
Ching-Hsien Hsu
Sondès Kallel
Kun-Chan Lan
Zibin Zheng (Eds.)

LN
CS

 1
18

94

6th International Conference, IOV 2019
Kaohsiung, Taiwan, November 18–21, 2019
Proceedings

Internet of Vehicles
Technologies and Services Toward Smart Cities



Lecture Notes in Computer Science 11894

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Ching-Hsien Hsu • Sondès Kallel •

Kun-Chan Lan • Zibin Zheng (Eds.)

Internet of Vehicles
Technologies and Services
Toward Smart Cities

6th International Conference, IOV 2019
Kaohsiung, Taiwan, November 18–21, 2019
Proceedings

123



Editors
Ching-Hsien Hsu
Chung Hua University
Hsinchu, Taiwan

Sondès Kallel
Saint-Quentin-en-Yvelines
Université de Versailles
Versailles Cedex, France

Kun-Chan Lan
China Medical University
Tainan, Taiwan

Zibin Zheng
Sun Yat-sen University
Guangzhou, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-38650-4 ISBN 978-3-030-38651-1 (eBook)
https://doi.org/10.1007/978-3-030-38651-1

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2020, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7878-4330
https://doi.org/10.1007/978-3-030-38651-1


Preface

This volume contains the proceedings of IOV/SC2 2019, the 6th International Con-
ference on Internet of Vehicles and the 9th International Symposium on Cloud and
Service Computing, which was held in Kaohsiung, Taiwan, during November 18–21,
2019.

In the era of the Internet of Things, Internet of Vehicles (IOV) plays an important
role in constructing smart cities as well as in establishing smart industrial environments
according to the Industry 4.0 paradigm. Smart cities are complex integrated network
systems, which connect different people within automotives, different automotives, and
different environmental objects in cities. In the industrial environments, IOV focuses on
providing new efficient solutions with digital intervehicular data transfer and overall
communications. Yet, IOV is different from telematics, vehicle ad-hoc networks, and
intelligent transportation, in which vehicles, like phones, can run within the whole
network and obtain various services by swarm intelligent computing with people,
vehicles, and environments.

This year, the technical program of IOV/SC2 2019 attracted submissions from 20
countries/regions. In the first stage, all papers submitted were screened for their rele-
vance and general submission requirements. These manuscripts then underwent a
rigorous peer-review process with at least three reviewers, coordinated by the inter-
national Program Committee. The Program Committee accepted a total of 32
high-quality papers. As all previous meetings in the IOV/SC2 series, the conference
was intended to play an important role for researchers and industry practitioners to
exchange information regarding advancements in the state of art and practice of
IOV/Cloud architectures, protocols, services, and applications. It was also intended to
identify emerging research topics and define the future directions of IOV/Cloud
Computing and its related areas such as Internet supported autonomous driving. We
believe that this volume not only presents novel and interesting ideas but also will
stimulate interesting discussions from the participants and inspire new ideas that will be
submitted and presented at further conferences in this series.

The organization of a conference is hard work. It would not have been possible
without the exceptional commitment of many expert volunteers. We would like to take
this opportunity to extend our sincere thanks to all the authors, keynote speakers, TPC
members, and reviewers. Special thanks go to the entire Local Arrangement Committee
for their help in making this conference a success. We would also like to express our
gratitude to all the organizations that supported our efforts to bring the conference to
fruition. We are grateful to Springer for publishing the underlying proceedings.

Finally, we hope that the participants not only enjoyed the technical program during
this prestigious conference, but also discovered many historical attractions in



Kaohsiung in order to make their stay unforgettable. Thank you for your participation
in this fruitful and enjoyable IOV/SC2 2019 conference!

November 2019 Ching-Hsien Hsu
Sondès Kallel
Zibin Zheng

Kun-Chan Lan

vi Preface



Organization

International Conference on Internet of Vehicles (IOV 2019)

Honorary Chair

Jeffrey J. P. Tsai Asia University, Taiwan

General Chairs

Chung-Ming Huang National Cheng Kung University, Taiwan
Andrzej M. J. Skulimowski AGH University of Science and Technology, Poland

Program Chairs

Kun-Chan Lan National Cheng Kung University, Taiwan
Lyes Khoukhi University of Technology of Troyes, France

Workshop Chair

Li Liu Chongqing University, China

Demo/Poster Chair

Kuan-Chou Lai National Taichung University of Education, Taiwan

Award Chair

Hui-Huang Hsu Tamkang University, Taiwan

Publicity Chairs

Daxin Tian Beihang University, China
William Liu Auckland University of Technology, New Zealand
Carson Leung University of Manitoba, Canada
Min-Xiao Chen National Dong Hua University, Taiwan

Publication Chair

Sondes Khemiri-Kallel Université Versailles Saint-Quentin-en-Yvelines,
France

Advisory Committee

Mohammad Obaidat Monmouth University, USA
Chu-sing Yang National Cheng Kung University, Taiwan
Feng Xia Dalian University of Technology, China
Raouf Boutaba University of Waterloo, Canada
Peng Cheng Zhejiang University, China



Hsiao-Hwa Chen National Cheng Kung University, Taiwan
Sajal Das Missouri University of Science and Technology, USA
Yao-Nan Lien Asia University, Taiwan

Steering Committee

Mohammed Atiquzzaman University of Oklahoma, USA
Jiannong Cao The Hong Kong Polytechnic University, Hong Kong,

China
Robert Hsu Asia University, Taiwan
Victor C. Leung The University of British Columbia, Canada
Shangguang Wang BUPT, China
Reinhard Klette Auckland University of Technology, New Zealand

Technical Program Committee

José Santa Lozano Polytechnic University of Cartagena, Spain
George Yannis National Technical University of Athens, Greece
Anis Laouiti Télécom SudParis, France
Deyun Gao Beijing Jiaotong University, China
Hassan Al-Muhairi Khalifa University, UAE
Jozef Wozniak Gdansk University of Technology, Poland
Kayhan Ghafoor Cihan University-Erbil, Iraq
Manuel Ricardo Universidade do Porto, Porto
Mario Freire University of Beira Interior, Portugal
Michal Hoeft Gdańsk University of Technology, Poland
Nai-Wei Lo National Taiwan University of Science

and Technology, Taiwan
Pascal Lorenz University of Upper Alsace, France
Fernando J. Velez Portugal
Rui Cruz Universidade de Lisboa, Portugal
Anand Nayyar Duy Tang University, Vietnam
Scott Trent IBM Research, Japan
Tianhua Xu University College London, UK
Wuyi Yue Konan University, Japan
Xiangjie Kong Dalian University of Technology, China
Yair Wiseman Bar-ilan University, Israel
Zsolt Saffer Budapest University of Technology and Economics,

Hungary
Tzung-Shi Chen National University of Tainan, Taiwan
Ignacio Soto Universidad Carlos III de Madrid, Spain
Razvan Stanica INSA Lyon, France
Winston Seah Victoria University of Wellington, New Zealand
Luca Reggiani Politecnico di Milano, Italy
Carlos Calafate Universitat Politècnica de València, Spain
Natarajan Meghanathan Jackson State University, USA
Shujun Li University of Kent, UK

viii Organization



Sokratis Katsikas Norwegian University of Science and Technology,
Norway

Miguel López-Benítez The University of Liverpool, UK
Lingxi Li Purdue School of Engineering and Technology, USA
Baris Fidan University of Waterloo, Canada
Bastian Bloessl Trinity College Dublin, Ireland
Khoukhi Lyes Université de Technologie de Troyes, France
Sun Hung-Min National Tsing Hua University, Taiwan
Masip Xavier Universitat Politècnica de Catalunya, BarcelonaTech,

Spain
Sheng-Wei Wang Fo Guang University, Taiwan
Lo Shou-Chih National Dong Hwa University, Taiwan
Santos Alexandre Universidade do Minho, Portugal
Jana Dittmann Otto von Guericke University of Magdeburg, Germany
Chang Yao-Chung National Taitung University, Taiwan
Wang Jenq-Haur National Taiwan University, Taiwan
Hyytiä Esa Mechanical Engineering and Computer Science,

Iceland
Giacomo Verticale Politecnico di Milano, Italy
Chen Thomas University of London, UK
Wolfinger Bernd University of Hamburg, Germany
Parrein Benoît Polytech Nantes, France
Tadeusiewicz Ryszard AGH University of Science and Technology, Poland
Uppal Momin Lahore University of Management Sciences, Pakistan
Chen Mu-Song Da-Yeh University, Taiwan
Chelouah Rachid École Internationale des Sciences du Traitement

de lnformation (EISTI), France
Wuyi Yue Konan University, Japan
Ing-Ray Chen Virginia Tech, USA
Tara Yahiya University of Kurdistan Hewlêr, Iraq

International Symposium on Cloud and Service
Computing (SC2 2019)

Honorary Chair

Jeffrey J. P. Tsai Asia University, Taiwan

General Chairs

Pangfeng Liu National Taiwan University, Taiwan
Patrick C. K. Hung University of Ontario Institute of Technology, Canada

General Executive Chair

Chung-Nan Lee National Sun Yat-Sen University, Taiwan

Organization ix



Program Chairs

Chao-Tung Yang Tunghai University, Taiwan
Zibin Zheng Sun Yat-Sen University, China

Workshop Chair

Zhikui Chen Dalian University of Technology, China

Demo/Poster Chair

Wen-Hua Liao Tatung University, Taiwan

Award Chair

Yue-Shan Chang National Taipei University, Taiwan

Publicity Chairs

Mianxiong Dong Muroran Institute of Technology, Japan
Yuri Demchenko University of Amsterdam, The Netherlands
Richard Lomotey Penn State University, USA
Sheng-Lung Peng National Dong Hua University, Taiwan

Publication Chair

Li-Hsing Yen National Chiao Tung University, Taiwan

Advisory Committee

Anna Kobusinska Poznan University of Technology, Poland
Shu Tao IBM Research, USA
Shian-Shyong Tseng Asia University, Taiwan
Shangguang Wang BUPT, China
Lizhe Wang China University of Geosciences, China
Saeid Abolfazli University of Malaya, Malaysia
Pascal Bouvry University of Luxembourg, Luxembourg
Keqin Li State University of New York, USA
Ren-Hung Hwang National Chung Cheng University, Taiwan
Daqing Zhang Institut Mines-Télécom/Télécom SudParis, France
Chung-Nan Lee National Sun Yat-Sen University, Taiwan
Michael Sheng Macquarie University, Australia
Hong Shen University of Adelaide, Australia

Steering Committee

Hamid Arabnia University of Georgia, USA
Rajkumar Buyya University of Melbourne, Australia
Chung-Ta King National Tsing Hua University, Taiwan
Robert Hsu Asia University, Taiwan
H. J. Siegel Colorado State University, USA

x Organization



Philip Yu University of Illinois at Chicago, USA
Christophe Cérin Université Paris 13, France
Omer Rana Cardiff University, UK

Technical Program Committee

Mohammad Shojafar University of Padua, Italy
Che-Rung Lee National Tsing Hua University, Taiwan
Chau Yuen Singapore University of Technology and Design,

Singapore
Fenfang Xie Sun Yat-sen University, China
Nicolas Bernard University of Luxembourg, Luxembourg
Xiang Zhao National University of Defense Technology, China
Fuu-Cheng Jiang National Chung-Hsing University, Taiwan
Satheesh Abimannan VIT University, India
Tyng-Yeu Liang National Kaohsiung University of Applied Sciences,

Taiwan
Chuan Chen Sun Yat-sen University, China
Weili Chen Sun Yat-sen University, China
Zhe Chen Northeastern University, China
Jiajing Wu Sun Yat-sen University, China
Pritam Shah DSI Bangalore, India
Wuu Yang National Chiao Tung University, Taiwan
Che-Wei Chang National Chung Shan Institute of Science

and Technology, Taiwan
Byungchul Tak Kyungpook National University, South Korea
Ramin Yahyapour GWDG - University of Göttingen, Germany
You-Chiun Wang National Sun Yat-sen University, Taiwan
Chuan-Ming Liu National Taipei University of Technology, Taiwan
Eddy Caron ENS-Lyon, Inria, LIP, France
Xavier Masip Universitat Politècnica de Catalunya, Spain
Lung-Pin Chen Tunghai University, Taiwan
Anna Sikora Universitat Autònoma de Barcelona, Spain
Danilo Pelusi University of Teramo, Italy
Jenq-Haur Wang National Taipei University of Technology, Taiwan
Luca Reggiani Politecnico di Milano, Italy
Domenico Ciuonzo University of Naples Federico II, Italy
Luca Caviglione CNR-IMATI, Italy
Christian Prehofer Technical University of Munich, Germany
Kuan-Chou Lai National Taichung University of Education, Taiwan
Amir H. Alavi University of Missouri, USA
Weihai Yu Norway
Jana Dittmann University of Magdeburg, Germany
Fabrice Huet Université Côte d’Azur, CNRS, I3S, France
I-Chen Wu National Chiao Tung University, Taiwan
Georgios Kambourakis University of the Aegean, Greece

Organization xi



Florin Pop University Politehnica of Bucharest, Romania
Carson Leung University of Manitoba, Canada
Wei Luo Zhejiang University, China
Mingdong Tang Guangdong University of Foreign Studies, China

xii Organization



Contents

A Novel Protocol for Information Dissemination in Vehicular Networks . . . . 1
Ravi Tomar, Hanumat G. Sastry, and Manish Prateek

Uplink Access Control in Narrowband IoT. . . . . . . . . . . . . . . . . . . . . . . . . 15
Ren-Hung Hwang, Min-Chun Peng, and Bo-Hao Tu

Dynamic Path Planning Method Based on Cluster Queuing Communication
in VANET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Mengdi Du, Shuisheng Lin, Chunbo Luo, Liang Zhou, and Haifen Yang

Performance Evaluation of Citywide Intersections Traffic Control
Algorithm inVANETs-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Sarah Hasan and Mourad Elhadef

Task Planning with Manual Intervention Using Improved
JSHOP2 Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Liancheng Tao, Qibo Sun, Jinglin Li, Ao Zhou, and Shangguang Wang

Multi-task Planning with the Consideration of Task Priority . . . . . . . . . . . . . 56
Renkang Ke, Qibo Sun, Jinglin Li, Ao Zhou, and Shangguang Wang

From AI to CI: A Definition of Cooperative Intelligence
in Autonomous Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Jun Liu, Yang Xiao, and Jiawei Wu

Utilizing Connectivity Maps to Accelerate V2I Communication in Cellular
Network Dead Spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Jon Arild Ekberg Meyer, Ergys Puka, and Peter Herrmann

Learning Route Planning from Experienced Drivers Using Generalized
Value Iteration Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Xiao Wang, Quan Yuan, Zhihan Liu, Yushun Dong, Xiaojuan Wei,
and Jinglin Li

Development of Low-Cost Sensors Based Multi-sensors Integration
Positioning Algorithm for Land Vehicle Tracking and Monitoring Device . . . 101

Chi-ho Park and Joong-hee Han

Multi-class Vehicle Detection Using Multi-scale Hard Negative Mining . . . . . 109
Minsung Kang and Young-Chul Lim



Predicting Steering for Autonomous Vehicles Based on Crowd Sensing
and Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Taiyu Liu, Jinglin Li, and Quan Yuan

uNVMe-TCP: A User Space Approach to Optimizing NVMe over Fabrics
TCP Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Ziye Yang, Qun Wan, Gang Cao, and Karol Latecki

An Ethereum-Based Data Synchronization Platform
for Distributed Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Jianru Lin, Keshan Zhang, Sicong Zhou, Kangying Lin, Yang Yang,
Huawei Huang, and Kun Wang

Distributed Logging Service with Distributed Hash Table for Cloud . . . . . . . 158
Takayuki Kushida

FLEDGE: Kubernetes Compatible Container Orchestration
on Low-Resource Edge Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Tom Goethals, Filip De Turck, and Bruno Volckaert

Accelerated Promethee Algorithm Based on Dimensionality Reduction . . . . . 190
Tarek Menouer, Christophe Cérin, and Patrice Darmon

Implementing a Business/Technology Architecture Alignment-Oriented
Process Applied to the Social-Sanitary Sector . . . . . . . . . . . . . . . . . . . . . . . 204

Fernanda Lugmaña-Hidalgo and José Luis Garrido

A Lightweight Time Series Main-Memory Database for IoT
Real-Time Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Lina Lan, Ruisheng Shi, Bai Wang, Lei Zhang, and Jinqiao Shi

A Review on Blockchain-Based Systems and Applications. . . . . . . . . . . . . . 237
Jingyu Zhang, Siqi Zhong, Jin Wang, Lei Wang, Yaqiong Yang,
Boyang Wei, and Guoyao Zhou

Tuning Runtimes in Open Source FaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
David Balla, Markosz Maliosz, Csaba Simon, and Daniel Gehberger

Achieving Dynamic Resource Allocation in the Hadoop Cloud System . . . . . 267
Tsozen Yeh and Shengchieh Yu

qCUDA-ARM: Virtualization for Embedded GPU Architectures . . . . . . . . . . 284
Bo-Yu Huang and Che-Rung Lee

A Workflow Interoperability Approach Based on Blockchain . . . . . . . . . . . . 303
Yuchen Fang, Xuanzhao Tang, Maolin Pan, and Yang Yu

Air Pollution Forecasting Using LSTM-Multivariate Regression Model . . . . . 318
Satheesh Abimannan, Yue-Shan Chang, and Chi-Yeh Lin

xiv Contents



Human-Centered Design Tools for Smart Toys . . . . . . . . . . . . . . . . . . . . . . 327
Anna Priscilla de Albuquerque, Judith Kelner, and Patrick C. K. Hung

Edge Service Migration for Vehicular Networks Based on Multi-agent
Deep Reinforcement Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Haohan Zhang, Jinglin Li, and Quan Yuan

A Road Traffic Guidance Service Based on Deep Reinforcement Learning. . . 353
Kaihui Chen, Zhihan Liu, Jinglin Li, and Quan Yuan

expanAI: A Smart End-to-End Platform for the Development
of AI Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Yongmei Wei and Jia Xin Low

Smoke and Stress Tests for Travel Service Applications via LoadRunner . . . . 366
Chau-Yi Chou, Yu-Bin Fang, Shuen-Tai Wang, and Fang-An Kuo

Privacy-Preserving Content-Based Publish/Subscribe Service Based
on Order Preserving Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Mingdong Li, Qifeng Luo, Lu Wang, Ruisheng Shi, and Jinqiao Shi

Improve the House Price Prediction Accuracy with a Stacked
Generalization Ensemble Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Shilong Xiong, Qibo Sun, and Ao Zhou

Correction to: Internet of Vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1
Ching-Hsien Hsu, Sondès Kallel, Kun-Chan Lan, and Zibin Zheng

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Contents xv



A Novel Protocol for Information
Dissemination in Vehicular Networks

Ravi Tomar(&) , Hanumat G. Sastry , and Manish Prateek

School of Computer Science, University of Petroleum and Energy Studies,
Dehradun, India

ravitomar7@gmail.com

Abstract. The Vehicular Ad Hoc Networks (VANETs) are rapidly emerging as
we are moving towards autonomous and self-driving vehicles. Network hardware
efficiency is growing day by day. However, optimal algorithms play a vital role in
the effective utilization of the network. The need for supporting algorithm is vital.
Cooperative network behavior is highly suitable for VANETs in comparison to
infrastructure-based networks. The cooperation for active information exchange
between vehicles is a prime requirement to provide safe, secure, and smoother
experience on roads. Broadcasting is always the best way to disseminate infor-
mation among all neighboring nodes in this kind of networks. However,
broadcasting in VANET has multiple issues such as broadcast storm problem,
network partition problem, network contention. The benefits of broadcasting
inspire the presented research work and propose a solution as Priority Based
Efficient Information Dissemination Protocol (PBEID). The work utilizes
probability-based and density-based information dissemination using conven-
tional broadcasting. The work has been compared with popular techniques for
information dissemination and has been statistically proven significant.

Keywords: VANETs � PBEID � Information dissemination

1 Introduction

The Vehicular Ad-Hoc Networks (VANETs) are the self-organizing networks; vehicles
act as nodes to exchange useful information [1]. VANET has evolved from Mobile Ad-
Hoc Network (MANET) but differs mainly due to the high mobility of nodes [2].
VANETs have the capability to cater to various services towards vehicles such as
assisting in blind crossing, route computation in real-time, avoiding intersection col-
lision, passing red lights without stopping, managing speed at curves, detection of
traffic signal violation, providing multimedia services, dissemination of safety or
emergency messages, assisting in highway merging, etc. However, there are situations
where one can utilize infrastructure to cater to different needs, such as Infotainment
services and Traffic Control. For the two scenarios, communication between nodes is
classified into two major types Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I) [3]. V2V focus only on communication between the vehicles and forming the
Ad-hoc network on the go. While V2I rely on infrastructure to communicate with
vehicles. The Vehicle to Vehicle (V2V) communication also known as cooperative

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 1–14, 2020.
https://doi.org/10.1007/978-3-030-38651-1_1

http://orcid.org/0000-0002-8957-6756
http://orcid.org/0000-0002-8175-7675
http://orcid.org/0000-0003-3950-425X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_1&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_1


communication [4]. To enable cooperative communication, a Dedicated Short-Range
Communication (DSRC) spectrum of 75 MHz (5.85 to 5.925 GHz) is allotted by the
U.S. Federal Communication Commission [1]. The spectrum contains seven channels
of 10 MHz wide each and have 1 Control Channel (CCH) and 6 Service Channel
(SCH). To create a cooperative awareness among all nodes in the network small
periodic packets are exchanged, and the process is known as beaconing, these packets
contain necessary information such as speed, position, and direction of a vehicle. The
beaconing process is always done on CCH while non-critical messages are transferred
through SCH. The IEEE 802.11p also specifies the Medium Access Control
(MAC) protocol for single-channel operation [5].

The information dissemination in V2V can be achieved in two ways, by single-hop
broadcasting or by multi-hop broadcasting. In single-hop broadcasting, the vehicle
sends the information packet to its nearby neighbours only i.e., to those vehicles which
are in its one-hop neighbourhood. The vehicle carrying information packet will roam
around with the information and periodically will transmit the packet in its one-hop
neighbourhood. On the other hand, in the case of multi-hop broadcasting, the vehicle
sends its on-board information to others by using the means of flooding. The flooding is
the technique to broadcast the packet to all the vehicles in its range of transmission. [6]
This type of broadcasting of message leads to many problems, out of which two are of
prime attention. One is the broadcast storm problem [7] where each vehicle is
rebroadcasting the packets which lead to redundant packets in the network which cause
an increased level of packet collisions and thereby the throughput of the network is
considerably reduced. The second problem is the network disconnection [8] problem,
which occurs due to the mobility of vehicles. However, when it comes to safety
messages, broadcasting is always preferred as it helps to effectively disseminate rele-
vant information to the maximum number of vehicles possible in the shortest interval of
time.

Three models can be classified into existing VANET dissemination techniques:
push, pull, and hybrid. In the Push model, the data is pushed as it is generated or
periodically in the network, and the pull model demands data on need basis [9]. The
hybrid model makes use of both. The pull model is mostly preferred in case of safety
applications while the pull model is suited in delay-tolerant applications such as
knowing traffic status, finding a restaurant nearby, etc.

