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Preface

It is an honor to be invited by Springer Publishers to edit this book titled Advances
in Motor Neuroprostheses. The main objective of this book is to present an overview
of research advances in motor neuroprostheses. A motor neuroprosthetic device is
a machine that converts the intentions of the user’s brain into actions. With parallel
developments in neural engineering, neuroscience, deep learning, and artificial
intelligence, this field of research is making great strides and bringing near natural
assistive devices to market to help individuals with neuromuscular disorders.

A typical motor neuroprosthesis consists of three main modules—a signal
acquisition module that obtains the neurophysiological signals, a signal processing
module that filters and extracts important features from these signals, and an
application module that uses these features to achieve the motion of an end effector
like a prosthetic hand or a computer cursor or a wheel chair. This book includes rep-
resentative examples of each of these modules and reports state-of-the-art research.
Chapter “Application of Reinforcement and Deep Learning Techniques in Brain
Machine Interfaces” talks about the application of reinforcement and deep learning
methods in brain-machine interfaces. Chapter “Subject-Specific Muscle Activation
Patterns in Athletic and Orthopedic Populations: Considerations for Using Surface
Electromyography in Assistive and Biofeedback Device Applications” discusses
specific muscle activation patterns in athletic and orthopedic populations in assis-
tive and biofeedback device applications. Chapter “Kineto-Dynamic Modeling
of Human Upper Limb for Robotic Manipulators and Assistive Applications”
presents kineto-dynamic modeling of human upper limb for robotic manipulators
and assistive applications. Chapter “Learning from the Human Hand: Force Control
and Perception Using a Soft-Synergy Prosthetic Hand and Noninvasive Haptic
Feedback” talks about force control and perception using a soft-synergy prosthetic
hand using noninvasive haptic feedback. Chapter “Design of a Soft Glove-Based
Robotic Hand Exoskeleton with Embedded Synergies” talks about the design of
a soft robotic hand exoskeleton that is embedded with synergies. Chapter “Model
Predictive Control Based Knee Actuator Allocation During a Standing-up Motion
with a Powered Exoskeleton and Functional Electrical Stimulation” discusses model
predictive control-based knee actuator allocation with a powered exoskeleton and
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functional electric stimulation. Chapter “Deep Brain Stimulation for Gait and
Postural Disturbances in Parkinson’s Disease” presents deep brain stimulation
for gait and postural disturbances in Parkinson’s disease. Chapter “Cognitive and
Physiological Intent for the Adaptation of Motor Prostheses” talks about cognitive
and physiological intent for the adaptation of motor prostheses.

With the ever-evolving research, technology, and knowledge, it is essential to
provide updated information on many of these advances in motor neuroprostheses.
This is the primary objective of this book. All the chapters are written by experts
in this field. These chapters, and the new topics covered therein, provide a fresh
perspective on our overall understanding of this area of motor neuroprostheses.

I remain thankful to all the authors who contributed their knowledge to this
book. I am thankful to Springer Publishers for entrusting me with this project,
and I would like to thank their entire team including Merry Stuber, Maria David,
Lavanya Venkatesan, Anthony Dunlap, and Mallaigh Nolan for their support. I am
indebted to my dedicated lab members and collaborators with whom I worked at
different stages of production of this book. It gives me immense pleasure to present
this volume to the scientific community with the hope that recent advances in our
knowledge translate into a better future for individuals with disabilities who can
benefit from these technologies.

Hoboken, NJ, USA Ramana Vinjamuri
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Application of Reinforcement and Deep
Learning Techniques in Brain–Machine
Interfaces

Hemanth Manjunatha and Ehsan T. Esfahani

Abstract From early adoption in rehabilitation, the brain–machine interfaces
(BMIs) have dovetailed into applications empowering humans in controlling exter-
nal devices such as prosthesis and wheelchairs with a high level of autonomy. The
success of such brain–machine interfaces depends on the decoding algorithms that
translate the brain activity into the human’s intention or cognition state. Taking
advantage of this decoding, a machine can have a robust perception of human’s
cognitive state and modify its actions accordingly. This decoding process can
be viewed as a machine learning problem where features of brain activities are
mapped to some labeled events or classes in a controlled environment. This mapping
traditionally relies on the subject and task-specific signal processing approaches.
Thus, the conventional machine learning methods fail to generalize well and transfer
the learned features between different tasks and subjects, especially in out-of-the-
lab applications. Recently, deep learning (DL) has shown great success in learning
the patterns from very large data and generalizing well on different applications.
With respect to brain activity analysis, deep learning and reinforcement learning
(RL) techniques can significantly simplify analysis pipelines and facilitate better
generalization between subjects, tasks, and also learn intricate coupled dynamics.
In this regard, this paper provides information on the state of the art and challenges
in implementing deep learning and reinforcement learning algorithms in brain–
machine interfaces. In order to demonstrate the use of deep learning techniques in
BMIs, we also present a case study of physical human–robot interaction where the
brain activity is used to classify the task difficulty while interacting with the robot.

Keywords Reinforcement learning · Brain–machine interface · Motor control ·
EEG
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1 Introduction

The use of brain activity to control the external objects has become the holy grail
of brain–machine interfaces. The brain activity was first recorded in 1924 by Hans
Berger [1] who coined the word “electroencephalogram” (EEG) as a method for
describing brain electric potentials in humans. The scalp EEG (non-invasive) picks
up the summed electrical activity of postsynaptic potentials of cortical neurons
and thus records the neural activity which can be used to study a wide variety of
cognitive process [2].

Since EEG records electrical activity which propagates rapidly, the temporal
resolution of EEG is very high. However, spatial resolution is low for non-invasive
EEG as the electrical activity recorded is on the scalp. In addition, the signals
that are originating in the deep brain regions are absorbed by brain tissues and
skull. Hence, the signals recorded at different electrode locations in scalp EEG are
highly correlated. In terms of applications, EEG (non-invasive) is widely used to
study sleep pattern [3], cognitive monitoring and neuroergonomics [4–6], affective
computing [7], and as a primary modality to quantify cognitive workload [8] in
a variety of studies. Recently, EEG has been used as a passive approach to study
human–robot interaction [9, 10], human–swarm interaction [11], virtual reality,
rehabilitation [12], air traffic control, social interaction studies, and neuroprosthesis
[13].

Even though EEG is emerging as an important modality in brain–machine
interfaces, there are many challenges that need to be addressed. First, the EEG
recordings have very low signal-to-noise ratio [14]. This is because the electrical
signals originating in the deep brain regions are attenuated by the brain tissues and
contaminated by electrical noises and muscle activity. Consequently, researchers use
many filtering and source separation techniques to increase the signal-to-noise ratio
[15]. Second, EEG signals are non-stationary and task dependent, thus making it
hard to extract features that can generalize well across different tasks. Consequently,
features learned in specific time windows might not generalize well towards other
time instances or tasks. Even the data recorded from the same patient on different
time under identical experimental conditions exhibit non-negligible difference [16].
Third, EEG recording is highly subject dependent, due to individual differences
in the structure of the brain and cognitive behavior, the magnitude of response
to a stimulus varies greatly. This inter-subject variability makes it difficult for
classification algorithms to learn features which generalize well between subjects
and tasks.

To solve the above-mentioned problems, researchers have investigated domain-
specific strategies which may or may not generalize well. The typical analysis
of EEG involves (1) cleaning of data from electrical line noise and removing
bad quality sensor recordings. (2) Use sensor space localization algorithms such
as independent component algorithms (ICA) to remove eye blink artifacts and
muscle activities. (3) Obtain relevant stimuli information and segmentation of the
EEG recording accordingly. (4) Obtain a baseline recording of each subject and
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measure the brain activity with respect to the baseline. (5) Obtain time-dependent
or frequency based features such as power spectral densities and train a classification
or regression model. Even though the above-mentioned steps are prevalent in EEG
based studies, some of the analysis steps involve subjective assessment of the quality
of operation (e.g., bad segment rejection and ICA component analysis) which makes
it very hard to reproduce the studies. Hence an automated process based on the big
data can help in standardizing the cleaning process and the repeatability of studies.
In this context, a deep learning approach can automate pre-processing and feature
extraction while generalizing well across different subjects and tasks.

2 Deep Learning in BMI Studies

The main idea of deep learning (DL) comes from an observation on the standard
model of the visual cortex, which suggests that in recognizing images the brain
first extracts edges, then patches, then surfaces, and finally, the complete object.
This observation inspired the typical DL architecture which uses different levels
of representation corresponding to characteristics or concepts hierarchies. The
most prevalent architectures in DL are deep neural networks, convolution neural
networks, deep belief neural networks, and recurrent neural networks. They have
been successfully applied to computer vision, speech recognition, natural language
processing, audio recognition, and bioinformatics [17].

Two main DL architectures that are widely used in vision and speech recognition
are convolution neural networks (CNN) and recurrent neural networks (RNN)
[18]. A typical CNN architecture consists of several convolution layers and fully
connected layers at the end. The main idea behind CNN is learning the replicated
features to detect an object/input-patch which are translated within the scene. This
fundamental property achieves invariance in translation. Even scale and orientation
invariance of replicated features can be achieved but at a high computational cost.
Along with convolution operation pooling layers can be used to downsample the
information spatially to extract the most prominent features which are influenced
by the output. Figure 1 shows a typical architecture with five convolution layers
and pooling operation immediately after the convolution operation. The convolution
layers are succeeded by fully connected layers with a softmax activation function.
For more in-depth methodology in DL techniques, the reader is referred to [18].

Regarding the application of DL techniques in EEG analysis, Yannick et al.
[19] provide a scoping review of different architectures and approaches in EEG
analysis. The review encompasses domains such as epilepsy, sleep, brain–computer
interfacing, and cognitive and affective monitoring. They found the median gain in
accuracy of DL approaches over traditional baselines to be 5.4%. However, most of
the studies reported in the review were not reproducible due to lack of data and code.
Along the same lines, Craik et al. [20] provide a review of DL techniques in EEG
classification. They explore questions on the type of task in EEG classification, input
to the neural network, and specific architecture for domain-specific applications.
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Fig. 1 A typical CNN with five convolution layers and three fully connected layers

Fig. 2 A general
reinforcement learning setup
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The huge amount of work reported in the above reviews bolsters the increased
interest of the community in using deep learning techniques for brain–machine
interfaces.

3 Reinforcement Learning in BMI Studies

Reinforcement learning is different from supervised or unsupervised learning in the
sense that there is no explicit formulation of an error signal which can facilitate the
learning, instead, the driving signal is replaced by a reward function [21]. Broadly
speaking reinforcement learning is figuring out how to choose an action such that
the reward signal over time is maximized. The reinforcement learning model can be
captured in terms of Markov decision process (MDP). The main four components
of reinforcement learning are an agent, environment, a reward function, and a value
function. In this model, an agent acts on an environment and the environment,
in turn, sends two types of signals: reward signal and a state signal (Fig. 2). The
reward signal states how good the action was, whether it improved the current state,
remained in the current state or the situation was worsened.

A reinforcement learning (RL) consists of a tuple of an action (a), a state (s),
transition probability (Pr), reward (r), and a value function (V).
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reinforcement learning → {a, s, Pr, r, V } (1)

At any point in time, the above-mentioned tuple should be defined for an agent.
When an agent acts on an environment, it is essentially selecting an action a. As a
result, its state S changes with a transition probability of Pr receiving a reward of r.
The quality of action taken is evaluated by the value of V . When an agent continues
to take these actions over a period of time, it gives rise to a sequence as shown in
Eq. 2

s0, a0, r0, s1, a1, r1, s2, a2, r2 . . . (2)

If this sequence ends, then the Markov decision process is said to be finite and
then the tuple combination has well-defined values over that time period. In other
words, given a state s and action a at time t− 1, there exists a probability that gives
the next state s′ and rewards r at time t. This series of actions is known as policy
(π). For learning, an agent modifies this policy in order to increase the reward over
time.

There are two important methods used for learning the optimal state and action
pair, namely value iteration and policy iteration. Readers are referred to [21] for
more in-depth information on different reinforcement learning algorithms.

RL is particularly attractive for the brain–machine interface (BMI) applications
as the agent can learn a particular set of actions in neuroprosthesis which are
optimized for a specific domain. In this regard, Pohlmeyer et al. [22] used a
reinforcement learning algorithm to provide an adaptive BMI controller that adapts
to neural re-organizations while maintaining performance over a long period of time.
Iturrate et al. [23] demonstrated an alternative BMI paradigm that overcomes decod-
ing cognitive brain signals to achieve relevant goals for BMI. The study showed that
after a short period of training, BMI operated three different neuroprosthesis and
generalized across several targets. Imatz-Ojanguren et al. [24] explored the use of
RL for achieving grasp functions with a surface multi-field neuroprosthesis. Prins
et al. [25] used actor-critique RL model to maximize the performance of the BMI.
Their study showed that the training time in BMI was significantly reduced. These
are few works relating RL and brain–machine interfaces that can drastically change
the neural-decoding procedure in neuroprosthesis field.

4 Application of Deep Learning in Human–Robot
Interaction: A Case Study

In order to demonstrate the use of deep learning techniques for brain–machine
interface applications, we present a case study of physical human–robot interaction
where the task difficulty of interaction is modified while brain activity is recorded
simultaneously. A convolution neural network is used to classify the task difficulty
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from the brain activity using two different architectures and pre-processing steps.
This case study shows the importance of choosing the appropriate network architec-
ture and pre-processing steps which depends on the domain-specific problems.

In an experiment approved by the Institutional Review Board, 11 subjects (8
males and 3 females; all right-handed) were recruited from the University of
Buffalo School of Engineering. Participants’ age ranged from 23 to 34 years
(Mean = 24, SD = 2.1). The participants were asked to hold the end effector of a
robotic manipulator connected to a force-torque sensor (Fig. 3) and guide it through
a star-shaped pathway as shown in Fig. 4. An admittance controller was used to
regulate the position of the end effector based on the applied force. The dynamics of
the interaction was changed by altering the damping in the admittance control (all
the other parameters were kept constant). Participants traced the trajectory with low
damping (high admittance) and high damping (low admittance) in separate trials. In
low damping condition, the resistance offered by the robot is less and thus the effort
by the human to move the end effector is relatively low, conversely, in high damping
as the resistance is high, effort requirement is also high.

The relation between the force applied (Fh) and velocity of the end effector is
given as the first linear differential equation as shown in Eq. 3

Mdv̇ + Cdv = Fh (3)

Labels (Task Dif�iculty)
Low: 
High:

Fig. 3 Physical human–robot interaction experiment setup and brain activity recording
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(b)(a)

Fig. 4 Tracked path and boundary for (a) high admittance and (b) low admittance conditions

where Md and Cd are the mass and damping coefficient matrices for each joint. The
values for Md and Cd are taken as [3, 3, 3, 0.1, 0.1, 0.1] and [20, 20, 20, 6, 6, 6],
respectively. This setting corresponds to low admittance of the robot, i.e., the
resistance offered by the robot while the human is applying the force is less.
Equation 3 is integrated in order to obtain the velocity of the end effector. Then
Eq. 4 is used to get the joint velocities and torques. However, the solution is not
unique for a given set of end effector position. For more information, the reader is
referred to [26].

q̇ = J−1(q)vc, τ = JT (q)Fh (4)

Under high admittance (low damping), the robot becomes highly sensitive to
the change in the input force at the end effector (in this experiment, the input
force is from human hand). Under low admittance as the damping is high, the
robot is more stable. Thus, under high admittance, it is more difficult for a
human to control the robot motion due to unstable motion. Conversely, under low
admittance, the robot motion is smooth and controlled as the damping is high. This
is evident as shown in Fig. 4. The movements under high admittance have more
disturbances (Fig. 4a) when compared to movements in low admittance (Fig. 4b).
The classification algorithm is trained to distinguish between these two conditions.
For the classification procedure, high admittance condition was chosen as first
class and low admittance condition was chosen as second class. The brain activity
recorded during these two conditions was used as the input for the deep learning
algorithm.
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4.1 EEG Signal Analysis

EEG signals were recorded using the B-Alert X20 wireless headset (Advanced Brain
Monitoring©. Carlsberg, CA, USA) [27]. The headset follows 10/20 international
[28] system placed symmetrically at sites: Fp1, F7, F8, T4, T6, T5, T3, Fp2, O1, P3,
Pz, F3, Fz, F4, C4, P4, POz, C3, Cz, O2. EEG signals were band-pass filtered (0.1–
70 Hz) and then transmitted from the headset via a Bluetooth linked to a nearby PC
at 256 Hz sampling rate.

Artifacts caused by eye blinks and muscle contractions were removed using
independent component analysis (ICA) with the Picard algorithm using MNE
python [29]. 2-D scalp component maps were visually examined and components
corresponding to eye movements and non-cognitive activities were removed. After
removal, the components were projected back to get artifact-free EEG signal
(Fig. 5).

Furthermore, a Hamming window with 50% overlap was used to extract relative
and absolute power spectral densities using the Welch method from 1-s epochs.
Features were extracted from three frequency bands, namely Theta (4–7 Hz), Alpha
(8–13 Hz), and Beta (14–35 Hz).

4.2 Convolution Neural Network Architecture

Figure 6 shows the architecture of the convolution neural network used for the
classification of task difficulty. The network has three convolution layers receiving

Autoreject
Bad epoch 
rejection

Filtering
1 Hz high-pass

250 Hz low-pass

Channel selection

Electrical noise 
remove 

Picard ICA
Component 
seperation

Autoreject
Bad channel repair

Bad channel 
rejection

Visual 
inspection

Epoching

Visual inspection
Eye movement 

 & artifact rejection

Processed EEG

Raw EEG 
Recordings

Fig. 5 EEG analysis pipeline
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Fig. 6 Convolution neural network architecture 1 for task difficulty prediction

three images corresponding to Theta, Alpha, and Beta bands. Each convolution layer
consists of two convolution operation with exponential linear unit (ELU) activation
and Max pooling in series (Fig. 6). The output from each convolution layer is
flattened and stacked with output from other convolution layers to form flattened
features layer. These features are used as inputs for two fully connected layers with
a rectified linear unit (ReLU) activation and dropout (75% keep probability). For
loss function, the log-softmax is used.

For the architecture shown in Fig. 6, the EEG was prepossessed to form the
spectral images and coherence images instead of using the EEG signals directly.
With the cleaned EEG, topology images were constructed by first mapping the
sensor space into a grid of required dimension (here it is the size of the image,
28 by 28). The mapping is done by constructing a grid of required x (28) and y
(28) dimension and assign the coordinates of the grid to coordinates of the EEG
electrodes (sensor locations). The values of power spectral density at these locations
are calculated using the Welch method. The values of power spectral density (and
coherence) at remaining grid positions are calculated using bi-linear interpolation.
This procedure produces the image of (Fig. 7) required dimension and values of
power spectral density (Fig. 7a, PSD) and coherence (COH) which are used as inputs
for the convolution neural networks

For constructing coherence image, there are two options: one to convert the
coherence to an image where each column corresponds to an EEG electrode
(Fig. 7b). Second, construct an interpolated images same of PSD images. In this
study, we have used the interpolation procedure to construct the image (Fig. 7c)
of the coherence and the same has been used in convolution neural network. The
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(a) (b) (c)

Fig. 7 (a) Power spectral density of EEG reading as an image. (b) The coherence among different
EEG electrodes represented as connectivity matrix. (c) Same coherence values represented as an
image (all images show were constructed for alpha 11–13 Hz EEG recording)

Fig. 8 Classification accuracy of training, validation, and testing data when architecture 1 CNN is
used

convolution neural network is trained on pooled data of all the subjects (70%
training, 15% validation, and 15% testing) using the PyTorch framework.

Figure 8 shows the training, validation, and testing accuracy for 200 epochs.
As can be seen, the accuracy is not very high with respect to a chance (50%, two
classes). Nonetheless, there is no over-fitting as validation accuracy is very close to
training accuracy. Increasing the number of epochs and learning rate may improve
the classification accuracy.

Figure 9 shows the convolution neural network architecture adapted from [30].
The network consists of four convolution operations with a log-softmax output and
no fully connected layers. A raw EEG signal of a 2-s epoch is used as an input to
the neural network and the first convolution operation is carried across time and
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Fig. 9 Convolution neural network architecture 2 for task difficulty prediction in HRI

Fig. 10 Classification accuracy of training, validation, and testing data when architecture 2 CNN
is used

thus it captures temporal information. The second convolution operation is carried
out across the space capturing spatial information. After the temporal and spatial
convolution operation, the output is squared and log transformed. The resulting
output is convoluted with the remaining two convolution layers sequentially to
produce the class label output.

The temporal and spatial convolution can be combined into one 3D convolution
operation; however, the choice of splitting the 3D convolution into two 2D
convolutions facilitates the study of learned features in time and spatial domain.

Figure 10 shows the accuracy of classification using the second architecture.
The accuracy is significantly higher than the classification accuracy in the first
architecture. However, the network slightly overfits towards the end of the training.
This can be addressed by using dropout in the last convolution layers [31].
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This case study shows the importance of the choice of neural network archi-
tecture, pre-processing of data, and choice of the loss function. While there is
no systematic way of addressing network type and architecture to use for brain
activity analysis, prior-domain knowledge can be used to guide the choice of
deep neural architecture and hyper-parameters of the network. For example, the
second architecture that was used is in fact inspired by filter bank common
spatial patterns (FBCSP) method which has proven to be very effective in EEG
classification. The squaring and log transformation is similar to trial log-variance
computation in FBCSP [32]. Incorporating the domain knowledge in the design of
architecture allows the use of a single network to decode the brain activity and learn
relevant features from the data. The use of deep learning techniques for brain data
decoding opens up a lot of avenues in neuroprosthesis, brain–computer interfaces,
psychological studies, and affective computing.

5 Conclusion

The brain–machine interfaces are poised towards empowering humans in con-
trolling external devices such as prosthesis and wheelchairs. For the success of
such technologies, decoding of brain signals is imperative. Many researchers have
developed domain and task-specific brain decoding methods which are uphill while
adapting to other domains. Recently, deep learning has shown great success in
learning the patterns from very large data while generalizing well across different
applications. A deep learning approach through end-to-end learning can automate
pre-processing, feature extraction, and brain-signal decoding. To demonstrate such
an approach, a case study is presented where the task difficulty during physical
human–robot interaction was predicted from the brain activity (through EEG) using
deep learning techniques. Two architectures involving convolution neural networks
are presented, with the first architecture using processed and transformed EEG data
and the second architecture using raw EEG data. The case study demonstrates that
the choice of architecture is very important in achieving better performance. Even
though there is no systematic way of selecting network type and architecture, prior-
domain knowledge can be used to guide the choice of deep neural architecture and
hyper-parameters of the network. In spite of countable shortcomings such as the
need for huge data and domain-specific network architecture, deep learning has a
lot of potential in streamlining brain-signal decoding procedure in brain–machine
interfaces.
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Subject-Specific Muscle Activation
Patterns in Athletic and Orthopedic
Populations: Considerations for Using
Surface Electromyography in Assistive
and Biofeedback Device Applications

Antonia M. Zaferiou

Abstract This chapter presents the subject-specific nature of muscle activation
patterns measured by surface electromyography (sEMG) both when elite athletes
perform complicated whole-body maneuvers and when patients perform activities
of daily living. Examples are provided to highlight the vast differences in muscle
activation patterns across two ballet dancers, baseball pitchers (n = 16), and
preoperative reverse total shoulder arthroplasty patients (n = 6). These subject-
specific muscle activations correspond to subject-specific movement mechanics and
are relevant to consider while designing and testing devices that use sEMG signals as
inputs. This “sample course” suggests that thresholds, normalization, and filtering
of electromyography signals as inputs to assistive or biofeedback devices need to
be carefully selected per individual. Recently, there have been exciting advances
in machine learning (Campopiano et al., Behav. Brain Res. 347:425–435, 2018)
and electromyography technology (i.e., multi-node sEMG arrays (Farina et al., J.
Appl. Physiol. 117:1215–1230, 2018)) that may assist in personalizing devices,
more robustly normalizing signals, and/or identifying control commands.

Keywords Electromyography · Subject-specific · Personalize · Sports ·
Orthopedic · Biomechanics

1 Muscle Activation Measurement and Analysis

Dual surface electrodes with an interelectrode distance of 1 cm (Noraxon, Scotts-
dale, AZ) were placed along the fibers and over each muscle belly. Muscle activation
data were filtered using a fourth-order butterworth zero-phase band-pass filter (10–
400 Hz or 40–400 Hz on trunk sEMG signals that included cardiac signal) using
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custom MATLAB software (Mathworks, Novi, MI). Signals were then rectified and
placed into 20 ms average “bins” [1–3].

All examples provided used the maximum binned sEMG signals during isometric
manual muscle tests (MMT) or modified MMTs in clinical populations in order to
normalize the sEMG measured during movement tasks of interest [4]. Baseball and
shoulder arthroplasty examples present muscle activation color “heatmaps” relative
to a within-task maximum for that muscle for that individual or relative to a stated
percentage of the maximum bin during that muscle’s MMT trial. All heatmaps
display the activation level of muscles such that dark red represents high activity
and dark blue represents low activity.

2 Dancers Using Subject-Specific Muscle Activation Patterns
During Turns

The muscle activation patterns of two exemplar dancers during the turn initiation
phase are plotted in Fig. 1 to compare single- to double-revolution piqué turns and in
Fig. 2 to compare double- to triple-revolution piqué turns. During the turn initiation
phase, the body starts stationary in single-limb stance with the rear (or “push”) leg

Fig. 1 Exemplar mean (SD) binned muscle activation vs. time of the rear leg during the turn
initiation phase of single (positive, green) vs. double (negated, blue) piqué turns, as a percent max
MMT for Subject A and Subject B. Multiple trials were synced at time zero, which is the start of
the turn phase when the rear leg departs from the ground. Above each graph, cartoons depict the
horizontal ground reaction force context for each subject at three times during the turn initiation
phase (green vector for single turn, blue vector for double turn)
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Fig. 2 Mean (SD) binned muscle activation vs. time of the rear leg during double (positive, blue)
vs. triple (negated, red) piqué turns, as a percent max MMT for Subject A and Subject B. Multiple
trials were synced at time zero, which is the start of the turn phase when the rear leg departs from
the ground. Above each graph, cartoons depict the horizontal ground reaction force context for
each subject at three times during the turn initiation phase (blue vector for double turn, red vector
for triple turn)

in contact with the ground, as previously described by Zaferiou et al. [5]. Both
dancers used distinct horizontal ground reaction force patterns and distinct muscle
activation patterns for all the three turn types. When the foot is in contact with
the ground, lower extremity muscle activation patterns can elicit distinct ground
reaction force patterns. For example, when seated on a rolling chair with the feet on
the ground, activation of the hamstrings can cause the foot to push on the ground
posteriorly (backwards), which elicits an anterior (forward) ground reaction force
that would accelerate the center of mass anteriorly (rolling the chair forward). Using
an understanding of this relationship, the muscle activation patterns observed in
these dancers are consistent with the measured ground reaction force patterns (Figs.
1 and 2). Further information about the piqué turn and the experimental setup can
be found in Zaferiou et al. [5].

2.1 Double vs. Single Piqué Turn

Subject A increases the activation of her biceps femoris in a double vs. single
turn, which coincides with increasing the anterior reaction forces in a double vs.
single turn (Fig. 1). Subject A also decreases the activation of the quadriceps (vastus
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lateralis and rectus femoris), which is consistent with decreased medial-posteriorly
directed reaction forces (because the leg is externally rotated) (Fig. 1). Subject B, in
contrast, increases the gluteus maximus, hamstring (biceps femoris and semimem-
branosus/semitendinosus) activation in a double vs. single turn, which coincides
with increasing the anterior ground reaction force (because the leg is externally
rotated) in a double vs. single turn (Fig. 1), without consistently decreasing the
activation of her quadriceps (large standard deviation) as did Subject A.

