
Chapter 20
A Short Review of Rotations in Rigid
Body Mechanics

Wilhelm Rickert, Sebastian Glane and Wolfgang H. Müller

Abstract The representation of rotations and of the corresponding angular velocity
commonly used in rigid body dynamics are revisited using an abstract tensorial
approach. In order to do so, Rodrigues’ formula is recalled and the related angular
velocity vector is derived. This paper focuses on the analysis of successive rotations
and especially a proof of the addition theorem for the angular velocity of successive
rotations is presented in a rational manner. Following the discussion of successive
rotations and the proof of the addition theorem, the treatment of successive rotation
in the current literature on rigid body mechanics is discussed in a review.
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20.1 Introduction

The field of rigid body dynamics was initiated and established by Euler in the
eighteenth century. Nowadays rigid body dynamics is an integral part of the design
process in engineering. This field is covered in every course on engineering mechan-
ics. However, the theoretical aspects are often not discussed in detail. In particular,
this applies to the analysis of rotations. A possible reason for this is given in the
textbook of Taylor [14, p. 336]: “A detailed study of rotations is actually surprisingly
complicated. Fortunately, we do not need many of the details, and some of the prop-
erties that are quite hard to prove are reasonably plausible and can be stated without
proof.”
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Rotations are present in many dynamical systems, e.g., classical problems such as
the pendulum or advanced applications ranging from aircraft dynamics [8], tomotion
capturing techniques [12]. In order to characterize the rotational movement of a rigid
body, three degrees of freedom are introduced. Commonly used concepts are Euler
angles,Tait–Bryant angles,Euler parameters and quaternions. The first two angle
approaches divide the rotation of the body into three successive rotations around
specified axes and hence introduce three corresponding axes. The Euler parameters
and quaternions, however, describe a rotation with one axis and a rotation angle, see
[15].

In the following representations of rotations in terms of three successive rotations
with specified axes and its consequences regarding the kinematics are discussed.
While the presentation and discussion of these rotations is rather uniform in the
literature, difference arise when the angular velocities are introduced. These differ-
ences are due to inaccuracies related to the term angular velocity. Often this term
is confused with rotational velocities. However, as will be shown in Sect. 20.4, the
angular velocity and the rotational velocity are not the same in general. Moreover,
additional confusion arises, because the angular velocity due to multiple successive
rotation is (surprisingly) given by the sum of the corresponding elementary rotational
velocities. Sometimes this result is referred to as the “addition theorem of angular
velocities.” The validity of this theorem makes it hard to distinguish the concept of
the angular velocity from the rotational velocity. Furthermore, this fact renders the
distinction of these concepts obsolete if only the final result is considered. In order to
clarify the relations, this paper reconsiders the successive rotations and their angular
velocities in a rational manner.

This paper starts with a brief introduction to the representations of rotations using
an abstract tensor notation. Then, the angular velocity is introduced based on a tensor-
based approach as in [3, 17]. Subsequently, successive rotations are investigated
and relations for the corresponding angular velocities are derived and the addition
theorem is proved. Furthermore, the terms rotational velocity, elementary angular
velocity and angular velocity are precisely defined and explained. Based on this
framework, a literature review is given on rotations in rigid body dynamics.

20.2 Rotation and Change of Base

In the following, the concept of tensor rotations is introduced by using orthogonal
transformations. Let Q be a proper orthogonal tensor such that

Q · QT = QT · Q = 1 , det(Q) = 1 , (20.1)

where QT denotes the transpose of Q. Consider two orthonormal bases with proper
orientation {e′

i} and {e0i }. They are connected by the following transformation

e′
i = Q · e0i , (20.2)
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which is the rotation of e0i onto e′
i. Therefore, the tensor Q is also referred to as

rotation tensor. Based on the identity tensor, 1 = e′
i ⊗ e′

i = e0i ⊗ e0i , one can derive
a mixed representation of the rotation tensor

Q = e′
i ⊗ e0i , (20.3)

where the Einstein summation convention is applied. The component matrices Q′
and Q0 corresponding to the non-mixed base representations,

Q = Q′
ije

′
i ⊗ e′

j = Q0
ije

0
i ⊗ e0j , (20.4)

can be found via the projections:

Q′
ij = e′

i · Q · e′
j = e0i · e′

j , Q0
ij = e0i · Q · e0j = e0i · e′

j . (20.5)

Note that the result Q = Q′ = Q0 is remarkable and inherent to the rotation tensor.

