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Preface

Vladimir Erofeev was born on August 20, 1959, in
Gorky (Soviet Union, now Nizhny Novgorod, Russian
Federation). In 1981, he graduated from the Faculty of
Mechanics and Mathematics of Gorky State University
named after N. I. Lobachevsky (now National Research
Lobachevsky State University of Nizhny Novgorod),
majoring in mechanics.

From 1981 up to 1985, he worked in the department
of acoustic diagnostics at the Research Institute for
Normalization in Mechanical Engineering of the USSR
State Committee for Standards, where, together with
the “Molniya” Company Ltd., works were carried out

as part of the “Buran” space program. In 1985–1986, he was an employee of the
Material Testing Laboratory that paid main attention to full-scale and laboratory
tests for the strength of large-diameter pipes used in oil and gas pipelines.

In 1986, at the Leningrad Polytechnic Institute (now Peter the Great
St. Petersburg Polytechnic University), Vladimir Erofeev defended his Ph.D. thesis
(candidate of physical–mathematical sciences) on “Nonlinear resonant interactions
of one-dimensional waves in elastic dispersive media.” In 1986, a branch of the
Mechanical Engineering Research Institute named after A.A. Blagonravov of the
USSR Academy of Sciences (in 2013, it was transformed into Mechanical
Engineering Research Institute of the Russian Academy of Sciences—MERI RAS)
was created in Gorky, and Vladimir Erofeev was invited to attend the laboratory of
wave processes in materials and structures. In 1990, he received the title of a senior
researcher and headed the laboratory.

In 1994, at the Institute for Problems in Mechanical Engineering of the Russian
Academy of Sciences (St. Petersburg, Russia) Vladimir Erofeev defended his
doctoral dissertation “Wave processes in solids with microstructure” and obtained
the scientific degree of Doctor of Physics and Mathematics. In 2003, he was
awarded the academic title of professor in acoustics. From 1996 to 2015, Vladimir
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Erofeev was the deputy director for Research of MERI RAS, from May 2015 to
June 2016, he served as the acting director of this Institute, and in June 2016, he
was elected as a director. Now, MERI RAS has the status of a branch of the Federal
Research Center “Institute of Applied Physics of the Russian Academy of
Sciences.”

Professor Erofeev is a well-known scientist and specialist in such areas as wave
processes in continuous media, nonlinear mechanics, and physical acoustics where
the following features of the waves are taken into account:

• dispersion of longitudinal and shear (body) waves;
• Rayleigh surface wave dispersion;
• existence of shear surface waves;
• nonlinear self-modulation and self-focusing;
• generation of higher harmonics, including those “forbidden” by the classical

theory of elasticity;
• resonant interactions of longitudinal and shear waves with rotational waves;
• formation of strain solitons.

His main scientific results concern

– Development of mathematical models of the dynamics of mechanical systems
with material microstructure, damage, geometric and physical nonlinearities, as
well as the interaction of deformation, thermal, and magnetic fields.

– Study of dynamic processes in one- and two-dimensional elastic structural
elements, in particular, the vibration of rods and plates in the presence of
geometric and physical nonlinearities. Discovering of a splitting effect of strain
nonlinear localized waves because of their nonlinear interaction.

– Investigation of strain wave processes in solid conductive media subjected to a
magnetic field. The possibility of the formation of intense spatially localized
magneto-elastic waves (shock waves and strain solitons in a rod,
two-dimensional quasi-plane wave beams in a plate, and three-dimensional
quasi-plane wave beams in an elastic conductive medium).

– Study of chaotic dynamics of mechanical systems with limited power, e.g., a
solid body located on a transport belt is connected with a rigid wall by a
viscoelastic connection and is elastically connected with a crank mounted on the
motor shaft perpendicularly to the shaft. It is shown that this system has a
chaotic dynamics. By averaging, the original system is reduced to a Lorenzian
type system.

– Existence and stability of stationary cluster structures in homogeneous chains of
dissipative coupled rotators.

– Stability of the movement of high-speed objects along the rail guides of the
rocket for methodological and computational support of performing experiments
on high-speed acceleration of a payload on a rocket track.
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– Spectral acoustic system for testing materials and structures. It is successfully
used to determine the accumulated operational damage in the structural elements
of pipelines of pressure compensation systems and systems for cleaning and
cooling of atomic icebreakers (in the framework of the Russian State program
for extending the life of atomic icebreakers).

– Protection systems for machines and structures using inertia and dissipation of
rheological (including magnetorheological) media. Original designs of hydraulic
vibration mounts have been proposed that effectively reduce vehicle vibration
and noise levels.

The list of main publications of Prof. Erofeev (note that there are different variants
of writing the family name—Erofeev, Erofeyev):

1. Erofeyev V. I. Wave processes in solids with microstructure. World Scientific
Publishing. New Jersey–London–Singapore–Hong Kong–Bangalore–Taipei,
2003

2. Altenbach H., Maugin G., Erofeev V. (Eds) Mechanics of Generalized
Continua. Series “Advanced Structured Materials” (Eds A. Öchsner,
H. Altenbach, L. F. M. da Silva), Vol. 7. Springer-Verlag, Berlin-Heidelberg,
2011

3. Bagdoev A. G., Erofeyev V. I., Shekoyan A. V. Wave Dynamics of Generalized
Continua. Series “Advanced Structured Materials” (Eds A. Öchsner,
H. Altenbach, L. F. M. da Silva), Vol. 24. Springer-Verlag, Berlin–Heidelberg,
2016

4. Verichev N., Verichev S., Erofeev V. Chaos, Synchronization and Structures in
Dynamics of Systems with Cylindrical Phase Space. Springer Nature. Series
“Understanding Complex Systems”, 2020 (in press)

5. Erofeyev V. I., Potapov A. I. Longitudinal Strain Waves in Non-Linearly-
Elastic Media with Couple Stresses. International Journal of Non-Linear
Mechanics. 28(1993)4, pp. 483–488

6. Erofeev V. I., Klyueva N. V. Solitons and nonlinear periodic strain waves in
rods, plates, and shells (A Reviev). Acoustical Physics. 48(2002)6, pp. 643–655

7. Verichev N. N., Verichev S. N., Erofeyev V. I. Chaotic dynamics of simple
vibrational systems. Journal of Sound and Vibration. 310(2008)3, pp. 755–767

8. Verichev N. N., Verichev S. N., Erofeyev V. I. Damping lateral vibrations in
rotary machinery using motor speed modulation. Journal of Sound and
Vibration 329(2010)1, pp. 13–20

9. Butova S. V., Gerasimov S. I., Erofeev V. I., Kamchatnyi V.G. Stability of
high-speed objects moving along a rocket track guide. Journal of Machinery
and Manufacture and Reliability. 44(2015)1, pp. 1–5

10. Erofeev V. I., Pavlov I. S. Self-modulation of shear waves of deformation
propagating in a one-demensional granular medium with internal stresses.
Mathematics and Mechanics of Solids. 21(2016)1, pp. 60–72
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11. Erofeev V. I., Dar’enkov A. B., Plekhov A. S., Shokhin A.E. Nonlinear
interaction of elastic waves in solid porous material under the condition of
phase-group synchronism. Journal of Vibroengineering. 18(2016)5, pp. 2926–
2935

12. Erofeev V. I., Leontieva A. V., Malkhanov A. O. Stationary longitudinal
thermoelastic waves and the waves of the rotational type in the nonlinear
micropolar medium. ZAMM—Journal of Applied Mathematics and Mechanics.
97(2017)9, pp. 1064–1071

13. Erofeev V. I., Malkhanov A. O. Macromechanical modelling of elastic and
visco-elastic Cosserat continuum. ZAMM—Journal of Applied Mathematics
and Mechanics. 97(2017)9, pp. 1072–1077

14. Erofeev V. I., Malkhanov A. O. Localized strain waves in a nonlinearly elastic
conducting medium interacting with a magnetic field. Mechanics of Solids. 52
(2017)2, pp. 224–231

15. Erofeev V. I., Leontyeva A. V., Pavlov I. S. Propagation of rotational waves in
a block geomedium. Journal of Vibroengineering. 19(2017)8, pp. 6413–6422

16. Erofeev V. I., Kazhaev V. V., Pavlov I. S. Inelastic interaction and splitting of
strain solitons propagating in a rod. Journal of Sound and Vibration. 419(2018,
pp. 173–182

17. Erofeev V. I., Malkhanov A. O. Dispersion and self-modulation of waves
propagating in a solid with dislocations. Physical Mesomechanics. 22(2019)3,
pp. 173–180

18. Malkhanov A. O., Erofeev V. I., Leontieva A. V. Nonlinear travelling strain
waves in a gradient-elastic medium. Continuum Mechanics and
Thermodynamics. 31(2019)6, pp. 1931–1940

For more than 20 years, Vladimir Erofeev has been teaching as a professor of the
Department of Theoretical, Computer and Experimental Mechanics of the Faculty
of Mechanics and Mathematics (now: Institute of Information Technologies,
Mathematics and Mechanics) of National Research Lobachevsky State University
of Nizhny Novgorod. He delivers courses “Wave Processes in Mechanical Systems.
Theory and Applications” and “Nonlinear Waves in Continuous Media”. He was
the scientific supervisor for two doctors of sciences and 30 candidates of sciences.
Three gold medals of the Russian Academy of Sciences awarded the scientific
results of young scientists, carried out under the scientific supervision of
Prof. Erofeev.

Professor Erofeev is a member of the Russian National Committee on
Theoretical and Applied Mechanics, a member of the European Council for
Mechanics (EUROMECH), a member of the board of the Russian Acoustic Society,
and a member of the Russian Academy of Sciences Academic Council on
Acoustics. He was one of the organizers of several all-Russian scientific confer-
ences and participated in the organizing committees of the IUTAM symposium
(1999, Sydney, Australia), the EUROMECH colloquia (2006, Delft, the
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Netherlands; 2009, Paris, France, devoted to 100 years after the publication of the
book of the Cosserat brothers), and the Russian–French–German trilateral seminars
on generalized continua (2010, Wittenberg; 2015, Magdeburg, Germany).

Magdeburg, Germany Holm Altenbach
Gdańsk, Poland/Créteil, France Victor A. Eremeyev
Nizhny Novgorod, Russia Igor S. Pavlov
St. Petersburg, Russia Alexey V. Porubov
December 2019
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Chapter 1
Elimination of the Flutter Phenomenon
in a Forced and Self-excited Nonlinear
Beam Using an Improved Saturation
Controller Algorithm

Hassan M. Abdelhafez, Andrey V. Nasedkin and Mohamed E. Nassar

Abstract Flutter is a dynamic instability of an elastic structure subjected to fluid
flow. Flutter phenomenon of the beam cannot occur unless bending and twisting
vibrations occur simultaneously. This paper intends to eliminate the flutter phe-
nomenon by suppressing the bending mode vibrations. The mathematical model
under study is the Euler–Bernoulli beam reduced to the bending mode vibrations.
The beam operates in the presence of external harmonic excitation on its support and
fluid flow. The proposed algorithm uses the saturation controller and the velocity
feedback controller together. The improved saturation controller was connected to
the primary system by using a quadratic velocity coupling term, which introduces a
better vibration reduction than that of the ordinary saturation controller. We applied
the multiple-timescale perturbation technique (MSPT) and obtained a first-order
approximate solution. We studied the effects of various controller parameters and
time delays on the system response. We investigated the stability of the equilibrium
solution and the time margins of various time delays and validated some analyti-
cal results numerically. Finally, we submitted further improvement to eliminate the
undesired regions in the frequency response curve of the saturation controller.

Keywords Active vibration control · Time delay · Improved saturation
controller · Velocity feedback controller · Self-excited vibrations · Nonlinear beam
oscillations · Multiple timescale method
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1.1 Introduction

Flutter is a dangerous phenomenon that occurs when an elastic structure is subjected
to aerodynamic forces. These aerodynamic forces are exerted on the elastic structure
by the fluid flow due to relative motion between the structure and the fluid flow. Inter-
actions between the structure’s deflection and the force exerted by the fluid flow can
cause positive feedback to the structure. This positive feedback increases oscillations
which may lead to instability and flutter phenomenon. So there may be a point at
which structure’s damping becomes insufficient to damp out these motions. Flutter
phenomenon cannot occur unless bending and rotational motions occur simultane-
ously. For example, the wing of a plane has two basic degrees of freedom or natural
modes of vibration: pitch (rotational) and plunge (bending). These elastic structures
include aircraft, buildings, telegraph wires, stop signs, and bridges. The mathemat-
ical model under study here is an Euler–Bernoulli beam with nonlinear curvature.
This model was given in [1]. The beam is subjected to an external harmonic exci-
tation close to its first natural frequency; also, the beam is subjected to a fluid flow
which is modeled by nonlinear damping with a negative linear part (Rayleigh’s func-
tion). This negative damping force causes positive feedback which is proportional
to the velocity of motion, so the oscillating system draws energy from the fluid
flow and its vibrations increase even in case of free vibrations. However, it vanishes
when motion ends, so the fluid flow causes the so-called self-excited vibrations.
Self-excited vibrations were studied extensively in [2, 3]. The beam model under
study was reduced to a first mode vibration “bending mode” as seen later in the beam
model. Interaction between forced vibrations and self-excited vibrations may cause
a flutter phenomenon. So our main purpose here is to reduce the bending vibrations
in order to restrict this phenomenon.

The saturation phenomenon studied in [4] can be used to design an active vibra-
tion controller called a saturation controller. This controller uses the saturation
phenomenon with 2:1 internal resonance to suppress the steady-state vibrations of
dynamical systems. The ordinary saturation controller was coupled to dynamical
systems by using a quadratic position coupling term, as seen in [5, 6]. Authors in [7]
used the saturation phenomenon for harvesting energy from the L-shaped vibration
system. In [8], a robust saturation controller was designed based on the optimization
problem of the linear matrix inequality and applied to a linear system with an active
mass damper. A theoretical investigation of a two-degree-of-freedom system sub-
jected to saturation was studied in [9] and applied to a system consisting of a direct
current (DC) motor with a nonlinear controller and a harmonic forcing voltage. The
effect of dry friction on the response of a system consisting of a saturation controller
coupled to a permanentmagnetDCmotorwas discussed in [10] under harmonic exci-
tation. Pai et al. in [11, 12] improved the performance of the saturation controller by
using a quadratic velocity coupling term in the controller and adding negative veloc-
ity feedback to the system, which enabled the controller from reducing the transient-
and steady-state vibrations of the system. The positive position feedback controller
(PPF) was applied in [13, 14] to suppress vibrations of a nonlinear beam.
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In any active control system, loop/time delays are inevitable because ofmeasuring
system states, executing the control algorithms, control interfaces, transport delays,
and actuation delay. Time delays can reduce the compensation efficiency of the
controller and system stability in addition to complications in controller design and
operation. Time delays were studied extensively in [15]. The model under discussion
here was studied in [16] under the influence of a delayed PPF controller. Lanlan Xu
and his colleagues in [17] investigated the active vibration controller for seismically
excited building structures in the presence of actuator saturation. In [18], an efficient
boundary controller was designed to suppress the undesired vibration of the 1D
flexible beam with restricted input.

In this work, we used the improved saturation controller, given in [11, 12], to
reduce the bending mode vibrations of the nonlinear beam given in [1]. We proposed
an additional improvement for the saturation controller. Warminski et al. in [1] used
the nonlinear saturation controller to control the vibrations of this nonlinear beam.
They concluded that interaction between external excitation and self-excitation, near
the fundamental resonance zone, may lead the system to instability, which in turn
can induce flutter phenomenon. They increased the controller damping to overcome
this problem. However, increasing the controller damping decreases its efficiency
in reducing vibrations. Implementation of the improved controller, presented in [11,
12], led to better vibration suppression.We deduced the effects of various time delays
on system response and stability and estimated time margins for different cases of
system operation. We utilized the MSPT technique to get a first-order approximate
solution and to obtain the equilibrium solution curves under various controller param-
eters. We studied the stability of the steady-state solution using frequency response
equations. We applied the numerical integration and Poincaré map on the original
differential equations of the closed-loop system to verify analytical results. All pre-
dictions from analytical results are in good agreement with the numerical results.

1.2 Model of Structure

The model of the beam and its physical parameters were given in [1]. The following
basic notations are used:

• x1, ẋ1, ẍ1 are the displacement, the velocity, and the acceleration of the beam,
respectively.

• x2, ẋ2, ẍ2 are the displacement, the velocity, and the acceleration of the controller,
respectively.

• α1 is the negative viscous damping coefficient of the beam.
• α2 is the linear damping coefficient of the saturation controller.
• α3 is the control signal gain of the velocity feedback controller.
• β1 is the cubic damping coefficient of the beam.
• ω1 is the ratio of the natural frequency of the composite beam with the lumped
mass to that of the reference beam without the lumped mass.

• ω2 is the natural frequency of the saturation controller.
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• γ1 is the coefficient describing the beam geometrical nonlinearity.
• δ is the coefficient describing the beam inertia nonlinearity.
• x0 is the excitation amplitude.
• Ω is the excitation frequency.
• μ is a constant coefficient.
• λ1 is the control signal gain of the saturation controller.
• λ2 is the feedback signal gain of the saturation controller.
• τ1 and τ2 are the actuation delays.
• τ3 is the measurement delay.
• ε is the small dimensionless parameter, i.e., ε � 1.

The cantilever beam is mounted on the armature of an electrodynamic shaker, which
is a source of external excitation along the X -axis. In practice, this model can be used
to describe the aircraft wing such that the wing is suspended to external excitation
from the plane body and to self-excitation from thewind flow. The external excitation
can be written as

x = x0 sin(Ωt).

The differential equation which describes the dynamical behavior of the beam
was given in [1] in the dimensionless form as follows

ẍ1 + (−α1ẋ1 + β1ẋ
3
1) + ω2

1x1 + γ1x
3
1 + δ(x1ẋ

2
1 + x21 ẍ1) = x0μΩ2 sin(Ωt) + f1 + f2.

f1 = −α3ẋ1(t − τ1) is the feedback control signal from the delayed velocity feed-
back controller, which was used here to increase system damping and to reduce the
effects of self-excited vibrations. f2 = λ1x22(t − τ2) represents the feedback control
signal from the delayed saturation controller. The saturation controller’s differential
equation is

ẍ2 + α2ẋ2 + ω2
2x2 = f3.

We considered two feedback control strategies for f3 in the delayed saturation
controller:

• First feedback: f3 = λ2x1(t − τ3)x2(t − τ3), which represents the ordinary delayed
saturation controller.

• Second feedback: f3 = λ2ẋ1(t − τ3)ẋ2(t − τ3). A quadratic velocity coupling was
used instead of the ordinary quadratic position coupling to improve the perfor-
mance of the saturation controller.

Here, we considered extensively the second feedback control strategy. Figure1.1
presents a block diagram of the closed-loop system. The governing equations of this
closed-loop system are

ẍ1 + (−α1ẋ1 + β1ẋ31) + ω2
1x1 + γ1x31 + δ(x1ẋ21 + x21 ẍ1)= x0μΩ2 sin(Ωt) − α3ẋ1(t − τ1) + λ1x22(t − τ2),

(1.1)

ẍ2 + α2ẋ2 + ω2
2x2 = λ2ẋ1(t − τ3)ẋ2(t − τ3). (1.2)
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Fig. 1.1 Block diagram of the closed-loop system

1.3 Mathematical Analysis

1.3.1 Multiple Scale Analysis

The MSPT [4] was used here to get a first-order approximate solution of Eqs. (1.1)
and (1.2). The first-order uniform expansion was assumed to be in the form

xk(t, ε) = xk0(T0,T1) + εxk1(T0,T1), (1.3)

xk(t − τk , ε) = xk0τk (T0,T1) + εxk1τk (T0,T1), (1.4)

xk(t − τ3, ε) = xk0τ3(T0,T1) + εxk1τ3(T0,T1), (1.5)

where xk0(T0,T1), xk1(T0,T1) are the zeroth- and first-order perturbations, respec-
tively, k = 1, 2, and T0 = t, T1 = εt are fast and slow timescales, respectively. Time
derivatives are

d

dt
= D0 + εD1,

d2

dt2
= D2

0 + 2εD0D1, Dj = ∂

∂Tj
, j = 0, 1. (1.6)

A new scaling is considered for the main system and the controller parameters
such that (m = 1, 2, 3, k = 1, 2)

αm = εα̂m, β1 = εβ̂1, γ1 = εγ̂1, δ = εδ̂, x0 = εx̂0, λk = ελ̂k . (1.7)

Substituting Eqs. (1.3)–(1.7) into (1.1), (1.2) and equating coefficients of like powers
of ε yields the following set of differential equations

(D2
0 + ω2

k )xk0 = 0, k = 1, 2, (1.8)
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(D2
0 + ω2

1)x11 = μx̂0Ω2 sin(ΩT0) − γ̂1x310 + λ̂1x220τ2 + α̂1D0x10 − δ̂x10(D0x10)2

−β̂1(D0x10)3 − α̂3D0x10τ1 − 2D0D1x10 − δ̂x210D
2
0x10,

(1.9)
(D2

0 + ω2
2)x21 = λ̂2D0x10τ3D0x20τ3 − α̂2D0x20 − 2D0D1x20. (1.10)

The general solutions of Eq. (1.8) can be expressed in the form

x10(T0,T1) = A(T1) exp(iω1T0) + Ā(T1) exp(−iω1T0), (1.11)

x20(T0,T1) = B(T1) exp(iω2T0) + B̄(T1) exp(−iω2T0), (1.12)

where A(T1) and B(T1) are unknown functions of T1 at this level of approximation.
They will be determined later by eliminating the secular and small divisor terms.
From Eqs. (1.11) and (1.12), we can get (l = 1, 3, m = 2, 3)

x10τl (T0,T1) = Aτl (T1) exp[iω1(T0 − τl)] + Āτl (T1) exp[−iω1(T0 − τl)], (1.13)

x20τm(T0,T1) = Bτm(T1) exp[iω2(T0 − τm)] + B̄τm(T1) exp[−iω2(T0 − τm)].
(1.14)

Expanding Aτl , l = 1, 3 and Bτm , m = 2, 3, in Taylor series yields

Aτl (T1) = A(T1 − ετl) ≈ A(T1) − ετlA
′(T1) + O(ε2), (1.15)

Bτm(T1) = B(T1 − ετm) ≈ B(T1) − ετmA
′(T1) + O(ε2), (1.16)

where the prime denotes derivative with respect to T1.
Substituting Eqs. (1.11)–(1.16) into Eqs. (1.9) and (1.10) yields

(D2
0 + ω2

1)x11 = 2λ̂1BB − 1

2
iμΩ2x̂0e

iΩT0 + [iAω1α̂1 − iα̂3ω1Ae
−iω1τ1

+(2δ̂ω2
1 − 3iβ̂1ω

3
1 − 3γ̂1)A

2A − 2iω1D1A]eiω1T0 (1.17)

+(2δ̂ω2
1 + iβ̂1ω

3
1 − γ̂1)A

3e3iω1T0 + λ̂1B
2e2iω2(T0−τ2) + cc,

(D2
0 + ω2

2)x21 = λ̂2ABω1ω2e
i(ω1−ω2)(T0−τ3) − λ̂2ABω1ω2e

i(ω1+ω2)(T0−τ3)

−(iα̂2B + 2iω2D1B)ω2e
iω2T0 + cc, (1.18)

where cc means the complex conjugate of the preceding terms and the overbar sym-
bolizes the complex conjugate functions.

From Eqs. (1.17) and (1.18), the associated resonance cases at this approximation
order are as follows:

(I) primary resonance, Ω ≈ ω1,
(II) internal resonance, 2ω2 ≈ ω1,
(III) simultaneous resonance, Ω ≈ ω1 and 2ω2 ≈ ω1.
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In this paper, we studied the case of simultaneous resonance and described it by
using detuning parameters σ1 and σ2 as follows:

Ω = ω1 + σ1 = ω1 + εσ̂1, 2ω2 = ω1 + σ2 = ω1 + εσ̂2. (1.19)

Inserting Eq. (1.19) into the secular and small devisor terms in Eqs. (1.17) and (1.18)
yields the solvability conditions

[iω1A(α̂1 − α̂3e
−iω1τ1) +(2δ̂ω2

1 − 3iβ̂1ω
3
1 − 3γ̂1)A

2A − 2iω1D1A]eiω1T0 (1.20)

+λ̂1B
2e−2iω2τ2ei(ω1+εσ̂2)T0 − 1

2
μΩ2x̂0e

i(ω1+εσ̂1)T0 = 0,

λ̂2ABω1e
−i(ω1−ω2)τ3ei(ω2−εσ̂2)T0 − (iα̂2B + 2iω2D1B)eiω2T0 = 0. (1.21)

To analyze the solution of Eqs. (1.20) and (1.21), we introduced the polar notation
for A and B as follows:

A = 1

2
a1e

iθ1 , D1A = 1

2
(a′

1 + ia1θ
′
1)e

iθ1 , (1.22)

B = 1

2
a2e

iθ2 , D1B = 1

2
(a′

2 + ia2θ
′
2)e

iθ2 . (1.23)

where a1, a2 are the steady-state displacement amplitudes and θ1, θ2 are the phases
of the motion of the beam and the controller, respectively.

Inserting Eqs. (1.22) and (1.23) into Eqs. (1.20) and (1.21), returning each scaled
parameter to its real value, and separating real and imaginary parts yield

Zs + 4ω1a1(2θ̇1 − α3 sinψ3) + a31(2δω
2
1 − 3γ1) + 2λ1a

2
2 cos(φ2 − ψ1) = 0,

(1.24)

Zc + 4ω1a1(α3 cosψ3 − α1) + 3ω3
1β1a

3
1 − 2λ1a

2
2 cos(φ2 − ψ1) + 8ω1ȧ1 = 0,

(1.25)

ω1λ2a1 cos(φ2 + ψ2) + 4θ̇2 = 0,
(1.26)

2α2a2 + ω1λ2a1a2 sin(φ2 + ψ2) + 4ȧ2 = 0 ,

(1.27)

where dot represents derivative with respect to t,

Zs = 4μΩ2x0 sin φ1, Zc = 4μΩ2x0 cosφ1.
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In addition,

φ1 = σ1t − θ1 = εσ̂1t − θ1, φ2 = σ2t − θ1 + 2θ2 = εσ̂2t − θ1 + 2θ2,

ψ1 = 2ω2τ2, ψ2 = (ω1 − ω2)τ3, ψ3 = ω1τ1. (1.28)

By differentiating φ1 and φ2 in Eq. (1.28) w.r.t. t, we get

θ̇1 = σ1 − φ̇1, θ̇2 = 1

2
(φ̇2 − φ̇1 + σ1 − σ2). (1.29)

Inserting Eq. (1.29) into Eqs. (1.24)–(1.27) yields the autonomous amplitude–phase
modulating equations as follows

ȧ1 = 4ω1a1(α1 − α3 cosψ3) − 3ω3
1β1a31 − Zc + 2λ1a22 sin(φ2 − ψ1)

8ω1
,

φ̇1 = Zs + 4ω1a1(2σ1 − α3 sinψ3) + a31(2δω
2
1 − 3γ1) + 2λ1a22 cos(φ2 − ψ1)

8ω1a1
,

ȧ2 = 1

4
(−2α2a2 − ω1λ2a1a2 sin(φ2 + ψ2)), (1.30)

φ̇2 = 1

8ω1a1
[Zs + 4ω1a1(2σ2 − α3 sinψ3 − ω1λ2a1 cos(φ2 + ψ2)) +

+ a31(2δω
2
1 − 3γ1) + 2λ1a

2
2 cos(φ2 − ψ1)],

where, as above, Zs = 4μΩ2x0 sin φ1, Zc = 4μΩ2x0 cosφ1.

1.3.2 Equilibrium Solution

The steady-state response of both the beam and the controller can be obtained as
follows

ȧ1 = ȧ2 = φ̇1 = φ̇2 = 0. (1.31)

Substituting by (1.31) into (1.29) yields

θ̇1 = σ1, θ̇2 = 1

2
(σ1 − σ2). (1.32)

Substituting by Eqs. (1.31) and (1.32) into Eqs. (1.24)–(1.27), we get
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4ω1a1(2σ1 − α3 sinψ3)+ Zs + a31(2δω
2
1 − 3γ1)+ 2λ1a

2
2 cos(φ2 − ψ1) = 0,

(1.33)

4ω1a1(α1 − α3 cosψ3) − Zc − 3ω3
1β1a

3
1 + 2λ1a

2
2 sin(φ2 − ψ1) = 0,

(1.34)

2(σ1 − σ2) + ω1λ2a1 cos(φ2 + ψ2) = 0,
(1.35)

2α2 + ω1a1 sin(φ2 + ψ2) = 0.
(1.36)

Extracting sin φ2 and cosφ2 from Eqs. (1.35) and (1.36) yields

sin φ2 = 2(σ1 − σ2) sinψ2 − 2α2 cosψ2

a1λ2ω1
, (1.37)

cosφ2 = −2(σ1 − σ2) cosψ2 + 2α2 sinψ2

a1λ2ω1
. (1.38)

Next, substituting sin φ2 and cosφ2 in Eqs. (1.33) and (1.34) and extracting values
of sin φ1 and cosφ1, we get

sin φ1 = η1 sin(ψ1 + ψ2) + η2 cos(ψ1 + ψ2) + η3 sinψ3 + η4, (1.39)

cosφ1 = η2 sin(ψ1 + ψ2) − η1 cos(ψ1 + ψ2) − η3 sinψ3 + η5, (1.40)

where

η1 = a22λ1α2

μΩ2x0a1λ2ω1
, η2 = a22λ1(σ1 − σ2)

μΩ2x0a1λ2ω1
, η3 = a1ω1α3

μΩ2x0
,

η4 = a31(3γ1 − 2δω2
1) − 8a1σ1ω1

4μΩ2x0
, η5 = 4a1ω1(α1 − α3 cosψ3) − 3a31β1ω

3
1

4μΩ2x0
.

Squaring and adding Eqs. (1.37) and (1.38) produce the first closed-form equation

4(α2
2 + (σ1 − σ2)

2) = a21λ
2
2ω

2
1. (1.41)

Squaring and addingEqs. (1.39) and (1.40) generate the second closed-formequation

(η1 sin(ψ1 + ψ2) + η2 cos(ψ1 + ψ2) + η3 sinψ3 + η4)
2

+(η2 sin(ψ1 + ψ2) − η1 cos(ψ1 + ψ2) − η3 cosψ3 + η5)
2 = 1.

Thus, a closed-form equation for the closed-loop system consisting of the beam
and the delayed velocity feedback controller can be deduced as follows
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ω2
1(4α3(cosψ3 − σ1τ1 sinψ3) − 4α1 + 3a21β1ω

2
1)

2 (1.42)

+[4ω1(α3 sinψ3 − 2σ1 + σ1τ1α3 cosψ3) + a21(3γ1 − 2δω2
1)]2 = 16μ2Ω4x20

a21
.

The closed-form equations for feedback 1 “ordinary saturation controller” can be
deduced in the same way.

1.3.3 Stability Analysis

Equation (1.30) can be written in shortened form as follows

ȧj = F2j−1(a1, φ1, a2, φ2), φ̇j = F2j(a1, φ1, a2, φ2), j = 1, 2. (1.43)

The stability of the equilibrium solution was analyzed by using Jacobian matrix
J of the right-hand side of Eq. (1.43). To characterize the system behavior in the
neighborhood of equilibrium solution (a10, φ10, a20, φ20), we expanded functions F1,
F2, F3, and F4 about the equilibrium solution. We assumed that each state of the
system consists of its value at equilibrium plus a small perturbation as follows

aj = aj1 + aj0, φj = φj1 + φj0, ȧj = ȧj1, φ̇j = φj1, j = 1, 2, (1.44)

where a11, φ11, a21, φ21 are perturbations which are small with respect to a10, φ10,
a20, φ20. By truncating the series at the linear terms and substituting Eq. (1.44) into
Eq. (1.43) yields (j = 1, 2)

ȧj1 =
2∑

m=1

(
∂F2j−1

∂am
am1 + ∂F2j−1

∂φm
φm1

)
, φ̇j1 =

2∑

m=1

(
∂F2j

∂am
am1 + ∂F2j

∂φm
φm1

)
.

(1.45)
Thus, we obtained a set of linear differential equations with constant coeffi-

cients that govern the components of disturbance. The characteristic determinant
of Eq. (1.45) can be expressed as follows

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂a1
− λ

∂F1

∂φ1

∂F1

∂a2

∂F1

∂φ2
∂F2

∂a1

∂F2

∂φ1
− λ

∂F2

∂a2

∂F2

∂φ2
∂F3

∂a1

∂F3

∂φ1

∂F3

∂a2
− λ

∂F3

∂φ2
∂F4

∂a1

∂F4

∂φ1

∂F4

∂a2

∂F4

∂φ2
− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (1.46)
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The stability of the steady-state solution depends on the eigenvalues λ of the Jacobian
matrix ofEq. (1.46). The solutions are stable if andonly if all roots of the characteristic
equation have negative real parts.

1.4 Results and Discussions

The steady-state response of the closed-loop system composed of the beam, the
delayed velocity feedback controller, and the improved saturation controller is stud-
ied here analytically and numerically. The dimensionless parameters of the beam
were given as α1 = 0.01, β1 = 0.05, ω1 = 3.06309, γ1 = 14.4108, δ = 3.2746,
μ = 0.89663, and x0 = 0.01. We selected the controller parameters as α2 = 0.01,
λ1 = λ2 = 0.5, α3 = 0.05, and σ2 = 0 unless specifying otherwise. In the obtained
figures, solid lines correspond to stable solutions while dashed lines correspond to
unstable solutions, and the numerical results for steady-state solutions are plotted as
small circles. Time history and Poincaré maps were used to validate the results.

1.4.1 Nonlinear Beam Without Control

The uncontrolled systemwas studied extensively in [1, 14]. As the uncontrolled beam
is subjected to external excitation and self-excitation, it suffers from the following
problems:

1. Self-excitation can build up oscillations even if the external force is very small. As
self-excitation is represented by negative damping which causes positive feed-
back, the displacement amplitude of oscillations increases monotonically with
the self-excitation.

2. In the presence of external excitation, self-excitation can interact with it and lead
the system to vibrate with an unstable quasi-periodic motion, which may cause
the flutter phenomenon.

3. The displacement amplitude of beam vibrations is large when it is externally
excited near its natural frequency Ω ≈ ω1.

Here, we implemented a controller, which consists of a velocity feedback controller
and an improved saturation controller, to reduce the bending mode vibrations of the
beam.

1.4.2 Effects of Velocity Feedback Controller

Effects of velocity feedback controller were studied in two cases.
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1.4.2.1 The Saturation Controller Is Not Active

Figure1.2a presents the frequency response curve (FRC) of the uncontrolled beam
at α1 = 0.05. The system vibrates with an unstable quasi-periodic motion in a great
part of the FRC due to the interaction between the self-excitation and the external
excitation. The eigenvalues of the characteristic equation of the system in intervals
AC andDE are conjugate complex valueswith a positive real part, which corresponds
to unstable focus. In interval CD, the eigenvalues are conjugate complex roots with a
negative real part, which corresponds to a stable periodic motion. Figure1.2b shows
the effects of α3 on the FRC of the beam. When α3 increases, the system damping
increases, the peak displacement amplitude of the beam decreases, the effects of
self-excitation reduce, and the beam vibrates with a stable periodic motion. From the
comparison between Fig. 1.2a and b, we can see that intervals AB and DE, which
are unstable in Fig. 1.2a, become stable in Fig. 1.2b. Larger values of α3 give better
results analytically but cause practical problems to the system. So we use values of
α3 ∈ [0, 0.1].

Figure1.3 shows the unstable intervals in Fig. 1.2a by taking the point σ1 = 0.1
as a sample. Figure1.3 shows that the beam vibrations are unstable quasi-periodic
motions, which verifies results in Fig. 1.2a. After utilizing the velocity feedback
controller, the beam vibrates in a stable periodic motion as in Fig. 1.4b. Figure1.4a
shows that the beam vibrations pass through a transient state into a stable periodic
steady state.

The previous results confirm that the velocity feedback controller can eliminate
the effects of self-excitation and stabilize the system response even if the saturation
controller is not active. However, the displacement amplitude of the beam near the

Fig. 1.2 Frequency response curves at α1 = 0.05: a uncontrolled beam (α3 = 0), b beam with the
velocity feedback controller at different values of α3
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Fig. 1.3 Uncontrolled beam at α1 = 0.05, α3 = 0, and σ1 = 0.1: a time history, b Poincaré map

Fig. 1.4 Beam at α1 = 0.05, α3 = 0.05, and σ1 = 0.1: a time history, b Poincaré map

primary resonance (Ω ≈ ω1) stills large. So we used the improved saturation con-
troller besides the velocity feedback controller to reduce vibrations near the primary
resonance (Ω ≈ ω1 or σ1 ≈ 0).

1.4.2.2 The Saturation Controller Is Active

We compared FRCs of the ordinary saturation controller “feedback 1” with the FRCs
of the improved saturation controller “feedback2,” andweobserved that the improved
saturation controller reduces beam vibrations more effectively, but the controller
overload risk increases. The overload risk of the controller can be reduced later
by increasing λ1. Here, we investigated the performance of the improved saturation
controller. In the subsequent discussion, the improved saturation controllerwas called
briefly the saturation controller. The peak displacement amplitude in Fig. 1.2 was
vanished by using the saturation controller. It is observable from (1.41) that α3 does
not affect the beam displacement amplitude when the saturation controller is active.
We employed the velocity feedback controller besides the saturation controller to
increase the system damping and to reduce the transient vibrations of the system.
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1.4.3 The Effects of Various Controller Parameters
and the Time Margins of Various Time Delays

1.4.3.1 Effects of Linear Damping Coefficient of the Saturation
Controller α2

Increasing the damping of the closed-loop system can be done either by increasing
α3 or by increasing α2. Figure1.5 studies the effects of α2 on the beam and the
controller when α3 = 0 (the velocity feedback controller is switched off). The FRCs
in Fig. 1.5a of the beam are unstable during the inactivity region of the saturation
controller. Also, the FRCs during the activity region of the saturation controller may
be unstable, as seen in Fig. 1.5a at α1 = 0.01, α2 = 0.05. It is possible to stabilize
system response during the activity region of the saturation controller by increasing
α2, as seen in Fig. 1.5a when α2 = 0.1. However, increasing α2 stabilizes the beam
response but decreases the controller efficiency. Figure1.5b shows that the controller
overload risk decreases when α2 increases. Figure1.5c and d presents the FRC of the
beam and the controller at α3 = 0.05 (the velocity feedback controller is switched
on) under different values of α2. The comparison between Fig. 1.5a and c indicates
the important role of the velocity feedback controller besides the saturation controller
in increasing system stability and decreasing the controller overload risk.

The effects of α2 on the stability of system response were studied when the satura-
tion controller is active in Fig. 1.6 under different values of α3. The system response
may be unstable during the activity region of saturation controller when α3 = 0 as
seen in Fig. 1.6a. The arrow plotted in the figure shows that the activity region of the
saturation controller at α2 = 0.05 contains unstable bandwidth of frequencies.When
a higher value for α3 was used, a better system response was obtained, as shown in
Fig. 1.6b, which confirms the results of Fig. 1.5. Also, we can see that the activity
region of the saturation controller decreases by increasing α2 or α3.

1.4.3.2 The Effects of α3 on Time Margins of τ1, τ2, and τ3

Implementing the velocity feedback controller besides the saturation controller
increases the time margin of τ1, τ2, and τ3. Figure1.7 presents the controller’s dis-
placement amplitudes versus time delays τ1, τ2, and τ3, respectively, under different
values of α3. The stable and unstable regions in the amplitude-delay response curves
are shown in Fig. 1.7a. Practically, values of time delays are mostly small, so the first
stable region, which is the time margin for each time delay, is our main interest. The
following amplitude-delay figures concentrate on the first stable region only. When
α3 increases, the time margin of τ1, τ2, and τ3 increases, and displacement amplitude
a2 slightly decreases within the time margin. Equation (1.41) shows that α3, τ1, τ2,
and τ3 cannot alter the beam displacement amplitude a1 during the activity region of
the saturation controller.
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Fig. 1.5 Frequency response curves: a beam, b controller at α3 = 0, i.e., “controlled only by the
saturation controller”; c beam, d controller at α3 = 0.05, under different values of α2

1.4.3.3 Effects of Control Gain λ1

From Eq. (1.41), the controller gain λ1 does not affect the value of beam displace-
ment amplitude. From the results, we observed that λ1 does not affect the time
margins of τ1, τ2, and τ3. The FRC of the beam and the controller are presented in
Fig. 1.8 under different values of λ1. Figure1.8a ensures that λ1 does not influence
the beam displacement amplitude. The controller displacement amplitude decreases
when λ1 increases, as seen in Fig. 1.8b. The controller displacement amplitude is
plotted in Fig. 1.8c as a function of the external detuning parameter and control gain
λ1. Figure1.8c illustrates that the controller overload decreases while λ1 increases.
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Fig. 1.6 Effects of α2 on the stability of solutions during activity of saturation controller at:
a α3 = 0, b α3 = 0.05

Fig. 1.7 Amplitude a2 with delay: a τ1, when τ2 = τ3 = 0, b τ2, when τ1 = τ3 = 0, c τ3, when
τ2 = τ3 = 0, all at σ1 = σ2 = 0

Fig. 1.8 Frequency response curves: a beam, b controller, under different values of λ1 at τ1 = 0.05
and τ2 = τ3 = 0.02, c the controller displacement amplitude as a function of excitation frequency
σ1 and controller gain λ1
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1.4.3.4 Effects of Feedback Gain λ2

Figure1.9a shows that time margins of τ2 and τ3 decrease as λ2 increases. We
observed that increasing λ2 does not alter the time margin of τ1. Also, the con-
troller‘s displacement amplitude increases as λ2 increases. From Fig. 1.9c, we found
that increasing the values of τ1 and τ2 decreases the time margin of τ3 and vice
versa. The FRCs of the beam and the controller under different values of λ2 are
presented in Fig. 1.10a and b, respectively. From Fig. 1.10a, we can conclude that the
vibration suppression bandwidth increases as λ2 increases. In Fig. 1.10a, there are
some regions at which the displacement amplitude of the controlled beam is larger
than that of the uncontrolled beam. Consequently, these regions are undesired. In
the subsequent section (in Fig. 1.12), we presented an improvement in the controller
algorithm to eliminate these regions.

Fig. 1.9 Amplitude a2 with delay: a τ2, when τ1 = τ3 = 0, b τ3, when τ1 = τ2 = 0, and c τ3,
when τ1 = 0.01, τ2 = 0.03 under different values of λ2 at σ1 = σ2 = 0

Fig. 1.10 Frequency response curves under different values of λ2 at τ1 = 0.1, τ2 = 0.02 and
τ3 = 0.01: a beam, b FRC of the controller
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1.4.3.5 Effects of Time Delays τ1, τ2, and τ3

The effects of τ1, τ2, and τ3 on the FRC of the beam and the controller were inves-
tigated. The obtained results show that the time delay τ1 does not affect on the FRC
of the beam and the controller and that the activity region of saturation controller
decreases when τ2 or τ3 increases. We plotted Fig. 1.11 using several results such
that given in Figs. 1.7 and 1.9. Figure1.11a presents the effects of τ2 and τ3 on the
stability of solutions under different values of feedback gain λ2 at τ1 = 0.1. For
example, at λ2 = 0.5, the analytical solution is stable at τ2 + 0.5τ3 ≤ 0.076. So the
stable solutions region consists of the red, green, and yellow regions, but the ana-
lytical solution is unstable at τ2 + 0.5τ3 > 0.076. The time margins of τ2 and τ3 at
λ2 = 0.5 depend on the equation τ2 + 0.5τ3 = 0.076. So the time margin of τ2 is
inversely proportional to that of τ3 and vice versa. The red and green regions represent
the stable solutions region when λ2 = 1. The red region is the only stable solution
region when λ2 = 2. The stability criteria at λ2 = 1 and λ2 = 2 are indicated in the
figure, respectively. When λ2 increases, the area of stable solutions region decreases,
and the overall time margin decreases.

Fig. 1.11 Time margins of τ2, τ3, and stable solution regions under different values of λ2 at a
α3 = 0.05, τ1 = 0.1, σ1 = σ2 = 0, b α3 = 0.1, τ1 = 0.1, σ1 = σ2 = 0, c α3 = 0.05, τ1 = 0.2,
σ1 = σ2 = 0, d α3 = 0.05, τ1 = 0.1 at different positive values of σ1, e α3 = 0.05, τ1 = 0.1 at
different negative values of σ1, and f α3 = 0.05, τ1 = 0.1, x0 = 0.1 at different positive values
of σ1
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Comparison of Fig. 1.11b with Fig. 1.11a yields that the area of stable solutions
region is directly proportional to the value of α3. Comparison between Fig. 1.11c and
Fig. 1.11a shows that increasing τ1 decreases the area of stable solution region. For
a constant value of τ2, τ1 and τ3 are inversely proportional to each other.

The increase of excitation frequency over the beamnatural frequency “σ1 positive”
minimizes the area of stable solutions region, as shown in Fig. 1.11d. However, the
area of stable solutions region increases with the decrease of the excitation frequency
“σ1 negative,” as shown inFig. 1.11e. Thevalues of sigma1 implemented inFig. 1.11a
and Fig. 1.11b are the limits of the system stable operation in Fig. 1.10a. Figure1.11f
indicates the effects of τ2 and τ3 on the stability of solutions at different values of
σ1 when x0 = 0.1. Comparing Fig. 1.11f with Fig. 1.11d yields that increasing the
amplitude of external excitation x0 decreases the area of stable solution region.

1.4.3.6 A Suggestion for Improving the Saturation Controller
Algorithm

The saturation phenomenon was studied extensively in [4]. Numerical validation
of the frequency response curves of the beam and the controller at λ2 = 1 was
presented in Fig. 1.12a and b, respectively. We need to distinguish between three
cases of system operation. The first case occurs when excitation frequency increases
during system operation. The jump phenomenon, in this case, is indicated by the
red arrows in Fig. 1.12a and b for the beam and the controller, respectively. The
second case is indicated by green arrows in the figure, and this case occurs when
excitation frequency decreases during system operation. In the third case, the system
starts vibration from rest, and the FRC is indicated by the path “ABDEFHI.” The
beam displacement amplitude in the interval FG is larger than its value in interval
FH. Besides, the beam displacement amplitude in the interval DC is larger than its
value in interval DB. So intervals FG and DC are undesired system responses. As
the result, we improved the control algorithm such that the controller operates only
in the region between the points D and F shown in Fig. 1.12a. In other words, after
improving the control algorithm, the FRC of the beam is the path “ABDEFHI” in all
cases of system operation.

To improve the controller performance, the controller algorithm must be supplied
by the ability to detect the region of the optimal operation of the saturation controller
(interval between points D and F, as shown in Fig. 1.12a. For example, If the system
started operation at σ1 ∈]D,F[, then the external excitation frequency “σ1” increases
toward the point F during system operation, and the algorithm needs to detect the
point F and deactivate the saturation controller; as a result, the FRC takes the path
FHI instead of the path FGHI. From Eq. (1.41), we can deduce that the controller
parameters that influence the optimal operation region of the controller are α2, σ2,
and λ2. From the discussion of Figs. 1.5 and 1.6, α3 is preferred to control the system
damping, so we can assume that α2 is constant. Also, internal resonance is perfectly
tuned, i.e., σ2 = 0. So we investigated the optimal operation region (bandwidth of
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Fig. 1.12 Frequency response curves at τ1 = 0.1, τ2 = 0.02, and τ3 = 0.01: a beam, b controller
at λ2 = 1, c relation between intersection points “D and F” in (a) and λ2 at different values of α2
and d FRC of the beam at λ2 = 1 after the suggested improvement

frequencies between the points D and F in Fig. 1.12a and c under the influence of the
controller gain λ2.

The condition used to plot Fig. 1.12c can be programmed in the control algorithm
to enable the detection of the points D and F. We obtained this condition from
Eqs. (1.41) and (1.42). Figure1.12d presents the FRC of the beam at λ2 = 1 after
the suggested improvement. In the region DEF, the saturation controller and velocity
feedback controller operate simultaneously. In the regions ABD and FHI, only the
velocity feedback controller is active.
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Fig. 1.13 Force–amplitude response curve: a beam, b controller, c controller response versus
external detuning parameter σ1 and excitation amplitude when λ2 = 1, σ2 = 0, τ1 = 0.01, τ2 =
0.008, and τ3 = 0.01 at different values of σ1

1.4.3.7 Force Response

The force–amplitude response of the beam and the controller are plotted in Fig. 1.13a
and b, respectively. We assumed that the internal resonance is perfectly tuned (σ2 =
0), while external resonance σ1 changes according to the excitation frequency. The
uncontrolled beam vibrates with large displacement amplitudes when the system is
excited near its natural frequency, as seen in the dashed curves in Fig. 1.13a. From
Eqs. (1.1) and (1.2), we can see that ẋ1(t − τ3), which depends on x1, is a parametric
excitation for x2. As seen in Fig. 1.13a, the amplitude of parametric excitation a1, for
the controlled system (solid lines), increases linearly with x0 until reaching a critical

value 2
√

α2
2 + σ 2

1 /(λ2ω1) then saturates. After the saturation of x1 mode, the primary
system energy is transferred to the controller because of the saturation phenomenon.
Figure1.13a illustrates that the displacement amplitude of the beam after control is
extremely smaller than its value before control. The results were verified numerically,
as shown by small circles in the figure. Figure1.13c shows the controller response
versus the external detuning parameter σ1 and the excitation amplitude x0. A certain
threshold is required for x0 to turn on the saturation controller, as seen in Fig. 1.13b
and c.

The saturation phenomenon needs a specific threshold value of x0 to be activated.
Figure1.14a, b show the time response of the beam and the controller, respectively,
when x0 is less than the threshold value. The controller operates until vanishing
its initial energy, as seen in Fig. 1.14b and deactivates. In this case, the beam is
controlled only by the velocity feedback controller. The analytical formula defining
the threshold can be deduced from Eqs. (1.41) and (1.42). The threshold value of x0
is plotted as a function of σ1 and λ2 in Fig. 1.14c. It can be seen that the threshold
value decreases as the external detuning parameter tends to zero. Also, the threshold
value decreases when λ2 increases for a constant value of σ1.
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Fig. 1.14 Time history of: a beam, b controller at λ2 = 1, σ1 = 0.15, τ1 = 0.1, τ2 = 0.008, and
τ3 = 0.01 and c the threshold value of x0 versus σ1 and λ2

1.5 Conclusions

The flutter phenomenon of the cantilever beam may occur if bending and twist-
ing mode vibrations occur simultaneously. This work aimed to restrict the flutter
phenomenon by reducing the bending mode vibrations of a forced and self-excited
nonlinear beam.The control algorithmemployed the velocity feedback controller and
the saturation controller. Utilizing the velocity feedback controller besides the sat-
uration controller increases system damping without reducing controller efficiency.
So, it eliminates the effects of self-excitation, reduces the transient vibrations, and
increases the time margin of the system. We concluded the optimal combinations
of controller parameters, the time margins, and the stable solution regions for the
expected bandwidth of external excitation. Finally, we proposed an improvement to
the control algorithm to eliminate the undesired regions from the FRC of the satura-
tion controller. We recommend practicing this algorithm and expect better vibrations
reduction.
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Chapter 2
Use of the Modified Method of Parameter
Continuation in Nonlinear Dynamics

Igor V. Andrianov, Viktor I. Olevskyi and Yuliia B. Olevska

Abstract Themodifiedmethodof parameter continuation (MMPC) is an asymptotic
technique for estimating the eigenfrequencies and eigenmodes of nonlinear oscil-
lations of beams, plates and shells with complicated boundary conditions. Unlike
the Bolotin method, which is usually used for such estimations, MMPC estimations
depend on the shape of initial perturbation.When the frequency of perturbation coin-
cides with the eigenfrequency of the structure, the vibration frequency is close to the
corresponding eigenfrequency. In another case, it describes the real vibration shape
of structure with different conditions on its edges. The comparison with numerical
calculations confirms the advantages of proposed method and accuracy of it.

Keywords Linear oscillations · Nonlinear oscillations · Parameter continuation ·
Asymptotic technique · Boundary value problem · Eigenvalue problem

2.1 Introduction

Thin-walled structures are widely used in various branches of modern technology
[1–3]. Plate and shell structures are subjected to various static and dynamic impacts,
while demands to their strength and reliability are subject to ever-increasing. In
real constructions, the boundary conditions for structures often have a complicated
form [4]. Such conditions may be provided for constructive design decisions. It also
exists the possibility of the appearance of mixed boundary conditions when joining
elements of building structures with embedded parts, as well as intermittent welded

I. V. Andrianov (B)
Institute of General Mechanics RWTH Aachen University, Templergraben 64, 52056 Aachen,
Germany

V. I. Olevskyi
Mathematic Department of State Higher Educational Institution “Ukrainian State
University of Chemical Technology”, 8 Gagarin Ave., Dnipro 49005, Ukraine

Yu. B. Olevska
Department of Mathematics, National Technical University “Dnipro Polytechnic”,
19 Dmytro Yavornytsky Ave., Dnipro 49600, Ukraine

© Springer Nature Switzerland AG 2020
H. Altenbach et al. (eds.), Nonlinear Wave Dynamics of Materials
and Structures, Advanced Structured Materials 122,
https://doi.org/10.1007/978-3-030-38708-2_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38708-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-38708-2_2


26 I. V. Andrianov et al.

seams. Finally, the calculation of structures with cracks or narrow cuts in some cases
can be reduced to the calculation of structures with mixed boundary conditions. The
design of the structure may change during operation under the influence of external
environment (corrosion or fatigue cracks, destruction of a part of the supporting
contour, etc.). In this case, the emergence of support of a mixed type is possible
where it was not originally envisaged.

The calculation of plate vibrations can be reduced to integrating the F. Gehring
equation of the parabolic type with various boundary conditions. An exact solution
of this problem can be obtained only for several cases, when the boundary con-
ditions allow complete separation of variables [5]. Otherwise, the problem has to
be solved approximately, most often numerically [6]. The most developed of the
approximate methods are the variational ones. These methods to some extent satisfy
the requirements of practice, and their application allowed to solve a large number
of problems. Unfortunately, the effectiveness of variational methods is significantly
failed in problems with mixed boundary conditions, because of the difficulties in
constructing coordinate functions that must satisfy different boundary conditions at
different parts of the boundary.

One of the most useful ways of solving mixed boundary value problems in the
theory of plates vibration is the method of multiple series [7]. A general solution
of the differential equation containing a set of arbitrary constants is sought. In each
individual section of mixed boundary conditions, these constants are chosen so that
the boundary conditions are satisfied. In this case, if the solution is represented as a
Fourier series, then there are as many different series as there are sections of change
of boundary conditions. After this, a finite integral transformation is applied to the
resulting system of series, which leads to an infinite system of linear algebraic or
integral equations solved by known methods. This method can be used only in the
case when the sizes of the sections of the boundary with different fixing conditions
are commensurable with the linear sizes of the plate.

Another way is asymptotic approach [4, 8]. The most significant results in solving
mixed boundary value problems in the theory of plates vibrationwere obtained by the
asymptotic Bolotin method (BM), which can be applied to the calculation of eigen-
frequencies and eigenmodes of natural vibration of rectangular plates with complex
boundary conditions [9]. The main idea of the method is to represent the solution as
a sum of two components: the main one in the inner region occupied by the plate and
the corrective state of the dynamic edge effect localized in a small neighborhood of
the contour. Corrective component rapidly decreases when propagating to the inner
region. Unfortunately, the scope of the method is limited; for some problems, the
method gives a significant error.

Therefore, it is very important to develop approximate analytical methods for cal-
culating plates vibrations with complex boundary conditions, which make it possible
to obtain solutions that are sufficiently accurate and give qualitative information on
the behavior of the plate, and permit to investigate the influence of various factors on
the structural behavior. The foundations of such amethod are the modifiedmethod of
parameter continuation (MMPC) [10–12] that has shown its effectiveness in solving
the problems of the static of plates and shells with complex boundary conditions.
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The taskof thiswork is to create a technique that allows the calculationof nonlinear
free vibrations of rectangular plates and cylindrical shells with complicated boundary
conditions based on combining the advantages of BM and MMPC.

2.2 Asymptotic Method for Estimation of Free Vibrations
of Beams and Rectangular Plates

2.2.1 Explanation of Main Ideas of the Method on the Base
of Calculation of Beam Oscillations

Let us consider the natural linear oscillations of the uniform beam of length l, of
area of cross section F, of Young’s modulus E, of density ρ and of cross-sectional
moment of inertia J. Governing equation is as follows:

∂4w

∂x4
+ a2

∂2w

∂t2
= 0, a2 = ρF

E J
(2.1)

Boundary conditions when x = 0, l are in two variants:

(a) simply supported edges

w = 0,
∂2w

∂x2
= 0 (2.2)

(b) clamped edges

w = 0,
∂w

∂x
= 0 (2.3)

According to the MMPC [10–12], we carry out a perturbation of the following
form. We introduce an artificial parameter as follows

∂2w

∂t2
= − ε

a2
∂4w

∂x4
(2.4)

We seek the solution in the form of a series in powers of the parameter ε

w =
∞∑

i=0

wiε
i (2.5)
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We will consider problems with the initial shape perturbation. We consider two
types of problems:

(1) the initial perturbation f0(x) is known and we want to describe the oscillation
of the beam;

(2) the initial perturbation is unknown and we want to find the eigenfrequencies of
the beam.

For the first case, zero-order approximation gives

w0 = f0 (2.6)

first-order one is

w1 = − t2

2a2
f (IV)
0 (2.7)

and the third-order approximation is

w2 = t4

24a4
f (VIII)
0 (2.8)

Then one obtains

w ≈ f0 − t2

2a2
ε f (IV)

0 + t4

24a4
ε2 f (VIII)

0 (2.9)

Using Padé approximation gives

w ≈
(
f0 + 1

2a2

(
f0 f

(VIII)
0

6 f (IV)
0

− f (IV)
0

)
t2
)(

1 + f (VIII)
0

12a2 f (IV)
0

t2
)−1

(2.10)

Both the series and the fractional-rational approximation describe only the initial
motion of the beam. To describe motions for a longer time, it is necessary to carry
out mandatory periodization or to increase the number of approximations. However,
such an approximation makes it possible to obtain all the important characteristics
of periodic motion for given initial and boundary conditions, and also corresponding
eigenmodes and eigenfrequencies [13, 14].

For the second case, we also consider an initial shape function f with required
variability, for which the solution is constructed easily but which does not com-
pletely satisfy the boundary conditions. In this case, we apply the technique, which
is characteristic of BM. Zero-order approximation gives

w0 = f (2.11)
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first-order one is

w1 = − t2

2a2
f (IV) + f0 − f (2.12)

and the third-order approximation is

w2 = t4

24a4
f (VIII) − t2

2a2

(
f (IV)
0 − f (IV)

)
(2.13)

Then one obtains

w ≈ ( f + ε( f0 − f )) − t2

2a2

(
ε f (IV) + ε2

(
f (IV)
0 − f (IV)

))
+ t4

24a4
f (VIII) (2.14)

Using Padé approximation gives

w ≈
(
f0 + 1

2a2

(
f0 f (VIII)

6 f (VIII)
0

− f (IV)
0

)
t2
)(

1 + f (VIII)

12a2 f (VIII)
0

t2
)−1

(2.15)

A quarter of the period T is obtained from the condition that the numerator of
expression (2.15) is equal to zero

f0 + 1

2a2

(
f0 f (VIII)

6 f (VIII)
0

− f (IV)
0

)(
T

4

)2

= 0 (2.16)

T = 8a

√√√√√
3 f0 f

(IV)
0

6
(
f (IV)
0

)2 − f0 f (VIII)
(2.17)

The frequency is

ω = 2π/T = π

4a

√√√√2
f (IV)
0

f0
− f (VIII)

3 f (IV)
0

(2.18)

Let us compare the results obtained by different methods. For BM, calculation
results are well known [9, 13]. We get analogous results for proposed method. Thus,
for simply supported edges, we suppose

f = f0 = A sin
mπx

l
, f IV = A

(mπ

l

)4
sin

mπx

l
,

f VIII = A
(mπ

l

)8
sin

mπx

l
(2.19)
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Therefore, according to (2.18), the frequency is

ω = π

4a

(mπ

l

)2
√
5

3
(2.20)

Taking into account that

π

4

√
5

3
≈ 1.0139 (2.21)

we obtain an excellent agreement with the classical result [13] (up to 1.39%):

ω ≈ 1

a

(mπ

l

)2
, T ≈ 2πa

(
l

mπ

)2

(2.22)

For clamped edges, we suppose

f = f0 = Ax2(x − l)2, f IV = 24A, f VIII = 0 (2.23)

then

T = 2ax(l − x)

√
3

3
, ω = π

√
3

ax(l − x)
(2.24)

For the middle point of the beam x = l/2, we get

ω = 4π
√
3

al2
≈
(
4
√
3

π

)
π2

al2
≈ (1 + 0.485)2

π2

al2
(2.25)

We obtain an excellent agreement with the result of BM [13] (up to 1.99%) for
m = 1:

ω = (m + 0.5)2
π2

al2
(2.26)

For a high-frequency vibration case, we suppose

f0 = A sin2
mπx

2l
, f = A sin

mπx

l
(2.27)

then

f (IV)
0 = − A

2

(mπ

l

)4
cos

mπx

l
, f (VIII) = A

(mπ

l

)8
sin

mπx

l
(2.28)



2 Use of the Modified Method of Parameter Continuation … 31

Fig. 2.1 Dependence of
relevant frequency from
number of waves for BM
(2.26) (solid curve) and for
presented method (dashed
curve)
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4a

(mπ

l

)2
(2.29)

This result is in a good agreement with the result of BM (2.26) (Fig. 2.1).

2.2.2 Asymptotic Estimation of Free Vibrations of Nonlinear
Plates

Let us investigate natural nonlinear oscillations of the uniform rectangular plate of
length a, of width b, of thickness h,which is described by the Berger’s equation [13]

D∇4w − J1∇2w

a∫

0

b∫

0

((
w,x
)2 + (w,y

)2)
dxdy + ρwtt = 0 (2.30)

where

D = Eh3

12
(
1 − ν2

) , D = Eh2

12
(
1 − ν2

) , J1 = Eh

2ab
(
1 − ν2

) = 6D

hab
(2.31)

According to our method, we introduce an artificial parameter in the form

∂2w

∂t2
= − ε

ρ

⎛

⎝D∇4w − J1∇2w

a∫

0

b∫

0

(
w2
x + w2

y

)
dxdy

⎞

⎠ (2.32)

and seek the solution in the form (2.5). As a result, we get
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∞∑

i=0

∂2wi

∂t2
εi = − ε

ρ

(
D

∞∑

i=0

∇4wiε
i

− J1

( ∞∑

i=0

∇2wiε
i

) a∫

0

b∫

0

⎛

⎝
( ∞∑

i=0

wi,xε
i

)2

+
( ∞∑

i=0

wi,yε
i

)2
⎞

⎠dxdy

⎞

⎠

(2.33)

After ε-splitting, we get

i = 0 : ∂2w0
∂t2 = 0,

i = 1 : ∂2w1
∂t2 = − 1

ρ

(
D̄w0 − J1∇2w0

a∫

0

b∫

0

((
w0,x

)2 + (w0,y
)2)

dxdy

)
,

i = 2 : ∂2w2
∂t2 = − 1

ρ

(
D̄w1 − J1∇2w1 ×

a∫

0

b∫

0

((
w0,x

)2 + (w0,y
)2)

dxdy,

−2J1∇2w0

a∫

0

b∫

0

(
w0,xw1,x + w0,yw1,y

)
dxdy

)

· · ·

(2.34)

We also consider two types of problems with the initial shape perturbation:

(1) the initial perturbation f0(x, y) is known and it is necessary to describe the
oscillation of the plate;

(2) the initial perturbation is unknown and it is necessary to find the eigenfrequen-
cies of the plate.

For the first case, approximation is

w0 = f0, w1 = − 1
2ρ t

2 J0( f0) f0, (2.35)

w2 = t4

24ρ2

⎛

⎝(J0( f0))
2 f0 − 2J1 J3( f0)

a∫

0

b∫

0

(∇ f0 · J0( f0)∇ f0
)
dxdy

⎞

⎠ (2.36)

J2( f ) =
a∫

0

b∫

0

((
f,x
)2 + ( f,y

)2)
dxdy (2.37)

J0( f0) = (D∇4 − J1 J2( f0)∇2
)

(2.38)

Using Padé approximation, we obtain formula for displacement of the plate

w ≈
(
f0 + 1

12ρ t
2A1

)/(
1 + 1

12 t
2B1
)

(2.39)
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A1 =
f0
(
J 2
0 ( f0) f0 − 2J1∇2 f0

∫ a
0

∫ b
0 (∇ f0 · J0( f0)∇ f0)dxdy

)
− 6(J0( f0) f0)

2

J0( f0) f0
(2.40)

B1 =
⎛

⎝J 2
0 ( f0) f0 − 2J1∇2 f0

a∫

0

b∫

0

(∇ f0 · J0( f0)∇ f0)dxdy

⎞

⎠
/

J0( f0) f0 (2.41)

For the second case, we consider an initial shape function f (x, y) for which the
solution is constructed easily, but boundary conditions are not completely satisfied,
and initial function f0(x, y), which completely satisfied the boundary conditions.
Thus, we get

w0 = f, w1 = − t2

2ρ
J0( f ) f + f0 − f (2.42)

w2 = t4

24ρ2

[
(J0( f ))

2 f −2J1∇2 f

×
a∫

0

b∫

0

(
f,x J0( f ) f,x + f,y J0( f ) f,y − J1∇2 f

[
J2
(
f,x
)+ J2

(
f,y
)])

dxdy

⎤

⎥⎦

− t2

2ρ

⎡

⎢⎣J0( f )( f0 − f ) − 2J1∇2 f

a∫

0

b∫

0

(
f,x
(
f0,x − f,x

)+ f,y
(
f0,y − f,y

))
dxdy

⎤

⎥⎦.

(2.43)

So

w ≈ f0 − t2

2ρ

⎡

⎢⎣J0( f ) f0 − 2J1∇2 f

a∫

0

b∫

0

(
f,x
(
f0,x − f,x

)+ f,y
(
f0,y − f,y

))
dxdy

⎤

⎥⎦

+ t4

24ρ2

[
(J0( f ))

2 f −2J1∇2 f

×
a∫

0

b∫

0

(
f,x J0( f ) f,x + f,y J0( f ) f,y − J1∇2 f

[
J2
(
f,x
)+ J2

(
f,y
)])

dxdy

⎤

⎥⎦. (2.44)

We introduce the notation

f1 = J0( f ) f0 − 2J1∇2 f

a∫

0

b∫

0

(
f,x
(
f0,x − f,x

)+ f,y
(
f0,y − f,y

))
dxdy,
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f2 = J 2
0 ( f ) f − 2J1∇2 f

×
a∫

0

b∫

0

(
f,x J0( f ) f,x + f,y J0( f ) f,y − J1∇2 f

[
J2
(
f,x
)+ J2

(
f,y
)])

dxdy.

(2.45)

Using Padé approximation, we get

w ≈ f0 + 1
12ρ t

2A1

1 + 1
12 t

2B1
(2.46)

A1 = f0 f2 − 6( f1)
2

f1
, B1 = f2

f1
(2.47)

A quarter of the period T for both cases can be obtained from the condition

f0 + A1

12ρ

(
T

4

)2

= 0 (2.48)

so

T = 8

√

−3 f0ρ

A1
,

ω = π

4

√

− A1

3 f0ρ
(2.49)

From (2.42), we can conclude that the frequency does not depend on the amplitude
of initial perturbation f0.

For simply supported edges, we suppose

f = f0 = A sin
mπx

a
sin

nπy

b
(2.50)

The calculation is carried out for a point (x0, y0) with maximal amplitude of the
initial deflection for which

sin
mπx0
a

= sin
nπy0
b

= 1 (2.51)

According to (2.42), expression for frequency is
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ω = π

4

×

√√√√2J0( f0) f0
f0ρ

−
f0
(
J 2
0 ( f0) f0 − 2J1∇2 f0

∫ a
0

∫ b
0 (∇ f0 · J0( f0)∇ f0)dxdy

)

3ρ J0( f0) f0
(2.52)

Substituting (2.51) to (2.52) gives

ω = π3

4

[(m
a

)2 +
(n
b

)2]
√√√√5D

3ρ

(
1 + 3

2

(
A

h

)2
)

(2.53)

Taking into account (2.21), we obtain

ω ≈ π2

[(m
a

)2 +
(n
b

)2]
√√√√D

ρ

(
1 + 3

2

(
A

h

)2
)

(2.54)

We can see that in general case the frequency is dependent on the amplitude of
initial perturbation even for simply supported edges (Fig. 2.2). For linear case, we
can represent real form by splitting initial perturbations in convergent Fourier series
[15–17].

For clamped edges, we suppose

f0 = A sin2
mπx

2a
sin2

nπy

2b
,

f = A sin
mπx

a
sin

nπy

b
(2.55)

Figure 2.3 shows good agreement results obtained by our method and BM [13].

2.3 Using Asymptotic Method for Estimation
of Parameter-Dependent Vibrations of Beams
and Rectangular Plates

Often asymptotic methods give possibility to calculate different types of boundary
conditions in one calculation scheme. So we can obtain results for different boundary
conditions only by changing parameter value. Such a scheme does not describe
parametric vibrations, because parametricmotion has to be caused by time-dependent
change of parameter [4, 17]. This is very important at the stage of preliminary design
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Fig. 2.2 Dependence of frequency ω0 = (ω/π2a2
)√

ρ/D of square plate from amplitude A/h of
initial perturbation for simply supported edges (numbers of waves in spatial directions are shown
in above curves)

Fig. 2.3 Dependence of
frequency from amplitude of
initial perturbation for square
plate according to BM [13]
(solid curve) and to our
method (dashed curve).
Numbers of waves in spatial
directions are shown in
above curves
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of structures, because it allows fast modification of possible boundary conditions in
order to select the rational fastening of the edges. It is also important for solution of
plate conjunction problems [18, 19].

2.3.1 Explanation of the Method on the Base
of Parameter-Dependent Beam Oscillations

Let us consider the natural linear oscillations of the uniform beam under action of
axes-directed compressive force N on its edges, described by the equation:

E J
∂4w

∂x4
+ N

∂2w

∂x2
+ ρF

∂2w

∂t2
= 0 (2.56)

Boundary conditions for simply supported edges at x = 0, l are

w = 0,
∂2w

∂x2
= 0 (2.57)

We introduce an artificial parameter according to MMPC in the form

∂2w

∂t2
= − ε

ρF

(
E J

∂4w

∂x4
+ N

∂2w

∂x2

)
(2.58)

and represent as series

w =
∞∑

i=0

wiε
i (2.59)

We consider problems when the initial perturbation f0(x) is known [20]. After
splitting, we get

w0 = f0

w1 = − t2

2ρF

(
N f ′′

0 + E J f (IV)
0

)

w2 = t4

24ρ2F2

(
N 2 f (IV)

0 + 2NE J f (VI)
0 + E2 J 2 f (VIII)

0

)
(2.60)

Then one obtains

w ≈ f0 − t2

2ρF
ε
(
N f ′′

0 + E J f (IV)
0

)
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+ t4

24ρ2F2
ε2
(
N 2 f (IV)

0 + 2NE J f (VI)
0 + E2 J 2 f (VIII)

0

)
(2.61)

Using Padé approximation gives

w ≈
f0 + t2

2ρF

(
f0
(
N 2 f (IV)

0 +2NE J f (VI)
0 +E2 J 2 f (VIII)

0

)

6
(
N f ′′

0 +E J f (IV)
0

) −
(
N f ′′

0 + E J f (IV)
0

))

1 +
(
N 2 f (IV)

0 +2NE J f (VI)
0 +E2 J 2 f (VIII)

0

)

(
N f ′′

0 +E J f (IV)
0

) t2
12ρF

(2.62)

A quarter of the period T is obtained from the condition

f0 + 1

2ρF

⎛

⎝
f0
(
N2 f (IV)

0 + 2NE J f (VI)0 + E2 J2 f (VIII)0

)

6
(
N f ′′0 + E J f (IV)

0

) −
(
N f ′′0 + E J f (IV)

0

)
⎞

⎠
(
T

4

)2
= 0 (2.63)

T = 8
√
6ρF

√√√√√√
f0
(
N f ′′

0 + E J f (IV)
0

)

6
(
N f ′′

0 + E J f (IV)
0

)2 − f0
(
N 2 f (IV)

0 + 2NE J f (VI)
0 + E2 J 2 f (VIII)

0

)

(2.64)

For frequency ω, we get

ω = 2π

T
= π

4
√

ρF

√√√√√

(
N2 f (IV)

0 + 2NE J f (VI)
0 + E2 J2 f (VIII)

0

)

6
(
N f ′′

0 + E J f (IV)
0

) −
(
N f ′′

0 + E J f (IV)
0

)

f0

(2.65)

For eigenfrequency ωe, we get

ωe = ω(N = 0) = π

4

√
E J

ρF

√√√√ f (VIII)
0

6 f (IV)
0

− f (IV)
0

f0
(2.66)

The value of buckling force Nc we get from condition of infinity of ω is:

Nc f
′′
0 + E J f (IV)

0 = 0 ⇒ Nc = −E J
f (IV)
0

f ′′
0

(2.67)

Let us analyze results. For simply supported edges, we suppose

f = f0 = A sin
mπx

l
, f IV = A

(mπ

l

)4
sin

mπx

l
,
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f VIII = A
(mπ

l

)8
sin

mπx

l
(2.68)

So, according to (2.65), the frequency is

ω = π2m

4l

√√√√5
(
E J
(

πm
l

)2 − N
)

3ρF
(2.69)

Taking into account (2.21), we get an excellent agreement with the classical result
[17] (up to 1.39%):

ω ≈ 1√
ρF

(mπ

l

)√
E J
(mπ

l

)2 − N (2.70)

For Nc, we get exact solution

Nc = −E J
f (IV)
0

f ′′
0

= E J
(mπ

l

)2
(2.71)

and for eigenfrequency we get also agreement with the classical result up to 1.39%:

ωe ≈
√

E J

ρF

(mπ

l

)2
(2.72)

2.3.2 Calculation of Parameter-Dependent Plates Vibrations

Let us investigate free nonlinear oscillations of the rectangular plate under action
in-plane uniform compressive force N on its edges x = 0, a:

D∇4w + Nwxx + ρhwtt = 0 (2.73)

We consider simply supported boundary conditions on both edges:

w(x = 0, y) = w(x = a1, y) = 0, w(x, y = 0) = w(x, y = a2) = 0 (2.74)

∂2w

∂x2

∣∣∣∣
x=0

= ∂2w

∂x2

∣∣∣∣
x=a1

= 0,

∂2w

∂y2

∣∣∣∣
y=0

= ∂2w

∂y2

∣∣∣∣
y=a2

= 0 (2.75)
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We carry out a perturbation of the following form

∂2w

∂t2
= −ε

(
Nwxx + D

ρh
∇4w

)
,

w =
∞∑

i=0

wiε
i (2.76)

After splitting, we get

w0 = f0

w1 = − t2

2ρh

(
N

∂2 f0
∂x2

+ D∇4 f0

)

w2 = t4

24ρ2h2

(
N 2 ∂4 f0

∂x4
+ 2ND

∂2 f0
∂x2

∇4 f0 + D2∇8 f0

)
(2.77)

Then one obtains

w ≈ f0 − t2ε

2ρh

(
N

∂2 f0
∂x2

+ D∇4 f0

)

+ t4ε2

24ρ2h2

(
N 2 ∂4 f0

∂x4
+ 2ND

∂2 f0
∂x2

∇4 f0 + D2∇8 f0

)
(2.78)

Padé approximation for (2.78) is

w ≈
f0 + t2

2ρh

(
f0
6

(
N 2 ∂4 f0

∂x4
+2ND ∂2 f0

∂x2
∇4 f0+D2∇8 f0

N ∂2 f0
∂x2

+D∇4 f0

)
−
(
N ∂2 f0

∂x2 + D∇4 f0
))

1 + t2
12ρh

(
N 2 ∂4 f0

∂x4
+2ND ∂2 f0

∂x2
∇4 f0+D2∇8 f0

N ∂2 f0
∂x2

+D∇4 f0

) (2.79)

We get formula for parameter-dependent motion of the plate.
Let us analyze results. For simply supported boundaries, we suppose

f0 = A sin
mπx

a1
sin

mπy

a2
(2.80)

After splitting, we get

w0 = f0, w1 = − t2

2ρh

⎛

⎝
(
mπ

a1

)2

N + D

((
mπ

a1

)2

+
(
nπ

a2

)2
)2
⎞

⎠ f0 (2.81)
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w2 = t4

24ρ2h2

⎛

⎝
(
mπ

a1

)2

N + D

((
mπ

a1

)2

+
(
nπ

a2

)2
)2
⎞

⎠
2

f0 (2.82)

Padé approximation for (2.82) is

w ≈ f0

1 − 5t2

12ρh

(
D

((
mπ
a1

)2 +
(
nπ
a2

)2)2

−
(
mπ
a1

)2
N

)

1 + t2
12ρh

(
D

((
mπ
a1

)2 +
(
nπ
a2

)2)2

−
(
mπ
a1

)2
N

) (2.83)

Period and frequency are obtained from condition

w

(
T

4
, x, y

)
= 0 (2.84)

So

1 − 5

12ρh

⎛

⎝D

((
mπ

a1

)2

+
(
nπ

a2

)2
)2

−
(
mπ

a1

)2

N

⎞

⎠
(
T

4

)2

= 0 (2.85)

T = 8

√
3ρh

5

⎛

⎝D

((
mπ

a1

)2

+
(
nπ

a2

)2
)2

−
(
mπ

a1

)2

N

⎞

⎠
−1/ 2

(2.86)

ω = π

4

√
5

3ρh

√√√√D

((
mπ

a1

)2

+
(
nπ

a2

)2
)2

−
(
mπ

a1

)2

N (2.87)

For Nc from condition of infinity of ω

(
mπ

a1

)2

Nc − D

((
mπ

a1

)2

+
(
nπ

a2

)2
)2

= 0 (2.88)

we obtain exact solution

Nc = D

(
mπ

a1

)2
(
1 +

(
na1
ma2

)2
)2

(2.89)

and for eigenfrequency we get the value close to the result from [5] (up to 1.39%)
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ωe = π

4

√
5

3ρh

√√√√D

((
mπ

a1

)2

+
(
nπ

a2

)2
)2

≈
√

D

ρh

[(
mπ

a1

)2

+
(
nπ

a2

)2
]

(2.90)

2.4 Nonlinear Vibration of Integrally Stiffened Cylindrical
Shell

Now we use the proposed approach in combination with the known asymptotic
methods. Consider the nonlinear vibration of a structurally inhomogeneous cylin-
drical shell [21–23]. We use Lagrangian (material) coordinates and assume that the
coordinate system is a right-handed one, so that the x-axis is directed along the gener-
atrix, y-axis is the circumferential coordinate and z-axis is directed toward the center
of curvature. Shell is a right circular cylinder; stiffening consists of eccentrically
attached circular rings and straight stringers (Fig. 2.4).

Suppose the shell has many closely spaced stiffeners, it gives possibility to use
orthotropic theory in which the stiffener characteristics are smeared over the skin
(“Smeared Stiffener Theory”). The mathematical justification for such a simplifica-
tion is given by the asymptotic homogenization theory. We consider the governing
equations of motion in the form [8]:

∂N11

∂x1
+ ∂N12

∂x2
+ ∂M12

∂x2
− 1

2

∂

∂x2
[φ(N11 + N22)] − ρR2 ∂2u1

∂t2
= 0

∂N12

∂x1
+ ∂N22

∂x2
− Q2 − 1

2R

∂M12

∂x2
+ (φ1N12 + φ2N22)

Fig. 2.4 Scheme of
stiffened shell
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+ 1

2

∂

∂x1
[φ(N11 + N22)] − ρR2 ∂2u2

∂t2
= 0

∂Q1

∂x1
+ ∂Q2

∂x2
+ N22 − ∂

∂x1
(φ1N11 + φ2N12)

− ∂

∂x2
(φ1N12 + φ2N22) − ρR2 ∂2w

∂t2
= 0

∂M11

∂x1
+ ∂M12

∂x2
− RQ1 = 0,

∂M12

∂x1
+ ∂M22

∂x2
− RQ2 = 0 (2.91)

φ1 = − 1

R

∂w

∂x1
, φ2 = − 1

R

(
∂w

∂x2
+ u2

)
, φ2 = 1

2R

(
∂u1
∂x2

+ ∂u2
∂x1

)
, (2.92)

where u1(u2),w are the tangential and normal displacements in the middle point of
the shell thickness,
ρ0, ρ1(ρ2) are the densities of the shellmaterial and the stringer (ring)material, (ρ0, ρ

are mass per unit volume, ρ1, ρ2 are mass per unit area), ρ = ρ0 + (ρ1/ l1)+ (ρ2/ l2)
x1(x2) are the axial and circumferential coordinates,
R, L are the radius and length of the shell,
l1(l2) are the distances between stringers (rings).

Here Ni j are membrane stresses, Mi j are bending and torsion moments, Qi are
transverse shearing forces. Components of an elasticity tensor have the form [8]

N11 = B11ε11 + B12ε22 + K11κ11, N22 = B21ε11 + B22ε22 + K22κ22,

N12 = B33ε12, M11 = D11κ11 + D12κ22 + K11ε11,

M22 = D21κ11 + D22κ22 + K22ε22, M12 = D33κ12,

B11 = B + Es Fs/ l1, B22 = B + Er Fr/ l2,

B = Eh/
(
1 − v2

)
, G = Eh/(1 + v),

B21 = B12 = ν21B11 = ν12B22, D11 = D + Es Js/ l1,

D22 = D + Er Jr/ l2, D21 = D12 = ν21D11 = ν12D22 = Dν,

D11 = D/2 + Es Jks/ l1 + Er Jkr/ l2, K11 = Es Ss/ l1, K22 = Er Sr/ l2 (2.93)

where Fs(Fr ), Js(Jr ), Jks(Jkr ), Ss(Sr ) are the transverse section areas, moments of
inertia, rotation moments of inertia, torsion moments of inertia and static moments
of stringer (ring), respectively,
E, Es(Er ) are the Young’s modulus of the shell material and stringer (ring) material,
respectively,
ν is the Poisson’s ratio of the shell material,
h is the shell thickness.

We accept the following geometrical relations

ε11 = 1

R

∂u1
∂x1

+ 1

2
φ2
1 + φ2, ε22 = 1

R

(
∂u2
∂x2

− w

)
+ 1

2
φ2
2 + φ2,
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ε12 = 1

2R

(
∂u2
∂x1

+ ∂u1
∂x2

)
+ 1

2
φ1φ2, κ11 = 1

R

∂φ1

∂x1
, κ22 = 1

R

∂φ2

∂x2
,

κ12 = 1

2R

(
∂φ2

∂x1
+ ∂φ1

∂x2
− φ

)
(2.94)

We introduce a natural small parameter, ε1 = √
D1/B2R2, where D1 = D11 −

K 2
11/B1 and B2 = B22(1 − ν12ν21). We also introduce the following dimensionless

parameters:

ε2 = D1/D2, ε3 = D3/D1, ε4 = B2/B1,

ε5 = B3/B1, ε6 = K11/B1R, ε7 = K22/B2R,

B1 = B11(1 − ν21ν12), 1/B3 = 1/B33 − B21/B11B22(1 − ν21ν12),

D2 = D22 − K 2
22/B2, D3 = D12 + D33 + (K11K22/B1B2)B12(1 − ν21ν12)

(2.95)

One can define three types of reinforced shells: stringer shells, ring-stiffened
shells and integrally stiffened shells. For stringer shells, we can use the following
estimations:

ε1 � 1, ε2 ∼ ε21, ε3 ∼ ε1, ε4 ∼ ε5 < 1, ε6 ∼ ε1, ε7 = 0

We introduce parameters of asymptotic estimations αk :

∂w

∂xi
∼ ε

−αi
1 w,

∂w

∂t
∼ ε

−α3
1 ,

w

R
∼ ε

α4
1 , ui ∼ ε

α4+i

1 , i = 1, 2 (2.96)

We consider possible simplifications of the general relations of the stringer shells.
For stringer shell, whose state is changing rapidly in the circumferential direction,
we have the following simplified system [8]:

α1 = 0, α2 = α6 = 1/2, α3 = −1, α4 = α5 = 1

∂N11

∂x1
+ ∂N12

∂x2
= 0,

∂N12

∂x1
+ ∂N22

∂x2
= 0,

∂2M11

∂x21
+ 2

∂2M12

∂x1∂x2
+ ∂2M22

∂x22
+ RN22 + ∂

∂x1

(
∂w

∂x1
N11 + ∂w

∂x2
N12

)

+ ∂

∂x2

(
∂w

∂x1
N12 + ∂w

∂x2
N22

)
− ρR2 ∂2w

∂t2
= 0,

N11 = B11ε11 + B12ε22 + K11κ11, 0 = B21ε11 + B22ε22, N12 = B33ε12,

M11 = D11κ11 + K11ε11, M22 = D21κ11 + D22κ22, M12 = D33κ12,

ε11 = (1/R)∂u1/∂x1 + (1/2R2
)
(∂w/∂x1)

2,

0 = (1/R)(∂u2/∂x2 − w) + (1/2R2
)
(∂w/∂x2)

2,
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0 = (1/2R)(∂u2/∂x1 + ∂u1/∂x2) + (1/2R2
)
(∂w/∂x1)(∂w/∂x2),

κ11 = −(1/R2)∂2w/∂x21 , κ22 = −(1/R2)∂2w/∂x22 , κ12 = −(1/R2)∂2w/∂x1∂x2
(2.97)

Let us obtain the amplitude–frequency dependencies for the nonlinear vibrations
of a simply supported stringer shell with following boundary conditions:

w(0, y) = w(L , y) = 0,
∂2w

∂x2

∣∣∣∣
x=0

= ∂2w

∂x2

∣∣∣∣
x=L

= 0
, (2.98)

We use for the radial displacement w the following Ansatz [8]

w = f1(t) sin(s1x1) cos(s2x2) + f2(t) sin
2(s1x1) (2.99)

From the condition of continuity of circumferential displacement, one obtains [8]:

f2 = 0.25R−1s22 f
2
1 (2.100)

where s1 = πml−1 and s2 = n are the parameters characterizing number of waves
along the generatrix and directrix, respectively.

Taking into account (2.98), the Airy stress function has the form

B−1
1 � = p2s−2

2

(
1 − ε6ε

2
2

)
ξ sin s1x1 cos s2x2 − (5/16)p2ξ 2 cos 2s2x2

+ 1
2 s

2
1ξ

3 sin s1x1 cos 2s1x1 cos s2x2, p = s1s
−1
2 , ξ = f1/R (2.101)

Now one can use Bubnov–Galerkin procedure:

α̃∫

0

l∫

0

L1(w) sin s1x1 cos s2x2dx1dx2 = 0,

α̃∫

0

l∫

0

L1(w) sin2 s1x1dx1dx2 = 0,

(2.102)

where

L1(w) = ∇4w − R
(
∂2/∂x21 − ∇4

)
� − L(w,�) + ρR2∂2w/∂t2 (2.103)

Consider now a practically important case of steady-state periodic vibrations. As
a result, one obtains the following ODE equation with constant coefficients for the
time function ξ :

d2ξ

dt21
+ αξ

[(
dξ

dt1

)2

+ ξ
d2ξ

dt21

]
+ A1ξ + A2ξ

3 + A3ξ
5 = 0,
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Fig. 2.5 Dependence of the frequency of stringer shell  from the amplitude of the initial
disturbance f = f Rh−1: curve 1—according to the proposed method; curve 2—data from [8]

t1 = 0: ξ = f,
dξ

dt1
= 0 (2.104)

Here

t1 =
√
B1/ρR2t, A1 = ε21ε4 + 2ε21ε3ε4 p

−2 + ε21ε2ε4 p
−4

+ s−4
2

(
1 − ε26s

2
2

)
, A2 = 1

16 + 1
2 s

4
2ε

2
1ε4 − 3

4

(
1 − ε26s

2
2

)
, A3 = 1

4 s
4
2 , α = 3

32 s
4
2

(2.105)

The application of the proposed method of parameter continuation to the Cauchy
problem (2.104) gives approximation of the second order for the artificial parameter
for frequency  of nonlinear oscillations in the form

 =
√
1 + f 2(A2/A1) + f 4(A3/A1)

1 + α f
(2.106)

and represented in Fig. 2.5.

2.5 Using MMPC for Investigation of Systems with a Finite
Number of Degrees of Freedom

For many problems of metrology [24, 25], technical [17, 26] and mining [27, 28]
mechanics, finite-dimensional models are important.
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2.5.1 Duffing Pendulum

Let us consider Duffing pendulum as a model example of nonlinear vibrations

ü + u + εu3 = 0, u(0) = a, u̇(0) = 0 (2.107)

For small nonlinearity, it can be used Lindstedt–Poincaré method to construct
appropriate approximate solution in terms of trigonometric series in form

u = a cos(ωt) + εa2

32
cos(3ωt) + O

(
ε2
)

(2.108)

where circle frequency is

ω = 1 + 3

8
εa2 − 51

256

(
εa2
)2 + O

(
ε3
)

(2.109)

Thus period T is

T ≈ 2π

(
1 + 3

8
εa2 − 51

256

(
εa2
)2
)−1

(2.110)

The same result can be found using extended parameters multi-scale asymptotic
method or averaging method [13, 17]. MMPC solves this problem in the direct way
[14]. We carry out a perturbation according to artificial parameter ε1

ü + ε1

(
u + εu3

)
= 0, u =

∞∑

i=0

ui ε
i
1, u0(0) = a u̇0(0) = ui (0) = u̇i (0) = 0 i = 1, ∞

(2.111)

We can get approximation in MMPC form

u ≈ a − a

(
1 + εa2

)

2
ε1t

2 + a

(
1 + εa2

)(
1 + 3εa2

)

24
ε21 t

4 (2.112)

2D Padé approximation of (2.112) for ε1 = 1 gives

u ≈ a
(
12 − (5 + 3εa2

)
t2
)
/
(
12 + (1 + 3εa2

)
t2
)

(2.113)

Period of oscillations is

T ≈ 8
√
3√

5+3εa2
(2.114)
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Behavior of corresponding approximations for values of parameter ((2.109)—
solid curves and (2.113)—dashed curves) is shown in Fig. 2.6. The numbers near
curves correspond to values of parameter εa2. Comparison betweenFormulas (2.110)
(solid curve) and (2.112) (dashed curve) is shown in Fig. 2.7. They demonstrate good
agreement in the whole interval under consideration. It worse mentioned that near
εa2 ≈ 1.4889 additional terms in (2.109) are equal to the circle frequency of linear
pendulum and so cannot be treated as “small.”

Fig. 2.6 Dependence of
u = u/a on time

Fig. 2.7 Dependence of
period on time
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2.5.2 Application of MMPC for Two Coupled Oscillators

Coupled oscillators are one of the basic models both in physics [29] and in biology
[30]. The equations describe the system of two identical coupled pendulums have
the form

ẍ1 + ω2x1 − λx2 = 0 (2.115)

ẍ2 + ω2x2 − λx1 = 0 (2.116)

where x1, x2 are the deviations of the pendulums from the equilibrium position, ω is
the frequency of natural oscillations of the pendulums (partial frequency), λ is the
coupling constant.

The general solution of system (2.115), (2.116) has the form

x1 = A cos((ω − λ)t + ψ1) + B sin((ω + λ)t + ψ2), (2.117)

x2 = A cos((ω − λ)t + ψ1) − B sin((ω + λ)t + ψ2), (2.118)

where the amplitudes A, B and the phases ψ1, ψ2 are determined by the initial
conditions.

For the initial deviation of the pendulums a and b with zero initial velocity, we
obtain

A = 0.5(a + b), B = 0.5(a − b), (2.119)

ψ1 = ψ2 = 0. (2.120)

Let us consider a case a 
= 0, b = 0. Then the exact solution has the form

x1(t) = a · cos(ωt) cos(λt), (2.121)

x2(t) = a · sin(ωt) sin(λt). (2.122)

For polynomial approximation of the system solution, we introduce an artificial
parameter [10, 12, 20, 31]:

ẍ1 = ε
(
λx2 − ω2x1

)
, (2.123)

ẍ2 = ε
(
λx1 − ω2x2

)
. (2.124)
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x j =
∞∑

i=0

xi jε
i , j = 1, 2. (2.125)

Solutions of recurrent systems after ε-splitting are

ε0: ẍ01 = ẍ02 = 0, x01 = a, x02 = 0 (2.126)

ε1: ẍ11 = −ω2a, ẍ12 = λa, x11 = −0.5ω2at2, x12 = 0.5λat2 (2.127)

ε2: ẍ21 = 0.5a
(
ω4 + λ2)t2, ẍ22 = −aω2λt2

x21 = 1

24
a
(
ω4 + λ2

)
t4, x22 = − 1

12
aω2λt4 (2.128)

ε3: ẍ31 = −aω2

24

(
ω4 + 3λ2

)
t4, ẍ32 = aλ

24

(
3ω4 + λ2

)
t4

x31 = −aω2

6!
(
ω4 + 3λ2)t6, x32 = aλ

6!
(
3ω4 + λ2)t6 (2.129)

We introduce new variable ξ = t2 and obtain an approximation in the form of
truncated double series

x1 ≈ a − 1

2
ω2a · εξ + 1

24
a
(
ω4 + λ2

) · ε2ξ 2 − aω2

6!
(
ω4 + 3λ2

) · ε3ξ 3

= a

(
1 − ω2

2
· εξ + 1

4!
(
ω4 + λ2

) · ε2ξ 2 − ω2

6!
(
ω4 + 3λ2

) · ε3ξ 3

)
(2.130)

x2 ≈ 1

2
λa · εξ − 1

12
aω2λ · ε2ξ 2 + aλ

6!
(
3ω4 + λ2

) · ε3ξ 3

= λaεξ

(
1

2
− 2

4!ω
2 · εξ + 1

6!
(
3ω4 + λ2

) · ε2ξ 2

)
(2.131)

Thus, we have two segments of double power series in parentheses. Using, for
them, 2D Padé approximation, we obtain for ε = 1

x1(t) ≈ 2a
6ω2 + (λ2 − 2ω4

)
t2

12ω2 + (ω4 + λ2
)
t2

, (2.132)

x2(t) ≈ λa

5

30ω2 + (ω4 + 2λ2
)
t2

12ω2 + (ω4 + λ2
)
t2

t2. (2.133)

For harmonic approximation of the solution, let us consider another scheme for
introducing the artificial parameter:

ẍ1 + ω2x1 = ελx2 (2.134)
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ẍ2 + ω2x2 = ελx1. (2.135)

Solution has the form (2.125). Solution of recurrent systems gives

ε0: ẍ01 + ω2x01 = 0, ẍ02 + ω2x02 = 0, x01 = a · cos(ωt), x02 = 0 (2.136)

ε1: ẍ11 + ω2x11 = 0, ẍ12 + ω2x12 = aλ · cos(ωt)
x11 = 0, x12 = − aλ

2ω
· t · sin(ωt) (2.137)

ε2: ẍ21 + ω2x21 = −aλ2

2ω
· t · sin(ωt), ẍ22 + ω2x22 = 0

x21 = aλ2

8ω2
· t2 · cos(ωt) − aλ2

8ω3
· t · sin(ωt), x22 = 0 (2.138)

ε3: ẍ31 + ω2x31 = 0, ẍ32 + ω2x32 = aλ3

8ω2
· t2 · cos(ωt) − aλ3

8ω3
· t · sin(ωt)

x31 = 0, x32 = aλ3

16ω3
t2 cos(ωt) +

(
aλ3

48ω3
t3 − aλ3

16ω4
t

)
sin(ωt) (2.139)

x1 ≈ a · cos(ωt) + aλ2

8ω3

(
ω · t2 · cos(ωt) − t · sin(ωt)) · ε2 (2.140)

x2 ≈ εt

[
− aλ

2ω
sin(ωt) + aλ3

48ω4

(
3ωt · cos(ωt) + (ωt2 − 3

)
sin(ωt)

) · ε2
]

(2.141)

After expanding secular term in series of trigonometric functions on the interval
(−π/ω, π/ω)

ω · t2 · cos(ωt) − t · sin(ωt) ≈ − 6

ω
+ π2 + 3

3ω
cos(ωt) − 7

9ω
cos(2ωt) (2.142)

3ωt · cos(ωt) + ωt2 · sin(ωt) = −27ω − 2π2 + 3

6ω
sin(ωt) + 2

9ω − 4

9ω
sin(2ωt)

(2.143)

we get 2D power series

x1 ≈ a ·
(
cos(ωt) − 3λ2

4ω4
ε2 + λ2

(
π2 + 3

)

24ω4
ε2 cos(ωt)− 7λ2

72ω4
ε2 cos(2ωt)

)

(2.144)



52 I. V. Andrianov et al.

x2 ≈ − aλ

2ω
εt

⎡

⎣sin(ωt) −
λ2
(
27ω − 2π2 + 3

)

144ω4 ε2 sin(ωt) + λ2(9ω − 4)

108ω4 ε2 sin(2ωt)

⎤

⎦

(2.145)

We introduce complex quantities X1, X2 of form

X1 = x1
a

= eiωt − 3λ2

4ω4
ε2 + λ2

(
π2 + 3

)

24ω4
ε2eiωt − 7λ2

72ω4
ε2e2iωt (2.146)

X2 = eiωt − λ2
(
27ω − 2π2 + 3

)

144ω4
ε2eiωt + λ2(9ω − 4)

108ω4
ε2e2iωt (2.147)

associated with approximated functions by dependencies

x1 = aRe(X1), x2 = −a
λt

2ω
εIm(X2) (2.148)

Using Padé approximation, one obtains

X1(ε, t) ≈ a
− 3λ2

4ω4 ε
2 + eiωt + λ2(π2+3)

24ω4 ε2eiωt

1 + 3
7(π2+3)

eiωt
(2.149)

Function X1(ε, t) can be obtained analogously. The values of x1 for t ∈ (0, 2π/ω)

and different parameter values are shown in Fig. 2.8.
Number 1 corresponds to Formula (2.132), 2—(2.121), 3—(2.130), 7—(2.144),

8—(2.148) with accounting (2.149). Comparison of curves 1 and 3 shows the advan-
tage of the Formula (2.132) in half period. Comparison of curves 7 and 8 shows
good agreement of Formulas (2.121) and (2.148) with the exact result already on the

Fig. 2.8 Displacement x1 as a function of time for ω = 5, λ = 1 (a) and ω = 20, λ = 1 (b)
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period, although the process of constructing such an approximation is more cum-
bersome than (2.132). To analyze the convergence of the approximants, we also
constructed power series segment of t of tenth order (curve 4) and its Padé approxi-
mations (5—P1[1, 3/1, 2](ε, ξ), 6—P1[1, 4/1, 1](ε, ξ)). It is seen that an increase
in the order of the polynomial approximation extends its applicability area.