2.2 Triple vs. Double Piqué Turns

Subject A increases the activation of her biceps femoris (earlier onset of activation)
in a triple vs. double turn, which coincides with increasing the anterior reaction
forces in a triple vs. double turn earlier (Fig. 2). Subject B, in contrast, increases the
gluteus maximus (slight increase of gluteus medius) and hamstrings (biceps femoris
and semimembranosus/semitendinosus) activation in a triple vs. double turn, which
coincides with increasing the anterior ground reaction force (because the leg is
externally rotated) in a double vs. single turn (Fig. 2).

2.3 Take-Homes from This Exemplar Comparison

This small yet detailed comparison is exemplar of the subject-specific mechanics
used by a larger group of dancers performing piqué, classical pirouette turns, and
contemporary/modern pirouette turns of varied rotational demands while achieving
similar whole-body kinematics [5–7]. With this exemplar comparison, the within-
subject consistency of muscle activation can be appreciated (distinct “on/off”
patterns and activation “shapes” with relatively small standard deviation bars). Note,
the synchronization event trial-to-trial was at the end of the initiation phase, which
could present practical challenges to online use of EMG as inputs to control devices
(vs. using an event at the beginning).

From a control perspective, Subject A seems to simplify control by modulating
the activation of one key muscle (biceps femoris) as rotation demand increases,
whereas Subject B can be seen to simplify control by using a consistent strategy
to change in muscle activation (scaling activation of the same three muscles) from
single to double to triple turns. Additionally, from a physical therapy perspective,
the way that Subject B increases activation of gluteus maximus with increased
hamstring activation may provide protective stability to the hip joint against anterior
femoral slide [8].
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3 Baseball Pitchers Using Subject-Specific Hamstring
Muscle Recruitment

Figure 3 displays a muscle activation heatmap for four hamstrings (bilateral biceps
femoris and semimembranosus/semitendinosus) while elite baseball players pitched
(Sub 1–Sub 16). All trials were synchronized to back leg’s departure from the
floor, at time zero. In this example, there is a notable variance between individuals
in muscle activation patterns. However, future pitching studies will include full-
body motion capture to provide further context for these muscle activation patterns.
Further information about the activation patterns of these hamstrings and the
implications for orthopedic decision-making regarding harvesting grafts from these
muscles for UCL repair is described by Erickson et al. [9]. Note, the synchronization
event trial-to-trial was when the back leg lifted from the ground, which could present
practical challenges to online use of EMG as inputs to control devices (vs. using an
event at the beginning).

Fig. 3 Muscle activation
heatmap during the baseball
pitch for 16 pitchers: color is
normalized to 50% MMT
such that dark red represents
when the muscle is active to
at least 50% of the maximum
20 ms bin measured during
the MMT trial. The graphs
start when the front leg lifts
from the ground and time
zero (red vertical line) is
when the back leg departs
from the ground
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4 Preoperative Shoulder Arthroplasty Patients Using
Subject-Specific Movement Mechanics During Arm
Elevation Tasks

Figures 4 and 5 display muscle activation heatmaps during simulated brushing
teeth (Fig. 4) and scratching the lower back (Fig. 5) performed by six preoperative
reverse total shoulder arthroplasty patients. Patients used different muscle activation
patterns during this task along with different kinematics. However, when the color is
normalized to “within-task max,” in Fig. 4b, it is notable that there are similarities
across patients, such as maximum activation for most muscles occurs as the arm
reaches peak elevation (near time zero) or soon after, as the hand simulates brushing
teeth. During scratching the low back in Fig. 5, we see different muscle activation
patterns vs. Fig. 4 consistent with the difference in kinematics between tasks. For
example, compared to brushing teeth (Fig. 4a, b), during scratching the low back
(Fig. 5a, b), most patients used relatively larger pectoralis major activation as the
arm oscillated with the hand behind the low back (more orange) and less anterior
deltoid (more blue) consistent with the kinematic context differences. Comparison
between Figs. 4 and 5 parts a, b, and c demonstrates how sensitive interpretation
of the sEMG signal is to decisions about how to normalize and express sEMG
data. Interpreting these data along with the kinematic or kinetic contexts will
provide more robust interpretation of subject-specific movement mechanics. Note,

Fig. 4 Muscle activation heatmaps during trials in which patients 1–6 elevated their preoperative
arm and then simulated brushing their teeth. These muscle activation patterns are expressed with
different color normalizations such that dark red indicates that the muscle was active to at least
(a) 50% MMT, (b) “within-task max,” or (c) the maximum activation bin during arm elevation
trials, whereas dark blue indicates low activation levels. Each color “pixel” was determined first by
syncing all trials to time zero, when the elbow reaches its maximum height before teeth brushing,
and then using the mean activation during a 20 ms bin across at least three repetitions
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Fig. 5 Muscle activation heatmaps during trials in which patients 1–6 scratched their low back.
These muscle activation patterns are expressed with different color normalizations such that dark
red indicates that the muscle was active to at least (a) 50% MMT, (b) “within-task max”, or (c)
the maximum activation bin during arm elevation trials, whereas dark blue indicates low activation
levels. Each color “pixel” was determined first by syncing all trials to time zero, when the elbow
reaches its most posterior position before scratching began, and then using the mean activation
during a 20 ms bin across at least three repetitions

the synchronization event trial-to-trial was when the elbow reached its maximum
height, which could present practical challenges to online use of EMG as inputs to
control devices (vs. using an event at the beginning).

5 Concluding Remarks

This chapter presented examples of subject-specific muscle activation patterns mea-
sured by sEMG when athletes and patients perform a variety of tasks. These subject-
specific muscle activations correspond to subject-specific movement mechanics and
are relevant to consider while designing and testing devices that use sEMG signals
as inputs. When the kinematic and kinetic contexts are known, sEMG data become
more useful to interpretation or use in devices. For instance, future work with the
shoulder arthroplasty dataset will include analyzing muscle activation patterns vs.
arm elevation angle (varied across patients) and vs. net joint kinetics. Using these
frameworks may elucidate muscle activation patterns that may be shared across all
patients, or a subset of patients. This chapter also demonstrated that people may
have similar performance outcomes (e.g., the two dancers in Figs. 1 and 2) but
use different strategies, including muscle activation patterns, to accomplish similar
whole-body dynamics.

Careful considerations should be taken when deciding thresholds, normalization,
and filtering of sEMG signals if they are to be used as inputs to assistive or
biofeedback devices. Often the most effective synchronization event trial-to-trial



22 A. M. Zaferiou

will not be at the beginning of the movement of interest, which could present
practical challenges to online use of EMG as inputs to control devices. Personalizing
assistive or biofeedback approaches will advance the field of precision medicine
and enable elite athletes to improve their movement mechanics iteratively, after first
appreciating how the person initially controls his/her movement.
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Kineto-Dynamic Modeling of Human
Upper Limb for Robotic Manipulators
and Assistive Applications

Giuseppe Averta, Gemma C. Bettelani, Cosimo Della Santina,
and Matteo Bianchi

Abstract The sensory-motor architecture of human upper limb and hand is charac-
terized by a complex inter-relation of multiple elements, such as ligaments, muscles,
and joints. Nonetheless, humans are able to generate coordinated and meaningful
motor actions to interact—and eventually explore—the external environment. Such
a complexity reduction is usually studied within the framework of synergistic
control, whose focus has been mostly limited on human grasping and manipulation.
Little attention has been devoted to the spatio-temporal characterization of human
upper limb kinematic strategies and how the purposeful exploitation of the environ-
mental constraints shapes human execution of manipulative actions. In this chapter,
we report results on the evidence of a synergistic control of human upper limb
and during manipulation with the environment. We propose functional analysis to
characterize main spatio-temporal coordinated patterns of arm joints. Furthermore,
we study how the environment influences human grasping synergies. The effect of
cutaneous impairment is also evaluated. Applications to the design and control of
robotic and assistive devices are finally discussed.

Keywords Motor control · Grasp · Hands · Daily living activities · Upper
limb · Functional analysis · Human-inspired robotics

1 Introduction

Anaxagoras thought that men are the most intelligent of the animals, because they
have hands. The main concept behind this sentence is that one of the most important
activities of our body is related to the interaction with, and the manipulation of the
environment and objects.

The whole upper limb has a marvelous structure, with hundreds of muscles and
bones and sensors. This guarantees a large variety of possibilities, typically sum-
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marized in four functional activities: (1) sensation, (2) holding, (3) manipulation,
and (4) communication. Nonetheless, the human brain is able to control such a
complexity and versatility in a very simple fashion [11]. The specific mechanisms
underlying this simplification are still under investigation; however, it is nowadays
broadly accepted that the overall movement behavior could be at least approximated
through a reduced dimensionality control space [46, 52, 61, 69], typically named
synergistic control space.

Indeed, most of the movements of our limbs are generated through a coordinated
and harmonic enrollment of different Degrees of Freedom (DoFs) of the kinematic
chain. A description of synergistic patterns has been reported at different level of the
motion control natural architecture, i.e., neural [73], muscular [26, 72], kinematic
[41, 50, 62], and kinetic [75]. For a review on these topics, the interested reader may
refer to [65]. Focusing on the kinematic level, these observations pointed toward the
idea that most of the limb postures variability can be explained by the combination
of a reduced set of eigenvectors, i.e., covariation patterns of joints, also called
principal components or postural synergies, while the remaining components of the
synergistic basis are likely enrolled for the description of more complex tasks and
fine movements, e.g., for haptic exploration [74] and contact forces distribution [6].

Several statistical methods have been used to describe kinematics synergies,
e.g., principal components analysis (PCA), single value decomposition (SVD),
functional PCA (fPCA), and non-negative matrix factorization (NNMF). In [62],
PCA applied to a dataset of grasping poses revealed that the first three PCs explained
∼90% of the total hand poses variability, while the first two PCs accounted for
∼84%. These findings were then confirmed in other studies that take into account
real object grasps [43] and the inter-digit coordination occurring during the whole
grasping procedure.

Despite the huge attention devoted to the analysis of hand motor control, little has
been done to investigate synergistic control of the whole upper limb. In this chapter,
we aim at bridging this gap moving from hand synergies to upper limb kinematics
investigation, with the goal of unveiling the principal synergistic actuation pattern
that underpin motion generation in space and time. At the same time, the avenue
of soft, adaptable yet robust artificial grippers that can deform in a human-like
manner to mold around different items and fully exploit environment to multiply
their degrees of freedom, has motivated our scientific interest in understanding
the role of environmental constraints in synergistic control of human hands. This
chapter is organized around these two topics, and their potential implications for the
design, the planning, and the control of assistive devices, co-bots, and autonomous
robots.

2 Experimental Setup for Data Acquisition

A thorough investigation of main upper limb modes and the synergistic behavior of
the human hand in interaction with the environment necessarily needs to move from
accurate kinematic recordings. To achieve this goal, we employed a commercial
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motion tracking system (i.e., Phase Space®). Ten 480 Hz stereo-cameras tracked
online the 3D position of active markers rigidly fastened to upper limb and hand
links. We used 20 markers for upper limb acquisitions and additional 20 markers
for hand kinematics tracking, four for each finger. We suitably designed and printed
in ABS (see Fig. 1a) rigid supports to accommodate markers. Kinematic data were
synchronized with force/torque sensors and collected through a C++ custom routine.

The experiment execution was recorded through two additional cameras, with the
ultimate goal of visually comparing real and reconstructed movement. Tasks were
repeated once using the free hand and once with subjects wearing ThimbleSenses in
all fingertips (see Fig. 1e), i.e., wearable sensors that provide complete single-digit
force/torque measurements and contact point estimation [9]. Since Thimblesense
are composed by an external rigid shell worn at the fingertip level, their usage
also provides cutaneous impairment. The latter aspect is very interesting to be
investigated since it could provide useful guidelines for sensing soft robotic hands,
as discussed later. All the shells are connected to the fingertips as for classic
thimbles. The reader is invited to refer at [9] for additional details on the impairment
effects of the shells. Force information provided by these sensors was also acquired
to be used in future investigations. Force/torque information was also measured on
the object/environment side. To this purpose, a sensorized surface (600× 400mm),
endowed with a force-torque ATI mini45E sensor mounted as in Fig. 1f, was used
to keep track of the interaction of the subjects with the table.

3 Modeling

3.1 Kinematic Model of Human Upper Limb

The description of human kinematics is a very challenging task, e.g., see [44, 51],
not only for the number and the axis directions of the Degrees of Freedom (DoFs),
but also because the capabilities of motion measurement/reconstruction need to
be carefully considered. For this reason, a good trade-off between accuracy and
reasonable computational time is represented by a model with seven revolute
joints and three rigid links [10]. In this chapter we will refer to joint angles
x = [q1, . . . , q7]

T as:

• q1 abduction-adduction of the shoulder;
• q2 flexion-extension of the shoulder;
• q3 external-internal rotation of the shoulder;
• q4 flexion-extension of the elbow;
• q5 pronation-supination of the elbow;
• q6 abduction-adduction of the wrist;
• q7 flexion-extension of the wrist.

Corresponding axes are depicted in Fig. 2.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 In (a) and (b) we report the markers accommodation for upper limb and hand, respectively.
In (c) and (d) we show a schematic representation of the experimental setup. Two cameras are
included to record the scene. In (e) we show the shells at fingertip level, which produce tactile
impairment and in (f) an exploded view of the sensorized table

As a consequence, the forward kinematic is completely described by five
reference systems:

• Sref , with the origin in Oref and fixed to the epigastrium;
• SS , with the origin in OS , Center of Rotation (CoR) of shoulder joints and fixed

to the arm;
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Fig. 2 The kinematic model used in this chapter to model the upper limb

• SE , with the origin in OE , CoR of elbow joints and fixed to the forearm;
• SW , with the origin in OW , CoR of wrist joints and fixed to the hand;
• SH , with the origin in OH and fixed to the hand.

The relative rigid transform between the reference systems are

• TOrefOS
between Sref and SS ;

• TOSOE
between SS and SE ;

• TOEOW
between SE and SW ;

• TOWOH
between SW and SH .

We use here the product of exponentials (POE) formula [16] to parameterize the
i-th segment

gOrefOj
(θ) =

[
j∏

k=1

eξ̂kθk

]
gOrefOj

(0)

where ξ̂k are the joints twists that define the kinematic chain, θ = [θ1, . . . , θk, . . . ,
θj ]

T are the second kind exponential coordinates for a local representation of SE(3)
(Special Euclidean group, 4 × 4 rototranslation matrices) for the j-th link, and
gOrefOj

(0) is the starting configuration. Additional details are reported in [39].
This model can be completely parametrized by 14 subject-specific coefficients,

collected in a vector pG: length of the arm and forearm links (2 pars); translation
from the epigastrium to the CoR of the shoulder (3 pars); translation from the CoR
of the shoulder to the center of arm marker support (3 pars, see the following
subsection for details); translation from the CoR of the elbow to the center of
forearm marker support (3 pars, see the following subsection for details); translation
from the CoR of the wrist to the center of hand marker support (3 pars, see the
following subsection for details).
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3.1.1 Markers Placement

As already introduced previously, the motion of arm links is tracked through active
optical markers, fastened to the upper limb through custom rigid supports. A
redundant configuration of markers is used to avoid occlusions and improve tracking
quality, i.e., six markers for arm, six markers for forearm, four markers for chest,
and four for the hand (see Fig. 1a). The position of each single marker is known
w.r.t. the center of the rigid support, while the relative configuration of the support
w.r.t. the whole kinematic chain is one of the parameters to be calibrated for each
subject.

3.2 Kinematic Model of the Human Hand

Regarding the hand, we used a kinematic model with 20 DoFs (see Fig. 3a). The
four long fingers are moved by four independent joints:

• two DoFs for the metacarpo-phalangeal joint (for flexion-extension and
abduction-adduction);

• one DoF for the proximal joint (flexion-extension);
• one DoF for the distal joint (flexion-extension).

Fig. 3 Model of hand kinematics. The 20 joints considered include the 15 DoFs of the hand model
described in [62]. (a) Graphics of the hand kinematics; (b) Denavit–Hartenberg parametrization of
the fingers
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The thumb is moved by four independent joints:

• two DoFs for the trapeziometacarpal joint
• one DoF for the metacarpo-phalangeal joint;
• one DoF for the interphalangeal joint;

It is worth noticing that such a description shares all the 15 DoFs used in [62], thus
enabling the comparison of the analysis results with classic description of postural
grasp synergies. More details in the following of the chapter.

4 Motion Identification

The tracking of markers in the 3D space provides information on the Cartesian
space. To infer from this the actual joint values it is necessary to solve a motion
reconstruction problem. In this chapter we develop a procedure consisting of two
phases: as a first step, since the length of the links is subject-specific, an optimization
is carried out to calibrate the vector of parameters pG. Then, the calibrated model
is used within a frame-by-frame identification procedure performed through an
extended Kalman filter (EKF).

4.1 Model Calibration

The optimization of the vector of parameters pG is achieved by solving the following
constrained problem:

(x∗, p∗G) = arg min
xk∈Dx,pG∈Dp

1

2

Np∑
k=1

rTk rk,

where rk = rk(xk, pG) := yk − f(xk, pG) is a residual function, yk is the vector of
the measured markers position, xk is an estimation of joint angles, Dx is the range
of motion of the joints, Dp is a constraint on the maximum allowable variation of
the kinematic parameters w.r.t. the initial manual measurement, and f(xk, pG) is the
estimated markers position via forward kinematics.

4.2 Motion Identification

The joint values in time are then estimated through an EKF. Let us consider the
model as an uncertain noisy process, where xk is the state at time frame k, yk
is the 3D position of markers, f(xk) is the forward kinematics, and wk and vk
are the Gaussian noises of process and observation, with covariance Qk and Rk,
respectively.
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This description can be formalized as in the following classical form:

{
xk = xk−1 + wk

yk = f(xk) + vk
(1)

The EKF implementation will result in the following procedure: given the state
xk−1, a prediction at the time frame k is calculated as x̂k|k−1 = x̂k−1. Then,
the prediction is updated by calculating x̂k|k = x̂k|k−1 + Kkr̃k. The amount
of prediction correction of state estimation is calculated as product between the
residual r̃k = yk − f(x̂k|k−1) and the Kalman gain Kk. The gain is calculated as

product between Pk|k−1, the Jacobian matrix Hk = ∂(f(x))
∂(x) , and the inverse of the

residual covariance. The covariance matrices are tuned heuristically.
This two-phase procedure has been used for both the arm and the hand motion

identification. However, given the lower distance between markers, the latter case
is more prone to markers occlusion. To overcome this issue, the identification
of fingers movement has been integrated with an additional constraint in the
identification procedure. More specifically, we developed an adaptation procedure
(online) of the observation noise covariance matrix with a scaling factor proportional
to the number of consecutive missing values. In this way the observation noise
covariance for the EKF is automatically increased in case of missing frames for
the specific frame.

5 Principal Functions for Upper Limb Movement
Generation

5.1 Experiments

It has been broadly discussed that, to correctly describe human movements in a
general way, one of the key points is the number and variety of tasks considered
in the dataset [50, 62, 71, 77]. In this work, we selected a set of 30 different daily
living tasks, considering the main hand grasping poses (we referred to the grasping
taxonomies discussed in [25, 36]) and ranging the whole upper limb workspace
[1, 48, 54].

Driven by neuroscientific findings [24, 43], the 30 tasks can be organized in three
classes: intransitive actions, i.e., gestures without interaction with objects; transitive
actions, i.e., grasps of objects; tool-mediated actions, i.e., grasp of objects used as a
tool to interact with another object. The complete list of actions is reported in [5].

Seven right-handed participants (5 M, 2 F, age ranging between 20 and 30 y.o.)
were asked to randomly perform all the action of the protocol three times.

The quality of the estimated angular values—at each time frame k—was
evaluated through the mean squared error (MSE) Rk as
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Rk =
1

Nmarkers
||(yk − f(x̂k|k))||,

where Nmarkers is the marker’s number, yk is the marker’s position, and f(x̂k|k)
is the estimation of markers position via forward kinematics and the joint angles
estimated via EKF. In our experiments we had Rk typically ≈1 cm, with lower errors
at the hand and forearm level (≈0.5 cm) and larger errors at the arm level (≈1.8 cm).

5.2 Data Analysis

To identify the functional principal components of motor behavior we leverage
on the functional PCA, a statistical method that identifies the underpinning basis
functions of a generic time-related dataset [58, 59]. Since the comparison between
dataset elements is performed in time, a preliminary step required is represented
by the time warping of the single entries. This is necessary to prevent—in the
analysis—effects due to misalignment in time or different task velocity execution.

More specifically, time warping is a technique used to enable the comparison
between different time-varying samples. Let us assume two time series v1 and v2;
the affinity between v1 and v2 is maximized by solving the following optimization
problem:

(S, T ) = arg min
S>0,T

(||v1(t)− v2(St− T )||), (2)

where S is a velocity scaling factor and T is a time-shifting. The general, dynamic,
application of time warping accepts as a solution non-linear scaling function, i.e.,
S(t) and T (t). However, to preserve the signal shape, in our implementation we
leverage on the solution of 2 with the additional constraint of S and T constant
values. All the elements are warped w.r.t. a common reference, resulting in a new
dataset with time-coherent elements.

5.2.1 A Functional Extension of PCA

As previously discussed, the main goal of this section is the description of the upper
limb movements under a functional point of view. One solution to this problem is
represented by functional PCA (fPCA).

The main idea behind fPCA is conceptually similar to the classic PCA analysis
and can be formalized as in the following.

Given a dataset of functions X = [x1, . . . , xi, . . . , xN ], it is possible to calculate
a first functional principal component ξ1(t) as the function that maximizes the
following objective function:
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N∑
i=1

f2
i1, where fi1 =

∫
ξ1(t)xi(t)dt, (3)

s.t.

∫
ξ21(t)dt = ||ξ1|| = 1. (4)

The second functional principal component ξ2(t) maximizes the following
objective function:

N∑
i=1

f2
i2, where fi2 =

∫
ξ2(t)xi(t)dt, (5)

s.t. ||ξ2|| = 1 and

∫
ξ2(t)ξ1(t)dt = 0. (6)

Higher order PCs can be defined recursively as for Eq. 5. The practical imple-
mentation, which bypasses the optimization, is listed in the following:

1. Let us assume a dataset of functions X = [x1, . . . , xi, . . . , xN ], where xi ∈
R

NDoF ,T , T is the number of time frames, and NDoF is the number of Degrees
of Freedom. For each joint, evaluate the mean x̄ = [x̄1 . . . x̄j . . . x̄NDoF

]′ as
x̄j =

1
N

∑N
i=1 xij ;

2. Remove the mean from each element of the dataset x̃i = xi − x̄ ;
3. Define a basis of functions, large enough to consider all possible modes of

variations. Typical definitions are exponential functions, splines, Fourier basis
[57–59];

4. Given the basis elements b1, . . . , bN , calculate each element of the dataset as a
combination of basis elements x̃i =

∑N
k=1 θkbk;

5. Each element of the dataset can be encoded through a vector of coefficients Θ =
(θ1, . . . , θN )′;

6. Calculate the principal components ξi of the new dataset of coefficients;
7. Each PC will results into a corresponding functional PC, i.e., xrec = x̄+ c1ξ1 +

c2ξ2 + c3ξ3 + . . . ;
8. The variance explained by each fPC is calculated as the normalized eigenvalue

of the covariation matrix.

5.3 Results

We evaluated the functional principal components on the dataset introduced in
the previous sections. The basis is defined with 15 fifth order spline [37]. More
specifically, each basis element is defined as piecewise polynomial functions. Each
piece of the function is of the form:
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Fig. 4 Variance explained—for each joint—by fPCs

sk(t) =

5∑
i=1

aik(t− tk)
i, (7)

where tk is the kth knot.
Our results revealed that the first fPC accounts for 60–70% of the total joint

dataset variation (see Fig. 4). The variability explained by the first component is
higher for the DoFs related to the shoulder and elbow movements, while is lower
for forearm pronation-supination and for the wrist DoFs. It is also worth noticing
that a very reduced number of fPCs is typically sufficient to approximate most of the
tasks considered in this study. Indeed, the first three fPCs explain more than 84% of
the total variability for all the DoFs.

Figure 5 reports the first three fPCs as a modulation of the mean function.
We invite the reader to notice that the cardinality of the specific fPC is related
to the complexity of the resulting modulation. This points toward the idea that
increasing the number of enrolled fPCs can result in higher overall complexity of
the movement.
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Fig. 5 First three fPCs reported in red as modulation w.r.t. the mean function (in black). (a) First
fPC, (b) second fPC, (c) third fPC
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The performances of signal reconstruction are reported in Fig. 6a, where a sample
element of the dataset is approximated through one, two, and three fPCs. An index
of reconstruction error is evaluated as:

ERMS =

√√√√√ 1

NDoF

NDoF∑
i=1

⎡
⎣
√√√√ 1

Nframes

Nframes∑
j=1

(x− xrec)2

⎤
⎦
2

, (8)

where x is the original element and xrec is the fPC-based approximation.
Figure 6b reports the normalized reconstruction error, evaluated as

ERMS/max(ERMS), while increasing the number of fPCs enrolled. The initial
value refers to the mean function only (ERMS = 0.6 rad). With only one fPC
the ERMS value is lower than 0.2 rad. It is also worth noticing that the overall
reconstructed movement preserves an high level of anthropomorphism and realism.

6 Postural Hand Synergies During Environmental
Constraint Exploitation

This section deals with the investigation of a synergistic behavior that explains the
hand postures during activities of environmental constraint exploitation (ECE) [28],
with and without the effect of cutaneous impairment.

To address this goal, we carried out experiments with six healthy subjects (3 F,
3 M, age ranging between 23 and 27 y.o.), who were asked to reach and grasp set
of objects from a table. The tasks considered were selected as a trade-off between
protocol complexity and richness of tracked kinematic behavior [35]. For each task,
repeated twice and randomly selected, subjects were instructed to reach the object
placed on the sensorized table, grasp it, lift (∼20 cm height), hold (∼1 s), put it back
on the original position, and return to the starting position.

The acquisitions were performed in two different experimental conditions: with
and without tactile impairment. More specifically, in the first case subjects were
asked to wear rigid shells at the fingertips level to prevent tactile feedback. Hand
postures were processed via principal component analysis (PCA) [64] to identify
the synergistic behavior in hand posture codification. The analysis was performed on
pre-shaping postures (i.e., before the contact with the object) and during the actual
contact/interaction with the environment. Signals collected during the experiments
are hand postures through 24 active markers position, force/torque of the interaction
with the table (F/T ATImini45).
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Fig. 6 (a) In black real acquisition; in red the reconstruction using one fPC; in blue the
reconstruction using two fPCs; in green the reconstruction using three fPCs. (b) Reconstruction
error vs. number of fPCs considered to approximate the signal
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6.1 Pre-processing

Data of force/torque from the sensorized table are filtered via moving average
through the Savitzky–Golay method [66]. The filter window width is heuristically
tuned as the 1.5% of the total signal length. Then, leveraging on the knowledge of
the surface geometry, it is possible to evaluate the centroid of contact, which will be
used in the following of this section for contact triggering.

Indeed, postural data are segmented in three phases (see also Fig. 7 for a visual
description):

1. pre-shaping, the phase in which the hand has reached the object and is shaped as
to interact with the object/environment;

2. contact, the phase in which the constraint is exploited to grasp/manipulate the
object;

3. post-contact, the phase in which the object is grasped and lifted from the table.

These phases are identified by looking at the signals recorded by the sensorized
surface. The transition from first to second phase is triggered by the contact
detection between hand and table/object (i.e., looking to the increasing force and
force derivative). The transition from second to third phase is identified as the first
time frame in which the force returns to zero.