20.2.1 Rotations of Tensors

After agreeing on the rotation of base vectors, the rotation of a vector a is given by

b = Q · a . (20.6)

In order to emphasize that b is a new vector, we refrain from using a′ and instead
introduce b as the result. Both vectors can be represented in both bases {e0i } and {e′

i},
respectively:

a = a0i e
0
i = a′

ie
′
i , b = b0i e

0
i = b′

ie
′
i , (20.7)

and the following transformation rules for the components arise

a0i = Qija
′
j , b0i = Qijb

′
j . (20.8)

It is essential to note that the transformations in Eq. (20.8) do not correspond to real
tensor rotations as introduced in Eq. (20.6). The components a0i and a′

i are nothing
but different representations of the same object, a. Bearing in mind the nomenclature
of Eq. (20.7), the rotation in Eq. (20.6) may be represented in various forms:

b0i = Qija
0
j = QikQkja

′
j , b′

i = a0i = Qija
′
j . (20.9)

Note that the difference between a tensor rotation as in Eq. (20.6) cannot be dis-
tinguished from a change of base as in Eq. (20.7) if only the component equations
are considered, cf., Eqs. (20.8) and (20.9). For example, the transformation of the
components for the rotation b = Q · a looks exactly the same as the component equa-
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tion for the change of base of a, i.e., Eq. (20.8)1 is equal to Eq. (20.9)2. However, the
underlying interpretation is rather different.

Furthermore note that, from a mathematical point of view, one could conclude
that it does not matter whether a change of the base or a vector rotation is considered.
However, from a physical point of view the difference could be significant, e.g., if a
change of observer is considered. Note that this is not considered in this article. The
interested reader is referred to [7].

If rotations of higher order tensors are considered, the Rayleigh product “∗” is
used conveniently. It is a non-commutative product between a tensor of second rank
and a tensor of rank n, see [3],

Q ∗ 〈n〉
C = Q ∗ (Ci1...inei1 ⊗ · · · ⊗ ein) := Ci1...inQ · ei1 ⊗ · · · ⊗ Q · ein . (20.10)

Hence, the tensor of second rank is applied to every base vector of the second tensor.
If Q is a proper orthogonal tensor, its application with the Rayleigh product rotates
any tensor. In particular, one has

Q ∗ a = Q · a , Q ∗ A = Q · A · QT . (20.11)

20.2.2 Representation of the Rotation Tensor

In order to construct the rotation tensor in terms of orientation parameters, the Ro-
drigues formula is used,

Q = Q̂(ψ, q) = 1 + sin(ψ)D + (
1 − cos(ψ)

)
D2 , (20.12)

where
D = q × 1 = −q · 〈3〉

ε , ||q|| = 1 . (20.13)

Therein, the vector q is parallel to the axis of rotation, ψ is the angle of rotation and
〈3〉
ε is the Levi-Civita tensor, see Appendix20.7. The simple contraction of the tensor
D with a vector, x, yields

D · x = q × x ⇒ D2 · x = D · (q × x) = q × (q × x) . (20.14)

Hence, the action of a rotation tensor in the form (20.12) on a vector, x, reads

Q · x = x + sin(ψ)q × x + (
1 − cos(ψ)

)
q × (q × x) . (20.15)

Another useful representation is given by

Q = cos(ψ)1 + (
1 − cos(ψ)

)
q ⊗ q − sin(ψ)q · 〈3〉

ε . (20.16)
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20.3 Time Derivatives in Rotating Systems

In the preceding sections, tensors were treated as invariant regarding their represen-
tation. However, if time derivatives are concerned one has to clarify in which system
the temporal change is measured. In the following, the notation ȧ denotes the time
derivative in an inertial system. Consider a body-fixed system B = {bi} that differs
from an intertial system I = {e0i } by a rotation

bi(t) = Q · e0i , (20.17)

where Q = Q̂(t) is a proper orthogonal tensor. Then, if a vector a is represented in
the B-base, one finds from the product rule:

ȧ := dIa
dt

= dBa
dt

+ ai
dIbi
dt

,
dBa
dt

:= dIai
dt

bi . (20.18)

Therein, the time derivative with respect to B, dB/dt, can be interpreted as the mea-
surement of the temporal change in the body-fixed system.