There is no standard approach to access the performance of data dissemination in
VANETs due to its mobility and real-world scenario. The challenge is to find a very
detailed level traffic scenario and driving behavior data to perform analysis on an
algorithm. The techniques are verified through simulations and mathematical modeling.

Thus, we propose our PBEID protocol, which works upon prioritization of mes-
sages and then dynamically calculates the density of nodes, the delay between
rebroadcast and probability to rebroadcast. The protocol uses neighbor knowledge to
calculate density and distance information to prune neighbors, uses Store carry forward
(SCF) approach to maximize dissemination, uses the probability-based delay to become
opportunistic. This paper is further classified into 7 sections, Sect. 2 explains the
related work, Sect. 3 provides a novel protocol for information dissemination, followed
by Sect. 4 explaining the working of the proposed protocol. Sections 5 and 6 discuss
the simulation and results and finally, Sect. 7 concludes the paper and future directions.

2 R. Tomar et al.



2 Related Work

Broadcasting refers to merely sending a message to all receivers within the network.
Once received, every vehicle is supposed to rebroadcast the packet as long as every
vehicle has received that packet at least once when they have participated in that
particular network. This mechanism is called as flooding, and it works very reliably in
sparse environments where the vehicle density is low. On the other hand, when it
comes to broadcasting a message in a denser environment, the numbers of average
collisions increase significantly, and it leads to the broadcast storm problem [7]. The
redundant packet collision also leads to the hidden terminal problem [8] at times. Chen
et al. in [10] provides a summary of broadcast techniques used for dissemination of
critical messages in emergency scenarios. Various techniques have been proposed in
selecting the most suitable node to rebroadcast the message, and this is the critical area
where a lot more has to be done. As there exists no technique which suffices the
requirement of all type of networks. Here we discuss a few techniques which are used
for controlling the rebroadcast.

– Probability-based rebroadcast: In probability-based protocols, every vehicle
which receives an information packet will decide whether to re-broadcast the same
packet or not. The decision is taken based on probability-based functions. These
protocols use the value of probability in such a way so as reduce the medium
contention and the number of packet collision. Though, when these protocols are
used in sparse environments, there always lies a possibility that some of the vehicles
may not receive the data packet. An adaptive probabilistic protocol [11] proposes a
higher rebroadcast probability for the areas which are dense in terms of vehicle
density, and conversely, it proposes a lower rebroadcast priority for the areas where
vehicle density is low, i.e., sparse areas. Other types of probability-based algorithms
include weighted p-persistent algorithm, slotted 1-persistent algorithm, slotted
p-persistent algorithm [7].

– Counter-based rebroadcast: In this type of broadcasting protocols, the vehicle
decides its rebroadcast priority based on a counter which tells the vehicle as in how
many times it has received the same packet. Whenever a vehicle receives an
information packet for the very first time, it will wait for ‘t’ time units and then
broadcast it to all the neighbors. However, when a vehicle crosses the threshold
value, then the rebroadcasting process is canceled by the vehicle as it implies that
the message has already been broadcasted by some other vehicle in the network.
However, in the case where the threshold value is not crossed, and the timer expires,
then the packet is rebroadcasted instantly to increase the covering range of the
information packet. The dynamic counter-based protocol has been proposed in [12]
where authors have used a different value of threshold which varies corresponding
to the number of vehicles present on the road segment. So, a vehicle present in a
denser area will be having a smaller value of the threshold, and conversely, a
vehicle present in a sparse area will have a comparatively higher threshold. Counter
based technique has been integrated with Probability-based techniques in [13], the
author proposed that a probability distribution-based function will choose a value,
and in parallel, a counter will also be managed. When the counter value has been

A Novel Protocol for Information Dissemination in Vehicular Networks 3



reached, the rebroadcasting is cancelled as it implies that already the message has
been broadcasted too many times in the network.

– Distance-based rebroadcast: In distance-based protocols, the decision of when to
broadcast a packet depends upon the distance between the two vehicles, i.e.,
transmitter and receiver. Hence vehicles located at a greater distance will have a
higher threshold value—the high dependency of these protocols on threshold results
in a variable degree of performance. In [14], the authors have proposed to let the
vehicles wait for x seconds before taking on the broadcasted process for a packet.
The value of time interval is dependent on the distance between the two vehicles,
i.e., the transmitting vehicle and the receiving vehicle. The work in [15] aims at
selecting the next relay vehicle based on distance as well as on the communication
range of that road segment. In this work, the vehicle which is located in the farthest
segment of the road will be getting the highest rebroadcasting priority.

– Neighbour knowledge-based rebroadcast: Protocols based on neighbor knowl-
edge use factors such as position, and movement of their neighbors to decide
whether a vehicle is an excellent candidate to serve as the next relay vehicle or not.
In cases of sparse networks, such algorithms may yield more unsatisfactory results
due to less or no availability of neighbor data. Connected Dominating Sets are used
to propose an algorithm to reduce the number of redundant transmissions by the
authors in [16, 17]. While using CDS, a graph is generated depicting available
nodes and using this graph, a minimum number of vehicles are selected for the
rebroadcast process to achieve 100% coverage of the road segment.

– Opportunistic based rebroadcast: As the name suggests, opportunity-based
protocols work on the opportunities which are available using inheritance in the
broadcast process. Hence, the vehicle residing in the farthest location will have a
higher priority for broadcast and will also lead to more excellent coverage in a
comparatively shorter period. The authors in [18] have assigned the shortest waiting
delay to the vehicles which are residing in the farthest locations so that they can
broadcast the message instantly leading to faster delivery of packets to maximum
vehicles.

– Delay-Based rebroadcast: In the delay-based protocol, as the name suggests, the
delay is selected for each node wishing to rebroadcast the message. The delay may
be static or may come from an intelligent system. In [19] author proposed a static
delay-based protocol to ensure low delay and high reliability. The author has
assigned a 0.5 ms delay for the farthest node, 1 ms for the second farthest node,
1.5 ms for the third farthest node and so on till ten farthest nodes with a delay of
5 ms. This approach used neighbor knowledge and Delay based.

3 Proposed Protocol

This section explains the proposed novel protocol for efficient information dissemi-
nation over VANET. This protocol has been developed to maximize the radio channel
utilization and message transmission to maximum nodes in minimum time. Network
density and message priority are the significant factors which influence the information

4 R. Tomar et al.



dissemination. Various research studies have focused on message classification to
prioritize crucial information for effective dissemination, and this approach has given
encouraging results [20, 21]. This protocol works in three stages, at first stage the
message will be generated and prioritized along with direction, in second stage mes-
sage will be received by nodes in the vicinity, and every receiving node will compute
density, delay, and probability to rebroadcast and finally, in the third stage the algo-
rithm decides to broadcast the message or not. This protocol is fully compatible with
IEEE 802.11p standards [22].

3.1 Message Prioritization

The message generation node determines the message priority and direction of the
message to be disseminated. Broadcast is generally done circularly whereas mostly
messages are direction-specific, e.g. Ambulance information must be forwarded in
forwarding direction while sudden brake or accident information needs to be dissemi-
nated in backward direction. Keeping the above two parameters this work classify the
message propagation direction along with the priority of message. So, the messages are
classified into five classes where each class can identify the priority and direction of
message. Each class corresponds to a broadcast policy. Table 1 shows priority and
direction with example of use case. Figures 1, 2 and 3 depicts the scenario for all classes.

– Class 1 message indicates an emergency message which needs to be disseminated in
a backward direction, e.g., Accident, Sudden Brake detection. These messages are
of zero tolerance and should be disseminated as early as possible to all the following
vehicles.

– Class 2 message indicates an emergency vehicle trying to overtake vehicles in front,
and this message needs to be disseminated in the forward direction, e.g., Ambu-
lance, Fire Vehicle. These messages are also of high priority and should be dis-
seminated as early as possible to all ahead vehicles.

Table 1. Class of message based on priority and direction

Class Priority Direction Example

1 High Backward Accident, sudden brake, bad road
2 High Forward Ambulance, fire vehicle
3 Medium Backward Traffic updates, infotainment
4 Medium Forward Other infotainment
5 Low Both General broadcast

Fig. 1. Class 1 & Class 3 message, backward broadcast

A Novel Protocol for Information Dissemination in Vehicular Networks 5



– Class 3 message indicates a medium message, and this message needs to be dis-
seminated in a backward direction, e.g., Traffic Updates, Infotainment Applications.
These messages are of medium priority and possess less critical information.

– Class 4 message indicates a medium message, and this message needs to be dis-
seminated in the forward direction, e.g., Traffic Updates, Infotainment Applications.
These messages are of medium priority and possess less critical information. The
primary purpose is to share traffic information among nodes and finally updating
this information to traffic monitoring applications.

– Class 5 message indicates a general message, e.g., point of interest, advertisement
service, weather information, etc. These messages are of low priority and can be
disseminated separately (with permissible latency), Fig. 3 depicts the scenario. Our
protocol makes use of V2I approach to disseminate such kind of messages.
Broadcast policy this class of messages has already been proposed in our work [23].

3.2 Density of Nodes

Density is calculated by counting neighbors of a node within its coverage. However,
this is not possible in real life due to obstacles and interference in the signal. So, we
calculate density by counting the number of nodes in neighbor who can communicate.
Denser the network more is the traffic. Hence, we need to adjust rebroadcasting
parameter, as the density changes. To calculate the density in proposed work we make
use of beaconing [24]. With the help of beaconing each node maintains list of its two-
hop neighbors containing information such as speed, distance, and coordinates. The list
contains unique entry for each neighbor, only additional information changes on
receiving new packet. So, it does not lengthen the list of addresses for the concerned
packet. The table is pruned based on distance threshold of communication range. The

Fig. 2. Class 2 & 4 message, forward broadcast

Fig. 3. Class 5 message, general broadcast

6 R. Tomar et al.



count of one-hop neighbors (h0) and two-hop neighbor (h1) is used to calculating
density using this Eq. (1), where a is a density constant.

density ¼ a � h0 þ 1� að Þ � h1
2

ð1Þ

Choosing the value of a: The value of a is between 0 to 1 and is dependent on its one-
hop and two-hop neighbors. We can understand from Eq. (2), that if a is kept near to
the lower side than the impact of one-hop neighbor decreases and impact of two-hop
neighbor increases. So, we classify the system as if h0 < h1, the scenario is sparse, and
we need probability to rebroadcast to be high, which results in lower delay. Similarly, if
h0 > h1, the scenario is dense, and we need probability to rebroadcast to be less which
would eventually create higher delay. If h0 = h1 we can take any value of alpha
between 0 < a < 1, as the value of a has no impact on density in this case.

3.3 Rebroadcasting Probability (Prb)

The probability calculated based on the density of the network, this indicates whether
the packet needs to be rebroadcasted or not, we have carried multiple experiments to
determine and found 0.3 as the suitable value beyond which a packet should be
rebroadcasted. The Prb is calculated using the Eq. (2) where density is calculated from
Eq. (1), and Nodes are the number of vehicles in the network.

Prb ¼ 1� density
Nodes

ð2Þ

3.4 Delay Between Rebroadcast (Drb)

The delay between rebroadcast is the waiting time before rebroadcasting the packet;
this value needs to be set such that the farthest node should rebroadcast as early as
possible. So, we calculate this delay using the range of communication medium, dis-
tance to initiator and Probability to rebroadcast. The Drb is calculated using Eq. (3).

delay Drbð Þ ¼ Range� distance
Range � Prb

� �
milliseconds ð3Þ

3.5 Number of Rebroadcast (Nrb)

This parameter is used to ensure a failsafe system, as broadcasting does not have an
acknowledgment mechanism. So, if the packet is received many times, then a delay of
1 ms is added to the previously scheduled message, and the value of Nrb is decre-
mented by 1. This delay ensures the packet to broadcast at least once and if anytime
during the scheduled phase the Nrb value becomes 0 or negative all scheduled broadcast
message are canceled.

A Novel Protocol for Information Dissemination in Vehicular Networks 7



3.6 MaxDistance to Broadcast (Mdb)

The Maximum distance to rebroadcast defines the area of coverage, if the packet has
reached this value, then no further dissemination is done. This work considers the value
of Mdb to be maximum.

4 Working of the Protocol

The overall protocol contains four procedures which are explained below, the pseu-
docode for the protocol is provided in Algorithm 1, and the flow chart of the received
packet is depicted in Fig. 4.

4.1 Generate Packet

The message generation node will decide the priority and direction of the message and
assigns suitable class from the defined Table 1. The source node looks up for its
farthest neighbor in the data collected through the beaconing process. The new packet

Fig. 4. Flowchart of receive packet in PBEID

8 R. Tomar et al.



will be generated with this additional information to broadcast over the network. The
rest of the flow continues with the receiving vehicles and is explained in next section.

4.2 Receive Packet

At every receiving node, receive packet procedure will be executed. The packet
receiving node contains the information about itself and its neighboring nodes through
beaconing process. The class 5 messages will be handled by V2I approach explained
already in [23]. In case if the packet has already covered the desired area, then the
packet will be rejected. Further, the node compares its moving direction with the
intended direction of the message to be disseminated. If it is false, this indicates that
this node will not participate further in the dissemination of this message, so the
algorithm marks rebroadcast flag as false, and the algorithm ends. However, If it is true
then node will participate in further information dissemination, and it checks whether
the packet has been received for the first time or has also been received previously. If
the packet has been received previously the Nrb value is decremented by 1, and a static
delay is added to packet so that rebroadcast procedure can decide. If this packet has
been received for the first time then the density and probability to rebroadcast are
calculated. Based on different simulations performed we found that 0.3 value of Prb is
appropriate to reject the rebroadcast of message. So, if Prb is greater than 0.3 then
rebroadcast flag is set to true and delay to rebroadcast is calculated. At this point we
also check if the node processing the message is farther from the Fn value set by source
node, the delay is set to 0 ms to catalyze the dissemination. Finally, the packet along
with delay is passed to the rebroadcast procedure which will actually rebroadcast the
packet whenever the scheduled time event occurs. The rebroadcast procedure is
explained in the next section.

4.3 Rebroadcast

All the rebroadcast are scheduled by receive packet procedure and also the value of Nrb.
This procedure checks for rebroadcast flag and value of Nrb before rebroadcasting. If
the rebroadcast flag is false or Nrb value is zero or negative it cancels the rebroadcast.
Otherwise, it checks for class and broadcast the packet on CCH/SCH accordingly. In
the case of class 1 and 2, it also adapts store carry forward approach so that message is
disseminated even in the case of hidden node problem.

5 Simulation

5.1 System Model

In our model, we are using the realistic road map, extracted from OpenStreetMap [25],
the city environment of 3 � 2.5 km has been taken for analysis, which commonly has
high-density vehicle moving around on a city road and also a lot of intersection and
junctions are available in the city. We define a curved road segment which merges onto
a two-lane highway. The curved road and buildings helped us to see the effect of Signal

A Novel Protocol for Information Dissemination in Vehicular Networks 9



loss in DSRC. The work is focused on V2V communication, and hence, no Roadside
Unit or V2I is considered. We identified the following four parameters which affect the
information dissemination in VANET. The parameters that need to be optimized for
different needs of application are Rebroadcasting Probability (Prb), Number of
Rebroadcast (Nrb), Delay between Rebroadcast (Drb) and Maximum Hop Count (MHC).

5.2 Simulation Setup and Parameters Used

The Simulation is carried out in OMNET++ [26] and VEINS [27] framework. The
mobility model is generated through SUMO. The parameters for the simulation are
described in Table 2. The mobility model is generated for variable vehicles running on
a curved road with random speed. The model is realistic due to the random speed. The
simple obstacle model is used to depict real-world condition. An accident message is
introduced in the network at time 400 s during the simulation. The objective is to
disseminate this message to maximum nodes in minimum time. The simulation is
executed for total of 450 s. The mobility model and the network parameters are kept
constant for all the five-algorithm implementation.

6 Result and Discussion

In this section, we present the detailed graphical and statistical analysis to evaluate the
significance of the proposed PBEID protocol. The proposed PBEID protocol is com-
pared with the standard information dissemination techniques as Flooding [28],
Probability-based [11, 29], Distance-Based [30] and Counter Based [12, 13]. The
performance of PBEID is evaluated based on the following metrics [31].

– Propagation Time: The propagation time is defined as the difference of time
between the packet generation at the source node and reception of first message at
the last node. Minimizing this value makes an algorithm efficient.

Table 2. Simulation parameters

Parameter Value

Field City: 3000 m � 2500 m
Simulation duration 450 s
Scheduled accident (Randomly near 400 s)
Transmission range 300 m
Beaconing interval 3 s
Mobility Fixed path
Vehicle speed Random with (acceleration = 2.6 m/s, maxSpeed = 14 m/s)
Average speed 13.41 m/s
Number of nodes 30, 50, 70, 90, 110, 130, 150
Data packet size 512 byte
MAC protocol IEEE 802.11p

10 R. Tomar et al.



– Reachability: The Reachability or Full Reception Ratio is defined as the number of
nodes receiving the message irrespective of the time taken. All nodes should receive
the message.

– Number of Retransmission: The total number of Packet Generated or retrans-
mission is the number of packets generated on all nodes during the retransmission
of the packet. Generating a higher number of rebroadcasts creates network con-
tention and broadcast storm problem. So, this should be minimized to make a
congestion-free network.

– Number of collisions: the number of collisions is dependent on the total number of
retransmissions done if higher retransmission is done then higher packet would
generate in the network and there are chances of getting more packet collision
which will affect overall performance of network.

Any single parameter cannot decide the optimal algorithm, e.g., as a best-case, we
need 100% reachability in minimum time using the minimum network resources and
minimum collisions.

6.1 Evaluating the Propagation Time

The propagation time is the parameter which is most useful when we talk about the
critical messages. The propagation time is the time taken by a message to be delivered
to the last accessible node in the network. Figure 5 shows the performance of PBEID
protocol against different techniques in sparse to the dense network environment. The
propagation time is calculated using Eq. (4). We can observe that PBEID protocol is
consistently performing well in almost all the scenarios. Only the distance-based
approach is outperforming the PBEID protocol with very little difference.

PT ¼ ReceiveMsgTime� InitTime ð4Þ

00.511.522.533.544.555.566.577.58

3 0 5 0 7 0 9 0 1 1 0 1 3 0 1 5 0TI
M

E 
TA

KE
N

NUMBER OF NODES

Autocast Counter Distance

Flooding 1s Flooding 2s PBEID

Fig. 5. Number of nodes vs. propagation in time

A Novel Protocol for Information Dissemination in Vehicular Networks 11



6.2 Reachability

The reachability refers to the overall coverage of the message, and it is always expected
that message covers the entire network for which it was intended. The reachability is
affected by many parameters such as collision, blind node, network contention, etc. The
Reachability is calculated using Eq. (5).

Reachablity ¼ Number Vehicle Received
Total Vehiclesin Network

ð5Þ

In Fig. 6, we can see that PBEID is performing best in contrast to all other
algorithms.

7 Conclusion and Future Work

In this work, we have explained various techniques available for information dissemi-
nation in VANETs. We identified and explained the necessary parameters to optimize
the information dissemination such as density bases and prioritization. Based on these
findings, we proposed a priority-based efficient information dissemination technique
(PBEID). All the discussed existing and proposed algorithm are implemented in VEINS
[27], and the exhaustive comparison is made. The simulation is carried out based on
different scenarios from sparse to dense. Based on graphical analysis we could see that
performance of PBEID is performing well if we look all values holistically. So, to better
understand our results in future work we plan to perform statistical test on the data
collected through simulation and to observe that our results are significant and not by
chance. As future work, we will analyze the performance of PBEID in more complex
scenarios and on more parameters. Our primary interest is to study the behavior of our
protocol when there are multiple messages in the network. More work will be carried out
in the making a adaptive to calculate density in a real scenario. With these findings, we
may conclude further that PBEID will work in more complex scenarios.

0

50

100

3 0 5 0 7 0 9 0 1 1 0 1 3 0 1 5 0

RE
AC

HA
BL

IT
Y 

IN
 %

NUMBER OF NODES

Autocast Counter Distance

Flooding 1s Flooding 2s PBEID

Fig. 6. Number of nodes vs. reachability in percentage

12 R. Tomar et al.



References

1. Jiang, D., Delgrossi, L.: IEEE 802.11p: towards an international standard for wireless access
in vehicular environments. In: IEEE Vehicular Technology Conference, pp. 2036–2040
(2008)

2. Liang, W., Li, Z., Zhang, H., Wang, S., Bie, R.: Vehicular ad hoc networks: architectures,
research issues, methodologies, challenges, and trends. Int. J. Distrib. Sensor Netw. 2015(8),
745303 (2015)

3. Andrews, S.: Vehicle-to-vehicle (V2V) and vehicle-to- infrastructure (V2I) communications
and cooperative driving. In: Eskandarian, A. (ed.) Handbook of Intelligent Vehicles, vol. 2,
pp. 1121–1144. Springer, London (2012). https://doi.org/10.1007/978-0-85729-085-4_46

4. Willke, T., Tientrakool, P., Maxemchuk, N.: A survey of inter-vehicle communication
protocols and their applications. IEEE Commun. Surv. Tutorials 11(2), 3–20 (2009)

5. IEEE, “IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012) : IEEE Standard for
Information technology–Telecommunications and information exchange between systems
Local and metropolitan area networks–Specific requirements - Part 11: Wireless LAN
Medium Acce,” IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), p. 3534 (2016)

6. Panichpapiboon, S., Pattara-Atikom, W.: A review of information dissemination protocols
for vehicular ad hoc networks. IEEE Commun. Surv. Tutorials 14(3), 784–798 (2012)

7. Wisitpongphan, N., Tonguz, O.K., Parikh, J.S., Mudalige, P., Bai, F., Sadekar, V.: Broadcast
storm mitigation techniques in vehicular ad hoc networks. IEEE Wirel. Commun. 14(6), 84–
94 (2007)

8. Jin, Z., Yan, N., Li, B.: Reliable on-demand geographic routing protocol resolving network
disconnection for VANET. In: Proceedings - 5th International Conference on Wireless
Communications, Networking and Mobile Computing, WiCOM 2009, pp. 1–4 (2009)

9. Nadeem, T., Shankar, P., Iftode, L.: A comparative study of data dissemination models for
VANETs. In: 2006 3rd Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, MobiQuitous, pp. 1–10 (2006)

10. Chen, R., Jin, W.L., Regan, A.: Broadcasting safety information in vehicular networks:
issues and approaches. IEEE Netw. 24(1), 20–25 (2010)

11. Mylonas, Y., Lestas, M., Pitsillides, A., Ioannou, P., Papadopoulou, V.: Speed adaptive
probabilistic flooding for vehicular ad hoc networks. IEEE Trans. Veh. Technol. 64(5),
1973–1990 (2015)

12. Mohammed, A., Ould-Khaoua, M., Mackenzie, L.M., Abdulai, J.D.: Dynamic probabilistic
counter-based broadcasting in mobile Ad hoc networks. In: ICAST 2009 - 2nd International
Conference on Adaptive Science and Technology, pp. 120–127 (2009)

13. Yassein, M.B., Nimer, S.F., Al-Dubai, A.Y.: A new dynamic counter-based broadcasting
scheme for mobile ad hoc networks. Simul. Model. Practice Theory 19(1), 553–563 (2011)

14. Li, D., Huang, H., Li, X., Li, M., Tang, F.: A distance-based directional broadcast protocol
for urban vehicular ad hoc network. In: 2007 International Conference on Wireless
Communications, Networking and Mobile Computing, WiCOM 2007, pp. 1520–1523
(2007)

15. Korkmaz, G., Ekici, E., Ozguner, F.: Black-burst-based multihop broadcast protocols for
vehicular networks. IEEE Trans. Veh. Technol. 56(5), 3159–3167 (2007)

16. Ros, F.J., Ruiz, P.M., Stojmenovic, I.: Reliable and efficient broadcasting in vehicular ad
Hoc networks. In: IEEE Vehicular Technology Conference, pp. 1–5 (2009)

17. Na Nakorn, K., Rojviboonchai, K.: Non-GPS data dissemination for VANET. Int. J. Distrib.
Sens. Netw. 2014 (2014)

A Novel Protocol for Information Dissemination in Vehicular Networks 13

http://dx.doi.org/10.1007/978-0-85729-085-4_46


18. Li, M., Zeng, K., Lou, W.: Opportunistic broadcast of event-driven warning messages in
Vehicular Ad Hoc Networks with lossy links. Comput. Netw. 55(10), 2443–2464 (2011)

19. Gonzalez, S., Ramos, V.: Preset delay broadcast: a protocol for fast information
dissemination in vehicular ad hoc networks (VANETs). Eurasip J. Wirel. Commun. Netw.
2016(1), 117 (2016)

20. Amadeo, M., Campolo, C., Molinaro, A.: Priority-based content delivery in the internet of
vehicles through named data networking. J. Sens. Actuator Netw. 5(4), 17 (2016)

21. Yang, J., Fei, Z.: Broadcasting with prediction and selective forwarding in vehicular
networks. Int. J. Distrib. Sens. Netw. 2013(12), 309041 (2013)

22. Huang, C.M., Yang, C.C., De Huang, H.: An effective channel utilization scheme for IEEE
1609.4 protocol. In: Proceedings of the 4th International Conference on Ubiquitous
Information Technologies and Applications, ICUT 2009, pp. 1–6 (2009)

23. Tomar, R., Prateek, M., Sastry, H.G.: A novel approach to multicast in VANET using
MQTT. Ada User J. 38(4), 231–235 (2017)

24. Tomar, R., Prateek, M., Sastry, H.G.: Analysis of beaconing performance in IEEE 802.11p
on vehicular ad-hoc environment. In: 2017 4th IEEE Uttar Pradesh Section INternational
Conference on Electrical, COmputer and Electronica (UPCON) GLA University, Mathira,
26–28 October 2017, vol. 2018, pp. 692–696 (2017)

25. OpenStreetMap. https://www.openstreetmap.org/#map=18/30.32427/78.04188. Accessed 16
May 2019

26. OMNETPP. https://omnetpp.org/software/2017/12/12/omnet-5-2-1-released
27. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road simulation

for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2011)
28. Tseng, Y.C., Ni, S.Y., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a mobile ad

hoc network. Wirel. Netw. 8(2–3), 153–167 (2002)
29. Kumar, S., Mehfuz, S.: Intelligent probabilistic broadcasting in mobile ad hoc network: a

PSO approach. J. Reliab. Intell. Environ. 2(2), 107–115 (2016)
30. Hall, R.J.: An improved geocast for mobile ad hoc networks. IEEE Trans. Mob. Comput.