As previously stated, the main objective of this section is to identify a subspace of
reduced dimensionality for hand postures. To achieve this goal, principal component
analysis (PCA) has been proven as an effective tool [7, 50, 62, 64, 70]. More
specifically, given a dataset of postures described by a matrix of correlation C
and a mean m, PCA identifies an orthonormal basis of data space, which first
element S1 is the direction that explains the largest percentage of data variability.
Each successive principal component Si explains the highest variability under
orthogonality constraint.

Fig. 7 Sample of environment exploitation to enhance grasping and manipulation capabilities. (a)
is the pre-shaping phase, (b) is the during contact phase, and (c) is the post-contact phase
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PCA is typically implemented as the singular value decomposition of the
correlation matrix, i.e., calculating the orthonormal matrix Σ that brings C in Jordan
form via the similitude ΣT C Σ. In this implementation, the principal components
are the column of Σ = [S1, . . . , Sn], and the explained variance is the normalization
of the corresponding eigenvalues [45].

It is worth noticing that the comparison between experimental conditions is
enabled by the usage of calibrated kinematic model (see previous sections of this
chapter). To quantify the similarity, we then quantified the normalized absolute
value of the dot product between vectors. Similarities have been quantified between
different experimental conditions and with the results associated with classical
grasping analysis [62]. As discussed previously, the kinematic model employed in
[62] implement a reduced number of DoFs (15, see also Sect. 3.2). In this case,
to compare vectors we used the projection of the full hand configurations in the
corresponding low-dimensional space (i.e., from R

20 to R
15). This resulted in

simply neglecting values corresponding to ID, MD, RD, and LD in Fig. 3a (see
also [39]).

6.1.1 Pre-shaping Analysis

The first phase of the motion that is worth analyzing is the pre-shaping. Indeed,
in [62] the authors took out the effect of physical interaction by asking subjects to
grasp imagined objects. Here, we aim at achieving the same goal by focusing the
analysis on the last-hand pose before the contact with the environment, i.e., the last
pose in pre-shaping phases when a purposeful interaction with the environment is
planned. We separately analyzed the two experimental conditions of impaired and
unimpaired tactile feedback. The two datasets are composed of 252 poses.

6.1.2 Contact Analysis

To evaluate whether kinematic covariation patterns are also noticeable during actual
exploitation of the surface we performed PCA also on the data collected during the
contact phase—considering separately the two experimental conditions of impaired
and unimpaired tactile feedback. To quantify the effect of cutaneous impairment, we
also calculated the mean amount of time in which subjects remained in contact with
the table, mean time for task accomplishment, and the mean norm of interaction
forces, by averaging the corresponding values for every subject and every object.

The considered datasets are composed of a variable number of poses, due to the
variability in time execution of the task (we recorded 40 postures per second of task
execution).
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6.1.3 Differences Between Pre and During Contact

We also considered the persistence of the same covariation patterns of hand posture
before and during the contact with the environment for both free and impaired hands.
This was performed through the index based on the dot product between synergies,
as previously discussed.

6.2 Results

6.2.1 Pre-shaping Analysis

Figure 8 reports the variance explained by the PCs for the analysis regarding the
pre-shaping phase. For the unimpaired case, the first synergy explains about the
54% of the total dataset variability, while the first three PCs account for more than
72%. Figure 9 shows a graphical representation of the first three resulting postural
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Fig. 8 Variance explained by the principal components during the preshaping and contact phases,
with and without tactile impairment. A marked synergistic behavior is noticeable in all the cases.
(a) Unimpaired, pre-shape. (b) Impaired, pre-shape. (c) Unimpaired, contact. (d) Impaired, contact
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Fig. 9 Graphical representation of the hand configuration w.r.t. the mean pose, associated to the
first three synergies during preshaping in unimpaired condition. Each column presents a different
stage of the synergistic posture generation, obtained by summing the hand mean configuration m,
to the synergy vector Si of the i-th synergy

synergies. Regarding the impaired case, we observed that the first synergy accounts
for the 42% of the total variability, while three principal components account for
more than 68%. It is worth noticing that, for our dataset, the first synergies account
for higher percentages of variance in the unimpaired w.r.t. the impaired condition.
Table 1 lists the numerical values of the first ECE synergy of pre-shaping, with
and without tactile impairment, in comparison with the first grasp synergy reported
in [62]. Figure 10 presents the movement corresponding to the second synergy of
pre-shaping with tactile impairment.

In all the considered experimental conditions, the first principal component
encodes an opening–closing pattern for the whole hand, while the second principal
component corresponds to a flexion of the distal joints—mostly of index and medial
fingers—and a flexion of the thumb. The third synergy is similar to the second, with
a prominent effect on the little and ring fingers.

Figure 11a shows the dot product between the first grasp synergy in [62] and the
ones found in this work for the two experimental conditions. It is worth noticing
the strong consistency between the first synergy in the different conditions (≥0.9),
which such similarity is reduced for the second synergy, as shown in Fig. 11b, and



Kineto-Dynamic Modeling of Human Upper Limb 41

Table 1 Numerical values of the first synergy of Grasp [62] and of Environmental Constraint
Exploitation, with and without impairment, before and after contact

DoFs Grasp Unimpaired pre-shape Impaired pre-shape Unimpaired contact Impaired contact

TA −0.43 −0.14 −0.15 −0.12 −0.15

TR 0.29 0.31 0.35 0.30 0.34

TM 0.14 0.14 0.17 0.17 0.16

TI 0.03 0.04 0.05 0.05 0.09

IA −0.13 −0.08 −0.12 −0.08 −0.11

IM 0.33 0.39 0.35 0.40 0.34

IP 0.15 0.16 0.16 0.17 0.20

ID x 0.01 0.03 0.03 0.05

MA x −0.03 −0.08 −0.02 −0.06

MM 0.33 0.38 0.33 0.38 0.32

MP 0.16 0.27 0.27 0.27 0.30

MD x 0.04 0.06 0.05 0.08

RA 0.06 0.00 −0.02 0.02 −0.02

RM 0.40 0.44 0.37 0.43 0.32

RP 0.20 0.22 0.27 0.22 0.35

RD x 0.04 0.06 0.05 0.11

LA 0.14 0.05 0.1 0.08 0.09

LM 0.37 0.43 0.42 0.41 0.37

LP 0.27 0.12 0.21 0.17 0.24

LD x 0.02 0.04 0.02 0.08

We indicate with ‘x’ the DoFs that were not considered in [62]

Fig. 10 Graphical representation of the hand shapes associated to the second ECE synergy. Pre-
shaping impaired, contact unimpaired and contact impaired conditions are considered. The mean
posture is referred as m, the second synergy as S2. We do not report here the first synergy for each
condition, since there are not significant and visible discrepancies. The figure also shows a good
coherence in the behavior described by the second synergy, among the considered conditions
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Fig. 11 Index of similarity between synergies, calculated as dot product. Values are codified in
gray-scale: black is 1, i.e., very similar, white is 0, i.e., very different. ECE principal components
in both the experimental conditions show high similarity, which, however, drops for higher order
synergies. (a) First synergies. (b) Second synergies

so on for the other orders. Figure 11 shows also a high correlation between pre-
shaping synergies in the two experimental conditions. Indeed, it can be observed that
the introduction of tactile impairment does not alter the first two synergies during
the pre-shaping phase. The similarity strongly drops for higher order synergies,
reaching 0.36 for the third and 0.003 for the forth.

6.2.2 Contact Analysis

The analysis reported that, for the no-impairment condition, the first synergy
accounts for about the 49% of the total dataset variability, while the first three
explains more than 73%.

As already observed for the pre-shape case, these values are lower for the
impaired case. Indeed, in this case we had a that the 39% of the dataset variance
can be explained by the first synergy alone, while the first three account for the 65%
of the total variability. Table 1 reports the numerical values of first ECE synergy
in the contact phase, in the two experimental conditions, in comparison with the
first grasp synergy [62]. Figure 10 shows the posture corresponding to the second
synergy with and without tactile impairment.

Our study also reported that subjects, in case of tactile impairment, are in contact
with the table for an average time of 4.2 ± 3.1 s, while in case of bare hand the
average time is 2.4 ± 2.4 s. The task is completed in 13.9 ± 2.7 s in case of tactile
impairment, while it is performed in 11.5 ± 2.0 s with the bare hand. Finally, also
the contact force is different for the experiments considered, with a mean value for
the impaired case of 23.2± 8.6 N and of 12.3± 5.7 N for the unimpaired case.
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Fig. 12 Index of similarity—calculated via dot product—between the synergies in pre-shaping
and in contact phases, considering the unimpaired condition. Values are codified in gray-scale:
black is 1, i.e., very similar, white is 0. A tendency to maintain the first main components before
and after the contact results clearly from this analysis. Results for the impaired case are analogous

6.2.3 Differences Between Pre and During Contact

Our results show a high similarity between the first principal components in the two
experimental conditions w.r.t. the corresponding ones of the pre-shaping analysis.
This similarity tends to decrease for higher order synergies, even if correlation
values are ≥0.75 till ninth synergy. Values of the dot product are reported in Fig. 12
for the unimpaired case. These observations suggest that environmental constraints
induce changes only for the high order synergies, leaving unaltered the main ones,
regardless of availability of tactile input. Note that the first synergy is still strongly
similar to the first grasp synergy [62].

6.2.4 Inference and Statistical Relevance

Results presented in this section rely on acquisition recorded on a cohort of six
subjects. Despite the moderate number of participants, findings and analyses are in
line with the existing literature in the field, see, e.g., [50, 53, 62]. To generalize,
we performed additional statistical analyses and calculated the t-Student based
confidence intervals (CI) with 95% probability. CI refers to dot products calculated
on the synergies associated to different experimental conditions, and the ones
associated to grasping [62]. More specifically, we had that the CI for the dot product
between the first synergy for impaired and unimpaired conditions is [0.81, 0.96]; CI
for the dot product between the first grasping synergy and the unimpaired first ECE
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synergy is [0.88, 0.94]; CI for the dot product between the first grasping synergy
and the impaired first ECE synergy is [0.79, 0.9]. Regarding the analysis in the
contact phase (Sect. 6.2.3), the dot product between the first synergy before and
during contact results in a CI of [0.97, 0.99] (unimpaired case).

7 Implications for Robotics and Motor Control

This chapter focused on the characterization of human movements, with particular
attention for upper limb and hand control. More specifically, the first section faced
the problem of a functional description of human arm movements, reporting on the
functional complexity of daily living movements and on how it can be approximated
through a reduced number of functional principal components. To achieve these
results, we proposed the design of an experimental setup that includes kinematic
recordings and other sensing modalities. Postural acquisitions rely on a 7 DoFs
kinematic model and are quantified via a two-phase procedure for model calibration
and angles identification.

We do believe that these findings could be used to provide a more accurate
characterization of human upper limb functional principal modes, with potential
applications in rehabilitations for the automatic recognition of pathological condi-
tions [68]

At the same time, these results—and future developments—could be also useful
to inspire the design, planning, and control of robotic manipulators. Indeed, lever-
aging on the fact that a very reduced number of functional principal components is
sufficient to approximate with high precision very complex motions, it could be
possible to envision the design of human-like movements trajectories exploiting
on such functional basis. These strategies could be included in the combination
of feedback and feedforward components, with direct application for the control of
soft manipulators, i.e., robots able to implement natural and safe behaviors thanks
to the introduction of compliant structures in the design which enable to achieve
different—potentially variable—impedance characteristics. In these cases, standard
feedback control has been proven to dramatically affect the compliant behavior of
the system [3, 29]. To overcome these issues, in [29] a control strategy combining
feedforward actions and low-gain feedback was proposed, with the ultimate goal of
generating a human-like behavior via iterative learning [3]. In these applications,
results presented in this chapter could be used to drive the design of the feedforward
component.

Moreover, the usage of human-like primitives for robot control could represent
an improvement of safety and effectiveness of Human–Robot Interaction (HRI).
Indeed, it has been proved by different studies that anthropomorphism is one of
the key enabling factors for a predictable, safe, acceptable, and successful HRI in
many fields, e.g., for co-working applications and rehabilitative/assistive robotics
[8, 32, 33, 60].
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Furthermore, this experimental and analytical framework could be used to iden-
tify under-actuation strategies for human-inspired robotic devices. As an example,
in [18], we employed this framework to quantify the role of wrist joints in the
most common poses for grasping tasks. To do this, we calculated the principal
components of the wrist pre-grasp poses and we observed that the flexo-extension
DoF plays a dominant role. We used these results to inspire the design of an under-
actuated robotic wrist, which is also compliant and enables to implement different
schemes of under-actuation.

Future development of this work will target the usage of functional analysis as
an enabling factor for a dynamic implementation of human upper limb modes for
robotic applications. In addition, the integration of different sensing modalities, e.g.,
electro-encephalographic recordings, can be used to analyze neural correlates of
motor control, thus providing useful insights for the development of Brain–Machine
Interfaces [20, 21].

Regarding the characterization of hand postural synergies discussed in this
chapter, we used a PCA-based analysis to describe the underlying synergistic
description of hand motor control in case of environmental constraint exploitation,
with particular focus on the pre-shaping and contact phases, and considering the
effects of haptic feedback impairment. More specifically, we observed that the
variability of hand poses (depicted in Fig. 8) suggests the effective presence of
a reduced number of joint covariation patterns that account for a large part of
the total variance. Indeed, one principal component explains up to 54% of the
total dataset variability (for the unimpaired pre-shaping case), while the first three
principal components account for more than 65% in all the tested conditions. We
also observed that—in the case of contact with the environment, the variability
accounted by higher order synergies increases. We believe that this is a direct effect
of the physical interaction, which is responsible to a—not directly controlled—
hand shaping. This is also in agreement with the observations reported in [63],
where the analysis introduced in [62] was extended to real objects. Despite the fact
that our inference analysis, discussed in Sect. 6.2.4, is limited to the first Principal
Component, a series of characteristics of our dataset are worth of consideration, in
accordance with existing neuroscientific results. Future work will target additional
tasks and different experimental procedures to further investigate these aspects.
Considering the data we collected, we observed high similarities between the first
two synergies in the impaired and unimpaired conditions (see Figs. 10 and 11). This
suggests that the effect of haptic impairment does not substantially alter the most
important basis components of hand grasping, even if changes in the approaching
strategies are still detectable (see [4]). It is worth discussing that subjects were aware
of tactile impairment presence, then it is reasonable to expect that part of these
differences is related to changes in motor planning as a consequence of feedback
impairment. However, the dimensions of the collected dataset does not allow a
strong statistical characterization of this behavior yet, and, to assess whether higher
order components are primarily noise or rather they actively contribute to hand
postures definition, in our future work we will resort to the usage of discriminant
analysis and information theory, as done in [62]. Analogously, Fig. 12 reports a
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strong similarity in the first principal components related to pre-shaping and contact
phases, respectively, while differences are noticeable for higher order components.
The theory of the uncontrolled manifold [47, 67] hypothesizes that the central
nervous system selects—within the space of joint angles—a reduced set of variables
of interest and devotes the control to these, while purposefully leaving free the
remaining Degrees of Freedom.

The persistence of the main principal components across the pre-shaping and
contact phases can be reviewed following this theory by considering the first ECE
synergies as the variables of interest for the specific task, which are preserved
when external disturbances occur. The DoFs encoded by higher order synergies,
instead, are left free to adapt to the external environment. It is also possible that
this behavior is related to physical constraints embedded in the musculoskeletal
system, as discussed, e.g., in [64]. Results depicted in Fig. 11 and Table 1 suggest
that a strong similarity is evident between the first synergy related to the ECE
strategies and the first grasp synergy presented in [62]. This may suggests the
presence of underlying—general—synergies, integrated with task specific ones.
This was initially proposed, e.g., in [40], and it is in agreement with experimental
observations discussed in [70], where task independent synergies are estimated by
a set of unconstrained tasks (see also CI estimates in Sect. 6.2.4). It is nowadays
broadly accepted in literature that the results of neuroscientific analysis of human
hand synergistic behavior can be successfully exploited and applied in robotics, to
inform the design, planning, and control of mechatronic devices, with particular
attention on grasping [12, 14]. One of the first attempts to exploit kinematic
synergies in robotics is reported in [17], where the authors proposed to use grasp
synergies as actuation patterns for an under-actuated hand. In [38] and [6] the role
of postural synergies for the distribution of grasping forces is discussed. In [23]
and later in [2, 49, 76], a low-dimensional space based on synergies is used to
purposefully obtain effective pre-grasp configurations for a fully actuated robotic
hand. More recently, synergy-inspired actuation framework have been combined
with the introduction of physical compliance in the design [19, 22, 27, 30, 78] (see
also [56] for a review), according to the soft-synergy paradigm introduced in [14].
The availability of elasticity in robotic hands also led to a shift under the planning
and control point of view, see, e.g., in [13, 15, 31, 34]. The most direct implication
of the results presented in this chapter could rely on the strong similarity between
the first ECE synergy and the first synergy of grasping and the implementation of
this joint covariation pattern as a degree of actuation can target the twofold goal of
designing under-actuated robotic hands able to effectively grasp objects with and
without the environmental constraints exploitation. To enhance hand capabilities
beyond the first degree of actuation, we could include additional ECE synergies,
possibly in combination with the grasp synergies (see [27, 42, 55]).

Referring to the differences introduced by tactile impairment, the principal
kinematic patterns appear to remain preserved—at least for the gross movements.
However, differences are observed in terms of time for task accomplishment and
exchanged forces. This points toward possible sensing strategies for soft robotic
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hands, i.e., to effectively detect the contact with the object or the external environ-
ment, e.g., using IMU sensors, which may inspire the development of planning and
control strategies aiming at minimizing exerted force on external objects.
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Learning from the Human Hand: Force
Control and Perception Using
a Soft-Synergy Prosthetic Hand
and Noninvasive Haptic Feedback

Qiushi Fu and Marco Santello

Abstract Force control and perception plays an important role in activities of
daily living when handling objects with different physical properties. These abil-
ities are results of complex sensorimotor pathways that coordinate movements,
predict consequences, and process feedback. For prosthetic systems, the ability to
exhibit human-like action and perception behavior is critical for the acceptance
of the terminal device. In this chapter, we review recent findings obtained from a
bioinspired soft-synergy prosthetic hand and a noninvasive mechanotactile feedback
device. A series of experiments demonstrated the improvement in force control and
perception in closed-loop prosthesis through context-aware myoelectric controllers
and contralateral haptic training protocols. By comparing performances between
human native hands and prosthetic hands, we provide novel insights on the
importance of learning from human sensorimotor mechanisms in the design of
upper-limb neuroprosthesis.

Keywords Neuroprosthetics · Haptic feedback · Force control · Perception

1 Introduction

Restoring the ability to interact with the environment through prosthetic hands
is critically important for individuals with upper-limb loss to regain indepen-
dence in activities of daily living. However, despite decades of advances in
prosthetic research, significant limitations in the reliability, function, and robustness
in prosthetic hands still exist to prevent human-level dexterity. Recently, human-
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inspired approaches have been proposed to address these challenges through novel
mechanical design [1], intuitive control [2, 3], and artificial sensory feedback [4].
Specifically, it was observed that the central nervous system (CNS) solves the
sensorimotor complexity of grasp control through neuromuscular synergies (i.e.,
consistent joint/muscle coordination patterns [5–7]), which enables the control
of a large number of muscles and joints through a smaller set of neural signals
[for review see 8]. The combination of synergies with soft robotic technologies
has inspired the creation of compliant and underactuated prosthetic hands that
simultaneously maximize simplicity and functionality [9]. Furthermore, it is well-
known that somatosensory information plays key role during the generation of
interaction forces in skilled manual functions [10]. As the central nerves system
faces the challenge of noise and uncertainty, somatosensory feedback through tactile
and proprioceptive sensory channels can be used not only to generate reactive
motor commands when execution errors occur but also to facilitate future predictive
actions by updating the internal representation of the hand-object interactions [11].
Therefore, providing somatosensory feedback (i.e., close the loop) should benefit
users of prosthetic hands and improve the usability of the prosthetic systems,
especially in situations where visual feedback is missing (e.g., the hand prosthesis
is out of view) or ineffective (e.g., force control). Many different forms of sensory
feedback have been implemented and tested in hand prostheses [12]. One of the
noninvasive approaches is modality-matched feedback, which delivers stimuli using
sensory channels of same modality as the missing ones, although the location of
the missing physiological feedback may not be matched, e.g., pressure sensed via
a prosthetic hand is delivered through pressure on forearm. In this chapter, we
review important new findings obtained by research on biologically inspired, closed-
loop prosthetic hands that demonstrated human-like behavior in the control and
perception of grasp forces.

2 Materials and Method

2.1 Subjects

Sixteen (9 females and 7 males, ages 19–34) and eighteen volunteers (9 males and
9 females, ages 18–37) participated in the first and second study, respectively. All
subjects were right-handed according to the Edinburgh Handedness Questionnaire.
They had normal or corrected-to-normal vision, no previous history of orthopedic,
neurological trauma, or pathology of the upper limbs and were naive to the purpose
of the study. Subjects gave their informed consent, and the protocols were approved
by the Institutional Review Board at Arizona State University in accordance with
the Declaration of Helsinki.
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2.2 Experiment Apparatus

For the present investigations of force control and perception, we used a closed-
loop prosthetic system that consists of a myoelectric prosthetic hand (right hand)
with customized socket interface and a mechanotactile feedback device (Fig.
1). Additionally, a gravity compensation system was used to off-load the added
weight which was caused by able-bodied subjects wearing the prosthetic hands.
Lastly, we used customized objects with embedded force/torque sensors to measure
subjects’ grasp forces during different grasping tasks. We will briefly describe each
component of this experiment setup below (for more details, the reader is referred
to [13]).

2.2.1 SoftHand-Pro (SHP)

The SHP is the prosthetic version of the Pisa/IIT SoftHand [14]. The size and weight
of the SHP approximate a large male hand, and a glove was used to protect the
cables and increase contact area and friction during hand-object interactions. It
has been shown that transradial amputees are able to use the SHP effectively in
activities of daily living [15]. The core feature of the SHP is that it only uses one
DC motor to drive all finger joints synergistically based on the first hand postural
synergy (first principal component described by [5]). The grasping behavior of the
SHP is facilitated by embedded joint compliance to mechanically adapt to different
object shapes. The single motor is controlled by a PID position/current controller.
Two surface EMG electrodes (13E200 Myobock electrodes, Otto Bock, Germany)
located over wrist flexor and extensor muscles were used to control the closing and
opening of fingers, respectively. The SHP does not directly sense contact forces
from the fingers but rather estimates the overall grasp force from the motor current
[2]. The grasp force estimation is used for driving the haptic feedback device, as
well as for determining the operating state of the prosthesis.

Fig. 1 Components of the implemented closed-loop prosthetic system. (Adapted from [13])
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2.2.2 Clenching Upper-Limb Force Feedback Device (CUFF)

The CUFF consists of two DC motors that tighten or loosen a fabric belt worn
around the upper arm. Therefore, pressure can be generated around the arm propor-
tional to the estimated grasp force from the SHP [16]. This type of mechanotactile
stimuli matches the modality of somatosensation involved in natural grasping
and manipulation, although it is delivered to a different location. The CUFF was
calibrated for each subject to accommodate the individual differences in arm size
and softness.

2.2.3 Gravity Compensation

A light cable, a series of pulleys, and a counterweight were used to support the
weight of the prosthetic hand and the socket interface. Our experiments required
intensive repetition of grasp force production with the entire arm held in air.
Therefore, gravity compensation system was required to prevent muscle fatigue that
may arise from sustaining the weight of the prosthetic system during long-time use.

2.2.4 Data Recording

The kinematics of the object and hands was tracked using a motion capture system
(Impulse, PhaseSpace Inc.) with markers placed on the objects and the wrist. We
instrumented sensorized objects with different size and weight. Each object is
equipped with a force/torque sensor (Nano 25, ATI Industrial Automation, NC,
USA) at the center to record the resultant grasp force.

2.3 Experimental Designs

We conducted two studies using the closed-loop prosthetic system described in the
previous section. The first one focused on improving fine grasp force control (Study
1), whereas the second concerned about inter-limb transfer of force perception
(Study 2). The experimental designs are presented below (more details can be found
in [13, 17]).

2.3.1 Study 1

In this study, we compared two myoelectric controllers (single-gain and hybrid-
gain) using tasks that required subjects to grasp and transport objects with different
physical properties (i.e., size, weight, and fragility). Both controllers have the same
EMG processing component but differ in the EMG-to-motion mapping algorithms
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Fig. 2 Block diagrams of the single-gain (Panel a) and hybrid-gain (Panel b) myoelectric control.
(Adapted from [13])

(Fig. 2). Specifically, a signal dead zone of 2% MVC sEMG signal was first applied
to each channel, then the channel difference Ed between the sEMG signals from
flexor and extensor muscles was used to drive the change of SHP motor reference
position with predetermined gain(s). Note that the grasp force is generated due to the
PID position controller trying to follow the reference position while being stopped
by the hand-object contact. An adaptive motor position limit was implemented to
prevent the increase of reference position if the motor total current C is close to the
max capacity, thus allowing consistent opening motion from objects with any size.

The single-gain (SG) controller is mostly identical to the best performing SHP
motion controller demonstrated by Fani and colleagues [18], in which a constant
gain Km was used (Fig. 2a). The main drawback of the SG controller is that it
cannot adapt to both free motion control and grasp force control equally well. A
gain optimized for motion control is usually much larger for the optimal gain for fine
force control. To overcome this problem, we created a hybrid-gain (HG) controller
in which the EMG-to-motion gain changes adaptively depending on the state of the
SHP (Fig. 2b). Three sensorimotor states of the SHP were defined using the residual
current CR as well as the EMG differential Ed. Specifically, free motion state is when
the grasp force is zero or very low, i.e., CR = 0. Fine force state is when the grasp
force is above minimum and the user is trying to control grasp force, i.e., CR > 0 and
Ed > 0. The last state, quick release, is when the grasp force is above minimum and
the subject is trying to quickly release the grasped object, i.e., CR > 0 and Ed < 0. We
used a large gain Km for both free motion and quick release states and a small gain
Kf for fine force state. Unlike previous work [2], the control gain for the internal
motor control loop remain unchanged, therefore preserving the stability during the
passage from one state to another.

Sixteen subjects were equally assigned to two groups that used either SG or HG
controllers. Both groups had the same experimental protocol that consisted of three
sessions: (1) training trials, training tasks with SHP and CUFF; (2) baseline trials,
experimental tasks with native right hand; and (3) SHP trials, experimental tasks
with SHP and CUFF. Baseline trials were performed first to acquire data from native
hand as a benchmark to evaluate the performance of the prosthetic system.

The training sessions implemented two tasks that help subjects to familiarize
with myoelectric control of the SHP and haptic feedback from the CUFF. First, the
motion control training task required subjects to control the open and close of the
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Fig. 3 Experimental tasks used in Study 1. Panel a shows the top view of the area of movement,
and Panel b shows the object properties used in the study. (Adapted from [13])

SHP to match the target motor positions as quickly as possible, following visual
feedback on a monitor. Six levels of target motor position were used: 0◦, 30◦, 60◦,
90◦, 120◦, and 150◦. Second, the force control training task required subjects to
close the SHP on a cylindrical object to match the different levels of target grasp
forces. Three levels of target force were defined: 0 N, 6 N, and 12 N. In addition to
visual feedback, subjects also received haptic feedback from the CUFF.

Both the baseline and SHP trials used the same experimental tasks. These tasks
were inspired by commonly used clinical hand function assessment tools (e.g.,
Southampton Hand Assessment Procedure, Block and Box Test, etc.), with the focus
on the ability of fine control of grasp forces during functional use of the prosthetic
hand. Specifically, subjects were instructed to pick and place sensorized objects
repetitively between two target regions separated by 30 cm (Fig. 3a). A 5-cm high
metal bar was placed on the midline between the two target regions as an obstacle,
and subjects were required to move back to the proximal end of the bar after each
successful pick and place action. Success was defined as not dropping or “crushing”
the object during transport. The crushing of the object was rendered by giving “glass
breaking” sound when the grasp force exceeded a pre-defined crushing threshold
based on its fragility. The target objects varied in size, weight, and fragility (Fig.
3b), and for each object, subjects were told to complete pick and place actions
successfully as many time as possible within 45 s. Note that large and small objects
require power and precision grasps, respectively. Despite of the grasp type, we
aimed to examine the performance of SG and HG controllers for the modulation
of grasp forces in response to object weight and fragility in this study.