In order to further analyze ḃi, the temporal change of the rotation tensor Q̇ is
investigated and the angular velocity tensor is introduced as

Ω := Q̇ · QT with Ω = −ΩT . (20.19)

Therefore, the time derivative of bi can be written as

dIbi
dt

= Q̇ · e0i = Ω · Q · e0i = Ω · bi . (20.20)

Since the angular velocity tensor is skew-symmetric, a corresponding axial vector,
the angular velocity ω, is the solution of the axial equation for all x �= 0:

Ω · x = ω × x ⇒ Ω = −ω · 〈3〉
ε ⇒ ω = − 1

2Ω ·· 〈3〉
ε , (20.21)

where the double contraction is defined as A ··B = AijBij. Note that sometimes the
so-called Poisson relation is stated as follows

Q̇ = Ω · Q = ω × Q (20.22)

for the “left angular velocity” and one might introduce a “right angular velocity,”
which is shown in, e.g., [7, 17] but will not be used in the following. Note that in this
paper Ω is the angular velocity tensor and not the right angular velocity vector as
in [7]. Furthermore, note that the inverse problem of determining the rotation tensor
from a given angular velocity vector is also called Darboux problem.
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With the angular velocity ω, the time derivative in Eq. (20.18) can be simplified:

ȧ = dBa
dt

+ ω × a . (20.23)

Note that although only bold symbols are used this equation, it is system dependent
because a system-dependent time derivative is involved.

It is worthwhile mentioning that the angular velocity is not a velocity in the
usual sense, i.e., it is not a time derivative of some position or orientation. In order
to see this, the angular velocity is computed in terms of the rotation angle and
axis from Rodrigues’ formula. Since this computation is lengthy, it is detailed in
Appendix20.8. The angular velocity tensor as well as its axial vector are given by:

Ω = (
1 − cos(ψ)

)[
q̇ ⊗ q − q ⊗ q̇

] − (
ψ̇q + sin(ψ)q̇

) · 〈3〉
ε ,

ω = ψ̇q + sin(ψ)q̇ + (
1 − cos(ψ)

)
q × q̇ .

(20.24)

This result shows that the angular velocity is only coaxial to the current axis of
rotation, i.e., the vector q, if this axis is fixed in space, viz., q̇ = 0. This is for
example the case for two-dimensional settings in which the axis of rotation is always
perpendicular to the plane under consideration and thus constant.

Consider a body-fixed axis of rotation qwith constant components in theB system.
FromEq. (20.23), it follows that q̇ = ω × q. Bearing inmindEq. (20.15), the insertion
of this relation into Eq. (20.24)2 yields:

ω = ψ̇q + sin(ψ)ω × q + (
1 − cos(ψ)

)
q × (ω × q) ⇒ Q · ω = ψ̇q .

(20.25)
There is another representation of the angular velocity that arises fromEq. (20.21)3

if the representation from Eq. (20.3) is inserted:

ω = − 1
2

〈3〉
ε ·· (Q̇ · QT) = − 1

2 ḃi × bi = 1
2εijk(ḃj · bk)bi . (20.26)

However, since the baseB is orthonormal, the time derivative applied to the condition
bi · bj = δij reveals (no summation w.r.t. α)

ḃα · bα = 0 , ḃ1 · b2 = −b1 · ḃ2 , ḃ1 · b3 = −b1 · ḃ3 , ḃ2 · b3 = −b2 · ḃ3 .