10(2), 254–266 (2011)
31. Oliveira, R., Montez, C., Boukerche, A., Wangham, M.S.: Reliable data dissemination

protocol for VANET traffic safety applications. Ad Hoc Netw. 63, 30–44 (2017)

14 R. Tomar et al.

https://www.openstreetmap.org/#map%3d18/30.32427/78.04188
https://omnetpp.org/software/2017/12/12/omnet-5-2-1-released


Uplink Access Control in Narrowband IoT

Ren-Hung Hwang(&), Min-Chun Peng, and Bo-Hao Tu

National Chung Cheng University, Chaiyi, Taiwan
rhhwang@cs.ccu.edu.tw

Abstract. In order to provide low-power wide area network (LPWAN) ser-
vices, 3GPP adopted the Narrow-Band Internet of Things (NB-IoT) standard in
2016. NB-IoT is expected to become the transmission communication standard
for providing a large number of IoT devices in 5G networks. However, devel-
opment of NB-IoT is still in its earlier stage and encounters several challenges.
First, NB-IoT is designed for machine type communication. Generally, con-
nection and transmission delays are not the primary consideration for this type
of communication. Thus, it is not able to meet different delay requirements of
different types of IoT applications. For example, for life-threatening or life-
saving applications, they would require very high reliable and low latency
transmission of emergency messages. Secondly, when a user equipment wants
to associate to a NB-IoT network, it must synchronize with the regional base
station (eNB) through the random access channel (RACH) procedure. A large
number of IoT devices will cause a big challenge to the RACH procedure.
Therefore, in this paper, we aim to improve the RACH procedure to handle a
large number of IoT devices without affecting the transmission delay of emer-
gent messages. We propose a Dynamic RACH Resource Allocation (DRRA)
scheme which integrates with resource allocation scheme and Access Class
Barring (ACB) scheme to improve the delay and throughput of the RACH
procedure. Our simulation results show that the proposed DRRA scheme is able
to achieve higher access success rate, higher system throughput, and low
transmission delay for emergent message as compared to the original RACH
procedure.

Keywords: NB-IoT � RACH � LPWAN � IoT

1 Introduction

Internet of Things (IoT) is one of the booming technologies in recent years. IoT
industries, such as smart meter, smart grid, smart city, and healthcare, is expected to
grow radiantly in next 10 years. Wireless communication technologies play a key role
in meeting the flexible and ubiquitous communication demand of IoT devices. In
particular, because the wide deployment scope and limited battery life of IoT devices,
several Low-Power WAN (LPWAN) technologies have been developed to fit the
demand of long distance but small data volume transmission. Among them, NB-IoT
proposed by 3GPP becomes the most promising LPWAN technology due to its reliable
infrastructure and licensed communication band [1].

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 15–27, 2020.
https://doi.org/10.1007/978-3-030-38651-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_2&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_2


In the NB-IoT network, devices need to perform a Random Access (RA) procedure
[2] to communicate with an eNB before data transmission using preambles. There are
two types of RA procedures, contention-based and contention-free. They use different
set of preambles. The contention-based RA procedure is initiated by devices and used
when the devices have demands for accessing the network. On the other hand,
contention-free RA procedure is initiated by eNB and assign dedicated preamble to
device directly. In most cases, devices need to perform contention-based RA procedure
when first attached to an eNB. Only after the RA procedure, devices can achieve the
uplink frequency synchronization and access the NB-IoT network. There are four steps
in the contention-based RA procedure.

Step1. Random Access Preamble (MSG1)
The resource allocation in the frequency domain is a set of starting preambles.
Preambles are carried in the Physical Random Access Channel (PRACH) which is a
part of an uplink resource of a NB-IoT network. Each starting preamble is equivalent to
the first NB-IoT PRACH (NPRACH) symbol group and associated with a specific
3.75 kHz tone. The set of starting preambles is determined by a subcarrier offset and a
number of spanned subcarriers. The time-domain allocation is defined by a periodicity,
a starting time with the period, and the number of repetitions associated with the
NPRACH resource. Allocation of the PRACH in a subframe is determined by the
prach-ConfigIndex of System Information Block 2 (SIB2) announced by an eNB [3].
Devices then randomly choose one preamble for contention-based RA procedure and
send it to the eNB. If a device does not receive the Random Access Response (RAR) in
a RAR window, its contention for RA is failed.

Step2. Random Access Response (MSG2)
When an eNB receives a preamble from a device, a RAR message is sent to the device.
The RAR consists of the preamble index, uplink time synchronization, uplink grant,
and Temporary Cell-Radio Network Temporary Identifier (TC-RNTI). Once a device
succeeds in the RA procedure, its TC-RNTI is changed to C-RNTI. During this step, it
is possible that more than one device selects the same preamble. In this situation, if the
preamble can be received correctly, a RAR will be replied and the contention is solved
in Step 4. However, due to the signal collision, the eNB is more likely not able to
receive the preamble. In this study, we assume that when more than one device sends
the same preamble, the RA will fail due to collision.

Step3. Scheduled Transmission (MSG3)
When a device receives a RAR, it replies with a MSG3 to the eNB. The uplink resource
allocated in the RAR is used to transmit the MSG3, which consists of the device ID and
the RRC connection request.

Step4. Contention Resolution (MSG4)
When an eNB receives a MSG3, it has to decide which devices succeed in the con-
tention. The eNB transmits the MSG4 to devices that send the MSG3. The MSG4
consists of the device ID and the RRC connection setup. If a device finds that the
device ID in the MSG4 is itself, its contention succeeds. The TC-RNTI of the device
changes to C-RNTI and the status changes to RRC_CONNECTED. Otherwise, the
device knows its contention failed and starts the RA procedure all over again.

16 R.-H. Hwang et al.



In order to achieve maximum energy loss of 144 dB, 154 dB, and 164 dB against
Maximum Coupling Loss (MCL), there are three coverage levels in NB-IoT. The
system information sets the specifications for each CE Level, such as the period in
which the channel appears, the position of the channel on the frequency axis, the
position of the channel on the time axis, the number of subcarriers used by the channel,
and the maximum number of retries for the preamble. The base station will determine
the threshold of the two reference signals (Reference Signal Received Power, RSRP).
The transmission device will find out which CE level it is based on the measured
RSRP. UE will perform random access procedure with corresponding NPRACH
configuration.

Although in reality, there are many types of IoT devices and applications with very
different traffic characteristics and QoS requirements, such as transmission delay and
reliability, differentiating the RACH procedure for different types of IoT devices has
received very little attention in the literature. In this study, we classify NB-IoT devices
(applications) into two categories, the emergency transmission type and the regular
transmission type. As the number of NB-IoT devices grow rapidly, it is a big challenge
to guarantee the emergency transmission type device to connect to the eNB with a high
successful rate and short delay. We aim to design the RACH procedure to handle a
large number of IoT devices without affecting the transmission delay of emergent
messages. We propose a Dynamic RACH Resource Allocation (DRRA) scheme which
integrates with resource allocation scheme and ACB scheme to improve the delay and
throughput of the RACH procedure. As compared to the enhanced RA procedure
proposed by 3GPP [4], our simulation results show that the proposed DRRA scheme is
able to achieve higher access success rate, higher system throughput, and extremely
low transmission delay for emergent message.

The remainder of this paper is organized as follows. Section 2 surveys state-of-the-
art works on NB-IoT RACH procedure. Section 3 presents the proposed Dynamic
RACH Resource Allocation (DRRA), including the Resource Allocation scheme, and
the Access Class Barring (ACB) scheme. Simulation results are shown in Sect. 4.
Finally, conclusions and future research are given in Sect. 5.

2 Related Works

Surveys on recent advances in NB-IoT standards, key technologies and open issues can
be found in [5–7]. Quite a few recent works on NB-IoT RACH procedure focused on
efficient power consumption issues [8]. Performance modeling on the standard RACH
procedure is done in [9]. The authors in [10] proposed a method to determine the
required number of preambles for a target RA request arrival rate, but details of the
RACH procedure, such as retransmission, were ignored. Preamble repetition was
analyzed using stochastic geometry from physical signal aspect in [11] which showed
little improvement in a heavy traffic scenario. Authors in [12] also showed that fewer
repetitions with more retransmissions can yield higher successful RA probability. Thus,
in this work, we will focus on the effect of retransmission.

In general, six basic mechanisms were proposed by 3GPP to enhance the RACH
procedure [4], include ACB, separate RACH resource for MTC, dynamic allocation of

Uplink Access Control in Narrowband IoT 17



RACH resources, MTC specific backoff, slotted access, and pull based scheme. Most
of the previous works studied how to improve the RACH procedure from one of the
above mechanisms. Different from previous works, in this paper, we combine the first
three mechanisms to enhance the RACH procedure with goals to provide large number
of simultaneous IoT devices access and low delay transmission of emergency
messages.

3 Dynamic RACH Resource Allocation (DRRA) Scheme

3.1 System Overview

In this section, a system architecture overview is given of the proposed DRRA. The
following assumptions are made.

• eNBs are aware of preamble collisions
It is assumed that eNBs are aware of the collisions of the preambles when they
happened, and will not reply RAR to those devices.

• Service types and classes
It is assumed that a device collects the same service type of data. There are two
service types with different delay and reliability requirements (see Table 1).

Figure 1 shows the overview of the DRRA scheme. Before a device accesses a NB-
IoT network, it receives a SIB2 from an eNB, which allocates the RACH resource
based on the traffic condition in the previous frame. With the RACH resource allo-
cation, the device attempts to transmit a preamble in a RA-slot. In a heavy traffic load
condition, an ACB scheme is triggered. The device has to follow the ACB policy
before sending a preamble. The ACB policy sets a probability and the device can only
send a preamble according to this probability.

Table 1. Types of IoT devices (applications).

Type Data type Application

Type A Emergent data Life-threatening or life-saving applications (e.g., alarms)
Type B Regular data Environmental sensing data (e.g., smart meter)

Fig. 1. Architecture of the DRRA scheme

18 R.-H. Hwang et al.



3.2 RACH Resource Allocation Scheme

The DRRA scheme aims to control two types of the RACH resources. One is the number
of preambles in a RA-slot, and the other is the number of RA-slots in a frame. They are
adjusted to reflect the traffic load to guarantee high successful access probability.

In a NB-IoT network, an eNB broadcasts the prach-ConfigIndex in the SIB2, which
then allows the eNB to adjust the number of RA-slots in a frame. In addition to the
RACH resource adjustment, the eNB can also control the distribution of preambles for
different service classes. As a result, the devices are aware of which preambles they can
choose and when to begin the RA procedure.

Table 2 shows the notations used in the DRRA scheme. Arrival rates of Type A
and Type B devices are assumed to follow Poisson process.

In order to estimate the arrival rate of these two types of devices, the eNB keeps
track the number of preambles that are not used by any devices (X0; Y0) and only one
device (X1; Y1). Following the Poisson distribution, arrival rate per preamble of Type A
(B) can be estimated from X0(Y0) and X1(Y1) by following equations, respectively.

e�kTypeA ¼ X0

NTypeA
ð1Þ

kTypeAe
�kTypeA ¼ X1

NTypeA
ð2Þ

e�kTypeB ¼ Y0
NTypeB

ð3Þ

Table 2. Notations used in the DRRA scheme.

Notation Meanings

NPreamble Number of contention-based preambles in a RA-Slot
NTypeA Number of preambles allocated for Type A devices in a RA-Slot
NTypeB Number of preambles allocated for Type B devices in a RA-Slot
kTypeA Estimated arrival rate of Type A devices per preamble in a frame
kTypeB Estimated arrival rate of Type B devices per preamble in a frame
X0 No. of preambles for Type A devices which is not selected by any device
X1 No. of preambles for Type A devices which is selected by only one device
Y0 No. of preambles for Type B devices which is not selected by any device
Y1 No. of preambles for Type B devices which is selected by only one device
Pb;TypeA Estimated blocking probability of Type A devices (i.e., prob. of failed RA)
Pb;TypeB Estimated blocking probability of Type B devices

PG
b;TypeA Guarantee blocking probability of Type A devices

PG
b;TypeB Guarantee blocking probability of Type B devices

Uplink Access Control in Narrowband IoT 19



kTypeBe
�kTypeB ¼ Y1

NTypeB
ð4Þ

kTypeA can be derived either from (1) or (2). In this work, kTypeA is estimated by
taking the average of the values from (1) and (2) if both of them yield valid values.
Similarly, kTypeB is calculated in the same way. The blocking probabilities of Type A

and Type B devices can then be estimated by using (5) and (6) where PA ¼
kTypeA
� �

e� kTypeAð Þ and PB ¼ kTypeB
� �

e� kTypeBð Þ.

Pb;TypeA ¼ 1�
PNTypeA

i¼1
NTypeA

i

� �
� i� Pi

A � 1� PAð ÞNTypeA�i

kTypeA
ð5Þ

Pb;TypeB ¼ 1�
PNTypeB

i¼1
NTypeB

i

� �
� i� Pi

B � 1� PBð ÞNTypeB�i

kTypeB
ð6Þ

They are compared with the predefined guaranteed blocking probabilities of
PG
b;TypeA and PG

b;TypeB to determine as to whether the traffic load is too heavy or not. If the
traffic load is too heavy, the RACH resource and preamble distribution are adjusted to
give priority to guarantee the blocking probability of type A devices. The new values of
N

0
TypeA, and N

0
TypeB will be used to calculate the updated arrival rates (per preamble),

k
0
TypeA and k

0
TypeB, based on Eqs. (7) and (8).

k
0
TypeA ¼ kTypeA � NTypeA

N 0
TypeA

ð7Þ

k
0
TypeB ¼ kTypeB � NTypeB

N 0
TypeB

ð8Þ

With the new arrival rates and number of allocated preambles, new blocking
probability is calculated again using Eqs. (5) and (6). This process is repeated until
suitable N

0
TypeA, and N

0
TypeB are found. Algorithm 1 shows the pseudo code of the RACH

Resource Allocation Scheme. In Algorithm 1, when traffic load is low, lines (4)–(9)
reallocate preambles to both types of devices according to their arrival rates. On the
other hand, if the traffic load is high, lines (10)–(17) increases the preambles allocated
to type A traffic first which guarantees the transmission of emergent messages. Finally,
lines (19)–(30) adjusts the number of preambles allocated to type B under the constraint
of available preamble left over. Notably, if the traffic load is extremely high, we will
run out of preambles and cannot guarantee the probability of success probability
of RA for either type. In this case, we will need to apply Access Class Barring

20 R.-H. Hwang et al.



Scheme proposed in the next section to restrain the arrival rate of IoT devices. In the
future work, we will also consider the option of adding RACH resources on non-anchor
carriers.

3.3 Access Class Barring (ACB) Scheme

The ACB scheme is adopted to restrain the RA requests. Since we expect the number
of type A devices will be relatively small and they provide life-saving applications, the
proposed ACB scheme only applies to the type B devices. In the ACB scheme, an ACB
barring factor is set to control devices to perform the RA procedure. A device generates
a random number and if the number higher than the ACB barring factor, it has to give
up this trial and restart the RA procedure later.

Uplink Access Control in Narrowband IoT 21



Next, the detail steps of the proposed ACB scheme are presented. Initially, the
number of RA requests in a frame sent from type B devices is kTypeB � NTypeB. After
setting up an ACB barring factor, the arrival rate of type B devices is reduced to
kTypeB � qACB
� �

and the blocking probability can then be calculated by Eq. (6).
The goal of the ACB scheme is to find a suitable ACB barring factor such that the

number of RA requests is expected to lower than the system capacity, which is one
arrival per preamble. Thus, given current per preamble arrival rate of type B device,
kTypeB, the ACB barring factor is set according to following equation.

qACB ¼
1

kTypeB
; if kTypeB [ 1

1; if kTypeB � 1

�
ð9Þ

4 Performance Evaluation

Performance is evaluated via simulations which are written in C language.

4.1 Simulation Parameters and Performance Metrics

We follow the same parameter settings proposed in [6], as shown Table 3.

PG
b;TypeA is set to 0.01 and PG

b;TypeA is set to 0.1 unless otherwise stated. Simulation
time is 10 min and each simulation is performed 30 times to obtained average per-
formance metric and 95% confidence interval. The confidence interval is very small,
thus not shown in following results.

The following metrics are used to evaluate the performance of a RACH scheme.

• Access success probability: it is the average successful probability of a RA request
per RACH period.

• Average access delay: it is the average access delay given a RA request is
successful.

• Average throughput: it is the average number of successful RA requests per RACH
period.

In the following simulation experiments, we will compare the performance of three
schemes: the original scheme proposed in 3GPP NB-IoT without ACB, the ACB
scheme proposed in [13] which is designed to cope with massive IoT devices, and our
DRRA scheme.

Table 3. Simulation parameter setting.

CE level Subcarrier Repetition Periodicity

CE0 48 1 40 ms
CE1 24 2 80 ms
CE2 24 4 160 ms

22 R.-H. Hwang et al.



4.2 Simulation Case 1: Single CE Level

In the first simulation case, we valid the basic features of the DRRA scheme. We
assume there are only CE level 0 devices, and the MaxTry parameter is set to 5. The
MaxTry parameter defines how many times a device will retry the RA procedure after
failures. Preamble is randomly reselected when a device performs a retry. The arrival
rate of CE level 0 devices varies from 10 to 30. For each arrival rate, half of them are
type A devices.

Figure 2 shows the average access probability of three schemes. When arrival rate is
higher than 20, the system becomes congested. As we can observed from Fig. 2, ACB
scheme outperforms the other two schemes when traffic load is light. The rationale is
that the ACB scheme restrain the arrival rate even the system is not overloaded. Figure 3
confirms this situation as the average throughput of the ACB scheme is lower than the
other two schemes. When the system becomes overloaded with RA requests, the pro-
posed DRRA outperforms the other two schemes both in access success probability and
average throughput. This confirms that the proposed DRRA scheme is able to adapt to
traffic load better than the other two schemes. Notably, even when the arrival rate is 30,
the DRRA scheme is still able to yield a very high throughput.

Fig. 2. Average access success probability of three schemes

Fig. 3. Average throughput of three schemes

Uplink Access Control in Narrowband IoT 23



Figure 4 compares the average access delay of three schemes. As the DRRA
scheme gives priority to type A devices, emergent data is able to be sent in a very short
delay. This shows the superior feature of the proposed DRRA scheme. For type B
devices, when the traffic load is high, the DRRA scheme also yields smaller delay that
the other two schemes.

4.3 Simulation Case 2: Three CE Levels

In the second simulation case, we simulate IoT devices distributed in 3 CE levels. Five
sets of arrival rates are simulated, they are (11, 3.5, 2.5), (13, 4, 3), (15, 4.5, 3.25),
(17, 5, 3.5), (19, 5.5, 4), where three numbers in each set are the RA request arrival
rates of devices of three CE levels, respectively. In this simulation, we show that the
MaxTry affects the performance of the RACH procedure significantly. On one hand,
increase the MaxTry will increase the chances of RA trials. On the other hand, increase
the MaxTry will also increase the traffic load which results in higher chance of collision
and unsuccess access probability.

Figure 5 shows the effect of MaxTry on the average throughput of devices of CE
level 0. As we can see that the throughput increases as the MaxTry increases initially.
However, when the MaxTry is too large, e.g., 7, the throughput decreases as the
MaxTry increases, especially for scenario 5 where the traffic load is high.

Fig. 4. Average access delay of three schemes

24 R.-H. Hwang et al.



When the RA request of a CE level 0 device failed after MaxTry times, the device
will change its CE level to 1 and continue the RACH procedure. If it failed on this level
again, it will increase its CE level to 2. Figures 6 and 7 show the effect of MaxTry on
the average throughput of CE level 1 and 2, respectively. The MaxTry affects the
throughput of these two levels significantly. Only a small number of MaxTry can
increase the throughput of CE level 1. For CE level 2, the average throughput decreases
as the MaxTry increases, for most of the scenarios.

