RightPocket’).

def main():

concept = [’IMU’,’IMU-RightPocket’]

incrementalFalls(concept, t_window=[’1&0.5’,’2&1’])

if __name__=="__main__":

main()

4.7 Training a Fall Classification System

A fall classification system consists of determining the type of fall a person suffers
(or the activity done) during a period of time. From the computational point of view,
this is a multi-class classification problem. In this regard, the training of a multi-class
classifier model is required. This is done using the file Training »MC_Training.py.
In this repository, the raw or feature dataset is split into 70% for training and 30%
for testing.

The following example shows how to call the function for training the model
using only Random Forest (RF) in two different windows: 1-second and 2-second
window length configurations. Two experiments are set up using all features related
to the IMU signals (’IMU’) and only the selected right pocket IMU features (’IMU-
RightPocket’).

def main():
concept = [’IMU’,’IMU-RightPocket’]
MC_Training(concept, t_window=[’1&0.5’,’2&1’], methods=[’RF’])
MC_Scores(concept, t_window=[’1&0.5’,’2&1’], methods=[’RF’])

if __name__ == "__main__":
main()
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The output files are the same as in the fall detection system, extended for multi-
classification.

4.8 K-Fold Cross-Validation

It is also possible to train and validate a classificationmodel. This can be implemented
through the k-fold cross-validation. This method splits the raw or feature dataset in
k subsets. On one iteration, k − 1 subsets are used for training while the remaining
set is used for testing. This process repeats k times, until all subsets are leaved once
for testing. The files on K-CrossValidation provide an easy way to implement this
process.

The following example shows how to call the functions for splitting in k = 20
subsets and then training the model using only Random Forest (RF) in two different
windows: 1-second and 2-second window length configurations. Two experiments
are set up using all features related to the IMU signals (’IMU’) and only the selected
right pocket IMU features (’IMU-RightPocket’).

First, modify the file K-CrossValidation » k-crossvalidation.py as follows:

def main():

concept = [’IMU’,’IMU-RightPocket’]

k_crossFiles(concept, t_window=[’1&0.5’,’2&1’], K=20)

if __name__=="__main__":

main()

After that, a set of output files will be stored in the local computer. Then, modify
and execute the file K-CrossValidation » Training_function.py:

def main():
concept = [’IMU’,’IMU-RightPocket’]
training(concept, t_window=[’1&0.5’,’2&1’], methods=[’RF’], K=20)

if __name__=="__main__":
main()

5 Example of a Fall Classification System

This example shows how to make the workflow for a fall classification system using
the UP-Fall Detection dataset and the GitHub repository presented in this chapter.
The example supposes the usage of the feature extraction already done in the dataset.
Then, a feature selection is done and a set of experiments are specified. After that,
several multi-class classification models are trained. Finally, the metrics and some
graphs are presented to understand the process.
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First, download the complete feature dataset (without the ZIP files of video record-
ings), over the three window length configurations, using the featureDownload
function specifying a ParentFolder path. A set of output files will be stored in this
path. Then, specify the types of sensors required in the experiments by using the
preSelection function. In this example, we show how to define the combination
of features from IMU sensors, the brainwave sensor and both cameras. After that, a
feature selection is performed using the sel_Scores and sel_RF functions that
will select the best features in the whole dataset based on the accuracy of a prede-
fined random forest model. Finally, the training procedure is done over four machine
learning models (i.e. RF, MLP, SVM, KNN) and the metrics are calculated.

The following code summarizes the whole process for fall classification using the
UP-Fall Detection dataset. In addition, Fig. 3 shows the mean and standard deviation
of the trainingmodels done10 times. Table2 summarizes the same scores. In addition,
a sample of the averaged confusion matrices for each classification model in the 1-
second window length configuration are shown in Figs. 4 and 5.

This simple example shows the whole workflow in the development of a fall
classification system. As notice, the set of instructions using the GitHub repository
is very concise, but it leads a powerful tool for feature extraction, feature selection,
training classificationmodels and evaluating the results. It is also possible to configure
different experiments and compare them easily. As shown in this example, the MLP
classification model is the best, in terms of the F1-score metric, when using 1-second
window length in the feature extraction. In terms of accuracy, RFmodel is preferable.

import DataBaseDownload.Downloader_pydrive as db

import FeatureSelection.FeaturePreSelection as fps

import FeatureSelection.RandomForest_Selection as fs

import Training.MC_Training as mc

# Download the feature dataset

path = ’FallClassificationSystem//’

db.featureDownload(path)

# Specify the combination of sensors

concept = [’IMU_Head_Vision’]

fps.preSelection(concept)

# Selection of the most representative features

fs.sel_RF(concept)

fs.sel_Scores(concept, binary=False)

# Train the multi-class classifier models

methods = [’RF’,’SVM’,’MLP’,’KNN’]
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Fig. 3 Mean (top) and standard deviation (bottom) scores in the experiment using features from
IMU and brainwave sensors, and cameras

Table 2 Scores of the testing models in the experiment. Values report the mean and standard
deviation

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

RF 95.09± 0.23 75.52± 2.31 66.23± 1.11 69.36± 1.35

SVM 91.16± 0.25 66.79± 2.79 53.82± 0.70 55.82± 0.77

MLP 94.32± 0.31 76.78± 1.59 67.29± 1.41 70.44± 1.25

KNN 92.06± 0.24 68.82± 1.61 58.49± 1.14 60.51± 0.85
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Fig. 4 Averaged confusion matrices of the classification models RF and SVM in the 1-second
window length configuration
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Fig. 5 Averaged confusion matrices of the classification models MLP and KNN in the 1-second
window length configuration
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mc.MC_Training(concept, methods)

# Calculate scores and generate graphs

mc.MC_Scores(concept, methods)

6 Discussion

This chapter proposed an open source implementation for fall classification and
detection systems using the public UP-Fall Detection dataset. This implementation
comprises a set of open codes stored in a GitHub repository for full access to anyone
interested on developing these monitoring systems. Moreover, the chapter provides
a tutorial for using the codes and a concise example for their application.

As described earlier, the proposed open source implementation is one of the most
complete source coding found on the web that is specialized on human fall classi-
fication and detection systems. Moreover, the dataset used here provides sufficient
intuition about different multimodal approaches (i.e. wearables, ambient sensors and
vision-based sources) and multiple machine learning models.

The material presented in this chapter follows the typical workflow in fall clas-
sification and detection systems, from data acquisition through feature extraction,
feature selection and training models, to model validation. In this regard, our open
source implementation covers all these steps to fully understand the entire process.

Some benefits of this open source implementation can be highlighted. First, the
implementation gives a global glimpse of the human activity recognition workflow
typically used in health monitoring, sports, rehabilitation and ambient assisted living
approaches when dealing with the discovery of human activities in the daily lives.
Then, it provides sufficient utilities at each step for customizing downloading of
dataset, crafting feature extraction, windowing or resampling, selecting features, de-
termining different experiments for benchmarking, training different classification
models, considering detection and classification performances, and evaluating with
standard metrics. These utilities are potentially powerful for designing and devel-
oping real-time and real-world fall detection and classification systems. This imple-
mentation also uses many machine learning functions from the scikit-learn library,
allowing the adoption of the framework easily. Also, the open source implementation
exposes the necessary documentation to start coding easily, and it is complemented
with the information presented in this chapter. However, it is important to remark
that this open code implementation works directly with the public UP-Fall Detection
dataset. However, other datasets cannot be implemented directly. If required, it is
necessary to adapt the codes for that purpose.

Lastly, this open source implementation has released to promote sharing and
reusing our UP-Fall Detection dataset; but also, to asses and improve this dataset.
We also consider that it will contribute to software developers community in the field
of human fall detection and classification systems.
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Detecting Human Activities Based
on a Multimodal Sensor Data Set Using
a Bidirectional Long Short-Term
Memory Model: A Case Study

Silvano Ramos de Assis Neto, Guto Leoni Santos, Elisson da Silva Rocha,
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Abstract Human falls are one of the leading causes of fatal unintentional injuries
worldwide. Falls result in a direct financial cost to health systems, and indirectly,
to society’s productivity. Unsurprisingly, human fall detection and prevention is a
major focus of health research. In this chapter, we present and evaluate several bidi-
rectional long short-term memory (Bi-LSTM) models using a data set provided by
the Challenge UP competition. The main goal of this study is to detect 12 human
daily activities (six daily human activities, five falls, and one post-fall activity) de-
rived frommulti-modal data sources - wearable sensors, ambient sensors, and vision
devices. Our proposed Bi-LSTM model leverages data from accelerometer and gy-
roscope sensors located at the ankle, right pocket, belt, and neck of the subject. We
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utilize a grid search technique to evaluate variations of the Bi-LSTMmodel and iden-
tify a configuration that presents the best results. The best Bi-LSTMmodel achieved
good results for precision and f1-score, 43.30 and 38.50%, respectively.

Keywords Bi-LSTM · Human falls · Multimodal sensors · Human activities

1 Introduction

Falls are a major global public health problem. Research by theWorld Health Organ-
isation (WHO) suggests that every year, approximately 37.3 million falls are severe
enough to require medical attention and that falls are the second leading cause of
fatal unintentional injuries (approx. 646,000 per annum), second only to road traf-
fic injuries [1]. While older people have the highest risk of death or serious injury
arising from a fall, children are also a high risk group for fall injury and death due
to their stage of development associated characteristics and ’risk-taking’ behaviors
[1, 2]. Falls result in a significant direct financial cost to health systems, both in terms
of in-patient and long term care costs, but also in indirect costs resulting from lost
societal productivity of the focal person and caregivers [2]. To illustrate this impact,
falls are estimated to be responsible for over 17 million lost disability-adjusted life
years in productivity per annum [1]. Furthermore, fear of falling not only contributes
to a higher risk of falling but can result in indirect negative health consequences in-
cluding reduction or avoidance of physical activity and psychological issues, which
can contribute to a lower quality of life [3].

Unsurprisingly, fall detection and prevention is a major focus of public health
initiatives and research. Preventative initiatives include clinical interventions, envi-
ronmental screening, fall risk assessment and modification, muscle strengthening
and balance retraining, assistive devices, and education programs [1, 2]. Fall detec-
tion systems include non-wearable (sometimes referred to as context-aware systems)
and wearable systems whose main objective is to alert when a fall event has occurred
[4]. Research on fall detection systems suggests that these systems both reduce the
fear of falling and actual falls as well as mitigating negative consequences of falls
due to faster fall detection and intervention in the instance of a fall [5].

Advances in low-cost sensing devices and their integration into both mobile and
so-called ‘smart’ environments have accelerated research into human activity recog-
nition (HAR). Researchers are increasingly able to draw on a combination of wear-
able devices and fixed location data sources to inform HAR research efforts by
providing different perspectives of a given event or human activity [6]. Making
sense of this heterogeneous multi-modal data is not without challenges, not least
those presented by the volume, variety, and velocity of such time-series data but
also the specific human activity being explored and the efficacy of a given HAR
technique [7–10].

In this chapter, we present a deep learning model to detect falls using multi-modal
sensor data. We propose a bidirectional long short-term memory (Bi-LSTM) model
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that leverages data accelerometer and gyroscope sensors located at the ankle, right
pocket, belt, and neck of the subject. We propose two model configurations, one
identified empirically and a second identified using a grid search technique.

The rest of this chapter is organized as follows. In Sect. 2, we describe the basic
concepts of LSTM and Bi-LSTM. We then present the methodology applied in this
study in Sect. 3, both describing the data set and the evaluation metrics. Section4 de-
scribes our Bi-LSTMmodel and Sect. 5 presents the results achieved by our models.
Section6 briefly presents related work. We conclude with a summary of our work
and directions for further research in Sect. 7.

2 Long Short-Term Memory (LSTM)

Deep learning networks, such as Multilayer Perceptron (MLP), Convolutional Neu-
ral Networks (CNN), and Radial Basis Function Networks amongst others, assume
that all inputs are independent of each other. As such, they are not appropriate for
time-series data related to human activities. Recurrent Neural Networks (RNNs) are
able to overcome this limitation by using a recurrent connection in every neuron
[11]. The activation of a neuron is fed back to the neuron itself in order to provide
a memory of past activations and to learn the temporal dynamics of time-series data
[11]. However, RNNs have limitations when it comes to discovering patterns over
long temporal intervals [12] as they are subject to both exploding and vanishing
gradient problems [13, 14]. While the former is relatively easy to address using gra-
dient clipping [12, 15], vanishing gradient problems aremore challenging [16]. Long
short-term memory (LSTM) is a variant of traditional RNN which overcomes both
problems [16]. LSTM networks make use of recurrent neurons with memory blocks,
working with the concept of gates [11, 17]. While they overcome vanishing and
exploding gradient problems, each unit of an LSTM requires intensive calculations
resulting in long training times [14]. Figure1 presents a basic schema of an LSTM
block.

An LSTM network updates its block state according to gate activation. Thus, the
input data provided to the LSTM network is fed into the gates that define which
operation should be performed: write (input gate), read (output gate), or reset (forget
gate). The mechanisms of these gates are based on component-wise multiplication
of the input. The vectorial representation of each gate is as follows [11]:

it = σi(Wxixt + Whiht−1 + Wcict−1 + bi) (1)

ft = σf (Wxf xt + Whf ht−1 + Wcf ct−1 + bf ) (2)

ct = ftct−1 + itσc(Wxcxt + Whcht−1 + bc) (3)

ot = σo(Wxoxt + Whoht−1 + Wcoct + bo) (4)
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Fig. 1 Example of an LSTM block (adapted from [18])

ht = otσh(ct) (5)

where i, f , o, and c represent the outputs of input gate, forget gate, output gate, and
cell activation vectors, respectively; all of them have the same vector size ht therefore
defining the hidden value (i.e., the memory state of the block). σi, σf , and σo are,
respectively, the non-linear functions of input, forget, and output gates.Wxi,Whi,Wci,
Wxf , Whf , Wcf , Wxc, Whc, Wxo, Who, and Wco are weight matrices of the respective
gates, where x and h are the input and the hidden value of LSTM block respectively.
bi, bf , bc, and bo are the bias vectors of input gate, forget gate, cell, and output gate,
respectively [11].

The main difference between an RNN and a feed-forward model is the ability of
the RNN to consider past information at each specific time step [19]. However, in
some use cases, a wider context must be taken into account. In speech recognition,
for example, the correct classification and interpretation of a given sound depends
on the proceeding phoneme [20]. Correct classification of other data types, such as
text and time-series, also depends on both preceding and subsequent data.
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Bidirectional RNNs (Bi-RNNs) are able to process both past and future infor-
mation at each time step [21]. In order to do so, each hidden layer of a Bi-RNN
is composed of two hidden layers i.e. one for processing the past time steps and
another for processing future time steps. The outputs are then combined to compose
a new output that is forwarded to the next hidden layers [19]. Therefore, the output
of each time step includes more complete clues related to the wider context of each
specific input data. For the study described in this chapter, we use Bi-LSTM, a type
of Bi-RNN.

3 Methodology

3.1 The Data Set

The data set used for this study, UP-Fall Detection, was made available as part of
the Challenge UP: Multi-modal Fall Detection competition [22, 23]. The data set
includes five falls and six daily activities performed by 12 subjects (see Table1).
Subjects performed five different types of human falls (falling forward using hands,
falling forward using knees, falling backwards, falling from a sitting position on
an empty chair and falling sideward), six simple human daily activities (walking,
standing, picking up an object, sitting, jumping, and lying down), and an additional
activity labeled as “on knees” where a subject remained on their knees after falling.

Table 1 Description of
activities [22].

Activity ID Description

1 Falling forward using hands

2 Falling forward using knees

3 Falling backwards

4 Falling sideward

5 Falling from sitting in a chair

6 Walking

7 Standing

8 Sitting

9 Picking up an object

10 Jumping

11 Lying down

20 On knees
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Fig. 2 Distribution of the sensors used to collect data: aWearable sensors and EEG headset located
on the human body, and b Layout of the context-aware sensors and camera views [22].

3.2 Data Collection

The datawas collected using amulti-modal approach fromwearable sensors, ambient
sensors, and vision devices distributed as per Fig. 2. The experiments were conducted
in a controlled laboratory environment in which light intensity did not vary; the
ambient sensors and cameras remained in the same position during the data collection
process.

For our study, we used data from five Mbientlab MetaSensor wearable sensors
collecting raw data from a 3-axis accelerometer, a 3-axis gyroscope, and the ambient
light value. These wearable sensors were located on the left wrist, under the neck,
at the right trouser pocket, at the middle of the waist (on/in the belt), and at the
left ankle. Also, data from one electroencephalograph (EEG) NeuroSky MindWave
headset was used to measure the raw brainwave signal from a unique EEG channel
sensor located at the forehead.

For context-aware sensors, six infrared sensors above the floor of the room mea-
sured the changes through interruption of the optical devices.

Lastly, twoMicrosoft LifeCamCinema cameras were located above the floor, one
for a lateral view and the other for a frontal view.

3.3 Evaluation Metrics

For the Challenge UP competition [22], the f1-score measure was used to evaluate
proposed models, considering both precision and sensitivity (recall). The f1-score is
calculated as shown in Eq.6:

F1 = 2 × Precisionμ × Sensitivityμ

Precisionμ + Sensitivityμ

(6)
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where Precisionμ is the average number of the number of true positives (TP) across
all activities and falls divided by the sum of true positives (TP) and false positives
(FP) (Eq.7); and Sensitivityμ is the average number of TP across all activities and
falls divided by the sum of TP and false negatives (FN) (Eq.8).

Precision = TP

TP + FP
(7)

Sensitivity = Recall = TP

TP + FN
(8)

In addition to the requirements of the Challenge UP competition outlined above,
we also consider specificity and accuracy. While sensitivity is used to determine the
proportion of actual positive cases predicted correctly and thus avoid false negatives,
specificity is used to determine the proportion of actual negative cases predicted
correctly i.e. the avoidance of false positives. Together, sensitivity and specificity
provide a more informed decision on the efficacy of a given model. Specificity is
calculated as the average number of true negatives (TN) divided by the sum of TN
and FP (Eq.9).

Specificity = TN

TN + FP
(9)

Accuracy is a metric widely used to compare machine and deep learning models
because it evaluate generally how many samples of test data were labeled correctly.
Accuracy can be calculated as the average number of TP and TN across all activities
and falls divided by the total number of cases examined (Eq. 10).

Accuracy = TP + TN

TP + TN + FP + FN
(10)

4 A Bi-LSTMModel for Human Activities Detection

We propose a Bi-LSTM model to identify human activities. The proposed empirical
model (Fig. 3) is composed of three bidirectional layers containing 200 LSTM cells
each (above this, the model started to obtain worse results), interspersed by dropout
layers with a 25% probability rate in order to reduce the overfitting of the model.
Hyperbolic tangent and sigmoid were set as functions of activation and recurrent
activation of these cells, respectively. The output layer is a fully connected layer
with 12 units (the data set contains 12 different activities to be classified; see Table1)
with softmax activation function. Figure4 presents the code that implements our Bi-
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Fig. 3 Bidirectional LSTM network

Fig. 4 Code that implements our Bi-LSTM model labelfig
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LSTM model.1 The model implementation was done using the Keras framework2

with TensorFlow3 as the backend.
As we are dealing with multi-label classification, we used categorical cross-

entropy as a loss function [24]. Equation11 illustrates the categorical cross-entropy
function, where y is the array of real values, ŷ is the array of predictions, N is the size
of predictions, andM is the number of classes. The Adam algorithm as an optimizer
[25].

L(y, ŷ) = −
M∑

j=0

N∑

i=0

(yij ∗ log(ŷij)) (11)

The learning rate is equal to 0.001, β1 and β2 equal to 0.9 and 0.999, respectively.
These parameterswere defined empirically. For the training of thismodel, a pattern of
at least 12 epochs was identified as the maximum reach of the network performance.
Above 12 epochs, the performance tended to stabilize.

4.1 Data Pre-processing

In order to fit the data set to our model, we performed data pre-processing. Firstly,
we sampled the data set on a per second basis (totaling 9,187 samples). The number
of data points per second was not constant in our data set as each sensor may have
collected data at different points in time. Thus, we used data padding in order to
generate samples with a similar size. Thence, we considered the length of the greater
sample (the second with more data points i.e. 22 points) and applied the padding; this
was repeated until the sample comprised 22 points. In the end, the data set comprised
9187 complete samples.

Finally, we divided the data set in to two parts, allocating 80% (7,349 samples)
for training and 20% (1,838 samples) for testing, an approach widely used in the
literature [26, 27].

5 Results

5.1 Selecting the Best Bi-LSTM Model

We utilized a grid search technique to evaluate different Bi-LSTM architectures and
then selected the best performing architecture for further evaluation.

1The entire code is available for download at https://github.com/GutoL/ChallengeUP.
2http://keras.io/.
3https://www.tensorflow.org/.

https://github.com/GutoL/ChallengeUP
http://keras.io/
https://www.tensorflow.org/
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Table 2 Parameters and levels

Parameters Levels

Number of layers From 1 to 3, step 1

Number of nodes From 100 to 250, step 25

Grid search identifies tuples from the combination of suggested values for two
or more parameters, trains the model for each possible combination and compares
the results of a predefined metric. Despite some limitations (see [28] for a more
detailed discussion), grid search still represents the state of the art for hyper-parameter
optimization andhas been adopted in severalmachine learning studies (e.g., [29–32]).

As shown in Table2, we defined different levels for different parameters of the
model. The grid search was run 10 times and the average of all metrics was calculated
in order to take into account the variation of results due to the stochastic nature of
the optimization process [25].

Figures5, 6, 7, 8, and 9 show the results for accuracy, precision, recall, specificity,
and f1-score for all model configurations used in grid search, respectively.

Fig. 5 Accuracy results for all model configurations used in the grid search approach

Fig. 6 Precision results for all model configurations used in the grid search approach



Detecting Human Activities Based on a Multimodal … 41

Fig. 7 Sensitivity results for all model configurations used in the grid search approach

Fig. 8 Specificity results for all model configurations used in the grid search approach

Fig. 9 F1-score results for all model configurations used in the grid search approach

Regarding accuracy (Fig. 5), the best model configuration uses 1 layer and 250
units, reaching, on average, 70%; while the model configuration with 3 layers and
200 units obtained the worst result, 65.9%, on average.

For precision (Fig. 6), the model configuration that gives, on average, the best
result was 1 layer and 200 units (45.5%); while the worst average precision result
(38.3%) was obtained by the model configuration with 2 layers and 100 units.

The sensitivity results (Fig. 7) suggest the configuration with 3 layers and 225
units presented the best recall result, achieving, on average, 39.4%; and the simplest
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model configuration, with 1 layer and 100 units presented the worst result, 36.3%,
on average.

The specificity results, as shown in Fig. 8, suggest the model configuration that
obtained the best result was composed of 1 layer and 250 units, achieving 96.10%
specificity, on average. On the other hand, for this metric, different model configura-
tions obtained the same worst level of specificity, on average, 95.40%. Such models
were: 3 layers and 100, 150, 175, 200, and 250 units; and 2 layers and 100 units
obtained.

Finally, considering the f1-score, as illustrated in Fig. 9, the model configuration
that presented the best result was 1 layer and 200 units, with 40.60%, on average.
The model with 1 layer and 225 units also achieved a good f1-score, 40.30%, and
the model with 3 layers and 200 units found 40.20%. On the other hand, the model
configuration that obtained the worst f1-score level was the simplest configuration,
with 1 layer and 100 units, achieving 37.70%, on average; followed by the models
with 2 layers and 100 and 125 units, both with 37.80%.

From the grid search results, one can note that there is no common behavior when
analyzing the best performance per metric, meaning that for each metric, a different
model can achieve the best result. The only exception was the model with 1 layer
and 250 units, that found the best results for accuracy and specificity metrics.

The best model configuration in terms of accuracy (Fig. 5) uses 1 layer and 250
units, reaching, on average, 70%; while the model configuration with 3 layers and
200 units obtained the worst result with an average accuracy score of 65.9%. For
precision (Fig. 6), the model configuration that gives the best performing model
uses 1 layer and 200 units (average score 45.5%) while the worst model (average
score 38.3%) uses 2 layers and 100 units. For sensitivity (Fig. 7), there seems to be
a positive relationship between complexity and average sensitivity score with the
simplest model configuration (1 layer and 100 units) showing the worst performance
(average score 36.3%) with the second most complex model (3 layers and 225 units)
providing the best results (average score 39.4%). In the case of specificity (Fig. 8),
the model configuration that provides the best result uses 1 layer and 250 units
(average score 96.10%) while a number of different configurations demonstrated
poor performance (average score 95.40%). Finally, for the f1-score (Fig. 9), themodel
configuration using 1 layer and 200 units, the model using 1 layer and 225 units, and
the model using 3 layers and 200 units, achieved similar results (average score 40.60,
40.30, and 40.20% respectively). On the other hand, the simplestmodel configuration
(1 layer and 100 units) achieving the worst results (average score of 37.70%).

Interestingly, the results of the grid search suggest that there is no single model
specification with consistently superior performance across different metrics. The
model configurations achieving the best results according to one metric did not
provide comparable results for any other metric. The only exception is the model
with 1 layer and 250 units, that provides the best results for accuracy and specificity.

Another interesting observation relates to the number of layers in the model. In
deep learning models, the concept of “depth” is related to the presence of several
interconnected hidden layers with tens or hundreds of neurons. However, based on
the results of our experiment, adding additional hidden layers does not always result
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in better model performance. For instance, the best result in terms of precision was
obtained with 1 layer and 200 units (Fig. 6). Increasing the number of layers to 3,
resulted in a 2.2% decrease in precision. A similar relationship appears across all
other metrics with the only exception being sensitivity, where models with 3 layers
tended to provide better results.

It is also worth highlighting that specificity is the metric with the highest average
values, while sensitivity has the lowest. This suggests that our models are more able
to predict true positives than true negatives.

Due to time constraints, we did not perform the grid search when initially de-
signing the model submitted to the Challenge UP competition. Consequently, we
present the results from two model configurations below, one identified empirically
(Challenge UP results) and a second identified using grid search.

5.2 Challenge up Results

Figure10 presents the confusion matrix regarding the test results using the Bi-LSTM
model presented in Challenge UP. The model did not obtain good results in predict-
ing falls (activities from 1 to 5). For example, all samples of activities 1 (falling
forward using hands) and 3 (falling backwards) were misclassified by the model.
This occurred because the data set has few samples of falls, and deep learning mod-
els perform better with data sets that contain larger sample sizes.

The Bi-LSTM model achieved the best results with classes that have more sam-
ples. Class 11 (lying down) achieved 638 correct predictions, followed by Class 7

Fig. 10 Confusion matrix of the challenge UP model
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Table 3 Evaluation results (in%) for all activities using theBi-LSTMmodel presented inChallenge
UP competition

Activity Precision Sensitivity Specificity F1-score

1 0 0 98.6639 0

2 3.9216 11.7647 97.5089 5.8824

3 0 0 96.5795 0

4 18.7500 18.7500 99.3264 18.7500

5 5.2632 12.5000 97.2603 7.4074

6 91.7098 64.4809 97.9975 75.7219

7 70.5387 62.8186 89.5585 66.4552

8 58.6777 62.5000 86.2259 60.5286

9 0 0 99.6885 0

10 88.4848 52.3297 98.9403 65.7658

11 60.1887 72.5825 75.2347 65.8071

20 0 0 98.9691 0

(standing) with 419 hits. These classes obtained better results due to the simplicity
of the activities captured by the sensors - the person remains still i.e. without making
any movement. However, for those same classes (11 and 7), the model also misclas-
sified a lot. For Class 11, the model misclassified 171 samples as Class 8 (sitting);
and for Class 7, the model misclassified 223 samples as Class 11 (lying down).

Table3 shows the evaluation results (in percentages) for precision, sensitivity,
specificity, and f1-score for each activity presented in Table1. Note that accuracy is
not measured in this case because it is a global metric.

The model obtained good specificity results for all classes, achieving the best
results for Class 9 (99.69%). Similarly, the model has a f1-score of 0% for Classes 1,
3, 9 and 20. However, for the other metrics, poor results were achieved. For example,
for Classes 1, 3, 9, and 20, the value of the precision, sensitivity, and f1-score was
0%. In contrast, Classes 6, 7, 8, 10, and 11 achieved the best results for f1-score -
75.72%, 66.46%, 60.53%, 65.77%, and 65.81%, respectively. This is explained by
the greater volume of samples for these classes in the data set.

One can see from Table3 that the most critical metric for the Bi-LSTM model is
sensitivity, which corresponds to the true positive rate. As the model misclassified
several samples (Fig. 10), the overall sensitivity results are considered poor. Class 11
returned the highest sensitivity rate because it was the most correctly classified class
in the data set. Table4 presents the overall results for accuracy, precision, sensitivity,
and f1-score for the model presented in Challenge UP. One can see that the model
achieved 62.89% for accuracy, while other metrics achieved c. 32%. Since the data
set usedwas unbalanced, themodel classified the classeswithmore samples correctly
(see Table3).
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Table 4 Overall metrics of the Bi-LSTM model presented in Challenge UP competition

Metrics Results (% )

Overall accuracy 62.89

Mean global precision 33.13

Mean global sensitivity 32.52

Global f1-score 32.82

Fig. 11 Confusion matrix of the best model configuration found by the grid search

5.3 Bi-LSTM Model Results (Grid Search)

Figure11 presents the confusion matrix for the best model configuration found by
the grid search based on f1-score i.e. 1 layer and 200 units. The model did not obtain
good results in predicting falls (activities from 1 to 5). In fact, activities 1 to 5 were
largely misclassified. This is most likely related to the limited number of falls in
the data set; deep learning models perform better with large samples. The Bi-LSTM
model achieved the best results with classes that had more samples. For example,
for Class 11 (lying down) and Class 7 (standing), the model generated 693 and 450
correct predictions respectively.

Table5 presents the evaluation results (in %) for precision, sensitivity, specificity,
and f1-score for each activity. Note that accuracy is not measured in this case because
it is a global metric.

In, general, themodel achieved very good specificity results for all classes (achiev-
ing 100% when considering Class 4). However, the model performed poorly for
Classes 1, 2, 3, and 20 presenting a score of 0% for precision, sensitivity, and f1-
score.
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Table 5 Evaluation results (in %) for all activities using the best Bi-LSTM model found by the
grid search

Activity Precision Sensitivity Specificity F1-score

1 0 0 99.9536 0

2 0 0 99.9072 0

3 0 0 99.8146 0

4 100 6.2500 100 11.7647

5 16.6667 3.8462 99.7682 6.2500

6 89.6341 80.3279 97.1072 84.7262

7 65.7895 67.1642 87.9195 66.4697

8 76.5766 59.8592 94.5749 67.1937

9 33.3333 4.3478 99.9071 7.6923

10 74.5875 81.0036 96.1577 77.6632

11 63 78.5714 78.2003 69.9294

20 0 0 98.8068 0

Table 6 Overall metrics for
the best Bi-LSTM model
configuration found by the
grid search

Metrics Results (%)

Overall accuracy 70.22

Mean overall precision 43.30

Mean overall sensitivity 34.67

Overall f1-score 38.50

These results illustrate some weaknesses of the proposed Bi-LSTM model con-
figurations when working with an unbalanced data set. The classes that presented
metrics equal to 0% were classes comprising relatively small samples.

Finally, Table6 presents the overall results for accuracy, precision, sensitivity, and
f1-score of the proposed model configuration. Similar to the results of the Challenge
UP model, the model obtained the best result for accuracy (70.22%) when compared
to the other metrics, reflecting the previously discussed uneven samples in the data
set. The overall precision score was 43.30%; the sensitivity score was 34.67%, and
the f1-score was 38.50%. One can note an improvement in all metrics from the initial
model presented in Challenge UP to the revised model obtained using the grid search
method.

6 Related Work

HAR can play an important role in people’s daily lives due to its ability to learn
important high-level knowledge about human activity from raw sensor inputs [33].
The increasing popularity of HAR is correlated with the diversity and popularity of
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wearable and on-body sensing devices such as accelerometers, gyroscopes, sound
sensors, and image capture devices amongst others. HAR has drawn extensive atten-
tion in health and computer science research and is playing an increasingly important
role in various research areas including home behaviour analysis [34], health moni-
toring [35], and gesture recognition [36].

There is awell established literature onHARusingmachine learning.Historically,
many studies focused on data with a single modality such as single sensor-based data
[33, 37–39]. Single modality data is inherently limited for HAR studies in real-world
settings due to high intra-class and low inter-class variations in the actions performed
for a particular application [10]. Therefore, to exploit the benefits ofmachine learning
techniques for a learning-based HAR, it is extremely important to have multi-modal
data sets [33]. Multi-modal machine learning aims to build models that can process
and relate information from multiple modalities [40].

More recently, there has been an increasing focus on the study of learning-based
HAR using multi-modal data, and in particular, multi-modal time-series data. Exist-
ing methods can be divided into two categories: shallow learning-based HAR and
deep learning-based HAR. The former relies on extracting a set of features from
time-series sensor signals and mapping these handcrafted features to various human
activities. Subsequently, a shallow supervised machine learning algorithm is ap-
plied to recognize activities. The most popular learning algorithms include decision
trees [41, 42], K Nearest Neighbour (KNN) [43, 44], and Support Vector Machines
(SVM) [45, 46]. For example, [46] extracts 561 features from an accelerometer and
gyroscope, and applies a multi-class SVM to classify six different activities. The
common characteristic of these methods is that they perform feature extraction man-
ually which is task-dependent and requires human intervention, thereby impacting
effectiveness. As a result, many researchers have turned their attention to deep learn-
ing approaches for automatic feature extraction. At the same time, implicit features
can be learned by models that may not be possible using manual or handcrafted
methods [47].

Many different deep learning models have been used to recognize human activi-
ties in a wide range of contexts including CNN, RNN, and particularly in the context
of this chapter, LSTM networks. A very recent paper [48] proposed a baseball player
behavior classification system using LSTM that accurately recognizes many base-
ball player behaviors. The classifier is trained on multi-modal data collected from
multiple heterogeneous IoT sensors and cameras. [49] also used an LSTM network
to detect daily human activities including eating and driving activity. The authors
adopted a two-level ensemblemodel to combine class-probabilities ofmultiple sensor
modalities, and demonstrated that a classifier-level sensor fusion technique for multi-
modality can improve the classification performance compared to single modality
data.

Authors in [50] used LSTM in a biometrics application to identify individual
humans based on their motion patterns captured from smartphone features i.e. ac-
celerometer, gyroscope and magnetometer data. The use of LSTM demonstrated that
human movements convey necessary information about the person’s identity and it
is possible to achieve relatively good authentication results. The authors also demon-
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strated that the same LSTM algorithm can also be applied to other time-series data
e.g. for gesture detection in a human conversation. In [51], inertial signals from a set
of wearable sensors were used and fed as images into a CNN network to recognize
human activities. Using both CNN and LSTM as a hybrid model, authors in [11]
classified human activities. They used CNN to automatically extract spatial features
from raw sensor signals, and LSTM to capture the temporal dynamics of the human
movement.

Several surveys on recent advances on deep learning methods for multi-modal
HARhave been completed and areworth reviewing for those interested in the domain
[7–10].

While significant progress has been made, HAR remains a challenging task. This
is partly due to the broad range of human activities as well as the rich variation
in how a given activity can be performed. Deep learning shows great potential for
a high-level abstraction of data. Therefore, more deep learning models need to be
developed as self-configurable frameworks for HAR [47]. In this chapter, we propose
a Bi-LSTM deep learning model to detect twelve types of human daily activities,
and in particular, human falls. We use a multi-modal sensors data set generated from
three different sources(i.e. wearable sensors, ambient sensors, and vision devices).

7 Conclusions

In this chapter, we propose aBi-LSTMmodel to detect five different types of falls, six
common daily human activities, and one post-fall activity. The data set was provided
by the Challenge UP competition and was collected using a multi-modal approach
generated from wearable sensors, ambient sensors, and vision devices.

Our Bi-LSTM model makes use of two wearable sensors (accelerometer and
gyroscope) located at the ankle, right pocket, belt, and neck of the subject. In the
training phase, the model was able to make good predictions of a selection of specific
human activities (walking, standing, sitting, jumping and lying down). Our model is
able to identify when a subject is lying down (when a fall has occurred) but it does
not detect the type of fall (forward using hands, forward using knees, backwards,
sideward, or falling after sitting on a chair). This result can be explained by the
uneven samples of data by activity in the data set.

Future studies may explore other deep learning models, such as bidirectional
gated recurrent units (Bi-GRU), a simplified version of LSTM layers, or CNNs, and
compare the sensitivity, specificity, precision, and accuracy of a range of different
models. Given the limitations of the data set used in this study and the impact on
results, larger data sets with sufficiently large samples of each activity are required
for wider use. Future research may involve creating actual or synthetic data sets to
address these needs and leverage these and other multi-modal datasets (e.g. cameras
and environmental sensors) for further study.
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Intelligent Real-Time Multimodal Fall
Detection in Fog Infrastructure Using
Ensemble Learning

V. Divya and R. Leena Sri

Abstract As the data and computing power increases with surge in sensors and
IoT devices to making things smart, the research trend is moving in the direction to
help the elderly as a part of the smart home infrastructure. The elderly people of age
over 60years are at a high risk level due to adverse effects when fall occurs. There
has been various researches in the field of automatic fall detection with the help of
sensors, video surveillance, wearable devices etc. The detection and analysis has to
be in near real-time to handle the fall efficiently. Decision making with the help of
data from multiple sources tends to be more effective than decision from a single
source. Hence, the use of multimodal fall detection has been in research which takes
advantage of the data from multiple sources for optimal detection. Our proposed
methodology helps in fall detection and relevant decision making in near real-time
by reducing the processing latency. The low latency decisionmaking is realized using
the intermediate mist and fog layer for data filtering and immediate processing. The
video data is analyzed at the edge and the fall is detected using edge processing. The
use of the multimodal processing and detection increases the accuracy of prediction.
Thus alongwith the video data, the data from thewearable sensors are also considered
for detection. The detection is done using ensemble learning and compressed Deep
neural networks for detection and image processing respectively. The blend of the
fog infrastructure and the proposed algorithm helps improve the accuracy and reduce
detection and decision making time.
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1 Introduction

Activity recognition has become the field of interest and research for many budding
researchers in the field of virtual reality/ augmented reality and even in artificial
intelligence. This field of research has led to the creation of pervasive intelligent
environment which assists in creation of assistance and monitoring system in smart
homes and other relevant environments [1]. This has led to the ease in the daily
monitoring of human activities and assisting them in leading a healthy life. The
activity monitoring system also helps in assessment of the daily activities such as
walking, number of steps and calories spent, and also in monitoring the daily calorie
intake and providing suggestions to healthy food intake. These monitoring systems
helps in maintenance of the physical fitness of the individual and also in providing
suggestions for further improvement. These researches in activitymonitoring can also
be used in case of adverse activities such as falling. Fall detection is an important
aspect for elderly people health monitoring. Being the most abnormal and dangerous
health hazard, detection and timely intervention of fall is an important part of health
monitoring system [2, 3]. Fall may not always be intentional it may also be due to loss
of balance during day-to-day activities [4]. The increase in the computational and the
storage facilities have contributed a lot in this field of research. The improved vision
and machine learning algorithms have been the greatest support in the development
of the monitoring systems [5, 6]. In case of elderly people, they are unable to express
their pain or agony due to their feeble disabilities. In most cases, the early detection
of the fall could have helped or even avoid major health problems. Many times there
are also cases where people are not treated for their fall due to insufficient and timely
intervention. When left untreated or denied timely care, recurrent falls may occur
hence leading to major threats. There has been reports from WHO [7] stating that
the incidents of falls are very common and keeps increasing with increase in age.
This also increases the fear of falling again and hence reducing the social interaction
causing social isolation and in turn depression. Thus starting from a very small fall
and the age factors included, it leads to major health problems.

This problem of timely fall detection has persisted for over years and the latest
research and the development of the communication and the computational power
has amplified the reach to the researchers and the provision for intervention. This
has brought the physicians and the researchers closer and thereby making detection
precise and reachable to the community. The major challenge lies in the collection
of data which can be used in automated detection in smart environments. The data
has to be extensive and precise so that it gives a highly accurate prediction [8]. The
degree of fall, angle, body parameters and the time taken for recovery from fall all
matters in proper decision making. These parameters may vary from one another and
the normal factors may not be normal for others. It is not always possible to get the
real-time data which is highly crucial for the automated detection. The data collected
from laboratories in a controlled environment may be useful to a certain extent in
creating a basic model for fall detection which includes the various sensor values
from wearable sensors measuring the various parameters of the human experiencing
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a fall. These values tend to cause over-fitting and vary in various parameters when
generalized to actual fall. Research from various medical agencies shows that when
people are monitored for real-time fall data, the researchers often end up collecting
a very large data of normal activities and a very small percentage of data indicating
the actual parameters of a fall.

The long-term data collection has helped the researchers to collect data in the
aspects of fall, but the skewed data pattern involving both the normal activities
and the fall data stands a barrier in developing a general classifier for actual falls.
The variety of data is in such a way that there may be a lot of unlabeled data and
misleading data whichmakes themodel building a challenging job. Themajor reason
for this difficult model building may be due to the reliability on a single source of
data collection from the available sensors [9]. The subjects put to test for the data
collection do not always wear the sensors and sometimes it may happen in a way
that during a fall the sensors may not be worn and the data collection is missed. Each
data collected is unique in its own way and eases the model building. Various survey
techniques on fall detection involves the analysis of data from various sensors and
state of the art feature selection methodologies. Since the event of fall is a rare event,
standard supervised learning methodologies may not prove to be efficient and the
data from one person or situation may not suite for the other.

This chapter involves the survey on the various fall techniques available and our
proposed methodology involving the introduction of intelligence to the detection
framework. This intelligent framework learns from the data and does not rely on
a source for generalization of the event. The detection and the reaction to the fall
depends on the learning environment and the system progresses as the learning
progresses. The decision is based on the analysis from various sensor values and also
the most powerful vision sensor or the surveillance camera data. The numerical data
combined with the image data creates a more intelligent database which improves
the accuracy of detection.

2 Computing Paradigm Evolutions

Through the years the computing power and the platforms has evolved from paral-
lel computing, distributed platforms, grid computing and finally cloud computing.
The era of cloud has given the researchers the advantages of scalability, resource
allocation on the go as the demand increases, flexibility, pay-as-you-go was intro-
duced which caught the eye of the customers has led to the boom of the technology
[10]. The service provisioning was realized using the initial three major models of
Infrastructure as a service, Platform as a service and software as a service. The cloud
services were provisioned at an affordable cost and only based on the consumption
rate. These services were widely used by industries where the infrastructure and the
platform cost can be put forth to the cloud provider and the industry takes care of the
application development and the business intelligence of the customers. Though the
cloud platform is still the widely used platform and many pioneers provide the finest
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service which has led to the era of “Service of Everything”, the technology has some
limitations to be handled for better performance of the real-time applications [11].