(20.27)
Hence, the angular velocity can be written as

ω = (ḃ2 · b3)b1 + (ḃ3 · b1)b2 + (ḃ1 · b2)b3 . (20.28)
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20.4 Analysis of Sequential Rotations

Hitherto a single rotation was considered. However, for (say) the Euler angle ap-
proach the total rotation is composed of three successive rotations. These rotations
are referred to as elementary rotations Qα . Then, the total rotation tensor is given by

Q = Q3 · Q2 · Q1 , (20.29)

with the respective elementary rotation tensors and elementary angular velocity ten-
sors according to Eqs. (20.16) and (20.24)1:

Qα = cos(ψα)1 + (
1 − cos(ψα)

)
qα ⊗ qα − sin(ψα)qα · 〈3〉

ε ,

Ωα = (
1 − cos(ψα)

)[
q̇α ⊗ qα − qα ⊗ q̇α

] − (
ψ̇αqα + sin(ψα)q̇α

) · 〈3〉
ε ,

(20.30)

where the Einstein summation convection does not apply to Greek indices. Then,
the total angular velocity tensor follows as

Ω = Q̇ · QT

= Q̇3 · QT
3 + Q3 · Q̇2 · QT

2 · QT
3 + Q3 · Q2 · Q̇1 · QT

1 · QT
2 · QT

3

= Ω3 + Q3 ∗ Ω2 + (Q3 · Q2) ∗ Ω1 .

(20.31)

In the Appendix, it is shown that the Levi-Civita tensor is invariant under rotations,
i.e.,Q ∗ 〈3〉

ε = 〈3〉
ε for all proper orthogonal tensorsQ, seeEq. (20.51).Hence, the rotation

of Ω2 can be simplified:

Q3 ∗ Ω2 = −Q3 ∗ (ω2 · 〈3〉
ε) = −Q3 ∗ (ω2 · QT

3 · Q3 · 〈3〉
ε)

= −ω2 · QT
3 · (Q3 ∗ 〈3〉

ε) = −ω2 · QT
3 · 〈3〉

ε = −〈3〉
ε · Q3 · ω2 .

(20.32)

The term (Q3 · Q2) ∗ Ω1 in Eq. (20.31) is treated analogously such that

Ω = Ω3 − 〈3〉
ε · Q3 · ω2 − 〈3〉

ε · Q3 · Q2 · ω1 . (20.33)

Hence, the total angular velocity vector is then obtained via double contraction with
the Levi-Civita tensor

〈3〉
ε,

ω = ω3 + Q3 · ω2 + (Q3 · Q2) · ω1 , (20.34)

where the elementary angular velocities are given according to Eq. (20.24)2,

ωα = ψ̇αqα + sin(ψα)q̇α + (
1 − cos(ψα)

)
qα × q̇α . (20.35)

It is interesting to note that the total angular velocity is not given by the sum of the
elementary angular velocities.
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The formulas in Eqs. (20.24) and (20.34) are useful to solve the Darboux prob-
lem. Note that in some cases even closed-form analytical solutions can be derived.
Examples are presented, among others, in [1] and [16]. In literature, the concept of
a skew-symmetric spin tensor is commonly introduced, which corresponds to the
angular velocity tensorΩ in this paper. However, the angular velocity vector, instead
of the “spin tensor,” and representations as in Eq. (20.34) can be very useful not only
in rigid body mechanics but also in continuum mechanics. Indeed, some simple and
transparent relationships for different angular velocity vectors, e.g., vorticity vector,
rotation of principal directions of tensors and logarithmic strain can be derived, see
[10, Sect. 4.1.3].

20.4.1 Simplification for Attached Axes

Commonly used descriptions of rotations, e.g., by the Euler angles, are based on
fixed elementary axes of rotation, where the term “fixed” needs further explanation.
Since the rotation is divided into three successive rotations, two intermediate systems,
B1 andB2, are generated before the inertial system is transformed into the body-fixed
system:

I → B1 → B2 → B .