Fig. 6. Effect of MaxTry on throughput of CE level 1 devices

Fig. 5. Effect of MaxTry on throughput of CE level 0 devices

Uplink Access Control in Narrowband IoT 25



5 Conclusion and Future Works

In this paper, we proposed a Dynamic RACH Resource Allocation (DRRA) scheme
which integrates with resource allocation scheme and ACB scheme to improve the
performance of the RACH procedure. The DRRA scheme classify devices into two
types and gives priority to devices that need to send emergent messages, e.g., life-
saving alarm messages. Our simulation results show that the DRRA scheme can cope
with large RA request rates and yield better throughput and delay than existing
schemes. In particular, even under extremely high RA request rate, emergent devices
can still have high throughput and low delay.

Several mechanisms can be integrated into the DRRA scheme and requires further
study. When the RACH resources of anchor carrier are not enough to accommodate the
RA requests, allocating RACH resources on non-anchor carrier has been proposed by
3GPP [5] which requires further investigation. Adjusting backoff timer can also alle-
viate the bursty traffic load. Repetition number is similar to the MaxTry, may increase
access success probability, but consume more resources. More importantly, if collision
happens, no matter how many repetitions will not help to avoid collision. Thus, how to
perform repetition also requires further study. Finally, we are also investigating the
effect of different traffic arrival models, such as MMPP which can capture more bursty
arrival pattern. We believe the proposed DRRA can cope with MMPP arrival process
better than other schemes.

References

1. Popli, S., Jha, R.K., Jain, S.: A survey on energy efficient narrowband internet of things
(NBIoT): architecture, application and challenges. IEEE Access 7, 16739–16776 (2019)

2. 3GPP: NB-IoT—Random access design. 3GPP TSG-RAN1 #83 R1-157424, Ericsson,
Stockholm, Sweden (2015)

3. 3GPP: Evolved universal terrestrial radio access; radio resource control protocol. 3GPP TS
36.331 specification v13.4.0 (2017)

Fig. 7. Effect of MaxTry on throughput of CE level 2 devices

26 R.-H. Hwang et al.



4. 3GPP. RAN improvements for machine-type communications. 3GPP TR 37.868 v11.0.0
(2011)

5. Ratasuk, R., Mangalvedhe, N., Xiong, Z., Robert, M., Bhatoolaul, D.: Enhancements of
narrowband IoT in 3GPP Rel-14 and Rel-15. In: IEEE Conference on Standards for
Communications and Networking (CSCN). IEEE, Helsinki (2017)

6. Wang, Y.-P.E., et al.: A primer on 3GPP narrowband internet of things. IEEE Commun.
Mag. 55(3), 127–133 (2017)

7. Feltrin, L., Tsoukaneri, G., Condoluci, M., Buratti, C., Mahmoodi, T., Dohler, M.:
Narrowband IoT: a survey on downlink and uplink perspectives. IEEE Wirel. Commun.
26(1), 78–86 (2019)

8. Bello, H., Jian, X., Wei, Y., Chen, M.: Energy-delay evaluation and optimization for NB-IoT
PSM with periodic uplink reporting. IEEE Access 7, 3074–3081 (2019)

9. Harwahyu, R., Cheng, R.-G., Wei, C.-H., Sari, R.F.: Optimization of random access channel
in NB-IoT. IEEE Internet Things J. 5(1), 391–402 (2018)

10. Azari, A., Hossain, M.I., Markendahl, J.I.: RACH dimensioning for reliable MTC over
cellular networks. In: Vehicular Technology Conference, IEEE, Sydney (2017)

11. Jiang, N., Deng, Y., Condoluci, M., Guo, W., Nallanathan, A., Dohler, M.: RACH preamble
repetition in NB-IoT network. IEEE Commun. Lett. 22(6), 1244–1247 (2018)

12. Harwahyu, R., Cheng, R.-G., Tsai, W.-J., Hwang, J.-K., Bianchi, G.: Repetitions versus
retransmissions: trade-off in configuring NB-IoT random access channels. IEEE Internet
Things J. 6(2), 3796–3805 (2019)

13. Leyva-Mayorga, I., Rodriguez-Hernandez, M.A., Pla, V., Martinez-Bauset, J., Tello-
Oquendo, L.: Adaptive access Type Barring for efficient mMTC. Comput. Netw. 149, 252–
264 (2019)

Uplink Access Control in Narrowband IoT 27



Dynamic Path Planning Method Based
on Cluster Queuing Communication

in VANET

Mengdi Du1,3, Shuisheng Lin1,3(B), Chunbo Luo1,2,3, Liang Zhou1,3,
and Haifen Yang1,3

1 School of Information and Communication Engineering,
University of Electronic Science and Technology of China, Chengdu, China

dumengdi@std.uestc.edu.cn,

{sslin,c.luo,zlzl,yanghf}@uestc.edu.cn
2 University of Exeter, Exeter, UK

3 National College of Ireland, Mayor Square, IFSC, Dublin 1, Dublin, Ireland

Abstract. Large-scale personnel vehicles choose and update the optimal
path in real time under congested scenarios, which is of great significance
for people to travel and balance traffic network traffic. Based on the reg-
ularity of people’s work, it is important to make full use of traffic history
data flow to establish optimal path planning. Our work studies the road
network traffic congestion model based on historical and real-time traffic
data flow to predict the roads that may be congested. Through the clus-
tered queue communication mechanism and queue-based shunting, our
work provides real-time optimal path planning for large-scale vehicles
at the same time, and uniform road network traffic capacity. Our work
simulated in the UESTC scenario to verify the improvement our work
offers and the future potential performance.

Keywords: Queue-based shunting · Path planning · VANET

1 Introduction

Traffic jam is a common problem in many cities, particulary during rush hour.
One of the current research priorities focuses on how to quickly provide an opti-
mal route for vehicles under congested scenario with the assistance of vehicular
ad-hoc network (VANET) [1,2].

In order to find a fast real-time route when occurs to sudden congestion, Wu
et al. [3] proposed a dynamic path selection algorithm to avoid congestion. Guo
et al. [4] proposed a TTE (traveling time estimation) compared path planning
algorithm to avoid congested streets. Amr et al. [5] calculate the quality of routes
based on the fuzzy model and recommend the optimal one. Souza et al. proposed
a path planning algorithm CHIMERA [6] to avoid congestion by the degree of
congestion. Processing all vehicles to request reroute and obtain the real-time

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 28–36, 2020.
https://doi.org/10.1007/978-3-030-38651-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_3


Dynamic Path Planning Method Based on Cluster Queuing Communication 29

traffic condition rely on VANET to unremittingly exchange information result
in high real-time data processing cost.

Our work adopted queue-based shunting under cluster queuing communica-
tion to divert the traffic flow instead of avoid congestion, which can reduce the
possibility of new congestion problems, so as to cope with the planning route
of large-scale vehicles at the same time in large areas. Historical traffic data is
applied to relieve congestion modeling pressure and information obtain pressure,
and cluster head vehicles is applied to detect the congestion to prevent continu-
ally requesting re-planning paths, which can reduce the process cost. Hence our
work improve the efficiency of path planning and alleviate traffic congestion.

2 Transportation Network System Model

2.1 Network System Model

The urban road network model mainly includes vehicles equipped with onboard
unit (OBU), and roadside units (RSUs) deployed at road intersections to form
a self-organizing network.

Road network G = (N,E) includes road segment wi(t) and intersection col-
lection N . A road segment with the adjacent two intersections xi to yi, xi, yi ∈ N
is represented as

wi(t) = {w(xi, yi)|xi, yi ∈ N,w ∈ E} (1)

Fig. 1. Abstracted road network

As shown in Fig. 1, according to the basic path selection strategy from Section
IV(A), the initial optimal path from s to d can be expressed as:

p(t) = {w1(t), w2(t), w3(t), ..., wn(t)|t ∈ R} (2)

2.2 Real-Time Congestion Model

For populated areas, most of the vehicles have regular driving routes, which is
why urban traffic especially some important roads, are regularly and periodically



30 M. Du et al.

blocked. Based on this situation, our work establish a road network traffic con-
gestion model for urban areas based on historical traffic data, and be updated
continuously according to the real-time traffic data provided by the RSUs and
the OBUs, to estimate the road traffic flow and predict road congestion.

Established congestion model D with enough historical data, D contains
the average vehicle density denavg, threshold α, and a set of streets that are
determined to be congested and their ID and congestion value.

D = {denavg, α, [edgeID1, len1, den1], . . . , [edgeIDi, leni, deni]} (3)

The number of vehicles on the road is N(t), the average speed of a vehicle is
vk(t) then the traffic flow on the road is rk(t).

rk(t) =
N(t)

∑
k vk(t)

k

(4)

Suppose that for a time Δt, the current road length Lk. The vehicle density
of the road is denk, which can be obtained from (4).

denk =
Lk

rk(t)
=

Lk

∑
k vk(t)

kN(t)
(5)

Equation (5) is modeled as inversely proportional to road traffic conditions.
Therefore, crowded roads have a higher denk than free-flowing roads.

For the initial establishment of the congestion model, a threshold α is set. α
comes from historical information of all streets. ¯denall is taken as the average
value of all streets’s vehicle density. The average value of ¯denfront is taken for
half of the streets with higher den values.

α =
¯denfront

¯denall
− 1 (6)

Every street from historical data will be judged by (7). If (7) is workable,
add this street in the inital congetion model.

denk(t)
denavg

− 1 > α (7)

The congestion model is updated with real-time traffic information at regular
intervals, or each time the cluster head vehicle travels to a new road.

At regular intervals, all roads will be judged by (8), if (8) is established, it is
determined that the current road is congested.

denk(t0 + Δt) − denk(t0)
denk(t0)

=
denk(t0 + Δt)

denk(t0)
− 1 > α (8)

Each time the cluster head vehicle travels to a new road, the average driving
speed v̄ of the cluster head vehicle in the past Δs time on the current road is



Dynamic Path Planning Method Based on Cluster Queuing Communication 31

acquired, and compares with the average driving speed v̄s of the previous nΔs
time. A formula for the comparison of the threshold α can be obtained:

v̄s

v̄
− 1 =

∑nΔs
0

∑
k vk(t)

nkΔs
∑Δs

0
∑

k vk(t)

kΔs

− 1 =
∑nΔs

0

∑
k vk(t)

n
∑Δs

0

∑
k vk(t)

− 1 > α (9)

If (9) is established, then the current street will be updated into the conges-
tion model.

3 Cluster Queuing Communication Mechanism

N random cluster head vehicles are selected in the road network. The scheme
for establishing and updating the congestion model is as follows:

Step 1: The congestion model establishment scheme is: Establish an initial road
network traffic congestion model with enough historical information. After that,
all the traffic and vehicle information in the road network is stored and the vehicle
density of all the roads is recalculated at intervals. Then a congestion threshold
α is obtained, and the congestion threshold is used to judge whether the road is
congested. When a road is judged to be congested, it is determined that the road
is in a blocked state before the next recalculation of the congestion threshold.
The congestion model filters and adds existing traffic congestion models, and
the stored information will be discarded after calculation.

Step 2: The congestion model update scheme is: after the congestion model
(including the set of streets determined to be congested, and the congestion
value of the street) is established, it will be updated according to historical
traffic information at regular intervals, or each time the cluster vehicle travels
to a new road. When the cluster vehicle travels to a new road, calculate the
average driving speed of the cluster vehicle in the past time, and compare with
the current average driving speed, then the congestion degree of the current
street can be obtained and update the congestion model. The establishment of
the clustering queue as shown in Fig. 2 below.

Fig. 2. The establishment of the clustering queue



32 M. Du et al.

4 Real-Time Path Planning

In this section, a real-time path planning algorithm based on the road network
traffic congestion model and the clustered queuing communication mechanism
is proposed.

In our work, this strategy provides a basic path selection strategy of select-
ing the optimal path for all real-time conditions mentioned above, which mainly
applies to the situation when planing the initial route and encountering conges-
tion, it is necessary to re-select a path to compare with the selected path in the
previous round of comparison.

Our work aims to find a path p(t) that allows the vehicle from s to d with
the shortest time, based on the algorithm of Contraction Hierarchies, which can
be derived as:
Input: G = {N,E}, N(t), MA,SE
Subject to: vk(t) ≤ 90 kilometer per hour
Objective: T =

∑wi(t)∈p(t)
i

wi(t)
vi(t)

+
∑

j oj(t)

The road can be divided into the main road collection MA, the secondary
road collection SE according to the width of the road. When selecting the optimal
path, the main road is selected first, and then the secondary road is selected.

A path is selected from the main road collection MA, ṗ(t) =
{w1(t), w2(t), w3(t)...wn(t)|wn(t) ∈ MA}. The adjacent points of the intersec-
tions of the selected roads is found, which belong to the secondary road collec-
tion SE. If there are A ∈ MA, A ∈ w1(t), A has two adjacent points B, C, and
B,C ∈ SE, B,C ∈ w2(t). If A ∈ w2(t), then w1(t) does not need to be updated;
if A /∈ w2(t), and w1(t) < w2(t), then w1(t) in ṗ(t) updated to w2(t).

At the beginning of the vehicle’s traveling, an inital optimal route p0(t) is
planned. When the vehicle is about to drive to a congested street, replan a path
p̄(t) according to the optimal path selection method in Section IV(A). The travel
time T̄ and T0 of the routes p̄(t) and p0(t) are calculated. If the travel time of
original selected route is less than the alternate route T̄ ≥ T0, the vehicle is
still in accordance with the original selected route p0(t) forward; if the alternate
route travel time is less than the original selected route T̄ < T0, the vehicle
follows the new route p̄(t). As shown in Fig. 3 below.



Dynamic Path Planning Method Based on Cluster Queuing Communication 33

Fig. 3. Route selection

The sketch of the proposed real-time path planning algorithm is summarized
in Algorithm 1.

Algorithm 1. The real-time path planning algorithm
1: BEGAIN
2: Input: G, D, random clusters, s, d, vehmsgi, edgemsgi, p0(t), T0

3: for d and s do
4: find T =

∑wi(t)∈p(t)
i

wi(t)
vi(t)

+
∑

j oj(t)
5: end for
6: while not arrive d do
7: for d do
8: Select wi(t) = {w(xi, yi))|xi, yi ∈ N,w ∈ MA, min{(2)}
9: if ∃w̄(xj , yj) ∈ SE,and xi, yi = xj , yj , w(xi, yi) > w(xj , yj) then

10: Make w̄(xj , yj) replace w(xi, yi) in min{(2)}
11: end if
12: end for
13: if vehicle ∈ cluster and edgei �= edgei−1 then
14: Get r ∈ E and r ∈ p0(t) and r = edgei+1

15: if r ∈ D then
16: Build (14) and broadcast
17: end if
18: for vehicle ∈ QND

N (T ) do
19: Select min{p̄(t) = {w1(t), w2(t)...wn(t)}}, T̄
20: if T̄ ≥ T0 then
21: p0(t)
22: else
23: p̄(t)
24: end if
25: end for
26: end if
27: end while



34 M. Du et al.

5 Simulation

Our simulation works on a real scenario latitude of 30.8122 to 30.7235 and
a longitude of 103.8876 to 103.9961 of UESTC (the University of Electronic
Science and Technology of Chengdu) about 31.225 square kilometers is simu-
lated to verify the future potential performance obviously. In UESTC scenario,
1000/3000/5000/10000 vehicles are placed within 1.5 h, which causes huge traf-
fic jam to obeserve the performance of our work. Our work simulate in SUMO
(Simulation of Urban Mobility) as shown in the Fig. 4 below.

(a) real scene (b) simplified
map

(c) network in
sumo

Fig. 4. Illustration of simulation scenario

Our work compares with the well-known routing algorithms A* (astar) and
Contraction Hierarchies (CH) to determine new path and both have the envi-
ronmental awareness provided by VANET.

The simulation time is approximately equal to 166.6 min–933 min of the real
time. All vehicles are generated from random locations and disappear from ran-
dom locations. Random accidents like vehicle collisions and vehicle breakdowns
are set up in simulation, which can cause real-time traffic congestion and in line
with the real situation.

Our work mainly uses the average travel time of all vehicles to reach the
destination and the average vehicle density in the road network as experimental
results. The simulation results expressed as percentage that improved by using
the strategy compared with the strategy of avoiding congestion.

When there are few vehicles, it is still guarantee the path optimization effi-
ciency similar to the strategy of avoiding congestion. Optimized the average
travel time of 37.64% and optimized the vehicle density of 9.88% during the
simulation time. It can be predicted that as the amount of vehicles in the road
network increases and the simulation time increases, the optimization ratio will
be higher.

Figure 5(a) shows that this strategy provide a better route for vehicles in the
road network, which greatly reduces the travel time of all vehicles, optimized the
average travel time up to 37.64%, and allows the vehicle to reach its destination
faster. Figure 5(b) shows that this strategy reduces the real-time capacity of all



Dynamic Path Planning Method Based on Cluster Queuing Communication 35

(a) time comparison (b) density comparison

Fig. 5. Experimental results. (a) shows the result of optimization percentage of the
average travel time of all vehicles to reach the destination. (b) shows the result of
optimization percentage of the average road density in the road network. The label
means which basic algorithm and the amount of vehicle our work choose for strategy
of avoiding congestion in simulation, and the strategy in our work choose the same
amount with the congestion avoiding strategy.

streets in the road network, optimized the vehicle density up to 9.88%, and can
optimize the vehicle capacity problem of the street to some extent.

The simulation result shows that the our strategy can improves the efficiency
of path planning and eases the traffic congestion of the road network, and verify
the future potential.

6 Conclusion

The current intelligent transportation field is committed to enhance vehicle assis-
tance and path planning capabilities, and to improve traffic efficiency in con-
gested scenarios. In our work, congestion model is established benefits from the
sensing and communication capabilities of the VANET, and it can predict the
future congestion and assist rerouting decision. Proposed clustered queuing com-
munication mechanism can divert vehicles by queue-type shunt to prevent new
congestion. Our work realize the rapid response for the sudden traffic accidents
with the proposed real-time path planning algorithm. Using the Luxembourg
traffic scenario, the extensive evaluations validate that our work provides a more
efficient path and alleviate road network congestion.

References

1. Wang, Y., Zheng, J., Mitton, N.: Delivery delay analysis for roadside unit deploy-
ment in vehicular Ad Hoc networks with intermittent connectivity. IEEE Trans.
Veh. Technol. 65, 8591–8602 (2016)

2. Zhu, M., et al.: Public vehicles for future urban transportation. IEEE Trans. Intell.
Transp. Syst. 17(12), 3344–3353 (2016)

3. Wu, S., Li, D., Zhang, G., Guo, C., Qi, L.: Density-based dynamic revision path
planning in urban area via VANET. In: Huang, X.-L. (ed.) MLICOM 2016. LNICST,
vol. 183, pp. 129–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52730-7 13

https://doi.org/10.1007/978-3-319-52730-7_13
https://doi.org/10.1007/978-3-319-52730-7_13


36 M. Du et al.

4. Guo, C., Li, D., Zhang, G., Zhai, M.: Real-time path planning in urban area via
VANET-assisted traffic information Sharing. IEEE Trans. Veh. Technol. 1 (2018)

5. El-Wakeel, A.S., Noureldin, A., et al.: iDriveSense: dynamic route planning involving
roads quality information. In: IEEE Global Communications Conference (GLOBE-
COM) (2018)

6. De Souza, A.M., et al.: Real-time path planning to prevent traffic jam through an
intelligent transportation system. In: Computers & Communication IEEE (2016)

7. Akabane, A.T., Gomes, R.L., Pazzi, R.W., Madeira, E.R., Villas, L.A.: Apolo: a
mobility pattern analysis approach to improve urban mobility. In: GLOBECOM
2017–2017 IEEE Global Communications Conference, pp. 1–6 (2017)

8. Codeca, L., Frank, R. and Engel, T.: Luxembourg sumo traffic scenario: 24 hours of
mobility for vehicular networking research. In: Proceedings of the 7th IEEE Vehic-
ular Networking Conference, pp. 1–8 (2015)



Performance Evaluation of Citywide
Intersections Traffic Control Algorithm

inVANETs-Based

Sarah Hasan(&) and Mourad Elhadef

College of Engineering, Abu Dhabi University, Abu Dhabi, UAE
1003299@students.adu.ac.ae

Abstract. The massive improvement in wireless communications pertains a
real time and accurate delivery of information, which makes it possible to
remotely control and manage a wide number of applications and services. The
ability to connect to mobile and fast-moving nodes can aid in providing or
obtaining information from vehicles that in turn provides a diverse picking in the
development of vehicular communications and control. This includes all type of
vehicular communications such as Vehicle to Infrastructure (V2I) and the
Vehicle-to-Vehicle (V2V) communications. In this paper, we try to enhance
traffic flow at intersections by simulating an improved VANET-based control
algorithm. The study focuses on the flow of traffic across multiple adjacent
intersections in a city where each intersection is equipped with a Roadside Unit
(RSU). We believe that the communication between RSU at a given intersection
and nearby vehicles, RSU and other surrounding RSUs (RSU2RSU) will affect
the flow of the vehicles positively. We also consider the need to minimize the
required time to cross an intersection particularly if a vehicle is an emergency
vehicle.

Keywords: Vehicular ad-hoc networks � Intersection traffic control � Smart
city � Intelligent transportation system � Internet of vehicles

1 Introduction

The overwhelmed city roads are a priority to study and analyze to improve the flow in
the streets. One of the most important areas in traffic control is managing the flow at
intersections. Traffic lights are the oldest form of traffic control at intersections. In their
earlier version, traffic lights implement a prefixed time interval, which can lead to a
delay especially if the green light is open for an empty street. The newer version of the
prefixed time interval can be customized based on the load of a street and timing of the
day or any other preset condition. This means that the timing for each intersection must
be set separately nevertheless it also cannot perform well in case of change in the traffic
flow due to any reason such as weather or holidays. The modern traffic lights imple-
ment an intelligent time-intervals by modifying the timing when the road load or
condition changes. This type of traffic lights is known as reactive as it reacts to the new
road condition and adjust the crossing time. The reaction is based on the collected road
information by using different devices such as microwave detectors, loop detectors,

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 37–46, 2020.
https://doi.org/10.1007/978-3-030-38651-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_4&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_4


radars and laser beams, geomagnetic vehicle detectors, and video/image detectors. The
main problem of reactive-traffic lights is the high cost of purchasing, fixing and
maintaining the devices [1–4]. The modern intersections traffic control is based on
using wireless communication technologies such as the IEEE802.11p standard and the
IEEE1609.4 which tolerates Multi-Channel Operations with Wireless Access in
Vehicular Environments (WAVE) [5]. The standardization of vehicular communication
makes it easier to provide centralized-based and distributed-based traffic management.
In the case of the intersection control, vehicles mostly communicate with RSU or/and
with other vehicles to receive instructions [6–9]. Figure 1 summarizes some of the
contributions in the area of intersection control [10–15]:

To contribute to the development of intersections traffic control, we tested and
improved the centralized intersection algorithm for controlling traffic at intersections by
using VANET- based communications (V2I and RSU2RSU) in a citywide level. Our
work is a continues improvement to the centralized algorithm in [16] which is based on
a study suggested by [8]. We extended the scope of the study to include multiple
number of RSUs in a citywide level to guarantee an efficient mutual exclusion; increase
throughput; prioritize emergency and public transportations. The paper is organized as
follow. Section 2 states preliminary elaboration of the inVANETs-based intersection
control algorithm. Section 3 describes the model of the enhanced inVANETs-based
intersection control algorithm in citywide. Section 4 provides the simulation results.
Section 5 concludes and presents the future research directions.