As the products and research progresses towards Internet of Things (IoT) and
more towards Internet of Everything (IoE), every connected devices gathers large
amount of data each moment of time. Most of the time, the data collected is so
enormous that the data is just stored remotely and is not analyzed for intelligence.
With the use of cloud platform, these collected data has to be sent to a remote location
for further processing and again the results are communicated back at the ground.
This communication consumes larger bandwidth which can be utilized for effective
computations. The world of automation requires latency free computations and near
real-time decision making which is a drawback of the cloud platform. For example,
the real-time applications such as the firefighting, health monitoring and immediate
intervention are all latency sensitive applications which cannot afford the limitations
of poor connectivity or processing and communication latency. This led to the raise of
a new computing platform - Fog computing initially introduced by CISCO [12, 13].
The term of Fog is to bring the computation closer to the ground or closer to the end
devices such that the bandwidth consumption and the communication latency reduces
when compared to the cloud latency. The other major concern is the communication
of the large data from the sensors or the end devices to the upper layer and handling
a huge data. This is also handles by the edge nodes by basic filtering of the data and
pushing only the needed and the important data for analytics.

The decisive property of the sensor data is that the data are time bound and when
the time precedes, the data is of no use. For example the data from the temperature
or the humidity sensors expire in later time and has to be analyzed and the actuation
has to be sent within a time bound [14]. Thus the fog layer also handles this time
sensitive data and provides temporary local storage which is discarded on analysis.
Only the results of the analytics are moved on to the upper cloud layer for further
intelligence on the application. Thus the fog layer acts an assist to the cloud layer in
enhancing the performance of the application in terms of low latency low bandwidth
consumption.

The roof computing is a very new paradigm under research. ROOF is used as
a metaphor and an acronym (Real-Time Onsite Operations Facilitation) which lies
between the cloud and the fog layer. Which is utmost one hop away from the end
devices. This is sometimes called as Mist computing as well. In lieu with fog com-
puting there has been researches in mist/roof computing that are in the budding stage
of research. These terms vary in terms of the distance of computation from the end
devices. The comparison of the computing paradigms is given in Table1. These plat-
forms help in the automatic detection of fall with least latency since the application
is latency sensitive and has to be handled in near real-time. In order to realize the
efficient fog architecture, the separation of the networking and computing is neces-
sary to improve the performance of the platform. The use of the intelligent switch
(SDN) is use to take care of the networking component of the fog infrastructure so
that only the computing can be taken care by the application provider.
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Table 1 Computing paradigm comparison

Cloud Fog Edge Mist

Architecture Remote
processing of the
data to handle
very large data
over the internet
and provide
scalability on
demand

Coined by
CISCO extending
computations to
the edge of the
network. Usually
decentralized and
the intelligence
lies at the edge
routers or
gateways and
integrated with
the cloud

The edge
processing is
independent of
the fog or the
edge
infrastructure.
The inference is
done on the edge
device which
reduces data
transfer

A lightweight
computing
framework
between the edge
and the fog layer
built using
micro-controllers
and microchips

Utilization Ease of use and
pay for what you
use. No
Infrastructure
cost needed, all
requirements are
availed as service

Real time
analytics with
minimal latency.
Privacy of data is
ensured as the
data is not sent to
cloud unless
needed

Extensive data
filtering and helps
save bandwidth.
Low or no latency
in decision
making

Local decision
making to support
the edge and fog
processing

Limitations Latency, High
bandwidth
consumption. No
privacy of data.
No control over
resource
utilization and
verification of the
allotted resources

Initial
infrastructure
set-up cost
though minimal

Less scalable and
no resource
pooling

The advantages of the mist and the fog architectures are taken up by the proposed framework for
detection

The SDN switch contains the intelligent controller to handle the networking and
the data management in two separate planes with the help of the control and the
data plane. The device level dependency of the network management is avoided to a
greater extent with the help of SDN. This intelligent switch has been used to realize
theMist-Fog-Cloud architecture were in the fall detection data is analysed to provide
low latency near real-time decision making. The architecture of SDN as proposed
by Tomovic [15] is given in Fig. 1 and is further explained in Sect. 4.

This basic infrastructure of SDN as a part of fog architecture was incorporated to
build a distributed fog infrastructure to help improve the speed and decision making
in detection and decision making thereby delivering a low latency higher accurate
application.
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Fig. 1 SDN reference architecture

3 Related Works

The initial work on fall detection started with a very simple work [16] of finding
the parameters of the fall during sleep, fall from sitting or standing from the data
based on the wearable sensors. These parameters collected were a combination of
data from the analysis of motion, posture, proximity and inactivity. Though fall is
a rare event the author was able to collect a significant amount of data for analysis.
There were also surveys by Perry et al. [17] which tries to analyze the real-time
detection with the help od acceleration values. The survey concludes that the value
of acceleration is the major parameter that is needed and can be the only parameter
necessary for fall detection. The value of acceleration may tend to be deceiving when
the sensor are not placed at the right position and the values may lead to a wrong
prediction. Based on these surveys [18] presented a survey in an extremely different
angle considering various kinds of sensors and approaches to detect fall. The survey
viewed the changes in parameters based on the values from wearable sensors, vision
based from the values of surveillance camera and also considered the influence of
the ambiance of occurrence of fall. The data collected for the analysis were from
every known source possible which includes accelerometer, posture, audio, video,
spatio-temporal data. The survey concludes that though the wearable sensors can be
cheap and large data can be collected at any point in time, the source is less reliable
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is highly influenced by the right placement which cannot be always ensured. The
major reliable source reliable here s the video analytics that is highly robust.

In addition to surveys and discussion on data collection and reliability, there has
been extensive study on effective use of the collected data. Machine learning being
a reliable approach was used extensively starting from the feature extraction to de-
tection [19]. The most common algorithms deployed for detection were the decision
trees, KNN, Naive Bayes and SVM classifiers. The performance of theses classi-
fiers varies based on the parameters chosen for classification. The major influencing
parameters were the number of people in the scene in the video taken up for ana-
lytics, age, obtrusiveness and occlusion values. As the trend of analytics increased
the parameter of energy consumption were also considered as a major parameter.
The major detection and discussions were influenced by the synthetic data which
amounts to almost 94% of the total collected data [20]. Thus the placement of the
data and the data capture at the right point of time has a major influence on the
results. An improved detection methodology was provided by Pannurat et al. [21]
which involves the deep parameter consideration of the person which includes the
height, weight, sensor type placed for detection. These parameters were helpful since
the fall of each person is entirely different from the other.

The increase in the use of mobile phone has further influenced the data collection
and fall detection based on pattern matching or threshold based techniques [22].
Even though data collection can be made easier with the help of smart phones and
the sensors along with it, the threshold fixing is a tedious job and hence leads to
missed alarms or fake alarms. The continuousmonitoring system also leads to energy
depletion and the monitoring cannot be done at a specified time also. These factors
have to be considered and have to be seriously analyzed in order to present an
efficient intelligent automatic fall detection system. Thus the following factors have
to be considered to develop an efficient detection system.

• Develop a standard methodology of fall detection considering multimodal data in
all possible perspectives for an efficient intelligent system.

• The threshold based analysis have to reduced as much as possible in decision
making and made computationally effective since the threshold values may vary
from person to person and makes it a tedious job in generalization.

• The dataset for training has to be considered from a publicly available benchmark
dataset consisting of both sensor and video analytics for better accuracy.

• The detection and analysis has to done in two major perspectives as, data available
for analysis and the analysis in case of least data available.

Considering these parameters, the data has to be analysed such that, in case of
fewer data availability, sampling of data has to be done and the use of semi supervised
learning can be used to make a complete use of the available data. The algorithms
has to be cost efficient in case of both computation and power efficiency.
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3.1 Handling Sensor Data

The era of cloud computing is on the bloom that any service needed be it computation,
storage, decisionmakingplatformor even infrastructure is given at an affordable price
available at any time. The era has become a notion of anything as a service. The cloud
server is located at a remote place which provides service as needed by the client.
Though the cloud platform is widely used by all almost all known applications, the
limitations that arise due to the increase in the number of IoT devices and sudden urge
of data from these devices have to be handled efficiently. The critical limitation of the
platform is the connectivity between the remote cloud and the end devices. The data
from the end devices such as the sensor data have to be analyzed immediately since
these data validity is time bound. IoT data keeps changing and so after a certain time
periodwhen anewdata arrives the older data is of nouse to analyze. Thus the collected
data has to be transferred and analysed as soon as possible. The issue of connectivity
causes latency in the transfer of the data from the end devices to the remote cloud for
analysis. In most of the applications such as fire alarms, autonomous or connected
vehicles, the cloud server is distributed and the application runs as multiple instances
in multiple cloudlets over a distributed area. This again causes more overhead due to
the inter-cloud communication along with the transfer delay sometimes making the
application expire before the completion of the analysis and decisionmaking [14, 23].

For effective handling of these real-time data at a reduced latency, CISCO in
collaboration with OpenFog consortium has come up with a new paradigm Fog
Computing which offloads the time constrained decision making and computation to
the edge thereby resolving the issue of expiration of the data importance. Described
as “cloud closer to ground” by the consortium, the architecture also takes care of
the fact that overloading of computation at the edge doesn’t cause latency in com-
putations. The task offloading to the edge has to be done keeping in mind the energy
efficiency, computational latency and the capacity of the end devices to handle the
computations. The computationally intensive tasks and the delay tolerant part of the
applications happen at the cloud and the latency sensitive computations at the edge.
Thus this new paradigm of edge/fog computing is not a replacement of the cloud
platform but acts as an assisting layer or platform to enhance the performance of
the application hosted. The sending and receiving of data to and from the cloud or
fog layer consumes considerable amount of bandwidth. The major task resides in
the reduction of the amount of data transfer to the upper layer and thereby reducing
the bandwidth consumption. The research has moved on further closer to the end
devices introducing the concept of mist computing or the mist layer where in the
basic filtering of the data and the least computationally intensive task such as the
rule based processing is done at the mist layer. The layer takes care of data aggrega-
tion, fusion, filtering and then sending the relevant data to the fog thereby reducing
the bandwidth consumption and proper data processing with minimal error. The fog
layer takes care of the data processing on the fly, anomaly detection, raising alarms
and alerts in real-time. The fog layer is also responsible for the local temporary data
storage, compression and further filtering hence reducing further load and amount
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Fig. 2 Proposed architectural stack

of data transferred to the cloud. The combination of the mist-fog-cloud architecture
helps in the improvement of the overall system performance, QoS of the application.
Finally the cloud layer is responsible to handle the large amount of data and helps in
the permanent data storage used for further intelligence of the application. The cloud
also handles the highly computationally intensive computations and the large neural
networks or the intelligent algorithms for decision making and automation. Proper
entrustment of the load to the fog and the mist layers helps in the improvement of the
overall performance of the system. Figure2 gives the proposed architectural stack in
automatic fall detection.

The lower most layer consists of the IoT devices which includes the smart camera,
the wearable sensors such as the gyroscope, Accelerometer, Kinect etc to collect
the data to detect the fall. This layer generates large amount of data monitored
periodically. Sending the whole monitored data to the cloud leads to high energy and
bandwidth consumption. Thus the processing of the data is spread among the mist,
fog and the cloud layer which leads to the increase in the overall performance of the
application.
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Fig. 3 Literature taxonomy

There has been review by Ren and Peng [24] which shows the factors and several
literature that shows the advancements in fall detection. The overall view is given in
Fig. 3.

There had been several deployment of algorithms for fall detection that ranges
from threshold based detection to the use of machine learning algorithms. Table2
shows the works on the deployed algorithms for fall detection.

A latest work done by Shahzad et al. [34] takes advantage of the accelerometer
signals and tracking them using a smart-phone such that, real-time identification of
fall can be differentiated from events such as lying in bed. This work also is one of the
first to work on reducing false alarms on fall detection. The algorithm used here was
support vector machine with multiple kernels that helped achieve high accuracy of as
much as between 97.8 and 91.7%. The survey by Asadi-Aghbolaghi et al. [35] gives
the various state of the art methodologies in the field of gesture and action recognition
based on the image sequences based in deep learning approaches. Similarly, the latest
survey by Zhang et al. [36] gives the advantages of deep learning in the 5G era for
real-time data analytics and agile management of the network resources.

Any system has to be validated on a dataset and before choosing a dataset, a
review on several datasets were taken as followed. There has been works on building
a database from the data collected from wearable sensors. As the works reported by
Vavoulas et al. [37], Sucerquia et al. [38], the database is all about sensors and is not
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Table 2 Literature on algorithms

Work done Place of experiment Algorithm used Accuracy/recall (%)

Bilgin et al. [25] Laboratory KNN 100/89.4

Yu et al. [26], Bashir
et al. [27], Dai et al.
[28]

Laboratory Threshold based 81/84–86

Werner et al. [29] Laboratory Threshold based and
SVM

90/NA

Sengto et al. [30] Laboratory Neural network 96.2/NA

Yu [31] Laboratory Directed acyclic
support vector
machine

NA/97.08

Ojetola et al. [32] Laboratory Decision tree 92/98–99

Shoaib et al. [33] Realtime Color matching and
eclipse Matching

NA/96

multimodal. These are data collected from experiments mostly on elderly people.
In addition to these sensor datasets, there are also databases that include data from
vision sensors collected mainly from web cameras or RGB cameras. The work by
Xu et al. [39] shows the use of the kinect imaging in human activity tracing and there
has been datasets collected using this technology as included in the works [40, 41].

Among the various available datasets some being open source and some collected
by the authors, the dataset used here for our work is one that is publicly available
and is multimodal. The Dataset used in the work for fall detection is the UP-Fall
Detection dataset [42] consisting of 11 activities which includes fall and regular ac-
tivities collected with the help of wearable, ambient and vision sensors. The activities
considered for detection includes, Falling forward using hands(A1), Falling forward
using knees (A2), Falling backwards (A3), Falling sidewards (A4), Falling sitting in
empty chair (A5), walking (A6), standing (A7), sitting (A8), picking up an object
(A9), jumping (A10) and laying (A11). The data is collected by experiments from
17 subjects ranging from 18–24 years old and a mean weight of 66.8kg collected
over a period of 4weeks. These sensor data is combined with the data from real-time
surveillance which is detected using edge processing.

4 Environmental Setup

The traditional networking works in such a way that the signaling traffic, route pop-
ulation, configuration and network management, packet delivery and QoS are all
taken care by the networking device deployed. With increase in the intelligent fea-
tures of networking and the introduction of the intelligent networkingwith the help of
Software Defined Networking, the packet delivery and the networking components
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are handled separately by the data plane and the control plane respectively. This
also solves the problem of single point failure as the controllers are distributed in
nature and the workload distribution and the distributed nature of deployment helps
in maintaining the availability of the application. The deployment of the controllers
helps in the visualization of the global view of the entire network. The distributed
controllers deployed helps in the maintenance of a large independent network with
a precise global view. Proper load balancing algorithms when employed can help
realize enormous performance of the network and the application hosted. The com-
munication between the controller and the data plane is ensured with the help of the
underlying OpenFlow protocol. The salient features of the protocol helps statistical
data collection of the network, intelligent traffic monitoring, and proactive decision
making regarding the path of the packet flow. Though the intelligent switch or the
OpenFlow architecture was primarily designed to set up a prominent Wide Area
Network, it can also be extended to implement our own Edge architecture.

The Mist-Fog-Cloud (MFC) Architecture proposed here for our work uses the
advantage of the intelligent switch to create a fog architecture to reduce the latency
of the application processing. The switch takes care of the networking component so
that the application processing and computation can be given more importance. The
SDN controller acts as the fog controller which decides the data transfer to the upper
cloud layer. The decision making and the alarm modules are deployed on the fog
layer which gives immediate response to the user since it is closer to the user than
the remote cloud. The latency is very much reduced when compared to the detection
using a remote cloud platform. The communication delay is also reduced with the
help of the intelligent switch were-in the user or the application provider need not
program the routing or the switching mechanism from scratch.

Thus the created infrastructure helps in creating a large personalized network with
a global view of thewhole network. The number of smart cameras can be increased as
per the area of coverage and the whole area is surveyed using theMFC infrastructure.
The results of the smart detection is validated with the help of iFogSim simulator
where in the infrastructure is simulated consisting of the smart cameras, mist and
the fog nodes. The bandwidth consumption and the latency in the overall detection
process is discussed in Fig. 4.

The initial unit proposed is the smart camera that is capable of both detection and
communication of data. The camera is said to be smart since it has a neural network
running for detection. The next block gives the trained neural network that has been
compressed as described in 5. This trained model gives the ability of inference at the
edge layer which is the smart camera. This forms the initial analysis and the next
layer of analysis is done at the mist layer that helps in the initial filtering. The rule
based filtering is a basic filtering that is threshold based filtering mechanism of the
data. Here, the data at normal levels that do not contribute to fall is not sent to the
upper layer for analytics. Only the data that contribute to fall is sent to inference
of fall. This initial filtering helps in the reduction of bandwidth utility. Finally, the
ensemble learning algorithm training at the cloud helps in conforming the fall with
inference taken from both the vision and the sensor data. Since the decisionmaking is
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Fig. 4 Overall multimodal workflow
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based on multimodal data, the accuracy of detection is better than a single algorithm
or single data based detection. Finally, personalized alarm setting is provided that
can be regulated based on the person under monitor.

5 Proposed Methodology

The automatic fall detection is layered among the three major layer of the Mist, fog
and the cloud each handling the data in different volumes and intensities. The mist
layer which is very near to the end device utmost one hop away or on the edge device
is the mist computation. This layer is responsible for the basic data filtering and the
rule based decision making. The compressed deep neural network model deployed
on the smart camera acts as amist device providing intelligence at the edge. A trained
Deep Convolutional Neural Network (D-CNN) model, trained with the help of the
surveillance camera images that are compressed to run at a low end device is deployed
at the smart camera providing intelligence of detection at the edge. The Deep neural
network compression technique used is described in Sect. 5.2.

The paper by the authors [43] have explained the use of neural networks and its
advantages in the field of Artificial intelligence. Though the algorithm is of high
computational complexity, the efficient use of the architecture helps in efficient en-
ergy aware computing with greater accuracy. With the basis of this claim, the DNN
has been chosen for edge detection in the proposed work.

The compressed DNN maintains the accuracy of the model and also is trained
much faster using transfer learning. The model training is done at the cloud and
the end device running the model does only the inference thus the model is able
to provide the anticipated performance and the accuracy to the detection. Since
only the vision output cannot be considered as the fall may vary from person to
person, the individual parameters of the person must also be considered, the data
from the wearable sensors are also considered for detection and raising alarms. The
deployment of the multimodal methodology increase the accuracy and the reliability
of the system. Thus the edge detection output is sent to the upper fog layer only if
the detection is a fall. When the detection is not a fall, the data is sent to the upper
layer thereby conserving the bandwidth usage. Further, not all images captured by
the smart camera is sent to the upper layer or to the cloud. This saves almost 5x
power consumption [44] and considerable amount of bandwidth usage. Only when a
fall is detected, the images are sent to the cloud storage creating a dataset for further
intelligence. Since fall is a rare event this collection of the data to the cloud helps in
building a good collection of training data for further intelligence of the application.

The other advantage of using smart edge detection is theminimized storage space.
Since the detection is enabled at the edge layer, there is no need to store the entire
surveillance images. The normal images are not stored and only the images that are
detected to be outliers from both vision sensors and based on sensor data are taken
up for storage and further analysis.
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Now that the fall has been detected at the edge, in order to avoid false alarms and
utilize the advantage of the multimodal detection system, the data from the sensors
are also considered for decision making. The data from the sensors are collected in
the mist layer where in the data are filtered using a rule based processing. The values
above a certain threshold are taken up to the above layer for analysis. This rule based
filtering of the data also helps in the reduction in the amount of data being sent to the
above layer. This filtering also helps in the basic data pre-processing from the sensors.
When not properly pre-processed, it leads to a huge amount of data transfer to the
above layer and in turn leading to latency and abnormal bandwidth consumption.
Thus the mist layer helps in the basic rule based processing of the data and minimal
filtering operations which contributes to the overall performance enhancement of the
application.

The data filtered from the mist layer is now pushed to the fog layer for further
processing and intelligence. The fog layer is responsible for temporary local storage
of the data and minimal analysis to provide intelligence to the data analytics. The
filtered data from the lower layer are sent to the cloud and considered for analysis
using random forest and xtreme Gradient boosting. The results of these algorithms
saying if the values collected is a fall or not is sent to the fog layer. This result is then
aggregated with the results from the video analytics and with the help of ensemble
method of voting an alarm is raised. The raising of alarm and the minimal decision
making is done at the fog layer so that it is not computationally intensive and is closer
to the ground.

The overall work-flow of the automatic detection and alarm raising is given in
Fig. 4. The combined advantage of the MistFogCloud infrastructure helps in a better
detection environment with the least possible latency and near realtime decision
making.

5.1 Detection at the Edge

In the era of cloud computing, there has been intensive research with the rise in IoT
devices to handle the large streaming data from the devices. The following are the
most recent protuberant researches in fog computing and DNN compression.

Bonomi et al. [13] have proposed the need for the new paradigm for handling
the IoT data with the help of fog layer. They have outlined the applications that
can be enhanced with the new paradigm of fog computing. The research chal-
lenges faced during their survey are resource management, fault-tolerant service
provisioning. Since the nodes that are used as fog nodes have low computing and net-
working capabilities,Bilal et al. [45] have surveyed the IoTapplications in focusedon
energy consumption, latency and efficient integration with the cloud environment.
The challenge faced was on energy consumption reduction.

In the toll of setting up the fog environment, various devices like a switch, router,
mobile phones, raspberry pi etc. were used as fog devices or nodes. Dastjerdi et al.
[46] have used Cisco IOx device management for the services in Fog environment.
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The paper also explores the various applications that can be enhancedwith the help of
fog computing. To help integratewith the realworld applications, various hierarchical
architectures for fog computing with integration with cloudwere proposed. Cao et al.
[47] have used the novel fog architecture for healthcare application in fall detection
in stroke patients. They have improved the efficiency of the real-world system with
the introduction of the new intermediate layer. The challenge faced was the ability
to handle faulty devices and providing availability in case of device failure in the fog
layer. Aazam et al. [48] have designed a smart gateway architecturewhich decides the
need for application offloading based on the residual energy of the devices running
the application. The use of machine learning algorithm has helped in the decision
making of choosing the low energy level node for offloading.

With the wide use of the Fog architecture in almost all applications like the smart
cities, hospitals, smart home etc., there was a rising issue of data privacy and security.
Lu et al. [49] have proposed the use of the Chinese remainder theorem to produce
and use the hash functions to secure the data being processed from the streaming IoT
devices and sensors. Thus Fog computing layer can be used in applications wherein
there is a need for privacy preservation and the data has to be processed locally
than sending them to the cloud for data analytics. Now that the applications are low
latency providing real-time decision making, there has been high availability in case
of critical applications. Wang et al. [50] have proposed a self-adaptive module which
performs Directed Diffusion and Limited Flooding to enhance the reliability of the
data being transmitted. This does not consider the failure of the controller or the
fog device and there is no option for load balancing of the network. This framework
has been implemented in the healthcare sector in the transmission of the ICU data.
With the high evolution of decision making and analytics in fog architecture, there
were research on deep learning networks being able to run on mobile devices and
smaller end devices providing analytics at the edge. Cheng et al. [51] have surveyed
the various model compression for deep neural networks. The paper deals with the
various methods like the knowledge distillation and Low-rank factorization that are
application specific and the sparcity of the network cannot be controlled by the
developer.

Building and training a deep neural network from the scratch and training a huge
amount of data or images on the fly is highly time-consuming. Yosinski et al. [52]
have listed the importance of the transfer learning and the retraining of themodel. The
paper states transfer learning for training a DNN at a reduced time. It helps in time
reduction by providing a reduced search space during training. Figure5 represents
the time reduction by the reduced search space used in transfer learning.

5.2 Smart Edge Device with Compressed DNN

The initial subtask is running a part of the task in the end device. To do so, the
end device has to be made smart to take the necessary decisions at the edge. The
end devices are equipped with DNN for decision making. The decision making
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Fig. 5 Limited search space in transfer learning

Fig. 6 Deep neural network compression

should be competent for the fog devices that have low memory and low computing
capabilities. DNN is highly dense and occupy large space to run and needs high
computing capability to run these heavy models. In order to run the DNN in the
low-end edge devices, the models have to be compressed and made capable enough
to run in these low capability devices like the surveillance camera, Raspberry Pi,
low-end computers etc. Figure6. Shows the overall process of DNN compression.

The initial step of compression is the synaptic pruning. The synaptic values show
the amount of information the connection contributes to the final result. This infor-
mation is extracted by normalizing the weight and the input data. Consider the model
with C channels with n filters used in the convolutional layer thus generating n output
features with the activation function a and the output features are given by Eq.1

C∑

c=1

xipc × ηn,c + b (1)

where b is the bias added to the layer, xic p is the input feature in the cth layer
and η(n,c) represents the kernal in the nth filter. As proposed by Sergey et al. [53]
BatchNormalization is used here forweight normalizationwhich gives faster conver-
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gence and generalization. The normalization is performed in mini batches as given in
Eq.2 and 3,

Normali zation = xip − μ√
σ 2 + ε

(2)

where μ is the mean of the values, σ is the standard deviation of the values in the
input layer xip and ε is the factor to denote the mini-batch normalization

xout = γc × Normali zation (x) + β (3)

where γ is the scaling factor and β is the shifting factor.
The Synaptic strength is defined by Eq.4

Sn,c = γc × rn,c (4)

where r is the norm of kernel n. The network is pruned by removing the synapses
below a threshold t . The threshold is chosen by the desired sparcity. The value of
p% synaptic strength in the network will be set as the threshold for pruning. In our
work, the percentage of pruning is set to 85–90%.

The Weight quantization of the pruned network is done by clustering the similar
weights and grouping them together and represent them as a sparse matrix using
their average. Figure7 shows the sample reduction of the weight and representation
of the weights as a sparse matrix.

The neural network is now put in place to run on the edge smart camera. The
decision making of fall or not is captured by the smart camera and only when it is
detected as a fall, the data is sent to the upper layer thereby reducing the content
transfer and bandwidth utilization.

Since the edge devices are low end devices, running a very large model is not
possible which may even crash the system. The deep neural network is trained with
the input images of fall and not fall images, the model is compressed and then
deployed onto the edge device, here in this case is a smart camera. There is no
training or testing at the edge where as only the inference happens at the edge via the
deplyed compressed model. The compression leads to a significant decrease in the

Fig. 7 Sparse matrix representation
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Fig. 8 Model size comparison

size of the model thus making it possible to run at the low end edge devices. Figure8
shows the reduction in size of the models that were tested to be deployed at the edge
devices.

The model after compression of the layers using synaptic pruning and sparse
matrix representation considering the parameters such asAccuracy, Storage, Latency,
Energy Consumption are employed in mobile devices and Raspberry Pi for testing.
The models are of reduced size and can be used to run in the edge devices.

Table3 shows the devices and the configuration of the devices wherein the com-
pressed model was successfully employed for edge processing. The created com-
pressed model was also trained on extra images that were not in the existing model
too. This gives way for customization of the model for any needed application and
not rely on only the existing set of trained images. The models were tested on mo-
bile devices with minimum RAM and memory and on a raspberry pi with the bare
minimum memory.

Table 3 Model deployment at the edge

Device Name of the
device

RAM ROM Power Models
trained

Mobile phone Redmi 5A 2GB 16GB 3000mAh MobileNet,
ResNet 101

Redmi 6A 2GB 32GB 3000mAh MobileNet,
AlexNet

Lenovo
A6600 Plus

2GB 16GB 2300mAh ResNet 101

Raspberry Pi Pi Zero 512MB – – ResNet 101

Raspberry Pi 3 1GB MB – – ResNet 101
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Fig. 9 Mobile net accuracy

Fig. 10 AlexNet accuracy

The models were trained and tested in the tensorflow platforms and the tensor
board gives the training, validation and the testing statistics of the model. Figures9
and 10 shows the samplemodel accuracy taken fromTensor Board for theMobileNet
and the AlexNet model respectively. The graph is generated for Training, Validation
and testing accuracy. The types of a graph generated is shown below for different
epochs and models. The accuracy of the models do not deteriorate to a large scale
even when the size of the DNN is reduced to a large extent.
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5.3 Ensemble Detection

Once the data from the smart camera is classified to be a fall, the data from the sen-
sors are also collected and pushed to the mist layer which is one hop away from the
end devices. The mist layer device helps on the basic rule based filtering of the data
where the data above the safe threshold level is sent to the cloud for further high level
machine learning processing. The basic filtering in the mist layer helps in the reduc-
tion of the bandwidth usage and helps data communication to upper layer only when
necessary. The high level and computationally intensive analytics are performed at
the cloud which here in the case is a private OpenStack cloud. The random forest
and the Xtreme Gradient Boosting algorithms are employed for analytics and the
results of the smart camera and the two machine learning algorithms are considered
for the detection. The results from the smart camera are given higher weight and an
ensemble decision making using voting helps in more accurate detection. The results
of the ensemble learning is shown in Table4. The overall accuracy of detection by
the ensemble learner is 98.13%.

The dataset was split for training (70%) and testing (30%) on the proposed in-
frastructure using the proposed ensemble algorithm. Table4 shows The values of
accuracy, Precision, Recall and the F1 score of the proposed algorithm.

The parameters that are considered to increase the accuracy of detection by various
researchers is described in theTable5. These parameters help generalize the detection
process based on the personalized parameters of each person. The detection varies
based on the additional parameters of each person since the vital parameters normal
for one may not be normal for other.

Table 4 Algorithm estimation

Class Accuracy (%) Precision (%) Recall (%) F1 score (%)

1 99.73 93.00 99.00 95.00

2 99.78 94.00 98.00 96.00

3 99.6 90.00 97.00 93.00

4 99.67 91.00 98.00 94.00

5 99.53 86.00 98.00 92.00

6 99.27 100.00 96.00 98.00

7 99.51 100.00 98.00 99.00

8 99.93 100.00 100.00 100.00

9 99.66 94.00 94.00 94.00

10 99.6 98.00 98.00 98.00

11 99.98 100.00 100.00 100.00
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Table 5 Fall detection parameters

Participants Additional parameters Devices used

Older adults, patients suffering
from palsy, geriatric patients
identified with the risk of
falling, older adults with the
risk of falling

Age, gender, weight, BMI, use
of walking aid

Accelerometer, infrared sensor
along with an alarm,
gyroscope, magnetometer,
camera, doppler radar, kinect

6 Proposed MFC Architecture Versus Cloud Architecture

As discussed in the previous sections, the detection accuracy is acceptable in the
range of 98.13%. The use of the proposed MFC infrastructure as its advantage of
reduced latency, low bandwidth use over the use of just cloud infrastructure. The end
to end latency of the edge detection to the decision making of raising alarm in the
fog layer is analysed which is much lesser than the cloud infrastructure. The end to
end latency of the proposed and the cloud infrastructure is given in Fig. 11.

The number of cameras are increased as the area of surveillance is increased.
This is simulated using the iFogSim simulator where the real-time parameters are
simulated with increase in the number of cameras. The latency is measured for
each increase in the number of cameras. The Latency includes the time of edge
detection, Communication delay from the edge to the mist, Data filtering at the mist,
Computation at the cloud, and decision at the fog for alarms. The fog latency includes

Fig. 11 End to end latency comparison
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the processing at the edge, mist and the fog layer. The cloud latency involves the
process of filtering, computation and the decision making at the cloud.

Large data is collected by the sensors and the smart camera. Sending all these
data to the cloud each and every time in the absence of the intermediate Fog layer
induces a very high bandwidth usage. The introduction of the mist and the fog layer
helps in the reduction of the amount of data being sent to the upper layer. The initial
filtering happens at the edge device which is the smart camera, where in only if a
fall is detected, the decision is sent to the upper layer for further decision making.
The next level of filtering is done at the mist layer, where the is basic filtering of the
sensor data where only the values above the threshold is pushed to the upper layer for
decision making. The final decision of raising alarm is done at the fog layer which
is closer to the ground in order to provide near real-time alarms. Figure12 shows the
comparison of the network utilization between the fog and cloud infrastructure. The
fog layer provides an efficient bandwidth utilization as compared to the cloud only
infrastructure.

Thus from the above experiments, the proposed architecture for detection proves
to be better than the cloud in terms of latency, network utilization and accuracy.
The introduction of the edge computing and the intermediary filtering layers helps
improve the overall performance of the hosted application. The decision on raising
alarm is also an important feature to be taken care of. When the system has detected
a fall, it is very important to raise an alarm based on the intensity of the fall. When
a person has fallen and the fall is not severe, raising an alarm would cause chaos to
the person and his/her relatives. Thus our proposed system also analyses the time
taken to getup back to the normal position and raises an alarm accordingly. The time
based analysis is given in Table6. The timing of the alarm can be changed based on
the age and other medical history of the person being monitored in order to have a
more precise alarm system.

Fig. 12 Network utilization comparison
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Table 6 Decisions on alarms

S. No Time Type of alarm

1 Less than a minute Minimal alarm for safe
intervention

2 1min to 1min 30sec Alarm for first aid and further
investigation

3 Greater than a minute and
30sec

Emergency alarm

7 Conclusion and Future Work

The Mist-Fog-Cloud architecture to detect the fall with low latency high accuracy
has been proposed in assistance to the cloud infrastructure. The fog layer has been
implemented using the Software Defined Networking switch which provides a smart
networking component to the architecture there by leaving the pressure of setting up
and managing the network off the developer. The fog controller provides an overall
view of the network and the details of the nodes thus helping in the creating a fault
tolerant distributed fog infrastructure. The first level of fall detection is done at the
edge running a compressed DNN. The next level of detection consists of the basic
threshold based filtering and ensemble learning of the sensor values which increases
the detection accuracy to 98.13%. Finally the decision of alarm is done at the fog
layer which reduces the latency to raise the alarm.

The future work of the proposed algorithm involves the use of other vital param-
eters inorder to improve the accuracy still more and provide better generalization
of fall detection. The ensemble algorithm may also include reinforcement learning
which can still be able to assess the values and predict the fall still more reducing
the time of detection at a much higher accuracy.
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Abstract Human falls are common source of injury among the elderly, because
often the elderly person is injured and cannot call for help. In the literature this is
addressed by various fall-detection systems, of which most common are the ones
that use wearable sensors. This paper describes the winning method developed for
the Challenge Up: Multimodal Fall Detection competition. It is a multi-sensor data-
fusion machine-learning method that recognizes human activities and falls using 5
wearable inertial sensors: accelerometers and gyroscopes. Themethodwas evaluated
on a dataset collected by 12 subjects of which 3 were used as a test-data for the
challenge. In order to optimally adapt the method to the 3 test subjects, we performed
an unsupervised similarity search—that finds the three most similar users to the three
users in the test data. This helped us to tune the method and its parameters to the 3
most similar users as the ones used for the test. The internal evaluation on the 9 users
showed that with this optimized configuration the method achieves 98% accuracy.
During the final evaluation for the challenge, our method achieved the highest results
(82.5% F1-score, and 98% accuracy) and won the competition.
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1 Introduction

Human falls are critical health-related problems for the elderly [14], and the statis-
tics show that approximately 30% of people over the age of 65 fall each year, and
this proportion increases to 40% in those aged more than 70 (Gillespie et al. [10].
According to Worth Health Organization [32] about 20% of the elderly who fall
require medical attention. Furthermore, falls and the fear of falling are important
reasons for nursing-home admission [28]. Falls are particularly critical when the
elderly person is injured and cannot call for help. These reasons, combined with
the increasing accessibility and miniaturization of sensors and microprocessors, are
driving the development of fall-detection (FD) systems.

Fall detection has received significant attention in recent years, however it still
represents a challenging task [13]. The Challenge UP: Multimodal Fall Detection
competition1 presents a great opportunity the activity-recognition community to test
and compare their approaches. The goal of the challenge is to recognize, as accurately
as possible, 12 activities, including 5 falls.

This paper describes the method that we developed for the competition.2 It is
a multi-sensor data-fusion machine-learning method that recognizes human activ-
ities and falls using 5 accelerometers and 5 gyroscopes. It includes several steps:
data preprocessing, data segmentation, sensor orientation correction, feature extrac-
tion, feature selection, hyperparameter optimization, and training a machine learning
model.

The evaluation was performed on a dataset provided by the organizers of the
competition. It consists of wearable sensors data collected by 12 subjects of which
3 were used as a test data for the challenge. Our method was ranked first, achieving
highest recognition performance: 82.5% F1-score, and 98% accuracy.

The rest of the paper is organized as follows. The dataset is explained in Sect. 2,
whereas section three is dedicated to explaining the methodology of our system.
In the description of the methodology we discuss the preprocessing applied to our
data, the sensor orientation correction, as well as the feature extraction and feature
selection procedures. In Sect. 4 we focus on the evaluation methods for the pipeline,
and in Sect. 5 we conclude the paper.

2 Related Work

Activity recognition (AR) and fall detection (FD) approaches can be divided into
those that use wearable and non-wearable sensors, respectively. The most common

1The Challenge Up Multimodal Competition, available at: https://sites.google.com/up.edu.mx/
challenge-up-2019/overview.
2The code developed for the challenge is available at: https://github.com/challengeupwinner/
challengeupcode.

https://sites.google.com/up.edu.mx/challenge-up-2019/overview
https://github.com/challengeupwinner/challengeupcode
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non-wearable approach is based on cameras [34]. Video-based human activity recog-
nition is a hot research area in computer vision to help people with special needs.
Miguel et al. [23] developed a computer-vision based system to recognize abnormal
activity in daily life in a supportive home environment. The system tracked activity
of subjects and summarized frequent active regions to learn a model of normal activ-
ity. It detected falling events as abnormal activity, which is very important in-patient
monitoring systems. Although this approach is physically less intrusive for the user
compared to one based on wearable sensors, it suffers from problems such as target
occlusion, time-consuming processing and privacy concerns.

The most mature approach to both AR and FD is probably using wearable
accelerometers, [4, 15, 17, 27]. Themost common accelerometer-basedAR approach
uses machine learning. Typically, a sliding window passes over the stream of sensor
data, and data in each window are classified with one of the known classification
methods, such as decision trees (DTs) and support vector machines (SVM). The
most frequent AR task is classifying activities in relation to movement, e.g., walking,
running, standing still and cycling [17, 27].

An alternative approach to accelerometer-based AR is based on manually created
rules [20]. These rules are usually based on features that are calculated from sensor
orientations and accelerations. Bourbia et al. [4] presented an approach in which
decision rules are used to recognize activities. Another implementation of such rules
was presented by Lai et al. [21], who used six accelerometers, placed on the neck,
waist, both wrists and both thighs and reported accuracy of 99.5%.

Fall detection has also been addressed in related studies [22]. Some of the first
studies includeWilliams et al. [31] andDoughty et al. [7]. In this approaches the fall is
detected by detecting a change in body orientation from upright to lying immediately
after a large negative acceleration. Later, this algorithm was upgraded and fine-tuned
by Aziz et al. [2] and Putra et al. [24, 25].

Degen et al. [6] presented a fall detector worn on the wrist that incorporates a
multi-stage fall detection algorithm. The first condition is the detection of a high
velocity towards the ground. Next, an impact needs to be detected within 3 s. After
impact, the activity is observed for 60 s, and if at least 40 s of inactivity are recorded,
an alarm is activated. The results show no false alarms, but large percentage of
backwards and sideways falls were not detected.

The most common approaches to FD are rules that use thresholds applied to
accelerations and features derived from them. Ren et al. [26] proposed personalized
and adaptive thresholdmodel and showed that accuracy increases for 1–3%compared
to other threshold models. Wu et al. [33] developed a fall detection system based on a
single, triaxial, accelerometer, which results showed lower sensitivity and specificity
compared to multi-sensor approaches. Hardjianto et al. [18] used an accelerometer
on smartphone, with six variations of the placement of the device. The method used
for fall detection is threshold method applying only one parameter, the value of
resultant acceleration. It resulted in 98.1% of accuracy, 96.9% of sensitivity, and 100
specificity.

In recent years there are also approaches that use machine learning instead of
threshold-based algorithms for FD. Putra et al. [24, 25] proposed an event-triggered
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machine learning approach that aligns each fall stage so that the characteristic features
of the fall stages are more easily recognized. The F1-score reached by the chest-worn
sensor is 98% and 92% for the waist-worn sensor.

3 Dataset

The dataset provided for the competition includes 12 activities, performed by 12
subjects. The data from 9 of the subjects were released for training the models, the
data from the remaining 3 subjects were used for final evaluation of the competitors.
The subjects performed 7 simple human daily activities (walking, standing, sitting,
picking up an object, jumping, laying, on knees) and 5 types of falls (falling forward
using hands, falling forward using knees, falling backwards, falling sideward, falling
sitting in empty chair). The distribution of the data according to the activities is shown
in Fig. 1.

The dataset was recorded using multiple types of sensors, i.e. wearable sensors,
ambient sensors and vision devices. The wearable sensors were located in the left
wrist, under the neck, at right pocket of pants, at themiddle ofwaist (in the belt), and in
the left ankle. Each of these sensors contains 3-axis accelerometer, 3-axis gyroscope
and a sensor for ambient light. Also, one electroencephalograph, located at the fore-
head, was used for measuring the brainwave signals. The ambient sensors include
six infrared sensors placed above the floor of the room, and all of them reported
changes in interruption of the optical devices. Lastly, the dataset was enriched with
images from two cameras, which captured the subjects while doing the activities.
The sampling rate of the sensors used in the dataset is 20 Hz.

Fig. 1 The distribution of the data according to the activities
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4 Method

Themethod thatwedeveloped for this study is shown inFig. 2. It includes data prepro-
cessing (filters, data segmentation—slidingwindow), feature engineering and extrac-
tion, feature selection, and finally a classification model to recognize the activity.
Each of the steps are described in the following subsections.

4.1 Data Preprocessing

Signal segmentation is very important step in the activity recognition process. There-
fore, we segmented the sensor signals using a sliding window size of 0.5 s with a
0.25 s overlap. This way the model recognizes activity every 0.25 s. The window size
and the sliding factor are important in data processing and have to be tuned correctly
for the task at hand. Longer windows naturally contain more data and are expected to
enable greater classifying accuracy, especially for more complex activities. Shorter
windows, on the other hand, make it possible to detect activity changes faster. Con-
sidering the fact that we aim to achieve accurate fall detection and falls last shorter
than one second on average in this dataset, the window size had to be chosen so that
it is small enough in relation to average fall duration. The optimal window size in
our experiments was determined empirically.

Raw sensor data Data preprocessing
Orientation correction

Falling forward using 
hands 

Recognized 
Activity

Feature extraction

Feature selection
Classification

Model

Fig. 2 Activity recognition and fall detection pipeline



86 H. Gjoreski et al.

Beside the raw sensor signals (x, y and z axis) we additionally extracted the
magnitude of the acceleration vector. It was calculated for the accelerometer, as well
as the gyroscope and is shown in (1).

m =
√
x2 + y2 + z2 (1)

4.2 Orientation Correction

After analyzing the data, we noted that the orientation of the sensors varies between
users, and evenmore between different trials. Therefore, we have developed amethod
that corrects the orientation of the sensors, i.e., it uses rotation matrices to correct
(rotate) the accelerometers data. The method corrects accelerometer axes orientation
by applying a rotation transformation to the device’s raw data [16]. To calculate the
angle between the actual acceleration (e.g. the Earth’s gravity (g) for static activities)
and some of the axis (e.g., x-axis) we used the formula shown in (2)—where the
values ax , ay and az represent the actual acceleration vector.

ϕx = arccos

⎛

⎝ ax√
a2x + a2y + a2z

⎞

⎠ (2)

The coordinate system is rotated using trigonometry and rotational matrices, in
such a way that it corrects the data. In order to do this, one should calculate the dif-
ference between the expected angle (ϕx ) and the rotated angle (ϕxr ). This difference
gives the angle by which the coordinate system should be rotated in order to correct
the orientation of the sensor. The rotation is performed by a rotation matrix, which
describes a rotation of a coordinate system with respect to another orientation. An
acceleration vector in the initial reference frame can be transformed into a vector in
a rotated frame by multiplication of the initial vector with the rotation matrix [9]. In
three dimensions, rotations are possible around the three principal axes (x, y and z).