The first elementary axis of rotation is usually spatially fixed and the second and third
elementary axes are attached to the intermediate systems B1 and B2, respectively.
Hence, the time derivatives of these elementary axes are given by

q̇1 = 0 , q̇2 = ω1 × q2 , q̇3 = (ω2 + Q2 · ω1) × q3 . (20.36)

These axes are therefore called “attached” rather than fixed. If these results are
plugged into the angular velocities in Eq. (20.35), similar to the result in Eq. (20.25),
one obtains

ω1 = ψ̇1q1 , ω2 = ψ̇2q2 + [
1 − Q2

] · ω1 ,

ω3 = ψ̇3q3 + [
1 − Q3

] · (ω2 + Q2 · ω1) .
(20.37)

With these relations, the expression for the total angular velocity vector in Eq. (20.34)
can be simplified such that all rotation tensors Qα cancel:

ω = ψ̇1q1 + ψ̇2q2 + ψ̇3q3 . (20.38)

This final representation of the total angular velocity vector is much simpler than
the first one in Eq. (20.34), but it is only obtained if the elementary axes of rotation
are “attached” to the intermediate systems. Note that the products ψαqα are not
necessarily angular velocities in the sense of the definition introduced above. The
fact that for attached axes the simple addition rule holds was pointed out in [16]
without detailed proof.
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20.4.2 Summary for Sequential Rotations

The results of the foregoing analysis are summarized in the following. First the
universal results read:

For a rotation tensor Q expressed in terms of a rotation axis q and a rotation
angle ψ ,

Q = cos(ψ)1 + (
1 − cos(ψ)

)
q ⊗ q − sin(ψ)q · 〈3〉

ε , (20.39)

where ||q|| = 1, the angular velocity tensor and the corresponding angular ve-
locity vector are given by:

Ω = Q̇ · QT = (
1 − cos(ψ)

)[
q̇ ⊗ q − q ⊗ q̇

] − (
ψ̇q + sin(ψ)q̇

) · 〈3〉
ε ,

ω = − 1
2

〈3〉
ε ··Ω = ψ̇q + sin(ψ)q̇ + (

1 − cos(ψ)
)
q × q̇ .

(20.40)
If three successive rotations are considered, i.e.,Q = Q3 · Q2 · Q1, with their re-
spective elementary axes and angles of rotation, then the following composition
rule holds for the total angular velocity

ω = ω3 + Q3 · ω2 + Q3 · Q2 · ω1 . (20.41)

Therein, each elementary angular velocity ωα is constructed by the formulae
from Eq. (20.40)2.

For commonly used descriptions of sequential rotations, e.g., the Euler angles, the
following simplifications are possible:

If all axes are “attached,” i.e., have constant components in their intermediate
bases,

q3 = q3iQ2 · Q1 · e0i , q2 = q2i Q1 · e0i , q1 = q1i e
0
i , q̇α

i = 0 , (20.42)

for all α ∈ {1, 2, 3}, where {e0i } is an inertial base, then the total angular velocity
vector is given by

ω = ψ̇1q1 + ψ̇2q2 + ψ̇3q3 . (20.43)

Following [11, p. 29], the products ψ̇αqα (no summation) are referred to as ele-
mentary rotational velocity vectors. Hence, the addition theorem for the angular
velocity vector of successive rotations can be restated as:

The angular velocity vector is given by the sum of the elementary rotational
velocity vectors.
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However, note that if one chooses to use three spatially fixed axes, all their time
derivatives vanish and the associated angular velocities of the elementary rotations
are simply given by

ω1 = ψ̇1q1 , ω2 = ψ̇2q2 , ω3 = ψ̇3q3 . (20.44)

In this case, the elementary angular velocity vectors are equal to the elementary
rotational velocity vectors. However, according to the composition rule in Eq. (20.41)
[in contrast to Eq. (20.43)] the following total angular velocity results

ω = ψ̇3q3 + ψ̇2Q3 · q2 + ψ̇1Q3 · Q2 · q1 , (20.45)

which is not the sum of the elementary rotational velocity vectors. Finally, note that
spatially fixed axes are rarely used.

20.5 Treatment of Successive Rotations in the Literature

In this section, a review of several classical textbooks, which cover rigid body dy-
namics and successive rotations, is presented. In particular, the approaches of the
different authors to the problem of successive rotations are discussed. Note that the
given list is by far not complete and for this short review limited to the essentials.