2 Preliminary

The adapted system model is an adjusted version of the intersection control proposed
by [8] and improved by [16]. The flow of the algorithm adheres to the mutual exclusion
(MUTEX) where vehicles compete for the critical section, which is the intersection, or
the core area (CA). Vehicles in a specific lane/s can access the CA as a group and lock
the rest of the vehicles in conflicting lanes from entering the CA based on FCFS

Fig. 1. Advancements in intersection control

38 S. Hasan and M. Elhadef



approach. In the centralized algorithm in [8], the RSU is responsible for managing the
entrance to the CA. Based on a request message received from the vehicles; the RSU
can only permit the vehicle/s based on FCFS and a locking logic which can affect
safety, fairness and liveness properties as the RSU can only give permission to cross
the intersection but not denying it [8]. In this case, if an accident happened, the vehicles
that were given the permission will continue having a state of crossing forever; cause
collision; affect the liveness of the CA; and will cause junction bottleneck. To over-
come issues found in [8], [16] suggested an adapted approach to resolve the safety
problem and the liveness by changing the used locking schema and by adjusting the
algorithm to set a timer to avoid starvation. The change in the locking schema is as in
the Table 1 (Fig. 2):

3 inVANETs-Based Intersection Traffic Control Algorithm
in Citywide

The study follows the same locking schema as in [16]; nevertheless, we will implement
it in two adjacent intersections in Abu Dhabi city. We extended the scope of the study
to include multiple number of RSUs in a citywide level to guarantee an efficient mutual
exclusion; increase throughput; prioritize emergency and public transportations. The
inVANETs-based intersection control algorithm in a citywide has 2 main tasks; the
vehicleTask and the controllerTask. The vehicleTask main states are IDLE, the vehicle
is within the reach of the CA; WAITING, the vehicle sent a “request” to cross the CA
and waits for the RSU’s respond; QUEUING, the vehicle received the permission to
cross the CA; CROSSING, the position of the vehicles is inside the CA; URGENT,

Table 1. New locking schema

Lanes 1 2 3 4 5 6 7 8

Lanes to be Locked 1, 6, 8 2, 4, 7 2, 3, 8 1, 4, 6 2, 4, 5 3, 6, 8 4, 6, 7 2, 5, 8

Fig. 2. 4-Way traffic intersection

Performance Evaluation of Citywide Intersections Traffic Control 39



request with higher priority to enter the CA; and DELAYED, vehicle lost the right of
accessing the CA due to time-out, lane changed or urgent request.

The previously referred to states are triggered either by entering the CA or by
receiving a message from the RSU. Figures 3 and 4 are the state machine of the
vehicles’ tasks and the controllers’ tasks.

The desired scenario between the vehicleTask and the controllerTask is as follow.
Vehicles arrives to the waiting area and sends a “request” message to the RSU. As soon
as the RSU sends a replay to permit crossing, the vehicle crosses the CA. If the vehicle
got the “cross” message and crossed the CA, the vehicle must send a “crossed”
message to notify the RSU so the RSU removes it from the crossing list. There are
other scenarios like when a vehicle changes its lane to a conflicting lane; or when a
vehicle did not receive the “cross” message. In the cases of changed lane, the vehicle
must inform the RSU about its current state by sending “newlane” or by sending the
request message again. The vehicle then must wait for the RSU’s replay. In each case,
the RSU must check for the availability of the CA. If the CA is empty or the CA is
accessible by a vehicle/s in a concurrent lane then the RSU will allow the vehicle/s to
cross; otherwise, the vehicle/s must wait for a specific time. In case of exceeding the
expected required time to cross the CA, the RSU must check if there is a conflicting
waiting vehicle. If there is a conflicting waiting vehicle, the RSU sends “delayed” to

Fig. 3. Vehicle task

40 S. Hasan and M. Elhadef



stop the vehicles in the current crossing list form crossing the CA and to allow vehicles
in the waiting list to fairly access the CA. In case of arrival of emergency vehicle, the
algorithm proposes a mechanism to prioritize emergency vehicle in all cases. In this
case, when the emergency vehicle sends an “urgentMsg” message, the RSU first checks
if the CA is available. If not available, the RSU sends a “delayed” message to all
vehicles conflicting with the emergency vehicle. The emergency vehicle can ask for
extending crossing time if could not cross during the expected time by sending
“emerExtendTime” message. If the vehicle crossed the intersection, it will send
“emerCrossed”, but its state will remain Urgent until it reaches to its destination. In
case of “urgentMsg” request from multiple emergency vehicles from conflicting lanes,
the access to the CA is given based on the expected arrival time. If the expected arrival
time is the same, then emergency vehicles will be served based on FCFS. The algo-
rithm also gives the highest level of priority to the emergency vehicles then to public
transportations over personal vehicles. For a better controlling schema, the information
collected from vehicles such as speed, direction, and throughput will be shared and sent
to other RSUs. This information will be used to predict the status of the road with
Fuzzy Logic [17–20]. As well as, it will use Dijkstra algorithm to find the shortest path
to a pre-set destination. The RSU will evaluate the results from both algorithms and the
decision will be propagated to the vehicle/s. Similar approach was pointed by other
researchers such as [21, 22].

Fig. 4. Controller task

Performance Evaluation of Citywide Intersections Traffic Control 41



4 Simulation Results

The test consists of 2 intersections, 600 m apart from each other. Each intersection has
4 roadways with the same priority to have the right of way to access the CA based on
the locking mechanism and FCFS to optimally traverse the CA. Each road consists of 2
lanes where the right lane can move forward or turn right; the left lane can move
straight or left with maximum speed of 20 m/s. Each intersection has RSU to control
the flow of the vehicles to the CA. The RSU receives request message/s from the
vehicle/s and can allow or deny the request. The performed simulation adapted 2
different sets of 5 groups of volumes of vehicles. Each set is meant to study the effect of
volume change; existence of emergency vehicle; RSUs exchanged messages to inspect
the required time for a vehicle to cross the CA. The simulation is based on an open
source framework (Veins) and a network simulator (Omnet++), a road traffic simulator
(SUMO) and open street map (OSM). The framework uses the IEEE-802.11p and
IEEE 1609.4 standards [23]. The feasibility of the algorithm to control the intersection
was proved by [24] from a centralized perspective and by [9] from a distributed
perspective. It was proven that the algorithm meets the fairness property for it allows
various queue length and it fairly switches between the conflicting lanes. It was also
proven that the waiting time is in a manageable range even when the queue length is
long though it performs better with small queue length. The study [9, 24] also verified
that the algorithm maintain high level of the throughput comparing to the tested results
in [8]. The locking schema utilized the access to the CA and maintained high level of
safety [16].

In Fig. 5 illustrates the load of the lanes and shows how likely a lane can be
traversed by a vehicle. The figure indicates the number of vehicles in a road (the road
consists of two lanes) and randomness distribution was taken in consideration to
simulate real-life flow of traffic. Each road is initialized with different set of vehicles
and different overall traffic volume. We can notice that some of the roads contain more
than 50 vehicle and another road has no vehicles, in order to enhance the accuracy.

Figure 7 illustrates the average waiting time of an emergency vehicle. We can
deduct from the graph that the waiting time of a vehicle is affected by the volume of the
traffic as well as by whether the vehicle has a privilege (emergency vehicle or public
transportation) or not. The waiting time will mostly decrease if the traffic load is low

Fig. 5. Vehicle’s load distribution

42 S. Hasan and M. Elhadef



and the “request” is from an urgent vehicle. Saying that we need to consider Fig. 6 to
get a better understating of the vehicle waiting time. The graph illustrates not only the
waiting time for the urgent vehicle but also the waiting time of all the vehicles. In
contrast to the emergency’s vehicle waiting time, it is likely that the overall waiting
time will increase when accompanied with urgent request. As giving the permission to
an urgent vehicle could mean a “delay” for the normal vehicles which is an acceptable
when considering the importance of giving the right of way to emergency. Also, the
increase in traffic will rise the waiting time in all the scenarios as in the graph. The
increased waiting time will decrease the overall throughput as the traffic increases.

This is verified in Fig. 8 we can tell as the traffic load decreases, higher number of
vehicles cross the CA per second. In the (T-12) scenarios where the traffic load is at its
lowest volume, the number of vehicles passes the CA is 2 vehicle/s at least. This means
if the crossing time of an intersection is set to be 1 min, around 30 vehicles/m to 50
vehicles/m can cross the CA if considering the drivers’ attitude, spacing between
vehicles and if the car starts moving from speed of 0/m and accelerates up.

Fig. 6. Average waiting time

Fig. 7. Emergency average waiting time

Performance Evaluation of Citywide Intersections Traffic Control 43



The number of the passed vehicles in (T-200) scenario is reduced to the half.
Several reasons can justify this decreased affect like the swapping between conflicting
lanes consumes more time to accelerate from stopping state; high chance of requesting
the CA by urgent vehicle which means sending “delay” to the conflicting crossing
lanes. Last but not least, Fig. 9 illustrates the number of messages sent or received by
one of the controlling RSUs. We can notice that the number of request messages
increase as the traffic load increases. If the load of the traffic is low or moderate, the
increase in the number of cross messages will be associated with the increase in the
number of request messages. Otherwise when the traffic load is very high, cross
messages amount will be affected by the number of delay messages and the rsu
messages. This is because when a vehicle is given the permission to access the CA,
then due to a message from RSU, timeout, or emergency vehicle, the vehicle will go
back to the WAITING state and will wait until it receives the cross-message from the
RSU when a preset duration is met.

5 Conclusion

In this paper, we elaborate in depth about the enhanced intersection control algorithm
suggested by [16] and improved by [8] and uses inVANET communications. We
provide a performance evaluation for a suggested algorithm that claims its efficiency

Fig. 8. Throughput

Fig. 9. Type and amount of sent messages

44 S. Hasan and M. Elhadef



and ability to handle intersections control. We tested number of different properties of
traffic like different load of traffic; prioritized emergency vehicles; and the effect of the
waiting time on the overall flow of the traffic. Based on these enquiries we set the
simulation scenarios. The implementation of the algorithm evaluates the scenarios
across 2 adjacent intersections, each has its own controller unit. The RSUs were
communicating to inform each other about the traffic load moving between them. Also,
in some cases, the RSUs sends information to the next RSU hub to inform it if an
emergency vehicle is approaching so it can reschedule the CA availability when the
emergency vehicles arrives. Based on the result we can deduce that the overall per-
formance is satisfactory especially in normal load flow. However, when the traffic
volume increases or when an emergency vehicle approached, we noticed that the
waiting time increases as well. The algorithm favors the emergency vehicle and provide
a quick access to serve it. Future investigations will study the feasibility with more
numbers of vehicles where RSUs are able to find the best path for a given destination.
We believe this will improve the overall flow and will solve the delay for the vehicles.
Best path can be assumed based on Fuzzy logic and Dijkstra algorithm.

References

1. Su, Y., Cai, H., Shi, J.: An improved realistic mobility model and mechanism for VANET
based on SUMO and NS3 collaborative simulations. In: 20th IEEE International Conference
on Parallel and Distributed Systems (ICPADS), Hsinchu, pp. 900–905 (2014)

2. Saini, T., Zahoor, S., Bedekar, M., Atote, B., Panicker, S.: Optimization of signal behavior
through dynamic traffic control. proposed algorithm with traffic profiling. In: 2nd
International Conference on Contemporary Computing and Informatics, pp. 598–602 (2016)

3. Chen, L.W., Chang, C.C.: Cooperative traffic control with green wave coordination for
multiple intersections based on the internet of vehicles. IEEE Trans. Syst. Man Cybern.:
Syst. 47(7), 1321–1335 (2017)

4. Ma, D., Luo, X., Li, W., Jin, S., Guo, W., Wang, D.: Traffic demand estimation for lane
groups at signal-controlled intersections using travel times from video-imaging detectors.
IET Intell. Transp. Syst. 11(4), 222–229 (2017)

5. Research and Innovative Technology Administration: Telecommunications and Information
Exchange Between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 2: Logical Link Control. ISO 8802–2 IEEE 802.2, 1st (1989)

6. Benslimane, A., Taleb, T., Sivaraj, R.: Dynamic clustering-based adaptive mobile gateway
management in integrated VANET-3G heterogeneous wireless networks. IEEE J. Commun.
29(3), 559–570 (2011)

7. Zheng, B., Lin, C.W., Liang, H., Shiraishi, S., Li, W., Zhu, Q.: Delay-aware design, analysis
and verification of intelligent intersection management. In: IEEE International Conference
on Smart Computing, Hong Kong, pp. 1–8 (2017)

8. Wu, W., Zhang, W., Luo, A., Cao, J.: Distributed mutual exclusion algorithms for
intersection traffic control. IEEE Trans. Parallel Distrib. Syst. 26(1), 65–74 (2015)

9. Saeed, I., Elhadef, M.: Performance evaluation of an IoV-based intersection traffic control
approach. In: IEEE Conference on IoT, Green Computing and Communications, Cyber,
Physical and Social Computing, Smart Data, Blockchain, Computer and Information
Technology, Congress on Cybermatics, Canada, pp. 1777–1784 (2018)

Performance Evaluation of Citywide Intersections Traffic Control 45



10. Bedekar, M., Atote, B., Panicker, S.: Centralized approach towards intelligent traffic signal
control. In: International Conference on ICT for Competitive Strategies, p. 63 (2016)

11. Zhao, Y.F., Wang, F.Y., Gao, H., Zhu, F.H., Lv, Y.S., Ye, P.J.: Content-based
recommendation for traffic signal control. In: IEEE 18th International Conference on
Intelligent Transportation Systems, Las Palmas, pp. 1183–1188 (2015)

12. Pasin, M., Scheuermann, B., Moura, R.F.D.: VANET-based intersection control with a
throughput/fairness tradeoff. In: 8th IFIP Wireless and Mobile Networking Conference,
pp. 208–215 (2015)

13. Baselt, D., Knorr, F., Scheuermann, B., Schreckenberg, M., Mauve, M.: Merging lanes –

fairness through communication. Veh. Commun. 1(2), 97–104 (2014)
14. Burdett, R., Casey, B., Becker, K.H.: Optimising offsets and bandwidths in vehicle traffic

networks. ANZIAM J. 55, 77–108 (2014)
15. Hasan, S., Elhadef, M.: A citywide distributed inVANETs-based protocol for managing

traffic. In: Park, J., Loia, V., Choo, K.K., Yi, G. (eds.) MUE/FutureTech-2018. LNEE, vol.
518, pp. 117–124. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1328-8_
15

16. Elhadef, M.: An adaptable inVANETs-based intersection traffic control algorithm. In: IEEE
International Conference on Computer and Information Technology; Ubiquitous Computing
and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelli-
gence, pp. 2387–2392 (2015)

17. Pi, S., Sun, B.: Fuzzy controllers based multipath routing algorithm in MANET. In:
International Conference on Applied Physics and Industrial Engineering, pp. 1178–1185
(2012)

18. Upadhayay, S., Sharma, M.: Performance evaluation of fuzzy routing algorithms for a new
fuzzy mixed metric approach. Int. J. Comput. Sci. Netw. Secur. 8(4), 21–28 (2008)

19. Doja, M., Alam, B., Sharma, V.: Analysis of reactive routing protocol using fuzzy inference
system. In: AASRI Conference on Parallel and Distributed Computing Systems, pp. 164–
169 (2013)

20. Gajjar, S., Sarkar, M., Dasgupta, K.: FAMACRO: fuzzy and ant colony optimization
basedMAC/routing cross-layer protocol for wireless sensor networks. In: International
Conference on Information and Communication Technologies, vol. 8, pp. 1014–1021 (2015)

21. Ganda, J.: Simulation of routing option by using two layers fuzzy logic and Dijkstra’s
algorithm in MATLAB 7.0. J. Electr. Electron. Eng. 1(1), 11–18 (2016)

22. Biswas, S.: Fuzzy real time Dijkstra’s algorithm. Int. J. Comput. Intell. Res. 13(4), 631–6404
(2017)

23. veins.car2x.org. http://veins.car2x.org/features/. Accessed 17 June 2019
24. Tabaza, H., Elhadef, M., Saeed, I.: Performance evaluation of an adaptable invanets-based

traffic control. In: ICT Conferences, Society, and Human Beings, Porto (2019)

46 S. Hasan and M. Elhadef

http://dx.doi.org/10.1007/978-981-13-1328-8_15
http://dx.doi.org/10.1007/978-981-13-1328-8_15
http://veins.car2x.org/features/


Task Planning with Manual Intervention Using
Improved JSHOP2 Planner

Liancheng Tao(&), Qibo Sun, Jinglin Li, Ao Zhou,
and Shangguang Wang

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

tllccc@163.com

Abstract. In real-world task planning, such as automatic vehicles dispatch,
often face the arrival of new tasks and uncertain factors in the process of task
execution. As a typical implementation of Hierarchical Task Network
(HTN) planning, JSHOP2 planner is suitable for complex task planning. Given
the fact that JSHOP2 planner fails to get planning results in the global level
when facing uncertain factors, an improved JSHOP2 planner is proposed to
solve this problem. The improved JSHOP2 planner with manual intervention
supplements the planning result and eliminates the impact of uncertain factors
with the help of human experience. In addition, we conducted comparative
experiments based on improved planner. The simulation results show the
effectiveness and the ability to emergency response of improved planner.

Keywords: HTN planning � Task planning � JSHOP2

1 Introduction

As we known, a complex task, such as vehicles dispatch, often consists of a great
quantity of atomic tasks. Task planning is essential to ensure the effective execution of
different tasks. It depends on resource allocation, state change, path selection and so on.
The factors involved in planning are numerous, and wide-ranging. Furthermore, task
planning faces the impact of uncertain factors, causing it to be a complicated topic.
According to the specific planning target, how to choose the optimal decomposition
path for a specified target is a crucial problem.

Hierarchical Task Network (HTN) planning follows the idea of AI planning, and
has been widely used in various task planning systems. As a typical implementation of
HTN planning, JSHOP2 can effectively model specific domain knowledge and come
up with complete and valid plan lists. However, when JSHOP2 is planning, (1) each
path selection for target decomposition only depends on whether it meets the current
resource needs, ignoring the global impact; (2) it is assumed that all resources are
determined to be unchanged and always available during planning. However, the
planning result is hoped to be a global optimal solution based on actual situation. At the
same time, uncertain factors will bring unexpected changes in state of resources during
planning process, affecting planning results that have been obtained.

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 47–55, 2020.
https://doi.org/10.1007/978-3-030-38651-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_5&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_5


Considering the characteristics of JSHOP2, we introduce manual intervention and
solve the above problems with improved JSHOP2. Manual intervention complements
each path selection according to global optimization and human perception. Further-
more, it helps to deal with uncertain factors and eliminate the impact they have brought.
The improved JSHOP2 can keep in control when facing uncertain factors, and generate
final plan lists as the global optimal solution.

This paper is organized as follows. The next section reviews related works on task
planning using JSHOP2. In Sect. 3 we will explain why manual intervention needs to
be introduced. The principle of improved JSHOP2 planner is elaborated in Sect. 4.
Section 5 illustrates the relative experiments and their results. We conclude with a
summary and a discussion of future work in Sect. 6.

2 Related Works

Since the launch of JSHOP2, there have been a number of contributions on task
planning. Researchers employed or improved the JSHOP2 planner in various fields.

Sirin et al. [1] used SHOP2 to do automatic Web service composition. They suc-
cessfully describe an approach to translate process models of Web services into sets of
SHOP2 methods and operators. However, this approach makes a difference with lots of
hypothesis and restriction and cannot work with extra uncertain factors. Alami et al. [2]
proposed a framework that promotes human-robot interaction with HTN planning.
They hope to develop schemes that consider human preferences above the framework.
It is a pity that this framework is not implemented on physical experiments. Sohrabi
et al. [3] combined the control of knowledge domain specified by HTN with user’s
preferences. In the meantime, they proposed a language based on HTN planner to
evaluate the satisfaction of preferences during planning. However, it cannot handle
temporally extended constraints in SHOP2, such as unexpectedly changed occurs.
Compared with other papers based on JSHOP2, our aim is to improve the ability of
JSHOP2 to treat uncertain factors in task planning process. Furthermore, the intro-
duction of manual intervention helps JSHOP2 to generate plan lists from the global
optimization perspective.

3 Improved JSHOP2 Planner with Manual Intervention

This section describes two reasons for introducing manual intervention during the
JSHOP2 planning process.

3.1 Global Optimal Solution

The JSHOP2 planner is a state-based and pre-ordered HTN planner that contains two
significant files: the problem domain file and the knowledge domain file. The problem
domain file is written with a specific language that JSHOP2 can recognize. It records
the known status and resource information on current task scenario. The knowledge
domain file is written with the same language as the problem domain file. It records the

48 L. Tao et al.



methods of decomposing various tasks when meeting different conditions. The
JSHOP2 planner completes the task-autonomous planning process in specific domain
under the guidance of the above two files.

The JSHOP2 planner succeeds in decomposing a task according to the planning
algorithm combing with current task state and conditional satisfaction. The general
syntax has the following form:

: method h ½name1� L1T1 ½name2� L2T2 . . . ½namen� LnTnð Þ

where h is the current task, each Li is a condition list, each Ti is a subtask list.
When satisfying condition list Li, h is decomposed into the corresponding subtask

list Ti, representing a task decomposition. During the task planning process, each sub-
task decomposition is only related to the current task state and conditional satisfaction.
The scheme of optimizing to decompose subtasks is in terms of current task, that is, the
local optimal solution, not the global optimal solution. Manual intervention is a sup-
plement to the JSHOP2 planning algorithm while ensuring that the planning result is a
global optimal solution. When the decision information described in knowledge
domain file is not comprehensive enough to cover all situations that occur during the
planning process, we profit task planning with human perception through manual
intervention, assisting the decision-making process to generate more accurate and
reasonable planned result. For example, if an aircraft is used to collect specified images,
the aircraft generally captures regional information in a wide range. It has no idea of
when to collect key images from multiple dimensions, so it is necessary for the scout to
make a judgment based on the collected images, and issue specific instructions to guide
the following planning process.

The JSHOP2 planner retains the decision-making and intelligence to self-planning
after the introduction of manual intervention. In the meantime, it can dynamically
adjust the planning result. JSHOP2 hands over part of decision-making authority to
operators to ensure the global optimization of planning result.

3.2 Uncertain Factors

The original JSHOP2 planner uses a deterministic planning algorithm as its planning
algorithm. This algorithm decomposes tasks according to the hierarchical relationship
of tasks with the help of environmental information and resource information obtained.
It is assumed that current state remains unchanged during the hierarchical decompo-
sition process. The state can only be updated by decomposed result. As executing one
of the JSHOP2 default operators:

An operator has the following form:

: operator h P D Að Þ

where h is the name of the operator, P is a condition list, D is a deleted condition list
after executing this operator, A is an added condition list after executing this operator.

The JSHOP2 planner updates status through changing A and D in the operator, and
requires P remaining unchanged during executing h. However, a variety of uncertain

Task Planning with Manual Intervention Using Improved JSHOP2 Planner 49



factors may occur in the actual planning process. The source of uncertain factors can be
internal or external to the system. Also taking the aircraft collecting images as an
example, internal uncertainties such as the failure of some components of the power
system, which causes this aircraft fails to take off normally. External uncertainties such
as the temporary weather change affect the quality of captured images. Due to the
uncertainty, variability, complexity and dynamics of uncertain factors, the task plan-
ning system works with many uncertainties. The decision-making process is complex
and uncertain. Introducing manual intervention can effectively cope with accidents and
weaken the negative effect of uncertain factors.