2.6 Conclusions

Themodifiedmethod of parameter continuation can be successfully used for estimat-
ing the frequencies andmodes of linear and nonlinear oscillations of plates and shells
with complicated boundary conditions and of parameter-dependent oscillations of
plates. MMPC estimations depend on the shape of initial perturbation. Proposed
technique allows using it for estimation of the eigenfrequency of vibration and buck-
ling loads. It describes real vibration shape with different conditions on the edges.
The comparison with known results confirms the accuracy of proposed method.
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Chapter 3
A Mathematically Consistent
Vector-Matrix Representation
of Generalized Hooke’s Law
for Shear-Rigid Plates

Marcus Aßmus and Holm Altenbach

Abstract The present contribution is dedicated to the mathematical consistent ex-
pression of constitutive relations needed for efficient computational treatment of
thin-walled structural elements within a geometrically and physically linear frame-
work, as usually used by engineers. Hereby, the direct approach for homogeneous
plates is taken as a basis. We confine our research to shear-rigid plates. We further
on do not restrict ourselves by material symmetry classes and consider an aelotropic
material. Based on the fully coupled constitutive equations, we introduce an ap-
proach by applying normalized bases to decay into a vector-matrix representation. It
is thus possible to formulate the tensorial quantities in form of vector-matrix equa-
tions which are mathematically consistent. The key advantages of this approach are
disclosed.

Keywords Shear-rigid plate theory · Computational efficiency · Consistency

3.1 Introduction

3.1.1 Motivation

Many engineering materials exhibit an anisotropic behavior, i.e., a behavior devi-
ating significantly from isotropy. In the most general case, this is called aelotropic
(or triclinic). Thin-walled structural elements such as plates are increasingly made
of such materials. In addition to inelasticity, anisotropy is therefore an important
influence in the description of the structural behavior. Here, we limit our description
to shear-rigid plates, often referred to the work of Kirchhoff [6], concerned with pure
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bending. In doing so, the interesting but at least at this point, problematic case of
shear-deformable plates, i.e., the transverse shear-rigidity does not tend to infinity
as presented by Mindlin [8], remains out of the sphere of present manuscript. To
broaden the scope of present treatise, we include the in-plane loaded plate state what
results in a description well known as classical laminate (or multi-layered) theory.
However, we still limit ourselves to homogeneous plates, i.e., the different composite
plys of a laminate result in a homogeneous substitute material for a single layer.

As usual in context of plate theories, all operations are referred to a reference
surface S ⊂ E

2 within or beyond the volume V occupied by the three-dimensional
plate like bodyB ⊂ E

3. Sincewe are interested in plates solely (in contrast to shells),
the reference surface is a plane. In the best case, one chooses the plates mid-surface,
i.e., the surface that halves the thickness of the plate at each point, since the plate
states are decoupled but superposed eventually, even if this is not the case for all
material symmetry classes. However, in a more general context, the choice of the
position of S is arbitrary, i.e., the constitutive relations are coupled.

Following the seminal work of Rychlewski [10], we will find four distinct sym-
metry classes for the shear-rigid, planar two-dimensional body manifold, i.e., for the
plane of elastic symmetries. These are

• full anisotropy (lack of any symmetry),
• symmetry of a rectangle (also known as square symmetry),
• symmetry of a square (also known as plane orthotropy), and
• plane isotropy,

while all classes condense out of material symmetries of elastic bulk [1]. However,
restricting to physical reality, the number of elastic symmetries may increase since
the reference plane does not necessarily have to be parallel to the outer surface
of the plate, etc. To capture the most general description, we operate with a fully
coupled set of constitutive equations, i.e., we derive such a representation in the
absence of geometric symmetry and consider an aelotropic material, i.e., arbitrary
material symmetry. Thereby, we are very much interested in the structure and the
properties of such relations. The cognitions of such scrutinies enable us to reduce
the tensorial description to a form appropriate for computer algebra systems. In
contrast to classical procedures in this field, we introduce amathematically consistent
representation where calculations in the form introduced lead to identical results like
the ones known from a tensorial description.

To conclude, we handle a topic relevant in anisotropic elasticity of small plate
deformations with a focus on computational efficiency.

3.1.2 Organization of the Paper

In present context, we skip any derivation of stress-like, strain-like, or stiffness mea-
sures from a three-dimensional parent continuum and start with our description di-
rectly on S. In Sect. 3.2, we introduce constitutive relations of linear elastic shear-
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rigid plates since they are necessary for the subsequent considerations. Subsequently,
we determine the properties of the tensorial quantities for kinetic and kinematic mea-
sures as well as for stiffnesses and coupling stiffnesses introduced. In Sect. 3.3, an
approach to determine components for an mathematically equivalent vector-matrix
notation based on tensorial quantities is introduced. The advantages of this approach
are named, and specific examples are given. Finally, we point on the importance and
generality of this notation and refer to fields of application.

3.1.3 Preliminaries and Notation

In present work, wemake use of the direct tensor notation and vector-matrix notation
simultaneously. Due to reasons of clarity, we have introduced a special syntax for dis-
tinction. Tensors of zeroth-order (or scalars) are symbolized by italic letters (e.g., a),
italic lowercase bold letters denote first-order tensors (e.g., a = aα eα), second-order
tensors are designated by italic uppercase bold letters (e.g., A = Aαβ eα ⊗ eβ), and
fourth-order tensors are symbolized by italic uppercase bold calligraphic letters (e.g.,
A = Aαβγ δ eα ⊗ eβ ⊗ eγ ⊗ eδ), whereas Einstein’s sum convention is applied. As
becomes evident, we reduce our representation to an orthonormal basis, where the
basis vectors are given as {eα} or {eα, n}, respectively.When lapse into vector-matrix
notation, column vectors are symbolized by upright lowercase sans-serif bold letters
(e.g., a)

a =
⎡
⎣
a1
a2
a3

⎤
⎦ ,

while matrices are designated by upright uppercase sans-serif bold letters (e.g.,

A =
⎡
⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦ .

Uppercase Greek indices run through the values 1, 2, and 3, while lowercase Greek
indices run through the values 1 and 2 only.

While handling with tensors, some operations are essential which are introduced
in the sequel. This is the dyadic product between two first-order tensors a ⊗ b = C,
the dyadic product between two second-order tensors A ⊗ B = C, the double scalar
product between two second-order tensors A : B = c, and the double scalar product
between a fourth and a second-order tensorA : B = C . The transposed of a second-
order tensor is defined by a · A� · b = b · A · a. For detailed penetrations of
these operations, we refer to e.g., [5].
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3.2 Linear Elastic Shear-Rigid Plates

3.2.1 Generalized Hooke’s Law

We directly enter the topic with the representation of fully coupled constitutive laws
for shear-rigid plates. In general, the elastic energy is written in terms of second-order
deformation measures. Approaching the elastic energy as a quadratic form results in
following expression.

W = W (G, K ) = 1

2
[G :A : G + K :D : K ] + G :B : K (3.1)

On the right-hand side, we first can identify the deformation measures. Herein, G =
Gγ δeγ ⊗ eδ denotes in-plane normal and shear strains and K = Kγ δeγ ⊗ eδ normal
curvature changes due to bending and torsion. Next to the deformationmeasures exist
some fourth-order tensors. This here involves stiffness and coupling stiffness tensors.
Thereby,A is the in-plane stiffness tensor, andD is the out-of-plane stiffness tensor.
Since in-plane and out-of-plane states shall be completely coupled, the (in-plane-
out-of-plane) coupling stiffness tensor B is introduced. In the spirit of Rychlewski
[10], we will call this set of fourth-order constituents Hooke’s tensors. In case of
Hooke’s law, the constitutive relations are given as linear mappings.

N = A : G + B : K (3.2a)

L = B : G + D : K (3.2b)

On the left-hand side appear the kinetic quantities. These are the in-plane forces N =
Nαβeα ⊗ eβ and the polar tensor of moments L = Lαβeα ⊗ eβ (in contrast to the
axial tensor of moments M = Lαβeα ⊗ n × eβ , while both are correlated via L =
M × n with the surface normal n = e1 × e2). These quantities are derived by the
differentiation of the elastic energy function, i.e.,W serves as potential for the kinetic
quantities.

N = ∂W (G, K )

∂G
L = ∂W (G, K )

∂K
(3.3)

As stated above, we will not introduce any further restrictions so that we can give
Hooke’s tensors in a general form.

A = Aαβγ δ eα ⊗ eβ ⊗ eγ ⊗ eδ (3.4a)

D = Dαβγ δ eα ⊗ eβ ⊗ eγ ⊗ eδ (3.4b)

B = Bαβγ δ eα ⊗ eβ ⊗ eγ ⊗ eδ (3.4c)
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Alternative parametrizations of the tensors (3.4) as in the case ofwell-studied isotropy
are not known for the aelotropic material. Clearly, A and D depend on material
properties, whileB additionally depends on the position of the reference surfaceS.

3.2.2 Properties of Tensorial Quantities

The quantities introduced above have specific properties that can be useful when
converting to vector-matrix notation. First of all, these are the symmetries of kinetic
measures.

a · N = N · a N = N� Nαβ = Nβα (3.5a)

a · L = L · a L = L� Lαβ = Lβα (3.5b)

It is worth to mention that M �= M� holds. We furthermore work with symmetric
kinematic measures.

a · G = G · a G = G� Gγ δ = Gδγ (3.6a)

a · K = K · a K = K� Kγ δ = Kδγ (3.6b)

Herein, a is chosen arbitrary. The symmetries of the deformations measures are the
result of purging the rigid-body rotations from the first gradient of the respective
deformation measure. The symmetries of the kinetic measures originate from the
balance of angular momentum which is locally fulfilled. However, each of these
measures thus has only three independents.

The symmetries of fourth-order stiffness and coupling stiffness measures are of
interest as well. These are the properties of the in-plane stiffness tensor

A :A : B = B :A�: A Aαβγ δ = Aγ δαβ major symmetry (3.7a)

A :A = A�:A Aαβγ δ = Aβαγ δ left subsymmetry (3.7b)

A : A = A : A� Aαβγ δ = Aαβδγ right subsymmetry (3.7c)

A :A : A > 0 positive definiteness, (3.7d)

the out-of-plane stiffness tensor

A :D : B = B :D�: A Dαβγ δ = Dγ δαβ major symmetry (3.8a)

A :D = A�:D Dαβγ δ = Dβαγ δ left subsymmetry (3.8b)

D : A = D : A� Dαβγ δ = Dαβδγ right subsymmetry (3.8c)

A :D : A > 0 positive definiteness, (3.8d)
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and the coupling stiffness tensor

A :B : B = B :B�: A Bαβγ δ = Bγ δαβ major symmetry (3.9a)

A :B = A�:B Bαβγ δ = Bβαγ δ left subsymmetry (3.9b)

B : A = B : A� Bαβγ δ = Bαβδγ right subsymmetry (3.9c)

A :B : A > 0 positive definiteness , (3.9d)

where A �= 0 and B �= 0 are chosen arbitrary. The left and right subsymmetries orig-
inate from the symmetries of kinetic and kinematic measures. The major symmetries
arise from the existence theorem for the elastic energy.

To conclude, we have si x independent parameters per stiffness or coupling stiff-
ness tensor, i.e., we have 18 independent scalars in the general case. Fortunately, the
coupling stiffness B is dependent on A and D which may lead to a reduction in
the number of independents. Dependencies between pure in-plane and out-of-plane
state are also conceivable. However, all eigenvalues of these fourth-order tensors are
positive due to their positive definiteness and major symmetry.

3.3 Vector-Matrix Notation

3.3.1 Derivation

Since deformation and kinetic measures are symmetric, significant simplifications
are possible. This is also the case for the stiffnessmeasures. This results in a represen-
tation using numerical vectors and matrices. The exploitation of the symmetries of
the tensors described in the previous section allows a reduction to three independent
parameters for second-order tensors and a reduction to six independent parameters
for fourth-order tensors. One reason to transform the constitutive equations into
vector-matrix form is the efficiency in calculations with computer algebra systems.
Here, Voigt notation [12] is well established. However, it is known that Voigt nota-
tion is inconsistent, cf. Brannon [4]. We therefore make it our task to introduce an
alternative way of representation. The origins of this alternative representation can
be dated back well over 150 years, cf. Blinowski et al. [3].

We introduce a three-dimensional basis which often is referred to as Kelvin basis,
cf. Thomson [11]. This is basedon components of the orthonormal system introduced.

Eα = eα ⊗ eα ∀α = {1, 2} (3.10a)

E3 =
√
2

2

[
e1 ⊗ e2 + e2 ⊗ e1

]
(3.10b)
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Since the basis index is running from 1, . . . , 3, we introduce Greek capitals so that
E� ∀� ∈ {1, 2, 3} holds. The Kelvin basis is orthonormal.

E� : E� = δ�� i.e. E� : E� = 1 (3.11)

Note that this basis is Cartesian through the normalization with the square root√
2 in Eq. (3.10b). This is not the case when simply introducing the symmetric

part 1
2

[
e1 ⊗ e2 + e2 ⊗ e1

]
, cf. Nye [9]. However, the normalization introduced is

sometimes also referred to Mandel [7]. By the aid of the Kelvin bases, it is possible
to determine the elements of kinematic and kinetic measures for a representation in
three-dimensional vector space.

N� = G : E� ∀� = {1, 2, 3} (3.12a)

L� = L : E� ∀� = {1, 2, 3} (3.12b)

G� = G : E� ∀� = {1, 2, 3} (3.12c)

K� = K : E� ∀� = {1, 2, 3} (3.12d)

By the aid of this procedure, the tensorial representation with second-order quantities
with originally 2 × 2 elements is reduced to three elements per quantity.

Furthermore, we can determine the elements of linear operator matrices based on
stiffness and coupling stiffness tensors by the following calculation rule.

A�� = E� :A : E� ∀�,� = {1, 2, 3} (3.13a)

D�� = E� :D : E� ∀�,� = {1, 2, 3} (3.13b)

B�� = E� :B : E� ∀�,� = {1, 2, 3} (3.13c)

In doing so, we can reduce the representation of the fourth-order tensors introduced
with originally 2 × 2 × 2 × 2 elements, also.

Stepping back to tensor notation while keeping Eq. (3.13) in mind, we can now
write tensorial quantities as follows.

N = N� E� (3.14a)

L = L� E� (3.14b)

G = G� E� (3.14c)

K = K� E� (3.14d)

A = A�� E� ⊗ E� (3.14e)

D = D�� E� ⊗ E� (3.14f)

B = B�� E� ⊗ E� (3.14g)

However, by ordering the quantities derived in Eqs. (3.12) and (3.13), we can obtain
an 3 × 1 array of ordinary vector components for the second-order tensors and an
3 × 3 array of matrix components for the fourth-order tensors.
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⎡
⎣
N1

N2

N3

⎤
⎦ =

⎡
⎣
A11 A12 A13

A22 A23

sym A33

⎤
⎦

⎡
⎣
G1

G2

G3

⎤
⎦ +

⎡
⎣
B11 B12 B13

B22 B23

sym B33

⎤
⎦

⎡
⎣
K1

K2

K3

⎤
⎦ (3.15a)

⎡
⎣
L1

L2

L3

⎤
⎦ =

⎡
⎣
B11 B12 B13

B22 B23

sym B33

⎤
⎦

⎡
⎣
G1

G2

G3

⎤
⎦ +

⎡
⎣
D11 D12 D13

D22 D23

sym D33

⎤
⎦

⎡
⎣
K1

K2

K3

⎤
⎦ (3.15b)

We can also set these three-dimensional arrays in compact form if we introduce
minuscule sans-serif bold letters for vectors and majuscule sans-serif bold letters for
matrices. By the aid of this notation, we obtain following expressions.

n = A g + Bk (3.16a)

l = B g + Dk (3.16b)

The stiffness matrices A, D, and B can be considered as linear symmetric oper-
ations, mapping the three-dimensional space (of originally second-order tensors)
onto-itself. All three matrices are positive definite according to definitions (3.7d),
(3.8d), and (3.9d).

In context of computer algebra systems, one may also define Eq. (3.16) as a single
one.

[
n
l

]
=

[
A B
B D

] [
g
k

]
(3.17)

For the sake of completeness, we state correlations of kinetic quantities

N1 = N11 N2 = N22 N3 = √
2N12

L1 = L11 L2 = L22 L3 = √
2L12,

kinematic quantities

G1 = G11 G2 = G22 G3 = √
2G12

K1 = K11 K2 = K22 K3 = √
2K12,

and the constitutive coefficients for an aelotropic material in context of in-plane
stiffness

A11 = A1111 A12 = A1122 A13 = √
2 A1112

A22 = A2222 A23 = √
2 A2212

A33 = 2 A1212,
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out-of-plane stiffness

D11 = D1111 D12 = D1122 D13 = √
2 D1112

D22 = D2222 D23 = √
2 D2212

D33 = 2 D1212,

and coupling stiffness

B11 = B1111 B12 = B1122 B13 = √
2 B1112

B22 = B2222 B23 = √
2 B2212

B33 = 2 B1212,

while A�� = A�� , D�� = D�� , and B�� = B�� hold true. Of course, we can also
specify Eq. (3.15) in the context of the tensorial components.

⎡
⎣

N11
N22√
2N12

⎤
⎦ =

⎡
⎣
A1111 A1122

√
2A1112

A2222
√
2A2212

sym 2 A1212

⎤
⎦

⎡
⎣

G11
G22√
2G12

⎤
⎦+

⎡
⎣
B1111 B1122

√
2B1112

B2222
√
2B2212

sym 2 B1212

⎤
⎦

⎡
⎣

K11
K22√
2K12

⎤
⎦

(3.18a)
⎡
⎣

L11
L22√
2L12

⎤
⎦=

⎡
⎣
B1111 B1122

√
2B1112

B2222
√
2B2212

sym 2 B1212

⎤
⎦

⎡
⎣

G11
G22√
2G12

⎤
⎦+

⎡
⎣
D1111 D1122

√
2D1112

D2222
√
2D2212

sym 2 D1212

⎤
⎦

⎡
⎣

K11
K22√
2K12

⎤
⎦

(3.18b)

This is, in absence of geometrical symmetry of the plate and material symmetry of
the material considered as well, the most general form of a linear elastic mapping
transferred consistently. Note that this notation differs from classical Voigt notation
by the factor

√
2.

3.3.2 Mathematical Consistency

The normalization of the basis by
√
2 seems strange but is especially convenient for

the equivalence of tensor operations. By the aid of this notation, we will derive an
equivalence of mathematical operations both, in tensor and vector-matrix notation.
With regard to Eq. (3.14), this modification allows to apply tensorial calculation rules
for a reduced notation.

Vice versa, the equivalence allows to calculate parameters in vector-matrix nota-
tion which in context of computational efficiency is associated with some facilities
(e.g., reduced number of loops). For example, we can state that components of the
inverse tensorsA−1,D−1, andB−1 are found by simply inverting the matricesA,D,
and B. Furthermore, A, D, and B feature the same invariants, eigenvalues, eigendi-
rections as A, D, and B. The positive definiteness of A, D, and B is another
property which was transferred to present matrix notation of these quantities. Fur-
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thermore, there are vector and matrix calculations which are now equivalent with
computations known from tensor notation/calculus. In particular, we can identify the
following identities.

n�n = N : N g�g = G : G n�g = N : G (3.19a)

l�l = L : L k�k = K : K l�k = L : K (3.19b)

3.4 Conclusion

Wehave derived amathematically consistent vector-matrix representation.Due to the
normalization, the computation of significant properties like eigenvalues, eigendirec-
tions, etc., is significantly simplified. In the literature, such mathematical consistent
vector-matrix representations are not widespread. In contrast, due to the many ad-
vantages named here, the application of present modified notation is of great interest,
especially in finite element program systems. The application requires moderate ef-
forts only, whereby mechanical problems at shear-rigid plates can be solved with
significantly increased efficiency. This becomes particularly evident when inelastic
material behavior is considered additionally.

Amore general accountwould be the generalization to shear-deformable plates. In
this process, however, the non-symmetric stress-force tensor and the non-symmetric
surface strain tensor (cf. Aßmus et al. [2]) lead to a representation in nine-dimensional
vector space, or when separately handling transverse shear, in an additional consti-
tutive description with a dimension different to that presented in (3.15).

Since kinetic and kinematic measures introduced in the theories of plates are not
necessarily symmetric, a representation in a nine-dimensional vector space would
be more general, in context of present course, however, less efficient.
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Chapter 4
Mathematical Simulation
of the Plate–Beam Interaction Affected
by Colored Noise

Valentin G. Bazhenov, Tatyana V. Yakovleva and Vadim A. Krysko

Abstract The article presents a mathematical simulation of interaction between a
plate and a beam locally supporting the plate in its center. The system is exposed
to an external transverse load and external additive colored noise (pink, red, white).
The structure is located in a steady temperature field, accounted for in the Duhamel-
Neumann theory by solving 3D (plate) and 2D (beam) heat conduction equations,
using finite difference method (FDM). Heat transfer between the plate and the beam
is disregarded. Kirchhoff simulation was used for the plate and the Euler–Bernoulli
simulation was used for the beam. The mathematical simulation accounts for physi-
cal nonlinearity in elastically deformable materials. B. Y. Kantor’s theory is applied
to simulate contact interaction. The differential equation set is reduced to the Cauchy
problem, using the highest-approximation Bubnov–Galerkin methods or spatial-
variable FDM. The Cauchy problem is solved using the fourth-order Runge–Kutta
or Newmark method. I. A. Birger’s iterative procedure is used at each time step for
analyzing a physically nonlinear problem. Numeric results are analyzed using the
methods of nonlinear dynamics (signal patterning, phase portraits, Poincaré sections,
Fourier and Wavelet power spectra, analysis of the Lyapunov exponents using the
Wolf, Kantz, and Rosenstein methods). The convergence of the methods is studied.
Different methods are used to obtain reliable results. Numerical results on the effect
of colored noise on plate–beam interaction are presented. Additive red noise shows
more significant effect on the vibrations and the plate–beam interaction than white
and pink noises.

V. G. Bazhenov (B) · T. V. Yakovleva
Research Institute for Mechanics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin
Avenue, Nizhny Novgorod 603950, Russian Federation
e-mail: bazhenov@mech.unn.ru

T. V. Yakovleva
e-mail: yan-tan1987@mail.ru

T. V. Yakovleva · V. A. Krysko
Yuri Gagarin State Technical University of Saratov, 77 Politechnicheskaya St, Saratov 410054,
Russian Federation
e-mail: tak@san.ru

© Springer Nature Switzerland AG 2020
H. Altenbach et al. (eds.), Nonlinear Wave Dynamics of Materials
and Structures, Advanced Structured Materials 122,
https://doi.org/10.1007/978-3-030-38708-2_4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38708-2_4&domain=pdf
mailto:bazhenov@mech.unn.ru
mailto:yan-tan1987@mail.ru
mailto:tak@san.ru
https://doi.org/10.1007/978-3-030-38708-2_4


70 V. G. Bazhenov et al.

Keywords Plate–beam interaction · Contact interaction · Kirchhoff and
Euler–Bernoulli kinematic simulation · Physical nonlinearity · Additive colored
noise · Temperature field · Highest-approximation Bubnov–Galerkin methods ·
Runge-Kutta method · I. A. Birger iterative procedure

4.1 Introduction

Modern technology involves various elements exposed to dynamic power- and noise-
related effects. This fact shows the relevance and importance of a comprehensive
study of the behavior of structures and the determination of their boundary conditions.
Colored noise is suitable for simulating time-random environmental properties. The
theory of noise-induced transitions in physics, chemistry, and biology is presented in
[1]. In the field of mechanics of thin-walled structures, such studies are rather scarce.
Colors refer to different types of noise signals using spectral density plots, i.e.,
signal power distribution over frequencies. Constant noise with uniform distribution
of spectral components over the entire range of frequencies is consideredwhite noise.
Pink (flicker) noise occurs in electronic and mechanical devices. Following article
[1], several publications have been dedicated to noise in nature and technology [2–4].
Noises in vacuumdevices, transistors, and diodes [5–8] aremostly studied. Studies of
the properties of statistical noisewere carried out using physical [9] andmathematical
[10] simulations and full-scale experiments [11]. The effect of noise on mechanical
distributed structures is also considered, butwithout accounting for temperature fields
[12, 13]. Articles [14, 15] consider the effect of the temperature field on mechanical
structures. The present article is aimed at constructing a mathematical model of
nonlinear vibrations and contact interaction of a plate–beam structure, where the
effect of color noise, temperature field, and physical nonlinearity is accounted for.

4.2 Problem Statement

The article presents a mathematical simulation of contact interaction in a mechanical
two-layer plate–beam structure (Fig. 4.1), using kinematic simulations of the first
approximation (Kirchhoff and Euler–Bernoulli for plate and beam, respectively).
The mechanical structure is located in the field of external colored noise and subject
to an external normally distributed alternating load applied to the plate. In this case,
the structure is in a stationary temperature field.

The correlation between the load and plate (β1 = 1) and beam (β1 = 0)
deformation is written as:

εz1 = 1

E
(σ1 − β1νσ2) + αT θ, (

←→
1, 2), εz12 = β12

1 + ν

E
σ12, (

←→
1, 2), (4.1)
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Fig. 4.1 Plate–beam
structure

where Young’s modulus E and Poisson’s ratio v are not constants in the Hooke’s
law for two-dimensional stress state, but functions of E = E(x, β1y, z, ε0, εi , θ),
ν = ν(x, β1y, z, ε0, εi , θ), where ε0 is volumetric strain, εi is strain rate, αT is linear
thermal expansion coefficient, and θ(x, β1y, z) is temperature increment for the plate
(β1 = 1) and the beam (β1 = 0). This representation is the basis of the I. A. Birger’s
method of the variable elasticity parameters.

Equations of motion of plate and beam elements as well boundary and initial con-
ditions are obtained from theHamilton–Ostrogradski variational principle (Hamilton
principle). This principle allows comparison of near motions, leading a system of
single mass points from the initial position at a time t0 to the final position at a time
t1. Actual motions shall meet the following condition:

t1∫

t0

(δK − δU + δW )dt = 0 (4.2)

where K is kinetic energy, U is potential energy, W is total work of the external
forces.

To simulate the contact interaction, Kantor’s theory was used [16]. This the-
ory introduces the following component in the equation of motion of the structural
components: qk = (−1)i K1(w1 − hk − w2)	, where i = 1, 2 is element index
(1 for the plate and 2 for the beam), function 	 is determined from the formula
	 = 1

2

[
1 + sign(w1 − hk − w2)

]
. Thus, if w1 > hk + w2, the elements of the struc-

ture are in contact, and	 = 1; otherwise,	 = 0. K1 is stiffness factor for transversal
reduction in the contact area, hk is plate–beam spacing. With the account of all the
assumptions, the set of equations for the plate–beam structure is written as:

⎧⎪⎪⎨
⎪⎪⎩

∂2

∂x2 [−C1x − Ct ] + ∂2

∂y2 [−C1y − Ct ] − 2 ∂2

∂x∂y

(
∂2w1
∂x∂y C1xy

)
+ q1 + qnoise + qk

− γ

g h
∂2w1
∂t2 − ε

γ

g h
∂w1
∂t = 0,

− ∂2

∂x2

(
C2

∂2w2
∂x2

)
− ∂2Mt

∂x2 + q2 − γ

g h
∂2w2
∂t2 − ε

γ

g h
∂w2
∂t + qk = 0,

(4.3)
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∇2(θ1) = 0, (β1 = 1),∇2(θ2) = 0, (β1 = 0) (4.4)

where Mt = α2
∫ h/2
−h/2 E2θ2zdz, Ct = α1

∫ h/2
−h/2 θ z(1 + ν)dz, C1x =

∂2w1
∂x2

∫ h/2
−h/2

E1z2

1−ν2 dz+ ∂2w1
∂y2

∫ h/2
−h/2

E1z2ν
1−ν2 dz,C1y = ∂2w1

∂y2
∫ h/2
−h/2

E1z2

1−ν2
dz+ ∂2w1

∂x2
∫ h/2
−h/2

E1z2ν
1−ν2 dz,

C1xy = ∫ h/2
−h/2

E1z2

1+ν
dz, C2 = ∫ h/2

−h/2 E2z2dz, e1 = εz11 + β1ε
z
22, ∇2(θ) is 3D Laplacian

(β1 = 1) and ∇2(θ) is 2D Laplacian (β1 = 0), ε is dissipation coefficient. No limits
are introduced for temperature distribution over the thickness of the plate and height
of the beam. Various stress vs deformation/temperature plots σi (εi , θ) may be con-
sidered. The first-, second-, and third-type boundary conditions shall be applied to
the heat equations for system (Eqs. 4.3–4.4).

The plate is exposed to the distributed external load of q1(x, y, t) = q0 sin(ωpt),
where q0 is its amplitude and ωp is frequency. Additive colored noise is introduced
into system (4.3) as a stochastic component of constant intensity qnoise [17, 18]. The
colored noise is generated in MATHLAB. Power spectrum density of the excess
(technical) noise obeys power law S(ω) = hγ ωγ , −2 ≤ γ ≤ 2, where hγ is
scaling factor to determine the noise level. Each integral value γ is conventionally
associated with a definite color: γ = 0 for white noise, γ = +2 for Brownian (red)
noise, γ = +1 for pink noise.

4.3 Solution Methods

The studied mechanical structure (Fig. 4.1) is located in a temperature field of con-
stant intensity. The heating pattern in the plate–beam structure shall be determined by
solving 3D (plate) and 2D (beam) heat equations with the respective first-, second-,
and third-type boundary conditions. Steady-state heat equations are solved for plate
and beam using the second- and fourth-order accuracy finite difference method. The
convergence of the methods is studied. Equation set (4.3) is reduced to the Cauchy
problem, using the Bubnov–Galerkin methods in the highest approximations and
second- and fourth-order accuracy FDM. Functions w1 and w2, the solutions of
Equation set (4.3) are approximated by Bubnov–Galerkin as a product of time- and
coordinate-dependent functions:

w1 =
N∑

k=1

N∑
j=1

Akj (t)φk j (x, y), w2 =
N∑

k=1

Ak(t)φk(x) (4.5)

Functions φk j (x, y) and φk(x) are selected so that they are continuous with their
partial derivatives up to the fourth order, inclusively, linearly independent, and meet
the boundary conditions. Cauchy problem is solved using either Newmark or Runge–
Kutta-type method to obtain reliable results. The iterative procedure is formulated
for each time step using the I. A. Birger’s method of variable elasticity parameters.
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Thus, the study makes it possible to treat the problem in terms of a system with an «
almost » unlimited number of degrees of freedom. The results are analyzed using the
qualitative methods of the theory of differential equations and nonlinear dynamics
involving signal patterning, phase portraits, Poincaré sections, Fourier and Wavelet
power spectra, analysis of the Lyapunov exponents by Wolf [19], Rosenstein [20],
and Kantz [21].

4.4 Numerical Experiment

Results of the numerical experiment for plate–beam interaction in colored noise are
given as an example, without accounting for physical nonlinearity and temperature
field. The pivoting support on the sides of the plate and on the ends of the beam was
chosen as the boundary conditions in the numerical experiment:

w1 = 0; ∂2w1

∂x2
= 0;w2 = 0; ∂2w2

∂x2
= 0; with x = 0; 1;

w1 = 0; ∂2w1

∂y2
= 0; with y = 0; 1 (4.6)

zero initial conditions are as follows:

wi |t=0 = 0; ẇi |t=0 = 0, i = 1, 2 (4.7)

The following control parameter values are chosen: dissipation factor ε = 1,
external driving frequency ωp = 5, that is chosen close to the intrinsic frequency
of the plate, external load amplitude q0 = 10, plate–beam spacing hk = 0.01. The
effect of various (in terms of type and intensity) colored noise on the vibrations in
the plate–beam structure was studied.

1. In the absence of the effect of noise field (qnoise = 0), the vibrations in the plate–
beam structure are harmonic with external driving frequency ωp = 5. The beam
in this case is quiescent, because of the absence of contact interaction (Fig. 4.2).
Figure 4.2 shows the plot of the combined vibrations of the plate (solid red
line) and the beam (blue dotted line) (a), Fourier power spectrum (b), 2D Morlet
Wavelet spectrum (c).

2. With introducing additive pink noise (γ = +1) in the external load, starting
with intensity qnoise = 40 the period triples: ωp = 5, ω1 = ωp/3 = 1.6 and
ω2 = 2ωp/3 = 3.3. With qnoise = 43, the vibrations of the plate become chaotic.

3. After introducing additive red noise (γ = +2) in the external load, starting with
the intensity qnoise = 0.2, vibrations of the plate occur with the period tripling.
For qnoise = 7, initial plate–beam interaction occurs; the vibrations of the plate
are chaotic.
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Fig. 4.2 Plate vibration for load q0 = 10 and without noise qnoise = 0

Fig. 4.3 Plate vibration for load q0 = 10 and white noise (γ = 0) qnoise = 244

4. With introducing additive white noise (γ = 0) in the external load, for qnoise = 1,
vibrations of the plate occur over two frequencies: ωp = 5 and ω1 = ωp/3 =
1.6. For qnoise = 5, vibrations of the plate occur with the period tripling. For
qnoise = 100, plate vibrations are chaotic. The initial plate–beam interaction
occurs at qpnois = 244; the vibrations of the plate are chaotic (Fig. 4.3). The largest
Lyapunov exponent, estimated by Kantz, Wolf, and Rosenstein, is positive.

4.5 Conclusion

The article presents a mathematical model of nonlinear vibrations and the contact
interaction in the system of the plate, locally supported by a beam, affected by
additive colored noise and a temperature field, accounting for physical nonlinearity.
It follows from the analysis of colored (red, pink, and white) noise, that red noise
shows more significant effect on vibrations and plate–beam interaction than white
and pink noises.

Acknowledgements The Russian Science Foundation (project No. 15- 19-10039-P) financially
supported this work.
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Chapter 5
Dynamic Homogenization of a Chain
with Bistable Springs. Statistical
Approach

Charlotte Blake and Andrej Cherkaev

Abstract We study the problem of dynamic homogenization, replacing a high-
frequency vibrating mass-spring chain with a single nonlinear spring and deter-
mine its time-averaged elastic characteristics. A mass-spring chain of n equal non-
monotonic bistable springs that join equal small masses is considered. The potential
energy of each spring is a nonconvex two-well function V (U ) with two local min-
ima that correspond to equilibrium positions (a long and a short mode). The kinetic
energy Q defines the intensity of the oscillations. Each spring may oscillate around
either long or short equilibria; the total elongation U of the chain is not uniquely
defined. The minimal potential energy of the homogenized static chain corresponds
to the Maxwell line and is equal to the convex envelope CV (U ) of the two-well po-
tential energy V (U ) of a single spring. Here, we describe a family of homogenized
energies DV (U,Q) of a vibrating chain; they depend on the kinetic energy Q. We
treat the phase of each spring as a random variable; using the Central Limit Theo-
rem, we find the homogenized behavior of the chain. We derive formulas for average
elongation versus force dependence, and we show it is strictly monotonic and tends
to the Maxwell line when kinetic energy is low. Numerical simulations validate our
model. The results generalize the Maxwell rule to the dynamic chain.

Keywords Dynamic homogenization · Nonconvex energy · Bistable chain

5.1 Introduction

In this paper, we study the homogenized elastic response of a chain of vibrating
masses joined with non-monotonic springs. We take into account the kinetic energy
of the motion and obtain new homogenized force versus elongation dependence.
Specifically, we study the average behavior of a mass-spring chain of n equal non-
monotonic bistable springs that join similarmasses.We assume that a forceF applied
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to its end; the other end is fixed. The initial kinetic and potential energies of this
conservative system of oscillating particles are given. The potential energy of each
spring is a nonconvex two-well function V (U ); the force-elongation relation is non-
monotonic. A spring may have two equilibrium positions (long and short equilibria).
We find the homogenized behavior of the chain, assuming that the masses are small
and the frequencies of their oscillations are high, replace the chain with a single
nonlinear spring, and define the elastic characteristics of this equivalent spring.

In the transition zone, each springmay rest in either long or short phase. Therefore,
the total elongation of the spring is not uniquely defined. The minimal energy of
the static chain corresponds to the Maxwell line [10]: When F is smaller than a
threshold FT , F < FT , all springs are in short phase; if F > FT , all springs are
in long phase; and if F = FT , the chain length U is undetermined since springs
can be either in the short or the long phase. For large n, the homogenized chain is
described by an equivalent nonlinear spring that has discontinuous elongation vs.
force dependence at F = FT . The energy of the equivalent spring is proportional to
the convex envelope CV (U ) of the two-well power V (U ) of a single spring. The
dynamical homogenization (D-homogenization) is quite different. The conservative
mass-spring system possesses kinetic energy Q that makes the masses oscillate. In
the transition zone, the masses oscillate around one of the equilibria occasionally
jumping from one equilibrium to the other. We compute the time average 〈U 〉 of the
deformation U of the chain, which depends on F and Q, U = U (F,Q). The phase
of each spring in a given time instance is assumed to be random; the probability of
being in a short phase monotonically varies with F . For large n, the deformation
is estimated using the Central Limit Theorem. The resulting homogenized behavior
is expressed through error function erf of F ; the dispersion of the corresponding
Gaussian process monotonically depends on the excitation energy Q. Unlike static
homogenization, the D-homogenized dependence U (F,Q) with a prescribed Q is
continuous; it tends to static behavior (Maxwell line) when Q → 0.

Integrating the force-elongation relation of this nonlinear spring yields a convex
relaxation for the system energy. The D-homogenized energy DV (U,Q) is strictly
convex andDV (U,Q) ≥ CV (U,Q). We also show thatDV (U,Q) → CV (L)when
Q → 0 and the jumps are rare. For piecewise linear spring, we find the lower bound
ofDV that corresponds toQ → ∞. In this case, the functionU (F) is close to linear,
and the D-homogenized energy is quadratic. The demonstrated numerical results
confirm this model.

5.1.1 Some Previous Results

Propagation of transitions of bistable springs throughout a two-dimensional lattice
has been used to approximate crack propagation in materials [6, 12, 14]. Bistable
chains have also been found to be capable of absorbing higher amounts of energy than
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linear chains due to their ability to delocalize damage and dissipate heat via high-
frequency oscillations [1, 13]. The dynamics of transition waves in such systems is
similar to models of material failure and energy absorption [2, 15]. The propagation
of a phase transition wave in more complex models where masses are also connected
to the next to nearest neighbors is studied in [16]. Transition waves in linear chains
with bistable elements attached to the masses have been observed in several regimes
depending on wave amplitude [8]. An addition of bistable elements allows control
over energy transport in linear chains [4]. Chains of bistable elements have been
found to have chaotic behavior Nekorkin andMakarov [9]. These chains also exhibit
stochastic resonances [7]. Kinetic relations of impacts on chains in a heated bath
have been studied [17] as well as chains where the springs can twist [18].

A similar problem of dynamics of a chain with bistable springs has been studied
in Efendiev and Truskinovsky [3] using a physical model of thermalization of the
motion. The high-frequency oscillations of the bistable springs were identified as
a thermal component of the elongation, the statistical approach used assumptions
about the probability of the “micro-states.”

Here, we use a more straightforward and rough approach to the problem. Namely,
we state that the total elongation of the chain, being the sumof uncorrelated orweakly
correlated elongations of the springs, is Gaussian by the Central Limit theorem. The
universality of this approach allows us to obtain the average force vs. elongation
dependence similar to those found in Efendiev and Truskinovsky [3].

5.1.2 Structure of the Paper

The structure of the paper is the following. In Sect. 5.3, we describe the vibration of
a single mass attached to a non-monotonic spring. We describe regimes of vibrations
and the time average of the homogenizing force. In Sect. 5.3, we show the result of
simulation of the chain dynamics. In Sect. 5.4, we suggest a statistical approach to the
dynamic homogenization—that is, computing an average stiffness which is based on
the Central Limit Theorem and describe the formulas for dynamic homogenization.
In Sect. 5.5.1 we discuss the details of the numerical procedure and validate the
model, and in Sect. 5.5.2, we study the dependence of the relaxation on the kinetic
energy of the system.

5.2 Preliminaries: Single-Spring Dynamics

Consider a unitmass joined to a basewith a bistable springwith normalized piecewise
linear force-elongation relation:

f (u) = u + ν(u), ν(u) =
⎧
⎨

⎩

(k + 1)a, u ≤ −a
−(k + 1) u, −a < u < a
−(k + 1)a, u ≥ a

(5.1)
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Here, u is the spring elongation, f = f (u) is the force; a > 0 and k > 0 are
given parameters. The stiffness of the linear part of spring is scaled to be one. The
force-elongation relation has three equilibria positions where f (u) = 0: the unstable
equilibrium at u = 0, and two stable equilibria at u = ±q where q = (k + 1)a. We
say that the spring is in short phase if u < −a and in long phase if u > a. The region
where −a ≤ u ≤ a is called the unstable phase.

Also, we consider the asymptotic case that we call a bistable discontinuous spring

fA(u) = u − q sign(u). (5.2)

It corresponds to (k + 1)a = q and a → 0.
The potential energy V of the spring is

V (u) =
⎧
⎨

⎩

1
2 (u + q)2, u ≤ −a

k
2

(−u2 + q a
)
, −a < u < a

1
2 (u − q)2, u ≥ a

(5.3)

The energy is defined so that V = 0 at the stable equilibrium u = ±q.
The differential equation of the motion of the bistable spring (5.3) is

ẍ = −f (x); (5.4)

and its solution is

x(t) =
{
A sinh(

√
kt) + B cosh(

√
kt), x ∈ [−a, a]

A′ sin(t) + B′ cos(t) + x0 x /∈ [−a, a] (5.5)

where x0 = ±q is one of the positions of the stable equilibria.
The total energyV0 = V + Q of themotion is constant. Initially, the kinetic energy

Q is zero.
To pass from the short to long phase, V0 must be greater than the energy barrier

VB. This energy barrier is equal to the energy of the unstable equilibrium at the u = 0.

VB = k

2
q a (5.6)

5.2.1 Regimes

Vibration of the mass depends on its initial energy as it is illustrated in Fig. 5.1. The
time average elongation of the spring is shown in Fig. 5.2.
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Fig. 5.1 Phase portrait for different total energy of the spring. Adding a prestress to the spring
makes the profile asymmetric: a Phase portrait for f0 = 0, b Phase portrait of the dynamics with
prestress

Fig. 5.2 Time-averaged
spring elongation versus
energy for the spring. The
part left of the blue line
corresponds to the linear
regime (i). The part between
blue and green lines
corresponds to regime (ii).
The critical transitional
regime (iii) lies at the
bifurcation ū = 0 on the
green line. The part right of
the green line corresponds to
the transitional regime

(i) If V0 < 1
2 (q − a)2, the mass oscillates in a linear regime of either short or long

phase. The time average 〈u〉 of its position is 〈u〉 = ±q, where

〈u〉 = 1

τ

τ∫

0

u(t)dr, τ → ∞ (5.7)

and the period T is T = 2π .
(ii) When 1

2 (q − a)2 < V0 < VB, (the unstable non-transitional regime), the elon-
gation of the spring reaches the unstable region, but its energy is insufficient to
overcome the repulsive force in the region and reach the critical point u = 0.
The motion is periodic; as V0 → VB, the period T tends to infinity and the
average 〈u〉 tends to zero because the spring stays close to u = 0 for the most
time:

When V0 → VB, 〈u〉 → 0; T → ∞
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(iii) The critical regime corresponds to the energy given by (5.6). The mass moves
toward the point of unstable equilibrium but cannot reach it in the finite time.
Indeed, at that point u = 0 and u̇ = 0 which contradicts (5.5). In this regime,
the motion is non-periodic.

(iv) In the transitional regime, where V0 > VB, the spring has sufficient energy to
reach u = 0 with nonzero velocity, |u̇| > 0, and it transits between short and
long phases. By symmetry, the mass spends exactly half of its period in each
phase. We have

When V0 > VB, 〈u〉 = 0

When V0 → ∞, the period decreases and tends to 2π ,T → 2π when V0 → ∞.

5.3 Dynamics of a Multi-spring Chain

5.3.1 Differential Equations and Numerics

5.3.1.1 Differential Equations

Consider a chain of n bistable springs as described in Sect. 5.2 and n − 1 unit masses,
where the first spring is anchored to a point x0 = 0. The last spring is attached to a
large mass of M , M � n, and the springs are connected by unit masses. Let xi be
the position of the ith mass. The masses are separated by the distance c, so that force
f defined in (5.1) is becomes

f (ui), ui = xi+1 − xi − c

The dynamics of the chain are governed by a system of differential equations

ẍi =
{
f (ui) − f (ui+1) , 0 < i < n
1

M
f (un) + F, i = n

(5.8)

where f is the bistable spring force function in Eq. (5.1), and F is the applied force.
The equation of for xi, i = 1, . . . n − 1 is rewritten as

ẍi = uu − ui−1 + ν(ui) − ν(ui−1) 0 < i < n (5.9)

where ν is as in (5.1); initial conditions are assigned.
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The system is complemented by the initial conditions

xi = Xi, ẋi = 0 if t = 0.

Here, Xi are given data that specify the initial mode (short or long) or each mass; the
initial speed is zero. Initially, the masses of the chain are in off equilibrium positions,
which causes their oscillation. The kinetic energy of oscillation Q measures the
intensity of the oscillation of the whole chain.

Below, we discuss the results of the numerical simulation of the dynamics of
the chain. The numerical procedure is described below in Sect. 5.5.1. The system is
conservative; its behavior depends on the amount of Q.

5.3.2 Results of Numerical Simulation

For a better visibility, the results of the simulations are shown for a very short chain
of four mass. The actual simulation was performed on a longer chain, see Sect. 5.5.1.
The system shows several types of behavior, depending on Q.

5.3.2.1 The Non-transitional Phase

Small excitation energy Q < VB corresponds to the case where there are no phase
transitions because the energy is not enough to jump over the barrier between stable
equilibria; all springs oscillate in their initial long or short phase. The dynamics are
identical to a chain of linear springs. An example of such motion is shown in Fig. 5.3.
The springs linearly oscillate around the equilibria in either the short or long phase.
The total elongation of the chain is defined by the number of springs that initially
are in either phase. The average system has multiple equilibria.

5.3.2.2 The Rare Transition State

This regime occurs when the total energy of the system is sufficient for a small
percentage of springs to transition between short and long phases but little more
than that. The chain undergoes rare transitions because sufficient energy is rarely
concentrated in one spring.

We observe that the system tends toward the lowest potential energy so that the
percentage of the long and short springs tends to those predicted by Maxwell’s rule.

Figure5.4 represents the oscillations of the same system as in Fig. 5.3, but with in-
creased energyQ. The springs infrequently transition between long and short phases;
the time between transitions is much greater than the average period of oscillations
of a spring. The springs spend virtually all of their time linearly oscillating about the
stable configuration.
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Fig. 5.3 The elongation versus time of a four-spring chain

Fig. 5.4 Low excitation energy oscillations for the system in Fig. 5.3

5.3.2.3 Moderate Excitation Energy

With even greater kinetic energy, the average time between transitions in the system
decreases as in Fig. 5.5. The frequency of phase shift becomes comparable with the
average period T of oscillation of a single spring. In this regime, each spring spends
a significant fraction of time in the unstable region.
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Fig. 5.5 Moderate excitation energy oscillations for the system in Fig. 5.3

As the excitation energy increases further, phase changes become increasingly
frequent, one or two periods of the small mass oscillations. The masses frequently
oscillate around both equilibria rather than switching between linear oscillations
around stable points.

Large Excitation Energy

In this case, the excitation energy is much larger than the energy barrier, and an
amplitude of oscillation is much larger than the span of the unstable region. Each
spring spends most of the time in stable regions |ui| > a. Also, the asymmetry of
the starting conditions is negligible. The time average of the motion of an individual
spring is similar to the motion of linear spring, f = u because the springs spend
approximately equal time in the long and short phases. Figure5.6 represents the
oscillations of the same system as in Fig. 5.3, but with high energy: the amplitude is
forty units, and the length of the unstable region is two units.

5.4 Model for Dynamic Homogenization

5.4.1 Ansatz: Random Transitions

Here, we suggest a homogenized constitutive equation F = �(UN ) that connects the
forces acting at the last mass of the chain F with the time average of the deformation
of the chain
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Fig. 5.6 High excitation energy oscillations for the system in Fig. 5.3

UN = 1

n

n∑

i=1

ūi, ūi = 〈ui(t)〉 . (5.10)

Here, 〈z(t)〉 is the time average of z(t) defined in (5.7). The deformation UN is the
normalized elongation of the chain.

Consider a chain of vibrating spring, assume that a constant force F is applied
to its end. The time average of the acceleration of each mass is zero, and the time
average of the force fI (t) applied to each spring is F

〈fi(t)〉 = F ∀i.

Each spring oscillates around its equilibrium position, its average length 〈ui(t)〉 is

〈ui(t)〉 = F + qνi

where the normalized variable νi ∈ [−1, 1] depends on the mode of the spring.
Namely, for the springs that oscillate abound stable equilibria in linear modes, νi
are, respectively,

νi = 1 in the long mode, νi = −1 in short long mode (5.11)

In the transitional mode, the masses at its ends spend equal time decelerating before
reaching the point of unstable equilibrium and accelerating after passing this point.
This symmetry implies that in average elongation is the same as in the linear spring
with v = 0.
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νi = 0 in the transitional mode (5.12)

The remaining mode corresponds to the springs that enter the deceleration zone but
does not reach the point of unstable equilibrium and is rejected, returning back and
continue the oscillations around a stable equilibrium. This process is symmetrically
applied for spring entering the unstable zone from both long and short mode. The
spring spends more time in the unstable zone where the speed is slow; therefore, the
time average of its length corresponds to

|νi| < 1 in the nonlinear non-transitional mode (5.13)

The percentage of springs in each mode depends on the applied force F .
The deformation UN of the chain is

UN = F + qWN , WN = 1

N

N∑

i=1

νi

We do not attempt to determine the exact value of νi(F, t). Instead, we assume
that νi(F, t) is a random variable ν̄i(F) that takes values in [−1, 1] with some proba-
bilities; The probabilities depend only on the applied force F but not on the states of
neighboring springs. In other words, we assume that modes ν̄i(F) are uncorrelated
or only weakly correlated.

Consider the limit
W (F) = lim

N→∞ WN .

Using the Central Limit Theorem Rosenblatt [11], we find that sum U (F) of uncor-
related variables νi is Gaussian or

W (F) = C∗erf
(
F − F∗

σ

)

, (5.14)

where

erf(z) = 1√
2πσ

z∫

−∞
exp

(−φ2) dφ

and C∗, F∗, and σ are a priori unknown parameters.
The asymptotics and the symmetry of the model imply the relations

〈ν(∞)〉 = 1, 〈ν(F)〉 = −〈ν(−F)〉, 〈ν(0)〉 = 0.

We conclude that in (5.14) C∗ = 1 and F∗ = 0, and 〈ν(F)〉 becomes
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W (F) = erf

(
F

σ

)

. (5.15)

The remaining unknown standard deviation σ depends on the kinetic energy of
vibration, σ = σ(Q); we discuss this dependence below in Sect. 5.5.2.

In summary, the dependence U (F) is

U (F) = F + qW = F + q√
2πσ

∫ F

−∞
exp

(

− φ2

2σ 2

)

d φ (5.16)

The deformation versus force relation depends on the remaining parameter σ . We
call this dependence Ψσ (F),

U (F) = Ψσ (F), Ψ (F) = F + q erf

(
F

σ

)

(5.17)

CommentHere, we follow the approach of Slepyan [12] to describe nonlinear oscil-
lations, assuming the type of motion of masses in the chain. In Slepyan [12], Slepyan
et al. [15], Mishuris et al. [6] a nonlinear chain that experiences a phase transi-
tion was considered. The solution was sought in the form of a wave of transition
that propagates with constant a priori unknown speed θ , which implied the ansatz,
νi(t) = νi+1(t + θ). In Cherkaev et al. [1], a periodic solution of a nonlinear chain
with phase transitions was sought using a similar ansatz. Here we use an ansatz by
postulating a random Gaussian distribution of νi. This assumption is numerically
verified, as it is described in the next section.

5.4.2 Properties

5.4.2.1 Properties of Ψσ (F)

We state several immediate properties:

(i) For σ > 0, Ψσ (F) is a strictly monotonic analytic even function. Its Taylor
series is

Ψσ (F) =
(

1 + 2
q√
πs

)

F − 2 q

3
√

πs3
F3 + q

5
√

πs5
F5 − q

21
√

πs7
F7 + ...

(5.18)
(ii) Ψσ (F) should be compared with the Maxwell rule ΨM (F):

ΨM (F) = F + q sign F (5.19)

Maxwell rule assumes that all springs instantly change the mode when F
reaches the threshold, which corresponds tominimumof potential energy of the
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whole system. Maxwell rule corresponds to the limit of Ψσ (F) when σ → 0,

ΨM (F) = Ψ0(F) = lim
σ→0

Ψσ (F) (5.20)

(iii) When σ → ∞, Ψσ (F) becomes a linear function

Ψ∞(F) = lim
σ→∞ Ψσ (F) = F (5.21)

This case corresponds to large kinetic energy and tomagnitude of the vibrations
that is much larger than the interval of non-convexity.

(iv) Function Ψσ (F) monotonically depends of σ for a fixed F ,

∂

∂σ
(Ψσ (F)) = −2

qF√
πs2

e− F2

σ2 < 0

In next section, we numerically find the relation between the energy V of a vibrating
chain and standard deviation σ .

5.4.2.2 Properties of DF(U)

The conventionally used force versus elongation relation corresponds to the inverted
function Ψ −1

σ (U ); we call is dynamical homogenized relation and denote

DF(U ) = Ψ −1
σ (U )

(i) This dependence is a continuous, infinitely differentiable, monotonic function.
(ii) Derivative (DF)′(U ) is uniformly bounded from above (DF)′(U ) < 1 for all

U . Theminimal value of derivative (DF)′(U ) is reached atU = 0; theminimal
value is computed using the theorem of inverse function is equal

DF ′(U ) > DF ′(0) =
√

πσ√
πσ + 2q

> 0

(iii) Using the Lagrange–Bürmann formula, we invert the power series (5.18) of
U = Ψσ (F) and obtain

DF(U ) =
∞∑

i=1

AiU
i (5.22)

where Ai = 0 if i is even, and
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Fig. 5.7 Examples of relaxation ofDW (u, σ ) with q = 1: (a) Relaxation for different values of σ ,
(b) Corresponding force for (a)

A1 =
√

πσ√
πσ + 2 k

, A3 = 2kπ3/2σ

3
(√

πσ + 2 k
)4 , A5 = −

(
10 σ 2 + 1

)
kσ 3π7/2

5
(√

πσ + 2 k
)8 ,

A7 = π7/2
(
15π σ 2 − 276 kσ

√
π + 508 k2

)
kσ

315
(√

πσ + 2 k
)10

etc.
(iv) The potential energy of the dynamically homogenized chain is obtained by

integration of (5.22)

DV (U, σ ) =
U∫

0

DF(x, σ )dx =
∞∑

n=2

An−1

n
Fn

Fig. 5.7 illustrates the dynamically relaxed force-elongation dependence.

5.5 Validation of the Model

5.5.1 Numerical Issues

5.5.1.1 Remarks on the Numerical Procedure

Numerics were gathered with MATLAB’s ode45 Inc. [5] as the primary solver.
However, the solver could not reliably conserve energy. This was compensated for
by rescaling the velocities of the masses. Given initial system energy E, and time-
averaged system potential, and kinetic energies V̄ and K̄ over the correction time
interval [t0 − T , t0] of length T , the following formula was used to alter the velocities
vi of the small masses i = 1, . . . n − 1 to new velocities v̂i:
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V = 1

T

t0∫

t0−T

V (τ )dτ, K = 1

T

t0∫

t0−T

K(τ )dτ,

Kexp = E − V , v̂i: =
√
Kexp

K
vi

This correction maintains the system energy within acceptable bounds.

5.5.1.2 Data

The simulation shows an agreement with the model, as is evident from Figs. 5.8 and
5.9. Figure5.8 is numerical data for force versus elongationwith a normalized kinetic
energyQN = Et

2 . The blue line represents the force function for a single spring, the red
is the numerical data for time-averaged force, and the green is the erf-approximation.
Figure5.9 contains the same curve fitting as Fig. 5.8, but for different energies. The
numerical results are close toDF(F), with consistent error dependent on dispersion.

5.5.1.3 Errors

Figure5.10 shows the error of the prediction. The magnitude of the error decreases
as the excitation energy increases. The noise in the error increases along with the
excitation energy likely due to increasing errors in the ODE solver as the velocity
through the unstable region increases. The errors follow a consistent shape for the
varying values of QN ; the primary differences between different QN values are the
broader dispersion and decreasing amplitude.

Fig. 5.8 Numerical results and the prediction for QN = 1
2Et : a Fit for QN = Et

2 , b Error of fit
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Fig. 5.9 a Fit for QN = Et , b Fit for QN = 2Et , c Fit for QN=5Et , d Fit for QN=10Et

Fig. 5.10 Approximation errors for various energies: a Error for QN = Et , b Error for QN = 2Et ,
c Error for QN=5Et , d Error for QN=10Et
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5.5.1.4 Stickiness

Lower values of excitation energyQN resulted in a more significant inconsistency in
the data due to simulating over a fixed time interval. For QN � VB, the data tended
to “stick” the spring’s force graph between the stable equilibria—a region where
analytics suggest that the force should be near zero—as illustrated in Fig. 5.11. At
such energy level, the average time interval between transitions of the springs is
large (τ̄ � T̄ ). The system is biased to the initial conditions rather than show the
long-term average, explaining the observed “sticking” of the data.

However, for the larger excitation energy values of QN ≥ Et , no such “sticking”
was visible, and the approximation was monotonic.

5.5.2 Relationship of Excitation Energy and Dispersion

The relationship between the excitation energy QN and the dispersion parameter
σ of � and ϒ is determined only numerically. The data shown in Table5.1 and
Fig. 5.12 suggest a slightly sublinear trend on a log–log comparison for the interval
examined. We postulated the dependence of type

σ ≈ β

(
QN

Et

)α

Fig. 5.11 Example of “stickiness.” The time-averaged force curve is deflected away from the nearly
quasistatic prediction and toward the single-spring force curve
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Table 5.1 Table comparing QN and σ

QN /Et σ

0.5 1.023

1 1.746

2 2.952

5 5.626

10 8.721

20 13.13

100 32.56

Fig. 5.12 Correspondence between QN and σ on a log-log chart. Fit is σp = 1.793
(
QN
Et

)0.6513

and found α, β to fit the data. The best fit for the above data yields α = 0.6513,
β = 1.793; however, we do not generalize this dependence to values of QN , not in
the interval.

The asymptotic cases of QN can be established from the analytic solutions in
Sect. 5.3. As QN → 0, the system approaches the quasistatic mode. One observes
that this corresponds with σ = 0. Furthermore, as QN → ∞, the approximation of
the system becomes increasingly linear. Similar behavior only occurs in � as σ

approaches infinity. We can thus conclude

lim
QN→0

σ = 0, lim
QN→∞

σ = ∞ (5.23)
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Finally, we observe that σ is a monotonic function of QN . In the interval investi-
gated, the relation can be approximated with the power function

σ ≈ 1.793

(
QN

Et

)0.6513

5.6 Conclusions

The relaxed energy of a spring depends on both elongation and system energy, rather
than on just the elongation. The value of σ measures how relaxed ϒ is toward the
parabolic limit; greater values of σ correspond to greater relaxation toward that limit.

We model uncertain dynamics by introducing random mode change and the Cen-
tral Limit Theorem for homogenization that replaces the mass-spring chain with a
single nonlinear spring. The replacement with � is numerically validated, particu-
larly at higher energies. Increasing the excitation energy of the system decreases the
error |F(u) − �(u, σ )| when the optimal dispersion σ is chosen.
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Chapter 6
Analysis of Resistance to Penetration
of a Cone into Frozen Sand Based
on Data from Inverted Experiments

Anatoliy Bragov, Vladimir V. Balandin, Vladimir Vl. Balandin,
Leonid Igumnov and Vasiliy Kotov

Abstract The laws of contact interaction between rigid and deformable strikers
with dry and water-saturated soils in a wide range of temperatures were studied
experimentally. Studies of the processes of impact and penetration of a steel conical
striker into frozen sandy soil were carried out on the basis of the inverse experiment
employing methodology of measuring bars. The dependences of the maximal values
of the resistance force to penetration into soil of cones as a function of impact velocity
ranging from 100 to 400 m/s are presented. The condition of sandy soil samples
before freezing at a temperature of −18 °C is characterized by almost complete
water saturation. A comparative analysis of the forces resisting to penetration of a
striker into compacted dry, water-saturated and frozen sandy soil has been carried
out. The resistance of frozen soil to penetration at low impact velocities significantly
exceeds the resistance of dry and water-saturated soils. According to the results of
the present experiments, at impact velocities over 300 m/s, the resistance curves of
frozen and water-saturated soil tend to approach each other.
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6.1 Introduction

The behavior of frozen soil is well studied in the experiments on uniaxial and triaxial
compression at pressures up to 20 MPa and strain rates up to 10−2 s−1 [1–3]. Higher
strain rates of the order of 102–103 s−1 were realized in the experiments using the
SHPB system [4, 5], in which the deformation diagrams of frozen sandwere obtained
at a temperature of −28 °C. The experimental data are used to equip mathematical
models of the elastic–plastic behavior of soil with various approximations of yield
and failure surfaces [1–5]. Models that are more complex explicitly take into account
the dependence on temperature [6] or the influence of incompletely frozen water [7].
The elastic properties of frozen sand, characterized by the velocities of propagation
of compression and shear waves, were determined in [8–11]. It was found that the
velocity of a longitudinal wave in a water-saturated frozen soil at temperatures below
−10 °C could amount to 3–4 km/s.

An experimental complex for determining the main parameters of the process of
impact and penetration of solid deformable bodies into soft soil media, based on the
methodology of the inverse experiment with a measuring bar, was presented earlier
in [12–17]. The forces resisting penetration of flat-ended strikers with hemispherical
heads into compacted dry sandy soil are determined. Peculiar features of determining
the maximal resistance force and the force values at quasi-stationary state of pene-
tration of a flat-ended striker into a water-saturated soil, associated with dispersion
during the propagation of short pulses of force in a measuring bar, were demon-
strated. The maximal values of the force resisting to penetration of a hemispherical
striker into dry, wet and water-saturated sandy soils were determined [17].

However, the results of impact experiments with frozen soil are not presented well
enough in the available literature, though they could be used for numerical verification
of mathematical models. The paper presents new results of inverse experiments, in
which time histories of the resistance force and the dependences of the maximum
values of the resistance to penetration of a conical striker into frozen sand were
determined.

6.2 Measuring Bars Methodology in Inverse Experiment

Measuring bars methodology in inverse experiment was used to determine the resis-
tance forces acting on heads during penetration into frozen sand. In the inverse
experiment, a resistance force was measured at an initial stage of penetration. The
technique of measuring the force resisting the penetration of a striker into the sand
using a measuring bar is as follows [12]. A container filled with sand is acceler-
ated up to the required velocities and impacted against a stationary striker fixed on
a measuring bar. The impact velocity and material properties of the bar are to be
such that no plastic strains should occur in the bar. In this case, an elastic strain
pulse ε(t) is formed in the bar. Registering this pulse makes it possible to determine
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Fig. 6.1 Schematic representation of the setup for measuring forces resisting to penetration in the
inverse experiment

force F, acting on the striker upon its interaction with the medium, according to the
well-known relation F(t) = Eε(t) S, where E is elastic modulus of the bar, S is its
cross-sectional area. Thus, in this method, the task of measuring forces is greatly
simplified and reduced to registering an elastic strain pulse in the bar, using strain
gages. The setup implementing this method is schematically depicted in Fig. 6.1. In
the present version of the inverse experiment, a soil container is accelerated using
a 57 mm—caliber gas-gun with a two-diaphragm breech mechanism, which makes
it possible to provide stable and easily controlled impact velocities in the range of
50–500 m/s.

The container is a thin-walled cartridge, made of D16T aluminum alloy and filled
with soil medium. To prevent soil from spilling in the process of preparation of the
experiment and during the acceleration of the container, the front part of the container
is sealed with 0.01-mm-thick PET film. The film is fixed and secured against the soil
surface with a vinyl-plastic ring.

The impact velocity of the container was determined using two electric-contact
transducers located in the orifices of the barrel drilled in front of its muzzle. A 1.5-m-
long and 20-mm-diameter steel rod with a yield strength of over 2000 MPa was used
as a measuring bar. One of the ends of the measuring bar has a threaded orifice (M10)
housing a cylindrical striker with a head of appropriate geometry. The bar is located
at a certain distance from the barrel muzzle, so that the impact occurs immediately
after the container entirely leaves the barrel. The stand, on which the bar is located,
has adjusting supports, which ensure the axisymmetric nature of the interaction. The
rear end of the bar rests against a special damper, preventing it from displacement
and damping the impact energy. Impact takes place inside the vacuum chamber, to
which the gun barrel is connected and into which the measuring bar with the striker
is inserted. The cylindrical parts of the striker heads were 19.8 mm in diameter, with
a hemisphere radius of 10 mm, and were made of 45 steel (σ ≥ 600MPa) and EP638
steel (σ ≥ 1800 MPa).

The measuring bar was made of 03N18K9M5T steel with the density of
8050 kg/m3, Young’s modulus of 186 GPa and yield strength of 2 GPa. The bar
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Fig. 6.2 Heads of measuring bars used in the inverse experiments

was 20.5 mm in diameter and 1.5 m in length. At one end, the bar had a threaded
orifice (M10) for screwing in heads of required geometries. The conical heads with
a cone angle of 60° were used in the experiments. There were two types of the heads
with a base diameter of 19.8 mm and 10 mm, respectively. The heads were made of
03N18K9M5T steel.

Besides, the effect on the experimental results of the threaded connections and
joints between the head and the bar was evaluated using a 12-mm-diameter 30HGSA
steel with a yield strength of 700 MPa. One of the ends of the bar was in the form of
a cone with an angle of 60° (Fig. 6.2).

The experiments were carried out with a sand mixture of natural composition,
from which particles larger than 1 mm and smaller than 0.1 mm had been removed.
The accelerated containers were filled with dry sand, which was then compacted to
an average density of about 1750 kg/m3. The containers were made of D16T alloy
in the form of a thin-walled 70 mm high cylindrical cartridge with a wall thickness
of 1.4 mm, an outer diameter of 56.8 mm and a bottom thickness of 2 mm. The
containers were weighed to find the mass and density of the dry sand, and then
gradually filled with water until the sand was fully saturated. Further humidification
resulted in the formation of a water layer over the surface of the sand, so the excess
water was poured off. The containers were weighed again to determine the density
of the water-saturated sand and its moisture content relative to its initial density.
The average density of the water-saturated natural mixture was respectively 2090 ±
2050 kg/m3. Since sand mainly consists of quartz particles, the density of which is
2650 kg/m3, thus, the porosity of sand is 0.34. When all the cavities are completely
filled with water, the density of the humid sand should increase by 340 kg/m3, and the
density of the water-saturated sand should be equal to 2090 kg/m3, which actually
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Fig. 6.3 Container with frozen sand used in the inverse experiments

was the case during the preparation of the experiments. The moisture content of
water-saturated sand was 18–19%. Then, the container with water-saturated soil was
frozen at −18 °C in a freezer for at least 2 days.

When freezing, some of the water was displaced from the sand (since the density
of ice is somewhat lower than that of water). The surface of the container got covered
with a layer of icewhichwas removed before the experiment. After that, the container
(Fig. 6.3) was weighed to find the density of the frozen sand. The average density of
the frozen sand was 2050 ± 50 kg/m3.

6.3 Mathematical Formulation of the Impact
and Penetration Problem

To get a better insight into the processes taking place during the impact of solid bodies
against soil and to choose the conditions for inverse experiments, numerical methods
evaluating the influence of geometric dimensions of the containers on the integral
loads at the initial, nonstationary state of penetration into frozen soil were used in the
present study. The computations were done using Grigoryan’s model of soil media,
which contains a system of differential equations expressing laws of conservation
of mass, pulse and constant maximal attained in the process of actively loading the
soil, as well as equations of the theory of plastic flow with plasticity condition of
Mises-Schleicher. The system of differential equations is closed with finite relations
determining pressure and a fractional-rational function in the condition of plasticity
of the soil medium. The applied Grigoryan’s model of soil media describes failure
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of the structure of frozen soil under compression and the increase in shear resistance
with increasing pressure [15, 16].

The systemof equations of soil dynamics is complemented by initial and boundary
conditions. A contact algorithm of “impermeability” along the normal line with
“sliding along the tangent with dry friction” is used on the head of a conical striker
contacting with soil medium, in accordance with Coulomb’s friction model with a
constant friction coefficient. The normal and shear stresses on the free surfaces of the
soil and the striker were set equal to zero. The outer boundaries of the computed soil
region correspond to the geometric dimensions of the container used in the inverse
experiment. The deformation of the container is not accounted; the effect of the
container walls is modeled by two versions of imposing the boundary conditions:
“impermeability” along the normal and free sliding in the tangential direction and
“free surface,” corresponding to the absence of any walls. Stresses and velocity of
the soil particles are equal to zero at an initial time. The striker is assumed to be rigid,
moving at a constant speed equal to the impact velocity.

6.4 The Data from Inverted Experiments and Calculations

Figure 6.4 presents the pulses of resistance force obtained in inverse experiments
acting on the cones with different basis diameters: 10 mm, 12 mm and 20 mm, at
impact velocities of 356 m/s, 354 m/s and 339 m/s, respectively. The maximum is
reached when the cone is completely immersed into the soil. Until the maximum
is reached, a time interval is noted, which is characterized by an increase in force
close to a parabolic one and practically coincides for all used strikers. No signs of

Fig. 6.4 Dependences of the force resisting to the penetration cones into frozen soil obtained during
inverse experiments
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Fig. 6.5 Dimensionless dependences of the maximal values of the force resisting penetration of
cones with a base diameter of d = 10 (a) and 12 (b) as a function of impact velocity, obtained in
inverse experiments and numerical results

the effect of the joints on the pulse shape were revealed on the dependences of the
force on time.

Figure 6.5 presents dimensionless dependences of the maximal values of the
force resisting penetration of cones with a base diameter of d = 10 (a) and 12 (b)
as a function of impact velocity. The data presented in Fig. 6.5 were obtained in
inverse experiments (dark triangles); the solid and dashed lines correspond to the
results of numerical calculations with boundary conditions that simulate absolutely
rigid and compliance containers. Good agreement between the experimental data
and numerical results is evident. The containers in the experiments were assumed to
be compliant for all considered diameters of conical strikers. The proximity (taking
into account the variability of experimental data) of the maximal values of the forces
resisting penetration of conical strikers of 10 and 12 mm in diameter at impact
velocities of more than 150 m/s is to be noted. All dimensionless resistance forces
exhibit a similar change from 3 to 1.5 at velocities from 200 to 400 m/s.

Figure 6.6 shows the dimensionless dependences of the maximal values of the
force resisting penetration of the cone into the frozen (dark triangles and solid line),
compacted dry (oblique crosses and dashed lines) and water-saturated soil (light
triangles and dash-dotted lines). The markers correspond to the data of the inverse
experiment; the lines show the results of axisymmetric numerical computations of
the cone penetration into half-space of the soil.

6.5 Conclusion

For the problems of penetration of conical strikers into frozen and water-saturated
soil, a good agreement between experimental data and numerical results can be
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Fig. 6.6 Dimensionless dependences of the maximal values of the force resisting penetration of
cones into frozen, dry and water-saturated soil as a function of impact velocity, obtained in inverse
experiments and numerical results

obtained with the help of Grigoryan’s model accounting for the pressure-dependent
parameters. No significant effect of the threaded connection and joints between the
head and the bar on the experimental results was found. This widens the scope of the
inverse experiment methodology and the measuring bars technique by way of using
changeable heads of required geometries. Resistance of frozen soil to penetration at
low impact velocities is significantly higher than that of dry and especially water-
saturated soils. According to the present experimental results, at impact velocities
over 300 m/s, the resistance diagrams for the frozen and water-saturated soils tend
to approach each other.
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Chapter 7
Some Solutions of Dynamic and Static
Nonlinear Nonautonomous
Klein-Fock-Gordon Equation

Anatolii N. Bulygin and Yuri V. Pavlov

Abstract Methods of constructing exact analytical solutions of dynamic and static
nonlinear nonautonomous Klein-Fock-Gordon (NKFG) equations are developed.
Solutions are given in the form of a composite function U = f (W ). For dynamic
equations, the functionW (x, y, z, t) (ansatz) is constructed so that the function f (W )

is explicitly found. For static equations, the ansatz θ(x, y, z) is chosen as a root
of equations of algebraic surface families that are used to transition to the curved
coordinates. It is shown that such ansatzes allow us to construct exact analytical
solutions of some static nonautonomous NKFG equations.

Keywords Klein-Fock-Gordon equation · Nonautonomous equation · Exact
solution · Ansatz

7.1 Introduction

A large amount of papers are devoted to the study of the dynamic

Uxx +Uyy +Uzz − Utt

v2
= p(x, y, z, t)F(U ) (7.1)

and static
Uxx +Uyy +Uzz = p(x, y, z)F(U ) (7.2)

nonautonomousKlein-Fock-Gordon (NKFG) equations. Here, p(x, y, z, t) andF(U )

are arbitrary functions of their arguments, v is a constant, and the subscript means the
derivative with respect to the corresponding variable. Equation (7.1) appears in many
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branches of modern applied and theoretical physics, mechanics, and mathematics;
it describes dislocations in solids [1], the deformation of a nonlinear crystal lattice
[2, 3], properties of ferromagnets [4], the orientation of liquid crystals (LC) [5], and
many other phenomena and processes.Most of studied concern the autonomicNKFG
equations at (p = const). However, this condition imposes strict restrictions on the
physical properties of the media under study and external influences on them. For
example, when describing the deformation of a nonlinear crystal lattice, the value of p
makes sense of half of the height of the energy barrier for the crystal lattice atoms. The
condition p = const requires that the crystal lattice should be perfect and contains
no defects. In the LC physics, the value p is equal to the moment M of the external
forces that change the orientation structure of LC. For the case when the orientation
of the LC medium is changed by the electromagnetic field (E,H ), the moment is
M = M (E,H , εik , χik). Apart from (E,H ), the moment depends on the dielectric
constant εik and diamagnetic susceptibility κik . The case of p = const requires that the
medium is uniform, (εik , κik) = const, the orientation structure contains no defects,
and the electromagnetic field (E,H ) is constant. The NKFG equations, (p �= const),
describe the physical processes more adequately. There are practically no analytical
methods of solutions to these equations in the literature. Methods of finding exact
analytical solutions of some nonautonomous dynamic and static NKFG equations
will be described below. The methods are based on the ideas and methods of finding
functional invariant solutions of the wave equation. They develop the methods that
have been proposed earlier [6–10].

7.2 Methods of Construction of Exact Analytical Solutions
of Dynamic and Static Nonautonomous Nonlinear
Klein-Fock-Gordon Equations

The solutions of Eq. (7.1) are sought in the form of a composite function,

U = f (W ). (7.3)

The function W (x, y, z, t) is called ansatz. Then, Eq. (7.1) takes the form

fWW

[
W 2

x + W 2
y + W 2

z − W 2
t

v2

]
+ fW

[
Wxx + Wyy + Wzz − Wtt

v2

]
= p F[f ]. (7.4)

Suppose that the ansatzW (x, y, z, t) is the solution of one of the following differential
equations,

1. W 2
x + W 2

y + W 2
z − W 2

t

v2
= 0, Wxx + Wyy + Wzz − Wtt

v2
= p(x, y, z, t), (7.5)
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2. W 2
x + W 2

y + W 2
z − W 2

t

v2
= p(x, y, z, t), Wxx + Wyy + Wzz − Wtt

v2
= 0, (7.6)

3.
W 2

x + W 2
y + W 2

z − W 2
t

v2
= q(x, y, z, t)P(W ),

Wxx + Wyy + Wzz − Wtt

v2
= q(x, y, z, t)Q(W ).

(7.7)

Here, q(x, y, z, t), P(W ), andQ(W ) are arbitrary functions of their arguments. From
Eqs. (7.4–7.6), it can be seen that if the ansatzW satisfies Eqs. (7.5) or (7.6), then the
problem of finding the function f (W ) is reduced to obtaine the solution of ordinary
differential equations of the first and second orders,

1. fW = F(f ),
∫

df

F(f )
= W + C, (7.8)

2. fWW = F(f ),
∫

df√
E + V (f )

= ±√
2 (W + C), (7.9)

Here, (E,C) are the integration constants and Vf = F(f ).
If the ansatzW (x, y, z, t) satisfies Eqs. (7.7), thenwe get an ordinary second-order

differential equation to find the function f (W )

fWWP(W ) + fWQ(W ) = p(x, y, z, t)

q(x, y, z, t)
F(f ). (7.10)

Let us multiply Eq. (7.10) by the arbitrary function R(W ) and apply the following
conditions

(PR)W = 2QR, p(x, y, z, t) = q(x, y, z, t)

R(W )
. (7.11)

From the first equation in (7.11), we find

R(W ) = A

P(W )
exp

(
2

∫
Q(W )

P(W )
dW

)
. (7.12)

Here, A is an integration constant. The second equation in (7.11) defines the function
p(x, y, z, t), for which the described method allows us to construct exact analytical
solutions of the dynamic nonautonomous NKFG equation. In other words, this con-
dition defines a class of nonautonomous NKFG equations that admit exact analytical
solutions by this method.

Taking into account Eq. (7.12), we find

p(x, y, z, t) = q(x, y, z, t)

A
P(W ) exp

(
−2

∫
Q

P
dW

)
. (7.13)
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If the first condition in (7.11) is satisfied, then Eq. (7.10) is written as

d

dW

[
f 2W
2
RP − V (f )

]
= 0. (7.14)

Equation (7.14) is solved in quadratures,

∫
df√

E + V (f )
= G(W ), G(W ) = ±√

2
∫

dW√
P(W )Q(W )

. (7.15)

From Eqs. (7.8), (7.9), and (7.15), one can see that the proposed method of solving
the equation allows us to find a solution f (W ) of Eq. (7.1) for arbitrary functionF(U )

provided that the corresponding integrals exist. If they allow inversion, the solution
f (W ) can be found in an explicit form. Thus, the proposed method reduces obtaining
the solution of Eq. (7.1) to find the ansatz W (x, y, z, t) from the Eqs. (7.5–7.7).

The proposed method of constructing exact analytical solutions of dynamic equa-
tion (7.1) is also fully applicable for finding solutions of the static equation (7.2) in
the form of a composite function

U = f (θ) (7.16)

provided that the ansatz θ(x, y, z) is independent on time.

7.3 Ansatzes for Solution of Dynamic Equation

Ansatzes for finding solutions of Eq. (7.1) can be constructed by using themethods of
finding functional invariant solutions of thewave equation [11]–[13]. Let us introduce
the function τ(x, y, z, t), which is the root of the algebraic equation,

[x − ξ(τ )]2 + [y − η(τ)]2 + [z − ζ(τ )]2 = v2(t − τ)2. (7.17)

Here, ξ(τ ), η(τ ), ζ(τ ) are the arbitrary functions. They define the function
τ(x, y, z, t). Let us consider a simple case,

ξ = vx1τ, η = vx2τ, ζ = vx3τ. (7.18)

Then, we find from Eq. (7.17),

τ = −X ± β

vR0
, β =

√
X 2 + R0s2, R0 �= 0, (7.19)

X = x1x + x2y + x3z − vt, s2 = x2 + y2 + z2 − v2t2, R0 = 1 − (x21 + x22 + x23).
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The function β(x, y, z, t) contains the square root. Radicand is a quadratic form of
four variables (x, y, z, t). One can show that it is non-negative if x21 + x22 + x23 ≤ 1.
Hence, the function β(x, y, z, t) is real. We will choose the following functions for
the ansatzes,

W = [β(x, y, z, t), λ(x, y, z, t), χ(x, y, z, t)], (7.20)

λ(x, y, z, t) = vw(τ )β, χ(x, y, z, t) = ξτ (x − ξ) + ητ (y − η) + ζτ (z − ζ ).

Here, w(τ ) is an arbitrary function of τ . Obtaining the partial derivatives of the first
and second orders, one can prove that

β2
x + β2

y + β2
z − β2

t

v2
= R0, βxx + βyy + βzz − βtt

v2
= 2R0

β
, (7.21)

λ2
x + λ2

y + λ2
z − λ2

t

v2
= λσ, λxx + λyy + λzz − λtt

v2
= 2σ, (7.22)

χ2
x + χ2

y + χ2
z − χ2

t

v2
= v2R0, χxx + χyy + χzz − χtt

v2
= 2v2R0

χ
. (7.23)

Here

σ = 2wτ

(
vwR0

2βwτ

− 1

)
. (7.24)

Taking into account Eqs. (7.21–7.23) , Eq. (7.1) can be solved by the third way.
Finally, we obtain

∫
df√

E + V (f )
= G(W ), G(W ) = ±√

2

[(
c + 1

β

)
,

(
c + 1

λ

)
,

(
c + 1

χ

)]
.

(7.25)
Here, c is an integration constant. For the considered ansatzes, we have

p(x, y, z, t) =
[
R0

β4
,

σ

λ3
,
v2R0

χ4

]
. (7.26)

Ansatz W (x, y, z, t) can be also a function of two variables. Let us consider the
following cases,

W =
[
Φ(τ)

β
,

Φ(τ)

λ
,

Φ(λ/β)

λ

]
. (7.27)

Here, Φ(u) is an arbitrary function. One can show that ansatzes (7.27) are the wave
functions. Therefore, their utilization allows us to solve Eq. (7.1) by the second way.
For these solutions, the function p(x, y, z, t) is
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p(x, y, z, t) =
[
2Φ2(τ )

vβ3

(
vR0

2β
+ Φτ

Φ

)
,
2Φ2(τ )w

λ3

(
σ

2w
+ Φτ

Φ

)
,

2wτΨ
2

(
R0

2wτ β2
+ Ψλ

Ψ

)]
. (7.28)

In the last expression Ψ = Φ(λ/β)/λ.
The number of the wave functions can be increased if one uses new coordinates

that allow us to find the other wave functions from one function. So, if f (x, y, z, t)
is a wave function, then

1

s2
f

(
x

s2
,
y

s2
,
z

s2
,
t

s2

)
, (7.29)

and
1

z − vt
f

(
x

z − vt
,

y

z − vt
,

s2 − 1

2(z − vt)
,

s2 + 1

2v(z − vt)

)
(7.30)

will be also the wave functions [12].
Let us

W = [Ψ (τ), Ψ (u), Ψ (v)] . (7.31)

Here

u = ln λ − σ
τ

2w(τ )
, v = 2β

vR0
+ τ.

The ansatzes (7.31) satisfy the equation

W 2
x + W 2

y + W 2
z − W 2

t

v2
= 0 (7.32)

and hence Eq. (7.1) can be solved by the first way. For these ansatzes, we have

p(x, y, z, t) =
[
2

χ
Ψτ ,

σ

λ

(
(1 + λ)Ψ ′′ + 2Ψ ′) ,

2

vβ
Ψ ′

]
. (7.33)

Here, the prime denotes a derivative of a function with respect to its argument. Let
us illustrate general methods for solving Eq. (7.1) by some particular examples.

7.4 Particular Solutions

Consider the cases where

F(U ) = {sinU, sinhU, exp(mU )} . (7.34)
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The integrals (7.8) and (7.9) exist and can be inversed for such functions. Finally, we
find

F(U ) =
{
2 tan−1 eW , 2 tanh−1 eW ,

−1

m
log(E − mW )

}
, (7.35)

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 tan−1

[√
1 − r2 tn

(
W

r
, r

)]
,

2 tanh−1

[
sn

(
W√
1 − r2

, r

)]
,

2

m
log

⎡
⎣

√
Em

sinh
(
W m

√
E√
2

)
⎤
⎦ .

(7.36)
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Fig. 7.1 Function p and solution U for z = 0, t = 0 (at the top), t = 1 (at the middle), t = 3
(at the bottom)
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Here, E is an integration constant, tn (u, r) = sn (u, r)/ cn (u, r), sn (u, r), cn (u, r)
are the Jacobi elliptic functions (0 ≤ r ≤ 1).

In Fig. 7.1, the spatial plots of the amplitude p(x, y, z, t) and the solution
U (x, y, z, t) are given for different times (t = 0, 1, 3) and for the caseF(U ) = sinU ,
W = Ψ (τ), w(τ ) = τ 2, τ = −(X + β)/(vR0), R0 �= 0 (see (7.19)). One can see
that p(x, y, z, t) and U (x, y, z, t) have the form of localized waves that change
both their shape and size in time. The same forms of the functions p(x, y, z, t)
and U (x, y, z, t) are shown in Fig. 7.2 for solution (7.27) with F(U ) = expU ,
W = Φ(τ)/λ, w(τ ) = τ , τ = −(X + β)/(vR0), R0 �= 0.

2

0

2

y

2

0

2

y

2

0

2

y

2

0

2

y

2

0

2

y

2

0

2

y

10

0

10

p

20

0
10

U

10

0

10

p

20

0
10

U

10

0

10

p

2
0

x

20

0
10

U

2

2
0

x 2

2
0

x 2

2
0

x 2

2
0

x 2

2
0

x 2

Fig. 7.2 Function p and solution U for z = 0, t = 0 (at the top), t = 1 (at the middle), t = 3 (at
the bottom)



7 Some Solutions of Dynamic and Static Nonlinear Nonautonomous … 115

7.5 Ansatzes for Solution of Static Equation

We find a solution of static equation (7.2) in the form (7.16). It will be proven that
an ansatz θ(x, y, z) can be obtained in the forms that express curved coordinates
(θ1, θ2, θ3) through the Cartesian coordinates (x, y, z). This result is important as
it allows us to construct a solution of the NKFG equation satisfying the boundary
conditions imposed on such surfaces.

Let us consider the curvilinear coordinates that are the most studied in mathe-
matical physics [14]. The general elliptic coordinates are defined by the family of
surfaces

x2

a2 + θ
+ y2

b2 + θ
+ z2

c2 + θ
= 1. (7.37)

For definiteness, we assume that c > b > a. The geometrical form of the sur-
face (7.37) depends on the parameters θ, a, b, c. If −a2 < θ < ∞, then (7.37) is
a family of three-axis spheroids, if−b2 < θ < −a2, then (7.37) is a family of hyper-
boloids with one sheet, if −c2 < θ < −b2, then (7.37) is a family of hyperboloids
with two sheets. From Eq. (7.37), one can see that θ is the solution of the cubic
equation. Any root θ1, θ2, andθ3 of this equation can be chosen for the anzates. It
should satisfy the system of the equations,

θ2
x + θ2

y + θ2
z = q(x, y, z)P(θ), (7.38)

θxx + θyy + θzz = q(x, y, z)Q(θ). (7.39)

Equation (7.37) implicitly defines θ(x, y, z). By the method of differentiation of
implicit functions, we find

θ2
x + θ2

y + θ2
z = 4

M
, M = x2

(a2 + θ)2
+ y2

(b2 + θ)2
+ z2

(c2 + θ)2
, (7.40)

θxx + θyy + θzz = 2N

M
, N = 1

a2 + θ
+ 1

b2 + θ
+ 1

c2 + θ
. (7.41)

From Eqs. (7.40) and (7.41), we can see that θ satisfies the system of Eqs. (7.38),
(7.39) and

q(x, y, z) = 2

M
, P(θ) = 2, Q(θ) = N , (7.42)

R(θ) = A

2
(a2 + θ)(b2 + θ)(c2 + θ), (7.43)

G(θ) = 1√
A

θ∫
0

dθ√
(a2 + θ)(b2 + θ)(c2 + θ)

, (7.44)
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p(x, y, z) = 2

A(a2 + θ)(b2 + θ)(c2 + θ)M
. (7.45)

Therefore, any root of Eq. (7.37) can be chosen as an ansatz for the solution of
Eq. (7.2).

Parabolic coordinates are defined by crossing of the elliptic and hyperbolic
paraboloids. This family of coordinate surfaces is described by the equation,

x2

θ − a
+ y2

θ − b
− 2z − θ = 0. (7.46)

It implicitly defines the function θ(x, y, z). From Eq. (7.46), we find

θ2
x + θ2

y + θ2
z = 4

M
, M = 1 + x2

(θ − a)2
+ y2

(θ − b)2
, (7.47)

θxx + θyy + θzz = 2N

M
, N = 1

θ − a
+ 1

θ − b
. (7.48)

FromEqs.(7.47) and (7.48), it follows that θ satisfies the system of Eqs. (7.38), (7.39)
and

q(x, y, z) = 2

M
, P(θ) = 2, Q(θ) = N , (7.49)

R(θ) = C

2
(θ − a)(θ − b), C = const, (7.50)

p(x, y, z) = 2

CM (θ − a)(θ − b)
. (7.51)

Thus, the roots of the equations of the surfaces determining parabolic coordinates
are the ansatzes for the solution of Eq. (7.2).

It is possible to prove by direct calculations that the roots of the equations of
other coordinate surfaces also satisfy Eqs. (7.37), (7.38); that is, they can be applied
to finding the solutions of Eq. (7.2). Let us give the final results for the following
coordinate surfaces:

1. Cones
x2

θ
+ y2

θ − b2
+ z2

θ − c2
= 0, (7.52)

q(x, y, z) = 2

L
, L = x2

θ2
+ y2

(θ − b2)2
+ z2

(θ − c2)2
, P(θ) = 2,

Q(θ) = 1

θ
+ 1

θ − b2
+ 1

θ − c2
.
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2. Oblate spheroids of rotation

x2 + y2

1 + θ
+ z2

θ
= a2, (7.53)

q(x, y, z) = 2

L
, L = x2 + y2

(1 + θ)2
+ z2

θ2
, P(θ) = 2, Q(θ) = 1

θ
+ 2

1 + θ
,

R(θ) = A

2
θ(1 + θ)2, p = 2

Aθ(1 + θ)2L
.

3. Hyperboloids of revolution with two sheets

x2 + y2

1 − θ
− z2

θ
= a2, (7.54)

q(x, y, z) = 2

L
, L = x2 + y2

(1 − θ)2
+ z2

θ2
, P(θ) = 2, Q(θ) = 1

θ
− 2

1 − θ
,

R(θ) = A

2
θ(1 − θ)2, p = 2

Aθ(1 − θ)2L
.

4. Hyperboloids of revolution with two sheets

x2 + y2

θ
= 2z + θ, (7.55)

q(x, y, z) = 2

L
, L = √

x2 + y2 + z2, P(θ) = 2, Q(θ) = θ.

Static Eq. (7.2) is solved by the third way using the given ansatzes. It can be solved
by the second way if one converts the function θ(x, y, z, t) to a harmonic function.
It is easy to show that φ[θ(x, y, z)] satisfies Laplace’s equation if

θxx + θyy + θzz

θ2
x + θ2

y + θ2
z

= −φθθ

φθ

= χ(θ). (7.56)

Here, χ(θ) is an arbitrary function of θ . From Eq. (7.56), we find

φ(θ) = A
∫

e− ∫
χ(θ) dθdθ + B, (7.57)

where A and B are the constants of integration. The harmonic function φ(θ) can be
used for construction of the solution of the nonautonomous NKFG equation.

Let us write the solution of Eq. (7.2) in form
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U = f [φ(θ)] (7.58)

and accept that
p(x, y, z) = φ2

x + φ2
y + φ2

z . (7.59)

Then, the solution of Eq. (7.2) is reduced to the solution of the ordinary nonlinear
differential equation of the second order,

fφφ = F(f ). (7.60)

It is integrated in quadratures,

∫
df√

E + V (f )
= √

2(φ + C). (7.61)

Here, EandC are the arbitrary constants and F(f ) = Vf .
Let us define the functionφ(θ) for the ansatzeswhich are the roots of the equations

of some families of coordinate surfaces:

1. Three-axis spheroids

χ(θ) = 1

2

[
1

θ + a2
+ 1

θ + b2
+ 1

θ + c2

]
,

φ(θ) = A
∫

dθ√
(θ + a2)(θ + b2)(θ + c2)

+ B. (7.62)

2. Cones with axes coinciding with coordinates axes

χ(θ) = 1

2

[
1

θ
+ 1

θ − b2
+ 1

θ − c2

]
, φ(θ) = A

∫
dθ√

θ(θ − b2)(θ − c2)
+ B.

(7.63)
3. Elliptic paraboloids

χ(θ) = 1

2

[
1

θ − a
+ 1

θ − b

]
, φ(θ) = 2A ln

[√
θ − a + √

θ − b
]

+ B.

(7.64)
4. Oblate spheroids of rotation

χ(θ) = 1

2

[
1

θ
+ 2

1 + θ

]
, φ(θ) = 2A tan−1

√
θ + B. (7.65)

5. Hyperboloids of revolution with two sheets

χ(θ) = 1

2

[
1

θ
− 2

1 − θ

]
, φ(θ) = A ln

1 + √
θ

1 − √
θ

+ B. (7.66)
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6. Confocal paraboloids of revolution

χ(θ) = θ, φ(θ) = A ln θ + B. (7.67)

Functions φ(θ) determined by Eqs. (7.62) and (7.63) are expressed through the
elliptic integral of the first kind.

7.6 Conclusion

Methods of finding exact analytical solutions of the dynamic and static nonau-
tonomous NKFG equations are proposed. The most important step in the imple-
mentation of the proposed methods is the calculation of the ansatz. For dynamic
equations, it is found from special equations by the methods developed in the theory
of constructing the functionally invariant wave equation solutions.

It is proven for the static equations that the algebraic expressions of orthogonal
curvilinear coordinates through the Cartesian coordinates can be taken as an ansatz.
This result seems important, as it allows us to solve the static nonautonomous NKFG
equations in orthogonal curved coordinates.
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Chapter 8
A Comparison Between Heterogeneous
and Homogeneous Layers for Nonlinear
Bright Solitary SH Waves in Terms
of Heterogeneous Effect

Dilek Demirkuş

Abstract In this chapter, we compare the nonlinear bright solitary shear horizontal
(SH) waves in heterogeneous and homogeneous layers in terms of the heterogeneous
effect. Each layer has finite thickness overlying a rigid substratum. We assume that
the layers are made up of isotropic, hyper-elastic and generalized neo-Hookean (sim-
ilarly, compressible or incompressible) materials. Moreover, one layer contains het-
erogeneous materials and another contains homogeneous materials. The existence of
nonlinear bright solitary SHwaves in such layers can be found in the literature. There-
fore, we aim to overcome the difficulty of a comparison of two nonlinear analyzes
for this paper. Besides a comparison part, we add a discussion on some materials in
homogeneous media.