To achieve this, we used the standing activity as a reference in order to compute
the current angle ϕxr . This kind of reference angles (orientation vectors) are defined
for all accelerometers (neck, wrist, belt, right pocket and ankle). As a reference angle
(ϕx ) we used the angle under which the sensors of our referent subject are placed.
The method then calculates the rotation angle for every other subject in the dataset
with respect to the referent subject. Once it is calculated, all raw accelerometer data
thereafter are multiplied by the rotation matrix to achieve the corrected orientation.
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4.3 Feature Extraction and Selection

In order to extract as much features as possible, we used the TSFRESH library. It
performs time series feature extraction and selection, which we exploited in gener-
ating approximately 12,000 features. In the next step we performed feature selection
in order to reduce the number of features and keep only the most relevant ones. We
focused on removing those features which did not contribute to the accuracy of our
model and/or increased the odds for overfitting [19].

In the first step, we discarded the features containing missing and Not-a-Number
(NaN) values, which resulted in leaving 7700 features. Then,we estimated themutual
information between each feature and the label (activity). We sorted the features in
descending order according to this value, as the higher the mutual information, the
higher the dependency of the label from the corresponding feature. In the next step,
we divided the features in groups of 100. We began with the first group of features,
where we calculated the Pearson correlation coefficient for every pair of features. If
the correlation between a pair exceeded a threshold of 0.8, out of the twowe removed
the feature with the lower mutual information. To the remaining features of the group
we appended the following group of 100 features. The process was repeated until all
the initial groups of 100 were iterated.

Finally, we selected the definite set of features using a wrapper feature selection
algorithm. Here, the first step was to utilize the best scoring feature in regard to the
value of its mutual information with the label and train a classification model to
estimate the macro F1-score. Then, in every following step, the next feature of the
uncorrelated features was added to the previously kept features. Once the feature
was added, the model was retrained and a new F1 score obtained. If, at each step,
the score decreased not more than 1%, the newly added feature was kept. Other-
wise, the feature was dismissed, making the feature list before and after said step
unchanged. This measure, repeated for all the remaining features, allowed us to take
into consideration everywearable sensor and at the same time prevented us fromover-
fitting our model. The final feature selection resulted in 152 relevant, uncorrelated,
class-defining features.

4.4 Classification

We compared three machine learning algorithms:Decision Tree, XGBoost, and Ran-
dom Forest. After thorough evaluation and comparison (see the results in Sect. 5.3),
we have chosen the best performing one, i.e., Random Forest. This algorithm showed
more robust performancewhen tested in different scenarios and different users. In the
following paragraphs each of the algorithms is described in relation to our activity
recognition task.

Decision Tree [29] is an algorithm that learns a model in a form of a tree structure.
In particular, it divides the dataset into smaller subsets while at the same time the
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decision tree is incrementally learned. The final result is a tree with decision nodes
with two or more branches, each representing values for the feature tested, and leaf
nodes which represent a decision on the activity. In our case, all of the features are
numeric (this means the same feature can be used multiple times), which resulted in
very large trees.

XGBoost [5] is efficient implementation of the gradient boosted trees algorithm.
It is a supervised learning algorithm, which predicts the activity by combining the
estimates of a set of simpler, weaker models—in our case decision trees models. It
uses a gradient descent algorithm to minimize the loss when adding new models.
This way, it minimizes an objective function that combines a convex loss function
and a penalty term for model complexity. The training proceeds iteratively, adding
new trees that predict the errors of prior trees that are then combined with previous
trees to make the final prediction of the activity.

Random Forest [11] is ensemble of decision tree classifiers. During training, the
Random Forest algorithm creates multiple decision trees each trained on a boot-
strapped sample of the original training data and searches only across a randomly
selected subset of the input variables to determine a split (for each node). For clas-
sification, each tree in the Random Forest predicts the activity, and the final output
of the classifier is determined by a majority vote of the trees. This way, the activity
that is predicted by most of the decision trees will be chosen as final.

4.5 Hyperparameter Optimization

In the final step, we performed a hyperparameter optimization for each of the 3
algorithms explained in the previous subsection. Hyperparameter optimization is a
process of finding a set of optimal hyperparameters for a learning algorithm, where
a hyperparameter is a parameter whose value is used to control the learning process.
Finally, this optimization finds a tuple of hyperparameters that yields an optimal
model which minimizes the error function (maximizes the accuracy) given a dataset.

There are different methods for optimizing hyperparameters: Grid Search; Ran-
dom Search, Bayesian optimization, Gradient-based optimization, etc. We chose
Random Search method as it is one of the most commonly used methods for hyper-
parameter optimization in time-series data and showed to be more robust compared
to the other techniques [3]. Random Search replaces the exhaustive enumeration
of all combinations by selecting them randomly. This can be simply applied to the
discrete setting, but also generalizes to continuous and mixed spaces. It usually
outperforms Grid search, especially when only a small number of hyperparameters
affects the final performance of the machine learning algorithm—which was the case
in our study. Additionally, Random search is more efficient compared to Grid search,
which spends too much time evaluating unpromising regions of the hyperparameter
search space because it has to evaluate every single combination in the grid. Random
search in contrast, does a better job of exploring the search space and therefore can
usually find a good combination of hyperparameters in far fewer iterations [3].
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The following hyperparameters were optimized:

• Decision Tree: Maximum number of levels in tree; Minimum number of samples
required to split a node; Minimum number of samples required at each leaf node;

• Random Forest: Number of trees in random forest; Number of features to consider
at every split; Maximum number of levels in tree; Minimum number of samples
required to split a node; Minimum number of samples required at each leaf node;

• XGBoost: The learning rate; Minimum child weight; Number of estimators; Min-
imum number of samples required to split a node; Minimum number of samples
required at each leaf node; Maximum depth.

5 Evaluation

5.1 Dataset Split

In order to optimally adapt the method to the 3 test users, we have performed an
unsupervised similarity search—that finds the three most similar users to the three
users in the test data. This helped us to tune the method and its parameters to the 3
most similar users as the ones used for the test.

Themethod uses each user’s data individually and performs aK-means clustering,
where K is the number of classes/activities, i.e., we used 6 (all the falls are similar and
therefore we grouped them). After performing the clustering, then we calculated the
centroid for each cluster, which resulted in 6 centroids per user. Then, we calculated
a distance matrix that contained the distances between the 6 clusters of the train user,
and the 6 centroids from the test user.We calculated this matrix for each pair of users,
i.e., we calculated 27 distance matrices (the 9 users in train vs the 3 users in test).
For each matrix we have calculated the distance between the pair of users, i.e., we
calculated the minimum sum of the distances that covers all the 6 clusters. This way
we were able to find the 3 most similar (minimal distance) users to the ones used for
the test.

The most similar subjects to the test users: 15, 16 and 17, are: 4, 3 and 13
respectively.

5.2 Evaluation Metrics

Accuracy is the most commonly used metric that can be calculated from a confusion
matrix. Its main drawback is that it hides information on the specific nature of errors
(the proportions of FP and FN) [30]. It is calculated as following:
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Fig. 3 Accuracy comparison

Accuracy = True Posi tive + True Negative

True Posi tive + True Negative + False Posi tive + False Negative
(3)

We assessed the performance of themodel by not only using the accuracy, but also
macro F1-score (F1-macro). The F1-macro is the unweighted mean of the F1-scores
for the different labels [1]. It can be calculated as harmonic mean between precision
and recall, where the average is calculated per label and then averaged across all
labels. If Pi and Ri are the precision and recall for each label, then the F1-macro is
calculated as in (4):

F1-macro = 1

Q

Q∑

i=1

2 ∗ Pi ∗ Ri

Pi + Ri
(4)

5.3 Algorithm Comparison

A summary of the results is shown in Figs. 3 and 4, which shows that the system
successfully recognized the activities using optimized Random Forest classifier, with
high accuracy (97–99%), and F1 macro score (84–90%). The results using other
classifiers are significantly worse.

5.4 Confusion Matrices

The following 4 confusion matrices show the performance achieved for the 3 users
summarized (Table 2), and each of the users individually (Tables 3, 4 and 5). The



Wearable Sensors Data-Fusion and Machine-Learning… 91

0.9 
0.84 0.837 

0.65 
0.59 0.62 

0.42 

0.26 0.3 

0

0.2

0.4

0.6

0.8

1

Subject 3 Subject 4 Subject 13
Random Forest XGBoost Decision Tree

Fig. 4 Comparison macro F1-score

Table 1 Activities and their
corresponding IDs

Activity ID Description

1 Falling forward using hands

2 Falling forward using knees

3 Falling backwards

4 Falling sideward

5 Falling sitting in empty chair

6 Walking

7 Standing

8 Sitting

9 Picking up an object

10 Jumping

11 Laying

12 On knees

IDs of the activities correspond to Table 1. Note that in the training data the on knees
activity is missing and therefore it is omitted in the results.

The results show that activities 6, 7, 8, 9, 10, 11 (walking, standing, sitting, picking
up an object, jumping and lying) are correctly recognized most of the time. Some
problem occurs with falling activities, but most likely this is due to the small number
of instances and the impossibility of the model to be enough trained on them.

5.5 Challenge UP Competition Final Results

The confusion matrix obtained by the final evaluation during the competition is
presented in Table 6. The overall results show that our method achieved 82.5% F1-
macro, and 98% accuracy. Although the resultingmatrix looks generally satisfying, it
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Table 2 Confusion matrix for the 3 users (Subject 3, Subject 4, Subject 13)

Activity 1 2 3 4 5 6 7 8 9 10 11
1 23 1 1 1 0 2 3 0 1 0 0
2 1 23 1 3 0 3 0 0 1 1 1
3 0 1 33 3 3 1 2 0 0 1 3
4 0 0 4 42 0 0 3 0 0 0 1
5 2 0 3 3 27 0 2 0 0 0 0
6 0 0 0 0 0 1909 3 0 7 0 0
7 0 0 0 1 0 34 2357 0 3 2 0
8 0 0 0 0 0 0 0 1902 4 0 29
9 0 0 0 0 2 0 1 0 56 0 3
10 1 0 0 0 0 8 7 0 0 943 0
11 0 0 0 2 1 0 0 0 0 0 1021

Table 3 Confusion matrix for User 3

Ac vity 1 2 3 4 5 6 7 8 9 10 11
1 9 0 0 0 0 0 2 0 1 0 0
2 1 14 0 2 0 2 0 0 0 1 1
3 0 0 15 0 0 1 2 0 0 0 3
4 0 0 0 15 0 0 3 0 0 0 1
5 0 0 3 0 20 0 0 0 0 0 0
6 0 0 0 0 0 657 0 0 0 0 0
7 0 0 0 1 0 7 759 0 0 2 0
8 0 0 0 0 0 0 0 642 4 0 0
9 0 0 0 0 0 0 0 0 23 0 0
10 0 0 0 0 0 2 4 0 0 309 0
11 0 0 0 2 1 0 0 0 0 0 1021

is noticeable that the biggest issue is the second activity—falling forward using knees.
Almost half of the instances that belong to this activity are classified as standing
by our model. We speculate that the reason for this is the lack of instances which
represent this activity. Another issue is the imperfection of data labeling. The activity
falling forward using knees consists of two parts: first standing and then kneeling.
It is possible that much of the standing may be labeled as falling due to too little
available time.

The rest of the activities are recognized with much higher accuracy. The activities
jumping and sitting are recognizedwith 100%,which is due to the dissimilarity to any
other activity. The other three activities recognized with 100% are: standing, falling
backwards and falling sideward, probably because of the orientation correction pro-
cedure. We speculate that due to the orientation correction our model was able to
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Table 4 Confusion matrix for User 4

Ac vity 1 2 3 4 5 6 7 8 9 10 11
1 6 0 0 0 0 1 1 0 0 0 0
2 0 4 0 1 0 0 0 0 1 0 0
3 0 0 9 0 2 0 0 0 0 1 0
4 0 0 0 8 0 0 0 0 0 0 0
5 2 0 0 2 4 0 2 0 0 0 0
6 0 0 0 0 0 645 0 0 7 0 0
7 0 0 0 0 0 6 772 0 3 0 0
8 0 0 0 0 0 0 0 640 0 0 0
9 0 0 0 0 1 0 0 0 23 0 0
10 1 0 0 0 0 2 1 0 0 330 0
11 0 1 0 2 0 0 0 0 1 7 1037

Table 5 Confusion matrix for User 13

Ac vity 1 2 3 4 5 6 7 8 9 10 11
1 8 1 1 1 0 1 0 0 0 0 0
2 0 5 1 0 0 1 0 0 0 0 0
3 0 1 9 3 1 0 0 0 0 0 0
4 0 0 4 19 0 0 0 0 0 0 0
5 0 0 0 1 3 0 0 0 0 0 0
6 0 0 0 0 0 607 3 0 0 0 0
7 0 0 0 0 0 21 826 0 0 0 0
8 0 0 0 0 0 0 0 620 0 0 29
9 0 0 0 0 1 0 1 0 10 0 3
10 0 0 0 0 0 4 2 0 0 304 0
11 1 1 0 1 0 0 0 0 0 0 971

successfully distinguish different falls based on the correct acceleration direction.
The final activity in knees was poorly recognized, probably due to the short duration
(few seconds) and the lack of this activity in the training data.

6 Conclusion

The paper presented the winning ML method of the Challenge Up: Multimodal Fall
Detection competition. Themethod is tuned for robustness and real-timeperformance
by combining multiple wearable inertial sensors: accelerometer and gyroscope, in
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Table 6 Confusion matrix—challenge up: multimodal fall detection final results

order to recognize activities and detect falls. It includes several steps: data prepro-
cessing, data segmentation, sensor orientation correction, feature extraction, feature
selection, hyperparameter optimization, and training a machine learning model.

During the development of the method we have noted that the orientation of the
sensors varies between users, and even more between different trials. Therefore, we
have developed a method that corrects the orientation of the sensors, i.e., it uses
rotation matrices to correct (rotate) the accelerometers data.

We applied extensive feature extraction and selection procedure. It is a three-step
procedure that selects an optimal subset of features (152 features) from the 12,000
features initially calculated from the raw sensor data.

Finally, to optimally adapt the method to the 3 test users, we have performed an
unsupervised similarity search—that finds the three most similar users to the three
users in the test data. This helped us to tune the method and its parameters to the 3
most similar users as the ones used for the test.

The internal evaluation on the 9 users showed that with this optimized config-
uration the method achieves 98% accuracy. All these steps allowed us to develop
accurate fall detection and activity recognition algorithm, that achieved the highest
results (82.5% F1-score, and 98% accuracy) at the competition and received the first
award.

The method has several limitations. First, it uses 5 wearable sensors, which is
impractical for everyday usage by an elderly person. For the future work, we plan
to focus more on the practical implementation of the method into a commercial fall
detection system. First, we intend to reduce the number of sensors but without losing
accuracy. This way the system will be less intrusive and more user-friendly. Another
improvement in this direction can be achieved by introducing specially designed
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clothes, which will include pockets for the sensors. Additionally, the interaction
between the user and the system should be introduced by using smartphone, smart-
watch, tablet or PC as a medium for showing system’s notifications (fall detected,
system malfunction, etc.), similar to Gjoreski et al. [12].
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Application of Convolutional Neural
Networks for Fall Detection Using
Multiple Cameras

Ricardo Espinosa, Hiram Ponce, Sebastián Gutiérrez,
Lourdes Martínez-Villaseñor, Jorge Brieva and Ernesto Moya-Albor

Abstract Currently one of the most important research issue for artificial intel-
ligence and computer vision tasks is the recognition of human falls. Due to the
current exponential increase in the use of cameras is it common to use vision-based
approach for fall detection and classification systems. On another hand deep learning
algorithms have transformed the way that we see vision-based problems. The Convo-
lutional Neural Network (CNN) as deep learning technique offers more reliable and
robust solutions on detection and classification problems. Focusing only on a vision-
based approach, for this work we used images from a new public multimodal data set
for fall detection (UP-Fall Detection dataset) published by our research team. In this
chapter we present fall detection system using a 2D CNN analyzing multiple camera
information. This method analyzes images in fixed time window frames extracting
features using an optical flow method that obtains information of relative motion
between two consecutive images. For experimental results, we tested this approach
in UP-Fall Detection dataset. Results showed that our proposed multi-vision-based
approach detects human falls achieving 95.64% in accuracy with a simple CNN
network architecture compared with other state-of-the-art methods.

Keywords Deep learning · Fall detection system · CNN · Multiple cameras

1 Introduction

Human Activity Recognition (HAR) has been popularizing on the research commu-
nity, particularly detecting human falls on elderly people. Falls can produce injuries,
bodydamages, fractures, etc.Actually, falls are the second leading cause of accidental
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injury and injury-related deaths on people 65years old and older [1]. “Approximately
28–35% of people aged 65 and over fall each year increasing to 32–42% for those
over 70years of age” [2]. Falls usually cause functional dependencies on elderly
people. Many of these related deaths are caused by a long-laying as a long period of
time where the victim stays immobile on the floor.

Oneill et al. [3] classify human falls in 3 categories depending on the direction:
forward, backward and to-the-side. The most common falls are the forward falls with
38% in men under 65years old and 62% in men older than 65. In the same way, in
women forward falls take place in 62% in women under 65, and 60% in women older
than 65.

In 1987 the Kellogg InternationalWorking Group [4] on fall prevention on elderly
people defined a fall as unintentionally coming to the ground or some lower level
and other than as a consequence of sustaining a violent blow, loss of consciousness,
sudden onset of paralysis as in stroke or an epileptic seizure. A human fall usually
starts with a short free fall period. This causes the acceleration’s amplitude to drop
significantly under the 1G mark. This represents the time when the fall happens. The
fall must stop and it causes acceleration and a peak in the graph. When the amplitude
crosses a maximum limit, suggests a fall [5].

It has been proved that the medical consequences of a fall are highly dependant
on the response and rescue time. Hypothetically, fall detection systems can improve
the response time to medical attention and reduce the medical consequences of a fall.

Thanks to extraordinary advances and research in embedded sensor systems,
mobile devices and microelectronics, Internet of things (IoT) systems allows peo-
ple to interact with technology. This implies access to large amounts of data about
people’s daily actions to be able to perform fall detection systems and to be able for
make possible faster and better assistance to elderly people.

Some of the approaches for fall detection systems are sensors-based, vision-
based and multimodal-based strategies. Sensors-based approaches use ambient,
smart devices andwearable sensors to provide important information as acceleration,
absense / presence, etc. Otherwise, vision-based strategy uses images, as main input,
like: 3D reconstructions of an environment, simple 2D RGB video sequences with
one or multiple cameras, or depth images from 3D depth sensors. Multimodal-based
approaches collect as much information as possible from cameras, microphones,
wearable sensors, ambient sensors, smart devices, and many others and combine all
this information to improve fall detection and classification in a workable way.

There are two principal approaches for detecting activities and falls, analytical
and machine learning methods [6]. Analytical methods can solve fall detection using
threshold algorithms. For example, in a fall, a person usually hits the ground or an
obstacle. This “impact-shock” causes an intense reverse of the acceleration, mainly
on the direction of the trajectory. This change, can be detected by a threshold value. In
these methods, the most difficult task is to adapt detections to different types of falls
and different people, because thresholds are different by person and/or by type of fall
[6]. To attack this problem, there are different strategies like pattern normalization [7]
or correlation-based algorithms [7]. Currently, recent investigations report to choose
the threshold using optimization algorithms [8].
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Otherwise, machine learning methods have been gaining more popularity due to
the flexibility of the algorithms to different subject and types of falls [9]. Some of
the best known supervised learning techniques used for fall detection systems are:
Multi-Layer Perceptron (MLP) [10], Support Vector Machines (SVM) [11], Hidden
MarkovModels (HMM), decision trees, random forest, k-Nearest Neighbors (KNN)
[12], and Convolutional Neural Networks (CNN) [13]; CNN as a deep learning
method.

Recently, deep learning methods have changed and improved the way on how to
board computer vision problems.RegardingCNN, itsmain characteristic considers to
automatically learn features from training data, making a practical automatic feature
extraction for images. CNN has been extensively used on several image processing
problems like in [14] in which authors use deep learning to detect accidents using
optical flow as a feature extraction method and then testing on real videos. In [15],
a single CNN was trained using images directly to classify skin injuries and cancer
withAUC (Area under the curve) of 0.96%.Also, CNNhas been used in fall detection
systemswith a sensor-based approachwith 92.3%accuracy [16] andwith awearable-
based approach with 0.75 AUC.

In vision-based approaches for fall recognition systems, deep learning has been
applied as a successful model. For example, Núñes-Marcos et al. [17] implemented
a CNN to avoid manual feature engineering , letting the convolutional layers of their
system to extract the most important features of the images getting sensitivity and
specificity of 94%. A vision-based approach with CNN has also been implemented
in [18] in which authors use a 3D CNN with videos of people’s kinematics as inputs
achieving 100% accuracy evaluated on different data sets.

Lately, our research group released a public multimodal data set for fall detection,
called UP-Fall Detection Dataset [19]. The data was collected from different sources
of information: wearable sensors, ambient sensors and cameras. Up to now, we
have studied this data set with a multimodal approach [19]. However, the different
techniques and skills required for building and setting a multimodal all detection
system makes it difficult to implement in the real world. Moreover, wearable and
ambient sensors are conditionedby the subject and environmentmaking its portability
difficult. In that sense, we are interested in creating a vision based fall detection
system using its data set and the video recording from the multi-cameras.

Additionally, fall detection systems based on single RGB cameras are often
viewpoint-dependant, according to [20]. This raises the need of new data sets when
a camera is moved to different viewpoints and, especially, different heights. To deal
this issue, different camera viewpoints in a data set collection can help to identify
when a given method has viewpoint-independant properties or not. For that end, a
fall detection system must be reliable regardless of the position of the subject when
falling, respect to the camera.

From the above, this research presents a fall detection system based on a 2D
CNN inference method and multiple cameras. As we’ll describe later, this approach
analyzes images on fixed time window frames extracting features using an optical
flow method that obtains information from relative motion between two consecutive
images from video recordings acquired from cameras in different viewpoints. For
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experimentation, we tested this approach in our public UP-Fall Detection data set.
The results showed that our proposed multi-vision-based approach detects human
falls using a sample CNN network architecture, achieving competitive performance
compared with other methods in the state-of-the-art. Also, it is comparable with the
performance from a multimodal approach.

Even though CNN has been used in fall detection systems with good performance
using a particular data set, Casilari et al. [21] concluded that these systems should
be trained and tested with different data sets due to the different number of sam-
ples, types of falls and different time series performing any fall. In that sense, the
implementation of CNN in multi-cameras vision-based approach, specifically for
the UP-Fall Detection data set, might increase the state-of-the-art of fall detection
systems.

Themain contributions of this work considers: (i) the use ofmultiple cameraswith
CNN for fall detection and classification, (ii) the implementation of this approach in
the UP-Fall Detection Database, and (iii) the competitive performance comparable
with other well-known supervised learning methods. Of what we know, there is just
one work [22] that combines CNN with a multiple camera vision-based approach
to recognize human falls. In contrast with our proposal, authors in [22] use a voting
strategy of the results from independent cameras; while ours use the information
from all cameras in the same machine learning model.

The remaining of the chapter is organized as follows. First, we review and analyze
different approaches for fall detection systems, focusing on vision-based solutions.
Then we present a description of the UP-Fall Detection data set, and we present the
proposal in detail. Later on, we explain the experimentation and include the results
and discussions from this proposal. Finally we conclude our results.

2 Fall Detection Systems

HAR and fall detection systems are hard tasks, and there are several ways to achiev
themdue to themanydifferent approaches proposed in literature. For instance, Lara et
al. [23] and Noury [6] divide Har taxonomy into three general approaches depending
on the source of the information: external, wearable or video sensing. From them,
there are case studies related to sensor-based [24], vision-based [25], smartphone-
based [26], and multimodal-based [27] approaches to tackle human fall recognition,
as described below.

2.1 Sensors-Based Fall Detection Systems

With the increasing technology and accessibility of mobile sensors, fall detection
systems have been designed for real-world purposes. Human activity can be tracked,
monitored and labeled as data coming from different types of sensors on several
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locations in the environment and in the human body. An important application of
a sensor-based approach is detecting abnormal activities from wearable sensors in
determined areas [24]. Then, abnormal activity detection methods can be applied
to constantly track each individual’s movement to check if the person are out of
normal [24]. In [28] using triaxial sensors and SVM as an inference method, the
authors achieved 98.33% accuracy. Or in [29] using acceleration and Euler angles,
we achieved 100% Accuracy, Sensitivity and Specificity. However some disadvan-
tages of heterogeneous sensor networks come from the fact that human activities
usually involves different parts. Moreover, many physiological and bio-mechanical
studies have shown that mist of human activities performing day-to-day are inher-
entlymultimodal [30]. Thus, different types of sensors are required to gather different
data type.

2.2 Wearable-Based Fall Detection Systems

Wearable-based approaches are common solutions for fall detection, taking advan-
tage from wearable technologies due to low cost, live tracking capabilities and small
sizes. In [31] a Shimmer device was used for acquisition and transition data. The
wearable device was placed on the chest scoring 98.8% accuracy using different
machine learning models. In [8], authors used wearable band placed on the wrist
scoring 0.95 Specificity and 0.83 Sensitivity using threshold-based peak recognition
with SVM; for classification, in which they optimized the best threshold value for
different data sets.

Inwearables and smartphone devices, energy storage is a problem to solve because
they require to be on to be able to track information from the subjects. The lifetime
of wearables and smartphone devices is limited due to the capacity of the battery,
and constant charging is necessary preventing the constant tracking of the patient’s
activities [31].

2.3 Smartphone-Based Fall Detection Systems

Nowadays, smartphones have multiple integrated sensors and too much processing
capacity that grow over the years. Smartphones can measure user movements offside
of a controller in a non-intrusive way. Smartphone-based fall detection systems us
smartphone sensors, like gyroscope, tri-axial accelerometer, or altimeter, to achieve
them in a long period of time. For example, a case study using this approach can
be found in [32], in which authors use a smartphone-based tri-axial accelerometer
with statittical time-domain features. Then, they applied main component analysis
methods for feature selection, andfinally they inferred outputswithMLPscoring92%
accuracy. Another example is the work of Vilarinho [33] who combined smartphone
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and smartwatch sensors, using threshold-based techniques and pattern recognition
algorithms for recognizing falls with 63% accuracy and daily activities with 78%
accuracy.

2.4 Multimodal-Based Fall Detection Systems

Data gathering is an important task in fall detection and classification systems,mainly
about ambient sensors, wearables, cameras, microphones, RFID tags, among many
others that could be used for the recognition task. Using wearables sensors is not
able to distinguish a large number of explicit and/or complex human activities, diffi-
culty similar in ambient sensors for context aware. In this regard, multimodal-based
approaches can combine more than one source of data to get more information about
the environment and the user. These approaches make such fall detection and classi-
fication feasible by leveraging selective different modes of sensing in the wide range
of sources [27].

Because of multi-modal approaches comprise many different sources of data
from the subjects and environments, there are some weaknesses as reported in [34]:
(i) many information requires to apply more robust feature extraction and feature
selection techniques, as well as taking on account in machine learning approaches
for different types of input data, making the fall detection system, computationally
expensive and hard task and (ii)multiple sensorswith complex placement on the body
(and the environment) could cause higher costs, practical deployment difficulties, and
obtrusiveness, especially for elderly people.

2.5 Vision-Based Fall Detection Systems.

Traditionally, fall detection systems have been tackled using computer vision and
image processing techniques in window frames of images to classify activities. With
recent progress, in-depth imaging non-invasive sensors produce high-quality deep
images. This information is also analyzed for human tracking, monitoring and user
recognition systems [35–37], and also formonitoring and recognizing daily activities
of the subjects in indoor environments [38].

The majority of vision-based approaches have been working with simple RGB
cameras, web cameras, motion camera systems, or evenKinect [39]. For instance, the
usage of Kinect for fall detection has increasd given that it can obtain 3D information,
like the human pose or even track limbs [39].

Classical vision-based fall detection and classification strategies consist of five
phases [3], as follows: (1) data acquisition from video sequences, (2) feature extrac-
tion from images, (3) feature selection and (4) learning and inference. There are
multple machine learning techniques used in literature, like SVM [40] or random
forest [41]. Zerrouki et al. [38], proposed a fall detection system based on human
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silhouette shape variation in vision monitoring and SVM to identify postures. Then,
they used HMM to classify data into fall and non-fall events. Rougier et al. [42]
tracked the person’s silhouette along with the video sequences.Using shape analyz-
ing methods through the silhouettes was quantified the shape deformation. Finally,
falls were detected from daily activities using Gaussian Mixture Models (GMM).

Vision-based systems can be addressed on two categories: monocular systems
and multi-camera systems. In monocular-based fall detection systems, depends on
a single camera. Moving a camera to different viewpoints would require collecting
new training data for that specific viewpoint and calibrate the camera. However, these
systems can fail because of occluding objects between the target and the camera.
Zhang et al. [43] proposed a model using multiple Kinect devices to achieve that
problem using their won OCCU dataset that was created with occluded and non
occluded falls. Kwolek et al. [28] extracted depth maps about the environment and
the person’s silhouette in combination with 3-axis accelerometers and SVM as a
machine learning technique. In terms of multi-camera fall detection systems, Thome
and Miguet [44] proposed to use a HMM to distinguish falls from a metric image
rectification in eachview.Anderson et al. [45] analyzed the states of 3Dobjects, called
the voxel of a person, obtained from twocameras.All theseworks are able to construct
3D models with multiple cameras in order to reconstruct the environment. This task
is particularly hard because the cameras need to be calibrated to compute properly
3D information. It also presents issues on synchronization of video sequences of each
camera, making it mode difficult do implement than a monocular-based approach.

So, from the point of view of these systems deployment, 2Dmultiple camera are a
better option, mainly for the low cost and ease of implementation. It is also important
to highlight that cameras are already installed in many public places, such as airports,
shops, elderly care centers, that can be used for fall detection systems as well.

There are many works using CNN on monocular vision-based fall detection sys-
tems with excellent results [16, 18, 46, 47]. Moreover, there are many works using
a multi-camera approach with different classical machine learning models or other
algorithms [48–52] and there is only one work using multi-camera an do CNN in
fall detection systems [22].

2.6 Vision-Based Fall Detection Systems Using CNN

Recent investigations about fall recognition systems have been taking advantage
from the deep learning success on recognition and classification tasks using regular
images, deep images, infrared images, etc. Deep learning CNN works searching
relevant features in images, avoiding the feature engineering task and providing a
versatile automatic feature extraction depending on its architecture of convolutional
and inference layers [53].

For instance, some or the recent works about fall detection systems reported in
literature consider [54] in which authors use a rule-based filters before an input con-
volutional layer combining the convolutional layer output with optical flow features
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to choose a better input for the inference phase of its 3D CNN architecture, scor-
ing 92.67% accuracy. In [55], authors use infrared (IR) images and a 3D CNN to
find features on three color channels on real-home situations, taking into account a
spatio-temporal image information, scoring 85% accuracy on test video sequences.

There are many works using CNN on monocular vision-based fall detection sys-
tems with excellent results [16, 18, 46, 47]. Moreover there are several works using
multi-camera approaches with different classical machine learning models or other
algorithms [48–52] and there is only one work using multi-camera and CNN in fall
detection systems [22].

3 Data Set Description

In this work, we used a public dataset calledUP-Fall Detection dataset [19]. This data
set was collected with information of 17 young healthy subjects with no impariments
(9 males and 8 females) ranging from 18–24 years old, the mean height of 1.66m and
mean weight of 66.8kg performing 11 acivities and 3 trials per activity, six simple
human daily activities and five different types of human fall using a multimodal
approach, with wearable sensor, ambient sensors, and vision devices. The dataset as
well as the feature dataset are publicly available.

The activities and falls stored in this data set are summarized inTable1.All the data
was colleced using 14 devices: 5 Mbientlab MetaSensor wearable sensors collecting
raw data from a 3-axis accelerometer, 3-axis gyrscope, and ambient light sensors;
1 electroencephalograph (EEG) NeuroSky MindWave headset was used to measure
the raw brainwave signal from its unique EEG channel located at the forehead; as
context-aware sensors, we insalled 6 infrared sensors as a grid 0.4m above the floor
of the room, to measure the changes in interruption of the optical devices; and lastly,
2Microsoft LifeCamCinema cameras at 1.82m above the floor, for a lateral view and
a frontal view in relation to the subject. All these devices were located as shown in
Fig. 1. For more information about the UP-Fall Detection data set, see reference [19].

In this work, we only used information from the two cameras in the data set,
taking advantage of the multiple cameras distributions. So, we aim to implement
a fall detection and classification system using two cameras, and to compare its
performance when only using a monocular-based approach. To this end, CNN will
be the classification model.

4 Description of the Proposal

In this work, we adopted the traditional workflow for fall detection systems [23]
that consists of the following steps: (i) data collection, (ii) windowing, (iii) feature
extraction, and (iv) learning and inference. It is shown in Fig. 2. All this steps were
implemented with Python 3.7.3.
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Table 1 Activities performed by subjects, adapted from [19]

Activity ID Description Duration (s) Abbreviation

1 Falling forward using
hands

10 FH

2 Falling forward using
knees

10 FF

3 Falling backwards 10 FB

4 Falling sideward 10 FS

5 Falling sitting in an
empty chair

10 FE

6 Walking 60 W

7 Standing 60 S

8 Sitting 60 ST

9 Picking up an object 10 P

10 Jumping 30 J

11 Laying 60 L

Fig. 1 Distribution of the sensors. a Wearable sensors and EEG helmet in the human body. b
Layout of ambient sensors and multiple cameras. Adapted from [19]

Fig. 2 Traditional workflow for fall detection systems
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4.1 Data Collection

One of the most challenging phases in the traditional workflow for fall detection
systems and in general, machine learning problems is the data collection task. Nowa-
days, deep learning techniques require large amounts of data to be trained and tested
correctly and other factors as the number of individuals, their physical characteris-
tics, their divers characteristics in terms of gender, age, height, weight, and health
conditions [23].

As we explained in the Sect. 3, we use the UP-Fall detection dataset to achieve
data collection. To summarize, this data contains information of 17 young subjects
performing 11 different activities, 5 falls and 6 activities. For this, we used the
information from two RGB cameras in different viewpoints, taking images from the
subjects [19].

The images are available in http://sites.google.com/up.edu.mx/har-up/ that con-
tains images from 17 subjects with 3 trials per activity performing 11 activities and
different kind of falls. Each package contains multiple images of its respective activ-
ity and trial with 2 csv files, U and V matrices that were extracted from rgb images
using optical flow algorithm obtaining U (Horizontal apparent movement) and V
(Vertical apparent movement) as shown in Fig. 3.

4.2 Windowing

Windowing approaches in fall detection systems are commonly used to segment time
series of performed falls. The segmentation is the process of diving sensor signals
into smaller data segments. This process has been performed in different ways in the
activity recognition field and fall detection systems. Segmentation techniques can
be categorized into three groups, namely activity-defined windows, event-defined
windows and sliding windows [56].

We adopted a sliding windows windowing approach to capture temporal depen-
dencies between samples. In this case,we split all data intofixed length timewindows,
for each activity and fall. Our implementation uses one-seconds windows with 0.5

Fig. 3 Downloading data structure

http://sites.google.com/up.edu.mx/har-up/
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seconds of overlapping. This way we can analyze the fall on each window extracted,
simpler than analyzing every capture. The result of this step are multiple 1 second
window length series of images to be processed in the next step.

We segmented the data into 1-second windows using a Python Data Analysis
Library called pandas to help us compress the data. We created 0.5-second windows,
thenwe added 2 consecutive window to get our 1-secondwindow. To this, we divided
its values by the number of images we have on this 1-second window.

Once extracted information from packages described in data collection section
we used the same arrays extracted from zip packages U and V as arrays given to
store all the file names for our images. Then we used d as our temporal variable
to organize these file names into the corresponding window, we called this variable
Master. This variable contains an array of windows, each of this window contains
the files that have to go in a specific window. The implementation code in python
3.7 is shown in Fig. 4.

Then we created a variable to store data in each 0.5 second window called
CSVMaster. We read each array from Master and saved the sum of all the tables.
The implementation code in python 3.7 is shown in Fig. 5.

Finally we added each consecutive segment to add to 1 second, dividing the result
by the number of images in both segments to record the average in each window.
The implementation code in python 3.7 is shown in Fig. 6.

Fig. 4 Organizing data

Fig. 5 Creating 0.5 window images
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Fig. 6 Mixing data to create 1-Second windows

4.3 Feature Extraction

Feature extraction is a general method in which you develop a transformation of
the input space into a lower dimensional space that preserves most of the relevant
information in order to improve data analysis [57]. In fall detection systems, exist
multiple techniques depending on the data type to extract information, in vision-
based approaches optical flow algorithms provide very important information about
the aparent movements in images and has been applied with success in combination
of CNN in multiple works as [54] and [46].

For feature extraction, eachwindow frame is pre-processed to get information that
could provide enough information to describe the activity. In this study case, the opti-
cal flow algorithm [19, 58] was used as visual features extracted from each camera.
This algorithm obtains the displacements between two window frames, which allow
us to distinguish movements and directions without taking into account the static
features in the image. The obtained features are the horizontal and vertical relative
movements of the pixels on the images,U and V [58]. The resultant,D, corresponds
to the magnitude of the relative movement, as in Eq.1, where the resultant matrix
images are the same size as the original window images. 640 × 480 in our case.

Di, j = √
U 2i, j + V 2i, j (1)

To this phasewe have allU and V images collectedwith 1 secondwindowwith 0.5
second overlapping. The next step that we applied in order to extract relevant features
from each windowed image was calculate the euclidean distance from U (horizontal
features) and V (Vertical features) obtaining one image gray scale or with apparent
movement horizontally and vertically in each image as shown in Fig. 7.

Once we had all the resultant images from euclidean distances between U and
V matrices in order to reduce the computational effort before training and testing
phase we reduce the size of the resultant images using a opencv python extension
with resize function with 80% respect original resultant images as shown in Fig. 8.

4.4 Learning and Inference

In literature [6], there are many ways to achieve this phase, two of them are machine
learning and deep learning algorithms. This step looks to train and test the output from
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Fig. 7 Euclidean distance function

Fig. 8 Resizing function

feature engineering to classify the performed fall with inputs from the environment
sensors, wearable sensors and in this particular work, from multi-camera vision-
based approach.

In deep learning, CNN has revolutionized the way computer vision problems are
treated due to the discovery of structure representation in big data sets. This method
has improved drastically the state-of-the-art in image processing [53].

But finding a suitable architecture of the CNN is a hard task [53]. Literature
has reported multiple types of network architectures, depending on the problem
to solve. For example, nowadays, many network structures for image recognition
and classification problems have been reported like: AlexNet [59], ClarifaiNet [60],
GoogLeNet [61] and VGGNet [62]. All these networks have proved to be efficient
in their own problem domains; also, they can be used as pre-trained models so that
users can reduce the time to re-train them. However, these complex architectures,
might be improved.

In this work, we designed a CNN with three convolutional layers and three 2D
max-pooling layers for feature extraction and three fully connected layers for fall
detection. Then we fixed the size of all the images to 38 × 51 pixels, the fixed size
constraint comes only from fully connected layers, which exist deeper into the stage
of the network [63]. The CNN receives the magnitudes, D, calculated from U and
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Fig. 9 Our proposal of CNN architecture to multi-camera vision-based fall detection system

V, which were converted to gray-scale images size 38 × 51, representing the optical
flow features extracted. Then, these images come to the input layer that comprises of
64 filters of convolution with a kernel size of 3 × 3. The second layer has 128 filters
and the same kernel size, and the third, 256. After each convolutional layer, 2D max-
pooling layers are employed to synthetize output convolutions. Then, the results are
inputted to three fully connected layers, i.e. 64 rectified linear units (ReLU) in the
first layer, 128 ReLU in the second and 2D softmax layer with a single output. The
2D softmax layer is employed to perform fall detection classes. Figure9 explains the
representation of the proposed CNN (Table 2).

As described, the UP-Fall Detection data set is integrated from 11 different activ-
ities performed by 17 subjects, three trials per activity. In order to train the CNN, we
split the data taking trials 1 and 2 for each activity and subject as training data (67%),
and trial 3 as testing set (33%). the training data set containing 42,000 gray-scale
images of size 38 × 51 with optical flow as pre-processing; while the testing data
set containing 21,000 gray-scale images with the same pre-processed optical flow.
For training purposes, we trained during 50 epochs, using the Adam optimizer and
binary cross-entropy loss function, as defined in Eq.2 where p is the prediction of
the network and t is the ground truth.

loss(p, t) = −(t ∗ log p + (1 − t) ∗ log 1 − p) (2)

5 Experimentation

To analyze our proposal, the experiments were carried out in three branches: (i)
experiments to test our CNN model and compare it with classical machine learning
methods SVM (Support Vector Machines), RF (Random Forest), MPL (Multi-Layer
Perceptron), KNN (K-Nearest Neighbors), (ii) experiments to compare monocular
with multi-camera vision-based fall detection system approaches, and (iii) test our
proposal not only for detection, but also in classifying activities and falls using the
multi-camera vision-based approach
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Table 2 Cross-validation for convolutional architecture layers

CNN
Architecture

Accuracy (%) Precision (%) Sensitivity
(%)

Specificity
(%)

F1-score (%)

64 64 64 95.40 86.28 83.76 97.54 95.40

64 64 128 95.27 88.26 80.34 98.03 84.11

64 64 256 94.90 83.67 83.57 96.99 83.62

64 128 64 94.62 82.36 83.27 96.71 82.81

64 128 128 94.66 86.49 77.83 97.76 81.94

64 128 256 95.15 85.74 82.35 97.46 84.14

64 256 64 94.32 85.86 76.00 97.69 80.63

64 256 128 94.92 86.45 79.91 97.69 83.05

64 256 256 94.90 91.18 74.48 98.67 81.98

128 64 64 95.17 86.21 82.11 97.58 84.11

128 64 128 94.80 96.02 97.89 78.02 96.95

128 64 256 94.79 97.07 96.74 84.18 96.91

128 128 64 95.64 96.91 97.95 83.08 97.43

128 128 128 95.44 96.19 98.49 78.87 97.33

128 128 256 95.05 97.88 96.22 88.70 97.04

128 256 64 94.28 96.32 96.92 79.91 96.62

128 256 128 94.51 97.00 96.47 83.82 96.74

128 256 256 95.19 96.84 97.48 82.78 97.16

256 64 64 94.81 96.16 97.76 78.81 96.95

256 64 128 94.26 96.25 96.97 79.54 96.61

256 64 256 94.38 96.34 97.03 80.03 96.68

256 128 64 94.75 96.19 97.64 79.05 96.91

256 128 128 94.72 97.63 96.08 87.36 96.85

256 128 256 94.40 96.66 96.71 81.86 96.68

256 256 64 94.10 96.31 96.71 79.91 96.51

256 256 128 94.57 96.36 97.24 80.09 96.80

256 256 256 94.09 96.19 96.83 79.18 96.51

Bold indiactes the best combination of layers in our CNN architecture cross-validation

In this experiment, we used training and testing data sets with information from
two cameras. We decided to use the data from one camera per model, and then, use
both cameras at the same time [23]. For windowing, 1-second fixed time lengths with
0.5 seconds of overlapping were used. Images are treated as gray-scale and optical
flow implementation as feature extraction. We resized images to 38 × 51, and we
used a benchmark between classical machine learning methods (SVM,MLP, RF and
KNN) and the CNN depicted in Fig. 9.
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These experiments’ purpose is to explore and compare the performance between
monocular vision-based and multi-camera vision-based fall detection systems, and
also to make a benchmark of classical machine learning methods and CNN for fall
detection using the latter approach.