With the help of manual intervention, humans can flexibly deal with uncertain
factors and take the advantage of human experience to handle emergencies. JSHOP2
can maintain in control when the external state is unknown and it lacks of autonomic
perception, which avoids the inconsistency between the planning result and the actual
situation.

4 Principle and Improvement

We modify the source code to make JSHOP2 support manual intervention and return
final plan lists. JSHOP2 itself defines complete templates of different operators to help
to find a plan. Users add the domain description and the domain knowledge on specific
domain combined with templates. After compiled, constants are stored in order while
variables are stored in index. All contents are stored as java files. The optimization of
JSHOP2 takes place after compiling, which is shown in Fig. 1.

Keeping JSHOP2 automatic planning to generate a complete plan list, we make
additional function, as single step planning. Any step is interruptible in planning
process and can perform manual intervention. The system identifies the activity per-
formed by manual intervention, and then modifies corresponding problem domain file
and knowledge domain file, and updates state finally. After doing this, move to next
planning step. We add a global variable called flag, representing whether human
intervention takes place in planning process. JSHOP2 can check this variable to choose
automatic plan or manual intervention. What’s more, we introduce three keywords
called add, modify, and delete to identify specific manual operations. add describes the

Fig. 1. Planning process of JSHOP2

50 L. Tao et al.



fact that users add state or available resource for following planning; modify describes
the fact that users change the value of attributes existed in system; delete describes the
fact that users delete some state or resource existed in system. JSHOP2 saves all
operators by corresponding keyword and index. When it runs, JSHOP2 determines the
operator to be modified by keyword firstly. Then it identifies the specific manual
operation by compared with three keywords. Finally it locates the variable to be
modified by index and performs operation, such as add, modify and delete on the
chosen variable. This is a complete manual intervention process. The set of updated
state is used to call function which describes how JSHOP2 algorithm works named
findPlanHelperðÞ recursively to generate a plan list step by step. The function named
updateðÞ visualizes the planning result. The main code is shown in Figs. 2 and 3.

Fig. 2. Code for manual intervention

Fig. 3. Code for the overall task planning

Task Planning with Manual Intervention Using Improved JSHOP2 Planner 51



5 Experiments and Results

We carry out several comparative experiments in order to demonstrate the applicability
of the proposed approach to deal with automatic task planning with manual inter-
vention. Contrast experiments are set in the same task scenario. The task set by
experiment is to collect images. We need a few steps to complete this task. The main
process is to set camera parameters, go to the destination, record the image, send the
image, return to the departure, and transfer the image. This experiment is carried out
under three different conditions:

(1) There is no manual intervention. During image recording, JSHOP2 selects the
camera automatically based on current state and domain knowledge, and records
images with default mode.

(2) Manually change the recording mode of camera during image recording. We try to
record the most images in the same time, and guarantee the planning result is a
global optimal solution.

(3) The camera selected during image recording unexpectedly failed and could not be
used. It is used to simulate the occurrence of uncertainties. The initial planning result
cannot be performed and needs to be manually changed based on the current state.

5.1 Planning Without Manual Intervention

In the first experiment, JSHOP2 automatically selects the camera named camera0
according to current state and resource information under the guidance of the knowl-
edge domain file if there is no manual intervention. At the same time, JSHOP2 uses the
mode named colour to record images. The complete planning process and planning
result are shown in Fig. 4.

Fig. 4. Process and result for the first experiment

52 L. Tao et al.



5.2 Planning for Optimizing Result

In the second case, we hope to store the most image information as much as possible
while sacrificing the color of images. All we need is to obtain the global optimal
solution of this task planning. Although JSHOP2 selects the mode named automatically
in image recording step, it will be manually modified to the mode named low res.
JSHOP2 will complete the planning based on the result after manual intervention. The
complete planning process and planning result are shown in Fig. 5.

5.3 Planning with Uncertainties

Under the third condition, the selected camera named camera0 is not available. Due to
the existence of uncertain factors, the resources selected in the original plan may be
unavailable. But JSHOP2 cannot sense the change of resource or state caused by
uncertain factors during the planning process. It is assumed that unavailable resources
can participate in task planning. The plan list obtained in this case is not executable. In
the third experiment, JSHOP2 automatically selects camera named camera0 in the
image recording step. But it is assumed that camera0 is accidentally damaged and users
can manually replace camera0 with camera1. Subsequent planning will be based on
camera1. The complete planning process and planning result are shown in Fig. 6.

Fig. 5. Process and result for the second experiment

Task Planning with Manual Intervention Using Improved JSHOP2 Planner 53



5.4 Results

Through the results of the above three comparative experiments, we can conclude that
improved JSHOP2 can support manual intervention to modify the variables or states in
the planning process so that the planning result is globally optimized. Furthermore, we
simulate uncertainties in task planning to verify that the planning failure will not be
returned when JSHOP2 faces sudden situation. We reach the goal of adding manual
intervention to promote the JSHOP2 planner.

6 Conclusion

In this paper, we improve JSHOP2 planner with manual intervention to plan tasks.
Firstly, we explain two reasons why manual intervention needs to be introduced into
task planning. Then we introduce the principle of improved JSHOP2, which elaborates
how JSHOP2 works with manual intervention. Finally, we verify our view through
experiments that the improved JSHOP2 planner with manual intervention can effec-
tively improve planning ability. However, under the premise that the next task has been
planned, it cannot solve the problem that unexpected situation interrupts execution. So
in the future, we will investigate to improve JSHOP2’s ability of dynamic execution.

Acknowledgment. This research is supported in part by the National Natural Science Foun-
dation of China under Grant No. 61571066, No. 61602054, (NSFC, 61571066, 61602054).

Fig. 6. Process and result for the third experiment

54 L. Tao et al.



References

1. Sirin, E., Parsia, B., Wu, D., et al.: HTN planning for web service composition using
SHOP2. J. Web Semant. 1(4), 377–396 (2004)

2. Alami, R., et al.: Task planning for human-robot interaction. In: Proceedings of the 2005
Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware
Services: Usages and Technologies, Tokyo, pp. 81–85. ACM (2010)

3. Sohrabi, S., Mcilraith, S.A.: On planning with preferences in HTN. In: Computer Science,
pp. 241–248 (2008)

4. Remli, M.A.B.: Automated biological pathway knowledge retrieval based on semantic web
services composition and AI planning. In: International Conference on Information Retrieval
and Knowledge Management, pp. 281–284. IEEE (2012)

5. Ming, G., Lei, Y., Zhang, C., et al.: A goal-driven and content-oriented planning system for
knowledge-intensive service composition. In: International Conference on Information
Technology and Electronic Commerce, Dalian, pp. 316–321 (2014)

6. Dvorak, F., Bartak, R., Bitmonnot, A., et al.: Planning and acting with temporal and
hierarchical decomposition models. In: IEEE International Conference on Tools with
Artificial Intelligence, Limassol, pp. 115–121 (2014)

7. Chen, Y.H., Cheng, M.: Enhanced HTN planning approach for COA generation. In: 2013
International Conference on Information Technology and Applications, Chengdu, pp. 272–
274 (2014)

8. Georgievski, I., Nizamic, F., Lazovik, A., et al.: Cloud ready applications composed via
HTN planning. In: 2017 IEEE 10th Conference on Service-Oriented Computing and
Applications (SOCA), Kanazawa, pp. 81–89 (2017)

9. Ramoul, A., Pellier, D., Fiorino, H., et al.: HTN planning approach using fully instantiated
problems. In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence
(ICTAI), San Jose, pp. 113–120 (2016)

10. Höller, D., Bercher, P., Behnke, G., Biundo, S.: Plan and goal recognition as HTN planning.
In: 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI),
Volos, pp. 466–473 (2018)

Task Planning with Manual Intervention Using Improved JSHOP2 Planner 55



Multi-task Planning with the Consideration
of Task Priority

Renkang Ke(&), Qibo Sun, Jinglin Li, Ao Zhou,
and Shangguang Wang

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

kerenkangmail@163.com

Abstract. Hierarchical Task Network (HTN) is widely used for intelligent
planning problems due to its simplicity and efficiency. As an intelligent planner
based on HTN, JSHOP2 can complete task planning in order of precedence or
randomly. In real-world tasks planning, such as automatic vehicles dispatch, has
to deal with complicated auto planning problems where different tasks must be
considered properly at the same time. But JSHOP2 ignores the priority of dif-
ferent tasks and thus fails to deal with multi-task planning problems with pri-
orities. In this paper, we improve JSHOP2 planner by adding priorities to
different task lists and task items, and adjusting the order of task execution
according to priority. Furthermore, we conduct an experiment using a classic
logistics problem, and get the results validate the effectiveness of our method.

Keywords: HTN planning � Multi-task � JSHOP2 � Task priority

1 Introduction

As an important field of artificial intelligence, intelligent planning has been widely
studied. Hierarchical Task Network (HTN) [1] is a notable planning technique, which
reveals the relationship between tasks or actions by constructing a hierarchical network
and searches the network for a feasible plan. Due to its simplicity and efficiency, HTN
planning is widely adopted in production line scheduling, crisis management, robotics,
and network service combinations.

JSHOP2 [2] is an intelligent planning system based on HTN. JSHOP2 can solve
single-task and multi-task planning problems. When solving multi-task problems,
JSHOP2 supports both ordered and unordered model, which means completing tasks in
an order or randomly. Due to the time, space and resource limitations, it’s crucial to
consider the priority of different tasks. However, vehicles have to deal with compli-
cated auto planning problems where different tasks must be considered properly at the
same time, such as the delivery order of numerous express goods.

In this paper, we extend the multi-task planning process of JSHOP2 and focus on
the priority of each task list and each task item. This allows tasks with higher priority to
be assigned resources and executed preferentially, while tasks with lower priority to be
executed later. Therefore JSHOP2 planner can adjust the task planning order according
to priorities and thus better solve the multi-task planning problems.

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 56–63, 2020.
https://doi.org/10.1007/978-3-030-38651-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_6&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_6


The remainder of this paper is organized as follows. In Sect. 2, we make a brief
introduction about the related works. Section 3 introduces the process of how JSHOP2
solve a multi-task planning problem. In Sect. 4, we propose a scheme to set priority for
both task lists and task atoms, and adjust the task planning order accordingly. And then
Sect. 5 evaluates the improvement of our method. Finally, we make a conclusion for
the paper and discuss our future work.

2 Related Work

Georgievski et al. [3] introduce the theory and concept of HTN, and made a com-
parison between all HTN planners. Nau et al. [4] studied the features of SHOP2 and
showed the details of developing a temporal domain and making domain optimization.
Fox et al. [5] described the syntax and semantic of PDDL (Plan Domain Definition
Language), and elaborated the process of plan validation. Song et al. [6] extends HTN
for task planning with multiple goals. However, multi-task planning optimization is not
considered. Lu et al. [7] improved JSHOP2 planner by realizing multi-task optimiza-
tion in home environment, but the improvement is only available for robot. That’s
because the priority is set statically, and cannot be reset by the users.

We will achieve a notable solution for multi-task planning with the consideration of
priority in this paper.

3 HTN and JSHOP2

The core execution logic of HTN is relatively simple. Tasks of different levels are
decomposed from the upper layer to the bottom layer, and tasks of the same level are
executed according to their partial orders [8]. It’s our goal to decompose a complicate
compound task into some simple atomic tasks so that we can get a sequence of actions
as a final plan. All of our following discussions about HTN will be around JSHOP2.
Notations of some core concepts in JSHOP2 planner will be given as follows:

• Task Atoms. A task atom is a basic and atomic JSHOP2 expression in the following
form : immediate½ � s t1 t2 . . . tnð Þ, where s is a task symbol and each argument ti is a
term. A task atom with the prefix key [:immediate] is called an immediate task
while it is an ordinary task without [:immediate]. If s is a symbol started with an
exclamation mark, it means it’s a primitive task atom, else it is a compound task
atom.

• Operator. An operator is expressed in the form of : operator h P D A c½ �ð Þ, where
h is a primitive task atom, P is a logical precondition list, D is a delete list and A is
an add list. The argument c is optional indicating the cost of an operation. The task
h will be executed if P is satisfied in the current state. After h is executed, the
current state of the world is modified by adding all logical atoms in D and delete all
logical atoms in A.

Multi-task Planning with the Consideration of Task Priority 57



• Method. A method is an important and most commonly use list of the following
form : method h name1½ � L1 T1 name2½ � L2 T2. . . namen½ � Ln Tnð Þ, where h is a
compound ordinary task atom. Each Li is a logical precondition list, and each Ti is a
task list that contains one or more primitive tasks and compound tasks. A method
indicates that the task h can be done by performing a subtask list Ti if the corre-
sponding precondition Li is satisfied. The subsequent decomposition will be con-
sidered only if the precondition of the current surface is not satisfied.

• Task Lists. A task list contains a task atom or a group of tasks. A group of tasks is
expressed in the form : unordered½ � T1 T2 . . . Tn½ �ð Þ, where T1, T2, … and Tn are
tasks in lists. When n is equal to zero, the task list is empty. The key word
[:unordered] indicates the tasks do not have priorities and can be done randomly. If
there is no such key word, the tasks in the list should be executed in the given order
T1 ! T2 ! . . . ! Tnð Þ. In the SHOP2 planner, you can use the keyword [:ordered]
to explicitly specify the execution order, but in JSHOP2, the keyword [:ordered] is
discarded.

When the keyword [:unordered] is used, the tasks in the list can’t be executed in the
given order. Suppose there are two task lists T ¼ t1 t2 . . . tm½ �, U ¼ u1 u2 . . . um½ � and
the main task list is M ¼ : unordered T Uð Þ. Then, the task items in T must be per-
formed in the specified order t1 ! t2 ! . . . ! tmð Þ. Similarly, the task items in U must
be executed in the order u1 ! u2 ! . . . ! unð Þ. However, JSHOP2 allows task items
among different task lists to be executed interactively. A possible execution order may
be u1 ! t1 ! u2 ! t2 ! . . . ! un ! tn ! . . . ! tm; m[ nð Þ.

If some task items are marked as immediate, the planner will give priority to them
each time it choose a task item to perform. In the above case, if t1 is an immediate task,
then t1 should be executed before t2 and u1. The task item qualified by the key word
[:immediate] must be executed first without any predecessor during the planning
process. Therefore, only one task item can be immediate and the key word [:immediate]
can appear only once at most. This limitation makes JSHOP2 difficult to adapt to multi-
tasks with different priorities.

Fig. 1. The compilation process of JSHOP2

58 R. Ke et al.



4 Multi_task with Priority Based on JSHOP2

In JSHOP2 planner, a specific domain description and the domain-independent tem-
plates are compiled to a domain-specific planner, and then it runs the planner to solve
the planning problems in that domain. Figure 1 show the process after modification.

Multi-task planning with JHSOP2 can be improved by adding priority to each task
list or each task item. We modify the task list expression to a new form like
: priority½ � T1 pri1 T2 pri2 . . . Tn prin½ �ð Þ, where Ti is a task list and prii is the corre-

sponding priority.
The new key word [:priority] is defined. Each task list is assigned a priority rep-

resented by a number. The smaller the number is, the higher priority it means. When the
priority is 0, it is equivalent to immediate. JSHOP2 is a domain-independent planner, so
users can set their own priority rules [9, 10]. After the grammar is improved, the tasks
with higher priority are executed earlier than those with lower priority, and the tasks
with equal priority are executed according to the rules in unordered mode.

It is also allowed to set priority for each task list Ti in the form
ti1 prii1 ti2 prii2 . . . tin priim½ �. So we can set priorities at the level of task lists and task
items respectively, thus ensuring both of them are executed in order of priority. The
details are as following:

1. Get the task lists of the planning problem.
2. Reorder all the task lists. For all the task lists T1 pri1 T2 pri2 . . . Tn prin½ �, rearrange

them according to the ascending order of pri1; pri2; . . .; prinð Þ, and record it as
T0
1 pri

0
1 T

0
2 pri

0
2 . . .T

0
n pri

0
n

� �
.

3. Reorder the task items in each task list. For the task list Ti, assume that the given
task items are placed as ti1 prii1 ti2 prii2 . . . tim priim½ �. Based on the ascending order
of list prii1; prii2; . . .; priimð Þ, reorder all task items of Ti, and the new task list is
given as follows: t0i1 pri

0
i1 t

0
i2 pri

0
i2. . . t

0
im pri0im

� �
.

4. Initialize the executed list FT 0
i , and the undone list LT 0

i as follows: LT 0
i ¼ T 0

i ,
FT 0

i ¼ null.
5. Add the first task of each new task list T 0

i to the candidate list, and set
candidate ¼ t011 t

0
21 . . . t

0
n1

� �
.

6. Select a satisfied task item from the candidate list. Transverse the candidate list until
we get a satisfied one. If the selected task item is t0ij, execute it and remove it from
the candidate list.

7. Add the executed task item t0ij to the completed list FT 0
i , and add the next task item

t0i jþ 1ð Þ from LT 0
i to the candidate list.

8. If not all task lists and task items are executed, go to step 6.

5 Validation

We validate the effectiveness of our method in multi-task planning. Suppose there are
two ways to transport goods between city1 and city2: air transportation or car trans-
portation. As shown in Fig. 2, when the original city has free flights, it is preferred to

Multi-task Planning with the Consideration of Task Priority 59



use the aircraft for transportation. Otherwise, the goods are transported by car. When
transporting package from city1 to city2 by air, the number of flights in city1 will be
reduced by 1, and the number of flights in city2 will be increased by 1. The same is true
for car transportation.

Suppose now there are three types of goods A, B, C need to be transported from
city1 to city2. Each type of goods has two batches to be transported. It is our goal to
successfully complete the transportation of these six batches of goods. In JSHOP2,
transportation of each type of goods is defined as a task list, and transportation of each
batch is defined as a task item. So there are three task lists, each list contains two task

Fig. 2. Decomposition of logistics transportation

Fig. 3. Multi-task planning problems using an unordered mode

Fig. 4. Multi-task planning with priority in planning problems

60 R. Ke et al.



items, as shown in the Fig. 3. The JSHOP2 planner originally supports task planning in
an ordered mode or an unordered mode. In an unordered mode, both tasks in tasks lists
and task items are performed randomly. Therefore, there are many execution orders.
One of the results is shown in Fig. 5, in which all packages are delivered in order of the
statement presented in Fig. 3, package_a1->package_a2->package_b1 ->package_b2-
>package_c1->package_c2.

In actual goods transportation, different types of goods have different transportation
priorities. Goods with the highest priority, like emergency letters, emergency supplies,
etc., must be prioritized for transportation. Goods like fresh food must be transported in
time, so their priority is second. And ordinary goods like clothes, shoes and so on have
low priority. As showed in Fig. 4, we add a priority number for each task list to
represent the priority of each type of goods. For the same task list, we can add a priority
number for each task item. The priority number represents the priority of different
batches of the same type. So the priority between every batch is pack-
age_a1 > package_a2, package_b2 > package_b1, package_c1 > package_c2. The
planning result is shown in Fig. 6, in which the transportation order is based on
priority, package_b2-> package_b1->package_c1->package_c2->package_a1-
>package_a2.

Fig. 5. The experiment results of current method

Multi-task Planning with the Consideration of Task Priority 61



The experiment results illustrate that our method considers the priorities of different
tasks in planning process, and the planning result is more reasonable because the task
with higher priority is executed before that with lower priority compared with the
unordered mode.

6 Conclusion

As a commonly used HTN planner, jshop2 has certain limitations in the planning of
multi-task problems. The ordered mode and unordered mode of JSHOP2 are obviously
not enough to deal with tasks with different priorities. In this paper, we propose a
priority-aware planning method by extending JSHOP2. In the future, we will further
enhance the efficiency of multi-task planning in JSHOP2.

Acknowledgement. This research is supported in part by the National Natural Science Foun-
dation of China under Grant No. 61571066, No.61602054, (NSFC, 61571066, 61602054).

References

1. Ontanon, S., Buro, M.: Adversarial hierarchical-task network planning for complex real-time
games. In: Proceedings of the 24th International Conference on Artificial Intelligence
(IJCAI), pp. 1652–1658 (2015)

Fig. 6. The experiment result of our method

62 R. Ke et al.



2. Ilghami, O.: Documentation for JSHOP2. Department of Computer Science, University of
Maryland, Technical Report (2006)

3. Georgievski, I., Aiello, M.: HTN planning: overview, comparison, and beyond. Artif. Intell.
222, 124–156 (2015)

4. Nau, D., et al.: SHOP2: an HTN planning system. J. Artif. Intell. Res. 20, 379–404 (2003)
5. Fox, M., Long, D.: pddl2.1: an extension to pddl for expressing temporal planning domains.

J. Artif. Intell. Res. 20, 61–124 (2003)
6. Song, S., Lee, S.-W.: A goal-driven approach for adaptive service composition using

planning. Math. Comput. Model. 58(1–2), 261–273 (2013)
7. Lu, F., Tian, G., Li, Q.: An improved JSHOP2 planner oriented to service robot multi-tasks

planning. In: 2016 Chinese Control and Decision Conference (CCDC) (2016)
8. Nau, D.S., Cao, Y., Lotem, A., Muñoz-Avila, H.: SHOP: simple hierarchical ordered

planner. In: Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pp. 968–973. AAAI Press (1999)

9. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-time
environment. J. ACM 20, 46–61 (2003)

10. Biyabani, S.R., Stankovic, J.A., Ramamritham, K.: The integration of deadline and
criticalness in hard real-time scheduling. In: Proceedings of the 9th IEEE Real-Time Systems
Symposium, pp. 152–160 (1988)

Multi-task Planning with the Consideration of Task Priority 63



From AI to CI: A Definition of
Cooperative Intelligence in Autonomous

Driving

Jun Liu(B) , Yang Xiao, and Jiawei Wu

Beijing University of Posts and Telecommunications, Beijing 100876, China
{liujun,zackxy,cloudsae}@bupt.edu.cn

Abstract. With the rapid development of deep learning, artificial intel-
ligence (AI) has been widely used in many fields and gradually replaced
a part of human jobs. However, the approach of improving intelligent
capability of single agent is not enough to achieve complicated tasks in
ever-changing environments. Cooperative intelligence (CI) is regarded
as a promising way to solve this problem. In this paper, we scientifically
define the three key problems of achieving cooperative intelligence, which
are cooperative perception, cooperative decision and cooperative learn-
ing. We illustrate each problem with a scenario of autonomous driving as
well as a brief survey of related research works. Meanwhile, we propose
a system architecture and components design of cooperative intelligence
system for autonomous driving.

Keywords: Artificial intelligence · Cooperative intelligence ·
Autonomous driving

1 Introduction

Since the beginning of history, there is a fantasy dream of releasing people from
hard work by robots with machine intelligence. Lie Zi, a Chinese sage living
in the Spring and Autumn Period, recorded the legend of a song and dance
robot called Chang Zhe that was made by a skilled craftsman named Yan Shi in
1000 BC [1]. Another famous robot character is T-800, which is a scary killer in
the film Terminator taken at the end of the twentieth century [2]. Like Chang
Zhe and T-800, there are a number of robot characters in plenty of art works,
which reflect people’s deep emotions of yearning and fearing about artificial
intelligence (AI).