Keywords Nonlinear SH waves · Bright solitary waves · Heterogeneous layer

8.1 Introduction

Phase velocities of elasticwaves propagating in an unbounded homogeneousmedium
are constant. In other words, the wave propagation is nondispersive. Nondispersive
medium is not useful for constructing a continuous wave propagation. Therefore, in
such a situation, one of the required aims is to get dispersive elastic waves. This aim
can be achieved using some waveguides such as a layer, plate, half-space, layered
plate, and layered half-space. Dispersive elastic waves have found many important
applications in some areas such as seismology, geophysics, nondestructive inspection
ofmaterial surfaces, and electronic signal processing devices. For further information
about applications and reviews, we refer to Achenbach [2], Ewing [18], Farnell [19],
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Graff [22], and Maugin [27]. Moreover, for a modern theory of propagation and
interaction of elastic waves in solids with microstructure, we refer to Erofeev [17].

Elastic waves are called seismic waves in seismology and they have some known
types. That is to say, they can divide into two categories known as body waves and
surface waves. P and S waves are two types of body waves to measure pressure and
shear, respectively. Furthermore, Love and Rayleigh waves are two types of surface
waves. As earthquakes waves, body waves and surface waves come from to the
interior and surface of the Earth, respectively. We know that body waves move faster
than surface waves; whereas, surface waves are more dangerous than body waves.
Besides parallel to the damage, understanding the mathematical behavior of surface
waves is more difficult than others because they use more than one displacement.

The dispersive effect (or linear behavior) of the elastic waves is a well-worked
topic in the literature. We want to give some examples of them with different
properties such as Hudson [23], Kaplunov and Nobili [25], Kaplunov et al. [26],
Prikazchikova et al. [31], Sahu et al. [34], and Vardoulakis and Georgiadis [39]. In
addition to understanding the dispersive effect, some researchers think that the non-
linear effect of the elastic waves is also to be considerable. For such works, we refer
to Ahmetolan and Teymur [3, 4], Deliktas and Teymur [6], Demirkus and Teymur
[13], Destrade et al. [14], Ferreira and Boulanger [20], Fu [21], Maugin and Hadouaj
[28], Mayer [29], Porubov and Samsonov [32], Pucci and Saccomandi [33], Teymur
[36, 37], and Teymur et al. [38]. Moreover, for an example of the anti-plane surface
wave propagation in lattice structures, we refer to Eremeyev and Sharma [35].

From recent developments, we see that a fewworks exist for the propagation of the
nonlinear SHwaves in heterogeneousmedia.We arewilling to complete the literature
in this direction. Therefore, we show the existence of the nonlinear bright and dark
solitary SHwaves in a heterogeneous layer in [7, 12], respectively. Similarly, besides
the existence of the nonlinear antisymmetric and symmetric bright solitary SHwaves
in a heterogeneous plate, we also show the existence of the nonlinear antisymmetric
and symmetric dark solitary SH waves in [8–11]. In this paper, we give a review part
for somematerials in homogeneous media and compare a heterogeneous layer with a
homogeneous one, in terms of heterogeneous effect. The comparison of the nonlinear
effect is also possible, but we will see it elsewhere. Moreover, similar comparisons
are valid for a plate case; however, they are out of this work.

8.2 A Review Part for Some Materials
in Homogeneous Media

Before a comparison part, we will start with a review part for the nonlinear SHwaves
or surface SH waves in homogeneous media given materials such as compressible,
incompressible, and generalized neo-Hookean. In this discussion, the spatial and
material coordinates of a point referred to the samefixed rectangularCartesian system
of axes are xk andXK , respectively. Latin andGreek indices have the respective ranges



8 A Comparison Between Heterogeneous and Homogeneous Layers … 123

(1, 2, 3) and (1, 2), and also the summation convention on repeated indices is implied
in this text. Subscripts preceded by a comma also indicate the partial differentiation
with respect to material or spatial coordinates in the sequel.

If the constituent materials of a bounded medium are hyper-elastic, then there
exists a strain energy function Σ characterizing the mechanical properties of the
materials and stress constitutive equation [16] can be given by

TKk = ∂Σ

∂xk,K
. (8.1)

Here, TKk indicates the components of the first Piola–Kirchhoff stress tensor and
anti-plane shear motion can be described by the equation below

xk = XKδkK + u3(XΔ, t)δk3 (8.2)

where u3 = u3(XΔ, t) is the displacement in the X3-direction, t is the time, and δkK
is the usual Kronecker symbol. We assume that an SH wave described by (8.2) is to
propagate along X1-axis in this medium. Because of SH waves, the displacements in
the X1- and X2-directions are zero.

For an isotropic solid, Σ is an isotropic function of the principal invariants of the
Finger deformation tensor c−1, and invariants [16] are defined by

I1 = trc−1, 2I2 = (trc−1)2 − tr(c−2), I3 = detc−1 (8.3)

and also calculated for deformation field (8.2) as follows:

I1 = I2 = 3 + K2, I3 = 1 (8.4)

where K2 = u3,Δu3,Δ. Moreover, if the motion takes place for homogeneous mate-
rials, then three possibilities on dependency of Σ come up as follows:

• For compressible materials, i.e., Σ = Σ(I1, I2, I3),
• For incompressible materials, i.e., Σ = Σ(I1, I2),
• For generalized neo-Hookean materials, i.e., Σ = Σ(I1).

The components of the deformation gradient tensors xk,K and XK,k for deformation
fields (8.2) are calculated as follows:

xα,Δ = δαΔ, xα,3 = 0, x3,Δ = u3,Δ, x3,3 = 1,

XΔ,α = δΔα, XΔ,3 = 0, X3,α = −u3,ΔδΔα, X3,3 = 1.
(8.5)

Note that deformation field (8.2) is isochoric, i.e., j = detxk,K = 1. Similarly, the
components of c−1

kl = xk,Kxl,K and c−1
km c

−1
ml are as follows, respectively:
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c−1
αβ = δαΔδβΔ, c−1

α3 = δαΔu3,Δ,

c−1
3β = u3,ΔδβΔ, c−1

33 = 1 + K2,
(8.6)

and
c−1
αmc

−1
mβ = (δαΔδγΔ)(δγΔδβΔ) + (δαΔu3,Δ)(u3,ΔδβΔ),

c−1
αmc

−1
m3 = (δαΔδγΔ)(δγΔu3,Δ) + (δαΔu3,Δ)(1 + K2),

c−1
3mc

−1
mβ = (u3,ΔδγΔ)(δγΔδβΔ) + (1 + K2)(u3,ΔδβΔ),

c−1
3mc

−1
m3 = (u3,ΔδγΔ)(δγΔu3,Δ) + (1 + K2)2.

(8.7)

Without the body forces, the equations of the motion [16] in the reference state can
be written as

TΔβ,Δ + T3β,3 = 0,

TΔ3,Δ + T33,3 = ρ0ü3.
(8.8)

Here, ρ0 is the density of the medium. Using components (8.5) with the relation
TKl = jXK,k tkl between the Cauchy stress tensor tkl and the first Piola-Kirchhoff
stress tensor TKl , we obtain

TΔβ = δΔαtαβ, TΔ3 = δΔαtα3,

T3β = −u3,ΔδΔαtαβ + t3β, T33 = −u3,ΔδΔαtα3 + t33.
(8.9)

Therefore, the equations of the motion are expressed in terms of tkl as below

(δΔαtαβ),Δ + (−u3,ΔδΔαtαβ + t3β),3 = 0,

(δΔαtα3),Δ + (−u3,ΔδΔαtα3 + t33),3 = ρ0ü3.
(8.10)

To express Eq. (8.10)well, we need to calculate the components of tkl . For this reason,
it is necessary to determine types of materials. Therefore, the following discussion
is for this aim.

8.2.1 Compressible Materials

In this case, if we assume that materials of the medium are not only hyper-elastic,
homogeneous and isotropic, but also compressible, then the strain energy function
Σ has the following form as stated above

Σ = Σ(I1, I2, I3). (8.11)

If we take into consideration suchmaterials, then the stress constitutive equation [16]
is given by
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tkl = 2
√
I3

∂Σ

∂I3
δkl + 2√

I3

(
∂Σ

∂I1
+ I1

∂Σ

∂I2

)
c−1
kl − 2√

I3

∂Σ

∂I2
c−1
km c

−1
ml . (8.12)

For finding the components of the stress constitutive equation (8.12), we need to use
components (8.6) and (8.7), then listed as:

t11 = 2
∂Σ

∂I1
+ 2(2 + u23,2)

∂Σ

∂I2
+ 2

∂Σ

∂I3
,

t12 = t21 = −2
∂Σ

∂I2
u3,1u3,2,

t22 = 2
∂Σ

∂I1
+ 2(2 + u23,1)

∂Σ

∂I2
+ 2

∂Σ

∂I3
,

t13 = t31 = 2

(
∂Σ

∂I1
+ ∂Σ

∂I2

)
u3,1,

t23 = t32 = 2

(
∂Σ

∂I1
+ ∂Σ

∂I2

)
u3,2,

t33 = 2(1 + K2)
∂Σ

∂I1
+ 2(2 + K2)

∂Σ

∂I2
+ 2

∂Σ

∂I3
.

(8.13)

Here, we aim to calculate the components of the stress constitutive equation, explic-
itly. If we assume that Σ is an analytic function of I1, I2, I3 around (3, 3, 1), then we
can expand the function Σ to a Taylor series as

Σ(I1, I2, I3) =
∞∑

p=0

∞∑

q=0

∞∑

r=0

cpqr(I1 − 3)p(I2 − 3)q(I3 − 1)r (8.14)

where the coefficients cpqr are defined by

cpqr = 1

(p + q + r)!
∂p+q+rΣ(3, 3, 1)

∂I p1 ∂I q2 ∂I r3
(8.15)

and Σ(3, 3, 1) = 0. Moreover, at the initial state we assume that the energy is zero
and the medium has no stress. Using series expansion (8.14), the following partial
derivatives can be found

∂Σ

∂I1
= c100 + (2c200 + c110)K

2 + O(K4),

∂Σ

∂I2
= c010 + (2c020 + c110)K

2 + O(K4),

∂Σ

∂I3
= c001 + (c101 + c011)K

2 + O(K4).

(8.16)
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Under the following conditions

c010 = 0,

c100 + c001 = 0,

2c200 + c110 + c101 + c011 = 0,

2c020 + c110 = 0,

(8.17)

and using derivatives (8.16), we get the relations as follows:

∂Σ

∂I2
= O(K4),

∂Σ

∂I1
+ ∂Σ

∂I3
= O(K4).

(8.18)

Such assumptions (8.17) are helpful for reducing the number of equations that comes
from such a medium. We see that this medium can be expressed by three equations.
But, all equations contain the nonlinearity and it is known that the area of science
suffers from the lack of the general theory about the system of nonlinear partial
differential equations. Therefore, the components of the stress constitutive equation
can be expressed as given in the list below

tαβ = O(K4),

tα3 = t3α = 2[c100 + 2(c200 + c020 + c110)K
2]u3,α + O(K4),

t33 = 2c100K
2 + O(K4).

(8.19)

In (8.19),we can omit the terms that containK4 and higher thanK4. Consequently, the
first two equations in (8.10) are satisfied identically, and the third equation becomes

ü3 − c20T u3,ΔΔ = n0T (u3,ΔK
2),Δ (8.20)

where
n0T = 4(c200 + c020 + c110)/ρ0,

c20T = 2c100/ρ0 = μ0/ρ0.
(8.21)

8.2.2 Incompressible Materials

In this case, if we assume that materials of the medium are not only hyper-elastic,
homogeneous and isotropic, and but also incompressible, then the strain energy
function Σ has the following form as stated above

Σ = Σ(I1, I2). (8.22)
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If we take into consideration suchmaterials, then the stress constitutive equation [16]
is given by

tkl = −pδkl + 2

(
∂Σ

∂I1
+ I1

∂Σ

∂I2

)
c−1
kl − 2

∂Σ

∂I2
c−1
km c

−1
ml (8.23)

where p(XK , t) is an arbitrary hydrostatic pressure function. Using (8.6) and (8.7),
we get the following components of the stress constitutive equation (8.23)

t11 = −p + 2
∂Σ

∂I1
+ 2(2 + u23,2)

∂Σ

∂I2
,

t12 = t21 = −2
∂Σ

∂I2
u3,1u3,2,

t22 = −p + 2
∂Σ

∂I1
+ 2(2 + u23,1)

∂Σ

∂I2
,

tα3 = t3α = 2

(
∂Σ

∂I1
+ ∂Σ

∂I2

)
u3,α,

t33 = −p + 2(1 + K2)
∂Σ

∂I1
+ 2(2 + K2)

∂Σ

∂I2
.

(8.24)

Therefore, the equations of motion (8.10) take the following forms

[
−p + 2

∂Σ

∂I1
+ 4

∂Σ

∂I2

]

,1
+

[

2

(
u3,2

∂Σ

∂I2

)

,1
u3,2 − 2

(
u3,2

∂Σ

∂I2

)

,2
u3,1

]

+ u3,1p,3 = 0,

[
−p + 2

∂Σ

∂I1
+ 4

∂Σ

∂I2

]

,2
+

[

2

(
u3,1

∂Σ

∂I2

)

,2
u3,1 − 2

(
u3,1

∂Σ

∂I2

)

,1
u3,2

]

+ u3,2p,3 = 0,

[
2

(
∂Σ

∂I1
+ ∂Σ

∂I2

)
u3,1

]

,1
+

[
2

(
∂Σ

∂I1
+ ∂Σ

∂I2

)
u3,2

]

,2
− ρ0ü3 = p,3.

(8.25)
From the last equation of (8.25), we get

p,3 = κ0(X1,X2, t) (8.26)

and hence
p = κ0(X1,X2, t)X3 + κ1(X1,X2, t) (8.27)

where κ0 and κ1 are arbitrary functions. Then, the use of (8.27) in the first two
equations of (8.25) yields

κ0,1 = 0, κ0,2 = 0. (8.28)

Therefore, we have
κ0 = f (t) (8.29)
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where f is an arbitrary function. Moreover, the first two equations of (8.25) can be
written as

[
−κ1 + 2

∂Σ

∂I1
+ 4

∂Σ

∂I2
+ u3f (t)

]

,1
+ 2

[(
u3,2

∂Σ

∂I2

)

,1
u3,2 −

(
u3,2

∂Σ

∂I2

)

,2
u3,1

]

= 0,

[
−κ1 + 2

∂Σ

∂I1
+ 4

∂Σ

∂I2
+ u3f (t)

]

,2
+ 2

[(
u3,1

∂Σ

∂I2

)

,2
u3,1 −

(
u3,1

∂Σ

∂I2

)

,1
u3,2

]

= 0.

(8.30)
Using (8.30) with differentiation, we get the following compatibility condition

[(
u3,2

∂Σ

∂I2

)

,1
u3,2 −

(
u3,2

∂Σ

∂I2

)

,2
u3,1

]

,2

−
[(

u3,1
∂Σ

∂I2

)

,2
u3,1 −

(
u3,1

∂Σ

∂I2

)

,1
u3,2

]

,1

= 0.

(8.31)
Using this compatibility condition, then Eq.(8.30) becomes such that

[
−κ1 + 2

∂Σ

∂I1
+ u3f (t)

]

,1

= 0,

[
−κ1 + 2

∂Σ

∂I1
+ u3f (t)

]

,2

= 0.

(8.32)

By integrating Eq. (8.32), we obtain that

κ1 = 2
∂Σ

∂I1
+ u3f (t) + g(t) (8.33)

where g is an arbitrary function. Therefore, the pressure function can be written as

p = f (t)X3 + 2
∂Σ

∂I1
+ u3f (t) + g(t). (8.34)

Using Eq. (8.34) in (8.24), then we find that

t11 = t22 = −f (t)X3 − u3f (t) − g(t),

t12 = t21 = 0,

tα3 = t3α = 2
∂Σ

∂I1
u3,α,

t33 = −f (t)X3 − u3f (t) − g(t) + 2K2 ∂Σ

∂I1
.

(8.35)

Here, we assume that the natural states of the materials are stress-free. Hence,

g(t) = 0. (8.36)
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In a similar manner, all stress components must be bounded at X3 = ±∞. Therefore,
we have

f (t) = 0. (8.37)

As a result, stress components (8.35) can be given as listed:

tαβ = 0,

tα3 = t3α = 2
∂Σ

∂I1
u3,α,

t33 = 2K2 ∂Σ

∂I1
,

(8.38)

and the pressure function can be written as

p = 2
∂Σ

∂I1
. (8.39)

For calculating the components of the stress constitutive equation, we assume that
Σ is an analytic function of I1, I2 around (3, 3), then we can expand the function Σ

to a Taylor series as

Σ(I1, I2) =
∞∑

p=0

∞∑

q=0

cpq0(I1 − 3)p(I2 − 3)q (8.40)

where the coefficients cpq0 are defined by

cpq0 = 1

(p + q)!
∂p+qΣ(3, 3)

∂I p1 ∂I q2
(8.41)

and Σ(3, 3) = 0. Partial derivatives can be found as

∂Σ

∂I1
= c100 + (c110 + 2c200)K

2 + O(K4),

∂Σ

∂I2
= c010 + (c110 + 2c020)K

2 + O(K4).

(8.42)

Under the following condition

c010 = 0,

c110 + 2c020 = 0,
(8.43)

we get
∂Σ

∂I2
= O(K4). (8.44)
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Therefore, stress components (8.38) can be expressed as given in the list below

tαβ = 0,

tα3 = t3α = 2[c100 + (c110 + 2c200)K
2]u3,α + O(K4),

t33 = 2c100K
2 + O(K4).

(8.45)

Consequently, the first two equations in (8.10) are satisfied identically, and the third
equation becomes Eq.(8.20) with

n0T = 2(c110 + 2c200)/ρ0. (8.46)

8.2.3 Generalized Neo-Hookean Materials

In this case, if we assume that materials of the medium are not only hyper-elastic,
homogeneous and isotropic, but also generalized neo-Hookean, then the strain energy
function Σ has the following form as stated above

Σ = Σ(I1). (8.47)

If we take into consideration suchmaterials, then the stress constitutive equation [16]
is given by

tkl = −pδkl + 2
dΣ

dI1
c−1
kl . (8.48)

In a similar manner, we have p = 2dΣ
dI1

. Using (8.6), the components of stress con-
stitutive equation (8.48) are found to be

tαβ = 0,

tα3 = t3α = 2
dΣ

dI1
u3,α,

t33 = 2K2 dΣ

dI1
.

(8.49)

Similarly, ifwe assume thatΣ is an analytic functionof I1 around3, then the following
Taylor series can be written as

Σ(I1) =
∞∑

p=0

cp00(I1 − 3)p (8.50)
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where the coefficients cp00 are defined by

cp00 = 1

p!
dpΣ(3)

dI p1
(8.51)

and Σ(3) = 0. Hence, we have

dΣ

dI1
= c100 + 2c200K

2 + O(K4). (8.52)

Therefore, the components of the stress constitutive equation (8.48) can be expressed
as given in the list below

tαβ = 0,

tα3 = t3α = 2(c100 + 2c200K
2)u3,α + O(K4),

t33 = 2c100K
2 + O(K4).

(8.53)

Consequently, the first two equations in (8.10) are satisfied identically, and the third
equation becomes Eq. (8.20) with

n0T = 4c200/ρ0. (8.54)

From the discussion above for some materials used in homogeneous media, we
see that one of the required aims is to reduce the number of nonlinear equations since
the lack of a general theory of nonlinear partial differential equations. In each case,
the number of equations reduces from three to one as wanted. Therefore, as a review,
we observe that except for some assumptions on the mechanical properties of the
materials, three types of materials are very similar to each other. In other words, the
same equation occurs as a governing equation formeasuring themediumwith a small
difference in the material constant n0T . Consequently, we state that the existence or
the stability of solutions are not affected by using compressible, incompressible or
neo-Hookeanmaterials. For a similar discussion,we refer to [5, 36, 37]. Furthermore,
we see some works in homogeneous media that include this discussion such as [3, 4,
6, 13, 36–38]. Under this review, we can say that mentioned works in homogeneous
media for nonlinear SH waves or nonlinear surface SH waves are different from
each other in view of the geometries, i.e., using different boundary conditions. After
this observation and showing the importance of heterogeneity in [7–12], our main
aim is to improve some works about nonlinear SH waves or nonlinear surface SH
waves from homogeneity to heterogeneity. Since the importance of heterogeneous
materials is known, we hope that such works will make sense in terms of materials
science and geophysics.
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8.3 Comparison of Nonlinear Shear Horizontal Waves

In this part, we consider the comparison of nonlinear SH waves between a hetero-
geneous, isotropic, and generalized neo-Hookean layer overlying a rigid substratum
and a homogeneous, isotropic, and generalized neo-Hookean layer overlying a rigid
substratum. From the previous review part, we know that the difference between the
neo-Hookean and compressible materials is small as seen in the material expression
n0T . Therefore, the work [13] can be thought the homogeneous case of the work [7,
12]. After this review, it is clear that the main difference can be seen in the materials
being heterogeneous or homogeneous. This difference may give us the opportunity
to this comparison part.

In [7, 13], we see the existence of nonlinear bright solitary SH waves in heteroge-
neous and homogeneous layers, using the method of multiple scales [24] and known
solutions of the nonlinear Schrödinger (NLS) equation. Because of these works, two
possible comparisons come up for given bright solitary SH waves. One of them, i.e.,
heterogeneous effect, is the subject of this paper. It is clear that there are also some
comparisons for the dark solitary SH waves, but they are not considered here.

Needless to emphasize the importance of this work, it is clear that this paper
deals with the propagation of nonlinear SH waves as a comparative study between
two layers. So, it includes the comparison of two nonlinear analyzes which base
on asymptotic analyzes and numerical analyzes. Moreover, the present work can be
considered as a good connection between homogeneous and heterogeneousmaterials
in viewofmaterials science and engineering. In the literature, it is very rare to consider
nonlinear SH waves in a heterogeneous medium in more detail see for a plate case
[8–11] and a layer case [7, 12]. It is necessary to be aware of that the half of the
deformation field [8–11] gives rise to the deformation field [7, 12]. Because this work
includes nonlinearity, heterogeneity, and comparability, it gives us a rich source about
SH waves for the other researchers who work for interdisciplinary science. In more
detail such as the anti-plane shear motion of this problem, the method of multiple
scales [24] and the main analysis of this problem, we refer to [7, 13].

From the review part, let X = X1, Y = X2, Z = X3 and u = u3 be and let us
define the problem well. We consider a layer from Y = 0 to Y = hwith two models.
The first model is about being homogeneous and the second one is about being
heterogeneous. Moreover, the free surface is Y = h and the rigid surface is Y = 0.
As boundary conditions, we assume that the free surface is free of traction and the
rigid surface is fixed. Since our aim is to deal with the small but finite amplitude
wave motions, proceeding with the approximate equations, rather than the exact
ones, will be more convenient, then the following approximate governing equations
and boundary conditions involving terms not higher than the third degree in the
deformation gradients are written as for a homogeneous layer
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∂2u

∂t2
− c20T

(
∂2u

∂X 2
+ ∂2u

∂Y 2

)
= n0T

[
∂

∂X

(
∂u

∂X
K (u)

)
+ ∂

∂Y

(
∂u

∂Y
K (u)

)]
,

∂u

∂Y
+ n0T

c20T
K (u)

∂u

∂Y
= 0 on Y = h,

u = 0 on Y = 0,
(8.55)

where the linear shear wave velocity c0T , the nonlinear material constant n0T , andK
are defined by

c20T = μ0

ρ0
= 2Σ ′(3)

ρ0
,

n0T = 2Σ ′′(3)
ρ0

,

K (u) =
(

∂u

∂X

)2

+
(

∂u

∂Y

)2

,

(8.56)

respectively, and similarly for a heterogeneous layer
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(
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ρ
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,

∂u

∂Y
+ nT

c2T
K (u)

∂u

∂Y
= 0 on Y = h,

u = 0 on Y = 0,

(8.57)

where the linear shear wave velocity cT , the nonlinear material function nT , andK
are defined by

c2T = μ

ρ
= 2Σ ′(3,Y )

ρ
,

nT = 2Σ ′′(3,Y )

ρ
,

K (u) =
(

∂u

∂X

)2

+
(

∂u

∂Y

)2

,

(8.58)

respectively. It can be seen that the functions μ, ρ, and nT are not constants as a
homogeneous case in (8.55)–(8.56). In the absence of the nonlinearity, i.e., nT = 0
in (8.57)–(8.58) or n0T = 0 in (8.55)–(8.56), the governing equations with the bound-
ary conditions for the linear SH waves in a heterogeneous or homogeneous layer are
found, respectively. Moreover, the constituent materials of a heterogeneous or homo-
geneous layer soften in shear if nT < 0 or if n0T < 0, but if nT > 0 or if n0T > 0 they
harden, respectively. In our analysis, for a heterogeneous layer, nT is a differentiable
function of Y , and the following suitable choices in [7] on the functions μ and ρ,
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μ = μ0 cosh
2(αY ), ρ = ρ0 cosh

2(αY ) (8.59)

are considered where μ0 and ρ0 are constants, and α is a parameter that measures
the heterogeneous effect. Moreover, for a numerical calculation, we choose as

nT = n0T cosh
2(γY ) (8.60)

where γ is a parameter that measures the nonlinear effect. For further information,
we refer to [7, 13] for heterogeneous and homogeneous layers, respectively.

8.4 Conclusions with Some New Results

From (8.55)–(8.56) and (8.57)–(8.58), we observe some additional terms there. In
other words, under α → 0 and γ → 0, the heterogeneous case (8.57)–(8.58) can be
reducible to the homogeneous case (8.55)–(8.56). Let us continue with the given
analyzes of considered problems [7, 13], we see that there are three possibilities for
n0T as follows:

Case 1: If n0T = 0, then we obtain the linear SH waves that are easy to consider, so
it is not the case.

Case 2: If n0T > 0, then we show the existence of nonlinear dark solitary SH waves
in a heterogeneous layer with heterogeneous and nonlinear effects and a ho-
mogeneous layer for details see [12, 13], respectively. We observe that, in
this case, there are some possible comparisons, but they are out of this work.

Case 3: If n0T < 0, thenwe show the existence of nonlinear bright solitary SHwaves
in a heterogeneous layer with heterogeneous and nonlinear effects and a ho-
mogeneous layer for details see [7, 13], respectively.We observe that, in this
case, there are also some possible comparisons. One possible comparison
can be given as follows:

n = 0; A �= 0,Λ → 0 ⇔ A → 0,Λ → 0 (8.61)

where A = αh and Λ = γ h in a non-dimensional sense. Moreover, n indicates a
branch of the dispersion relation in [7].

Here, we need to remember some physically important functions in our analysis.
Phase velocity, shear wave velocity, group velocity, wavenumber, and angular fre-
quency can be denoted by c, c0T , Vg, k, and w, respectively. Moreover, it is possible
to define some non-dimensional expressions such as C = c/c0T for phase velocity,
VG = Vg/c0T for group velocity, K = kh for wavenumber, and W = wh/c0T for an-
gular frequency. Using non-dimensional expressions, we can rewrite the dispersion
relation of the considered problem from [7] for another result also see [12] as follows:
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KP = arctan[KP/(A tanh A)] + nπ (8.62)

where P = √
C2 − 1 − (A2/K2).

For all branches, i.e., n = 0, 1, 2, . . ., of dispersion relation (8.62), the following
limits exist

C → ∞, VG → 0, Γ → 0 as K → 0,

C → 1, VG → 1, Γ → 0 as K → ∞.
(8.63)
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Such limits are also valid in [23]. We see the existence of nonlinear bright solitary
SH waves in this layer for homogeneous materials in [13] and for heterogeneous
materials in [7] with heterogeneous effects. In both works, the self-modulation of
nonlinear SH waves is given via the following nonlinear partial differential equation

i
∂A

∂τ
+ Γ

∂2A

∂ξ 2
+ Δ|A |2A = 0 (8.64)
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which is known as anNLSequation, butwith different coefficients. TheNLSequation
is an important prototypical equation for nonlinear modulation of elastic waves. We
need to emphasize the importance of the sign of product Γ Δ for the existence of
solitary wave solutions. For known solitary wave solutions to (8.64), we refer to [1,
15, 30, 40]. Needless to say, as A → 0 and Λ → 0 (in dimensional case α → 0
and γ → 0, respectively) the coefficients of the NLS equation obtained in [7], for
another result also see [12], reduce to the coefficients of the NLS equation given
in [13]. Therefore, the works in [7, 12] are an improved version of the work [13].
Improvement is from homogeneity to heterogeneity. Here, our goal is to emphasize
the comparisonof heterogeneousmaterialwith homogeneous one for nonlinear bright
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solitary SH waves in terms of heterogeneous effect, i.e., the comparison of [7, 13]
in terms of heterogeneous effect for this paper.

It is necessary to emphasize, we know that, in such an analysis, Γ carries the
dispersion and Δ carries the nonlinearity. In limits above, we see that Γ approaches
to zero as K approaches to zero at where VG has a minimum there. Namely, the
dispersion vanishes at K = 0. And also, for the lowest branch of the dispersion
relation, we see that Δ approaches to ∞ as K approaches to zero for nonlinear
bright solitary SH waves. Namely, Δ grows unboundedly at K = 0. At such critical
points, it is not possible to balance the nonlinearity and the dispersion with the given
analysis. The analyzes in [7, 13] for another result also see [12] do not work well
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for such cases. Maybe, some researchers can try to improve the analysis at this point
for a future job. Moreover, for the stability of solutions of such problems [7, 13], for
another result also see [12], and other types of solutions of the NLS equation, we
refer to [36], which is a good and scientifically valuable paper for this area.

Let us talk about the related comparison part in view of existence of solutions.
The existence of the traveling wave solutions of the NLS equation of the form

A (ξ, τ ) = φ(η)Exp[i(K0ξ − Ωτ)]; η = ξ − V0τ, (8.65)
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bases on the sign of Γ Δ, where V0 and K0 are constants. For Γ Δ > 0, if φ → 0 and
dφ/dη → 0 as |η| → ∞, the solution A is

A (ξ, τ ) = φ0sech[(Δ/2Γ )1/2φ0η]Exp[i(K0ξ − Ωτ)]. (8.66)

Here, (ΓK2
0 − Ω)/Δφ2

0 = 1/2 and V0 = 2K0Γ . This solution is called a bright soli-
tary wave solution [1, 15, 30, 40]. In [7, 13], we claim that if the layers are made up
of a softening material (S), i.e., n0T < 0, then Γ Δ > 0 for all K > 0. Therefore, the
bright solitary SH waves exist in such layers using a short review of the solution of
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Fig. 8.13 Comparison of the heterogeneous effects for deformation fields of the planes Z = 0 of
the layers

the NLS equation. In terms of the heterogeneous effect, we compare the nonlinear
bright solitary SH waves via the NLS equation considering the material model S as
follows:

S : μ0 = ρ0 = 1, n0T = −1, K = K0 = φ0 = 0.01. (8.67)

For the mentioned comparison, using the material model (8.67), fixing the non-
linear effect (i.e. Λ → 0.00) and changing the heterogeneous effect from A = 0.00
to A = 0.05, all numerical results for the lowest branch of both dispersion relations
are graphically presented as follows:

the variation ofW versusK and the comparison between heterogeneous and homo-
geneousmaterials for the variation ofW versusK in Figs. 8.1 and 8.2, respectively,
the variation ofC versusK and the comparison between heterogeneous and homo-
geneous materials for the variation ofC versusK in Figs. 8.3 and 8.4, respectively,
the variation of VG versus K and the comparison between heterogeneous and
homogeneous materials for the variation of VG versus K in Figs. 8.5 and 8.6,
respectively,
the variation ofΓ versusK and the comparison between heterogeneous and homo-
geneous materials for the variation of Γ versusK in Figs. 8.7 and 8.8, respectively,
the variation ofΔ versusK and the comparison between heterogeneous and homo-
geneousmaterials for the variation ofΔ versusK in Figs. 8.9 and 8.10, respectively,
the variation of Γ Δ versus K and the comparison between heterogeneous and
homogeneous materials for the variation of Γ Δ versus K in Figs. 8.11 and 8.12,
respectively,

and also, the comparison of heterogeneous and homogeneous materials for the de-
formation fields of the planes Z = 0 of the layers in Fig. 8.13.
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7. Demirkuş, D.: Nonlinear bright solitary SH waves in a hyperbolically heterogeneous layer. Int.

J. Nonlinear Mech. 102, 53–61 (2018)
8. Demirkuş, D.: Antisymmetric bright solitary SH waves in a nonlinear heterogeneous plate. Z.

Angew. Math. Phy. 69(5), 128 (2018)
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Chapter 9
On Surface Kinetic Constitutive
Relations

Victor A. Eremeyev and Leonid P. Lebedev

Abstract In the framework of the strain gradient surface elasticity we discuss a
consistent form of surface kinetic energy. This kinetic constitutive equation com-
pletes the statement of initial–boundary value problems. The proposed surface ki-
netic energy density is the most general function consistent with the constitutive
relations in bulk. As the surface strain energy depends on the surface deformation
gradient and its gradient, the kinetic energy is a quadratic function of the velocity
and its surface gradient.

9.1 Introduction

Nowadays it is well established that nanostructured materials may demonstrate quite
unusual and very promising properties due to high surface-to-volume ratio with
respect to a characteristic size of nano-objects. The size-dependence observed in
nanoscale results in certain enhancements of the models is used for such materials.
It is worth to mention here the strain gradient elasticity and surface elasticity, see [1,
2, 7, 9, 10, 21, 27, 28, 45], respectively. The both approaches may describe surface-
related phenomena such as the size-effect. Within the framework of the surface
elasticity we introduce additional surface constitutive relations that are a surface
strain energy density and surface stresses. This changes the corresponding boundary
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conditions which affect the solutions, see, e.g., the analysis of stress concentration
near a crack tip [23, 29, 46].

Let us note that for dynamics problems we have to introduce also an additional
surface kinetic energy density. The simplest form of the surface kinetic energy was
proposed by Gurtin and Murdoch [26]. As a result, in the dynamics of solids with
surface stresses we get also inertia terms in the boundary conditions. These inertia
terms affect the propagation of surface waves. In particular, in the media with surface
stresses there exists anti-plane surface waves [16, 47]. Similar waves exist also
for other models possessing surface energy such as the strain gradient elasticity,
see [8, 22, 24, 30, 35–37, 44, 48]. A straightforward comparison of the Toupin–
Mindlin strain gradient elasticity with Gurtin–Murdoch’s elasticity was performed
by Eremeyev et al. [18]. As the form of the strain energy in bulk, the form of surface
kinetic energy plays an important role in dynamics of solids with surface stresses.
From the lattice dynamics point of view, the surface kinetic energy can be interpreted
as a kinetic energy of a surface row of atoms [14] but for more complex surface
structures as discussed by Eremeyev [10, 12] it can be a more complex function.

The aim of this paper is to discuss the most general form of the surface kinetic
energy consistent with the strain energy density. Here we consider the surface strain
energy as an objective function of the surface deformation gradient and its surface
gradient. So the surface kinetic energy depends on the velocity and its surface gra-
dient. Using the least action principle we derive the generalized Young–Laplace
equation which contains inertia terms.

The paper is organized as follows. In Sect. 9.2 we briefly introduce the basic
equations for large deformations of solids with surface stresses and surface hyper-
stresses. In Sect. 9.3 we discuss possible forms of kinetic equations that is the forms
of surface kinetic energy. Using the least action principle we derive the generalized
Young–Laplace equation in Sect. 9.4.

9.2 Kinematics and Surface Strain Energy

Let us consider an elastic solid body B with surface stresses. Deformation of B is
described as a mapping from a reference placement κ into a current placement χ

x = x(X, t), (9.1)

where x and X are the position vectors of the same material particle in the current
and reference placements, respectively, and t is time. For a hyperelastic solid there
exists a strain energy density W given by

W = W (F), (9.2)

where F = ∇x is the deformation gradient defined as in [17, 39], and ∇ is the 3D
nabla-operator.
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In addition to (9.2) we introduce the surface strain energy as a function of the
surface deformation gradientFs = ∇sx and its surface gradient∇sFs = ∇s∇sx. Here
∇s = A · ∇, where A = I − N ⊗ N, I is the 3D unit tensor, N is the unit vector of
outward normal to the boundary of B in κ, and ⊗ is the dyadic product. So we have
the surface constitutive relation in the form

U = U (Fs,∇sFs). (9.3)

Equation (9.3) includes constitutive relations of the surface elasticity by Gurtin and
Murdoch [25] and bySteigmann andOgden [40, 41] as the special cases. The strongly
anisotropic surface elasticity proposed by Eremeyev [12] is also a particular case of
(9.3).

The principle of the material frame indifference [43] states that W and U should
be objective functions of their arguments, that is the following relations are fulfilled

W = W (F) = W (F · O), (9.4)

U = U (Fs,∇sFs) = U (Fs · O,∇sFs · O) (9.5)

for any orthogonal tensor O, O · OT = I. Here the centered dot denotes the dot
product.

Relations (9.2) and (9.3) can be simplified if we take into account the material
symmetry. In particular, knowing a priory a material symmetry one can significantly
reduce the number of arguments used in (9.2) and (9.3), see, e.g., [13, 33] for 2D
structures.

9.3 Kinetic Constitutive Equation

For dynamic problems, we also should introduce a surface kinetic energy Ks . A sim-
ple form of the surface kinetic energy density was proposed by Gurtin and Murdoch
[26] as follows

Ks = 1

2
mv · v, (9.6)

where m is the referential surface mass density, v = ẋ is the velocity, and overdot
stands for the derivative with respect to t . Obviously, Eq. (9.6) is a surface analog of
the kinetic energy in the bulk given by

K = 1

2
ρv · v, (9.7)

where ρ is the referential mass density.
Let us note that the form of (9.6) is similar to the form of the kinetic energy

for an elastic membrane. The discussion of comparison of the Gurtin–Murdoch
surface elasticity with other models of thin interfaces and surface structures was
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performed in many works, see, e.g., [19, 38]. Even for (9.6) we have new be-
haviour in dynamics of solids with surface stresses such as anti-plane surface waves,
see [16, 47]. Considering other 2D models used in mechanics of structures such
as plates and shells we have to note that there are more general forms of kinetic
energy. Indeed, it is worth to mention the seminal papers by Timoshenko [42] and
by Mindlin [32], where rotatory inertia was introduced and discussed, see also [6,
15, 31]. In the framework of six-parameter shell theory the general form of a kinetic
equation was discussed by Pietraszkiewicz [34]. So in the case of surface elasticity
we may also have a rather complex form of kinetic energy, especially if we consider
nonhomogeneous microstructured and anisotropic thin coatings.

It is natural to assume Ks to be of a quadratic function with respect to v and ∇sv

Ks = 1

2
v · J0 · v + v · J1 : ∇sv + 1

2
∇sv : J2 : ∇sv, (9.8)

where J0, J1, and J2 are inertia tensors of second, third and fourth-order, respectively,
and : is the double dot product. They have the following properties

J0 = JT0 , J1 : N ⊗ a = 0, N ⊗ a : J2 : N ⊗ b = 0, ∀a,b.

Taking J0 = mI, J1 = 0, J2 = 0 we get (9.6). J2 is similar to the inertia tensors in
the theory of shells which describe rotatory inertia whereas J1 describes coupling
between rotatory and translational inertia, see e.g. [3, 31, 34]. Tensors J0, J1, and
J2 are 2D analogs of the ones used in 3D strain gradient elasticity, see [18, 35]. In
general, J0, J1, and J2 may depend on t , x, X, and Fs .

Considering possible a priory restrictions imposed on Ks , let us note that a kinetic
energy is not invariant under rigid body motions, so we cannot apply the same
technique as the invariance arguments followed from the material frame indifference
principle, as for W and U . In general, Ks may possess the same material symmetry
asU but this is not so obvious as dynamic properties may differ from static ones. So
in the following we leave the general form of Ks .

9.4 Generalized Young–Laplace Equation

In order to derive the equation of motion and corresponding natural boundary con-
ditions we apply the least action principle [5]. The least action functional is

H =
t2∫

t1

∫∫∫

V

(K − W ) dV dt +
t2∫

t1

∫∫

S

(Ks −U ) dSdt, (9.9)
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where V is the volume occupied by B in the reference placement, S ⊂ ∂V is a part
of ∂V , the boundary of V , where the surface energy is defined, and t1 and t2 are two
time instants. Here for brevity we omit external loadings.

Considering the variational equation for all kinematically admissible variations
δx, that is

δH = 0, (9.10)

where δ is the symbol of variation, we derive the governing equations of dynamics
of solids with surface stresses.

The first variation ofH takes the form

δH =
t2∫

t1

∫∫∫

V

(ρv · δv − δW ) dV dt

+
t2∫

t1

∫∫

S

(v · J0 · δv + δv · J1 : ∇sv + v · J1 : ∇sδv + ∇sv : J2 : ∇sδv

−δU ) dSdt

=
t2∫

t1

∫∫∫

V

(ρv · δv − P : ∇sδx) dV dt

+
t2∫

t1

∫∫

S

(v · J0 · δv + δv · J1 : ∇sv + v · J1 : ∇sδv + ∇sv : J2 : ∇sδv

−M : ∇s∇sδx − T : ∇sδx) dSdt, (9.11)

where P is the Piola–Kirchhoff stress tensor of first kind, T, is the first Piola–
Kirchhoff surface stress tensor, and M is the first Piola–Kirchhoff surface hyper
stress tensor, which are defined as follows

P = ∂W

∂F
, T = ∂U

∂Fs
, M = ∂U

∂∇sFs
. (9.12)

T and M have the following properties

N · T = 0, N · M = 0, (a ⊗ N) : M = 0, ∀a.
Integrating by parts we transform δH into
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δH =
t2∫

t1

∫∫∫

V

(−ρv̇ + ∇ · P) · δv dV dt

+
t2∫

t1

∫∫

S

[−N · P + ∇s · (T − ∇s · M)

− ˙(v · J0) − ˙(J1 : ∇sv)
T + ∇s · ˙(v · J1) + ∇s · ˙(∇sv : J2)

]
· δv dSdt, (9.13)

For brevity we omit here the analysis of the natural boundary conditions at edge
∂S which will be performed similar to Eremeyev [11] in the forthcoming papers.
Using standard calculus of variations from (9.10) and (9.13) we get the Lagrangian
equation of motion

∇ · P = ρv̇, X ∈ V, (9.14)

and the natural boundary condition at S

N · P =∇s · (T − ∇s · M)

− ˙(v · J0) − ˙(J1 : ∇sv)
T + ∇s · ˙(v · J1) + ∇s · ˙(∇sv : J2), X ∈ S.

(9.15)

Following Duan et al. [9] we call (9.15) the generalized Young–Laplace equation.
From the physical point of view it describes the motions of a 2D strain gradient
medium attached to an elastic solid.Mathematically it represents nonlinear PDEwith
partial derivatives up to fourth order including mixed spatial and time derivatives as
for the Timoshenko beams [42]. Let us note that nonlinearity here appears due to
common nonlinearity of constitutive equations for P, T, and M, as well as due to
nonlinearity of the kinetic constitutive relation (9.8).

9.5 Conclusions

In the framework of the strain gradient surface elasticity we have discussed the
surface kinetic constitutive equation. This equation introduces the surface kinetic
energy as a quadratic function of velocity. The presented form is the most general
which is consistent to the surface strain density. The corresponding natural boundary
conditions are derived using the least action principle. Let us note that the presented
results on the statement of the initial–boundary value problems of nonlinear media
with microstructure lies in the fields of interests of Prof. Erofeev, to whom this paper
is devoted, see, e.g., the books [4, 20] and references therein.
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Chapter 10
Reduced Linear Viscoelastic Isotropic
Cosserat Medium with Translational
Viscosity: A Double Negative Acoustic
Metamaterial

Elena F. Grekova and Aleksandra P. Piatysheva

Abstract We investigate here the influence of translational viscosity on the plane
shear-rotational wave propagation in the linear isotropic reduced Cosserat medium.
In such a medium, body points possess independent rotational and translational
degrees of freedom, but the medium does not resist to the gradient of microrotation.
Stress tensor is asymmetric, but the couple stress is zero. In the purely elastic case,
a band gap is present. It was shown before that introducing viscoelasticity we may
qualitatively change dispersion behaviour. In this work, we investigate in detail the
case of viscosity related to the translational strain. We show that in this case the band
gap disappears. We investigate asymptotically the case of infinitesimal viscosity and
show that the band gap in the elastic material becomes in our case a decreasing part
of the dispersion curve, i.e. the medium transforms from a single negative acoustic
metamaterial to the double one. The most interesting fact is that the dissipation
makes the wave pass. Dispersion curve has some other peculiarities, for instance, a
point where Re k(ω) has a maximum, situated somewhat below the former boundary
frequency.
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10.1 Introduction

In this chapter, we continue our work on the reduced Cosserat continua started
several years ago. The interest to the continua with rotational degrees of freedom is
increasing during last decades, since such media are necessary to describe several
microstructured media. Without doubt, all real media have microstructure, but while
the deformation processes do not make it manifest itself, we can neglect it. The tech-
nical progress makes possible to make more fine experiments with shorter waves
(ultrasound, coupled magnetoelastic waves etc.) and also make some complex mate-
rials with desired properties artificially. Therefore, the theory of generalised continua
developed very actively in the last decades.

The first work on 3D continua with rotational degrees of freedom belongs to
Cosserat brothers [6]. In particular, they introduced the Cosserat deformation tensor
to characterise the strain in the medium, whose linear term looks as ∇u + θθθ × E,
where u is the vector of translational displacement, and θθθ is the microrotation vector.
Later on, Kafadar and Eringen [19] obtained the equations of the Cosserat media,
preceded by various works, for instance, Palmov [24], Aero and Kuvshinski [2]. A
seminal contribution was made in Altenbach and Zhilin [3], since in this work they
suggested a rigorous and universal way to obtain the constitutive theory ofmicropolar
media. Many works are devoted to the micropolar continua of various types, e.g.
Eremeyev et al. [7], Ivanova and Vilchevskaya [18], Müller and Vilchevskaya [23]
and others.

Granular materials and blocky media, in particular, geomedium, are often mod-
elled taking into account rotational degrees of freedom, especially when we need to
consider wave propagation, and there are various experimental evidences that this
can be important [1, 21, 22, 26, 28, 29]. Wave propagation in Cosserat media is con-
sidered also, for instance, in Maugin and Miled [20], Porubov et al. [25], Altenbach
et al. [4], Erofeev et al. [11].

Reduced isotropic linear elastic Cosserat continuum was introduced in Schwartz
et al. [27] as a model for granular materials. Later on wave propagation in such a
continua or its modifications (anisotropic, with non-spherical inertia tensor, in the
vicinity of a nonlinear prestressed state) was investigated in Grekova et al. [17],
Grekova [14, 15] and other works. These media have a band gap (or band gaps) for
various types of waves, i.e. they are single negative acoustic metamaterials in these
domains of frequencies. In Grekova and Abreu [16], it was found out that if we use
viscoelastic model [8] instead of elastic one, the type of metamaterial may change.
In examples considered in the mentioned band gaps disappeared, and sometimes the
graphs presented decreasing parts of dispersion curves (i.e. themediumwas a double-
negative acoustic metamaterial in this domain). In this work, we investigate in detail
a particular case of infinitesimal viscosity related to the translational strain rate in
the isotropic reduced Cosserat medium and study its effect on the wave propagation.
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10.2 Dynamic Equations and Dispersion Relation

Let u be the vector of translational displacement of a body point, P the microrota-
tion tensor. We consider the linear theory: u = o(1), P = E + θθθ × E, where θθθ is
the infinitesimal microrotation vector, E is the identity tensor. As it was done also in
Grekova and Abreu [16], we consider an isotropic-reduced viscoelastic model (sug-
gested for the full variant of the Cosserat continuum in Grekova and Abreu [8]). We
denote by ()̇ the material derivative with respect to time t , by r the position vector.
In the reduced theory, the couple stress is zero since no stresses work on ∇θ̇θθ . Let τττ
be the Cauchy stress tensor. We will consider the case of the spherical inertia tensor
I E.

For any second rank tensor Λ = λmnemen , we denote Λ� = λnmemen , symmetric
part of Λ as ΛS = (Λ + Λ�)/2, its antisymmetric part as ΛA = (Λ − Λ�)/2, and
its vectorial invariant (accompanying vector of ΛA) as Λ× = λmnem × en . Note that
ΛA = −(Λ× × E)/2.

The balance of force and moment, and the constitutive equations take form [16]

∇ · τττ = ρ ü, (10.1)

τττ× = I θ̈θθ, (10.2)

τττ = λ∇ · uE + 2μ(∇u)S + 2α(∇u + θθθ × E)A

+ λκ∇ · u̇E + μν(∇ u̇s) + αβ(∇uA + θθθ × E)̇ .
(10.3)

where coefficients κ, ν, β characterise the dissipation in the medium. We will con-
sider only the case of translational viscosity: ν �= 0, but β = 0. The equations of
motion in displacements for this particular case take form

(λ + 2μ)∇∇ · u − μ∇ × (∇ × u) + 2α∇ × (θθθ − ∇ × u/2)

+(λκ + 2μν)∇∇ · u̇ − μν∇ × (∇ × u̇) = ρ ü,

−4α(θθθ − ∇ × u/2) = I θ̈θθ .

(10.4)

We limit ourselves to the investigation of the shear–rotational wave, since the com-
pressionwave is the same as in the classicalmedium. The dispersion relation obtained
in Grekova and Abreu [16] for β = 0 takes form

k2 = ρω2

μ(1 + iνω) + α

ω2 − 4α/I

ω2 − 4μ(1 + iνω)α

[μ(1 + iνω) + α]I
. (10.5)
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Let us introduce the following notation:

c2s = μ

ρ
, c2sα = μ + α

ρ
, ω2

0 = 4α

I
, ω2

1d = c2s
c2sα

ω2
0. (10.6)

Note thatω1d andω0 in this particular case of only translational viscosity represent the
boundary and the cut-off frequency, respectively, for the elastic case, where (ω1d;ω0)

is a band gap.
Let us use dimensionless parameters

n = ω0ν, Ω = ω

ω0
, Ω2

1d = ω2
1d

ω2
0

= 1

1 + α/μ
. (10.7)

Thus, for k2 we have the next expression:

k2 = ω0
2Ω2(Ω2 − 1)

c2sα((Ω2 − Ω2
1d)

2 + Ω4
1dn

2Ω2(Ω2 − 1)2)
(Ω2 − Ω2

1d − iΩΩ2
1dn(Ω2 − 1))

(10.8)
A typical graph of dispersion relation, obtained numerically, is shown in Fig. 10.1.

In this graph, we can see that the band gap present in the purely elastic case, has
disappeared, and instead we have a decreasing part of the dispersion curve, which
continues a little below the boundary frequency for the elastic case. Let us investigate
this dispersion relation.

Fig. 10.1 A typical dispersion graph, numerical solution
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10.3 Absence of the Band Gap for an Arbitrary
Translational Dissipation n

Let us denote

ζ = nΩ2
1d

Ω(Ω2 − 1)

Ω2 − Ω2
1d

. (10.9)

Note that up to the multiplying by a positive constant ζ is equal to Ωk2e , where
ke(ω) = 0 is the dispersive relation for the purely elastic case, it has qualitatively
the same behaviour, and that at n = o(1) the order of ζ is the same (ζ = o(1)) if
|Ω − Ω1d | � n. When we approach Ω1d , ζ becomes finite or infinitely large. Then
we have from Eq. (10.8)

(
Ω1dcsα

ω0
k

)2

= Ω

n

ζ

1 + ζ 2
(1 − iζ ). (10.10)

Separating real and imaginary part of this equation, we obtain

Im k = − ω0
2

Ω2
1dc

2
sα

Ω

2n

ζ 2

1 + ζ 2

1

Re k
(10.11)

and the biquadratic equation for Re k

(
Re

Ω1dcsα
ω0

k

)4

− Ω

n

ζ

1 + ζ 2

(
Re

Ω1dcsα
ω0

k

)2

− Ω2

4n2
ζ 4

(1 + ζ 2)2
= 0. (10.12)

Aswe see, the signs of Re k and Im k are opposite. Solving this equation and choosing
the branch giving us the positive value of (Re k)2, we obtain

(Ω1dcsα
ω0

)2
(Re k)2 = Ωζ

2n

1

1 + ζ 2
(1 + (sgn ζ )

√
1 + ζ 2), (10.13)

or, which is the same,

(Re k)2 = ω2
0Ω

2(Ω2 − 1)(Ω2 − Ω2
1d)

2c2sα((Ω2 − Ω2
1d)

2 + Ω4
1dn

2Ω2(Ω2 − 1)2)[
1 + sgn ((Ω2 − Ω2

1d)(Ω
2 − 1))

√
1 + n2Ω4

1dΩ
2(Ω2 − 1)2

(Ω2 − Ω2
1d)

2

]

(10.14)

We see here that contrary to the purely elastic case, the dispersion relation has no
band gap. The viscosity makes it disappear. This phenomenon seems to be a paradox,
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but we can understand it if we remember that the band gap in the elastic case was
related to the localisation and not to the damping. The expressions for the imaginary
part are

(
Ω1dcsα

ω0

)2

(Im k)2 = Ωζ 3

2n(1 + ζ 2)[1 + (sgn ζ )
√
1 + ζ 2] (10.15)

or, which is the same,

(Im k)2 =
(

ω0

Ω1dcsα

)2 n2Ω6
1dΩ

4(Ω2 − 1)3

2(Ω2 − Ω2
1d)

3
(
1 + n2Ω4

1dΩ
2(Ω2−1)2

(Ω2−Ω2
1d )

2

)
1

1 + sgn [(Ω2 − Ω2
1d)(Ω

2 − 1)]
√
1 + n2Ω4

1dΩ
2(Ω2−1)2

(Ω2−Ω2
1d )

2

(10.16)

10.4 Asymptotical Approximation for Infinitesimal n

The behaviour of the dispersion relation at infinitesimal n depends on the behaviour
of ζ , which, in its turn, depends on how Ω is close to Ω1d . We have to consider three
cases: (Ω2 − Ω2

1d) and n are of the same order, or one of them is much less than
another one.

10.4.1 Case |Ω2 − Ω2
1D| � n

In this case ζ = O(n) = o(1), and we can approximate (10.13) as

(
Ω1dcsα

ω0

)2

(Re k)2 = Ωζ

2n
{(1 − ζ 2)[1 + (sgn ζ )(1 + ζ 2/2)] + O(ζ 4)}

=
{

Ωζ(1 − 3
4ζ

2)/n, ζ > 0

−Ωζ 3/(4n), ζ < 0
+ O(n4), (10.17)

which gives us the following result for the real part of k up to the orders of O(n4)
(if nΩ � 1):
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|Re k| ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω0Ω

csα

( Ω2 − 1

Ω2 − Ω2
1d

)1/2
(
1 − 3

8
n2

Ω2Ω4
1d(Ω

2 − 1)2

(Ω2 − Ω2
1d)

2

)
, Ω /∈ [Ω1d; 1)

nω0Ω
2Ω2

1d

2csα

(
− Ω2 − 1

Ω2 − Ω2
1d

)3/2

, Ω1d < Ω � 1.

(10.18)
It can be also rewritten as:

|Re k| ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω

csα

( ω2 − ω2
0

ω2 − ω2
1d

)1/2
(
1 − 3

8
ν2 ω4

1d

ω4
0

ω2(ω2 − ω2
0)

2

(ω2 − ω2
1d)

2

)
, ω /∈ [ω1d;ω0)

νω2
1d

2csαω2
0

ω2
(

− ω2 − ω2
0

ω2 − ω2
1d

)3/2

, ω1d < ω � ω0.

(10.19)
Recall that these expressions are obtained for |ω − ω1d | � νω0.

If nΩ = O(1), then we have from (10.8)

Re k = ω

csα

√√√√1 +
√
1 + ν2Ω4

1dω
2

2(1 + ν2Ω4
1dω

2)
. (10.20)

At very large Ω such that nΩ → ∞, the dissipation prevails and we obtain

Re k ≈ 1

ω1d

√
ω

2ν
. (10.21)

We also need to see the behaviour of imaginary part:

(
Ω1dcsα

ω0

)2

(Im k)2 = Ωζ 3

2n(1 + ζ 2)[1 + (sgn ζ )
√
1 + ζ 2]

=

⎧⎪⎪⎨
⎪⎪⎩

Ωζ 3(1 − ζ 2)(1 − ζ 2

8 )

4n
, ζ � 0

−Ωζ(1 − ζ 2)

n
, ζ < 0

+ O(n4), (10.22)

=

⎧⎪⎨
⎪⎩

Ωζ 3

4n
, ζ � 0

−Ωζ(1 − ζ 2)

n
, ζ < 0
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This gives us:

csα
ω0

Im k ≈

⎧⎪⎪⎨
⎪⎪⎩

−n
Ω2

1d

2
Ω2

( Ω2 − 1

Ω2 − Ω2
1d

)3/2
, Ω /∈ [Ω1d; 1)

−Ω
( 1 − Ω2

Ω2 − Ω2
1d

)1/2
(1 − n2

Ω4
1d

2
Ω2 (Ω2 − 1)2

(Ω2 − Ω2
1d)

2
), Ω1d < Ω � 1,

(10.23)
or

Im k ≈

⎧⎪⎪⎨
⎪⎪⎩

− ν

csα

ω2
1d

2ω2
0

ω2
( ω2 − ω2

0

ω2 − ω2
1d

)3/2
, ω /∈ [ω1d;ω0)

− ω

csα

( ω2
0 − ω2

ω2 − ω2
1d

)1/2
[
1 − ν2 ω4

1d

2
ω2 (ω2 − ω2

0)
2

(ω2 − ω2
1d)

2

]
, ω1d < ω � ω0.

(10.24)
We see that in the second case the main term is the same as in the purely elastic

case:

(Im k)2 = − ω2

c2sα

ω2 − ω2
0

ω2 − ω2
1d

+ O(n2), ω1d < ω � ω0. (10.25)

The viscosity somewhat reduces the absolute value of the imaginary part in the band
gap for the elastic case, and the real part becomes different from zero. We see that
in the domain (ω1d;ω0), which corresponds to the band gap in the elastic case, the
logarithmic decrement equals

2π
∣∣∣ Im k

Re k

∣∣∣ = 4π

|ζ | = 4πω2
0

νω2
1d

ω2 − ω2
1d

ω(ω2
0 − ω2)

(10.26)

Therefore, we see that in this case a small translational dissipation favours the wave
propagation. This is, probably, related to the fact that dissipation breaks the conditions
for localisation due to the presence of microstructure. At ω0 − 0, the logarithmic
decrement tends to infinity.

It is easy to see that out of the [ω1d;ω0) the logarithmic decrement can be ap-
proximated as

π
nΩ2

1d

2
Ω

Ω2 − 1

Ω2 − Ω2
1d

= π
νω2

1d

2ω2
0

ω
ω2 − ω2

0

ω2 − ω2
1d

= πζ. (10.27)

At ω0 + 0 it is zero.

10.4.2 Case |Ω2 − Ω2
1D| � n

In this case ζ → ±∞, h = 1/ζ → 0. Equation (10.13) gives us
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(
Ω1dcsα

ω0

)2

(Re k)2 = Ω

2n

h + √
1 + h2

1 + h2
= Ω

2n

[
h + (1 + h2/2)

1 + h2
+ o(h2)

]

(Re k)2>0= Ω1d

2n
[1 + h + o(h)].

(10.28)

The last approximation can be done since we consider Ω2 − Ω2
1d = nhO(1) � h.

Using the expression for

h = Ω2 − Ω2
1d

n

1

Ω2
1dΩ(Ω2 − 1)

,

we obtain

|Re k| ≈ ω0

csα

1√
2nΩ1d

[
1 + Ω − Ω1d

nΩ2
1d(Ω

2
1d − 1)

]
. (10.29)

It can be also rewritten as:

|Re k| ≈ ω0

csα
√
2νω1d

[
1 + (ω − ω1d)ω0

2

νω2
1d(ω

2
1d − ω0

2)

]
(10.30)

Wesee that atω1d wehaveRe k = ω0
3/2/

√
2ncsαω1d , as it also follows from (10.8).

Now let us obtain the approximation for the imaginary part using (10.15).

(
Ω1dcsα

ω0
Im k

)2
= Ω

2n

h−3

(1 + h−2)[1 + (sgn h)
√
1 + h−2])

= Ω

2n

1

(1 + h2)(h +
√
1 + h2)

h=o(1)= Ω

2n
[1 − h − 3h2/2 + O(h4)]

= Ω1d + nhO(1)

2n
[1 − h + O(h2)] = Ω1d [1 − h + o(h)]

2n
≈

Ω1d

[
1 − 2(Ω−Ω1d )

nΩ2
1d (Ω2

1d−1)

]

2n
.

(10.31)

The main term is

Ω1dcsα
ω0

Im k = −
√

Ω1d

2n

[
1 − Ω − Ω1d

nΩ2
1d(Ω

2
1d − 1)

]
, (10.32)

or

Im k = − ω0

csα
√
2νω1d

[
1 + ω − ω1d

ν

ω2
0

ω2
1d(ω

2
0 − ω2

1d)

]
. (10.33)

The logarithmic decrement in this case is very high and close to 2π , larger above
ω1d than below it:
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2π

∣∣∣∣ Im k

Re k

∣∣∣∣ ≈ 2π

√
1 − h

1 + h
= 2π(1 − h) = 2π

[
1 + 2(Ω − Ω1d)

1 − Ω2
1d

nΩ2
1d

]

= 2π

[
1 + 2(ω − ω1d)

ω2
0 − ω2

1d

νω2
0ω

2
1d

]
.

(10.34)

10.4.3 Case (Ω2 − Ω2
1D)/n = O(1)

Here we have to keep all the combinations n/(Ω − Ω1d) but we can use the fact that

ε
def= Ω − Ω1d � 1. After some calculations, we have from (10.14):

(Re k)2 = ω2
0

c2sα

Ω1d(Ω
2
1d − 1)

4(Ω − Ω1d)

⎧⎪⎨
⎪⎩

1

1 +
[

n
Ω−Ω1d

Ω2
1d
2 (Ω2

1d − 1)
]2

− sgn(Ω − Ω1d)√
1 +

[
n

Ω−Ω1d

Ω2
1d
2 (Ω2

1d − 1)
]2

⎫⎪⎪⎬
⎪⎪⎭

(10.35)

Let us denote

A = n2Ω4
1d(1 − Ω1d)

2/4 > 0, κ = 4c2sα(Re k)2

ω2
0(1 − Ω2

1d)Ω1d
. (10.36)

Then equation (10.35) can be rewritten as

κ = ε−1[(sgn ε)(1 + Aε−2)1/2 − (1 + Aε−2)−1] (10.37)

Investigating function κ(ε), we find that it has maximum point at

ε = −
√
A/

√
5 + 1

2
.

It means that Re k reaches its maximal value at

Ωmax = Ω1d

[
1 − nΩ1d(1 − Ω2

1d)

2
√

�

]
, (10.38)

Φ = (
√
5 + 1)/2 being the golden ratio. We see that this point of maximum cor-

responds to the asymptotical case under consideration, since Ω2
max − Ω2

1d = O(n).
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The maximal value is

(Re k)2 = 1

2n

ω2
0

c2sα

√
�[(1 + Ω2

1d�)−1 + (1 + Ω2
1d�)−1/2]. (10.39)

The values of (Re k)2 at Ωmax , calculated by exact Formula (10.14) and by approxi-
mated Formula (10.35), coincide. However, since (10.38) gives us only an approxi-
mated value for the maximum point, Eq. (10.39) is an estimation from below of the
true maximal value for (Re k)2. Numerical results show that this estimation is good
enough (for instance, at μ/α = 1.1, n = 0.01 it gives approximately 0.97 of the true
maximal value of Re k). In some cases, the asymptotics for another domain of Ω ,
very close to Ω1d , considered in the previous section, gives us larger values than this
maximum, but this is not a valid result, since maximum point does not belong to that
domain. In fact, the asymptotics obtained in this section works often better even for
the very small neighbourhood of Ω1d .

Imaginary part (10.16) can be approximated as

(Im k)2 = − ω2
0

c2sα

n2

ε2

Ω5
1d(1 − Ω2

1d)
3

16|ε|
[√

1 + n2
ε2

Ω2
1d (Ω

2
1d−1)2

4 − sgn ε

] [
1 + n2

ε2
Ω2

1d (Ω
2
1d−1)2

4

]
(10.40)

We have to choose negative sign for Im k (opposite to the sign of Re k). This can be
written also as

(Im k)2 = − 1

ω0
9c2sα

ω5
1d(ω0

2 − ω2
1d)

3

16|ε|
[√

1 + ν2

ε2
ω2
1d (ω

2
1d−ω0

2)2

4ω0
4 − sgn ε

] [
1 + ν2

ε2
ω2
1d (ω

2
1d−ω0

2)2

4ω0
4

]
(10.41)

The logarithmic decrement in this case can be calculated as

2π

∣∣∣∣ Im k

Re k

∣∣∣∣ = π
n

|ε|
Ω2

1d(1 − Ω2
1d)√

1 +
[
n
ε

Ω2
1d (1−Ω2

1d )

2

]2 − sgn ε

, (10.42)

or, in terms of ω,

2π

∣∣∣∣ Im k

Re k

∣∣∣∣ = πν

|ω − ω1d |
ω2
1d

ω2
0

ω0
2 − ω2

1d√
1 +

[
ν

ω−ω1d

ω2
1d (ω0

2−ω2
1d )

2ω0
2

]2 − sgn(ω − ω1d)

. (10.43)

We see that below ω1d the attenuation is smaller than above it.
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10.5 Comparison of Analytical and Numerical Results and
Discussion

Wehave compared the numerical solution for the dispersion relation, based on (10.8),
and the asymptotical approximation for Re k(ω) and Im k(ω) (for finite ω). We
combined three asymptotical solutions: approximation calculated in Sect. 10.4.1 for
ω > ω1d + nω0 and forω < ω1d − nω0, approximation calculated in Sect. 10.4.2 for
ω1d − 0.04nω0 < ω < ω1d + 0.04nω0, and approximation obtained in Sect. 10.4.3
for ω1d − nω0 < ω < ω1d − 0.04nω0 and ω1d + 0.04nω0 < ω < ω1d + nω0. The
results are in excellent agreement even for n = 0.1 which is not very small, if ω is
not too large (see Figs. 10.2 and 10.3). We see that there is a small mismatch near
ω1d . For some reason, the asymptotics for Re k considered in Sect. 10.4.3 fits better
the numerical curve even very close to ω1d than the solution in Sect. 10.4.2, but for
Im k it is not so. Anyway the advantage of asymptotics for ω very close to ω1d is that
we can see in a clear way the influence of the infinitesimal dissipation.

Performing numerical calculation, we have found out that the larger α/μ is, the
smaller we have to choose n to make the asymptotical solution coincide with the
numerical one. For instance, at α/μ = 5 asymptotical approximation fits well the
numerical solution at n � 0.07, and α/μ = 15 they coincide almost exactly at n �
0.04. Asymptotics obtained in Sect. 10.4.2 gives us somewhat overestimated values
of Re k when α/μ increases, and fits worse the numerical curve than the asymptotics
obtained in Sect. 10.4.3. Asymptotics for Re k at large ω and infinitesimal ν was

Fig. 10.2 Comparison of numerical and asymptotical results for the dispersion relation (real part
of the wave number) at finite ω. Asymptotics obtained in Sect. 10.4.2 overestimates Re k
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Fig. 10.3 Comparison of numerical and asymptotical results for the dispersion relation (imaginary
part of the wave number) at finite ω

also numerically verified and the results practically coincide. We do not put here the
graphs since they do not bring any principal new information.

The main result of this work is that we have verified that small viscosity related
to the translational strain rate favours the wave propagation in the reduced Cosserat
medium. The band gap which existed in the elastic case disappears and converts into
the decreasing part of the dispersion curve. Thus, this kind of viscosity changes the
type of the acoustic metamaterial from single negative to the double negative one.

In the former band gap, we have logarithmic decrement inverse proportional to
the small viscosity parameter n = νω0, if we do not approach the low boundary ω1d .
Near it the dependence becomes more sophisticated but anyway decreasing when n
increases, at least in the case under consideration (for small n).

We have seen also that there Re k(ω) has a maximum point somewhat below this
zone (the former boundary frequency ω1d ) and we have found this value. It is an
open question for us, what does happen in this point. The group velocity there is
infinite. We see in numerical examples that starting from this point, the logarithmic
decrement drastically increases with increasing frequency (and reaches infinity at
ω0, suffering a jump to 0 at ω0 + 0, as it was shown asymptotically). However, it is
not infinite in this maximum point for Re k(ω). We see in numerical examples that
Im k(ω) also has a maximum point not far from it, but these points do not coincide.
To answer this question, we have to investigate in details analytically the behaviour
of Im k and logarithmic decrement, which is one of directions of our future research.
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Abstract A two-component model of material with a nonlinear internal interaction
force is proposed for describing its structural transformations. An analogy between
the equations of a continuousmediumand their discrete representation allowsdemon-
strating the effect of quenching of a non-stationary wave, caused by the transfer of
energy to internal degrees of freedom. The parameters of the external impact at which
the transformation of crystalline lattice takes place are determined. Analytical results
are compared with numerical calculations, performed by using the finite difference
method.
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11.1 Introduction

The classical equations of continuum mechanics do not take into account a com-
plex internal structure of material, including various defects (vacancies, dislocations,
interfaces, inclusions of another phase). Meanwhile, such important properties as
electrical conductivity, strength, and ductility substantially depend on the defects
of the structure, which itself may undergo drastic transformations under external
impact. For example, in a series of experimental works on high-speed deforma-
tion, it was found that in a certain range of the projectile speeds new stable mesh
formations 0.1 − 0.3 µm in diameter are generated because of the passage of the
shock wave through the matter [1]. In further investigations, it was demonstrated
that grains with such structure have a higher microhardness compared to the original
material, improving its spall strength. At the macrolevel, the transformation pro-
cesses of the crystalline lattice are manifested in the form of energy losses or in the
shift of parameters included in the equations of continuum mechanics.

Development of theories allowing to describe the influence of the internal
microstructure on macroparameters entails the introduction of additional degrees
of freedom corresponding to its dynamics. There are several approaches for imple-
menting this procedure. One of them consists in bringing qualitative changes to the
constitutive equation, which would allow taking into account the possibility of tran-
sition to a new equilibrium configuration. In the articles on phase transitions [2–5],
it is often accepted that the relationship between stress and strain is a non-monotonic
function, which results in non-convexity of potential energy. The main feature of
such diagrams is the inability to determine uniquely the deformation at a given static
load. The presence of an unstable branch on the constitutive curve means that when
the critical value of the deformation is reached, a local loss of stability in the crystal
lattice takes place, i.e., the material loses its ability to resist an external load. With
further deformation, this ability is restored. In suchmaterial, the interphase boundary
is considered to be a new degree of freedom, the motion of which is described by a
kinetic equation connecting the velocity of the boundary with the energy dissipation
on it [6].

Another approach to the problem of describing structural conversions consists in
considering a model of multicomponent medium with several interacting continua.
It is assumed that at each point of the volume, the functions of densities ρi (x, t)
and velocities υ i (x, t)(i = 1, 2, . . . , N ) are specified [7–10]. Then, the equations
of mass and momentum balance for each of the components are given by:

∂ρi

∂t
+ ∇ · (ρiυ i ) =

N∑

j=1,i �= j

Ji j

∇ · σ i +
N∑

j=1,i �= j

Ri j = ρi
dυ i

dt
+

N∑

j=1,i �= j

Ji jυ i , (11.1.1)
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where Ri j is the interaction force between i and j components. The Cauchy stress
tensor is indicated as σ and the operator d

dt = ∂
∂t +υ ·∇ stands for taking the material

derivative. The functions Ji j characterize the intensity of the mass exchange between
the components, which can be used, for example, in case of chemical reactions in the
medium. From the law of mass conservation for the whole medium, it follows that
Ji j = −Jji , similarly, from the law of conservation of momentum—Ri j = −R j i .

Such approach, when a deformable body is considered as a multicomponent
medium, significantly enhanced the methods of continuous mechanics allowing to
describe processes that occur at different scale levels. Multicomponent models cover
a wide range of problems from describing the interaction of the electron gas with
the lattice to the problem of creating composite materials. In the most general case,
each of the media is characterized not only by density and velocity, but also by its
temperature. Then, the system of equations should be supplemented with the heat
equations for each of the components and taken into account the energy exchange
between them. Two-temperature models, which are often used for considering prob-
lems of laser irradiation of thin films, are analyzed in [11–13]. The great advantage
of the multicomponent approach over the hypothesis of a non-monotonic constitu-
tive curve is that the interphase boundary is not introduced explicitly, but arises in a
natural way, as a result of solving the problem. The phase of the material at a fixed
point can be defined as the concentration of the corresponding component. The main
difficulty lies in determining the source terms and the interaction forces between the
components, which, like the specifying of kinetic equation, is a difficult question
with an ambiguous answer.

11.2 Basic Equations of Two-Component Medium

In the present article, we restrict ourselves by considering only two-component
model, when a complex crystalline structure of material consists of two almost sim-
ilar lattices connected by nonlinear interaction force. In the case of small strains,
we assume that the Hooke law is satisfied for both components. Then, in the frame-
work of the one-dimensional model, in the absence of source terms, the momentum
balance equations take the form

E1
∂2u1
∂x2

− ρ10
∂2u1
∂t2

− R = 0

E2
∂2u2
∂x2

− ρ20
∂2u2
∂t2

+ R = 0. (11.2.1)

Here, ui (i = 1, 2) denotes the displacement of each of the components, Ei is
Young’s modulus, and ρi0 is the density in the equilibrium state. For convenience,
the notation R12 = R is introduced. When choosing an analytical expression for
the interaction force, we will proceed from a general assumption that it consists of
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two terms. The first one is determined by the nonlinear elastic coupling between the
components, and the second one describes the dissipation

R = R1(u1 − u2) + R2(u̇1 − u̇2). (11.2.2)

Determining the functions R1 and R2, one has to consider the possibility of the
transition of material from one state to another. This means that a nonlinear elastic
bond is obliged to have a non-trivial stable equilibrium position. In addition, it should
take into account the periodicity of the complex lattice, the structure of which does
not change when the components are mutually displaced at the distance multiple of
the period. Thus, one of the simplest expressions for the interaction force may be
written as

R = K sin λz + ν ż, (11.2.3)

where z = u1 − u2 signifies the relative displacement. The parameter K defines
the maximum value of the interaction, and v characterizes the viscous friction. The
coefficient λ = 2π

d is inversely proportional to the period of the lattice d.
Equations (11.2.1) are formulated for both lattices, but the experimentally mea-

sured parameter is not the displacement of each component, but some average value.
We assume this quantity containing information about the physical state of the sys-
tem to be the center of mass displacement U = ρ10u1+ρ20u2

ρ10+ρ20
. Then, it is convenient

to rewrite the equations of the two-component medium with respect to the center of
mass and the relative displacement [14]

∂2U

∂x2
− 1

c2u

∂2U

∂t2
= α

∂2z

∂x2

∂2z

∂x2
− 1

c2z

∂2z

∂t2
= βR(z, ż) + γ

∂2U

∂t2
, (11.2.4)

where the following notation is introduced: c2u = E1+E2
ρ10+ρ20

, c2z = E1E2(ρ10+ρ20)

(E1+E2)ρ10ρ20
. The

parameters α, β and γ are determined by the physical properties of material: α =
E2ρ10−E1ρ20

(E1+E2)(ρ10+ρ20)
, β = E1+E2

E1E2
, γ = E2ρ10−E1ρ20

E1E2
.

As a result, we obtain a system of Eq. (11.2.4) for the material with two scales.
The first one corresponds to the displacement on macrolevel measured during the
experiment, whereas the second one describes microstructural transformations. In
fact, relative displacement plays the role of an internal degree of freedom, which
can be excited by energy transfer from the center of mass in a certain range of
external impact. In this model, the process of rearrangement in crystalline structure is
associatedwith the dynamics of the internal variable, and under the term “newphase,”
we imply the domain of material with the function z occupying a new equilibrium
state. Finally, it is necessary to say that here we consider only mechanical impact as
the cause of structural transformations. The influence of other factors is excluded.
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11.3 Statement of the Problem. Dispersion Curves

After introducing dimensionless variables x̃ = xω
c1

, t̃ = ωt, Ũ = Uλ, z̃ = zλ, ν̃ =
νω∗
Kλ

, where ω∗ = c1
√

(1−χδ)Kλ

(1−χ)E1
, one can write governing Eq. (11.2.4) as

∂2Ũ

∂ x̃2
− 1

c2u

∂2Ũ

∂ t̃2
= α

∂2 z̃

∂ x̃2

∂2 z̃

∂ x̃2
− 1

c2z

∂2 z̃

∂ t̃2
= ˜sin z + ν̃

·
z̃ +δ

∂2Ũ

∂ t̃2
. (11.3.1)

Here, the following notation is used: c2u = (1−χδ)

1−δ
, c2z = 1

1−χδ
, α = (1−χ)χδ

1−χδ
. The

sound velocity of the first component is signified as c1 =
√

E1
ρ1
, the coefficient χ =

ρ1

ρ1+ρ2
denotes itsmass fraction, and the small parameter δ = 1− c21

c22
� 1 characterizes

the difference in physical properties of the lattices. Hereinafter, for definiteness, we
assume that χ = 1

2 and δ = 0.1. Equations (11.3.1) with zero initial conditions are
considered in the semi-finite region 0 ≤ x̃ < ∞. The stress on the boundary x̃ = 0
is given in the form of the short rectangular pulse σimp(t) = σ0(H(t) − H(t − t0))
of t0 duration. Here, H(t) is the unit step function. If we suppose that the stress on
the boundary is distributed proportionally to the density of the components, then the
boundary conditions for Eq. (11.3.1) have the form

∂Ũ

∂ x̃

∣∣∣∣∣
x̃=0

= σ̃imp(t̃)

(
1 + χ(1 − χ)δ2

1 − δ

)

∂ z̃

∂ x̃

∣∣∣∣
x̃=0

= σ̃imp(t̃)δ

1 − δ
, (11.3.2)

where σ̃ = c1λσ
ω∗(E1+E2)

and σ = σ1 + σ2. The standard type of boundary conditions is

applied at infinity: Ũ
∣∣∣
x̃→∞

= 0, z̃|x̃→∞ = 0. Neglecting the terms of order δ2, it is

possible to present the initial-boundary value problem as

∂2Ũ

∂ x̃2
− ∂2Ũ

∂ t̃2
= δ

4

∂2 z̃

∂ x̃2

∂2 z̃

∂ x̃2
− ∂2 z̃

∂ t̃2
= ˜sin z + ν

·
z̃ +δ

∂2Ũ

∂ t̃2

∂Ũ

∂ x̃

∣∣∣∣∣
x̃=0

= σ̃imp(t̃)

∂ z̃

∂ x̃

∣∣∣∣
x̃=0

= σ̃imp(t̃)δ. (11.3.3)
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Fig. 11.1 Dispersion curves

The graph of dispersion curves for system (11.3.3) described by the equation

(1 − δ)ω4 − ω2

(
(2 − δ)s2 + 1 − δ

2

)
+ s4 + s2 = 0, (11.3.4)

where s is the wave number and ω signifies the frequency, as presented in Fig. 11.1.
It consists of two branches. The lower one corresponds to the center of mass

displacement, and the upper one—to the relative motion. Its dynamics is described
with the second equation of system (11.3.3). It is represented by the nonlinear Klein–
Gordon equation complemented by the additional term,which expresses the influence
of inertia forces. This equation plays an important role in the theory of nonlinear
waves since it is very often used in different types of applications [15–17], such
as physics of dislocations, simulation of seismic phenomena, and the description
of Josephson junctions. Its exact solution can be obtained in the form of stationary
waves, but here we deal with the Cauchy problem and, therefore, it seems reasonable
to think about applying numericmethods. However, a considerable difficulty exists in
defining the values of parameters for numeric solution and providing the estimation
of time required for the system to reach the desired state. In this regard, we need a
reliable procedure for constructing an approximate analytical expression to be able
at least qualitatively to predict the dynamics of the model and to separate the physical
phenomena from the effects brought by applying numerical integration.
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11.4 On the Method of Variable Interval

For many non-stationary problems, a quite good approximation can be obtained by
applying the method of searching the solution on a variable interval, proposed by
Slepian [18]. Similarly to the Galerkin procedure, the solution of the differential
equation is sought in the form of eigenfunction expansion, and however, the length
of the interval l(t), in contrast to the classical approach, is an unknown function of
time. In case of hyperbolic equations, this function usually is taken as

l(t) = c0t, (11.4.1)

where c0 is a phase velocity of a wave. As a more general criterion, the minimum of
the standard deviation of the approximate solution ũ(x, t) from the exact solution of
the differential equation u(x, t) can be used

∂

∂l

l∫

0

(ũ − u)2dx = 0, (11.4.2)

Let us show the essence of this approach using the simplest example. For this
purpose, we consider the semi-finite region described by d’Alembert operator

∂2u

∂x2
− ∂2u

∂t2
= 0, (11.4.3)

and satisfying the following boundary conditions

∂u

∂x

∣∣∣∣
x=0

= F(t) = F0H(t)

u|x−>∞ = 0, (11.4.4)

where F0 is an arbitrary constant. Initial conditions are assumed to be zero. The exact
solution of Eq. (11.3.3) is obvious

ε = ∂u

∂x
= F0H(t − x). (11.4.5)

Nowwe are going to find the solution of the same problem in the form of the series
u(x, t) = ∑N

n=0 qn(t) fn(x), where fn(x) = cosπ(2n+1)x
2l H(l − x). After multiplying

Eq. (11.4.3) by the form and integrating it the interval from 0 to l(t) we obtain the
ordinary differential equation for qn(t)

q̈n + �2
nqn = −2F(t)

l
, (11.4.6)



176 D. A. Indeitsev et al.

Fig. 11.2 Convergence of
approximate solution

where �n = π(2n+1)
2l . Its solution is given by

qn(t) = −2F0

l

(1 − cos�nt)H(t)

�2
n

. (11.4.7)

Then, the derivative of the function u(x, t) takes the form

∂u

∂x
= 4F0

π

N∑

n=0

(1 − cos�t)

(2n + 1)
sin

π(2n + 1)x

2l
H(l − x). (11.4.8)

Its convergence to the exact solution (11.4.5) at x = 1 is demonstrated in Fig. 11.2.

11.5 Discrete Model

As a result of applying the Galerkin procedure on a variable interval, a continuous
problem is reduced to the ordinary equations describing dynamics of a single ele-
ment from the rheological model of material. For one-component medium, a spring
pendulum represents this element. For the two-component material, it turns to be a
nonlinear system of the coupled oscillators (Fig. 11.3) with close natural frequencies.

Denoting their displacements as x1 and x2, it is possible to describe its dynamics
analogously to continuous problem, taking for unknown functions the center of mass
displacement x = 1

2 (x1 + x2) and the relative displacement z = x1 − x2. If their
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Fig. 11.3 Coupled
oscillators

masses are equal, their behavior is described with the following system of equations:

ẍ + x = δz

4
z̈ + 2nż + z + κ sin z = δx . (11.5.1)

Differentiating in (11.5.1) is performed by the dimensionless time τ = ω1t , where

ω1 =
√

G1
m1

is one of the partial frequencies. Small parameter δ = ω2
2−ω2

1

ω2
1

is given by
their relative difference. The coefficient κ describes the nonlinear interaction between
themasses. Subsequently, it is assumed that it is equal to theminimumvalue (κ = 1),
providing non-convexity for potential energy of z. At the same time, the following
relations establish the correspondence between continuous and discrete systems

κ = 4πKd

E1‘
, n = ω∗2d2ν

4πc1K
. (11.5.2)

In the linear system (κ = 0), we obtain beat oscillations with the period T = 4π
δ

depending on the difference between physical properties of the lattices (Fig. 11.4).
The appearance of nonlinear termmakes the systemvery sensible to initial velocity

V0. If it does not exceed the critical value V0 ≈ κ
δ
, there is no interaction between

two degrees of freedom. They oscillate independently from each other (Fig. 11.5).
However, when the threshold is broken, the dynamics of the system changes

dramatically. The oscillations of x, obtained by numerical integration at n = 0.011,
are depicted in Fig. 11.6 by dashed line.

The specific feature of the process for sufficiently large value of V0 is the time
point separating two different regimes. Note that the amplitude of oscillations at the
second one is reduced in comparison with initial value. To realize the energy transfer,
it is important that its duration τe = 2π

δ
will not exceed the relaxation time τr = 1

n
of the partial system. Otherwise, the oscillations of the relative displacement will be
damped before the center of mass displacement has enough time to be excited. This
implies that n ≤ δ

2π .
In order to obtain an analytical expression demonstrating this effect, let us suppose

that the process of switching happens immediately at the point τ∗. Then, the nonlinear



178 D. A. Indeitsev et al.

Fig. 11.4 Beats, δ = 0.1, n = 0

Fig. 11.5 Oscillations X i z, V0 = 9, n = 0.011

term in Eq. (11.5.1) can be written as κ0sin zδ0(τ − τ∗), where δ0(τ ) signifies delta
function. The parameters τ∗ and κ0 are found by means of Laplace transform. Under
the accepted assumptions, the solution of system (11.5.1) in the image space has the
form

x L(p) =
(
p2 + 1

)
V0 − δ

4κ0sin z(τ∗)e−pτ∗

(p2 + 1)2 − δ2

4

zL(p) = V0δ − (
p2 + 1

)
κ0sin z(τ∗)e−pτ∗

(p2 + 1)2 − δ2

4

. (11.5.3)
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Fig. 11.6 Center of mass oscillations

The only way to cease beats is to eliminate one of the natural frequencies. Such
situation is possible if the pole of the function x L(p) coincides with the root of
the numerator. This requirement leads to the following expressions for unknown
parameters:

τ∗ = πk

1 − δ
4

(11.5.4)

κ0sin z(τ∗) = (−1)k+12V0, (11.5.5)

where k is integer. After taking the inverse transform, one can obtain

X (τ ) = V0

(
cos

δτ

4
sin τ + (−1)ksin

δ(τ − τ∗)
4

cos(τ − τ∗)H(τ − τ∗)
)

ϕ(τ) = −2V0

(
sin

δτ

4
cosτ + (−1)kcos

δ(τ − τ∗)
4

sin(τ − τ∗)H(τ − τ∗)
)

(11.5.6)

Substituting relations (11.5.4) and (11.5.5) in (11.5.6) allows to show that after
passing the point τ∗, the system switches to the regime of harmonic oscillations

X+(τ ) = V0

2

((
1 + cos

πkδ

2

)
sin

(
1 + δ

4

)
τ − sin

πkδ

2
cos

(
1 + δ

4

)
τ

)

z+(τ ) = V0

((
1 + cos

πkδ

2

)
sin

(
1 + δ

4

)
τ − sin

πkδ

2
cos

(
1 + δ

4

)
τ

)
(11.5.7)
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The value of k can be determined from energy balance if we equate the work of
the viscous friction on the time interval [0, τ∗] to the energy jump at τ∗ in the model
with a delta function. This requirement results in the following equation

2V 2
0 cos

πkδ

2
= −n

τ∗∫

0

ϕ̇2(τ )dτ. (11.5.8)

With the selected values of parameters, one can find that k = 27. The analytical
solution obtained from (11.5.3) is presented in Fig. 11.6 by solid line. It correlates
well with the result of numeric integration.

11.6 Continuous Model

After the process of energy transition was demonstrated in the oscillator, we return
to the original continuous problem given by Eq. (11.3.3) considered in the half
space 0 < x̃ < ∞. It is quite reasonable to expect the same effect in con-
tinuous model. However, talking about continuum immediately raises a number
of additional issues. The primarily is the determination of the distance, at which
the structural transformation takes place. The evaluation of this parameter is a
problem of great importance for both experimental and numeric simulation. Let
us apply the method of variable interval for Eq. (11.3.3), seeking their solution
as Ũ = ∑N

n=1 Qn(t̃) cos
π(2n+1)x̃

2l H(l − x̃), z̃ = ∑N
n=1 qn(t̃) cos

π(2n+1)x̃
2l H(l − x̃).

After multiplying them by the form and integrating between 0 and l = t̃ , we obtain
the system of equations for the functions Q(t) and q(t)

Q̈ + �2Q = �2δq

4
− 2σimp(t̃)

l

q̈ + νq̇ + �2q + 2J1(q) = −δ Q̈ − 2σimpδ

l
, (11.6.1)

where � = π(2n+1)
2l is the frequency of the corresponding form. Here, J1(q) denotes

the Bessel function of the first kind. After excluding Q̈ from the second equation
and introducing dimensionless time τ = �t̃ , the system (11.4.1) can be written as

Q̈ + Q = δq

4
− 2σimp

(
τ
�

)

�2l

q̈ + ν

�
q̇ + q + 2

�2
J1(q) = δQ. (11.6.2)

These equations resemble Eq. (11.5.1). This gives us the idea to apply the same
procedure, which was carried out for the discrete model. The same arguments turn
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out to be applicable to system (11.6.2). Using delta function δ0(t) instead of the pulse
of finite duration in the right part of the first equation, we obtain

Q̈n + Qn = δqn
4

− 2σ̃0δ0(τ )

�nl

q̈n + qn + 2

�2
n

J1(qn)δ0(τ − τ∗) = δQn. (11.6.3)

The analogy between (11.6.3) and equations describing the coupled oscillators
(11.5.6) immediately allows writing the dependencies for Qn(τ ) and qn(τ ) using
(11.5.6)

Qn(τ ) = − 2σ̃0

�nl

(
cos

δτ

4
sin τ + (−1)ksin

δ(τ − τ∗)
4

cos(τ − τ∗)H(τ − τ∗)
)

qn(τ ) = 4σ̃0

�nl

(
sin

δτ

4
cos τ + (−1)kcos

δ(τ − τ∗)
4

sin(τ − τ∗)H(τ − τ∗)
)

(11.6.4)

The parameter τ∗ in the discrete model has been found by using condition (11.5.4)
of leaving only one natural frequency in the system of coupled oscillators. This
condition for Eq. (11.6.2) is preserved, whereas the analog of expression (11.5.5)
has the form

−2σ̃0

l
= (−1)k J1(q(τ∗))

�
, k = 1, 2 . . . (11.6.5)

Here, the role of parameter that determines themagnitude of momentum, required
for switching the system from one regime to another, is carried out by the distance at
which the structural transformation starts. To estimate this distance, let us multiply
Eq. (11.6.5) by 1

t̃∗
, assuming the existence of the parameter similar to τ∗ in the discrete

model. Taking into account the introduction of the new variable τ = �nt and the
length of the interval l = t̃ , it follows from (11.6.5) that

t2∗ = − 2σ̃0τ∗(−1)k

J1
(
4σ̃0
τ∗ sin

δτ∗
4 cos τ∗

) . (11.6.6)

If 4σ̃0 � τ∗, relation (11.6.6) can be simplified

t∗ = τ∗

√
− (−1)k

sin δτ∗
4 cos τ∗

. (11.6.7)

Again, the unknown integer k is determined based on energy balance represented
by Eq. (11.5.8), where the role of coefficient for viscous friction is performed by the
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Fig. 11.7 Strain distribution, σ̃0 = 11, t̃0 = 3

term ν
�n
. Using (11.6.7) and (11.5.2) and substituting in (11.5.8) δ = 0.1, we obtain

k = 27 and t̃∗ ≈ 127.
After the necessary estimates of parameters are provided,wemoveon to numerical

integration. The obtained analytical results are confirmed by solving initial nonlin-
ear problem (11.3.3) by applying finite difference method. The strain distribution,
demonstrating the quenching of non-stationary wave due to the internal dissipation
of energy, is depicted in Fig. 11.7.

At the same time following the dynamics of the relative displacement, we observe
the process of transition to the new equilibrium, which is treated in the model as
a structural conversion of material. It is shown in Fig. 11.8. Note that the region
occupied by material with the rearranged crystalline structure slowly expands.

Last question left for discussion is the duration of the external pulse, which can be
estimated using the dispersion curve (Fig. 11.1). The dimensionless cutoff frequency
characterizing the spectral properties of the system is approximately equal to 1, and in
order to awaken the internal degree of freedom, the spectral composition of the signal
should contain frequencies lying above the given frequency. Otherwise, the relative
displacement will not be manifested during the dynamic impact on the medium. The
spectral characteristic of a rectangular pulse, referred to its area, is shown in Fig. 11.9.

Since the main part of the pulse energy is concentrated in the first lobe, the energy
transfer to the internal degree of freedom takes place, when the first zero of spectral
density exceeds the cutoff frequency, which implies that t̃0 < 2π . The examples of
strain distribution with the violation of this inequality and the corresponding relative
displacement are depicted in Figs. 11.10 and 11.11.

Naturally, the effect of the initial pulse reduction is lost and the area of new phase
of material does not change in time. Finally, it should be noted that the numeric
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Fig. 11.8 Relative displacement, σ̃0 = 11, t̃0 = 3

Fig. 11.9 Spectral
characteristic of the pulse

solution in this case is worthless without preliminary analytical investigation, as the
nonlinear system turns to be very sensitive to small changes of parameters.
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Fig. 11.10 Strain distribution, σ̃0 = 11, t̃0 = 10

Fig. 11.11 Relative displacement, σ̃0 = 11, t̃0 = 10

11.7 Conclusion

In the present article, one-dimensional dynamic model of structural transformations
in solids under pure mechanical impact is proposed. It is based on the equations
of two-component medium with similar crystalline lattices coupled by nonlinear



11 On Dynamic Model of Structural Transformations in Solids 185

interaction force. Their relative displacement possessing several equilibrium states
plays the role of the additional degree of freedom responsible for rearrangement of
internal structure. The dispersion curve of the system consists of two branches, and
the main goal is to determine the conditions for energy exchange between them. For
this purpose after the statement of the continuous problem, we start our investigation
from analyzing the dynamics of a single element from the rheological model of
material. Thus, the problem is reduced to consideration of nonlinear oscillator with
two masses, described by the system of ordinary differential equations. We apply
the method of variable interval in order to discover the analogy between discrete and
continuous systems. Such approach gives the possibility to demonstrate the process
of energy transfer to internal degree of freedom and to estimate its duration. On
macrolevel, it is revealed through the quenching of non-stationary wave leading to
reduction of the amplitude of the initial signal. All analytical results are confirmed
by numeric integration fulfilled by using finite difference method.

Despite the extremely simplified description of structural changes inmaterial, still
many unresolved issues remain within the framework of the proposed model. This
primarily refers to the problem of parameters identifying. The evaluation of cutoff
frequency may be performed based on experiments on high-speed deformation. In
several works, it has been shown that the structural changes caused by shock-wave
loading are accompanied by rapid oscillations on the plastic front [19]. They indicate
that the transformation of the structure is a complex dynamic process involving
several scale levels. The frequency of these oscillations, equal to several gigahertz,
can be taken as an estimation for this parameter. Ifwe also knowYoung’smodulus and
the period of the structure, then we are able to estimate the coefficient of nonlinear
bond. The analogous question on parameter of viscous friction seems to be more
complicated.
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Chapter 12
Dynamic Penetration into Water
Saturated and Frozen Sand: Numerical
Analysis of the Inverse Experimental
Methodology

Vasiliy Kotov, Vladimir V. Balandin, Vladimir Vl. Balandin,
Anatoliy Bragov, Andrey Lomunov and Svetlana Litvinchuk

Abstract The present paper numerically analyzes the applicability of the inverse
experiment methodology for determining the force resisting penetration of a conical
striker into frozen sand soil at a temperature of −18 °C. The condition of the soil
specimen prior to freezing is characterized as fully water saturated. The deforma-
tional behavior of the soil is described in the framework of the model of compress-
ible elastic-plastic media with the plasticity condition depending on pressure. The
dynamic compressibility diagram of the frozen soil includes the initial linearly elastic
part. The errors in determining the force resisting penetration of a conical striker into
frozen soil in the inverse experiment due to the effect of the waves reflected from the
container walls were analyzed. The difference between maximal values of the force
resisting penetration, obtained in the numerical calculations with the two versions
of the boundary conditions, was used as a measure of the effect. For the problems of
penetration of conical strikers into frozen and water-saturated soil, a good agreement
between the experimental data and numerical results can be obtained with the help
of Grigoryan’s model accounting for the pressure-dependent parameters.
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Keywords Grigoryan’s soil model · Inverse experiment · Conical striker · Frozen
sand · Water-saturated soil

12.1 Introduction

Determining the parameters of the laws of dynamic deformation for dry and water-
saturated soils under varied parameters of temperature is of great scientific and
applied importance. In the middle of the last century, the stress and velocity fields
were determined in field experiments as a result of spherical explosion of blasting
charges in frozen soil. A substantial dependence of the wave parameters on temper-
ature and soil characteristics in the initial non-frozen condition: humidity, porosity,
fractional and component composition and others, was determined.