To quantify subjects’ performance in the experimental tasks, we computed the
following variables: (a) number of successful transport completed within 45 s and
(b) grasp force during successful transport.

2.3.2 Study 2

In this study, we compared two force training protocols (ipsilateral and contralateral
training) using tasks that required subjects to reproduce a grasp force with one
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Fig. 4 Panels a and b show the design of ipsilateral and contralateral training tasks, respectively.
Panel c shows the design of the force matching task. Solid arrows represent visual feedback, and
the black dashed arrows represent haptic feedback. (Adapted from [17])

hand that matches the preceding force generated by the contralateral hand. Note
that the myoelectric interface used here is the hybrid-gain controller developed in
Study 1. The ipsilateral training was similar to the force training used in Study
1, allowing subjects to establish the association between the SHP grasp force
and CUFF pressure feedback (Fig. 4a). In contrast, the contralateral training was
designed to help subjects learn the mapping between the CUFF pressure and the
natural force perception from their native left hand (Fig. 4b). Specifically, subjects
grasp the sensorized cylinder with their left hand to produce difference force levels
following visual feedback. The grasp force measured from the cylinder was mapped
linearly to the CUFF motor, such that the same CUFF pressure represented the same
measured grasp force in both contralateral and ipsilateral training tasks, i.e., net
force from fingers. For both training protocol, four force targets were used: 0 N,
4 N, 6 N, 8 N, and 10 N.

The main experimental task for this study is a contralateral force matching
task. Subjects were instructed to first maintain a target grasp force within ±5%
of the target with their left hand (i.e., reference hand) for a cumulative duration
of 6 s. Immediately after releasing the left hand, subjects generated grasp force
with their right hand (native or SHP) to match the memorized force level (Fig. 4c).
The CUFF was always paired with the SHP delivering feedback about SHP grasp
force. Note that subjects only had partial visual feedback when using their left hand,
which displayed the relative strength of the grasp force (i.e., percentage of target)
as a moving bar, without giving information about the actual force magnitude.
There were three force targets: 4 N, 7 N, and 10 N. During force matching,
subjects were instructed to give a verbal confirmation when they felt the force
they were generating with the right hand (native or SHP) matched the target, and
the experimenter recorded the confirmation time. Note that the force matching task
with the SHP-CUFF system requires subjects to have learned the mapping between
myoelectric control, grasp force, and CUFF pressure acquired through ipsilateral
and contralateral training. Furthermore, the 4 N and 10 N force levels were included
in the training session, but the 7 N force level was not. This was designed to examine
the extent of training generalization.
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Eighteen subjects were equally assigned to two groups that received different
force training combinations that consisted of mixtures of ipsilateral and contralateral
tasks with different proportions. There were four blocks of training trials for
each group. Within each block, the EMG-haptic group started with one contralat-
eral training trial, followed by three ipsilateral training trials. In contrast, the
native-haptic group started with three contralateral training trials followed by one
ipsilateral training trial per block. Before and after the training session, subjects
performed native hand and SHP matching tasks, respectively. For either one of
these matching tasks, there were a total of 24 trials with each force matching target
appearing 8 times in random order.

We computed the following two variables to quantify the performance of force
matching: (a) Relative matching error, defined as the difference between the force
produced by the reference hand (averaged across a 6-s window before release) and
matching hand (averaged across a 0.6-s window before subject’s confirmation). A
positive or a negative relative error means subjects generated more or less force with
the right hand (native or SHP) than the left hand during matching, respectively. (b)
Absolute matching error was defined as the absolute value of the relative errors,
which can be considered as a measurement of variability if no bias is found in the
relative error.

3 Study 1 Results: Fine Control of Grasping Force During
Hand-Object Interactions

The complete results of this study can be found in [13]. Here we only report
two main findings regarding the performance of the pick-and-place task. As a
benchmark, the three-way mixed ANOVA (group × weight × fragility) was used
for each object size to compare the number of successful transport within 45 s for
trials performed by the native hands. It was found that subjects from SG and HG
groups performed equally well. Furthermore, only fragility but not weight of the
objects had influenced the net performance (Fig. 5a, b). The number of successful
transport for fragile objects was significantly less than the transport of the solid
ones (only main effect of fragility with both large and small object p < 0.001). This
indicated that subjects handled the fragile objects using slower speed with more
caution. While using SHP, both groups performed the tasks much slower than their
native hands, and we found that the HG controller outperformed the SG controller
when transporting fragile objects (Fig. 5c, d). The three-way mixed ANOVA
(group, weight, and fragility) for large objects revealed significant fragility × group
(p = 0.003) and fragility × weight interactions (p = 0.023). Post hoc comparisons
suggested that the HG group performed significantly better than the SG group in
heavy-fragile, medium-solid, and medium-fragile conditions (p < 0.05; Fig. 5c).
No difference was found between the two groups in the heavy-solid condition.
Similarly with the small object, we found a significant fragility × group interaction
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Fig. 5 Number of successful pick-and-place within 45 s (Mean ± SE). (Adapted from [13])

(p = 0.035). Further, t-test suggested that the hybrid group performed significantly
better than the differential group in heavy-fragile, medium-solid, and medium-
fragile conditions (p < 0.05; Fig. 5d), but not in heavy-solid condition. Importantly,
we demonstrated a qualitatively similar pattern of fragility effect between the SHP
and native hand in the HG group but not the SG group, despite the significantly
lower number of successful trials overall.

As for the grasp forces, we found that subjects scaled grasp force to object weight
and fragility in both object size conditions when using their native hands (Fig. 6a,
b). Specifically, subjects used larger grasp force for heavier objects, and smaller
grasp force when the object was fragile. These observations were confirmed by the
three-way mixed ANOVA (group, weight, and fragility). With the large object, there
was a significant main effect of both weight (p = 0.003) and fragility (p < 0.001),
but not group. Similarly with the small object, we found a significant main effect
of both weight (p < 0.001) and fragility (p < 0.001), but not group. With the SHP,
subjects were able to modulate the grasp force in a successful transport (Fig. 6c, d).
With the large object, we found a main effect of weight (p < 0.001) and a significant
fragility × group interaction (p = 0.024). Post hoc comparisons showed that the
HG group used a significantly smaller grasp force than the SG group in medium-
solid condition (p < 0.05; Fig. 6c). Similarly with the small object, we also found
a main effect of weight (p = 0.003) and a significant fragility × group interaction
(p < 0.001). T-test showed that the HG group used a significantly smaller grasp
force than the SG group in both medium-solid and light-solid conditions (p < 0.05;
Fig. 6d). When compared with native hand, we found that the HG group showed a
qualitative similar pattern of grasp force modulation, but the SG group did not.
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Fig. 6 Averaged grasp force during a successful transport (Mean ± SE). (Adapted from [13])

4 Study 2 Results: Inter-Limb Transfer of Perceptual
Information About Grasping Force

The complete results of this study can be found in [17]. Here we only report the main
findings regarding the performance contralateral force matching task. To determine
what trials should be used to evaluate matching accuracy, we first assessed whether
there was a general learning effect through multiple trials. This was accomplished
by averaging the absolute error across three force levels for each of the eight trials.
We performed the two-way mixed ANOVA (trial × group) for both the native hand
and SHP matching sessions, and both sessions exhibited a significant main effect of
trial (native hand: p < 0.001; SHP: p < 0.001). After visual inspection of the trends
(Fig. 7a), we decided to assess the interaction between training protocols and force
levels (group × force) by averaging the last five trials which exhibited performance
plateau. For the native hand, we found a significant effect of force (p = 0.003). Post
hoc comparisons revealed that subjects were less accurate in the 10 N condition
than 4 N and 7 N conditions (Fig. 7b). For the SHP, neither group nor force effect
was significant. Overall, these results suggest that subjects tended to perform the
best in the 7 N condition with their native right hand, but worst with the SHP/CUFF
system. Furthermore, the two training protocols did not lead to the differences in the
magnitude of matching errors.

We also averaged the relative errors across the last five trials per force level based
on the above results. We performed the two-way mixed ANOVA (group × force)
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Fig. 7 Experimental result from force matching tasks (mean ± SE). (Adapted from [17])

for the native hand matching and SHP matching sessions separately. For the native
hand, we found only a significant effect of force (p < 0.001). One sample t-test
revealed that subjects made positive errors in the 4 N conditions (0.77 ± 0.19 N),
neutral errors in the 7 N conditions (0.14 ± 0.21 N), and negative errors in the
10 N conditions (−1.06 ± 0.30 N; Fig. 7c). For the SHP, we found significant
effects of both force (p = 0.002) and group (p = 0.043). One sample t-test revealed
that subjects in the EMG-haptic group made positive errors in both 4 N and 7 N
conditions (1.25 ± 0.25 N and 1.36 ± 0.41 N) and neutral errors in 10 N conditions
(−0.29 ± 0.50 N). In contrast, the native-haptic group made neutral errors in all
three force conditions (0.70 ± 0.34 N, 0.07 ± 0.36 N, and −0.48 ± 0.30 N
for 4 N, 7 N, and 10 N, respectively; Fig. 7d). In summary, we found that the
native-haptic training helped subjects to generate matching performance in SHP
matching qualitatively similar to native hand matching, especially in 7 N conditions.
In contrast, the EMG-haptic training led to a significant positive bias for the SHP
matching in 7 N conditions.

5 Discussion

This chapter reviewed two recent findings regarding force control and perception in
a novel closed-loop hand prosthesis. Specifically, it was found that (1) a context-
dependent myoelectric controller could significantly improve the subjects’ ability
to perform tasks that require fine force control (i.e., transporting objects with
different physical properties) and (2) training on the association between the force
perception of the intact limb and the artificial haptic feedback of the prosthesis
significantly improved inter-limb transfer of force perception at untrained force
levels. Importantly, for both studies we compared the performance of the prosthetic
system with benchmark data obtained with subjects’ intact normal hands. We
propose that it is critical to equip prosthetic systems with human-like kinematic
and kinetic behavior for increasing the acceptance of the terminal devices. In
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the following sections, we discuss these results in relation to the putative neural
principles underlying human control and perception of forces, as well as the
implications to future development of next-generation motor neuroprosthesis.

5.1 Context-Dependent Hybrid Gain Myoelectric Controller

The ability to control grasp force precisely is an important feature in human manual
dexterity. For example, it has been shown that the grasp force is often regulated
with respect to the object’s weight and friction to maintain a “safety margin,” i.e.,
the applied grasp force is slightly higher than the minimally required force such
that energy efficiency and slip prevention are balanced [19, 20]. As demonstrated in
our study, when friction is constant, such neural control led to the natural scaling
of grasp force to match the object weight (e.g., heavier objects were grasped
with a larger force normal to the object surface). An extensive investigation has
revealed that weight-specific grasp force scaling can be explained by a combination
of memory-based predictive control and corrections driven by sensory feedback.
Specifically, a feedforward motor command can be generated to interact with a novel
object according to the object’s physical properties indicated by visual cues during
the initial encounter [21]. If there is mismatches between the predicted and actual
outcome of the hand-object interactions (indicated by somatosensory feedback),
corrective responses are generated [22, 23]. Furthermore, internal representation
of the object properties can be updated through a repetitive interaction with the
same object, such that the future feedforward motor command can be generated
more precisely [11]. Importantly, the feedforward adjustment of “safety margin” for
grasp force can also be made according to contextual cues to account for uncertainty
in the dynamic environment [24] or the fragility of objects [25]. Our results were
consistent with these previous studies. Subjects generated less grasp force when
grasping the fragile object than the solid ones of the same weight with their native
hands. Such drop of “safety margin” was also accompanied by a decrease in arm
movement speed to reduce the force variability induced by dynamic motion [13].

Grasp force control in prosthetic hands can be enabled in several ways. One
approach is to implement a feedback control loop within the terminal device to
allow automated adjustment using force and position sensors [26–28]. This method
could enable good precision and reliability in force generation for a single degree-
of-freedom rigid prosthetic hand (e.g., motion control hand). However, replication
of this approach in multi-finger hands and/or hands with embedded compliance
(e.g., SHP) can be very difficult, because of the need to measure joint kinematics
and contact forces accurately. Alternatively, users can have a full control over the
grasp force. In these scenarios, haptic feedback is often provided, which allows the
subjects to adjust the grasp force accordingly [2, 4, 29, 30]. However, this approach
can potentially increase the complexity of the myoelectric interface, leading to a
higher cognitive load and attentional demands required to simultaneously control
multiple variables. A middle ground can be found using a shared control scheme
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in which both the user and the prosthetic system contribute to force control
[31]. Following this idea, there have been several recent studies that explored the
myoelectric controller designs that switch control schemes based on sensory or
motor information [32–36]. It has been argued that sharing control between the
user and the terminal device can shield low-level execution details, thus decreasing
cognitive burden [37]. This assessment was extended in our study by merging both
the sensory and motor streams to determine the context in which the prosthesis
operate. Specifically, our novel controller changes behavior based on both the state
of the hand (i.e., free motion or object in hand) and the user intent (i.e., grasp or
release). Furthermore, we propose that, in a proportional EMG control scheme with
a soft robotic hand such as the SHP, the EMG-to-motor control mapping needs to
be separately optimized for motion and force. Such implementation is important
to allow users to accurately generate both feedforward motor commands and fine
corrective motor responses, both of which are crucial to human’s manual dexterity.
Taken together, our bioinspired context-aware myoelectric controller successfully
demonstrated human-like behavior in prosthetic hands.

We should note that the superior performance of the hybrid gain controller was
accompanied by increased energy cost as denoted by greater sEMG amplitude
and longer contractions [13]. However, this is not necessarily a drawback of the
proposed approach. The fact that subjects scaled grasp force to object weight, using
the prosthesis in a way similar to using their own hands, indicates that the increased
energy cost could effectively evoke the CNS’s tendency of optimizing motor
commands for energy efficiency. This could lead to a lower energy consumption in
the prosthetic hand as the grasp force is optimized, which can subsequently extend
the usage time because of less battery usage and reduced tension in the driving
tendon.

5.2 Inter-Limb Transfer of Perceptual Information
in Closed-Loop Prosthetic Systems

Mechanisms of force perception have often been investigated using asynchronized
force matching paradigms (i.e., the force of the reference hand is first memorized).
The errors in this task with the native hands can be mostly attributed to errors in
perception, assuming the force control in the matching hand is accurate and the
memory of the reference force is undergoing little decay in time. The leading theory
of force perception is that both peripheral (afferent) and central (efferent) informa-
tion are integrated [38]. The peripheral afferent signals include sensory receptor
discharges arising from Golgi tendon organs during active muscle contractions, as
well as discharges of mechanoreceptors in the skin that respond to the different
types of the haptic stimuli (e.g., pressure and stretch). As for the central signals,
copies of outgoing motor commands (i.e., efferent copy or corollary discharge
[39]) are used to predict the incoming sensory information through the feedforward
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internal models [40]. It was shown that contralateral force matching can still be
performed with reasonable accuracy in a deafferent patient [41]. Furthermore,
if nonhomologous muscle groups are used in producing perceptually equivalent
forces, muscles with larger force capabilities tend to exhibit a larger absolute sEMG
amplitude [42]. Therefore, it has been argued that the efferent copies play a major
role in force perception during active force generation (e.g., left hand in Study 2).
However, peripheral information also contribute in active force perception, since it
has been shown that constraining tactile feedback could increase the force matching
error [43]. Furthermore, peripheral signals such as tactile feedback play a major role
in passive force perception when efferent copy is not available, as indicated by high
accuracy in ipsilateral passive finger force matching [44].

Force matching using the prosthetic hand as the matching hand in this study
presents new challenges to the CNS, since the control and sensing of the prosthetic
system significantly differ from the native hand. Specifically, the native hands
generate and maintain the grasp forces mainly through contraction of the digit
flexors, and the magnitude of the grasp force is approximately proportional to the
magnitude of the EMG activity. In contrast, for prosthetic hand control, contraction
of a different muscle group (i.e., wrist flexors) was mainly used. More importantly,
the sEMG was mapped to the change of the grasp force instead of the force
magnitude. Therefore maintaining grasp force requires the muscles to be at rest
instead of contraction. This type of velocity-based myoelectric control interface is
commonly used in prosthetic hands, because the control signal can be more stable
than those generated from direct mapping of the magnitude (i.e., position-based).
However, the sharp differences between velocity-based myoelectric control and the
natural neuromuscular control in force generation suggest that the CNS likely does
not possess the ability to make precise sensory predictions using ongoing motor
commands. From the perspective of sensing using the prosthetic system, subjects
can only receive tactile feedback at a location incongruent with the reference
hand (i.e., upper arm). Furthermore, the skin of the arm has a much smaller
mechanoreceptor density than the fingertips of the native hand [45]. In addition
to this spatial mismatch, subjects do not receive grasp force feedback in-sync with
muscle contraction due to the use of a velocity-based myoelectric interface in the
prosthetic system. In contrast, the native hand can integrate sensory information
about the grasp force temporally aligned with the motor command.

Based on the above considerations, the inferior matching performance by the
prosthetic hand can be attributed to its non-physiological design features. Most
importantly, the force perception using the prosthetic system cannot rely on the
“efferent copy” information due the velocity-based control interface. Therefore, the
perceptual information from the matching prosthetic hand had to mostly rely on
the noisy pressure signal at the CUFF-skin interface, which results in a larger trial-
to-trial variability, i.e., absolute error. Moreover, the low proficiency of the force
control and the inherent noise and delay in estimating grasp force using motor
current of the SHP could make the matching judgment more challenging, leading to
longer matching times than those from the native hands [17].
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Inter-limb transfer of perceptual information between the intact and prosthetic
limb in the force matching tasks can be improved through appropriate training.
Specifically, the contralateral training was designed to help subjects experience
concurrent perceptual information from both limbs, which could help subjects
generate more accurate and reliable perceptual mapping between the two sides. This
benefit was demonstrated in the native-haptic group who had no bias in producing
matching force at the untrained force level. The observed generalization strongly
suggests that inter-limb association of perceptual information can be established
between an intact limb and a closed-loop prosthesis through appropriate training
paradigm, despite differences in the underlying neural mechanisms.

5.3 Open Questions and Future Research

Our understanding of the factors that limits the performance and acceptance of
motor neuroprosthesis has improved significantly over the past two decades. Many
researchers have recognized that the integration of sensory feedback in closed-
loop hand prosthesis could be beneficial. However, the optimal design of these
systems remains to be investigated. One of the important insights we obtained
through the studies presented in this chapter is the complementary role of the
myoelectric interface in force control and perception. When designing myoelectric
interfaces for a closed-loop prosthesis, we propose that more physiologically
plausible algorithms should be considered and in particular algorithms that enable
the CNS to utilize existing sensorimotor pathways. Furthermore, a context-aware
controller should be preferred to assist the user in a wide range of different hand-
object interaction scenarios, with their specific optimal gains and state transitions.
Lastly, future research should aim at revealing the neural mechanisms underlying
the learning processes underlying sensorimotor integration during use of closed-
loop neuroprosthesis, which would greatly improve the design of training protocols
of prosthetic users.
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Design of a Soft Glove-Based Robotic
Hand Exoskeleton with Embedded
Synergies

Martin K. Burns and Ramana Vinjamuri

Abstract Paralysis caused by stroke, traumatic brain injury, spinal cord injury, or
other injuries and medical conditions can significantly impair the hand function.
This impacts an individual’s ability to perform manual tasks in activities of daily
living (ADL), affecting their independence and psychological well-being. Robotic
hand exoskeletons and orthoses have been developed to assist individuals with
hand paralysis in conducting ADL; however, existing commercial systems tend
to provide basic whole-hand opening and closing motions rather than dexterous
manipulation. In this chapter, we document the design of the second prototype of
the hand exoskeleton with embedded synergies (HEXOES). This soft glove-based
cable-driven robot provides independent actuation of 10 degrees of freedom of the
hand using a remote actuator assembly and a lightweight hand component. The
hand component, weighing 258 g, actuates the metacarpophalangeal (MCP) and
proximal interphalangeal (PIP) joints of each finger and thumb in flexion, with
passive extension provided by adjustable springs. Design features were incorporated
which aid in donning and doffing and allow individuals with various hand sizes to
use the same exoskeleton effectively. Flex sensors placed over the actuated joints
along with position and force sensors on the robot’s linear actuators enable closed-
loop control.
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1 Introduction

Stroke is one of the most prevalent causes of upper-limb paralysis and impaired
function. Estimates from the National Institutes of Health indicate an annual stroke
incidence of 795,000 cases, 610,000 of which are first occurrences. This leads to a
US stroke prevalence of 6.8 million individuals over 20 years of age [1]. Physical
function scores were observed to decrease from 4 months to 16 months poststroke
in a Lund, Sweden, study on the quality of life in stroke survivors. After 16 months
poststroke, 19% of participants scored in the moderate dependency category of
the Barthel Index [2], while 13% were classified with major dependency. The
same study found that the mental and emotional quality of life of the participant’s
informal caregivers (spouses, friends, family) was also correlated with this degree
of dependency [3]. This indicates that increasing functional independence in the
stroke population yields emotional, social, and financial benefits for the individual
as well as those around them. In the context of this chapter, functional independence
through hand grasping is discussed.

Increasing functional independence in hand grasping can be approached through
rehabilitation, through daily or periodic exercises, or by using assistive devices. The
latter has undergone extensive development in recent years in the field of assistive
and rehabilitative wearable robotics. An overview of robotic rehabilitation devices
is presented in [4], covering advances using hand trainers, arm exoskeletons, and
BCI-based systems in clinical studies. Among these works is the rehabilitative
HWARD exoskeleton, which demonstrated that increased robotic hand therapy
led to improvement in motor function scores [5], and the Reha-Digit, which
demonstrated minor improvements in functional scores when doing additional
exercises with a finger trainer in subacute stroke patients [6]. Passive exoskeleton
devices such as the HandSOME have also shown significant functional recovery in
patients with stroke during at-home therapy [7]. Additional studies compared brain-
computer interface (BCI)-driven devices to robot-only and standard therapy, with
the hypothesis that integrating the patient’s movement intent would lead to improved
outcomes over purely robotic training. These works found significant improvements
in functional recovery with a haptic knob [8], hand exoskeletons [9–11], and arm
orthoses [12]. A clinical trial studying BCI training with a wrist orthosis yielded no
improvement in hand motor function; however, effective control of the system using
a BCI was achieved [13]. BCI/FES systems are also being studied, with favorable
preliminary results observed in arm and hand-based exoskeleton rehabilitation [14].

In addition to rehabilitative applications, wearable robots can be used to restore
the hand function through assistance during activities of daily living (ADL).
Rehabilitation devices do not need to be carried or worn for an extended period,
so they tend to be rigid, immobile systems designed to provide force and control
to the user’s hand. Alternatively, assistive devices meant to be worn throughout
the day to assist in ADL grasping must, above all, be compact and lightweight
to avoid fatiguing the user [15, 16]. A large amount of research has investigated
lightweight mechanisms, actuators, materials, and structures to design functional
wearable robots which do not over-encumber the wearer. Lightweight pneumatic
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actuators which are cast from silicon or some other polymer were investigated by
[17, 18]. These devices bend when pressurized based on the structure’s varying
stiffness. Further, work integrated fiber into the polymer body to control twisting
and flexing motions [19]. These actuators were integrated into the Wyss Institute’s
Soft Robotic Glove [20, 21] and were used in a separate device [22]. Another group
made improvements to the traditional McKibben actuators drastically reduced the
required operating pressures [23]. These improved actuators were integrated into a
lightweight wrist orthosis [24]. The behavior of cable-driven soft robotic gloves has
been studied [25, 26], leading to several devices in the recent research. These include
the Exo-Glove Poly II [27], the SEM Glove, now available as the Carbonhand [28],
and the Flexo-glove [29], the mano [30], among others. A hybrid device called the
AirExGlove was also produced, which used both a cable system on the palmar side
and pneumatic actuators on the dorsal side to achieve antagonistic actuation [31].

These soft devices have managed to actuate low-DoF hand opening and closing
motions with lightweight structures. However, they are not able to provide high-
DoF actuation which would be needed for dexterous object manipulations. An ideal
system would match the functional dexterity of the hand; however, this would
lead to a new problem of control. The traditional control methods operate on 6
DoF systems, or 7 DoF with redundancy; however, adding more DoFs leads to
an exponentially more complicated control problem. Furthermore, an individual
operating a prosthetic or exoskeleton will only be able to consciously operate one
to three DoF. In order to address this problem, research in grasp biomechanics has
determined that dimensionality reduction can be leveraged in the form of synergies.

Synergies, or “a collection of relatively independent degrees of freedom that
behave as a single functional unit” [32], are believed to underlie the neural control
mechanisms used during the normal hand grasping. Early animal model experiments
revealed that stimulation of individual spinal cord neurons elicited coupled activa-
tions of limb muscles [33, 34] and that the resulting motion patterns were similar
to the synergies extracted directly from the observed kinematics [35]. The central
nervous system, therefore, is believed to control these combined movement patterns
to achieve dexterous grasping rather than individually coordinate the joints of the
hand [36]. Since then, many studies have derived postural synergies from human
grasp biomechanics [37–41]. Postural synergies encode relative movement patterns
across the joints which are fixed in time; however, spatiotemporal synergies have
also been found which accurately replicate hand grasping [42–44] and bilateral arm
movements [45]. The most recent work on hand synergies has translated them from
biomechanical analysis techniques to practical robotic systems. Postural synergies
have been incorporated into control systems for robotic hands such as the DLR
Hand [46, 47] and the UB Hand IV [48], as well as human-machine interfaces for
robotic arms [49] and EMG-driven prosthetic hands [50]. Whereas most works are
on prosthetic devices for amputees, some wearable exoskeletons are currently in
development which aim to control a paralyzed hand using synergies [51, 52]. These
devices hold promise for the large population of individuals with stroke; however, a
reliable test bed for synergy-based assistive and rehabilitative controls in a wearable
system must be developed.
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There are several requirements we used to develop a wearable synergy-based
testing system. These criteria are based on experience both within the Sensorimotor
Control Laboratory, and from qualities previously identified in the literature.

1. Wearable: The worn part of the synergy exoskeleton must be lightweight and
easy for a user or assistant to don and doff. This is essential to make the system
practical for laboratory studies with human subjects, as well as for future devices
meant for at-home use.

2. Sizeable: The device should be designed to fit as many individuals as possible.
This would make a single device usable in a larger portion of affected individuals.

3. Safe: The worn device must be safe to operate for the user. This includes avoiding
designs which may injure the user’s hand by hard edges or pinch points, as well
as including safety stops in hardware or software.

4. High DoF: The synergies that the device needs to actuate represent high-DoF
whole-hand motions, so the device needs to have the capability to independently
actuate a high number of DoF across the hand.

5. Powerful: The device must be powerful enough to actuate the hands of healthy
individuals and individuals with paralysis, including those with a spastic hand
reflex.

6. Sensor feedback: The system must have adequate sensor feedback for closed-
loop control, to ensure the hand is actuated along the synergies being studied.

7. Configurable synergies: The synergies that the device uses must be configurable,
so that movement profiles from any source (intra- or intersubject synergies,
mathematically optimized synergies, spatial or spatiotemporal synergies, etc.)
can be used for control.

A device which meets these criteria would be an adequate platform on which
synergy-based control methods can be developed and tested.