Whether people fear it or not, agents with artificial intelligence eventually
come into our life with the development of deep learning technologies in recent
years. In December 2015, Microsoft used the 152-layer Deep Residual Network to
surpass human record of 5.1% for the first time with an error rate of 3.57% in the
ImageNet Large Scale Visual Recognition Challenge [3]. In March 2016, Deep-
Mind AlphaGo defeated the top human player in the world, Lee Sedol, in the
c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 64–75, 2020.
https://doi.org/10.1007/978-3-030-38651-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_7&domain=pdf
http://orcid.org/0000-0003-4007-6109
https://doi.org/10.1007/978-3-030-38651-1_7


From AI to CI 65

game of go [4]. In October 2016, Microsoft developed a combination of convolu-
tion and LSTM deep neural network that achieves automatic speech recognition
with 5.9% [5] error on the English oral language database Switchboard [6]. The
performance is almost the same as human professional stenographer. This kind
of technological breakthroughs have brought a new wave of “AI is coming” to
the public. Even part of scientific and technical workers believe that artificial
agents with strong AI are coming soon.

However, most of researchers in the field of artificial intelligence are not so
optimistic. A number of researchers have pointed out that capabilities of single
agent with artificial intelligence are close to the ceiling [7,8]. Although deep
learning has been widely applied in many areas, such as face recognition [9],
voice assistant [10] and medical assistant diagnosis [11], there is no exciting
technical achievement that can be comparable to AlphaGo since 2006. It is a
sign that the artificial intelligence of single agent has encountered the technical
bottleneck. To solve this problem to keep going on the road to strong AI, a
number of researchers are trying to find other ways, in which improving the
intelligence of an agent by cooperation of a group of agents is a possible success
approach.

Inspired by behavioral models of socializing insects such as bees and ants, a
number of researchers have proposed novel approach to improve the capabilities
of agents with simple artificial intelligence in a cooperative manner [12,13]. There
are different names for this kind of emerging technology of biologically-inspired
artificial intelligence, such as Distributed Artificial Intelligence [14] and Swarm
Intelligence [15]. In this paper, we name it as Cooperative Intelligence (CI),
which is a class of technologies and methods that aim to achieve higher intel-
ligent capabilities of agents by cooperatively working with each other and the
surrounding environment. From this definition, we can see that the realization
of cooperative intelligence is based on the original intelligence level of a single
agent to some extent. Therefore, the development of cooperative intelligence
technology are not practical in real-world owing to the limitation of the weak
capability of a single agent before the emergence of deep learning technologies.
As the capability of a single agent has been greatly improved by deep learning
technologies, the research of cooperative intelligence is becoming a hot topic in
AI related areas in recent years. Among these areas, autonomous driving is a
potential industry to be greatly change by artificial intelligence. Because the
huge gap between extra high safety requirements and limited intelligence of sin-
gle autonomous cars, autonomous driving is one of the most important area to
be improved by cooperative intelligence technologies.

In this paper, we will give the scientific problem definition of the cooperative
intelligence. Then, we will describe three core concepts and tasks of the cooper-
ative intelligence, cooperative perception, cooperative decision and cooperative
learning. And we will take autonomous driving as the application scenario to
illustrate the targets of these three tasks. At last, we will give the overall archi-
tecture design of cooperative intelligence enabled autonomous driving system
and describe the functions and relationships of the components in the propose
system.



66 J. Liu et al.

Fig. 1. Cooperation intelligence

2 Problem Definition of Cooperative Intelligence

In general, we perform our daily activities like this way: (1) Acquiring data from
outside environment by our sensory organs like eyes and ears. (2) Processing and
analyzing these data to plan actions for reaction by nervous system like brain.
(3) Summarizing the knowledge by learning and memorizing ability to further
enhancing the level of sensing and decision-making abilities. Therefore, we can
generalize the intelligence capabilities of human as three key points: perception,
decision and learning. Based on this concept, we propose the key modules of
multi-agent cooperative intelligence as cooperative perception, cooperative deci-
sion and cooperative learning. The relationships and interactions among these
three modules are shown in Fig. 1.

Cooperative perception is to acquire raw data from the outside environ-
ment, and process these data to obtain the information of outside environment.
The obtained information is the input of cooperative decision. Meanwhile, the
acquired data in the valuable input of cooperative learning. Cooperative decision
is to choose the most effective action for achieving a kind of specific goal. The
knowledge of how to choose correct action is produced by cooperative learning.
The action may change the outside environment and bring impact to the subse-
quent cooperative perception step. The input of cooperative learning is acquired
data from cooperative perception and the feedback of an action’s effect from
cooperative decision. Based on these input, cooperative learning continuously
improve the perception model and decision-making model to enhance the intel-
ligence capabilities of agents. Below we will scientifically define the problems of
cooperative perception, cooperative decision and cooperative learning.

2.1 Cooperative Perception

Improving the perception capabilities is always a hot research topic in the field of
artificial intelligence. There are a great many algorithms to enhance the percep-
tion capabilities of a single agent, such as image classification for vision capa-
bility, voice recognition for hearing capability and automatic reading compre-
hension for natural language understanding capability. Unlike these algorithms



From AI to CI 67

Fig. 2. Cooperation perception scenario

focusing on enhancement of single agent capabilities, the objective of coopera-
tive perception is to obtain more comprehensive or higher quality information
of outside environments by cooperatively gathering and processing data from
multiple agents. We define the scientific problem of cooperative perception as
below:
Cooperative Perception: Suppose there is a set of n agents, which is A =
{a1, ai, ..., an}. At time t, the set of external objects perceived by a certain agent
ai is Oi

t = {o1, ..., oj , ...}. oj ∈ Mz is an object in the coordinate system. When
z = 2, the coordinate system is two-dimensional. When z = 3, the coordinate
system is three-dimensional. Then, we can define the cooperative perception task
as:

P i
t = ∪ai∈AO

i
t (1)

In Eq. 1, P i
t represents the set of cooperative perception results obtained by

the i-th agent at time t. Note that ∪ is not the collection summation operator in
Eq. 1. ∪ is a designed cooperative perception algorithms that can be performed
in the cloud, terminal or edge.

In Fig. 2, we demonstrate the objective of the cooperative perception through
an overtaking scenario, which is often encountered while driving. At time t,
autonomous driving vehicles 1, 2, and 3, represented by a1, a2, and a3 respec-
tively, are running on a two-way two-lane road. Owing to blocked by a1, a2 do
not know the existence of a3 based on its optical camera, laser radar, and mil-
limeter wave radar sensors. At this time, the object sets perceived by a1, a2, and
a3 are O1

t = {a3}, O2
t = {a1}, and O3

t = {a1}. If a2 makes decision based on
such perceived result, a collision may be occurred with high possibility. In this
scenario, the objective of cooperative perception is to find a suitable algorithm
∪ to produce P 2

t = {a1, a3} by leveraging the convergence of O1
t , O

2
t and O3

t .
Based on the cooperative perception, the existence of a3 is known by a2 and the
decision of overtaking a1 would not be made to ensure safety.

There are a number of research works that focus on cooperative perception for
autonomous driving. Rauch et al. [16] designed and implemented a inter-vehicle
object association for cooperative perception systems. The evaluated three point
matching algorithms to reduce the impact of inaccurate self-localization of the
communication partners for improving quality of perception data association
and fusion. The simulation results show that the auction-ICP algorithm is the
best one to reducing the average error between the considered object lists.



68 J. Liu et al.

Kim et al. [17] proposed a multi-modal cooperative perception method that pro-
vides see-through, lifted-seat, satellite and all-around views to drivers. Based on
this method, they realized a multi-vehicle cooperative driving system that can
supports see-through forward collision warning, overtaking and lane-changing
assistance and automated hidden obstacle avoidance. The demonstrated the
capabilities and features of the proposed system through real-world experi-
ments using four vehicles on the road. Wang et al. [18] studied the perfor-
mance and scealing of collaborative sensing and networking for automated driv-
ing applications. They quantified the coverage gains of cooperative perception
that depends on the penetration of vehicle participants. In addition, they eval-
uated the Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) commu-
nication loads when both vehicles and RSUs are involved in the cooperative
perception. The evaluation results demonstrated that the combination of vehic-
ular/RSU cooperative perception is the most cost effective way to achieve high
coverage in vehicular automated driving on high speed automated highways.

2.2 Cooperative Decision

Making the correct decision is the purpose of artificial intelligence, so decision
module needs to judge the situation, plan the action and control the agent based
on information of external environment obtained by perception module. Taking
the autonomous driving as an example, the perception module outputs infor-
mation including types, position, speed and direction of traffic involving objects
like vehicles, pedestrians and bicycles, position, speed, and direction at a series
of time points. Based on these information, decision module needs to predict the
state of the objects in future based on physical models. Then, decision module
will send out control instructions to plan the next action of the agent based on
decision-making model that is abstracted from historical data and experiences.
The action will change the state of the agent and outside environment. It will
bring positive or negative impact on the agent. The impact can be presented by
a loss function. Therefore, the objective of cooperative decision is to make deci-
sion with better loss function value by cooperation of multiple agents compared
with the decision made by single agent. We define this problem as looking for a
decision set DA that minimizes the value of loss function:

DA = arg min
D

Loss(D) (2)

In Eq. 2, A = {a1, ai, ..., an} is the collection of agents. D = {...,Di, ...}
denotes the collection of decision sets of all agents. Di is the decision set of the
i-th agent. Loss(D) is the loss function under the conditions of decision set D.

In Fig. 3, we illustrate the objective of cooperative decision through an
autonomous driving scenario. a1, a2, a3, a4 are four autonomous driving cars
passing through a crossroad with no signal light. The objective of decision mak-
ing algorithm is to allow the cars to pass through the crossroad as fast as possible
while avoiding collision. Decision module of each car has to inference the possi-
ble solution based on the information gathered by the perception module within



From AI to CI 69

Fig. 3. Cooperation decision scenario

short intervals to avoid collision. It is very complicated and difficult if each agent
can not interact and cooperate with others. If some communication and negotia-
tion mechanisms can be established between a1 to a4, the decision making could
be more reasonable and efficient with sufficient information from all vehicles.

Compared to traditional research works that focus on driving decision of
individual vehicles, cooperative decision for autonomous driving is a relative
new research topic. Yang et al. [19] considered analysis and synthesis problems
of the cooperative control of a platoon of heterogeneous connected vehicles with
directed acyclic interactions. They formulated the problem in the context of a
closed-loop system and applied the internal model principle and exploited the
lower-triangular structure. Based on the study, they proposed a synthesis method
based on the algebraic Riccati equation sharing the dimension of single vehicle
dynamics. Numerical experiments were carried out to validate the effectiveness
of their method. Huang et al. [20] introduced a novel hybrid method consisting
of the discrete cooperative maneuver switch and the continuous vehicle motion
control. They implemented the method into a multi-vehicle cooperative control
system with a distributed control infrastructure, leading each automated vehicle
to conduct path planning and motion control separately. Simulation results in
several typical traffic scenarios demonstrated the effectiveness of the proposed
method.

2.3 Cooperative Learning

Perception and decision capabilities of agents both depend on effective algo-
rithms or models. However, it is difficult for any algorithm model to directly
achieve good performance in a complex environment owing to the complexity
of environments. In practical, a good algorithm or model is produced based on
massive training data and a number of optimization. Therefore, artificial intelli-
gence application like autonomous driving require the agent having the learning
capability of continuously improving the algorithm or model in real environment.
The learning process of improving model or algorithm can be performed by indi-
vidual agent or multiple agents cooperatively. In the context of deep learning
method that needs diversity learning samples, it is clear that the cooperation
approach is more effective to improve performance. The purpose of cooperative



70 J. Liu et al.

Fig. 4. Cooperation learning scenario

learning is to compute the best algorithm or model that has the minimum loss
value when dealing with new samples. Therefore, we can define the problem of
cooperative learning as looking for a set of model parameters wA that minimizes
the loss function value.

wA = arg min
w∈Rn

Loss(X,Y w, w) (3)

In Eq. 3, A = {a1, ai, ..., an} is the collection of agents. Rn is the weight
space of the model that has K dimensions. w ∈ RK = {w1, wi, ..., wK} is one
of the weight sets of the model. X = {x1, xi, ..., xN} is the collection of real
samples. Y w

i = {y1, yi, ..., yN} is the set of prediction samples in the case of
model parameter w. Li(X,Y w

i , w) is the loss function of the i-th agent in the

case of model parameter w. Loss(X,Y w, w)
def
= 1

n

∑N
i=1 Li(X,Y w

i , w) is the loss
function for all agents in the case of model parameter w, prediction set Y w and
real sample set X.

We also demonstrate the task and goal of cooperative learning through an
autonomous driving scenario in Fig. 4. For autonomous driving, it is difficulty to
safely control the vehicle on curved road. It is necessary to establish an effective
model to achieve precise perception and decision in various scenarios. At present,
the deep reinforcement learning method is proved to be an effective way owing
to its excellent performance in continuous decision making. By collecting data
from perception sensors during driving, deep reinforcement learning methods
can continuously optimize the model using the state changes from the control
action of vehicle and the rewards generated by the interaction with the environ-
ment. Based on this approach, a vehicle can continuously improve the safety and
smoothness of curved road driving. Based on the data generated by cooperation
of multiple vehicles, cooperative learning methods can generate better learning
models by leveraging data sharing or model parameters.

In recent years, reinforcement learning has been widely adopted used to
achieve intelligence in complex environment. To realize longitudinal control for
any vehicle participating in dynamic collaborative driving to achieve higher-level
coordination, Ng et al. [21] introduced a longitudinal vehicle model serving as
the control system design platform as well as a longitudinal adaptive control sys-
tem using Monte Carlo reinforcement learning. The evaluation results showed
that the performance of the adaptive controller in a multi-vehicle convoy or pla-
toon is promising and can form the basis of higher level platoon maneuvers.
Matt et al. [22] created a deep Q-network (DQN) agent to perform the task of



From AI to CI 71

autonomous car driving from raw sensory inputs. They evaluated performance
of the proposed DQN agent against several standard agents in a racing simula-
tion environment. The evaluation results showed demonstrated the effectiveness
of navigating autonomous vehicles using reinforcement learning methods. Moti-
vated by the successful demonstrations of learning of Atari games and Go by
Google DeepMind, Ahmad et al. [23] proposed a framework for autonomous
driving using deep reinforcement learning. The proposed framework incorpo-
rated Recurrent Neural Networks (RNN) for information integration to enable
the car to handle partially observable scenarios. In addition, it also integrated
attention models to make vehicle focusing on relevant information. The evalua-
tion results produced in an open source 3D car racing simulator demonstrated
the feasibility of the framework. Training of deep reinforcement learning model
is a computation intensive task. To reduce training time for deep reinforcement
learning models for autonomous driving, Mitchell et al. [24] proposed a cloud
computing architecture to distribute the training process across a pool of vir-
tual machines. By parallelizing the training process, careful design of the reward
function and use of techniques like transfer learning, they achieved a decrease in
training time for autonomous driving task from 140 h to less than 1 h.

3 System Architecture of Cooperative Intelligence
for Autonomous Driving

3.1 Overall Architecture

The implementation of cooperative intelligence system depends on two key
components, cooperation module and intelligence module. In order to real-
ize the cooperative intelligence in the autonomous driving scenario, the whole
autonomous driving system including transportation facilities, networks and
vehicles first needs to support the cooperation between vehicles and transporta-
tion facilities. Based on the existing autonomous driving system related technol-
ogy, we design the overall system architecture of autonomous driving enabled
by cooperative intelligence in Fig. 5. The system consists of four parts terminal,
edge, network and cloud, connected by a V2X communication infrastructure.

Terminal: Terminal refers to the traffic participants with intelligent con-
trol capabilities. In this paper, we specifically refer to the autonomous driving
vehicles with cooperation capabilities. Unlike most vehicles with primary assisted
driving or autonomous driving functions, vehicles that support cooperative intel-
ligence should be equipped with V2X communication equipments that support
interchanging information with other vehicles and facilities via CAM [25] and
CPM [26] messages on the V2X communication link.

Edge: Edge refers to the equipment deployed at the edge of the network,
including transportation facilities, monitoring equipment and edge servers. Com-
pared to terminal devices, edge devices have more storage capacity and powerful
computing capability. Edge device can perform relatively more complicated com-
puting tasks. In addition, owing to the deployment location, the edge device can



72 J. Liu et al.

Fig. 5. Overall system architecture of autonomous driving cooperation intelligence

also perform some tasks that the terminal device can not support. For example,
a traffic light with higher position can sense the motion state of the vehicles in
all directions of the crossroad and broadcast to all vehicles within its coverage.

Cloud: Artificial intelligence tasks like deep learning are computation inten-
sive, especially tasks of training deep learning model. Therefore, these kind of
tasks are always performed on the cloud that has enough computing resources.
Data collected by the terminal and edge devices are transmitted into cloud
servers. Clusters of servers perform training task to generate and optimize mod-
els and update the models in the terminal and edge devices. In some kind of
situations, part of inference tasks may also performed on the cloud.

Network: The role of the network is to connect various types of devices on
the terminal, edge, and cloud to achieve better intelligence through cooperation.
In the autonomous driving scenario, the two main technologies for V2X networks
are short range communication (DSRC) and cellular based V2X (C-V2X). The
typical technologies of DSRC and C-V2X are 802.11p [27] and 5G [28], respec-
tively. 5G network is expected to become the main underlying network carrying
cooperative intelligence for its good performance to support massive connection,
broad bandwidth, low latency, high reliability and edge computing features.

3.2 Components of Cooperative Intelligence System
for Autonomous Driving

Figure 6 shows the logical components and their relationships of the cooperative
intelligence system for autonomous driving. Each gray block in the figure repre-
sents an agent. It should be noted that the agents include not only autonomous
vehicles, but also intelligent agents with perception, decision and learning capa-
bilities deployed on the edge and the cloud.

Autonomous driving vehicles are often equipped with a range of sensor
devices including optical cameras, laser radars, millimeter wave radars, motion
sensors for sensing the external environment. These sensor devices usually have
a basic processing unit for pre-processing the collected raw data. At the same
time, with the gradual maturity of multi-sensor data fusion technology [29], these



From AI to CI 73

Fig. 6. Components map of cooperation intelligence for autonomous driving

sensor data will be processed in the sensor fusion computing unit. These sensor
devices, basic processing units, and fusion computing units compose the per-
ception module. The perception module converts raw data such as the external
environment and vehicle state into a series of captured objects with attributes
such as type, position, speed and direction of motion. Unlike the traditional sin-
gle agent intelligent autonomous driving vehicle, the autonomous driving vehicle
with cooperative intelligence capability will share the perception information
acquired by itself with other vehicles or transportation facilities via the V2X
network through the communication component. Meanwhile, the vehicle will
also receive perception information from other vehicles or transportation facil-
ities within a certain range and integrate them with the information perceived
by the vehicle itself. The integrated information will be transmitted to the deci-
sion module. Autonomous driving vehicles with cooperative intelligence not only
rely on their own perception information and decision strategies when making
decisions, but also communicate and cooperate with other vehicles and trans-
portation facilities through the V2X network via communication module to make
control decisions. The control instruction made by decision module will change
the state of the vehicle. The changed outside environment and state of the vehi-
cle would be the input data for perception model for next round of perception
and decision. Meanwhile, the data and information acquired by the perception
module, the decision made by the decision module and the feedback generated
from outside environment will continuously come into the learning module. The
learning process can performed in a single vehicle or by the cooperation between
vehicles, edge computing units and cloud computing servers through data shar-
ing and local model parameter sharing. After learning process, the optimized
model will be downloaded and updated into local computing unit of vehicles for
improving intelligence capabilities.



74 J. Liu et al.

4 Conclusion

Artificial Intelligence (AI) has shown its power of improving work efficiency and
saving labor resource in many fields. However, the approach of improving intel-
ligent capabilities of individual agent is closing to its limitation. Cooperative
Intelligence (CI) has been emerged to be a hopeful way to help people achiev-
ing high level intelligence. In this paper, we scientifically defined the three key
problems of achieving cooperative intelligence, which are cooperative percep-
tion, cooperative decision and cooperative learning. We have illustrated each
problem in detail by a scenario of autonomous driving. For each problem, we
have introduced related research works in the autonomous driving filed. At last,
we proposed a system architecture and components design of cooperative intel-
ligence system for autonomous driving. In terms of the future work, we consider
two directions: (1) developing a simulation platform to evaluate the efficiency
and performance of current cooperative intelligence related methods, and (2)
build up a prototype of cooperative intelligence system for autonomous driving
that can support three scenarios described in this paper.

References

1. Zi, L.: Liezi - Tangwen. (Annals of Spring and Autumn and Warring States Period)
2. The Terminator. https://en.wikipedia.org/wiki/The Terminator. Accessed 2 July

2019
3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
4. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree

search. Nature 529, 484–489 (2016)
5. Xiong, W., et al.: Achieving human parity in conversational speech recognition.

Microsoft Research Technical Report, MSR-TR-2016-71 (2017)
6. Interview of Zhang Ba (Academician of Chinese Academy of Sciences). http://

www.eeo.com.cn/2019/0524/356928.shtml. Accessed 2 July 2019
7. Waldrop, M.: What are the limits of deep learning? Proc. Natl. Acad. Sci. U.S.A.