The inverse experiment methodology [1–3] with measuring bar has proved very
effective in determining the force characteristics of penetration of rigid cylindrical
strikers with heads of various geometries. It allows to measure integral loads at the
initial nonstationary stage of penetration. Earlier, experimental data were obtained on
strain-rate dependences of dynamic penetration of cylindrical solids with flat, hemi-
spherical and conical heads into dry andwater-saturated sand at positive temperatures
[4–7].

A significant disadvantage of the inverse techniques is the necessity to accelerate
soil containers of considerable mass and small geometrical dimensions that leads to
the effect of the container walls on the integral loads and final penetration depths [8].
Earlier, the effect of the boundaries on themaximal and quasi-stationary values of the
force resisting penetration of a 20 mm-diameter hemispherical striker into dry sand,
determined in inverse experiments, was studied. It was found that, if a boundary
condition modeling the effect of a rigid container was used in computations, the
quasi-stationary value of the force resisting penetration exceeds the analogous value
calculated for penetration into a half-space by 20% at impact velocities over 100 m/s
and then decreases with the increasing impact velocity. The computations of the
process of penetration into dry soil conducted without a container showed lower
values of the resistance force.

A qualitatively similar picture is observed when analyzing the process of pene-
tration into frozen soil. The quantitative differences are explained by the fact that the
longitudinal wave velocity in frozen soil (3000–4000 m/s) is an order of magnitude
higher than the propagation velocity of small-amplitude waves in dry sand, which is
300–400 m/s.

In this paper, the process of penetration of a conical striker along the normal line
to the free surface was numerically analyzed in an axisymmetric formulation, using
software package Dinamika-2 of the Research Institute for Mechanics of Nizhny
Novgorod Lobachevsky State University, and in a 3D formulation in the framework
of software product LS-DYNA. The relations of the soil media model were numer-
ically realized in the framework of the modified Godunov scheme, implemented in
the applied software package Dynamika-2 of the Research Institute for Mechanics
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of Nizhny Novgorod Lobachevsky State University. The earlier computations of the
processes of impact and penetration of axisymmetric strikers into soft soil media
showed good agreement between the numerical results and experimental data. The
impact and penetration velocities are varied during the calculations from 150 to
300 m/s, with the cone basis diameters of 10, 12 and 20 mm. Computational geom-
etry is determined by the size of the container used in the inverse experiment. The
deformation of the container was neglected; the effect of the container walls was
modeled by two choices of the boundary conditions: free surface (the absence of the
walls) and “impermeability” along the normal line and free sliding in the tangential
direction.

12.2 Grigoryan’s Mathematical Model of the Dynamics
of Soil Media

Grigoryan’s mathematical model of the dynamics of soil media [9] can be written
in the cylindrical coordinate system rOz (where Oz is the symmetry axis) as the
system of differential equations. They express the laws of conservation of mass,
pulse and maximal density attained in the process of actively loading the soil, as
well as equations of plastic flow theory with the von Mises–Schleicher plasticity
condition

dρ/dt + ρ
(
ur,r + uz,z

) = −(ρur )/r,

ρdur/dt − σrr,r − σr z,z = (σrr − σθθ )/r,

ρduz/dt − σr z,r − σzz,z = (σr z)/r,

dρ∗/dt = dρ/dt H(ρ − ρ∗)H(dρ/dt),

DJsi j + λsi j = 2Gei j , (i, j = r, z),

si j s
i j ≤ 2

3
σ 2
Y , (12.1)

where the following notation is used: t is time, ρ0, ρ and ρ∗ are the initial, current and
maximal density attained in the loading process, ui , σi j , si j , ei j are the components
of the velocity vector, Cauchy stress tensor, and deviators of the stress and strain-rate
tensors, respectively,H is the Heaviside function, DJ is the Jaumann derivative, d/dt
is the total derivative with respect to time, G is the shear modulus, σ Y is the yield
strength and sums are taken over repeated indices. Parameter λ = 0 in case of elastic
strain and λ > 0 if the von Mises–Schleicher plasticity condition is satisfied.

The system of differential Eq. (12.1) is closed with finite relations, determining
pressure p and plasticity condition of the soil

p = f1(ρ, ρ∗)H(ρ∗ − ρ)H(ρ0 − ρ)

σT = f2(p). (12.2)
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Fig. 12.1 Volume compressibility (a) and yield stress condition (b) dependencies

The system of Eqs. (12.1) and (12.2) of soil dynamics is complemented with
initial and boundary conditions. On the head part of the striker, contacting with
the soil medium, a contact algorithm of “impermeability” is used along the normal
line with “sliding in the tangential direction with dry friction” in accordance with the
Coulomb frictionmodel with a constant friction coefficient k f . Over the free surfaces
of the soil and the striker, normal and tangential stresses were set to be equal to zero.
The outer boundaries of the analyzed region of the soil corresponded to the geometry
of the container used in the inverse experiment. Deformation of the container was
neglected, and the effect of the container walls was modeled by two versions of the
boundary conditions: (1) “impermeability” along the normal line and free sliding in
the tangential direction (boundary condition 1) and (2) free surface, corresponding
to the absence of walls (boundary condition 2). At an initial time, the stresses and
velocity of the soil particles are equal to zero. The striker was assumed to be rigid,
moving at a constant speed, equal to the impact velocity.

Let us concretize the assignment of functions f 1 and f 2 in Grigoryan’s model of
soil media (1) and (2) schematically shown in Fig. 12.1.

The dynamic compressibility of the soil, as well as some other compressible
materials, is characterized by shock adiabat, represented by the linear dependence
of the shock wave velocity D as a function of the mass velocity U:

D = A + Bu (12.3)

Here, the value of the constant A is approximately equal to the propagation veloc-
ity of the plane compression wave in soil under small pressures; B characterizes the
ultimate compressibility of soil. The shock adiabat represented in the form of a lin-
ear dependence (3), and the Hugoniot conditions for a shock wave σ = ρ0Du,
θ = u/D imply the well-known relation between the stress σ (θ ) and the bulk
strain θ .
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σ(θ) = ρ0A2θ

(1 − Bθ)2
, θ = 1 − ρ0

ρ
, (12.4)

The shear resistance of the medium is determined by the fractional-rational
dependence of the yield strength as a function of pressure

f2(p) ≡ σ0 + kp/(1 + kp/�σ), �σ = σM − σ0 (12.5)

The coefficients σ0, σM and k characterize adhesion, maximal value of yield
strength and the internal friction of the soil.

The pressure is described with the following equation

p(θ) = f1(θ) ≡
{

K θ, −θe < θ < θe

K θe + ρ0a2θ
(1−bθ)2

, θ ≥ θe
(12.6)

Here, K, a and b are constant coefficients, the value θe limits an elastic behavior
of the soil. The method for determining the coefficients a and b based on the known
dependency parameters (3)–(5) is given in [10].

Unloading the medium from a state characterized by pressure and density values
p∗ and ρ∗ is assumed to be linear

p − p∗ = K

ρ0
(ρ − ρ∗)

12.3 Formulation of Numerical Modeling Problems

The relations (1) and (2) were realized within the framework of the methodology
[11], based on the modified Godunov scheme, implemented in the applied software
package Dynamika 2 of the Research Institute for Mechanics, Nizhny Novgorod
Lobachevsky State University [12]. The earlier computations of the processes of
impact and penetration of axisymmetric strikers into soft soil media [4] showed
good agreement between the numerical results and experimental data.

To increase the reliability of the results of numerical analyses, the problem of
penetration of a conical striker into an elastic-plastic medium modeling frozen soil
was analyzed in a fully 3D formulation, using commercial software product LS-
DYNA. The striker was modeled by a non-deformable rigid body (*MAT_RIGID),
the soil was modeled by an elastic-plastic medium and the behavior of which is
described in the framework of the model *MAT_SOIL_AND_FOAM.

The problemwas analyzed in fluid–structure interaction (FSI) formulation, where
the equations of motion of the striker were integrated in Lagrangian coordinates,
while the equations for the soil were solved on the Eulerian grid. The interac-
tion between the striker and an elastic-plastic medium was realized using a special
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type of contact (CONSTRAINED_LAGRANGE_IN_SOLID). The formulation and
solution of the problem of penetration correspond to the one given earlier [13].

The parameters of the soil model (5) and (6) are the following: ρ0 = 2100 kg/m3,
pe = 6MPa,K= 21,000MPa,G= 7875MPa (determined by the value of Poisson’s
ratio 1/3), a = 1400 m/s, b = 4, σ0 = 15 MPa, k = 0.5, σM = 50 MPa and k f = 0.2.

The choice of values of the parameters is determined by the following reasons.
Up to stress values of σ∗ = 15−21MPa, which correspond to compressive strength
of the frozen soil, the soil behaves like a linearly elastic medium. Under conditions
of uniaxial stress, we have pe = σ ∗ /3; at pressure pe � σM , σ∗ = σ0 + kpe is
also correct, whence it follows that σ0 = (1 − k/3)σ∗. The results of dynamic tests
[14–16] also indicate stress-rate dependence of the deformation diagrams of frozen
soil, resulting in the approximately 1.5-fold increase of compressive strength in the
strain-rate range from 300 to 1000 1/s. It is to be noted that the strength values of the
frozen soil obtained in both static and dynamic tests are characterized by considerable
scatter. In the present paper, the average strength value σ∗ = 18 MPa was assumed.
Strain-rate dependence was not accounted for in the first approximation. At pressures
of about 200 MPa and a temperature of −18 °C, ice-water transition takes place, and
the behavior of the frozen soil becomes similar to that of water-saturated soil, the
parameters of the equation of state for which were determined by us earlier [10].
The longitudinal wave velocity c, determined by the inclination of the deformation
diagram (6) at its initial part, amounts

√
(K + 4G/3)/ρ0 = 3.8 km/s, while the shear

wave velocity is
√
G/ρ0 = 1.9 km/s. When the compression strength is exceeded,

the longitudinal wave velocity drops to the value of 1.5 km/s, which corresponds to
failure of the skeleton of the frozen soil.

The rectangular section of the cylindrical area of the soil is divided by a difference
grid into square cells with the side size of d/n, where n is the number of cells. The
convergence of the used Godunov scheme [11] was analyzed by a series of numerical
computations on condensing grids. The change in quasi-stationary force depending
on the cell size d/n appeared to be close to linear one with a reliability of at least
0.95, whereas the difference in values of the forces at n = 200 from the predicted
values was 10–15%.

Figure 12.2 presents the forces resisting to penetration into the frozen soil of the
conical striker with an apex angle of 60° and basis diameter of d = 20 mm in a
rigid jacket at velocities of 150 m/s and 300 m/s. The red dotted curves represent the
results obtained in calculations employing the applied software package Dynamika
2, while the solid blue curves represent the results obtained within the framework of
software product LS-DYNA. The soil occupied a cylindrical area with a diameter of
54 mm and a height of 65 mm. It is to be noted that, the curves are coincident at the
stage of penetration of the conical part of the striker and the numerical results after
separation of the flow are in good agreement.
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Fig. 12.2 Forces resisting to
thepenetration into the
frozen soil of the conical
striker with an apex angle of
60° and basis diameter of d
= 20 mm in a rigid jacket at
velocities of 150 m/s and
300 m/s

12.4 Results of Numerical Computations

The results of numerical calculations of penetration of conical strikers with an apex
angle of 60° and basis diameters of d = 10, 12 and 20 mm at penetration velocities of
V0 = 150 and 300 m/s are given onwards. Two versions of the boundary conditions
modeling absolutely elastic and absolutely rigid containers are analyzed.

Figure 12.3 presents the forces resisting to penetration of a conical striker with
basis diameters of d = 10 (a), 12 (b) and 20 mm (c) into frozen soil at velocities of
150 and 300 m/s. Curves marked BC-1 show the results, obtained in computations
using the boundary condition 1 modeling the effect of a rigid container, whereas
curves marked BC-2 show the results of computations without a container (boundary
condition 2).

Let us consider the value of the resistance force at the moment of penetration of
a conical part of the striker t∗ =

√
3
2

d
V0
. Further, the growth of the contact surface

area does not occur, and the observed changes in the resistance force to penetration
are associated with the action of the boundary conditions caused by compressional-
dilatational waves reflected from the borders of the region (container walls). The
value of the resistance force at the moment of t∗ is considered the maximal value of
the force resisting to penetration.

It can be seen from Fig. 12.3b that the influence of the boundary conditions on the
maximal value of the force resisting penetration of a striker with a d = 12 mm basis
does not exceed 10% at penetration velocities of 150 m/s and then decreases with the
increasing velocity. The force resisting penetration of a strikerwith a d = 10mmbasis
is practically independent of the type of the boundary conditions until the t < t∗.
The boundary conditions have a significant effect on the force resisting penetration
of a striker with a basis diameter of d = 20 mm: when penetration velocities are
varied from 150 to 300 m/s the difference in maximal values decreases from 60 to
15%.
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Fig. 12.3 Forces resisting to penetration of a conical striker with basis diameters of d = 10 (a), 12
(b) and 20 mm (c) into frozen soil at velocities of 150 m/s and 300 m/s

The problems of penetration of a striker into frozen soil at a penetration velocity
of 300 m/s, within the time interval of 0 < t < 1.5t∗, equivalent to the problems of
penetration into a half-space, were also considered.

Figure 12.4 presents the results of computations in the form of time history of the
force resisting penetration. Curves show the computational results of penetration into
frozen soil of cones with basis diameters d = 10, 12 and 20 mm. Practically constant
(quasi-stationary) level of the force resisting penetration is observed upon reaching
its maximal value. It is to be noted that, the maximal value practically coincides with
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Fig. 12.4 Penetration into a
half-space of frozen sand
(impact velocity 300 m/s)

the value, obtained in computations using boundary condition 1, which simulates an
absolutely rigid container (see also Fig. 12.3).

Figure 12.5 shows the dimensionless dependences of the resistance to penetration
of a cone with a base diameter= 20mmobtained in inverted experiments and numer-
ical calculations. The values of resistance force and time are assigned, respectively,
to F∗ = 1

2ρ0S0V 2
0 and t∗.

Dashed, dashed-dotted and dotted curves show the results of experiments using
the following container materials: steel, aluminum alloy and polypropylene; the pen-
etration rate was 133, 135 and 150 m/s, respectively. Solid curves correspond to the
results of numerical calculations of cone penetration at a speed of 150 m/s using
boundary conditions BC-1 and BC-2.

Fig. 12.5 Penetration into
the frozen sand: experiment
and calculations (impact
velocities are about 150 m/s)
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From Fig. 12.5, it can be seen that the maximum value is reached at, which may
be due to the faster growth of the wetted surface due to the formation of a spray jet
and the rise of the free surface of the soil toward the impactor upon impact. Note
that the resistance to penetration of a projectile into frozen soil obtained because
of calculations using boundary condition 1 (absolutely rigid container) is close to
the results of an inverted experiment using a steel container. The influence of waves
reflected from the walls of the container of aluminum alloy and polypropylene is
close to the simulation results in the absence of the container. Up to the point in time,
all results are close to each other.

12.5 Conclusion

It is shown that, in problems of penetration of conical strikers into frozen and water-
saturated soils, a fairly good agreement between the experimental data and numerical
results can be achieved using Grigoryan’s model of elastic-plastic soil medium,
accounting for the dependence of the yield criterion on pressure (theMohr-Coulomb-
Tresca limit yield criterion).

The error in determining the force resisting penetration of a conical striker into
frozen soil in the inverse experiment due to the effect of the waves, reflected from
the container walls, was analyzed. The difference between maximal values of the
force resisting penetration, obtained in the numerical calculations with two versions
of the boundary conditions, was used as a measure of the effect.

It is shown that, for a striker with 20mm-diameter basis, the error amounts 15% at
velocities over 300 m/s and then decreases with the increasing velocity. For conical
strikers with 10 and 12 mm-diameter bases, at impact velocities over 150 m/s, the
effect of the container walls can be neglected.
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Chapter 13
Extended Model of Surface-Related
Effects in Second-Gradient Elasticity.
Surface Waves Related to the Nature
of Adhesion

Sergey Lurie, Petr Belov and Elena Lykosova

Abstract It is considered a continuum theory of the adhesion properties of the
surface of elastic bodies, which can be considered as theory of surface elasticity. We
consider the surface of the body as the set of all the boundary points of the elastic body
and believe that upon deformation, this surface is endowed with its own density of
surface energy in the case of an adhesion-active surface. The definition of the “ideal”
and gradient theory of elasticity of surface interactions is given, and it is shown that
the ideal adhesion theory constructed by Gurtin and Murdoch, taking into account
the properties of symmetry andmaterial indifference, is far from complete. The work
gives a fairly broad generalization of the surface-related theory of elastic bodies. The
statements of the problems of propagation of surface waves on the adhesion-active
surface of the classical elastic half-space are considered. We considered five types of
surfacewaves that are attractive from the point of view of experimental determination
of the characteristics of adhesive interactions and found that these types of surface
waves could not be existed for the classical theory of elasticity with adhesion-passive
surfaces, where moduli of the adhesion interactions are equal zero. The first three
of these types of waves are associated separately with each of the three components
of the surface displacement vector. The fourth and fifth types of surface waves are
associated, respectively, with the field of local changes in the surface area and with
the field of its local rotations with a vector that coincides with the normal to the
surface.
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13.1 Introduction

The special properties of the surface of bodies have been studied for a long time,
starting with the works of Young, Laplace, and Poisson [1–3], which introduced the
concept of surface tension. Undoubtedly, the fundamental contribution to the devel-
opment of continuous adhesion interactions was made by the fundamental works
[4, 5] and then in the works [6, 7]. In works [4, 5], the governing relations of the
surface properties of elastic bodies and a modern understanding of superficial inter-
actions were proposed. Further generalizations of this model were considered in
[6–9]. Classification of the surface-related models was proposed in [10, 11] which
may be useful to describe effects associated with special intrinsic surface properties
of bodies in various problems (wettability, capillarity, surface tension, etc.), contact
problems and in modeling of the materials properties of a micro- and nanostruc-
tures with a high density of phase-contact zones. Variants of variational models of
adhesion interactions for the gradient elasticity and the model of media with defect
fields were considered in [12–14]. The works [15–21] made a significant impact on
the development of continuum adhesion models, the understanding of physical pro-
cesses in surface-related mechanics, and in the interpretation of physical modules
of surface elasticity and their role in applied problems. In the works [20–26], the
applied variants of the adhesion interactions were proposed based on the variants of
classical and gradient theories of elasticity.

The history of the development of mathematical models of surface phenomena
was briefly but sufficiently fully discussed in [27, 28]. In these interesting works,
it was indicated the importance of attracting models of surface interactions in the
problems of the propagation of surfacewaves. This remark is very important and fully
corresponds to theGurtin–Murdochmodel, since the adhesionmodel gives additional
terms in the boundary conditionswith greater variability on the coordinates compared
to the classical terms.

In the work [20], it was defined the difference between perfect and non-perfect
surfaces. It was defined that if the boundaries of solids can be modeled as mathe-
matical smooth enough surfaces with additional physical surface-related properties
then such surfaces are adhesion-active surfaces. Correspondingly, the boundaries
of elastic bodies for which the boundary conditions have a classical form without
additional physical properties will be called as adhesion passive.

In the present work, we do not take into account the phenomena associated with
the formation of the boundary of an elastic body and restrict ourselves considering
elastic bodies in the framework of the linear theory of elasticity, assuming that the
boundaries of elastic bodies have their own spectrum of mechanical properties. We
consider classical theory of elasticity and show that the continuum theory of the
surface elasticity constructed in [4, 5], which can be considered as classical, is not
absolutely complete. A generalized model of surface interactions with an extended
spectrum of properties is presented. It is shown that for the case of classical linear
elasticity with a symmetric stress tensor, the tensor properties of the generalized



13 Extended Model of Surface-Related Effects … 201

elastic moduli of the surface properties (and, therefore, adhesive interactions) are
determined by three independent modules.

13.2 Formulation of Boundary Value Problems for Elastic
Bodies with Adhesion-Active Surfaces

We consider the classical theory of elasticity for elastic bodies with additional prop-
erties of an adhesion-active surface. We formulate the variational model and believe
that the properties of an elastic body and the properties of the body surface are for-
mally completely determined by the accepted kinematics and the existence of elastic
potentials of the body and its surface.

For the general case under consideration, we should write the following equations
for the potentials energy in the volume V and on the surface F of the elastic body:

2UV = Ci jmn Ri, j Rm,n, 2UF = Ai jmn Ri, j Rm,n (13.1)

In this case, the Lagrange functional is written as

L = A −
˚

UV dV −
∫∫
©UFdF

= A − 1

2

˚
Ci jmn Ri, j Rm,ndV − 1

2

∫∫
© Ai jmn Ri, j Rm,ndF (13.2)

whereA = ˝
PV
i RidV + ∫∫© PF

i RidF is the work of predetermined forces dis-
tributed in the volume and on the surface of the body, Ri are displacement vector
components, Ri, j are distortion tensor components,Ci jmn , Ai jmn are tensors of elastic
moduli in volume and on the surface of the body.

The physical relationships for the stresses defined in the body volume σi j and
on the body surface ai j are obviously determined by the extended Green formulas.
Given (13.1) and (13.2), we get

σi j = ∂UV

∂Ri, j
= Ci jmn Rm,n, ai j = ∂UF

∂Ri, j
= Ai jmn Rm,n (13.3)

Obviously, for elastic tensors Ci jmn , Ai jmn in (13.3), it is imperative that the
symmetry conditions are satisfied

Ci jmn = Cmni j , Ai jmn = Amni j (13.4)

In the volume of an elastic isotropic body, the elasticmodulus tensorCi jmn satisfy-
ing the symmetry conditions (13.4) is determined by twomodules and has a classical
form, Ci jmn = λδi jδmn +μ(δimδ jn + δinδ jm), where λ,μ are Lame coefficients. The
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tensor of the elastic moduli of a body surface Ai jmn is defined on the surface and has
a more general form, since the surface properties should obviously be considered
different in the normal direction ni and in the direction tangent to the body surface.
Therefore, the surface of the body cannot be considered isotropic, and the structure
of the tensor of elasticity moduli of surface interactions Ai jmn should be studied
additionally.

Indeed, we select the normal to the surface ni and the “flat” delta Kronecker
tensor δ∗

mn , which is an isotropic tensor of the second rank, in a tangent plane at
every point on the surface, δ∗

mn = δmn − nmnn, δ∗
mnnm ≡ 0. It is easy to see that

the transversely isotropic tensor of the elastic moduli of the body surface Ai jmn ,
satisfying the fundamental conditions of symmetry (13.4), can be represented as an
expansion in the following basic tensors of the fourth rank. Moreover, in the general
case, there are only eight basic tensors of the fourth rank composed of tensors of
the second rank of the form δ∗

mn and (nin j ), ensuring the fulfillment of symmetry
conditions (13.4):

δ∗
i jδ

∗
mn, δ

∗
imδ∗

jn, δ
∗
inδ

∗
jm, (nin jδ

∗
mn + nmnnδ

∗
i j ), (ninnδ

∗
jm + nmn jδ

∗
in),

ninmδ∗
jn, δ

∗
imn jnn, nin jnmnn

As a result, in the general case, the tensor Ai jmn is determined with an accuracy
of eight constants

Ai jmn = λFδ∗
i jδ

∗
mn + (μF + χ F )δ∗

imδ∗
jn + (μF − χ F )δ∗

inδ
∗
jm

+ αF (nin jδ
∗
mn + nmnnδ

∗
i j ) + βF (ninnδ

∗
jm + nmn jδ

∗
in)

+ δFninmδ∗
jn + BFδ∗

imn jnn + AFnin jnmnn (13.5)

Note that the structure and general form of the tensor of adhesion interaction
moduli in the gradient theory of elasticity for bodies with a smooth surface Ai jmn

is completely determined by the structure of the basic tensors of the fourth rank
composed of tensors of the second rank of the form δ∗

mn and (nin j ). Therefore, the
problem of constructing a complete sequence of such basic tensors is important. In
the fundamental work [8], a system of basic tensors is constructed for the general case
of higher-gradient surface elasticity theory for bodies with a non-smooth surface.

Suppose, for simplicity, that a body with a smooth surface is considered, and
no restrictions are imposed on adhesion stresses and adhesion elastic moduli. Then,
in accordance with the Lagrange principle, a mathematical model of the theory of
elasticity with an adhesion-active surface (boundary value problem) in the general
case is completely determined by the following variational equality obtained based
on the relations (13.1)–(13.4):

δL = δA −
˚

σi jδRi, jdV −
∫∫
© ai jδRi, jdF
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=
˚

(σi j, j + PV
i )δRidV

+
∫∫
©[(PF

i − σi j n j + ai j,pδ
∗
pj )δRi + (−ai j n j )δ(Ri,pn p)]dF = 0 (13.6)

An analysis of variational Eq. (13.6) shows that the boundary value problem
contains six boundary conditions at each non-singular point on the surface, three of
which are associated only with adhesion stresses ai j that perform work on normal
derivatives of displacements. At the same time, in the classical theory of elasticity,
boundary conditions are determined only by the work of stresses and only at possible
displacements Ri .

Therefore, the boundary value problem for the classical theory of elasticity is
redefined, since for it a correctly formulated system of boundary conditions contains
only three boundary conditions at each non-singular point on the surface.

In addition,wenote that even if, for some reason, the last term in (13.5) is excluded,
the boundary value problem resulting from the variational Eq. (13.5) and the govern-
ing relations (13.3) lead to an incorrect boundaryvalue problem from thepoint of view
of the classical solution [15, 29]. Indeed, following (13.6) and (13.3), we obtain that
the boundary condition contains the second derivatives of the displacements, while
the Lame operator (the resolving equation) is also a second-order operator.

There are two ways to remove this contradiction. First, in order to remove this
contradiction, one can require that on the surface of classical elastic bodies force
factors with variations δ Ṙi , (Ṙi = Ri,pn p) always be zero. This requirement is
equivalent to the following conditions on the tensor of adhesion modules (13.5):

Ai jmnn j = αFnmδ∗
in + βFniδ

∗
mn + BFδ∗

imnn + AFninmnn ≡ 0 (13.7)

Then, the adhesion module tensor (13.5) has the following most general structure
for the surface bounding the classical medium:

Ai jmn = λFδ∗
i jδ

∗
mn + μF (δ∗

imδ∗
jn + δ∗

inδ
∗
jm)

+ χ F (δ∗
imδ∗

jn − δ∗
inδ

∗
jm) + δFninmδ∗

jn (13.8)

Based on (13.5)–(13.8), we can say that the “classical surface” of a body generally
has four adhesion moduli λF , μF , χ F , δF .

The second way is connected with the introduction of the gradient theory of
elasticity in the body volume with potential energy of the form

2UV = Ci jmn Ri, j Rm,n + Ci jkmnl Ri, jk Rm,nl

where Ci jkmnl is the tensor of the elastic moduli.
In the gradient theory of elasticity, the force model is determined by Cauchy

stresses σi j and moment stresses μi jk-double stresses. For gradient elasticity, the
constitutive equations have the form
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σi j = ∂UV

∂Ri, j
= Ci jmn Rm,n, μi jk = ∂UV

∂Ri, jk
= Ci jkmnl Rm,nl (13.9)

For gradient elasticity, the correct variational formulation for bodies with an
adhesion-active surface iswritten based on theLagrange principle taking into account
relations (13.9) and has the form:

δL = δA −
˚

(σi jδRi, j + μi jkδRi, jk)dV −
∫∫
© ai jδRi, jdF

=
˚

[(σi j − μi jk,k), j + PV
i ]δRidV

+
∫∫
©{[PF

i − (σi j − μi jk,k)n j + (μi jknk + ai j ),pδ
∗
pj ]δRi

− (μi jknk + ai j )n jδ(Ri,pn p)}dF = 0 (13.10)

Obviously, the variational model of the gradient theory of elasticity for bodies
with an adhesion-active surface (13.10) and the boundary value problem as a whole
is consistent and mathematically correct for gradient elasticity in the body volume.

Note that the formulated theory is not completely gradient, because the density
of potential energy of the surface (1) is a quadratic form only of distortions, defined
on the surface, and does not contain the quadratic form of the second derivatives
(curvatures). A surface which properties are determined by the conventionally clas-
sical density of potential energy, which depends only on distortions with a tensor of
adhesion elastic moduli of the fourth rank, will be called ideal. On the other hand,
the surface determined by the density of the gradient potential energy, which is the
quadratic form of the terms of distortions and derivatives of distortions with the ten-
sor of adhesion modules of the fourth and sixth ranks, will be called the gradient
surface. An example of a gradient model of adhesion is the Steinberg–Ogden model
[6, 7].

13.3 Qualitative Analysis of the Elastic Moduli of Surface
Interactions

An analysis of variational Eq. (13.6) shows that the boundary value problem for
gradient elasticity is correct, since the formulated system of boundary conditions
contains six pairs of alternative boundary conditions at each non-singular point on
the surface.We note that constants in condition (13.7), which determine the structure
of adhesion tensors moduli for surfaces, distinguish a group of adhesionmodules that
can appear only on surfaces of gradient media inMindlin–Toupin models. Therefore,
the following lemma is proved: “Adhesion modules αF , βF , BF , AF are adhesion
modules specific only to gradient theories of elasticity”.
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Let us consider in more detail the structure of the potential energy of adhesion
on the surface in gradient elasticity. We represent the vector of displacements Ri on
the surface of the body in the form of decomposition into the tangent ri = R jδ

∗
i j and

normal components R = R jn j :

Ri = ri + Rni (13.11)

Then, the potential energy of adhesion can be represented as:

1

2

∫∫
© Ai jmn Ri, j Rm,ndF

= 1

2

∫∫
©[λFri,i r j, j + 2αF Ṙrm,m + AF Ṙ Ṙ

+ 2μF (ri, j + r j,i )(ri, j + r j,i ) + 2χ F (ri, j − r j,i )(ri, j − r j,i )

+ δF R,i R,i + 2βF R,i ṙi + BFṙi ṙi ]dF (13.12)

It follows from (13.12) that the potential adhesion energy determined by the
normal derivatives Ṙ, (Ṙ = R,pn p), and ṙi in (13.12) depends on the adhesion
modules AF and BF . Adhesion modules αF and βF in bilinear terms in the potential
adhesion energy determine the couple interaction energy.

Let us conditionally define “the surface of a gradient body” as the surface on
which the quadratic form of the normal derivatives of the surface of the displace-
ment vector determines its gradient adhesion properties. Then, the surface on which
the considered potential adhesion energy is determined can be represented as two
surfaces immersed one in another. The first surface is the “surface of the classical
body.” Its adhesion properties are generally determined through four adhesion mod-
uli λF , μF , χ F , δF . The second surface is the “surface of the gradient body.” Its
adhesion properties are determined in the general case through two adhesion moduli
AF , BF . In addition, these two surfaces interact with each other. This interaction
is determined by the adhesion modules αF and βF , as well as the corresponding
interaction energy.

Indeed, we bring the potential adhesion energy to the canonical form:

1

2

∫∫
© Ai jmn Ri, j Rm,ndF

= 1

2

∫∫
©

{(
λF − αFαF

AF

)
ri,i r j, j + AF

(
Ṙ + αF

AF
ri,i

)(
Ṙ + αF

AF
r j, j

)

+ 2μF (ri, j + r j,i )(ri, j + r j,i ) + 2χ F (ri, j − r j,i )(ri, j − r j,i )

+
(

δF − βFβF

BF

)
R,i R,i + BF

(
ṙi + βF

BF
R,i

)(
ṙi + βF

BF
R,i

)}
dF (13.13)

From (13.13), it follows that if there is no interaction energy between the surfaces
of a classical and gradient body, the potential adhesion energy can be represented as
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a direct sum of the potential energies of each surface:

1

2

∫∫
© Ai jmn Ri, j Rm,ndF

= 1

2

∫∫
© {λFri,i r j, j + 2μF (ri, j + r j,i )(ri, j + r j,i )

+ 2χ F (ri, j − r j,i )(ri, j − r j,i ) + δF R,i R,i

+ AF Ṙ Ṙ + BFṙi ṙi }dF (13.14)

The right part of (13.14) contains the sum of the four terms of the potential
adhesion energy of the classical surface and the sum of two terms of the potential
adhesion energy of the surface of the gradient body. Comparing (13.13) and (13.14),
it can be noted that in the presence of adhesion interaction between the surfaces
of a classical and gradient body, the potential energy of the surface of a classical
body is always less than the same potential energy in the presence of interaction.
At the same time, the potential adhesion energy of the gradient body can be either
greater or less than the corresponding energy in the absence of adhesion interaction
between the surfaces. With positive αF and βF , potential energy of the surface of
the gradient body is greater, and with negative αF and βF , it is less than in the case
adhesion-passive surfaces.

We give a physical interpretation of all adhesion elasticity moduli. The physical
meaning of each term in the expression of the potential adhesion energy (13.12)
is obvious. The term λFri,i r j, j determines the energy of the surface tension of the
surface of a classical body, since deformations ri,i determine a local change in the
surface area, and the corresponding force factor in the presence of interaction with
the surface of the gradient body λFri,i + αF Ṙ determines the generalized surface
tension. The term AF Ṙ Ṙ determines the strain energy of the normal to the surface
of the gradient body, and the corresponding force factor αFri,i + AF Ṙ determines
the generalized adhesion pressure.

The bilinear term 2αF Ṙrm,m determines the adhesion interaction energy of the
surfaces of the classical and gradient medium through normal force factors, the
kinematic variables of which are the local change in area ri,i and the deformation Ṙ
of the tensile/compression normal to the surface. The term 2μF (ri, j +r j,i )(ri, j +r j,i )
determines the shear strain energy in the tangent plane to the surface of a classical
body. The term 2χ F (ri, j − r j,i )(ri, j − r j,i ) determines the energy of local rotations
in a tangent plane to the surface of a classical body. The term δF R,i R,i determines
the energy of local surface bends (rotation of a linear surface element from a tangent
plane to the surface). In [10, 20], the adhesionmodule δF for liquidswas treated as the
Laplace constant for capillary pressure. The corresponding force factor determines
the generalized adhesion shear stress δF Ri + βF ṙi . The term BFṙi ṙi determines the
energy of rotation of the normal to the surface (the elementary shift of the normal
relative to the linear surface element of the classical body). The corresponding force
factor δF ṙi + BF Ri determines the generalized adhesion shear stress in the presence
of adhesion interaction between the surfaces of a classical and gradient body. The



13 Extended Model of Surface-Related Effects … 207

bilinear term 2βF Ri ṙi determines the adhesion interaction energy of the surfaces of
the classical and gradient medium through tangential force factors whose kinematic
variables are elementary rotations of the normal ṙi and the linear surface element R,i .

Further, in this paper, we consider an elastic body with a smooth surface and
restrict ourselves to a consideration of the “ideal” theory of surface elasticity for the
classical (first-order) continuum theory of elasticity in the bulk.

13.4 Extended Continual Adhesion Models of Classical
Body

Properties of symmetry and material indifference are important when we discuss
the governing equations for the model of surface elasticity [5]. Indeed, the require-
ments for satisfying the conditions of symmetry and material-indifference condi-
tions can lead to significant restrictions for the physical model of surface elas-
ticity. The properties of a classical linearly elastic body with a symmetric stress
tensor in the volume are completely determined by the potential energy density
2UV = Ci jmn Ri, j Rm,n,Ci jmn = λδi jδmn + μ(δimδ jn + δinδ jm). It is obvious that in
classical elastic bodies, where the surface of the body does not have any additional
properties, the symmetry conditions and material-indifference conditions are satis-
fied. We consider a model of adhesive interactions of classical elastic bodies with a
symmetric stress tensor, for which the general form of the elastic modulus tensor has
the form (13.8) and in the general case is determined through four physical param-
eters λF , μF , χ F , δF . For linear elastic bodies with an adhesive-active surface, the
problem of symmetry and material indifference should be considered taking into
account the fact that the surface of the body has its own properties different from the
properties of an elastic body in the bulk. In the following sections of the paper, we
will consider the question of whether the symmetry conditions of the stress tensor
of an elastic body and the material indifference of an elastic body with an adhesion-
active surface lead to additional restrictions for the tensor of adhesion interaction
moduli (13.8).

We consider classical bodies, which are described by the classical theory of elas-
ticity and propose that their additional surface adhesion properties are defined by the
common model (13.8). The model (13.8) follows directly from tensor properties of
transversely isotropic tensor of adhesion interactions Ai jmn and gives the classical
Gurtin–Murdoch theory of adhesion interaction if χ F �= 0, δF �= 0. Let us discuss
possibility and conditions of existence of such generalization. In the fundamental
work, it was noted that the symmetry conditions frame-indifference symmetry must
be considered when formulate the theory of adhesion. We will consider both of these
problems, symmetry and material objectivity, in connection with the discussion of
the generalized adhesion model.
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13.4.1 Symmetry Conditions

Let us consider the tensor Ai jmn (13.8). It is easy to see that this tensor becomes fully
symmetric tensor if the following conditions are satisfied

(Ai jmn + A jimn − Ai jnm − A jinm)/4 = 0

(Ai jmn − A jimn + Ai jnm − A jinm)/4 = 0

(Ai jmn − A jimn − Ai jnm + A jinm)/4 = 0 (13.15)

Using the definition of the tensor Ai jmn for the classical media (13.8), it can be
checked that conditions (13.15) are satisfied only when

χ F = 0, δF = 0 (13.16)

In other words for Gurtin–Murdoch adhesion theory, the tensor Ai jmn is fully
symmetric. First, it seems that in symmetric theory of elasticity, all tensors in consti-
tutive equations must be also symmetric. But for adhesion model, the full symmetry
conditions (13.15) are redundant conditions. Indeed if we introduce weak symmetry
conditions

ai j�i jknk = 0 (13.17)

then we will require stress symmetry only in the tangent plane in the elastic body,
which is sufficient for the model of adhesion from a physical point of view.

The symmetry of the stress tensor in the volume is determined by the tensor of
elastic moduli Ci jmn = λδi jδmn + μ(δimδ jn + δinδ jm). Condition (13.17) written
using equality (13.8) obviously leads only to the following condition

χ F = 0

and does not give any restriction on the physical constant δF [see Eq. (13.16)].

13.4.2 Frame-Indifference Condition

Let us consider the frame-indifference condition. The following theorem holds.

Theorem Necessary and sufficient conditions for physical objectivity are

– the condition of global equilibrium:
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Pi =
∫

V

PV
i dV +

∫

F

PF
i dF = 0

Mm =
∫

V

PV
i (xn − x0n )�mnidV+

∫

F

PF
i (xn − x0n )�mnidF = 0 (13.18)

– equality to zero of the global torsional stiffness tensor:

Epq =
∫

V

(Ci jmn �pji�qnm)dV +
∫

F

(Ai jmn �pji�qnm)dF = 0 (13.19)

– and isoperimetric conditions:

∫

V

Ci jmn(rm,n�pji + ri, j�pnm)dV

+
∫

F

Ai jmn(rm,n�pji + ri, j�pnm)dF (13.20)

Proof Let us write the generalized Cesaro’s formulas as the following:

Ri = R0
i + ω0

m(xn − x0n )�mni + ri (13.21)

Substituting displacements Ri into Lagrangian (13.2) with the aid of (13.21) we
receive after some transformation:

L = L̃ + Pi R
0
i + Mmω0

m

− 1

2

⎡
⎣

∫

V

(Ci jmn�pji �qnm)dV +
∫

F

(Ai jmn�pji �qnm)dF

⎤
⎦ω0

pω
0
q

+
⎡
⎣

∫

V

Ci jmn(rm,n�pji + ri, j�pnm)dV +
∫

F

Ai jmn(rm,n�pji + ri, j�pnm)dF

⎤
⎦ω0

q

(13.22)

Thus, we can see from (13.22) that the sufficient conditions for the invariance of
the Lagrangian with respect to translations R0

i and rotations ω0
m of rigid body lead

to the conditions:

Pi = 0, Mm = 0 (13.23)
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Epq =
∫

V

(Ci jmn �pji�qnm) +
∫

F

(Ai jmn �pji�qnm)dF = 0 (13.24)

∫

V

Ci jmn(rm,n�pji + ri, j�pnm)dV = +
∫

F

(Ai jmn(rm,n�pji + ri, j�pnm)dF = 0)

(13.25)

The necessary conditions for the invariance of the Lagrangian are defined by the
following variational equation:

PiδR
0
i + [Mq − Epqω

0
p +

∫

V

Ci jmn(rm,n�pji + ri, j�pnm)dV

+
∫

F

Ai jmn(rm,n�pji + ri, j�pnm)dF]δω0
q = 0

The last equations show that the necessary conditions coincide with Eqs. (13.23)–
(13.25). The theorem is proved.

Let us consider (13.24). For the symmetric classical theory of elasticity, this
equation can be written in the form

∫

F

(Ai jmn�mnq)dF = 0 (13.26)

Taking into account the definition of adhesion moduli (13.8), we can write

∫

F

Ai jmn�qnm �pji dF

=
∫

F

[χ F (δ∗
imδ∗

jn − δ∗
inδ

∗
jm) + δFninmδ∗

jn]�qnm �pji dF

= −4
∫

F

χ Fn pnqdF+
∫

F

δFδ∗
pqdF (13.27)

Similarly, we consider Eq. (13.25) for the symmetric classical theory of elasticity.
Assuming Mi = 0, we can transform one to the following view

∫

V

Ci jmn(rm,n�pji + ri, j�pnm)dV +
∫

F

Ai jmn(rm,n�pji + ri, j�pnm)dF

= 8
∫

F

χ F (−ri, j�i jana/2)npdF + 2
∫

F

δF (nmrm,n�pni ni )dF (13.28)
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Thus, we can conclude that following Eqs. (13.23)–(13.25) and (13.27)–(13.28),
the necessary and sufficient conditions for the invariance of the Lagrangian are:

Pi = 0, Mi = 0, χ F = 0, δF = 0

It seems now that symmetry conditions (13.17) and frame-indifference conditions
lead to the only Gurtin–Murdoch continuum model [see Eq. (13.16)].

13.4.3 Weak Frame-Indifference Condition

The dependence of stresses on translations R0
i and rotationsω0

k of the coordinate sys-
tem follows from the existence of a bilinear term containing local ωk = −ri, j�i jk/2
and global rotations ω0

k in the potential energy (13.22):

−1

2

⎡
⎣

∫

V

Ci jmn
(
rm,n�pji + ri, j�pnm

)
dV +

∫

F

Ai jmn
(
rm,n�pji + ri, j�pnm

)
dF

⎤
⎦ω0

p

= −
⎡
⎣4

∫

F

χ F
(−ri, j�i jana/2

)
npdF +

∫

F

δF
(
nmrm,n�pni ni

)
dF

⎤
⎦ω0

p

(13.29)

Note that the term − 1
2 Epqω

0
pω

0
q in (13.22) does not change the constitutive

equations for the stresses (Green’s relations) and can be omitted.
Let us consider separately the bilinear term from local and global rotations (see

(13.22) and (13.29) [Li jpri, j ]ω0
p where

[Li jpri, j ] = 4
∫

F

χ F (−ri, j�i jana/2)npdF+
∫

F

δF (niri, j�pjbnb)dF (13.30)

Then, let us introduce the “weak” criterion of physical objectivity as a condition
under which this bilinear term in potential energy is equal to zero.

[Li jpri, j ] = 0 (13.31)

Note that, on the one hand, equality to zero of a linear combination of surface
integrals (13.30) and (13.31) can be represented as a condition on the elastic moduli
χ F = 0, δF = 0. On the other hand, the equality (13.31) can be considered as an
integral requirement for the desired field of displacements (isoperimetric conditions).
In a linear statement, isoperimetric conditions can always be satisfied both before and
after solving the boundary value problem with respect to the desired displacement
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field. For this, one should pay attention to the fact that an arbitrary displacement field
can always be represented as a direct sum of a displacement field r̃i satisfying the
condition (13.31) and a displacement field of an absolutely rigid body R0

i , ω
0
m :

ri = R0
i + ω0

m(xn − x0n )�mni + r̃i (13.32)

Let us act on Eq. (13.32) by the integro-differential operator Li jp and take into
account that by definition Li jp(r̃i, j ) = 0. Then, we get

[Li jpri, j ] = Gpqω
0
q (13.33)

where Gpq = δF Fδpq − (4χ F + δF )
∫
F n pnqdF .

Let us find ω0
q from the Eq. (13.33) and substitute them to (13.32). As a the result,

we obtain that

r̃i = (ri − R0
i ) − G−1

mp[Labpra,b](xn − x0n )�mni , R
0
i = constant (13.34)

and

r̃i, j = ri, j − G−1
kp [Li jpri, j ]�k ji

The last equation shows thatwe can always separate fromanyfield of deformations
the part r̃i, j that does not depend on the rotation ω0

q of the coordinate system.
Note that if Gpq = 0 (when χ F = 0, δF = 0), the weak frame-indifference

condition satisfies automatically. But on the other side, the weak frame-indifference
condition can be satisfied for any values of χ F , δF (Gpq �= 0).

In other words, if the conditions of global equilibrium are satisfied Pi = 0, Mm =
0 and solution of the boundary value problem of the elasticity is considered in the
subspace (13.34), then the weak frame-indifference conditions are satisfied.

As a result, the condition ofmaterial objectivity does not introduce any restrictions
on the values of adhesion elasticity moduli λF , μF , δF :

Ai jmn = λFδ∗
i jδ

∗
mn + μF (δ∗

imδ∗
jn + δ∗

inδ
∗
jm) + δFninmδ∗

jn,

ai j = ∂UF/∂Ri, j = (λF + μF ) · Rn,mδ∗
nmδ∗

i j

+ 2μF · (Rn,mδ∗
inδ

∗
jm − (1/2)Rn,mδ∗

i jδ
∗
nm) + δF · Rn,mnnδ

∗
mjni

13.5 Surface Waves Related to the Nature of Adhesion

We consider a classical elastic body with an adhesion-active surface characterized
by adhesion modules λF , μF , δF and briefly study the five types of surface waves.
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The first three of these types of waves are associated separately with each of the three
components of the surface displacement vector. The fourth and fifth types of surface
waves are associated, respectively, with the field of local changes in the surface area
and with the field of its local rotations with a vector that coincides with the normal
to the surface.

Note that this work does not take into account the phenomena associated with
the formation of the interface between bodies and the boundary of an elastic body.
This non-trivial problemmay turn out to be important during the modeling of surface
interactions in dynamic and coupled thermodynamic processes. These questionswere
studied in an interesting paper [9].

13.5.1 Longitudinal Surface U-waves

Let the displacement vector in the equation of motion has only one component
directed parallel to the half-space surface in the direction of the unit vector Xi of the
OX-axis: Ri = U (x, z, t)Xi . Then, the system of motion equations is reduced to a
single equation:

(2μ + λ)
∂2U

∂x2
+ μ

∂2U

∂z2
− ρ

∂2U

∂t2
= 0 (13.35)

For this particular case, we consider a surface wave, setting

U = e−az+i(kx−ωt) (13.36)

Here, as accepted, k is the wave number, k = 1/ l, l is the wave length, ω is the
circular frequency, a is the attenuation coefficient along the normal to the surface, t is
time, and z is the coordinate counted in the direction of the normal to the half-surface
z ∈ [0,∞).

The corresponding surface wave (13.35) and (13.36) will be called the surface
U-wave. The characteristic equation for this type of wave immediately follows from
Eqs. (13.35) and (13.36):

−(2μ + λ)k2 + μa2 + ρω2 = 0 (13.37)

Equality (13.37) gives the definition of the circular frequency ω in terms of the
wave number k and attenuation coefficient a:

ω2 = (2μ + λ)

ρ
k2 − μ

ρ
a2 (13.38)

Consider the boundary condition on the flat surface of a semi-infinite medium.
Taking into account (13.6), we have
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(PF
i − σi j n j + ai j, j )Xi = −μ

∂U

∂z
+ (2μF + λF )

∂2U

∂x2
= 0 (13.39)

Taking into account (13.36), from the boundary condition (13.39), we obtain the
relation for determining the coefficient of wave attenuation in depth:

a = (2μF + λF )

μ
k2 (13.40)

Note that in the absence of adhesion, it immediately follows from (13.40) that
a = 0, and the dispersion relation (13.37) formally reduces into the dispersion law
for longitudinal waves.

Substituting (13.40) into (13.37), we obtain the following expression for the
circular frequency ω of the U-wave:

ω = cLk

√
1 − (2μF + λF )2

μ(2μ + λ)
k2 = cLk

√
1 − (klU )2 (13.41)

Here the following notation is introduced:

lU = (2μF + λF )√
μ(2μ + λ)

(13.42)

The parameter lU [see (13.42)] depends only on the physical characteristics of
the continuum under consideration with an adhesion-active surface, and therefore is
a characteristic U-wave length. It is important to note that if (2μF + λF ) = 0, then
only the trivial solution of Eqs. (13.37) and (13.39) takes place. Therefore, in the
absence of adhesion, surface U-waves do not exist. This type of wave is predicted
only if there are adhesion properties of the surface such as surface tension, when
(2μF + λF ) �= 0.

13.5.2 Transverse Surface V-Waves

Similarly, we consider the case of transverse surface V-waves. Indeed, suppose that
in the equations of motion, it is kept only one component of displacements, directed
along the unit vector Yi of the OY-axis: Ri = V (x, z, t)Yi , and the corresponding
type of surface waves is considered

V = e−az+i(kx−ωt) (13.43)

Then, there remains the only equation of motion that determines the V-wave:
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μ(V,xx + V,zz) − ρV̈ = 0 (13.44)

In this case, the boundary condition on the flat surface of a semi-infinite medium
is written using (13.6) and has the form

(PF
i − σi j n j + ai j, j )Yi = −μ

∂V

∂z
+ μF ∂2V

∂x2
= 0 (13.45)

Given the Eqs. (13.43)–(13.45), we write the characteristic equation:

μ(−k2 + a2) + ρω2 = 0 (13.46)

and the equation relating the wave attenuation parameter from the boundary a and
the wave number k

μa − μFk2 = 0 (13.47)

Excluding the parameter a from (13.46) using (13.47), we get:

ω = k

√
μ

ρ

√
1 − k2

(
μF

μ

)2

= cT k
√
1 − (lV k)2, a = k2

μF

μ
(13.48)

In expression (13.48), lV is the characteristic V-wavelength,

lV = μF

μ
(13.49)

13.5.3 Transverse SurfaceW-Waves

Now let the displacement vector has only one component directed along the unit
vector Zi , parallel to the OZ-axis: Ri = W (x, z, t)Zi . The OZ-axis is parallel to the
normal to the half-surface. Assume that

W = e−az+i(kx−ωt) (13.50)

This case corresponds to transverse surface W-waves. The motion equation and
the boundary condition on the half-space surface forW-waves are written in the form

μ
∂2W

∂x2
+ (2μ + λ)

∂2W

∂z2
− ρ

∂2W

∂t2
= 0
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(PF
i − σi j n j + ai j, j )Zi = −(2μ + λ)

∂W

∂z
+ δF

∂2W

∂x2
= 0

It is easy to verify that for the transverse surface W-waves under consideration
(13.50), the last equations lead to the dispersion law in the form

a = k2
δF

(2μ + λ)

ω = cT k

√[
1 − (δF )2

μ(2μ + λ)
k2

]
= cT k

√
[1 − (lW k)2]

The characteristic length lW of the adhesion W-wave has following view:

lW = δF√
μ(2μ + λ)

13.5.4 Surface Θ-Waves and Plane Surface Ω-Waves

Finally, we consider two more types of surface waves corresponding to a relative
change in volume in the plane parallel to the surface of the half-space and rotation
in this plane, i.e., wave with a pseudorotation vector having a projection only on
the OZ-axis. We call plane surface waves �-waves if they are characterized by two
components of displacements lying in a plane parallel to the surface of the half-space:

Ri = ϕ, j (δi j − Zi Z j ) (13.51)

where ϕ is scalar potential. In this case, as follows from (13.51), the motion equation
can be written only with respect to the change in volume �(x, z, t) = Ri,i =
ϕ,i j (δi j − Zi Z j ) = ∇2ϕ:

(2μ + λ)∇2� − ρ�̈ = 0 (13.52)

The boundary condition on the flat surface of a semi-infinite continuum for �-
wave with kinematics (13.51) has the form:

(PF
i − σi j n j + ai j, j ),kδ

∗
ki = −μ

∂�

∂z
+ (2μF + λF )

∂2�

∂x2
= 0 (13.53)

The solution to the problem (13.51)–(13.53) is constructed in the form of a plane
wave:
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� = e−az+i(kx−ωt)

Using the procedure described above, we obtain the following dispersion law for
the surface �-wave

a =
(
2μF + λF

)
μ

k2

ω = cLk

√
1 − (2μF + λF )2

μ2
k2 = cLk

√
1 − (l�k)2

(13.54)

In a dispersion law (13.54), the characteristic length of the adhesion �-wave is
equal to:

l� = 2μF + λF

μ

We also consider plane surface  waves whose kinematics is determined for the
projection of the pseudovector of rotations on the OZ-axis

(x, z, t) = −Ri, j�i jk Zk/2 = −ψ,mj Zn�mni �i jk Zk/2

= −ψ,mj (δmj − Zm Z j )/2

which are described by the equation

 = e−az+i(kx−ωt) (13.55)

In this case, the motion equation and the boundary condition on the surface of the
half-space have the form

μ

(
∂2

∂x2
+ ∂2

∂z2

)
− ρ

∂2

∂t2
= 0

(PF
m − σmjn j + amj, j ),n�mnknk = −μ

∂

∂z
+ μF ∂2

∂x2
= 0

Taking into account (13.55), it easy to find that the last equations gave the
dispersion law in the following form:

ω = cT k
√
1 − (lk)2, a = μF

μ
k2, l = μF

μ

Note that for all types of considered plane waves for adhesion-active media,
the waves exist only in the presence of the corresponding adhesion properties: The
presence of surface tension (2μF + λF ) �= 0 determines the existence of U-waves
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and �-waves, and shear adhesion properties μF �= 0 determine the existence of
V-waves and �-waves. Finally, transverse surfaceW-waves exist only if δF �= 0.

13.6 Conclusion

The paper considers media with adhesion-active properties. The structure of adhe-
sion modules that determine the mechanical adhesion properties of surfaces in the
framework of continuum adhesion models has been studied. It is shown that classical
adhesion media models are modeled using a wider set of physical constants than it is
prescribed by the Gurtin–Murdoch model. The surface waves on the adhesion-active
surface. There are predicted five types of adhesion waves, which cannot be deter-
mined for adhesion-passive surfaces of classical media, and dispersion laws for each
type are constructed.
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Generalized Space–Time Fractional
Dynamics in Networks and Lattices
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Abstract We analyze generalized space–time fractional motions on undirected net-
works and lattices. The continuous-time randomwalk (CTRW) approach ofMontroll
andWeiss is employed to subordinate a space fractionalwalk to a generalization of the
time fractional Poisson renewal process. This process introduces a non-Markovian
walk with long-time memory effects and fat-tailed characteristics in the waiting
time density. We analyze ‘generalized space–time fractional diffusion’ in the infi-
nite d-dimensional integer lattice Z

d . We obtain in the diffusion limit a ‘macro-
scopic’ space–time fractional diffusion equation. Classical CTRW models such as
with Laskin’s fractional Poisson process and standard Poisson process which occur
as special cases are also analyzed. The developed generalized space–time fractional
CTRW model contains a four-dimensional parameter space and offers therefore a
great flexibility to describe real-world situations in complex systems.
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Keywords Renewal process · Continuous-time random walk · Fractional Poisson
process · Generalized fractional Poisson process · Fractional dynamics · Networks
and lattices · Space–time fractional diffusion · Fractional calculus · Fat-tailed
waiting time density · Power laws · Diffusion limit

14.1 Introduction

Random walk models are considered to be the most fundamental approaches to
describe stochastic processes in nature. Hence, applications of random walks cover
a very wide area in fields as various as random search strategies, the proliferation
of plant seeds, the spreading phenomena of pandemics or pollution, chemical reac-
tions, finance, population dynamics, properties of public transportation networks,
anomalous diffusion and generally such approaches are able to capture empirically
observed power law features in ‘complex systems’ [1–7]. On the other hand, the
emergence of ‘network science’ and especially the study of random walks on net-
works have become a major subject for the description of dynamical properties in
complex systems [8–10].

In classical random walks in networks, the so-called normal random walks, the
walker in one step can reach only connected next neighbor sites [11, 12]. To the
class of classical Markovian walks refers continuous-time random walks (CTRWs)
where the walker undertakes jumps from one node to another where the waiting time
between successive jumps is exponentially distributed leading to Poisson distributed
numbers of jumps. The classical CTRW models with Poisson renewal process are
able to capture normal diffusive properties such as the linear increase of the variance
of a diffusing particle [6]. However, these classical walks are unable to describe
power law features exhibited by many complex systems such as the sublinear time
characteristics of the mean-square displacement in anomalous diffusion [5]. It has
been demonstrated that such anomalous diffusive behavior is well described by a
random walk subordinated to the fractional generalization of the Poisson process.
This process which was to our knowledge first introduced by Repin and Saichev
[13] was developed and analyzed by Laskin who called this process the fractional
Poisson process [14, 15]. Laskin’s fractional Poisson process was further generalized
in order to obtain greater flexibility to adopt real-world situations [16–18]. We refer
this renewal process to as ‘generalized fractional Poisson process’ (GFPP). Recently,
we developed a CTRW model of a normal random walk subordinated to a GFPP
[17, 18].

The purpose of the present paper is to explore space fractional random walks that
are subordinated to a GFPP. We analyze such motions in undirected networks and as
a special application in the multidimensional infinite integer lattice Zd .

14.2 Renewal Process and Continuous-Time RandomWalk

In the present section, our aim is to give a brief outline of renewal processes (or also
referred to as ‘compound processes’) and closely related to the ‘continuous-time
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random walk (CTRW)’ approach which was introduced byMontroll andWeiss [19].
For further outline of renewal theory and related subjects, we refer to the references
[2, 4, 19–22]. It is mention worthy that we deal in this paper with causal generalized
functions and distributions in the sense of Gelfand and Shilov [23].

We consider a sequence of randomly occurring ‘events’. Such events can be for
instance the jumps of a diffusing particle or failure events in technical systems. We
assume that the events occur at nonnegative random times 0 ≤ t1, t2, . . . tn, . . . ,∞
where t = 0 represents the start of the observation. The random times tk when events
occur are called ‘arrival times.’ The time intervals between successive events Δtk =
tk − tk−1 ≥ 0 are called ‘waiting times’ or ‘interarrival times’ [20]. The random event
stream is referred to as a renewal process if the waiting time Δt between successive
events is an ‘independent and identically distributed’ (IID) random variable which
may take any nonnegative continuous value. This means in a renewal process the
waiting time Δtk between successive events is drawn ∀k from the same waiting
probability density function (PDF) χ(t). This distribution function is called waiting
time distribution function (waiting time PDF) or short waiting time density.1 The
quantity χ(t)dt indicates the probability that an event occurs at time t (within [t, t +
dt]).

We can then write the probability Ψ (t) that the waiting time for the first event is
Δt ≤ t or equivalently that at least one event occurs in the time interval [0, t] as

Ψ (t) =
∫ t

0
χ(τ)dτ, t ≥ 0, lim

t→∞ Ψ (t) = 1 − 0 (14.1)

with the obvious initial condition Ψ (t = 0) = 0. The distribution (14.1) in the
context of lifetime models often is also called ‘failure probability’ [20]. From this
relation follows that the waiting time density χ(t) is a normalized PDF. In classical
renewal theory, the waiting time PDF was assumed to be exponential χ(t) = ξe−ξ t

(ξ > 0) which leads as we will see later to Markovian memoryless Poisson-type
processes.

The waiting time PDF has physical dimension sec−1, and the cumulative distri-
bution (14.1) indicates a dimensionless probability. Another quantity of interest is
the so-called survival probability Φ(0)(t) defined as

Φ(0)(t) = 1 − Ψ (t) =
∫ ∞

t
χ(τ)dτ (14.2)

which indicates the (dimensionless) probability that no event has occurred within
[0, t], i.e., in a randomwalk the probability that the walker at time t still is waiting on
its departure site. Of further interest is the PDF of the arrival of n jump events which
we denote by χ(n)(t) (χ(n)(t)dt being the probability that the nth jump is performed
at time t). Since the events are IID, we can establish the recursion

1In the context of random walks where the events indicate random jumps, we also utilize the notion
‘jump density’ [17].



224 T. M. Michelitsch et al.

χ(n)(t) =
∫ t

0
χ(n−1)(τ )χ(t − τ)dτ, χ(0)(t) = δ(t) (14.3)

and with χ(1)(t) = χ(t). Thus, the PDF for the arrival of the nth event is given by
the n − 1-fold convolution of χ(t) with itself, namely

χ(n)(t) =
∫ ∞

0
. . .

∫ ∞

0
χ(τ1) . . . χ(τn)δ

⎛
⎝t −

n∑
j=1

τ j

⎞
⎠dτ1 . . . dτn, t > 0, n = 1,2, . . .

(14.4)

In this relation, we have assumed that the waiting time PDF is causal; i.e., χ(t)
is nonzero only for t ≥ 0. For an outline of causal distributions and some of their
properties especially Laplace transforms, seeAppendix. The probability that n events
happen within time interval [0, t] then can be written as

Φ(n)(t) = ∫ t
0(1 − Ψ (t − τ))χ(n)(τ )dτ = ∫ t

0Φ
(0)(t − τ)χ(n)(τ )dτ, n = 0, 1, 2, . . .

= ∫ t
0 Φ(n−1)(t − τ)χ(τ)dτ.

(14.5)

This convolution takes into account that the nth event may happen at a time τ < t
and no further event is taking place during t − τ with survival probability Φ(0)(t)
where 0 ≤ τ ≤ t . The probabilities Φ(n)(t) are dimensionless, whereas the PDFs
χ(n)(t) have physical dimension of sec−1. It is especially instructive to consider all
these convolution relations in the Laplace domain. We then obtain with (14.4) the
convolution relation

χ̃ (n)(s) = ∫∞
0 . . .

∫∞
0 χ(τ1) . . . χ(τn)e−stδ

(
t − ∑n

j=1 τ j

)
dτ1 . . . dτn

= {∫∞
0 χ(t)e−stdt

}n = (χ̃(s))n, n = 0, 1, 2, . . .
(14.6)

where χ̃ (0)(s) = 1 indeed recovers χ(0)(t) = δ(t) for n = 0. This relation also shows
that the density of n events χ(n)(t) is normalized, namely

χ̃ (n)(s)|s=0 = 1 (14.7)

as a consequence of the normalization of the waiting time PDF χ(t). Now in view
of (14.1) and (14.2), it is straightforward to obtain the Laplace transforms

Ψ̃ (s) = χ̃(s)

s
, Φ̃(0)(s) = 1

s
− Ψ̃ (s) = 1 − χ̃ (s)

s
(14.8)

thus, the Laplace transform of the probability distribution (14.5) for n events is given
by

Φ̃(n)(s) = Φ̃(0)(s)(χ̃(s))n = 1 − χ̃(s)

s
(χ̃(s))n, n = 0,1,2, . . . (14.9)
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For a brief demonstration of further general properties of renewal processes, it is
convenient to introduce the following generating function

G(t, v) =
∞∑

n=0

vnΦ(n)(t) (14.10)

and its Laplace transform2

G̃(s, v) = L{G(t, v)} =
∞∑

n=0

vnΦ̃(n)(s). (14.11)

Taking into account (14.9) together with the obvious property |χ̃(s)| ≤ |χ̃(s = 0)| =
1 we get for (14.11), a geometric series

G̃(s, v) = 1 − χ̃ (s)

s

∞∑
n=0

vn(χ̃(s))n = 1 − χ̃(s)

s

1

1 − vχ̃(s)
(14.12)

converging for |v(χ̃(s))| < 1, i.e., for |v| ≤ 1 if s �= 0 and |v| < 1 for s = 0. We
directly observe in this relation the normalization condition

L−1{G̃(s, v)|v=1} = L−1

{
1

s

}
= G(t, 1) =

∞∑
n=0

Φ(n)(t) = 1, t > 0. (14.13)

The generating function is often useful for the explicit determination of the Φ(n)(t),
namely

Φ(n)(t) = 1

n!
dn

dvn
G(t, v)

∣∣∣
v=0

= L−1

{
1 − χ̃(s)

s
(χ̃(s))n

}
(14.14)

where the Laplace transform of this relation recovers by accounting for (14.12) again
the expression (14.9).

Of further interest is the expected number of events n̄(t) that are taking place
within the time interval [0, t]. This quantity can be obtained from the relation

n̄(t) =
∞∑

n=0

nΦ(n)(t) = d

dv
G(t, v)

∣∣∣
v=1

= L−1

{
d

dv
G̃(s, v)

∣∣∣
v=1

}

= L−1

{
χ̃ (s)

s(1 − χ̃ (s))

}
.

(14.15)

2We denote f̃ (s) = L{ f (t)} the Laplace transform of f (t), and by L−1{. . .} Laplace inversion, see
Appendix for further details.



226 T. M. Michelitsch et al.

14.3 Poisson Process

Beforewepasson tonon-classicalgeneralizations, it appears instructive to recall some
properties of the classical variant which is the ‘Poisson renewal process’ (compound
Poisson process) [24]. In this process, the waiting time PDF has exponential form

χP(t) = ξe−ξ tΘ(t), ξ > 0 (14.16)

where ξ is a characteristic constantwith physical dimension sec−1 where ξ−1 defines a
characteristic timescale in the process.With theHeavisideΘ(t)-function,we indicate
here that (14.16) is a causal distribution.3 We see that (14.16) is a normalized PDF
which has the Laplace transform

χ̃P(s) = ξ

∫ ∞

0
e−st e−ξ tdt = ξ

ξ + s
(14.17)

where χ̃P(s = 0) = 1 reflects normalization of waiting time PDF (14.16). Then, we
get straightforwardly the failure and survival probabilities, respectively

ΨP(t) = 1 − e−ξ t , Φ
(0)
P (t) = 1 − ΨP(t) = e−ξ t . (14.18)

Also, the generating function can be written down directly as

G̃ P(s, v) = 1

ξ + s

∞∑
n=0

(ξv)n

(ξ + s)n
= 1

ξ(1 − v) + s
R{s} > ξ, (14.19)

thus

G P(t, v) = e−ξ(1−v)t . (14.20)

By using (14.14), we obtain then for the probability of n events

Φ
(n)
P (t) = 1

n!
dn

dvn
e(v−1)ξ t

∣∣∣
v=0

= (ξ t)n

n! e−ξ t , n = 0, 1, 2, . . . , t ≥ 0 (14.21)

which is the Poisson distribution. Therefore, the renewal process generated by an IID
exponentialwaiting timePDF (14.16) is referred to asPoisson renewal process or also
compound Poisson process. This process is the classical proto-example of renewal
process [20, 24] (and see the references therein). We further mention in view of Eq.
(14.15) that the average number of events n̄(t) taking place within [0, t] is obtained as

n̄ p(t) = d

dv
G P(t, v)

∣∣∣
v=1

= d

dv
e(v−1)ξ t

∣∣∣
v=1

= ξ t, t ≥ 0. (14.22)

3We often skip Θ(t) when there is no time derivative involved.
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In a Poisson renewal process, the expected number of arrivals increases linearly in
time. The exponential decay in the distributions related to the Poisson process makes
this process memoryless with the Markovian property [17, 20].

14.4 Fractional Poisson Process

In anomalous diffusion, one has for the average number of arrivals instead of the
linear behavior (14.22) a power law ∼ tβ with 0 < β < 1 [5, 17, 18], among others.
To describe such anomalous power law behavior, a ‘fractional generalization’ of the
classical Poisson renewal process was introduced and analyzed by Laskin [14, 15]
and others [13, 20, 25]. The fractional Poisson renewal process can be defined by a
waiting time PDF with the Laplace transform

χ̃β(s) = ξ

sβ + ξ
, ξ > 0, 0 < β ≤ 1. (14.23)

The fractional Poisson process introduces long-time memory effects with non-
Markovian features. We will come back to these issues later. The constant ξ has
here physical dimension sec−β defining a characteristic timescale in the fractional
Poisson process. For β = 1, the fractional Poisson process recovers the standard
Poisson process outlined in the previous section. The waiting time density of the
fractional Poisson process is then defined by

χβ(t) = L−1

{
ξ

sβ + ξ

}
= L−1

{
ξs−β 1

1 + ξs−β

}
. (14.24)

In order to evaluate the inverse Laplace transform, it is useful to expand (1+ξs−β)−1

into a geometric series with respect to ξs−β which converges for s = σ + iω with
σ = R{s} > ξ

1
β for all ω. Doing so, we obtain

χβ(t) =
∞∑

m=0

(−1)mξm+1L−1{s−β(m+1)}, 0 < β ≤ 1, R{s} > ξ
1
β . (14.25)

Taking into account, the inverse Laplace transform4 L−1{s−μ} = Θ(t) tμ−1

Γ (μ)
where

μ > 0 (see also Appendix for the discussion of some properties). We obtain then for
(14.25) [14, 17, 20]

4In this relation in the sense of generalized functions, we can include the value μ = 0 as the limit

limμ→0+ tμ−1

Γ (μ)
= δ(t) [23].
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χβ(t) = ξ tβ−1
∞∑

m=0

(−ξ tβ)m

Γ (βm + β)
, 0 < β ≤ 1, t > 0

= ξ tβ−1Eβ,β(−ξ tβ) = d

dt
(1 − Eβ(−ξ tβ))

(14.26)

where in this relation we introduced the generalized Mittag-Leffler function Eβ,γ (z)
and the standard Mittag-Leffler function Eβ(z) defined in the Appendix by Eqs.
(14.99) and (14.100), respectively. The waiting time PDF of the fractional Poisson
process also is referred to asMittag-Leffler density and was introduced first by Hilfer
and Anton [26]. It is now straightforward to obtain in the same way the survival
probability for the fractional Poisson process, namely [see also Eq. (14.8)]

Φ
(0)
β (t) = L−1

{
sβ−1

sβ + ξ

}
= Eβ(−ξ tβ), 0 < β ≤ 1. (14.27)

The generating function (14.10) is then by accounting for (14.27) obtained as

Gβ(t, v) = L−1

{
sβ−1

ξ(1 − v) + sβ

}
= Eβ(−ξ(1 − v)tβ), t ≥ 0. (14.28)

For v = 1, this relation takes G(t, 1) = Θ(t) = 1 (t ≥ 0), and for β = 1, the
Poisson exponential (14.20) is recovered. The probability for n arrivals within [0, t]
is then with relation (14.14) obtained as

Φ
(n)
β (t) = 1

n!
dn

dvn
Eβ((v − 1)ξ tβ)

∣∣∣
v=0

= (ξ tβ)n

n!
∞∑

m=0

(m + n)!
m!

(−ξ tβ)m

Γ (β(m + n) + 1)
, 0 < β ≤ 1.

(14.29)

This distribution is called the fractional Poisson distribution and is of utmost impor-
tance in fractional dynamics, generalizing the Poisson distribution (14.21) [14, 15].
For β = 1, the fractional Poisson distribution (14.29) turns into the classical Poisson
distribution (14.21). We directly confirm the normalization of the fractional Poisson
distribution by the relation

∞∑
n=0

Φ
(n)
β (t) =

∞∑
n=0

1

n!
dn

dvn
Eβ((v − 1)ξ tβ)

∣∣∣
v=0

= Eβ((−1 + 1)ξ tβ) = Eβ(0) = 1.

(14.30)

We notice that for β = 1, the Mittag-Leffler function becomes the exponential
E1(−ξ t) = e−ξ t ; thus, the distributions of the standard Poisson process of last
section are then reproduced. It is worthy to consider the distinct behavior of the
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fractional Poisson process for large observation times. To this end, let us expand
Laplace transform (14.23) for |s| small which governs the asymptotic behavior for
large times

χ̃β(s) =
(
1 + sβ

ξ

)−1

=
∞∑

m=0

(−1)mξ (−m)smβ = 1 − 1

ξ
sβ + · · · (14.31)

which yields as asymptotically for large observation times for 0 < β < 1 fat-tailed
behavior5

χβ(t) ≈ − 1

ξΓ (−β)
t−β−1, 0 < β < 1, t → ∞. (14.32)

The fat-tailed behavior χβ(t) ∼ t−β−1 is a characteristic power law feature of the
fractional Poisson renewal process reflecting the non-locality in time that produces
Laplace transform (14.31) within the fractional index range 0 < β < 1. As a
consequence of the fat-tailed behavior for 0 < β < 1, extremely long waiting times
occur; thus, the fractional Poisson process is non-Markovian exhibiting long-time
memory effects [17, 20].

Further of interest is the power law tail in the fractional Poisson distribution. We
obtain this behavior by considering the lowest power in their Laplace transform,
namely

Φ
(n)
β (t) = L−1

{
1

s

(
(1 + ξ−1sβ)−n − (1 + ξ−1sβ)−n−1

)} ≈ L−1

{
sβ−1

ξ

}

≈ (tξ
1
β )−β

Γ (1 − β)
0 < β < 1, n = 0, 1, . . . , tξ

1
β → ∞.

(14.33)

The fractional Poisson distribution exhibits for large (dimensionless) observation
times tξ

1
β → ∞ universal t−β power law behavior independent of the arrival number

n. We will come back subsequently to this important issue.

14.5 Generalization of the Fractional Poisson Process

In this section, our aim is to develop a renewal process which is a generalization
of the fractional Poisson process of previous section. The waiting time PDF of this
process has the Laplace transform

χ̃β,α(s) = ξα

(sβ + ξ)α
, 0 < β ≤ 1, α > 0, ξ > 0. (14.34)

5Note that −Γ (−β) = β−1Γ (1 − β) > 0.
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This process was first introduced by Cahoy and Polito [16]. We referred the renewal
process defined by (14.34) to as the generalized fractional Poisson process (GFPP)
[17, 18]. The characteristic dimensional constant ξ in (14.34) has as in the fractional
Poisson process physical dimension sec−β and defines a characteristic timescale. The
GFPP contains further two index parameters α > 0 and 0 < β ≤ 1. The advantage of
generalizations such as the GFPP is that they offer a larger parameter space allowing
to greater flexibility in adapting to real-world situations. The GFPP recovers for
α = 1, 0 < β < 1 the above-described fractional Poisson process and for α = 1,
β = 1 the standard Poisson process and for β = 1, α > 0 the so-called (generalized)
Erlang process where α is allowed to take positive integer or non-integer values [17].
The waiting time density of the GFPP is then obtained as (see also Ref. [16])

χβ,α(t) = ξα

∞∑
m=0

(−1)m (α)m

m! ξmL−1{s−β(m+α)}

= ξαtβα−1
∞∑

m=0

(α)m

m!
(−ξ tβ)m

Γ (βm + αβ)
= ξαtβα−1Eα

β,αβ(−ξ tβ)

t > 0, σ = R{s} > ξ
1
β , 0 < β ≤ 1, α > 0

(14.35)

In this expression is introduced a generalization of theMittag-Leffler function which
was first described by Prabhakar [27] and is defined by

Ec
a,b(z) =

∞∑
m=0

(c)m

m!
zm

Γ (am + b)
, R{a} > 0, R{b} > 0, c, z ∈ C. (14.36)

In the Prabhakar’s Mittag-Leffler function (14.36) and in the expansion (14.35), we
introduced the Pochhammer symbol (c)m which is defined as [28]

(c)m = Γ (c + m)

Γ (c)
=
{
1, m = 0
c(c + 1) . . . (c + m − 1), m = 1, 2, . . .

(14.37)

Despite Γ (c) is singular at c = 0, the Pochhammer symbol can be defined also
for c = 0 by the limit (0)m = limc→0+(c)m = δm0 which is also fulfilled by
the right-hand side of (14.37). Then, (c)m is defined for all c ∈ C; thus, we have
E0

a,b(z) = 1. The series (14.36) converges absolutely in the entire complex z-plane.
The Prabhakar’sMittag-Leffler function (14.36) and related problems were analyzed
by several authors [28–32].

InFig. 14.1a is drawn thewaiting timePDFofEq. (14.35) for afixedvalueofα = 2
and variable β in the admissible range 0 < β ≤ 1. The waiting time PDF exhibits for
t small the power law behaviorχβ,α(t) ≈ ξα

Γ (αβ)
tαβ−1 [corresponding to the zero order

in the expansion (14.35)]with twodistinct regimes: Forαβ < 1, thewaiting timePDF
becomes singular at t = 0 corresponding to ‘immediate’ arrivals of the first event. For
αβ = 1, the jump density takes the constant value χα−1,α(t = 0) = ξα whereas for
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Fig. 14.1 Waiting time density χβ,α(t) as a function of t. We explore the results for a α = 2.0 for
different values 0 < β ≤ 1 and b β = 0.5 for 0 < α ≤ 2 (in each case, the parameters are codified
in the color bar). Results were obtained numerically using ξ = 1 and Eqs. (14.35) and (14.36). We
depict with dashed lines the case when αβ = 1

αβ > 0 the waiting time density χβ,α(t = 0) = 0 tends to zero as t → 0 where the
waiting times become longer the larger αβ.

In Fig. 14.1b, we depict the behavior of the waiting time PDF for fixed β = 0.5
and 0 < α ≤ 2 thus αβ ≤ 1. It can be seen that the smaller αβ the more narrowly the
waiting time PDF is concentrated at small t-values close to t = 0. This behavior can
also be identified in view of Laplace transform (14.34)which takes in the limitα → 0
the value limα→0 χ̃β,α(s) = 1 thus χβ,0+(t) = L−1(1) = limα→0

ξα

Γ (αβ)
tαβ−1 = δ(t)

exhibits the shape of a Dirac δ-distribution peak.
Now, our goal is to determine the generalization of the fractional Poisson

distribution (14.29) which is determined by Eq. (14.9) with (14.34), namely

Φ
(n)
β,α(t) = L−1

{
1

s

(
χ̃n

β,α(s) − χ̃n+1
β,α (s)

)}

= L−1

{
1

s

(
χ̃β,nα(s) − χ̃β,(n+1)α(s)

)}
, n = 0, 1, 2, . . .

(14.38)

where it is convenient to utilize χ̃n
β,α(s) = χ̃β,nα(s) = ξ nα

(ξ+sβ )nα , i.e., to replace
α → nα in the expression (14.35). We then obtain for the probability for n arrivals
within [0, t] the expression

Φ
(n)
β,α(t) = ξ nαtnαβ

(
Enα

β,(nαβ+1)(−ξ tβ) − ξαtαβ E (n+1)α
β,((n+1)αβ+1)(−ξ tβ)

)
. (14.39)

We refer this distribution to as the ‘generalized fractional Poisson distribution
(GFPD)’ [17, 18]. This distribution was also obtained by Cahoy and Polito [16].
For α = 1 and 0 < β < 1, the GFPP (14.39) recovers the fractional Poisson distri-
bution (14.29) and for α = 1, β = 1 the standard Poisson distribution (14.21), and
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finally for α > 0 and β = 1 the Erlang distribution [17, 18]. For applications in the
dynamics in complex systems, the asymptotic properties of the GFPD are of interest.
For small (dimensionless) times, the GFPD behaves as

Φ
(n)
β,α(t) ≈ (ξ tβ)nα

Γ (nαβ + 1)
, tξ

1
β → 0, n = 0, 1, 2, . . . (14.40)

representing the lowest nonvanishing order in (14.39). It follows that the GFPD
fulfills the initial condition

Φ
(n)
β,α(t)

∣∣∣
t=0

= δn0, (14.41)

reflecting that per construction at t = 0 no event has arrived. Further of interest is the
asymptotic behavior for large (dimensionless) times tξ

1
β . To this end, let us expand

the Laplace transform for small s → 0 in (14.38) up to the lowest nonvanishing
order in sβ

ξ
to arrive at

Φ
(n)
β,α(t) ≈ α

ξ
L−1{sβ−1} = α

Γ (1 − β)

(
tξ

1
β

)−β

, tξ
1
β → ∞, n = 0, 1, . . . ,∞

(14.42)

where this inverse power law holds universally for all α > 0 for 0 < β < 1 and is
independent of the number of arrivals n recovering the fractional Poisson distribution
for α = 1 of Eq. (14.33). We notice that for large (dimensionless) observation times,
an universal (tξ

1
β )−β power law decay occurs which is independent of the arrival

number nwhere α occurs only as a scaling parameter in relation (14.42).We interpret
this behavior as quasi-ergodicity property, i.e., quasi-equal distribution of all ‘states’
n for tξ

1
β large [17]. The fractional exponent −β further is independent of α; thus,

the power law is of the same type as in the fractional Poisson process.
In Fig. 14.2a, we have plotted the probabilities Φ

(n)
β,α(t) of Eq. (14.39) for fixed α

andβ for different arrival numbers n. One can see that for large times, theΦ
(n)
β,α(t) con-

verge to the same universal behavior independent of n which reflects the asymptotic
power law relation (14.42). On the other hand, the asymptotic power law behavior
for small t is shown in Fig. 14.2b [see also relation (14.40)]. The decay to zero

limt→0 Φ
(n)
β,α(t)

∣∣∣
t=0

∼ (ξ tβ)nα → 0 (n > 0) becomes the more pronounced the

larger n. This behavior also can be interpreted that the higher n, the less likely are n
arrivals to happen within a small time interval of observation.

The GFPP and the fractional Poisson process for large observation times exhibit
the same power law asymptotic feature [see again asymptotic relation (14.42)]. This
behavior reflects the ‘asymptotic universality’ of the fractional Poissondynamics, and
the latter was demonstrated in Ref. [33]. The inverse power law decay occurring for
0 < β < 1 with fat-tailed waiting time PDF indeed is the source of non-Markovian
behaviorwith long-timememory.Wemention that for simultaneously 0 < β ≤ 1 and
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Fig. 14.2 Probability Φ
(n)
β,α(t) as a function of t for different n. a α = 0.5 and β = 0.5, b α = 2.0

and β = 0.5. In the color bar, we represent n = 1, 2, . . . , 5. The values were obtained numerically
using ξ = 1 with Eq. (14.38). The results for t � 1 show the power law relation Φ

(n)
β,α(t) ∝ tnαβ

in Eq. (14.40)

0 < α ≤ 1 with 0 < αβ ≤ 1 the waiting time PDF χβ,α(t) and survival probability
Φ

(0)
β,α(t) both are completely monotonic functions, i.e. they fulfill the condition6

(−1)n dn

dtn
f (t) ≥ 0, n = 0, 1, 2, . . . , t > 0. (14.43)

An analysis of various aspects of completely monotonic functions is performed in
our recent works [8, 34], and see the references therein.

14.6 Continuous-Time RandomWalk on Networks

Having recalled above basic properties of renewal theory7 our goal is now to analyze
stochasticmotions on undirected networks and lattices that are governed by theGFPP
renewal process. To develop ourmodel, we employ the continuous-time randomwalk
(CTRW) approach by Montroll and Weiss [19] (and see also Refs. [2, 21, 22]). In
the present section, our aim is to develop a CTRWmodel for undirected networks in
order to apply the theory to infinite d-dimensional integer lattices Zd .

We consider an undirected connected networkwithN nodeswhichwe denotewith
p = 1, . . . , N . The topology of the network is described by the positive-semidefinite
N × N Laplacian matrix which is defined by [8, 12, 36–40]

L pq = K pδpq − Apq (14.44)

6See Ref. [20] for a discussion of this issue for the fractional Poisson process.
7For further details on renewal theory, see, e.g., [35].



234 T. M. Michelitsch et al.

where A = (Apq) denotes the adjacency matrix having elements Apq = 1 if a pair
pq of nodes is connected and Apq = 0 if a pair pq is disconnected. Further, we forbid
that nodes are connected with themselves; thus, App = 0. In an undirected network
adjacency and Laplacian matrices are symmetric. The diagonal elements L pp = K p

of the Laplacian matrix are referred to as the degrees of the nodes p counting the
number of neighbor nodes of a node p with K p = ∑N

q=1 Apq . In order to relate the
network topology with random walk features, we introduce the one-step transition
matrixW = (Wpq) which is defined by [8, 12]

Wpq = 1

K p
Apq = δpq − 1

K p
L pq . (14.45)

Generally, the transition matrix is non-symmetric for networks with variable degrees
Ki �= K j (i �= j). The one-step transition matrix Wpq defines the conditional
probability that a random walker which is on node p jumps in one step to node q
where in one step only neighbor nodes with equal probability 1

K p
can be reached.

We see in definition (14.45) that the one-step transition matrix
∑N

q=1 Wpq = 1 and
0 ≤ Wpq ≤ 1 and also the n-step transition matrices Wn are (row-)stochastic [8].

Now, let us assume that each step of the walker from one to another node is
associatedwith a jumpevent or arrival in aCTRWwith identical transition probability
(Wpq) for a step from node p to node q. We assume the random walker performs
IID random steps at random times 0 ≤ t1, t2, . . . tn, . . . ,∞ in a renewal process with
IID waiting times Δtk where the observation starts at t = 0. To this end, let us recall
some basic relations holding generally, and then, we specify the renewal process to
be a GFPP.

Introducing the transition matrix P(t) = (Pi j (t)) indicating the probability to find
the walker at time t on node j under the condition that the walker at t = 0 initially
was sitting at node i, we can write [35, 41]

P(t) = P(0)
∞∑

n=0

Φ(n)(t)Wn (14.46)

where we assume here a general initial condition P(t)|t=0 = P(0) which is fulfilled
by accounting for the initial conditions Φ(n)(t)t=0 = δn0. In this series, the Φ(n)(t)
indicate the probabilities of n (jump-) events in the renewal process, i.e., the probabil-
ity that the walker performs n steps within [0, t] [see Eq. (14.5)], and (Wn)i j indicates
the probability that the walker in n jumps moves from the initial node i to node j. We
observe in view of relation (14.13) together with

∑N
j=1(W

n)i j = 1 that the normal-

ization condition
∑N

j=1 Pi j (t) = ∑∞
n=0 Φ(n)(t) = 1 is fulfilled. The convergence

of series (14.46) can be easily proved by using that W has uniquely eigenvalues
|λm | ≤ 1 and with |χ̃(s)| ≤ 1 [8, 17]. Let us assume that at t = 0, the walker is
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sitting on departure node i; thus, the initial condition is given by Pi j (0) = (δi j ), and
then, the Laplace transform of (14.46) writes [17]

P̃(s) = (1 − χ̃ (s))

s
{1 − χ̃(s)W}−1 (14.47)

where P̃(s) has the eigenvalues [17]

P̃(m, s) = (1 − χ̃(s))

s

1

(1 − λm χ̃(s))
, m = 1, . . . , N . (14.48)

The λm indicate the eigenvalues of the one-step transition matrixW. This expression
is the celebrated Montroll–Weiss formula [19] and occurs in various contexts of
physics.

14.7 Generalized Space–Time Fractional Diffusion in Z
d

In this section, our aim is to develop a CTRW which is a random walk subordinated
to a GFPP. For the random walk on the network, we allow long-range jumps which
can be described when we replace the Laplacian matrix by its fractional power in
the one-step transition matrix (14.45). In this way, the walker cannot only jump
to connected neighbor nodes, but also to far distant nodes in the network [5, 6, 8,
34, 36–39, 42, 43]. The model to be developed in this section involves both space-
and time fractional calculus. As an example, we consider the infinite d-dimensional
integer lattice Zd . The lattice points p = (p1, . . . , pd) (p j ∈ Z0) represent the nodes
where we assume each node is connected to any of its 2d neighbor nodes. The Zd

is an infinite cubic primitive d-dimensional lattice with lattice constant one. In this
network, any node has identical degree 2d. The one-step transition matrix with the
elements W (μ)(p − q) has then the canonic representation [8, 38]

W (μ)(p − q) = 1

(2π)d

∫ π

−π

dk1 . . .

∫ π

−π

dkdeik·(p−q)λ(μ)(k) (14.49)

with the eigenvalues

λ(μ)(k) = 1 − 1

K(μ)
η

μ

2 (k), η(k) = 2d − 2
d∑

j=1

cos(k j ), 0 < μ ≤ 2 (14.50)

where k = (k1, . . . , kd) denotes the wave vector with −π ≤ k j ≤ π . One can show
that the fractional index μ is restricted to the interval 0 < μ ≤ 2 as a requirement
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for stochasticity of the one-step transition matrix [8, 34, 38]. In (14.50), the constant
K(μ) can be conceived as a fractional generalization of the degree and is given by
the trace of the fractional power of Laplacian matrix, namely [8, 34]

K(μ) = 1

N
tr(L

μ

2 ) = 1

N

N∑
m=1

(ηm)
μ

2 (14.51)

where ηm denote the eigenvalues of the Laplacian matrix (14.44) and in an infinite
network the sum in (14.51) has to be performed in the limit N → ∞. In the Zd , the
fractional degree with Eq. (14.51) is then determined from [8, 34]

K(μ) = 1

(2π)d

∫ π

−π

dk1 . . .

∫ π

−π

dkd(η(k))
μ

2 (14.52)

with the eigenvalues given in Eq. (14.50). It is necessary to account for the fractional
degree since it plays the role of a normalization factor in the one-step transition
matrix [see Eq. (14.45)].

For the present analysis, it is sufficient to consider K(μ) as a (positive) constant
where forμ = 2 recoversK(μ=2) = 2d the degree of any node. The transition matrix
(14.46) is then determined by its Laplace transform (14.47) which writes in theZd as

P̃ (μ)(p − q, s) = (1 − χ̃ (s))

s

1

(2π)d

∫ π

−π

dk1 . . .

∫ π

−π

dkd P̃(k, 0)
eik·(p−q)

(1 − λ(μ)(k)χ̃(s))
(14.53)

where P̃(k, 0) indicates the Fourier transform of the initial condition which has the
Fourier representation

P (μ)(p − q, t = 0) = P0(p − q) = 1

(2π)d

∫ π

−π

dk1 . . .

∫ π

−π

dkdeik·(p−q) P̃(k, 0).

(14.54)

In order to analyze the diffusive limit of (14.53), i.e., its long-wave approximation, it
will be sufficient to account for the eigenvalues (14.50) for k → 0 (where k = |k|).
Then, we have with η

μ

2 (k) ≈ kμ the behavior

λ(μ)(k) ≈ 1 − 1

K(μ)
kμ, 0 < μ ≤ 2, k → 0. (14.55)

These equations hold so far for space fractionalwalks for an arbitrary renewal process
with waiting time PDF χ(t) = L−1{χ̃ (s)}.

Now let us consider a space fractional walk subordinated to a GFPP with
χ̃(s) = χ̃β,α(s) of Eq. (14.34). We denote the corresponding transition matrix of
this stochastic motion as P(μ)

β,α(t) which contains three index parameters 0 < μ ≤ 2,
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0 < β ≤ 1 and α > 0 and one timescale parameter ξ (of units sec−β). In order
to derive the generalized space–time fractional diffusion equation, it is convenient
to proceed in the Fourier–Laplace domain. The Fourier–Laplace transform of the
P(μ)

β,α(t) is then with Eq. (14.53) given by the Montroll–Weiss equation

P̃ (μ)
β,α (k, s) = P̃(k, 0)

(
1 − χ̃β,α(s)

)
s

1

(1 − χ̃β,α(s)λ(μ)(k))

= P̃(k, 0)
s−1(

1 + χ̃β,α(s)
(1−χ̃β,α(s))

η
μ
2 (k)

K(μ)

) (14.56)

≈ P̃(k, 0)
s−1(

1 + χ̃β,α(s)
(1−χ̃β,α(s))

kμ

K(μ)

) , k → 0 (14.57)

containing also the Fourier transform P̃(k, 0) of the initial condition (14.54). The
exact equation (14.56) can be rewritten as

−ξαη
μ

2 (k)

K(μ)
P̃ (μ)

β,α (k, s) =(sβ + ξ)α P̃ (μ)
β,α (k, s) − ξα P̃ (μ)

β,α (k, s)

+ ξα − (sβ + ξ)α

s
P̃(k, 0), k j ∈ [−π, π ].

(14.58)

Transforming back this equation into the causal time domain and by using Eqs.
(14.54) and (14.53) yields the generalized time fractional matrix equation

− ξα

K(μ)
L

μ

2 · P(μ)

(β,α)(t) =0Dβ,α
t · P(μ)

β,α(t) − ξαP(μ)
β,α(t) + P0

{
ξαΘ(t) − K (0)

β,α(t)
}
, t ≥ 0

(14.59)

which we refer to as ‘generalized space–time fractional Kolmogorov–Feller equa-
tion’ where 0 < μ ≤ 2 with 0 < β ≤ 1 and α > 0. This equation was obtained and
analyzed recently for normal walks (μ = 2) subordinated to a GFPP [17, 18]. Equa-
tions of the type (14.59) generally describe the generalized space–time fractional dif-
fusion on undirected networks connecting the network topology (contained in Lapla-
cian matrix L) with the GFPP-governed stochastic motion on the network. We used
notation L

μ

2 which denotes the fractional power of Laplacian matrix L, and P(μ)

(β,α)(t)

the transition matrix with the initial condition P(μ)

(β,α)(t = 0) = P0 where all these
matrices are defined in Z

d . Since the Zd is an infinite network, these are symmetric
and circulant∞×∞matrices with elements L(μ)(p−q), P (μ)

(β,α)(p−q, t),P0(p−q),
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respectively, where p,q ∈ Z
d . In Eq. (14.59), we have introduced the causal convo-

lution operator 0Dβ,α
t and the causal function K (0)

β,α(t)which were obtained in explicit
forms [17, 18]

Dβ,α(t) = L−1
{
(sβ + ξ)α

} = dαβ�

dtαβ�
(
Θ(t)dβ,α(t)

)

= dαβ�

dtαβ� (Θ(t)dβ,α(t − τ))

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dαβ�
dtαβ�

(
Θ(t)tαβ�−βα−1

∞∑
m=0

α!
(α−m)!m!

(ξ tβ )m

Γ (βm+αβ�−βα)

)
, αβ /∈ N

dαβ

dtαβ

(
δ(t) + Θ(t)

d

dt

∞∑
m=0

α!
(α − m)!m!

(ξ tβ)m

Γ (mβ + 1)

)
, αβ ∈ N

=

⎧⎪⎨
⎪⎩

dαβ�
dtαβ�

(
Θ(t)tαβ�−βα−1Eα,β,(αβ�−αβ)(ξ tβ)

)
, αβ /∈ N

dαβ

dtαβ

(
δ(t) + Θ(t) d

dt Eα,β,1(ξ tβ)
)
, αβ ∈ N.

(14.60)

In these expressions, we introduced the ceiling function γ � indicating the smallest
integer greater or equal to γ and the function Ec,a,b(z) = E−c

a,b(−z) where Eu
v,w(ζ )

indicating the Prabhakar’s Mittag-Leffler function (14.36). The operator 0Dβ,α
t acts

on a causal distribution P(t) such as in Eq. (14.59) in the following way

0Dβ,α
t · P(t) = dαβ�

dtαβ�

∫ t

0
dβ,α(t − τ)P(τ )dτ. (14.61)

The function K (0)
β,α(t) of equation (14.59) was obtained as

K (0)
β,α(t) = L−1

{
(sβ + ξ)α

s

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(t)t−αβ Eα,β,1−αβ(ξ tβ), 0 < αβ < 1

dαβ�−1

dtαβ�−1

(
Θ(t)tαβ�−βα−1Eα,β,(αβ�−αβ)(ξ tβ)

)
αβ > 1, αβ /∈ N

dαβ−1

dtαβ−1

(
δ(t) + Θ(t)

d

dt
Eα,β,1(ξ tβ)

)
, αβ ≥ 1 ∈ N.

(14.62)

Equation (14.59) governs the ‘microscopic’ stochasticmotions of the space fractional
walk subordinated to a GFPP.
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14.8 Diffusion Limit

Our goal now is to determine the ‘diffusion limit’ of above stochasticmotion to obtain
a ‘macroscopic picture’ on spatial scales large compared to the lattice constant 1 of
the Zd . To this end, it is sufficient to consider Montroll–Weiss equation (14.56) for
k small. Then, Eq. (14.58) can be rewritten as

−ξαkμ

K(μ)
P̃ (μ)

β,α (k, s) ≈(sβ + ξ)α P̃ (μ)
β,α (k, s) − ξα P̃ (μ)

β,α (k, s)

+ ξα − (sβ + ξ)α

s
P̃(k, 0), k → 0.

(14.63)

In order to derive the ‘diffusive limit’ which corresponds to the space–time represen-
tation of this equation, it appears instructive to consider the long-wave contribution
of some kernels such as the fractional power of the Laplacian matrix in Z

d . The
fractional Laplacian matrix in Zd has the canonic form [8, 38]

[L μ

2 ]p−q = 1

(2π)d

∫ π

−π

dk1 . . .