To measure the performance of our model, we used accuracy, sensitivity, speci-
ficity, precision and F1-score as metrics. As shown in Eqs. (3)–(7) where TP refers
to True Positives, TN to True Negatives, FP to False Positives and FN to False
Negatives.

accuracy = (TP + TN )

2TP + TN + FP + FN
(3)

precision = TP

TN + FP
(4)

sensitivity = TP)

TP + FP
(5)

specificity = TN )

TN + FP
(6)

F1 − score = 2 ∗ precision ∗ sensitivity

precision + sensitivity
(7)

All these experimentswere implemented in Python 3.7.3 using the sklearn3 frame-
work for classical machine learning techniques and keras4 for its GPUsmanagement
[64].

5.1 Results and Discussion

The experimental results are described in this section. Then a discussion from the
analysis is described bellow.

Fall Detection Using Conventional Machine Learning Models. We conducted an
experiment using the optical flow-based features from both cameras at the same time.
We trained four conventional machine learning models: SVM, RF, MLP and KNN.
Table3 shows the meta-parameters setting for these models. We build the models
using 67% training data and the remaining 33% for testing data. Table4 summarizes
the results using the visual features extracted on 1-second windows length with 0.5
seconds of overlapping.

Conventional machine learning models can’t predict human falls with good per-
formance on accuracy, precision, sensitivity, specifity or F1-score as we can see on
Table4. KNN seems to be the best performer based on the F1-score (15.27%). SVM
performs the best on acurracy with 32.40%. In the end, these machine learning mod-
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Table 3 Parameter settings used for training in the classification models

Classifier Parameters

SVM kernel = “radial basis function”
kernel coefficient =1
c = 1
shrinking = 1
tolerance = 0.001

RF minimum samples split = 2
minimum samples leaf = 1
estimators = 2
bootstrap = 1

MLP activation function = “reLU”
hidden layers = 100
penalty parameter = 0.0001
batch size = min(200, numsamples)
shuffle = 1
initial learning rate = 0.001
tolerance = 0.0001
exponential decay(first moment) = 0.9
exponential decay(second moment) = 0.999
regularization coefficient = 0.000000001
solver = “stochastic gradient”
maximum epochs = 10

KNN neighbors = 5
leaf size = 30
distance metric = “euclidean”

Table 4 Performance obtained by the classical ML model

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

SVM 32.40 14.03 14.10 90.03 14.0649

RF 29.30 14.45 14.30 91.26 14.3746

MPL 30.08 9.05 11.03 93.65 9.9423

KNN 27.30 16.32 14.35 90.96 15.2717

els achieved an average accuracy of 29.77%. From the results, we might assume that
conventional machine learning methods using windowing and the sklearn3 library
can be found at: extraction, as explained above, are not robust enough. In order to
improve this performance, we considered to implement CNN as described later.

Fall Detection Using CNN In this experiment, we trained three different CNN
models: (i) a CNN model using visual features from the lateral view, (ii) a CNN
model using visual features only from the front view, and (iii) a CNN model using
the visual features from both cameras.
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Table 5 Performance of the CNN models using lateral view, front view and both views
Data Method Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

(Cam1)
Lateral view

Proposed CNN 95.24 95.24 97.72 81.58 97.20

(Cam2)
Frontal view

Proposed CNN 94.78 96.30 97.57 79.67 96.93

(Cam1 &
Cam 2)

Proposed CNN 95.64 96.91 97.95 83.08 97.43

(Cam1 &
Cam 2)

VGG-16 CNN 84.44 84.44 100 0 91.56

The results are included in Table5.We can see that the performance is very similar
in any of the combinations. In comparison, the lateral view is slightly better than the
frontal one [42]. However, the lateral view shows less specificity (79.67%) than the
frontal one (81.58%), which it could lead in misclassification. The combination of
both views maintains the output performance of the lateral view. This is important
because if occlusion happens in a camera, it will be feasible to detect falls using
only one camera, as supported on literature [42]. On the other hand, we made an
experiment using the VGG-16 CNN architecture using UP-Fall.

With this, we compared other multi-camera vision-based fall detection systems
[36, 40, 46] with out proposed method, considering that were implemented using
machine learning methods.

To compare, we used the multi-camera vision-based database, Multicam [65].
This data set consists of 24 performances in which 22 trials have at least one human
fall and the remaining 2 containing confused events. Each performance, recorded
from 8 different views. The same setup is used for all the videos, with some furniture
reallocation [65]. For training purposes of our proposal, we selected two viewpoints
(lateral and frontal), from this dataset, splitting training (67%) and testing (33%)
sets. Table6 summarizes the performance results in sensitivity and specificity [40,
46, 66].

As shown in Table6, it is seen that our proposed method can be competitive in
terms of the state-of-the-art, mainly about sensitivity. In addition, our method can
handle fall detection using two cameras, in contrast to the eight cameras utilized in
the other approaches. Moreover, the network architecture of our proposal (Fig. 9) is
very simple compared to other works. For example, Núñez-Marcos in [46] used a
VGG-16 architecture modified to receive inputs, authors in [66] occupied PCA to
extract features and SVM for classification, and in [40] authors presented a multi-
variate exponentially weighted moving average (MEWMA) and SVM with 2 steps
for classification (see Table4). In that sense, our system has good performance, tak-
ing into consideration its much smaller time for training and the simplicity of its
architecture.
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Table 6 Comparing between our proposal and other multi-cameras vision-based fall detection
systems reported in the state-of-the-art, using the Multicam data set

Proposal Method Sensitivity (%) Specificity (%) Cameras (%)

Wang et al. [66] SVM 89.20 90.30 8

Wang et al. [40] SVM 93.70 92.00 8

Núñez et al. [46] VGG-16 CNN 99.00 96.00 8

Ours (Combined) CNN 97.95 83.08 2

Table 7 Comparing between our proposal and other multi-cameras vision-based fall detection
systems reported in the state-of-the-art, using the Multicam data set

Data Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%)

Ours 82.26 74.25 71.67 77.48 72.94

Martínez-
Villaseñor, et
al. [19]

95.00 77.70 69.90 99.50 72.80

Daily Activities and Fall Classification Using CNN Lastly, we conducted an exper-
iment for daily activities and fall classification using our proposal. In this case, every-
thing recorded in the UP-Fall Detection data set was taken into account to convert
the CNN into a multi-class classifier, as in Table1.

We applied our proposal using both cameras, and the results, unlike the perfor-
mance obtained in [19] using the same data set, are represented in Table7. As shown,
our proposal is slightly worse than the multimodal-based approach results presented
by Martínez-Villaseñor et al. [19]. This was expected since a multimodal approach
(wearable sensors, EEG helmet and camera) is better than a single modality like
ours. It is also important to notice that the F1-score in both approaches are similar,
72.94% for our proposal, and 72.80% for the multimodal approach. From the results
presented in Table5, the performance obtained by our proposal can be considered
competitive (similar F1-score), its easier to implement (due to the number of sen-
sors) and less intrusive (wearable sensors), in comparison with themultimodal-based
approach in [19].

6 Discussion

The proposed multi-camera vision-based all detection and classification systems
offers a comparable solution to the state-of-the-art methods. These results support the
evidence about: the predictable power of our proposed fall detection systemusing two
viewpoints (97.43% of the F1-score), the out-performance of conventional machine
learning methods (SVM, RF, MLP and KNN) using optical flow based features, the
usage of less cameras, with acceptable performance, than other reported in the state-
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of-the-art (97% sensitivity and 80% specificity), and a similar performance (70.8◦%
of F1-score) comparable to a multimodal approach (72.80% of F1-score).

As seen previously, the advantages of our proposal can be pointed as follows.
The multi-camera approach offers robust solutions recognizing falls although when
a occlusion happens in a viewpoint, as long as the camera focuses on the subject.
This can be observed in our proposal in Table5 that reports similar results when
using one camera or both. Our proposal offers a simple CNN architecture (Fig. 3)
and low computational cost of implementation. Due to the vision-based nature of our
approach, an important point to discuss, is the invasion of privacy by the constant
video surveillance. We take off the relevant information about the fall in the images
using the optical flow calculated from the video sequence, therefore the privacy of the
person is not affected because this fall data, do not contain any personal information.

It is important to consider some limitations of our proposal while using it. A
vision-based approach is subjected to the quality of the image, the position of the
camera, and the presence of the object. In addition, privacy issues should be addressed
before the implementation: unless this is a limitation, the original images taken from
the cameras, shouldn’t be stored, after all they only have to be used for extracting the
optical flow features. However, it remains as an important drawback since cameras
are always taking videos of the subjects. In addition, computational complexity in
terms of memory and time processing is important. This in fact hinders a real-time
fall detection system to be scalable [23].

From the samples from the UP-Fall dataset, 42,958 training sampled arranged
in 1-second windows were analysed and 21,038 testing samples also in 1-second
windows were employed in our experiments. The results were competitive respect
if the state-of-the-art in both detection (Tables5 and 6) and classification (Table7)
tasks. It is important to remember the age of the subjects who performed falls and
activities to build the UP-Fall Detection dataset used in this work. This dataset was
made with information of 17 young healthy subjects without any impairment (9
males and 8 females) from 18–24 years old. Nevertheless in [67], it demonstrates
that using a dataset built just by young people does not have significant differences
like testing in elderly people. With this in mind, we consider that out approach can
be applied on real situations considered as future work.

To this end, the results demonstrated that our proposal is competitive compared to
the state-of-the-art in multi-camera vision-based approaches for detection systems,
and also it is competitive as a fall classification model (Table6), even contrasting to
a multimodal-based approach as reported in [19].

7 Conclusions

In this paper, we presented a multi-camera vision-based fall detection and classifi-
cation system taking advantage of CNN. In addition, we combined the CNN models
with visual features extracted from sequences of images using the optical flow esti-
mation. In this work, we used the UP-Fall Detection data set as a case study. We
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conducted different experiments for: benchmarking our proposal with conventional
machine learning models, analyzing the performance of our proposal in single and
multi-cameras vision-based approaches, and extending our model for fall classifica-
tion as well.

From the experimental results, we concluded that our proposed multi-camera
vision-based fall detection and classification system outperforms conventional
machine learning methods, saves computation due to the simple CNN architecture,
and it is competitive with the state-of-the-art and multimodal-based approaches.

Lastly, future works considers to implement this approach in a real-world ambient
assisted living system, and to analyze and propose improvements to issues on privacy,
pervasiveness, changes in environmental conditions and oclusion. In addition,wewill
consider to test our system in a real situation.
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Approaching Fall Classification Using
the UP-Fall Detection Dataset: Analysis
and Results from an International
Competition

Hiram Ponce and Lourdes Martínez-Villaseñor

Abstract This chapter presents the results of the Challenge UP – Multimodal Fall
Detection competition that was held during the 2019 International Joint Conference
on Neural Networks (IJCNN 2019). This competition lies on the fall classification
problem, and it aims to classify eleven human activities (i.e. five types of falls and six
simple daily activities) using the joint information from different wearables, ambient
sensors and video recordings, stored in a given dataset. After five months of compe-
tition, three winners and one honorific mention were awarded during the conference
event. The machine learning model from the first place scored 82.47% in F1-score,
outperforming the baseline of 70.44%. After analyzing the implementations from
the participants, we summarized the insights and trends of fall classification.

Keywords Ambient assisted living ·Machine learning · Competition · Human
fall detection · Abnormal behavioral analysis

1 Introduction

Falls are frequent especially among old people and it is a major health problem
according toWorld Health Organization [2]. Fall detectors can alleviate this problem
and can reduce the time in which a person who suffered a fall receives assistance.
Recently, there has been an increase in fall detection system development based
mainly in sensor and/or context approaches. An important challenge reported in
literature [3] is the lack of publicly available datasets that enable comparison between
techniques. In that sense, we provide this dataset in the benefit of researchers in the
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fields of wearable computing, ambient intelligence, and vision. In addition, new
machine learning algorithms can be proven with this dataset.

In this competition, participants can to do experiments considering different com-
bination of multimodal sensors in order to determine the best combination of sensors
with the aim of improving the reliability and precision of fall detection systems. It
is also important for the human activity recognition and machine learning research
communities to be able to fairly compare their fall detection solutions.

This competition can be interesting in particular to the growing research commu-
nity of human activity recognition and fall detection. Moreover, it is also attractive
to any person interested in solving signal recognition, vision, and machine learn-
ing challenging problems given that the multimodal dataset provided opens many
experimental possibilities.

2 Description of the Competition

The Challenge UP – Multimodal Fall Detection competition, or simply the com-
petition, was co-located during the 2019 International Joint Conference on Neural
Networks (IJCNN 2019). The awarding ceremony of the competition was held on
July 15th, 2019 in Budapest, Hungary. However, it was opened from December 3rd,
2018 to April 26th, 2019. The details about this competition are described following.

2.1 Aims and Scope

The competition aimed to classify eleven human activities (i.e. 5 types of falls and
6 simple daily activities) using the joint information from different wearables, am-
bient sensors and video recordings, stored in a given dataset. This classification was
restricted to be done by any, possibly hybrid, machine learning models.

To do so, the competition was scheduled in several steps, mainly for training
the model with labeled data and for testing the model with unlabeled data. For
convenience, participants were able to use as much information as they wanted. In
that sense, the competition dealt with different engineering and computational skills
from the participants, through the sensor to image signal processing, the fusion of
them, and the abilities to design and deploy different intelligent systems to reach the
goal.

2.2 Data

For this competition, we used the UP-Fall Detection dataset [1]. This is a public and
large dataset mainly for fall detection and classification that includes 12 activities
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Table 1 Statistics of the subjects, adopted from [1]

Subject ID Age Height (m) Weight (kg) Gender

1 18 1.70 99 Male

2 20 1.70 58 Male

3 19 1.57 54 Female

4 20 1.62 71 Female

5 21 1.71 69 Male

6 22 1.62 68 Male

7 24 1.74 70 Male

8 23 1.75 88 Male

9 23 1.68 70 Female

10 19 1.69 63 Male

11 20 1.65 73 Female

12 19 1.60 53 Female

13 20 1.64 55 Male

14 19 1.70 73 Female

15 21 1.57 56 Female

16 20 1.70 62 Male

17 20 1.66 54 Female

and three trials per activity. Subjects performed 6 simple human daily activities as
well as 5 different types of human falls. These data were collected over 17 subjects
(see Table1) using a multimodal approach, i.e. wearable sensors, ambient sensors
and vision devices. The consolidated dataset (812GB), as well as, the feature dataset
(171GB) is publicly available in: http://sites.google.com/up.edu.mx/har-up/. At the
time of the competition, the dataset remained private and until April 27th, 2019.

The data was collected over a period of four weeks, in the Faculty of Engineer-
ing, Universidad Panamericana in Mexico City, Mexico. During data collection, 17
subjects (9 males and 8 females) of 18–24years old (i.e. mean height of 1.66m and
mean weight of 66.8kg), were invited to perform 11 different activities, as shown in
Table2. Falls and daily activities are not overlapped. So, each trial contains infor-
mation of one of these activities. All the sequences of data was labeled manually. In
addition, an unknown/other activity was labeled for other unrecognizable activities
different from the previous ones [1].

This dataset comprises five Mbientlab MetaSensor wearable sensors collecting
raw data from the 3-axis accelerometer, the 3-axis gyroscope and the ambient light
value. These wearables were placed in the left wrist, under the neck, at right pocket
of the pants, at the middle of waist (in the belt), and in the left ankle. Also, one
electroencephalograph (EEG)NeuroSkyMindWave helmet was included tomeasure
the raw brainwave signal from one EEG channel sensor located at the forehead. For
ambient sensors, the dataset retrieved information from six infrared sensors placed, as
a grid, 0.40 m above the floor of the room, to measure the changes in the interruption

http://sites.google.com/up.edu.mx/har-up/
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Table 2 Types of activities and falls in the dataset

Type Description Activity ID

Fall Forward using hands 1

Forward using knees 2

Backward 3

Sideward 4

Attempting to sit in an empty
chair

5

Daily activity Walking 6

Standing 7

Sitting 8

Picking up an object 9

Jumping 10

Laying 11

Other Unknown 20

of these devices. Lastly, two Microsoft LifeCam Cinema cameras were located at
1.82m above the floor, one for lateral view and the other for frontal view, related
to the motion of the activities. Table3 summarizes all the sensors installed for data
collection. The dataset was down-sampled to 18Hz for data synchronization and
coherence purposes [1]. Lastly, Fig. 1 shows the placements of wearables, ambient
sensors and cameras while collecting the dataset [1]. For further details about the
UP-Fall Detection dataset, see [1].

2.2.1 Training Data

For the training data, we exposed the raw dataset from 9 subjects with IDs: 1, 3, 4,
7, 10–14; with all three trials per activity. These data also contained all class labels
(activity IDs). The training data set represented 70% of all data considered for this
competition. No missing values were presented in the training set.

2.2.2 Testing Data

For the testing data, we exposed the raw dataset from 3 subjects with IDs: 15–
17; with all three trials per activity. In this case, data did not contained the class
labels. This obeys to the goal of the competition, and the labels of this portion of
data remained privately for the participants. In the evaluation step, these labels were
used for evaluating the performance of the classification models developed by the
participants. No missing values were presented in the testing set.
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Table 3 List of devices for measurements, adopted from [1]
Device ID Device name Channel name Units Signal ID

1 Wearable ankle X-axis accelerometer g 1

Y-axis accelerometer g 2

Z-axis accelerometer g 3

Roll gyroscope deg/s 4

Pitch gyroscope deg/s 5

Yaw gyroscope deg/s 6

Luminosity Lux 7

2 Wearable
pocket

X-axis accelerometer g 8

Y-axis accelerometer g 9

Z-axis accelerometer g 10

Roll gyroscope deg/s 11

Pitch gyroscope deg/s 12

Yaw gyroscope deg/s 13

Luminosity Lux 14

3 Wearable waist X-axis accelerometer g 15

Y-axis accelerometer g 16

Z-axis accelerometer g 17

Roll gyroscope deg/s 18

Pitch gyroscope deg/s 19

Yaw gyroscope deg/s 20

Luminosity Lux 21

4 Wearable neck X-axis accelerometer g 22

Y-axis accelerometer g 23

Z-axis accelerometer g 24

Roll gyroscope deg/s 25

Pitch gyroscope deg/s 26

Yaw gyroscope deg/s 27

Luminosity Lux 28

5 Wearable wrist X-axis accelerometer g 29

Y-axis accelerometer g 30

Z-axis accelerometer g 31

Roll gyroscope deg/s 32

Pitch gyroscope deg/s 33

Yaw gyroscope deg/s 34

Luminosity Lux 35

6 EEG headset Raw brainwave signal µV 36

7 Infrared 1 No interruption False(0)/true(1) 37

8 Infrared 2 No interruption False(0)/true(1) 38

9 Infrared 3 No interruption False(0)/true(1) 39

10 Infrared 4 No interruption False(0)/true(1) 40

11 Infrared 5 No interruption False(0)/true(1) 41

12 Infrared 6 No interruption False(0)/true(1) 42

13 Camera 1 Lateral view 640 × 480 px 43

14 Camera 2 Frontal view 640 × 480 px 44
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Fig. 1 Layout of the sensors and cameras used in the UP-Fall detection dataset, adopted from [1]

2.3 Classification Task

The main task of the competition is to classify the falls and activities of 3 subjects
(testing data set). This is a challenging task since there are diverse of subjects (see
Table1) and they performed activities in different ways. Moreover, the best combi-
nation of sensors, feature selection and feature extraction procedures is a challenging
task in human activity recognition.

2.4 Metrics and Evaluation

The F1-scoremetricwas used in the evaluation of the competition. F1-score considers
the average precisionµ and average recallµ of the test as shown in (1),where average
precisionµ computes in average, of all activities and falls, of the number of true
positives over the sum of true and false positives; and average recallµ computes in
average, of all activities and falls, of the number of true positives over the sum of
true positives and false negatives. The greater and close to 1, the better the metric.

F1score = 2× precisionµ × recallµ
precisionµ + recallµ

(1)

For evaluation, we asked the participants to send the class estimations of the 3
subjects of the testing set. However, these estimations are done in 1-second time
window frames. In that sense, the estimated classes were calculated as the most
frequent class in 1-second. Similarly, the labels that we retained were also condensed
in the most frequent class per 1-second windows without overlapping.
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2.5 Competition Policies

The following conditions of participation were required during the competition.
These policies applied for winning the competition, and the event was divided into
several steps through five months of competition; as described below. Participation
required complying with the rules of the challenge, published in the official website
of the competition (https://sites.google.com/up.edu.mx/challenge-up-2019/).

2.5.1 Conditions of Participation

Prize eligibility was restricted by US government export regulations and the host
country laws (Budapest, Hungary). The organizers, sponsors, their students, close
family members (parents, sibling, spouse or children) and household members, as
well as anypersonhavinghad access to the truth values or to any information about the
data or the challenge design giving him (or her) an unfair advantage, were excluded
fromparticipation.However, a disqualified personmight submit one or several entries
in the challenge and request to have them evaluated, provided that they notify the
organizers of their conflict of interest. If a disqualified person submitted an entry,
this entry was not be part of the final ranking and did not qualify for prizes.

The participants were aware that organizers reserve the right to evaluate for scien-
tific purposes any entry made in the challenge, whether or not it qualifies for prizes.
For participation, the participants registered through the Registration Form displayed
in the official website. Teams or solo participants were allowed for entering to the
competition.

2.5.2 Awards

The three top ranking participants qualified for awards (travel award, prize and award
certificate). To compete for awards, the participants were asked for sending a short
paper briefly describing their methods and the codes used for getting the results.
There was no other publication requirement. However, this edited book intended to
publish the main results of the competition, from the point of view of the participants
and the organizers.

2.5.3 Timeline

The competition opened from December 3rd, 2018 until April 26th, 2019. During
the five months period, the competition was divided into several steps as shown
in Fig. 2. These dates comprised the registration opening (December 3rd, 2018);
the training set release (January 14th, 2019) for analyzing and training models by
participants; the testing set release (March 25th, 2019) for testing the trained models;

https://sites.google.com/up.edu.mx/challenge-up-2019/
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Fig. 2 Timeline of the competition

the submission deadline (April 26th, 2019) for submitting the testing results; the short
paper submission deadline (May 17th, 2019) for submitting the complimentary paper
describing the way to achieve the challenge; the final decision (June 28th, 2019) for
presenting the shortlisted participants; and lastly, the awarding ceremony (July 15th,
2019) for presenting the winners of the competition during the conference IJCNN
2019.

3 Results from the Competition

For this competition, 22 registrations were done (11 as individuals and 11 as teams).
Participants were from 14 different countries: Australia, Brazil, China, Estonia,
France, Germany, India, Iran, Ireland, Macedonia, Saudi Arabia, Taiwan, Togo and
United States of America.

After the results and short paper submission, we announced the three winners of
the competition based on the F1-score metric:

• First place: Hristijan Gjoreski (and team) [82.47%]
• Second place: Egemen Sahin [34.04%]
• Third place: Patricia Endo (and team) [31.37%]
• Honorific mention: Vuko Jovicic [60.40%].

The First place team used the sensor signals from the wearables. They firstly
corrected the orientation of the sensor signals due to the fact that wearables were
placed without any particular orientation. After that, they trained three machine
learning models, but random forest was the best model that performed 82.47% in
F1-score. Figure3 shows the confusion matrix of the testing results.

The Second place individual tackled the challenge using firstly a standardization
of the sensors data (i.e. wearables, ambient sensors and brainwave helmet). Then, he
trained 1-dimensional convolutional neural network. After this process, the model
performed 34.04% in F1-score. Figure4 shows the confusion matrix of the testing
results.
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Fig. 3 Confusion matrix of the testing results from First place

The Third place team employed a bidirectional long short-term memory net-
works model to achieve the fall classification problem. In this regard, they performed
31.37% in F1-score. Figure5 shows the confusion matrix of the testing results.

Lastly, the Honorific mention individual obtained a great result in terms of the
F1-score; but, he did not submit the short paper. In this regard, we did not know how
he achieved the performance of his model. For that reason, this individual could not
be one of the winners. Figure6 shows the confusion matrix of the testing results.

Although we did not provided a baseline for the participants, we tested four con-
ventional machine learning models: support vector machines (SVM), random forest
(RF), multilayer percepron (MLP) and k-nearest neighbors (KNN). This benchmark
was published in [1]. We reproduce the baseline in Table4. As shown, the result from
the First place is the only one that outperforms the baseline, while the result from
Honorifc mention is equivalent to the KNN performance.
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Fig. 4 Confusion matrix of the testing results from Second place

Table 4 Baseline using four conventional machine learning models. Values reported are the cor-
responding F1-score evaluation, in terms of mean and standard deviation

Model F1-score (%)

RF 69.36± 1.35

SVM 55.82± 0.77

MLP 70.44± 1.25

KNN 60.51± 0.85
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Fig. 5 Confusion matrix of the testing results from Third place

4 Concluding Remarks

This competition aimed to propose a multi-class classification model for the problem
of human fall classification. In addition, the competition was proposed for challeng-
ing participants to apply their computational and machine learning skills in a public,
large and multimodal dataset. After the competition ends, we can conclude the fol-
lowing remarks.

In terms of the machine learning models used, it can be seen that conventional
machine learningmodelswere employed (e.g. RF, decision trees andKNN). But also,
more recent models like convolutional neural networks or bidirectional long short-
term memory networks were implemented. Moreover, in terms of the data modality,
wearable-based approaches are the most frequent used (i.e. in this competition in
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Fig. 6 Confusion matrix of the testing results from Honorific mention

all the cases). Ambient sensors were selected in just one attempt. But, cameras
were not used by any of the participants. The latter can be associated to the fact
that video processing considers complexity and different skills that many of the
practitioners do not have. Also, a multimodal approach was not done by any of
the participants. It is worth noting that multimodal offers better performance, but it
is complex to approach and computationally expensive. In terms of the workflow
in data manipulation, participants considers a similar pipeline mainly consisting
on: data pre-processing, (temporal) segmentation, feature engineering and training
machine learning models. To this end, selection of the best machine learning models
and pipelines have to be studied further. Right now, quantitative metrics leads the
decision-making process; but this should not be the only criteria for selectingmachine
learning models and/or strategies to approach fall classification.
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On the other hand, the UP-Fall Detection dataset fulfilled the expectations of
practitioners in the field of human activity recognition and fall classification. In this
regard, this dataset masks the data acquisition problem by giving clean and coherent
sensor and camera signals. It can also be used for benchmark machine learning
models, as well as different modalities approaches. It is important to highlight that
this dataset is publicly available, so practitioners in the field can access and use it
as required. Lastly, this dataset provides an important test-bed of machine learning
models that can improve the skills of users to develop other applications like in
robotics, human-machine interaction, ambient assisted living, among many others.

Finally, fall classification is still an open problem in computer sciences and health-
care, and different open issues have to be faced. For instance, subjects do not perform
actions in the same way; but, underlying patterns can be extracted for further analy-
sis. There is some limitation in data since target population is difficult to recruit (e.g.
population size, age, type of impairments, etc.). Also, there is highly unbalanced data
sets (falls vs. no-falls). In terms of the sources of information, detection of the best
placement of sensors/cameras (and features) is still an issue. Moreover, limitations
in resources like computations, memory or budget are constant obstacles in the de-
ployment of these fall classification systems. Of course, there is a need for real-time
implementations that should be studied and enhanced. Furthermore, data privacy is
still an open concern of fall classification mainly because sensors and cameras are
intrusive in daily lives.
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Reviews and Trends on Multimodal
Healthcare

This part comprises a set of review and original contributions in the field of multi-
modal healthcare, taking into account human fall detection and classification. Also,
these works present trends on ambient assisted living and health monitoring tech-
nologies considering the user-centered approach.



Classification of Daily Life Activities
for Human Fall Detection: A Systematic
Review of the Techniques
and Approaches

Yoosuf Nizam and M. Mahadi Abdul Jamil

Abstract Human fall detection systems are an important part of assistive technol-
ogy, since daily living assistance are very often required for many people in today’s
aging population. Human fall detection systems play an important role in our daily
life, because falls are the main obstacle for elderly people to live independently
and it is also a major health concern due to aging population. There has been sev-
eral researches conducted using variety of sensors to develop systems to accurately
classify unintentional human fall from other activities of daily life. The three basic
approaches used to develop human fall detection systems include some sort of wear-
able devices, ambient based devices or non-invasive vision based devices using live
cameras. This study reviewed the techniques and approaches employed to device
systems to detect unintentional falls and classified them based on the approaches
employed and sensors used.

Keywords Human Fall · Daily life activities · Assistive technology · Elderly care

1 Introduction

Assistive technology is an emerging research area since daily living assistance are
very often required for many people in today’s aging populations including disabled,
overweight, obese and elderly people. The main purpose of assistive technology is
to provide better living and health care to those in need, especially elderly people
who live alone. It is mainly aimed at allowing them to live independently in their
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own home as long as possible, without having to change their life style. In order, to
provide better living for them, it is important to have continuous monitoring systems
in their home to inform the health care representatives of any emergency attendance.
Among such monitoring systems, fall detection systems are increasing in interest
since statistics [1, 2] has shown that fall is the main cause of injury related death
for seniors aged 79 [3, 4] or above and it is the second common source of injury
related (unintentional) death for all ages [5, 6]. Furthermore, fall is the biggest threat
among all other incidents to elderly and those people who are in need of support
[3, 7–16]. Accordingly, fall can have severe consequences for elderly people, espe-
cially if not attended in a short period of time [17]. Similarly, unintentional human
fall represents themain source ofmorbidity andmortality among elderly [18]. There-
fore, accurate human fall detection systems are very important to support independent
living. Since it had been proved that the medical consequences of a fall are highly
dependent on the response and rescue time of the medical staff [19, 20], which is,
in fact, only possible with an accurate and reliable fall detection systems that can
provide fall alerts. Such systems are also vitally important, since there may be a case
where someone losses consciousness or are unable to call for help after a fall event.
Additionally, the likelihood of recovering from a fall event has also shown to be
reduced if the person remain longer unattended [21]. Therefore, highly accurate fall
detection systems can significantly improve the living of elderly people and enhance
the general health care services too.

There has been plenty of researches conducted in this area to develop systems and
algorithms for enhancing the functional ability of the elderly and patients [19]. This
in fact, led to the improvement in the technologies used to develop such systems and
thus enhanced the detection ratio to make such systems adaptable and acceptable.
Recent researches conducted on human fall monitoring approaches for elderly peo-
ple were categorized into wearable sensor based, wireless based, ambiance sensor
based, vision and floor sensor/electric field sensor-based approach to distinguish the
different fall detection methods employed [22]. This categorization of fall detection
methods, reflects the characteristics of themovement that leads to fall. Therefore, it is
also important to recognize those characteristics of movement in order to understand
the existing algorithms used to detect falls and to device new algorithms to enhance
the performance of such systems.

The various methods that has been used to detect human fall such as using a
camera to identify a human fall posture or using various sensors to detect fall,
shares some common features. From the analysis, the different fall detectionmethods
based on various sensors were divided into three main approaches [23]. These three
approaches are further divided into different sub-categories depending on the sensor
and algorithm used to distinguish the detection methods. In this regard, the three
basic approaches are wearable based device, camera based systems and ambience
based devices [19, 23, 24] as shown in Fig. 1.

As shown in Fig. 1, wearable based device is further divided into two sub-
categories based on the fall detection methods used. They are inactivity (motion
based) and posture based approaches. Similarly, ambient/fusion based devices are
divided into two types; those that used floor sensors or electric field and those that
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Fig. 1 Hierarchy of fall detection methods

used posture based sensors to detect fall. Camera or vision based approach is divided
into four different sub-categories.

Wearable based devices use accelerometers and gyroscopes which are embedded
into garments or any wearing gadgets such as belts, wrist watches, necklace or jack-
ets. The basic concept used to classify human fall is either identifying the posture
or through activity/inactivity detection. Ambient/fusion based devices are a type of
non-invasive and non-vision based approach. It either use the concept of posture
identification through various sensors or uses floor vibration or electric sensors to
detect the subject hitting the sensor. On the other hand, vision based (non-invasive)
approach uses live cameras or multiples of such cameras to accurately detect human
falls through utilizing the analytical and machine learning methods based on a com-
puter visionmodel. They utilized various approaches to classify human fall including
the changes in body shape between frames, activity/inactivity detection of the sub-
ject, three-dimensional (3D) analysis of the subject using more than one camera and
generating a depth map of the scene with the help of depth sensors. Except the depth
sensor basedmethod, the other types in vision based approaches useRGB (RedGreen
Blue) cameras and therefore they are subject to rejection from users due to privacy
concerns. They are also rejected due to the high cost of the systems, installation and
camera calibration issues. A depth image-based approach could solve the privacy
issues arising from video based systems. Studies representing this approach can also
be divided into three types based on the approaches used. The first category repre-
sents those works that employed joint measurements or used human joint movements
from depth information to detect fall. The second category includes the works that
depended only on depth data with any supervised and unsupervised machine learn-
ing to classify human fall from other activities of daily life and the third category
includes studies that make use of wearable devices along with the depth sensor. This
study presents a review of these fall detection techniques. From the classification of
daily life activities to the different approaches used to identify unintentional human
fall are reviewed in the following sections.
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2 Common Daily Life Activities and Their Associated Falls

Classification of human activities is an important research topic in the field of com-
puter vision and rehabilitation. It is also increasingly in use for many applications
including intelligent surveillance, quality of life (such as health monitoring) devices
for elderly people, content-based video retrieval and human-computer interaction
[25–28]. There has been plenty of researches conducted to automatically recognize
human activities, yet it remains a challenging problem. Many approaches are used to
identify how human moves in the scene. Techniques employed includes tracking of
movements, body posture estimation, space-time shape templates and overall pattern
of appearance [29–34].

Identification of characteristics of daily life activities is important in order to
classify them, especially for fall detection. The characteristics of the activities can
help to identify any uniqueness or dissimilarities between activities which in turn
will support in distinguishing them. The characteristics of activities are basically
derived in terms of height change pattern, rate of change of velocity, deviation of the
height and position of the subject during and after the movement. This identification
of characteristics of daily activities together with the pattern and the rate of change
is important to classify them, especially unintentional human fall. Pattern of change
is referred to the variation of subject’s height with respective to floor during any of
the activity and the rate of change is the changes in velocity of the subject during that
period. Deviation of height is the similar pattern of change of height except that this
is the statistical standard deviation of that changes in height pattern. The changes in
the pattern itself refers the height of the subject in different frames. In some cases,
acceleration can help to identify the difference, where the changes in velocity does
not clearly show the variation of speed during the movement.

Generally a human fall is an unintentional or involuntarily event that causes a
person to rest on the ground or any other lower level object [35]. Basically, falls
have varying meaning which may be caused from either intrinsic or extrinsic factors.
Intrinsic are those that had caused from any physiological reasons and extrinsic
are from the environment or other hazards. Tenetti et al. defined a fall from non-
hospitalized geriatric population as “an event which results in a person coming to
rest unintentionally on the ground or lower level, not as a result of a major intrinsic
event (such as stroke) or overwhelming hazard.” [36]. By adapting this definition,
fall for inpatient, acute, and long-term are described as “unintentionally coming
to rest on the ground, floor, or other lower level, but not as a result of syncope
or overwhelming external force.” [37]. Therefore, this study interchangeably uses
human fall or unintentional fall to refer to any such unintended descend to the floor or
on any object with or without injury which may had cause from any factors (intrinsic
or extrinsic).

Some of the activities of daily life that are closely related to human fall are
shown in Table 1, along with the characteristics considered in the classification of
the events. The characteristics of each of the activity is divided into static and dynamic
components. Dynamic component describes the change in subject’s height and rate
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Table 1 Characteristics of some of the daily life activities and falls

Activities Characteristics

Static Dynamic

Sitting on chair Hip center and head vertical,
angle formed from hip center
to head and hip center to knee
<90°

Height drop slowly straight to
down
Velocity increase slightly to
straight down

Stand up from sitting on chair Posture while standing
Key joint will be straight
(head to torso then hip to the
joints of the two limbs)

Height will increase slowly at
the beginning and gradually
the key joint of the subject
will be straight
Velocity increase to up (at the
beginning the speed will be
slower and will increase as
the body is lifted)

Sitting on floor Hip center and head vertical,
hip center, left and right knee
on floor

Height drop slowly down to
floor from left, right or in
front of the subject
Velocity increase slowly
down to floor from left, right
or in front of the subject

Stand up from sitting on floor Posture while standing
Key joint will be straight
(head to torso then hip to the
joints of the two limbs)

Height will increase slowly at
the beginning and gradually
the key joint of the subject
will be straight
Velocity increase to up (at the
beginning the speed will be
slower and will increase as
the body is lifted)

Lying on floor Hip center and head
horizontal, all joints below or
equal previous knee height

Height drop slowly down to
floor from left, right or in
front of the subject
Velocity increase slowly
down to floor from left, right
or in front of the subject

Stand up from lying of floor Posture while standing
Key joint will be straight
(head to torso then hip to the
joints of the two limbs)

At the beginning, height will
increase vertically up to any
direction until the body is
balanced to the hip or using
the arms and the legs. After
that the height will increase
straight up
The instant velocity will
increase slowing at the
beginning and will be at rest
for a while and then increase
rapidly

(continued)
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Table 1 (continued)

Activities Characteristics

Static Dynamic

Lying on bed Hip center and head
horizontal, all joints above or
equal to previous knee height

Height drop slowly down to
left, right, back or in front of
the subject
Velocity increase slowly
down onto left, right, back or
in front of the subject

Fall from standing All joints below or equal
previous knee height

Height drop rapidly down to
left, right, back or in front of
the subject
Velocity increase rapidly
down onto left, right, back or
in front of the subject

Walking Height will fluctuate slowing
due to errors
Instant velocity will fluctuate
depending on the walking
speed to the direction of
walking

Fall from chair All joints below or equal
previous knee height

Height drop rapidly down to
left, right, back or in front of
the subject
Velocity increase rapidly
down onto left, right, back or
in front of the subject
The duration for both height
drops, and the velocity is
smaller than fall from
standing

Fall while trying to sit on
chair

All joints below or equal
previous knee height

Height drops slowly and all
of a sudden it drops rapidly
Velocity increases slowly and
then very fast until the body
rests on floor

Fall while trying to sit on
floor

All joints below or equal
previous knee height

Height drops slowly, then it
subsides and drops rapidly
Velocity increases slowly and
comes to normal, then very
fast until the body rests on
floor

(continued)
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Table 1 (continued)

Activities Characteristics

Static Dynamic

Fall from bed All joints below or equal
previous knee height (some
joints may not be detected)

Height drop rapidly down to
left, right, back or in front of
the subject
Velocity increase rapidly
down onto left, right, back or
in front of the subject
The duration for both height
drops, and the velocity is
smaller

Fall while sitting on floor All joints below or equal
previous knee height

Height drop rapidly down to
left, right, back or in front of
the subject
Velocity increase rapidly
down onto left, right, back or
in front of the subject
The duration for both height
drops, and the velocity is
smaller

of change of velocity during the activity. Static component will describe the position
of the subject at the end of the activity, in terms of joint angles and joint position
with respect to other joints.

Falls can be divided into many types from the characteristics of movements that
causes falls. The work presented by Yu, divided falls into four types [24]. They are
fall from sleeping (bed), fall from sitting (chair, on floor or any object), fall from
walking or standing on the floor and fall from standing on a support such as ladder or
any such tools. All the four types of falls do share some common characteristics even
though it has significant differences [19]. This study is concerned with the first three
types of fall, because the last type of fall is not common amongst elderly people since
they normally occur among workers or people doing household jobs. The existence
of fall like characteristics in normal daily life activities such as similarities in crouch
and lying on floor with fall is the main challenge that the researchers are facing in
developing systems to classify falls from human activities.

The different approaches and methods of fall detection mentioned do share a sim-
ilar general framework [24]. Some of the fall detection methods used only one sensor
indicator with a threshold while others used complicated algorithms and image pro-
cessing to detect falls. The only distinguishing factor among them lies on the sensors
used, number of sensors and their detection algorithms. Such as data acquisition
can vary from single sensor to multiple sensors to sense one indicator and different
cameras working together to collect data [24]. The framework followed in the three
basic types of fall detection also differ from the methods of architectural design and
communication between inter components.
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3 Overview of Fall Detection Approaches

Most of the previous academic researches on fall detection had based their work
on some sort of wearable devices with embedded sensors to identify posture and
motion of the body. The sensors were either placed on garments or are in the form
of wearable devices. Different types of sensors were used to make such devices and
hence there are variety of methods to detect falls.

Among them accelerometer is the most extensively used sensor to realize human
fall. They make use of the measure of the acceleration of the body to identify any
potential fall activity. Apart from that there were some works conducted on deter-
mining falls using the human posture movements. Body orientation as posture was
used to detect fall using either posture sensors or multiple of accelerometers [38, 39].
Combination of accelerometer and gyroscopic data also proved to determine falls
more accurately than using a single sensor. Accelerometer can provide kinetic force
while gyroscope can help to estimate the current posture [40]. The combination of
two sensors can also help to identify any false measurement from anyone of the
sensor.

Wearable based devices, basically employs the unique pattern of motion, the fall
possess to distinguish it from other activities of daily life. Therefore such devices
are prone to give false alarm by triggering fall alarm from any irregular motions of
a daily life activity [24, 41]. The sensor position and the fusion of data techniques
used also greatly affects the preformation of such systems [42, 43]. Similarly, it is
also very likely that the user may forgot to wear the device during their daily life
activities [44, 45]. Especially elderly people, because they are likely to have weaker
memory. Moreover it is often rejected by the elderly due to the difficulties of the
wearing such devices or garments. Regardless of these issues, they are popular for
the advantages of been cheap, readily available, and easy to setup and operate.

Ambient based methods shown in Fig. 1, basically used non-invasive sensors for
developing fall detection systems. This approach usually used array of sensors to
identify falls through pressure sensing, vibrational data, IR sensor and single far-
field microphone [46–50]. Similarly like wearable based approach, they do possess
several disadvantages. Since it is mostly based on pressure sensor which is very
prone to measure weight of all objects and thus generates high false alarms. Unlike
wearable devices, it is less disturbance to the users and some of the devices like floor
vibration based devices are fully non-invasive. Similarly like wearable devices it is
very cost effective and does not require high installation costs [46, 48].

In overall, most of the wearable sensor based devices cannot distinguish fall from
sitting especially if it is accelerometer based. Similarly, it is very often rejected by
the wearer due to the difficulty of wearing such belts or garments and discomforts
associated within it. Ambient based devices are also prone to generate high false
alarms mainly from the pressure sensors which measure the pressure of everything.