In this chapter, we describe the hand exoskeleton with embedded synergies
(HEXOES). The HEXOES is a 10-DoF cable-driven soft exoskeleton with a remote
actuator unit. The device provides active flexion and passive extension of the MCP
and PIP/IP joints of each finger and thumb. The purpose of this prototype is to
provide enough actuated degrees of freedom (DoF) to test synergy-based assistive
and rehabilitative control systems for individuals with hand paralysis. This design
makes several improvements over the preceding iteration [51] in weight, usability,
and sensor accuracy.

2 Methods

The HEXOES is built from two systems: an actuator assembly and a soft glove-
based hand component (Fig. 1a). The actuator assembly and hand component are
connected using a bundle of Bowden tubes and a ribbon cable. The prototype is
capable of independently actuating flexion of the metacarpophalangeal (MCP) and
interphalangeal/proximal interphalangeal (IP/PIP) joints of the thumb and fingers,
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Fig. 1 (a) HEXOES actuator
assembly and hand
component. (b) Actuation
diagram for a 1 DoF MCP
joint of the exoskeleton. A
linear actuator and tension
sensor applies force to a
filament tendon, which
anchors to the phalange
through a Bowden tube to
provide actuated flexion. An
adjustable spring provides
passive extension, and a flex
sensor detects bending at the
joint

with extension passively actuated by adjustable springs. The ten actuated DoFs are
monitored using several sensors, allowing closed-loop control systems in the future.
The design of the actuator assembly will first be described, followed by the hand
component.

2.1 Actuator Assembly

The actuator assembly, shown in Fig. 2, consists of linear actuators and drive
electronics mounted to ABS sheets and weighs 2.2 kg. External power for the motors
and speed controllers is supplied from a 12 V benchtop DC power source limited to
3A of current. The linear actuators have a stroke length of 140 mm, peak force of
100 N, and a no-load maximum speed of 20 mm/s. Each actuator provides positional
feedback through a built-in potentiometer, which returns a voltage ranging from 0.5
to 4.5 V. A miniature force sensor (SMD Sensors, Wallingford CT, USA) is mounted
on the end of each actuator which provides tension measurement for each actuated
DoF up to 44 N. High-strength braided filament tendons attached to each sensor
enter PTFE filament guides, which converge to a bundle of Bowden tubes wrapped
in a mesh sleeve. The tube bundle also houses a ribbon cable which carries signals
from the hand component’s joint angle sensors. This cable terminates at a separate
Arduino meant for analog inputs from the hand’s flex sensors.
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Fig. 2 HEXOES actuator assembly, with major components labeled. Ten linear actuators with
tension sensors are mounted in vertical pairs. Each sensor is attached to a braided filament which
routes into a tendon bundle containing ten Bowden tubes. Tension sensor circuits, electronic speed
controllers, and microcontrollers are also included in this assembly

2.2 Hand Component

Since the hand component is in direct contact with the user, its design must be
carefully considered to ensure it is a usable, wearable device. The physical design
of the system must be of minimal size and weight so as not to encumber the user yet
must be robust enough to manipulate the hand. The dimensions of the exoskeleton
and compliance of the chosen materials should fit a wide range of hand sizes. The
hand structure must include anchor points and tendon routing that results in the
actuation of the MCP and PIP joints of the fingers and thumb for a total of 10
actuated degrees of freedom. Each of these joints should also have a sensor to
provide joint angle feedback. Since the actuator assembly can only provide flexion
forces through tension on the braided filament, the exoskeleton must incorporate
passive extension. Finally, the hand must be easy to don and doff with the help of
an experimenter or clinician.

The palmar and dorsal vies of the hand component are shown in Fig. 3a and b,
respectively. A thin nitrile-coated work glove serves as the base for the assembly,
with several components stitched onto the material. Flexible 3D printed thermoplas-
tic polyurethane (TPU) parts are designed for the fingers and forearm brace to allow
compliance for hand sizing. Inter-digit TPU spacers provide abduction to the fingers
to prevent collisions during grasping. A solid palm brace printed from polylactic
acid (PLA) and mounted onto a bendable metal wrist band provides wrist support
and slight wrist dorsiflexion. Nylon cloth pockets are stitched over the MCP and
PIP/DIP joints of the hand which house flex sensors to allow joint angle estimation.
The palm support also houses the distal ends of the Bowden tube filament guides, as
well as an adjustable pivoting thumb opposition hook. The forearm brace features
Velcro straps, an electrical connector for the sensors, and buttons used for adjusting
the passive extension springs. The total mass of the assembly is 258 g, which
compares favorably to other hand exoskeleton systems in the literature.
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Fig. 3 Hand component of the HEXOES with major parts labeled. (a) Dorsal view of the hand,
showing the palm support, thumb opposition hook, tendon bundle insertion, flexion tendons, TPU
finger components, and finger spacers. (b) Dorsal side of the HEXOES, showing the adjustable
extension springs, sensor pockets, and Velcro straps

Each finger component is a single 3D printed part made from TPU and
serves several roles on the exoskeleton. The part is designed in SolidWorks in an
unwrapped state (Fig. 4a), 3D printed flat, and wrapped into its final state (Fig.
4b) before being stitched onto the work glove. This flat-print method has several
benefits to a print-as-is approach, in which the part is printed in the exact form it
will be mounted in. Complex geometries in the final part would be difficult to print
directly but can be easily printed in an unwrapped 2D profile. This enables the use of
consumer-level FDM printers to produce otherwise prohibitively difficult designs.
The 2D print orientation also ensures the layer boundaries are along the maximal
cross section of the part, reducing or eliminating the risk of part failure. Each finger
component is designed according to measurements taken from a virtual hand model
(CADHuman, South Carolina, USA) scaled from a fifth percentile female to a 95th
percentile male. The distances between the fingertip and the MCP, PIP, and DIP
joints are measured for each size. The measurements are then imposed relative to
a virtual fingertip datum to determine bounds for the locations of the joint centers
of rotation, indicated by the shaded region in Fig. 4a. A series of tendon anchor
points, stitch holes, and elastic holes are positioned relative to the joint axis regions.
The fingertip includes stitch holes which mate with legs designed to wrap from the
palmar to dorsal side of the finger, creating a cup around the user’s distal phalange.
The elastic on the dorsal side of the hand provides radial compression against the
user’s fingers, counteracting the glove deformation characteristic of soft tendon-
driven exoskeleton gloves. The elastic cord and deformable plastic also provide a
high degree of compliance in the fingers, allowing a range of finger widths to wear
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Fig. 4 (a) Dimensions and features of the unwrapped CAD model of the finger components. (b)
The flat, printed finger component is wrapped before attaching to the exoskeleton

the exoskeleton. The components also include channels to mount PTFE tendon
guides on the palmar side of the finger. The flat printed finger components are
wrapped into their functional state (Fig. 4b), and stitched onto the work glove.

Several features on the glove are meant to ease the process of donning and doffing
the exoskeleton. The palm of the exoskeleton can be opened using a pair of zippers
and a mechanical clasp on the palm support, as shown in Fig. 5. The clasp uses
a peg with a dovetail profile, mounted to the bendable metal wrist band, and a
matching groove on the palm support piece. With these features disengaged, the
palm of the exoskeleton can be opened, giving an easy access to the glove’s fingers
for a paralyzed individual or an assistant to put the glove on the user. Once the
user’s hand is in the exoskeleton, the zippers can be closed, and the palm support
can be clasped in place. The palm support slides onto the peg, and a channel through
both pieces allows a cotter pin to be inserted to lock the assembly together. The
thumb opposition hook can then be positioned to guide the thumb into a comfortable
grasping position.

2.3 Electrical Design

The HEXOES is composed of ten individual actuators and thirty sensors for the ten
independent DoF. The architecture, shown in Fig. 6, is centered on an STM32F446
Nucleo-64 microcontroller which interfaces with a personal computer (PC) over
USB (Universal Serial Bus). The microcontroller operates an Arm Cortex-M4 core
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Fig. 5 Clasp and zipper system for the HEXOES donning and doffing. (a) The zippers and clasp
are open, allowing full access to the palm and fingers. (b) The hand is placed in the glove, and (c)
the zippers are closed around the hand. (d) The wrist band is bent into place, and (e) the groove of
the palm support is slid onto the dovetail peg on the wrist band. (f) A cotter pin is inserted to lock
the mechanism

Fig. 6 Electrical architecture of the HEXOES. An STM32F446 Nucleo board interfaces with
motor electronic speed controllers (ESCs) using PWM, with the force sensor boards over I2C,
and with the flex sensors via an Arduino Mega 2560 over a separate I2C bus
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at 180 MHz with 512 KB of flash memory and 128 KB of ram. In the current
stage the PC implements all control algorithms while the microcontroller handles
hardware I/O; however, the STM32 board can run embedded controls in future
versions.

The microcontroller interfaces with three different types of sensors. The flex
sensors in the hand component are connected to 33 ḰΩ voltage dividers operating
at a 4.5 V excitation voltage. An Arduino Mega 2560 microcontroller reads the
analog voltages, and the STM32 controller reads these signals over a 100 kHz I2C
bus1. A separate 100 kHz bus is used to interface with the ten force sensor boards,
which return signals that are converted to factory-calibrated force values. The ten
potentiometers are read using the analog pins on the STM32. The STM32 controls
the ten motors through five two-channel electronic speed controllers (ESCs) using
PWM and direction pins. Data is filtered using a 60 Hz notch filter and a 10-sample
moving average filter. The operating frequency of the overall system is 500 Hz.

This architecture can function either as a low-level input/output system or as
a fully embedded system. In the former case, all user inputs, signal processing,
synergy extraction, control algorithms, and/or models would be executed on a
computer. The computer would read raw sensor values and write individual motor
commands to the exoskeleton over the USB drive. The microcontroller would then
handle all internal communication and motor driver logic. In the latter configuration,
the biosignal processing, extraction of synergy recruitments, and data recording
would be handled by a PC. The computer would communicate synergy recruitment
commands to the exoskeleton over USB. The exoskeleton would accept these
synergy recruitments and execute the closed-loop controls internally to actuate the
hand. The microcontroller can also be configured for wireless operation or can be
integrated into a finalized system including user inputs.

3 Discussion

The exoskeleton presented here was designed to incorporate several improvements
over the first HEXOES [51] while making several compromises to create a
functional synergy-based test system. The primary concerns were to minimize the
weight of the hand component and ease donning and doffing of the system while
maintaining a high number of independently actuated DoF.

There is no definitive requirement for the maximum mass that a hand exoskeleton
can have and still be usable; however, Polygerinos et al. [21] have outlined a
maximum wearable actuator assembly mass of 3 kg and a hand component mass of
500 g, while another project outlined a mass requirement for a pediatric wrist/thumb
exoskeleton of approximately 70% the mass of a child’s arm, or 450 g [53]. These

1Level converters were used to connect the 3.3 V STM32 bus to the 5 V Arduino and force sensor
boards.
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estimates were based on feedback from clinical collaborators associated with the
respective projects. Using an estimate of 426 g for the mass of an adult male hand
[54] and assuming 70% mass allowance yield a maximum hand component mass of
300 g. The hand component of the HEXOES satisfies this requirement with a total
mass of 258 g and a total actuator assembly mass of 2.2 kg.

Donning and doffing the hand exoskeleton is the other major issue considered
in the HEXOES. Spasticity, which is a continuous involuntary contraction of one
or more muscles, is a common phenomenon in individuals with stroke, occurring
in anywhere from 18% to 42.6% of stroke survivors [55–57], with some estimates
reaching 65% [58]. No reliable data is available for the prevalence of spasticity of
the hand; however, one study showed that the wrist is affected in 66% of those
with spasticity [57]. This condition can manifest as a constant hand closing reflex,
making it difficult to put a glove exoskeleton on the user. Relocating the actuators to
a remote assembly alleviated the bulk that impeded donning, while several design
decisions in the hand component further reduced the effort required to put on the
exoskeleton.

Based on our objective of producing a synergy test bed, we designed a system
with a large number of actuated DoF which can be controlled using any synergies.
This requirement implies that software-level synergy control is the most appropriate,
since these synergies can be changed readily. However, several groups have
developed systems with mechanically implemented synergies. The most direct way
to implement synergies is using a pulley system, which was first accomplished using
a pair of shafts with pulleys with radii corresponding to postural synergy weights
[59]. This was later replicated in another two-synergy hand using pulleys and
was controlled using myoelectric signals in able-bodied subjects and an amputee
[60]. Recently, a soft hand exoskeleton actuated with one synergy was designed
[52] and validated [61] which used a similar pulley system to flex and extend
the thumb, index, and middle finger. These groups implemented postural synergies
using pulleys; however, another group designed a mechanical hand actuated using
two spatiotemporal synergies. This was done by replacing the constant-radii pulleys
for each joint with varying-radii cams, resulting in a series of tendon retractions
which vary over the time span of the synergy [62]. The concept of pulley-driven
synergy hands was refined into the PISA/IIT Softhand, a completely self-contained
prosthetic hand which used one synergy [63] and two synergies [64] to drive the
19-DoF compliant hand. Although pulley-based mechanisms are the most common,
alternative implementations of postural synergies have also been prototyped. A 19-
DoF prosthetic hand was actuated with two synergies using a series of stacked
planetary gears [65]. The same group later designed a 19-DoF hand which was
actuated using two synergies with a composed continuum mechanism [66].

These designs accomplished complex hand movements using only one or two
actuators, significantly reducing the total mass of the devices; however a major
drawback is that their movement profiles are not easily configurable. Each project
has extracted synergies from different grasp datasets; however, there is currently
no evaluation on what synergies are best for ADL grasping and manipulations.
A new device would need to be fabricated to actuate according to a different set



82 M. K. Burns and R. Vinjamuri

of synergy profiles, which is a significant hurdle to evaluating the effectiveness of
synergies in everyday assistance. For this reason, we accept the additional weight
in the actuator assembly from the ten motors since it does not affect the mass of
the hand component. This compromise will allow us to test synergy-based systems
which are configurable on a subject-by-subject basis.

An important distinction to be made for an exoskeleton or other robotic wearable
device is whether it is meant to be an assistive or rehabilitative system. These two
classes of device have mutually exclusive design requirements. An assistive device
requires minimal weight and maximum mobility and must provide enough motion
to restore grasping ability. This can be accomplished by current exoskeletons with
as few as 1 DoF. A rehabilitation system, however, would require a mechanically
robust system that can finely control the motion of the hand, without as much
need for mobility. The Armeopower/Manovopower, Hand of Hope, and BRAVO
exoskeletons represent the rehabilitation side of this trade-off. The HEXOES aims
to evaluate control systems for both assistive and rehabilitative applications. The
lightweight hand module allows natural grasp studies to be performed so that
assistive systems can be tested in a controlled lab environment; however, the 10
DoF actuator assembly, weighing 2.2 kg, is not mobile enough to be used as a daily
assistive system unless mounted on a wheelchair. This prototype does, alternatively,
provide sufficient DoF and actuator speed and strength to implement rehabilitation
systems. However, the soft hand design may be too compliant to conduct effective
rehabilitation exercises independent of researchers or physical therapists. By accept-
ing these compromises, we aim to make a system that can evaluate the feasibility of
assistive and rehabilitative control systems. Subsequent hand exoskeleton designs
can be targeted to a specific application once the underlying control theory has been
validated.

Future work with the HEXOES includes immediate progress on closed-loop
control integration and long-term progress on scientific exploration of synergies and
application-specific designs. In the short term, closed-loop synergy controls such
as those presented in [67] will be integrated into the HEXOES system. This will
require robust joint angle feedback and model-based control. We will continue our
ongoing work on extracting synergy controls from user inputs, including common
interfaces such as joysticks, buttons, and remote controls as well as noninvasive
biosignals such as electromyography (EMG) and electroencephalography (EEG).
Invasive biosignals such as electrocorticography (ECoG) or neural/spinal implants
could also be used to extract synergy commands. The HEXOES can also supply
sensor feedback to the user using its numerous sensors, closing the loop between the
user’s proprioception and the device’s movement commands. Long-term progress
will include experiments on assistive and rehabilitative control strategies based
on synergies, and descendent exoskeleton/prosthetic designs can be informed by
these experiments with the HEXOES test bed. This can include custom-sized
or population-sized hand components, as well as designs refined specifically for
assistance versus rehabilitation. Mechanically implemented synergies based on
experimental results can be incorporated to reduce cost and weight.
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4 Conclusion

This chapter details the mechanical and electrical design of the HEXOES, the Hand
Exoskeleton with Embedded Synergies. This device aims to serve as a test bed
for synergy-based assistive control systems and rehabilitative training protocols. It
provides actuation and sensor feedback for the ten most commonly studied DoFs
of the hand. The soft structure of the hand component is comfortable to wear and
includes a zipper and clasp system that makes the system easy to don and doff. The
soft structure also results in a low-weight system which does not sacrifice device
actuation. The microcontroller can be run as an I/O device operated by a PC for rapid
experimental research or as an embedded synergy-driven system. The HEXOES,
therefore, is an adequate test system for wearable synergy-based systems. Future
developments for this system include closed-loop control integration, experiments
with synergy controls, and future prototypes for specific applications.
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Abstract In this paper a lower-limb powered exoskeleton is combined with
functional electrical stimulation of the quadriceps muscle to achieve a standing-up
motion. As two actuation mechanisms (FES and the motors) act on the knee joints,
it is desirable to optimally coordinate them. A feedback controller that stabilizes the
desired standing-up motion is derived. The knee torques, computed by the feedback
controller, are further distributed to FES and the knee electric motors by using a ratio
allocation that is solved via a model predictive control method. The optimization
method relies on a fatigue dynamical model. Simulations and the experimental
results of the ratio allocation approach are reported for the standing-up motion.
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1 Introduction

Achieving standing-up motion for persons with spinal cord injury (SCI) assumes
significance as it is a precursor to walking. In recent years, functional electrical
stimulation (FES) has been primarily used to reanimate paralyzed muscles during
this motion [1–9]. FES applies external electrical currents to artificially stimulate the
paralyzed muscles that generate desired limb torques [1, 10, 11]. However, a rapid
onset of muscle fatigue during FES impedes an effective FES control of sitting-to-
standing movements [12].

Alternatively, lower-limb powered exoskeletons can also be used to achieve
sitting-to-standing motions [2, 4, 9, 13, 14]. Exoskeleton has already been shown
to achieve walking [15–21], and unlike FES they can reliably generate torques
that assist lower-limb movements to work for longer duration. However, powered
exoskeletons may require large power source and actuators to operate, which are
likely to reduce their wearability.

Hybrid devices that combine FES and powered exoskeleton have the potential to
overcome rapid muscle fatigue caused by FES and also reduce the size and weight of
the powered exoskeletons. Controllers that coordinate FES and the electric motors
in the hybrid device have been studied in recent literature [14, 22–27]. In [28],
FES and active actuators were allocated to achieve a knee extension motion with
an adaptive gain-based controller, where motors were controlled by a PD controller
while the FES input was provided according to an adaptive gain proportional to the
motor current input. In [23], a cooperative knee joint controller was proposed for
controlling a hybrid knee-ankle-foot exoskeleton, where the stimulation amount is
adapted based on a fatigue estimator that measures the torque-time integral. In [24],
another cooperative control approach had been developed to coordinate hip motors
with FES on the hamstrings and knee motors with FES on quadriceps muscle, where
the FES control was modified by the difference between the estimated muscle torque
and the reference torque profile. To better allocate the actuators according to the
fatigue level, a muscle fatigue dynamic model [29] was adopted in [25], where
a model predictive control (MPC) method [25, 30–32] was used to achieve a leg
extension motion on hybrid neuroprosthesis.

However, actuator allocation approaches in a hybrid device to achieve a standing-
up motion have been minimally reported. One of the seminal papers that report
patient-driven standing-up [5, 6] used only FES for actuation, where the stimulation
current is determined by minimizing the upper-arm effort. In [9, 13], only a lower-
limb powered exoskeleton was used to assist a user to achieve the standing-up
motion. In [33] a lower-limb powered exoskeleton was combined with FES to
achieve a user-driven standing-up motion. However, FES amplitude was set to be
constant and was not varied dynamically. In [14], a PID controller was used to drive
the exoskeleton’s electric motors, while FES was triggered when a user lifts off
from a seated position. Again in this work FES was not varied dynamically but was
triggered based on a set knee joint angle during an extension phase. Because FES-
induced fatigue is a major factor that needs to be considered, an optimal allocation
of FES and the electric motors, based on the FES-induced fatigue, is desirable.
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A hybrid walking neuroprosthesis device that was recently developed in our lab
[33]. The exoskeleton has electrical motors mounted on the knee and hip joints while
FES is used to stimulate the quadriceps muscles to assist during knee extension. In
this paper a control scheme that can optimally allocate FES and the knee electric
motors of the exoskeleton during the standing-up motion is proposed. In the scheme,
a robust feedback controller is derived to provide stabilizing control signals. The
feedback control computes the total torques required for both knee and hip joints
to track a desired standing-up motion. Then, an online optimal control method is
used to determine an optimal ratio between the FES-induced torque to the motor
torque at the knee joint. The optimization uses a normalized fatigue level that is
predicted by a dynamic muscle fatigue model to determine the actuator allocation.
This allows dynamic allocation of control inputs to FES and the electric motors.
Experiments were performed on an able-bodied participant to validate the proposed
control method.

2 System Dynamics

A 2 degree of freedom lower-limb dynamics during the standing-up motion, as in
Fig. 1, can be expressed as

M (q) q̈ + Cm (q, q̇) q̇ + F (q, q̇) +G (q) + ω = T (1)

where the terms q, q̇, q̈ ∈ R
2 are the joint angular position vector, angular

velocity vector , and angular acceleration vector, respectively. The vector q =[
q1 q2

]T
contains the knee joint angular position, q1 and the hip joint angular

position, q2. The torque vector

Fig. 1 A representative figure depicting the hybrid neuroprosthesis for standing-up motion
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T ≡
[
T1 T2

]T
=

[
τk τh

]T
+
[
τa 0

]T
(2)

denotes the total torque vector that contains the knee motor torque τk ∈ R, hip
motor torque τh ∈ R, and τa(q1, q̇1, μ, ufes) ∈ R denotes the FES-induced torque
at the knee joint. ufes ∈ R the normalized FES current level, and μ ∈ R the muscle
fatigue [5, 29]. In (1) we can see that only knee joint is stimulated by FES. The
disturbance term ω ∈ R

2 is bounded as |ω| ≤ Ω ∈ R
2. The matrix M(q) ∈ R

2×2

denotes the moment of inertia, which is symmetric, positive definite, bounded, and
invertible. The matrix Cm(q, q̇) ∈ R

2×2 denotes the Coriolis term [34]. The vector
G(q) ∈ R

2 denotes the gravity vector and F (q, q̇) ∈ R
2 denotes the passive muscle

torque vector. The equation of motion (1) can be rewritten as

q̈ +Ψ(q, q̇) + v = B (q)T (3)

where Ψ(q, q̇) = M−1C +M−1F +M−1G, B (q) = M−1, v ≡ M−1ω.

3 Standing Motion Planning

The joint angle, velocity, and acceleration can be represented in an output vector. Let
us define hd = [qd1

, q̇d1
, q̈d1

, qd2
, q̇d2

, q̈d2
]
T as the reference output vector (repre-

sents the optimal motion) and h = [q1, q̇1, q̈1, q2, q̇2, q̈2]
T as the actual output vector.

The reference output can be computed using a virtual constraint approach [35],
which is obtained by substituting the independent join angle function, θ (q, q̇) ∈ R

θ (q, q̇) = ζ1q1 + ζ2q̇1 + ζ3q2 + ζ4q̇2

where ∀i = 1, 2, 3, 4 ζi ∈ R are chosen such that θ (q, q̇) is monotonically
increasing. Then Bezier polynomials can be used to obtain the reference output

qdoθ (q, q̇) =

[
b1oς(q, q̇)

b2oς(q, q̇)

]
(4)

where

bi(w) =

M∑
k=0


ik
Nb!

k!(Nb − k)!
wk(1− w)M−k. (5)

In (5), M, Nb ∈ I
+ denote the order and number of Bezier polynomial terms,

respectively, 
ik is an optimization parameter, and w is obtained according to

w(q) =
θ(q, q̇)− θ+

θ− − θ+
(6)
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where θ−and θ+are the lower and upper limitations of the θ (q, q̇), respectively
[36].

It can be seen that in the design, the reference output is time invariant; i.e., it is
constrained only to the actual joint kinematics and there exists a motion generation
law Θ(·, ·) such that hd = Θ(q, q̇).

4 Feedback Control Development

The control objective is to minimize the error term e = qd − q, where qd =[
qd1

qd2

]T
. Define an auxiliary signal, s ∈ R

2,

s = ė+ λe. (7)

After taking time derivative of (7) and on substituting (3),

ṡ = q̈d + λq̇d − λq̇ +Ψ+ v −BT . (8)

Based on the subsequent stability analysis, a feedback law K(·, ·) is designed such
that

T = M̂ (q̈d + λq̇d − λq + κ2s) + Ĉms+ Ĉ + F̂ + Ĝ

+κ1sgn(s) + κ0 (e, ė) s+ Γsgn
(
q̇Ts

)
q̇ + ω̂

(9)

where κ0 is a positive and monotonically increasing function, κ1 ∈ R
+ and κ2 ∈

R
+ are control gains, Γ ∈ R

2×2 is a positive definite control gain matrix, and
M̂ ∈ R

2×2, Ĉm ∈ R
2×2, Ĉ ∈ R

2, F̂ ∈ R
2, Ĝ ∈ R

2, ω̂ ∈ R
2 as estimates of M ,

Cm, C, F , G, ω , respectively, where C(q, q̇) = Cm(q, q̇)q̇ [34]. The controller is
expressed in the following compact form:

T = K(Θ(q, q̇),h). (10)

On substituting (9) into (8)

ṡ =Ψ−M−1C −M−1F −M−1G−M−1Cms

+M−1M̃ (q̈d + λq̇d) +M−1C̃ +M−1F̃

+M−1G̃+ v −M−1ω̂ − κ1M
−1sgn(s)

+ κ2M
−1M̃s+M−1C̃ms− κ0M

−1s

−M−1Γsgn(q̇Ts)q̇ − λM−1M̃ q̇ − κ2s
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where M̃ = M − M̂ =

[
m̃11 m̃12

m̃21 m̃22

]
, C̃m = Cm − Ĉm, C̃ = C − Ĉ , F̃ = F − F̂ ,

and G̃ = G− Ĝ, ω̃ = ω − ω̂, ṽ = v − v̂, v̂ = M−1ω̂.
It is further simplified to

M ṡ =− Cms+ ñ+ ỹ − κ1sgn(s)− λM̃ q̇

− Γsgn
(
q̇Ts

)
q̇ +Υs− κ0s− κ2Ms. (11)

In (11) Υ ∈ R
2×2 is defined as Υ �

[
ε1 ε2
ε3 ε4

]
= κ2M̃ + C̃m, where εi ∈ R∀i =

1, 2, 3, 4, ỹ ∈ R
2 is defined as ỹ = C̃ + F̃ + G̃, ñ ∈ R

2 is defined as ñ �
[ñ1, ñ2]

T
= ω̃+ d̃, and d̃ ∈ R

2 is defined as d̃ ≡ M̃ q̈d+λM̃ q̇d. It is also assumed
that ỹ is bounded as[34]

‖ỹ‖ ≤ Ỹ (‖e, ė‖2)

where Ỹ is a positive and monotonically increasing function.

Theorem 1 The control law in (9) makes the error dynamical system in (11) semi-
globally exponentially stable, provided the following gain conditions hold true:

κ0 > max {|εi| ; ∀i = 1, 2, 3, 4}+ Ỹ (‖e, ė‖2)
κ1 > max {|ñ1| , |ñ2|} (12)

Γ =

[
γ11 γ12
γ21 γ22

]
∀i, j γij ≥ λm̃ij .