∫ π

−π

dkdeik·(p−q)η
μ

2 (k), 0 < μ ≤ 2 (14.64)

where η(k) are the eigenvalues of the Laplacian matrix in Zd defined by Eq. (14.50).
Let us consider the contribution generated by small k → 0 by integrating over a small
d-cube |k j | ≤ kc � 1 around the origin (corresponding to very large wavelengths),
namely

[L′ μ

2 ]p−q ≈ 1

(2π)d

∫ kc

−kc

dk1 . . .

∫ kc

−kc

dkdeik·(p−q)η
μ

2 (k)

= hd

(2π)d

∫ πh− 1
2

−πh− 1
2

dk̄1 . . .

∫ πh− 1
2

−πh− 1
2

dk̄dei k̄·(p−q)hη
μ

2 (hk̄).

(14.65)

In the second line, we have introduced a new wave vector k̄ with k j = k̄ j h ≤ kc

with kc(h) = πh
1
2 → 0 small; thus, 0 ≤ |k̄ j | ≤ πh− 1

2 → ∞ (where any expo-
nent 0 < δ < 1 could be used with |k̄ j | ≤ πh−δ → ∞ and hk̄ j ≤ πh1−δ → 0).
In this way, the integral (14.65) (rescaled h−d ) over small k becomes an integral
over the complete infinite k̄-space where in this integration k = k̄h is small. Hence,
(η(hk̄))

μ

2 ≈ hμk̄μ ≤ πμh
μ

2 � 1 remains valid in the entire region of integra-
tion in (14.65)2. Introducing the rescaled quasi-continuous very slowly varying
‘macroscopic’ coordinates (p − q)h = r − r′ ∈ hZd of the nodes, we arrive at8

8This picture corresponds to the introduction of a lattice constant h → 0.
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[L′ μ

2 ]p−q ≈ hμ+d 1

(2π)d

∫ ∞

−∞
dk̄1 . . .

∫ ∞

−∞
dk̄dei k̄·(r−r′)k̄μ = hμ+d(−Δ)

μ

2 δd(r − r′).

(14.66)

The new macroscopic coordinates r = hp, r′ = hq ∈ R
d are nonzero only for very

large values of the integer values p j ∼ h−1 � 1, qi h−1 � 1; i.e., the representation
(14.66) captures the far-field contribution |p−q| � 1. InEq. (14.66) ,Δ = ∑d

j=1
∂2

∂x2
j

denotes the standard Laplacian with respect to the macroscopic coordinates r. The
Fourier integral coincides up to the sign with the kernel of the Riesz fractional
derivative −(−Δ)

μ

2 δd(r − r′) of the Rd (which has the eigenvalues −k−μ and also
is referred to as fractional Laplacian recovering for μ = 2 the standard Laplacian
Δ) [8]. It follows that Eq. (14.63) can be transformed into the spatial (long-wave)
representation by

P (μ)(p − q, t) ≈ hd P̄ (μ)(h(p − q), t), h → 0 (14.67)

where we denote h(p − q) = r − r′ ∈ Z
d h → R

d . The smooth field P̄ (μ)(r −
r′, t) introduced in asymptotic relation (14.67) indicates the macroscopic transition
probability density kernel having physical units cm−d . By using Eqs. (14.53)–(14.56)
and λ(μ)(hk̄) ≈ 1 − hμ k̄μ

K(μ) , we arrive at

P̄ (μ)(r − r′, t) ≈ L−1

⎧⎨
⎩

s−1

(2π)d

∫ ∞

−∞
dk1 . . .

∫ ∞

−∞
dkdei k̄·(r−r′) P̄(hk̄, 0)(

1 + χ̃β,α(s)
1−χ̃β,α(s)

hμ k̄μ

K(μ)

)
⎫⎬
⎭

(14.68)

where the integration limits here can be thought to be generated by a limiting process
± limh→0 πh− 1

2 → ±∞ in the same way as in integral (14.65); thus, only small
hk̄ ≤ πh

1
2 in the integrand of (14.68) is relevant. Then, let us rewrite Eq. (14.63) in

the Fourier–Laplace domain in the form

−hμk̄μ

K(μ)
P̃ (μ)

β,α (hk̄, s) ≈
[(

1 + sβ

ξ

)α

− 1

]
P̃ (μ)

β,α (hk̄, s)

+ P̃(hk̄, 0)

s

[
1 −

(
1 + sβ

ξ

)α]
, h → 0.

(14.69)

We observe that h → 0 makes left-hand side converging to zero (as within the
integration limits of integral (14.65) kμ = hμk̄μ ≤ πμhμ/2 → 0, i.e., only small
k = hk̄ are captured). In order to maintain the equality for h → 0, it is required that
on the right-hand side of Eq. (14.69) h → 0 thus we can expand (1+ sβ

ξ
)α ≈ 1+ α

ξ
sβ

and obtain

−ξhμk̄μ

αK(μ)
P̃ (μ)

β,α (hk̄, s) ≈ sβ P̃ (μ)
β,α (hk̄, s) − P̃(hk̄, 0)sβ−1. (14.70)
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The existence of the diffusive limit requires the left-hand side of this equation to
remain finite, i.e., ξhμ = const when h → 0. It follows that ξ then scales as
ξ ∼ h−μ leading to the new generalized diffusion constant

A = ξhμ

αK(μ)
> 0, α > 0, 0 < μ ≤ 2, (14.71)

having physical dimension cmμ sec−β . We obtain hence the universal diffusion limit
in the form of a space–time fractional diffusion equation of the form

−A(−Δ)
μ

2 · P̄ (μ)

(β,α)(r, t) =0 Dβ
t · P̄ (μ)

β,α (r, t) − P̄0(r)
t−β

Γ (1 − β)
0 < β < 1.

(14.72)

In this equation, 0Dβ
t · (. . . ) denotes the Riemann–Liouville fractional derivative of

order β [see Appendix, Eq. (14.104)], and −(−Δ)
μ

2 indicates the Riesz fractional
derivative convolution operator (fractional Laplacian) in the d-dimensional infinite
space.9 The diffusion limit Eq. (14.72) is coinciding with a space–time fractional
diffusion equation given by several authors [3, 6] in various contexts (among oth-
ers). This equation is of the same type as the equation that occurs in the purely
fractional Poisson process, i.e., for α = 1. We notice in view of the diffusion con-
stant (14.71) that index α appears in Eq. (14.72) only as a scaling parameter. The
universal space–time fractional behavior of the diffusive limit reflects the asymp-
totic universality of the Mittag-Leffler waiting time PDF which was demonstrated
by Gorenflo and Mainardi [33]. We emphasize the non-Markovian characteristics of
this time fractional diffusion process in the range 0 < β < 1, i.e., when the waiting
time PDF is fat-tailed. The non-Markovianity is reflected by the occurrence of the
slowly decaying memory term −P̄0(r) t−β

Γ (1−β)
in Eq. (14.72) exhibiting a long-time

memory of the initial condition P̄μ
β,α(r, t = 0) = P̄0(r).

Let us briefly consider the casewhen thewalker at t = 0 is in the origin. The initial
condition then is given by P̄0(r) = δd(r) and from Eqs. (14.70)–(14.72) follows that

P̃ (μ)
β,α (hk̄, s) = sβ−1

Ak̄μ + sβ
. (14.73)

In view of Eq. (14.27), we obtain for the causal Fourier time domain the solution

P̂ (μ)
β,α (hk̄, t) = L−1

{
sβ−1

Ak̄μ + sβ

}
= Θ(t)Eβ(−Ak̄μtβ), 0 < β ≤ 1 (14.74)

9For explicit representations and evaluations, see, e.g., [8].
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where Eβ(z) denotes the Mittag-Leffler function defined in Eq. (14.100) and for
later convenience we included the Heaviside step function Θ(t). In the space–time
domain, the transition probability kernel is given by the Fourier inversion

P̄ (μ)
β,α (r, t) = Θ(t)

(2π)d

∫ ∞

−∞
d̄k1 . . .

∫ ∞

−∞
d̄kdei k̄·rEβ(−Ak̄μtβ) (14.75)

where by accounting for Eβ(0) = 1 the initial condition P̄ (μ)
β,α (r, 0) = δd(r) is directly

confirmed. For 0 < β < 1 the Mittag-Leffler function exhibits for Ak̄μtβ � 1
inverse power law behavior, namely

P̂ (μ)
β,α (hk̄, t) ≈ L−1

{A−1k̄−μsβ−1
} = A−1k̄−μ t−β

Γ (1 − β)
. (14.76)

In the limit β → 1 − 0, Eq. (14.72) with P0(r) = δd(r) takes for 0 < μ < 2 the
form of a standard space fractional Lévy flight diffusion equation10

−A(−Δ)
μ

2 P̄ (μ)

(1,α)(r, t) = ∂

∂t
P̄ (μ)

(1,α)(r, t) − δd(r)δ(t) (14.77)

where 0 < μ ≤ 2 is admissible. This walk is Markovian and hence memoryless due
to the immediate vanishing of the memory term −δ(d)(r)δ(t) for t > 0. For μ = 2,
this equation recovers Fick’s second law of normal diffusion. For β = 1, the Mittag-
Leffler function in (14.74) turns into the form of exponential E1(−Ak̄μt) = e−Ak̄μt ;
thus, the Fourier integral (14.75) becomes

P̄ (μ)

(1,α)(r, t) = Θ(t)

(2π)d

∫ ∞

−∞
d̄k1 . . .

∫ ∞

−∞
d̄kdei k̄·re−Ak̄μt , 0 < μ ≤ 2. (14.78)

One directly confirms that (14.78) solves (14.77)11 and is indeed the well-known
expression for a symmetric Lévy distribution in R

d [5, 6, 8] (and many others).
Further mention worthy is the case β = 1 and μ = 2 for which Eq. (14.77) recovers
the form of a normal diffusion equation (Fick’s second law) where (14.78) turns into
the Gaussian distribution

P̄ (2)
(1,α)(r, t) = Θ(t)

e− r2

4At

(4πAt)
d
2

(14.79)

which indeed is the well-known causal solution of Fick’s second law in R
d .

10See also Laplace transform (14.73) for β = 1 and Appendix.
11Where we take into account with δ(t) = d

dt Θ(t) that d
dt (Θ(t) f (t)) = δ(t) f (0) + Θ(t) d

dt f (t),
and further properties are outlined in the Appendix.
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14.9 Conclusions

We developed a Montroll–Weiss CTRW model for space fractional walks subordi-
nated to a generalization of Laskin’s fractional Poisson process; i.e., the fractional
(long-range) jumps are performedwith waiting time PDF according to a ‘generalized
fractional Poisson process’ (GFPP). We obtained a space–time fractional diffusion
equation by defining a ‘well-scaled’ diffusion limit in the infinite d-dimensional inte-
ger lattice Zd with a combined rescaling of space- and timescales. The index α > 0
of the GFPP appears in this space–time fractional diffusion equation only as a scal-
ing parameter. This diffusion equation is of the same type as for α = 1 when the
GFPP coincides with the pure Laskin’s fractional Poisson process and exhibits for
0 < β < 1 non-Markovian features (long-time memory) and for β = 1 becomes a
Markovian memoryless (Lévy flight) diffusion equation of standard Poisson.

The GFPP contains three parameters, two index parameters 0 < β ≤ 1 and α > 1
and parameter ξ defining a timescale. For α = 1 and 0 < β < 1, the equations of
Laskin’s fractional Poisson process, and for α = 1, β = 1, the classical equations
of the standard Poisson process are recovered, respectively. Some of the discussed
resultswere obtained in recent papers [17, 18]. Generalizations of fractional diffusion
as analyzed in thepresent paper are interestingmodels for abetter understandingof the
stochastic dynamics in complex systems. Since these models offer more parameters,
they are susceptible to be adopted to describe real-world situations.

Appendix: Laplace Transforms and Fractional Operators

Here, we derive briefly some basic mathematical apparatus used in the paper in
the context of causal functions and distributions involving fractional operators and
Heaviside calculus. All functions and distributions considered are to be conceived
as generalized functions and distributions in the Gelfand–Shilov sense [23]. Let us
first introduce the Heaviside step function

Θ(t) =
{
1, t ≥ 0
0, t < 0.

(14.80)

A function is causal if it has the formΘ(t) f (t), i.e., is null for t < 0 and nonvanishing
only for nonnegative times t. We introduce the Laplace transform of Θ(t) f (t) by

f̃ (s) = L( f (t)) =
∫ ∞

−∞
e−stΘ(t) f (t)dt =

∫ ∞

0
f (t)e−stdt, s = σ + iω

(14.81)

with suitably chosen σ > σ0 in order to guarantee convergence of (14.81). In view
of the fact that (14.81) can be read as Fourier transform of the causal function
e−σ t f (t)Θ(t), it is straightforward to see that the Laplace inversion corresponds to
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the representation of this function as Fourier integral, namely

e−σ t f (t)Θ(t) = 1

2π

∫ ∞

−∞
eiωt f̃ (σ + iω)dω (14.82)

which can be rewritten as

f (t)Θ(t) = eσ t

2π

∫ ∞

−∞
eiωt f̃ (σ + iω)dω = 1

2π i

∫ +i∞

−i∞
est f̃ (s)ds. (14.83)

Sometimes when there is no time derivative involved, we skip the Heaviside Θ(t)-
function implying that all expressions are written for t ≥ 0. Then, we mention
that

Θ(t) f (t) =
∫ ∞

−∞
δ(t − τ)Θ(τ) f (τ )dτ (14.84)

and introduce the shift operator e−τ d
dt acting on a function g(t) as e−τ d

dt g(t) = g(t−τ)

thus

e−τ d
dt δ(t) = δ(t − τ). (14.85)

Substituting this relation into (14.84) yields

Θ(t) f (t) =
{∫ ∞

−∞
e−τ d

dt Θ(τ) f (τ )dτ

}
δ(t) = L−1{ f̃ (s)} = f̃

(
d

dt

)
δ(t)

(14.86)

where the operator f̃ ( d
dt ) is related with the Laplace transform (14.81) by replac-

ing s → d
dt . Equation (14.86) is the operator representation of the causal function

Θ(t) f (t). A convolution of two causal functions Θ(t) f (t), g(t)Θ(t) then can be
represented by

∫ t

0
g(t − τ) f (τ )dτ

= ∫∞
−∞

∫∞
−∞ δ(t − τ1 − τ2)g(τ1)Θ(τ1) f (τ2)Θ(τ2)dτ1dτ2, t > 0

(∫ ∞

−∞
e−τ1

d
dt Θ(τ1) f (τ )dτ1

)(∫ ∞

−∞
e−τ2

d
dt Θ(τ2) f (τ )dτ2

)
δ(t)

= L−1{g̃(s) f̃ (s)} = f̃

(
d

dt

)
g̃

(
d

dt

)
δ(t) = g̃

(
d

dt

)
f̃

(
d

dt

)
δ(t)

(14.87)

where it has been used δ(t − τ1 − τ2) = e−(τ1+τ2)
d
dt δ(t). We observe that in (14.86)

and (14.87), the Laplace variable is replaced s → d
dt in the causal time domain. By

considering f̄ (t)Θ(t) = f (t)Θ(t)e−λt , we observe that
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f (t)Θ(t)e−λt =
{∫ ∞

−∞
e−τ(λ+ d

dt ) f (τ )Θ(τ)dτ

}
δ(t) = f̃

(
λ + d

dt

)
δ(t) (14.88)

where f̃ (s) = L{ f (t)}. We are especially dealing with normalized (probability)
distributions

f̃ (s = 0) = 1 =
∫ ∞

−∞
Θ(t) f (t)dt. (14.89)

A very important consequence of relations (14.86) and (14.87) is that they can be
used to solve differential equations and to determine causal Green’s functions. As a
simple example, consider the trivial algebraic equation in the Laplace domain

(s + ξ)
ξ

(s + ξ)
= ξ, ξ > 0 (14.90)

takes with L−1{s + ξ} = d
dt + ξ and L−1

{
ξ

s+ξ

}
= Θ(t)ξe−ξ t where on the right-

hand side is used that L−1{1} = δ(t). In the causal time domain (14.90) then gives
the representation

(
d

dt
+ ξ

) (
ξΘ(t)e−ξ t

) = ξδ(t), (14.91)

result which is straightforwardly confirmed, i.e., the normalized causal Green’s func-
tionof d

dt +ξ is directly obtained as ( d
dt +ξ)−1ξδ(t) = Θ(t)ξe−ξ t where it is important

that the Θ(t)-function is taken into account in the Laplace inversion.
A less trivial example is obtainedwhen considering fractional powers of operators.

For instance, let us consider in the Laplace domain the equation

(sβ + ξ)
ξ

(sβ + ξ)
= ξ, ξ > 0, 0 < β ≤ 1 (14.92)

which writes in the time domain
{(

d

dt

)β

+ ξ

}
Θ(t)gβ,ξ (t) = ξδ(t) (14.93)

where the fractional derivative
(

d
dt

)β
is determined subsequently. The causal Green’s

function Θ(t)gβ,ξ (t) is obtained from the Laplace inversion

gβ,ξ (t) = L−1

{
ξ

sβ + ξ

}
. (14.94)

The inversion is performed directly when taking into account
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ξ

(sβ + ξ)
= s−β ξ

(1 + ξs−β)
= ξ

∞∑
n=0

(−1)nξ ns−β(n+1), σ = R{s} > ξ
1
β (14.95)

where σ = R{s} > ξ
1
β guarantees convergence of this geometric series ∀ω = I{s},

i.e., for the entire interval of integration of the corresponding Laplace inversion
integral (14.88). On the other hand, we have

s−μ = L
{
Θ(t)

tμ−1

Γ (μ)

}
, μ > 0, σ > 0, (14.96)

where we use the notation Γ (ξ + 1) = ξ ! for the gamma function. We then arrive at

Θ(t)gβ,ξ (t) = L−1

{
ξ

ξ + sβ

}

=
∞∑

n=0

(−1)nξ n+1L−1
{
s−β(n+1)

} = Θ(t)
∞∑

n=0

(−1)nξ n+1 tnβ+β−1

Γ (nβ + β)

(14.97)

with

gβ,ξ (t) = ξ tβ−1
∞∑

n=0

(−ξ tβ)n

Γ (nβ + β)
= ξ tβ−1Eβ,β(−ξ tβ). (14.98)

Here, we have introduced the generalized Mittag-Leffler function, e.g., [4, 30, 44]

Eβ,γ (z) =
∞∑

n=0

zn

Γ (βn + γ )
, β, γ > 0, z ∈ C (14.99)

It follows that ξ is a dimensional constant having units sec−β so that (14.98) has
physical dimension of sec−1 of a density. The result (14.98) also is referred to as
Mittag-Leffler density and represents the waiting time density of Eq. (14.26) of the
fractional Poisson renewal process introduced by Laskin [14]. Generally, Mittag-
Leffler type functions play a major role in time fractional dynamics. We further often
use the Mittag-Leffler function which is defined as, e.g., [4, 30, 44]

Eβ(z) =
∞∑

n=0

zn

Γ (βn + 1)
, β > 0, z ∈ C (14.100)

where with (14.99) we have Eβ(z) = Eβ,1(z). The Mittag-Leffler function has the
important property that for β = 1 it recovers the exponential E1(z) = ez .

Riemann–Liouville fractional integral and derivative
Now let us derive the kernel of the fractional power of time-derivative operator of

Eq. (14.93) where we consider now exponents γ > 0. This kernel is then obtained
with above-introduced methods in the following short way
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L−1{sγ } = L−1{sγ �sγ−γ �} = eσ t

(
σ + d

dt

)γ �(
σ + d

dt

)γ−γ �
δ(t)

= eσ t

(
σ + d

dt

)γ � ∫ ∞

−∞
dω

(2π)
eiωt (σ + iω)γ−γ �

= eσ t

(
σ + d

dt

)γ �{
e−σ tΘ(t)

tγ �−γ−1

(γ � − γ − 1)!
}

= dγ �

dtγ �

(
Θ(t)

tγ �−γ−1

Γ (γ � − γ )

)
.

(14.101)

with γ > 0, γ /∈ N. Here, we introduced the ceiling function γ � indicating the
smallest integer greater or equal to γ . In this way, the Fourier integral in the second
line is integrable around ω = 0 ∀σ ≥ 0 since γ −γ � > −1. We then obtain for the
Laplace inversion

L−1{s−γ } = Θ(t)
tγ−1

Γ (γ )
, γ > 0 (14.102)

as a fractional generalization of integration operator. This kernel indeed can be iden-
tified with the kernel of the Riemann–Liouville fractional integral operator of order
γ [45–47] which recovers for γ ∈ N the multiple integer-order integrations.

On the other hand, the kernel (14.101)with explicit representation in (14.101)3 can
be conceived as the ‘fractional derivative’ operator ( d

dt )
γ . The fractional derivative

acts on causal functions Θ(t) f (t) as

L−1{sγ } · f (t)Θ(t) =:0 Dγ
t f (t) = dγ �

dtγ �

∫ ∞

−∞

{
Θ(t − τ)

(t − τ)γ �−γ−1

Γ (γ � − γ )

}
f (τ )Θ(t)dτ,

0D
γ
t f (t) = 1

Γ (γ � − γ )

dγ �

dτ γ �

∫ t

0
(t − τ)γ �−γ−1 f (τ )dτ.

(14.103)

with γ > 0. We identify in the last line this operator with the Riemann–Liou-
ville fractional derivative [45–47] which recovers for γ ∈ N integer-order standard
derivatives. We emphasize that (14.101) requires causality, i.e., a distribution of the
form f (t)Θ(t); thus, the Laplace transform captures the entire nonzero contributions
of the causal distribution. In the diffusion equation (14.72), the Riemann–Liouville
fractional derivative is of order 0 < β < 1 with β� = 1. In this case (14.103) then
has representation

0D
β
t f (t) = 1

Γ (1 − β)

d

dt

∫ t

0
(t − τ)−β f (τ )dτ, 0 < β < 1, t > 0. (14.104)
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Chapter 15
Analytical Method for Describing
the Dynamics of Mechanical Systems
in Variable Time Intervals

Andrey N. Morozov and Andrey L. Nazolin

Abstract Within the framework of the linear model of the fluctuating time interval,
there has been developed an analytical method for the statistical description of the
dynamics of mechanical systems in variable time intervals of passing the fixed co-
ordinates by the systems’ elements. We obtained the linear relations between the
displacement variations and variations of time intervals for rotational, vibrational,
and reciprocating motion in different coordinate systems. We also analytically as-
sessed the influence of the type of motion and coordinates of fixed positions on the
variations of time intervals. The research shows the possibility of restoring the true
values of the displacement variations from the variations of the current oscillation
period by multiplying each period variation value by the appropriate scale factor,
which takes into account the coordinate of the fixed angular position. We found the
system correlation functions and the frequency characteristics of transformations of
the displacement variations in variations of the time intervals. On their basis, we ana-
lyzed the transformation features in the time and frequency domains. The advantages
and disadvantages of measuring the current period, the current time interval and the
current time for the experimental study of the dynamics of mechanical systems are
determined. The study shows that the scope of linear relations depends on the type
of motion and the choice of coordinates of the fixed positions and is limited to the
level of relative variations of the period of no more than 10%.
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15.1 Introduction

In the steady operating conditions, most of the mechanical systems of cyclic action,
hereinafter referred to as mechanical systems (MS), perform rotational or quasi-
periodic oscillatory motions close to uniform. The cyclical motion is manifested in
the fact that after a certain constant time T , called a period, all the details of the ideal
mechanical systems return to their original position.

Projected on the fixed axes of Cartesian coordinate system, the law of motion x(t)
of links of non-ideal mechanical systems satisfies the inequality [1–3].

|x(t) − x(t + T )| ≤ ε, (15.1)

where T and ε are constant values. The smallest number T satisfying the condition
(15.1) is called the period.

The traditional description of theMS dynamics consists of compiling the differen-
tial equations of motion and obtaining their solutions in the form of the dependence
of the current displacement x, describing the state of the system, on time t. With time
discretization of the continuous law of motion x(t), the flow of time is assumed to be
uniform, and the time intervals �t between successive moments of determining the
displacement value are assumed to be constant (Fig. 15.1a). Such a discrete model
provides a fairly sufficient description of the MS dynamics in the case if the sam-
pling frequency satisfies the sampling theorem [4] and does not take into account the
errors of real-time measurement, i.e., when approaching time as a purely geometric
parameter.

The principal feature of describing the MS dynamics in variable time intervals
of passing the fixed angular or linear positions, i.e., coordinates, by the systems’
elements is the need to find the time points t, corresponding to certain discrete values
of the displacement xn, i.e., obtaining the dependence (Fig. 15.1b). In this case, the

Fig. 15.1 Displacement dependence x on discrete time tn (a) and dependence of time points t on
discrete displacement xn (b)
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discretization of information retrieval is carried out by moving the elements of the
MS itself.

From discrete values tn = t (xn), it is possible to form various sequences of values
of time intervals of the form

τn = tn − tn−k , n = 1, 2, . . . , k < n, (15.2)

and their variations
δτn = τn − τ0, (15.3)

where τ0 is the mean value of time intervals, tn are the time points, corresponding to
the passage of coordinates of the fixed positions xn.

In practice, the coordinate discretization interval depends on the measurement
design and, in general, is non-uniform. The restrictions imposed by the sampling
theorem on the discrete analogue of the continuous process t(x) remain valid and
determine the required number of discrete coordinates of the fixed positions to re-
construct the spectrum of the continuous process. So, if the upper frequency of the
studied frequency range or the highest expected frequency of oscillations is N -fold
higher than the frequency of rotation or oscillation, then the number of discrete po-
sitions should be no less than 2N . Otherwise, part of the information contained in
the high frequency part of the spectrum will be lost, and part of the spectrum will be
distorted by the components due to the effect of frequency overlap [4].

Relations (15.2) and (15.3) are fundamental for studying the MS dynamics by
the method of time intervals. To apply them in practice, it is necessary to study the
features of transforming displacement fluctuations into fluctuations of time intervals
with various types of motion and methods of recording. This paper is devoted to
solving the problem of the analytical description of the MS dynamics in variable
time intervals within the linear model of the fluctuating time interval.

15.2 Problem of Analytical Description of the Dynamics
of Mechanical Systems in Variable Time Intervals

In an explicit form, the continuous law of motion t (x) can only be obtained from the
differential equation of free vibrations of a conservative system with one degree of
freedom [5]

mẍ + F(x) = 0, (15.4)

t(x) =
x∫

0

dx

±
√

2
m

[
C −

x∫
0
F(x)dx

] , (15.5)
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where F(x) is the quasi-elastic characteristic in the form of a smooth, piecewise
smooth, or piecewise linear restoring force. In the case of a symmetric restoring
force, the period of free oscillations is calculated by the formula

T = 2
√
2m

A∫

0

⎡
⎣

A∫

0

F(x)dx

⎤
⎦

−1/2

dx, (15.6)

where A is the oscillation amplitude. The formula (15.6), in particular, implies an
important property of the non-isochronism of nonlinear systems, expressed in the
dependence of the period of free oscillations on the amplitude.

For linear systems F(x) = p2x, the calculation by the formula (15.6) gives a well-
known solution T = 2π/p. For nonlinear systems, calculations using the formula
(15.6) are difficult and the result cannot be represented in the final form through ele-
mentary functions. Despite the fact that the formula (15.5) is fundamentally accurate,
in practical applications it requires cumbersome calculations, usually not feasible in
closed form. Therefore, various methods of approximate solutions of nonlinear dif-
ferential equations of motion in the form x(t) are used.

It is known from the theory of oscillations that in autonomous conservative, auto-
oscillating systems, aswell as non-autonomous conservative and dissipative systems,
under the influence of a periodic perturbing force, strictly periodic motion modes are
implemented, for which at any time point t the following relation is fulfilled.

x(t + T ) = x(t). (15.7)

The description of the dynamics of such idealized mechanical systems in variations
of a period, for example, does not make sense, since T = const.

Inmechanical engineering, idealizeddynamicmodels ofMS that describe periodic
motion modes, where the period T is a constant, are most prevalent. Such models are
based on the assumption of the existence of ideal constraints and that the kinematic
chain of an ideal mechanism is always closed, i.e., the movement of all points of the
mechanism is always reversible. To simplify the calculations, dynamic replacement
schemes for machines and mechanisms are attempted to bring to a system with one
degree of freedom, less often with two or a finite number of degrees of freedom.
Possible deviations from periodicity are usually neglected, which greatly simplifies
the obtaining of analytical solutions of the equations of motion, and, in particular, it
makes it possible to find closed solutions to the problem of the action of an arbitrary
periodic force.

Ideal models have proven themselves to be good in solving practical problems of
mechanical engineering. They make it possible to explore the dynamic stability and
are the basis for strength calculations, and in the first approximation, they describe
the dynamics of real systems in good condition and are used to determine the norms
for the output motion parameters, including kinematic ones.
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Real machines and mechanisms differ from idealized models in more diverse
properties. Due to defects in fabrication and installation, wear, gaps and slippage,
the number of degrees of freedom of the system increases, the closure condition
of the kinematic scheme is not observed—the positions occupied by the elements
at some time point are never repeated again, and the movement is irreversible. In
addition, there are always perturbing forces that depend on the structural and operat-
ing parameters of the machine, which excite oscillations of its elements at different
frequencies, including those that are not multiple of the fundamental frequency of
rotation or oscillation. All this excludes the possibility of an ideal periodicity. There-
fore, in practice, one always has to deal with quasi-periodic processes, for which the
condition of periodicity (15.7) is satisfied approximately (15.1).

Quasi-periodic processes are much more diverse than periodic ones. An example
of deterministic quasi-periodic processes is damped oscillations

x(t) = Ae−βt cos(ωt + ϕ0), (15.8)

with a sufficiently small β. Here, A, β, and ω, ϕ0 are constant values, T = 2π/ω.
Another example is the sum of two or several oscillations with incommensurable
frequencies

x(t) = cos(ω1t) + cos(ω2t), (15.9)

where ω2/ω1 is an irrational number, in general.
Stationary random oscillations, described by differential equations in which the

coefficients and (or) free terms are random functions of time, are also quasi-periodic.
An analogue of such equations in the classical theory does not exist. For them, a spe-
cial theory of stochastic differential equations of K. Ito [6] type has been developed.
When the solutions of these equations are Markov processes, there are effective
methods for determining the finite dimensional distributions of the solution. For
non-Markov processes such methods have not yet been found.

In the absence of an analytical description of the process of transforming linear
and angular displacements into time intervals, it is not possible to find the law of
motion t(x) explicitly. Therefore, in practice, the solution is sought numerically.
For example, period variations δT (t) are calculated not from the solution of the
differential equations of motion, where δT (t) acts as a variable, but numerically
from the solution of implicit equations of the form

x(tn) = x(tn + T0 + δTn), (15.10)

where T0 is a mean period and δTn are variations (fluctuations) of the period at time
points tn obtained by displacement coordinates x(tn) = xn. In this case, it is necessary
to take into account the features arising from the use of the formula (15.10) both in
calculations and measurements of the period variations.
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Fig. 15.2 Dependence of the period deviation δTn of the oscillatory process (15.8) on the coordi-
nates of the fixed positions xn. Here, A = 100, 1 − β = 0.1, T = 0.001; 2 − β = 0.1, T = 0.01;
3 − β = 0.5, T = 0.01

For example, from the graphs in Fig. 15.2, one can see that the period deviations
δTn calculated by the formula (15.10) for the case of the simplest quasi-harmonic
oscillatory process of the form (15.8), depend not only on the parameters of the
oscillatory process A, β, T but also on the coordinates of the fixed positions xn.
When these deviations are commensurate with variations in the time intervals of a
real object, it is necessary to take into consideration the influence of the coordinates
of the fixed positions.

The fundamentals of the analytical description of the dynamics of high-quality
oscillatory systems in variations and fluctuations of the period were laid in the mono-
graphbyMorozov [7]. In thiswork, for the high-quality torque balance as ameasuring
system that implements the procedure for measuring period variations (15.10), an
approximate analytical relation was obtained for the first time, which relates varia-
tions in the angle of torsion of the torque balance arm δϕ(tn), caused by seismic and
gravitational disturbances, with period variations

δTn(t) = 1


0β

√
ϕ2
0 − ϕ2

n

[
δϕ(tn + T0β) − δϕ(tn)

]
, (15.11)

where T0β is the period of free torsional oscillations of the balance, 
0β = 2π/T0β
is the frequency of free oscillations, which is much higher than the characteristic
frequency of external influences, ϕ0 is the initial angle of torsion of the balance arm,
and tn are time points, defined by angular coordinates of the fixed positions, i.e.,
ϕ(tn) = ϕn.
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15.3 Method of Time Intervals

The rotational and oscillatorymotion ofMS elements is traditionally described either
in the polar coordinate system r(ϕ), associatedwith the axis of rotation, i.e., the origin
of the coordinate system during oscillations, or in projections onto the fixed axes of
coordinates:

x(t) = |r(ϕ)| sin ϕ(t), (15.12)

where: x(t) is the current projection displacement; |r(ϕ)|, ϕ(t) are the amplitude and
phase of the cyclic motion, respectively.

The choice of the coordinate system is largely determined by the convenience of
the mathematical description of the MS dynamics. Such a description in the general
case includes a set of parameters on the left side of the differential equation, i.e.,
structural parameters of the system which determine the transfer function of the
mechanical system, and the external influences on the right side of the equation,where
M (t) is the external moment, F(t) is the external force. The influences determine the
conditions and its operating conditions, and the law of control, if there is one. The
dynamic analysis is carried out at given initial and boundary conditions. According to
the formula (15.12), information about the MS dynamics is contained in the changes
in the amplitude |r(ϕ)| and the phase ϕ(t) of the law of motion x(t), as well as in the
inverse function t(x) (Fig. 15.3).

The discrete process of receiving information about the time of passing the fixed
positions by MS elements allows us to form different sequences of values of time
intervals that form the basis of the time interval method.

We will distinguish the sequences that are obtained when implementing the pro-
cedures for measuring the following quantities:

1. The current period Tn in the polar and Cartesian coordinate systems, respectively:

Tn = t(ϕn) − t(ϕn−N0), (15.13)

x(tn) = x(tn − Tn), (15.14)

where ϕn are the fixed angular positions of the MS element, n = 1, 2, . . .; N0 is
the number of the fixed positions in the cycle, and tn is the moment of passing of
the fixed position by the MS element xn, n = 1, 2, . . . ,N0;

Fig. 15.3 Parameters that carry information about the dynamics of the mechanical system
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2. The current time interval τn for the passage of the adjacent fixed positions in the
polar and Cartesian coordinate systems, respectively:

τn = t(ϕn) − t(ϕn−1), (15.15)

τn = t(xn) − t(xn−1). (15.16)

3. The current time tn for the passage of the fixed positions in the polar and Cartesian
coordinate systems, respectively:

tn = t(ϕn), (15.17)

tn = t(xn). (15.18)

The development of the analytical description of theMSdynamics in variable time
intervals involves finding dependencies that uniquely associate variations of displace-
ments with variations of time intervals. The construction of these dependencies will
make it possible to determine the time and spectral windows for the transformation
of displacement parameters into time intervals, to have the possibility of studying
the MS dynamics by the method of time intervals.

15.4 Relationship of Time Intervals with the Angle
of Rotation During Rotational Motion

Let us find the relationship between the time intervals Tn, τn and tn with the angle
of shaft rotation during rotational motion. Further, the index n, which corresponds
to the passage of ϕnth angular position by the shaft, will not be indicated without
disturbing the generality of reasoning.

Assuming the number of the fixed angular positions of the shaft to be equal and
neglecting the error of the interval of their location, we write down the relationship
between the mean period T0 and the mean time of passing the neighboring positions
τ0 in the form

T0 = N0τ0. (15.19)

To determine the current period T (t) of the shaft rotation, we use the following
relation [8]:

2π =
t∫

t−T (t)

ϕ̇ (τ ) dτ , (15.20)



15 Analytical Method for Describing the Dynamics of Mechanical … 259

where ϕ (t) is the time dependence of the angle of shaft rotation. The solution of
the integral relation (15.20) is sought within the linear model of the fluctuating time
interval, considering that

T (t) = T0 + δT (t) , (15.21)

|δT (t)| � T0, (15.22)

where δT (t) is the period fluctuation.
Assuming that the shaft rotates according to the near-to-uniform law close, the

equation of the shaft motion in the polar coordinate system is written in the form

ϕ (t) = ω0t + δϕ (t) , (15.23)

|δϕ(t)| � 1, (15.24)

where ω0 = 2π/T0 is the mean angular frequency of shaft rotation; δϕ (t) are the
small fluctuations of the angle of shaft rotation.

Further, unless otherwise specified, we will analyze the stochastic connectivity
of the rotation angle with time intervals. Taking into account the assumptions made,
the expression (15.20) in the first approximation takes the form

2π = ω0T (t) +
t∫

t−T0

δϕ̇ (τ ) dτ. (15.25)

Let us introduce the notation

< δϕ̇(t,T0) >= 1

T0

t∫

t−T0

δϕ̇(τ )dτ = 1

T0
[δϕ(t) − δϕ(t − T0)] , (15.26)

which is the mean velocity of fluctuations of the angle of shaft rotation of in the
interval [t − T0, t].

The formula (15.25) makes it possible to write a linear relation connecting fluc-
tuations of the current period δT (t) with fluctuations of the angle δϕ (t):

δT (t) = − T0
2π

[δϕ (t) − δϕ (t − T0)] , (15.27)

or, taking into account (15.26),

δT (t)

T0
= −< δϕ̇(t,T0) >

ω0
. (15.28)
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Analysis of the expression (15.28) shows that within the linear model of the
fluctuating time interval, the relative period fluctuations with an accuracy of the sign
are equal to the ratio of the mean velocity of fluctuations of the angle of shaft rotation
over the period T0 to the mean angular frequency of its rotation. From (15.28), in
particular, it follows that with rotational motion, the condition for the smallness of
period fluctuations (15.22) is satisfied if

∣∣∣∣< δϕ̇(t,T0) >

ω0

∣∣∣∣ � 1. (15.29)

The condition (15.29) clarifies (15.24), and as well as (15.22), it limits the scope of
the linear relations (15.27) and (15.28).

After similar transformations, we obtain a relation connecting fluctuations of the
current time interval for the passage of the adjacent fixed positions δτ (t) with angle
fluctuations δϕ (t):

δτ (t) = − T0
2π

[δϕ (t) − δϕ (t − τ0)] . (15.30)

By analogy with the formula (15.23), we present the dependence of the current time
on the angle of shaft rotation and fluctuations of the current time in the form

t(ϕ) = T0
2π

ϕ + δt(ϕ). (15.31)

Simultaneously solving (15.23) and (15.31) and taking into account that t = t(ϕ)

and ϕ = ϕ(t), we find the connection between fluctuations of the current time δt(t)
and fluctuations of the angle δϕ (t):

δt (t) = − T0
2π

δϕ(t). (15.32)

Note that the time t in formulas (15.27), (15.28), (15.30), and (15.32) is not arbitrary,
but corresponds to the moments at which the shaft passes through the fixed angular
positions ϕn.

The analysis of expressions (15.27) and (15.30) shows that fluctuations of the
current period and time intervals contain information about the change in fluctua-
tions of the angle of shaft rotation during the current time interval. This does not
directly determine the current angle. Therefore, the restoration of the dependence
ϕ (t) after performing transformations (15.27) and (15.30) or according to the results
of measurements of time intervals T (t) and τ (t) is not possible.

Another situation occurs when measuring the current time and describing the
MS dynamics in variations of the current time, calculated by the formula (15.32).
Fluctuations of the current angle of rotation δϕ(t) and the current time δt (t) are in
antiphase, differingonly in the scale factor−T0/(2π). In the case of small fluctuations
of the angle of rotation, the linear single-valued relation (15.32) allows us to first
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recover fluctuations of the angle of rotation δϕ (t) from fluctuations of the current
time δt (t) and then restore the dependence ϕ (t) using the formula (15.23).

Despite the simplicity of the expression (15.32), its use in practice to restore
the dependence (15.23) from the results of temporary measurements is fraught with
a number of difficulties. This is both a non-uniform interval of the fixed angular
coordinates and a non-uniform in time discretization interval of determining the
angular positions of the shaft. The algorithm for recovering the dependence ϕ (t)
from measurements of time intervals T (t), τ (t), and δt (t) is presented in [9].

In this paper, we confine ourselves to considering the features of analytical de-
scription of the MS dynamics in fluctuations of the current period and time intervals.
Despite certain shortcomings in the completeness of the description and study of the
MS dynamics, this approach, as will be shown below, has in some cases advantages
over the algorithm [9], since it is insensitive to the fixed coordinates interval error.

We study the spectral correlation characteristics of transformations of fluctua-
tions of the angle of rotation into fluctuations of time intervals. Taking into account
the similarity of relations (15.27) and (15.30), we first define the form of the spec-
tral window transformation into fluctuations of the current period, and then, based
on the obtained expression, we make a formula describing the spectral window of
transformation in the fluctuations of the current time interval.

Let the expression (15.27) describe an ideal systemwith one input and one output,
then the time window of the transformation can be represented as

hδT (t) = − T0
2π

[δ (t) − δ (t − T0)] , (15.33)

where δ (t) is the delta function. The system correlation function of transforming
angle fluctuations into fluctuations of the current period takes the form

Rh,δT (τ ) =
∞∫

−∞
hδT (t) hδT (t + τ)dt = T 2

0

(2π)2
[2δ (τ ) − δ (τ − T0) − δ (τ + T0)] .

(15.34)
In this case, the correlation functions of period fluctuationsRδT (τ ) and angle fluctu-
ations Rδϕ (τ ) will be related by the dependence

RδT (τ ) =
∞∫

−∞
Rh,δT (t)Rδϕ (t + τ) dt. (15.35)

Applying the direct Fourier transform to the expression (15.34), we obtain the
spectral window (Fig. 15.4) of transforming angle fluctuations into fluctuations of
the current period

Gh,δT (ω) = T 2
0

π2
sin2

(
ωT0
2

)
. (15.36)
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Fig. 15.4 Spectral window of transforming angle fluctuations into fluctuations of the current period
Gh,δT (ω) and current time interval Gh,δτ (ω) (N0 = 4)

Similarly, the spectral window of transforming angle fluctuations into fluctuations
of the current time interval has the form

Gh,δτ (ω) = T 2
0

π2
sin2

(ωτ0

2

)
. (15.37)

When applying formulas (15.36) and (15.37), it is necessary to take into account
the relation (15.19). As follows from the expression (15.36), when the condition

ωT0 = 2πk, (15.38)

where k is any integer, is met, the amplitude of period fluctuations tends to zero. This
means that when measuring the current period, processes that have frequencies close
to ω = 2πk/T0 are not recorded. In particular, when measuring the current period,
there is no possibility of recording processes at frequencies that are integer multiples
of the mean frequency of shaft rotation. Due to this circumstance, the accuracy of
measurement of the current period does not depend on the location of the fixed
angular positions, but is determined only by the accuracy of measurements of time
intervals. Similarly, it follows from (15.37) that when measuring the current time
interval for the passage of the adjacent fixed angular positions, the above limitations,
related to the impossibility of describing processes at frequencies which are integer
multiple of the mean rotation frequency, are shifted to a higher frequency domain
and take the form

ωT0 = 2πkN0. (15.39)

The frequency extension leads to the fact that in current time intervals there is
information both about the processes occurring in the MS and the interval error
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of the fixed angular positions. Thus, the uneven arrangement of the fixed angular
positions contributes to the intensity of the spectral lines at frequencies that are
integer multiples of the mean rotation frequency. For this reason, when putting into
practice the procedure of measuring time intervals for a MS moving element to pass
the fixed angular positions, the problem of their precise task arises, which in most
cases is rather complicated or completely unsolvable.

From expressions (15.36) and (15.37), we can conclude that the intensity of fluc-
tuations of time intervals with the same fluctuations of the angle of rotation is deter-
mined by the term T 2

0
/π2. Therefore, with an increase in the mean frequency of shaft

rotation, more precise means of measuring time intervals are required for recording
the same angle fluctuations.

15.5 Relationship of the Period with the Displacement
During Oscillatory Motion

The above statistical description of fluctuations of time intervals during rotational
motion cannot be directly transferred to the MS whose links make oscillatory move-
ments. This is due to the fact that the speed of movement of the oscillatory links
during the passage of various fixed positions changes significantly depending on
the displacement from the equilibrium position. For this reason, the description of
fluctuations of the oscillation period of devices such as a torque balance or clock
mechanisms is associated with the problem of finding the instrument functions of
transforming fluctuations of linear and angular displacements of oscillating links into
fluctuations of the oscillation period.

In the most general formulation, we consider the problem of transforming fluctua-
tions of the variable x (t), which describes a linear displacement of a link performing
rectilinear oscillations, from an equilibrium position in period fluctuations. The con-
dition for determining the current oscillation period can be written as (15.14):

x (t) = x (t − T (t)) , (15.40)

where T (t) is the current period of oscillation.
Assuming that oscillations occur according to a near-to-harmonic law, we write

the equation of motion in Cartesian coordinate system in the form

x (t) = x0 sin (ω0t + α0) + δx (t) , (15.41)

|δx(t)| � 1, (15.42)

where x0 is the oscillation amplitude; ω0 = 2π/T0 is the mean angular frequency
of oscillations; α0 is the initial phase; δx (t) are small fluctuations, i.e., variations,
of the oscillation link displacement with zero expectation. In addition, we believe
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that the velocity of fluctuations δẋ(t) is small compared to the velocity of harmonic
oscillations ∣∣∣∣ δẋ(t)

x0ω0 cos(ω0t + α0)

∣∣∣∣ � 1. (15.43)

Under these conditions, the oscillation period can be represented within the linear
model of the fluctuating time interval, i.e. in the form of (15.21) and (15.22). Then,
the expression (15.40) in the first approximation can be represented as

x (t) = x (t − T0) − ẋ (t − T0) δT (t) . (15.44)

Solving simultaneously (15.41) and (15.44) and neglecting terms of a higher
order of smallness, we obtain a relation connecting period fluctuations δT (t) with
fluctuations of displacement δx (t) of the oscillatory link

δT (t) = − T0
2π

1√
x20 − x2n

(δx (t) − δx (t − T0)) (15.45)

or
δT (t)

T0
= −< δẋ(t,T0) >

ω0

√
x20 − x2n

, (15.46)

where xn are coordinates of the fixed positions in which time points tn = t(xn) of
passing the specified displacements are recorded,< δẋ(t,T0) > is the mean velocity
of displacement fluctuations for the period T0 calculated by the formula (15.26). In
(15.46), it is taken into account that, under the condition (15.43), the velocity of the
oscillatory link in the first approximation is

ẋ(t) = x0ω0 cos(ω0t + α) = sign(ẋ(t))ω0

√
x20 − x2(t), (15.47)

where

sign(A) =

⎧⎪⎨
⎪⎩
1, if A > 0,

0, if A = 0,

−1, if A < 0,

(15.48)

is the piecewise constant function of the argumentA. Note that in (15.45) and (15.46),
time points t are not arbitrary but correspond to the moments of passing the fixed
positions xn by the oscillatory link.

From the comparison of expressions (15.45) and (15.27), it follows that fluctua-
tions of the period of oscillatory links depend on coordinates of the fixed positions.
The scope of the expression (15.45) is substantially limited by conditions (15.42),
(15.43) and the condition (15.22), which, as it can be seen from the expression
(15.46), can be represented as
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∣∣∣∣∣∣
< δẋ(t,T0) >

ω0

√
x20 − x2n

∣∣∣∣∣∣ � 1. (15.49)

At the same time, the condition (15.43) is decisive, since its non-fulfillment leads to a
change in the transformation function and calculation errors by the formula (15.45).

The description of fluctuations of the current time interval δτ(t) or fluctuations
of the current time δt(t) of passing the fixed positions by the oscillatory link is
impossiblewithin the linearmodel of thefluctuating time interval due to large changes
in the motion speed. There is a need to use a nonlinear transformation with a time
variable coefficient.

Performing similar transformations allows us to obtain a relation connecting the
fluctuations of the period δT (t) and the angle of rotation δϕ (t) for the link per-
forming angular oscillations. For example, for the torque balance or the clockwork
mechanism, in the polar coordinate system

δT (t) = − T0
2π

1√
ϕ2
0 − ϕ2

n

(δϕ (t) − δϕ (t − T0)) , (15.50)

where ϕ0 is the amplitude of angular oscillations of the link; ϕn are the fixed position
angular coordinates.

The expression (15.50) can be reduced to the form (15.27) by multiplying the val-

ues δT (t) by a scale factor
√

ϕ2
0 − ϕ2

n . Moreover, each measured value δT (t) should
be scaled, taking into account the angular coordinate of the fixed position. Similarly,
to bring (15.45) to the form (15.27), it is necessary to multiply the measurement

results by a scale factor
√
x20 − x2n . Note that the direct use of measured period fluctu-

ations δT (t) of the form (15.45) or (15.50) without performing the scaling described
above causes certain difficulties in interpreting the data, due to the dependence δT (t)
on the linear, that is angular, coordinates of the fixed positions, and not on the MS
dynamics.

In accordance with the method described above, the relation (15.45) allows us to
obtain an expression for the spectral window of transforming displacement fluctua-
tions into fluctuations of the current period of oscillations during translational motion
of the MS link. In the first approximation, with xn � x0, up to a constant factor, it
will coincide with the formula (15.36)

Gh,δT (ω) = T 2
0

π2

1

x20 − x2n
sin2

(
ωT0
2

)
. (15.51)

Replacing the linear coordinate xwith the angular coordinateϕ in the formula (15.51)
gives an expression for the spectralwindowof the current period in the case of angular
oscillations of the MS link:
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Gh,δT (ω) = T 2
0

π2

1

ϕ2
0 − ϕ2

n

sin2
(

ωT0
2

)
. (15.52)

Thus, in the study of fluctuations of the oscillation period, expressions (15.36) and
(15.37) can be used for rotational motion. In this case, one only needs to enter the
appropriate scale factor.

The equation of the form (15.41) also reduces the problemof transforming thefluc-
tuations of the shaft point projection displacement, the shaft making a near uniform
rotational motion, into period fluctuations. The projection displacement equation in
Cartesian coordinate system takes the form of

x (t) = x0 sin (ω0t + α0 + δϕ(t)) , (15.53)

where δϕ (t) are small fluctuations of the angle of shaft rotation. Using the trigono-
metric formula, we represent the expression (15.53) in the form

x(t) = x0 sin(ω0t + α0) cos(δϕ(t)) + x0 cos(ω0t + α0) sin(δϕ(t)). (15.54)

When the condition (15.24) is satisfied, as well as the smallness of the velocity of
fluctuations of the angle δϕ̇(t) compared with the mean angular frequency ω0, i.e.,

∣∣∣∣δϕ̇(t)

ω0

∣∣∣∣ � 1, (15.55)

Equation (15.54) in the first approximation takes the form (15.41), and the displace-
ment δx (t) and the angle δϕ (t) fluctuations will be related by

δx(t) = ẋ(t)

ω0
δϕ(t), (15.56)

where ẋ(t) is the displacement velocity determined by the formula (15.47).
Using expressions (15.44) and (15.47), we obtain the relation connecting period

fluctuations δT (t) and projection displacement fluctuations δx (t) of a point of the
shaft making a rotational motion, in Cartesian coordinate system in the form (15.45).

Substitution of the formula (15.56) into the expression (15.45) allows the transition
from Cartesian coordinate system to the polar one and to obtain the connection
between fluctuations of the period δT (t) and the angle of shaft rotation δϕ(t) in the
form (15.27).However, it should beborne inmind that, unlike (15.27), the scopeof the
linear relation (15.45) and expression (15.56) is limited by the additional condition
(15.55). As a result, the level of relative fluctuations of the current period, for which
the linear relation (15.45) is satisfied, must be less than for the relation (15.27).

Thus, the instrument function of transforming displacement fluctuations into fluc-
tuations of the current period and the level of relative fluctuations of the current pe-
riod, which allows using a linearmodel of fluctuating time to study theMS dynamics,
depend on the type of motion and the choice of the coordinate system.
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15.6 Relationship of Time Intervals with Displacement
During Reciprocating Motion

Changing the direction during the reciprocating motion of the MS moving element
is usually accompanied by the excitation of transients. Therefore, the description
of fluctuations of time intervals on these parts of motion within the linear model
of the fluctuating time interval in the general case is not possible. However, if after
the damping of transients the motion of the moving element is close to harmonic
(15.41), then to describe small fluctuations of the current period, one can use the
linear relation (15.45). If the movement is close to uniform

x(t) = V0t + δx(t), (15.57)

where V0 is the mean velocity, δx(t) are the small fluctuations of the moving element
displacement, then the description of fluctuations of time intervals for rotational
motion can be fully transferred to fluctuations of time intervals during reciprocating
motion.

Let us show this by describing the fluctuations of the current time interval. We
believe that the recording of the current time interval τ(t) for the passage of the
adjacent fixed positions allows us to determine the current velocity of the moving
element

ẋ(t) = �x/τ(t), (15.58)

where �x is the distance between the adjacent fixed positions.
At a constant velocity of movement V0, the time interval for the passage of the

adjacent fixed positions will be constant

τ0 = �x/V0, (15.59)

The formula for finding the current time interval can be written in general [10]:

�x =
t∫

t−τ(t)

ẋ (t) dt. (15.60)

The solution of the integral relation (15.60) in the framework of the linear model of
the fluctuating time interval suggests that

τ(t) = τ0 + δτ(t); (15.61)

|δτ(t)| � τ0, (15.62)

where δτ(t) are fluctuations of the current time interval.
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According to the method outlined above, we obtain a relation connecting fluctu-
ations of the current time interval δτ (t) with displacement fluctuations δx (t):

δτ (t) = − 1

V0
[δx (t) − δx (t − τ0)] (15.63)

or
δτ(t)

τ0
= −< δẋ(t, τ0) >

V0
, (15.64)

where < δẋ(t, τ0) > is the mean velocity of displacement fluctuations in the interval
[t − τ0, t], determined by the formula (15.26).

Substituting (15.57) and (15.59) into expression (15.63) allows us to write a
linear relation connecting fluctuations of the current time interval δτ(t) with the
displacement x(t):

δτ (t) = −{[x (t) − x (t − T0)] − �x}/V0 . (15.65)

In accordance with the method described above, from the formula (15.63), it is possi-
ble to obtain an expression for the spectralwindow for transformationof displacement
fluctuations into fluctuations of the current time interval

Gh,δτ (ω) = 1

V 2
0

sin2
(ωτ0

2

)
. (15.66)

Having compared expressions (15.37) and (15.66),we found that the features and lim-
itations inherent in fluctuations of the current time interval during rotational motion
fully relate to fluctuations in the current time interval during reciprocating motion.

Let us consider the special features of the description of fluctuations that intersect
in time of the current time intervals. In this case, the time and spectral transformation
windows take the form

hδT (t) = − 1

V0
[δ (t) − δ (t − T0)] , (15.67)

Gh,δT (ω) = 1

V 2
0

sin2
(

ωT0
2

)
. (15.68)

Here, N0 is the number of intersecting time intervals and T0 is the mean time of
passing N0 of the fixed positions, which is equal to (15.19). The upper frequency in
the fluctuation spectrum of the current time interval will be equal to N0/(2τ0), and
at frequencies defined by the formula (15.38), the amplitude of fluctuations of the
current time intervals will tend to zero. The system of “hills,” which is typical for
time measurements, appears (see Fig. 15.4).



15 Analytical Method for Describing the Dynamics of Mechanical … 269

15.7 Estimation of the Scope of Linear Relations

In the framework of the linear model of the fluctuating time interval, in the first
approximation, solutions of integral relations (15.20), (15.40), and Eq. (15.60) for
various types of MS motions were obtained. The scope of linear relations (15.27),
(15.30), and (15.32) is limited by conditions (15.24) and (15.29), and the scope of
relations (15.45) and (15.50) is limited by conditions (15.42), (15.43), and (15.49).

To determine the scope of relations (15.27), (15.30), and (15.32), it is necessary to
estimate the level of relative fluctuations of the period, which allows using inequal-
ity (15.22) when making the transition from the formula (15.20) to the expression
(15.25). To do this, we conduct a numerical calculation of the dependence of the
angle of shaft rotation on the current time in the polar coordinate system:

ϕ (tk) = 2π

T0
tk + δϕ (tk) , (15.69)

where T0 = 1 s, tk = k�t; k = 1, 2 . . .; �t = 10−6 s; δϕ (tk) is the white Gaussian
variance noise σ 2

δφ . The values of the current period by N0 = 12 fixed positions are
calculated by the formula (15.13): Tn = tk(n) − tk(n−1), where tk(n) is the current time
of passing the nth fixed position, determined from the condition

2πn = 2π

T0
tk(n) + δϕ(tk(n)), (15.70)

where n = 1, 2, . . .. The formula (15.28) was used to calculate the maximum value
of relative fluctuations of the current period and the maximum value of relative fluc-
tuations of the mean velocity of fluctuations of the angle of shaft rotation according
to 12,000 values. The result of calculation is shown in Fig. 15.5.

Analysis of the numerical simulation results in Figs. 15.5 and 15.6 shows that
the first approximation for solving the integral relation (15.20) quite well describes
the relationship between angle fluctuations and fluctuations of time intervals in the
steady-state mode of MS operation with a relative level of fluctuations of time in-
tervals of no more than 10%. An increase in the intensity of angle fluctuations leads
to a nonlinear transformation of angle fluctuations into period fluctuations, which
is expressed in changes in the distribution function (Fig. 15.5) and low-frequency
filtration in the spectral region (Fig. 15.6).

Thus, the application of the obtained spectral and timewindows of transformations
of angle fluctuations into fluctuations of time intervals is possible only for studying
the dynamics of mechanical systems, whose elements make a near-to-uniform mo-
tion. In the study of the dynamics of mechanical systems, whose period of shaft
rotation changes greatly, one must directly analyze the formula (15.20).

The scope of linear relations (15.45) and (15.50) is limited not only by the level
of fluctuations of the current period of 10%, but also by the stronger conditions
(15.43) and (15.55), respectively. Failure to meet these conditions is easily detected
by changing the shape of the spectral transformation window. Such situation is most



270 A. N. Morozov and A. L. Nazolin

Fig. 15.5 The ideal linear (1) and real nonlinear (2) transformation of fluctuations of the angle of
rotation in the period fluctuations during rotational motion

Fig. 15.6 Power spectral density of rotation period fluctuations at 12 angular positions:
a |δT/T0 |max = 1.5%; b |δT/T0 |max = 16%
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likely to occur at large displacements of the moving element from the equilibrium
position. In this case, the scope of linear relations (15.45) and (15.50) should be
limited to xn � x0 or ϕn � ϕ0.

15.8 Conclusion

The developed method of analytic description of the dynamics of cyclic mechanical
systems is an approximate method, whose scope of applicability is limited to station-
arymodes of operation ofmachines andmechanisms. This is due to the fact that when
considering models of systems with randomly varying time intervals, only the case
of minor fluctuations of these intervals was considered. Such an assumption made
it possible to obtain linear relations and, on their basis, to construct an analytical
method for describing dynamical systems with fluctuating time intervals. Moreover,
the simultaneous solution of linear and nonlinear differential equations of motion of
mechanical systems with these relations allows us to find complete solutions in both
time and frequency domains in variable time intervals. Examples of solving such
problems are presented in [8, 10].

Application of the obtained relations is not only theoretical. They make it pos-
sible to properly interpret and process the results of experimental measurements of
variations in time intervals of motion of mechanical systems elements, taking into
account the influence of the type of motion and the coordinate system. Examples
of solving problems of diagnosing machines and mechanisms by variations in time
intervals are presented in [10, 11].
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Chapter 16
Propagation of Non-stationary
Axisymmetric Perturbations from
a Spherical Cavity in Cosserat Medium

Lam V. Nguyen and Dmitry V. Tarlakovskii

Abstract We consider the space filled with the Cosserat medium with a spherical
cavity on which unsteady axisymmetric displacements are specified and there is no
rotation angle. The equations of axisymmetric motion are written in a spherical co-
ordinate system associated with the cavity with respect to non-trivial components
of the displacement potentials and the angle of rotation. To them are added the dis-
placement relation with potentials and physical relationships. The initial conditions
are zero, and there are no disturbances at infinity. To solve this we expand the de-
sired functions in the series in the Legendre and Gegenbauer polynomials, as well as
transform Laplace over time. When defining originals in linear approximation, the
method of a small parameter is used, coefficient, that relates the fields of displace-
ment and rotation, as well as the relationship of the Bessel functions of a half-integer
index with elementary functions. Examples of calculations are presented for a gran-
ular composite of aluminum fraction in an epoxy matrix, and a comparison with a
classical elastic medium is given.

Keywords Cosserat medium · Space · Spherical cavity · Axial symmetry ·
Non-stationary perturbations · Spherical functions · Laplace transform · Analytical
solution · Small parameter · Linear approximation · Two wave fronts

16.1 Introduction

Currently, the development of modern science and technology requires accurate
knowledge of the deformation processes not only for “traditional” materials, but also
for materials with a complicated structure, including deformation of the medium
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which is described not only by the displacement vector, but also by the rotation vector.
The general theory of such an asymmetric theory of elasticity was first developed by
the Cosserat brothers [1].

The number of publications devoted to non-stationary problems of the moment
theory of elasticity is limited. These includeworks [2–9]. In [2], the dynamic problem
of themoment theory of elasticity on a crack of finite length under normal load on the
banks by the method of integral transforms is reduced to a system of singular integral
equations for displacements and rotations, which is solved numerically. In [3], in the
three-dimensional region of a thin plate, the initial-boundary value problem of the
general three-dimensional asymmetric theory of elasticity is taken into consideration.
In [4], solutions of a dynamic system of equations were obtained for an unbounded
body, isotropic and centrally symmetric, withinwhich a concentratedmass force acts,
which changes in time spasmodically or periodically. In [5], the dynamic problem for
micropolar elastic bodies was studied by the eigenvalue method. In [6], a dynamical
coupled axisymmetric problem of the micropolar theory of elasticity for an isotropic
medium that is infinite in the radial direction is taken into consideration. In [7],
based on the one-dimensional dynamic equations of micropolar elastic thin beams
with free rotation, with constrained rotation and low shear stiffness, in which all
rotational shear deformations are taken into account, the free vibrations of beams
when pivotally supported at the ends are studied. The work [9], where axisymmetric
unsteady processes are studied in bodies bounded by spherical surfaces modeled by
the Cosserat pseudocontinuum, is closest to the problem considered below.

In [10, 11], solutions of two-dimensional non-stationary problems for half-spaces
of elastic moment and half-planes were constructed. Axisymmetric problems for
elastic bodies with spherical boundaries were studied in [12, 13].

The aim of this work is the formulation and construction of analytical solutions to
problemson the propagation of unsteady axisymmetric perturbations froma spherical
cavity in the Cosserat medium.

16.2 Statement of the Problem

On a spherical cavity of radius R in a space filled with medium [14], unsteady
surface perturbations are specified. We use a spherical coordinate system r, θ, ϑ ,
where r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϑ < 2π , with the origin in the center of the cavity and
the normalized basis er, eθ , eϑ .

Limitations are given to axisymmetric (symmetric with respect to the half-line
θ = 0) perturbations, as well as to the fields of displacements u and rotationω, which
is equivalent to the equalities

u = w (r, θ, t) er + v (r, θ, t) eθ , ω = ω (r, θ, t) eϑ . (16.1)
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We express the displacement through the scalar ϕ and vector ψ displacement poten-
tials:

u = grad ϕ + rotψ, divψ = 0, ψ = ψ (r, θ, t) eϑ .

which is equivalent to scalar equalities [15]

w = ∂ϕ

∂r
+ 1

r

(
∂ψ

∂θ
+ ψctgθ

)
, v = 1

r

(
∂ϕ

∂θ
− ψ

)
− ∂ψ

∂r
. (16.2)

To describe the motion of the medium, we use the equations for the potentials and
the rotation vector [14]:

∂2ϕ

∂t2
= c21Δϕ,

∂2ψ

∂t2
=

(
c22 + α

ρ

)
Δψ + 2

α

ρ
ω, c1 =

√
λ + 2μ

ρ
, c2 =

√
μ

ρ
,

∂2ω

∂t2
= c23Δω + β + γ − ε

J
grad divω − 2

α

J
(Δψ + 2ω) , c3 =

√
γ + ε

J
,

where are λ,μ—the Lamé constants; J—a measure of the inertia of the medium
during rotation (the density of themoment of inertia);α, β, γ, ε—additional physical
parameters of the medium characterizing the presence of moment effects; c1, c2,
and c3—the propagation velocity of the waves of tensile-compression, shaping, and
torsion, respectively; Δ—Laplace operator.

Given the axisymmetric nature of motion (16.1) and the type of operators in a
spherical coordinate system [15], these equations are reduced to the following scalar
form:

∂2ϕ

∂t2
= c21Δϕ,

∂2ψ

∂t2
=

(
c22 + α

ρ

)
L (ψ) + 2

α

ρ
ω,

∂2ω

∂t2
= c23L (ω) − 2

α

J
[L (ψ) + 2ω] ,

Δϕ = ∂2ϕ

∂r2
+ 2

r

∂ϕ

∂r
+ 1

r2

(
∂2ϕ

∂θ2
+ ∂ϕ

∂θ
ctgθ

)
, L (ψ) = Δψ − ψ

r2sin2θ
.

(16.3)
In this case, the physical components γξς andχξς , where {ξ, ς} = {r, ϑ, θ}, of strain
tensors γ bending torsion χ related to movement and rotation angle ω so:

γrr = ∂w

∂r
, γθθ = 1

r

(
∂v

∂θ
+ w

)
, γϑϑ = 1

r
(vctgθ + w) , γrθ = ∂v

∂r
− ω,

γθr = 1

r

(
∂w

∂θ
− v

)
+ ω, γrϑ = γϑr = γθϑ = γϑθ = 0;

(16.4)

χrϑ = ∂ω

∂r
, χϑr = −ω

r
, χθϑ = 1

r

∂ω

∂θ
, χϑθ = −ω

r
ctgθ,

χrr = χθθ = χϑϑ = χrθ = χθr ≡ 0.
(16.5)
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The physical components σ ξς and μξς of stresses σ and moment stresses μ are
expressed through deformations as follows:

σrr = (λ + 2μ)γrr + λ(γθθ + γϑϑ), σθθ = (λ + 2μ) γθθ + λ(γrr + γϑϑ),

σϑϑ = (λ + 2μ) γϑϑ + λ(γrr + γθθ ), σrθ = (μ + α) γrθ + (μ − α) γθr,

σθr = (μ + α) γθr + (μ − α) γrθ , σrϑ = σϑr = σθϑ = σϑθ ≡ 0;
μrϑ = (γ + ε) χrϑ + (γ − ε) χϑr, μθϑ = (γ + ε) χθϑ + (γ − ε) χϑθ ,

μϑr = (γ + ε) χϑr + (γ − ε) χrϑ , μϑθ = (γ + ε) χϑθ + (γ − ε) χθϑ ,

μrr = μθθ = μrθ = μθr = μϑϑ ≡ 0.

(16.6)

We suppose that at the initial moment of time t = 0 disturbances are absent:

ϕ|t=0 = ψ |t=0 = 0, ω|t=0 = 0,
∂ϕ

∂t

∣∣∣∣
t=0

= ∂ψ

∂t

∣∣∣∣
t=0

= 0,
∂ω

∂t

∣∣∣∣
t=0

= 0.

Among all possible perturbations on the surface of the cavity, we restrict ourselves
to setting the kinematic conditions of the following form:

w|r=R = W0 (θ, τ ) , v|r=R = V0 (θ, τ ) , ω|r=R = 0, (16.7)

Ratios (16.2), (16.3)–(16.7), together with the condition for the boundedness of the
desired functions, form an initial-boundary value problem.

Further, wewill use dimensionless quantities (for the same style they are indicated
by hatchs, which are omitted in the following statement):

r′ = r

R
, τ = c1t

R
, w′ = w

R
, v′ = v

R
, W ′

0 = W0

R
, V ′

0 = v

R
, ϕ′ = ϕ

R2 , ψ ′ = ψ

R2 ,

σ ′
ξς = σξς

λ + 2μ
, χ ′

ξς = Lχξς , μ′
ξς = Lμξς

γ + ε
{ξ, ς} = {r, θ, ϑ } ,

α′ = α

ρc21
= α

λ + 2μ
, γ 2

1 = c21
c22

, γ 2
2 = c21

c23
, η = γ − ε

γ + ε
, δ = ρL2

J
, κ = λ

λ + 2μ
.

(16.8)

In these quantities, the kinematic relations (16.2), (16.4), and (16.5) retain their form,
and formulas (16.3), (16.6), and (16.7) take the following form (the points hereinafter
marked with dimensionless time derivatives τ ):

ϕ̈ = Δϕ, γ 2
1 ψ̈ = (

1 + γ 2
1 α

)
L (ψ) + 2αγ 2

1 ω,

γ 2
2 ω̈ = L (ω) − 2αγ 2

2 δ [L (ψ) + 2ω] ; (16.9)
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σrr = ∂w

∂r
+ κ

r

(
∂v

∂θ
+ vctgθ + 2w

)
,

σθθ = κ
∂w

∂r
+ 1

r

[
(1 + κ)w + ∂v

∂θ
+ κvctgθ

]
,

σϑϑ = κ
∂w

∂r
+ 1

r

[
(1 + κ)w + κ

∂v

∂θ
+ vctgθ

]
,

σrθ = (
γ −2
1 + α

) ∂v

∂r
+ (

γ −2
1 − α

) 1
r

(
∂w

∂θ
− v

)
− 2αω,

σθr = (
γ −2
1 + α

) 1
r

(
∂w

∂θ
− v

)
+ (γ −2

1 − α)
∂v

∂r
+ 2αω,

μrϑ = χrϑ + ηχϑr, μϑr = χϑr + ηχrϑ , μθϑ = χθϑ + ηχϑθ , μϑθ = χϑθ + ηχθϑ ;

ϕ|τ=0 = ψ |τ=0 = ω|τ=0 = ϕ̇|τ=0 = ψ̇
∣∣
τ=0 = ω̇|τ=0 = 0; (16.10)

w|r=1 = W0 (θ, τ ) , v|r=1 = V0 (θ, τ ) , ω|r=1 = 0. (16.11)

16.3 Presentation of the Solution in the Form of Series

We represent potentials, displacements, and stress state components within the form
of series of Legendre Pn (x) and Gegenbauer polynomials C3/2

n−1 (x) [16]:

(
ϕ

w

)
=

∞∑
n=0

(
ϕn

wn

)
Pn (cos θ),

⎛
⎝ψ

v
ω

⎞
⎠ = − sin θ

∞∑
n=1

⎛
⎝ψn

vn
ωn

⎞
⎠C3/2

n−1 (cos θ).

(16.12)
Substituting them in (16.2), we obtain

wn = ∂ϕn

∂r
− n (n + 1)

ψn

r
, (n ≥ 0) , vn = ϕn − ψn

r
− ∂ψn

∂r
, (n ≥ 1) . (16.13)

Next, using the series (16.12) and formulas (16.4) and (16.5), we find the decom-
positions of the components of the strain and bending torsion tensors:

γrr =
∞∑
n=0

γrrnPn (cos θ),

(
γrθ
γθr

)
= − sin θ

∞∑
n=1

(
γrθn
γθrn

)
C3/2
n−1 (cos θ),

(
γθθ

γϑϑ

)
=

∞∑
n=0

(
γθθn

γϑϑn

)
Pn (cos θ) + 1

r
cos θ

∞∑
n=1

(
1

−1

)
vnC

3/2
n−1 (cos θ),
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where

γrrn = ∂wn

∂r
, γθθn = wn − Nvn

r
, γϑϑn = wn

r
, γrθn = ∂vn

∂r
− ωn,

γθrn = wn−vn
r + ωn, N = n (n + 1) .

(
χrϑ

χϑr

)
= − sin θ

∞∑
n=1

(
χrϑn

χϑrn

)
C3/2
n−1 (cos θ),

χϑθ = cos θ

∞∑
n=1

χϑθn (r, τ )C3/2
n−1 (cos θ) ,

χθϑ =
∞∑
n=0

χθϑnPn (cos θ) + cos θ

r

∞∑
n=1

ωn C
3/2
n−1 (cos θ) ,

and

χrϑn = ∂ωn

∂r
, χϑrn = −ωn

r
, χθϑn = Nχϑrn, χϑθn = −χϑrn.

Similarly, we build the expansion into series of components of the tensors of
stresses and moment stresses:

σrr =
∞∑
n=0

σrrnPn (cos θ),

(
σrθ

σθr

)
= − sin θ

∞∑
n=1

(
σrθn

σθrn

)
C3/2
n−1 (cos θ),

(
σθθ

σϑϑ

)
=

∞∑
n=0

(
σθθn

σϑϑn

)
Pn (cos θ) + 1 − κ

r
cos θ

∞∑
n=1

(
1

−1

)
vnC

3/2
n−1 (cos θ),

where

σrrn = ∂wn

∂r
+ κ

r
(2wn − Nvn) , σθθn = κ

∂wn

∂r
+ (κ + 1)

wn

r
− N

vn
r

,

σϑϑn = κ
∂wn

∂r
+ (κ + 1)

wn

r
− Nκ

vn
r

,

σrθn = (
γ −2
1 + α

) ∂vn
∂r

+ (
γ −2
1 − α

) wn − vn
r

− 2αωn,

σθrn = (γ −2
1 − α)

∂vn
∂r

− (
γ −2
1 + α

) vn − wn

r
+ 2αωn;

(
μrϑ

μϑr

)
= − sin θ

∞∑
n=1

(
μrϑn

μϑrn

)
C3/2
n−1 (cos θ),

(
μθϑ

μϑθ

)
=

∞∑
n=0

(
μθϑn

μϑθn

)
Pn (cos θ) + 2η cos θ

r

∞∑
n=1

(
1
1

)
ωnC

3/2
n−1 (cos θ),

(16.14)
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and

μrϑn = ∂ωn

∂r
− η

ωn

r
, μϑrn = η

∂ωn

∂r
− ωn

r
, μθϑn = −N

ωn

r
, μϑθn = ημθϑn

In this case, Eq. (16.9) and additional conditions (16.10) and (16.11) pass into the
following equalities:

ϕ̈n = Δnϕn (n ≥ 0) , Δn = ∂2ϕn

∂r2
+ 2

r

∂ϕn

∂r
− N

r2
,

γ 2
1 ψ̈n = (

1 + αγ 2
1

)
Δnψn + 2αγ 2

1 ωn,

γ 2
2 ω̈n = Δnωn − 2αδγ 2

2 (Δnψn + 2ωn) (n ≥ 1) ;
(16.15)

ϕn|τ=0 = ϕ̇n|τ=0 = 0 (n ≥ 0) ,

ψn|τ=0 = ψ̇n

∣∣
τ=0 = ωn|τ=0 = ω̇n|τ=0 = 0 (n ≥ 1) ;

wn|r=1 = w0n (τ ) (n ≥ 0) , vn|r=1 = v0n (τ ) , ωn|r=1 = 0 (n ≥ 1) .

(16.16)

Here, decompositions into the series of the right parts of the conditions (16.11) are
used:

W0 (θ, τ ) =
∞∑
n=0

w0n (τ )Pn (cos θ), V0 (θ, τ ) = − sin θ

∞∑
n=1

v0n (τ )C3/2
n−1 (cos θ).

(16.17)
Ratios (16.15), (16.16), and (16.13) together with the requirement of boundedness
form independent initial-boundary value problems.

16.4 General Solution Images

To solve these problems, we use the representations of the desired functions in the
form of the series constructed above and apply the Laplace transform in time domain
to Eq. (16.15) and relations (16.13) and (16.14) (s—parameter; index «L» denotes
the transform). As a result, we obtain equations for images

s2ϕL
n = Δnϕ

L
n (n ≥ 0) (16.18)

γ 2
1 s

2ψL
n = (

1 + αγ 2
1

)
Δnψ

L
n + 2αγ 2

1 ωL
n ,

γ 2
2 s

2ωL
nΔnω

L
n − 2αδγ 2

2

(
Δnψ

L
n + 2ωL

n

)
(n ≥ 1) .

(16.19)

and additional ratios

wL
n = ∂ϕL

n

∂r
− N

ψL
n

r
(n ≥ 0) , vLn = ϕL

n − ψL
n

r
− ∂ψL

n

∂r
(n ≥ 1) ; (16.20)
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σ L
rrn = ∂wL

n

∂r
+ κ

2wL
n − NvLn
r

, σ L
θθn = κ

∂wL
n

∂r
+ (κ + 1)

wL
n

r
− N

vLn
r

,

σ L
ϑϑn = κ

∂wL
n

∂r
+ (κ + 1)

wL
n

r
− Nκ

vLn
r

,

σ L
rθn = (

γ −2
1 + α

) ∂vLn
∂r

+ (
γ −2
1 − α

) wL
n − vLn
r

− 2αωL
n ,

σ L
θrn = (γ −2

1 − α)
∂vLn
∂r

− (
γ −2
1 + α

) vLn − wL
n

r
+ 2αωL

n ;

(16.21)

μL
rϑn

= ∂ωL
n

∂r
− η

ωL
n

r
, μL

ϑrn
= η

∂ωL
n

∂r
− ωL

n

r
, μL

θϑn = −N
ωL
n

r
, μL

ϑθn = ημL
θϑn.

(16.22)
The general solution of Eq. (16.18) has the form [16–18]:

ϕL
n = C(0)

n1 (s)Z1n (rs) + C(0)
n2 (s)Z2n (rs) ,

Z1n (z) = z−1/2Kn+1/2 (z) , Z2n (z) = z−1/2In+1/2 (z) ,
(16.23)

where C(0)
n1 (s) and C(0)

n2 (s) are the integration constants, and Iν (z) and Kν (z) are
modified Bessel functions of the first kind and second kind of order ν. To construct a
general solution to the systemofEq. (16.19),we use a rather simply proved statement.

Let the matrix of a system of ordinary differential equations

L (y) = Ay, y = (y1 (x) , y2 (x) , . . . , yn (x))T , A = (
aij

)
n×n

(
x, aij ∈ R

)
,

L (y) =
m∑

k=0

bm−k (x) y(k) (x),

(16.24)
where aij is independent of x and has a simple spectrum with eigenvalues λk and
eigenvectors Yk (k = 1, 2, . . . , n). Then, its general solution has the form

y = Tz, T = (Y1, ...,Yn) , z = (z1 (x) , z2 (x) , ..., zn (x))T , zk =
m∑
l=1

CklFkl (x)

(16.25)
where {Fkl (x)} (l = 1, 2, . . . ,m) are the fundamental systems of solutions of equa-
tions L (zk) = λkzk , and Ckl are arbitrary constants.

In light of this statement, we write the system of equations in matrix form

CΔn

(
ψL

n
ωL
n

)
= B

(
ψL

n
ωL
n

)
, B =

(
γ 2
1 s

2 −2αγ 2
1

0 γ 2
2

(
s2 + 4αδ

))
,

C =
((

1 + αγ 2
1

)
0

−2αδγ 2
2 1

)
.
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and reduce it to canonical form (16.24):

Δn

(
ψL

n
ωL
n

)
= A

(
ψL

n
ωL
n

)
, L = Δn,

A = C−1B = 1

1 + αγ 2
1

(
γ 2
1 s

2 −2αγ 2
1

2αδγ 2
1 γ 2

2 s
2 γ 2

2

[(
1 + αγ 2

1

)
s2 + 4αδ

])
.

Next, we construct the characteristic equation of the matrix A regarding to the
eigenvalues λ2:

∣∣A − λ2E
∣∣ = 1

1 + αγ 2
1

(
Aλ4 − Bλ2 + C

) = 0, Reλ > 0,

A = 1 + αγ 2
1 , B = B0 + B1α, B0 = (

γ 2
1 + γ 2

2

)
s2, B1 = γ 2

2

(
γ 2
1 s

2 + 4δ
)
,

C = γ 2
1 γ 2

2 s
2

1 + αγ 2
1

[(
1 + αγ 2

1

)
s2 + 4αδ + 4α2δγ 2

1

]
.

Its roots are defined as follows:

λ2
1,2 = B ± √

D

2A
, D = D0 − 2αD1 + α2D2, D0 = (

γ 2
1 − γ 2

2

)2
s4,

D1 = γ 2
2

(
γ 2
1 − γ 2

2

)
s2

(
γ 2
1 s

2 + 4δ
)
, D2 = γ 2

2

[
γ 2
2

(
γ 2
1 s

2 + 4δ
)2 − 16δγ 4

1 s
2
]
.

Note that whence α = 0, the equalities

λ2
1,2

∣∣
α=0

=
(
γ 2
2 + γ 2

1

)
s2 ± (

γ 2
1 − γ 2

2

)
s2

2
= s2

{
γ 2
1 ,

γ 2
2 ,

which corresponds to system (16.19). Here, it is taken into account that for many
materials, including the composite in the form of an aluminum fraction in an epoxy
matrix, the characteristic velocities obey the inequality c2 < c1 < c3 [19], which
implies the following relationship between dimensionless coefficients in (16.8): γ2 <

1 < γ1.
The λ2

k corresponding eigenvectors are solutions of systems of linear algebraic
equations (

A − λ2
kE

)
Yk = 0, Yk = (y1k , y2k)

T

We choose them so that linear independence takes place even when α = 0:

y11 = γ 2
2

[(
1 + αγ 2

1

)
s2 + 4αδ

] − λ2
1

(
1 + αγ 2

1

)
, y21 = −2αδγ 2

1 γ 2
2 s

2,

y12 = 2αγ 2
1 , y22 = γ 2

1 s
2 − λ2

2

(
1 + αγ 2

1

)
.

(16.26)

Independence is confirmed by the nonzero determinant of the matrix T in (16.25):
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detT|α=0 = (
γ 2
2 s

2 − λ2
1

) (
γ 2
1 s

2 − λ2
2

)∣∣
α=0 = −(

γ 2
1 − γ 2

2

)2
s4.

The fundamental system of solutions is actually constructed in (16.21):

Fk1 (r, s) = Z1n (λkr) , Fk2 (r, s) = Z2n (λkr) .

Therefore, in accordancewith (16.25), the general solution of the system of equations
(16.17) has the form:

(
ψL

n
ωL
n

)
=

2∑
k=1

(
y1k
y2k

) [
C(k)
n1 (s)Z1n (λkr) + C(k)

n2 (s)Z2n (λkr)
]
. (16.27)

Further, substituting (16.23) and (16.27) in (16.20)–(16.22), taking into function
properties of Bessel functions, we obtain the following results:

wL
n = s

2∑
l=1

C(0)
nl (s)Xln (rs) + N

2∑
k,l=1

y1kλkC
(k)
nl (s)Yln (λkr),

vLn =
2∑

k,l=1

y1kλkC
(k)
nl (s)Yl+2,n (λkr) − s

2∑
l=1

C(0)
nl (s)Yln (rs),

ωL
n =

2∑
k,l=1

y2kλkC
(k)
nl (s)Zln (λkr);

(16.28)

σ L
ξn = s2T (0)

ξn + NT (1)
ξn (ξ = rr, θθ, ϑϑ) ,

σ L
rθn = s2T (0)

rθn + T (1)
rθn − 2αωL

n , σ L
θrn = s2T (0)

θrn + T (1)
θrn + 2αωL

n ,

T (0)
ξn =

2∑
l=1

C(0)
nl (s) S(0)

ξ ln (rs), T (1)
ξn =

2∑
k,l=1

y1kλ
2
kC

(k)
nl (s) S(1)

ξ ln (λkr),

(ξ = rr, θθ, ϑϑ, rθ, θr) ,

(16.29)

where

S(0)
rrln (z) = cn (z)Zln (z) − 2

1 − κ

z

(
1 + N

1 − κ

z2

)
Xln (z) ,

S(1)
rrln (z) = −1 − κ

z
[Xln (z) + Yln (z)] , S(1)

θθ ln (z) = 1 − κ

z
Xln (z) ,

S(0)
θθ ln (z) = 1 − κ

z
Xln (z) +

(
κ − N

1 − κ

z2

)
Zln (z) ,

S(0)
ϑϑ ln (z) = 1 − κ

z
Xln (z) + κZln (z) , S(1)

ϑϑ ln (z) = 1 − κ

z
Yln (z) ,
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S(0)
rθ ln (z) = S(0)

θrln (z) = − 2

(1 − κ) γ 2
1

S(1)
rrln (z) ,

S(1)
rθ ln (z) = 2

zγ 2
1

Xln (z) −
[
γ −2
1

(
1 + 2

N − 1

z2

)
+ α

]
Zln (z) ,

S(1)
θrln (z) = 2

zγ 2
1

Xln (z) −
[
γ −2
1

(
1 + 2

N − 1

z2

)
− α

]
Zln (z) ;

μL
rϑn =

2∑
k,l=1

y2kC
(k)
nl (s) λ2

k [Xln (λkr) + ηYln (λkr)], μL
θϑn = −N

ωL
n

r
,

μL
ϑrn =

2∑
k,l=1

y2kC
(k)
nl (s) λ2

k [ηXln (λkr) + Yln (λkr)], μL
ϑθn = ημL

θϑn.

(16.30)

Notation used here

Xln (z) = Z ′
ln (z) = 1

z

[
nZln (z) + (−1)l zZl,n+1 (z)

]
,

Yln (z) = −1

z
Zln (z) , Yl+2,n (z) = Yln (z) − Xln (z) .

(16.31)

16.5 Problem-Solving Images

Since the Bessel function In+1/2 (z) is unbounded in a neighborhood of an infinitely
distant point [16], by power of (16.23) and (16.31), these are also such functions
Z2n (z), X2n (z), Y2n (z), and U2n (z). Therefore, in (16.23), (16.27)–(16.29), (16.30)
it is necessary to put:

C(0)
n2 (s) = C(1)

n2 (s) = C(2)
n2 (s) = 0.

Substituting now (16.28) into the images of the boundary conditions (16.16), we
obtain algebraic equations for the integration constants:

sC(0)
01 (s)X10 (s) = wL

00 (s) ;

AnCn = Bn (n ≥ 1) , Cn =
⎛
⎝C(0)

n1 (s)
C(1)
n1 (s)

C(2)
n1 (s)

⎞
⎠ , Bn =

⎛
⎝wL

0n (s)
vL0n (s)
0

⎞
⎠ ,

An =
⎛
⎝ sX1n (s) Ny11λ1Y1n (λ1) Ny12λ2Y1n (λ2)

−sY1n (s) y11λ1Y3n (λ1) y12λ2Y3n (λ2)

0 y21Z1n (λ1) y22Z1n (λ2)

⎞
⎠ .

(16.32)
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Substituting the solutions of the last system in (16.20)–(16.22), we obtain images
of the desired functions:

wL
n (r, s) = GL

wwn (r, s)wL
0n (s) + GL

wvn (r, s) vL0n (s) ,

vLn (r, s) = GL
vwn (r, s)wL

0n (s) + GL
vvn (r, s) vL0n (s) ,

ωL
n (r, s) = GL

ωwn (r, s)wL
0n (s) + GL

ωvn (r, s) vL0n (s) ;
(16.33)

σ L
ξn = GL

σξwn (r, s)wL
0n (s) + GL

σξvn (r, s) vL0n (s) (ξ = rr, θθ, ϑϑ, rθ, θr)
μL

ξn = GL
μξwn (r, s)wL

0n (s) + GL
μξvn (r, s) vL0n (s) (ξ = rϑ, ϑr, θϑ, ϑθ) ; (16.34)

Here GL
wwn (r, s) , GL

wvn (r, s) , . . . ,GL
σϑθvn (r, s) are images of surface influence

functions, which are defined as follows:

DnG
L
wwn = sAn11X1n (rs) + N

2∑
k=1

y1kλkAn1,k+1Y1n (λkr),

DnG
L
wvn = sAn21X1n (rs) + N

2∑
k=1

y1kλkAn2,k+1Y1n (λkr),

DnG
L
vwn =

2∑
k=1

y1kλkAn1,k+1Y3n (λkr) − sAn11Y1n (rs) ,

DnG
L
vvn =

2∑
k=1

y1kλkAn2,k+1Y3n (λkr) − sAn21Y1n (rs) ,

DnG
L
ωwn =

2∑
k=1

y2kλkAn1,k+1Z1n (λkr),

DnG
L
ωvn =

2∑
k=1

y2kλkAn2,k+1Z1n (λkr);

Dn (s) = s [X1n (s)An11 (s) − Y1n (s)An21 (s)] ;

(16.35)

DnG
L
σξςrwn = s2An11S

(0)
ξς1n (rs) + N

2∑
k=1

y1kλ
2
kAn1,k+1S

(1)
ξς1n (λkr),

DnG
L
σξςrvn = s2An21S

(0)
ξς1n (rs) + N

2∑
k=1

y1kλ
2
kAn2,k+1S

(1)
ξς1n (λkr)

(ξς = rr, θθ, ϑϑ) ,
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DnG
L
σ rθrwn = s2An11S

(0)
rθ1n (rs) +

2∑
k=1

y1kλ
2
kAn1,k+1S

(1)
rθ1n (λkr) − 2αDnG

L
ωwn,

DnG
L
σ rθrvn = s2An21S

(0)
rθ1n (rs) +

2∑
k=1

y1kλ
2
kAn2,k+1S

(1)
rθ1n (λkr) − 2αDnG

L
ωvn,

DnG
L
σθrrwn = s2An11S

(0)
θr1n (rs) +

2∑
k=1

y1kλ
2
kAn1,k+1S

(1)
θr1n (λkr) + 2αDnG

L
ωwn,

DnG
L
σθrrvn = s2An21S

(0)
θr1n (rs) +

2∑
k=1

y1kλ
2
kAn2,k+1S

(1)
θr1n (λkr) + 2αDnG

L
ωvn,

(16.36)

DnG
L
μrϑwn =

2∑
k=1

y2kλ
2
k [X1n (λkr) + ηY1n (λkr)]An1,k+1,

DnG
L
μrϑvn =

2∑
k=1

y2kλ
2
k [X1n (λkr) + ηY1n (λkr)]An2,k+1,

DnG
L
μϑrwn =

2∑
k=1

y2kλ
2
k [ηX1n (λkr) + Y1n (λkr)]An1,k+1,

DnG
L
μϑrvn =

2∑
k=1

y2kλ
2
k [ηX1n (λkr) + Y1n (λkr)]An2,k+1,

GL
μθϑwn = −N

r
GL

ωwn, GL
μθϑvn = −N

r
GL

ωvn,

GL
μϑθwn = ηGL

μθϑwn, GL
μϑθvn = ηGL

μθϑvn.

In these equalities and hereinafter, Anij (s) is the algebraic complement located in the
ith row and j-m column of the matrix element An.

16.6 Linear Approximation of the Solution

Get analytically originals of functions of influence when n ≥ 1 it is not possible.
Therefore, we use expansions in exponential series in a small parameter α, with
limitation of linear terms only. Wherein, replace approximate equalities with exact
ones.

The corresponding equalities for λ1,2 and coordinates (16.26) of the eigenvectors
have the form:

λ1 = γ1αs, λ2 = γ2

(
s + 2αδ

s

)
, γ1α = γ1

√
1 − αγ 2

1 ;
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y22 = −y11 = (
γ 2
1 − γ 2

2

)
s2 − γ 2

2

(
γ 2
1 s

2 + 4δ
)
α,

y12 = 2αγ 2
1 , y21 = −2αδγ 2

1 γ 2
2 s

2.

From this, taking into account (16.32), it follows that only for two of all the comple-
ments Anij(i = 1, 2; i = 1, 2, 3) the relations are:

An13 = −sy21Y1n (s)Z1n (λ1) = O (α) ,

An23 = −sy21X1n (s)Z1n (λ1) = O (α) , α → 0.

These formulas allow, with the accepted accuracy, to reduce equalities (16.35)–
(16.36) to the following form:

GL
ξςn = Fξςn (r, s)

�n (s, γ1αs)
, �n (x, y) = X1n (x)Y3n (y) + NY1n (x) Y1n (y) ;

(ξ = w, v, ω, σ rr, σθθ, σϑϑ, σ rθ, σθr, μrϑ,μϑr, μθϑ,μϑθ; ς = w, v) .

(16.37)
where

Fwwn (r, s) = Y3n (γ1αs)X1n (rs) + NY1n (s)Y1n (γ1αsr) ,

Fwvn (r, s) = N
[
X1n (s)Y1n (γ1αrs) − Y1n (γ1αs)X1n (rs)

]
,

Fvwn (r, s) = Y1n (s)Y3n (γ1αrs) − Y3n (γ1αs)Y1n (rs) ,

Fvvn (r, s) = NY1n (γ1αs)Y1n (rs) + X1n (s)Y3n (γ1αsr) ,

Fωwn (r, s) = αkωs−1Y1n (s)Z1n (γ1αrs) ,

Fωvn (r, s) = αkωs−1X1n (s)Z1n (γ1αrs) ;

Fσ rrwn = s
[
Y3n (γ1αs) S

(0)
rr1n (rs) + Nγ1αY1n (s) S(1)

rr1n (γ1αrs)
]
,

Fσ rrvn = Ns
[
−Y1n (λ1) S

(0)
rr1n (rs) + γ1αX1n (s) S(1)

rr1n (γ1αrs)
]
,

Fσξwn = s
[
Y3n (γ1αs) S

(0)
ξ1n (rs) + Nγ1αY1n (s) S(1)

ξ1n (γ1αrs)
]
,

Fσξvn = s
[
−NY1n (γ1αs) S

(0)
ξ1n (rs) + Nγ1αX1n (s) S(1)

ξ1n (γ1αrs)
]

, (ξ = θθ, ϑϑ)

Fσξwn = s
[
Y3n (γ1αs) S

(0)
ξ1n (rs) + γ1αY1n (s) S(1)

ξ1n (γ1αrs)
]
,

Fσξvn = s
[
−NY1n (γ1αs) S

(0)
ξ1n (rs) + γ1αX1n (s) S(1)

ξ1n (γ1αrs)
]
, (ξ = rθ, θr)

Fμrϑwn = sαγ 2
1 kω [X1n (λ1r) + ηY1n (λ1r)]Y1n (s) , kω = 2δγ1γ 2

2

γ 2
1 − γ 2

2
Fμrϑvn = sαγ 2

1 kω [X1n (λ1r) + ηY1n (λ1r)]X1n (s) ,

Fμϑrwn = sαγ 2
1 kω [ηX1n (λ1r) + Y1n (λ1r)]Y1n (s) ,

Fμϑrvn = sαγ 2
1 kω [ηX1n (λ1r) + Y1n (λ1r)]X1n (s) ,

Fμθϑwn = sNαγ 2
1 kωY1n (γ1αsr) Y1n (s) ,Fμθϑvn = sNαγ 2

1 kωY1n (γ1αsr)X1n (s) ,

Fμϑθwn = ηFμθϑwn,Fμϑθvn = ηFμθϑvn (r, s) .
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Fractions in (16.37), taking into account the relationship between the
modified Bessel functions with elementary [16], are conveniently represented as
(ς = w, v):

GL
ξςn =

1∑
k=0

H (k)L
ξςn (r, s) e−ρk s, ρ0 = r − 1, ρ1 = γ1α (r − 1) ,

H (k)L
ξςn (r, s) = F (k)

ξςn (r, s)

rn+2Pn (s)
(ξ = w, v) , H (1)L

ωςn (r, s) = F (1)
ωςn (r, s)

rn+1Pn (s)
,

H (k)L
ξςn (r, s) = F (k)

ξςn (r, s)

rn+3Pn (s)
(ξ = σ rr, σθθ, σϑϑ, σ rθ, σθr) ,

H (k)L
ξςn (r, s) = F (k)

ξςn (r, s)

rn+2Pn (s)
(ξ = μrϑ,μϑr, μθϑ,μϑθ) ,

Pn (s) = Rn1 (s)Rn3 (γ1αs) − NRn0 (s)Rn0 (γ1αs) .