On the other hand, vision based devices are fully non-invasive and are based
on computer vision to identify human from the scene and detect falls. They used
image processing to segment human subject from the scene and employmathematical
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models to classify human activities. As a result, they are very accurate in identifying
human falls than the other two approaches and they are fully non-invasive to the user.
On the other hand, such systems are rejected by the users due to privacy concerns.
Consequently, such systemswere subject to the physiological effects on the users due
to the recordings of their daily life activities. A brief review of the previous studies
from the three basic approaches used for developing human fall detection systems
were discussed in the following sub-sections.

3.1 Wearable Based Techniques

The basic approaches used to develop fall detection using wearable sensors are
discussed in the following sub-sections.

3.1.1 Accelerometer Based Devices

Among the wearable devices, body posture andmotion recognition using accelerom-
eter is themost extensively usedmethod to realize a fall. They used themeasure of the
acceleration of the body with respect to the position where the sensor is placed. This
accelerometric data was then used to detect any potential fall activity. The accelera-
tion data from triaxial accelerometers worn on the waist, wrist, and head were used
in many studies to monitor for fall events [51–54]. Some of the studies employed
machine learning such as Hidden Markov Model (HMM) [55] and Support Vector
Machine (SVM) [56, 57] on the accelerometer data for fall detection. One study
used discrete wavelet transformation (DWT) to process the collected data from the
accelerometer placed in shoulder position of a jacket [58]. While another study used
a personal server for controlling the data acquired from multiple biomedical sensors
to detect fall event [59]. Smartphones are also used to take benefits of the integrated
sensors for fall detection [60, 61]. Kangas et al., presented a study to determine
simple threshold for an accelerometry based parameters for fall detection [62].

Some studies used vertical velocity thresholding [63] or vertical acceleration from
piezo electric accelerators [64, 65] to detect human fall events. Acceleration and
angular velocities were also used to differentiate real fall events from other normal
daily life activities [66, 67]. Another study presented a wireless sensor node with tri-
axial accelerometers to identify the body acceleration for monitoring daily activities
[68]. A sensor network based fall detection was also used, to monitor the user with
complete privacy and security [69]. Chen et al. created a wireless low power sensor
network with small, non-invasive low power motes (sensor nodes) for fall detection
[70].

The changes in body motion and body position were also used for fall detection
[71, 72]. Rapid impact and body orientation based fall detection proposed by Zheng
et al. used a two stage fall detection algorithm which can locate the wearer and
send alarm [73]. The changes in body orientation was also used to identify negative
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acceleration for fall detection [74]. Another study described the use of IoT on a
sensor node with an accelerometer the data is transmitted to fog layer [75]. The IoT
are also increasing in use in recent days with the development of the new techniques
and smart sensors [20].

3.1.2 Posture Sensor Based Devices

There are some works conducted on determining fall using the posture of the subject
or posture movements. Body orientation as posture is used to detect fall using either
posture sensors or multiple accelerometers. Combination of tri-axial accelerometers
and gyroscopes were also used to identify human behavior and posture of the subject
such as the study proposed by Baek et al. which used the two sensors as a necklace
sensor node for fall detection [76]. Two studies employed set of sensors to identify
the movement and posture of the subject for fall detection [38, 77]. Kaluza et al.
presented a posture reconstruction ideology for fall detection algorithm by locating
the wireless tags which were placed on body parts (sewn on clothes) such as hips,
ankles knees, wrists elbows and shoulders. This fall detection algorithm used accel-
eration thresholds along with velocity profiles. Acceleration was derived from the
movements of the tags [39].

Another body posture based fall detector proposed by Sudarchan et al. used a
trixial accelerometer placed on the lumbar region to study the tilt angle. They used
the changes in acceleration in three axes to find the body posture [78]. While Kangas
et al. used a waist worn tri-axial accelerometer, transceiver and microcontroller to
develop a new fall detector prototype based on fall associated impact and end posture
[79]. Another study used a multi-level data fusion framework on multiple sensor
nodes [80].

3.1.3 Accelerometer and Gyroscope Based Devices

Combination of accelerometer and gyroscope data has also proved to determine fall
more accurately than any one of the sensor alone. As discussed, accelerometer can
provide kinetic force while gyroscope can help to estimate the current posture. The
combination of two sensors can also help to identify any false measurement from
anyone sensor. Hwang et al. used this concept to propose real time monitoring ambu-
latory system for human fall detection [81]. Nyan et al. also used 3D accelerometer
and 2D gyroscope worn on thigh which was based on Body Area Network (BAN)
to prevent from fall related injuries by inflatable airbag for hip protection before the
impact. The system was based on the concept that thigh segments will not exceed a
certain threshold angle to side and forward in normal daily activities except during
a fall event [40]. Another study presented a novel fall detection system using same
two sensors to recognize four kinds of static postures: standing, bending, sitting and
lying. Motion between these static postures were considered as dynamic transitions
and if the transition before lying posture is not intentional, a fall is detected [82].
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Using the same two sensors, a physical activity monitoring system was presented
by Dinh et al. The wearable device detects the physical activities using 3-axial
accelerometer, a 2-axial gyroscope and a heartbeat detection circuit. [83]. On the
other hand, Bourke et al., used a bi-axial gyroscope sensor mounted on the truck to
differentiate fall fromnormal daily activities. Fall was determined frommeasurement
of pitch and roll angular velocities with a threshold-based algorithm [84].

In the studies discussed above, a fall is distinguished from other normal daily life
activities using the unique pattern of motion the fall possess. Therefore, it is prone
to generate false alarm by triggering a fall event from a motion of any other similar
movement such as lying on floor from standing. More ever it is often rejected by the
elderly due to the difficulty of wearing the devices or garments. Irrespective of this,
it does have the advantages of been cheap, easy to setup and operate.

3.2 Ambient Based Techniques

This approach usually used array of sensors to identify falls through pressure sensing,
vibrational data, IR sensor and single far-field microphone. They make use of the
ambient noise including vision, audio and floor vibration caused from any potential
fall activity [85].

One study used array of vibration sensors on the floor to identify fall by analyzing
location data [46]. The methods used was based on the perception that a human
fall will always cause a vibration pattern on the floor and implies that the vibration
generated from fall is significantly different from normal daily activities and at the
same it will be different from the vibration generated by objects falling on the floor.
Livak et al. based their method on the floor vibration and acoustic sensing for fall
detection. The detection was based on the detection of vibration and sound signal
from an accelerometer and a microphone with advanced processing techniques. The
proposed system could detect falls with a high accuracy for distance up to 5 m and
system is adaptive that it could be calibrated to any kind of floor and room acoustics.
It was also free from ambient noise because the algorithm had to detect a vibration
event in the first stage. Results from the testing database showed a sensitivity of 95%
and a specificity of 95% [86].

A pressure sensor was also used to design a bed exit detection apparatus by using
bladder or other fluid carrying devices in fluid communication. This is particularly
a patient presence detection system that enabled the care giver to get alerted about
both the presence and absence of the patient on patient carrying surface. Especially
whether the patient was sitting upright or were leaning, falling forward or falling
sideways [87].

The other non-invasive sensor based approach was the use of IR sensor to locate
and track a thermal target in the sensor’s field of view such as the study proposed by
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Sixsmith et al. which was based on pyroelectric IR sensors placed on wall for detect-
ing fall [47, 48]. A wireless sensor network with array of sensors and event detection
and modalities and distributed processing for smart home monitoring application
was also used for fall detection [49].

Audio signal from a single far-field microphone was also used to detect human
falls in the home environment, distinguishing them from competing noise, by using
audio. A study modeled each fall or noise segment using a GMM super-vector to
distinguish them frombackgroundnoise and classify the audio segments into falls and
other types of noise using SVM built on GMM super-vector kernel [50]. One study
used three radar signal variables to detect falls along with an unsupervised multi-
linear feature extraction method [88]. The use of WiFi Channel state information is
also an emerging non-invasive approach for fall detection. It is does has the advantage
of being ubiquitous and low cost compared to the previous radar based approach [89].

Ambient approach too possesses several disadvantages like wearable devices.
Since it is mostly based on pressure sensor which is very prone to measure weight of
all objects, thus generates high false alarms. Unlike wearable based devices, it is less
disturbance to the users. Similar like wearable based devices it is very cost effective
and does not require high installation costs.

3.3 Vision Based Techniques

Vision or camera based devices are increasingly in use due to its multiple advantages
over wearable and other non-invasive sensor based devices. Some of the reasons
includes the capabilities of these cameras to detect multiple events simultaneously
and relief from the wearing difficulties of wearable devices such as garments for fall
detection. Most importantly the recorded video from camera can be used for verifica-
tion after a fall event. Although vision based approach do possess the disadvantages
of not preserving the users’ privacy, it is very commonly employed in many research
works. Selected previous works on normal color camera or vision based devices are
briefly reviewed in the following sub-sections.

3.3.1 Inactivity Approach

With this approach, a fall is detected based on the inactivity period on the floor.
Camera or motion detector tracks the person to obtain motion traces and based on it,
a fall is determined. The orientation change of the body was used to detect inactivity
and if inactivity occurs in certain context, a fall is detected [90].

One study, demonstrated the usefulness of unusual inactivity detection as an indi-
cation for fall detection. The proposed method enables inactivity outside the usual
zones of inactivity such as chairs or beds to be identified. The combination of thiswith
body pose and motion information provided important information for fall detection
[91].
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3.3.2 Shape Change Approach

The main perception with this approach is that the shape of a person will change
from standing to lying if a fall occurs. One study used a Hidden Markov Model
(HMM)based fall detectionwhereHMMusedvideo features to differentiate fall from
walking. A second HMM based approach used audio features to differentiate falling
sound from talking [92]. Another HMM-based algorithm used multiple features
extracted from silhouette: height of bounding box, magnitude of motion vector,
determinant of covariance matrix and ratio of width to height of bounding box of
person [93]. Thome andMiguet proposed robust Hierarchical HiddenMarkovModel
(HHMM) based algorithm to detect fall, where HHMM is used to model the motion.
Many improvements are possible including automating the rectification processes
usingHough transfer for detecting sets of parallel lines and computing the orthogonal
vanishing points [94].

Another method, to detect falls on the floor using multiple cameras presented by
Auvinet et al. evaluated the variation of the person’s height for fall detection. The
advantages of proposed system with multiple camera were larger common field of
view and detection of an occlusion in one camera could be dealt from the other camera
[95]. An alternative method used, 3D shape of body extracted from multiple cam-
eras to detect fall. This multi-camera vision system for detecting and tracking peo-
ple employs warping people’s silhouette technique to exchange visual information
between overlapped cameras when camera handover occurs [96].

A single wide-angle camera based method used the angle between the projected
gravity vector and the line from feet to head of the human and normalized size of the
upper body for fall detection [97]. Another study used a rule based algorithm with an
Omni-camera and used context information for fall detection. Fall was determined
based on the ratio of width to height of the bounding box of body in the image [98,
99]. One study demonstrated a machine learning framework for fall detection and
daily activity classification using acceleration and angular velocity data from two
public datasets. They tested the performance of artificial neural network (ANN), K-
nearest neighbors (KNN), quadratic support vector machine (QSVM) and ensemble
bagged tree (EBT) in recognizing the activities such as falling, walking, walking
upstairs, walking downstairs, sitting, standing lying using acceleration and velocity
data [100].

3.3.3 3D Head Motion Analysis

The principle behind this approach is that during a human fall, verticalmotion is faster
than the horizontal motion. Rouger et al. developed fall detector using monocular
3D head tracking. The method presented was based onMotion History Image (MHI)
and changes in human shape. The detection method was based on the fact that the
motion is large when a fall occurs. Therefore, the system first detects a large motion
and if a motion is detected then the shape of the person in the video sequence are
analyzed. In this stage the concept used is that during a fall, the human shape changes
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and at the end of the fall the person is usually on the floor for few second and with
less body movements [101].

Vision based approachwas themost reliable technique for fall detection compared
to the other approaches [96, 99, 101]. If individual different sub-categories are com-
pared, inactivity detection was simple in terms of processing and hence they are less
reliable. Shape detection algorithms was more reliable because body shape detection
could give more accurate information about fall than head detection. The 3D body
shape detection usedmore camera and required complex computing. The recent trend
in fall detection is the use of depth sensor for human detection and movement recog-
nition. The three techniques discussed in vision based approach namely inactivity
detection, shape change and 3D head motion analysis could be implemented with a
single depth sensor.

3.4 Review of Depth Sensor Based Approach

The use of depth sensors for fall detection, can be further broaden into three sub-
categories depending on the approach employed to device the systems, as illustrated
in Fig. 2. The differences between them is only the fall detection algorithm employed
and the method used to generate potential fall alert which starts the fall confirmation
process. The first category represents those works that employed joint measurements
or used human joint movements from depth information to detect fall. The second
category includes those that depended only on depth data with any supervised and
unsupervised machine learning to classify human fall from other activities of daily
life. The works that make use of an inertial devices (wearable devices) along with the
depth sensor and employs either machine learning or joint data for the classification
of human activities is discussed under the third category in Sect. 3.4.3.

Fig. 2 Hierarchy of depth map based methods
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Thefirst and the second approach (shown inFig. 2) uses only depthmaps generated
from the sensor while the third approachmakes use of wearable device alongwith the
depth data to improve the accuracy and cover the areas not visible to the depth sensor.
From the study, it was found that the only option to fully utilize the benefits of being
non-invasive and to achieve the confidence of the users is to use only depth images.
Since the use of wearable devices along with depth sensor violates the concept of
non-invasive. Thus, makes it also subject to rejection from users due to the wearing
difficulties and other drawbacks of wearing devices.

The techniques employed in those that used only depth images (the first and the
second approach inFig. 2) to classify humanactivities are basedon jointmeasurement
and movement for fall detection. The first sub-category of the first approach (depth
data) signifies the works that used fixed thresholding on the skeleton data or on
extracted human joints to detect fall. The second and third sub-category in this
approach represents those works that used an adaptive threshold and a combination
of fixed and adaptive thresholds respectively.

The third approach shown in Fig. 2, which used wearable device along with the
depth images is also classified into two sub-categories. The first category represents
those that used joint measurement methods on the skeleton data or extracted human
joints and a classifier on the accelerometer data. The second category includes those
that used machine learning either on the accelerometer data and or on the depth
images for the classification of human fall.

3.4.1 Joint Measurement and Movements Based Approaches

This section discusses on the works that had based their systems only on depth
information. Including those that used skeleton data from depth sensor and those that
used mathematical models and algorithms to detect fall by either extracting human
subject or tracking the movements. Most of the studies used distance of key joints
and velocity for fall detection. Rougier et al. used human centroid height relative to
the ground and body velocity. They have also dealt with occlusions, which was a
weakness of previous works and claimed to have a good detection results with an
overall success rate of 98.7% [102]. While another study used distance and velocity
as two algorithms [103]. The distance and y-coordinate of joints were also used as
two algorithms to detect falls, where a fall is detected by thresholding the distance
between these joint to the floor, if the floor is visible or detected [104]. If the floor
plane is not detected, then a second algorithm is used which depends on the skeleton
coordinate system. The second algorithm detects a fall if the y-coordinates of the
joints mentioned are less than a given threshold.

Another study presented a distance and velocity based algorithm with four main
steps, where fall detection is based on the vertical speed and the distance from the
ground tohead and the centroid [105].Distance and angle basedmethodwasproposed
by Yang et al. The characteristics of the shape of the moving objects is illustrated
by an ellipse which is computed using a set of movement functions. The parameters
calculated are the centroids of ellipses, the angles between the ellipses and the floor
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plane. Fall is detected when the distance and angle between the ellipses and floor
plane are lower than some threshold [106].

A combination of the skeleton and RGB data from Kinect sensor was also used
in a way that if skeleton data is available, the algorithm uses vertical velocity and
the height to the floor plane of the human center. Otherwise, the motion map from
the gray scale images which is represented by an improved kernel descriptor is input
to a linear Support Vector Machine (SVM). This fall detection flowchart is based
on skeleton and RGB features (which is switchable) depending on the availability
[107]. On the other hand, Zhang S. et al. used three velocity features and a head to
hip height difference with an adaptive threshold [108].

The velocity of the joint hitting the floor was also used to distinguish the fall
accident from sitting or lying down on the floor. An abnormal action is detected
if the distance between any of the joints to the floor is smaller than an adaptive
threshold and any of the vertical velocities with respect to floor is larger than a
velocity threshold at the same time. Fall is detected if the distance between the head
and floor is lower than a recover threshold for certain period of time which is also
adaptive to the height of the person [109].

Only one study used distance parameter for fall detection. They used distance
from head to floor plane which is calculated in every following frame and a fall is
indicated if an adaptive threshold has reached. The centroid height of the human
subject is used as the second decision to confirm fall event. Fall event is confirm
only when the distance from head to floor (head height) and the distance between
silhouette centroid to floor (centroid height) is lower than the thresholds at the same
time [110].

Similarly, one study based their fall detection mainly on velocity components.
They also proposed a two-stage based fall detection where in the first stage, the
vertical state of the subject from each depth image frame is characterized and then
segments the ground events from vertical state time series obtained by tracking the
subject over time.Thevertical state of the subject is characterizedusing three features.
The second stage confirms that a fall has occurred by using an ensemble of decision
trees and a set of features extracted from on-ground event. For the computation of
fall event, five features from each on-ground event is extracted [111].

The orientation of the person’s major axis and the height of the spine from floor
was also used to detect fall event. For the computation of the orientation, the head,
shoulder center, spine, hip and the mean position of the knees were considered. The
3D ground floor and the spine distance to floor is also calculated. Fall is detected, if
the major orientation of the person is parallel to the floor and the height of the spine
is near the floor [112].

Four studies employed bounding box based approach for fall detection. In the
first study a fall is detected using velocity and inactivity calculations. Where velocity
measurement is based on the contraction or expansion of the width, height and depth
of the 3D bounding box [113]. The second study used the contraction and expansion
speed of the width, height and depth of the 3D human bounding box with its position
in the space [114]. The third study introduced an adaptive directional bounding boxes
technique to detect falls. They used four main features to analyze fall events. They
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are: Directional Height (DH)/Directional Width (DW) ratio, center of gravity ratio,
diagonal ratio and Bounding Box (BB)-Height ratio. They also used dynamic state
machine to encompass both forward and backward tracking [115]. The fourth study
used skeleton tracking along with bounding box analysis [116].

A privacy-preserving fall detection method proposed by Gasparrini et al., used
raw data directly from the sensor. The data were analyzed, and the system extracts
the elements to classify all the blobs in the scene through the implemented solutions.
A fall is detected if the depth blob associated to a person is near to the floor [117].

A motion based fall detection approach used extracted skeleton data of human
using Kinect sensor to detect and monitored the person, especially the changes in
motion is examined. Fall is detected using the changes in either Y or Z coordinate
of the key frame. A fall from sitting or standing is confirmed if the body motion gets
involved in Y or Z coordinate [118]. Another similar approach employed the torso
angle, the centroid height and their motion characteristics for human fall represen-
tation. These parameters were used to create a human torso motion model (HTMM)
which is a threshold based approach for fall detection. The 3D position of the hip
center and the shoulder center joints in depth images is used to build proposedmodel.
The subject’s torso angle and the centroid height is the key features in the HTMM.
They used four thresholds, first threshold is for torso angle which starts detection, the
second is the threshold for the changing rate of torso angle, the third is the threshold
for velocity of centroid height and the fourth is the threshold for tracking time after
the torso angle exceeds the first threshold. When a person is detected, the position of
the joints is extracted, and the torso angle is calculated. When this angle is greater
than a given threshold, the rate of changes of the torso angle and the centroid height
are recorded frame by frame for a given period of time and a fall is detected when
this changing rate reaches the thresholds [119].

3.4.2 Classifier Based Approaches

Studies representing this category employed some sort of machine learning classi-
fication either directly on the depth data or on the 3D skeleton joint position from
Kinect sensor. Alazrai et al. presented a new approach for fall detection using 3D
skeleton joint position from Kinect sensor. This data is used to build a view-invariant
descriptor for human activity representation or motion-pose geometric descriptor
(MPGD). MPGD comprises of a motion and pose profile which allows the captur-
ing of semantic context of the human movements from the video sequences. Fall
detection is first expressed as a posterior-maximization problem where the posterior
probability is estimated using a multi-class SVM classifier [120].

A combination of fall characterization using shape based approach and a machine
learning classifier to identify human fall from other activities was proposed by Ma
et al. At first human silhouette is extracted from depth images. Adaptive Gaussian
Mixture Model (GMM) is used for human segmentation from background. The sec-
ond step involves finding of the features of the detected subject [121]. On the other
hand, another study used a deep learning classifier based human fall detection using
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infra-red depth sensormeasurementswith feature selection andNon-Linear Principal
Component Analysis (NPCA) [122]. While an acoustic based fall detection system
using Kinect sensor with Minimum Variance Distortion less Response (MVDR)
adaptive beamforming reduced the false alarm ratio by 80% as compared to the case
when no depth sensor is used [123].

Another study, accomplished fall detection using only depth images with a classi-
fier trained on features representing the extracted person both in depth images and in
point cloud [124]. The features extracted are the same as that of the study in previous
section [125].

The only study that had based fall detection on statistical method employed how
human moved during the last few frames for the classification. They used statistical
decision making as opposed to hard-coded decision making used in related works.
Duration of fall in frames, total head drop-change of head height, maximum speed
(largest drop in head height), smallest head height and fraction of frames where
head-height dropped is considered for fall detection [126].

3.4.3 Wearable Device and Depth Map Based Approaches

This section is dedicated for discussing the works that make use of a wearable device
along with depth sensor for fall detection. The wearable devices are sometimes used
to generate potential fall alert and/or are used to cover the areas not visible to the depth
sensor. Either machine learning or changes in human joints from depth information
are used to confirm the fall event. Two studies used joint data for fall detection
along with a wearable device. The first study used the distance of the centroid of the
segmented person to the ground plane with a threshold for fall detection [127]. The
second study that employed joint data for fall detection presented three algorithms.
The first algorithm for fall detection uses acceleration data from the wearable device
on thewrist and skeleton data fromKinect sensor.A fall is detected, if three conditions
is fulfilled. The second algorithm uses the same parameters and concept except
that the accelerometer is placed on the waist. The third algorithm uses variation of
the skeleton joints, distance of spine_base joint from floor and magnitude of waist
accelerometer. Fall is detected, if the acceleration peak of greater than 3 g is observed
with 2 s after the distance of the joints reaches a threshold value of 20 cm [128].

There were four studies that used classifiers for fall detection along with a wear-
able device. One study used a wearable accelerometer based device to indicate any
potential fall activity and whether the wearer is in motion. The authentication of fall
event after a potential fall indication from the accelerometer is accomplished from
depth images using SVM classifier on the features extracted. The features extracted
to confirm fall are the ratio of width to height of the person’s bounding box (h/w), a
ratio of the height of the person’s surrounding box in current frame to the physical
height of the person (h/hmax), the distance between centroid to the floor (D) and the
standard deviation from the centroid for the abscissa and the applicate [125]. Sim-
ilarly, other studies used a k-NN classifier for lying pose detection after a potential
fall alert from a wearable device [129, 130].
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While another study made the use of accelerometer as optional to indicate a
potential fall and a Support Vector Machine (SVM) based person finder is used
to confirm the presence of the tracked person and the head location. A cascaded
classifier consisting of lying pose detector and dynamic transition detector is also
executed [131]. Another approach made the use of accelerometer and video based
approach switchable for different situations. Since in cases such as during changing
clothes or while washing, it might not be comfortable to use the wearable sensor. In
such situation the system relies on Kinect camera only [132].

A previous work [128] was extended by Cippitelli et al. which presented a fall risk
estimation and fall detection tool using awearable and vision based sensor. This work
was aimed to propose an integrated system to gain both the fall risk assessment and
fall detection in indoor home environment. They also provide a fall risk assessment
tool with the Kinect sensor and an accelerometer placed at the chest in the same
setup which can be switched when required. The test is divided into five phases, sit-
to-stand, walk, turn, walk, turn-to-sit. During sit-to-stand phase, the person stands
from chair to start walking. The parameters evaluated are maximum inclination of
the torso angle and the time required to stand up. During the walk phase, steps of
the person are extracted from both the accelerometer and the Kinect. The turn phase,
is when the subject turns to walk back to the chair. The parameter extracted in this
phase is the time required to perform the action (turn 180°). The parameter evaluated
in the walk back phase is the cadence, because the person is not facing the Kinect
sensor and therefore the skeleton data is very noisy. In the last phase, turn-to-sit (the
subject turns and sit on chair) which is the time required for the movement. The time
required for the entire fall risk test is also computed [133].

4 Evaluation of Fall Detection Algorithms

The related works discussed in last section, used different fall detection algorithms
on depth images, which were either based on a fixed threshold value or an adaptive
threshold to detect fall. While others used, threshold based wearable device to gen-
erate fall alert and then used some predefined classification on the images such as
Support VectorMachine (SVM) to confirm the fall event. The following sub-sections
evaluates different fall detection algorithms employed with the thresholding’s used
to classify human falls.

4.1 Fixed Thresholding Based Techniques

For fall detection systems that is based only on depth images, the thresholds are
basically the height of the subject from ground plane or centroid height and velocity
or speed. The combination of these parameters in different order are used to detect
fall. The height thresholds used in the related works varies from 0.1 to 0.6 m, via as
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the average height or thickness of the subjected detected on floor by the sensor is
approximately 0.4 m. The velocity deviation considered to bias the decision varies
from −1 to 2 m per second. These algorithms do not simply depend on the threshold
to predict fall event, rather reliable detection of the joints and pattern of different
activities are also considered. This helps to improve the detection rate and reduce
the false alarm ratio.

A study that is based on skeleton data extracted from Kinect sensor used two
algorithms for fall detection. The first algorithm used only skeleton position data and
determines fall based on a single frame. The distance between each joint to floor is
computed and fall is detected if themaximumdistance is lower than a threshold value.
The second algorithm calculates the vertical velocity of each joint to floor plane over
many frames. The velocities of all the joints are averaged and if the average velocity
(the negative downward velocity) is lower than a threshold of −1 meter per second,
a fall is detected [103].

Another study used the human centroid height from floor plane to detect falls
that are not fully occluded. If the activity is completely occluded, the body velocity
prior to occlusion is analyzed to detect fall. Centroid height is the distance from the
3D centroid to the ground plane and the body velocity is the centroid displacement
over a one second period. The threshold for the centroid height and velocity was
determined through a training data which consists of daily activities (with some
occluded activities) like walking, sitting and crouching down. The centroid height
(Dtrain) and the body velocity (Vtrain) computed from the data recorded with Kinect
was used to determine the two threshold from the mean value and standard deviation
with 97.5% confidence interval [102]. The minimum centroid height (TDmin ) and the
maximum body velocity (TVmax ) thresholds computed from the Eqs. (1) and (2) are
35.8 cm and 0.63 m/s respectively.

TDmin = (
Dtrain

) − (
1.96σDtrain

)
(1)

TVmax = (
V train

) + (
1.96σDtrain

)
(2)

Fall detection algorithm in another study, used extracted raw depth data from the
sensor for preprocessing and segmentation to prepare the data for the next steps. The
algorithm then identifies, splits and classifies the different clusters of pixel in the
frames and identifies human subject. Once the human subject is identified, it is then
tracked and height information is evaluated to detect fall if the distance to floor goes
below 0.4 m [117].

The proposed fall detection algorithm in [105] first detects the head position and
computes its vertical speed. Fall is detected if the head speed and the head (height)
satisfies the falling condition or otherwise if the centroid speed and the centroid
(height) satisfies the falling condition. The fixed thresholds for the head to satisfy the
falling condition is its vertical velocity higher than 2 m/s and distance from head to
ground (height) less than 0.5 m. For the second condition, the threshold for centroid
speed is 1 m/s and centroid height is 0.5 m.
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In another algorithm, the silhouette of the moving individuals in each depth image
is obtained by background subtraction and floor plane was estimated by v-disparity
map [106]. The characteristics of the shape of the moving object was described by
an ellipse which is computed from a set of moment functions. The centroid of ellipse
and the angles between the ellipses and floor is computed and it is then converted
to real world coordinates. Fall is detected when the distance from the centroid of
the human body to floor and the angles between the ellipses and the floor are below
some threshold. The distance threshold is 0.5 m and the angle threshold are 45°.

A 3D bounding box based fall detection algorithm used the width, height and
depth as the box parameters. These parameters are estimated as the differences of
the maximum and minimum points on x, y and z dimensions. The concept used is
that during a fall, the height of the box will be decreasing, and the width and the
depth will be increasing for lateral fall or vice versa for forward or backward fall.
The parameters used for fall detection are the first derivative (speed) of the height
(Vh) and the width-depth composition (VWD). The other parameter is the real-world
y-coordinate of the top left vertex of the bounding box or simply the y-coordinate
of head centroid (Vy). At the beginning of the algorithm, the speed values (Vy and
VWD) are checked whether it is greater than their thresholds for a time (Th and TWD)
interval of n frames. Here n is the selected number of frames in the sampling window
(SW). The parameter (Vy) is also checked if it is less than a threshold (Ty). Then the
algorithm will start tracking Vy to identify any inactivity of the subject. If the speed
of Vy is less than the Th threshold for 10 frames, fall is confirmed. For experimental,
the following thresholds are used. The thresholds for Th is 1.1, Ty is between 1.4 to
1.7, Ty is 0.5 and the number of frames in SW is between 5 to 8.

4.2 Adaptive Thresholding Based Techniques

The adaptive threshold used in one study was calculated by multiplying the first
computed head height with 0.25, this made the method adaptive to the person with
different heights [110]. If the head height is lower than the threshold value, then the
centroid height is used as second judgement or else the threshold value, the centroid
height and centroid position is not considered. A fall is detected if the head height
and the centroid height are lower than the threshold value at the same time.

Another study refers an abnormal action if any one of the distances from hip
center, head or neck to the floor plane is lower than a fall threshold (DTfall) and any
of their vertical velocities with respect to floor are larger than a velocity threshold
(VT) at the same time [109]. The alert is triggered, if the distance between the head
and the floor are lower than the threshold (DTrecover) for a period of time. Here
the threshold DTfall and DTrecover are adaptive to the height of the subject. The fall
threshold DTfall is 1.5 times the distance between head and neck (height from head
to neck) as shown in Eq. (3).

DTf all = 1.5 × (Distance from head to neck) (3)
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The recover threshold (DTrecover) is three time of DTfall as shown in Eq. (4).

DTrecover = 3 × (DTf all) (4)

The vertical velocity with respect to floor is defined in Eq. (5).

Vn = (Dn( joint, f loor) − Dn−1( joint, f loor))

T
(5)

Here, n and n − 1 is the nth and (n – 1)th frame and T is the frame period.
Another study used three velocity features and a head to hip height difference

for fall detection, where the velocity features used adaptive thresholds. An adaptive
head velocity threshold was used as a first step to detect abnormal head movement
[108]. The threshold is adaptive to the person’s height (h) as follows.

Head_threshold = 0.6 ×
(√

2h

2

)

(6)

The other two adaptive thresholds are hip horizontal velocity (V_hip_h) and hip
vertical velocity (V_hip_v) thresholds which are also adaptive to the height of the
subject. The two thresholds are:

V_hip_h = 0.55 ×
(
h

4

)
(7)

V_hip_v = 0.7 ×
(
h

4

)
(8)

4.3 Fixed and Adaptive Thresholding Based Techniques

Acombination of fixed and adaptive threshold is used in one study, where a stationery
threshold of 0.3 m is used as a threshold to detect fall if the floor plane is detected
[104]. If floor plane is not visible another algorithm checks if the y-coordinates of
the joints are below a given threshold to detect the fall event. This algorithm uses a
kind of adaptive threshold which is simply 0.7 times the difference of y-coordinate
of head and right-ankle (which depends on the height of the user). A fall is detected
if the difference of absolute value of previous distance from y-coordinate of head
to y-coordinate of right-ankle (at the time adaptive threshold is calculated) with any
new distance between the same two joints are greater than the adaptive threshold
calculated and if the y-coordinate of other joints are also below a given threshold.
The joints considered in this study are head, shoulder-center, hip-center, right-angle
and left-ankle.
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4.4 Fusion of Thresholding and Classifier Based Techniques

This section discusses on the fall detection algorithms employed in systems that used
only depth images with classifiers and those that used an initial device to identify
any potential fall. Fall detection systems based on some sort of classifier, either runs
the algorithm on some features representing human in depth image or directly on the
depth image.

An unobtrusive fall detection proposed in a study used only depth images and
person was detected on the basis of the depth reference image [124]. A low compu-
tational method is demonstrated for updating the depth reference image. The ground
plane is extracted using v-disparity images, Hough transform and RANSAC algo-
rithm. Fall is detected using a classifier trained on features of the human subject from
depth images and point clouds.

A deep learning classifier for fall detection based on the infrared sensor measure-
ment mainly focused on statistical properties as generalization. The proposed deep
learning classifier consists of 5 hidden neurons as oppose to 15 hidden neurons in
neural network. The structure of the proposed deep learning includes a feature selec-
tion based on Gram-Schmidt orthogonalization and NPCA block for transforming
the raw data into a non-linear manifold [122].

The automated fall detection approach using only depth data presented in [121]
is based on shape features and improved machine learning. The algorithm consists
of shape-based fall characterization and a learning based classifier to identify human
fall from other daily activities.

The rest of the depth map based studies, basically depends on an alert from the
wearable device to start fall confirmation process from depth images. The wearable
devices contain an accelerometer, and/or a gyroscope and the threshold used varies
from 2.5 to 3 g. After the threshold is reached from the wearable device data then
either a classifier is used to confirm if the subject is lying on floor or combination of
height and velocity or height with a threshold is used to detect human fall.

5 Challenges and Issues in Existing Fall Detection Systems

This section discusses the main challenges that researchers are facing in developing
reliable fall detection systems due to the limitation of the technologies. The major
issues and pitfalls of the existing fall detection systems from all the approaches are
addressed in this section.
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5.1 Issue of Synchronization Between Devices

A recent trend in fall detection systems incorporates a wearable fall detector with
vision based systems to improve the accuracy and to cover the areas which is not
visible to the vision based device. The wearable device is sometimes configured to
generate potential fall alert to the vision based mechanism that will confirm the fall
event. The wearable devices are usually wirelessly connected to the main system
using Bluetooth which has higher sampling rate than that of the RGB or depth
cameras. In any case, the lack of synchronization between thewearable and the vision
based device can cause the system to miss important timing to identify potential fall
activity.

5.2 Issues with Data Fusion from Multiple Sensors

There are several issues arising in systems due to data fusion from multi-sensors for
fall detection. Data fusion techniques combines data from more than one sensor and
related information from associated databases to achieve maximum accuracies than
using a single sensor [134, 135]. It includes issues from reliable data measurement,
data communication to reliable data analysis [136].

Generally, data fusion has several advantages including improved data authentic-
ity but there are number of issues that made it challenging [137]. The challenges in
data fusion for fall detection that should be analyzed and considered before develop-
ing a fall detection frameworks includes data correlation, conflicting data, processing
framework, computational power and increase in overall cost of the system [138].
Conflicting data, is meant for the issues of interpreting similar activities differently
by the unrelated sensors during monitoring process. The data fusion strategy can
differ from the approaches and sensors involved. Most of the current systems ana-
lyze data for each sensor component separately and apply the fusion as a final step
[136]. In some cases, the raw sensor data without any preprocessing are send to a
common framework for processing. The data are also processed in parallel from
different sensors and it is fused with another unrelated sensor. A careful decision
is required depending on the sensors used to avoid unnecessary complication in the
fusion algorithm and to reduce the computation time. The computational cost will
also increase due to the additional amount of data collected by the sensor.

5.3 Lack of Accuracy Due to Off-Line Training

Those studies that employed machine learning to classify human fall with off-line
training data are subject to misinterpret from the differences in background color
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and surrounding objects. Since the background and any surrounding lighting con-
dition of the off-line database may be completely different from the actual users’
environment. This can degrade the classification accuracy with most of the machine
learning algorithms. It is likely that a learning algorithm will be biased for an input
data, if it is trained from different training datasets. Thus, a learning algorithm can
have a high variance for any particular input data, in case if it had shown different
output values when trained on another dataset. Generally, this is about the prediction
error of the classifier which is associated with the amount of bias and variance of
the learning algorithm which often requires tradeoff [139]. The number of the true
data and their complexities together with the dimensionality of the input space can
further complicate the learning process. In addition, the difference in between the
two-setups including the placement of the camera can have significant impact of the
performance.

5.4 Image Extraction Timing for Fall Confirmation

Some of the fall detection algorithms that is based on machine learning to authen-
ticate the fall event uses depth image extracted at the time when a potential fall is
detected. The timing when the depth image is extracted and fed to the machine learn-
ing classifier has a significant impact on the accuracy. Those classifiers simply check
for a lying posture on the floor which highly depends on a clear appearance of the
subject. Therefore, the potential fall activity alert that starts the fall authentication
should take care of the exact time when the subject completely rests on floor. Other
than that, any occlusions present in the depth image which is fed into the classifier
can degrade the performance. As a result, the performance of such algorithms highly
depends on the accuracy of the potential fall alert mechanism and robustness of the
classifier.

5.5 Privacy Concerns

This is in-fact the main reason for the rejection of non-invasive vision based devices
that used RGB camera and utilize live video recording. Generally, users would not
like to be watched or their private living be recorded for any purpose. This could be
the main challenge if developing a non-invasive human fall detection system using
RGB cameras.
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5.6 Hardware Limitations

5.6.1 Battery Life of Wireless Devices

Stand-alone devices with wireless communications powered by batteries are prone
to battery life issues. The device itself can worse the issue, if not properly designed.
Power-saving strategies are required at software and circuit level to minimize the
power consumption. Standby capabilities and limiting the radio transmissions are
the main approaches to implement power-saving. Implementation of power saving
techniques can arise other issues such as wakeup delays from standby mode and
time required to start the defined process can lead to loss of critical information. The
data from wireless devices build with accelerometers for fall detection or prediction
also need to be toughly analyzed in-order to fine-tune the circuitry and the software
behind the system to limit the radio activity. The limitation of the currently available
battery technology is also one of the technological barrier for remote monitoring
systems relying on wearable sensors [140].

Investigations showed that accelerometer based wearable devices, often use ori-
entation of the sensor for fall prediction which requires a gyroscope for accurate
detection of the sensor’s current orientation. Since the acceleration data alone is
not enough to reliably evaluate the actual orientation of the device [141], gyro-
scopes are often used along with accelerometers. The use of gyroscope improves
the performance of the system at the cost of an additional device, consuming extra
power.

5.6.2 Limitation of Smartphones

Smartphones based fall detectors are prone to generate problems, simply because they
are not intended for fall detection [142]. The functionality of the in-build accelerom-
eter, the features of the operating system and the sensing architecture of the smart-
phones are not initially intended for such application, especially for a real-time fall
detection [138]. Therefore, it is very likely that such fall detectors may behave dif-
ferently on different phones depending on the smartphone architecture. Such fall
detectors will also be subject to the processing capabilities and battery powers of
the smartphones [61]. Furthermore, the accuracy of fall detection may dramatically
degrade depending on where the user places the phone. For an example, if the system
is designed for users to place the phone on waist and if the user mistakenly places it
in his/her pocket, then the accuracy may be very low.

5.6.3 Limitation in Wireless Transmission

Wearable based fall detectors often use wireless communication including Bluetooth
and ZigBee for communicating between the wearable gadget and the main system.
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The technologies behind these are subject to many restrictions inheriting from the
limitations in wireless communication including interferences. The common issues
in using Bluetooth wireless communication accounts for the capacity limitation,
coverage limitation and power management. Many studies [54, 56, 143–145] had
chosen Zigbee technology due to its advantages over Bluetooth technology. Zigbee
is low cost and low powered, but the limited coverage and the replacement cost of
the components are the main disadvantages. In addition, any failure in communi-
cation between the device and main system may often require technical assistance,
thus making the entire system unstable and unreliable. This issue can be common
for systems with components from different vendors and systems that are poorly
designed.

5.7 Performance Degradation Due to Simulated Activities

Most of the real-time based fall detection system and in-fact almost all the related
works are tested and validated with simulated activities. Simulated activities are far
different from real life activities, especially when real life activities of elderly are
simulated by healthy volunteers. As a result, the evaluation of such systems is limited,
and it cannot achieve the proposed detection rate from simulated falls in real world.
This could have a higher impact for velocity based algorithm [103], especially if the
actual falls have shorter duration than the simulated falls.

5.8 Response Time

Response time of the sensor or camera and the device can play an important role in
degrading the performance of the systems. Apart from this, the effectiveness of the
fall detection algorithm (including the thresholds employed, flow and any external
triggers used) can also affect the response time of the system and thus degrade the
performance.

5.9 Disturbance in the Environment

The motion from the visitors [146] is also an issue for non-invasive sensor based
systems, apart from the disturbance of obstacles in the scene, especially radar
based approaches. To delineate such noises, additional measurements are very often
required which will increase the computational cost.
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6 Recent Developments and Future Directions

The three basic approaches used to develophuman fall detection systems arewearable
based devices, ambient based devices and vision based devices. In this work, depth
map based devices are categorized under vision based approach as shown in Fig. 1.
The studies representing the three basic approaches are basically structured to solve
the drawbacks of one another. For an example, ambient based devices used to solve
the issues in wearable based devices and wearable devices also solves some of the
problems that ambient sensors failed to handle. Before the advent of cheap depth
sensors in the market, vision based devices using RGB camera used to take care of
the main issue in wearable and ambient based devices with even higher accuracy
at the cost of expensive systems and setup. Even with RGB cameras, the concerns
arising regarding the acceptability and reliability of the fall detection systems are
not limited rather added its own drawbacks such as capturing and recording of color
videos leading to privacy concerns. Additionally, the cost of the systems, camera
calibrations, requirement of adequate lightening and setup are common issues.

The advent of cheap Red-Green-Blue-Depth (RGBD) cameras, has paved way to
the development of novel systems to overcome the limitations of these previousworks
[125, 147]. The cheap depth sensors such as Microsoft Kinect sensor, can extract
depth information of the objects in the scene even with low lighting condition. The
auto calibration capability and other features of the sensor can negligibly reduce
the issues concerning with RGB cameras. One of the main advantage of the Kinect
sensor is that it can be place in certain places according to user requirements [132],
unlike the complex installation procedure of some RBG fall detection systems. It is
also worth noting that by using only the depth images it can preserve the privacy of
users [132].

The first sub-categories in depth sensor based approach used joint position or
measurements and its movement with thresholding for fall detection. The second
sub-category used fusion of wearable and depth maps with machine learning or
joint position for fall detection. The third sub-category employs machine learning
or other classifier only on depth images. The research studies based on fusion of an
initial devices and depth sensor is not very relevant, since their system design and
performance are all subject to the drawback of wearable devices which is regarded
as main causes of rejection of fall detection systems. Wearable devices are mainly
rejected due to the inconvenience in carrying themduring daily life activities [138]. In
addition, they used the wearable device to generate any potential fall movement and
to start the depth image based classifier to confirm fall. In such cases the capabilities
of the depth sensor are not fully exploited and thus the actual accuracies that could
be achieved are not realized. Generally, the overall performance of such systems
solely depends on the effectiveness of the wearable device to identify potential fall
movements.

In some of the studies, detection does not always depend on the wearable device
because in certain situations like while changing cloths it is not possible to wear
the device [125]. Therefore, in such cases the systems depend on the depth sensor.
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This requires a proper time synchronization between wireless initial device sampling
rate and depth sensor frame rate. It is impossible to access and control the Kinect
embedded clock [148]. But it is important to synchronize the Kinect sensor and main
system and the wireless initial device in order to properly integrate such fall detection
systems which depend on one another and requires switching of fall authentication
process between devices.