Proof Define a positive definite Lyapunov candidate, V ∈ R

V =
1

2
sTMs (13)

such that λm ‖s‖2 ≤ V ≤ λM ‖s‖2, where λm and λM are the minimum and
maximum eigenvalue of M , respectively.

The time derivative of V is

V̇ = sTM ṡ+
1

2
sT Ṁs. (14)

On substituting (11) into (14), and by applying the skew symmetric property [34],
i.e., Ṁ − 2Cm = 0, we can obtain

V̇ =− κ1s
T sgn(s) + sT ñ+ sT ỹ + sTΥs− sTκ0s (15)

− λsT M̃ q̇ − sTΓsgn
(
q̇Ts

)
q̇ − sTκ2Ms
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≤− κ1s
T sgn(s) + |s1| |ñ1|+ |s2| |ñ2|

+ ‖s‖ Ỹ (‖e, ė‖2) + sTΥs− sTκ0s

− λsT M̃ q̇ − sTΓsgn
(
q̇Ts

)
q̇ − κ2s

TMs.

By applying (12), (15) can be further simplified to

V̇ < −κ2s
TMs ≤ −2κ2V.

This means that V is semi-globally exponentially stable, which further implies that
e goes to 0 exponentially. �

5 Model Predictive Control-Based Ratio Allocation Method

The control allocation problem is to distribute T1 in (2) among the knee torque, τa
generated by FES and the knee electrical motor, τk. Further, we are interested in
computing the stimulation amplitude for the quadriceps muscles that generate τa.
Therefore, the following model is used to determine stimulation current.

5.1 Muscle Force Generation and Fatigue Model

The active knee torque, τa = Φa (φ (q1, q̇1) , μ, ufes) ∈ R
+ ∪ {0} is [37]

τa = φ (q1, q̇1)μufes, (16)

where φ (q1, q̇1) =
(
c2q

2
1 + c1q1 + c0

)
(1− c3q̇1) (ci∀i = 0, 1, 2, 3 are model

parameters) is the torque-knee angle and knee angular velocity relationships [37],
ufes is the normalized stimulation amplitude, and μ is the normalized fatigue
variable driven by the fatigue dynamics μ̇ = Φμ (μ, ufes) ∈ R

μ̇ =
(μmin − μ)ufes

Tf
+

(1− μ) (1− ufes)

Tr
(17)

5.2 Optimization Problem

Based on the knowledge of T̄ ( ·̄ represents the nominal signals in the MPC), which
is obtained by running the feedback controller (10) through the nominal model
(without disturbance), an MPC approach is designed to determine the allocation
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Fig. 2 The control loop of the ratio allocation approach

between the motor and FES input. The optimization is also constrained to the
estimated muscle fatigue model (17). The control loop is shown in Fig. 2.

The optimization problem is

min
ūfes

J(tk) =
∫ tk+TN

tk

{
τ̄2k + w1

μ̄+ε τ̄
2
a + w2(μ̄− μ̄o)

2
}
dt (18)

s.t. τ̄k + τ̄a = T̄1

T̄ = K(Θ(q̄, ˙̄q), h̄)

M (q̄) ¨̄q (t) + Cm (q̄, ˙̄q) ˙̄q (t) + F (q̄, ˙̄q) +G (q̄) = T̄

τ̄a = Φa (φ (q1, q̇1) , μ̄, ūfes)

˙̄μ = Φμ (μ̄, ūfes)

ūfes ∈ Ufes

the objective index J(t) ∈ R
+ ∪ {0} in (18) is the cost function, μ̄o is the

estimated fatigue of contralateral leg, Ufes is the input constraint (normalized as
[0, 1][25, 38]), ε > 0 is a constant, and w1,2 > 0 is a user-defined weight. When the
optimal solution, u∗

fes ( t| : t ∈ [tk, tk + TN ]) = argmin{J(t)}, is found, ufes =
u∗
fes ( t| : t = tk → tk + ε) is applied to the system, where ε is an infinitesimal time

constant that makes tk+1 = tk + ε [31].
For the ratio allocation optimization, a gradient search algorithm was adopted

[31] to solve the optimization problem. The detailed algorithm can be found in
Table 1.
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Table 1 Detailed MPC algorithm

1 Initialization: j = 0

(1a) Set the convergence tolerance εj .

(1b) Measure q(tk), q̇(tk).

(1c) Use virtual constraint and feedback controller to get

hd(τ), h̄(τ), and T1(τ), where τ ∈ [tk, tk + TN ].

(1d) Choose initial control trajectory ūfes(τ) ∈ U[tk,tk+TN ],

where τ ∈ [tk, tk + TN ].

(1e) Use ūfes(τ) and h̄(τ) to obtain τ̄a(τ), therefore, J(j)(tk),

where τ ∈ [tk, tk + TN ].

2 Optimal Solution Searching:
(2a) Integrate backward in time to solve for the costates l(j)(τ)

by minimizing the Hamiltonian H = Jmpc + lTΦμ, so that

l̇(τ) = − ∂H(μ̄,l,ūfes)

∂μ̄
.

(2b) Compute the search direction, a(j)(τ), from the Hamiltonian

a(j)(τ) = − ∂H(x,l,ūfes)

∂ūfes
.

(2c) Compute the optimal step size, σ(j), with adaptive setting in [31].

(2d) Update the control trajectory

ū
(j+1)
fes (τ) = ψ(ū

(j)
fes + σ(j)a(j)),

where ψ denotes the constraints.

(2e) Use ū
(j+1)
fes to get J(j+1)(tk).

(2f) Check Quit Conditions

(i) quit if
∣
∣J(j+1)(tk)− J(j)(tk)

∣
∣ ≤ εj ,

(ii) quit if j has exceeded the max iteration limit, Nt,

(iii) otherwise set j = j + 1 and reiterate gradient step from (2a).

6 Results

6.1 Simulation

To validate the control method, simulations were run. The actual system parameters
in the simulation are set to be slightly different than the nominal one. In the
simulation, only one leg is considered by assuming that the contralateral leg
dynamics is the symmetric and constrained to the primary leg. We also assume that
fatigue levels of the two legs are equal, i.e., μ̄ = μ̄o. In the simulation, allocation
results were investigated by setting w1 = 1. The simulation result can be seen in
Fig. 3.
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Fig. 3 This figure demonstrate the simulation results. (a) Knee performance. (b) Hip performance.
(c) Total motor torques. (d) FES and fatigue. (e) This figure visualizes the standing-up motion and
the fatigue levels corresponding to (d)

7 Conclusion

This paper proposed a control scheme that includes an MPC method and a feedback
controller to control a hybrid neuroprosthesis that can potentially help a person with
SCI to achieve a standing-up motion. In the control scheme a ratio allocation method
is proposed to allocate between FES and the powered exoskeleton. Simulation and
experimental results validated the method. In our future work, the proposed method
will be investigated on a person with SCI.

References

1. H. Chizek, R. Kobetic, E. Marsolais, J. Abbas, I. Donner, E. Simon, Control of functional
neuromuscular stimulation systems for standing and locomotion in paraplegics. Proc. IEEE
76(9), 1155–1165 (1988)

2. N. Donaldson, C.-N. Yu, Fes standing: control by handle reactions of leg muscle stimulation
(CHRELMS). IEEE Trans. Rehabil. Eng. 4(4), 280–284 (1996)

3. N. Donaldson, C.-H. Yu, A strategy used by paraplegics to stand up using fes. IEEE Trans.
Rehabil. Eng. 6(2), 162–167 (1998)

4. H. Kagaya, M. Sharma, R. Kobetic, E.B. Marsolais, Ankle, knee, and hip moments during
standing with and without joint contractures: simulation study for functional electrical
stimulation. Am. J. Phys. Med. Rehabil. 77(1), 49–54 (1998)

5. R. Riener, T. Fuhr, Patient-driven control of FES-supported standing up: a simulation study.
IEEE Trans. Rehabil. Eng. 6, 113–124 (1998)



Model Predictive Control-Based Knee Actuator Allocation During a Standing-Up. . . 99

6. R. Riener, M. Ferrarin, E.E. Pavan, C.A. Frigo, Patient-driven control of fes-supported standing
up and sitting down: experimental results. IEEE Trans. Rehabil. Eng. 8(4), 523–529 (2000)

7. R. Kobetic, C. To, J. Schnellenberger, M. Audu, T. Bulea, R. Gaudio, G. Pinault, S. Tashman,
R. Triolo, Development of hybrid orthosis for standing, walking, and stair climbing after spinal
cord injury. J. Rehabil. Res. Dev. 46(3), 447–462 (2009)

8. S. Jatsun, S. Savin, A. Yatsun, R. Turlapov, Adaptive control system for exoskeleton per-
forming sit-to-stand motion, in 2015 10th International Symposium on Mechatronics and Its
Applications (ISMA) (IEEE, 2015), pp. 1–6

9. W. Huo, S. Mohammed, Y. Amirat, K. Kong, Active impedance control of a lower limb
exoskeleton to assist sit-to-stand movement, in IEEE International Conference on Robotics
and Automation (ICRA) (IEEE, 2016), pp. 3530–3536

10. R. Kobetic, B. Marsolais, Synthesis of paraplegic gait with multichannel functional neuromus-
cular stimulation. IEEE Trans. Rehabil. Eng. 2(2), 66–79 (1994)

11. W. Durfee, Gait restoration by functional electrical stimulation, in Climbing and Walking
Robots (Springer, Berlin, 2006), pp. 19–26

12. N. Sharma, N.A. Kirsch, N.A. Alibeji, W.E. Dixon, A non-linear control method to compensate
for muscle fatigue during neuromuscular electrical stimulation. Front. Robot. AI 4, 68 (2017)

13. S. Mefoued, S. Mohammed, Y. Amirat, G. Fried, Sit-to-stand movement assistance using an
actuated knee joint orthosis, in 2012 4th IEEE RAS & EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob) (IEEE, 2012), pp. 1753–1758

14. M.A. Alouane, W. Huo, H. Rifai, Y. Amirat, S. Mohammed, Hybrid fes-exoskeleton controller
to assist sit-to-stand movement. IFAC-PapersOnLine 51(34), 296–301 (2019)

15. H. Kawamoto, S. Kanbe, Y. Sankai, Power assist method for hal-3 estimating operator’s
intention based on motion information, in The 12th IEEE International Workshop on Robot and
Human Interactive Communication, 2003. Proceedings. ROMAN 2003 (IEEE, 2003), pp. 67–
72

16. R. Farris, H. Quintero, M. Goldfarb, Preliminary evaluation of a powered lower limb orthosis to
aid walking in paraplegic individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 652–659
(2011)

17. P. Neuhaus, J. Noorden, T. Craig, T. Torres, J. Kirschbaum, J. Pratt, Design and evaluation of
mina: a robotic orthosis for paraplegics, in IEEE ICORR (2011), pp. 1–8

18. K. Strausser, H. Kazerooni, The development and testing of a human machine interface for a
mobile medical exoskeleton, in IEEE/RSJ IROS (2011), pp. 4911–4916

19. A. Esquenazi, M. Talaty, A. Packel, M. Saulino, The ReWalk powered exoskeleton to restore
ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am.
J. Phys. Med. Rehabil. 91(11), 911–921 (2012)

20. E. Strickland, Good-bye, wheelchair. IEEE Spectr. 49(1), 30–32 (2012)
21. A.J. Young, D.P. Ferris, State of the art and future directions for lower limb robotic

exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 171–182 (2017)
22. H. Quintero, R. Farris, W. Durfee, M. Goldfarb, Feasibility of a hybrid-FES system for gait

restoration in paraplegics, in IEEE EMBC (2010), pp. 483–486
23. A. del Ama, Á. Gil-Agudo, J. Pons, J. Moreno, Hybrid FES-robot cooperative control of

ambulatory gait rehabilitation exoskeleton. J. NeuroEng. Rehabil. 11(1), 27 (2014)
24. K. Ha, S. Murray, M. Goldfarb, An approach for the cooperative control of FES with a

powered exoskeleton during level walking for persons with paraplegia. IEEE Trans. Neural
Syst. Rehabil. Eng. 24, 455–466 (2016)

25. N. Kirsch, X. Bao, N. Alibeji, B. Dicianno, N. Sharma, Model-based dynamic control
allocation in a hybrid neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 26(1), 224–
232 (2018)

26. N.A. Alibeji, V. Molazadeh, B.E. Dicianno, N. Sharma, A control scheme that uses dynamic
postural synergies to coordinate a hybrid walking neuroprosthesis: theory and experiments.
Front. Neurosci. 12, 159 (2018)



100 X. Bao et al.

27. N.A. Alibeji, V. Molazadeh, F. Moore-Clingenpeel, N. Sharma, A muscle synergy-inspired
control design to coordinate functional electrical stimulation and a powered exoskeleton:
artificial generation of synergies to reduce input dimensionality. IEEE Control Syst. Mag.
38(6), 35–60 (2018)

28. H. Quintero, R. Farris, K. Ha, M. Goldfarb, Preliminary assessment of the efficacy of
supplementing knee extension capability in a lower limb exoskeleton with FES. IEEE Eng.
Med. Biol. Soc. 2012, 3360–3363 (2012)

29. R. Riener, J. Quintern, G. Schmidt, Biomechanical model of the human knee evaluated by
neuromuscular stimulation. J. Biomech. 29, 1157–1167 (1996)

30. D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O. Scokaert, Constrained model predictive control:
stability and optimality. Automatica 36(6), 789–814 (2000)

31. K. Graichen, B. Käpernick, A real-time gradient method for nonlinear model predictive control.
INTECH Open Access Publisher (2012)

32. J.B. Rawling, D.Q. Mayne, M.M. Diehl, Model Predictive Control: Theory, Computation, and
Design, 2nd edn. (Nob Hill Publishing, LLC, Madison, 2017)

33. A. Dodson, A novel user-controlled assisted standing control system for a hybrid neuropros-
thesis. Master’s thesis, University of Pittsburgh, 2018

34. F. Lewis, D. Dawson, C. Abdallah, Robot Manipulator Control: Theory and Practice (CRC
Press, Boca Raton, 2003)

35. E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, B. Morris, Feedback Control of
Dynamic Bipedal Robot Locomotion, vol. 28 (CRC Press, Boca Raton, 2007)

36. V. Molazadeh, Z. Sheng, X. Bao, N. Sharma, A robust iterative learning switching controller
for following virtual constraints: application to a hybrid neuroprosthesis. IFAC-PapersOnLine
51(34), 28–33 (2019)

37. N. Kirsch, N. Alibeji, B.E. Dicianno, N. Sharma, Switching control of functional electrical
stimulation and motor assist for muscle fatigue compensation, in American Control Conference
(ACC), 2016 (IEEE, 2016), pp. 4865–4870

38. Z. Sun, X. Bao, N. Sharma, Lyapunov-based model predictive control of an input delayed
functional electrical simulation. IFAC-PapersOnLine 51(34), 290–295 (2019)



Deep Brain Stimulation for Gait
and Postural Disturbances in Parkinson’s
Disease

Hanyan Li and George C. McConnell

Abstract Parkinson’s disease (PD) is a progressive neurodegenerative disorder
characterized by distal (i.e., tremor, bradykinesia, and rigidity) and axial motor
symptoms (i.e., gait and postural disturbances). Deep brain stimulation (DBS) is
a neurosurgical approach that uses electrical current delivered by an implantable
pulse generator to modulate neural activity. Although DBS at the subthalamic
nucleus (STN) and the internal globus pallidus (GPi) are well established for the
treatment of the distal symptoms in PD, long-term studies of axial symptoms
show a decline in efficacy with progression of the disease. Currently, there is
no pharmacological or neurosurgical treatment available for the axial symptoms
of advanced PD. Thus, the design of novel stimulation strategies to treat gait
disturbances and postural instability has been investigated, including targets such
as the pedunculopontine nucleus (PPN) and the substantia nigra pars reticulata
(SNr). Here, we reviewed the current state of understanding regarding the effects
of STN/GPi DBS, PPN DBS, and SNr DBS on gait and postural disturbances in
PD and the proposed underlying mechanisms of action. The stimulation parameters
(i.e., location, frequency, amplitude, and pulse width) and localization criteria for
accurate placement of DBS electrodes within each target are discussed. As DBS
at spatially distinct subregions of a target impacts the effectiveness of the therapy,
electrode misplacement may directly contribute to the mixed results of DBS on the
gait and postural disturbances of PD. We highlight the need for future studies to
provide details on the specific subregion of the stimulation target to further advance
the field.
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1 Introduction

1.1 Parkinson’s Disease

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders.
There were 680,000 individuals in the USA with PD in 2010, and that number
will rise to approximately 930,000 in 2020 and 1,238,000 in 2030 [1]. PD has
a major impact on the quality of life of patients, their families, and caregivers
carrying a significant social economic burden, which has been estimated in a recent
study to exceed $14.4 billion in 2010 (approximately $22,800 per patient [2]).
PD is characterized by a progressive degeneration of dopaminergic neurons in the
substantia nigra pars compacta (SNc), which produce dopamine, a chemical that
controls movement and coordination [3]. Although the specific symptoms vary from
person to person, the primary signs of PD include blank facial expression, slowing
monotonous slurred speech, rigidity and tremor of extremities and head, forward tilt
of posture, reduced arm swinging, and shuffling gait [4].

1.2 Gait and Postural Disturbances in PD

Parkinsonian gait disorders consist of reduced walking speed and step length, start
hesitation, freezing, and festination [5]. Festination gait is described as rapid small
steps done in an attempt to keep the center of gravity in between the feet while
the trunk is leaning forward involuntarily. Freezing of gait (FOG) is an episodic
transient disruption of gait that typically lasts a few seconds and is associated with a
unique sensation: patients feels that their feet are glued to the ground, causing them
to remain in place despite making a concerted effort to overcome the motor block
and move forward [6]. When FOG occurs during gait initiation, it is characterized
by repeated ineffective anticipatory postural adjustments and leads to a failure of
gait initiation and sometimes to a fall. FOG may also occur while patients are
walking. There is an abrupt decrease of step length, increase of step frequency,
and step-to-step variability that precede a complete blockade of gait and falls.
Postural disturbances related with hypertonia are also described in PD gait. Postural
instability compromises the ability to maintain balance during everyday tasks and
can result in falls, which constitute a major public health problem [7–9]. Almost
50% of falls occur during walking, in particular during the initiation and termination
of gait [10], and the likelihood of falls is ∼60%, which is higher than healthy elderly
[11]. Falls and freezing of gait are responsible for high morbidity (e.g., fractures,
residential health care) and increased significantly mortality [11]. The most widely
used clinical rating scale for the severity of PD symptoms is the Unified Parkinson’s
disease rating scale (UPDRS) [12].
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1.3 Treatment Options for Gait and Postural Disturbances
in PD

Levodopa (L-DOPA), a dopaminergic drug, remains the gold-standard treatment
for PD, although treatment is complicated by L-DOPA-induced dyskinesia (LID)
in later stages [13]. Deep brain stimulation (DBS) offers a powerful therapeutic
alternative when medication can no longer provide reliable efficacy. It is a surgical
therapy involving the implantation of one or more electrodes into specific regions
of the brain, which deliver electrical stimulation to modulate or disrupt abnormal
patterns of neural signaling [14]. To date, most applications of DBS for PD target
the subthalamic nucleus (STN) and the internal globus pallidus (GPi) [15]. Over the
last 20 years, STN/GPi DBS has become a well-established option for the treatment
of PD patients with motor fluctuations and dyskinesias [15]. Under the condition
that patients are responsive to L-DOPA treatment before surgery [16–18], DBS
can reproduce the effects of L-DOPA and treat distal motor symptoms, i.e., tremor,
rigidity, and akinesia [19, 20]. However, the effect on axial disturbances, i.e., gait
and postural instability, remains controversial, sometimes even worsens gait [20–
25].

1.4 Targeting of DBS

Before the DBS procedure, a neurosurgeon uses magnetic resonance imaging
(MRI) and postoperative computed tomography (CT) to pinpoint the exact three-
dimensional coordinates of the target area within the brain. Misplacement of the
DBS electrode may lead to various adverse effects and unexpected outcomes
[26]. Even a deviation from the intended target of 2 mm can result in unwanted
side effects that negate the intended therapeutic response [27]. While the spatial
resolution of modern MRI and CT scanners continue to improve, detailed nuclear
anatomy remains impossible to discern. Since there are individual differences in
anatomy, initial target selection is only approximate, and many experts agree that the
final targeting should be performed using intraoperative microelectrode recordings
(MER). MER is used to monitor the activity of neurons in the target area and thereby
identify the precise brain target that will be stimulated. There are several reasons
for using microelectrode recordings as an aid to localize boundaries of certain brain
areas and surrounding structures in DBS: (1) Borders between white and gray matter
are easily identified, as white matter is usually very quiet in comparison to gray
matter. (2) Different nuclei have different patterns of activity which can serve to
reliably distinguish among the nuclei. MER along preplanned trajectories are often
used for improved delineation of the location of the STN during DBS surgery for
PD [28].

In this review, we summarize the effect of DBS on gait and postural disturbances
in PD. For this purpose, we first describe STN/GPi DBS and the two promising
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DBS targets for gait and postural disturbances: pedunculopontine nucleus (PPN)
and substantia nigra pars reticulata (SNr). In each section, we discuss the proposed
mechanism(s) for the DBS target to treat gait and postural disturbances, a discussion
of stimulation parameters (i.e., location, frequency, amplitude, and pulse width)
used in existing studies, and the localization criteria for each target.

2 Methods

PubMed was the main database used to conduct the literature search. Keywords
searched were as follows: Parkinson’s disease, gait disorders, deep brain stimula-
tion, freezing of gait, postural disturbances, fall, gait disorder, subthalamic nucleus,
substantia nigra pars reticulata, and pedunculopontine nucleus. There was no
specific time range used to limit the search. Meta-analysis was used for summarize
the effects of STN/GPi DBS on gait, postural instability, and tremor.

3 STN/GPi DBS

Although postural instability and falls are thought to respond poorly to dopaminer-
gic treatment [29], STN/GPi DBS in combination with L-DOPA treatment reduces
postural instability by increasing motor abilities and specific postural related mech-
anisms, leading to a reduction in falls [16]. STN/GPi DBS itself has a controversial
and less sustained effect on gait and postural disturbances, sometimes worsening
these symptoms [20–25]. Recent long-term studies have reported a gradual decline
in the effectiveness of STN/GPi DBS on gait disturbances and axial symptoms over
3 years [30, 31], 5 years [21, 32–34], 8 years [22], or 10 years [35, 36], in contrast
to stable improvements of tremor rigidity and limb bradykinesia (Fig. 1).

3.1 Neuroanatomy of STN/GPi

The STN is subdivided into different territories, motor, oculomotor, associative,
and limbic, each with different connections and functions. The large dorsolateral
portion of the STN corresponds to the motor territory; the ventromedial portion
to the associative territory and the medial tip to the limbic territory of the STN.
Most STN neurons are glutamatergic projection neurons and provide a powerful
excitatory input to the external segment of the GP (GPe) and to the two output
structures of the basal ganglia, the GPi and SNr [37] (Fig. 2).
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Fig. 1 Connectivity of DBS targets for gait and postural disturbances in Parkinson’s disease.
STN is subdivided into a large dorsolateral motor territory, a ventromedial associative territory,
and a medial limbic territory. Each territory receives inputs from different areas of the cerebral
cortex and provides output to different target nuclei, including the internal segment (GPi) and
external segment (GPe) of the globus pallidus, substantia nigra pars reticulata (SNr), and ventral
pallidum [37]; the PPNd receives glutamatergic input from the STN; GABAergic input from the
GPi; GABAergic input from the SNr [38]; the PPNd projects to the STN, GPi, and cerebellum; the
PPNc projects to the caudate/putamen and thalamus [38]; the lSNr receives input from the striatum
and projects to thalamus; the mSNr receives input from the STN and projects to the PPN [39]

3.2 Proposed Mechanisms of Action

Stimulation of the STN may alleviate some potential aberrant suppression of PPN
activity and/or compensate for neuron loss in the PPN, so as to improve gait
and postural disturbances in PD [40]. PD patients with FOG showed a disruption
between the STN/GPi and cortical regions, suggesting that FOG may be due to an
overwhelming increase in the inhibitory output of the basal ganglia [39]. Stimulating
the STN does not directly produce striatal dopamine release but may boost the
dopamine motor system by inhibiting overexcited STN neurons [41, 42], reducing
the neuronal synchronization in the vicinity of STN [43] and altering connectivity
of thalamocortical pathways [44].

3.3 Effects of Stimulation Location and Frequency

Due to the anatomic connectivity differences between dorsal and ventral STN [45],
DBS should target the dorsal STN, which has connections with sensorimotor brain
regions [46]. Bilateral LFS (<80 Hz) [47] and HFS (>100 Hz) [48] have shown
improvements in gait and postural disturbance when stimulated at more dorsal
contacts compared to ventral STN. Others however did not find improvements in
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Fig. 2 Unified Parkinson’s disease rating scale (UPDRS) of gait, postural instability, and tremor
over time. Meta-analysis of results from clinical studies investigating the effects of the STN on
gait (UPDRS III, item 29 and 30), postural instability (UPDRS III, item 28), and tremor (UPDRS
III, item 20 and 21) over time [55–63]. Each line represents data reported from a single study.
Note initial improvements in gait and postural instability at 6 months and 12 months followed
by a progressive decline at later time points. All data are mean ± SD (UPDRS = 0, normal;
UPDRS = 1, slight; UPDRS = 3, moderate; and UPDRS = 4, severe [12])

gait and balance with unilateral dorsal STN compared to unilateral ventral STN,
but some cognitive function improvement [23]. It might be because the motor
connections are diffusely distributed throughout the STN instead of sharply divided
[49]. Ventral GPi DBS improve LID but not gait and akinesia, while dorsal GPi DBS
improves akinesia but not LID [50]. When using intermediate contact, GPi DBS
improved both LID and gait disorders [51]. Bilateral GPi DBS has little to no effect
on postural control but significantly increases stride length, step length, and velocity
during active walking, but less than STN DBS [16, 51]. Bilateral GPi DBS has better
results than unilateral GPi DBS [19]. Some research reported a decrease number of
FOG episodes at low frequencies (60–80 Hz) but not in gait performance [22, 52–
54]; some reported immediate improvements in gait but the improvements were not
sustained [55]. A recent study used 80 Hz STN DBS on one patient, and a reduction
in falls and improvement of postural symptoms were observed at 1 year after surgery
[56]. One quantitative study showed that LFS products similar or slightly better
results compared to HFS for postural control and gait but not statistically significant
[53]. However, there was no improvement in axial symptoms from the LFS after
more than 3 years of HFS [57].
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3.4 Targeting of STN/GPi DBS

Both MRI and MER are commonly used to localize STN/GPi during DBS surgery
[58]. A 43% of GPi and 45% of STN mismatching of more than 3 mm using MRI
per se between the theoretic coordinated and the final site of electrode location
were reported [59]. Thus the proper electrode positioning of the STN/GPi may be
improved by fine electrophysiological assessment [59, 60]. MERs of STN showed
mean firing rate of 37 ± 17 Hz and an irregular firing pattern [61]. Another study
showed 42.3 ± 22 Hz and an irregular or bursty discharge pattern [28]. The detection
of the dorsolateral STN is based on clear-cut changes in electrical activity in the
form of a sharp rise in the total power of the MERs [62], the tremor frequency
(5 Hz) [63], and the beta oscillation (13–30 Hz) [64].