(16.38)

where

F (0)
wwn (r, s) = Rn3 (γ1αs)Rn1 (rs) , F (1)

wwn (r, s) = −NRn0 (s)Rn0 (γ1αsr) ,

F (0)
wvn (r, s) = NRn0 (γ1αs)Rn1 (rs) , F (1)

wvn (r, s) = −NRn1 (s)Rn0 (γ1αrs) ,

F (0)
vwn (r, s) = −Rn3 (γ1αs)Rn0 (rs) , F (1)

vwn (r, s) = Rn0 (s)Rn3 (γ1αrs) ,

F (0)
vvn (r, s) = −NRn0 (γ1αs)Rn0 (rs) , F (1)

vvn (r, s) = Rn1 (s)Rn3 (γ1αrs) ,

F (1)
ωwn (r, s) = αkωγ1αRn0 (s)Rn0 (γ1αsr) ,

F (1)
ωvn (r, s) = αkωγ1αRn1 (s)Rn0 (γ1αsr) ,

F (0)
σ rrwn (r, s) = −sQn (rs)Rn3 (γ1αs) ,

F (1)
σ rrwn (r, s) = sN (1 − κ)Rn4 (γ1αrs)Rn0 (s) ,

F (0)
σ rrvn (r, s) = −sNQn(rs)Rn0 (γ1αs) ,

F (1)
σ rrvn (r, s) = sN (1 − κ)Rn4 (γ1αrs)Rn1 (s) ,

F (0)
σθθwn (r, s) = −sKn(rs)Rn3 (γ1αs) ,

F (1)
σθθwn (r, s) = −sN (1 − κ)Rn1 (γ1αrs)Rn0 (s) ,

F (0)
σθθvn (r, s) = −sNKn(rs)Rn0 (γ1αs) ,

F (1)
σθθvn (r, s) = −sN (1 − κ)Rn1 (γ1αrs)Rn1 (s) ,

F (0)
σϑϑwn (r, s) = −s

[
(κ − 1)Rn1 (γ1αrs)+ +κ(rs)2Rn0 (rs)

]
Rn3 (γ1αs) ,

F (1)
σϑϑwn (r, s) = −sN (1 − κ)Rn0 (s)Rn0 (γ1αrs) ,

F (0)
σϑϑvn (r, s) = −sN

[
(κ − 1)Rn1 (γ1αrs)+ +κ(rs)2Rn0 (rs)

]
Rn0 (γ1αs) ,

F (1)
σϑϑvn (r, s) = −sN (1 − κ)Rn1 (s)Rn0 (γ1αrs) ,

(16.39)
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F (0)
σ rθwn (r, s) = F (0)

σθrwn (r, s) = 2sγ −2
1 Rn4 (rs)Rn3 (γ1αs) ,

F (1)
σ rθwn (r, s) = s

{
γ1αrs

(
γ −2
1 + α

)
Rn3 (γ1αrs)

− (
γ −2
1 − α

)
Mn(γ1αrs)

}
Rn0 (s) ,

F (0)
σ rθvn (r, s) = F (0)

σθrvn (r, s) = 2sNγ −2
1 Rn4 (rs)Rn0 (γ1αs) ,

F (1)
σ rθvn (r, s) = s

{
γ1αrs

(
γ −2
1 + α

)
Rn3 (γ1αrs)

− (
γ −2
1 − α

)
Mn(γ1αrs)

}
Rn1 (s) ,

F (1)
σθrwn (r, s) = s

{
γ1αrs(γ

−2
1 − α)Rn3 (γ1αrs)

− (
γ −2
1 + α

)
Mn(γ1αrs)

}
Rn0 (s) ,

F (1)
σθrvn (r, s) = s

{
γ1αrs(γ

−2
1 − α)Rn3 (γ1αrs)

− (
γ −2
1 + α

)
Mn(γ1αrs)

}
Rn1 (s) ,

F (1)
μrϑwn (r, s) = sαγ 2

1 kω

[−Rn1 (γ1αrs) − ηRn0 (γ1αrs)
]
Rn0 (s) ,

F (1)
μrϑvn (r, s) = sαγ 2

1 kω

[−Rn1 (γ1αrs) − ηRn0 (γ1αrs)
]
Rn1 (s) ,

F (1)
μϑrwn (r, s) = sαγ 2

1 kω

[−ηRn1 (γ1αrs) − Rn0 (γ1αrs)
]
Rn0 (s) ,

F (1)
μϑrvn (r, s) = sαγ 2

1 kω

[−ηRn1 (γ1αrs) − Rn0 (γ1αrs)
]
Rn1 (s) ,

F (1)
μθϑwn (r, s) = −sNαγ 2

1 kωRn0 (γ1αrs)Rn0 (s) ,

F (1)
μθϑvn (r, s) = −sNαγ 2

1 kωRn1 (s)Rn0 (γ1αrs) ,

F (1)
μϑθwn (r, s) = −ηF (1)

μθϑwn (r, s) ,F (1)
μϑθvn (r, s) = −ηF (1)

μθϑvn (r, s) .

(16.40)

The following polynomials are used here:

Rn0 (z) =
n∑

k=0

Ankz
n−k , Ank = (n + k)!

2k (n − k)!k! , Rn1 (z) = Rn+1,0 (z) − nRn0 (z) ,

Rn3 (z) = Rn1 (z) − Rn0 (z) ,Rn4 (z) = Rn1 (z) + Rn0 (z) ,

Qn (z) = [
z2 + N (1 − κ)

]
Rn0 (z) + 2 (1 − κ)Rn1 (z) ,

Kn(z) = {
(κ − 1)Rn1 (z) + [

κz2 + N (κ − 1)
]
Rn0 (z)

}
,

Mn(z) = (N − 1)Rn0 (z) + Rn1 (z) .

It is fairly easy to verify that, in terms of displacements v,w and stresses σrr , up to
the notation, the images coincide with the solution of a similar problem for an elastic
mediumgiven in [20],when replacingγ1α byvalueγ1. Thus, in a linear approximation
with respect to the elastic medium, the shear wave velocity changes and, naturally,
additional components of the stress–strain state appear.
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16.7 Originals of the Solution

It follows from (16.38), (16.39) and (16.40) that the coefficients in front of the
exponents in the images of the influence functions are rational functions of the
parameter s. An analysis of the powers of the numerators and denominators shows
that all fractions except of H (0)L

wwn (r, s), H (0)L
σ rrwn (r, s), and H (0)L

σ rrvn (r, s) are correct. We
distinguish the whole parts of these functions:

H (0)L
wwn (r, s) = 1

r
+ H (0)L

wwnr (r, s) ,

H (0)L
σ rrwn (r, s) = − s

r
+ arrnr + brrn

r2
+ H (0)L

σ rrwnr (r, s) ,

H (0)L
σ rrvn (r, s) = − N

γ1αr
+ H (0)L

σ rrvnr (r, s) ,

arrn = N

2
+ 1, brrn = 2 (1 − κ) − N

2
.

(16.41)

where functions with an additional index «r» are regular fractions. The originals of
such functions are quite simply found using residues. It should be borne in mind that
they have a second-order pole at a point s = 0, as well as simple poles at the points
s = sj—zeros of the polynomial Pn (s).

The inverse of the Laplace transform for functions in (16.41) gives the following
result [15]:

H (0)
wwn (r, τ ) = 1

r
δ (τ ) + H (0)

wwnr (r, τ ) ,

H (0)
σ rrwn (r, τ ) = −1

r
δ′ (τ ) + arrnr + brrn

r2
δ (τ ) + H (0)

σ rrwnr (r, τ ) ,

H (0)
σ rrvn (r, τ ) = − N

γ1αr
δ (τ ) + H (0)

σ rrvnr (r, τ ) ,

where δ (τ ) is the Dirac delta function.
The originals of the influence functions in accordance with (16.38) and the trans-

formation properties are as follows:

Gξςn (r, τ ) =
1∑

k=0

H (k)
ξςn (r, τ − ρk)H (τ − ρk),

where H (τ ) is the unit Heaviside function. The originals of the coefficients of the
series according to (16.33) and (16.34) are the corresponding linear combinations
of convolutions of the right-hand sides of the boundary conditions (16.16) with the
influence functions.
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Fig. 16.1 Distribution of the regular component of the influence functionGww1r andGσ rrw1r along
the radius at different points in time

16.8 Examples

As an example, we consider a medium in the form of a composite of aluminum
fraction in an epoxy matrix with the following physical characteristics [19]:

λ = 7.59MPa, μ = 1.89MPa, γ + ξ = 2.64 kN, J = 0.429 × 10−3 kg/m

Taking a characteristic linear size L = 1m, we obtain dimensionless parameters:

γ1 = 2.45; γ2 = 0.92;α′ = 0.66 × 10−3; δ = 5.1 × 106.

As an example, Figs. 16.1 and 16.2 show graphs of changes in the influence functions
corresponding to radial displacement and stress, along the radius and time, respec-
tively. They are characterized by surges in stress and the derivative of displacement
at the fronts τ = r − 1 and τ = γ1α (r − 1) waves.

16.9 Conclusion

An analytical solution of the propagation problem of axisymmetric unsteady per-
turbations from a spherical cavity in a Cosserat medium was built by first-order
approximation respectively to a small parameter connecting the fields of displace-
ments and rotations. It is shown that there are two wave fronts corresponding to
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Fig. 16.2 Dependence of the regular component of the influence function Gww1r and Gσ rrw1r on
time for various values of the radius

a tensile-compression wave and a shear wave modified regarding to free rotation.
The subject of further research may consider a subsequent approximation in order
to assess the accuracy of the created solution.
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Chapter 17
The Equations of Coupled Dynamics
of Electromagnetoelastic Thin Shells

Thong D. Pham, Dmitry V. Tarlakovskii and Vladimir A. Vestyak

Abstract In this paper, a coupled mathematical model of unsteady processes is
constructed in a thin linearly elastic homogeneous anisotropic shell interacting with
an electromagnetic field. The equations of its motion are used taking into account the
rotation of the normal fiber and compression. They are supplemented by the three-
dimensional Maxwell’s equations, the generalized Ohm’s law, expressions for the
Lorentz force and the physical law taking into account the piezoelectric effects. These
relations, like the mechanical values, are linearized along the transverse coordinate.
As a result, a closed-form solution of system of equations is constructed. From it,
the closed-form solutions of systems of equations for an isotropic shell and plate are
also constructed as special cases.

Keywords Thin shell · Plate · Non-stationary processes · Rotation of a normal
fiber · Coupled electromagnetoelasticity · Maxwell’s equations · Generalized
Ohm’s law · Lorentz force · Piezo effects · Lateral linearization · Closed-form
solution for system of equations

17.1 Introduction

At the present time, the most studied problems are the propagation of unsteady per-
turbations in classical elastic media without taking into account their interaction with
fields of a different physical nature, including the electromagnetic fields considered
in this work. Inmost well-known publications, this interaction is taken into account at
the level of unrelated tasks. Issues related to the existence and uniqueness of solving
problems of non-stationary coupled electromagnetoelasticity have been developed
mainly from the middle and end of the 80s of the last century. The fundamental equa-
tions of electromagnetoelastic interactions, including the divergence equations, the
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gradient equations, the constitutive relations, and the boundary and initial conditions
for supplementing them, are given in the monograph of Parton and Kudryavtsev [1],
as well as in the works of Korotkina [2], Pao and Yeh [3], Pao [4], Priimenko and
Vishnevskii [5], Ryu et al. [6], Altay and Cengiz Dökmeci [7]. Integral equations are
derived for some media and the basic properties are investigated.

Manyworks considered static problems for specific structural elements, for exam-
ple, an analytical solution for electromagnetoelastic beams with different boundary
conditions [8], an exact three-dimensional solution [9, 10], a state vector approach
[11], a solution with a discrete layer [12, 13], and a partially mixed layer-by-layer
finite element model [14] for multilayer electromagnetoelastic plates. Bardzokas
and Senik in [15] described some general statements of problems of the theory of
electromagnetoelasticity. As for this problem, they used the basic relations of the
theory of elasticity and some additional relations for the coupling of electromagnetic
and mechanical fields. Particular attention was paid to the construction of the the-
ory of shells and plates from piezoelectric materials. Ambartsumyan et al. in [16]
and Baghdasaryan and Danoyan in [17] used only the magnetic component to take
into account the electromagnetic field to solve the Lamb problem and a number of
problems of magnetoelasticity of shells and plates.

The next stage of complication of the problem is dynamic problems. Extensive
research of dynamic problems of electromagnetoelasticity for different structural el-
ements, for example, plates in [18–26], as well as cylindrical and spherical shells
in [27–36]. Pan and Heyliger [21] solved the problem of vibration of a laminated
rectangular plate with a simple support. Buchanan [27] determined and compared
the natural frequencies of layered and different multiphase plate models using finite
element analysis. Dynamic problems of electromagnetoelasticity for ceramic bod-
ies were investigated by Shlyakhin in [37]. In this work, the problem of a circular
radially polarized ceramic plate was considered. Storozhev and Bai [38] proposed a
numerical-analytical approach to solving the problems of electromagnetoelasticity
for a piezoceramic plate. The proposed approach allows to obtain a solution of the
dispersion equation for any medium of the plate. Using the finite element method,
Annigeri et al. [29] researched the free vibrations of layered and multiphase elec-
tromagnetoelastic shells, and Daga et al. [31] conducted a comparative study of the
transient response of an electromagnetoelastic finite cylindrical shell at constant in-
ternal pressure. On the other hand, in the works of Green and Naghdi [39], they
created nonlinear and linear thermomechanical theories of deformable shell bodies,
which take into account the electromagnetic effect of a direct approach using the
two-dimensional theory of direct media called a Cosserat surfaces. In [40], models
of electromagnetic plates and shells of higher order were developed. Higher-order
theory is based on the expansion of the three-dimensional equations of the linear
theory of electromagnetic elasticity into Fourier series in terms of Legendre polyno-
mials. All equations for the theory of higher orders of electromagnetoelastic plates in
Cartesian and polar coordinates, as well as for cylindrical and spherical shells in the
coordinates associated with the geometry of the shells, are developed and presented
in detail in this work.
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In this paper, unlike other works, in addition to the angle of rotation of a normal
fiber, its compression, aswell as the Lorentz force, is taken into account.We also used
the generalized Ohm’s law, and linearization of the normal coordinate of Maxwell’s
equations is carried out directly without using the functional. The resolving system
of equations is given in an explicit form, which allows it to be used for specific
problems without additional transformations.

17.2 Equations of Motion of the Elastic Shell
at Given Loads

We consider a thin linearly elastic homogeneous anisotropic shell of thickness hwith
a smooth middle surface

� : r = r0
(
ξ 1, ξ 2

)
,
(
ξ 1, ξ 2

) ∈ D ⊂ R2 (17.1)

where r—radius vector and ξ 1, ξ 2—curvilinear coordinates.
The basis π1, π2 of tangent space, the normal vector n, the components of the cur-

vature tensor bij, and the components of the metric basis tensor gij of basis π1, π2,n
are defined by the equalities:

πj = ∂r0
∂ξ j

, n = N/|N|, N = [π1, π2] , bij =
(

∂πi

∂ξ j
, n

)
=

(
∂πj

∂ξ i
,n

)
,

gij = (
πi, πj

)
, gi3 = 0, g33 = 1.

(17.2)
Hereinafter, unless otherwise indicated, the Latin indices take the values 1 and 2.

The equations of motion of the sheath, taking into account the rotation of the normal
fiber and its compression in the basis π1, π2,n are written as follows in [41] (time
derivatives are indicated by dots):

ρhüi = ∇jT
ji − bijQ

j + qi + qie, ρhẅ = ∇iQ
i + bijT

ij + q + qe,

ρIψ̈ i = ∇jM
ij − Qi + mi + mi

e, ρIψ̈3 = ∇iμ
i − N + m + me, I = h3/12;

(17.3)
Qi = Q̂i + bijμ

j, T ij = T̂ ij + bikM
kj, N = N̂ − bijM

ij (17.4)

T̂ ij =
∫ h/2

−h/2
σ ijdz, M ij =

∫ h/2

−h/2
zσ ijdz, Q̂i =

∫ h/2

−h/2
σ i3dz,

μi =
∫ h/2

−h/2
zσ i3dz, N̂ =

∫ h/2

−h/2
σ 33dz;

(17.5)

Here, the index 3 corresponds to the normal to the middle surface coordinate z;
ρ—material density; ui and w—tangential and normal displacement; ψi—angles of
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rotation normal to the fiber surface�,ψ3—its deformation; σ ij, σ i3, σ 33—stress ten-
sor components; qe = qieπi + qen and me = mi

eπi + men—vectors of surface pres-
sure and referred to the unit area of themoment initiated by the electromagnetic field;
q = qiπi + qn,m = miπi + mn—similar values of a different nature.

These equations are added kinematic relations

εij = 1

2

(
αij + αji

)
, κij = 1

2

(
βij + βji

)
,

αij = ∇iuj − bijw, βij = ∇iψj − bijψ3 + bki αkj,

−ϑi = ∇iw + bki uk , θk = ψk − ϑk .

(17.6)

where ui and εij—tangential displacements and deformations; w—normal dis-
placement; κij—components of the curvature change tensor; ψ3 follows from the
equation—relative elongation of normal fiber; ψi—angles between normal vector n
normal fiber in a deformed state.

Equalities Eq. (17.6) are obtained using the direct normal hypothesis, namely,
approximate equalities for the displacement vector u:

u
(
ξ 1, ξ 2, z, t

) = [
ui

(
ξ 1, ξ 2, t

) + ψi
(
ξ 1, ξ 2, t

)
z
]
πi

+ [
w

(
ξ 1, ξ 2, t

) + ψ3
(
ξ 1, ξ 2, t

)
z
]
n

(17.7)

The boundary conditions for the system of Eqs. (17.3), (17.4), and (17.6) have
the following forms [41] (the right parts are given):

ui|Γu
= u(0)i, w|Γu

= w(0), ψi|Γu
= ψ(0)i, ψ3|Γu

= ψ(0)3,

T jiνj
∣∣
Γσ

= T i
(0), M ijνj

∣∣
Γσ

= M i
(0), Qiνi

∣∣
Γσ

= Q(0), μiνi
∣∣
Γσ

= μ(0)

Here, ∂Π = Γ = Γu ∪ Γσ ; ν̂ = viei—the unit normal vector to the lateral surface
Πb of the shell at z = 0 (at the intersection line Πb ∩ Π = Γ ). Moreover, the curves
Γu and Γσ can intersect only in the set of measure zero.

The necessary expressions for closed-form of system of Eqs. (17.3)–(17.6), ex-
pressions for the coordinates of the vector qe and the stresses σ ij, σ i3, σ 33 are con-
sidered below.

17.3 Closed-Form Solution for System of Equations of an
Electromagnetoelastic Shell

We use the following three-dimensional relations of electromagnetoelasticity in [42]
as follows:
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– Maxwell’s equations

rotE = −1

c

∂B
∂t

, rotH = 4π

c
j + 1

c

∂D
∂t

, divD = 4πρe (17.8)

– Linearized with respect to the initial state (its components are indicated by the
additional index «0») the generalizedOhm’s law and the expression for the Lorentz
force Fe

j = σ(E + c−1[v,B0]) + ρe0v; (17.9)

Fe = Fi
eπi + Ee3n = ρe0E + ρeE0 + c−1([j0,B] + [j,B0]); (17.10)

– Physical relations

Di = eijEj + ei3E3 + κ ijk ε̂jk + 2κ ij3ε̂j3 + κ i33ε33,

D3 = e3jEj + e33E3 + κ3jk ε̂jk + 2κ3j3ε̂j3 + κ333ε33,

Bi = μijHj + μi3H3 + γ ijk ε̂jk + 2γ ij3ε̂j3 + γ i33ε33,

B3 = μ3jHj + μ33H3 + γ 3jk ε̂jk + 2γ 3j3ε̂j3 + γ 333ε33,

ε̂jk = εjk + zκjk , ε̂j3 = θj + z
(
bnj θn + ∇kψ3

)
, ε33 = ψ3;

(17.11)

σ ij = Cijkl ε̂kl + Cij33ψ3 −
(
κ ijkEk + κ ij3E3 + γ ijkHk + γ ij3H3

)
/4π,

σ i3 = Ci3k3ε̂k3 −
(
κ i3kEk + κ i33E3 + γ i3kHk + γ i33H3

)
/4π,

σ 33 = C33kl ε̂kl + C3333ψ3 −
(
κ33kEk + κ333E3 + γ 33kHk + γ 333H3

)
/4π.

(17.12)

where E = Eiπi + E3n and H = Hiπi + H3n—vectors of electric and magnetic
fields;D = Diπi + D3n andB = Biπi + B3n—vectors of electric andmagnetic in-
duction; j = jiπi + j3n—current density; c—speed of light; ρe—charge density;
σ—conductivity coefficient; v = u̇—velocity of medium points; eij and μij—
dielectric and magnetic tensors; κ ijk and γ ijk—tensors of piezoelectric and piezo-
magnetic constants; Cijkl (i, j, k, l = 1, 2, 3)—elastic constant tensor.

In this case, assume that in the initial state the electromagnetic parameters are
independent of coordinate z and satisfy the following equalities (i = 1, 2, 3):

(
Ḃ

)
0 = 0,

(
Ḋ

)
0 = 4π js0, rotE0 = 0,

rotH0 = 4π

c
(j0 + js0) , divD0 = 4πρe0, j0 = σE0,

where js0 is the bias current.
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One of the variants of the boundary conditions for the electromagnetic field in the
three-dimensional region G has the following form [1, 2, 43–45] (the right parts are
specified)

[B, ν]|∂G = P, (D, ν)|∂G = P (17.13)

Another variant of the boundary conditions can be written through the potentials of
the electromagnetic field. However, the rationale for this requires the use of appropri-
ate functionality, which is not used here. At the same time, the boundary conditions
can be specified as below:

E|ΠE
= e, H|ΠH

= h (17.14)

where ∂G = ΠE ∪ ΠH . Moreover, the surfaces ΠE and ΠH can intersect only in the
set of measure zero.

Included in the right parts of Eq. (17.3) components of the vectors qe and me

similar mechanical values in [41] are defined as follows:

qie =
h/2∫

−h/2

Fi
edz, qe =

h/2∫

−h/2

Fe3dz, mi
e =

h/2∫

−h/2

zFi
edz, me =

h/2∫

−h/2

zFe3dz (17.15)

The components of the electromagnetic field present in a level of approximation
formulas (17.5):

Ei = ei
(
ξ 1, ξ 2, t

) + zχi
(
ξ 1, ξ 2, t

)
,

Hi = hi
(
ξ 1, ξ 2, t

) + zϕi
(
ξ 1, ξ 2, t

)
,

Di = di
(
ξ 1, ξ 2, t

) + z, δi
(
ξ 1, ξ 2, t

)
,

Bi = bi
(
ξ 1, ξ 2, t

) + zβi
(
ξ 1, ξ 2, t

)
,

ji = yi
(
ξ 1, ξ 2, t

) + zυi
(
ξ 1, ξ 2, t

)
,

ρe = re
(
ξ 1, ξ 2, t

) + zλe
(
ξ 1, ξ 2, t

)
(i = 1, 2, 3) .

(17.16)

Substituting these equalities in Eqs. (17.11) and (17.12), taking into account
Eq. (17.15), we obtain the following forms of physical laws for the shell:

di = eijej + ei3e3 + κ ijkεjk + κ ij3θj + κ i33ψ3,

bi = μijhj + μi3h3 + γ ijkεjk + γ ij3θj + γ i33ψ3,

δi = eijχj + ei3χ3 + κ ijkκjk + κ ij3
(
bnj θn + ∇jψ3

)
,

β i = μijϕj + μi3ϕ3 + γ ijkκjk + γ ij3
(
bnj θn + ∇jψ3

)
(i, j, k = 1, 2, 3) ;

(17.17)
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T̂ ij = h

[(
Cijklεkl + Cij33ψ3

) − 1

4π

(
κ ijkek + κ ij3e3 + γ ijkhk + γ ij3h3

)]
,

M ij = I

[
Cijklκkl − 1

4π

(
κ ijkχk + κ ij3χ3 + γ ijkϕk + γ ij3ϕ3

)]
,

Q̂i = h

[
Ci3k3θk − 1

4π

(
κ i3kek + κ i33e3 + γ i3khk + γ i33h3

)]
,

μi = I

[
Ci3k3

(
blkθl + ∇kψ3

) − 1

4π

(
κ i3kχk + κ i33χ3 + γ i3kϕk + γ i33ϕ3

)]
,

N̂ = h

[
C33klεkl + C3333ψ3 − 1

4π

(
κ33kek + κ333e3 + γ 33khk + γ 333h3

)]
.

(17.18)
In constructing the last relations in Eq. (17.18), it is assumed that the following
symmetry holds:

Cijk3 = Ci3kl = Ci333 = C33k3 = 0 (17.19)

To linearize Eqs. (17.9) and (17.10) along coordinate z, we use the following equality
for the vector product in [46]

[j,B]√g = (j2B3 − j3B2) π1 + (j3B1 − j3B1) π2 + (j1B2 − j2B1)n (17.20)

where g—second invariant of the metric tensor.
As a result, with the additional use of Eq. (17.17), we obtain an analog of Ohm’s

law:
y1 = σ

[
e1 + cg

(
u̇2B03 − ẇB̂02

)]
+ ρe0u̇

1,

υ1 = σ
[
χ1 + cg

(
ψ̇2B03 − ψ̇3B̂02

)]
+ ρe0ψ̇

1,

y2 = σ
[
e2 + cg

(
ẇB̂01 − u̇1B03

)]
+ ρe0u̇

2,

υ2 = σ
[
χ2 + cg

(
ψ̇3B̂01 − ψ̇1B03

)]
+ ρe0ψ̇

2,

y3 = σ
[
e3 + cg

(
u̇1B̂02 − u̇2B̂01

)]
+ ρe0ẇ,

υ3 = σ
[
χ3 + cg

(
ψ̇1B̂02 − ψ̇2B̂01

)]
+ ρe0ψ̇3,

cg = c−1g−1/2;

(17.21)

Using a similar procedure to Eq. (17.10), we obtain the components of the vectors
qe and me from Eq. (17.15)
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q1e = h
[
ρe0e

1 + reE
1
0 + cg (j02b3 − j03b2 + y2B03 − y3B02)

]
,

q2e = h
[
ρe0e

2 + reE
2
0 + cg (j03b1 − j01b3 + y3B01 − y1B03)

]
,

qe = h
[
ρe0e3 + reE03 + cg (j01b2 − j02b1 + y1B02 − y2B01)

]
,

m1
e = I

[
ρe0χ

1 + λeE
1
0 + cg (j02β3 − j03β2 + υ2B03 − υ3B02)

]
,

m2
e = I

[
ρe0χ

2 + λeE
2
0 + cg (j03β1 − j01β3 + υ3B01 − υ1B03)

]
,

me = I
[
ρe0χ3 + λeE03 + cg (j01β2 − j02β1 + υ1B02 − υ2B01)

]
.

(17.22)

In order to construct a «shell» analog of Eq. (17.8) for vector

u = ûiπi + u3n = ũiei + ũ3n,

we use equalities in [46]

√
grot u =

(
∇̃2ũ3 − ∇̃3ũ2

)
π1 +

(
∇̃3ũ1 − ∇̃1ũ3

)
π2 +

(
∇̃1ũ2 − ∇̃2ũ1

)
n,

div u = ∇̃i ũ
i + ∇̃3ũ3,

(17.23)
where e1, e2,n—the spatial basis, the first two vectors of which and the components
g̃ij, g̃i3, g̃33 of its metric tensor are defined as follows [42]:

ej = ∂

∂ξ j
(r0 + zn) = qijπi, qij = δij − zbij,

g̃ij = (
ei, ej

) = gij − 2zbij, g̃i3 = 0, g̃33 = 1, g̃ij = gij + 2zbij.
(17.24)

The covariant derivatives in Eq. (17.23) have the form:

∇̃i ũj = ∇i ûj − biju3 + z
(
ciju3 − bkj ∇i ûk

)
, cij = bikb

k
j ,

∇̃i ũ3 = ∂u3
∂ξ i

+ bki ûk , ∇̃3ũi = ∂ ûi
∂z

− zbki
∂ ûk
∂z

, ∇̃3ũ3 = ∂u3
∂z

.
(17.25)

This implies the following relation:

∇̃i ũ
i = g̃im∇̃i ũm = ∇i û

i − 2Hu3 + z
[
bik∇i ûk − 2

(
2H 2 − K

)
u3

]
, (17.26)

where H = (
b11 + b22

)
/2 and K = (

b11b22 − b212
)
/g—mean and Gaussian curvature

of the surface �.
Now, using Eqs. (17.23), (17.25), (17.26), and (17.17), from Eq. (17.8) we obtain:

∂e3
∂ξ 2

+ bk2ek − χ2 = −
√
g

c
ḃ1, χ1 − ∂e3

∂ξ 1
− bk1ek = −

√
g

c
ḃ2,

∇1e2 − ∇2e1 = −
√
g

c
ḃ3;

(17.27)
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∂h3
∂ξ 2

+ bk2hk − ϕ2 =
√
g

c

(
4πy1 + ḋ1

)
, ϕ1 − ∂h3

∂ξ 1
− bk1hk =

√
g

c

(
4πy2 + ḋ2

)
,

∇1h2 − ∇2h1 =
√
g

c

(
4πy3 + ḋ3

) ;
(17.28)

∇id
i − 2Hd3 + δ3 = 4πre; (17.29)

∂χ3

∂ξ 2
+ bk2χk + bk2

∂e3
∂ξ k

+ ck2ek = −
√
g

c
β̇1,

∂χ3

∂ξ 1
+ bk1χk + bk1

∂e3
∂ξ k

+ ck1ek =
√
g

c
β̇2,

∇1χ2 − ∇2χ1 + bk1∇ke2 − bk2∇ke1 = −
√
g

c
β̇3;

(17.30)

∂ϕ3

∂ξ 2
+ bk2ϕk + bk2

∂h3
∂ξ k

+ ck2hk =
√
g

c

(
4πυ1 + δ̇1

)
,

∂ϕ3

∂ξ 1
+ bk1ϕk + bk1

∂h3
∂ξ k

+ ck1hk = −
√
g

c

(
4πυ2 + δ̇2

)
,

∇1ϕ2 − ∇2ϕ1 + bk1∇kh2 − bk2∇kh1 =
√
g

c

(
4πυ3 + δ̇3

) ;

(17.31)

∇iδ
i − 2Hδ3 + bik∇idk − 2

(
2H 2 − K

)
d3 = 4πλe (17.32)

Thus, the closed-formexpressions for systemof equations ofmotionof the anisotropic
electromagnetoelastic shell include Eqs. (17.3), (17.4), (17.6), (17.17), (17.18),
(17.21), (17.22), and (17.27)–(17.32).

To write the boundary conditions corresponding to the electromagnetic field, we
first proceed to the scalar form of Eq. (17.13):

g−1/2
(
B̂2ν3 − B3ν2

)∣∣∣
Πb

= P1, g−1/2
(
B3ν1 − B̂1ν3

)∣∣∣
Πb

= P2,

g−1/2
(
B̂1ν2 − B̂2ν1

)∣∣
∣
Πb

= P3,
(
Divi + D3ν3

)∣∣
Πb

= P.
(17.33)

Then, using linear approximations of the right parts of these equalities

Pi = Pi
0 + zPi

1 (i = 1, 2, 3) , P = P0 + zP1

and Eq. (17.16) we reduce these conditions to the following forms:

g−1/2 (b2ν3 − b3ν2)
∣
∣
Γ

= P1
0, g−1/2 (b3ν1 − b1ν3)

∣
∣
Γ

= P2
0,

g−1/2 (b1ν2 − b2ν1)
∣∣
Γ

= P3
0,

(
d ivi + d3ν3

)∣∣
Γ

= P0,

g−1/2 (β2ν3 − β3ν2)
∣
∣
Γ

= P1
1, g−1/2 (β3ν1 − β1ν3)

∣
∣
Γ

= P2
1,

g−1/2 (β1ν2 − β2ν1)
∣∣
Γ

= P3
1,

(
δivi + δ3ν3

)∣∣
Γ

= P1.
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Another variant of the boundary conditions follows from Eq. (17.14):

ei|ΠE
= ei0, e3|ΠE

= e30, hi|ΠE
= hi0, h3|ΠE

= h30,
χi|ΠE

= χi0, χ3|ΠE
= χ30, ϕi|ΠE

= ϕi0, ϕ3|ΠE
= ϕ30,

Here, the linear approximations are used:

e = (ei0 + zχi0) ei + (e30 + zχ30)n, h = (hi0 + zϕi0) ei + (h30 + zϕ30)n

17.4 Equations for an Isotropic Conductor Shell

Under isotropic conductors in [42] refers to a medium having the following physical
characteristics (here i, j, k, l = 1, 2, 3):

Cijkl = λgijgkl + μ
(
gik gjl + gilgjk

)
, Ci3k3 = μgik , Cij33 = μgij, C3333 = λ + 2μ,

κ ijk = 0, γ ijk = 0, eij = εegij, μij = μegij,
(17.34)

where λ and μ—Lamé constants, εe and μe—dielectric permittivity and magnetic
permeability coefficients.

In this case, Eqs. (17.11) and (17.17) are significantly simplified:

Di = εeE
i, D3 = εeE3, Bi = μeH

i, B3 = μeH3, (17.35)

d i = εeei, d3 = εed3, bi = μehi, b3 = μeh3,
δi = εeχ

i, δ3 = εeχ3, β i = μeϕ
i, β3 = μeϕ3.

(17.36)

In the above system, due to the last equalities, the number of unknown functions
decreases, Eqs. (17.3), (17.4), and (17.6) are preserved, and the remaining Eqs.
(17.18), (17.21), (17.22), and (17.27)–(17.32) take the following:

T̂ ij = h
[
λ (ε + ψ3) gij + 2μεij

]
, M ij = I

(
λgijκ + 2μκ ij

)
,

Q̂i = μhθ i, μi = μI
(
bilθl + gik∇kψ3

)
, N̂ = h [λε + (λ + 2μ) ψ3] ,

ε = ε11 + ε22, κ = κ1
1 + κ2

2 ;
(17.37)

y1 = σ
[
e1 + cgμe (u̇2H03 − ẇH02)

] + ρe0u̇
1,

y2 = σ
[
e2 + cgμe (ẇH01 − u̇1H03)

] + ρe0u̇
2,

y3 = σ
[
e3 + cgμe (u̇1H02 − u̇2H01)

] + ρe0ẇ,

υ1 = σ
[
χ1 + cgμe

(
ψ̇2H03 − ψ̇3H02

)] + ρe0ψ̇
1

υ2 = σ
[
χ2 + cgμe

(
ψ̇3H01 − ψ̇1H03

)] + ρe0ψ̇
2

υ3 = σ
[
χ3 + cgμe

(
ψ̇1H02 − ψ̇2H01

)] + ρe0ψ̇3;

(17.38)
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q1e = h
[
ρe0e

1 + reE
1
0 + cgμe (j02h3 − j03h2 + y2H03 − y3H02)

]
,

q2e = h
[
ρe0e

2 + reE
2
0 + cgμe (j03h1 − j01h3 + y3H01 − y1H03)

]
,

qe = h
[
ρe0e3 + reE03 + cgμe (j01h2 − j02h1 + y1H02 − y2H01)

]
,

m1
e = I

[
ρe0χ

1 + λeE
1
0 + cgμe (j02ϕ3 − j03ϕ2 + υ2H03 − υ3H02)

]
,

m2
e = I

[
ρe0χ

2 + λeE
2
0 + cgμe (j03ϕ1 − j01ϕ3 + υ3H01 − υ1H03)

]
,

me = I
[
ρe0χ3 + λeE03 + cgμe (j01ϕ2 − j02ϕ1 + υ1H02 − υ2H01)

] ;

(17.39)

∂e3
∂ξ 2

+ bk2ek − χ2 = −μe
√
g

c
ḣ1, χ1 − ∂e3

∂ξ 1
− bk1ek = −μe

√
g

c
ḣ2,

∇1e2 − ∇2e1 = −μe
√
g

c
ḣ3;

(17.40)

∂h3
∂ξ 2

+ bk2hk − ϕ2 =
√
g

c

(
4πy1 + εeė

1) ,

ϕ1 − ∂h3
∂ξ 1

− bk1hk =
√
g

c

(
4πy2 + εeė

2
)
,

∇1h2 − ∇2h1 =
√
g

c
(4πy3 + εeė3) ;

(17.41)

∇ie
i − 2He3 + χ3 = 4πre/εe; (17.42)

∂χ3

∂ξ 2
+ bk2χk + bk2

∂e3
∂ξ k

+ ck2ek = −μe
√
g

c
ϕ̇1,

∂χ3

∂ξ 1
+ bk1χk + bk1

∂e3
∂ξ k

+ ck1ek = μe
√
g

c
ϕ̇2,

∇1χ2 − ∇2χ1 + bk1∇ke2 − bk2∇ke1 = −μe
√
g

c
ϕ̇3;

(17.43)

∂ϕ3

∂ξ 2
+ bk2ϕk + bk2

∂h3
∂ξ k

+ ck2hk =
√
g

c

(
4πυ1 + εeχ̇

1
)
,

∂ϕ3

∂ξ 1
+ bk1ϕk + bk1

∂h3
∂ξ k

+ ck1hk = −
√
g

c

(
4πυ2 + εeχ̇

2
)
,

∇1ϕ2 − ∇2ϕ1 + bk1∇kh2 − bk2∇kh1 =
√
g

c
(4πυ3 + εeχ̇3) ;

(17.44)

∇iχ
i − 2Hχ3 + bik∇iek − 2

(
2H 2 − K

)
e3 = 4πλe/εe (17.45)
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17.5 Equations of Motion of an Electromagnetoelastic Plate

In this case, it is necessary to consider the curvature tensor zero: bij = 0 [41]. More-
over, Eqs. (17.17), (17.21) and (17.22) do not change, equalities (17.4) are simplified:
Qi = Q̂i,T ij = T̂ ij,N = N̂ . Equations (17.3), (17.6), (17.18), and (17.27)–(17.32)
are also transformed:

ρhüi = ∇jT ji + qi + qie, ρhẅ = ∇iQi + q + qe,
ρIψ̈ i = ∇jM ij − Qi + mi + mi

e, ρIψ̈3 = ∇iμ
i − N + m + me; (17.46)

εij = 1

2

(∇iuj + ∇jui
)
, κij = 1

2

(∇iψj + ∇jψi
)
, θk = ψk + ∇kwk; (17.47)

T ij = h

[(
Cijklεkl + Cij33ψ3

) − 1

4π

(
κ ijkek + κ ij3e3 + γ ijkhk + γ ij3h3

)]
,

M ij = I

[
Cijklκkl − 1

4π

(
κ ijkχk + κ ij3χ3 + γ ijkϕk + γ ij3ϕ3

)]
,

Qi = h

[
Ci3k3θk − 1

4π

(
κ i3kek + κ i33e3 + γ i3khk + γ i33h3

)]
,

μi = I

[
Ci3k3∇kψ3 − 1

4π

(
κ i3kχk + κ i33χ3 + γ i3kϕk + γ i33ϕ3

)]
,

N = h

[
C33klεkl + C3333ψ3 − 1

4π

(
κ33kek + κ333e3 + γ 33khk + γ 333h3

)] ;
(17.48)

∂e3
∂ξ 2

− χ2 = −
√
g

c
ḃ1, χ1 − ∂e3

∂ξ 1
= −

√
g

c
ḃ2, ∇1e2 − ∇2e1 = −

√
g

c
ḃ3

(17.49)
∂h3
∂ξ 2

− ϕ2 =
√
g

c

(
4πy1 + ḋ1

)
, ϕ1 − ∂h3

∂ξ 1
=

√
g

c

(
4πy2 + ḋ2

)
,

∇1h2 − ∇2h1 =
√
g

c

(
4πy3 + ḋ3

) ;
(17.50)

∇id
i + δ3 = 4πre; (17.51)

∂χ3

∂ξ 2
= −

√
g

c
β̇1,

∂χ3

∂ξ 1
=

√
g

c
β̇2, ∇1χ2 − ∇2χ1 = −

√
g

c
β̇3; (17.52)

∂ϕ3

∂ξ 2
=

√
g

c

(
4πυ1 + δ̇1

)
,

∂ϕ3

∂ξ 1
= −

√
g

c

(
4πυ2 + δ̇2

)
,

∇1ϕ2 − ∇2ϕ1 =
√
g

c

(
4πυ3 + δ̇3

) ;
(17.53)

∇iδ
i = 4πλe. (17.54)
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Analysis of the system of Eqs. (17.18), (17.21), (17.22), and (17.46)–(17.54) shows
that in the general case of the initial electromagnetic field, unlike the classical elastic
plate, the bending and longitudinal motions are not separated.
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Chapter 18
Nonlinear Dynamics of Two-Dimensional
Lattices with Complex Structure

Alexey V. Porubov, Alena E. Osokina and Ilya D. Antonov

Abstract The dynamics of two-dimensional lattice structures is studied. The com-
plexity of the structure includes non-neighboring interactions between the lattice
masses, consideration of both translational and rotational interactions and also their
nonlinear character (physical nonlinearity). The asymptotic procedures are devel-
oped to obtain the governing nonlinear equations of motion in the continuum limit.
The equations obtained are studied both analytically and numerically. Of special
interest are the propagation and transverse instability of the plane solitary strain
waves. It is shown that the dynamics of longitudinal and shear waves is different
in various two-dimensional lattices. The relationships for the elastic constants are
obtained to characterize the type of the localized strain waves (tensile or compres-
sion), their transverse instability and possible auxetic behavior. Numerical solutions
are obtained that describe unstable and stable dynamics of the plane longitudinal and
shear waves.

Keywords Two-dimensional lattice · Nonlinear dynamics · Asymptotic solution

18.1 Introduction

Whendealingwith theproblemofdescriptionofmaterialswith a complexmicrostruc-
ture, one usually wants to take into consideration either the influence of some spe-
cific dynamic processes on the stress–strain behavior or the influence of a complex
microstructure, additional degrees of freedom or non-neighboring interactions on the
macro-parameters, and, in turn, on the model equations.
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Themodeling of the dynamic behavior of solidmaterialsmay be generally divided
into two categories. Firstly, there are the discrete models, for which the equilibrium
conditions, the kinematic conditions and the constitutive behavior are formulated
for each individual micro-structural element (cell) with respect to its neighboring
micro-structural elements [1–4]. Secondly, there are the continuum models, where
the equilibrium conditions, the kinematic conditions and the constitutive behavior
are formulated for an assembly of micro-structural elements, using the continuum
concepts of stress and strain, see, e.g., [5–7].

A considerable advantage of discrete models in comparison to continuummodels
is that the inhomogeneous effects at the micro-level can be taken into account more
accurately. The study of discrete models with non-neighboring interactions between
the particles in the lattice has attracted considerable interest due to dispersion of the
waves propagating in such a system [2, 5, 8–12]. In particular, this is also important
for the study of an influence of a microstructure of the materials. Dynamic processes
in the one-dimensional lattices are investigatedmore extensively both in the linear and
nonlinear consideration [4, 5], while two-dimensional lattices are mainly considered
in the linearized case [2, 4, 13]. Some two-dimensional processes may bemodeled in
one-dimensional approximation, like planewaves propagation, while their transverse
instability requires two-dimensional consideration.

Considering everything mentioned above, it is obvious that discrete models can
be utilized for the sake of accuracy. However, the number of representative micro-
structural elements in a macro-structural configuration is usually very large, which
causes the number of equations that has to be solved for a discrete system to become
large as well. The discrete equations derived are very complex and stacked up, and
cannot be solved analytically. So, the simplification and transition to some kind of
a continuous model are needed in order to achieve a reasonable result for a further
analysis.

In order to link the macroscopic and microscopic descriptions, it is necessary to
understand how exactly the transition from one description to another has to bemade,
and how to derive continuous equations from the discrete ones.

One of the famous methods is described in the works of [2, 14]. In the linear
case, both discrete and continuum equations may be considered analytically. How-
ever, only a few discrete nonlinear equations, like the Toda lattice equation or the
Ablowitz–Ladik equation, possess exact solutions [15]. That is why an approach
based on a continuum limit of an original discrete equation is needed to obtain gov-
erning nonlinear continuum equations. The familiar acoustic branch continuum limit
requires the long-wavelength approximation and corresponds to the discrete model
only for small wave numbers.

A well-known enhanced continuum formulation is the Cosserat continuum (or
micro-polar continuum), which is an augmentation of the standard Boltzmann con-
tinuum by three rotational degrees of freedom. The rotational degrees of freedom
introduce a “bending effect” in the constitutive formulations, and the characteris-
tic length scale is therefore governed by the ratio between this additional bend-
ing stiffness and the normal stiffness. The development of the Cosserat continuum
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formulation started at the beginning of this century with the concept of the inclusion
of rotational degrees of freedom was introduced for the first time.

The problem of reasonable simplification when describing properties of materials
is closely connected with the question of what can be neglected and what must be
included. This can be resolved by utilizing a range of asymptotic methods. This is
particularly important when dealing with nonlinear processes in crystal lattices [5,
8, 16–24].

Each of the approachesmentioned above has led to significant advances connected
with higher precision of materials with microstructure description: from breathers
and solitary waves to discovery of auxetic properties of 2D crystals [25].

In the following sections, authors show the asymptotic simplification proce-
dure developed to make nonlinear analysis feasible. Later, it is applied to obtain
Kadomtsev–Petviashvili [26] type equations and their solutions for the cases of
generalized square and graphene lattices. Finally, it helps to describe the system’s
behavior in terms of stability and later utilize the findings in the numerical simulation.

18.2 Two-Dimensional Waves in a Generalized
Square Lattice

18.2.1 Statement of the Problem

A generalized two-dimensional square lattice model considers additional long-range
interactions of the central particle with mass M , see [22] for details. The model
includes quadratic and cubic nonlinearity in the elastic inter-particle forces in addition
to the conventional Hookean interaction. The central particle with the number m, n
interacts with four horizontal and vertical neighbors by means of the elastic springs
with the linear rigidityC1 and the nonlinear rigiditiesQ andQ3. The relative distance
in the unstrained state is assumed to be equal to l. Then the total potential energy is

� = �1 + �2 + �3.

where �1 accounts for interactions with nearest four particles in the horizontal and
vertical directions,

�1 = 1

2
C1

4∑

i=1

�l2i + 1

3
Q

4∑

i=1

�l3i + 1

4
Q3

4∑

i=1

�l4i ,
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where xm,n, ym,n are the horizontal and vertical displacements of particle m, n. The
expressions for elongations of the springs, �li are [22]

�l1 = xm+1,n − xm,n,�l2 = ym,n+1 − ym,n,�l3 = xm,n − xm−1,n,

�l4 = ym,n − ym,n−1

where the springs are numbered counter-clockwise. Next group of interacting par-
ticles is composed by four diagonal neighboring particles, whose positions are
described by the angles φ = π/4 + πk/2, k = 0, . . . , 3. The linear rigidity of the
connecting springs isC2 while the nonlinear rigidities are P and P3. The contribution
to the potential energy is

�2 = 1

2
C2

8∑

i=5

�l2i + 2
√
2

3
P

8∑

i=5

�l3i + P3

8∑

i=5

�l4i ,

The expressions for elongations may be found in [22].
The final group consists of eight long -range particles, whose positions are char-

acterized by the angels ψ , θ , so as tanψ = 1/2, tan θ = 2, see figure in [22]. Then
the contribution to the energy is

�3 = 1

2
C3

16∑

i=9

�l2i + 5
√
5

3
S

16∑

i=9

�l3i + 25

4
S3

16∑

i=9

�l4i ,

where C3 is the linear rigidity, S and S3 are the nonlinear rigidities. The expressions
for elongations may be found in [22].

The kinetic energy is

T = 1

2
M

(
ẋ2m,n + ẏ2m,n

)
.

Then the Lagrangian, L = T − �, is composed, and the Hamilton–Ostrogradsky
variational principle is applied to obtain the discrete governing equations of motion,
see [22] for details.

18.2.2 Auxetic Behavior in the Linearized Model

For small wave numbers, one assumes that the continuum displacements of the
central particle xm,n, ym,n are u(x, y, t), v(x, y, t), thus introducing predominantly
longitudinal waves propagation. Then the Taylor series for the neighboring particles
are

xm±1,n±1 = u ± lux ± luy + 1

2
l2uxx + l2uxy + 1

2
l2uyy + · · ·
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Then the two-dimensional linearized continuum equations are

M utt − l2

5
(5(C1 + C2) + 34C3) uxx − 2l2

5

(
5C2 + 16C3

)
vxy

− l2

5

(
5C2 + 16C3

)
uyy = 0,

(18.1)

M vtt − l2

5

(
5(C1 + C2) + 34C3

)
vyy − 2l2

5

(
5C2 + 16C3

)
uxy

− l2

5
(5C2 + 16C3) vxx = 0.

(18.2)

Equations (18.1), (18.2) are related to the equations of motion of the cubic crystals
provided that the elastic cubic constants C11, C12 and C44 are connected with our
constants C1, C2 and C3 as

C11 = 1

5l
(5(C1 + C2) + 34C3) ,C44 = 1

5l
(5C2 + 16C3) ,

C12 + C44 = 2

5l
(5C2 + 16C3) .

(18.3)

These relationships hold only if C12 = C44 or for the Cauchy condition for materi-
als with cubic symmetry when only central interactions are taken into account [1].
However, they fail, e.g., for cubic metals [27].

The relationships for the Poisson ratios of cubic crystals can be found in Ref. [25].
For the case C12 = C44, they are

ν<100,001> = C12

C11 + C12
, ν<111,001> = 4C2

12

2C12(C11 − C12) + C11(C11 + C12)
,

ν<110,110> = (C11 + C12)(C11 − 2C12)

(C11 − C12)(C11 + 2C12) + 2C11C12
, ν<111,111> = C11

2(C11 + 3C12)
.

Using Eqs. (18.3), one obtains

C11 − C12 = l2

5M
(5C1 + 18C3) ,C11 − 2C12 = l2

5M
(C1 − C2 + 2C3) .

Only the last expression can be negative giving rise to a negative value of ν<110,110>.
One can see that the long-range interaction, described by the coefficient C3, adds
positiveness in the relation C1 − C2 + 2C3.
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18.2.3 Continuum Nonlinear Equations

The equations of motion obtained from the variational principle are further reduced
when the plane waves propagating in horizontal direction are studied [22]. For sim-
plicity, let us consider nonlinear waves propagating in a horizontal direction along
the x axis and weakly perturbed in the transverse direction along the y axis. The
transverse weakness is characterized by the small parameter ε � 1, the continuum
displacements are assumed to be the functions of the slow transverse variableY = εy.
The same small parameter is used to account for the weakly nonlinear waves; how-
ever, its utilization depends on whether transverse variations of longitudinal or shear
waves are studied.

18.2.3.1 Longitudinal Waves

For small wave numbers, one assumes that the continuum displacements of the
central particle xm,n, ym,n are u(x,Y , t), v(x,Y , t). Of special interest are the localized
waves keeping their shape and velocity on propagation. These waves exist under the
balance between nonlinearity and dispersion. Dispersion terms are the higher-order
linear derivative terms arising from the Taylor expansion. Their smallness may be
ensured by choosing l = ε h. Nonlinear terms turn out to be of the sameorder under an
assumption about smallness of the continuum displacement of the form ε2 u(x,Y , t),
ε3 v(x,Y , t), also the nonlinear rigidities should be P = P/ε, Q = Q/ε, S = S/ε,
and cubic nonlinear terms are negligibly small for longitudinal waves. Higher power
of the small parameter for v provides predominantly longitudinal waves propagation.

Then the Taylor series for the neighboring particles are

xm±1,n±1 = ε2 u ± ε3hux ± ε4huY + 1

2
h2ε4 uxx + ε5 h2uxY + 1

2
ε5h2uYY + · · ·

Substitution of these Taylor series into the discrete equations of motion gives rise
to the continuum coupled nonlinear partial differential equations of motion for the
functions u(x,Y , t), v(x,Y , t), [22],

M utt − h2

5

(
5(C1 + C2) + 34C3

)
uxx − ε

h2

5

(
5C2 + 16C3

)
(2vxY + uYY )

− h2

12

(
C1 + C3 + 26h2 C4

)
uxxxx − 2h(2P + Q + 130S)ux uxx = O(ε3)

(18.4)

M vtt − h2

5

(
5C2 + 16C3

)
(vxx + 2uxY ) = O(ε) (18.5)
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One assumes
u = G (θ,T ,Y ) ; v = F (θ,T ,Y ) ,

where θ = x − V t, T = ε2 t are the fast and the slow variables, respectively. It allows
us to obtain an asymptotic solution to Eqs. (18.4), (18.5) using expansions

G = G0 + ε2G1 + · · · ,F = F0 + ε2F1 + · · ·

Thus, one obtains in the leading order from Eqs. (18.4), (18.5), respectively,

G0,θθ

(
5C1 + 5C2 + 34C3 − 5M V 2

) = 0, (18.6)

2G0,θY (5C2 + 16C3) + F0,θθ (5C2 + 16C3 − 5M V 2) = 0. (18.7)

Equation (18.6) results in the solution for the phase velocity,

V =
√
5C1 + 5C2 + 34C3√

5M
. (18.8)

Substitution of Eq. (18.8) into Eq. (18.7) allows us to express F0 through G0,

F0,θ = 2(5C2 + 16C3)G0,Y

5C1 + 18C3
. (18.9)

Next order solution to Eq. (18.4) results in the equation for the function G0,

G0,θT + A1 G0,θ G0,θθ + A2 G0,θθθθ + A3 G0,YY = 0, (18.10)

where

A1 = h (2P + Q + 130S)√
M

√
5C1 + 5C2 + 34C3

, A2 =
√
5h2(C1 + C2 + 26C3)

24
√
M

√
5C1 + 5C2 + 34C3

,

A3 = (5C2 + 16C3)(5C1 + 20C2 + 82C3)

2
√
5M (5C1 + 18C3)

√
5C1 + 5C2 + 34C3

.

Equation (18.10) may be rewritten in the form of the familiar Kadomtsev–
Petviashvili equation, see [15] and references therein, for the strain function,
w = G0,θ , (

wT + A1 wwθ + A2 wθθθ

)

θ
+ A3 wYY = 0, (18.11)

The coefficients A2 and A3 are always positive.
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18.2.4 Shear Waves

The small parameter ε is introduced in a different way but using the same reasons
as for the longitudinal waves considered before. Now predominantly, shear waves
are considered, nonlinearity is weak and should balance dispersion, the waves are
plane but disturbed in the transverse direction. Then the continuum displacements of
the central particle xm,n, ym,n are ε2 u(x,Y , t), ε v(x,Y , t). Again l = ε h while for
quadratic nonlinear rigidities, one has P = P̄/ε, Q = Q̄/ε, S = S̄/ε, and for cubic
nonlinear rigidities, one has P3 = P̄3/ε

2, Q3 = Q̄3/ε
2, S3 = S̄3/ε2. Substitution of

the corresponding Taylor series to the continuum coupled nonlinear partial differ-
ential equations of motion gives rise to the equations for the functions u(x,Y , t),
v(x,Y , t),

Mutt − 1

5
(5C1 + 5C2 + 34C3)uxx − 2

5
(5C2 + 16C3)vx,Y − 4h (P̄ + 20S̄)vx vxx = O(ε),

(18.12)

Mvtt − 1

5
(5C2 + 16C3)vxx − ε2

(
1

5
(5C1 + 5C2 + 34C3)vYY + h2

12
(C2 + 8C3)vxxxx

+2

5
(5C2 + 16C3)ux,Y + 4h (P̄ + 20S̄)(vx(ux + 2vY ))x + 6h2(P̄3 + 32S̄3)v

2
x vxx

)

= O(ε3)

(18.13)
The asymptotic solution to Eqs. (18.12), (18.13) is

u = G (θ,T ,Y ) ; v = F (θ,T ,Y ) ,

where the fast and slow variables are introduced similar to the case of longitudinal
waves,

G = G0 + ε2G1 + · · · ,F = F0 + ε2F1 + · · ·

The leading order solution is

G0,θ = −2
(
(5C2 + 16C3)F0,Y + 5h(P̄ + 20S̄)F2

0,θ

)

5C1 + 18C3

V =
√
5C2 + 16C3

5M
,

Nest order solution, O(ε2), gives rise to the model equation for F0,

F0,θT + B1 F
2
0,θ F0,θθ + B2 F0,θθθθ + B3 F0,YY + B4 F0,Y F0,θθ = 0, (18.14)
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where

B1 = 3
√
5h2

(
(5C1 + 18C3)(P̄3 + 32S̄3) − 20(P̄ + 20S̄)2

)

2(5C1 + 18C3)
√
M (5C2 + 16C3)

,

B2 =
√
5h2(C2 + 8C3)

24
√
M (5C2 + 16C3)

,

B3 = 25
(
C2
1 + C1C2 − 4C2

2

) + 10C3(26C1 − 55C2) − 412C2
3

2
√
5(5C1 + 18C3)

√
M (5C2 + 16C3)

,

B4 = 2
√
5h(P̄ + 20S̄)(5C1 − 2(5C2 + 7C3))

(5C1 + 18C3)
√
M (5C2 + 16C3)

.

The cubic nonlinear term coefficient, B1, may be of either sign due to the either sign
of P̄, S̄ and P̄3, S̄3; the coefficient B2 at the dispersion term is always positive. Both
linear and nonlinear terms with transverse derivatives, B3 and B4, may be of either
sign, and now the sign of B3 also depends on the long-range linear rigidity C3. The
sign of B1 defines the type of localized plane waves, a bell-shaped or a kink-shaped
while the signs of B3 and B4 may be responsible for a transverse instability of plane
waves.

18.3 Two-Dimensional Nonlinear Waves Propagation
in Graphene Lattice

The two-dimensional graphene lattice consists of two interacting sub-lattices whose
numbers are marked as “1” for the first sub-lattice and “2” for the second one. The
sketch of the model can be found in [28]. The elements interaction is modeled by
the translational springs with a linear stiffness C1 and angular springs with a linear
stiffness C2. The nonlinearity is introduced via additional elastic translational inter-
action with a stiffness Q. This model can be called “geometrically linear,” since the
nonlinearity introduced in this paper takes into account deviations from the Hook’s
law, which means the tensor of deformations is no longer linear and the additional
mixed derivative occurs. This type is called physical nonlinearity. The geometrical
nonlinearity is neglected for simplification’s sake.

When one tries to set up the nanoscale continuum theory for graphene, two main
issues occur: the multi-body interatomic potential and the lack of centrosymmetry of
hexagonal atomic structures. Zhang et al. [29] proposed a continuum theory that links
the macroscopic deformation to the atomic structure of materials. The macroscopic
behavior of the material is defined by the so-called Cauchy–Born rule of crystal
elasticity by equating the strain energy functionon the continuum level to the potential
energy stored in the atomic bonds due to an imposed deformation on the discrete
level.
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The Cauchy–Born rule assumes that the atoms in a material subject to a homo-
geneous deformation move according to a single mapping from the undeformed to
the deformed configuration. It should be pointed out that the Cauchy–Born rule that
links the continuum model with particles interaction requires the atomic structure
of the materials to be centrosymmetric because such a structure ensures the equi-
librium of particles in a lattice. The hexagonal arrangement of atoms in a nanotube
does not meet this requirement: when a carbon nanotube is under “homogeneous
deformation” on the cell level, the deformation may not be homogeneous inside the
cell [30].

An attempt to modify the Cauchy–Born rule to work for hexagonal atomic struc-
ture is to introduce a rigid body translation as an internal degree of freedom (DOF).
A hexagonal lattice can be decomposed into two sub-lattices, each of which is cen-
trosymmetric. Under a homogeneous deformation applied on the continuum level,
each sub-lattice deforms according to the single mapping. However, the two sub-
lattices move relative to each other by a certain rigid body translation, which is
the internal DOF, to ensure the equilibrium of the atom. It is determined by the
minimization of the strain energy density, which is equivalent to equilibrium of the
atoms.

By introducing the internal DOF and enforcing the energy minimization, the
equilibrium of each atom is ensured when subject to a deformation specified by
the deformation gradient. In other words, neglecting the internal DOF is equivalent
to applying some external constraints on top of the deformation. The stiffnesses or
equivalently the elastic moduli of the graphene lattice are then reestimated because
of the “external” constraints [30].

Therefore, in addition to the previously mentioned lattice models, the separa-
tion into two sub-lattices is used for the graphene modeling. Besides translational
interactions, angular interactions are also taken into consideration.

Let us denote xm,n, ym,n as the translational displacements of a centralmassmarked
by 1 corresponding to the horizontal and vertical directions, respectively. The anal-
ogous displacements for the second sub-lattice are denoted by Xm,n and Ym,n. Then
the potential energy is [28]

�1Rot = C1(
l21 + 
l22 + 
l23) + C2a
2(φ2 + ψ2) + Q(
l31 + 
l32 + 
l33)

�2Rot = C1(
L21 + 
L22 + 
L23) + C2a
2(�2 + �2) + Q(
L31 + 
L32 + 
L33)

(18.15)
where a is a distance between the particles, C1 is the translational stiffness, C2 is the
rotational stiffness and Q is the nonlinear one.

The translational elongations for both sub-lattices can be found in [28].
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The kinetic energy is

K1 = M

2

(
ẋ2 + ẏ2

) + J a2(ϕ̇2 + ψ̇2), (18.16)

whereM is the mass of the particles in the lattice, J is the angular mass (moment of
inertia).

In order to obtain the expressions for the anglesφ,ψ ,�,�, the cosine formulawas
used in [28], where the expressions for connecting the angles and the displacements
can be found. The physically nonlinear model assumes only small variations in the
angular variables that result in the linearization of the expressions.

The discrete equations are obtained using the Hamilton–Ostrogradsky variational
principle [28],

(3J + M )ẍm,n +
√
3

2
J
(
Ÿm−1,n+1 − Ÿm−1,n−1 − √

3(Ẍm−1,n−1 − Ẍm−1,n+1)
)

+ C1

2

(
6xm,n − 4Xm+1,n − (Xm−1,n−1 + Xm−1,n+1) + √

3(Ym−1,n+1 − Ym−1,n−1)
)

+
√
3C2

2

(
6xm,n − 3(Xm−1,n−1 + Xm−1,n+1 + √

3(Ym−1,n+1 − Ym−1,n−1)
)

+ 3Q

8

(
(xm,n − Xm−1,n−1)

2 + (xm,n − Xm−1,n+1)
2 + 3(ym,n − Ym−1,n−1)

2

+ 3(Ym−1,n+1 − ym,n)
2 2

√
3(xm,n − Xm−1,n−1)(ym,n − Ym−1,n−1) + 2

√
3(xm,n

− Xm−1,n+1)(Ym−1,n+1 − ym,n) − 8(xm,n − Xm+1,n)
2)

)
= 0,

(18.17)

(J + M )ÿm,n + J

2

(√
3(Ẍm−1,n+1 − Ẍm−1,n−1) − (Ÿm−1,n−1 + Ÿm−1,n+1)

)

+ C1

2

(
6ym,n + √

3(Xm−1,n+1 − Xm−1,n−1) − 3(Ym−1,n−1 + Ym−1,n+1)
)

+ C2

2

(
2ym,n + √

3(Xm−1,n+1 − Xm−1,n−1) − (Ym−1,n−1 + Ym−1,n+1)
)

+ 3
√
3

8
Q

(
(xm,n − Xm−1,n−1)

2 − (xm,n − Xm−1,n+1)
2 + 3(ym,n − Ym−1,n−1)

2

− 3(Ym−1,n+1 − ym,n)
2 + 2

√
3(xm,n − Xm−1,n−1)(ym,n − Ym−1,n−1)

− 2
√
3(xm,n − Xm−1,n+1)(Ym−1,n+1 − ym,n)

)
= 0,

(18.18)
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(3J + M )Ẍm,n +
√
3

2
J
(
ÿm+1,n−1 − ÿm+1,n+1 − √

3(ẍm+1,n−1 − ẍm+1,n+1)
)

+ C1

2

(
6Xm,n − 4xm−1,n − (xm+1,n−1 + xm+1,n+1) + √

3(ym+1,n−1 − ym+1,n+1)
)

+
√
3C2

2

(
6Xm,n − 3(xm+1,n−1 + xm+1,n+1) + √

3(ym+1,n−1 − ym+1,n+1)
)

+ 3Q

8

(
8(xm,n − Xm−1,n)

2 − (xm+1,n+1 − Xm,n)
2 − (xm+1,n−1 − Xm,n)

2

− 3(ym+1,n+1 − Ym,n)
2 − 3(Ym,n − ym+1,n−1)

2 − 2
√
3(xm+1,n+1 − Xm,n)(ym+1,n+1 − Ym,n)

− 2
√
3(xm+1,n−1 − Xm,n)(Ym,n − ym+1,n−1)

)
= 0,

(18.19)

(J + M )Ÿm,n + J

2

(√
3(ẍm+1,n−1 − ẍm+1,n+1) − (ÿm+1,n−1 + ÿm+1,n+1)

)

+ C1

2

(
6Ym,n + √

3(xm+1,n−1 − xm+1,n+1) − 3(ym+1,n−1 + ym+1,n+1)
)

+ C2

2

(
2Ym,n + √

3(xm+1,n−1 − xm+1,n+1) − (ym+1,n−1 + ym+1,n+1)
)

+ 3
√
3

8
Q

(
(xm+1,n−1 − Xm,n)

2 − (xm+1,n+1 − Xm,n)
2 + 3(Ym,n − ym+1,n−1)

2

− 3(ym+1,n+1 − Ym,n)
2 + 2

√
3(xm+1,n−1 − Xm,n)(Ym,n − ym+1,n−1)

− 2
√
3(xm+1,n+1 − Xm,n)(ym+1,n+1 − Ym,n)

)
= 0.

(18.20)
Discrete nonlinear equations cannot be used for an analysis, and a continuum approx-
imation of Eqs. (18.17)–(18.20) will be obtained in the following.

18.3.1 Continuum Limit for Weakly Transversely
Perturbed Waves

18.3.1.1 Coupled Continuum Equations

The weak transverse variations along the vertical axis and small vertical displace-
ments are studied. The discrete variables xm,n, ym,n, Xm,n, Ym,n are linked to the con-
tinuum functions u(x, y, t), v(x, y, t), U (x, y, t) and V (x, y, t), respectively, while
the displacements of the neighboring particles are rewritten using the Taylor series
expansion, like for the square lattice.
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We consider predominantly longitudinal waves propagating along the horizontal
axis. That is why we leave only the leading order nonlinear and dispersion terms in
the equations of motions for u and U , and by analogy, only those terms that allow
us to establish a connection between horizontal and vertical displacements are left
in the equations of motion for the vertical displacements.

Then one obtains from Eqs. (18.17)–(18.20) [28]

(3J + M )utt + 3(C1 + C2)(u −U ) − 3JUtt − a(C1 − 3C2)Ux + 3JaUxtt

− 3a2

2
(C1 + C2)Uxx + √

3a(C1 + C2)Vy

− √
3a2(C1 + C2)Vxy − a2

2
(C1 + 3C2)Uyy − 3a2

2
JUxxtt

− a3

6
(C1 − 3C2)Uxxx − a4

8
(C1 + C2)Uxxxx − 9Q

4
(u −U )2

+ 15Q

2
a(u −U )Ux − 9Q

4
a2(Ux)

2 = 0,

(18.21)
(3J + M )Utt + 3(C1 + C2)(U − u) − 3Jutt + a(C1 − 3C2)ux − 3Jauxtt

− 3a2

2
(C1 + C2)uxx − √

3a(C1 + C2)vy − √
3a2(C1 + C2)vxy − a2

2
(C1 + 3C2)uyy

− 3a2

2
Juxxtt + a3

6
(C1 − 3C2)uxxx − a4

8
(C1 + C2)uxxxx + 9Q

4
(u −U )2

− 15Q

2
a(u −U )ux + 9Q

4
a2(ux)

2 = 0.

(18.22)
(3C1 + C2)(v − V ) + √

3a(C1 + C2)Uy + a(3C1 + C2)Vx − √
3a2(C1 + C2)Uxy = 0

(18.23)
(3C1 + C2)(V − v) − √

3a(C1 + C2)uy − a(3C1 + C2)vx − √
3a2(C1 + C2)uxy = 0

(18.24)

The displacements responsible for the sub-lattices elements motion in the discrete
equations are not physically reasonable in the continuum model. Then the transfor-
mation of variables

U1 = u +U

2
, U2 = u −U

2
,

V1 = v + V

2
, V2 = v − V

2
,

allows us to describe the dynamics using the macro-displacements U1, V1, and the
micro-displacement variables u1, v1 taking the microstructure into account. After the
substitution and obviousmanipulationswith the equations (addition and subtraction),
we obtain
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MU1,tt − √
3a(C1 + C2)V2,y − a2

2
(C1 + 3C2)U1,yy + a(C1 − 3C2)U2,x − 3aJU2,xtt

− √
3a2(C1 + C2)V1,xy − 3a2

2
(C1 + C2)U1,xx − 3a2

2
JU1,xxtt

− a3

12
(C1 − 3C2)(U1,xxx −U2,xxx) − a4

16
(C1 + C2)(U1,xxxx)

− Qa2
(
15

2
U2U2,x + 9a

4
U1,xU2,x + 9a

8
U2U1,xx

)
= 0,

(18.25)

(6J + M )U2,tt + 6(C1 + C2) + √
3a(C1 + C2)V1,y + 3a2

2
(C1 + C2)U2,xx

− a(C1 − 3C2)U1,x + 3aJ U1,xtt +
√
3a2(C1 + C2)V2,xy−

a3

12
(C1 − 3C2)(U1,xxx −U2,xxx) − a4

16
(C1 + C2)U1,xxxx−

Q

(
9

2
U 2

2 + 15

2
aU2U1,x − 9

8
a2(U 2

1,x −U 2
2,x) + 9

8
a2U2(U1,xx −U2,xx)

)
= 0,

(18.26)
6(C1 + C2)U2 + √

3a(C1 + C2)V1,y − a(C1 − 3C2)U1,x = 0, (18.27)

2(3C1 + C2)V2 + √
3a(C1 + C2)U1,y + a(3C1 + C2)V1,x = 0. (18.28)

The slaving principle [31] will be applied below to obtain a single governing
equation for a description of nonlinear dynamics of longitudinal strain waves.

18.3.1.2 Two-Dimensional Single Governing Equation

According to the slaving principle [31], we expressU2 through the other functions by
separating terms by order in Eq. (18.26) and expanding U2, U2 = U21 +U22 + · · ·
so as

a(3C2 − C1)U1,x + 6(C1 + C2)U21 = 0.

The solution is

U21 = a(C1 − 3C2)U1,x

6(C1 + C2)
. (18.29)

Then the equation for U22 is

3a2(C1 + C2)U21,xx + 2(6J + M )U21,tt + a
(
6JU1,xtt − (C1 − 3C2)U21,x

)

+ 15aQU1,xU21 − 9QU 2
21 − 1

3
a3(C1 − 3C2)U1,xxx

+ 2
√
3a(C1 + C2)V1,y + 12(C1 + C2)U22 = 0.
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The solution is

U22 = a2(C1 − 3C2)
2

72(C1 + C2)2
U1,xx −

√
3a

6
V1,y − a3(C1 − 3C2)

72(C1 + C2)
U1,xx−

24aC1 J + aM (C1 − 3C2)

36(C1 + C2)2
U1,xtt − a2Q(C1 − 3C2)(C1 + 2C2)

12(C1 + C2)3
U 2

1,x.

Equations (18.27), (18.28) are used to obtain the approximate relationships for
V1, V2. Equation (18.27) with Eq. (18.29) being taken into account is

−1

3
a

(√
3a(7C1 + 3C2)U1,y + 6(3C1 + C2)V2

)

It gives rise to the solution for V2,

V2 = −a(7C1 + 3C2)U1,y

2
√
3(3C1 + C2)

Equation ( 18.28) results in the solution for V1,x,

V1,x = 4C1U1,yy√
3(3C1 + C2)

Substitution of all obtained solutions into Eq. (18.25) yields a single governing
equation for the function U1,

U1,tt − α1U1,xx − α2U1,xU1,xx − α3U1,xxtt − α4U1,xxxx − α5U1,yy = 0, (18.30)

where

α1 = 8a2C1(C1 + 3C2)

3(C1 + C2)
, α2 = 5a3Q(C1 − 3C2)

2

12(C1 + C2)2
, α3 = 4a2C1J

C1 + C2
,

α4 = a4
(
7C2

1 + 30C1C2 − 9C2
2

)

36(C1 + C2)
, α5 = 4a2C1(C1 + 2C2)

3C1 + C2
.

It is obvious from the expressions that the coefficients α1, α3, α5 are always
positive, α4 may be of either sign depending on the angular stiffness C2 and the
sign of the nonlinear term coefficient α2 depends entirely on the sign of nonlinear
stiffness Q.

Equation (18.30) can be rewritten in the formof theKadomtsev–Petviashvili equa-
tion (18.11) . We introduce the scales for the variables,

x = Lx̃, y = aỹ, t = L/
√

α1 t̃,U1 = εLŨ1,



324 A. V. Porubov et al.

α3 = a2α̃3, α4 = a2α̃4.

where L is a typical horizontal size of the wave, ε = a2/L2 is a small parameter. We
assume that Ũ1 = Ũ1(ξ, ỹ,T ), where ξ = x̃ − t̃, T = εt̃. Then Eq. (18.30) at order ε

is
(wT + b1wwξ + b2wξξξ )ξ + b3wỹỹ = 0, (18.31)

where w = Ũ1ξ ,

b1 = α2

2α1
, b2 = α̃3α1 + α̃4

2α1
, b3 = α5

2α1

The last equation is similar to Eq. (18.11) obtained for the extended square lattice.

18.4 Two-Dimensional Dynamical Strain Processes

18.4.1 Exact Solutions

The Kadomtsev–Petviashvili equation is integrable, and many analytical solutions
are known, see, e.g., [15]. Of our interest is a particular exact plane traveling solitary
wave solution to Eq. (18.11),

w = 12A2β
2

A1
sech2 (β(θ + mY − VT )) , (18.32)

where V = 4β2A2 + m2A3. The sign of the amplitude is defined by the sign of A2 or
by nonlinear stiffness of the springs of the lattice. The shape of the wave is described
by one and the same expression for zero and nonzero m.

This is not the case of Eq. (18.14) for shear waves. Consider its plane traveling
wave solution depending only on the phase variable ξ = θ + mY − VT and assume
that q = Fξ . Then Eq. (18.14) is transformed to the ordinary differential equation,

(−Vqξ + B1

3
(q3)ξ + B2qξξξ )ξ + B3m

2qξξ + B4k

2
(q2)ξξ = 0.

The solution is

q = A

Q + cosh(βξ)
, (18.33)
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where

A = ± 6B2β
2

√
B2
4m

2 + 6B1B2β2
,Q = ± B4m√

B2
4m

2 + 6B1B2β2
, V = β2B2 + m2B3.

(18.34)
We consider only bounded solutionswhenQ < 1. It always happenswhenB1B2 > 0.
Otherwise, only one set of parameters (18.34) corresponds to the bounded solution.
The sign of Q depends on the sign of the parameter m responsible for the angle
of the wave front propagation relative to the x- axis. However, the sign ± discards
an influence of this dependence on the solution. Also, the sign of the amplitude
A/(Q + 1) is not sensitive to the sign of m or the direction of the wave propagation.

For the wave propagating along x axis, m = 0 and Q = 0. Then the familiar
solitary wave solution to the modified Korteweg–de Vries equation appears from
(18.33),

qm = ± 6B2β√
6B1B2

cosh−1(βξ) (18.35)

that exists only when B1B2 > 0.

18.4.2 Transverse Instability of Longitudinal
and Shear Waves

Transverse instability of the longitudinal plane solitary wave to Eq. (18.11) is studied
by an analysis of the solution [15]:

w = wp + δwi(θ,T ) exp(λT + ı pY ), (18.36)

where δ � 1, wp is plane solitary wave solution (18.32) to Eq. (18.11). An analysis
performed in [22] gives rise to the solution for λ,

λ2 = −16 A2 A3 β2

3
. (18.37)

At A2 > 0, A3 > 0, λ2 < 0, λ is imaginary number that corresponds to the stability
which happens for a square lattice. For the graphene lattice, A2 may be negative that
gives rise to possible real values of λ and to the transverse instability.

Similarly, an instability of shear wave solutions to Eq. (18.14) can be studied [22].,

q = qp + δqi(θ,T ) exp(λT + ı p Y ), (18.38)



326 A. V. Porubov et al.

The localized bell-shaped solution qp is exact solution (18.35) propagating along the
x axis. The condition of the absence of secular terms in the next order solution gives
rise to the solution of λ [22],

λ2 = −4B2 β2

(
B3 + B2

4

108 B1

)
.

Therefore, stability occurs for B3 > 0, while positive value of λ may be achieved
at negative B3 that results in the transverse instability of plane shear waves in the
lattice. Here, the linear stiffness coefficients C2, C3 of the long-range interactions
may be responsible for instability.

18.4.3 Numerical Solutions

The analytical solutions presented in the previous section are the particular solutions
which exist under specific initial conditions. More general solutions can be obtained
numerically. The main aim is to reveal the difference between the dynamics of two-
dimensional longitudinal and shear waves.

18.4.3.1 Simulation Technique

The model equations (18.11), (18.14) can be rewritten in the following form,

∂x

(
∂tu + c1∂xxxu + c2

p + 1
∂xu

p+1

)
+ f ∂yyu + γ ∂x

(
∂xu

∫ x

−∞
∂yu dx

′
)

= 0,

(18.39)
where c1, c2, f , γ are the coefficients related to those of either Eq. (18.11) or
Eq. (18.14), p = 1, 2 correspondingly. For the last equation u = F0,θ .

For p = 1 Eq. (18.39) is the Kadomtsev–Petviashvili equation, a wide range of
methods [32–37]was developed to numerically solve this equation and its generaliza-
tions studying solitons interactions, solutions stability, asymptotic regimes and other
aspects. The Fourier spectral method is used here to numerically solve Eq. (18.39) in
the domain [−Lx,Lx] × [−Ly,Ly

]
with the periodic boundary conditions. Applying

the antiderivative ∂−1
x and Fourier transform to Eq. (18.39) gives rise to

∂t û − ı

(
c1k

3
x − f

k2y
kx

)
û + ı

kx
p + 1

F
(
up+1

) + γF

[
∂xu

∫ x

−∞
∂yu dx

′
]

= 0,

(18.40)

where u(x, y, t)
F−→ û(k, l, t), kx = 2πk

Lx
and ky = 2π l

Ly
. This equation is solved using

the Sanz–Serna discretization scheme and the fast Fourier transform for the nonlinear
terms based on the method proposed in [38]. The numerical scheme is
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Ûn+1 − Ûn


t
− ı

(
c1Iy ⊗ K3

x − fK2
y ⊗ K̄x

−1
) Ûn+1 + Ûn

2

+ ı
c2

p + 1

(
Iy ⊗ Kx

)
F

[(
Un+1 +Un

2

)p+1
]

+ γF

[(
Iy ⊗ Dx

Un+1 +Un

2

)
◦ R

]
= 0,

(18.41)
Un denotes the approximation of u at time n
t, Ix, Iy are identity matrices with the
size Nx and Ny, respectively, R is the approximation of the last term of Eq. (18.40),
D∗ is the second-order central finite difference matrix of ∂/∂∗ operator with periodic
boundary conditions, and Kx, Ky, K̄x

−1
are diagonal matrices

Kx,y = 2π

Lx,y
diag

(
0, 1, . . . ,

Nx,y

2
− 1,−Nx,y

2
, . . . ,−1

)
,

K̄x
−1 = 2π

Lx
diag

(
0, 1, . . . ,

1

Nx/2 − 1
,− 2

Nx
, . . . ,−1

)
.

The R is approximated as follows,

R(y) = β(y) +
∑

x′∈[−Lx,x]

(
Dy ⊗ Ix

Un+1 +Un

2

)

x′. (18.42)

When an influence of the borders of the numerical interval is being neglected
then we obtain u(−Lx, y, 0) = u(Lx, y, 0) = 0. In this case, β = 0. Otherwise, we
obtain u(−Lx, y, t) = u(Lx, y, t), u(x,−Ly, t) = u(x,Ly, t),

∫ Lx
−Lx

∂yu dx = 0. Then
the following condition is used to define β,

∫ Lx

−Lx

R(y) dx = const. (18.43)

Using the fixed point iteration method, Eq. (18.41) can be solved iteratively to
find a solution at the next time step Ûn+1. Application of the inverse fast Fourier
transform gives the solution u of Eq. (18.39).

18.4.3.2 Numerical Results for Longitudinal Waves

In order to check the numerical scheme given by Eq. (18.41) for c1 = 1, c2 = 1,
p = 1, f = 3 and γ = 0, the values of the parameters are Nx = Ny = 129, time step

t = 0.005 with two iterations per step.

The numerical solution shown in Fig. 18.1 demonstrates the stable propagation of
the exact plane wave solution to the KP equation (18.11) when an initial condition
is chosen in the form of (18.32) at t = 0. This is a test simulation for checking the
scheme.
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Fig. 18.1 Stable plane wave propagation. The shape and position of the plane wave solution at
t = 4.5 do correspond to the numerical solution (orange colored) and the analytical one (green
colored)

Perturbed plane solitary wave solution is studied using the initial condition devel-
oped on the basis of the asymptotic analysis (18.36),

u(x, y, 0) = 12sech2(x − 4t) − 2.4cos(y)tanh(x) sech2(x), (18.44)

where f = ±3 is used in Eq. (18.39). According to the analytical solution, f = 3
corresponds to the stable case, while f = −3 relates to a transverse instability.

Comparing Figs. 18.1 and 18.2, one can see the stable propagation of the plane
wave in Fig. 18.2 at the initially transversely perturbed plane wave. The wave in both
figures propagates keeping its shape and velocity while initial perturbation at the
wave in Fig. 18.2 disappears in time.

On the contrary, one can see in Fig. 18.3 that the initial condition with negative
f provides serious transverse variations on the plane wave front. Initial small peri-
odic perturbations suffer an increase in the amplitude, and initially, almost plane

Fig. 18.2 Numerical solution for the initial condition u(x, y, 0) for f = 3
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Fig. 18.3 Numerical solution for the initial condition u(x, y, 0) for f = −3. The interpolation
surface of the solution is cut off at z = 15 in order to save the scale

Fig. 18.4 Numerical solution for the initial condition −u(x, y, 0) for f = 3, c1 = −1. The inter-
polation surface of the solution is cut off at z = −15 in order to save the scale

wave evolves into a transversely modulated wave. This happens in agreement with
the analysis. It was noted before that c1 may be negative rather than f . However,
transformation of variables, t = −τ , u = −v, at negative c1 and positive f results
in the equation for v with positive c1 and negative f corresponding to an unstable
propagation of negative amplitude wave u (see Fig. 18.4).

18.4.3.3 Numerical Results for Shear Waves Equation

Consider Eq. (18.41) for p = 2 and γ �= 0. For all simulationsNx = 1025,Ny = 129,
time step 
t = 0.003 with two iterations per step. Nx is chosen to be higher than it
was for previous simulations in order to increase the accuracy of evaluation of the
term given by Eq. (18.42).

The parameters (18.34) of exact solution (18.33) depend on m responsible for
propagation inclined to the x axis and two sets of parameters are possible. Therefore,
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Fig. 18.5 Stable inclined plane shear wave propagation. The numerical solution corresponds to the
sum of three analytical plane wave soliton solutions of Eq. (18.39) at t = 15

it is of interest to study inclined propagation of shear waves. For this purpose, the
initial condition is constructed as the sums of three plane wave solitons (18.33) (at
t = 0). The distance between them is chosen larger than their effective length, so
the interaction between these solitons is very small. Also, the choice of the distance
provides periodic conditions for y as it is seen in Fig. 18.5.

The calculation domain in x is increased in order to avoid the boundary influence.

Lx = 30π.

The initial condition is

u(x, y, 0) = uexact (ξ) + uexact (ξ − 2Ly tan φ) + uexact (ξ + 2Ly tan φ), (18.45)

where

uexact (ξ) = A

Q + cosh(ξ)
, (18.46)

A = 6c1√
6c1c2 + γ 2m2

, Q = ± γm√
6c1c2 + γ 2m2

,

ξ = x + my − V t, V = c1 + fm2, m = tan φ, φ = 0.2;

c1 = 1, c2 = 1, f = 3, γ = 2.

The results of stable propagation of the inclined plane waves are shown in
Fig. 18.5. One can check that each of the inclined solitary waves corresponds to
the single wave exact solitary wave solution.
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To study the transverse instability, we consider propagation of a single solitary
wave along the x axis. The perturbed initial condition is chosen according to the
instability analysis of shear waves,

u(x, y, 0) = √
6 sech(x) − √

6tanh(x) sech(x)cos(y), (18.47)

The results are shown in Figs. 18.6, 18.7 and 18.8. The stable case is shown in
Fig. 18.6. One can see that the initial perturbations on the front of the wave decrease
while a two-dimensionally periodic tail develops behind the plane strain solitary
wave.

The unstable plane shear wave propagation is shown in Figs. 18.7 and 18.8. In
the former figure, one can see an evolution similar to that found for longitudinal
waves: increase in the amplitude and deep transverse modulation of the plane wave
front. The latter figure demonstrates an influence of the value of γ on the transverse
instability. The oscillations on the front do not grow anymore while perturbations
are developing both before and after the plane wave front.

Fig. 18.6 Propagation of u(x, y, 0) for f = 3, γ = 2

Fig. 18.7 Propagation of u(x, y, 0) for f = −3, γ = 1
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Fig. 18.8 Propagation of u(x, y, 0) for f = −3, γ = 2

18.5 Conclusions

The asymptotic technique presented in this paper allows to reduce the coupled non-
linear continuum equations of 2D crystal lattices to a single nonlinear equation for
strain waves, which allows to analyze only relevant terms in the new equations. Two
types of lattices were considered: the generalized square lattice and the graphene lat-
tice (the model is based on a consideration of two interacting sub-lattices with both
translational and angular interactions being taken into account), and the governing
two-dimensional equations for longitudinal and shear strain waves were obtained.
Their exact plane wave solutions and their transverse stability have been revealed in
numerical simulations.

Numerical simulations confirm that the angular stiffness in the original discrete
model gives rise to various types of nonlinear waves localization depending on the
coefficients values. Previous studies of the lattices of another structure revealed
important variations in the governing equation from that of the longitudinal waves
[22]. Extended interactions in the square lattice firstly produce additional extrema in
the dispersion curve for linear longitudinal planewaves. They have a significant influ-
ence on the auxetic behavior of the material. One can note that the one-dimensional
limits of the equations for longitudinal and shear waves differ only by nonlinear
terms (quadratic or cubic) while two-dimensional consideration results in different
transverse variation terms which are nonlinear for shear waves contrary to the linear
term for longitudinal waves. Moreover, the sign of the coefficients in the governing
equations may vary more for shear waves descriptions. It results in different stability
criteria for longitudinal and shear localized plane strain waves.

This, in turn, allows us to predict different scenario of the wave amplification
and localization due to a transverse instability caused by the values of the stiffness
coefficients. In the stable case of the Kadomtsev–Petviashvili equation (18.11), two-
dimensional localized wave amplification happens due to instability, see Figs. 18.3
and 18.4. An unstable case of Eq. (18.11) also results in the transverse periodic
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modulation of the plane wave. Figure18.3 demonstrated classic result for the cor-
responding negative sign at the term with derivatives with respect to y. However,
this case is not realized for description of our lattice while the negative sign at the
dispersion term can be achieved. This results in the dynamics shown in Fig. 18.4. The
new results concern the transverse instability of nonlinear shear waves, see Figs. 18.7
and 18.8 which are different from that of longitudinal waves. The comparison of the
numerical results for shear waves gives an explanation of how the coefficient at the
quadratic nonlinearity influences the inclined plane solitary wave propagation and
the transverse instability.

One of the potential extensions of this study is a short-rangewave continualization.
Previously, it was studied for a hexagonal lattice in Refs. [20, 21] where new model
modulation two-dimensional equations were obtained. Also, nonlocal interactions
will be of interest, in particular, utilization of the method of shift operators [11]
for obtaining two-dimensional model equations for dynamical processes in nonlocal
square lattice will be considered in the nearest future. Another extension of themodel
concerns an inclusion of the geometrical nonlinearity in the discrete model like it
was done, e.g., in [39]. Furthermore, along with the geometrical nonlinearity and
weakly transversely perturbed shear waves, the study can be extended to the case of
nonlinear translational stiffnesses examination.

Acknowledgements The work was performed in IPME RAS, supported by the Russian Science
Foundation (grant 19-41-04106).
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Chapter 19
Influence of First to Second Gradient
Coupling Tensors Terms with Surface
Effects on the Wave Propagation of 2D
Network Materials

Yosra Rahali, Hilal Reda, Benoit Vieille, Hassan Lakiss
and Jean-François Ganghoffer

Abstract The influence of surface energy terms on the wave propagation character-
istics of network materials is analyzed in this contribution. The asymptotic homoge-
nization technique is extended to account for additional surface properties of network
materials made of the periodic repetition of a unit cell consisting of beam type ele-
ments. The presence of a thin coating with specific properties give rise to surface
effects that are accounted for by a strain gradient behavior at the mesoscopic level
of an equivalent continuum. These effects emerge in the asymptotic expansion of
the effective stress and hyperstress tensors versus the small scale parameters and the
additional small parameters related to surface effects. The role of the coupling tensors
between first and second order gradient kinematic terms, obtained by the homog-
enization, materials is pursued in this contribution, accounting for surface effects
arising from the presence of a thin coating on the surface of the structural beam
elements of the network. The lattice beams have a viscoelastic behavior described
by a Kelvin voigt model and the homogenized second gradient viscoelasticity model
reflects both the lattice topology, anisotropy and microstructural features in terms of
its geometrical andmicromechanical parameters.We formulate the dynamic equilib-
rium equations and compute the network materials’ wave propagation attributes. We
compute the influence of the coupling tensor terms on the wave propagation charac-
teristics as a function of the propagation direction. Considerable differences between
second gradient media description with and without the consideration of the cou-
pling energy term contributions are observed for propagating modes along the non-
centrosymmetric inner material direction. We assess the effect of coupling energy
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over a wide range of propagating directions, deriving useful overall conclusions on
its role in the wave propagation features of 3D architectured media.

Keywords Network materials · Homogenization · Wave propagation · Second
gradient · Coupling energy · Dispersive behavior · Surface effects

19.1 Introduction

It is well-established that unusual and novel properties of nanomaterials emerge
from their surface/interfacial properties. One well-known consequence of surface
properties is the emerging size effect, that is the dependence of the effective mechan-
ical properties on the size of the considered specimen, see, for example [1–5]. The
presence of a coating in these surface metamaterials dramatically changes the sur-
face physical properties of the material and in turn all the material properties. Let
us briefly discuss the mathematical models and methods used in surface-related
mechanics. The analysis of surface phenomena traces back to the pioneer works of
Laplace [6, 7], Young [8] and Poisson [9] who introduced surface tension for flu-
ids and formulated the corresponding boundary-value problems. Gibbs generalized
later on the notion of surface tension in the case of solids [10]. For the recent state
of the art in the theory of capillarity one can refer to [11, 12]. A model of surface
elasticity for elastic solids undergoing large deformations was proposed by Gurtin
and Murdoch [13, 14]; relying on the physical point of view of a nonlinear solid
with an elastic membrane attached on its surface. The stress resultant tensor within
the membrane receives the interpretation of surface stresses in the context of the
Gurtin–Murdoch model. The Gurtin–Murdoch model found many applications in
micro—and nanomechanics, and it predicts the size effects observed for nanosized
materials [15], so in situations where the effective material properties deviate from
the ones of the bulk corresponding materials. This model was generalized in [16, 17]
to account for the bending stiffness of the thin filmor coating attached onto the surface
of the bulk material. The different models developed in the literature that incorporate
surface effects involve enhanced constitutive equations including a description of
the surface behavior, whereby the introduced surface stress tensor depends on the
surface strain measure. More general surface models beyond the Gurtin-Murdoch
model have been developed in the literature [18–26], like for instance the model of
a Cosserat surface for material interfaces [27]. These extended models include addi-
tional material parameters that should be determined, and that do influence the actual
properties of materials [28–34]. The presence of surface stresses leads especially to
the stiffening of the material in the context of the linear theory of elasticity [35–41].

The main objective of this contribution is to analyze the wave propagation fea-
tures in small scales (essentially the nanometric level) network materials for which
surface effects are of importance. The effective anisotropic material properties of
nanostructured network materials at the mesoscale of an effective continuum con-
sidering surface/interface properties have been described in the framework of strain
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gradient effective continua. The asymptotic homogenization of periodic network
materials modeled as beam networks leads to Cauchy and second gradient effective
continua, enhanced by the consideration of surface effects. Based on the elaboration
of small dimensionless parameters of geometrical or mechanical nature reflecting
the different length scales, different homogenized models have been constructed, the
relative importance of surface effects being ruled by the scaling relations between the
introduced small parameters. The surface effects are incorporated into the homoge-
nized strain gradient moduli. It has been evidenced that surface effects may become
dominant for specific choices of the scaling laws of the introduced small parameters.

The outline of this contribution is as follows: In Sect. 19.2, we provide a clari-
fication of the models developed in this work and we describe the homogenization
process leading to the identification of the effective second order continuum for 2D
viscoelastic structures accounting for surface effects and nodal rotations, based on
a complete Euler-Bernoulli scheme [42]. The homogenized viscoelastic behavior of
repetitive planar lattices consisting of viscoelastic Kelvin–Voigt type beams is also
investigated. The effective constitutive laws are next introduced into the dynamical
planar equilibrium equations (Sect. 19.3). 2D example illustrating the proposed vis-
coelastic second order homogenization scheme is presented in Sect. 19.3, and the
dispersion relations and damping ratio evolutions versus the wave number are eval-
uated. Finally, we conclude in Sect. 19.4 by a summary of the main developments
and perspectives for future developments.

19.2 Second Order Discrete Homogenization
for Viscoelastic Network Materials

In order to determine the first and second order effective moduli of two-dimensional
viscoelastic network materials accounting for surface effects and rotations at the
lattices nodes, a discrete homogenization model is developed in the sequel for non-
centrosymmetric structures. A dedicated code has been constructed in symbolic
Maple software. The method enables to treat any repetitive lattice with an arbi-
trary architecture, relying on an input file describing the geometrical and mechanical
properties of the beam lattice.

The discrete homogenization method requires the development of all geometri-
cal variables (length, thickness, width) and kinematic variables (displacements) as
Taylor series expansions versus a small parameter ε, defined as the ratio of unit
cell size to a macroscopic length characteristic of the entire lattice. These expan-
sions are thereafter inserted into the equilibrium equation of forces and moments,
expressed in weak form. After resolution of the unknown displacements in the local-
ization problemposed over the identified reference unit cell, the stress and hyperstress
tensors are constructed versus their conjugated kinematic variables, respectively the



338 Y. Rahali et al.

deformation and gradient of deformation tensors, thereby defining the homogenized
constitutive law; this allows identifying the first and second order effective moduli
for the equivalent continuum related to.

The different steps of the discrete homogenization method leading to the expres-
sion of the Cauchy stress and hyperstress tensors of the second gradient effective
continuum are summarized in algorithmic format in the sequel (we refer the reader
to [43, 44] for more details):

Regarding notations, vectors and second order tensors are denoted using boldface
symbols.

(1) For each beam b, write the expressions of the normal N and transverse T forces
and moments M exerted on the beam extremities, including an elastic and a
viscous part, summarized in the next Eqs. (19.1)–(19.6)

N εb
E = k̃bl

(
eb .

(
Dε

E − Dε
O

)) + μe Ãε
b

lεb

(
eb .

(
Ḋ

ε

E − Ḋ
ε

O

))
(19.1)

N εb
O = −N εb

E (19.2)

T εb
E = k̃bf

(
eb⊥ .

(
Dε

E − Dε
O

) − lεb
2

(
φε
E + φε

O

))

+ 12μe Ĩ εb

(
lεb
)3

(
eb⊥ .

(
Ḋ

ε

E − Ḋ
ε

O

) − lεb
2

(
φ̇ε
E + φ̇ε

O

))
(19.3)

T εb
O = −T εb

E (19.4)

Mεb
O e3 =

⎛

⎜
⎜⎜
⎝

k̃ f lεb
6

(
lεb
(
2φε

O + φε
E

) − 3 . eb⊥ .
(
Dε

E − Dε
O

))

+2μe Ĩ εb

(
lεb
)2

(
lεb
(
2φ̇ε

O + φ̇ε
E

) − 3 . eb⊥ .
(
Ḋ

ε

E − Ḋ
ε

O

))

⎞

⎟
⎟⎟
⎠

. e3 (19.5)

Mεb
E e3 =

⎛

⎜⎜⎜
⎝

k̃ f lεb
6

(
lεb
(
φε
O + 2φε

E

) + 3 . eb⊥ .
(
Dε

O − Dε
E

))

+2μe Ĩ εb

(
lεb
)2

(
lεb
(
φ̇ε
O + 2φ̇ε

E

) − 3 . eb⊥ .
(
Ḋ

ε

E − Ḋ
ε

O

))

⎞

⎟⎟⎟
⎠
e3 (19.6)

The subscripts O and E refer to the origin and extremity nodes of the beam.
D, Ḋ, φε and φ̇ε are the displacement, the displacement velocity vectors, the nodal
microrotation and the rotation velocity, respectively,μe the extensional viscosity and
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I εb, lεb are respectively the quadratic moment and the length of the considered beam,
eb the unit director along each beam and eb⊥ the normal unit vector. The index b
refers to the beam.