The other two approaches in depthmap based hierarchy depends only on the depth
image generated from the depth sensor as illustrated in Fig. 2. From the review of
literature, it was also found that exploring the depth information alone can minimize
the issues faced by the previous work for fall detection. The only issue that cannot be
dealt is the limitation of the Kinect sensor’s viewing spectrum, which can be solved
using more than one sensor depending on the coverage requirement.

Previousworks had used different techniques on the depth image to classify human
fall from other activities of daily life. Some of the studies used extracted human joint
measurement and movement over time to identify human fall. While others used
machine learning or classifiers either on the depth image or extracted human fea-
tures to detect human fall. The use of machine learning classification can have many
problems apart from the computational cost and have complex implementation when
compared with threshold based approaches [149]. As discussed, off-line training can
degrade the accuracy and the time when the image is extracted can play an impor-
tant role in identifying the lying posture. They used different algorithms to segment
human subject from the depth image. Some works, developed their own preprocess-
ing directly on the raw data, while it is not possible to achieve the established auto
calibration of the Kinect sensor with manual preprocessing, even though it was not
primarily developed for fall detection. If any developed preprocessing cannot auto
calibrate when a subject enters and exit into the view of the sensor, then fall detection
algorithm working on top of the preprocessing will not receive adequate information
to make an accurate decision.

The approaches that is based only on the depth images and used joint measure-
ments instead of classifiers basically use the distance of human joints from floor
plane and their vertical velocities to classify and authenticate human fall from other
activities of daily life. Various joints such as head joint height from floor, centroid
height and their respective velocities are fed into an algorithm with some threshold-
ing to identify any falling action. With this approach, some fall detection algorithms
cannot work in case of occlusion, because it cannot calculate the distance to the
ground [105]. The use of joint height in fall detection shows good performance for
falls ending on the floor but it has failed if the end of the fall is occluded behind
furniture [102]. It is also found that it could be solved using velocity just before the
occlusion.

Basically, most of the related works used selected skeleton joints or features of the
subject with a predefined algorithm for fall detection. The algorithms either uses a
fixed or adaptive threshold within a flow to make the decision. One of the study used
[126], a statistical approachwith features using aBayesian framework. It is very clear
from the literature that, a lot more effort still remain, to device algorithms to follow
the changes in the selected key features of the subject to fully utilize the capabilities
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of the depth sensor. It was found that a low-computational algorithm with statistical
analysis of the key features of the subject can significantly minimize the issue of
obstacles blocking the view of the subject. This could on the other hand, make the
system more stable especially by avoiding the computation hungry machine learners
and other classifiers.

It is alsoworth to be noted that none of the relatedworks so far had utilized any fall
risk level estimation during fall detection. Studies conducted on fall risk assessments
were primarily aimed to identify potential fall risk patients for nursing homes or
hospitals. This was achieved either through questionnaires or using sensors to detect
likely physical weakness of the patients that may cause falls. This was then used to
categorize patientswith high fall risks or low fall risks to provide better healthcare and
avoid fall injuries. Incorporating a robust fall risk level estimation protocol within the
fall detection algorithm to adapt appropriate parameters depending on the movement
of the user can improve the fall detection accuracy greatly. Since fall risk factors can
help to adapt the fall detection process depending on the risk level of the users. This
is because the nature of fall and characteristics of other activities of daily life differ
with fall risk levels. For users with high risk of falls, the fall detection algorithm could
switch to intensive detection process and for users with low fall risks, the algorithm
could track changes after a gap, thus reducing computational costs. Since fall risk
level of the user also changes overtime, such an incorporation could make any fall
detection system to outperform over other available systems.

7 Performance of the Related Works on Fall Detection

This section demonstrates the performance of the related works using confusion
matrix performancemeasures. Apart from the three basic confusionmatrixmeasures,
the other parameters considered in this evaluation are precision, F-score, Mathews
correlation coefficient (MCC), error rate and miss rate.

The collected original performance measures and confusion matrix data for the
related works are illustrated in Table 2. Out of the fourteen studies only six studies
provided confusion matrix data. Even though, some of the performance measures
does not give fair values for comparison between imbalanced data sets, parameters
such as accuracy and MCC are affected only in extreme cases [150]. The following
performance measures are used for the comparison.

Precision or Positive Predictive Value (PPV) is a ratio of correctly predicted
positive observations to the total predicted positive observations. The best precision
is a value of 1.0 (one) and the worst is a zero value. Precision is calculated by dividing
the correct positive prediction and the total number of positive predictions as shown
in Eq. (9).

PPV = T P

T P + FP
(9)
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F-score is a measure of accuracy in terms of precision and recall. It is simply the
harmonic means of the precision and recall. It is calculated using the formula given
in Eq. (10). The best value of F-score is when it approaches one and it is worst at
zero.

F-score =
(

2T P

2T P + FP + FN

)
or

(
2 × Precision × Recall

Precision + Recall

)
(10)

TheMCC is ameasure of quality of binary two-class classification used inmachine
learning [151]. It is a balancedmeasurewhich can be used for irregular class sizes and
it is a correlation coefficient between the observed and the predicted observations.
The best prediction is a coefficient of +1 and −1 represents the worst prediction.
MCC is calculated using the following formula.

MCC = (T P × T N ) − (FP × FN )√
(T P + FP)(T P + FN )(T N + FP)(T N + FN )

(11)

Misclassification rate or error rate is a measure of how often it is wrong. It is
equivalent to one minus the accuracy. It is calculated by dividing all the incorrect
prediction over the total number of data as shown in Eq. (12). The best error rate is
a value of zero while the worst is a value of one.

Error rate = FP + FN

T P + T N + FP + FN
(12)

Miss rate or False Negative Rate (FNR) is a ratio of positive class which gave
negative outcomes over the given total positive class or simply one minus sensitivity.
It is calculated by dividing the positive test results predicted as negative by the total
positive observations as shown in the following equation.

Miss rate = FN

FN + T P
(13)

Table 2, shows the results collected and some self-computed measures from the
performance information available from previous studies. Some of the performance
measures are directly given in the respective study while the others are computed
from the available information. All the studies were reviewed in previous sections.

The first study [104] of Table 2, which is based on height of the subject, presented
the accuracy of the algorithm at different distances (how far the subject is to the
sensor). The average accuracy for the given four distances is 81.25%. This study
does not give any other information except the number of simulated fall events and
the number of detected fall events. Therefore, no other performance measure can be
computed for this work.

The third [102] and the fourth [105] study which was based height and velocity
showed a higher MCC with lowest error rate. The accuracy of the third, the fourth
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and the proposed approach is 98.73, 98.4 and 98.3 respectively. But both of them
failed to identify one fall event which generated miss rates.

The study (in 8th row) which is based on height and angle of torso also generated
higher error rates and showed some miss rates as well. On the other hand, the study
in 6th row showed zero percentage of miss rates. It is the only study that was based
on statistical approach, but they were focused on a Bayesian framework.

The second study [112] shown in the same table is based on the height and perfor-
mance measures are given for two approaches as 3D sensor using image coordinates
and using world coordinates. This study classified all non-fall events correctly and
achieved 100% specificity.

The study presented in 5th row [114] of Table 2, was a bounding box based
approach which is counted among the studies that possess highest miss rates. The
study demonstrated in 7th row [107] which is based on height, velocity and SVM
also showed slower performances in all the available measures. Similarly, the SVM
based approach in 9th row [120] of the same table showed even lower performances
in all themeasures available. The approaches in the 10th [133] and the 11th row [132]
employs wearable device. The study in 10th row achieved the highest accuracy, but
it is to be noted that it is a wearable based method has the drawbacks of wearing
devices. But the study in 11th row showed a slower performance in all the measures.
The last two approaches presented in the 12th [131] and the 13th [125] row also
employs wearable devices for fall detection along with the depth sensor. The study
in 12th row, showed results for both SVM and K-NN classification where all of them
possessed some miss rates. The study in 13th row, showed performance measures
for SVM only on depth maps and SVM on depth maps with accelerometer.

The study [108] in the 14th row of the same table, showed lower performances in
all themeasures except for specificity and precision. Because this study failed to iden-
tify only two non-fall events from a larger sample size than the proposed approach.
This study failed to identify two non-fall events from a total of 120 simulations. But
this study failed to identify 11 fall events out of 120 simulated events. Identification
of fall events are more important than misclassification of non-fall events. Because
fall detection system should not miss any fall event and the first goal is to correctly
classify all the fall events. A false alarm from misclassification of non-fall event is
acceptable but not a misclassification of a fall event. Simply meaning that all the fall
events should be correctly identified, and alarm generated even though it includes
few non-fall events. This study failed to identify more fall events than non-fall events
leading to high error rate.

As far as the f-score is concerned, all the approaches in row 3, 4, 8 and 12 that
achieved a higher f-score had a miss rate of minimum 0.01. Similarly, all the studies
in row 12, 10, 4 and 3 that claimed a higher accuracy also possess miss rates. The
studies that showed higher precision in row 2, 3, 4, 8 and 12, all failed to identify at
least one fall event.

Some graphical plots can help to better understand the performance measures
described above. Such as the Receiver Operator Characteristics (ROC) curves, which
shows the trade-off between false positive and true positives rates. ROC curves are
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Fig. 3 ROC space of all the balance studies

another way of evaluating performance measures of classifiers, besides confusion
matrix.

Due to the lack of performance data from related works the following shows only
a ROC space and a miss rate vs error rate space to graphically illustrate some per-
formance measures described in Table 2 after balancing. As mentioned, ROC space
shows the relative trade-offs between the true positives (benefits) and false positives
(costs). It is plotted by defining false positive rate (FPR) which is equivalent to (1-
specificity) on x-axis and true positive rate (TPR) which is equivalent to sensitivity
on y-axis. In other words, ROC space is simply a performance graphing of sensitivity
versus (1-specificity) for different classifiers, where each classifier has one pair (1-
specificity, sensitivity) corresponding to a single point in the plot. In this space, the
perfect classifier will be at point (0, 1) as shown in Fig. 3. Since a perfect classifier
will have no false positive errors with all true positives. This also indicates that any
point in ROC space is better than the other if it is to the northwest of the other.

Figure 3 part (a), illustrates the ROC space plot of the performance of the balanced
related works in Table 2. The part (b) of the same figure shows a zoomed out of the
space representing the most perfect classification, because except one, all the points
representing the other studies are appearing in that region. For easy visual inspection
of the best performer that area is zoomed out in part (b) of Fig. 3.

The numbering besides each of the points in the part (b) of Fig. 3, is showing the
corresponding balanced studies in Table 2. Similarly, Fig. 4, demonstrates the miss
rate vs error rate space of the same performance data in Table 2. In this space the best
performance is at point (0, 0), whichever is approaching the origin point possesses
lower rates. Figure 4, is plotted by taking the error rates on x-axis and miss rates on
y-axis. This figure simply illustrates the same numerical measures (miss rates and
error rates) in Table 2 (after balancing).
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Fig. 4 Miss rate versus error
rate space

8 Conclusion

This study presented a review of different approaches used for human fall detection
including the conventional methods to the recent developments. Studies representing
the three basic approaches (wearable, ambient and vision based approaches) for fall
detection were briefly reviewed including the studies based on depth sensor. The
underlining features and methods along with the algorithms used for fall detections
were described. The merits, reliability and pitfalls in the existing approaches were
also briefly highlighted in different sections. A brief discussion on the depth sensor
based approaches were presented and then a research gap study was demonstrated.
Finally a performance comparison of selected previous studies were presented. There
are many future works, which can be done to improve such fall detection system’s
ability to accurately classify human fall from other activities of daily life. Most
importantly further experiments are required to see if increasing the gap for velocity
calculation can improve the performance of the system in sensing velocity changes.
Additional work is required to derive a better method to classify human fall and lying
on floor from standing, since these are the two activities that are very similar to one
another in terms of the classification algorithms used.
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An Interpretable Machine Learning
Model for Human Fall Detection Systems
Using Hybrid Intelligent Models

Paulo Vitor C. Souza, Augusto J. Guimaraes, Vanessa S. Araujo,
Lucas O. Batista and Thiago S. Rezende

Abstract This chapter presents an assessment of falls and everyday situations in
people by sensors dataset collected in fall simulation. This evaluation was performed
through the use of intelligent techniques and models based on feature selection tech-
niques and fuzzy neural networks. Therefore, this work can be seen as an auxiliary
approach of presenting a vision of knowledge extraction for the construction of ac-
tions, prevention, and training to functional thatwill work in areas correlated to health
impacts of people who may have difficulties or injuries due to the impact suffered in
a fall. The results obtained were compared with state of the art for the theme and the
version of the hybrid model that acts on the most relevant dataset dimensions iden-
tifying falls obtained results that surpassed the other models submitted to the test.
They were successful in extracting various information from a highly sophisticated
and incredibly dimensional dataset to help professionals from various areas expand
their investigations in the field of falling people.

Keywords Hybrid models · Cluster · Feature selection · Falls

1 Introduction

Studies dating from the early 1990s already provided robust evidence on the aging
of the world population and its impacts on various economic sectors [36]. The health
of the elderly concerns many researchers today, especially with the significant aging
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of the population and the emergence of new situations that can cause problems in
the lives of human beings [21, 49]. The study of falls is improving today to meet
these demands of today’s society through cutting-edge research to identify cognitive,
motor, and brain aspects [53] that can lead to complex health problems in older people
[6, 9]. Thus, studying characteristics, impacts on falling [41], brain responsiveness
[48], and other elements can help in treating people who have experienced such
problems or bruises in times of falling.

Recent research by Martinez-Villasenor et al. [44] it sought to address relevant
aspects of actions taken by a group of controlled people to create a data set on diverse
reactions of the human body during common everyday activities and distinct types
of falls. The comparative approach to the identification of existing patterns in falls
approached evaluations of data, images, and hybrid characteristics selection contexts.
Therefore this database can inspire advanced research applied to other areas.

To complement the aspects raised in the research by Martinez-Villasenor et al.
[44], this chapter proposes to complement the analyzes previously performed with
the database to other views and intelligent techniques, with main highlights for
categorized characteristics selection techniques and the application of multi-class
problem classification through a synergistic hybrid model between the concepts of
neural networks and fuzzy systems.

A large number of collected data, coupled with a considerable number of di-
mensions, can make it difficult to understand and extract existing factors within the
existing patterns in each type of fall. Therefore, the use of intelligent techniques,
especially grouping and feature selection, can determine fundamental characteris-
tics to identify falls within a context of injuries or situations that eventually led to
this type of situation. Hybrid fuzzy neural network techniques can work with posi-
tive responses to determine falls while extracting knowledge from the data through
fuzzy rules. This knowledge can facilitate the construction of expert systems and
provide qualified training for professionals who will analyze causes and possible
consequences of a fall, especially in older people and children, who generally have
great difficulty explaining the context in which they suffered the kind of accident.

The main objective of this chapter is to highlight the importance of feature se-
lection techniques in improving the ability to classify hybrid models by choosing
the most relevant dimensions to find the answers about falling behavior in people.
Besides, the objective is to extract knowledge through fuzzy rules to assist in the
expert systems construction in the subject.

The main highlight of this chapter is working in the same time with the extraction
of knowledge through the use of intelligent techniques based on traditional feature
extraction to identify correlation factors between extracted terms and finally, use of
a hybrid model for fuzzy rule extraction and possible construction of expert systems.
These factors corroborate intelligent techniques that are better accepted by other
areas of science, primarily related to health. The big problem with smart models
is that they are seen as uninterpretable models because their results have a hard
time understanding how they were obtained [1]. This work seeks to explore the
interpretability of results through fuzzy techniques.
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The remainder of the article is organized as follows. Section2 presents the theoret-
ical concepts involved in this research, like related work on falls, intelligent problem
assessments, topics, and techniques covered in the chapter. Section3 presents the
approaches to be used in the chapter and the way they use to extract knowledge from
a database. In Sect. 4, the hybrid model used for fuzzy rule extraction is presented
to the reader. In Sect. 5, tests, model configurations, and results are presented to the
reader. Finally, Sect. 6 provides conclusions.

2 Related Works

The recognition of falls and the various resources used to identify motor [63], health
[59] and cognitive dynamics [43] involved in this phenomenon have become a sig-
nificant part of studies in science, mainly due to the impacts on people due to the
injuries and disorders caused in this kind of situation.

Common elements of day and day, as well as types of falls that can occur with
people of all ages, can reflect on injuries (mainly if falls occur with the elderly).
Therefore techniques for data collection [44, 45], body reflexes [17, 33], and results
from these behaviors [51, 60] become fundamental for predictive and corrective
treatments for daily life. Thus new smart techniques can work to predict factors that
can lead to less damage to people by falling. In the literature, many authors work
with the theme, mainly in the falls’ prediction and data collection of their behaviors.

The performance of artificial intelligence is present in the works proposed by
Cameron et al. [10], a data mining method applied by Peng et al. [47], the model
proposed by Ma et al. who used an Extreme Learning Machine allied with a shape
features process [40] or, finally, the work of Albert et al. which uses the combination
of machine learning and mobile concepts [2].

Work on structure and processing data on falls has been the subject of study since
the late 2000s. Early studies sought to explore fall using video images collected
from [4], just as it was addressed in the Charfi database et al. [14] in 2013. The
work of [37] has already addressed Kinnect’s fall data collection as well as the
work of Ma et al. [40], which adds fall identification to extreme learning machine.
Other works address falls through audio, and video [22], video and support vector
machine [55], and another approach that works on video identification [29] in the
home environment. New datasets to deal with the problem were also proposed in
the works of Riquelme et al. [52] and in the paper by Maldonado et al. [42] which
addresses Assistive Robot-assisted fall detection data and Deep Learning concepts.
More specifically, with the database that will be the target of the experiments of this
paper, recent works have been developed focused on fault detection through concepts
of computer vision and the use of convolutional neural networks [20].

Therefore, the scope and relevance of this area of study for the well-being of
modern society are verified.
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3 Intelligent Techniques for Knowledge Extraction

The search for knowledge through data has become a central area in contemporary
research. Like the internet, computing, and new technology trends created a large
volume of data, and human decisions becamemore complex. Therefore, any tool that
assists the extraction of relevant elements in a data feature extraction becomes a great
ally in the routine of people and companies, especially in business andmedicine. This
can occur with the extraction of patterns in large quantities of data that can become a
knowledge base within the business, procedures, and routine of human beings. This
section will present techniques and concepts linked to the concept of knowledge
extraction through data.

3.1 Explainable AI

Explanable AI (XAI) is a field of broad current interest in machine learning that aims
to discuss how decisions in intelligent AI models are produced, explaining them to
the audience who uses them, and attempting to bring meaning to existing concepts.
This area inspects and endeavors to understand the steps and models involved in
decision making by intelligent models. In general, this thinking attempts to produce
an understanding of the central claims of intelligent models, mainly linked to the
complex operation of their methods (often referred to as black-box methods) [25].

However, there are two main issues associated with XAI. First, correctly defining
the concept of XAI proves to be considerably challenging. The second problematic
factor is the trade-off assessment on some tasks between performance and explain-
ability. It is necessary to control and normalize specific assignments or industries
and force them to look for integrated transparency AI solutions. Thus new, more
comprehensive techniques can emerge to disseminate quick, practical actions [15].

3.2 Feature Extraction

Feature extraction methods determine subspace θ dimensionality space from a η

dimensionality space, where (θ ≤ η) [27].
This technique that discriminates and distinguishes objects of different classes is

defined as pattern recognition. The set of similarities between these characteristics
is termed as standard. The combination of both concepts is intended to analyze a
given data set and organize it according to patterns, from which the description of a
recurring situation and its solution can be reused several times in different situations
through the use of patterns, be they objects or data. The recognition of elements or
objects requires the establishment of quantifiable parameters that are dependent on
position, dimensions, texture, color, and others. Thus knowledge of a database can



An Interpretable Machine Learning Model … 185

be obtained through the similarity of concepts, behaviors, and trends of an evaluated
dataset [27].

These techniques candefineproblemdimensions thatmost correlatewith expected
responses. Similarly, they can also identify characteristics that are not directly re-
lated to problem assessment. This technique, therefore, can be used to improve the
classification of patterns by classifiers acting as preprocessing elements by selecting
subgroups of best features that represent the problem.

3.3 Fuzzy Neural Networks

Hybrid models produced in science seek to act synergistically in solving complex
problems so that they use the best provided by the techniques involved in their
architecture [26].

Fuzzy neural networks (FNN) fall into this context by being able to unite concepts
of artificial neural networks and the concepts of fuzzy systems. In general, these
models use training techniques commonly employed in neural networks and can
extract knowledge from the database by constructing fuzzy rules. Therefore in some
views, FNNs are seen as fuzzy inferential systems aggregated to neural networks.
These networks operate in various areas of knowledge, from robotics [7, 19] to
elements focused on health [11, 12, 23, 24, 57]. Its full application has the main
advantage of problem-solving and at the same time, the extraction of knowledge that
can result in the construction of expert systems [46].

4 Fuzzy Neural Network Applied to Fault Detection

In this chapter, the fuzzy neural network used was proposed by Campos Souza [56]
and widely modified to address different problem contexts with different natures.
This model is a multilayer neural network with a fuzzification layer, a fuzzy rule-
building layer, and the last layer is composed of an artificial neural network of a
single neuron. This network has a wide range in binary problem solving, and in this
chapter, it will be used to handle multi-class problems.

The fuzzy neural network used in this chapter has an architecture similar to a
Multilayer Perceptron network. However, in its first layer, to build the fuzzy neu-
rons, we use the fuzzification process from the ANFIS technique [32] that partitions
the data by dividing them through a partition in the grid derived from the use of
equally spaced Gaussian membership functions. First layer neurons are formed by
the projection of the Gaussian centers and their respective sigma. In the second layer,
fuzzy logical neurons are responsible for aggregating the neurons of the first layer,
transforming them through fuzzy operators (t-norm and s-norm). Thus the set of
the first two layers of the model is responsible for transforming the data into fuzzy
rules, which consequently generate IF/THEN relations to represent the problem data
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Fig. 1 Fuzzy neural network architecture

logically through linguistic resources. Considering the fuzzification technique is an
exponential relationship between problem dimensions and the number of member-
ship functions chosen and consequently, for the creation of the first and second layer
neurons of the model, a resampling regularization technique is applied to select a
set of neurons in the second layer that is most related to the problem. Finally, the
training model is responsible for finding the weights that make up the response of
the inference system and act as synaptic weights of the neuron present in the neural
network of aggregation of the third layer of themodel. This single neuron (also called
the Singleton) is given a transforming function (Ψ ) in the approximations performed
by the model to obtain multiple fall classifications. The whole scheme of the FNN
is presented graphically in Fig. 1.

Thus, some specific characteristics of the hybrid model will be exhibited below.

4.1 First Layer

In the primary layer of the model, a fuzzification procedure that employs equalized
Jang [32] presented partitioning of the problem variable space and is applied to gen-
erate regularlyM spaced membership functions of the Gaussian type. Consequently,
the neurons of the first layer describe the fuzzification method of the problem data
supporting analysis and can be recognized as the first step in discovering problem
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interpretability through the use of fuzzy logic. Therefore, these neurons, have whose
activation functions are membership functions of fuzzy sets that granulate the data
space, to form a fuzzy distribution like in De Campos Souza et al. [16].

The Adaptive Network-Based Fuzzy Inference System (ANFIS) [32] consists of
five succeeding layers able to building the membership functions of the problem
decision space. It acts similarly to fuzzy inference systems, and their adaptive ca-
pabilities make them applicable to a wide range of subject areas. A property of the
ANFIS model is that the parameter set can be decomposed to use a more efficient
hybrid learning rule than the traditional mechanisms found in the literature. Layer 1
and 4 nodes are adaptive, and their values are the parameters of the antecedent and
consequent parts of the rule, respectively. The first layer of ANFIS is qualified for
determining fuzzy membership functions through adaptive parameters. This layer
can be expressed by [32]:

Φ1
i = μAi (x), i = 1, 2 . . . , n (1)

where x is input value, Φ1
i is membership value of fuzzy variable Ai . ai , bi , ci are

the adaptive parameters commonly referred as premise parameters [32].
Another relevant factor for understanding the model is already in the second layer

of the ANFIS, where every node in this layer is a fixed node which acts as a product
operation as in Sugeno fuzzy model [32]:

Φ2
i = Wi = μAi (x) × μBi (y), i = 1, 2 . . . , n (2)

These categories of groups, through membership functions with the equivalent
features, can support a detailed analysis of the problem. This method performs a non-
linear mapping of its data space to the output area. This mapping is conducted by
diverse fuzzy IF/THEN rules, where individually one relates the bounded execution
of the mapping. The antecedents in the rules of a fuzzy inference system deliver a
multidimensional neural division in the grid. In this work, the method operates with
a definition of 200 neurons in the first layer to bypass the problem of high dimen-
sionality. This decision is adequate for many preceding experiments that confirmed
that the ability to create fuzzy rules made the issue much more complicated than was
essential. For each input variable xi j , L neurons are defined Al j , l = 1,…L. Therefore,
the expected result in the first layer of the model is the degrees of association related
to the inputs submitted to the model [16]:

a jl = μAl , j = 1 . . . n, l = 1 . . . L (3)

where for each ANFIS input result, the number of problem inputs and the number
of fuzzy sets is respectively n and L [16]. This layer reaches out in the chapter
because it is useful for extracting primary knowledge from the problem evaluated.
So it is reasonable to identify initial relations between dimensions of the problem
and membership functions.
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Equation. 4 defines the Gaussian functions (∩) used in the construction of the first
layer Gaussian fuzzy neurons:

∩ (x, c, σ ) = μ
j
i = e

(
− 1

2

xi−c
j
i

σ
j
i

)
(4)

where i is the number of variables and j is the number of rules, xi is the input variable
and c, and σ are the adjustable parameters of the membership functions, and are
called antecedent parameters, which are nonlinear coefficients and correspond to the
center and the variability of the membership function.

4.2 Second Layer

The neurons used in the second layer are a particular type of neuron (Unineurons)
[38], capable of simultaneously using the concepts of fuzzy arithmetic operators in
the second layer of the FNN. They apply the concepts of a fuzzy operator uninorm
[62] to implement also simplified operations according to the activation function of
the fuzzy neurons. Its composition supports the unineuron to practice both concepts
of a neuron and, or a neuron or. It can be recognized as a mapping that stretches
triangular norms by providing the identity element to be a value in the unity interval
that has the characteristics commutativity, associativity, and monotonicity, as well
as its identity element. The second layer’s FNN implements the aggregation of the
Lc neurons from the first layer. In this work is represented as follows:

U (x, y) =
⎧⎨
⎩

g T ( xg ,
y
g ), i f y ∈ [0, g]

g + (1 − g) S (
x−g
1−g ,

y−g
1−g ), i f y ∈ (g, 1]

ϕ(x, y), otherwise
(5)

ϕ(x, y) =
{
max(x, y) , if g ∈ [0, 0.5]
min(x, y) , if g ∈ (0.5, 1] , (6)

where T is a t-norm (algebraic product), S is a s-norm (probabilistic sum) and g is
the identity element. It can be affirmed, when g = 0 the uninorm is the orneuron type
[30], and when g = 1 the uninorm is the andneuron type [30]. This ease of change of
fuzzy operators allows the model to be more adaptable to the nature of the problem
evaluated.

The Unineuron proposed in Lemos et al. [38] performs aggregation operations to
unify existing fuzzy values and make the model more manageable. This process can
be seen as a preliminary process for turning two values into one and is defined by
the following two steps:

1 each pair (ai , wi ) = bi = p (ai , wi );
2 unified aggregation = U (b1, b2 . . . bn), where n is the number of inputs.



An Interpretable Machine Learning Model … 189

The function p (relevancy transformation) is responsible for converting the inputs
and respective weights into individual transformed values. This role succeeds in the
four condition:

– monotonicity in value,
– zero importance elements should have no effect,
– normality of importance of one,
– consistency of effect of the weight.

In order for a p function to meet all four necessary requirements of the relevancy
transformation operator, Yager proposed the formulation [61]:

p(w, a, g) = w.a + w̄.g (7)

where w̄ represents the complement of w. Using the weighted aggregation reported
above the unineuron can be written as [38]:

z = UN I (w; a; g) = Un
i=1

p(wi , ai , g) (8)

where T is a t-norms (product), s is a s-norms (probabilistic sum).

4.3 Third Layer

A Singleton represents the third layer of the FNN model, that is, a single neuron
competent of working as a classification [39]. Therefore, the answers obtained can
predict it linked to falls. Consequently, this neuron present in the third layer can be
seen from the following equation [13, 16]:

y =
l∑

j=0

f (zl , vl) (9)

where z0 = 1, v0 is the bias, and z j and v j , j = 1, …, l are the output of each fuzzy
neuron of the second layer and their corresponding weight, respectively. Finally, f is
the neuron activation function (linear function).

4.4 Training Model

The model training algorithm is based on concerning the neural network synaptic
weights (and, consequently, the quality of the fuzzy rules of the inference system)
through the concepts of applying Moore Penrose’s pseudo-inverse [54]. Therefore
there is no necessity to update the parameters recursively, and at the same time, there
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is a reduction in the influence of randomly defined parameters on themodel structure.
This technique allows weights to be set and in one step. To solve possible overfitting
problems in FNN training, a resampling regularization technique [5] is used in the
objective function of training to define the neurons (or fuzzy rules) that contribute
most efficiently to the model.

The values of the neural network weights of the hybrid model are qualified for
the operationalization of the neuron nominations to implement the function approx-
imation. When synaptic weights are defined analytically, the efficiency of the model
is evidenced and favors the obtaining of fast and accurate solutions. In this chapter,
this vector is considered by the Moore-Penrose pseudo Inverse [16]:

v = Z+y (10)

where y = [y1, y9, . . . , yn]T is the desired output vector and Z+ is pseudo-inverse
of Moore-Penrose [54] of z. The l+1 dimensional input space (z), generating a n x l
+ 1 feature matrix is presented as [16]:

z =

⎡
⎢⎢⎢⎣
z0 z1(x1) z2(x2) · · · z1(x1)
z0 z1(x1) z2(x2) · · · z1(x1)
...

...
... · · · ...

z0 z1(xn) z2(xn) · · · z1(xn)

⎤
⎥⎥⎥⎦ (11)

4.5 Regularization Method

In the model composition, z is the least norm of the least-squares resolution for the
weights of the output layer. Fundamentally, the purpose of learning is presented to
find the v parameter that minimizes the error between the network output and the
expected output for all training data:

n∑
i=1

‖z(xi )v − yi‖ (12)

Since the number of second layer neurons may contain unnecessary information, it
is essential to use analytical techniques to determine the relevance of the collected
neurons to the problem analyzed. Statistical evaluations that attempt to discover the
correlations between two vectors are performed by regularization techniques, such
as Least-Angle Regression (LARS) proposed by Efron et al. [18].

The model proposed by Bach [5], called Bolasso (Model Consistent Lasso Es-
timation through the Bootstrap), uses this methodology to find a combination of
neurons that meet a previously defined criterion in a set of bootstrap replications.

This resampling approach is used to increase the stability of the model selec-
tion algorithm. Bolasso uses the LARS algorithm to operate on several bootstrap
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replications of the neurons in the second layer to perform model selection. For each
repetition, a distinct subset of the regressors is selected. The neurons (z�) to be in-
cluded in the final model are defined according to the frequency with which each
of them is chosen through different tests. A consensus threshold is determined, say
γ = 70%, and thus a regressor is included, if selected in at least 70% of the assays.

Therefore, if a substantial number of bootstrap replications are chosen, there
is a considerable probability that a fuzzy neuron will appear in the list of the most
relevant ones. Thus, themore relaxed selection criteriamay determine a large number
of candidate neurons at the end of the tests, just as the high γ value may allow the
bootstrap model to be rigid and select a small set of regressors. The fuzzy inference
system acknowledgments can extract knowledge from a model-evaluated database,
so the rules obtained can be an element for developing expert systemswhere a system
with two inputs and two membership functions for each input is presented. Thus, an
example of a fuzzy rule set can be presented as follows [16]:

Rule1 : I f xi1 is A1
1 wi th certainty w11 . . .

and/or xi2 is A2
1 wi th certainty w21 . . .

Then y1 is v1

Rule2 : I f xi1 is A1
2 wi th certainty w12 . . .

and/or xi2 is A2
2 wi th certainty w22 . . .

Then y2 is v2

Rule3 : I f xi1 is A1
3 wi th certainty w13 . . .

and/or xi2 is A2
3 wi th certainty w23 . . .

Then y3 is v3

Rule4 : I f xi1 is A1
4 wi th certainty w14 . . .

and/or xi2 is A2
4 wi th certainty w24...

Then y4 is v4

(13)

Therefore it can be concluded that the set of possibly generated fuzzy rules is
linked to a proportional relationship between the number of dimensions of the eval-
uated database and the number of pertinence functions chosen by the user.
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4.6 FNN for Multiple Class Problems

Concerning the adequacy of the model, the multi-class responses the artificial neuron
in the third layer will receive a transformation function in the approximations ob-
tained in its results in the model output, represented by the Eq.9. Thus the equation
that represents the output of the model is now seen by:

y =
l∑

j=0

Ψ f (zl, vl) (14)

and

Ψ =
⎧⎨
⎩

yl , ϑ < yl
round(ϑ) , yl ≤ ϑ ≤ yu

yu , ϑ > yu
(15)

where Ψ is a rounding purpose that reflects the nearest integer value within the
range of the lowest and the highest required value class, as expressed in Eq. (15),
where ϑ represents the output of the FNN model as described in Eq. (9), yl and yu
are the lower and higher expected classes.

Therefore, the model used in this article deals with aspects of using a hybrid
model that combines neural network techniques and fuzzy systems to solve prob-
lems of falling people. For this, it is necessary to define the number of membership
functions, the number of bootstrap replications, and the decision consensus of the
model pruning/regularization model.

5 Fall Detection Test Using Intelligent Models

In this chapter, we will reproduce the experiments following the second use case
reported in [44].1 Therefore, this work is exclusively data-based, thus focusing its
results on fuzzy rules that are drawn from research on the most diverse types of falls
and everyday situations.

5.1 General Characteristics of the Database

Data were collected over a four-week period in July 2018 on the dependencies of the
Engineering College of a Mexican university located in the capital of Mexico [44].
Eight females performed the activities to be evaluated, and ninemales have randomly

1Fall detection using data only from wearable IMUs. This experiment was replicated due to the
fuzzy neural network constraint working with numerical data only.
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Table 1 Characteristics of test-takers

Subject ID Age Height (m) Weight (kg) Gender

1 18 1.70 99 Male

2 20 1.70 58 Male

3 19 1.57 54 Female

4 20 1.62 71 Female

5 21 1.71 69 Male

6 22 1.62 68 Male

7 24 1.74 70 Male

8 23 1.75 88 Male

9 23 1.68 70 Female

10 19 1.69 63 Male

11 20 1.65 73 Female

12 19 1.60 53 Female

13 20 1.64 55 Male

14 19 1.70 73 Female

15 21 1.57 56 Female

16 20 1.70 62 Male

17 20 1.66 54 Female

chosen and with distinct characteristics (See Table1). The script for data collection
was to evaluate a set of activities performed by humans during various stages of life,
such as walking, taking an object, sitting, jumping, lying down, and standing. On
the other hand, we also sought to collect data on five types of human falls (falling
forward using hands, falling forward using knees, falling backward, sitting in an
empty chair, and falling sideways). The tests were standardized to obtain data from
this research following the following assumptions [44]:

– Daily activities were performed for 60 s with exceptions to the jump (30s) and the
collection of an object (10 s).

– To evaluate the falls, the default time was 10s.2

In the experiments, a laboratory room with light intensity control (not to affect
the sensor’s performance) was used with cameras and fixed position environment
sensors. Thus there is a lower probability of sensor failure and their respective data
transmission. The sensors used (fivewearableMbientlabMetaSensor sensors) sought
to collect raw data in the experiment: 3-axis accelerometer, 3-axis gyroscope, and
ambient light value. These devices were installed on the left wrist, under the neck, in
the right pocket of the pants, in themiddle of thewaist (in the belt), and in the left ankle
in each of the participants. To complement the collection of fundamental elements

2An extra activity has been labeled “kneeling” (20) when a subject remains on his knees after falling
[44].
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Fig. 2 Example scenario for data collection [44]

in this experiment, we used a headset (NeuroSky MindWave Electroencephalogram
(EEG)) to measure the raw brainwave signal from its unique EEG channel sensor
located on the forehead. Thus, each participant has the same number of sensors,
seeking to identify behaviors of parts relevant to fall processing.

Already in the environmental assessment, six infrared sensors were used as a
grid 0.40m above the floor of the room, to measure changes in the interruption of
optical devices, where 0 means interruption and 1 without interruption. The other
sensors used in the experiments are not used in this evaluated database [44]. The
configurations of the equipment used can be observed in figure.

Figure2 presents a real example of conducting experiments during the period for
which data were collected. This representation demonstrates the location of the falls,
the sensors placed in the environment, and the volunteer’s body.

The arrangement of equipment in the test volunteers and the types of equipment
used are explained in Fig. 3.

Figure4 shows the relationship of Brain Activity by activity performed by the test
participants. You can identify patterns in this context.

Another factor to be highlighted is the behavior of brain waves in the execution
of certain tasks. You can see this trend in the Fig. 5.

Finally, it should be noted that some devices did not adequately transmit the results
of subject 8 in activity 11 (Trials 2 and 3 for subject 8 in activity 11 are unavailable).
Because they are so many collected records, we consider that such absence would
not affect the evaluation of results, nor the extraction of knowledge from the dataset.

5.2 Models Used in the Experiments

Themodels used in the tests are commonly used in problems of such complex nature.
The classifiers used in this experiment were developed in java (WEKAplatform) [28]
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Fig. 3 Equipment used in the tests and their positions [44]

Fig. 4 Brain activity x clusters
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Fig. 5 Brain activity x class

and Matlab. The fuzzy neural network (FNN)3 explained in the Sect. 3.3 was used to
classify falls. To make a proper comparison, models in WEKA [28] were used for
the tests, such as Naive Bayes (NB) [34],4 BayesNet (BN)5 [58], Random Tree (RT)
[3],6 J48 [50],7 and a multilayer network that uses the concepts of Extreme Learning
Machine (ELM) [31].8

As in the article by Martínez-Villaseñor et al. [44], let us look at the database
using clustering techniques and feature selection techniques. Therefore, for the hy-
brid model proposed in this chapter, it is expected an evaluation with all available
dimensions and the evaluation model with the most relevant features for the prob-
lem. This analysis seeks to evaluate if the most relevant attributes to the problem can
improve the classification capacity of the fuzzy neural network model. Therefore the
FNN-FS9 model will bring the model responses by evaluating the most relevant fea-
tures identified through cluster techniques and feature selection. For the definition
of the most relevant dimensions to the problem, the answers of the most relevant
classes will be evaluated and together with a committee of characteristics selection
techniques.

3M=3, bt=8, γ = 70%. For a preliminary 10-k-fold test for M = [3, 4, 5], bt = [4, 8, 16] and
γ = [50%, 60%, 70%].
4useKernelEstimator=false, debug=false, displayModelInOldFormat=false, doNotCheckCapabili-
ties=false, useSupervisedDiscretization=false.
5estimator=SimpleEstimator, debug=false, searchAlgorithm=F2, doNotCheckCapabilities=false,
useADTree=false.
6seed=1, allowUnclassifiedInstances=false, debug=false, minNum=1.0, numFolds=0,
doNotCheckCapabilities=false, maxDepth=0, minVarianceProp=0.001, KValue=0.
7seed=1, unpruned=false, confidenceFactor=0.25, numFolds=3, reducedErrorPruning=false, use-
Laplace=false, doNotMakeSplitPointActualValue=false, debug=false, subtreeRaising=true, save-
InstanceData=false, binarySplits=false, doNotCheckCapabilities=false, minNumObj=2, useMDL-
correction=true.
8Gaussian Kernel activation Function, 10 hidden neurons.
9The model will have the same parameter setting used in the FNN.
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5.3 Test Evaluation Criteria

The experiments were used through the cross-validation technique, defining 70%
of the samples to train the models and the remainder (30%) to test the model’s
identification ability to identify falls. All samples were randomly selected for 30
repetitions to avoid the tendency in the classifier models.

The strategy of one against all involves training a single classifier class, with
samples of this class as positive samples and all other samples as negative. This
strategy requires base classifiers to produce a confidence scorewith real value for their
decision, rather than just a class label. Typical metrics used in multi-class are used
in the case of binary classification. The metric is calculated for each class, treating
it as a binary classification problem after grouping all other classes as belonging to
the second class. Then the binary average is measured across all classes to obtain an
average macro (treat all similar classes).

AUC: represents degree or measure of separability- Eq.20.
Sensitivity: means the symmetry of actual positives that are precisely classified

as such- Eq.18.
Specificity:measures the proportion of exact negatives that are correctly identified-

Eq.19.
Precision: proportion of positive identifications was actually correct- Eq.17.

ACC = T P + T N

T P + FN + T N + FP
(16)

PRE = T P

T P + FP
(17)

SEN = T P

T P + FN
(18)

SPE = T N

T N + T P
(19)

AUC = 1

2
(sensi tivi t y + speci f ici t y) (20)

where TP and TN are the true positives and true negatives, and FP and FN are the
false positives and false negatives and finally, the time are measured in seconds.

The evaluation criteria will be the same as those used in the article by Martìnez-
Villaseñor et al. [44], seeking to verify if the model maintained the assertive capacity
of the other state-of-the-art tests on the subject.
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5.4 Feature Selection

For the execution of these tests, we kept the initial WEKA settings [28], and the test
settings followed the 10-k-fold criterion and seed = 1. For table normalization, only
the eight best results of each technique were collected. The first feature selection
technique uses the Pearson correlation concept [8] and the results are shown in
Table 2.

The second technique evaluates the gain ratio [35] between the dimension and the
evaluated attribute (Table3).

In the evaluation that determines which dimensions have more significant infor-
mation gain, Table4 presents the results of the experiments.

After the tests are operated, we determine the most relevant set of classes that will
be part of assessing and extracting responses about falling people. Therefore, for the
FNN-FS model, the following dimensions will be part of the experiment:

– AnkleAccelerometerX-axis
– AnkleLuminosity
– RightPocketAccelerometerX-axis
– RightPocketAccelerometerZ-axis

Table 2 Feature selection- correlationAttributeEval

Average merit Average rank Attribute

0.332 ± 0 1 ± 0 39 Infra-red 3

0.327 ± 0 2 ± 0 1 AnkleAccelerometerX-axis

0.324 ± 0 3 ± 0 24 NeckAccelerometerZ-axis

0.312 ± 0 4 ± 0 43 Activity

0.27 ± 0.001 5 ± 0 10 RightPocketAccelerometerZ-axis

0.247 ± 0 6 ± 0 17 BeltAccelerometerZ-axis

0.213 ± 0.001 7 ± 0 41 Infra-red 5

0.211 ± 0.001 8 ± 0 42 Infra-red 6

Table 3 Feature selection- GainRatioAttributeEval

Average merit Average rank Attribute

0.754 ± 0 1 ± 0 43 Activity

0.503 ± 0.001 2 ± 0 39 Infra-Red 3

0.271 ± 0.001 3 ± 0 41 Infra-Red 5

0.267 ± 0 4 ± 0 21 BeltLuminosity

0.26 ± 0 5.1 ± 0.3 35 WristLuminosity

0.259 ± 0.001 6.4 ± 0.66 38 Infra-Red 2

0.259 ± 0 6.5 ± 0.5 28 NecktLuminosity

0.251 ± 0.002 8.7 ± 0.78 16 BeltAccelerometerY-axis
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Table 4 Feature Selection- InfoGainAttributeEval

Average merit Average rank Attribute

2.446 ± 0 1 ± 0 28 NeckLuminosity

2.41 ± 0.001 2 ± 0 35 WristLuminosity

2.278 ± 0.001 3 ± 0 43 Activity

2.113 ± 0.001 4 ± 0 21 BeltLuminosity

1.77 ± 0.002 5 ± 0 7 AnkleLuminosity

1.568 ± 0.003 6 ± 0 16 BeltAccelerometerY-axis

1.431 ± 0.003 7 ± 0 8 RightPocketAccelerometerX-axis

1.391 ± 0.001 8 ± 0 10 RightPocketAccelerometerZ-axis

– BeltAccelerometerY-axis
– BeltAccelerometerZ-axis
– BeltLuminosity
– NeckAccelerometerZ-axis
– NeckLuminosity
– WristLuminosity
– Infra-Red 2
– Infra-Red 3
– Infra-Red 5
– Infra-red 6
– Activity.