3.5 Limitations

(1) Currently, the therapeutic treatment of PD by DBS is an open-loop system
where continuous stimulation is applied to the STN/GPi. Many of the existing
shortcomings of DBS come from the open-loop nature of the implanted devices:
The limited battery life requires multiple replacements. The vast majority of
commercially available DBS devices are non-rechargeable and invasive surgery is
required to replace the implantable pulse generator whenever the battery runs out.
The battery’s lifespan is determined primarily by how often the device is used and at
what level of stimulation. The average battery life is <4 years [65]. If the stimulation
is continuous, sometimes it does not achieve the maximum benefits and may trigger
some side effects such as dyskinesia, speech problems, or depression. (2) The
emergence of stimulation-related adverse effects is another important limitation
of DBS therapy, occurring regularly in up to 13% of patients [14]. (3) Previous
studies show that STN/GPi HFS is effective for tremor, long term of continuous
DBS worsens gait and postural disturbances [20, 21, 24]. Some studies showed
that STN/GPi LFS (60 Hz), compared to HFS, has beneficial effects on improving
freezing of gait and other axial symptoms [66]. However, it is impossible to send
HFS and LFS at the same time with current continuous DBS. Thus, to achieve both
distal and axial symptoms, either another target needs to be involved or close-loop
DBS needs to be developed for HFS and LFS separation.
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4 PPN DBS

4.1 Neuroanatomy of PPN

The PPN, along with cuneiform nucleus (CN), comprises the mesencephalic
locomotor region (MLR). MLR is an area of the brain stem that controls locomotion
[67]. The PPN can be divided into the pars compacta (PPNc) and the pars
dissipata (PPNd). The PPNc comprises mainly cholinergic neurons, whereas the
PPNc contains both cholinergic and non-cholinergic cells. Subcortical afferents
arise mainly from the GPi and SNr; efferents from cholinergic PPN neurons reach
thalamic regions; projections from the PPNd provide innervation to the STN, SNc,
and GPi [40] (Fig. 1).

4.2 Proposed Mechanisms of Action

Connections with the primary motor cortex, basal ganglia, thalamus, cerebellum
and spinal cord play important roles in the regulation of movement by PPN region
[68]. Reduced cerebellar connectivity pre-stimulation was partially restored after
PPN DBS [69]. Gait, postural disturbances and falls are correlated with the loss of
cholinergic neurons in the PPN [70–73]. PD monkey models with cholinergic lesion
in the PPN showed resistance to L-DOPA treatment [73, 74]. The PPN is underactive
in PD due to a combination of the degeneration and excessive inhibition. LFS PPN
DBS could enhance PPN network activity, perhaps via disinhibition [75].

4.3 Effects of Stimulation Location and Frequency

In patients with advanced PD, bilateral LFS (25 Hz) PPN DBS associated with
standard STN DBS may be useful in improving gait, yet PPN DBS alone is not
as effective [76]. In this case, electrodes were implanted lateral to the medial
lemniscus, in a region that encompasses the PPN [76]. When electrodes are
implanted in the PPN, the cuneiform, and the subcuneiform nuclei, unilateral PPN
DBS with 50–80 Hz is reported to mildly alleviate gait and falls but not significantly
[77]. Bilateral PPN DBS at 25 Hz does improve FOG and frequency of falls at 1 year
but no major effect in gait and posture [78]. Combination of caudal zona incerta
(cZi)130 Hz with PPN <60 Hz postural stability became impaired whereas cZi
stimulation <40 Hz worsened tremor, rigidity, and bradykinesia, when 60 Hz was
chosen for combine PPN and cZi DBS, PD symptom was slightly improved [79].
When electrodes are localized bilaterally within the PPN, improvement was shown
in frequency of fall, but not in gait, when combined with L-DOPA [80]. PPN LFS
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DBS improved the hind limb and forelimb scores but no other gait measurement in
unilateral lesioned PD model rat [81] (Table 1).

4.4 Targeting of PPN DBS

Targeting the PPN during DBS surgery is a controversial issue. Conventional MRI
is often not suitable for a clear visualization of the region [38]. A few MER
studies attributes may help targeting the PPN: (1) mean firing rate of the PPN was
23.2 ± 15.6 Hz; (2) spontaneous neuronal firing rate and burst discharge rate were
significantly different between the dorsal PPN and in the PPN; and (3) theta and
beta band oscillation were present in PPN LFPs [86, 87]. Within the PPN regions,
57% of the neurons fired randomly while 21% of the neurons exhibited bursty firing
[87]. But still no hallmarks of identification of PPN were found compared to STN
identification.

4.5 Limitations

Stimulation amplitude determines the spatial extent of neural activation. The PPN is
a small midbrain region in comparison to the spatial extension of the stimulation
effect produced by the microelectrode [38]. The lack of clarity of the PPN
contributes to the difficulty in targeting and determining the exact localization of the
electrodes implanted in human subjects suffering from neurodegenerative disorders.
It is likely that DBS in the PPN region affects the neighbor structures. In humans
the PPN overlaps with the posterior part of the substantia nigra (SN), so that it is
presumably impossible to constrain stimulation to the PPN without also altering the
SN. Hence, the observed effects on discrimination performance may at least to some
degree stem from a modulation of activity in the SN [88]. Because of the location,
PPN DBS may be risker than other DBS surgeries [80]. Stimulation-related adverse
events during LFS PPN DSB include paresthesia, pain, and temperature sensation;
some patients develop oscillopsia (a visual disturbance) during LFS PPN DBS [77,
78]. In a recent study, two out of six patients developed several adverse effects [80].

5 SNr DBS

5.1 Neuroanatomy of SNr

A GABAergic projection from the medial SNr (mSNr) to the MLR controls
locomotion, and another projection from the lateral SNr (lSNr) to the PPN controls
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postural muscle tone [89]. It has been demonstrated in a neuroanatomical study that
the medial PPN, which approximately corresponds to the MLR, receives afferents
from the mSNr, whereas the lateral PPN, which corresponds to the inhibitory region,
receives afferents from the lSNr [90] (Fig. 1).

5.2 Proposed Mechanisms of Action

HFS SNr DBS could potentially restore the normal function of the brain stem
centers that control muscle tone and locomotion and thereby alleviate gait and
postural disturbances in PD [84]. Also, it is plausible that HFS SNr affects STN
neuronal activity from current spread. It is also possible that SNr DBS may have
increased SNc neuronal activity, since SNc is dorsal to and interdigitated among
SNr. So that the excitation of SNc axons could have increased dopaminergic release
in the striatum [91, 92].

5.3 Effects of Stimulation Location and Frequency

Medial SNr, not lateral SNr, GABA antagonist injection induced strong behavioral
activation, turning, and dystonia-like neck and body postures [93]. Bilateral HFS
medial SNr DBS dramatically improves axial Parkinsonian motor symptoms (gait
and balance disorders) and braking capacity of fall but has no effect on distal
Parkinsonian motor symptoms (segmental akinesia, rigidity, and tremor) [82].
Compared to standard STN DBS, combination of STN and SNr DBS with HFS
showed slight improvement of FOG, but not postural instability. This improvement
only happened immediately but not after 3 weeks [83]. In this case, the lateral SNr
was implanted. Another study showed that stimulation of the medial SNr could
modulate the temporal integration of gait, as opposed to the lateral part of the SNr
[94]. In cats, local inhibition of SNr induces locomotion and reversed during HFS
[84, 89]. Also, mSNr DBS improves the rat’s ability to maintain walking speed but
not lSNr and is associated with a decrease in ipsilateral circling in 6-OHDA rat
model [85] (Table 1). SNr lesion caused dramatic changes in postural but had no
effect on impaired reaching and hemineglect in hemiparkinsonian marmoset [95].
HFS on lateral SNr DBS at 130 Hz improved forelimb akinesia in a rat model of PD,
but not LFS [92].SNr-HFS may have resulted from the attenuation of SNr neuronal
spiking activity through a depolarization block phenomenon [92]. Unlike PPN DBS,
concomitant stimulation of the SNr and STN is safe and well-tolerated [83].
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5.4 Targeting of SNr DBS

MRI showed nonlinear changes of SNr patterns of during PD progression, from
higher iron status at the beginning of PD to a dynamic decrease as disease advances
[96]. So far, studies about SNr MERs are very limited in either human or rat, and
most of them did not mention the subregions of SNr, namely, the mSNr and lSNr.
In clinical studies, the anatomical closeness of SNr and STN enables the ventral
contacts of electrode occasionally positioned in SNr when conducting current STN
DBS [97] (Fig. 3). The firing rates in PD patients during DBS surgeries varied from
71 ± 23 spikes/s to 30 ± 13 spikes, and amplitude was reported as 46.7 ± 31.1 μV
[28, 61, 98], whereas in healthy rat, the SNr was reported with 19.4 ± 1.2 spikes/s
(n = 48), and the firing pattern was 71% of the SNr neurons which had a tonic
discharge, 29% fired randomly, and 0% showed a bursting firing pattern [40]. In
another report, the firing rate ranged from 10.19 to 41.16 spikes/s with a mean of
22.49 ± 0.92 spikes/s (n = 89), and the firing pattern was 56.18% regular, 37.08%
irregular, and 6.74% bursting neurons [99]. One study that was specifically recorded
from the subregions of SNr but only the GABAergic neurons reported that the
mean firing rate was 21.98 ± 1.27 spikes/s (n = 50) in the lSNr and 23.15 ± 1.33
spikes/s (n = 39) in the mSNr. In normal rats, for neurons recorded within the
lSNr, the percentage of regular firing neurons was 54.00%, while 40.00% of the
neurons had an irregular firing and 6.00% of neurons fired in burst. Upon evaluation
of neurons recorded within the mSNr, the firing pattern distribution was 58.97%

lateral

dorsal

Thalamus
electrode 
(Medtronic 3389)

1.5mm

STN

SNr

Fig. 3 Example of single FDA-approved DBS electrode design to apply co-stimulation of STN
and medial SNr to treat the distal and axial symptoms of Parkinson’s disease. Ventral stimulating
contacts of the DBS electrode (Medtronic 3389) could be used to treat the gait and postural
disturbances in PD simultaneously with dorsal stimulating contacts in the STN to treat tremor,
bradykinesia, and rigidity
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regular, 33.33% irregular, and 7.70% bursting neurons. In this study, no significant
difference was found between the mSNr and lSNr in normal rat model [100]. An
advanced targeting technique called Stimulus Pulse Aligned Coherence analysis in
Evoked Recordings (SPACER) showed promising results to distinguish the mSNr
and lSNr. SPACER is a technique that analyze the coherence of two evoked LFPs
at adjacent locations, using a 0.5 Hz of stimulation and stimulus time alignment.
It revealed that the mSNr and lSNr have an opposite pattern of coherence between
LFPs in adjacent locations [101].

5.5 Limitations

There is a paucity of clinical and pre-clinical studies of SNr DBS. Larger number of
groups are needed for further validation. Although no side effects of SNr DBS have
been reported, more studies are needed to confirm the safety of this approach.

6 Discussion

Gait and postural disturbances in PD are responsible for high morbidity and
mortality. Current STN/GPi DBS has controversial effects on gait and postural
disturbances, and long-term studies showed a gradual decline in its effectiveness.
Pilot studies of LFS PPN DBS and HFS SNr DBS have showed promising results.
On the one hand, PPN DBS carries higher surgical risk of adverse effects than
other DBS targets. On the other hand, SNr DBS appears to be safe and well-
tolerated, though more studies targeting the medial sites remain unexplored in
humans. Besides the close proximity of SNr and STN, ventral stimulating contacts
of current STN DBS electrodes are easily positioned in the SNr, which increases the
practicality of this approach.

This review highlights the critical importance of targeting for DBS treatment
of gait and postural disturbances in PD. MRI and MER are typically combined to
localize DBS target, as misplacement of DBS electrodes may lead to unexpected
outcomes. MRI of STN caused 45% of mismatching of more than 3 mm between
the theoretic coordinated and the final site of electrodes [59]. MRI of the PPN is
not suitable for clear visualization [38]. MER may therefore enable more precise
targeting than MRI alone. MER of STN/GPi is well characterized, whereas PPN
MER does not show hallmarks suitable for identification. To our knowledge, no
studies of SNr MERs exist.

Multiple studies support the assertion that DBS in subregions of a target will
make a dramatic difference in improving the effectiveness of DBS to treat gait
and postural disturbances. Future studies should consider the effects of DBS on
subregions of targets due to the heterogeneity exists in the STN, PPN, and SNr.
Sensorimotor regions of the dorsolateral STN DBS showed better improvement of
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gait and postural instability in PD [46]. Differences of neuron types and connections
in the PPNc and PPNd may explain the controversial results of DBS effects of
PPN DBS on axial symptoms. Connection with MLR of the mSNr may make this
subregion a more suitable target to treat gait and postural instability. One key to
investigate this effect are advancements in more precise localization of the DBS
leads. Indeed, misplacement is a likely reason for the controversial results of PPN
DBS and SNr DBS on gait and postural disturbances of PD. Clinical validation
of techniques to target subregions, such as SPACER [101], is needed to improve
the precision of DBS targeting. Also, future studies should report where within
the target the electrode is implanted to aid in understanding more fully the DBS
mechanisms of action.

The development of closed-loop DBS systems are expected to further improve
the treatment of gait and postural disturbances in PD. There are parallels with
cardiac pacemaker technology, which like DBS uses a neurostimulator to generate
and deliver electric pulses into the deep brain areas through extension wires and
electrodes. Cardiac stimulation devices have been in clinical use since 1963 [102].
Cardiac pacemakers currently can function to sense and respond to atrial activity
in closed-loop mode. Efforts to bring similar concepts to DBS devices have been
delayed in part due to the complexity of brain signals. Upon the detection of
abnormalities during monitoring, closed-loop DBS applies responsive electrical
stimulation. Over the past decade, it has become apparent that closed-loop DBS
produces more clinical improvement and less undesirable side effects [103, 104]
while in addition improving battery life and thus reducing the trauma of repetitive
surgery [105, 106]. One promising approach to closed-loop DBS is to trigger
stimulation pulses using the dynamic changes in the subcortical which are thought to
lead to motor symptoms of PD. It appears that LFPs may provide the most relevant
biomarker to close the loop in PD patient [75]. Also, it may be the case that a
single biomarker is insufficient [107–109], so multiple biomarkers may be more
effective for closed-loop control [110]. Searching for the relevant neural signatures
that correlate with different PD symptoms, including biomarkers correlated to gait
and postural disturbances in PD, is a top priority in this field. The development of
DBS electrodes that can simultaneously stimulate and record makes this a feasible
approach [111–115].

In summary, the need for better treatments of the gait and postural disturbances
of PD has driven the field to identify suitable targets for DBS, with the primary
emphasis on the STN, PPN, and SNr. An increasing awareness of the importance
of the importance of DBS location should drive technological advancements to
improve targeting of DBS electrodes. Accurate and precise targeting together with
detailed reporting of DBS electrode location will further advance our understanding
of the mechanisms of DBS in current targets and may aid in discovering new ones.
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Cognitive and Physiological Intent for
the Adaptation of Motor Prostheses

Raviraj Nataraj, Sean Sanford, Mingxiao Liu, Kevin Walsh, Samuel Wilder,
Anthony Santo, and David Hollinger

Abstract Motor prostheses act to restore function to persons with movement
disability through device actions trigged by command or intent of the user. There
are various modes by which device actions may power or inform the person’s
movement. For any device mode, actions are based on what the person is intending
to do. Regardless of the device, user, or method for restoring function, it is critical
to optimize how the device and user respond to one another to maximize the
capabilities of the person. In this chapter, we discuss approaches to develop assistive
devices and rehabilitation paradigms that restore function to those with movement
disabilities through greater cognitive and physiological integration. Mainly, these
approaches fall along two lines: (1) adapting devices to facilitate greater agency, or
sense of control, of the user and (2) training a user to produce consistent responses
that the device can readily recognize and assist.

Keywords Movement · Feedback control · Rehabilitation · Assistive devices ·
Cognitive agency · Device adaptation · Neuroprostheses · Exoskeletons

1 Introduction

The ability to stand, walk, and grasp can be severely impaired for persons with
spinal cord injury and limb amputation [1, 2]. Advanced user-device interfaces for
prosthetic control can restore the capabilities to perform activities of daily living
for persons with severe movement dysfunction. State-of-the-art motor prostheses
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utilize increasingly sophisticated ways to integrate the user for more natural control
and more effective function. Novel neural interfaces can directly access sensory and
motor physiology of the person to trigger the operation of a powered device [3].
Recordings from motor pathways, such as electromyography signals, and activation
of sensory pathways are typically used to better connect the person to their limb
movements. These movements may then be powered by muscle activation [4]
or device motors [5]. The ultimate objective for these prosthetic interfaces is to
restore movement abilities that achieve normative performance and feel as natural
as healthy limbs.

Despite major technological advancements for better movement actuation and
greater access to user physiology for recording and activation, advanced motor
prostheses are still not the standard of care. Clinical retention of these devices is
challenged, not only by their expense but the daily cost in effort to deploy and use
the device relative to the benefit of actual improvement in function. As such, it is
critical to develop effective methods that empower the person to use the device with
greater performance outcomes. The sense of empowerment of the user involves a
greater perception of control and better matching the intentions of the user with the
actions of the device. Cognitively engaging the person in the operation of the device
should promote user empowerment toward greater functional performance.

Our lab is investigating cognitively driven approaches to better integrate a person
having movement disability to a powered assistive device for greater rehabilitation
gains. These approaches largely fall along two pathways: (1) adapting device
operation to induce greater user agency and (2) more effectively training a user
toward greater movement performance with a device. For (1), augmenting user
agency over a device should facilitate greater cognitive engagement to device
actions and subsequently generate greater performance. Operational parameters of
the device (e.g., feedback gains of the control system) are classically optimized
toward objectives of maximizing movement tracking or minimizing effort [6].
However, if reliable methods to measure and modulate agency are determined, then
device parameters may also be tuned to maximize user integration to the device on a
cognitive level. For (2), training a user to better command a device should generate
greater synergistic user-device action for smoother control and better combined
performance. Command interfaces for devices can be continually modified toward
new training inputs [7]. But having the user effectively learn specific command
patterns may further expand their own independent function. The combined ability
of the user and device may be enhanced if the device can more readily interpret
well-targeted user actions. We intend to explore multiple sensory modalities across
vision, sound, proprioception, and tactile stimulation to serve as effective training
guides that better integrate the intentions and actions of the user with those of the
device.
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2 Research Approach 1: Identifying Operational Conditions
of Motor Prosthetic Devices That Enhance User Sense
of Agency

In this section, we describe how individuals with neurotraumas or neural patholo-
gies, which have compromised control and capacity of muscular actions, may
benefit from cognitive-based rehabilitation. Individuals with this type of movement
disability must either engage in rigorous physical therapy or utilize an assistive
device to regain motor function. Physical therapy involves the repetitive practice
of functional tasks such as grasping objects to reformulate neural connections and
rebuild strength [8]. Physical therapy gains may be accelerated with the aid of
technological interfaces such as virtual reality (VR) [9], robotic interfaces [5], and
instrumented wearables [10]. These interfaces can provide systematic feedback to
a user and the clinical team about performance and generate environments that are
cognitively engaging to the person receiving therapy. Assistive device technology
could also be used to provide functional assistance that could not otherwise be
regained such as neuroprostheses after severe spinal cord injury [11] or amputation
[12]. In the remainder of this section, we make the case of how those with movement
disabilities following neurotrauma may benefit from rehabilitative technologies that
include greater cognitive focus. We describe approaches that quantitatively capture
the sense of agency such that parameters of devices could be adapted accordingly.

2.1 Neuromuscular Disability Can Lead to a Sense
of Disengagement From One’s Own Body

Neuromuscular traumas and pathologies can severely restrict people’s motor func-
tion and their subsequent ability to perform activities of daily living (ADL).
Individuals with stroke, spinal cord injury (SCI), traumatic brain injury (TBI),
and amputation can have compromised walking, standing, and grasping function.
Each year, approximately 800,000 people suffer a stroke [13], 17,700 people
have a SCI [14], 1.5 million sustain a TBI [15], and 1.6 million people undergo
an amputation in the United States alone [2]. Currently, there are four major
categories of treatment for neuromuscular dysfunction: (1) medication to reduce
pain and improve neuroactivity, (2) surgery to repair neurological or orthopedic
traumas, (3) physical training to rebuild muscle strength and retrain motor skills,
and (4) developing assistive devices such as prosthetics and exoskeletons to help
patients to perform functional tasks. With rehabilitation methods involving training
and assistive devices, the person must strongly participate in the process for
motor recovery. However, delivery of these methods mainly focuses on direct
physical restoration of motor function, but not necessarily cognitive engagement
of the person. Neuromuscular pathology not only affects muscular coordination
and capacity but also cognition of the movement. Disturbance of memory and
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executive functioning are common neurocognitive symptoms for TBI patients [16].
Stroke patients were found to suffer from cognitive impairment and dysfunction
memory [17]. Individuals with SCI can develop feelings of depression and social
abandonment [18]. Thus, engaging the person on a cognitive level should accelerate
motor recovery. This engagement could be through building greater empowerment
during the rehabilitation process and greater sense of control over the operation of
an assistive device.

2.2 Sense of Agency and Its Consideration for Motor
Prostheses to Rehabilitate Function

The sense of agency (SoA) refers to the feeling or the perception of being the
true author of one’s own actions and related consequences [19]. The SoA has
been a significant target metric in experiments that investigate the cognitive link
between action and outcomes. Experiments include those for movement actions
such as the performance of reaching and grasping tasks [20, 21]. Reaching and
grasping are common functional movement tasks that allow engagement with a
surrounding environment and are vital in performing ADL. Inducing greater agency
to improve functional performance seems intuitive, but this concept has not been
well demonstrated. Further studies should investigate methods to co-maximize the
SoA and functional performance for neuromuscular patients as a basis to accelerate
motor rehabilitation. Systematic methods that establish a clear link between SoA
and performance could be leveraged toward neuromuscular rehabilitation involving
training paradigms or assistive devices. The SoA indicates the cognitive perception
of control over one’s actions and the related consequences. As such, the SoA could
provide the foundation for cognitive integration between a person with a movement
disability and related functional performance during rehabilitation paradigms or in
using assistive devices.

Previous studies have investigated how technological interfaces could affect the
SoA. In a study conducted by Coyle et al. [22], the SoA was found to be stronger for
a novel skin-input controlled keyboard. A study by Limerick et al. [23] found that
the SoA was weaker for speech interfaces compared to movement interfaces, further
supporting the potential for agency-based movement rehabilitation. Berberian et
al. [24] showed that the increased level of autopiloting of a device reduces the
SoA, suggesting how human-machine interfaces for rehabilitation should include
more continuous input from the user. Often, assistive devices such as exoskeletons
trigger automatic actions once a user command exceeds a specific threshold. An
example is a powered exoskeleton for gait whereby the users tilt their hips to
trigger the exoskeleton to take an automatic step [25]. The user involvement is
disjointed as the user is left to ride the step to its completion until he/she is ready
to take another step. While cognitive agency has not been extensively considered
for rehabilitation, cognitive-based approaches to rehabilitation have been examined.
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Dibilio et al. [26] applied methods to enhance attention as a bridge for better gait
performance following Parkinsons’ disease. Ritterband-Rosenbaum et al. [27] did
demonstrate that computer-training can have a positive effect on the SoA in children
with spastic cerebral palsy. Overall, cognitive metrics such as the SoA could be
a fruitful pathway for device-centered rehabilitation assuming metrics are derived
reliably for translation to systematic changes in device operation.

For motor prostheses, it is typically not only actions of the device that need be
considered for restoring function but also how the device may be embodied by the
user. Embodiment is facilitated through the perception that the entity being moved
is a natural physical extension of one’s own body [28]. Yet, there is a varying
dependence between agency and embodiment. In her study, on the one hand, Caspar
et al. [28] indicated that while interacting with an intermediary that is congruent to
the action, our SoA does not become reduced. On the other hand, an intermediary
that is incongruent to the action performed by the owner does not necessarily reduce
agency. This suggests that for motor prostheses, it is truly the sense of control
over the action (agency) rather than the sense of physical connection that drives
cognitively integrated function. While prosthetics or exoskeletons that better mimic
natural physical structure can facilitate a better sense of connection to the user, it
is agency over the device that binds the user to function. Caspar’s results further
showed that the SoA is flexible with the use of intermediaries such as a robotic
hand. This finding further suggests that methods to systematically adapt a motor
prosthesis according to agency may be valuable and highly plausible.

2.3 Linking Agency to Greater Movement Performance

Several approaches to measure SoA have been investigated, but these approaches are
typically classified as either implicit or explicit [19]. Explicit measures generally
require the subject to provide a survey-like response as to their perception of
control during an experimental paradigm. The subject self-assesses to what extent
their actions are responsible for the resulting actions such as with visual avatars,
presumed to act under user command [29]. However, intentional binding, an implicit
measure, is emerging as a reliable standard for measuring agency [30]. With
intentional binding, greater agency is implied through greater temporal coupling of
a perceived voluntary action and the intended consequence. A typical experimental
consequence is a sound event occurring at some time interval after an action
(e.g., keypress, [31]). It has been well demonstrated that actions which are more
intentional or voluntary lead to greater compression in the perception of the time
interval between the action and sensory event [30, 32, 33]. Our lab has developed
experimental paradigms that vary visualized conditions of operation for a virtual
reach-to-grasp task to investigate the correlation between sense of agency and
performance (Fig. 1). Agency is assessed according to the subject’s perception of
time interval between completion of their grasp action and receiving a sound event
(beep) as a sensory consequence. The operational conditions include variation in
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Fig. 1 Flow diagram of experiment having subject perform reach and grasp under varying
visualized operation in virtual reality while assessing agency and performance

speed, inclusion of mild noise, and adding a level of automation to the subject’s
motor drive. These conditions serve to represent general operational levels by which
to tune a device. These ongoing studies are establishing the significant and positive
correlation between performance and agency for both reaching motion tasks [34]
and grasp force-tracking tasks [35]. Our developing results strongly suggest that
tuning operation of devices according to agency may be possible and can produce
greater user-device integration for better cognition and performance.

2.4 Physiological Patterns as Implicit Measures for Agency

Explicit measurements of SoA are highly subjective, and while the SoA is a metric
about perception, soliciting survey-like responses from a subject can be prone to
various bias. It becomes more challenging to use such a measure to objectively
tune an assistive device or rehabilitation paradigm toward greater performance. The
tuning process effectively reduces to adapting operation of the interface toward a
user’s best guess of preference. This approach does not necessarily serve any further
objective such as cognitive integration or better performance. While an implicit
measure, intentional binding offers a more objective metric of SoA by having the
subject focus on time estimation, a metric without qualitative inference. As with
any cognitive-level metric, several trials for a given operational condition may be
needed for reliable representation of a subject’s SoA for that condition. However,
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a quantitative value can be assessed, and advanced processes such as mathematical
optimization can be employed to identify control parameters automatically [36].
However, necessitating subjects to focus on the additional task of providing a
quantitative metric in addition to performing the desired task may be fatiguing.
In general, fatigue has cognitive repercussions [37] and may adversely affect the
user-device “fitting” process. Finding ways by which SoA may be inferred more
passively such that the subject simply engages in the process of using the device
at a given operating condition is the most desirable. Other implicit measures for
agency may need to be found that ascertain unconscious subject responses such as
eye movements [38] or subtle gestures [39] while tuning devices.

Our lab is investigating physiological responses such as electromyography
(EMG, Delsys, Trigno system) and electroencephalography (EEG, 32-channel g.tec
system) as indicators for higher SoA toward greater movement performance. EMG
and EEG are highly implicated as control signals for movement assistance devices
[40–43]. Our expectation is that the standard method of intentional binding to mea-
sure the SoA can be used as “validation” to find reliable neural signatures through
EEG-EMG coherence during motor function tasks (Fig. 2). Motion (Optitrack, nine
Prime 17 W cameras) and force (AMTI, Mini40) capture was processed in real time
to provide performance cues to the subject performing a grasp force-tracking task.
Kühn et al. [44] showed that the lateral, caudal region within the supplementary
motor complex strongly contributes to the experience of SoA when performing a
voluntary action. It was also shown that specific bands (alpha, beta) may contain
the primary neural oscillations associated with SoA [40]. Sato et al. demonstrated
that high SoA may be experienced in myoelectric control of a robotic arm when
modulating the visualized synchrony between one’s own actions and those of the
robotic arm [45]. As such, if physiological foundations for agency could be reliably
identified, then automatic adaptation of the device for greater integration to the
user could be developed for a variety of human-machine interfaces, including motor
prostheses.