φε receives the following asymptotic expansion:

φε
O = φO

0

φε
E = φE

0 + ε

(
∂φE

0

∂λi
δib

)

with φO
0 = φE

0 = φ0 = ∂Do(λ
ε)

∂λi
eb⊥, the last relation linking the microrotation to the

displacement gradient in the context of Bernoulli kinematics.
We consider a square section with area Ã = t , assuming a unit beam thickness.

The tensile and flexural rigidities of the beam are expressed as (see [45]).

k̃bl = ẼB Ãεb

lεb
; k̃bf = 12ẼB Ĩ εb

(
lεb
)3 (19.7)

The tensile modulus of the base material EB is enhanced by surface effects
according to the relation (Eremeyev and Altenbach, 2015):

ẼB = EB

(
1 + ls

t

)
= EB

(
1 + ls

lb

lb
t

)
= EB

(
1 + εα

η

)
(19.8)

εα = ls
lb
with ls = 2Es

E the ratio of (twice) the surface modulus of the coating to
the bulk modulus of the beam material, called the characteristic length parameter in
[46].

We consider that the slenderness ratio of the beam, parameter η = t
lb , is finite.

(2) Write the asymptotic expansion of geometrical and kinematic variables of each
beam, in curvilinear coordinates denoted λ in the sequel:

– The beam length and width respectively lεb = εlb, tεb = εtb,
– The relative nodal displacement and velocity (see [42–44]).

(
Dε

O − Dε
E

) = ε

(
DE

1 − DO
1 + Liδib

∂Do(λ
ε)

∂λi

)

+ ε2
(
DE

2 − DO
2 + Liδib

∂DE
1 (λε)

∂λi
+ L2

i δ
2
ib

2

∂2Do(λ
ε)

∂λ2
i

)
(19.9)

(
Ḋ

ε

E − Ḋ
ε

O

) = ε

(
Ḋ

E
1 − Ḋ

O
1 + Liδib

∂ Ḋo(λ
ε)

∂λi

)

+ ε2

(

Ḋ
E
2 − Ḋ

O
2 + Liδib

∂ Ḋ
E
1 (λε)

∂λi
+ L2

i δ
2
ib

2

∂2 Ḋo(λ
ε)

∂λ2
i

)

(19.10)
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with δi the shift factor (equal to ±1) for nodes belonging to a neighboring cell, and
nil for nodes located inside the considered cell. The index i ∈ {1, 2} indicating the
considered axis e1 or e2.

(3) Passage of curvilinear to Cartesian coordinates (see [43]).
(4) Writing the equilibrium of forces and moments in virtual power form

∑

vi∈Z2

∑

b∈BR

(
T bV̇ + NbU̇

) = 0 (19.11)

∑

vi∈Z2

∑

b∈BR

(
Mb

O .wb
O + Mb

E .wb
E + lb

2

(
eb ∧ Fb

E

)
.wb

C − lb

2

(
eb ∧ Fb

O

)
.wb

C

)
= 0

(19.12)

BR refer to the set of beams within the reference unit cell, w the virtual rotation
velocity and Fb = Nbeb + T beb⊥ the force exerted on the beam b.

(5) Write the virtual power of internal forces over an elementary cell (on the
boundary nodes, since the contribution of the internal nodes mutually cancel)

Pe =
∑

b

(
TE

(
V̇E − V̇O

) + NE
(
U̇E − U̇O

))
(19.13)

with V̇i and U̇i therein the two components of the virtual velocity field.

(6) Development of the expressions of the relative longitudinal and transverse veloc-
ities

(
V̇E − V̇O

)
and

(
U̇E − U̇O

)
using a Taylor series expansion (see Eq. (53)

in [43]).
(7) Write the continuous formulation of the virtual power by passing to the limit in

(19.13). One can find after development

lim
ε→0

P = lim
ε→0

ε2
∑

c∈Z
Pe

=
∫

	

Pedλ =
∫

	

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

1

g

∑

b

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

((
T 1
E Li δib

∂ V̇o(λε)
∂λi

)
+

(
N 1
E Li δib

∂U̇o(λ
ε)

∂λi

))

+ε

⎛

⎜
⎜
⎝

(
T 1
E

L2
i δ

2
ib

2
∂2 V̇o(λε)

∂λ2i

)
+

(
T 2
E Li δib

∂ V̇o(λε)
∂λi

)

+
(
N 1
E

L2
i δ

2
ib

2
∂2U̇o(λ

ε)

∂λ2i

)
+

(
N 2
E Li δib

∂U̇o(λ
ε)

∂λi

)

⎞

⎟
⎟
⎠

+ε2
((

T 2
E

L2
i δ

2
ib

2
∂2 V̇o(λε)

∂λ2i

)
+

(
N 2
E

L2
i δ

2
ib

2
∂2U̇o(λ

ε)

∂λ2i

))

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

dV

(19.14)

with NE = (
εN 1

E + ε2N 2
E

)
, TE = (

εT 1
E + ε2T 2

E

)
and g is the Jacobean of the trans-

formation from Cartesian to curvilinear coordinates. Parameter δi is the shift factor
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equal to ±1 for nodes belonging to a neighboring cell, and nil for nodes located
inside the considered cell and Li the periodic length, the index i ∈ {1, 2} indicating
the considered axis, e1 or e2.

Previous expression involves three integrals of increasing powers with respect to
the scale parameter ε, namely the zero order term lead to the Cauchy stress, the first
order representing coupling terms and the second order associated to the hyperstress
tensor contribution. Previous expression is next written in Cartesian coordinates (see
the Appendix).

(8) Equivalence with a second order grade continuum [43, 47] in order to express
the stress and hyperstress tensors

Pi =
∫

	

((σ − S · ∇) · ∇) · ḊdV =
∫

	

(
Fq ·

(
∂ Ḋ

∂xq

)
− H pq ·

(
∂2 Ḋ

∂xp∂xq

))
dV (19.15)

with Ḋ therein the virtual rate of deformation, σ Cauchy stress and S the third order
hyperstress tensor with index symmetry Si jk = Sik j .

(9) Calculation of the stress and hyperstress tensors

σ = (
σiqei

) ⊗ eq = Fq ⊗ eq (19.16)

S = (
Skqpek

) ⊗ eq ⊗ ep = H pq ⊗ eq ⊗ ep (19.17)

The force vectors in (19.16) and (19.17) write for q ∈ {1, 2},

F1 =
[(

T 1
E + N1

E

g

)
+ ε

(
T 2

E + N2
E

g

)]
(L1δ1b cos θ1 + L2δ2b cos θ2) (19.18)

F2 =
[(

T 1
E + N1

E

g

)
+ ε

(
T 2

E + N2
E

g

)]
(L1δ1b sin θ1 + L2δ2b sin θ2) (19.19)

with the pair of indices (p, q) ∈ {(1, 1), (2, 2), (1, 2)},

H11 =
[
ε

(
T 1

E + N1
E

g

)
+ ε2

(
T 2

E + N2
E

g

)](
L2
1δ

2
1b cos

2 θ1

2
+ L2

2δ
2
2b cos

2 θ2

2

)

(19.20)

H22 =
[
ε

(
T 1

E + N1
E

g

)
+ ε2

(
T 2

E + N2
E

g

)](
L2
1δ

2
1b sin

2 θ1

2
+ L2

2δ
2
2b sin

2 θ2

2

)

(19.21)
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H12 =
[

ε

(
T1

E + N1
E

g

)

+ ε2

(
T2

E + N2
E

g

)]
(
L2
1δ

2
1b cos θ1 sin θ1 + L2

2δ
2
2b sin θ2 cos θ2

)

(19.22)

with g = L1L2(cos θ1 sin θ2 − sin θ1 cos θ2) there above the determinant of the
Jacobian matrix and T1

E = T 1
Ee

b⊥, T 2
E = T 2

E e
b⊥, N1

E = N 1
E e

b; N2
E = N 2

E e
b.

(10) Calculation of the stress and hyperstress tensors

σ = (
σiqei

) ⊗ eq = Fq ⊗ eq (19.23)

S = (
Skqpek

) ⊗ eq ⊗ ep = H pq ⊗ eq ⊗ ep (19.24)

The constitutive law for a homogeneous anisotropic viscoelastic second order
grade continuum writtes in index format as:

{σ } = [
Ae

]{ε} + [
Be

]{κ}
︸ ︷︷ ︸

elastic part

+ [
Av

]{ε̇} + [
Bv

]{κ̇}
︸ ︷︷ ︸

viscous part

{S} = [
Be

]{ε} + [
De

]{κ}
︸ ︷︷ ︸

elastic part

+ [
Bv

]{ε̇} + [
Dv

]{κ̇}
︸ ︷︷ ︸

viscous part

(19.25)

with σi j , Si jk, εpq , κpqr , ε̇pq , κ̇pqr successively the stress and hyperstress tensors,
and their conjugated kinematic quantities, namely (in component form) the first
and second deformation gradients and their time derivatives, the first and second
deformation velocity gradients.

The constitutive tensors Ae
i jpq , D

e
i jkpqr , B

e
pqri j , A

v
i jpq , D

v
i jkpqr , B

v
pqri j therein are

respectively the first and second order elasticity and viscosity coefficients, the
coupling moduli, which all depending on the specific considered lattices.

Note that the methodology presented in the current section is general, provided a
repetitive unit cell of the repetitive network has been identified.

19.3 Wave Propagation Analysis in Non-centrosymmetric
Architectures

The computation of the effective constitutive tensors form the basis for the subsequent
dynamical analysis of network materials with surface effects. More precisely, the
starting point is the writing of the equations of motion for a second gradient medium
along both in-plane directions
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(
∂σ11

∂x1
+ ∂σ12

∂x2

)
− ∂2S111

∂x1∂x1
− ∂2S112

∂x1∂x2
− ∂2S121

∂x2∂x1
− ∂2S122

∂x2∂x2
= ρ∗ü

(
∂σ21

∂x1
+ ∂σ22

∂x2

)
− ∂2S211

∂x1∂x1
− ∂2S212

∂x1∂x2
− ∂2S221

∂x2∂x1
− ∂2S222

∂x2∂x2
= ρ∗v̈ (19.26)

Parameter ρ∗ = M1
Acell

in Eq. (19.26) is the effective density, with M1 the mass of
the set of lattice beams and Acell the area of the periodic cell.

FromEq. (19.26),weobtain two roots that describe the propagation of longitudinal
waves polarized in the direction of incident wave, and of shear waves polarized in a
direction perpendicular to the direction of the incident wave.

We write the generalized displacement field for a harmonic wave propagating, at
a point r as

U = U
∧

e(λt−ik.r), V = V
∧

e(λt−ik.r) (19.27)

In (19.27),U
∧

, V
∧

are the wave amplitudes, k = (k1, k2) is the wave vector and λ is
a complex frequency function. Substitution of Eq. (19.27) in the equation of motion
(19.26) delivers the system of equations

[D(k1, k2, λ)]

{
U
∧

V
∧

}

= 0 (19.28)

with k the wave vector, chosen as a complex number. Any triad k1, k2, λ obtained
by solving the eigenvalues problem in (19.28) represents plane waves propagating
at the frequency λ. The characteristic equation of previous system is written as

λ4 + aλ3 + bλ2 + cλ + d = 0 (19.29)

The complex roots of Eq. (19.29) are

λs(k) = −ζs(k).ωns(k) ± i.ωns(k)
√
1 − ζ 2

s (19.30)

Parameter s therein represents the branch type, ωns(k) is the natural frequency,
ωds(k) the damped frequency and ζs is the damping factor. Relying on these expres-
sions traducing the dispersion relation of the effective second gradient viscoelastic
continuum, we shall plot the dissipated frequency and the damping ratio versus the
wave vector k.

In the current section, we apply the previously elaborated methodology to the
2D square-shaped unit-cell structure with two internal beams that do not intersect in
their center, so that this unit cell is not centrosymmetric and coupling effects between
first and second gradient contributions occur. The unit cell includes a total of 8 beam
elements, as pictured on Fig. 19.1.
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Fig. 19.1 Unit cell of the square structure with internal crossed beams

The vector including all beam lengths is elaborated as

Lb =
[
L
2 , L

2 , L
2 , L

2 , L
2
√
2
, 3

√
2L
4 , L

2
√
2
, L
2
√
2

]
, and the periodicity vectors are Y1 =

[
1
0

]
, Y2 =

[
0
1

]
with respective lengths L1 = L2 = L . We adopt the angular value

θ = 45°. The connectivity table of this lattice is provided in Table 19.1. All beams
have the same mechanical properties.

The mechanical parameters selected in this example originate from experimental
data for tensile tests of single crystal ZnOnanowires having a [0001] orientedwurtzite
structure; the geometrical and mechanical parameters of the unit-cell structure are
summarized in Table 19.2.

The constitutive law for an anisotropic second gradient viscoelastic continuum
writes as follows:

{σ } = [
Ae

]{ε} + [
Be

]{κ}
︸ ︷︷ ︸

elastic part

+ [
Av

]{ε̇} + [
Bv

]{κ̇}
︸ ︷︷ ︸

viscous part

Table 19.1 Connectivity table of the square lattice

Beam 1 2 3 4 5 6 7 8

O(b) 1 2 1 4 1 3 4 3

E(b) 2 1 4 1 3 1 3 2

δ1 0 0 0 1 0 1 0 0

δ2 0 1 0 0 0 1 0 0

Table 19.2 Geometrical and
mechanical parameters of the
square lattice

Type Geometric parameters of
the beam

Mechanical properties

Square L = 10mm, β =
45◦, t = 1mm(width)

EB = 56.2GPa, ν = 0.3
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{S} = [
Be

]{ε} + [
De

]{κ}
︸ ︷︷ ︸

elastic part

+ [
Bv

]{ε̇} + [
Dv

]{κ̇}
︸ ︷︷ ︸

viscous part

(19.31)

We have introduced therein σi j , Si jk, εpq and Kpqr the stress, hyperstress, defor-
mation and gradient of deformation tensors respectively, which write in component
form

ε =
[

∂U
∂x

∂V
∂y

∂U
∂y

∂V
∂x

]T
and κ =

[
∂2U
∂x2

∂2V
∂y2

∂2V
∂x2

∂2U
∂y2

∂2V
∂x∂y

∂2U
∂y∂x

]T
.

The elastic constitutive tensors Ai jpq , Di jkpqr , Bpqri j in the previous (elastic)
homogenized constitutive law (19.31) are the first and second order elasticity tensors
and the coupling tensor respectively.

One obtains for this example exhibiting a non-centrosymmetric microstructure
the following homogenized tensors:

For the elastic part:

[Ae] =

⎡

⎢⎢
⎣

7872 2176 1848 2019
2002 7698 1844 1674
1510 1844 2096 2045
1958 1623 2158 2209

⎤

⎥⎥
⎦; [Be] =

⎡

⎢⎢
⎣

39350 10880 9243 10090 0 0
10010 38480 9224 8375 0 0
9790 8119 10800 11040 0 0
7553 9224 10480 10230 0 0

⎤

⎥⎥
⎦

[De] =

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

2.44105 94580 98570 1.05105 0 0
94580 2.44105 1.05105 94580 0 0
98570 1.05105 1.05105 2.44105 0 0
1.05105 94580 2.44105 1.05105 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

If we compare these results with those of the case without surface effects, one
notes that the tensors A and B do not change while the components of the matrix D
decreases by about 17%.

For the viscous part: two different values of the viscosity coefficient expressed
versus the tensile modulus of the base material (of each beam) are considered in
order to analyze its influence on the homogenized tensors.

• μe = 10
100 EB : this results in the effective viscous like constitutive tensor

numerically given by
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[Av] =

⎡

⎢⎢
⎣

787.2 217.6 184.8 201.9
200.2 769.8 184.4 167.4
151 184.4 209.6 204.5
195.8 162.3 215.8 220.9

⎤

⎥⎥
⎦; [Bv] =

⎡

⎢⎢
⎣

3935 1088 924.3 1009 0 0
1001 3848 922.4 837.5 0 0
979 811.9 1080 1104 0 0
755.3 922.4 1048 1023 0 0

⎤

⎥⎥
⎦

[Dv] =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

24450 9458 9857 10570 0 0
9458 24450 10570 9458 0 0
9857 10570 10570 24450 0 0
10570 9458 24450 10570 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

• μe = 30
100 EB : the effective viscous constitutive tensors are given by

[Av] =

⎡

⎢⎢
⎣

2361 652.8 554.5 605.6
600.7 2309 553.5 502.4
453.2 553.5 628.8 613.5
587.2 487.1 647.2 662.8

⎤

⎥⎥
⎦; [Bv] =

⎡

⎢⎢
⎣

11810 3264 2772 3027 0 0
3013 11550 2767 2512 0 0
2937 2435 3238 3312 0 0
2266 2767 3144 3068 0 0

⎤

⎥⎥
⎦

[Dv] =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

73200 28200 29500 31700 0 0
28200 73200 31700 9460.3 0 0
29500 31700 31700 73200 0 0
31700 9460.3 73200 31700 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

Throughout this work, one considers the material behavior at low frequencies (in
the quasi-static regime), a frequency domain inwhich it makes sense to have recourse
to the homogenized effective medium, since the wavelength is greater than the unit
cell size. In Fig. 19.2, we represent the natural frequency band diagram versus the
direction of propagation in the presence or absence of surface tension effects.

Figure 19.1 shows that the surface tension has an important role on the mode
of propagation for both longitudinal and shear modes. An increase of the modes
occurs due to surface tension caused by the increased rigidity of the material. We can
note here that in presence of the second gradient terms, the influence of the surface
gradient on wave propagation vanishes.

In Fig. 19.3 we represent the damped frequency band diagram and the damping
ratio versus the dimensionless wave number kL and for two different directions of
propagation.

The influence of the direction of propagation on both frequency and damping ratio
is clearly observed in Fig. 19.3c, d for the shear mode. For the longitudinal mode,
no influence of the direction of propagation on either frequency or damping ratio
is observed. The cut-off mode is observed for the longitudinal mode beyond kL =
1.2 which means that waves are fully attenuated. The cut-off mode is observed for a
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Fig. 19.2 Effect of surface tension on longitudinal and shear modes (frequency) in Cauchy
medium (without the second gradient tensors). Red line: longitudinal mode—Blue line: shear mode.
Continuous line: without surface tension surface—Dotted line: with the effect of surface tension

Fig. 19.3 frequency band structure versus dimensionless wave number kL. Red points: direction
of propagation β = π

3 ; Green points: direction of propagation β = π
4 . a Longitudinal damping

frequency, b Longitudinal damping ratio, c Shear damping frequency, d Shear damping ratio
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Fig. 19.4 Shear frequency band structure in function of the dimensionless wave number kL. Red
points corresponding to μe = 0.1EB and the green one corresponding to the higher damping
coefficient μe = 0.3EB

damping ratio unity (Fig. 19.2b). For the shear mode, in the direction of propagation
β = π

4 , the frequency decreases beyond kL = 2.1 and vanishes when increasing the
wave number.

In Fig. 19.4 we represent the damped frequency band diagram and the damping
ratio versus the dimensionless wave number kL and for two different values of the
viscosity.

The results in Fig. 19.4 evidence shifts in the frequency band diagrams due to the
presence of damping, these shift being more pronounced as the viscosity coefficient
increases. We also observe that the damping ratio values increase with the viscosity
coefficient. The cut-off appears in the shear mode when increasing the viscosity
beyond kL = 1.5, corresponding to a damping ratio unity.

19.4 Conclusion

Surface effects of repetitive network materials caused by a thin coating of the struc-
tural beam elements of the repetitive unit cell of the network have been accounted for
by an effective strain gradient continuum, computed thanks to the discrete homoge-
nization method. The proposed model of surface effects in network materials shall
prove useful to predict the importance of surface contributions of network mate-
rials and architectured media, especially at nanometers scales. Surface effects are
accounted for by the ratio of the surface modulus of the coating to the bulk modulus
of the beammaterial, and the ratio of the thickness coating to the beam length. These
two parameters are related to the scaling parameter (ratio of the representative unit
cell size to a macroscopic characteristic length) according to two different scaling
laws, thereby introducing two scaling exponents. Thereby, surface effects appear in
the second gradient contribution to the constitutive law (in the hyperstress tensor)
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for non-negative values of the scaling exponents; this corresponds to the typical sit-
uation, described in the pioneering work of Mindlin [48] wherein the strain gradient
continuum is motivated by its ability to incorporate surface effects.

Wave propagation in network materials with surface effects has next been ana-
lyzed on the basis of the computed homogenized properties and consideration of an
effective first and second gradient viscous behavior. A significant surface effect on
the frequency plot of both longitudinal and shear modes has been obtained. There-
fore, one has to take surface effects into account when designing nanometric size
components for acoustic applications.

Appendix: Transition from Curvilinear to Cartesian
Coordinates

After development of Eq. (19.14) in Cartesian coordinates, one obtains
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ε→0
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cθ , sθ , c2θ and s2θ stand for cosθ, sinθ, cos2θ and sin2θ , they are the components of
the periodicity vectors [43].
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Chapter 20
A Short Review of Rotations in Rigid
Body Mechanics

Wilhelm Rickert, Sebastian Glane and Wolfgang H. Müller

Abstract The representation of rotations and of the corresponding angular velocity
commonly used in rigid body dynamics are revisited using an abstract tensorial
approach. In order to do so, Rodrigues’ formula is recalled and the related angular
velocity vector is derived. This paper focuses on the analysis of successive rotations
and especially a proof of the addition theorem for the angular velocity of successive
rotations is presented in a rational manner. Following the discussion of successive
rotations and the proof of the addition theorem, the treatment of successive rotation
in the current literature on rigid body mechanics is discussed in a review.

Keywords Rigid rotations · Euler angles · Rodrigues formula

20.1 Introduction

The field of rigid body dynamics was initiated and established by Euler in the
eighteenth century. Nowadays rigid body dynamics is an integral part of the design
process in engineering. This field is covered in every course on engineering mechan-
ics. However, the theoretical aspects are often not discussed in detail. In particular,
this applies to the analysis of rotations. A possible reason for this is given in the
textbook of Taylor [14, p. 336]: “A detailed study of rotations is actually surprisingly
complicated. Fortunately, we do not need many of the details, and some of the prop-
erties that are quite hard to prove are reasonably plausible and can be stated without
proof.”
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Rotations are present in many dynamical systems, e.g., classical problems such as
the pendulum or advanced applications ranging from aircraft dynamics [8], tomotion
capturing techniques [12]. In order to characterize the rotational movement of a rigid
body, three degrees of freedom are introduced. Commonly used concepts are Euler
angles,Tait–Bryant angles,Euler parameters and quaternions. The first two angle
approaches divide the rotation of the body into three successive rotations around
specified axes and hence introduce three corresponding axes. The Euler parameters
and quaternions, however, describe a rotation with one axis and a rotation angle, see
[15].

In the following representations of rotations in terms of three successive rotations
with specified axes and its consequences regarding the kinematics are discussed.
While the presentation and discussion of these rotations is rather uniform in the
literature, difference arise when the angular velocities are introduced. These differ-
ences are due to inaccuracies related to the term angular velocity. Often this term
is confused with rotational velocities. However, as will be shown in Sect. 20.4, the
angular velocity and the rotational velocity are not the same in general. Moreover,
additional confusion arises, because the angular velocity due to multiple successive
rotation is (surprisingly) given by the sum of the corresponding elementary rotational
velocities. Sometimes this result is referred to as the “addition theorem of angular
velocities.” The validity of this theorem makes it hard to distinguish the concept of
the angular velocity from the rotational velocity. Furthermore, this fact renders the
distinction of these concepts obsolete if only the final result is considered. In order to
clarify the relations, this paper reconsiders the successive rotations and their angular
velocities in a rational manner.

This paper starts with a brief introduction to the representations of rotations using
an abstract tensor notation. Then, the angular velocity is introduced based on a tensor-
based approach as in [3, 17]. Subsequently, successive rotations are investigated
and relations for the corresponding angular velocities are derived and the addition
theorem is proved. Furthermore, the terms rotational velocity, elementary angular
velocity and angular velocity are precisely defined and explained. Based on this
framework, a literature review is given on rotations in rigid body dynamics.

20.2 Rotation and Change of Base

In the following, the concept of tensor rotations is introduced by using orthogonal
transformations. Let Q be a proper orthogonal tensor such that

Q · QT = QT · Q = 1 , det(Q) = 1 , (20.1)

where QT denotes the transpose of Q. Consider two orthonormal bases with proper
orientation {e′

i} and {e0i }. They are connected by the following transformation

e′
i = Q · e0i , (20.2)
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which is the rotation of e0i onto e′
i. Therefore, the tensor Q is also referred to as

rotation tensor. Based on the identity tensor, 1 = e′
i ⊗ e′

i = e0i ⊗ e0i , one can derive
a mixed representation of the rotation tensor

Q = e′
i ⊗ e0i , (20.3)

where the Einstein summation convention is applied. The component matrices Q′
and Q0 corresponding to the non-mixed base representations,

Q = Q′
ije

′
i ⊗ e′

j = Q0
ije

0
i ⊗ e0j , (20.4)

can be found via the projections:

Q′
ij = e′

i · Q · e′
j = e0i · e′

j , Q0
ij = e0i · Q · e0j = e0i · e′

j . (20.5)

Note that the result Q = Q′ = Q0 is remarkable and inherent to the rotation tensor.

20.2.1 Rotations of Tensors

After agreeing on the rotation of base vectors, the rotation of a vector a is given by

b = Q · a . (20.6)

In order to emphasize that b is a new vector, we refrain from using a′ and instead
introduce b as the result. Both vectors can be represented in both bases {e0i } and {e′

i},
respectively:

a = a0i e
0
i = a′

ie
′
i , b = b0i e

0
i = b′

ie
′
i , (20.7)

and the following transformation rules for the components arise

a0i = Qija
′
j , b0i = Qijb

′
j . (20.8)

It is essential to note that the transformations in Eq. (20.8) do not correspond to real
tensor rotations as introduced in Eq. (20.6). The components a0i and a′

i are nothing
but different representations of the same object, a. Bearing in mind the nomenclature
of Eq. (20.7), the rotation in Eq. (20.6) may be represented in various forms:

b0i = Qija
0
j = QikQkja

′
j , b′

i = a0i = Qija
′
j . (20.9)

Note that the difference between a tensor rotation as in Eq. (20.6) cannot be dis-
tinguished from a change of base as in Eq. (20.7) if only the component equations
are considered, cf., Eqs. (20.8) and (20.9). For example, the transformation of the
components for the rotation b = Q · a looks exactly the same as the component equa-
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tion for the change of base of a, i.e., Eq. (20.8)1 is equal to Eq. (20.9)2. However, the
underlying interpretation is rather different.

Furthermore note that, from a mathematical point of view, one could conclude
that it does not matter whether a change of the base or a vector rotation is considered.
However, from a physical point of view the difference could be significant, e.g., if a
change of observer is considered. Note that this is not considered in this article. The
interested reader is referred to [7].

If rotations of higher order tensors are considered, the Rayleigh product “∗” is
used conveniently. It is a non-commutative product between a tensor of second rank
and a tensor of rank n, see [3],

Q ∗ 〈n〉
C = Q ∗ (Ci1...inei1 ⊗ · · · ⊗ ein) := Ci1...inQ · ei1 ⊗ · · · ⊗ Q · ein . (20.10)

Hence, the tensor of second rank is applied to every base vector of the second tensor.
If Q is a proper orthogonal tensor, its application with the Rayleigh product rotates
any tensor. In particular, one has

Q ∗ a = Q · a , Q ∗ A = Q · A · QT . (20.11)

20.2.2 Representation of the Rotation Tensor

In order to construct the rotation tensor in terms of orientation parameters, the Ro-
drigues formula is used,

Q = Q̂(ψ, q) = 1 + sin(ψ)D + (
1 − cos(ψ)

)
D2 , (20.12)

where
D = q × 1 = −q · 〈3〉

ε , ||q|| = 1 . (20.13)

Therein, the vector q is parallel to the axis of rotation, ψ is the angle of rotation and
〈3〉
ε is the Levi-Civita tensor, see Appendix20.7. The simple contraction of the tensor
D with a vector, x, yields

D · x = q × x ⇒ D2 · x = D · (q × x) = q × (q × x) . (20.14)

Hence, the action of a rotation tensor in the form (20.12) on a vector, x, reads

Q · x = x + sin(ψ)q × x + (
1 − cos(ψ)

)
q × (q × x) . (20.15)

Another useful representation is given by

Q = cos(ψ)1 + (
1 − cos(ψ)

)
q ⊗ q − sin(ψ)q · 〈3〉

ε . (20.16)
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20.3 Time Derivatives in Rotating Systems

In the preceding sections, tensors were treated as invariant regarding their represen-
tation. However, if time derivatives are concerned one has to clarify in which system
the temporal change is measured. In the following, the notation ȧ denotes the time
derivative in an inertial system. Consider a body-fixed system B = {bi} that differs
from an intertial system I = {e0i } by a rotation

bi(t) = Q · e0i , (20.17)

where Q = Q̂(t) is a proper orthogonal tensor. Then, if a vector a is represented in
the B-base, one finds from the product rule:

ȧ := dIa
dt

= dBa
dt

+ ai
dIbi
dt

,
dBa
dt

:= dIai
dt

bi . (20.18)

Therein, the time derivative with respect to B, dB/dt, can be interpreted as the mea-
surement of the temporal change in the body-fixed system.

In order to further analyze ḃi, the temporal change of the rotation tensor Q̇ is
investigated and the angular velocity tensor is introduced as

Ω := Q̇ · QT with Ω = −ΩT . (20.19)

Therefore, the time derivative of bi can be written as

dIbi
dt

= Q̇ · e0i = Ω · Q · e0i = Ω · bi . (20.20)

Since the angular velocity tensor is skew-symmetric, a corresponding axial vector,
the angular velocity ω, is the solution of the axial equation for all x �= 0:

Ω · x = ω × x ⇒ Ω = −ω · 〈3〉
ε ⇒ ω = − 1

2Ω ·· 〈3〉
ε , (20.21)

where the double contraction is defined as A ··B = AijBij. Note that sometimes the
so-called Poisson relation is stated as follows

Q̇ = Ω · Q = ω × Q (20.22)

for the “left angular velocity” and one might introduce a “right angular velocity,”
which is shown in, e.g., [7, 17] but will not be used in the following. Note that in this
paper Ω is the angular velocity tensor and not the right angular velocity vector as
in [7]. Furthermore, note that the inverse problem of determining the rotation tensor
from a given angular velocity vector is also called Darboux problem.
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With the angular velocity ω, the time derivative in Eq. (20.18) can be simplified:

ȧ = dBa
dt

+ ω × a . (20.23)

Note that although only bold symbols are used this equation, it is system dependent
because a system-dependent time derivative is involved.

It is worthwhile mentioning that the angular velocity is not a velocity in the
usual sense, i.e., it is not a time derivative of some position or orientation. In order
to see this, the angular velocity is computed in terms of the rotation angle and
axis from Rodrigues’ formula. Since this computation is lengthy, it is detailed in
Appendix20.8. The angular velocity tensor as well as its axial vector are given by:

Ω = (
1 − cos(ψ)

)[
q̇ ⊗ q − q ⊗ q̇

] − (
ψ̇q + sin(ψ)q̇

) · 〈3〉
ε ,

ω = ψ̇q + sin(ψ)q̇ + (
1 − cos(ψ)

)
q × q̇ .

(20.24)

This result shows that the angular velocity is only coaxial to the current axis of
rotation, i.e., the vector q, if this axis is fixed in space, viz., q̇ = 0. This is for
example the case for two-dimensional settings in which the axis of rotation is always
perpendicular to the plane under consideration and thus constant.

Consider a body-fixed axis of rotation qwith constant components in theB system.
FromEq. (20.23), it follows that q̇ = ω × q. Bearing inmindEq. (20.15), the insertion
of this relation into Eq. (20.24)2 yields:

ω = ψ̇q + sin(ψ)ω × q + (
1 − cos(ψ)

)
q × (ω × q) ⇒ Q · ω = ψ̇q .

(20.25)
There is another representation of the angular velocity that arises fromEq. (20.21)3

if the representation from Eq. (20.3) is inserted:

ω = − 1
2

〈3〉
ε ·· (Q̇ · QT) = − 1

2 ḃi × bi = 1
2εijk(ḃj · bk)bi . (20.26)

However, since the baseB is orthonormal, the time derivative applied to the condition
bi · bj = δij reveals (no summation w.r.t. α)

ḃα · bα = 0 , ḃ1 · b2 = −b1 · ḃ2 , ḃ1 · b3 = −b1 · ḃ3 , ḃ2 · b3 = −b2 · ḃ3 .

(20.27)
Hence, the angular velocity can be written as

ω = (ḃ2 · b3)b1 + (ḃ3 · b1)b2 + (ḃ1 · b2)b3 . (20.28)
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20.4 Analysis of Sequential Rotations

Hitherto a single rotation was considered. However, for (say) the Euler angle ap-
proach the total rotation is composed of three successive rotations. These rotations
are referred to as elementary rotations Qα . Then, the total rotation tensor is given by

Q = Q3 · Q2 · Q1 , (20.29)

with the respective elementary rotation tensors and elementary angular velocity ten-
sors according to Eqs. (20.16) and (20.24)1:

Qα = cos(ψα)1 + (
1 − cos(ψα)

)
qα ⊗ qα − sin(ψα)qα · 〈3〉

ε ,

Ωα = (
1 − cos(ψα)

)[
q̇α ⊗ qα − qα ⊗ q̇α

] − (
ψ̇αqα + sin(ψα)q̇α

) · 〈3〉
ε ,

(20.30)

where the Einstein summation convection does not apply to Greek indices. Then,
the total angular velocity tensor follows as

Ω = Q̇ · QT

= Q̇3 · QT
3 + Q3 · Q̇2 · QT

2 · QT
3 + Q3 · Q2 · Q̇1 · QT

1 · QT
2 · QT

3

= Ω3 + Q3 ∗ Ω2 + (Q3 · Q2) ∗ Ω1 .

(20.31)

In the Appendix, it is shown that the Levi-Civita tensor is invariant under rotations,
i.e.,Q ∗ 〈3〉

ε = 〈3〉
ε for all proper orthogonal tensorsQ, seeEq. (20.51).Hence, the rotation

of Ω2 can be simplified:

Q3 ∗ Ω2 = −Q3 ∗ (ω2 · 〈3〉
ε) = −Q3 ∗ (ω2 · QT

3 · Q3 · 〈3〉
ε)

= −ω2 · QT
3 · (Q3 ∗ 〈3〉

ε) = −ω2 · QT
3 · 〈3〉

ε = −〈3〉
ε · Q3 · ω2 .

(20.32)

The term (Q3 · Q2) ∗ Ω1 in Eq. (20.31) is treated analogously such that

Ω = Ω3 − 〈3〉
ε · Q3 · ω2 − 〈3〉

ε · Q3 · Q2 · ω1 . (20.33)

Hence, the total angular velocity vector is then obtained via double contraction with
the Levi-Civita tensor

〈3〉
ε,

ω = ω3 + Q3 · ω2 + (Q3 · Q2) · ω1 , (20.34)

where the elementary angular velocities are given according to Eq. (20.24)2,

ωα = ψ̇αqα + sin(ψα)q̇α + (
1 − cos(ψα)

)
qα × q̇α . (20.35)

It is interesting to note that the total angular velocity is not given by the sum of the
elementary angular velocities.
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The formulas in Eqs. (20.24) and (20.34) are useful to solve the Darboux prob-
lem. Note that in some cases even closed-form analytical solutions can be derived.
Examples are presented, among others, in [1] and [16]. In literature, the concept of
a skew-symmetric spin tensor is commonly introduced, which corresponds to the
angular velocity tensorΩ in this paper. However, the angular velocity vector, instead
of the “spin tensor,” and representations as in Eq. (20.34) can be very useful not only
in rigid body mechanics but also in continuum mechanics. Indeed, some simple and
transparent relationships for different angular velocity vectors, e.g., vorticity vector,
rotation of principal directions of tensors and logarithmic strain can be derived, see
[10, Sect. 4.1.3].

20.4.1 Simplification for Attached Axes

Commonly used descriptions of rotations, e.g., by the Euler angles, are based on
fixed elementary axes of rotation, where the term “fixed” needs further explanation.
Since the rotation is divided into three successive rotations, two intermediate systems,
B1 andB2, are generated before the inertial system is transformed into the body-fixed
system:

I → B1 → B2 → B .

The first elementary axis of rotation is usually spatially fixed and the second and third
elementary axes are attached to the intermediate systems B1 and B2, respectively.
Hence, the time derivatives of these elementary axes are given by

q̇1 = 0 , q̇2 = ω1 × q2 , q̇3 = (ω2 + Q2 · ω1) × q3 . (20.36)

These axes are therefore called “attached” rather than fixed. If these results are
plugged into the angular velocities in Eq. (20.35), similar to the result in Eq. (20.25),
one obtains

ω1 = ψ̇1q1 , ω2 = ψ̇2q2 + [
1 − Q2

] · ω1 ,

ω3 = ψ̇3q3 + [
1 − Q3

] · (ω2 + Q2 · ω1) .
(20.37)

With these relations, the expression for the total angular velocity vector in Eq. (20.34)
can be simplified such that all rotation tensors Qα cancel:

ω = ψ̇1q1 + ψ̇2q2 + ψ̇3q3 . (20.38)

This final representation of the total angular velocity vector is much simpler than
the first one in Eq. (20.34), but it is only obtained if the elementary axes of rotation
are “attached” to the intermediate systems. Note that the products ψαqα are not
necessarily angular velocities in the sense of the definition introduced above. The
fact that for attached axes the simple addition rule holds was pointed out in [16]
without detailed proof.
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20.4.2 Summary for Sequential Rotations

The results of the foregoing analysis are summarized in the following. First the
universal results read:

For a rotation tensor Q expressed in terms of a rotation axis q and a rotation
angle ψ ,

Q = cos(ψ)1 + (
1 − cos(ψ)

)
q ⊗ q − sin(ψ)q · 〈3〉

ε , (20.39)

where ||q|| = 1, the angular velocity tensor and the corresponding angular ve-
locity vector are given by:

Ω = Q̇ · QT = (
1 − cos(ψ)

)[
q̇ ⊗ q − q ⊗ q̇

] − (
ψ̇q + sin(ψ)q̇

) · 〈3〉
ε ,

ω = − 1
2

〈3〉
ε ··Ω = ψ̇q + sin(ψ)q̇ + (

1 − cos(ψ)
)
q × q̇ .

(20.40)
If three successive rotations are considered, i.e.,Q = Q3 · Q2 · Q1, with their re-
spective elementary axes and angles of rotation, then the following composition
rule holds for the total angular velocity

ω = ω3 + Q3 · ω2 + Q3 · Q2 · ω1 . (20.41)

Therein, each elementary angular velocity ωα is constructed by the formulae
from Eq. (20.40)2.

For commonly used descriptions of sequential rotations, e.g., the Euler angles, the
following simplifications are possible:

If all axes are “attached,” i.e., have constant components in their intermediate
bases,

q3 = q3iQ2 · Q1 · e0i , q2 = q2i Q1 · e0i , q1 = q1i e
0
i , q̇α

i = 0 , (20.42)

for all α ∈ {1, 2, 3}, where {e0i } is an inertial base, then the total angular velocity
vector is given by

ω = ψ̇1q1 + ψ̇2q2 + ψ̇3q3 . (20.43)

Following [11, p. 29], the products ψ̇αqα (no summation) are referred to as ele-
mentary rotational velocity vectors. Hence, the addition theorem for the angular
velocity vector of successive rotations can be restated as:

The angular velocity vector is given by the sum of the elementary rotational
velocity vectors.
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However, note that if one chooses to use three spatially fixed axes, all their time
derivatives vanish and the associated angular velocities of the elementary rotations
are simply given by

ω1 = ψ̇1q1 , ω2 = ψ̇2q2 , ω3 = ψ̇3q3 . (20.44)

In this case, the elementary angular velocity vectors are equal to the elementary
rotational velocity vectors. However, according to the composition rule in Eq. (20.41)
[in contrast to Eq. (20.43)] the following total angular velocity results

ω = ψ̇3q3 + ψ̇2Q3 · q2 + ψ̇1Q3 · Q2 · q1 , (20.45)

which is not the sum of the elementary rotational velocity vectors. Finally, note that
spatially fixed axes are rarely used.

20.5 Treatment of Successive Rotations in the Literature

In this section, a review of several classical textbooks, which cover rigid body dy-
namics and successive rotations, is presented. In particular, the approaches of the
different authors to the problem of successive rotations are discussed. Note that the
given list is by far not complete and for this short review limited to the essentials.

First, one can note that most of the authors rely mostly on matrix calculus, e.g.,
[4, 6, 9, 11, 13, 15] in contrast to the ones using an abstract tensor notation, e.g., [3,
8, 14, 17]. Recalling the discussion in Sect. 20.2, it is therefore not certain if authors,
who rely on a matrix-based approach, regard their equations in terms of a change of
bases or in terms of a rotation of a vector. This requires a detailed investigation of
each equation in terms of the meaning intended by the author.

Second, several authors do not introduce a precise definition of the angular ve-
locity vector ω. If sequential rotations are considered a profound definition of ω is
required because otherwise confusion may arise. This confusion manifests itself in a
mix of terms. For example, the rotational velocities are referred to as Euler angular
velocities, angular, or elementary angular velocities in several sources. As outlined
in Sect. 20.4 some of the terminology used in the literature is at least partially in-
consistent, see [6, p. 176], [14, p. 402] and [15, Sect. 2.3]. In some of the exemplary
literature cited in this paper, products of angle velocities, ψ̇α , and corresponding axes
of rotation, qα , are called “angular velocities.” In the classical book of Taylor [14,
p. 337], the angular velocity is even introduced as ω = ψq, which gives the impres-
sion of this statement being true in general. However, on the same page a comment is
given on the possible time dependence of the axis of rotation and in the subsequent
analysis the more general statement ė = ω × e for a body-fixed vector e is used by
Taylor.

In [11, p. 29] the products ψ̇αqα are also introduced without any further comment,
but they are called “elementary rotational velocities.” This nomenclature is precise
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and is recommended to be used. Furthermore Schiehlen and Eberhard present a
formula similar to Eq. (20.41), which is rarely seen in any textbook. However, they
use a matrix notation and do not give a derivation. In [2, pp. 12–14], which is an
introductory book for the same topic, several definitions for the angular velocity are
given of the form ψ̇q, but ultimately on page 15 the author writes for a body-fixed
vector, r, a defining equation for the angular velocity, ṙ = ω × r. All references have
this definition in common. However, this definition is mentioned as a side note in
[4, p. 23], which is a book for numerical applications of rigid body dynamics. It is
curious that no definition on the angular velocity is given in [4].

Third, a rational proof of the addition theorem for the angular velocity vector of
successive rotations is rarely presented in the literature considered in this review. The
theorem is discussed mostly in context with specific examples like, for example, the
Euler angles and it is established by determining the elementary components from
a figure similar to the one in Fig. 20.1. While some authors present a derivation of
the theorem for infinitesimal successive rotations, the requirements and restrictions
related the addition theorem are often not specified. This is annoying, because for
the Euler angles, for example, one could infer that the successive elementary axes
of rotation need to be orthogonal since i3 ⊥ j1 and j1 ⊥ k3, see Fig. 20.1. In order to
avoid such a misleading conclusion, the presentation of a derivation, which clearly
states all assumptions, is didactically beneficial to the reader.

However, there is at least one example in the given literature list [8, p. 16], in
which the angular velocity is defined formally in terms of a representation in a body-
fixed base. Also Kane and Levinson distinguish between a general angular velocity
and a simple one, namely ψ̇q. In contrast to some other authors, the authors always
specify the angular velocity AωB as a quantity that conveys between two systems A
and B. Hence, the time derivatives associated with AωB are measured with respect
to A, even if A is a rotating system from an inertial point of view. Hence, for every
vector a fixed in B one can write

Fig. 20.1 Illustration of the rotations related the Euler angles ψ , θ and ϕ. The sequence of the
elementary axes of rotation is given by i3, j1 and k3. The {ii}-system is the inertial system and the
{ei}-system the body-fixed one
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dAa
dt

= AωB × a . (20.46)

Therefore, with this different notion of the angular velocity, intermediate angular
velocities for a gyroscope consisting of rotor and gimbal rings are introduced, see [8,
p. 22]. These intermediate angular velocities are simple ones for a gimbal suspension,
as two intermediate systems always share one common vector. Finally, the textbook
[8, Sect. 2.4] is the only one from the given reference list, in which the addition
theorem of angular velocities is stated, analyzed and proved. Bearing in mind the
notion of an angular velocity that conveys between two “frames,” intermediate frames
Ai are introduced such that

AωB = AωA1 + A1ωA2 + · · · + AnωB , (20.47)

where the intermediate quantities AiωAi+1 do not necessarily need to be simple. One
should note that with the term frame a set of basis vectors is meant and not a frame
of an observer as in [7]. Furthermore, it is correctly stated that: “Indeed, Eq. (20.1)
represents precisely such a resolution of AωB into components. In no case, however,
are these components themselves angular velocities of B in A, for there exists at
any one instant only one angular velocity of B in A.” Together with Eq. (20.46) the
addition rule in Eq. (20.47) is equivalent to our composition rule. Finally note that
the quantityω in our paper conveys from an inertial system to the moving one and the
angular velocities ωα are the intermediate quantities AiωAi+1 from [8], but measured
only from an inertial system. Therefore, the definitions in [8] are more general,
allow for less constrained terminology and may even be more useful for practical
applications.

20.6 Conclusion

This paper revisited the description of rotations in general. Successive rotations,
which commonly occur in engineering applications of rigid body dynamics, were
considered in detail. The mathematical description of a single rotation by Ro-

drigues’ formula was recalled and the related representations of the angular velocity
tensor and the angular velocity vector were derived using an invariant notation.

The analysis of successive rotations focused on the addition theorem for the an-
gular velocity vector, which was proved in a rational manner. Requirements and re-
strictions on the successive rotations related to the addition theorem were discussed.
Moreover, the vectors of rotational velocity, elementary angular velocity and total
angular velocity were defined and labeled clearly. Finally, a short literature review
was presented and the treatment of successive rotations by several authors was put
in context with the rational approach presented in this study. The literature review
revealed that the addition theorem is rarely proved in classical textbooks covering
the subject.
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20.7 The LEVI-CIVITA Tensor

This section briefly presents important properties of the Levi-Civita tensor
〈3〉
ε, which

is given by
〈3〉
ε = εijkei ⊗ ej ⊗ ek = ε̃ijk ẽi ⊗ ẽj ⊗ ẽk . (20.48)

In this equation, the components w.r.t. the ei-base are given by the permutation sym-
bol εijk , which has the properties as introduced, for example, in [5]. The components
w.r.t. the ẽ-base are denoted by ε̃ijk . These base vectors are connected to the ones of
the ei-base by a proper rotation,

Q̃ · ẽi = ei ⇒ Q̃ = ei ⊗ ẽi = Q̃ijei ⊗ ei , Q̃ij = ẽi · ej . (20.49)

In order to obtain a relation between these components, Eq. (20.48) is contracted with
the triad ẽi ⊗ ẽj ⊗ ẽk and scalar products of the different base vectors are replaced
by the components of the orthogonal tensor. The resulting relation reads:

ε̃ijk = εlmnQ̃ilQ̃jmQ̃kn = det(Q̃)εijk , (20.50)

where the connection of the permutation symbol to the determinant was used in the
second step, see [5, p. 184]. This equation implies that the components of the Levi-
Civita tensor w.r.t. the e-base are the same as the ones of the ẽ-base if the tensor Q̃
is a proper orthogonal tensor, i.e., εijk = ε̃ijk if det(Q̃) = 1.

Note that some authors tend to call the tensor
〈3〉
ε a tensor density due to the compo-

nent transformation rule in Eq. (20.50). The transformation rule for the components
has the consequence that a Rayleigh product of the Levi-Civita tensor with a
proper orthogonal tensor is equal to the Levi-Civita tensor, i.e., it is invariant under
a rotation. This may be shown by the following calculation:

Q̃ ∗ 〈3〉
ε = ε̃ijk(Q̃ · ẽi) ⊗ (Q̃ · ẽj) ⊗ (Q̃ · ẽk) = ε̃ijkei ⊗ ej ⊗ ek = 〈3〉

ε , (20.51)

where det(Q̃) = det(Q̃) = 1 must hold true in order to substitute ε̃ijk by εijk in the
last step.

20.8 Angular Velocity in Terms of Orientation Parameters

In this section, an expression of the angular velocity vector ω in terms of the Ro-

drigues parameters ψ and q shall be derived. In order to do so, the time derivative
of the tensor Q in Eq. (20.16) is computed as
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Q̇ = − sin(ψ)ψ̇(1 − q ⊗ q) + (
1− cos(ψ)

)
(q ⊗ q̇ + q̇ ⊗ q)

− (cos(ψ)ψ̇q + sin(ψ)q̇) · 〈3〉
ε .

(20.52)

Furthermore, it is convenient to compute the products of Q̇ with the tensors on
the right-hand side of Eq. (20.16), i.e., with q ⊗ q and q · 〈3〉

ε. In order to simplify
the resulting expression, the following identities related to Levi-Civita tensor are
required

1
2

〈3〉
ε ·· 〈3〉

ε = 1 ,
〈3〉
ε · 〈3〉

ε = 〈4〉
1 − 〈4〉

T , (20.53a)
〈4〉
1 = ei ⊗ ej ⊗ ei ⊗ ej ,

〈4〉
T = ei ⊗ 1 ⊗ ei , (20.53b)

〈4〉
1 ··A = A ,

〈4〉
T ··A = AT , (20.53c)

(〈3〉
ε · a) · (〈3〉

ε · b) = a · 〈3〉
ε · 〈3〉

ε · b = b ⊗ a − (a · b)1 , (20.53d)

a × b = −a · 〈3〉
ε · b = 〈3〉

ε ·· (a ⊗ b). (20.53e)

Note that the tensor
〈4〉
1 is referred as the identity tensor of rank four and that the

tensor
〈4〉
T is the “transposer,” i.e., a tensor of rank four representing to the transposition

of a tensor of rank two. In addition, the Grassmann identities for the double cross
product will be used in the following and may be expressed in terms of the Levi-
Civita tensor

a × (b × c) = 〈3〉
ε ·· (a ⊗ (b × c)) = a · (c ⊗ b − b ⊗ c) , (20.53f)

(a × b) × c = 〈3〉
ε ·· ((a × b) ⊗ c) = c · (a ⊗ b − b ⊗ a). (20.53g)

After same algebraic manipulations, the product of Q̇ with the tensor q ⊗ q is given
by

Q̇ · q ⊗ q = (
1 − cos(ψ)

)
q̇ ⊗ q + sin(ψ)(q̇ × q) ⊗ q. (20.54)

The final expression for the product with the tensor
〈3〉
ε · q reads

Q̇ · (〈3〉
ε · q) = − sin(ψ)ψ̇

〈3〉
ε · q − (

1− cos(ψ)
)
q ⊗ (q̇ × q)

+ cos(ψ)ψ̇[1 − q ⊗ q] − sin(ψ)q ⊗ q̇.
(20.55)

Using the two previous relations, the angular velocity tensor � can be expressed as

Ω = sin(ψ)
(
1 − cos(ψ)

)[(q̇ × q) ⊗ q − q ⊗ (q̇ × q)] −
− [ψ̇q + sin(ψ) cos(ψ)q̇] · 〈3〉

ε + (
1 − cos(ψ)

)[q̇ ⊗ q − q ⊗ q̇] .

(20.56)
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From this expression, the angular velocity vector ω is obtained by computing the
axial vector of � according to Eq. (20.21),

ω = ψ̇q + sin(ψ)q̇ + (
1 − cos(ψ)

)
q × q̇ . (20.57)

By means of Eq. (20.21), the angular velocity tensor can be recomputed from
Eq. (20.57)

Ω = (
1 − cos(ψ)

)[
q̇ ⊗ q − q ⊗ q̇

] − (
ψ̇q + sin(ψ)q̇

) · 〈3〉
ε , (20.58)

which is a simpler expression than the one in Eq. (20.56).
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Chapter 21
A Variant of the Description
of the Acoustic and Optical Branches
of the Dispersion Law of High-Frequency
Waves in an Elastic Medium

Sergey N. Romashin, Margarita V. Khoroshilova and Vladimir S. Shorkin

Abstract This paper presents an alternative description of the acoustic and optical
branches of the law of dispersion for high-frequency waves in an elastic medium.
For longitudinal and transverse plane waves which propagate in an elastic media
the dispersion law consists of two sections—acoustic and optical for large oscilla-
tion frequency values. The acoustic branch has a description both in mechanics of
deformable solids and in solid-state physics. The optical branch is described only by
solid-state physics. According to it, the oscillations of neighboring atoms in the crys-
tal lattice for the optical branch occur in the antiphase. This can lead to the destruction
of interatomic bonds and substance. Methods of solid physics for materials having
complex chemical composition and structure are difficult to apply. Therefore, the
description for the optical branch of the dispersion law in the framework of contin-
uum mechanics is relevant. The paper uses a version of the moment elasticity theory
which is a consequence of the nonlocal model of a continuous material, considering
the pair and triple interactions between its infinitesimal particles. Another feature of
the oscillations relevant for the optical branch includes by that they are similar to the
thermal vibrations of atoms. They are characterized by anharmonicity—such a shift
in the center of oscillations, that the average distance between atoms increases. The
proposed model considers the influence of anharmonicity on the stress state of the
material in the construction of the equation for conservation law of linear momen-
tum. This equation is a balance equation for changing the total linear momentum of
a substance particle for a finite, rather than infinitely small, time frame. This finite
segment is a material constant. The method of its definition is specified in this work.
The obtained theoretical results satisfactorily correspond to the experimental data
available in the literature.
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21.1 Introduction

The elements of space technology structures and nuclear engineering during opera-
tion are exposed to x-ray and neutron irradiation. Under its influence, high-frequency
longitudinal and transverse waves of phonons occur into the irradiated material [4].
Waves are characterizedbydispersion law—ω = ω(K) the dependenceof the oscilla-
tion frequencyω on their wave numberK [2]. The dispersion law has two branches—
acoustic and optical. During the acoustic vibrations, neighboring atoms move in the
same direction. With optical vibrations, neighboring atoms move toward each other.
Their center of mass remains fixed, and the interatomic bond is stretched and can
be destroyed. The destruction of interatomic bonds can lead to the destruction of a
material similarly that occurs during the thermal atomic oscillation [3, 7, 11]. There-
fore, the study of such oscillation is relevant. Real materials that are used in industry
have a complex chemical composition and atomic-molecular structure. Therefore,
when studying their behavior in different situations, it is convenient to use infor-
mation about their phenomenological properties. In the framework of mechanics of
deformable solids, the acoustic branch for the dispersion law is described in [10].
This paper presents an attempt to describe within the mechanics of continuous elastic
solid media not only acoustic, but also the optical branch of the dispersion law for
high-frequency waves.

21.2 General Provisions and Assumptions

21.2.1 An Elastic Medium Model

It is assumed that the studied solids B are obtained first by mental and then by real
instantaneous separation from infinitely extended, homogeneous, isotropic continu-
ous elastic media �. As a reference, configuration of bodies B is taken that they had
� with mental isolation. This assumption is used to exclude from consideration the
heterogeneity of material properties caused by proximity to the boundary.

In the reference configuration, the body B occupies an area V , and the centers of
inertia of its particles dB have radius vectors r = xjej ∈ V . The triple of unit vectors
ej (j = 1, 2, 3) forms an orthonormal basis. Let dB1 ≡ dB and dB2 is two arbitrary
infinitely small particles of the body B. The position dB2 relative to dB1 ≡ dB in
the reference configuration is determined by the vector l2 ≡ l12 = r2 − r1. When
deforming the body, the particles dB1 ≡ dB and dB2 at each time t acquire new
positions R(t) = Xj(t)ej and displacement vectors u(t) = R(t) − r. The position of
the particle dB2 relative to the particle dB will be determined by the vector L12 =
R2 − R1 = (r2 − r1) + (u2 − u1) = l12 + Δu12. Here,Δu12 ≡ Δu2 = u2 − u1 the
displacement of the particle dB2 relative to the particle dB. Changes in the relative
orientation of the particles are not considered. For every particle, dBj vectors Δuj

are represented as series in the external degrees of the vectors lj.
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Δuj =
∞∑

n=1

1

n!
(
∇n

lju
) n step︷︸︸︷·...· lnl =

∞∑

n=1

(−1)n

n!
(∇nu

) n step︷︸︸︷·...· (lj
)n

, (21.2.1)

Here, ∇ = d . . . /dr is differential operator Hamiltonian by r vector, and ∇lj =
d . . . /d lj—by the lj vector ∇ = d . . . /dr = −∇lj = d . . . /d lj. Gradients ∇nu are
defined at the center of inertia of the dB particle.

The temperature Θ and density ρ distributions of the material generally change
over time. In the work this does not consider.

Each body B can be represented as a union of non-intersecting parts: ΔBn(n =
1, . . . ,N ) : B =

n=N⋃
n=1

ΔBn.

Let
dn = diamΔVn ≈ 3

√
ΔVn (21.2.2)

is the diameter of the part ΔBn. Then properly:

(N → ∞) ⇒ (ΔBn ≡ ΔB(k)n → dB ≡ dB(k)). (21.2.3)

The system {ΔBn}N of particles ΔBn is put in accordance with the system {bn}N
of bn material points. The points bn are located in the centers of inertia of the ΔBn

particles. They have the same mass, kinetic energy and linear momentum as theΔBn

particles.
The potential energy of interaction W(N ) between all parts ΔBn is equal to the

potential energy of interaction between all material bn points. It is a function of the
position of bn points in space:

W(N ) = W (N )(R1, . . . ,RN ) (21.2.4)

Under each partition of the body B into elementary parts ΔBn, the equality is true

W = W (N )(R1, . . . ,RN ) (21.2.5)

In accordance with [9], for N -point function (21.2.5) it is true to represent as a
sum of all two-, three- and so on point functions ΔWij

(N )(Ri,Rj),ΔWijk
(N )(Ri,Rj,Rk)

which characterize, respectively, two-, three-, etc. partial potential interactions of
ΔBn particles.

It is assumed that there are limits that do not depend on the method N -partition.

lim
N→∞,d(N )→0

ΔW (ij)
(N )

ΔV (i)
(N )ΔV (j)

(N )

= Φ(ij)
(
Ri,Rj,

{
κ(2)
})

,

lim
N→∞,d(N )→0

ΔW (ijk)
(N )

ΔV (i)
(N )ΔV (j)

(N )ΔV (k)
(N )

= Φ(ijk)
(
Ri,Rj,Rk ,

{
κ(3)
})

.

(21.2.6)
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Here,
{
κ(2)(Θ)

}
and

{
κ(3)(Θ)

}
are sets of parameters that determine the type of the

pair and triple interaction potentials for specific materials at a given Θ temperature.
The material under study is assumed to be homogeneous and isotropic. Therefore,

Φ(ij)(Ri,Rj) = Φ(2) (∣∣R1 − Rj

∣∣) = Φ(2) (L1i,
{
κ(2)}) ,

Φ(ijk)(Ri,Rj,Rk) = Φ(3) (|R1 − R2| , |R1 − R3|) = Φ(3)
(
L1i,L1j

{
κ(3)
})

.

(21.2.7)

Here, L1j = ∣∣R1 − Rj

∣∣ is the distance between the dB1 and dBj particles. The paper
[6] presents one of the possible variants for these potentials and methods for deter-
mining the values of their parameters. The potential energy dW (R) = w(R)dV of
the particle interaction with all other dB ≡ dB1 particles of the body B is determined
by equality

dW = w(R)dV =
⎧
⎨

⎩

∫

V

Φ(2)(L(12))dV2 +
∫

V

dV2

∫

V

Φ(3)(L12,L13)dV3

⎫
⎬

⎭ dV

(21.2.8)
This expression will be used in the local description of the mechanical behavior of
the material to establish the relationship between stresses and deformation.

The local description of a solids uses the description of the properties of not many
particles, but only one dB particle. Its characteristics of deformed, stressed and energy
states are determined at one point R ≡ R1 – its center of inertia. The characteristics
of the dB particle kinematics are gradients ∇nu, n = 1, . . . ,M . The number M of
gradients stored in the decomposition (21.2.1) is determined by the need to suitable
describe for the corresponding mechanical effect.

The acoustic branch for the dispersion law in [10] is described by using two stress
tensorsP(1) = epekP

(1)
pk andP(2) = epekeqP

(2)
pkq. They are generalized forces that work

on generalized displacements ∇u and ∇2u, respectively. These tensors are also used
in this paper. For their introduction [10] it is assumed that each infinitesimal dB
particle of a continous solid is exposed to the action of a volume distributed f = ek fk
force. In this paper, such forces are inertial forces.

It is assumed that the norm

[
n∑

i,j1,...,jn=1

(
ui,j1,...,jn

)2
]1/2

of the tensor is a small

value. Then the change in the volume of particles can be neglected and assume that
in the coordinate system (x1, x2, x3) occupied by the particle area dB is infinitely
small parallelepiped. Its elementary volume dV is a differential antisymmetric basis
3-form [8].

dV = 1

3!εijkdxidxjdxk = dx1
dx2
dx3. (21.2.9)

(
 is sign antisymmetric multiplication, εijk is Levi-Civita symbol). At an each value
of the number k, the expression
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dFk = ϕkdV = ϕkdx1
dx2
dx3 = (−fk)dx1
dx2
dx3. (21.2.10)

is also a 3-form. In three-dimensional space its differential not symmetrical 4-form
is equal to zero.

∂(dFk) = (∂ϕk/∂xp
)
dxpdx1
dx2
dx3 = 0. (21.2.11)

Therefore, according to the Poincare theorem [8] for a given value k, there is such a
2-form dΨk that is associated with equality:

∂(dΨk) = dFk . (21.2.12)

The form dΨk has the view:

dΨk = ψ12kdx1
dx2 + ψ23kdx2
dx3 + ψ31kdx3
dx1. (21.2.13)

Here,ψijk are the components of a differentiable tensorΨ = epekeqψpkq. Considering
(21.2.11) and (21.2.12) the form (21.2.10) look as:

dFk =
(

∂ψ12k

∂x3
+ ∂ψ23k

∂x1
+ ∂ψ31k

∂x2

)
dx1
dx2
dx3. (21.2.14)

Consequently, it turns out that

ϕk = ∂ψ12k

∂x3
+ ∂ψ23k

∂x1
+ ∂ψ31k

∂x2
. (21.2.15)

So, such a tensor Ψ = epekeqψpkq for the vector ϕ = −ek fk exists and for it the
equality is fulfilled (21.2.15). The components ψijk of the tensor Ψ = eiejekψijk are
invited to submit in the form:

ψijk = ψ
(1)
ijk − ∂ψ

(2)
ijkp

∂xp
. (21.2.16)

By performing a double convolution of this representationwith the Levi-Civita tensor
εijp, considering εijqψ

(1)
ijk = P(1)

qk and εijqψ
(2)
ijkp = P(2)

qkp, we can obtain the equation

∇ · (P(1) − ∇ · P(2))+ f = 0. (21.2.17)

This is the equation of the moment theory for elasticity during stresses. To use it,
we need information about the relationship between stress tensors and displacement
gradients, which take into account the peculiarities of the mechanical behavior of
the material under the conditions under consideration.
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21.2.2 Expansion Feature of Elastic Material Model

For the description of both branches of the dispersion law, it is proposed to use instead
of the motion equation in the form of (21.2.17) the differential equation of motion
in the form of

ρ

(
∂v
∂t

+ 1

2
T

∂3v
∂t3

)
= ∇ · P ≡ ∇ · (P(1) − ∇ · P(2)

)
. (21.2.18)

Here, T is an additional material constant possessing the time dimension.
The equation of motion (21.2.18) is based on the following reasoning.
The oscillation frequencies of the medium particles for the optical branch of the

dispersion law are of great importance. It is commensurate with the frequency of
thermal vibrations by solids atoms in the crystal lattice. These oscillations have the
property of anharmonicity [1, 5]. Its manifestations are the force of anharmonicity—
the difference between the repulsion force of the medium particles and the force of
their attraction, as well as such a displacement of the average distance between the
interacting particles, at which the medium as a whole expands (thermal expansion
with thermal vibrations of atoms). Quasi-harmonic approximation can be used to
account for the anharmonic effects of optical wave oscillations [1, 5]. For this, as
for the dependence of the temperature expansion of the material, it is necessary to
determine the expansion associated with high-frequency anharmonic fluctuations.
Then the oscillations about this state can be considered approximately harmonic and
the expression (21.2.8) can be used to construct constitutional relations. External
influences, which can be simultaneously with high-frequency oscillations, change
over time the equilibrium state, which corresponds to a quasi-harmonic expansion.
These changes occur very slowly compared to high-frequency oscillatory move-
ments. Therefore, it is assumed that there is a segment η ∈ [t − T/2; t + T/2] within
whichP(1),P(2) stress tensors and their gradients do not depend on timeη. The param-
eter T ≥ 2π/ω value is considered to be known. It is determined experimentally. The
expansion, which is caused by high-frequency oscillations, is not determined.

For a segment η ∈ [t − T/2; t + T/2], it is assumed that the particle dB velocity
v(η) = ∂u/∂η is determined by equality

v(η) = v(t) + ∂v(t)
∂t

ξ + 1

2

∂2v(t)
∂t2

ξ 2, ξ = η − t. (21.2.19)

With this in mind, the volume density of the pulse obtained by the particle dB on the
segment η ∈ [t − T/2; t + T/2] is expressed by the formula

ρ

t+T/2∫

t−T/2

∂v
∂η

dη = ρ

(
T

∂v
∂t

+ T 3

2

∂3v
∂t3

)
. (21.2.20)
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In this case, the impulse received from the environment at the same time is determined
by equality

Tφ(t) = T∇ · P(t) ≡ T∇ · (P(1)(t) − ∇ · P(2)(t)
)
. (21.2.21)

Equating the right parts (21.2.20) and (21.2.21) the Eq. (21.2.18) can be obtained.
The expression of stress tensors included in (21.2.18), through the gradients of

displacements the dependencesΦ(2)(L12) andΦ(3)(L12,L13), are represented as poly-
nomials of the second degree with respect to the vector determined by the equality
(21.2.1). On the basis of the obtained expressions, tensors P(1) and P(2) are deter-
mined by equalities [10]

P(n) = ∂w

∂(∇nu)
= P0(n) +

M∑

m=1

(∇mu)

n step︷︸︸︷·...· C(m,n), (21.2.22)

P0(n) =
∫

V

(∇12Φ
(2)
)
ln12dV2 +

3∑

j=2

∫

V

⎡

⎣
∫

V

(∇1jΦ
(3)
)
ln1jdV2

⎤

⎦ dV3, (21.2.23)

C(n,m) =
∫

V

ln12
(∇2

12Φ
(2)
)
lm12dV2 +

3∑

p,q=2

∫

V

⎡

⎣
∫

V

ln1p
(∇1p∇1qΦ

(3)
)
lm1qdV2

⎤

⎦ dV3,

(21.2.24)
Anharmonicity can be accounted in these equations if a changing of the average
distance Δlan1j (ω) between the interacting particles dB ≡ dB1 and dBj is used. To

do this, it is necessary to useΦ(2)
(
L1j − Δlan1j (ω),

{
κ(2)
})

andΦ(3)
(
L1i − Δlan1i (ω),

L1j − Δlan1j (ω),
{
κ(3)
})

dependencies. However, this is not done in this paper. In this

paper, the value Δlan1j (ω) was not consider. The effect of anharmonicity is shown
without taking into account the value Δlan1j (ω) only by using Eq. (21.2.18).

21.3 The Optical and Acoustic Branches Model for
Dispersion Law

Flat wave
u = u0exp [i(kx − ωt)] , (21.3.1)

extends in the direction e1. Here, x ≡ x1, i = √−1,u0 = const. For longitudinal
wave,u0 = u0e1,u = ue1. For transversewave,u0 = u0e2,u = ue2. The scalar form
of the one-dimensional equation (21.2.18) in this case has the following form.
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1

c2

(
∂2u

∂t2
+ T

2

∂4u

∂t4

)
= ∂2u

∂x2
+ b2

∂4u

∂x4
, (21.3.2)

For the classical velocity of an acoustic longitudinal waves propagation

c =
√
C(1,1)
1111 /ρ. This speed for the classical transverse waves is equal to c =√

C(1,1)
1212 /ρ. The parameter b in the first case is calculated by the formula

b =
√(

C(1,3)
111111 − C(2,2)

111111 + C(3,1)
111111

)
/C(1,1)

1111 , and in the second case by formula

b =
√(

C(1,3)
112112 − C(2,2)

112112 + C(3,1)
112112

)
/C(1,1)

1212 . Material constants C(1,1)
1111 , C(1,3)

111111,

C(2,2)
111111, C

(3,1)
111111, C

(1,1)
1212 , C

(1,3)
112112, C

(2,2)
112112, C

(3,1)
112112 determined by Eq. (21.2.24). The

type of dependences of the potentials of pair and triple interactions of the elastic
medium, as well as the values of the parameters that concretize their type for the
corresponding materials, are considered to be known [6]. During constructing the
Eq. (21.3.2) for the P(1) tensor in decomposition (21.2.22) is M = 3 accepted, for
P(2) − M = 2 accepted. It is considered that in an infinitely extended medium at an
odd value m + n it is C(n,m) = 0 true.

Substituting the expression (21.3.1) in (21.3.2) one can obtain the expression for
the dispersion law.

ω2(1 − T 2ω2)

c2
= (K2 − b2K4), (21.3.3)

This is followed by expressions that describe not one but two branches of the disper-
sion law.

ω1(K) = 1

T
√
2

√
1 +

√
1 − 4c2T 2(K2 − b2K4), (21.3.4)

ω2(K) = 1

T
√
2

√
1 −

√
1 − 4c2T 2(K2 − b2K4) ≈ c2(K2 − b2K4), (21.3.5)

While (Tω) → 0 (21.3.3) represents the dispersion lawpossessingonlyonebranch—
acoustic [10]. If this is the case K → 0, then (21.3.5) is a classical linear expression
for the dispersion law.

ω = cK, (21.3.6)

Approximate equality (21.3.3) is considered to be valid for each small values of
the wave K number, including those when the equality is true (21.3.5). Therefore,
substituting (21.3.5) in (21.3.3) , you can get:

b = cT , (21.3.7)

This equality indicates that the parameter T is a material constant.
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Fig. 21.1 Dispersion law for
crystal of diamond in the
direction [111]

21.4 Results and Experimental Data Comparison

The obtained theoretical results can be comparedwith the experimental data available
in the literature. In [4] data for acoustic and optical branches of the law of dispersion
of diamond crystal are given. For longitudinal and transverse waves, the optical
branch begins at a point with coordinates (χ = ω/2π,K) = (χ0, 0). By the value
χ0 and sound speed c for longitudinal and transverse waves, on the basis of equality
1 − T 2(χ2

0 /4π
2) = 0, true to the point (χ0, 0), the parameter T value is determined.

Then the parameter b value is calculated using (21.3.7). The obtained data make it
possible to produce graphical dependenciesω1(K) andω2(K). The results are shown
in Fig. 21.1.

Calculations are carried out for the case when the waves propagate along the
direction [111] of the diamond crystal for which C11 = 10.76 × 1011 N/m2, C12 =
1.25 × 1011 N/m2,C44 = 5.76 × 1011 N/m2, ρ = 3.5 × 103 Kg/m3. The comparison
results of theoretical data obtained in this work and presented in [4] indicate to their
qualitative coincidence and satisfactory quantitative compliance.

21.5 Conclusion

The description for both acoustic and optical branches of the dispersion law for
low-amplitude and high-frequency waves is proposed within the framework of the
mechanics of deformable solids. This description is made under the assumption
the existence of medium oscillations anharmonicity that correspond to the optical
branch. The quantitative and qualitative correspondence between theoretical results
and experimental data available in the literature is obtained. The results of the
work should be considered illustrative. Their practical application requires a more
detailed theoretical analysis for the anharmonicity phenomenon in terms of contin-
uum mechanics.
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Chapter 22
Supercomputer Modeling of Wave
Propagation in Blocky Media Accounting
Fractures of Interlayers

Vladimir M. Sadovskii and Oxana V. Sadovskaya

Abstract To analyze the propagation of stress waves in structurally inhomogeneous
materials, we use the method of direct numerical simulation based on a mathemat-
ical model of a blocky medium with elastic blocks interacting through compliant
elastic-plastic interlayers, and amodel of nonlinear theory of the orthotropic Cosserat
continuum that takes into account the shear and rotational nature of irreversible de-
formation. The continuum model is formulated as a variational inequality, correctly
describing both the state of an elastic-plastic flow of a material under active load-
ing and the state of elastic unloading. In the model of a blocky medium, variational
inequalities are used to describe the plastic deformation of interlayers between the
blocks and to simulate cracks moving along the interlayers. Parallel computational
algorithms and author’s software codes for multiprocessor computer systems of clus-
ter architecture are used in the numerical implementation of mathematical models. In
2D setting, a problem of pulse loading of a rectangular blocky rock mass of the ma-
sonry type through a platform is studied. A good correspondence between the results
of computations is obtained on qualitative and quantitative levels.
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22.1 Introduction

Most applications in the construction industry,mining, oil exploration and oil produc-
tion are dedicated to the discrete and continuous modeling that imitates the behavior
of inhomogeneous materials of layered and blocky structure. Modeling allows to
reproduce the crack opening and joint sliding of the blocks which are responsible
for the occurrence of the destruction. On a model level, a medium is considered as
a set of the interacting blocks or particles [3, 5, 15]. Models of periodic media can
be used for simulating of wave processes in soils and rocks as layered materials [14,
17, 18] or blocky materials [11]. A 3D masonry model was introduced in [6], where
a medium is periodic in three orthogonal directions.

Simple and effective approach to the description of wave processes in structurally
inhomogeneous media is based on the Cosserat continuum equations [7, 12, 20]. In
these equations, along with the translational motion of particles of the material mi-
crostructure under the action of gradients of internal stresses, the rotational degrees
of freedom due to the moment interactions of particles are taken into account in av-
eraged form. We applied the Cosserat equations to the analysis of wave propagation
in blocky media with elastic blocks interacting through compliant elastic interlay-
ers [24]. Recently, we have simulated physically nonlinear plastic deformation of
interlayers [23]. In this approach, fundamentally difficult is a problem of specifica-
tion of the mechanical parameters of a continuum, which would correspond to a real
blocky structure such as masonry or lumpy rock [4, 16, 19].

An alternative approach is to model blocks and interlayers independently as in-
terconnected structural elements [1, 2, 28]. In geomechanics and geodynamics, it is
developed starting from the fundamental work [21], in which, based on the analysis
of an experimental material, the natural lumpiness of rocks was established.

As a result of modeling, a large system of equations is obtained, which describes
the dynamics of blocks with internal boundary conditions of their contact through in-
terlayers. This system occurs to be practically inaccessible for research by analytical
methods, and it requires the use of high-performance computations. Developing this
approach, we construct different versions of the model [26]: from the case of elastic,
viscoelastic or plastic interlayers to the case of a porousmaterial in interlayers, where
the pores collapse under application of compressive stresses is considered, and the
case of a fluid-saturated porous material. In the present contribution, the model of
a blocky medium is generalized to take into account the propagation of a system
of cracks along with interlayers. The deformation criterion of crack formation is
used. Internal boundary conditions on the crack edges are formulated as variational
inequalities describing contact of blocks without friction. UsingMPI (Message Pass-
ing Interface) technology, parallel software is developed for modeling the dynamics
of blocky media with cracks in 2D formulation. Results of computations of the
cracks’ growth caused by the rotation of blocks under the action of external pulse
loads are presented.
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22.2 Blocky Medium with Elastic-Plastic Interlayers

A plane deformation of a rock with the blocky structure, consisting of rectangular
elastic blocks with the sides h1, h2 and interlayers of the thicknesses δ1, δ2, is con-
sidered. The block sides are parallel to the axes x1, x2 of the Cartesian coordinate
system (Fig. 22.1). The number of blocks in the directions of the axes is N1 and N2,
respectively.

A motion of each block is defined by the system of equations of an isotropic
elastic medium, written in terms of the velocities vk and stresses σ jk :

ρ v̇1 = σ11,1 + σ12,2 ,

ρ v̇2 = σ12,1 + σ22,2 ,

σ̇11 = ρ c21
(
v1,1 + v2,2

) − 2 ρ c22 v2,2 , (22.1)

σ̇22 = ρ c21
(
v1,1 + v2,2

) − 2 ρ c22 v1,1 ,

σ̇12 = ρ c22
(
v2,1 + v1,2

)
.

Here, ρ is the density of a blocky material, c1 and c2 are the velocities of longitudinal
and transverse elastic waves in the blocks, respectively. Dot over a symbol denotes
partial derivative with respect to time, and indices after a comma denote partial
derivatives with respect to spatial variables.

An elastic interlayer between the horizontally located nearby blocks is described
by the system of ordinary differential equations:

ρ ′ v̇
+
1 + v̇−

1

2
= σ+

11 − σ−
11

δ1
,

σ̇+
11 + σ̇−

11

2
= ρ ′c′

1
2 v+

1 − v−
1

δ1
,

ρ ′ v̇
+
2 + v̇−

2

2
= σ+

12 − σ−
12

δ1
,

σ̇+
12 + σ̇−

12

2
= ρ ′c′

2
2 v+

2 − v−
2

δ1
.

(22.2)

An interlayer between the vertically located nearby blocks is modeled using similar
system:

Fig. 22.1 Scheme of
a blocky medium
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2
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1

δ2
.

(22.3)

Here, ρ ′ is the density of amaterial of the interlayer, and c′
1 and c

′
2 are the velocities of

longitudinal and transversewaves in the interlayers. Indices “+” and “–” inEqs. (22.2)
and (22.3) are related to the boundaries of interacting blocks. Due to the large aspect
ratio between the size of blocks and the thickness of interlayers, the characteristic
time scale of the physical processes within the interlayers is smaller as compared
to characteristic time of the physical processes within the blocks. Hence, the stress
state of the interlayers is described by the system of ordinary (not partial) differential
equations (22.2) and (22.3).

It was shown [24] that these equations are thermodynamically consistent with the
system (22.1) in the sense of fulfillment of the energy conservation law, where the
sum of kinetic and potential elastic energy of themassif of blocks equals to the sum of
kinetic and potential energies of the blocks and interlayers, and the work of external
forces is calculated as an integral about the outer massif boundary. Thermodynamic
consistency is an exceptionally important property of the mathematical model since
its absence may lead to nonphysical effects.

To take into account the plasticity in accordance with the general approach sug-
gested in [22], constitutive equations of the vertical elastic interlayer in (22.2) are
replaced by the variational inequality:

(
δσ+

11 + δσ−
11

)
ε̇
p
11 + (

δσ+
12 + δσ−

12

)
ε̇
p
12 � 0 . (22.4)

Here, δσ ±
jk = σ̃ ±

jk − σ ±
jk are the variations of stresses,

ε̇
p
11 = v+

1 − v−
1

δ1
− σ̇+

11 + σ̇−
11

2 ρ ′c′ 2
1

, ε̇
p
12 = v+

2 − v−
2

δ1
− σ̇+

12 + σ̇−
12

2 ρ ′c′ 2
2

are the plastic strain rates. Along with the actual stresses σ ±
jk , the admissible stresses

σ̃ ±
jk are subject to the constraint in the form:

f

(
σ̃+
11 + σ̃−

11

2
,
σ̃+
12 + σ̃−

12

2

)
� τ(χ) , (22.5)

where τ is the material yield point of interlayers, χ is a material parameter (or set of
parameters) of hardening, and f (σn, στ ) is the equivalent stress function, in which
arguments are normal and tangential stresses in the interlayer.

The variational inequality (22.4) allows to describe constitutive equations of
elastic-plastic flow with isotropic hardening in accordance with the principle of
maximum of plastic dissipation, which guarantees the fulfillment of basic principles
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of irreversible thermodynamics. The strong inequality in (22.5) corresponds to the
elastic state of the interlayer, while the equality is achieved in the plastic state.

Selection of the hardening parameter χ is not unique. The yield point for rocks
depends significantly on the value of hydrostatic pressure or, in a simplified variant,
on the value of normal stress χ = σn . After such selection the yield criterion, which
is described by the constraint (22.5), is the Mohr–Coulomb criterion adapted to
the case of interlayers of small thickness. The simplest form of the constraint for
a microfractured medium is as follows:

|στ | � τs − κs σn , (22.6)

where τs and κs are the material parameters. Under such constraint, in virtue of the
arbitrariness of variation of the normal stress in (22.4), the transverse plastic de-
formation of the interlayer is identically equal to zero, while the shear deformation
in the plastic state contains a nonzero irreversible component. Note, that the con-
straint (22.6) is applicable in a limited range of tensile normal stresses, where the
yield point remains positive.

Similarly, constitutive equations of the horizontal elastic-plastic interlayer are
formulated in the form of variational inequality:

(
δσ+

12 + δσ−
12

)
ε̇
p
12 + (

δσ+
22 + δσ−

22

)
ε̇
p
22 � 0 .

The plastic strain rates are expressed as

ε̇
p
12 = v+

1 − v−
1

δ2
− σ̇+

12 + σ̇−
12

2 ρ ′c′ 2
2

, ε̇
p
22 = v+

2 − v−
2

δ2
− σ̇+

22 + σ̇−
22

2 ρ ′c′ 2
1

.

The constraint takes the form:

f

(
σ+
22 + σ−

22

2
,
σ+
12 + σ−

12

2

)
� τ(χ) .

In the same way, plastic deformation of a material inside the blocks can be taken
into account. For this, one can use the principle of maximal power of dissipation,
equivalent to the associated law of plastic flow,which also admits a formulation in the
formof variational inequality.Numerical implementationof the variational inequality
is carried out based on simple and efficient algorithms of solution correction (see,
for example [20, 22]). However, in the case of pliable interlayers, plasticity in the
blocks occurs much later than plasticity in the interlayers. Therefore, we do not take
it into account in this chapter.

To solve the system (22.1)–(22.3) and a generalized system, inwhich the equations
of Hook’s law are replaced by the inequalities (22.4), (22.5), the computational
algorithm has been developed. This algorithm is based on the two-cyclic splitting
method by spatial variables and on the special procedure of correction of the stresses,
which takes into account plastic effects.
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Two-cyclic splitting in the blocks includes four consequently executing stages;
each of them presumes the solution of 1D system of equations in the blocks with
internal boundary conditions at the interblock boundaries. These stages are presented
in [26] for a more general situation. The mentioned system of equations is solved in
the blocks using the Godunov gap decay scheme with the uniform finite difference
grid at maximum possible time step, defined by the Courant–Friedrichs–Lewy crite-
rion: 	t = min

{
	x1,	x2

}
/c1. In the interlayers, a nondissipative unconditionally

stable predictor–corrector scheme was used, constructed according to the method
of Ivanov [13]. Considered 1D hybrid scheme for longitudinal waves (at least in
the case of square grid) does not have energy dissipation caused by the approxima-
tion; such scheme does not lead to the amplitude attenuation of the traveling waves.
The artificial nonphysical energy dissipation of transverse waves is reduced using
special reconstruction of the solution.

22.3 Simulation of Cracks in Interlayers

At the initial stage of destruction of a blocky medium with compliant interlayers, the
cracks originate and move along the interlayers without disturbing the integrity of
the blocks. We describe this process within the framework of a model with square
elastic blocks. For simplicity, we will consider only the separation cracks, simulating
fracture on the basis of the deformation criterion. For the vertical interlayers, this
criterion is written in the form: ε11 = ε∗, where ε∗ is the ultimate tensile strain. Until
the destruction, when ε11 < ε∗, and at the contact of edges of the crack, which is
already formed, deformation of the interlayer occurs according to the elastic-plastic
law. Normal stress in the interlayer is continuous and satisfies the conditions of
contact interaction. It is equal to zero in the opened crack, and it is negative in the
case of contact. Tangential stress in the crack zone is absent if friction is not taking
into account. Rheological scheme of the interaction of blocks after the formation of
a crack is shown in Fig. 22.2.

Conditions of contact interaction of the crack edges are formulated as the varia-
tional inequality

δσ11

(
1

ρ ′c′ 2
1

σ11 − ε11

)
� 0, ε̇11 = v+

1 − v−
1

δ1
, (22.7)

Fig. 22.2 Rheological
scheme of contact interaction
of blocks
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with the constrains σ11 � 0 and σ̃11 ≡ σ11 + δσ11 � 0. If σ11 < 0, then the sign of
the stress variation δσ11 can be arbitrary; therefore, the inequality (22.7) goes into
the equation of Hooke’s law for the interlayer. This is fulfilled in the case of contact
of the crack edges. If σ11 = 0, then, by virtue of the sign of variation δσ11 � 0, the
condition ε11 � 0, corresponding to the state of opened crack, is fulfilled.

The algorithm of numerical implementation of the variational inequality (22.7)
in the mesh of a finite difference grid is based on the equations:

ε̂11 = ε11 + v+
1 − v−

1

δ1
τ , z1 v

+
1 + σ+

11 = R+
1 , z1 v

−
1 − σ−

11 = R−
1 , (22.8)

where z1 = ρ c1 is the acoustic impedance, R±
1 are the Riemann invariants calcu-

lated in the border meshes of the interacting blocks. Hat over a symbol indicates
that it belongs to a new layer by time. The first of equations (22.8) is obtained as
a result of approximation of the equation for the strain rate, the others are relations
on bicharacteristics of the system (22.1), which are used at the predictor step of the
Godunov gap decay scheme.

Taking into account the closing equation: σ̂11 + σ11 = σ+
11 + σ−

11, guaranteeing
the absence of artificial dissipation in the Ivanov scheme, the inequality (22.7) can
be reduced to the form:

(
σ̃11 − σ̂11

)(
κ σ̂11 − ε11 − R+

1 − R−
1 − σ11

z1δ1
τ

)
� 0 , κ = 1

ρ ′c′ 2
1

+ τ

z1δ1
.

Hence, using elementary properties of variational inequalities, one can obtain a for-
mula for stress correction in terms of the projection π−(σ ) = (

σ − |σ |)/2 onto the
semiaxis σ � 0:

σ̂11 = 1

κ
π−

(
ε11 + R+

1 − R−
1 − σ11

z1δ1
τ

)
. (22.9)

Application of this formula leads to automatic fulfillment at the discrete level of
the condition of nonpenetration of crack edges into each other and the condition of
positivity of a contact pressure. In addition, since the projector is a nonexpanding
mapping, the stability condition of the finite difference scheme is preserved in the
same form as for elastic or elastic-plastic interlayers without cracks.

Formula for recalculation of the transverse velocity in the uncracked interlayer is
derived on the basis of the discrete equation of motion:

ρ ′ v̂1 − v1
τ

= σ+
11 − σ−

11

δ1
,

the relations (22.9) on bicharacteristics and closing equation of a nondissipative
scheme: v̂1 + v1 = v+

1 + v−
1 . It takes the following form:
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v̂1 =
(
R+
1 + R−

1

)
τ − (

z1τ − ρ ′δ1
)
v1

z1τ + ρ ′δ1
. (22.10)

After calculating v̂1 and σ̂11, the values of v
±
1 and σ±

11 are determined as the solution
of the system of equations:

v+
1 + v−

1 = v̂1 + v1 , v+
1 − v−

1 = R+
1 − R−

1 − σ̂11 − σ11

z1
,

σ+
11 + σ−

11 = σ̂11 + σ11 , σ+
11 − σ−

11 = R+
1 + R−

1 − z1(v̂1 + v1) .

If σ̂11 = 0, then the interlayer is divided by a crack into two noninteracting parts.
Since the moment of crack generation, the stresses σ±

11 on the crack edges are zero.
Edge velocities are found from the equations on bicharacteristics as v±

1 = R±
1 /z1.

Conditional velocity of the interlayer is calculated by the formula of inertial motion:
v̂1 = v1, which is consistent with (22.10).

Formulas for the calculation of cracks in the horizontal interlayers can be obtained
by the cyclic replacement of indices in the formulas obtained above.

22.4 Elastic-Plastic Cosserat Continuum

Mathematical model of a blocky medium is easily generalized for the description of
complex nonlinear mechanical factors such as a crack formation and fluid saturation
in interlayers and can be effectively implemented numerically. But it is practically
unsuitable for analytical research methods. It is impossible, for example, to obtain
explicit expressions for the velocities of elastic and plastic waves, to apply a well-
developed apparatus of dispersion analysis. Therefore, it is advisable to develop
approaches to the description of the deformation and destruction of a blocky medium
using the models of continuum mechanics. One of such models, taking into account
rotational motions of the blocks, is the Cosserat model.

In the plane strain case, the equations of elastic Cosserat continuum have the
following form [24]:

ρ0 v̇1 = σ11,1 + σ12,2 ,

ρ0 v̇2 = σ21,1 + σ22,2 ,

J0 ω̇3 = μ31,1 + μ32,2 + σ21 − σ12 ,

σ̇11 = a1 v1,1 + b1 v2,2 ,

σ̇22 = a1 v2,2 + b1 v1,1 , (22.11)

σ̇21 = a2 (v2,1 − ω3) + b2 (v1,2 + ω3) ,

σ̇12 = a2 (v1,2 + ω3) + b2 (v2,1 − ω3) ,

μ̇31 = α2 ω3,1 ,

μ̇32 = α2 ω3,2 .
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They are written in Cartesian coordinates relative to the projections v1, v2 of the
linear velocity vector, nonzero projection ω3 of angular velocity, components σ jk of
the stress tensor and components μ jk of the couple stress tensor ( j, k = 1, 2). Here,
ρ0 is the density of the continuum, J0 is the product of the moment of inertia of
a particle (block) and a number of particles in a unit volume, a1, b1, a2, b2 and α2

are the elastic moduli of an orthotropic material with planes of symmetry parallel
to the coordinate planes. Elastic properties of the continuum are considered to be
identical in the direction of the axes of coordinates, which corresponds to the model
of a blocky medium with square blocks.

Constitutive equations for the stress rates can be represented in the reversed form:

ā1 σ̇11 − b̄1 σ̇22 = v1,1 , ā1 σ̇22 − b̄1 σ̇11 = v2,2 ,

ā2 σ̇21 − b̄2 σ̇12 = v2,1 − ω3 , ā2 σ̇12 − b̄2 σ̇21 = v1,2 + ω3 ,

where ā1, b̄1, ā2, b̄2 are the moduli of elastic compliance of a material:

ā1 = a1
a21 − b21

, b̄1 = b1
a21 − b21

, ā2 = a2
a22 − b22

, b̄2 = b2
a22 − b22

.

It allows to represent Eqs. (22.11) in the matrix form:

A
∂U

∂t
= B1 ∂U

∂x1
+ B2 ∂U

∂x2
+ QU (22.12)

with symmetric matrix–coefficients A, B1, B2 and antisymmetric matrix Q. When
the inequalities

a1 > |b1|, a2 > |b2|, α2 > 0

are performed, the system of equations (22.12) belongs to the class of symmetric
t-hyperbolic systems [8] and systems of thermodynamically consistent conservation
laws [9, 10]. The system (22.12) is formulated with respect to the vector–functionU ,
whose components v1, v2, ω3, σ11, σ22, σ21, σ12, μ31, μ32 are written in the column.
Characteristic matrix of the system n1 B1 + n2 B2 − c A is as follows:

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

− ρ0 c 0 0 n1 0 0 n2 0 0
0 − ρ0 c 0 0 n2 n1 0 0 0
0 0 − J0 c 0 0 0 0 n1 n2
n1 0 0 − ā1 c b̄1 c 0 0 0 0
0 n2 0 b̄1 c − ā1 c 0 0 0 0
0 n1 0 0 0 − ā2 c b̄2 c 0 0
n2 0 0 0 0 b̄2 c − ā2 c 0 0
0 0 n1 0 0 0 0 − c/α2 0
0 0 n2 0 0 0 0 0 − c/α2

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

.
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Setting c, n1, n2 as zeros and units, from this system one can express the symmetric
matrix–coefficients. The antisymmetric matrix Q = (q jk) is completely filled with
zeros, except for its coefficients q36 = − q63 = 1 and q37 = − q73 = −1.

The characteristic equationdet
(
n1 B1 + n2 B2 − c A

) = 0has six nontrivial roots
c = ±c1, ±c2 and ±c3, which determine three velocities of weak shock waves prop-
agating in the direction of the unit vector (n1, n2)—longitudinal waves, transverse
waves and waves of rotational motion:

c1 =
√

λ1

ρ0
, c2 =

√
λ2

ρ0
, c3 =

√
α2

J0
,

λ1;2 = a1 + a2
2

±
√(

a1 − a2
2

)2(
n21 − n22

)2 + (
b1 + b2

)2
n21 n

2
2 ,

and a triple zero root corresponding to the contact discontinuities.
Using the general approach developed in [20, 22], it is possible to construct

a model of the elastic-plastic Cosserat continuum based on the system of equa-
tions (22.12) of the elasticity theory. Such model is formulated as a variation in-
equality:

(
Ũ −U

) ·
(
A

∂U

∂t
− B1 ∂U

∂x1
− B2 ∂U

∂x2
− QU

)
� 0 , Ũ , U ∈ F . (22.13)

Here, F is the set of admissible variations of the vector U , and Ũ is an arbitrary
element of F . The variational inequality is a formulation of the von Mises’ principle
of maximum power of plastic dissipation. The set F does not contain constraints
on the velocity vector and angular velocity. The boundary of this set in the space
of stresses and couple stresses is the yield surface of a material. If U lies inside
F , then, due to the arbitrariness of variation, from (22.13) follows the system of
equations (22.12) describing the elastic process. If U is a boundary point, then the
associated law of plastic flow is fulfilled, in accordance with which the vector of
plastic strain rate is directed along the outward normal to the boundary.

Since, within the framework of accepted model, the behavior of orthotropic con-
tinuum is completely determined by the deformation properties of the weakened
interlayers of blocky structure, the yield criterion is used in the following form:

∣∣σ21

∣∣ � τ0 − κτ σ11 ,
∣∣σ12

∣∣ � τ0 − κτ σ22 ,
∣∣μ31

∣∣ � μ0 − κμ σ11 ,
∣∣μ32

∣∣ � μ0 − κμ σ22 .
(22.14)

In this criterion, τ0 and μ0 are the yield limits of a material of interlayers under shear
and bending, and κτ and κμ are the phenomenological coefficients taking into account
the increase in elastic properties under the action of compressive stresses. The normal
stresses σ11 and σ22 are involved in (22.14) as unvariable hardening parameters of
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(a) (b)

Fig. 22.3 Scheme of action of tangential stresses caused by rotations of the blocks (a), scheme of
couple-stressed interactions (b)

a material. In the case of positive (tensile) normal stresses, the condition of plasticity
makes sense only until the moment of separation, when the yield limits, decreasing
with increase in stresses, become equal to zero.

The yield criterion limits the tangential components of the nonsymmetric stress
tensor, which characterizes shear along the interlayers. This criterion also limits the
couple stresses, and when their limit values are achieved, it leads to an irreversible
change in the curvature characteristics of the deformed state of the continuum.

Transition to the plastic state occurs as one or more equalities in (22.14) are
achieved. Figure22.3 shows two schemes explaining the meaning of this criterion.
The first of them illustrates how, due to the rotation of particles in the interlayers, the
reaction forces arise that violate the symmetry of the stress tensor. Judging by this
scheme, tangential stresses in the Cosserat continuum are caused by two factors—
shear strain and rotation of particles.

Both factors influence the transition to plasticity; therefore, in the first line of
inequalities (22.14) two tangential stresses are present independently. If the rotation
field is nonuniform, then, as shown in the second scheme, couple stresses occur,
which are taken into account in the second line of (22.14).

22.5 Results of Computation

The methods of solution of dynamic problems for a blocky medium and for the
Cosserat continuum were implemented as software packages in the Fortran lan-
guage by means of the MPI library. Technology of parallelization is based on the
uniform distribution of computational domain between the nodes of a cluster. Two-
dimensional decomposition of computational domain is used for the considered prob-
lems. Each node of a cluster on each time step performs similar computations consist-
ing of mutually coordinated step-by-step realization of the space-variable splitting
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method. The exception is represented by the processes which, in edition, perform the
pasting together of solutions on the inner boundaries of blocks. Data interchange be-
tween the processes is carried out at the predictor step of the finite difference scheme
on stages of the two-cyclic splitting method. Parallel programs were registered in
Rospatent [25, 27].