First, one can note that most of the authors rely mostly on matrix calculus, e.g.,
[4, 6, 9, 11, 13, 15] in contrast to the ones using an abstract tensor notation, e.g., [3,
8, 14, 17]. Recalling the discussion in Sect. 20.2, it is therefore not certain if authors,
who rely on a matrix-based approach, regard their equations in terms of a change of
bases or in terms of a rotation of a vector. This requires a detailed investigation of
each equation in terms of the meaning intended by the author.

Second, several authors do not introduce a precise definition of the angular ve-
locity vector ω. If sequential rotations are considered a profound definition of ω is
required because otherwise confusion may arise. This confusion manifests itself in a
mix of terms. For example, the rotational velocities are referred to as Euler angular
velocities, angular, or elementary angular velocities in several sources. As outlined
in Sect. 20.4 some of the terminology used in the literature is at least partially in-
consistent, see [6, p. 176], [14, p. 402] and [15, Sect. 2.3]. In some of the exemplary
literature cited in this paper, products of angle velocities, ψ̇α , and corresponding axes
of rotation, qα , are called “angular velocities.” In the classical book of Taylor [14,
p. 337], the angular velocity is even introduced as ω = ψq, which gives the impres-
sion of this statement being true in general. However, on the same page a comment is
given on the possible time dependence of the axis of rotation and in the subsequent
analysis the more general statement ė = ω × e for a body-fixed vector e is used by
Taylor.

In [11, p. 29] the products ψ̇αqα are also introduced without any further comment,
but they are called “elementary rotational velocities.” This nomenclature is precise
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and is recommended to be used. Furthermore Schiehlen and Eberhard present a
formula similar to Eq. (20.41), which is rarely seen in any textbook. However, they
use a matrix notation and do not give a derivation. In [2, pp. 12–14], which is an
introductory book for the same topic, several definitions for the angular velocity are
given of the form ψ̇q, but ultimately on page 15 the author writes for a body-fixed
vector, r, a defining equation for the angular velocity, ṙ = ω × r. All references have
this definition in common. However, this definition is mentioned as a side note in
[4, p. 23], which is a book for numerical applications of rigid body dynamics. It is
curious that no definition on the angular velocity is given in [4].

Third, a rational proof of the addition theorem for the angular velocity vector of
successive rotations is rarely presented in the literature considered in this review. The
theorem is discussed mostly in context with specific examples like, for example, the
Euler angles and it is established by determining the elementary components from
a figure similar to the one in Fig. 20.1. While some authors present a derivation of
the theorem for infinitesimal successive rotations, the requirements and restrictions
related the addition theorem are often not specified. This is annoying, because for
the Euler angles, for example, one could infer that the successive elementary axes
of rotation need to be orthogonal since i3 ⊥ j1 and j1 ⊥ k3, see Fig. 20.1. In order to
avoid such a misleading conclusion, the presentation of a derivation, which clearly
states all assumptions, is didactically beneficial to the reader.

However, there is at least one example in the given literature list [8, p. 16], in
which the angular velocity is defined formally in terms of a representation in a body-
fixed base. Also Kane and Levinson distinguish between a general angular velocity
and a simple one, namely ψ̇q. In contrast to some other authors, the authors always
specify the angular velocity AωB as a quantity that conveys between two systems A
and B. Hence, the time derivatives associated with AωB are measured with respect
to A, even if A is a rotating system from an inertial point of view. Hence, for every
vector a fixed in B one can write

Fig. 20.1 Illustration of the rotations related the Euler angles ψ , θ and ϕ. The sequence of the
elementary axes of rotation is given by i3, j1 and k3. The {ii}-system is the inertial system and the
{ei}-system the body-fixed one
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dAa
dt

= AωB × a . (20.46)