2.5 Utilizing Reward-Based Rehabilitation to Enhance Agency
and Performance

Training approaches to rehabilitate individuals with neuromotor disability should
consider incentivized ways in which to provide performance feedback. It has
been shown that virtual reality rehabilitation can produce gains over conventional
physical therapy [45]. Not only are the interfaces more visually stimulating,
but training paradigms may be presented in gamified ways to further motivate
engagement [46]. When the feedback is positive and interpreted as “reward,” it
can stimulate adaptations in neural processes toward greater retention of better
performance and more independent function [47]. As such, reward may not only
facilitate motor learning but it may also be a vehicle from which to cognitively
integrate users and movement devices.
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Fig. 2 Paradigm to observe physiological underpinnings of agency during movement task.
Top—Subject grasping instrumented apparatus during task to force-track a target ramp. Bottom—
Difference in coherence for select EEG-EMG pair between trials recorded as high agency versus
low agency
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The effect of reward to motivate movement performance has been demonstrated
extensively. Mulliken et al. [48] designed a series of experiments using juice as
a reward to motivate monkeys to rapidly learn optimal control of a screen cursor.
Brain recordings indicated a higher potential to decode those neural signals for
better neuroprosthetics. Another study investigated how reward with virtual reality
rehabilitation could amplify movement magnitudes during reaching of the affected
hand following hemiparesis [49]. As such, visual projections of performance that
promote a sense of success appear to accelerate potential rehabilitation gains.
Amputees learning to operate an external device can leverage a similar approach
to operate the device skillfully for ADL [2].

Despite the apparent benefits in providing reward with performance feedback
for rehabilitation, it is not clear what type or dosage of reward would optimally
accelerate gains or best integrate user actions to an assistive device. Our lab has been
investigating the use of simple reward and punishment feedback on performance and
agency of a virtual reach-to-touch task (Fig. 3). Preliminary results have indicated
that regardless of actual performance when receiving the feedback, higher dosages
of reward compared to punishment produce higher agency and performance [50,
51]. Furthermore, a general positive reward may not have the same effect on each
individual. A personality type where one is more driven by extrinsic cues [52] may
have a greater sensitivity to either reward or punishment feedback. Also, providing
visual cues with greater positive familiarity (e.g., imagery associated with hobbies)
may also produce desirable neural adaptations [53] that could be leveraged for
greater cognitive integration between user and rehabilitation device.

2.6 Sensory Feedback to Induce Greater Agency

In addition to perceptive feedback (e.g., reward), explicit sensory feedback may
have an important role in inducing greater agency and performance of a person
operating a movement device. Visual feedback has been widely demonstrated to
be useful in informing individuals toward improved movement performance [54].
Visual feedback is also a dominating cue for SoA. Evans et al. [55] showed
that visual feedback overrides SoA when no proprioceptive feedback is provided.
Methods by which sensory feedback can be systematically delivered to achieve
specific objectives such as higher agency and greater performance would be
valuable for user-device integration of motor prostheses. Virtual reality is a powerful
environment from which to provide highly customized visual feedback at a low
cost for motor rehabilitation training [9, 46]. Audio, haptic, and tactile cues could
further reinforce visual feedback toward performance and agency during user-
device integration. When presented appropriately, these various feedback sources
have already been demonstrated to positively affect cognitive behavior [55] and
functional touch sensation [56] following neurotrauma.

In our lab, we are examining methods to leverage various sensory feedback to
induce greater agency toward higher performance. We are developing an instru-
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Fig. 3 Example of performing multi-DOF task in VR environment (MuJoco HAPTIX) with
reward/punishment feedback on performance

mented glove, The Cognition Glove, which aims to induce greater SoA through
the systematic provision of sensory feedback in response to the achievement of
secure grasp [35]. Secure grasp is accurately predicted using machine learning
(ML) techniques to process signals from onboard flex and force sensors (Fig.
4). Given our procedures for generating training data, a simple artificial neural
network was sufficient to identify true positive cases of secure grasp at a 90%
rate for a variety of grip postures (whole-hand, tripod, precision pinch). Sensory
cues are provided at variable timings under various modes (visual, LED; auditory,
beeper; tactile, vibrator) to progressively induce agency and more efficiently garner
performance gains. Our lab will be performing clinical testing on individuals with
traumatic brain injury using this platform to verify how progressive cognitive
binding to performance may improve motor retention following neurotrauma. Using
relatively low-cost, easy-to-use, wearable technology should provide a pathway for
clinical translation for technologies that leverage user cognition to better movement
performance. Such platforms may also be developed for training better control of a
variety of movement devices.
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Fig. 4 Instrumented wearable glove (“Cognition Glove”) informs the user about successful
performance (secure grasp) with sensory feedback to induce greater agency. (a) Breakout of
Cognition Glove, (b) Person using Cognition Glove for various grasp postures

Stand-alone wearable instrumentation providing milder cues would allow for
cognitive-based training feedback throughout the day. However, optimal rehabil-
itation regimes would likely also include short periods of intensive training with
“enhanced” sensory feedback. Combining instrumented wearables with virtual
reality systems would offer a pathway to provide “enhanced” feedback while using
technology that is highly affordable and portable for increased clinical translation.
Our lab has developed VR applications (Unity Technologies) to integrate our
Cognition Glove to commercially available VR technology such as the LEAP®

for hand tracking and the Oculus® for immersion and visualization (Fig. 5). Our
short-term objective is to investigate how enhanced sensory feedback from com-
plementary VR could further augment short-term gain and retention in agency and
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Fig. 5 Integration of Cognition Glove with virtual reality for enhanced sensory feedback used to
induce agency and inform the user about performance

performance. Ultimately, we seek to observe this effect in individuals rehabilitating
motor function following incomplete cervical-level spinal cord injury. Such an
approach could be employed for individuals relying on physical therapy only to
restore function or utilizing an assistive device such as a neuroprosthesis [12].

2.7 Dependence of User Agency to Device Sensitivity

Our previous work has considered changes in device operational modes such as
fast or slow speed, inclusion of noise, and level of automation. However, for a
given operational mode, the sensitivity at the command interface may also play
an important role in optimizing performance and user agency over a device. For a
motor prosthesis, command sensitivity in each of 6 degrees of freedom (6-DOF)
may be adapted accordingly. It has been previously shown that increasing the gain
on visualized speed will cause an increase in experienced agency [57]. Other studies
have shown how command-interface sensitivity is crucial for driving control of
devices for rehabilitation including hand exoskeletons [58] and wheelchairs [59].

A major objective for our lab is to develop methods that identify device
sensitivity levels for user-device interfaces that optimize 6-DOF control through
greater agency. Whether agency is identified through intentional binding or physio-
logical metrics, we expect to demonstrate fundamental relationships between device
sensitivity and agency that can be leveraged toward greater functional performance.
At this stage, it is not clear whether these relationships are higher or lower order,
linear or nonlinear, or uniquely dependent on a specific position or orientation DOF.
It is also critical to determine for each application what window of test samples of a
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given sensitivity must be presented for the user to accommodate such that a reliable
measure of agency is discerned.

Beyond procedural verification of how best to ascertain a reliable agency mea-
surement, we are investigating how device sensitivity adaptation may be optimized
for greater agency and performance across: (1) fixed versus flexible interfaces and
(2) simple versus complex tasks (Fig. 6). In relation to motor prostheses, fixed
interfaces would mimic myoelectric devices controlled using isometric contractions
[60]. Flexible interfaces allow the user to physically move the point of interaction
in commanding device operation. We hypothesize that the sense of agency may
be heightened when the user has kinesthetic sensation [55, 61, 62] as part of the
device control. We are developing tuning procedures for a commercially available
6-DOF mouse (3DConnexion Spacemouse) serving as a fixed interface. The user
manipulates 6-DOF control within a computerized environment by applying loads
upon the largely stationary mouse. For a flexible interface, a custom-built Gough
Stewart platform [63] joystick was used. The user can manipulate each of three
position and three orientation DOFs on the device whose corresponding sensor
signals can be analogously translated to a computerized environment.

With both the flexible and fixed interface, we aim to test the efficacy of agency-
based adaptation of command sensitivities with both simple and complex tasks. Full
movement control would potentially involve manipulation of functional movement
in all six DOFs. Control in more DOFs is interpreted as a complex user-device
task. However, motor prostheses often restrict motions to a single plane with single-
threshold command execution of the device to theoretically serve as a simple task.
For example, powered exoskeletons for gait typically restricts leg motions to flexion-
extension at the hips and knees following a single hip-tilt trigger. While exo-gait is
a complex task with the user making 3-D balance adjustment with a crutch-cane,
the trigger execution of a device-driven step is simple in theory. We aim to simulate
simple (tracing of 2-D circle) and complex (6-DOF control of virtual hand) task
functions for optimizing agency-based tuning of both fixed and flexible interfaces.

3 Research Approach 2: Utilizing Sensory Feedback to Train
Consistent Movement Responses for Better Rehabilitation
and Improved Use of Motor Prostheses

In this section, we discuss approaches and implications in using various modes
of sensory feedback to better train a person with movement disability to use a
myoelectric motor prosthesis. First, we make the case as to why training the user
to produce consistent command responses is beneficial for device control. Next,
we discuss various modes of sensory feedback that can be used for rehabilitation
training to perform better movement patterns. We suggest how these approaches
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could be employed for better user integration to a myoelectric prosthesis. The
effects on training and retention of various types of sensory feedback are considered.
Then, we discuss how sensory feedback may be more effectively employed to train
a user driving operation of a myoelectric device governed by machine learning
decoding and control. Finally, we introduce the platform our lab is developing to
utilize multisensory feedback to train and condition the user to produce responses
that are more machine predictable. The goal of this platform is more efficient and
effective user-device integration through training that includes VR simulation prior
to deployment with real-world prosthetic systems.

Fig. 6 Fixed and flexible interfaces serve as testing environments for varying device sensitivities
and observing subsequent changes in agency and performance. These interfaces are used for
performing either simple (2-D tracing) or complex (6-DOF) control tasks
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3.1 Rationale to Training the User for Better Integration
to a Myoelectric Motor Prosthesis

Following orthopedic trauma, rehabilitation involves effectively training a person
to rebuild independent strength and coordination. In doing so, the objective is to
produce responses that are accurate and consistent. Such training methods also
prove beneficial in training the use of a motor prosthesis after neurotrauma, such
as stroke, spinal cord injury, or amputation. In these cases, myoelectric control
of an assistive device to restore function [64–66] may employ machine learning
techniques that “adapt” device operation to user EMG command inputs [67, 68].
In theory, this approach is advantageous in that the onus is not on the user but
rather the device to progressively alter behavior according to what the user is
newly presenting as commands. Adaptation to the user is sensible given time-
varying considerations of electrode placement, fatigue, or new muscle contraction
tendencies with progressive use. However, the user inevitably must also endure
this adaptation process. The goal in user-device integration is to achieve a reliable
convergence in the behavior of each. With improved user ability to consistently
generate target responses, the better the device will be able to reliably decode intent.
In turn, the user can then develop agency over the device by better anticipating its
actions. As such, exploring ways in which the user can learn to generate consistent
command patterns would facilitate greater user-device integration.

Having the user generate targeted patterns would serve three sub-objectives.
First, the user would be more actively engaged, at a cognitive level, in the user-
device integration process by following guided cues as opposed to passively
presenting various command patterns. Second, the adaptation process should be
shorter if both the user and device have common targets upon which both can
converge. The user and device would have a common target in functional directives
(e.g., the movement directions) and respective commands the user is expected
to give and the device is expected to receive. Third, the functional space is
potentially larger as the command targets the user would be presented for training
could be strategically more distinct and more easily discernible by a command
pattern classifier. If left wholly to the unmotivated user, there could be tendencies
to generate similar, overlapping command patterns. In which case, the machine
learning classifier may be less able to find distinct muscle synergy for each unique
command.

3.2 Sensory Feedback for Movement Training

While five senses are traditionally recognized, it is vision, sound, touch, pro-
prioception, and vestibular feedback that are most implicated with completing
ADL involving locomotion. Vision is dominant in real-time monitoring of one’s
movement relative to the surrounding environment. Sound provides cues about
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physical contact or verbal directives. Touch feedback informs one about the surface
interaction of objects within the environment. While vision, sound, and tactile
feedback are largely driven through external stimuli, proprioceptive (including
kinesthesia) and vestibular feedback generate internal representations of body
position and movement.

While those with neurotrauma may have reduced or eliminated modes of sensory
perception, it is important to consider how sensation may be effectively leveraged
toward better rehabilitation. The goal is to train the user, independently or with a
motor prosthesis, to generate optimal movements for specific functions. Optimality
criteria may include less effort, faster task completion, smoother movements, and
reducing the onset of injury progression. In isolation, visual and haptic feedback
are proven to generate better performance than audio cues in training movement
[69, 70]. However, audio feedback can be used to effectively pace a cyclic activity
[71] and provide sonification error to a movement variable [72] with minimal
distraction. Visual feedback is the most effective sensory mode for guiding spatial
positioning during movement tasks [73]. It typically involves the presentation
of subject performance against a target to minimize error [73]. Tactile feedback
involves activation of skin receptors, sensitive to pressure or vibration. Tactile
feedback can be effective reinforcement cues to proprioceptive and vestibular tasks
of controlling positions [74–76], regulating force [77–79], and maintaining multi-
joint posture and balance [80–83].

3.3 Strategic Features in Sensory Feedback Training
of Movement

While each type of sensory feedback mode may have unique positive features
for movement training, advanced rehabilitation paradigms need to consider how
each mode is presented for optimal effects. For example, visual feedback about
performance can be provided in abstract forms whereby feedback “appears” as an
extrinsic variable of performance rather than an intrinsic representation of one’s
own body movements. Examples of abstract feedback include simple plots, gauges,
bars, or numbers [84–89]. Alternatively, visual feedback may also include more
embodied representations as with virtual reality, 3-D animations, or virtual mirrors
of one’s own body [90–92]. Beyond the level of embodiment, other strategic
considerations in how sensory feedback is provided for movement performance
include the following: whether sensory feedback is beneficial more in real time or in
retention, the complexity of the feedback, and how could various sensory modalities
be effectively combined to train better user-device integration.
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3.3.1 Sensory Feedback Training for Real-Time Performance Versus
Retention

As a functional specification for a rehabilitation paradigm, it must be determined
whether the goal of training for better movement is under real-time conditions or
during retention. Typically, better independent function during retention, i.e., when
feedback is removed, is the training objective. However, when operating a device, it
may be plausible to continually include sensory feedback during ADL assuming
the feedback is not considered noxious or distracting. Concurrent feedback is
defined as real-time feedback of performance to immediately reduce error to the
target. Concurrent feedback is highly beneficial in the early stages of learning to
introduce the task objective and results in the highest level of performance [86].
However, concurrent feedback can be especially counterproductive for retention if
it continuously over-cues the person. The guidance hypothesis [93, 94] suggests
that constantly providing too much feedback is detrimental for retention because
learning effects are more externally driven. As such, the person is not as encouraged
to independently develop intrinsic mechanisms, such as muscle memory and
proprioception. Furthermore, the performance during feedback training cannot be
used to infer the effects on long-term learning [95].

To facilitate greater retention, sensory feedback training paradigms should reduce
the dependency on feedback for movement execution and put more independent
onus on the user. Previous approaches to this end include feedback that is faded [85,
96], self-driven [97–99], more implicit through softer bandwidth targets [100–102],
and using terminal feedback [70, 103, 104]. Terminal feedback is when knowledge
of results is provided immediately after performance task execution. The subject
observes their performance offline in preparation of making improvements during
subsequent trials. Intermittently providing both concurrent and terminal feedback in
the same training blocks may offer both online performance and retention benefits
[86]. Even if partner technology with the motor prosthesis would allow for some
modes of continuous cueing, training approaches centered on promoting greater
independent function is likely more desirable.

3.3.2 Feedback Complexity in Regulating Movement Performance

Simple tasks may be discriminated from complex ones according to the number
of movement degrees of freedom involved. As such, complex feedback offering
multiple concurrent targets can have positive effects with more complex tasks,
especially when the subject is naïve to the task [105–108]. For tasks that involve
multiple joints but virtually a single target objective, e.g., movement primarily in a
single dimension, it is not clear how feedback complexity can optimally contribute
to movement training. In our lab, we investigated how visual feedback complexity
may elicit improved performance of the two-legged squat. Specifically, we evaluated
how changes in complexity and body discernibility had an impact on the consistency
of the subject’s thigh position. The two-legged squat was a desirable platform
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Fig. 7 Experimental setup provides visual feedback (VF) to the subject performing the two-legged
squat exercise. Top—Subject observes one of four VF cases with varying complexity and body
representation. Bottom—Sample performance traces during VF training versus retention trials.
Performance trace is given as the subject’s mean thigh angle trajectory +/− one standard deviation

movement for this investigation since it is a multi-joint movement with essentially
a single variable of modulation, i.e., squat depth. Furthermore, the squat has similar
features to the sit-to-stand movement that can be powered by motor prostheses
following spinal cord injury [109].

Real-time visual feedback (VF) was presented as either simple (thigh position
only) or complex (shank, thigh, and torso positions) type and cross-presented again
in either an abstract or representative (body-discernible) mode (Fig. 7). Subjects
completed a concurrent visual feedback training block immediately followed by
a retention test. Our results indicated that complex VF was the most effective
case for real-time performance when presented with body-discernible visualization.
Subjects had similar performance across both simple VF cases, suggesting body
discernibility effects only take hold with multi-segment representations. Complex
VF also showed better performance in retention than both simple VF cases. We
postulate that complex-representative VF allowed subjects to reduce their focus
explicitly on the thigh angle, thereby promoting greater development of intrinsic
mechanisms.
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3.3.3 Sensory Feedback Integration for Myoelectric Prosthetic Control

Following neurotrauma or pathology, both motor and sensory capabilities of the
person may be severely impaired. While visual and auditory capabilities are usually
maintained, losing the sense of “touch” and “feel of body” to carry out a task makes
it difficult to skillfully modulate body interactions with the environment [110].
Some neuro-machine interfaces include the restoration of touch and kinesthetic
sensation [111, 112]. The restoration of haptic feedback in myoelectric devices
can aid in the accurate assessment of object shapes [113, 114] and locations in
space [110]. Whether sensation is restored or relying only on residual sensation,
utilizing haptic feedback along with visual or audio cues for movement training
may generate the greater performance gains in rehabilitating functional movements.
Sensory feedback integration establishes greater body ownership over a prosthetic
limb [115–118], which facilitates greater user-device integration. With embodiment
to a prosthetic device, the user can better perceive device actions as those of an intact
limb. Perceptual physical ownership of the device can increase the sense of agency
[19, 119, 120].

Thus, multisensory feedback during movement training would have the potential
to produce profound physical and cognitive binding of the person to specific
objectives. Again, these objectives may be either greater independent function or
greater capabilities with an assistive device. In either case, multisensory training
of the user to produce consistent and distinct patterns in muscle activity would be
invaluable. In addition to visual and audio feedback, incorporating haptic feedback
for movement training can increase the control space of myoelectric prosthetic
performance [121–125] and better “realize the effect” of actions [126]. Haptic
feedback can be effectively employed for motor learning and increasing user
engagement to a device by modulating the user’s voluntary recruitment of muscles
while either resistance or assistance is felt during the movement [126–128].

3.4 Machine Learning for Movement Control and Intent
Detection

Due to the variability in myoelectric signaling and recording, it is vital to develop
robust methods for training a machine learning classifier for reliable movement
control and detection of user intent. Classifier systems typically acquire EMG data
from the user and transfer that data into movement actuation of an assistive device
or feedback to the user as part of training independent function. These classifiers
must decipher system and command information from “patterns” in EMG signals
from actively contracting muscles [129–133]. System and command information
include the identification of ideal movement trajectories and intended directions
of movement [4, 134–137]. The control system with embedded classification can
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Fig. 8 Proposed “model” control system trains a user with visual feedback to collect data and
adapt controller parameters of an assistive device

translate this EMG information to actuation signals that drive feedback displays or
motors in the prosthetic device.

Our lab is developing systems in simulation to verify how well movement and
EMG patterns collected during our squat VF experiments can be used to modulate
squat performance of a biomechanical model that includes open-loop and closed-
loop systems of control (Fig. 8). For each VF case, the open-loop component is
based on actual subject data of motion (joint angles) and forces (ground reaction
forces and center of pressure locations), from which joint moments are estimated.
The closed-loop component includes additional joint torque drive from a neuro-PD
controller [138–140]. Blana et al. [65] similarly used an artificial neural network
inputting combined EMG and kinematic signals to control a prosthesis in a virtual
reality environment during an upper limb reaching task.

The artificial neural network (ANN) receives input about the user motion,
including EMG, and compares it against optimal (minimal effort) movement
trajectories. These optimal trajectories are computed offline from the optimization
of a musculoskeletal model for completing the squat from various user states.
The ANN outputs joint errors that then drive a classical proportional-derivative
(PD) control system to generate command torques onto the biomechanical model
of the person and device. Parameters for the ANN (weights, biases) and the
PD controller (proportional, derivative) may be optimized according to multiple
dynamic simulations in which the squat is performed to minimize deviations from
desired trajectories. While this model formulation does not consider how the open-
loop component of the user may further change in the presence of closed-loop
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control, it offers the first approximation of possible performance under various VF
training cases for user-device integration.

For the detection of commanded intention, many different machine learning
classifiers have previously been applied to EMG signals to generate control
inputs, including fuzzy logic [141], support vector machines [142, 143], linear and
quadratic discriminant analysis [143], and artificial neural networks [65, 143]. EMG
signals are recorded, and an ML classifier is trained on these signals to produce
usable command inputs for the prosthetic or other device. Westwick et al. [144]
generally observed that accuracy for EMG classification of movement increased
when trained on additional recordings from intracortical electrodes. However, it
was also observed that accuracy could increase further if the recording inputs
were limited to “an appropriate selection of inputs.” Westwick states that with the
inclusion of too many neural inputs, cross-correlations between neurons produce
a numerically ill-conditioned estimation and poor generalization of classification
when presented with new data sets. Irrelevant or redundant additional inputs to
a classifier can increase the training time and embed the classifier with a greater
ability to reject noise rather than identify target signals. Furthermore, robust control
of simple systems may be possible with only one input channel [145]. However,
increasing the number of inputs generally allows control of more degrees of
freedom and with greater accuracy if the classifier is robust enough to identify
the underlying common-mode signal or pattern [144, 146, 147]. For example,
ensemble ML methods perform very well with noisy data, such as neural signals.
Ensemble methods cogenerate many learners, some of which may be weak but still
contribute to the recognition of an evident pattern. Those learners will subsequently
have greater influence on the ensemble’s output. By recognizing several additional
underlying patterns, greater discrimination between noise and true signals for
command intention can be made across the ML ensemble [148]. We propose that
useful patterns for a larger control space may emerge more reliably with the use of
multisensory feedback to train the user.

We are conducting a study to observe classification accuracy for various muscle
sets that have implications to respective neurological deficits [149]. Depending on
the nature and extent of the deficit, e.g., level of SCI lesion, the available muscles
for myoelectric control will vary. In our study, we expectedly observe the larger
muscle sets producing better classification accuracy of the true-positive intention
of directional control (Fig. 9). We are currently examining how these classifiers
necessarily differ in performance when used for a functional task, such as control
of a virtual object. We seek to determine if there is strict correlation between
classification accuracy and performance and which minimal-input muscle sets can
be reliably used moving forward when we seek to modulate those inputs with
sensory feedback training.
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Fig. 9 Sensory feedback training paradigm for myoelectric device control

3.5 Multisensory Platform to Train Users for Cognitive
Integration to Motor Prostheses Under Myoelectric Control

Our lab is currently developing a multisensory feedback platform to train users
to produce electromyography patterns for better myoelectric device performance
(Fig. 10). The platform will include the integration of visual, audio, and haptic
(tactile and proprioceptive) feedback to guide the user to produce target muscle
activation patterns. These patterns will initially be based on user-specific tendencies
but then be parsed toward particular EMG targets. These targets will be specified
to allow for greater classification accuracy in decoding intent across multiple
dimension of control and various input muscle sets. The objective is to provide
combinations of visual, audio, and haptic feedback during training to promote
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Fig. 10 Sensory feedback training platform for myoelectric device control

high online performance and development of intrinsic mechanisms. Visual and
audio feedback will be provided primarily through a virtual reality interface also
displaying the virtual prosthesis being controlled. Haptic feedback will be provided
through vibration actuators and a worn brace that provides resistance to movement.

The upper-arm brace will provide either isometric or isodynamic (constant
velocity) resistance and be constructed to include modules to integrate EMG sensors
and vibrotactile stimulators. As the subject receives sensory feedback to drive the
virtual prosthesis being observed, an ML technique, such as an artificial neural
network, will take EMG inputs to continually generate the desired joint trajectories
for the device. A proportional-derivative controller will continually compare these
desired (command intended) trajectories to those being actually assumed by the
virtual prosthesis to generate joint error signals. These joint error signals will be
multiplied by the respective proportional and derivative feedback gains to produce
the control torques to be applied to the virtual myoelectric prosthesis. The major
engineering research objective with this platform is determining how multiple
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modalities of sensory feedback should be synergistically provided to best train
the user. Considerations include feedback form (complexity, representation) and
training instruction as to which feedback modes should the user explicitly pay
attention versus be subconsciously guided. Ultimately, this platform will be used
to determine optimal modes by which to present multisensory feedback and vary
operational parameters for machine learning control and classification of intent.
The platform is designed to be flexible to consider several clinical populations
with varying levels of neuromotor deficit. While initially a simulation platform, it is
expected to generate customized user-device parameters to be automatically ported
to a real-world device.

4 Conclusions

In this chapter, we provide rationale and proposed approaches for the cognitive
integration of users and motor prosthetic devices. We outline work from our lab
as example methods by which to accomplish user-device integration in these ways.
Mainly, the two major lines of research being promoted include the following: (1)
adapting the device to augment user agency and (2) training the user to generate
optimal device commands. As such, we propose methods that should facilitate faster
and more effective convergence of operation for both the user and device from the
perspective of each.
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advanced user-device interfaces, 123
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limb amputation, 123
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sense of empowerment, 124
spinal cord injury, 123
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Closed-loop prosthetic systems (cont.)
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MLR, see Mesencephalic locomotor region

(MLR)
MMT, see Manual muscle tests (MMT)
MNE python, 8
Model calibration, 29
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MRI, see Magnetic resonance imaging (MRI)
MSE, see Mean squared error (MSE)
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Myoelectric motor prosthesis, 135–137
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Non-negative matrix factorization (NNMF), 24
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Open-loop systems, 142
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quality of life, 102
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Pars dissipata (PPNd), 105, 108, 115
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PCA, see Principal component analysis (PCA)
PCs, see Principal components (PCs)
PD, see Parkinson’s disease (PD)
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limitations, 109
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stimulation location and frequency,
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targeting, 109
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protocol, 35
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data analysis, 31–32

dataset, 30
DoFs, 33
fPCA, 31–32
fPCs, 32–36
grasping poses, 30
intransitive actions, 30
MSE, 30
reconstruction error, 35, 36
signal reconstruction, 35
tool-mediated actions, 30
transitive actions, 30

Prior-domain knowledge, 12
Product of exponentials (POE) formula, 27
Proportional-derivative (PD) control system,

142, 145
Proximal interphalangeal (PIP) joints, 74
Proximal joint, 28
PSD, see Power spectral density (PSD)
Pulley-driven synergy, 81

R
Reconstruction error, 35, 36
Rectified linear unit (ReLU) activation, 9
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