The developed program codes were applied to solve a series of problems related
to the waves propagation in a blocky medium under intensive loads. In the plane
strain approximation, the destruction of a vertical brick wall, whose length is 20m
and height is 10m, with weakened connecting seams was simulated due to a pulse
action through a loading platform of width 5m on the upper boundary. Figures22.4,
22.5 and 22.6 demonstrate the stress fields in the blocks, zones of plasticity and zones
of fracture in the interlayers, which vary as soon as the head wave passes through
blocks and reflects from interlayers, for three successive time moments. U -shaped
pulse of pressure p0 = 500MPa, uniformly distributed over the contact surface,
acted for the time t0 = 0.5ms. Lateral sides of the brick wall were considered as
free of stresses. At the lower boundary, conditions of adhesion with an absolutely
rigid foundation were set. Besides the uniformly distributed pressure, the case of
a linear distribution of p(x1) = p0 + κp(x1 − x01 )/ l with different values of κp was
considered separately, simulating the rotation of the platform around the middle
point x01 of the upper side of the wall. Computations were performed for blocks of
the size 0.1m × 0.1m and interlayers of the thickness δ = 1mm with the parame-
ters: ρ = 3700 kg/m3, c1 = 3500, c2 = 2100m/s (for blocks) and ρ ′ = 1200 kg/m3,
c′
1 = 1500, c′

2 = 360m/s, τs = 0.86MPa, κs = 0, ε∗ = 3% (for interlayers). The
considered brick wall consisted of 200 × 100 square blocks. Each block was cov-
ered by a grid of 20 × 20 meshes.

(a) (b)

(c)

Fig. 22.4 Level curves of tangential stress σ12 under U -shaped pulse loading at different time
moments: t = 2.7ms (a), 5.4ms (b) and 8.1ms (c)
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(a) (b)

(c)

Fig. 22.5 Level curves of normal stress σ22 under U -shaped pulse loading at different time mo-
ments: t = 2.7ms (a), 5.4ms (b) and 8.1ms (c)

Fig. 22.6 Configuration of plastic zones (a, c, e) and of fracture zones (b, d, f) under U -shaped
pulse loading at different time moments: t = 2.7ms (a, b), 5.4ms (c, d) and 8.1ms (e, f)
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The clusters of the MVS series of the Institute of Computational Modeling SB
RAS (Krasnoyarsk) and the Joint Supercomputer Center of the Russian Academy of
Sciences (Moscow) were used for computations.

For a linear pressure profile, the pattern of distribution of plastic zones remains
approximately the same as for uniform distribution, but the fracture zones change sig-
nificantly. Due to the rotational motion of a medium under platform, cracks develop
near the region of maximum pressure.

Computations were also performed for a�-shaped pulse in time variable with the
same action time and twice pressure (in order to preserve constant integralmomentum
of the load). Characteristic difference of the results is that the cracks originate in
the middle of the wall and their number practically does not grow with time (see
Fig. 22.7).

For comparison, the problem of loading the brick wall by U -shaped pressure
pulse without fractures was solved. Numerical results are represented in Figs. 22.8,
22.9 and 22.10. The difference from Figs. 22.4, 22.5, 22.6 and 22.7 is that in intact
material there is no fine-dispersed diffraction of waves, and therefore, their reflection
from the upper side of the wall, as from a free surface, is more clearly seen.

Fig. 22.7 Configuration of plastic zones (a, c, e) and of fracture zones (b, d, f) under �-shaped
pulse loading at different time moments: t = 2.7ms (a, b), 5.4ms (c, d) and 8.1ms (e, f)
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(a) (b)

(c)

Fig. 22.8 Level curves of tangential stress σ12 without fractures under U -shaped pulse loading at
different time moments: t = 2.7ms (a), 5.4ms (b) and 8.1ms (c)

(a) (b)

(c)

Fig. 22.9 Level curves of normal stress σ22 without fractures under U -shaped pulse loading at
different time moments: t = 2.7ms (a), 5.4ms (b) and 8.1ms (c)
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Fig. 22.10 Configuration of plastic zones without fractures under U -shaped pulse loading at dif-
ferent time moments: t = 2.7ms (a), 5.4ms (b) and 8.1ms (c)

In general, computations have shown that the pulse shape as a function of time
and the distribution of pressure under the platform have a significant influence on the
cracking pattern, although the stress state, including the configuration of plasticity
zones, varies only slightly.

The considered problems of wave propagation in the brick wall (with and without
fractures) are pure methodological, they are not correspond to any real situation.
The main goal was to compare the results obtained using the blocky medium model
and the Cosserat continuum theory.

In Figs. 22.11, 22.12 and 22.13, one can see the results of computations, obtained
within the framework of model of the elastic-plastic Cosserat continuum.

A rather fine grid of 500 × 250 meshes was used, the size of which is consis-
tent with the characteristic linear scale r0 = √

6 J0/ρ0 ≈ 0.1m of the material
microstructure in the sense that this size of particles corresponds to approximately
five meshes of the grid. For reliability, the results were recalculated on a half finer
grid. No major changes were detected.

The mechanical parameters given in Table22.1 from [24] for the same blocky
material were used in computations. Here, c′′

1 , c
′′
2 , c

′′
3 are the velocities of elastic waves

for the Cosserat continuum in the coordinate directions. The shear and bending yield
limits were assumed to be 0.86MPa and 8.8 kPam, respectively. Material hardening
due to the compression was not taken into account. Yield limits are two orders of
magnitude lower than the maximum stresses in the elastic problem. In fact, the ratio
of yield limits, which primarily depends on the mechanical properties of material
of the seams, can vary over a wide range. Therefore, to analyze the influence on
the deformation process of various factors such as shear deformations and curvature



22 Supercomputer Modeling of Wave Propagation in Blocky Media … 395

(a) (b)

(c)

Fig. 22.11 Level curves of tangential stress σ12 for the Cosserat continuum: t = 2.7ms (a),
5.4ms (b) and 8.1ms (c)

(a) (b)

(c)

Fig. 22.12 Level curves of normal stress σ22 for the Cosserat continuum: t = 2.7ms (a), 5.4ms (b)
and 8.1ms (c)
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(a) (b)

(c)

Fig. 22.13 Level curves of energy of plastic dissipation for the Cosserat continuum: t = 2.7ms (a),
5.4ms (b) and 8.1ms (c)

Table 22.1 Mechanical parameters of the Cosserat continuum

δ, mm ρ0,
kg/m3

J0,
kg/m

a1,
GPa

b1,
GPa

a2,
GPa

b2,
GPa

α2,
MN

c′′
1 , m/s c′′

2 , m/s c′′
3 , m/s

0.1 3690 6.15 44.5 19.1 14.8 6.77 22.2 3470 2000 1900

1.0 3650 6.05 38.6 16.5 6.46 4.05 9.60 3250 1330 1260

5.0 3470 5.59 23.8 10.2 2.33 0.53 3.39 2620 820 780

characteristics, one of the two yield limits was assigned the value exceeding the level
of elastic stresses.

In Figs. 22.11, 22.12 and 22.13, the stress fields and the configuration of plastic
zones are depicted. Comparison with Figs. 22.8, 22.9 and 22.10 shows a good qual-
itative and even quantitative correspondence of the results obtained by the model of
a discrete-continuous blockymedium and by the model of a continuum. As a hypoth-
esis, wemay suggest that the formation and growth of cracks in a blockymedium can
be modeled on the basis of equations of the elastic-plastic Cosserat continuum by
means of adequately specifying the parameter κμ in the criterion of plasticity (22.14)
to describe the separation effect. Testing this hypothesis requires computations of
many variants of the problem on the selection of the parameter, which is beyond the
scope of this chapter.
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22.6 Concluding Remarks

To studywave processes in structurally inhomogeneousmedia, a discrete-continuous
model of a blocky structure composed of elastic blocks interacting through thin com-
pliant elastic-plastic interlayers is proposed. In this model, the deformation of blocks
is simulated on the basis of a system of equations of dynamic theory of elasticity. In
interlayers, the simplified physically nonlinear governing relations thermodynami-
cally consistent with the main system are used. Alternative approach is developed
based on the model of the orthotropic Cosserat continuum, taking into account plas-
tic deformation of a material and independent rotations of the particles (blocks).
Comparative analysis of these models using supercomputer technologies in solving
the problem of pulse loading of a brick wall showed that by appropriate choosing
the mechanical parameters of the Cosserat continuum, it is possible to achieve cor-
respondence of the results both on qualitative and quantitative levels. The model of
a blockymedium is generalized for the description of crack formation in the interlay-
ers. It is also suitable for taking into account the more complex effects of the porosity
of the interlayers and fluid saturation in combination with the destruction due to the
pore pressure and deformation processes caused by the external influence. Devel-
oped computational algorithms and software can be used to test the adequacy of the
formulas for calculating the parameters of the Cosserat continuum of blocky-layered
structures obtained as a result of using the homogenization procedures.
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Chapter 23
Structural and Micropolar Beam Models
of Nanocrystalline Materials
(One-Dimensional Case)

Samvel H. Sargsyan

Abstract In the present paper, linear atomic chain is studied. It is assumed that there
is a non-central force and moment interaction between the atoms of the chain. The
discrete model of the chain is constructed with the main equations and Hamilton
principle. Further, the limit procedure to the continual (beam) model is performed.
It is shown that the continual (beam) model of the linear chain of atoms is identical
to the applied beam model, which is constructed based on the moment (micropolar)
theory of elasticity. Elastic constants of the micropolar beam are determined through
the elastic parameters of the discrete model of the linear chain of atoms.

Keywords Linear chain of atoms · Discrete · Continual-moment model ·
Beam-applied model · Moment elasticity · Elastic parameters

23.1 Introduction

In connection with the development of nanotechnology, mathematical modeling of
carbonmaterials (nanotube, graphene, etc.) is of great interest. Themolecular dynam-
ics method is the most common one to study atomic or molecular systems of larger
sizes [1, 2]. In computational nanotechnologies, the molecular dynamics method (in
case of static problems—the molecular mechanics method) allows to calculate new
and perspective materials at the atomic–molecular level and creates nanomaterials
with required physical–mechanical properties.

It should be noted that in recent decades, methods of mechanics of a deformable
solid body are widely used for modeling the nanomaterials. For example [3], during
the calculation of the stress–strain state of nanotubes, the classical theory of elastic
thin shells without consideration of the microstructure of the material is used. In
other cases, by using the theory of elastic shells [4, 5], the elastic modules of the
shell are determined as a result of studying a discrete model where only the force
interaction between the tube-forming atoms is taken into account. However, [6–8],
the existence of a single-layer nanotube and grapheme speaks about the need to take
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into account the moment interaction between atoms (otherwise, the atomic layer,
forming the nanotube or grapheme, would not have flexural rigidity, which is not
true).

On the other hand, it is known that, in principle, it is impossible to define the
thickness of nanomaterials (nanotube, graphene, etc.). Despite this fact, to study
nanotubes or graphene, both the above-mentioned shell models [3–5] and the beam
models, constructed in papers [9–15], contain the concept of their thickness. From this
point of view, it is important to construct suchmechanicalmodels; in this case “beam”
ones, which, on the one hand, would take into account the moment interactions
between the atoms of the nanomaterial and, on the other hand, would not use the
concept of their thickness.

In this paper, based on consideration of non-central force and moment interaction
between atoms, a discrete model of a nanocrystalline chain of atoms is constructed
and, further, by performing limit passage, its continuous one-dimensional (“beam”)
model is constructed, where the thickness of the “beam” plays no role. In thismicrop-
olar “beam” continual model, all elastic constants are expressed by the parameters
of the atomic discrete model of the considered chain.

Taking into account that in [16, 17], the simple, physically understandable, and
illustrative one-dimensional model of a micropolar elastic beam, where (in case of
free vibrations) the concept of the thickness of this beam does not participate, is
constructed. Using the asymptotic method, the elastic constants of the micropolar
beam are determined through the parameters of the atomic discrete model of the
chain by comparing with the continuous “beam” model of the atomic chain.

23.2 Discrete-Moment Model of the Atom Chain.
Hamilton’s Principle

A polyatomic molecule is considered, when atoms (with the same mass and moment
of inertia) of the given molecule are located with an equal interval a along one
straight line (such molecule is called a linear or atomic chain). Let the axis x be
located on this straight line. We will take into account the interaction of each atom
only with its nearest neighbors. The acting forces and moments on the atom with the
number k from the neighboring atoms with the numbers k−1 and k+1 are noted as
follows. Since the mentioned forces are of non-central nature, components along the
axis x are marked with a letter N components along the axis y—with a letter Q the
moments—with a letter L. The movement of the atoms of the chain runs in a plane xy
(longitudinal deformation—along the axis x, bending deformation—along the axis
y).

The motion equations of the atom with the number k as a body-point [18] will be
expressed as follows (free oscillations are considered):
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N (k+1) − N (k) = m
∂2u(k)

1

∂t2
, (23.1)

Q(k+1) − Q(k) = m
∂2u(k)

2

∂t2
, L(k+1)

3 − L(k)
3 + Q(k) 1

2
a

+ Q(k+1) 1

2
a = I3

∂2ω
(k)
3

∂t2
. (23.2)

Here, m and I3 are the mass and moment of inertia of each atom, N (k)—the longi-

tudinal force, Q(k)—the shear force, L(k)
3 —the bending moment,

(
u(k)
1 , u(k)

2

)
—the

components of displacement vector of the atom with the number k, ω
(k)
3 —the free

rotation of the kth atom around the axis z In the second equation from the system
(23.2), (i.e., in the equation of moments) for shear forces, Q(k) and Q(k+1) middle
points between neighboring atoms are taken as points of their application.

In the literature (e.g., [11]), expressions for the potential energy ofmanymolecules
are well known in the linear approximation (i.e., if we accept that the elastic forces
and moments depend on the deformation displacements and rotations by the linear
low). This expression for the considered chain of atoms can be written as follows:

V = 1

2

∑
k

C1

(
d(k)
1

)2 + 1

2

∑
k

C2

(
d(k)
2

)2 + 1

2

∑
k

C3
(
θ(k)

)2
, (23.3)

where Ci , i = 1, 2, 3—are the elastic constants for the corresponding deformations
(longitudinal or bending), d(k)

1 —longitudinal relative displacements, d(k)
2 —relative

bending linear displacements, θ(k)—relative angular free displacements, i.e.,

d(k)
1 = u(k+1)

1 − u(k)
1 , d(k)

2 = u(k+1)
2 − u(k)

2 − 1

2
a
(
ω

(k+1)
3 + ω

(k)
3

)
,

θ (k) = ω
(k+1)
3 − ω

(k)
3 . (23.4)

The expression of the potential energy (23.3) is usually used to calculate the
vibration spectra of polyatomic molecules, and the elastic constants Ci (i = 1, 2, 3)
can be considered as known in advance (experimentally) for many molecules [14].

It is easy to see, that

N (k+1) − N (k) = − ∂V

∂u(k)
1

, Q(k+1) − Q(k) = − ∂V

∂u(k)
2

,

L(k+1)
3 − L(k)

3 = − ∂V

∂ω
(k)
3

. (23.5)
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Thus, Hooke’s law for the considered linear molecule can be written as follows:

N (k) = C1

(
u(k)
1 − u(k−1)

1

)
, (23.6)

Q(k) = C2

[(
u(k)
2 − u(k−1)

2

)
− 1

2
a
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ω
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3 + ω

(k−1)
3

)]
,

L(k)
3 = C3

(
ω

(k)
3 − ω

(k−1)
3

)
. (23.7)

Thus, the discrete model (molecular dynamics model) for the considered linear
molecule is constructed: In the case of longitudinal oscillations, this is the motion
Eq. (23.1) and the elasticity law (23.6) and in the case of bending oscillations, this
is the motion Eq. (23.2) and the elasticity law (23.7).

For the considered linear molecule, the kinetic energy will have the following
expression:

K = 1
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dt
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From the expressions (23.3), (23.4), and (23.8), the Lagrangian L for the
considered linear molecule is equal to

L = K − V = 1
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, (23.9)

and the Hamilton’s principle will be expressed as follows:

δ

t2∫

t1

Ldt = δ

t2∫

t1

(K − V )dt = 0. (23.10)

It is easy to see that the Euler–Lagrange equations, obtained from the Hamilton
principle (23.10) (with consideration of (23.9)) are the motion Eqs. (23.1) and (23.2).
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23.3 One-Dimensional (“Bending”) Continual Model
of Linear Chain of Atoms. Hamilton’s Principle
for the Continual Model

To construct a continual model of a linear molecule, the Lagrangian of the discrete
model (23.9) will be presented in the following form:

L = 1
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(23.11)

The special form, in which the Lagrangian of the discrete model (23.9) is written,
is chosen for the convenience of limit transition to the case of a continual (continuous)
model, i.e., when a → 0.

Regarding themultiplier a, which stands under the sum in front of the big brackets
in formula (23.11), it should be replaced by�x = dx , and the summation by k should
be replaced by the integral by x. Further, it is clear that the index k, characterizing the
number of the atom, should turn into a continuous coordinate x, when moving to the
continual model. Therefore, instead of variables u(k)

1 (t), u(k)
2 (t) and ω

(k)
3 (t), we will

now have variables u(x, t), w(x, t) and �(x, t). As for the quantities Ci · a, i =
1, 2, 3,wewill see below that their limiting values, when a → 0, are constant, which
will be noted as follows:

Ci · a,= C̃i , i = 1, 2, 3. (23.12)

Acting in the above-mentioned way because of the passage to the limit, when
a → 0, Eq. (23.11) turns into a Lagrangian of continuum model, for which we will
have:
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C̃1ε

2
x + C̃2γ

2 + C̃3χ
2
)}

dx . (23.13)

Here
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εx = ∂u

∂x
= lim

a→0

u(k+1)
1 − u(k)

1

a
, (23.14)

γ = ∂w

∂x
− � = lim

a→0

[
u(k+1)
2 − u(k)

2

a
− 1

2

(
ω

(k+1)
3 + ω

(k)
3

)]
, (23.15)

χ = ∂�

∂x
= lim

a→0

ω
(k+1)
3 − ω

(k)
3

a
, (23.16)

ρ̃ = lim
a→0

m

a
, Ĩ = lim

a→0

I

a
, (23.17)

ρ̃—is the linear density of the chainmass, Ĩ—the linear density of its moment of
inertia, εx—the relative longitudinal deformation,γ—shear deformation, andχ—the
curvature of the chain.

To obtain the motion equation, the elasticity and geometric relations for the con-
tinual model, the motion Eqs. (23.1), (23.2), and the elasticity relation (23.7) are
expressed as follows:
Motion equation

N (k+1) − N (k)

α
= m

a

∂2u(k)
1

∂t2
, (23.18)

Q(k+1) − Q(k)

α
= m

a

∂2u(k)
2

∂t2
,

L(k+1)
3 − L(v)

3

α
+ 1

2
Q(k) + 1

2
Q(k+1) = I3

a

∂2ω
(k)
3

∂t2
(23.19)

Elasticity relations

N (k) = c1a
u(k)
1 − u(k−1)

1

a
, (23.20)

Q(k) = c2a

[
u(k)
2 − u(k−1)

2

a
− 1

2

(
ω

(k)
3 + ωk−1

3

)]
,

L(k)
3 = c3a

ω
(k)
3 − ω

(k−1)
3

a
. (23.21)

Passing to the limit, when α → 0, we obtain the motion equations, the elasticity,
and geometric relations for the continual model:
Motion equation

∂N

∂x
= ρ̃

∂2u

∂t2
, (23.22)
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∂Q

∂x
= ρ̃

∂2w

∂t2
,

∂L3

∂x
+ Q = Ĩ

∂2�

∂t2
; (23.23)

Elasticity relations

N = c̃1εx , (23.24)

Q = c̃2γ, L3 = c̃3χ, (23.25)

Geometric relations

εx = ∂u

∂x
, (23.26)

γ = ∂w

∂x
− �, χ = ∂�

∂x
. (23.27)

Equations (23.22), (23.24), and (23.26) relate to longitudinal vibrations and
Eqs. (23.23), (23.25), and (23.27)—to bending vibrations. The initial and boundary
conditions should be added to these groups of equations.

For longitudinal oscillations, values for u and ∂u
∂t are given initial conditions when

t = 0, and for bending oscillations values for w,Ω and ∂w
∂t , ∂�

∂t are given as initial
conditions at the beginning of the movement.

The boundary conditions are given at x = 0 or x = l:

1. The conditions for displacements and free rotation, for example, if one of these
edges is rigidly fixed, then we have the following boundary conditions:

u = 0 (23.28)

for longitudinal vibrations,

w = 0, � = 0 (23.29)

for bending vibrations.

2. For the free edge

N = 0 (23.30)

for longitudinal vibrations,

Q = 0, L = 0 (23.31)

for bending vibrations.
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There may also be mixed boundary conditions. It should be said that the motion
Eqs. (23.22), (23.23) and the boundary conditions (23.30), (23.31) can be obtained
based on the Hamilton principle (23.10), (23.13) for the continual model.

If the formulas of geometric relations (23.26), (23.27) are substituted into relations
of elasticity (23.24), (23.25) and the obtained expressions are substituted into the
equations of motion (23.22), (23.23), we will obtain the following equations (relative
to the function u = u(x, t) in case of longitudinal vibrations, and w(x, t), �(x, t)
in case of bending vibrations):

Equations of longitudinal vibrations

c̃1
∂2u

∂x2
= ρ̃

∂2u

∂t2
; (23.32)

Equations of bending vibrations

c̃2

(
∂2w

∂x2
− ∂�

∂x

)
= ρ̃

∂2w

∂t2
; c̃3 ∂2�

∂x2
+ c̃2

(
∂w

∂x
− �

)
= Ĩ

∂2�

∂t2
. (23.33)

Themodel (23.22), (23.24), (23.26), (23.28), or (23.30) for the longitudinal vibra-
tions of the chain of atoms, and themodel (23.23), (23.25), (23.27), (23.29), or (23.31)
for bending vibrations of atomic chains represent, respectively, one-dimensional-
continual (“beam”) models for vibrations of the atomic chains. The equations of
these models do not contain the concept of the thickness of the “beams.” This is a
very important result for nanomaterials, particularly for a graphene, if we assume
that the material is located in the plane xz, that all atoms synchronously move along
the axis z, and vibrations are in the plane xy along x—the longitudinal ones and along
y—bending ones.

Equations (23.32) for longitudinal vibrations or (23.33) for bending vibrations of
a chain of atoms can be compared with the corresponding equations of the simple
models of vibrations of micropolar thin beams.

23.4 Equations of the Simple Applied Theory
of Micropolar Elastic Thin Beams with Free Fields
of Displacements and Rotations. Comparison
of the Constructed Models and Determination
of the Micropolar Elastic Parameters

In [16, 17], based on the asymptotic approach, the simple version of the applied
theory of micropolar elastic thin beams is constructed for problems of statics and
dynamics. The determining system of equations of the applied theory of micropolar
elastic thin beams with free vibrations is expressed as follows:
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Equation for longitudinal vibrations

E
∂2u

∂x2
= ρ

∂2u

∂t2
, (23.34)

where E is Young’s modulus and ρ—volume density of the material mass.
Equations for bending vibrations

4μα

μ + α

(
∂2w

∂x2
− ∂�

∂x

)
= ρ

∂2w

∂t2
,

B
∂2�

∂x2
+ 4μα

μ + α

(
∂w

∂x
− �

)
= I

∂2�

∂t2
, (23.35)

whereμ is the classicalmodule of shear,α—micropolarmodule of shear,B—microp-
olar elastic constant of the studied material, and I—volume density of the moment
of inertia.

As we will see, Eqs. (23.32) and (23.34), as well as Eqs. (23.33) and (23.35), are
quite similar to each other. The main difference is that in Eqs. (23.32) and (23.33),
ρ̃ is the linear mass density and Ĩ—the linear density of the moment of inertia, and
in Eqs. (23.34) and (23.35), ρ is the volume density of the mass and I—the volume
density of the moment of inertia. It is clear that in the left parts of these equations,
the coefficients will also be physically different.

To make a comparison of Eqs. (23.32) and (23.34), as well as (23.33) and (23.35),
we assume that the representative volume for the studied material is a cube with a
size a then ρ̃

a2 will be an approximate value of the volume density of the material,

and Ĩ
a2—of volume density of the moment inertia.

After such reasoning, Eqs. (23.34) and (23.35) will be as follows:
Equation for longitudinal vibrations

E
∂2u

∂x2
= ρ̃

a2
∂2u

∂t2
; (23.36)

Equations for bending vibrations

4μα

μ + α

(
∂2w

∂x2
− ∂�

∂x

)
= ρ̃

a2
∂2w

∂t2
,

B
∂2�

∂x2
+ 4μα

μ + α

(
∂w

∂x
− �

)
= Ĩ

a2
∂2�

∂t2
. (23.37)

Now, comparing Eqs. (23.32) and (23.36), and (23.33) and (23.37), wewill obtain:

Ea2 = c̃1, (23.38)
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4μα

μ + α
a2 = c̃2, Ba

2 = c̃3. (23.39)

From where

E = c̃1
a2

, (23.40)

4μα

μ + α
= c̃2

a2
, B = c̃3

a2
. (23.41)

Equations (23.40) and (23.41) represent the connections between the physical macro
parameters and the micro (nano) parameters of the material during the longitudi-
nal and bending vibrations. Equation (23.41) makes it possible to calculate the
mechanical constants of the micropolar substance through the parameters of the
atomic–molecular structure of this substance.

23.5 Conclusion

In the presentwork, assuming that the force interaction between the atomsof the chain
is non-central, and that moment interaction is present, the structural (discrete) and
continual (moment)—“beam” models are constructed for the atomic chain. The con-
tinuum (moment)—“beam” model corresponds to the simple demonstrative model
of a micropolar elastic thin beam with free fields of displacements and rotations con-
structed earlier [16, 17]. Based on these correspondence, elastic constants, including
micropolar ones are expressed by the characteristic features of the atomic structure.
The constructed micropolar—“beam” model can be used to develop applied finite-
element software packages with the purpose of studying flat nanostructures (e.g., for
graphene).
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Chapter 24
Circuit Analogies in the Search
for New Metamaterials: Phenomenology
of a Mechanical Diode

Mario Spagnuolo

Abstract The pantographic metamaterial, a particular metamaterial, composed of
two orthogonal families of fibers, with remarkable deformation properties, presents,
in case the interconnections between the two layers of fibers are perfect hinges, a
mechanical response that recalls by analogy the law characteristic of diodes, in the
theory of electrical circuits. In this sense, the pantographic metamaterial represents
a sort of mechanical diode.

Keywords Metamaterials synthesis · Pantographic structures · Higher gradient
models · Extension tests · Diode

24.1 Introduction

Technological breakthroughs in additive manufacturing have allowed the creation
of highly complex designs for structures and objects. With this particular capability,
3D printing has substantially improved the realization and investigation of metama-
terials, i.e. materials that have exotic mechanical features with an a priori chosen
microstructure [26, 32, 33]. A particular group of metamaterials is constituted by
the so-called pantographic metamaterials.

Such pantographic architectures are constituted by two families of parallel fibers
that are joined by some pivots. Recently several samples have been moulded in
Polyamide substituting the standard pivots (cylinders with a certain torsional stiff-
ness) with perfect pivots, which are equivalent to hinges (free rotations). Details of
this research are given in [10, 14, 29, 54, 60, 61, 65, 67–69].

Pantographic structures with perfect pivots are the object of the present study.
In this paper we present some phenomenological observations on the mechanical
behaviour of the aforementioned pantographic structures with perfect pivots. In fact,
through numerical simulations and experimental tests, it is observed that the curve of
the force-displacement plot in the case of perfect pivots takes on an extremely peculiar
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form. By analogy with electrical circuits, the shape of the mechanical response of
the pantographic metamaterial is reminiscent of that of the voltage-current rule in
diodes.

24.2 Continuum Model of Pantographic Structures

A typical procedure in the synthesis of newmetamaterials is to specify the properties
and mechanical responses required to the sought metamaterial by means of appro-
priately chosen equations. As a second step, the microstructure that, when properly
homogenized, produces the above specified mechanical response is searched for.

In the practical case of pantographic structures, the sought behaviour consists in
having a material whose elongation can be produced with no energy expense. In
[1, 63] it is proven that such a material can be obtained by homogenisation of a
pantographic microstructure (see Fig. 24.1).

Similarly to what Casal did in the case of the deformation energy of a beam
[18, 19], in Seppecher et al. [63] a grid of fibres as the one of Fig. 24.1 was proposed
as the fundamental cell of the microstructure to be homogenised to obtain a second
gradient macroscopic model with the following properties:

i. it consists of two families of mutually orthogonal fibers, which intersect by
means of some cylinders called pivots (see Fig. 24.1);

ii. the pivots, in theory, have no torsional energy;
iii. when clamping the short sides of the structure, its elongation corresponds to

elongation and flexion of the fibers; the latter one ismodeled by a second gradient
energetic term.

Fig. 24.1 CAD design of a
pantographic structure with
perfect pivots and detail of
the pivots
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As a result of points (i)–(iii), the homogenised model corresponding to the pan-
tographic structure has a deformation energy depending on second gradient of the
displacement [8, 17, 27, 28, 38–40, 46, 59].

24.2.1 Deformation Energy of a Pantographic Sheet

In dell’Isola et al. [31] it has been illustrated how to reach a macroscopic model
of second gradient continuum by means of a process of homogenisation (which
actually consists in performing a procedure of identification of the energy of macro-
deformation, which is a macroscopic lagrangian density, in terms of constitutive pa-
rameters appearing in the postulated expressions of the micro-deformation energy)
of a postulated micromodel. If we assume a 2D continuum whose reference config-
uration is given by a rectangular domain � = [0, L1] × [0, L2] ⊂ �2 (for example,
in Fig. 24.1 L1 and L2 represent the lengths of the sides of the ideal rectangle which
contains the pantographic structure) and assuming the planar motion, the current
configuration of � is described by the planar macroplacement

χ : � → �2 (24.1)

In dell’Isola et al. [31] it has been shown that the continuum deformation energy of
a pantographic structure can be written as

U (χ =
∫

�

∑
α

Ke

2
(||FDα || − 1)2 d�

+
∫

�

∑
α

Kb

2

[∇F|Dα ⊗ Dα · ∇F|Dα ⊗ Dα

||FDα ||2 −
(

FDα

||FDα || · ∇F|Dα ⊗ Dα

||FDα ||
)2

]
d�

In Eq. (24.1) it has been defined F = ∇χ and no sum over repeated α is intended.
Moreover, a reference configuration has been introduced, whose unit base vectors,
(D1,D2), are oriented along the fiber directions in the reference configuration. Ke

and Kb represent the elongation and bending stiffnesses, respectively.
If the interconnecting pivots are not perfect hinges, a further energetic term has

to be included into the model formulation, describing the torsion of the pivots (at
the micro-level) and the shear of the metamaterial (at the macro-level). Eventually, it
could be considered a last term that model the relative sliding between the two fibre
layers in correspondence of the interconnections. In this work, the sliding effect is
neglected, while it has been experimentally observed and theoretically investigated
in previous works [7, 64].

Equation (24.1) can be used to perform numerical finite element simulations.
These simulations can be compared with the experiments and thus offer the possi-
bility of validating the proposed model. Figure24.2 shows the geometric shape of a
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Fig. 24.2 The geometric shape of a rectangle with the sides in a ratio of 1:3 (as in a pantographic
structure) is shown. On this rectangle the triangular finite elements used in the numerical code are
displayed

rectangle with the sides in a ratio of 1:3 (as in a pantographic structure) and on which
the triangular finite elements used in the numerical code are displayed.

24.3 A Mechanical Diode

In several applications of interest, the voltage-current behaviour of an ideal diode,
under static conditions, can be approximated by a piecewise linear function. In this
approximation, the current can be considered null if the voltage between anode and
cathode is less than or equal to a certain threshold value Vγ ; if on the contrary the
voltage is higher, the diode can be approximated to a voltage generator, whose current
is imposed by the circuit to which it is subordinated.

In the field of mechanics, a response formally identical to that exhibited by the
diode in electrical circuits is shown by the pantographic metamaterial. In fact, the
macroscopic deformation of the pantographic metamaterial is translated, at themicro
level (i.e. at the level of architecture), by the deformation of its basic constituents, i.e.
fibers and pivots. If the pivots are perfect (see Fig. 24.3) and their torsional stiffness
is therefore zero or negligible, then the overall deformation of the structure results in
the simple deformation of the fibers, which can primarily bend and secondly stretch.

When deforming a perfect pivot pantographic structure in a BIAS extension test,
it will be observed (i) the flexion of the fibers coupled with an extremely negligible
elongation of the fibers and then, after the fibers in the central part of the structure
have come into contact, (ii) an elongation of the fibers (see Fig. 24.4). From the
model’s point of view, the fact that the fibres in the central part of the structure come
into contact is countered by the activation of the various deformation terms in the
strain energy. In fact, if on the one hand in the practical implementation through 3D
printing the fibers are clearly recognizable, on the other hand the model concerns
a continuous two-dimensional medium and it is still referred to as fibers only as
mathematical artifices that allow to write the strain energy as shown above.
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Fig. 24.3 Real sample of a Polyamide printed pantographic structure with perfect pivots (a). Detail
of the pivot (b) and comparison with the CAD design (c)

Fig. 24.4 Bias extension test of a pantographic structure with perfect pivots. Reference configura-
tion (a), deformed configuration with fibres at contact in the center of the specimen (b) and detail
showing the contact of the fibres (c)
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Fig. 24.5 Numerical simulation of the force-displacement plot for a pantographic structure with
perfect pivots

If we plot the reaction force exerted by the pantographic metamaterial during the
BIAS extension test, we theoretically obtain a response composed basically of two
steps: in the first part the force will be due only to the flexion of the fibres and will be
of a very low value (almost negligible if compared with the value of the maximum
force); in the second part, after the contact between the fibres, the energy contribution
of elongation will be activated and the force will change its slope until it reaches very
high values (see Fig. 24.5).

An experimental analysis was carried out to verify the reliability of theoretical
forecasts and numerical simulations. A polyamide pantographic structure with per-
fect pivots was used in a BIAS extension test and the reaction force was measured.
The result obtained is presented in Fig. 24.6.

As can be easily seen from the image, up to 30mm of elongation the measured
force is practically zero or of the order of experimental noise. After this first stage
of extension, the force increases almost linearly (until the sample breaks, which
occurs by successive ruptures of the structural elements, but which we do not intend
to talk about here). This can be explained simply by using the model introduced
previously. In the first part of the extension, the preferred deformation mechanism
is the bending of the fibres which, observing Eq. (24.1), is represented by a highly
non-linear term (hence the non-linearities of the curve) weighted by a very low
Kb stiffness, so that the average value of the measured force is in this first phase
of the extension very small (almost zero, if one considers the sensitiveness of the
experimental apparatus). In the second phase of the extension test, after the fibres
in the central part of the structure have come into contact, the extension mechanism
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Fig. 24.6 Experimental force-displacement plot for a pantographic structure with perfect-pivots
(grey line) and interpolation (red, dash-dotted line)

of the individual fibres is activated. This deformation is represented in Eq. (24.1) by
the elongation energy term, which is quadratic in extension and which is weighted
by a stiffness Ke much higher than Kb. For this reason, at the activation of this
term, the bending term can be considered negligible and, from a theoretical point of
view, the observed response should be linear (because the energy is basically that of
elongation, which is quadratic). Clearly, the bending energy continues to play a role,
even if considerably less than the elongation one, and for this reason it is observed,
both in the measured curve (Fig. 24.6) and in the simulated one (Fig. 24.5), a trend
that is not precisely linear.

The force plot displayed in Fig. 24.6 shows a peculiar feature of the pantographic
metamaterial: this specific metamaterial can be stretched in a certain range (which
depends only on the geometric characteristics of the architecture) with no or neg-
ligible energy and, if stretched outside this range, it will exert a reaction force that
varies linearly with the elongation (up to the emergence of damage).

24.4 Conclusion

In this article a peculiar characteristic of the pantographic metamaterial has been pre-
sented. In the presence of perfect pivots, which at a macroscopic level imply a shear
deformation at zero energy in the homogenised material, the force-displacement
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graph characteristic of this metamaterial is very similar to the voltage-current law
of diodes. The pantographic metamaterial is, in this sense, an example of a mechan-
ical diode. It can be adopted in applications related to structures or systems where
structural elements that exert reaction forces are necessary only for stretching val-
ues above a certain threshold (i.e. applications in earthquake-proof construction, in
structures subject to stress due to vibrations such as parts designed for aeronautical
or aerospace construction). In the different fields of applications, it could be useful
to consider the coupling with other kind of materials, i.e. granular materials [12, 34,
45, 48, 49, 66, 70], laminate plates [3–6, 24], micropolar materials [2, 35, 52].

The study here presented can be completed by an analysis of the damage in
pantographic structures. General discussions to investigate the damage in higher
gradient theories can be found in [53, 56–58]. Problems related to modeling and
simulation of metamaterials like the one presented in this article can be greatly
simplified by the introduction of appropriate numerical tools [9, 11, 20–23, 25,
41–44, 47, 50, 55].

Finally, the problem briefly presented in this article can be investigated and many
of its applications can be designed and tested. This requires accurate theoretical
analyses that find in the literature several points of reference [13, 15, 16, 30, 36, 37,
51, 62].
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Chapter 25
Damping of Oscillations
by a Vibro-Impact System with Serial
Magnetic Impact Pairs

Yuri M. Zamuragin, Alexander M. Gouskov and Vitaly L. Krupenin

Abstract The body vibration damping process with a dynamic shock vibration
damper containing a system of successive shock pairs inwhich the colliding elements
are magnets is considered. The projected parameters’ effect of the vibration damper
on the body oscillations is considered. The features of setting up the system in the
mode of wideband vibration damping are described.

Keywords Impact vibration damping · Magnetic impact pair · Series impact pair ·
Impact interaction force

25.1 Introduction

The creation of modern high-performance machines and high-speed vehicles, forced
by power, loads, and other defining performance, inevitably leads to an increase in
the intensity and expansion of the generated vibration spectrum and vibroacoustic
fields, causing unwanted vibration, the appearance of which leads to disruption of
the proper functioning of the systems. In this case, methods and means of reducing
the existing vibration and the vibration activity of the mechanisms and machine units
are important [1].

The method of dynamic oscillation damping consists in attaching additional
devices to the vibration protection object to change its vibration state in a certain
frequency range of external influence [1, 2]. In this paper, the problem of using a
multi-mass systemwith magnetic elements as a dynamic vibration damper and study
the dynamics of the entire system was considered.

A dynamic shock damper with one shock pair was considered in [1, 3–5]. Issues
related to the use of magnetic elements (an element consisting of a magnetorhe-
ological fluid) to reduce vibration are considered in [6]. The magnetic element in
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this paper is represented by a damping element, the damping coefficient of which
depends on the external magnetic field acting on the element [7].

In this paper, we consider a system with many successive shock pairs, which
include magnetic elements. The fundamentals of the theory of vibro-impact systems
of a similar structure were laid in papers [8, 9]. One-dimensional chains of different
structures were studied, in particular, in papers [10–13]. In addition, in papers [10,
11], chains containing a large number of shock pairs were considered. As a result of
research and numerical modeling revealed a number of significant facts. In particular,
it is shown that the vibration damper can be regulated by changing the distance
between the elements at the equilibrium state. Such a setting provides effective
damping of the body oscillations in the required frequency spectrum.

25.2 Problem Statement

A device, which is considered in this work to use as a dynamic vibration damper
with many shock pairs, is shown in Fig. 25.1a. Identical magnets are located inside
the cylindrical tube. Magnets are oriented at each other by opposite poles, so that
repulsive forces act between them. Two boundary magnets are rigidly fixed at the
ends of body (tube). Each pair of nearby magnetic poles with the same name creates
an elastic one-way connection. When they approach, after overcoming the repulsive
force, impacts are possible. This system has n degrees of freedom and n natural
frequencies. Movable elements are represented as solid bodies. Depending on the
value of external load, determined by themovement of the body, the impact pairsmay
not work simultaneously. There are various possible modes of work of the dynamic
system. With periodic external load of the main body, periodic movements without
collisions can occur. Periodic motions with different number of impact pairs are also
possible. At a high level of external load, complex movements with multiple impacts
can be observed: Since the finite nature of the phase space, the movements can be
quasi-periodic and, apparently, chaotic. This paper offers the result of numerical
simulation of the dynamics of the system under consideration.

Fig. 25.1 a Mechanical model of the damper; b mechanical model of the body, with an installed
damper
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25.3 Motion Equations

Themotion equation of the i-thmovable element in the tube,with harmonic kinematic
load u(t) = B cos(ωt) on the tube with elements, takes the following form:

mẍi + d1 ẋi = Fi − Fi+1 + mBω2 cosωt, i = 1, . . . , n, (25.1)

where

m—mass off i-th magnet, [kg],
xi , ẋi , ẍi—displacement, velocity, and acceleration of i-th magnet relative to equi-
librium states, [m], [m/s], and [m/s2],
d1—damping factor for magnets, [kg/s],
Fi, Fi+1—force, acting on i-th magnet from (i−1)-th and (i+1)-th magnets,
respectively, [N],
B—amplitude of external kinematic load, [m],
ω—frequency of external kinematic load, [s−1].

The function repulsive force versus distance is taken as follows (for more details,
see Appendix)

Fi = F(zi ) = F0zi
(
1 + z2i

)β
, zi = Xi

a
, Xi = A + xi − xi−1, (25.2)

where

A—distance between magnets in the equilibrium state, [m],
F0, [N ], a, [m], β, [1]—experimentally or analytically definedmagnetic parameters,

X∗, [m] and T∗, [s] are chosen as linear and time scales, respectively, for math-

ematical models (25.1) and (25.2), where X∗ = a, T∗ =
√

ma
F0
. The following

dimensionless complexes α, γ, ν, ζ and variables ξ, τ were introduced:

α = A

X∗
, γ = B

X∗
, ν = ωT∗, ζ1 = T∗d1

2m
, ξ = x

X∗
, τ = t

T∗

Equations (25.1) and (25.2) could be written as:

ξ̈i + 2ζ ξ̇i = 
i − 
i+1 + γ ν2 cos ντ, i = 1, 2, . . . , n


i = 
(ξi , ξi−1) = zi
(
1 + z2i

)β
; zi = α + ξi − ξi−1, i = 2, . . . , n − 1 (25.3)

The dimensionless period of external load T 0 for setting integration interval was
introduced:

T0 = 2πν−1
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Since the boundary magnets are fixed in tube, following expressions are valid for
first and last (n-th) magnets:


1 = 
(ξ1, 0) = (α + ξ1)
(
1 + (α + ξ1)

2
)β


n+1 = 
(0, ξn) = (α − ξn)
(
1 + (α − ξn)

2
)β

System consisting of n magnets (25.3) could be linearized near stationary (equi-
librium) state (position of magnets without external loading). Then, equations were
derived to matrix form (25.4), and natural frequencies spectrum and mode shapes of
small oscillations were gained [13].

mξ̈ + rξ = 0, ξ = {ξ1, ξ2, . . .}T , (25.4)

where

m—mass matrix,
r—rigidity matrix,
ξ—system state vector.

The characteristics of this system were considered in [15]. The parameters at
which the impact modes in the system occur were estimated.

It is necessary to solve the equation for the distance between the magnets α at the
stationary state to obtain dynamic damper with certain one of natural frequencies.
Natural frequencies values vs distance between magnets in stationary state is shown
in Fig. 25.2. In order to ensure that the required natural frequency of the system

Fig. 25.2 Natural frequencies vs distance between magnets in stationary state function for system
consisting of four elements (1–4—natural frequencies numbers, 5—external load frequency)
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is equal to the frequency of external load, it is necessary to find the intersection of
line 5 (external load frequency) and one of the natural frequencies (curves 1–4).
Appropriate value α as distance between magnets in stationary state should be taken.

Let us consider to use the described device as a dynamic vibration damper. The
device is installing on a damped body ofmassM, which oscillationsmust be reduced.
Themechanical model of this system is shown in Fig. 25.1b.Motion equation system
damper-damped body takes the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1
(
ξ̈1 + ξ̈n+1

) + 2ζ1ξ̇1 + 
2 − 
1 = 0
. . .

ηi
(
ξ̈i + ξ̈n+1

) + 2ζ1ξ̇i + 
i+1 − 
i = 0, i = 2, . . . , n − 1
. . .

ηn
(
ξ̈n + ξ̈n+1

) + 2ζ1ξ̇n + 
n+1 − 
n = 0

ξ̈n+1 +
n∑

i=1
ηi ξ̈i + 2ζ2ξ̇n+1 + κξn+1 − Π(τ) = 0

(25.5)

The variable ξn+1 denotes the displacement of damped body. Also there were used
following symbols:

ηi = mi(∑n
j=1 m j + M + m0

) , κ = ka

F0
,Π0 = P0

F0
, ζ2 = T∗d2

2m
,

where

m0—mass of the tube without magnets,
mi, mj—i-th and j-th magnets’ masses,
d2—damping factor for body, [kg/s],
n—the number of moving magnets in the damper.

For numerical integration, the system of Eq. (25.5) is presented in matrix form
(25.6).

Ẏ = AY + g(ξ , t);Y =
{
ξ T , ξ̇

T
}T

(25.6)

To describe the interaction of elements of the system at impact, Newton’s theory
of elastic impact was used [14]. When two adjacent elements (i − 1) and i impact,
their coordinates and velocities are changing as follows in accordance with [14]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ+
i−1 = ξ−

i−1

ξ+
i = ξ−

i

ξ̇+
i−1 = (mi−1−rmi )ξ̇

−
i−1+mi (1+r)ξ̇−

i

mi−1+mi
i = 2, . . . , n − 1

ξ̇+
i = mi−1(1+r)ξ̇−

i−1+(mi−rmi−1)ξ̇
−
i

mi−1+mi
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In addition, for magnets i = 1 and i = n, since they impact with the body. The
difference is explained by the fact that the displacement of magnets is counted in
the moving coordinate system (relative to the moving body to which the device is
attached), and the coordinates of the body are counted in an absolute, fixed coordinate
system.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ+
n+1 = ξ−

n+1

ξ+
i = ξ−

i

ξ̇+
n+1 = ξ̇−

n+1 + mi (1+r)ξ̇−
i

M+mi
i = 1, i = n

ξ̇+
i = (mi−rM)ξ̇−

i
M+mi

Laws of motion according to parameters (25.7) are shown in Fig. 25.3 (magnets
in damper) and in Fig. 25.5 (body with damper and without damper). The following
parameters are assumed

n = 4, α = 2.78, ν0 = 0.11, ν = ν0, μ = 25.43, ζ = 4.78 × 10−5,

ζ1 = 4.78 × 10−4, r = 0.95,Π0 = 0.0226 (25.7)

In Fig. 25.4, the big black points indicate themoments of impact between adjacent
magnets in the selected Fig. 25.3 area.

In Fig. 25.5, the body oscillations’ amplitude is shown, with the dynamic damper
installed, with used parameters decreased about ten times compared to the body
without damper.
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Fig. 25.3 Movements of magnets in the system implementation (numbers correspond to magnets’
laws of motion, respectively)
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Fig. 25.4 Moments of impacts between magnets (numbers correspond to magnets’ laws of motion,
respectively)
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Fig. 25.5 Movements of body with damper (2) and body with similar mass without damper (1)
with external frequency equal to natural

25.4 Frequency Response

To estimate the effectiveness of this device as an oscillation damper, it is advisable to
build the frequency response of two bodies. First body with mass M, with dynamic
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Fig. 25.6 Frequency responses’ comparison

damper installed on with mass M1, is calculated by Eq. (25.8). The second one has
massM2, which is equal to full mass of first one (body and dynamic damper)

M1 = m0 +
n∑

j=1

m j (25.8)

Five frequency responses of bodies with dynamic damper consisting of four
magnets are presented in Fig. 25.6 for comparison.
Numbers in Fig. 25.6 mean the following:

1—the first natural frequency of the device is set to the frequency of external load;
2—the second natural frequency of the device is set to the frequency of external load;
3—the third natural frequency of the device is set to the frequency of external load;
4—the fourth natural frequency of the device is set to the frequency of external load;
5—frequency response of body without damper.

The results obtained with numerical simulation of the system’s motion (Fig. 25.6)
show that by setting the second, third, or fourth natural frequency of dynamic damper
to the frequency of external load (by setting distance between magnets in stationary
state), it is possible to effectively reduce oscillations of the protected body in a wide
frequency range. In particular, when ν(4) ≈ ν0 in the range ν ∈ [0.98, 1.1]ν0, almost
complete damping of the oscillations of the main body occurs.
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25.5 Conclusion

Theuse of the proposeddevice as a dynamic damper effectively reduces the amplitude
of oscillations of a damped body. It is necessary to set the second, third, or fourth
natural frequency of the device to body natural frequency.

Acknowledgements The Russian Science Foundation supported the work (project No. 19-19-
00065).

Appendix

Analytical function for magnetic characteristic was found according to Biot–Savart–
Laplace principle and current circuit interaction principle (for more details, see [16]).
Following expression is obtained:

F(X) = 3

2

πB2
Mr

4h2X

μ0
(
r2 + X2

)5/2 ,

where

BM—remanence of material [T],
r—magnet radius, [m],
h—magnet height, [m],
μ0—magnetic constant, [m · kg · s−2A−2],
X—distance between magnets, [m].

After some manipulations, one obtains:

F(z) = F0z
(
1 + (z)2

)5/2 F0 = 3

2

πB2
Mh

2

μ0
z = X

r
(25.9)

The best match with the experiment for specific magnets shows the following
function:

F(z) =
F0

(
z − h

(2r)

)

(
1 +

(
z − h

(2r)

)2
)3

This one was used in the numerical simulation of the device.
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Chapter 26
Exact Solutions of Cubic-Quintic
Modified Korteweg-de-Vries Equation

Alexander I. Zemlyanukhin and Andrey V. Bochkarev

Abstract We study a nonintegrable modified Korteweg-de-Vries equation contain-
ing a combination of third- and fifth-degree nonlinear terms that simulate waves in a
three-layer fluid, aswell as in spatially one-dimensional nonlinear-elastic deformable
systems. It is established that this equation passes the Painlevé test in a weak form.
After the travelingwave transformation, this equation reduces to a generalizedWeier-
strass elliptic function equation, the right side of which is determined by a sixth-order
polynomial in the dependent variable. Determined by the structure of the polynomial
roots, the general solution of the equation is expressed in terms of the Weierstrass
elliptic function or its successive degenerations—rational functions depending on
the exponential functions of the traveling wave variable or directly on traveling wave
variable. The classification of exact solitary-wave and periodic solutions is carried
out, and the ranges of parameters necessary for their physical feasibility are revealed.
An approach is proposed for constructing approximate solitary-wave and periodic
solutions to generalized Weierstrass elliptic equation with a polynomial right-hand
side of high orders.

Keywords Modified Korteweg-de-Vries equation · Exact solutions · Approximate
solutions · Weierstrass elliptic function

26.1 Introduction

In the study of problems of nonlinear wave dynamics of continuous media, gen-
eralizations of equations that are integrable by the inverse scattering method often
arise [1]. The simplest generalization is the Gardner integrable equation containing
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quadratic and cubic nonlinearity. This equation revealed a new type of solitary-wave
solutions—solitons of limiting amplitude, having a plate-like form [2]. The practi-
cal significance of such decisions is the ability to predict the occurrence of rogue
waves in the ocean and the conditions for their prevention on the basis of a numerical
experiment.

Of the nonintegrable generalizations in recent years, the modified Korteweg-de
Vries (mKdV) equation containing a combination of nonlinear third- and fifth-degree
terms (cubic-quintic mKdV or mKdV 3-5) attracts much attention. This equation
has exact solutions in the form of solitary waves of different polarity, which at small
amplitudes are close to the solitons of the mKdV equation, and at large amplitudes
to the solitons of the Gardner equation [3].

The mKdV 3-5 equation first appeared when describing waves in a three-layer
fluid with symmetric stratification. However, it also naturally arises in mod0eling the
propagation of longitudinalwaves in thin rods, plates and shellswhen the dependence
of the stress intensity on the strain intensity has the form of a fifth-degree polynomial
[4, 5].

In this paper, using the Painlevé analysis [6], we study the analytical structure of
equation, obtained from the mKdV 3-5 equation by transition to a traveling wave
variable, build its solution, expressed in terms of the Weierstrass elliptic function
[7–9], classify exact and approximate partial solitary-wave and periodic solutions
and plot the corresponding graphs.

26.2 Painlevé Analysis

Consider a nonlinear third-order partial differential equation, known as the mKdV
3-5 equation:

ut + α1u
2ux + α3u

4ux + βuxxx = 0. (26.1)

After the transition to a running variable z = x − ct and the subsequent integration
over the variable z, we obtain a nonlinear second-order equation

βuzz + α3

5
u5 + α1

3
u3 − cu − β

2
C1 = 0. (26.2)

The first two terms of the equation are its leading terms. The substitution u = u0z−p

in the leading terms shows that the balance between them is achievedwith a fractional
value p = 1

2 for the pole of exact solution. Consequently, Eq. (26.2) does not pass
the Painlevé test, and its general solution does not decompose into a Laurent series.
However, the continuation of the Painlevé analysis gives the integer values −1, 3
for Fuchs indices and shows that the decomposition of u (z) into the Puiseux series∑

n=0
un(z − z0)

(n−1)/2 contains two arbitrary constants z0 and u6. Thus, Eq. (26.2)

passes the Painlevé test in a weak form, and this fact allows us to hope for obtaining
single-valued partial solutions in a closed form [6].
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After term-by-term multiplication by uz , Eq. (26.2) can be integrated again:

(uz)
2 = a6u

6 + a4u
4 + a2u

2 + a1u + a0, (26.3)

where

a6 = − α3

15β
, a4 = − α1

6β
, a2 = c

β
, a1 = C1

2
, a0 = C2 (26.4)

and C1,C2 are the integration constants.
Equation (26.3) contains an incomplete sixth-order polynomial in the dependent

variable and can be considered as a generalization of the canonical equation for
Weierstrass elliptic functions [10]. The representation of the general solution to Eq.
(26.3) in a closed form for arbitrary values of the coefficients is unknown. We obtain
its solutions in particular cases.

26.3 Case 1. a1 = 0, a0 �= 0. Periodic and Soliton Solutions

In this case, the exact solution of Eq. (26.3) is expressed in terms of the Weierstrass
elliptic function or its successive degenerations—simple periodic, rational in exp(z)
or rational in z functions. The specific form of the solution depends on the structure
of the roots of the polynomial on the right side of the equation.

Substitutinga1 = 0 into (26.3), after passing to the newdependent variableu (z) =
v(z)−

1
2 , we get

(vz)
2 = 4a0v

3 + 4a2v
2 + 4a4v + 4a6. (26.5)

Applying to v(z) shift and scaling operation v(z) = by(z) + c, we select the following
parameter values

b = 1

a0
, c = − a2

3a0
, (26.6)

in order to exclude from Eq. (26.5) the term containing v2 and obtain the coefficient
4 for the higher term. As a result, we come to the canonical equation for Weierstrass
elliptic functions:

(yz)
2 = 4y3 − g2y − g3, (26.7)

where

g2 = 4

3
a22 − 4a0a4, g3 = − 8

27
a32 + 4

3
a0a2a4 − 4a20a6. (26.8)

The general solution of Eq. (26.7) is the Weierstrass elliptic function

y(z) = ℘(±z + C3, g2, g3), (26.9)
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containing an arbitrary constantC3, which can have a complex value. After returning
to the original dependent variable u(z), we obtain the general solution of Eq. (26.3):

u(z) =
(

a0
℘(±z + C3, g2, g3) − a2/3

)1/2

, (26.10)

where the invariants g2, g3 are determined by equalities (26.8).
We define the ranges of the coefficients (26.4) for which the solution (26.10) is a

real bounded function, considering the parameters α1, α3, β of the original equation
to be real. In this case, the invariants g2, g3 are also real [10], and depending on the
sign of the discriminant � = g32 − 27g23 , three cases are possible.

If � > 0, then the third degree polynomial

4y3 − g2y − g3 (26.11)

has three different real roots y3 < y2 < y1. These roots define two ranges y1 ≤ y and
y3 ≤ y ≤ y2, in each of which the value of the polynomial (26.11) is non-negative and
Eq. (26.7), which contains the square of the derivative in the left-hand side, can have a
real solution. Each of these ranges corresponds to one real branch of the Weierstrass
elliptic function (26.9). The first branch of the solution, which corresponds to an
unlimited range y1 ≤ y, is a real periodic bounded function of the variable z when
C3 = C, C ∈ R in (26.10) and the conditions a0 > 0, a2 < 3y1 are satisfied. The
forms of one period of the function (26.10) at y1 = 10, y2 = 9, a0 = 1, C3 = 0 and
three different values of a2 are shown in Fig. 26.1.

Fig. 26.1 Form of one
period of the function (26.10)
at y1 = 10, y2 = 9, a0 =
1, C3 = 0 and a2 = 29
(solid), a2 = 20 (dashed),
a2 = −30 (dash-dotted)
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The second branch of the function (26.9), corresponding to a limited range y3 ≤
y ≤ y2, is a real function when choosing a complex value for a constant C3:

C3 = C + ω3 = C − i

y3∫

−∞

(
g3 + g2y − 4y3

)−1/2dy, C ∈ R, (26.12)

where ω3 is the imaginary half period of the function ℘(z, g2, g3). In this case,
the solution (26.10) is real and bounded in the ranges a0 < 0, a2 > 3y2 or a0 >

0, a2 < 3y3. The corresponding graphs for each range are shown in Fig. 26.2a, b.We
note that, in contrast to cnoidal waves of the first branch, which lose the continuity of
the first derivative at the minimum points (Fig. 26.1), the second branch corresponds
to smooth waves (Fig. 26.2).

If � < 0, then the polynomial (26.11) has one real root y1 and a pair of complex
conjugate roots yRe ± iyIm. There is a single range y ≥ y1 in which there is a real
solution to Eq. (26.7). The corresponding solution (26.10) of Eq. (26.3) is real and
bounded when a0 > 0, a2 < 3y1, C3 = C, C ∈ R. At the same time, the form of
the solution essentially depends on the ratio between y1 and yRe. In case y1 > yRe,
the shape of graph of the polynomial (26.11) in the region y ≥ y1 (Fig. 26.3, dashed)
differs little from that in the case considered earlier and the form of the solution
curve resemble those shown in Fig. 26.1. In case y1 < yRe, the graph of polynomial
in region y ≥ y1 is no longermonotonically increasing and receives a localminimum.
As a result, the shape of the cnoidal wave changes and acquires a “plateau” zone, in
the middle of which a peak rises (Fig. 26.4a).

(a) (b)

Fig. 26.2 Form of one period of the function (26.10) at y1 = 10,C3 = ω3: a y2 = 9, a0 = −1;
a2 = 28 (solid), a2 = 35 (dashed), a2 = 50 (dash-dotted), b y3 = −10, a0 = 1; a2 = −31 (solid),
a2 = −40 (dashed), a2 = −50 (dash-dotted)
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Fig. 26.3 Value of the polynomial (26.11) at y1 = 5, yRe = −2.5, a0 = 1, a2 = 14 (dashed) and
y1 = −20, yRe = 10, a0 = 1, a2 = −61 (solid)

(a) (b)

Fig. 26.4 a Form of one period of the function (26.10) at y1 = 5, yRe = −2.5, a0 = 1, a2 = 14
(dashed) and y1 = −20, yRe = 10, a0 = 1, a2 = −61 (solid); bGraphs of the solution (26.13) at
y1 = 4, a0 = 1, C3 = 0 and a2 = 5.9 (solid), a2 = 2 (dashed) and a2 = 0 (dash-dotted)
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If � = 0, then with roots of (26.11), there are three possible situations: (1) there
are simple root y1 and double root y2, and y1 > y2, (2) there are double root y1 and
simple root y2, and y1 > y2, and (3) there is a triple root y1.

In situation 1, there is a periodic solution corresponding to the range y ≥ y1, the
shape of which resembles Fig. 26.1. In situation 2, there are already two ranges:
the limited y2 ≤ y ≤ y1 and semi-infinite y ≥ y1, each of which is limited by the
value of the double root y1. The polynomial right-hand side of (26.3) ensures that
derivatives u(n) of any order at the points corresponding to the multiple roots of the
right-hand side vanish. At the same time, at the points of simple roots, the second and
higher derivatives u(n) are nonzero. Therefore, in the finite or semi-infinite ranges that
come into contact with simple roots only, periodic solutions appear since unstable
stationary points of the solution correspond to simple roots. If one and only one of the
boundaries of the range corresponds to a multiple root, then solitary-wave solutions
arise in this range since multiple roots give points of indifferent equilibrium. Finally,
if both boundaries of the range are bounded by multiple roots, then a solution in the
form of a kink is observed.

In situation 2, Eq. (26.7) can be represented in the form

(yz)
2 = 4 (y + y1)

(
y − y1

2

)2
, (26.13)

where y1 > 0. The general solution of Eq. (26.12) is expressed in terms of the hy-
perbolic sine

u(z) =
⎛

⎝ a0
y1
2

(
1 + 3sinh−2

√
6y1
2 (z + C3)

)
− a2

3

⎞

⎠

1/2

. (26.14)

The function (26.13) is a degeneration of the solution (26.10), expressed in terms
of the Weierstrass elliptic function (26.9). For a0 > 0, a2 < 3y1/2, C3 ∈ R solution
(26.13) that corresponds to a semi-infinite range y ≥ y1 is real, bounded and has the
form of a “dark” cnoidal soliton (Fig. 26.4b).

To obtain a solution for a finite range y2 ≤ y ≤ y1, it suffices to use the property
of the periodicity of a function sinh−2 (z + C3) along the imaginary axis—it has real
values not only for C3 ∈ R but also for a shift by half of the imaginary period C3 =
C + iπ/2, C ∈ R. With this shift, the function sinh−2 (z + C3) becomes bounded
and determines smooth solitary waves at a0 > 0, a2 < −3y1 or at a0 < 0, a2 >

3y1/2. The first group of conditions determines the “light” solitons, and the second -
the “dark” ones, which differ from those shown in Fig. 26.4b by smoothness of form.

Finally, in the third situation, when the polynomial (26.11) has a single triple root,
Eq. (26.7) is simplified to

(yz)
2 = 4y3 (26.15)
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with rational solution

y(z) = ℘(z + C3, 0, 0) = (z + C3)
−2. (26.16)

The last equality gives for Eq. (26.3) a solution

u(z) =
(

a0
(z + C3)

−2 − a2
/
3

)1/2

, (26.17)

corresponding to a rational dark cnoidal soliton with a graph similar to that shown
in Fig. 26.4b by dash-dotted line.

26.4 Case 2. a1 = 0, a0 = 0. Periodic and Soliton Solutions

Assuming that 4a6 − a24
/
a2 > 0 and using the substitution v(z) = b1y(z) + b2, we

select the constants b1 and b2 so that for the function y(z) we obtain the equation

(yz)
2 = 4a2y

2 + 1, (26.18)

whose general solution is

y = 1

2
√
a2

sinh 2
√
a2 (z + C3) . (26.19)

When a2 < 0, a4 > 0, equality (26.19) defines a real bounded periodic solution of
Eq. (26.3):

u =
⎛

⎝ 2a2
√
a24 − 4a2a6 sin 2

√−a2 (z + C3) − a4

⎞

⎠

1/2

. (26.20)

When the condition 4a6 − a24
/
a2 < 0 is satisfied, Eq. (26.5) is reduced to

(yz)
2 = 4a2y

2 − 1, (26.21)

whose general solution has the form

y = 1

2
√
a2

cosh 2
√
a2 (z + C3) . (26.22)

The corresponding expression for function u(z) determines solution of Eq. (26.3)
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u =
⎛

⎝ 2a2
√
a24 − 4a2a6 cosh 2

√
a2 (z + C3) − a4

⎞

⎠

1/2

, (26.23)

that is real in two cases. Under condition a2 > 0, a4 > 0, a6 < 0 function (26.23)
describes a soliton whose amplitude tends to infinity and width tends to zero at
a6 → 0. Under condition a2 > 0, a4 < 0, a6 < a24/4a2, we have a soliton with a
flat top (table-like solution), whose amplitude does not exceed

√
2a2/−a4, and width

increases indefinitely when a6 tends to its maximum allowable value. An analytical
representation and corresponding graphs of the table-like solution were obtained in
[3]. Numerical analysis revealed the inelasticity of the interaction of flat top solitons.

26.5 Case 3. Kink-Shaped Solution

Replacement u(z) = v(z)−1/2, used in cases 1 and 2, requires that the function u(z)
is non-negative and does not allow finding solutions of Eq. (26.3) in the form of a
kink. Therefore, it is now necessary to work directly with Eq. (26.3). As mentioned
earlier, a solution in the form of a kink can occur in a finite range, limited at the
ends by two multiple roots of the right-hand side polynomial of (26.3). As a simple
analysis shows, there are only three variants of the structure of the polynomial roots,
for which such a range exists.

In the first variant, there are two triple roots ±u1. Equation (26.3) takes the form

(uz)
2 = a6(u − u1)

3(u + u1)
3 (26.24)

and when a6 < 0, it has as a general solution the “rational” kink

u = u31 (z + C3)

(
a6

a6u41(z + C3)
2 − 1

)1/2
. (26.25)

In the second variant, there are three double roots±u1 and u2 = 0. Equation (26.3)
takes the form

(uz)
2 = a6u

2(u − u1)
2(u + u1)

2 (26.26)

and has two branches of solutions in the form of kinks at −u1 ≤ u ≤ 0 and at 0 ≤
u ≤ u1 when a6 > 0. In the particular case, for example, when a2 = a6 = 1, these
solutions are determined by the equations

u = ± 1
√
C3 exp (±2z) + 1

. (26.27)
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Finally, in the third version, there are two real double roots ±u1 and a pair of
imaginary roots ±iuIm:

(uz)
2 = a6

(
u2 + u2Im

)
(u − u1)

2(u + u1)
2. (26.28)

The exact solution (26.28) is cumbersome and is written in an implicit form. In

particular, when a6 = u1 = 1, uIm =
(
2
√
6
)−1

, this solution looks like

z −
√
6

5

2∑

k=1

arctanh

(√
6

5

(−1)k + 24u√
6 + 144u2

)

= C3. (26.29)

26.6 Case 4. a1 �= 0, a0 �= 0. Approximate Solution

The complete Eq. (26.3), all five terms of which are nonzero, is integrated in quadra-
tures as a first-order equation, but the analytical representation of its general solution
through elementary or special functions is unknown. Meanwhile, we can propose
a simple method for constructing an analytical representation of its approximate
solution.

Suppose that among the roots of the right-hand side of (26.3) as a sixth-order
polynomial in the function u, there are two simple or multiple real roots uA and uB,
uA < uB:

(uz)
2 = (u − uA)

kA(u − uB)
kBpm (u) , (26.30)

wherem = 6 − kA − kB is the order of the polynomial pn (u). Let the right-hand side
of (26.30) be non-negative in the range uA ≤ u ≤ uB. Then, in this range, there is
a bounded real solution of Eq. (26.30). Replace Eq. (26.30) with an approximate
equation

(uz)
2 = (u − uA)

kA(u − uB)
kBqn (u) , (26.31)

the right side of which contains polynomial qn (u), has order in u not higher than
fourth and is close in the range uA ≤ u ≤ uB to the right side (26.30). The exact
solution of Eq. (26.31) is expressed in terms of the Weierstrass elliptic function or
its degenerations and gives an analytical representation of an approximate solution
to Eq. (26.30).

To solve (26.31), following [10], we group the right-hand side of (26.31) in powers
of u:

(uz)
2 = a4u

4 + a3u
3 + a2u

2 + a1u + a0 (26.32)

and represent it in the form

(uz)
2 = A1 (u − uA) + A2(u − uA)

2 + A3(u − uA)
3 + A4(u − uA)

4 (26.33)
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ExpressingA1 − A4 through a0 − a4, after substituting u(z) = 1
/
v(z) + uA for func-

tion v(z), we have the equation

(vz)
2 = A1v

3 + A2v
2 + A3v + A4, (26.34)

similar to Eq. (26.5). Repeating the steps described above for (26.5), we solve (26.34)
and present the general solution (1.30) in the form

u (z) = uA − 3A1

A2 − 12℘(z + C3, g2, g3)
, (26.35)

where

A1 = 4q4u
3
A + 3q3u

2
A + 2q2uA + q1, A2 = 1

2

dA1

duA
, A3 = 1

3

dA2

duA
,A4 = q4,

g2 = 1

12

(
A2
2 − 3A1A3

)
, g3 = − 1

432

(
2A3

2 − 9A1A2A3 + 27A2
1A4

)
.

(26.36)
Equality (26.35) with conditions (26.36) is an analytical representation of an approx-
imate solution of Eq. (26.30).

Consider an example. Let the right-hand side of (26.30) be

P = (u − u1) (u − u2) (u − u3) (u − u4) (u − u5) (u − u6)

=
(

u + 13

4
+ 3

√
65

52

) (

u + 13

4
− 3

√
65

52

)(

u + 1

2

)

(u − 1) (u − 2) (u − 4)

≈ u6 − 21.4u4 + 98.1u2 − 36.3u − 41.4.
(26.37)

On the graph of the function (26.37) (Fig. 26.5), there are two suitable ranges:
�1 = {u, u4 ≤ u ≤ u5} and�2 = {u, u2 ≤ u ≤ u3}. To find an approximate solution
corresponding to, for example, �1, we consider a fourth order polynomial

Q = (u − u4) (u − u5)
(
q2u

2 + q1u + q0
)

(26.38)

and choose arbitrary constants q0, q1, q2 so that the values of the polynomialsP andQ
are close to each other on range�1. The closeness criterion can be chosen differently.
Since the solution function u(z) “spends” the longest time near the boundaries of the
range due to the proximity of the derivative uz to zero there, it seems reasonable to
require that at the boundaries of the range not only the values of P andQ polynomials
but also the its first derivatives coincide:

dQ

du

∣
∣
∣
∣
u=u4,u5

= dP

du

∣
∣
∣
∣
u=u4,u5

. (26.39)
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Fig. 26.5 Graph of the function (26.37)

(a) (b)

Fig. 26.6 a Numerical solution (box) and an approximate analytical solution (solid), b Difference
between the numerical and approximate analytical solutions

Adding a couple of conditions (26.39) with the requirement that the standard devia-
tion be zero:

u5∫

u4

(P − Q)2du = 0, (26.40)

we obtain the system from which we determine the constants q0 − q2:
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Q = (u − 1) (u − 2)

(
7361

572
u2 − 54357

572
u + 265

143

)

. (26.41)

The general solution of Eq. (26.31) with the right side (26.41) is determined by
the expression (26.35), which gives an analytical representation of the approximate
solution of the original Eq. (26.30) with the right side (26.37) for the range �1.
Comparison of the results of numerical integration ofEq. (26.30)with an approximate
analytical solution (26.35) shows that the absolute error of the approximate solution
within half of the period in z does not exceed 5 × 10−4, while the oscillation range
reaches unity (Fig. 26.6).

Funding The reported study was funded by RFBR, project number 20-01-00123.
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Chapter 27
Modelling of Unsteady Elastic Diffusion
Oscillations of a Timoshenko Beam

Andrei V. Zemskov and Dmitry V. Tarlakovskii

Abstract We study unsteady oscillations of a Timoshenko beam considering mass
transfer. In a general case, the beam is subjected to tensile forces, bending moments
and shear forces applied to its ends. Densities of diffusion fluxes are also defined
at the ends of the beam. All aforementioned force factors lie in the beam’s plane
of bending. We define the problem using a model of unsteady flat bending of an
elastodiffusive beam. Solution for the problem is obtained using Laplace transform
and Fourier series.

Keywords Elastic diffusion · Coupled problem · Unsteady problem · Green’s
function · Integral transformation · Multicomponent continuum · Timoshenko
beam

27.1 Introduction

Currently, there are many publications devoted to modelling effects associated with
the interaction of fields of various physical nature. Among them, one can mention
works on thermoelasticity [1, 2], electroelasticity and electromagnetoelasticity, as
well as thermoelectromagnetoelasticity [3–10].

From the second half of the 20th century to the present, there has been an urgent
problem associated with the influence study of diffusion processes on the medium
stress–strain state and structural elements. It is also interesting to considering of other
fields: temperature, electromagnetic, etc. Among the most recent publications, it can
be noted [11–20].

In these articles, the interaction problems of physical fields are mainly considered
in a static or stationary formulation for space, half-space or a layer. At the same time,
real structural elements usually have finite dimensions (rods, plates or shells). In
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addition, real loads can be non-stationary in nature, which also needs to considering
when choosing a calculation model.

We note that the solution of unsteady problems (in particular, mechanodiffusion
problems) is associated with great computational difficulties. When constructing
analytical solutions, a problem arises with the Laplace transform inversion. Issues
related to this problem are discussed in detail in [21].When using numericalmethods,
questions arise related to the stability of difference schemes, as well as the study of
their convergence.

In this article, we study the unsteady oscillation of a Timoshenko beam with
considering of mass transfer. We also propose an analytical method for solving the
problem based on series expansion in eigenfunctions of the elastic diffusion operator.

27.2 Problem Formulation

We consider the flat unsteady oscillations problem of a Timoshenko beam with mass
transfer effects. The beam is subjected to tensile forces, bending moments and shear
forces applied to its ends. Densities of diffusion fluxes are also defined at the ends
of the beam. Figure27.1 shows the orientation of Cartesian axes as well as how the
forces and the bending moments are applied to the beam.

For the problem formulation, we use the coupled elastic diffusion continuum
model in a rectangular Cartesian coordinate system, which has the next form
[11–13, 16, 18–20, 22–24]:

Fig. 27.1 Forces and bending moments acting upon the beam
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üi − ∂σij

∂xj
− Fi = 0, η̇(q) + ∂J (q)

i

∂xi
− Y (q) = 0, (x1, x2, x3) ∈ G ⊂ �3,

σijnj
∣
∣
�σ

= Pi, J (q)
i

∣
∣
∣
�J

= I (q)
i , ∂G = �σ

⋃
�J ,

ui|τ=0 = 0,
∂ui
∂τ

∣
∣
∣
∣
∣
τ=0

= 0, η(q)
∣
∣
τ=0 = 0,

∂η(q)

∂τ

∣
∣
∣
∣
∣
τ=0

= 0
(

q = 1,N
)

,

(27.1)

where σij and J (q)
i are components of stress tensor and diffusion flux vector which

are the defined by
(

q = 1,N
)

[22–25]:

σij = Cijkl
∂uk
∂xl

−
N

∑

q=1

α
(q)
ij η(q), J (q)

i = −
N

∑

t=1

D(q)
ij g(qt) ∂η(t)

∂xj
+ �

(q)
ijkl

∂2uk
∂xj∂xl

. (27.2)

All the variables in these formulas are dimensionless values and are defined as
seen below

xi = x∗
i

l
, ui = u∗

i

l
, τ = Ct

l
, Cijkl = C∗

ijkl

C∗
1111

, C2 = C∗
1111

ρ
, α

(q)
ij = α

∗(q)
ij

C∗
1111

,

D(q)
ij = D∗(q)

ij

Cl
, �

(q)
ijkl = m(q)D∗(q)

ij α
∗(q)
kl n(q)

0

ρRT0Cl
, Fi = ρlF∗

i

C∗
1111

, Y (q) = lY ∗(q)

C
,

where t is time; x∗
i are Cartesian coordinates; u

∗
i are displacement vector components;

l is the length of the beam; η(q) = n(q) − n(q)
0 are concentration increments for the q-th

substance component of an N-component medium; n(q) and n(q)
0 are actual and initial

concentrations of q-th component;C∗
ijkl are components of the elastic constant tensor;

ρ is density; α∗(q)
ij are coefficients characterizing volume changing of themedium due

to diffusion; D∗(q)
ij are coefficients of diffusion; R is universal gas constant; T0 is the

temperature of the medium; m(q) is molar mass; Pi and I
(q)
i are surface disturbances;

F∗
i and Y ∗(q)

i are volume disturbances; ni are components of the outer normal unit
vector to ∂G = �σ

⋃
�J .

The beam oscillation equations are obtained using the Lagrange–D’Alembert
principle. Using equations (27.1), we obtain:

∫

G

(

üi − ∂σij

∂xj
− Fi

)

δuidG +
N

∑

q=1

∫

G

(

η̇(q) + ∂J (q)
i

∂xi
− Y (q)

)

δη(q)dG

+
∫∫

�σ

(

σijnj − Pi
)

δuidS +
N

∑

q=1

∫∫

�J

(

J (q)
i − I (q)

i

)

niδη
(q)dS = 0.

(27.3)
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To construct the equations of bending, we assume the following:

• material of the beam is uniform and isotropic (λ and μ are Lame coefficients, δqr
is the Kronecker symbol)

Cijkl = λδijδkl + μ
(

δikδjl + δilδjk
)

, �
(q)
ααββ = �q, α(q)

αα = αq, D(q)
αα = Dq.

• the transverse deflections of the beam are small. Sections normal to the axis of the
beam before deformation remain flat after deformation (flat sections hypothesis).
In this case, linearization of desired values in respect to x2 will give the following
(approximate equality becomes exact equality) [22–24, 26]

u1 (x1, x2, τ ) = u (x1, τ ) + x2χ (x1, τ ) ,

u2 (x1, x2, τ ) = v (x1, τ ) + x2ψ (x1, τ ) ,

η(q) (x1, x2, τ ) = Nq (x1, τ ) + x2Hq (x1, τ ) .

(27.4)

• there are no loads on the side surface. This allows us to use the hypothesis of
the beam incompressibility in the transverse direction. In this case, ψ (x1, τ ) ≡ 0.
(27.4) can be written as

u1 (x1, x2, τ ) = u (x1, τ ) − x2χ (x1, τ ) , u2 (x1, x2, τ ) = v (x1, τ ) ,

η(q) (x1, x2, τ ) = Nq (x1, τ ) + x2Hq (x1, τ ) .
(27.5)

The components of the stress tensor and the diffusion flux vector (27.2) will have
the form [24]

σ11 = ∂u1
∂x1

+ λ
∂u2
∂x2

−
N

∑

q=1

αqη
(q) = (

u′ − x2χ
′) −

N
∑

q=1

αq
(

Nq + x2Hq
)

,

σ22 = λ
∂u1
∂x1

+ ∂u2
∂x2

−
N

∑

q=1

αqη
(q) = λ

(

u′ − x2χ
′) −

N
∑

q=1

αq
(

Nq + x2Hq
)

,

σ12 = μ
∂u1
∂x2

μ
∂u2
∂x1

= μ
(

v′ − χ
)

,
∂σ12

∂x2
= 0,

(27.6)

J (q)
1 = −Dq

∂η(q)

∂x1
+ �q

∂2u1
∂x21

+ �q
∂2u2

∂x1∂x2
= −Dq

(

N ′
q + x2H ′

q

)

+ �q
(

u′′ − x2χ ′′) ,

J (q)
2 = −Dq

∂η(q)

∂x2
+ �q

∂2u2
∂x22

+ �q
∂2u1

∂x1∂x2
= −DqHq − �qχ

′ (

q = 1,N
)

.

(27.7)
Substituting (27.5) and (27.6) into (27.3), we obtain the model of unsteady plane

bending of an elastodiffusive Timoshenko beam:
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• the problem of uniaxial tension–compression of the rod with diffusion

ü − u′′ +
N

∑

q=1

αqN
′
q − n = 0, Ṅq − DqN ′′

q + �qu′′′ − y(q) = 0; (27.8)

⎛

⎝u′ −
N

∑

q=1

αqNq

⎞

⎠

∣
∣
∣
∣
∣
∣
x1=0

= N0

F
,

⎛

⎝u′ −
N

∑

q=1

αqNq

⎞

⎠

∣
∣
∣
∣
∣
∣
x1=1

= N1

F
; (27.9)

(

�qu
′′ − DqN

′
q

)∣
∣
∣
x1=0

= �
(q)
0

F
,

(

�qu
′′ − DqN

′
q

)∣
∣
∣
x1=1

= �
(q)
1

F
, (27.10)

• the problem of beam deflections with diffusion

v̈ − μ
(

v′′ − χ ′) − q

F
= 0,

χ̈ − χ ′′ − F

J3
μ

(

v′ − χ
) −

N
∑

q=1

αqH
′
q − m

J3
= 0,

Ḣq − DqH ′′
q − �qχ

′′′ − z(q)

J3
= 0;

(27.11)

(

v′ − χ
)∣
∣
x1=0 = Q0

μF
,

(

v′ − χ
)∣
∣
x1=1 = Q1

μF
; (27.12)

⎛

⎝χ ′ +
N

∑

q=1

αqHq

⎞

⎠

∣
∣
∣
∣
∣
∣
x1=0

= −M0

J3
,

⎛

⎝χ ′ +
N

∑

q=1

αqHq

⎞

⎠

∣
∣
∣
∣
∣
∣
x1=1

= −M1

J3
; (27.13)

(

�qχ
′′ + DqH ′

q

)∣
∣
∣
x1=0

= −�
(q)
0

J3
,

(

�qχ
′′ + DqH ′

q

)∣
∣
∣
x1=1

= −�
(q)
1

J3
, (27.14)

where F is cross section area, J3 is beam’s moment of inertia relative to Ox3,
m (x1, τ ) is distributed lineal moment, q (x1, τ ) is distributed lineal transverse
load; n (x1, τ ) is the linearly distributed axial load; z(q) (x1, τ ) and y(q) (x1, τ ) is
density of volume sources of mass transfer. The other force factors are shown as
follows

N0 (τ ) =
∫∫

D
P1 (0, x2, x3, τ ) dx2dx3, N1 (τ ) =

∫∫

D
P1 (1, x2, x3, τ ) dx2dx3,

M0 (τ ) =
∫∫

D
P1 (0, x2, x3, τ ) x2dx2dx3, M1 (τ ) =

∫∫

D
P1 (1, x2, x3, τ ) x2dx2dx3,

Q0 (τ ) =
∫∫

D
P2 (0, x2, x3, τ ) dx2dx3, Q1 (τ ) =

∫∫

D
P2 (1, x2, x3, τ ) dx2dx3,
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�
(q)
0 (τ ) =

∫∫

D
I (q)
1 (0, x2, x3, τ ) dx2dx3,

�
(q)
1 (τ ) =

∫∫

D
I (q)
1 (1, x2, x3, τ ) dx2dx3,

�
(q)
0 (τ ) =

∫∫

D
x2I

(q)
1 (0, x2, x3, τ ) dx2dx3,

�
(q)
1 (τ ) =

∫∫

D
x2I

(q)
1 (1, x2, x3, τ ) dx2dx3.

In more accurate models [for this, it is necessary to take into account terms of a
higher order of smallness in (27.4)], Equations (27.11) are written as

v̈ − μk2
(

v′′ − χ ′) − q

F
= 0,

χ̈ − χ ′′ − F

J3
μk2

(

v′ − χ
) −

N
∑

q=1

αqH
′
q − m

J3
= 0,

Ḣq − DqH ′′
q − �qχ

′′′ − z(q)

J3
= 0,

(27.15)

where k—coefficient taking into account the uneven distribution of shear stresses
over the beam section. If the shear stresses are distributed according to the Zhuravsky
formula, then for the rectangular cross section beamwith a heighth andunit thickness,
we have [26]

k2 = 5

6
.

In accordance with the Lagrange variational principle, the boundary conditions
(27.9), (27.10), (27.12)–(27.14) are considered in conjunction with the kinematic
boundary conditions

u|x1=0 = U0 (τ ) , u|x1=1 = U1 (τ ) ; (27.16)

Nq

∣
∣
x1=0 = Nq0 (τ ) , Nq

∣
∣
x1=1 = Nq1 (τ ) ; (27.17)

v|x1=0 = V0 (τ ) , v|x1=1 = V1 (τ ) ; (27.18)

Hq

∣
∣
x1=0 = Hq0 (τ ) , Hq

∣
∣
x1=1 = Hq1 (τ ) ; (27.19)

χ |x1=0 = X0 (τ ) , χ |x1=1 = X1 (τ ) .

The solution of problems (27.8)–(27.10), (27.16), (27.17) was considered in [25].
Here, we will consider initial-boundary value problems for Eq. (27.15).



27 Modelling of Unsteady Elastic Diffusion Oscillations of a Timoshenko Beam 453

27.3 Integral Representation of the Solution

We represent the solution to (27.15), (27.13), (27.18), (27.19) as (k = 1,N + 1) [24]:

v (x, τ ) =
N+2
∑

k=1

∫ τ

0

[

G1k (x, τ − t) fk1 (t) + G1k (1 − x, τ − t) fk2 (t)
]

dt

+
N+2
∑

k=1

∫ τ

0

∫ 1

0
G̃1k (x, ξ, τ − t)Fk (ξ, t) dξdt,

χ (x, τ ) =
N+2
∑

k=1

∫ τ

0

[

G2k (x, τ − t) fk1 (t) − G2k (1 − x, τ − t) fk2 (t)
]

dt

+
N+2
∑

k=1

∫ τ

0

∫ 1

0
G̃2k (x, ξ, τ − t)Fk (ξ, t) dξdt,

(27.20)

Hq (x, τ ) =
N+2
∑

k=1

∫ τ

0

[

Gq+2,k (x, τ − t) fk1 (t) + Gq+2,k (1 − x, τ − t) fk2 (t)
]

dt

+
N+2
∑

k=1

∫ τ

0

∫ 1

0
G̃q+2,k (x, ξ, τ − t)Fk (ξ, t) dξdt.

Here, x = x1; Fk (x, τ ) are body force factors present in equations (27.15);
fkl (τ ) are surface disturbances from boundary conditions (27.13), (27.18), (27.19);
Gmk (x, τ ) are surface Green’s functions which satisfy equations [24]

G̈1k − μk2
(

G ′′
1k − G ′

2k
) = 0,

G̈2k − G ′′
2k − F

J3
μk2

(

G ′
1k − G2k

) −
N

∑

q=1

αqG
′
q+2,k = 0,

Ġq+2,k − DqG ′′
q+2,k − �qG ′′′

2k = 0,

(27.21)

and boundary conditions (δ (τ ) are Dirac delta function):

G1k |x=0 = δ1kδ (τ ) , G1k |x=1 = 0,
Gq+1,k

∣
∣
x=0 = δq+1,kδ (τ ) , Gq+1,kl

∣
∣
x=1 = 0,

⎛

⎝G ′
2k +

N
∑

j=1

αjGj+1,k

⎞

⎠

∣
∣
∣
∣
∣
∣
x=0

= δ2kδ (τ ) ,

⎛

⎝G ′
2k +

N
∑

j=1

αjGj+1,k

⎞

⎠

∣
∣
∣
∣
∣
∣
x=1

= 0.

(27.22)
G̃mk (x, ξ, τ ) are the bulk Green’s functions that satisfy equations
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¨̃G1k − μk2
(

G̃ ′′
1k − G̃ ′

2k

)

− δ1kδ (x − ξ) δ (τ ) = 0,

¨̃G2k − G̃ ′
2k − F

J3
μk2

(

G̃ ′
1k − G̃2k

)

−
N

∑

q=1

αqG̃
′
q+2,k − δ2kδ (x − ξ) δ (τ ) = 0,

˙̃Gq+2,k − DqG̃q+2,k − �qG̃ ′′′
2k − δq+2,kδ (x − ξ) δ (τ ) = 0,

and homogeneous boundary conditions corresponding to (27.22).

27.4 Solution Algorithm

We consider the problem of finding the surface Green’s functions Gmk (x, τ ). By
applying Laplace transform to (27.21) and (27.22), we get

s2GL
1k − μk2

(

G ′′L
1k − G ′L

2k

)

= 0,

s2GL
2k − G ′′L

2k − μ
F

J3
k2

(

G ′L
1k − GL

2k

)

−
N

∑

q=1

αqG
′L
q+2,k = 0,

sGL
q+2,k − DqG ′′L

q+2,k − �qG ′′′L
2k = 0;

GL
1k

∣
∣
x=0 = δ1k , GL

1k

∣
∣
x=1 = 0,

⎛

⎝G ′L
2k +

N
∑

j=1

αjG
L
j+2,k

⎞

⎠

∣
∣
∣
∣
∣
∣
x=0

= δ2k ,

⎛

⎝G ′L
2k +

N
∑

j=1

αjG
L
j+2,k

⎞

⎠

∣
∣
∣
∣
∣
∣
x=1

= 0,

GL
q+2,k

∣
∣
∣
x=0

= δq+2,k , GL
q+2,k

∣
∣
∣
x=1

= 0.

Then, we represent all functions GL
mk (x, s) as series (λn = πn):

{
GL

1k (x, s)
GL

q+2,k (x, s)

}

=
∞

∑

n=1

{
GLs

1k (λn, s)
GLs

q+2,k (λn, s)

}

sin λnx,

GL
2k (x, s) = GLc

2k (0, s)

2
+

∞
∑

n=1

GLc
2k (λn, s) cos λnx,

As a result, we obtain a system of linear algebraic equations of functions
GLs

mk (λn, s)
(

m, k = 1,N + 1
)

:

k1GLs
1k − μλnk2GLc

2k = F1k ,

−μk2λn
F

J3
GLs

1k + k2GLc
2k − λn

N
∑

q=1

αqG
Ls
q+2,k = F2k ,

−�qλ
3
nG

Lc
2k + kq+2GLs

q+2,k = Fq+2,k ,
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k1 (λn, s) = s2 + μk2λ2
n, k2 (λn, s) = s2 + λ2

n + μk2
F

J3
, kq+2 (λn, s) = s + Dqλ

2
n,

F1k (λn) = 2μk2λnδ1k , F2k (λn) = −2μk2
F

J3
δ1k − 2δ2k ,

Fq+2,k (λn) = 2�qλnδ2k + 2λn

⎛

⎝Dqδq+2,k − �q

N
∑

j=1

αjδj+2,k

⎞

⎠ .

The solution to this system is the following
(

q, p = 1,N , k = 1,N + 1
)

[24]:

GLs
ik (λn, s) = Pik (λn, s)

P (λn, s)
(i = 1, 2) ,

GLs
q+2,1 (λn, s) = Pq+2,1 (λn, s)

P (λn, s)
, GLs

q+2,2 (λn, s) = 2�qλn

kq+2
+ Pq+2,2 (λn, s)

Qq (λn, s)
,

GLs
q+2,p+2 (λn, s) = 2λn

(

Dqδpq − �qαp
)

kq+2
+ Pq+2,p+2 (λn, s)

Qq (λn, s)
,

(27.23)
where

P (λn, s) =
[

k1 (λn, s) k2 (λn, s) − μ2k4λ2
n

F

J3

]

�(λn, s)

−λ4
nk1 (λn, s)

N
∑

j=1

αj�j�j (λn, s) ,

Qq (λn, s) = kq+2 (λn, s)P (λn, s) ;

P11 (λn, s) = 2μk2λn

⎡

⎣

(

k2 (λn, s) − μk2
F

J3

)

�(λn, s) − λ4
n

N
∑

j=1

αj�j�j (λn, s)

⎤

⎦ ,

P12 (λn, s) = −2μk2λn

⎡

⎣�(λn, s) − λ2
n

N
∑

j=1

αj�j (λn, s)�j

⎤

⎦ ,

P1,q+2 (λn, s) = 2μk2αqλ
3
n

⎡

⎣�q (λn, s)Dq −
N

∑

j=1

αj�j�j (λn, s)

⎤

⎦ ,

P21 (λn, s) = 2μk2
F

J3
�(λn, s)

[

μk2λ2
n − k1 (λn, s)

]

,

P22 (λn, s) = −2k1 (λn, s)

⎡

⎣�(λn, s) − λ2
n

N
∑

j=1

αj�j�j (λn, s)

⎤

⎦ ,

P2,q+2 (λn, s) = 2λ2
nαqk1 (λn, s)

⎡

⎣�q (λn, s)Dq −
N

∑

j=1

αj�j�j (λn, s)

⎤

⎦ ,
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Pq+2,1 (λn, s) = 2μk2�qλ
3
n

F

J3

[

μk2λ2
n − k1 (λn, s)

]

�q (λn, s) ,

Pq+2,2 (λn, s) = −2�qλ
3
nk1 (λn, s)

⎡

⎣�(λn, s) − λ2
n

N
∑

j=1

αj�j�j (λn, s)

⎤

⎦ ,

Pq+2,p+2 (λn, s) = 2αp�qλ
4
nk1 (λn, s)

⎡

⎣�p (λn, s)Dp −
N

∑

j=1

αj�j�j (λn, s)

⎤

⎦ ,

� (λn, s) =
N

∏

j=1

kj+1 (λn, s) , �j (λn, s) =
N

∏

r=1,r 	=j

kr+1 (λn, s) .

Originals of Green’s functions in (27.23) are as following [24]:

Gs
ik (λn, τ ) =

N+4
∑

j=1

A(j)
ik (λn) e

sj(λn)τ , A(j)
ik (λn) = Pik

(

λn, sj
)

P′ (λn, sj
) ,

Gs
q+2,1 (λn, τ ) =

N+4
∑

j=1

A(j)
q+2,1 (λn) e

sj(λn)τ , A(l)
q+2,1 (λn) = Pq+2,1 (λn, sl)

P′ (λn, sl)
,

Gs
q+2,2 (λn, τ ) = −2�qλne−Dqλ

2
nτ +

N+5
∑

j=1

A(j)
q+2,2 (λn) e

sj(λn)τ ,

Gs
q+2,p+2 (λn, τ ) = 2λn

(

Dqδpq − �qαp
)

e−Dqλ
2
nτ +

N+5
∑

l=1

A(l)
q+2,p+2 (λn) e

sl(λn)τ ,

A(l)
q+2,p+2 (λn) = Pq+2,p+2 (λn, sl)

Q′
q (λn, sl)

, A(l)
q+2,2 (λn) = Pq+2,2 (λn, sl)

Q′
q (λn, sl)

.

Here, sj (λn) are zeros of polynomial P (λn, s), sN+3 (λn) = −Dqλ
2
nτ .

Body Green functions are found in a similar way. Substituting the found expres-
sions for the Green functions into convolutions (27.20), we obtain the solution to the
problem of the bending of the Timoshenko beam (27.15), (27.13), (27.18), (27.19).

27.5 Example of Computation

We consider the beam that has the rectangular cross section: height h = 10−2 m,
width b = 5 × 10−3 m, length l = 10−1 m. We done the calculation example for
two-component (N = 2) duralumin medium [27], with the following dimensionless
characteristics
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λ = 4.92 × 10−1, μ = 2.54 × 10−1, α1 = 1.50 × 10−4, α2 = 5.92 × 10−4,

D1 = 1.27 × 10−16, D2 = 5.02 × 10−21, �1 = 2.77 × 10−18, �2 = 5.50 × 10−23.

The geometric dimensionless characteristics of the rectangular cross section of this
beam are as follows:

F = bh = 5.00 × 10−3, J3 = 4.17 × 10−6.

Design parameters in boundary conditions (q = 1, 2):

⎛

⎝χ ′ +
2

∑

j=1

αjHj

⎞

⎠

∣
∣
∣
∣
∣
∣
x=0

= −M0

J3
= f11 (τ ) = H (τ ) ,

⎛

⎝χ ′ +
2

∑

j=1

αjHj

⎞

⎠

∣
∣
∣
∣
∣
∣
x=0

= −M0

J3
= f12 (τ ) = H (τ ) ,

v|x=0 = V0 = f21 (τ ) = 0, v|x=1 = V1 = f22 (τ ) = 0,

Hq

∣
∣
x=0 = Hq0 = fq+2,1 (τ ) = 0, Hq

∣
∣
x=1 = Hq1 = fq+2,2 (τ ) = 0.

The calculation of convolutions (27.20)

v (x, τ ) =
∫ τ

0
[G11 (x, τ − t) + G11 (1 − x, τ − t)]H (t) dt

= 2
∞

∑

n=1

sin
λn

2
cos

[

λn

(

1

2
− x

)]
4

∑

j=1

A(j)
11 (λn)

esj(λn)τ − 1

sj (λn)
,

χ (x, τ ) =
∫ τ

0
[G21 (x, τ − t) − G21 (1 − x, τ − t)]H (t) dt

= 2
∞

∑

n=1

sin
λn

2
sin

[

λn

(

1

2
− x

)]
4

∑

j=1

A(j)
21 (λn)

esj(λn)τ − 1

sj (λn)
,

Hq (x, τ ) =
∫ τ

0

[

Gq+2,1 (x, τ − t) + Gq+2,1 (1 − x, τ − t)
]

H (t) dt

= 2
∞

∑

n=1

sin
λn

2
cos

[

λn

(

1

2
− x

)]
4

∑

j=1

A(j)
q+2,1 (λn)

esj(λn)τ − 1

sj (λn)
.

The calculation results are shown in Figs. 27.2, 27.3 and 27.4.
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Fig. 27.2 Beam deflections

27.6 Conclusions

Thus, the coupled unsteadymodel of elastodiffusive Timoshenko beamoscillations is
presented. An algorithm for constructing the surface Green functions of the problem
is proposed. The use of the unknown functions expansion into series by eigenfunc-
tions allows us to solve the problem associated with the Laplace transform inversion.
Such an approach makes it possible to find an analytical solution to the oscillation
problem of an elastic diffusion Timoshenko beam.

Based on the developed model, the interaction of mechanical and diffusion fields
is investigated. The results of calculations are presented in analytical and graphical
forms.
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Fig. 27.3 Angle of rotation of the normal to the mid-surface of the beam

Fig. 27.4 Concentration
increment
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