Therefore, with this different notion of the angular velocity, intermediate angular
velocities for a gyroscope consisting of rotor and gimbal rings are introduced, see [8,
p. 22]. These intermediate angular velocities are simple ones for a gimbal suspension,
as two intermediate systems always share one common vector. Finally, the textbook
[8, Sect. 2.4] is the only one from the given reference list, in which the addition
theorem of angular velocities is stated, analyzed and proved. Bearing in mind the
notion of an angular velocity that conveys between two “frames,” intermediate frames
Ai are introduced such that

AωB = AωA1 + A1ωA2 + · · · + AnωB , (20.47)

where the intermediate quantities AiωAi+1 do not necessarily need to be simple. One
should note that with the term frame a set of basis vectors is meant and not a frame
of an observer as in [7]. Furthermore, it is correctly stated that: “Indeed, Eq. (20.1)
represents precisely such a resolution of AωB into components. In no case, however,
are these components themselves angular velocities of B in A, for there exists at
any one instant only one angular velocity of B in A.” Together with Eq. (20.46) the
addition rule in Eq. (20.47) is equivalent to our composition rule. Finally note that
the quantityω in our paper conveys from an inertial system to the moving one and the
angular velocities ωα are the intermediate quantities AiωAi+1 from [8], but measured
only from an inertial system. Therefore, the definitions in [8] are more general,
allow for less constrained terminology and may even be more useful for practical
applications.

20.6 Conclusion

This paper revisited the description of rotations in general. Successive rotations,
which commonly occur in engineering applications of rigid body dynamics, were
considered in detail. The mathematical description of a single rotation by Ro-

drigues’ formula was recalled and the related representations of the angular velocity
tensor and the angular velocity vector were derived using an invariant notation.

The analysis of successive rotations focused on the addition theorem for the an-
gular velocity vector, which was proved in a rational manner. Requirements and re-
strictions on the successive rotations related to the addition theorem were discussed.
Moreover, the vectors of rotational velocity, elementary angular velocity and total
angular velocity were defined and labeled clearly. Finally, a short literature review
was presented and the treatment of successive rotations by several authors was put
in context with the rational approach presented in this study. The literature review
revealed that the addition theorem is rarely proved in classical textbooks covering
the subject.
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20.7 The LEVI-CIVITA Tensor

This section briefly presents important properties of the Levi-Civita tensor
〈3〉
ε, which

is given by
〈3〉
ε = εijkei ⊗ ej ⊗ ek = ε̃ijk ẽi ⊗ ẽj ⊗ ẽk . (20.48)

In this equation, the components w.r.t. the ei-base are given by the permutation sym-
bol εijk , which has the properties as introduced, for example, in [5]. The components
w.r.t. the ẽ-base are denoted by ε̃ijk . These base vectors are connected to the ones of
the ei-base by a proper rotation,

Q̃ · ẽi = ei ⇒ Q̃ = ei ⊗ ẽi = Q̃ijei ⊗ ei , Q̃ij = ẽi · ej . (20.49)

In order to obtain a relation between these components, Eq. (20.48) is contracted with
the triad ẽi ⊗ ẽj ⊗ ẽk and scalar products of the different base vectors are replaced
by the components of the orthogonal tensor. The resulting relation reads:

ε̃ijk = εlmnQ̃ilQ̃jmQ̃kn = det(Q̃)εijk , (20.50)

where the connection of the permutation symbol to the determinant was used in the
second step, see [5, p. 184]. This equation implies that the components of the Levi-
Civita tensor w.r.t. the e-base are the same as the ones of the ẽ-base if the tensor Q̃
is a proper orthogonal tensor, i.e., εijk = ε̃ijk if det(Q̃) = 1.

Note that some authors tend to call the tensor
〈3〉
ε a tensor density due to the compo-

nent transformation rule in Eq. (20.50). The transformation rule for the components
has the consequence that a Rayleigh product of the Levi-Civita tensor with a
proper orthogonal tensor is equal to the Levi-Civita tensor, i.e., it is invariant under
a rotation. This may be shown by the following calculation:

Q̃ ∗ 〈3〉
ε = ε̃ijk(Q̃ · ẽi) ⊗ (Q̃ · ẽj) ⊗ (Q̃ · ẽk) = ε̃ijkei ⊗ ej ⊗ ek = 〈3〉

ε , (20.51)

where det(Q̃) = det(Q̃) = 1 must hold true in order to substitute ε̃ijk by εijk in the
last step.