5.5 Test Results

Table5 presents the results of the experiments performed to identify falls.
Fuzzy neural network results were no better than Bayesian algorithms. However,

in the comparison between the fuzzy neural network models and the model that used

Table 5 Test results in output response of models on fall classification problems
Dataset FNN FNN-FS NB BN RT J48 ELM

ACC 85.42 (4.92) 94.12 (2.54) 86.73 (0.09) 96.35 (0.06) 93.11(0.33) 95.24 (0.06) 87.98 (7.34)

SPE 0.83 (0.03) 0.95 (0.03) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.79 (0.76)

SEN 0.37 (0.01) 0.62 (0.01) 0.24 (0.02) 0.97 (0.01) 0.38 (0.03) 0.47 (0.03) 0.34 (0.02)

AUC 0.6000 (0.06) 0.7850 (0.27) 0.615 (0.01) 0.985 (0.01) 0.690 (0.03) 0.735 (0.02) 0.5650 (0.25)

PRE 0.20 (0.01) 0.56 (0.01) 0.16 (0.01) 0.52 (0.01) 0.39 (0.03) 0.49 (0.02) 0.18 (0.02)

TIME 9810.53
(12.62)

2954.91
(21.51)

110.53
(2.62)

886.03
(152.18)

307.53
(27.41)

7190.17
(269.16)

267.67 (1.21)

Bold represents the better results of the test
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Fig. 6 Decision surface generated by the FNN model

the database with the most relevant dimensions, there was a substantial increase in
accuracy and a significant decrease in the execution time of the algorithm, which
proves that the selection of characteristics can effectively improve the ability to
identify falls in people.

Figure6 presents the decision space results of the hybrid algorithm, demonstrating
how the decision space is realized to achieve the proper results presented in Table5.

The following fuzzy rules exemplify the extraction of knowledge from the
database.

1. If (AnkleAccelerometerX-axis is Low) and/or (AnkleLuminosity is High) and/or
(RightPocketAccelerometerX-axis is Low) and/or (RightPocketAccelerometerZ-
axis is Low) and/or (BeltAccelerometerY-axis is Low) and/or (BeltAccelerometer
Z-axis is Low) and/or (BeltLuminosity is Low) and/or (NeckAccelerometerZ-axis
is Low) and/or (NeckLuminosity is Low) and/or (WristLuminosity is Low) and/or
(Infra-Red2 is true) and (Infra-Red3 is true) and/or (Infra-Red5 is false) and/or
(Infra-Red6 is true) and/or (Activity is CommonActivities) then (v1 is −4.60)

2. If (AnkleAccelerometerX-axis is Low) and (AnkleLuminosity is High) and
(RightPocketAccelerometerX-axis is Low) and (RightPocketAccelerometerZ-
axis is High) and (BeltAccelerometerY-axis is Low) and (BeltAccelerometerZ-
axis is High) and (BeltLuminosity is Low) and (NeckAccelerometerZ-axis is
High) and (NeckLuminosity is Low) and (WristLuminosity is Low) and (Infra-
Red2 is true) and (Infra-Red3 is false) and (Infra-Red5 is false) and (Infra-Red6
is false) and (Activity is Falling) then (v2 is −7.48)

3. If (AnkleAccelerometerX-axis is High) and (AnkleLuminosity is Low) and
(RightPocketAccelerometerX-axis is High) and (RightPocketAccelerometerZ-
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axis is High) and (BeltAccelerometerY-axis is High) and (BeltAccelerometerZ-
axis isLow) and (BeltLuminosity isLow) and (NeckAccelerometerZ-axis isHigh)
and (NeckLuminosity is Low) and (WristLuminosity is High) and (Infra-Red2 is
false) and (Infra-Red3 is true) and (Infra-Red5 is false) and (Infra-Red6 is false)
and (Activity is CommonActivities) then (v13 is 4.10)

In this case, the weight v, according to Eq.13 represents the weight of the fuzzy
rules that consequently participate in the defuzzification process. The vweights found
by the fuzzy inference system determine the degree of participation of the fuzzy rule
in the definition of falls. So the more the ratio found to be useful in finding the falls,
the higher its value. The same relationship happens when you have a rule that does
not contribute so much to identifying falls. These weights are linearly combined in
the artificial neural network to find aspects of falls. That value defines what kind of
fall the data represents.

The great advantage of using hybrid models is the ability to merge the most help-
ful of two techniques, overcoming each other’s difficulties through the synergistic
union of complementary concepts. This happens when fuzzy neural networks use the
interpretability and uncertainty handling capabilities of fuzzy systems in association
with the training and approximation capabilities of artificial neural networks. Conse-
quently, the model can extract knowledge from a database in the form of fuzzy rules
and obtain assertive answers through neural network training techniques. Therefore,
the set of rules extracted from a database can foster several new expert systems, facil-
itating the dissemination of intelligent model results in areas that are not specialists
in these concepts. Its ability to adapt to the diverse contexts of science allows expert
systems based on fuzzy rules to be built to facilitate the routine of professionals in
different areas.

6 Conclusion

We can conclude that intelligent techniques can consistently address knowledge
extraction in a fall dataset linked to accident prevention contexts in people. To this
end, this knowledge can be extracted and transformed into expert systems, training
methodologies, and ways of monitoring people who are prone to injury from falls.

Thus the use of classifying models can be seen as examples of a significant
gain in the correctness of actions, mainly focused on Bayesian techniques, thus
allowing the treatment of certain groups with elements in common. Finally, the
feature selection part showed that even on an extremely complex basis, it is possible
to identify elements that have a better explanation of a given problem.

Future work may act on obtaining new classification techniques, applying other
classifying models, using other feature extraction methodologies.
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Multi-sensor System, Gamification,
and Artificial Intelligence for Benefit
Elderly People

Juana Isabel Méndez, Omar Mata, Pedro Ponce, Alan Meier, Therese Peffer
and Arturo Molina

Abstract Over the years, the elderly people population will become more than
children population; besides since 2018 people over 65 years old outnumbered the
population under 5 years old. Growing up involves biological, physical, social and
psychological changes that may lead to social isolation and loss of loved ones, or
even to the sense of loss of value, purpose or confidence. Moreover, as people are
aging, they usually spend more time at home. As a solution, social inclusion through
mobile devices and smart home seem to be ideal to avoid that lack of purpose in
life, confidence or value. Smart homes collect and analyze data from household
appliances and devices to promote independence, prevent emergencies and increase
the quality of life in elderly people. In that regard, the multi-sensor system allows the
expert to know more about the elderly people needs to propose actions that improve
the elderly people’s quality of life, as they can read and analyze through sensors their
facial expressions, voice, among others. Gamification in older people may motivate
elderly people to socialize with their peers through social interaction and by doing
activities as exercising. Thus, this chapter proposes to use an adaptive neural network
fuzzy inference to evaluate camera and voice devices that come from themulti-sensor
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system to propose an interactive and tailored human-machine interface for the elderly
people in the home.

Keywords Multi-sensor system · Smart home · ANFIS · Gamification · HMI ·
Voice detection · Face detection · Social inclusion · Physical activity

1 Introduction

This chapter proposes the use of a multisensory system into a smart home environ-
ment; this multisensory system allows the connectivity of all the sensors that could
be installed in a smart home in order to know more about the requirements of elderly
people, specifically for avoiding social isolation and incrementing physical activ-
ity to improve their healthy conditions. Those problems are considered extremely
important thus must be solved since elderly population is vulnerable. In addition,
this multi-sensor structure is focused on the decision fusion stage that is based on the
information that is coming from all the sensors and evaluated for an adaptive neu-
ral network fuzzy inference (ANFIS). This proposal also describes how the elderly
people can be engaged to improve their quality of life by a gamification strategy
and a fuzzy logic system, which are running on a human machine interface (HMI).
Figure 1 describes the general proposal for data fusion on HMI at smart homes.

1.1 Elderly People

By 2018, for the first time, the population of people over 65 years old outnumbered
children under 5 years old. Additionally, the United Nations expects that by 2050,
there will be 1.5 billion people aged 65 andwill outnumber the adolescents and youth
population from15 to 24 years old (1.3 billion). Thus, the proportion of elderly people
in the world is projected to reach from 9% to 16% in 2050 [1].

Figure 2 shows a graphic of the estimated and projected global population by
broad age group from 1950 to 2100, where population over 65 will increase while
population under 24 will decrease.

Elderly people can be seen as individuals with a wealth of life experience, with
interests and aspirations in their later life, as limitations and losses [2]. Aging
involves biological changes, such as cognitive deterioration, physical strength dimin-
ished or languishing sensory perception and detection; and social changes, like social
isolation and loss of loved ones, or as a sense of loss of value, purpose or confidence
[3, 4]. Furthermore, one of the challenging changes in aging is the loss of auton-
omy in daily life, this causes a modification of the living environment. Thus, social
inclusion and social exclusion allow access to social engagement and participation
through social relationships, civic activities, local services and financial resources
[5]. Moreover, social relationships are related to better health and well-being in late
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Fig. 1 General proposal for data fusion on HMI at smart homes

life. Elderly people use technology to shape their social contexts; however, its use
depends on the positive or negative evaluation of a device. Table 1 shows the theoret-
ical and practical implications of the conceptual model of technology use and social
context in late life [6].

In that regard, since 1988, gerontechnology emerged as a task to solve problems
and challenges found by aging people. Ambient Assisted Living (AAL) technologies
support elderly people to maintain and continue their daily life more independently
[7]. Moreover, the arising of technology allows connecting devices and systems to
exchange communication with individuals and collect the data derived from that
interaction [8].

There is an increase of life expectancy in the world, due to technological and
medical improvements; it is relevant to develop and implement new strategies and
technologies for the elderly that improves health care, independence, social inclu-
sion, among others. In that regard, smart homes may allow elderly people to stay
comfortable by monitoring their health and social inclusion with unobtrusive and
non-invasive remote devices [7].
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Fig. 2 Estimated and projected global population by broad age group from 1950 to 2100 [1]

Table 1 Theoretical and practical implications of the conceptual model of technology use and
social context in later life from [6]

Potential of social contexts
for enhancing technology use

Potentials of technology for
enhanced beneficial effects of
social contexts

Outcomes of relationship
regulation

Demands: Challenges in
social contexts that motivate
technology use

Selection: Supporting the
proactive shaping of social
contexts

Goal: Maximization of
positive experiences in social
contexts

Resources: Opportunities in
social contexts that motivate
technology use

Optimization: Enhancing
investment and means for
improving social contexts

Outcomes: Enhanced
relationship quality and
perceived closeness

Interplay processes:
Influence of demands and
resources depends on the
person

Compensation: Providing
means to compensate for loss
and burdens in social contexts

1.2 Smart Homes

In 1984 the American Association of House Builders introduced the concept of smart
homes in terms of “wired homes” [9]. However, the term is often defined based
on technological aspects and usage. For instance, the construction sector defined a
smart home as a residence equipped with computing and information technology,
which anticipates and responds to the needs of the occupants, working to promote
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their comfort, convenience, security and entertainment through the management of
technology within the home and connections to the world beyond [9], or as a living
environment that has the technology to allow devices and systems to be controlled
automatically [10]. The health care sector define it as a residence equipped with
technology that facilitates monitoring of residents’ health status and/or that promotes
independence, prevents emergencies, and increases their quality of life or as an
assisted interactive dwelling house [10]. This type of homecollects and analyzes data,
gives information to the habitants and manage different domestic appliances [11].
Figure 3 shows some common household appliances used in a smart home as Smart
TV, electric stove, coffeemaker, interior lighting,washingmachine, refrigeration, and
connected thermostats. Furthermore, smart household appliances could be accepted
if [10]:

• Elderly know that those type of appliances exist.
• The appliances and devices can be quickly and cheaply obtained.
• Those products demonstrate they reduce or eliminate physical demands for their
operation.

Fig. 3 Household appliances
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Fig. 4 Timeline of Smart Home projects for the elderly people

• The usability of the product considers characteristics as maneuverability.

Since the adoption of technology, the development of the smart home for the
elderly has been researched. Figure 4 shows the timeline of the smart house devel-
opment for the elderly. In 1998, the AID project (Assisted Interactive Dwelling)
proposed to use homes that consider equally the non-disabled, elderly or disabled
tenants through the concept of barrier-free design by taking advantage of the smart
technology at that time. They used a demo that considered a motor-driven window,
door and curtain control, enhanced heating controls, ‘keyless’ door locks, a video-
entry system, an enhanced security system, and infra-red bathroom controls. The
idea was to raise awareness amongst caring agency, housing providers, architects,
product manufacturers and end-users to promote the use of technology in homes
[12]. In 2002, the Aware Home project proposed to use a Digital Family Portrait to
support awareness of the long-term health, activity, and social well-being of senior
adults living by themselves. This portrait tracked the daily activity of the users and
showed the last six actions performed by them; it also included the weather, indoor
and outdoor temperature and the number of room-to-room transitions in 15-min
increments [13]. The next year, in 2003 the LARES project [14] consisted of an
intelligent human-friendly residential system that implemented an intelligent bed
robot for the elderly and the handicapped where an arm was attached to the bed for
transporting objects; the human-oriented interface informed the users intention to
the bed robot; and the home network was equipped to transmit and share informa-
tion between each device. In 2009, the VAALID project (Accessibility and Usability
Framework for AAL Interaction Design Process) began to develop new tools and
methods to make easier and more dynamic the creation, design, construction, imple-
mentation and evaluation processes for technological solutions within ALL to ensure
the accessibility and usability of the environment for the elderly [15]. In 2012 the
U-Care project applied the Korean government method where they use the activity
data alone to effectively analyze the status of the solitary elderly people; the home
was equipped with a gas leak detector, gateway, absence button, smoke detector and
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activity sensor to analyze the user’s activity level, which are monitored with five-
second intervals, and the activity data calculated every hour [16]. Since 2015 the
ORCATECH (Oregon Center for Aging and Technology) project of aging devel-
oped an advanced platform for assessing the health of people living within their
homes using passive sensing technologies to enable accurate assessment of cogni-
tive and physical health [17, 18]. In 2016 the SPHERE project (Sensor Platform for
Healthcare in a Residential Environment) aimed to develop a smart home platform
of non-medical network sensors, capable of gathering and integrating multiple types
of data about the home environment and the behaviors of its residents to understand
a range of healthcare needs [19]. In 2017 the SMARTA project consisted of devel-
oping and testing a personal health system that integrated standard sensors as well
as innovative wearables and environmental sensors to allow home telemonitoring of
vital parameters and detection of anomalies in daily activities, thus supporting active
aging through remote healthcare [20]. In 2018, the European Commission funded
the ALADIN project (Smart Home-Care solutions for the Elderly) to create smart
furniture solutions for the elderly and the nursing homes that take care of the elderly;
ALADIN is a homecare assistant which increases the independence of elderly people
living alone [21, 22]. Recently, theHABITATproject (HomeAssistance Based on the
Internet of Things for the Autonomy of Everybody) developed an IoT-based platform
for assistive and reconfigurable spaces that integrates RFID, wearable electronics,
wireless sensor networks, and artificial intelligence. This project has the purpose of
assisting needy people in their homes in safe conditions, helping them to conduct
autonomously most of the activities tied to the satisfaction for their primary needs,
sustaining actions focused on hospitalization and home care [7]. Finally, this year,
the Tecnologico de Monterrey and UC Berkeley are developing the Gamified HMI
project. This first stage takes advantages of the camera and Alexa to train an ANFIS
model to propose a tailored gamifiedHMI that teaches, engages andmotivates elderly
people to keep in touch with their peers, caregivers, doctors, and family members to
promote social inclusion and happiness and avoid social isolation and depression; the
following steps will consider the smart household appliances to use them as social
products that will interact with the end-user and the devices and between devices
[23].

2 Multi Sensors: Data Fusion

When multiple sensors are collecting information, which later is combined, they can
make accurately inferences than could not be achieving by a single sensor; moreover,
if these sensors are placed under a reference framework that is able tomap the value of
the property or attribute to a quantitative measurement in a consistent and predictable
manner, this could be extremely attractive as a framework because it also includes
functions which can be described in terms of compensation, information processing,
communication and integration. This framework is called multisensor data fusion
[24–26]. The multisensor data fusion concept is based on fundamental tasks done
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by animals and humans since they use multiple sensors to improve their ability to
survive when they have to identify potential threats and the have to perform some
functions; for instance, the five human senses used in daily tasks are hear, touch,
sight, smell and taste.

The primarily functions are:

– Compensationwhen sensors respond to environmental changes by self-diagnostic
tests, self-calibration and adaption, a compensation process is taking place.

– Information processing is the stage linked to signal conditioning, data reduction,
event detection and decision-making.

– Communications this stage is based on implementing a standardized inference
protocol for connecting the sensor and the outside world.

– Integration is generated when the sensing and computation processes are linked
under the same silicon chip or system.

Besides, a decision making stage is a primary stage in the multisensory system
because it could be considered as the central stage in which the information from
sensors are processed in order to create a decision according with the sensed data.

Thus, the concept of data fusion is not new, but the evolution of innovative sensors,
digital systems, machine-learning algorithms, advanced processing techniques and
real time processing devices allow creating a high-performance data fusion system.
Figure 5 represents that concept; data from Alexa and camera are collected to put
them on the ANFIS system to analyze the data and represent the information in one
form. For instance, the output could be the required features to propose a tailored
interface.

2.1 Multisensor Configuration

The configuration of sensor is focused on two main detections that are presented
below.

1. Detection of facial expression and body posture for detecting the mood of an
elderly person as well as physical limitations.

2. Detection of nonconventional behavior through a voice survey; for getting this
information an Alexa system was used in which a survey proposed by Yesavage
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[27]was deployed in order to rate depression in the elderly. This scale is known as
Geriatric Depression Scale (GDS); from 0 to 9 is a not depressed user, from 10 to
19 amild depressive individual and from20 to 30 a severe depressive person. This
questionnaire is usually completed in 10 min or less and was initially validated
with depressed patients and with elderly people without any history of mental
disorder [4].

2.2 Multisensor: Decision Fusion

The representation of knowledge could be achieved by an inference system, which
could be normally generated through an inference system [28].When it was proposed
to use in this multisensory system into the decision making a fuzzy logic system,
it was described as an extension from binary values (0 and 1). However, an ANFIS
could be trained and generate automatically the linguistic rules so a knowledge base
is crated [24].

2.3 ANFIS: Adaptive Neuro-Fuzzy Inference Systems

Sometimes, conventional mathematical modeling algorithms do not deal with vague
or uncertain information. Thus, Fuzzy systems using linguistic rules (IF-THEN) have
the strength and ability to reason as humans, without employing precise and complete
information. However, a problem arises, how to transfer human knowledge to a fuzzy
system. Several proposals have been made, such as the combination of artificial
neural networks with fuzzy systems. Artificial neural networks have the ability to
learn and adapt from experience, thus complementing fuzzy systems. Among the
most important techniques is the ANFIS, an adaptive neuro-fuzzy inference system
proposed by Jang [24] in 1993, which generates fuzzy IF-THEN rule bases and fuzzy
membership functions automatically. ANFIS is based on adaptive networks which
is a super set of feedforward artificial neural networks with supervised learning
capabilities as stated by Jang in [24, 29]. It is a topology of nodes directionally
connected, almost all the nodes depend on parameters that are changed according
certain learning rules that will minimize an error criteria. The most used learning
rule is the gradient descent method; however, Jang proposed a hybrid learning rule
that incorporates least square estimation.
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2.4 Multisensor Topology Proposed: Detection
of Nonconventional Behavior

The multisensory system is based on two elements; the first one is an Alexa voice
smart home controller [30] and a face detection for human emotions.

Alexa applies a survey to the end-user in order to know more about his mood, a
classification between 0 and 1 according with the responses is done using the survey
presented in Table 2; this survey was presented in [4]. The basic internal structure of
Alexa is shown in Fig. 6.

3 Emotions Classification: Detection of Facial Expression

An online detection of emotions based on facial expressions is achieve using a web-
cam and a PC running Python with the OpenCV library. The PC has an Intel Core
i7-7500U dual core processor with 8 GB of RAM and an integrated camera HP wide
vision HD of 0.92 MP and resolution of 1280 × 720 px.

The process for the emotion detection consists mainly in the use of two separate
artificial neural networks. The first one is a deep neural network that extracts the
faces from the image. For the second part a convolutional neural network is used to
classify the extracted face within seven different levels of emotions: angry, disgust,
fear, happy, sad, surprised, and neutral.

The overall process is listed next:

1. Get one frame from the webcam and resize to 300 × 300 pixels
2. Extract the biggest face detected using a DNN
3. Resize the face to 48 × 48 pixels in grayscale
4. Use a CNN to detect the emotions
5. Plot the level of each emotion detected.

3.1 Face Detection

The idea for the deep networks is that they can extract low, middle and high-level
features in a multi-layer architecture, hence the common trend to stack layers going
“deeper” in the net. But deep networks are hard to train because when they start to
converge a degradation problem shows, as the gradient is back-propagated it gets
smaller because of the repetitive multiplications. So, as the network goes deeper it
gets saturated. As a solution to this, the residual networks were introduced in which
an identity shortcut connection is used to skip one or more layers to perform an
identity mapping and their outputs are added to the outputs of the stacked layers as
shown in Fig. 7.
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Table 2 Survey for elderly people in order to detect social isolation problems (depression)

No. Question Yes/no

1 Are you basically satisfied with your life? Yes(1) | no (0)

2 Have you dropped many of your activities and interests? Yes(1) | no (0)

3 Do you feel that your life is empty? Yes(1) | no (0)

4 Do you often get bored? Yes(1) | no (0)

5 Are you hopeful about the future? Yes(1) | no (0)

6 Are you bothered by thoughts you can’t get out of your head? Yes(1) | no (0)

7 Are you in good spirits most of the time? Yes(1) | no (0)

8 Are you afraid that something bad is going to happen to you? Yes(1) | no (0)

9 Do you feel happy most of the time? Yes(1) | no (0)

10 Do you often feel helpless? Yes(1) | no (0)

11 Do you often get restless and fidgety? Yes(1) | no (0)

12 Do you prefer to stay at home rather than going out and doing new
things?

Yes(1) | no (0)

13 Do you frequently worry about the future? Yes(1) | no (0)

14 Do you feel you have more problems with memory than most? Yes(1) | no (0)

15 Do you think it is wonderful to be alive now? Yes(1) | no (0)

16 Do you often feel downhearted and blue? Yes(1) | no (0)

17 Do you feel pretty worthless the way you are now? Yes(1) | no (0)

18 Do you worry a lot about the past? Yes(1) | no (0)

19 Do you find life very exciting? Yes(1) | no (0)

20 Is it hard for you to get started on new projects? Yes(1) | no (0)

21 Do you feel full of energy? Yes(1) | no (0)

22 Do you feel that your situation is hopeless? Yes(1) | no (0)

23 Do you think that most people are better off than you are? Yes(1) | no (0)

24 Do you frequently get upset over little things? Yes(1) | no (0)

25 Do you frequently feel like crying? Yes(1) | no (0)

26 Do you have trouble concentrating? Yes(1) | no (0)

27 Do you enjoy getting up in the morning? Yes(1) | no (0)

28 Do you prefer to avoid social gatherings? Yes(1) | no (0)

29 Is it easy for you to make decisions? Yes(1) | no (0)

30 Is your mind as clear as it used to be? Yes(1) | no (0)

For the face detection part, a model included in the OpenCV library was used
based on a single-shot-multibox detector and a ResNet-10 architecture as backbone.
This model was already trained with images available on the model zoo of the Caffe
framework [31]. The results of this network are shown in the Fig. 8.
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3.2 Emotion Detection

Convolutional neural networks (CNN) is a deep learning algorithm which from an
input image, it assigns importance to various features by decomposing the image and
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Fig. 9 Convolutional neural networks (CNN) architecture

compressing it into simple features hence it can differentiate one from another [32].
The CNN architecture use layers that convolve the inputs with filters and compresses
them, the objective of the convolution operation is to extract the low-level features
from the input. Then a pooling layer responsible for reducing the spatial size of
the convolved features to decrease the computational power required to process the
data. Lastly a fully connected (FC) layer with a softmax classification technique
for learning non-linear combinations of the extracted features. This architecture is
shown in the Fig. 9.

For the emotion detection part of this work a VGG-like network is used. A VGG
net is a deep convolutional network developed by Oxford’s Visual Geometry Group
[33] which is publicly available online. The specific architecture used is shown in
Table 3.

The training of the network was made with twomerged public databases. The first
one is the FER2013 dataset from theKaggle competition [34], it contains seven facial
expressions in 35,887 images. The second is the KDEF database [35] (Karolinska
Directed Emotional Faces) which contains 4900 pictures on facial emotional expres-
sions for 70 different models. The KDEF database images had to be adjusted to have
the same format of the FER2013 database, that meant to extract the face in B&W and
resize it to 48× 48 pixels. Figure 10 shows the training graph through 1134 epochs.

The results obtained with this network are shown in the Fig. 11.
The proposed configuration effectively gives a grade for each of the facial expres-

sions detected and works with no noticeable delay on the live camera recording.
Therefore, the grade of happiness or sadness detected can be used to train the ANFIS
system. Therefore, this configuration helps as a social connector that can promote
social interaction between their relatives and friends; besides, this emotion classi-
fication may detect daily activities or moods to address any unusual activity and
addressing those rare activities in early stages [36].
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Table 3 VGG-like network
for emotion classification

Layer type Output size Filter
size/Stride

Block

Input image 48 × 48 × 1 3 × 3, k = 32 1

CONV (Relu,
BN)

48 × 48 × 3 3 × 3, k = 32

CONV (Relu,
BN)

48 × 48 × 3 3 × 3, k = 32

POOL 24 × 24 × 32 2 × 2

Dropout 24 × 24 × 32

CONV (Relu,
BN)

24 × 24 × 64 3 × 3, k = 64 2

CONV (Relu,
BN)

24 × 24 × 64 3 × 3, k = 64

POOL 12 × 12 × 64 2 × 2

Dropout 12 × 12 × 64

CONV (Relu,
BN)

12 × 12 × 128 3 × 3, k = 128 3

CONV (Relu,
BN)

12 × 12 × 128 3 × 3, k = 128

POOL 6 × 6 × 128 2 × 2

Dropout 6 × 6 × 128

FC (Relu, BN) 64 4

Dropout

FC (Relu, BN) 64 5

Dropout

Softmax 7 6

Fig. 10 Training graph for
VGG-like network
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Fig. 11 Emotion classification results

4 Gamification

Since the 1980s decade, there are references of ‘gamifying’ applications; how-
ever, since the 2000s decade, several definitions of Gamification terms have been
defined. In 2003, Pelling used gamification to create game-like interfaces for elec-
tronic devices [37]. In 2008, Terill defined the concept as taking game mechanics
and applying to other web properties to increase engagement [38]. In 2011, Huotari
and Hamari defined it as a process of enhancing a service with affordances for game-
ful experiences in order to support the user’s overall value creation [39]. In 2011,
Deterding et al. defined it as the use of game elements and game-design techniques
in non-game contexts [40]. In 2015, Chou defined it as the craft of deriving fun and
engaging elements found typically in games and thoughtfully applying them to real-
world or productive activities [41]. Therefore, the main goal of gamification is to
increase the motivation of users by using game-like techniques and applying them
effectively in the real world to influence user’s behavior and improve user’s skills,
competencies and creativity [42].

Besides, the use of gamification within a device can improve enjoyment, health
care and promote social interaction in elderly people [43]. Ponce et al. [23] proposed
including social factors in the design process by implementing a gamification strat-
egy to send stimuli to change consumer behavior. Mendez et al. [44] developed a
three-step framework to propose a tailored HMI using a fuzzy logic system in con-
nected thermostats to teach, engage and motivate users to save energy. Moreover,
that framework was adapted to take advantage of that connected thermostat platform
to promote social interaction and physical activity for the elderly people [45].

The Internet maintains and enhances social relationships through email, instant
messaging, social networks, discussion forums and blogs have positive adoptions
among elderly people. Besides, technology can change daily life in three ways [8]:

1. It should shape social contexts regarding age-specific needs.
2. It should improve the contact’s quality and create meaningful relations.
3. It should compensate for losses and burdens that individuals may face throughout

adulthood.
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4.1 Kaleidoscope Framework

Kappen proposed the kaleidoscope framework that has intrinsic and extrinsic
motivation to promote physical activity in the elderly people over 50 years old [46].

• Intrinsic Motivation

– Autonomy: Customization, purpose, independence. Related to the improvement
of fitness performance, comfortable routines, incremental progression, rein-
forcing success, internalizing rewards and responsibility. Freedom of modulat-
ing fitness routines, structured routines, modularity, choice of changing goals,
reinforcing profession through visual and verbal feedback.

– Competence: Engagement based, achievement-based, performance-based. It is
related to the complexity of activity routines, challenges with the repetitions of
the activity, focus on remembering activity steps, and ease of understanding.

– Relatedness: Relationships, sharing, preferences. This element is related to fos-
tering social connections. Sharing achievements and experiences, setting an
example for peers within the fitness activity domain, exchanging feedback
with peers and trainers, and being validated for performance by the trainer
and doctors.

• ExtrinsicMotivation: Encompass factors of external regulation, identification, and
integration. Moreover, these motivations are not as valued by older adults, and
tangible rewards are mostly related to food.

– Rewards
– Incentives
– Leaderboards
– Points
– Badges.

4.2 Octalysis Framework

Chou [41] proposed a complete framework based on extrinsic, intrinsic, positive, and
negative motivation. Figure 12 displays the framework proposed by him.

• Extrinsic motivation: People are motivated because of external recognition or
economic rewards.

• Intrinsic motivation: People are motivated due to inner motivation; the activity
itself is rewarding on its own without tangible goals to achieve.

• Positive motivation: The activity is entertaining because people feel successful,
happy, and powerful.

• Negative motivation: People engages in the activities because the user fears lose
something.
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Fig. 12 Octalysis framework proposed by Chou [41]

• Core 1: Epic meaning and calling: People believe that what they do is more
significant than themselves.

• Core 2: Development and accomplishment: People believe they are succeeding,
progressing, developing skills, achieving mastery, among others.

• Core 3: Empowerment of creativity and feedback: People realize a creative process
by trying several combinations to achieve goals.

• Core 4: Ownership and possession: This core is known as the desire core. People
believe and feel they are in control of something.

• Core 5: social influence and relatedness: People are motivated due to social
elements.

• Core 6: Scarcity and impatience: People want something because it is challenging
to have it.

• Core 7: Unpredictability and curiosity: People are engaged due to the uncertainty
of what is going to happen next. This core is behind the gambling addiction.

• Core 8: Loss and avoidance: People try to prevent something terrible to happen.
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Fig. 13 Timeline of daily activity projects that considered game elements

Figure 13 shows a brief timeline of four projects for the elderly that included
game elements within the platform.

5 Proposal

Figure 14 shows the trained ANFIS system for the detection of facial expression and
nonconventional behavior through voice survey to propose a gamification strategy
to engages the elderly people to promote social inclusion and avoid depression or
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Fig. 14 Trained ANFIS using image and voice as input elements and the output the gamified
elements required for the HMI
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sadness in those individuals. The premise is that by taking advantage of household
appliances, it is possible to promote social interaction in elderly people and avoid
activities that cause sadness in the elderly.

Figure 15 shows that the input values of the ANFIS system are the camera and
the Alexa device; the input membership function for both devices are ranged from
the sad face (from 0 to 0.25), a bit sad (from 0 to 0.5), neutral (from 0.25 to 0.75),
a bit happy (from 0.5 to 1) to a happy face (from 0.75 to 1). Besides the sad face
uses a Z-shape membership function, the faces from a bit sad to a bit happy uses the
triangular membership function and the happy faces uses the S-Shape membership
function. The expected outputmembership functions ranged from extrinsic, negative,
positive to intrinsicmotivations. Furthermore, the output values aremore biased to the
negative side of the lower values because it is considered that the elderly people tend to
feel isolated [47]; thus our proposal looks for social inclusion and physical activity.
Therefore, the tailored gamified HMI will be more focused on showing extrinsic
motivation through messages, videos, rewards and tips about physical activity that
will depend on how active or inactive, and sad or happy the elderly people are.

Membership Functions

Camera
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Fig. 15 Input membership functions of the trained ANFIS
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Fig. 16 Proposal diagram

Consequently, Fig. 16 shows how the proposal works. Six types of interactions are
used to avoid elderly isolation: user-house, house-product, product-product, product-
user, product-interface, and user-interface. As the elderly user spends most of the
time at home, this user is continuously in touch with the household elements, such
as doors, windows, furniture, household appliances, among others (interaction user-
house). Then, the interaction between house-product determines which household
appliances are mostly used. Moreover, when the elderly consumer interacts with
the products, it is profiled the user’s routines and activities, which are also moni-
tored by the HMI (interaction product-interface), while Alexa and the camera take
decisions for the user to get more comfortable the life inside the house (interaction
product-user); for instance, Alexa can diminish the light intensity, or turn off the
TV (interaction product-product). Through, the multi-sensor system, Alexa and the
camera analyzes the elderly facial expressions and communicate by voice with the
user to monitor any change in the elderly mood. Finally, throughout the ANFIS sys-
tem (see Table 4), it is shown which gamification elements should be displayed in
the tailored interface to promote social inclusion and physical activity in the elderly
(interaction user-interface). The adjustment and feedback between the tailored HMI,
the household appliances, and the camera and Alexa are required to continue engag-
ing and motivating the user to be in touch with friends and family members, to
improve habits, to exercise. Therefore, with this proposal, the elderly quality of life
may improve.
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Table 4 25 rules from the
fuzzy system of the trained
ANFIS

Rule IF AND THEN

IMAGE VOICE Gamified motivations

1 Sad Sad Extrinsic

2 Sad A bit sad Extrinsic

3 Sad Neutral Extrinsic

4 Sad A bit happy Extrinsic

5 Sad Happy Extrinsic

6 A bit sad Sad Extrinsic

7 A bit sad A bit sad Extrinsic

8 A bit sad Neutral Extrinsic

9 A bit sad A bit happy Extrinsic

10 A bit sad Happy Extrinsic

11 Neutral Sad Extrinsic

12 Neutral A bit sad Extrinsic

13 Neutral Neutral Negative

14 Neutral A bit happy Extrinsic

15 Neutral Happy Extrinsic

16 A bit happy Sad Extrinsic

17 A bit happy A bit sad Extrinsic

18 A bit happy Neutral Extrinsic

19 A bit happy A bit happy Positive

20 A bit happy Happy Extrinsic

21 Happy Sad Extrinsic

22 Happy A bit sad Extrinsic

23 Happy Neutral Extrinsic

24 Happy A bit happy Extrinsic

25 Happy Happy Intrinsic

Therefore, the tailored gamified HMI must consider mainly the extrinsic motiva-
tion to promote social inclusion and promote happiness in elderly people. The gami-
fication elements required in the interface are: points, badges, rewards, leaderboard,
progress bar, higher meaning, narrative, elitism, virtual goods, build from scratch,
avatar, monitoring through social connectors as video call [41, 46]. If the elderly peo-
ple are neutral either in voice and image, the gamification elements can also include
progress loss, visual storytelling, random rewards, status quo, mentorship that helps
the user become happier and social included. If the elderly user is a bit happy, then the
interface can include real-time control, instant feedback, voluntary autonomy, and
choice perception, social invite, group quest. Finally, if the user is totally happy, then
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the elements should include visual storytelling, random rewards, status quo, men-
torship, real-time control, instant feedback, voluntary autonomy, choice perception,
social invite, group quest.

6 Results

The literature review indicates that the most common gamification elements for
the elderly to promote social interaction and physical activity are: feedback, social
sharing, challenges, leaderboard, rewards, social connector, monitoring, and a profile
[36, 41, 42, 45, 46, 48, 49]. Table 5 displays the gamification elements in a mobile
device for the elderly. Those elements consider the extrinsic, intrinsic, positive, and
negative motivation based on the Octalysis and Kaleidoscope framework. Figure 17
proposes a typical layout for the elderly user without considering any customization.
This dashboard is a proposal for a connected thermostat, it shows the most common
gamification elements that may appear in an interface whose primary purpose is to
promote social interaction and physical activity. The right side of the screen has the
purpose that elderly user can track his/her progress, comparewith friends, check their
weekly and monthly challenges, and see how rewards are available to be achieved. In
the right upper side of the dashboard, it is displayed the daily challenge to promote
physical activity in the elderly. The Tips button advises the elderly user on how to
improve and learn more about physical activity and its benefits as wells as the kind
of household appliances are in his/her home. The Be a HERO button works as an
interaction button where the elderly user gives or receives advises of his friends.
Finally, the video conference screen works as a social connector because the elderly
user can call his/her family member or friends. With this video call screen, it is
possible to determine through the face detection if the elderly user is sad or happy.

Based on the ANFIS proposal, in Fig. 18, it is displayed a tailored HMI based on
an elderly user that is a bit happy. The first image is the interface for the smart home,
which initially has connected the thermostat, television and lighting in the house.
The second and third image displays an interface for a bit happy user as it includes
real-time control, instant feedback, social invite, the points, badges, leaderboard and
the monitoring through social connector (Alexa, and video call). Finally, the last
image displays the connected thermostat interface, where it also includes positive
and extrinsic motivation.

Moreover, if the elderly user is sad or depressed, the gamified interfacewill display
elements that promote social inclusion as video calls or social sharing like feedback
their peers through challenges. If the elderly user is neutral, the interface will display
a sober layout to determine and recognize the user’s interest; for instance, Fig. 19
shows the proposal of layout for this type of user; the left image shows the general
display for the smart home, this type of user prefers a more sober layout where it is
easy to have a call with friends or with Alexa.

Thus, the gamified application monitors the elderly mood in order to propose a
tailored interface. If the user does not engage, then the interface re-adapts to propose
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Table 5 Gamification elements to be used for the tailored HMI

CORE DRIVE Motivation Gamification Sad A
bit
sad

Neutral A bit
happy

Happy

1. Epic meaning
and calling

Extrinsic Narrative ✕ ✕ ✕

Humanity
hero

✕ ✕ ✕ ✕

Higher
meaning

✕ ✕ ✕ ✕ ✕

2. Development
and
accomplishment

Extrinsic Points ✕ ✕ ✕ ✕ ✕

Badges ✕ ✕ ✕ ✕ ✕

Leaderboard ✕ ✕ ✕ ✕ ✕

Progress bar ✕ ✕ ✕ ✕ ✕

Challenges ✕ ✕ ✕ ✕ ✕

3.
Empowerment
of creativity and
feedback

Intrinsic Choice
perception

✕ ✕

Real-time
control

✕ ✕ ✕ ✕

Instant
feedback

✕ ✕ ✕ ✕ ✕

4. Ownership
and possession

Extrinsic Rewards ✕ ✕ ✕ ✕ ✕

Build from
scratch

✕

Avatar ✕ ✕

Monitoring ✕ ✕ ✕ ✕ ✕

5. Social
influence and
relatedness

Intrinsic Social invite ✕ ✕

Mentorship ✕ ✕

Touting ✕

Social
sharing

✕ ✕ ✕ ✕ ✕

Social
connector

✕ ✕ ✕ ✕ ✕

6. Scarcity and
patience

Extrinsic Patient
feedback

✕

7.
Unpredictability
and curiosity

Intrinsic visual
storytelling

✕ ✕

Random
rewards

✕

8. Loss and
avoidance

Extrinsic Progress loss ✕ ✕ ✕

Status quo ✕ ✕ ✕
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Fig. 17 General dashboard for a connected thermostat layout without any personalization

Fig. 18 Tailored HMI proposal for a bit happy elderly user

Fig. 19 Tailored HMI proposal for a neutral user
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other elements. The Octalysis and Kaleidoscope frameworks help as a guideline
to promote the gamification elements based on the motivations (intrinsic, extrinsic,
positive, and negative), Table 5 displays those gamification elements. Besides, this
proposal is just considering the gamified elements to be displayed on the interfaces;
however, the design and distribution of this HMI may be improved by applying the
ten heuristics proposed by Nielsen [50].

For the last three decades, it is proposed the inclusion of elderly people in the
smart home by tracking their daily activities, detecting falls, remembering to them
activities. However, to the best of the author’s knowledge, any of these proposals
have considered a tailored interface based on the elderly people mood to promote
social inclusion and avoid depression by using devices as Alexa that allows having
a conversation with the elderly or through video calls to promote social relatedness.
This proposal aims to teach, engage and motivate users to feel included in the society
by promoting interaction with Alexa, their peers and family.

7 Discussion

This chapter proposes the inclusion of Alexa and cameras to track the elderly people
and check their daily status, their mood in order to improve their quality of life by
promoting social inclusion and physical exercise. The multi-sensor system is used
within a smart home environment to identify the physical characteristics of elderly
people. Thus, the voice and face detection are evaluated on an ANFIS system to
propose the personalized gamified elements that run in an HMI needed each type of
user.

The emotions detected are ranged from a 5 type-scale: sad (the lowestmembership
function value), a bit sad, neutral, a bit happy, and happy (the highest membership
function value). Those emotions are measured with the survey for elderly people
presented inTable 2 [4]; these questions are asked to the elderly people throughAlexa.
Thus, the initial interaction begins during this questionnaire. During the initial tests
that face detection was done using the webcam from the PC, and the facial expression
concorded with the results. Therefore, the face detection can be used from the mobile
or tablet camera the elderly individual is using.

Then, based on those ranges the ANFIS system, that is biased to the lower values
to propose a gamified interface focused more on the extrinsic motivation, as this type
of motivation is more accessible to measure through metrics, of how many times the
individual is using the application or even the daily physical activities the individual is
doing and howmuch time the user spends exercising [41, 46]. Besides, the application
displays the gamification elements from Octalysis and Kaleidoscope framework that
engage the elderly people to improve their social skills and physical activity. This
initial approach takes in consideration that one family member is continuously in
contact with the elderly user, thus if any urgency occurred, the application would
contact the family member immediately to check if their elderly familiar is fine.
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However, a clear disadvantage of this proposal is that the elderly user and the
family members require to accept that the house will be permanently monitored.
Moreover, the type of mobile phone or tablet that the elderly user has may be incon-
venient, and the socioeconomic level where this type of product can be used. Besides,
it is required that the elderly accept Alexa as an initial manner to interact. Another
possible failure is the face detection; the face may display another feeling rather than
what the program is detecting; however, the face detection algorithm can be updated
with an artificial neural network that can train the user’s faces and detect more accu-
rately the user feelings. As it was mentioned on the Results section, the gamified
interface can be improved by applying the ten Nielsen heuristics [50]: visibility of
system status, match between system and the real world, user control and freedom,
consistency and standards, error prevention, recognition rather than recall, flexi-
bility and efficiency of use, aesthetic and minimalist design, help users recognize,
diagnose, and recover from errors, and help and documentation.