20.8 Angular Velocity in Terms of Orientation Parameters

In this section, an expression of the angular velocity vector ω in terms of the Ro-

drigues parameters ψ and q shall be derived. In order to do so, the time derivative
of the tensor Q in Eq. (20.16) is computed as
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Q̇ = − sin(ψ)ψ̇(1 − q ⊗ q) + (
1− cos(ψ)

)
(q ⊗ q̇ + q̇ ⊗ q)

− (cos(ψ)ψ̇q + sin(ψ)q̇) · 〈3〉
ε .

(20.52)

Furthermore, it is convenient to compute the products of Q̇ with the tensors on
the right-hand side of Eq. (20.16), i.e., with q ⊗ q and q · 〈3〉

ε. In order to simplify
the resulting expression, the following identities related to Levi-Civita tensor are
required

1
2

〈3〉
ε ·· 〈3〉

ε = 1 ,
〈3〉
ε · 〈3〉

ε = 〈4〉
1 − 〈4〉

T , (20.53a)
〈4〉
1 = ei ⊗ ej ⊗ ei ⊗ ej ,

〈4〉
T = ei ⊗ 1 ⊗ ei , (20.53b)

〈4〉
1 ··A = A ,

〈4〉
T ··A = AT , (20.53c)

(〈3〉
ε · a) · (〈3〉

ε · b) = a · 〈3〉
ε · 〈3〉

ε · b = b ⊗ a − (a · b)1 , (20.53d)

a × b = −a · 〈3〉
ε · b = 〈3〉

ε ·· (a ⊗ b). (20.53e)

Note that the tensor
〈4〉
1 is referred as the identity tensor of rank four and that the

tensor
〈4〉
T is the “transposer,” i.e., a tensor of rank four representing to the transposition

of a tensor of rank two. In addition, the Grassmann identities for the double cross
product will be used in the following and may be expressed in terms of the Levi-
Civita tensor

a × (b × c) = 〈3〉
ε ·· (a ⊗ (b × c)) = a · (c ⊗ b − b ⊗ c) , (20.53f)

(a × b) × c = 〈3〉
ε ·· ((a × b) ⊗ c) = c · (a ⊗ b − b ⊗ a). (20.53g)

After same algebraic manipulations, the product of Q̇ with the tensor q ⊗ q is given
by

Q̇ · q ⊗ q = (
1 − cos(ψ)

)
q̇ ⊗ q + sin(ψ)(q̇ × q) ⊗ q. (20.54)

The final expression for the product with the tensor
〈3〉
ε · q reads

Q̇ · (〈3〉
ε · q) = − sin(ψ)ψ̇

〈3〉
ε · q − (

1− cos(ψ)
)
q ⊗ (q̇ × q)

+ cos(ψ)ψ̇[1 − q ⊗ q] − sin(ψ)q ⊗ q̇.
(20.55)

Using the two previous relations, the angular velocity tensor � can be expressed as

Ω = sin(ψ)
(
1 − cos(ψ)

)[(q̇ × q) ⊗ q − q ⊗ (q̇ × q)] −
− [ψ̇q + sin(ψ) cos(ψ)q̇] · 〈3〉

ε + (
1 − cos(ψ)

)[q̇ ⊗ q − q ⊗ q̇] .

(20.56)
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From this expression, the angular velocity vector ω is obtained by computing the
axial vector of � according to Eq. (20.21),

ω = ψ̇q + sin(ψ)q̇ + (
1 − cos(ψ)

)
q × q̇ . (20.57)

By means of Eq. (20.21), the angular velocity tensor can be recomputed from
Eq. (20.57)

Ω = (
1 − cos(ψ)

)[
q̇ ⊗ q − q ⊗ q̇

] − (
ψ̇q + sin(ψ)q̇

) · 〈3〉
ε , (20.58)

which is a simpler expression than the one in Eq. (20.56).
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