This proposal intends to change the way of how the products are used, and to
take advantage of the household appliances to make them more social, it means, to
produce a social interaction between the user and the product. A product that can
take into account the needs of the elderly to promote in and the unconscious way
social interaction and therefore, improve their physical activity. With the multisensor
system, it is possible to take advantage of sensors, or household appliances that
use sensors to analyze the elderly pattern and propose, for instance, a customized
application that best fit to the user.

8 Conclusion

In this chapter, a Multi-sensor system for helping elderly people by using gamifi-
cation and artificial intelligence within a tailored HMI have been proposed. Elderly
people will continue increasing, whereas younger people will decrement, since last
year, the elderly population became more than the younger population. Therefore,
the elderly people require to be considered, and as some of their problems have
led to social isolation, it is needed a strategy that improves their quality of life.
This strategy considers the interaction of the elderly people and the products; with
the interaction between household appliances and Alexa, and gamification features
within an application it is possible to engage and motivate the user to be socially
included and improve their quality of life, too. Nowadays, it is not enough to have
connected products that are not able to profile the elderly user and take actions based
on the user tasks that benefit them without making intrusive decisions. With this
proposal, it is intended to profile and know better the user in order to propose an
accurate application that improves their social and physical skills without affecting
their personality or without affecting their freedom. This HMI set the opportunity of
creating an atmosphere where the connected products can interact with the elderly
and propose social and physical activities that will help the user to feel included.
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A Novel Approach for Human Fall
Detection and Fall Risk Assessment
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Abstract There are several studies concerned in providing quality health care ser-
vices to all people. Among them, human fall detection systems play an important
role, because fall is the main obstacle for elderly people to live independently and it
is also a major health concern due to aging population. The three basic approaches
used to develop fall detection systems include some sort of wearable, ambient or
non-invasive based devices. Most of such systems are very often rejected by users
due to the high false alarm and difficulties in carrying them during their daily life
activities. Thus, this study proposes a non-invasive fall detection system based on
the height, velocity, statistical analysis, fall risk factors and position of the subject
from depth information. The proposed algorithm also utilizes fall risk factors of the
user, during fall detection process to classify the subject with chances of fall such as
high fall risk or low fall risk level. Thus, making the system adaptable to the physical
condition of the user. The proposed system also performs a fall injury assessment
after the fall event to alert for appropriate assistance and includes a fall risk assess-
ment tool which can work independently to predict falls or to classify people with
their fall risk levels. From the experimental results, the proposed system was able
to achieve an average accuracy of 98.3% with sensitivity of 100% and specificity of
97.7%.
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1 Introduction

Adaptive technology is an emerging research area since daily living assistance are
very often needed for many people in today’s aging populations including disabled,
overweight, obese and elderly people. The main purpose of assistive technology is to
provide better living and health care to those in need, especially elderly people who
live alone. In order, to provide better living for them, it is important to have continuous
human monitoring systems in their home to inform the health care representatives of
any emergency assistance. Among such monitoring systems, fall detection systems
are increasingly in interest since statistics [1, 2] has shown that fall is the main cause
of injury related death for seniors aged 79 [3, 4] or above and it is the second common
source of injury related (unintentional) death for all ages [5, 6]. Furthermore, fall is the
biggest threat among all other incidents to elderly and those peoplewho are in need of
support [3, 7–16]. Accordingly, fall can have severe consequences for elderly people,
especially if not attended in a short period of time [17]. Similarly, unintentional
human fall represents themain source ofmorbidity andmortality among elderly [18].
Hence, accurate and autonomous human fall detection systems are very important
to allow the elderly people to live independently without having to change their life
style.

The three basic approaches used to develop human fall detection systems are
wearable based devices, ambient based devices and vision based devices. The studies
representing the three approaches are basically structured to solve the drawbacks of
one another. For an example, ambient based devices used to solve the issues in
wearable based devices and wearable devices also solves some of the problems
that ambient sensors failed to handle. Before the advent of cheap depth sensors in
the market, vision based devices using RGB camera used to take care of the main
issue in wearable and ambient based devices with even higher accuracy at the cost of
expensive systems and setup. EvenwithRGBcameras, the concerns arising regarding
the acceptability and reliability of the fall detection systems are not limited rather
added its own drawbacks such as capturing and recording of color videos leading to
privacy issues.Additionally, the cost of the systems, camera calibrations, requirement
of adequate lightening and setup are common issues.

The advent of cheap Red-Green-Blue-Depth (RGBD) cameras, has paved way
to the development of novel systems to overcome the limitations of these previous
works [19, 20]. The cheap depth sensors such asMicrosoft Kinect sensor, can extract
depth information of the objects in the scene even with very low lighting condition.
The auto calibration capability and other features of the sensor can negligibly reduce
the issues concerning with RGB cameras. One of the main advantage of the Kinect
sensor is that it can be place in certain places according to user requirements [21],
unlike the complex installation procedure of some RBG fall detection system. It is
also worth noting that by using only the depth images it can preserve the privacy of
users [21]. Since the proposed algorithm is based only on Kinect sensor, the three
categories of studies using depth sensor is analyzed below to validate the chosen
approach and the derived methodology.
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The first sub-categories in depth sensor based approach used joint position or
measurements and its movement with some thresholds for fall detection. The second
sub-category used fusion of wearable and depth maps with machine learning or
joint position for fall detection. The third sub-category employs machine learning
or other classifier only on depth images. The research studies based on fusion of an
initial devices and depth sensor is not very relevant to compare with the proposed
algorithm, since their system design and performance are all subject to the drawback
of wearable devices which is regarded as main causes of rejection of fall detection
systems. Wearable devices are mainly rejected due to the inconvenience in carrying
them during daily life activities [22]. In addition, they used the wearable device to
generate any potential fall movement and to start the depth image based classifier to
confirm fall. In such cases the capabilities of the depth sensor are not fully exploited
and thus the actual accuracies that could be achieved are not realized. Generally,
the overall performance of such systems solely depends on the effectiveness of the
wearable device to identify potential fall movements.

In some of the studies, detection does not always depend on the wearable device
because in certain situations like while changing cloths it is not possible to wear the
device [20]. Therefore, in such cases the systems depend on the depth sensor. This
requires a proper time synchronization between wireless initial device sampling rate
and depth sensor frame rate. It is also impossible to access and control the Kinect
embedded clock [23]. But it is important to synchronize the Kinect sensor and main
system and the wireless initial device in order to properly integrate such fall detection
systems which depend on one another and requires switching of fall authentication
process between devices.

The other two approaches in depth map based approaches depends only on the
depth image generated from the depth sensor. From the review of literature, it was
also found that exploring the depth information alone can minimize the issues faced
by the previous work for fall detection. The only issue that cannot be dealt is the
limitation of the Kinect sensor’s viewing spectrum, which can be solved using more
than one sensor depending on the coverage requirement.

Previousworks has used different techniques on the depth image to classify human
fall from other activities of daily life. Some of the studies used extracted human
joint measurement and movement over time to identify human fall. While others
used machine learning or classifiers either on the depth image or extracted human
features to detect human fall. The use of machine learning classification can have
many problems apart from the computational cost. Additionally, off-line training can
degrade the accuracy and the time when the image is extracted can play an impor-
tant role in identifying the lying posture. They used different algorithms to segment
human subject from the depth image. Some works, developed their own preprocess-
ing directly on the raw data, while it is not possible to achieve the established auto
calibration of the Kinect sensor with manual preprocessing, even though it was not
primarily developed for fall detection. If any developed preprocessing cannot auto
calibrate when a subject enters and exit into the view of the sensor, then fall detection
algorithm working on top of the preprocessing will not receive adequate information
to make an accurate decision.



240 Y. Nizam and M.M. A. Jamil

The approaches that is based only on the depth images and used joint measure-
ments instead of classifiers basically use the distance of human joints from floor
plane and their vertical velocities to classify and authenticate human fall from other
activities of daily life. Various joints such as head joint height from floor, centroid
height and their respective velocities are fed into an algorithm with some threshold-
ing to identify any falling action. With this approach, some fall detection algorithms
cannot work in case of occlusion, because it cannot calculate the distance to the
ground [24]. The use of joint height in fall detection shows good performance for
falls ending on the floor but it has failed if the end of the fall is occluded behind
furniture [25]. It also showed that it could be solved using velocity just before the
occlusion.

The closely related works to the proposed algorithm employed joint measure-
ments and its movement over time for fall detection. Basically they all, used selected
skeleton joints or features of the subject with a predefined algorithm for fall detec-
tion. The algorithms either uses a fixed or adaptive threshold within a flow to make
the decision. One of the study used [26], a statistical approach with features using
a Bayesian framework. It is very clear from the literature that, a lot more effort still
remain, to device algorithms to follow the changes in the selected key features of the
subject to fully utilize the capabilities of the depth sensor. It was found that a low-
computational algorithm with statistical analysis of the key features of the subject
can significantly minimize the issue of obstacles blocking the view of the subject.
This could on the other hand, make the system more stable especially by avoiding
the computation hungry machine learners and other classifiers.

It is also worth to be noted that none of the related works so far had utilized
any fall risk level estimation during fall detection. Studies conducted on fall risk
assessments were primarily aimed to identify potential fall risk patients for nursing
homes or hospitals. This was achieved either through questionnaires or using sensors
to identify likely physical weakness of the patients that may cause falls. This was
then used to categorize patients with high fall risks or low fall risks to provide better
healthcare and avoid fall injuries.

This study incorporates a robust fall risk level estimation protocol within the fall
detection algorithm to adapt appropriate parameters depending on the movement
of the user. The inclusion of fall risk factors in the proposed approach during fall
detection process is never implemented to our knowledge and it is expected that
the fall risk identification could assist in improving fall detection process and also
reduce computation costs. Since fall risk factors can help to adapt the fall detection
process depending on the risk level of the users. This is because the nature of fall
and characteristics of other activities of daily life differ with fall risk levels. For
users with high risk of falls, the fall detection algorithm could switch to intensive
detection process and for users with low fall risks, the algorithm could track changes
after a gap, thus reducing computational costs. Since fall risk level of the user also
changes overtime, such an incorporation could make the proposed fall detection to
outperform over the available systems. The assessment of the consequences of fall
or fall injury is also included in the proposed system to evaluate the significance
of injury and inform for appropriate healthcare, which is also a contribution of this
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work. The proposed is also incorporated a fall risk assessment tool which can work
independently to predict falls or to classify people with their fall risk levels.

2 Fall Detection

2.1 Overview of the Method

The proposed methodology for fall detection and identification of fall risk level
uses the depth information generated from Kinect sensor. The parameters required
for the proposed fall detection algorithm and the fall risk assessment procedure are
computed from the generated depth information.

As per the characteristics of daily activities of human life, some of them can
be classified using the height change pattern alone. For activities that are similar
like fall events, velocity for the duration of the movement is also required. This is
because such activities are found to have similar height change pattern as falls. Like
intentionally lying on floor and fall from standing is very similar in nature in terms of
height change pattern. The only major distinguishing factor is the changes of height
over time. Therefore, the basic components for fall detections are the changes in
velocity and height which was applied in different order depending on the fall risk
levels of the subject. Fall risk levels of the subject is a measure of physical weakness
or any difficulties the subject is facing during their daily life activities that may have
high chances of falls than other normal elderly person.

The following Fig. 1, shows the skeleton generated from the sensor labeled with
joints considered in the proposed algorithm. Table 1, shows the combinations of
joints considered for the computation of different parameters used in the proposed
algorithm for the classification of human fall from other activities of daily life. The
joint data utilized by proposed fall injury estimation are also listed in the following
Table 1. The joints marked in red (in Fig. 1), are key joint considered in the proposed
methodology. If any of them are not visible (available) and/or are not accurately
detected, then the joints marked in pink color in Fig. 1 and Table 1 (left shoulder,
right shoulder, left hip and right hip) are used instead. For an example, if torso joint
is not visible, then the average of left and right hip is used instead.

Combinations of labeled joints in Fig. 1 are used for the calculations of subject’s
height, speed, velocity, acceleration, position of joint, activity, fall risk factors and fall
injury estimations as described in Table 1. Speed is calculated for the computation
of velocity, since velocity consists of magnitude and direction components. Rate
of change of velocity is considered in this proposed works, because it can clearly
show the difference. Acceleration is considered where the changes in velocity is not
clear enough to distinguish the changes in pattern or variation. Fall risk factors are
calculated from foot, arm and trunk to identify any difficulty the subject is facing
during their normal daily life activities which may cause them to fall easily. Activity
is detected from the movements of head and arms. Fall injury estimation simply uses
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Fig. 1 Illustration of joints considered in the proposed algorithm

Table 1 Joint coordinates used for the different parameters
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all the major joints, because it will require all the joint data to assess how the subject
stood up and any changes that may increase the chances of unintentional fall in future
or simply the fall risk level.

Fall risk assessment in this study simply refers to the analysis of the physical
capabilities of the user, which was primarily used in hospitals and nursing homes
to identify the patients with their fall risk level. The proposed fall risk assessment
is integrated with the proposed fall detection system and it can work independently
to measure the level of fall risks (chances of fall) as a clinical tool for patients and
elderly.

Some of the features of the proposed fall risk assessment are also used in the
proposed fall detection algorithm. These features of the fall risk assessment were
used during the fall detection (fall risk factors) process and after a fall event (fall
injury estimation). Some of these features of fall risk assessment were used in fall
detection process, because nature of falls and other activities of human life differ
depending on physical strength of the subject or the user. Therefore, common fall
risk factors were used during fall detection process to adapt the algorithm for people
different fall risk levels. Fall injury estimation after a fall event was used for alerting
appropriate assistance. This was simply aimed to assess the ability of the subject to
return to normal activities and to measure the level of injuries for low impact falls
only.

The use of some of the features of fall risk assessments during fall detection
process, indeed furnished the proposed fall detection algorithm by enhancing the
detection ratio and improving capabilities. Furthermore, the added fall injury esti-
mation after a fall event, also increased the capabilities of the fall detection system.
The overall proposed systemwas also enhanced through the addition of this proposed
independent fall risk assessment tool together with the fall detection mechanism.

2.2 Activity Classification

Classification of human activities is an important research topic in the field of com-
puter vision and rehabilitation. It is also increasingly in use for many applications
including intelligent surveillance, quality of life (such as health monitoring) devices
for elderly people, content-based video retrieval and human-computer interaction
[27–30]. There has been plenty of researches conducted to automatically recognize
human activities, yet it remains a challenging problem. Many approaches are used to
identify how human moves in the scene. Techniques employed includes tracking of
movements, body posture estimation, space-time shape templates and overall pattern
of appearance [31–36].

Identification of characteristics of daily life activities is important in order to
classify them. The characteristics of the activities can help to identify any uniqueness
or dissimilarities between activities which in turnwill support in distinguishing them.
The characteristics of activities were derived in terms of height change pattern, rate
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of change of velocity, deviation of the height and position of the subject during and
after the movement.

This identificationof characteristics of daily activities togetherwith the pattern and
the rate of change is important to classify them, especially unintentional human fall.
The pattern of change is referred to the variation of subject’s height with respective
to floor during any of the activities and the rate of change is the changes in velocity
of the subject during that period. Deviation of height is the similar pattern of change
of height except that this is the statistical standard deviation of the changes in height
pattern. The changes in the pattern itself refers the height of the subject in different
frames. In some cases, acceleration can help to identify the difference, where the
changes in velocity does not clearly show the variation of speed during themovement.

The daily activity classification procedure used in the proposed algorithm along
with the parameters including height, velocity, speed, statistical analysis and position
of joints are discussed in this section. Height is typically referred to the distance from
head to foot (height of the subject), but in this work height is calculated by taking
the distance difference between head and floor at any given time even if the subject
is sitting or standing using the following Eq. 1.

Height (H) = |Ax + By + Cz + D|√(
A2 + B2 + C2

) (1)

where: x, y and z are the coordinates of the joint. A, B, C and D are the floor plane
x-coordinates, y-coordinates, z-coordinates and w-coordinates respectively.

Equation 1, is a general equation to compute height of any joint fromfloor plane or
distance of that joint with respective to floor. The proposed algorithm used the height
of head, torso, and knee joints. The height of head from floor is used to identify any
movement that leads to a drop of head to the direction of floor from any side. Since
for any kind of unintentional fall the head will drop down until it hits the floor or an
object. The pattern of height drops for unintentional fall supposed to be downward
to the direction of floor from any side. A similar height changes is observed for
intentional lying on floor, except the duration and amount of fluctuations. The higher
variation (height drop) observed in unintentional movement is due to the speed of
action from the gravitational force of earth and the body weight. It was also found
that sometimes this variation does not give any significant information to be used
in activity classification. Therefore, velocity is used to differentiate such activities.
Similarly, there are also activities that possesses similar velocity pattern. Without
significant differences in these parameters, it would be difficult to implement a clas-
sifier either using machine learning or threshold approach. Therefore, the proposed
algorithm is very carefully designed to deal such situations, with a unique flow of
height, velocity, acceleration and motion detection.

Speed is the rate of change of position of the subject, calculated from the change
in the position of torso and head center over time. Velocity is the change of position
per unit time in a particular direction. This velocity is used to classify activities in
terms of rate of change of head and torso joint. Velocity is calculated using the key
joint position after considering the direction of the movement, by dividing it with
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the time taken for the movement. Acceleration is calculated by taking the difference
of two velocities over the time taken between them.

Unintentional human fall is classified from other activities of daily life by con-
sidering the height drop pattern and rate of change of velocity of the movements for
simple cases. Simple cases, is referred for those unintentional falls that are easily
distinguishable from other activities either due to the nature of the fall event or no
obstacles blocking the view. For an example, a high impact falls where the velocity
is very high.

The decision on the classification procedure is made from fall risk levels. For high
fall risk cases, fall detection will check velocities twice and than height. With these
two parameters, the fall detection procedure will also employ statistical analysis or
joint positions before a fall alert is triggered. Statistical analysis will be run, if the
velocities are not showing any significant values. Statistical analysis, evaluates the
standard deviation of subject’s height for the duration of action which can easily
identify the drop of the height. Statistical analysis will also measure the total drop
of height during that period of time and the number of frames where the height had
shown a smaller value than the previous frame. Thus, this analysis will give very
strong information to classify human fall. Standard deviation (σ ) is computed using
the following formula in Eq. 2.

σ =
√√
√√ 1

N

N∑

i=1

(xi − μ)2 (2)

where
∑

means “sum of”, μ is mean of the data sets, x is a value in data set, N is
the number of data elements and i is the i-th data value.

This analysis is basically used only if the fall risk level is high or the position of
joints fail to classify the activity. For low fall risk cases, the classification procedure
will be based on the velocity and height change combinations. This will be the simple
and low computational, human fall classification approach where changes in velocity
of the body joint and height of joints between frames are the basic components. The
most significant parameter here is the velocity, because for any unintentional action
the immediate distinguishing characteristics will be the speed and of course, the
direction. The direction component of velocity and the height are all considered to
ground level (vertically to floor plane) in this study. If the changes in velocity are
not noticeable then the changes in height was considered and in some cases the
acceleration are also used, to identify fall events. This is because acceleration is
calculated from velocities and therefore it could show the fluctuations that is not
visible with velocity. To make sure all unintentional fall events are detected, activity
detection was also used in some cases where changes in velocity and height does not
show significant variations.

The proposed algorithm, uses position of joints to confirm fall events. The basic
idea behind fall confirmation is to see if the key joint positions of the subject at the
time of a potential fall alert is near or on the floor. This process is executed after the
proposed fall detection algorithm senses a potential fall event, therefore the subject’s
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joints are supposed to be on the floor level. Especially the upper body parts, hence
the key features of the subject in this process is the joint position representing head,
torso, left shoulder, right shoulder, left elbow, right elbow, left hand, right hand and
the neck. The positions of these joints are simply considered to be the height of the
joints which is calculated from the joint coordinates (x, y and z values).

Other variables employed in the proposed algorithm to find fall risk levels are
step_symmetry, trunk_sway, and spread_arm. The step_symmetry, is an estimate
of the step inequality which can be realized by measuring the left and the right step
lengths. Step length is the distance between left and right step,which can bemeasured
using x-axis or z-axis coordinates depending on the direction of the movement. If
the direction of the movement is on x-axis then the following Eq. 3, was used to
compute the Step_symmetry and if the direction of the movement is on z-axis then
z-values were used instead of x-values in the Eq. 3.

Step_symmetry = (R_ f ootx − L_ f ootx )PF − (R_ f ootx − L_ f ootx )CF (3)

where, R_foot is the right foot, L_foot is the left foot, x is the x-value or x-axis
coordinate value, PF is the previous frame and CP is current frame.

Trunk_sway is a measure of how far the subject bends, side to side from trunk
and it was calculated by taking the changes of torso position with respect to the hip
position. The amount of bend or the Trunk_sway value is simply an average of the
difference of torso and hip position between frames. This variation can be calculated
by taking x-axis values, if the direction of the movement is on z-axis as shown in
the following Eq. 4 and using z-axis values instead of x-values if the direction of the
movement is on x-axis.

Trunk_sway =
(
Torsox −

(
L_hipx+R_hipx

2

))

PF
+

(
Torsox −

(
L_hipx+R_hipx

2

))

CF

2
(4)

where, L_hip is the left hip position and R_hip is the right hip position.
The last parameter of fall risk factors (Spread_arm), is a measure of howmuch the

two arms are spread. This parameter gives important information about the fall risk
level and to predict falls. Since during a loss of control of the body due slip or any
other fall like event, it is normal to spread the arms to balance the body, especially
common among thosewho are afraid of falls. This parameterwas computed by taking
the difference of torso position and the two (left and right) arms (hands). Similarly,
like Trunk_sway, spread_arm is also calculated from x-axis if the direction of the
movement is on z-axis using the formula in the Eq. 5 and using z-axis values instead
of x-values if the direction is on the x-axis. The average of the distance of the two
arms to the torso were threshold between the frames to identify any action where
the subject is spreading the arms to balance the body or trying to hold something to
control the body.
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Spread_arm = (Torso_hand_diff)CP − (Torso_hand_diff)PF (5)

Here, Torso_hand_diff is the difference of distance between torso and hand which
is calculated using the following Eq. 6.

Torso_hand_difference =
((

Torsox − Rhandx

) + (
Torsox − Lhandx

)

2

)

(6)

where, R_hand is right elbow joint and L_hand is the left elbow joint.

2.3 Proposed Algorithm

The proposed algorithm for human fall detection consists of six processes which is
divided into two groups (2 stages). The first group is responsible for the identification
of any potential fall event and the second group is responsible for the confirmation or
verification of the fall event with the parameters described in previous section. The
six processes are data acquisition and generation of skeleton data, computation of
fall detection parameters, fall detection with fall risk factors, normal fall detection,
fall confirmation, and statistical analysis and verification respectively. The first four
processes belongs to the first stage (or first group) of fall detection, and are basically
responsible for the identification any potential fall event using changes in velocity,
height and fall risk levels. The last two processes belonging to the second stage of fall
detection, which will confirm or verify the fall event depending on the fall type and
availability of joint information. The following Fig. 2, illustrates the overall proposed
fall detection algorithm with boxes for each of the six processes and the fall injury
estimation (third stage of the proposed algorithm) after a fall event.

The proposed fall detection starts from Process 1, which acquires data from the
sensor and generates skeleton data. The generated data are then feed to Process 2,
a sub-preprocessing block for Process 6 and to the processing in third stage. The
data collected will be stored in Buffer 1, which is available to all other processes.
Process 2, computes the required fall detection parameters and stores in Buffer 2,
which is also available to all other processes. The computed, fall risk factors and
velocity from this process is used to decide which process to be executed next. If the
fall risk factor is flagged as high, than Process 3 is executed to detect fall with risk
factors. In case, if the fall risk factors are normal or low, then the computed velocity
from Process 2, are used to either start Process 4, for normal fall detection or start
Process 5, for immediate fall confirmation.

The Process 5, is dedicated for fall confirmation if the velocity from Process 2
or Process 3, is flagged as high and no activity or high acceleration is flagged from
Process 4. In case, if the Process 5, couldn’t confirm a fall, then the Process 6, will
be executed which plays the role of fall verification. The Process 6, are also executed
from Process 3 and Process 4. It is primarily designed to detect fall using statistical
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Fig. 2 Process flow of the proposed algorithm

analysis. The small block just below the Process 6, block is dedicated to do all
preprocessing required for fall detection using statistical analysis. With the proposed
algorithm in Fig. 2, a fall is normally confirmed by Process 5, or verified through
Process 6, or directly detected from Process 6. Once a fall event is confirmed, the
third stage of the proposed algorithm which is responsible for fall injury estimation
are executed.
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It is to be noted that the proposed algorithm in Fig. 2, immediately executes fall
confirmation process (Process 5) after it notices an abnormal velocity change. But an
abnormal increase in velocity can be caused from many activities where the pattern
and the changes in direction of height are different, such as increase in walking speed
(increased step frequency or step length), sitting on chair or floor, lying down on floor
or bed and running. For an example while walking and running, the height changes
are supposed to give a straight fluctuation on to any direction and for other activities
mentioned above the direction will be straight down or most probably diagonally
down to y-axis of the image. Even though the algorithm considers the changes in
height, only if it could not sense an increase in velocity, the algorithm was able to
differentiate such activities. Since there are many possible flows that a fall event
could be detected from the proposed algorithm, almost all possible fall event in any
settings will be captured by the algorithm.

Fall injury estimation, after a fall event is one of the novelty of the proposed fall
detection algorithm. This is primarily aimed to identify the consequences of the fall
event and to generate the required fall alert depending on the injury levels. At the
beginning of this stage, fall event will be already confirmed and the procedure in
this stage simply identifies the level of injury. Fall injury estimation in this study
refers to the analysis of the physical injuries after a fall event for alerting appropriate
assistance. It is incorporated with the fall detection system, because the aim of the
proposed system was meant to allow elderly and people with special assistance to
live independently on their own. Since there may be cases where the subject can
recover from the fall event without any assistance or the injury levels are minor that
it can be handled by the subject on their own. This fall injury estimation is simply
aimed to assess the ability of the subject to return to normal activities and to measure
the level of injuries for low impact falls only. Low impact falls is any unintentional
fall where the subject can recover from fall event without external assistance.

Assessment of the consequences of the fall or the impact on the subject after a fall
event is as important as the detection of fall. It includes the assessments of how the
subject stood up, walking style, duration of placement of the two legs, movement of
the feet and changes in walking speed. This assessment can play an important role
for the medical staffs to decide on whether to provide assistance to the user or to
ignore the fall alert as normal. Therefore, with an accurate fall injury estimation, the
proposed fall detection system will be further enhanced to generate fall alert only
when assistance is needed for the user. This would also help to improve the overall
ambulatory care systems by allowing them to know the level of injury or the impact
of the fall and the suitable assistance required.

Injury levels are estimated using some of the common fall risk assessment param-
eters including the fall risk factors and few other fall risk assessment variables. The
parameters used for fall injury estimation are the changes in head height, angle
and distance between head and right foot, angle and distance between head and
left foot, arm_spread, step_symmetry, trunk_sway, walking speed (gait speed) and
step_continuity. The first two parameters are used identify if the fallen subject has
stood up. The last four parameters (‘step_symmtry’, ‘trunk_sway’, ‘step_continuity’
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and ‘walking speed’) are used to decide the injury level. The variable ‘walking speed’
is the gait speed or the speed calculated from the step length over the time taken.

At the beginning of this stage, movements will be identified first and then it will
check if the fallen subject has stoop up as shown in Fig. 3. This will be accomplished
using the height change pattern of the head and changes of the angles between
head and the two legs. How much the arms are spread during the period when the
head height is increasing are also used to identify if the subject has stoop up. If the
procedure couldn’t find any action similar like standing up from lying on floor or on
flat surface, then it will end the fall detection algorithm as shown in Fig. 3. If the fallen
subject has stood up, then the mentioned fall injury parameters will be computed.
In case, if none of the parameters has reached its thresholds then the generated ‘fall
event’ will be marked as ‘normal’ and the proposed fall detection algorithm will be
restarted. This is because the fallen subject recovered from the fall event and there
was no sign of any injury. In case, if the any one of the four parameters had reached

Fig. 3 The processing of the third stage of the fall detection algorithm
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its thresholds, then the parameters are compared to decide if the injury is ‘Major’
or ‘Minor’. If the parameter ‘walking speed’ or any two of the other parameters had
reached their thresholds then the detected ‘fall event’ is marked as ‘Major injury’,
here ‘walking speed’ has given a higher priority. In any other case, the detected ‘fall
event’ is marked as ‘Minor injury’. In any of this case (if the subject had stood up
after the fall event), the proposed fall detection algorithm will be restarted, because
it is very likely that a second fall event may occur.

3 Fall Risk Assessments

Fall risk assessment is a measure of the physical strength or the ability of the subject
to withstand from unintentional falls due to aging, weaker body, balancing problems,
unsteadiness during walking, fears of fall or any other issues that may often lead to
falls. In this study, injury estimation is simply referred to the analysis of injuries
caused and fall risk assessment of the subject after a fall event. This includes the
changes in walking style, stride duration and other fall risk assessment parameters
to identify the changes in physical condition of the subject which can measure the
level of injury caused. All these parameters are based on the determinants of gait
(DoG). Thus, a gait analysis on the identification of the deviations of normal gait can
predict when a subject is at a greater risk of falling. The same parameters are used for
Fall Risk Assessment and identification of fall risk factors for fall detection. Injury
Estimation uses some of the parameters of Fall Risk Assessment and other variables
determining the position of subjects.

The factors screened for fall risk assessments in the proposed algorithmare derived
from different standardized fall risk assessment tools such as TINETTI Balance
assessment tool and STRATIFY. The proposed fall risk assessment tool includes a
questionnaire based section and device based assessment. The questionnaire based
section, is used to find the history of falls, physical and mental strength of the user.
They include three main questions, to find information about the number of falls in
past six months, steadiness while standing or walking and fear about falls. If the user
had experienced a fall event in the past six months, question will also be asked to
know if it had caused any injury. Once this section of the fall risk assessment is filled,
the remaining need to be generated from the developed system using the depth sensor.
To generate the device based assessment, the user has to perform a predefined actions
(user to sit on a chair at the beginning of the assessments and stand up from sitting
on chair, walk for 3 meters at normal speed, turn around and walk back to the chair,
turn and sit down on chair). The data extracted from the user actions are assessed
based on the parameters discussed in previous section and analysis is conducted to
identify fall risk levels.

In total, six assessments are conductedwhere, thefirst assessment is basedonques-
tionnaires and the remaining five using the variables discussed in previous section.
Each assessment contains one or more parameters which contribute a score to the
final assessment. For each of the variables, scores are given to any one of the three
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risk levels. The higher the risk level, the higher is the score. If the risk level of a
variable is normal, then the score given is zero point and one points if the risk level is
moderate. For higher risk levels than moderate, the highest score given is two points.

The questionnaires based section account for up to 26% of the total assessment
and includes three scores for the three questions. The maximum score for this section
will be 5 points. For the first question, if there were no falls in past six months, then
the score given should be zero point and if there is only one single fall event without
any injury then the score given should be one point. For more than one fall events
or if the user was injured in the any one of the fall event, then the score given is two
points. The second question also includes three levels of scores, zero point if user
does not experience steadiness, one point if the user experiences steadiness and two
points if the user experiences high steadiness during standing or walking. The third
question had two levels of scores, zero point if the user had no worries about fall and
one point if the user worries about fall.

The remaining five assessments, analyses the gait stability using temporal, spatial
and positional variables. All the scores in this section are generated by the system,
based on the data extracted from the actions performedby the user. The second section
of the assessment includes temporal parameters such as gait speed, step duration,
stride time variability and swing time variability. The last two parameters are to be
calculated from the changes in consecutive stride duration and swing duration. The
third section, includes parameters that make use of step width, step length and height
of the joints. They include parameters that checks whether the swinging limb clears
the floor (raises up) and it pass the stance foot (weight bearing limb). If the swinging
limb does not pass the stance limb or in worst case if the swinging limb does not
clear the floor, indicates that the gait is weak. This is because in such case, the user
will be mostly walking very slowly and/or by dragging the legs. If the limb clears
the floor and pass the stance foot, then the score given will be zero else one point
and this will be computed for the two legs.

The last three sections, will check for step symmetry, step continuity and trunk
sway for the duration of the fall risk assessment protocol. Step symmetry performs
step equality check and gives one point if on average they appear unequal else zero
point. Step continuity checks if the steps (left and right) are placed continuously on
average, if true, zero points will be given else one point. The last section, will check
if the user’s upper bodymoves side to side while walking. This section contains three
level of risks. If the upper body of the user moves from side to side, the score given
will be two points, because it indicates that the user has weak balance. If there was
no trunk sway but the knee flexes while walking or the arm are spread to balance the
body then the score given will be one point and zero point if there is no trunk sway,
no flexion of knee and arms.

As the user performs the actions, the system will generate the parameters and
allocate scores for each of them based on the ranges and limits. At the end, all the
scores will be summed up including questionnaire based scores to produce a final
score and then it will be matched with any one of the fall risk levels in Table 2.
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Table 2 Fall risk level
indicators

Score Fall risk level

Score ≤ 8 Normal or low risk level

9 ≤ Score ≤ 12 Moderate risk level

Score ≥ 13 High risk level

4 Results and Discussion

The proposed system had been tested with different activities of daily life such as
walking, running, sitting on chair, sitting on floor, lying on floor and falling from
standing. The experimental results showed that the proposed system can classify
human fall from other activities of daily life using height changes and velocity of
the subject together with the position of the subject after fall. The extraction of joint
position after a potential fall activity showed good performance in differentiating
human activities and confirming human fall. The order of velocity and height of
the subject used in the proposed algorithm greatly helped in eliminating human
activities that are closely analogous to falls, before going to the final stage for fall
confirmation. Thus, the algorithmproved to reduce the error rate since those activities
that are mostly misinterpreted as fall (such as lying on floor) is classified out here
before fall confirmation.

As a comparison to some of the related works, the proposed system showed good
sensitivity. Most of the related works failed to identify at least one fall event, which
can make such systems unreliable. Some of the studies showed better accuracy but
lacked in sensitivitywhich is essential for fall detection system, because for amedical
staff or care giver it is acceptable to attend a non-fall event than missing a real fall
event. Generally, the proposed system lacked in specificity while the related works
lacked in sensitivity. Lacks in specificity simply means a false alarm from non-fall
activity and lacks in sensitivity is simply missing a real fall alarm. The reduction in
sensitivity of the relatedworksmight be caused from their scope to reduce false alarm
of the system, by adjusting the thresholds such as velocity threshold by assuming
that a fall event that requires assistance will have a high impact (falling velocity is
high and/or with injuries). In doing so they have sacrificed any possible detection
of low impact fall event (falling velocity is low with no or very minor injuries). The
proposed system is designed to detect all the fall events, even if the event is of low
impact or simply a slip while lying down on floor. This is because, the first criteria
for a fall detection system is to reduce false alarm of a fall event and reducing false
alarm from non-fall activities comes second.

Since the proposed algorithm uses instant speed and the changes in height as
the basis for activity classification, the system was evaluated for the accuracy of
detection of movements and the identification of the differences of the observed
parameters for different activities of daily life. The instant speed for the activities
changes overtime and therefore the speed needs to be extracted at the right time to get
the real value to classify the activity. Thus, the proposed algorithm extracts speeds
at different process and switches to other process depending on the observed values
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Fig. 4 Average observed and computed speed (in m/s) for the activities

to avoid any misinterpretation. Similarly, the average speed for the activities did not
give very strong information about nature of the activity and it was also found not
very relevant to use in fall detection. Since average speed can be calculated at the end
of the event and the fall detection algorithm depends on it, then the system will be
subject to unreliability and response time issues. Since, the average speed at the end
of the event does not show high distinguishing differences as shown in Fig. 4. This
figure illustrates the average observed speed and the average computed speed from
the changes in height from the beginning of the event to the end of the event (the
distance difference of head position from the beginning to the end of the event or the
distance travelled by head). The part (a), of the Fig. 4, shows the average observed
speed by the system from the instant speed generated throughout the duration of the
event and part (b) shows the average speed computed from the distance travelled by
the head for the same activities.

In Fig. 4, the red line indicates theminimum average speeds observed from the fall
events of the respective graph. Even though, all the fall events reach the minimum
indicated levels, there were some other activities that also reached this level. The
non-fall events that crossed the limit are the event 9, 12, 13 and 14 which is standing
to lying on floor, standing to sit on floor, sitting on floor to stand up and bend over
respectively. It can be concluded that the average speeds for the activities can be
applied for fall detection along with other procedures to eliminate those activities
that gives higher average speed.
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Table 3 Confusion matrix data for the available system (AS) and the proposed algorithm (PA)

Total = 20 Predicted Total actual

Falls None-falls

Actual Falls True Positive (TP)
AS = 8, PS = 10

False Negative (FN)
AS = 2, PS = 0

10

None-falls False Positive (FP)
AS = 0, PS = 1

True Negative (TN)
AS = 10, PS = 9

10

Total predicted AS = 8, PS = 11 AS = 12, PS 9 20

Since the signs of the values denote the direction component of the velocity, the
average speed for the activities in number 10, 11 and 13 are with positive values.
Since they represent event that are going up (height increasing) and for the other
activities, the height was dropping downward and therefore the signs of those values
were negative.

The proposed system was also benchmarked against an available software [37]
from (http://www.robofest.net/FDR), representing a study that used height and veloc-
ity for fall detection [38]. This software was developed using Microsoft SDK for
Kinect and thus, requires Windows 7 operating system with a minimum of 2 core
2.66 MHz processor. Once Kinect SDK drivers (v1.0.0) are installed, this software
can be setup by installing the application. At the end of the installation, the setup
creates a shortcut at the desktop which can be used to launch the application.

This systemwas used to benchmark against the proposed algorithm by simulating
the same activities in the same environment for this software and for the proposed
system. Ten fall events and ten non-fall activities were performed by one persons
at the same location (distance from the sensor to the location of the subject) for
this available system (AS) and the proposed algorithm (PA). The following Table 3,
shows the number of detected activities for the simulations conducted for the available
system [37] and the proposed algorithm respectively.

The results in Table 3, for the available system shows an accuracy of 90% with a
sensitivity of 80% and a specificity of 100%. Whereas the results of the simulations
conducted in this benchmarking with the proposed algorithm shows an accuracy of
95% with a sensitivity of 100% and a specificity of 90% as per the data in Table 3.
The available system identified all the non-fall activities but failed to identify two
real fall events and the proposed algorithm identified all the fall events but failed to
identify a non-fall event. It is also worth to note that the available system is subject
to the draw backs of not preserving the privacy of users, because it is using color
streams of the sensor. At the same time the available system also uses height and
velocity thresholds from skeleton data. Thus, the performance is solely dependent
on accurate detection of the joints and other issues such as obstacles.

From the results, it can be concluded that the available system is very specific, and
the proposed algorithm is very sensitive. The available system is very specific in the
sense that it makes sure not to generate any false alarm. The threshold used for the
height and velocity were lowered to detect only high impact falls or falls that possess

http://www.robofest.net/FDR
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high velocity with rapid changes in height. Whereas the proposed algorithm makes
sure to detect any possible fall events and in doing so it is subject to detect some fall
like activities as well. The only activity that the proposed algorithm misclassified is
lying on floor which is very similar to fall events. The proposed algorithm is actually
detecting those lying on floor that are faster than usual as fall events. The proposed
algorithm is purposefully designed like this to identify any low impact falls or falls
that are caused while lying on floor. As discussed, it is acceptable to have false alarm
from non-fall event (where assistance is not required) than missing a fall event that
requires assistance. It is very clear from the results that by lowering the thresholds,
the system becomes very specific (reduces false alarm) but it is very often likely to
miss a fall event that requires assistance.

The main argument here is about the sensitivity and specificity or simple how
sensitive the system is in classifying a fall event from other activities of daily life and
how specific the system is to reduce any false alarm in order to reduce unnecessary
attendance of medical staffs to assist the user. Thus, a tradeoff is often required while
deriving an algorithm for fall detection, either to make it very sensitive or specific. A
sensitive systemwill detect all the fall events oftenwith some few false classifications
of other similar activities as fall events. Whereas a specific system will make sure
to detect only fall events even by ignoring some fall events that are similar to other
activities of daily life such as lying on floor. Therefore, the aim of the proposed
algorithm was to detect all the falls (not to miss any fall event that would require
assistance) even with false alarms from other daily life activities to ensure quality
healthcare.

5 Conclusion

This study proposed a human fall detection system based on human height, velocity,
statistical analysis, fall risk level of the user and position of body computed from
depth images generated by the Microsoft Kinect sensor. From the investigation con-
ducted on the limitations and major drawbacks of the depth map based fall detection
approaches, it was found that the use of statistical analysis and fall risk level during
fall detection can reduce these issues to a greater degree. In order, to adapt the algo-
rithm for people with difference fall risk level, the determinants of gait were also
studied. The deviation in gait were used to predict (fall risk level) falls during fall
detection and some of the gait constraints were used to identify the fall injury after
such an event which accounts for the major contributions of the proposed algorithm.
These gait constraints were also used to develop a fall risk assessment tool which
can work independently of the proposed fall detection in classifying people with
their fall risk level. Apart from that, the characteristics of the daily life activities
especially those that are closely similar to unintentional fall events were studied to
derive the proposed fall detection algorithm. The experimental results showed that
the algorithm used on the system can accurately distinguish fall movements from
other daily activities of daily life with an average accuracy of 98.3%. The system
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was also able to gain a sensitivity of 100%with a specificity of 97.7%. The proposed
system accurately distinguished all the fall events from other activities of daily life,
even though it failed to identify some lying down on floor from fall. The included
fall risk assessment tool also showed promising results in generating fall risk levels
from the simulated walking. Irrespective of this, further improvements are required
on the computation of the angles for lower body posture identification. The proposed
fall detection system could also be further improved by considering additional joints
especially in the final stage for fall confirmation. Additional work is required to
derive a better method to classify human fall and lying on floor from standing, since
these are the two activities that are very similar to one another in terms of height
change pattern. A special attention is also required to see how the system performs
in classifying unintentional falls of people with different heights. This is because
the duration of fall event for a shorter person will be less than for a taller person.
This results in rapid height change pattern for shorter people and therefore it is often
likely to miss important information in velocity computations. Since the algorithm
is designed to adapt to the differences in physical conditions of the people (fall risk
level) and the algorithm is so far tested only with simulated activities by healthy
volunteers, it has to be extensively tested and verified with people from different
settings (those living in community, hospitals, nursing home and any such elderly
care center) in their real-life activities. Since the sensor can segment two more peo-
ple accurately, the system needs to be upgraded to detect human fall of more than
one person. This needs proper segmentation and tracking of the subjects within the
view of the sensor. The issue of the obstacle also requires special attention, because
with the issue of the viewing spectrum, the arrangement of the furniture and other
equipment in the user’s location can make the system to generate fatal errors. This
indeed could be solved by considering having two more sensors configured to cover
all the critical areas.
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