(PNAS) 116(4), 1074–1077 (2019)
8. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: 31st

Conference on Neural Information Processing Systems (NIPS), Long Beach, CA,
USA (2016)

9. Wang, M., Deng, W.: Deep face recognition: a survey. https://arxiv.org/abs/1804.
06655 (2019)

10. Nassif, A., Shah, I., Attili, I., et al.: Speech recognition using deep neural networks:
a systematic review. IEEE Access 7, 19143–19165 (2019)

11. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25, 24–29
(2019)

12. Buoniu, L., Babuka, R., De Schutter, B.: Multi-agent reinforcement learning: an
overview. In: Innovations in Multi-Agent Systems and Applications-1. Springer,
Berlin (2010). https://doi.org/10.1007/978-3-642-14435-6 7

13. Bloembergen, D., et al.: Evolutionary dynamics of multi-agent learning. JAIR 53,
659–697 (2015)

https://en.wikipedia.org/wiki/The_Terminator
http://www.eeo.com.cn/2019/0524/356928.shtml
http://www.eeo.com.cn/2019/0524/356928.shtml
https://arxiv.org/abs/1804.06655
https://arxiv.org/abs/1804.06655
https://doi.org/10.1007/978-3-642-14435-6_7


From AI to CI 75

14. Chaib-Draa, B., Moulin, B., Mandiau, R., Millot, P.: Trends in distributed artificial
intelligence. Artif. Intell. Rev. 6(1), 35–66 (1992)

15. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, Oxford (1999)

16. Rauch, A., Maier, S., Klanner, F., et al.: Inter-vehicle object association for coop-
erative perception systems. In: 16th International IEEE Conference on Intelligent
Transportation Systems (2013)

17. Kim, S.W., et al.: Multivehicle cooperative driving using cooperative perception:
design and experimental validation. IEEE Trans. Intell. Transp. Syst. 16(2), 663–
680 (2015)

18. Wang, Y., et al.: Performance and scaling of collaborative sensing and networking
for automated driving applications. In: IEEE International Conference on Com-
munications Workshops (ICC Workshops), pp. 1–6 (2018)

19. Zheng, Y., Bian, Y., Li, S., et al.: Cooperative control of heterogeneous connected
vehicles with directed acyclic interactions. IEEE Intell. Transp. Syst. Mag. 99, 1
(2018)

20. Huang, Z., et al.: Path planning and cooperative control for automated vehicle
platoon using hybrid automata. IEEE Trans. Intell. Transp. Syst. 20(3), 1–16
(2018)

21. Ng, L., Clark, C.M., Huissoon, J.P.: Reinforcement learning of adaptive longitu-
dinal control for dynamic collaborative driving. In: 2008 IEEE Intelligent Vehicles
Symposium (July 2008)

22. Vitelli, M., Nayebi, A.: CARMA: a deep reinforcement learning approach to
autonomous driving (2016). http://web.stanford.edu/anayebi/projects/CS 239
Final Project Writeup.pdf

23. Al Sallab, A.A., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning
framework for autonomous driving. In: NIPS 2016 Workshop (December 2016)

24. Spryn, M., Sharma, A., Parkar, D., Shrimal, M.: Distributed deep reinforcement
learning on the cloud for autonomous driving. In: Proceedings of the 1st Interna-
tional Workshop on Software Engineering for AI in Autonomous Systems, May 28
(2018)

25. de Cózar, V., Poncela, J., Aguilera, M., Aamir, M., Chowdhry, B.S.: Cooperative
vehicle-to-vehicle awareness messages implementation. In: Shaikh, F.K., Chowdhry,
B.S., Ammari, H.M., Uqaili, M.A., Shah, A. (eds.) WSN4DC 2013. CCIS, vol. 366,
pp. 26–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41054-
3 3

26. Seeliger, F., et al.: Advisory warnings based on cooperative perception. In: IEEE
Intelligent Vehicles Symposium Proceedings, pp. 8–11 (June 2014)

27. Jiang, D., Delgrossi, L.: IEEE 802.11p: towards an international standard for wire-
less access in vehicular environments. In: Vehicular Technology Conference (June
2008)

28. 3GPP Specification Set: 5G. https://www.3gpp.org/dynareport/SpecList.htm?
release=Rel-15&tech=4. Accessed 2 July 2019

29. Aeberhard, M., Kaempchen, N.: High-level sensor data fusion architecture for vehi-
cle surround environment perception. In: International Workshop on Intelligent
Transportation (2011)

http://web.stanford.edu/anayebi/projects/CS_239_Final_Project_Writeup.pdf
http://web.stanford.edu/anayebi/projects/CS_239_Final_Project_Writeup.pdf
https://doi.org/10.1007/978-3-642-41054-3_3
https://doi.org/10.1007/978-3-642-41054-3_3
https://www.3gpp.org/dynareport/SpecList.htm?release=Rel-15&tech=4
https://www.3gpp.org/dynareport/SpecList.htm?release=Rel-15&tech=4


Utilizing Connectivity Maps to
Accelerate V2I Communication in

Cellular Network Dead Spots

Jon Arild Ekberg Meyer , Ergys Puka(B) , and Peter Herrmann

Norwegian University of Science and Technology (NTNU), Trondheim, Norway
jon.ae.meyer@gmail.com,

{ergys.puka,herrmann}@ntnu.no
http://www.ntnu.no/iik

Abstract. On many roads in rural and mountainous areas, the cellular
network connectivity is intermittent and dead spots, i.e., zones without
any coverage, are frequent. In previous work, we developed a data dis-
semination protocol to accelerate the transmission of messages in dead
spots. It combines the cellular network with short-living ad-hoc networks
between vehicles. A car in a dead spot can forward messages directed
towards the environment, to the peer in its ad-hoc network that will leave
the dead spot first, effectively reducing the delay. An issue, however, is
to reliably identify the peer that is most likely the first one regaining
cellular network coverage. This problem can be solved if the borders of
the dead spot, the vehicles are in, are previously known. For that, we use
a novel technology named dead spot prediction. Here, vehicles conduct
local connectivity measurements that are aggregated to so-called con-
nectivity maps describing the locations of dead spots on a road system.
In this article, we introduce the combination of the data dissemination
protocol with dead spot prediction. Particularly, our protocol is amended
such that connectivity maps are considered when deciding which vehicle
leaves a dead spot first. Since currently only few publicly available works
about dead spot prediction exist, we further created a prototype of such
a predictor ourselves that will be discussed as well.

Keywords: Cellular network access · Dead spots · Data dissemination
protocol · Ad-hoc network · Dead spot prediction · Connectivity map

1 Introduction

Intelligent Transport Systems (ITS) in the automotive sector rely on network
connectivity. The so-called vehicle-to-infrastructure (V2I) communication is usu-
ally carried out using cellular networks [17]. Thanks to the emerging 5G technol-
ogy, even the vehicle-to-vehicle (V2V) communication, i.e., interactions between
cars, will be partially handled by cellular networks as well [13].

A problem of communication based on cellular networks, however, is the
varying network coverage. In real life, we regularly come across dead spots,
c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 76–87, 2020.
https://doi.org/10.1007/978-3-030-38651-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_8&domain=pdf
http://orcid.org/0000-0002-7725-2084
http://orcid.org/0000-0002-4257-3232
http://orcid.org/0000-0003-3830-466X
https://doi.org/10.1007/978-3-030-38651-1_8


Utilizing Connectivity Maps to Accelerate V2I Communication 77

i.e., areas without sufficient cellular network connectivity. Dead spots can be
particularly found in sparsely populated areas since the cell tower infrastructure
is often driven by the number of people living in an area [10]. Also mountainous
terrain makes the network coverage frail as mountains and hills tend to cause
echoes deteriorating the radio reception [4]. Own tests showed that the size of
dead spots in very remote areas like the Australian Outback can be really large
and extend hundreds of kilometers (see [14]).

To mitigate the effect of dead spots, we developed a data dissemination proto-
col for the transport of data from vehicles to the fixed infrastructure [14]. When
vehicles have no cellular network access, they build ephemeral ad-hoc networks
with other cars in their area. If one of the peers in such an ad-hoc network
also has cellular network access, it can relay the messages of the other network
members. If all peers are in the dead spot, the messages are forwarded to the
vehicle that most likely regains cellular network connectivity first. Thus, it can
send the messages earlier than its peers, and the overall transmission process is
accelerated. We developed a prototypical application based on WiFi Direct [22].

A problem to be solved by the data dissemination protocol, is to find out
which vehicle in an ad-hoc network has the highest probability to leave the dead
spot first. In the original version, we select the car that lost cellular network
access first since, assuming similar average speeds, it is supposed to be also the
first one having crossed the dead spot [14]. This approach is easy to realize since
we only need local connectivity measurements in the vehicles. However, it tends
to be coarse since vehicles may have different speeds and can take varying routes.
To overcome this weakness, we combine the data dissemination protocol with
dead spot prediction. In this approach, so-called connectivity maps [20] describ-
ing dead spot areas are used. These maps inform the vehicles about the cellular
network connectivity on their way. Then, they can adapt their communication
accordingly (see [2,8,21]).

Since we could not find any dead spot predictors and connectivity map gen-
erators, we created our own prototype [11]. In this article, we sketch this devel-
opment and discuss that one can infer from the testing results that dead spot
prediction will be scalable. Moreover, we present the amendment of the data
dissemination protocol such that the decision, which car in an ad-hoc vehicu-
lar network shall relay the messages, indeed incorporates aggregated dead spot
prediction information.

The paper is organized as follows: In Sect. 2, we report on patents for connec-
tivity prediction systems and some other related work. Thereafter, we sketch the
prototype for dead spot prediction and discuss results of experimenting with it in
Sect. 3. In Sect. 4, we introduce the data dissemination protocol. The extension
of the protocol is described in Sect. 5 followed by a conclusion.

2 Related Work

Several patents provide evidence that the automotive industry has significant
interest in dead spot prediction. In [8], Bosch has a distributed architecture



78 J. A. E. Meyer et al.

patented in which vehicles compute dead spot elongations locally by conducting
connectivity measurements. Then they transmit the local data to a central server
that forwards it to other vehicles. Using the dead spot elongation data from other
cars, a vehicle can decide if it needs to start a dead spot mitigation strategy.
That is necessary to handle wireless applications that will not be completed when
reaching the next dead spot. A similar architecture is patented by Ford [21].
The authors, however, sketch only shortly that they use a remote server but
concentrate on the system layout in the vehicles. In particular, they define the
structure of the dead spot prediction information that is realized by special
connectivity maps [20]. In contrast, IBM does not mention a central server in
its patent [2]. Instead, a mobile device takes current and historic wireless service
data as well as general information about the environment (e.g., the presence
of tunnels) into consideration. Using intelligent learning systems, these data are
analyzed and aggregated to a predictive model anticipating dead spots.

Also dead spot mitigation strategies are protected. Bosch [16] and IBM [2]
patented improvements for streaming services used in cars. Before reaching a
dead spot, additional streaming data is transmitted and locally stored in the
vehicle. This extra data is played while the vehicle passes the dead spot. Further,
IBM has a way to ease the interruption of phone calls in dead spots patented [18].
The user is notified about the reason and the duration of the interruption, and
the phone call is automatically reconnected after leaving the dead spot.

Another aspect of our work is about using hybrid systems combining cellular
and vehicular networks. They are applied for various purposes (see, e.g., [12])
but, except for our own work, we only found one other approach utilizing them
for dead spot mitigation. Eltahir et al. [5] use vehicles as relay stations such that
a car in a dead spot may transmit messages via a number of other vehicles until
reaching one that has cellular network access. In contrast to our approach [14],
however, they neither allow to store data in vehicles nor to utilize their directions
and positions in a dead spot. Therefore this approach can mitigate only smaller
dead spots that contain sufficient traffic. For instance, in the Australian Outback
where traffic is low and the dead spot size huge, this approach would not work.

3 Building Connectivity Maps

Our own prototypical dead spot predictor [11] uses an architecture close to the
one patented by Bosch [8]. It extends, however, the functionality of the central
server that not only forwards data received by the vehicles but also aggregates
them to a connectivity map. The vehicles are provided with excerpts of this map
containing dead spot predictions relevant to them. In this way, a vehicle does
not need to aggregate the data from several other cars itself.

Local connectivity may change over time, for instance, due to network con-
gestion, differing network use, or a breakdown in the cellular infrastructure
(see [15]). The central server application therefore needs to constantly process
incoming connectivity data. Further, newer data should be weighted higher than
older one to keep the connectivity maps up-to-date.



Utilizing Connectivity Maps to Accelerate V2I Communication 79

Fig. 1. The architecture of the dead spot prediction prototype.

Our prototype uses Android devices in the vehicles to collect cellular net-
work statistics but one can also use other connectivity sensor techniques as long
as the transmitted data follows the expected format. The sensed connectivity
parameters include round-trip time, signal strength, jitter ratio, and packet loss.
They can easily be extended in future versions if necessary. Each data point
also includes the current GPS position where the measurement was taken. After
receiving this information from various sources, the server continuously aggre-
gates it into connectivity maps. The vehicles can then request information about
upcoming dead spots from the server. This is shown in Fig. 1.

All client measurements taken inside a geographical area with a diameter of
50 m are conjoined. The central server aggregates the corresponding data points
to a connectivity value for each geographical area. It applies special functions
that reflect the particular needs of the applications for which a cellular network
connection is used. For instance, the jitter ratio is more important when videos
are streamed than when a text document is downloaded. Since a connectivity
map is composed of the connectivity values in the geographical areas, the server
produces separate maps for the different aggregation functions.

To receive a connectivity map, a vehicle provides the central server with
its planned route, e.g., from the route guidance system. In our prototype, we
use the format of the Google Directions API [6]. Moreover, the vehicle selects
the desired aggregation function. The server then sends the connectivity map
excerpt as a list of geographical area markers (including their coordinates), each
referring to an area where a dead spot starts resp. ends, as well as the dead spot
lengths. Two such excerpts are depicted in Fig. 2 where colored dots describe the
connectivity values of the geographical areas. The greenish color of a dot refers
to good connectivity in the represented area, while yellowish shows intermedi-
ate and reddish bad coverage. Missing dots indicate tunnels in which no GPS
measurements can be taken. The excerpts reveal the following dead spots:



80 J. A. E. Meyer et al.

Fig. 2. Excerpts of a connectivity map from the Lofoten region in Norway.

– On the route depicted in Fig. 2a, a dead spot can be found between the
geographical areas 4072 and 4073 which are 977 m apart. The tunnel in this
region is probably the reason for the dead spot.

– On the route shown in Fig. 2b, there is a dead spot between areas 2488 and
2494. It’s length is 661 m. Also here, tunnels seem to be the reason.

– Another dead spot on the route in Fig. 2b is between the areas 2518 and 2519.
It has a length of 642 m.

In our tests, we merged all measurements for geographical areas with an
extent of 50 m. Moreover, we took a sample every 250 ms such that a car running
with 80 km/h produces nine data points in an area. Using this procedure, we
collected more than 130,000 samples from two different locations in Norway
over a couple of months. About 100,000 points were collected in the rural and
highly mountainous location Lofoten, e.g., those shown in Fig. 2. The rest of the
data points came from Trondheim, Norway’s third largest city. We further added
3,334 data points collected in the context of earlier work about cellular network
connectivity in the surroundings of Trondheim [15]. The size needed to store the
data is about 30 Mb, which in the modern database world is tiny.

The 130,000 data points can be aggregated on a standard personal computer
within a second. Here, the efficiency is ensured using a spatial database extender
in the underlying database management system with support for geographical
objects. This tool makes it possible to determine geographical proximity for
thousands of locations in few milliseconds [11]. Since the application has to pair
the GPS coordinates of each measurement point with an area in the database,
the overall computation costs are significantly reduced.

However, only three different vehicles were used to produce this amount of
data. In a real-world, large scale environment, millions of data points would be
produced every day. To get a better understanding if the dead spot prediction
approach is scalable, we projected our findings to the overall road traffic in
Norway. The results of this analysis will be discussed in the following.



Utilizing Connectivity Maps to Accelerate V2I Communication 81

In 2018, motor vehicles in Norway ran around 46 billion kilometers [19]. We
could not find information about the average speed of these cars, but detected
similar data from the United Kingdom [3]. The average free flow speed of all
cars there was 35 mph in 2012 which corresponds to 56.3 km/h. Since the share
of motorways in Norway is only around half as large as in the UK and there are
more mountainous roads, the average speed will most likely be lower. Thus, we
assume an average speed value of 50 km/h: Then the motor vehicles in Norway
ran 920 million hours in 2018. Using a sample rate of 250 ms, they could produce
up to 13.248 trillion data points in that year. If a data center stores all these
samples, e.g., to be able to consider long-term connectivity changes, and a data
point is represented by 256 bytes, the overall storage size needed is around 3.4
petabytes. A larger data center should be able to handle this.

In contrast to the solution suggested by Bosch [8], we aggregate the data for
geographical areas with an elongation of 50 m which will save memory. Since the
road system in Norway covers 93,870 km [7], one has to keep at most 1,877,400
areas. Using a kilobyte to represent the data of one area, the overall storage size
will be just around 1.9 gigabytes.

The price for this more concise way to store the data, however, is that we
need to aggregate incoming data points into the connectivity values of the areas.
This causes more processing effort than just storing the data. Projecting our
experience, that we can aggregate 130,000 data points within a second, to the
13.248 trillion data points, that the cars in Norway could have theoretically
produced in 2018, the overall computation time for aggregations will be 102
million seconds on a single PC. That is around 3.2 years such that, according
to [1], the distribution of the process on 11 or 12 parallel running computers
should be sufficient.

Finally, we have to look on the data transmission. To send 3.4 petabytes
from the vehicles to the central server in the course of a year, affords a data
transmission rate of around 820 GBit/s for the whole country. According to
the fact that 5G will offer 10 GBit/s for a single connection, we consider this
amount as doable. The use of compression mechanisms will alleviate the data
transmission further.

Altogether, even considering the case that all cars in Norway participate in
the dead spot prediction whenever they run, the approach seems scalable.

4 Data Dissemination Protocol

To reduce the waiting time for message transmissions between vehicles and their
fixed infrastructure in areas where the cellular network coverage is weak, we
developed a special data dissemination protocol [14]. In addition to the commu-
nication between vehicles and the infrastructure (V2I) via a cellular network, it
uses short-lived ad-hoc vehicular networks (VANET) between close-by vehicles.
Applying the ad-hoc network in areas in which the cellular network connectivity
is low, a message can be forwarded to a vehicle which is either out of the dead
spot or will likely leave it earlier than the message initiator such that the delivery
of the message can be expedited.



82 J. A. E. Meyer et al.

Fig. 3. Steps executed by the data dissemination protocol.

The prototype, also introduced in [14], uses Android devices in the vehi-
cles that support WiFi Direct technology [22]. In particular, the WiFi Peer-to-
Peer framework (WiFiP2P) was applied to implement WiFi Direct (see also [9]).
Besides the fact that Android devices are very common, they allow us to exploit
the immense capabilities of the Android OS. For instance, convenient methods
to access signal strength measurements and local IP addresses are offered. As
discussed below, these are features important for the realization of the protocol.

In the prototype, we use the signal strength to evaluate the cellular network
coverage. That can, however, be easily extended to other forms of measurements,
e.g., by applying the aggregation functions discussed in Sect. 3. If its current
signal strength is below a certain threshold indicating the proximity of a dead
spot, a vehicle tries to connect with other ones in its vicinity to form an ad-hoc
network. If such a network can be established, the peers in it exchange their IP
addresses, current signal strengths, and, if they lost cellular network coverage,
the points in time, when that happened. This data is locally stored at the peers
and utilized in the various steps of our protocol that are depicted in Fig. 3.

In the first protocol step, a peer vehs which initiates the transmission of
a message to the fixed environment, checks if its mobile network coverage is
sufficient. If that is the case, the message is directly sent via the cellular network.
Otherwise, vehs tests if it is already part of an ad-hoc network. If it is not, it
simply holds the message and the procedure is executed again when the peer
either joins an ad-hoc network or leaves the dead spot.

If vehs already belongs to an ad-hoc network while it is in a dead spot, it
checks by using the locally stored signal strength information of its peers, if any
of those has sufficient cellular network coverage. If this is the case, vehs sends
the message to the peer vehb which has the best signal strength value. Then,
vehb forwards the message immediately via the cellular network.

If no peer has coverage, the message is sent to the one which presumably will
leave the dead spot first in order to achieve a message delivery at the earliest
opportunity. In the solution presented in [14], vehs compares the points of time,



Utilizing Connectivity Maps to Accelerate V2I Communication 83

the peers entered the dead spot, and transmits its message to vehicle vehl that
is already longest in it. As discussed in Sect. 5, we assume that all vehicles have
around the same speed on the mostly small and mountainous roads where many
dead spots occur. In consequence, vehl, which entered the dead spot first, will
likely be also the first one leaving it. If vehs itself has been longer in the dead
spot than all the other members of the ad-hoc network, it holds the message
since it will probably be the first one regaining connectivity.

A special case is a vehicle stopping in the dead spot. In this case, it informs
its peers and transfers the stored messages to other vehicles. If the stopping
vehicle is not a partner in an ad-hoc network, it tries to establish a new one as
long as it still stores messages in order to pass them to a peer still moving.

In [14], we also discuss the evaluation of the protocol implementation on
Android devices using WiFiP2P. The most time-critical scenario for message
handovers between cars is if they run in opposite directions. Since the range
of WiFiDirect-based networks is around 200 m, building an ad-hoc connection,
carrying out the protocol, and transmitting messages have to be completed in 6.5
seconds if both vehicles have a speed of 110 km/h. If the cars run with 80 km/h
each, the data exchange has to be accomplished in nine seconds while it is 14.4
seconds for vehicles with 50 km/h. According to our test cases, the likelihood
to complete the building of the ad-hoc network and the message handover in
6.5 seconds is 71%, while 97% of all trials were successfully carried out in nine
seconds and all tests within 14.4 seconds. So, our example implementation seems
to be reliable for cars with a speed of up to 80 km/h. But also for a speed of
110 km/h, it seems solid since, when an exchange with another vehicle fails, the
sender can retry it with the next one. The likelihood that a message handover
is successful in one of the first three trials is 98% when all participating vehicles
have a speed of 110 km/h.

5 Updating the Data Dissemination Protocol

In our original approach [14], the decision to transmit data to the vehicle that
has entered the dead spot first, rests on two assumptions: The first one is that
the size of a dead spot is about the same for all vehicles. Here, we suppose that
the cars use the same cellular network technology and that the network operators
apply similar connectivity optimization strategies such that the extents of the
dead spots are alike. The second assumption states that all vehicles have similar
average speeds while passing it. This is based on the fact that many roads in
rural and mountainous terrain, where dead spots are most prevalent, are minor.
On this kind of roads, the speeds of the vehicles are often limited by the road
quality and not their own driving characteristics. For two reasons, however, this
assumption is often imprecise:

1. There can be road crossings in a dead spot. Then, we compare vehicles that
possibly take different routes such that the times, they are in a dead spot, can
heavily vary. For instance, the red motorcycle in Fig. 4a forwards its messages



84 J. A. E. Meyer et al.

(a) Original protocol (b) Updated protocol

Fig. 4. Behavior of the data dissemination protocol in dead spots with intersections.

(a) Original protocol (b) Updated protocol

Fig. 5. Behavior of the data dissemination protocol in dead spots with vehicles running
at different speeds.

to the yellow car since that is already longer in the dead spot than its peers.
Due to its turn, however, the yellow car has to cover a greater distance in the
dead spot than the blue one which regains connectivity earlier.

2. Roads are usually used by different types of motor vehicles which may run
with significant speed differences, e.g., when heavy trucks have to overcome
steep climbs. This is depicted in Fig. 5a, where the motorcycle reaches the
end of the dead spot earlier than the truck since the latter one is very slow.
Nevertheless, since the truck is longer in the dead spot, the motorcycle falsely
passes its messages to it.

Applying connectivity maps can alleviate these problems since that allows
us to predict the time points, at which the vehicles reach the dead spot borders,
more precisely. To get such a time estimate, we use connectivity map excerpts
for computing both, the distance to the end of the dead spot and the predicted
average speed.

To calculate the distance to the dead spot boundary, the current GPS location
of the vehicle and the projected route are taken from the route guidance system,



Utilizing Connectivity Maps to Accelerate V2I Communication 85

e.g., in the format given by the Google Directions API [6]. Further, the end point
of the dead spot is retrieved from the connectivity map excerpt and the length
of the way to this point is computed.

Determining the average speed is more subtle since it depends on several
structural factors. One solution is to apply a pre-defined general average speed
value for the vehicle class and the type of road used. While this proceeding is
still relatively coarse, we can at least distinguish different types of vehicles, e.g.,
passenger cars, motorcycles, and trucks.

Following the ideas proposed by IBM [2], one can alternatively utilize historic
information, e.g., the speeds, a vehicle used on the same road before. Moreover,
one can consider general information about the route like the allowed top speeds.
In free flow situations, passenger cars tend to maintain these velocities [3] such
that they make good predictions for average speeds. In addition, trucks can
determine their average speeds based on relevant road data like gradient angles.

A third method to establish the average speed is to extend the connectivity
maps by entries describing the average speeds for different vehicle types. Here,
when producing a sample, a vehicle also appends its current speed to it. From
that, the central server calculates the average speeds, vehicles of a certain type
use in a geographical area, and adds them to the connectivity map data. A
vehicle can then utilize this information to compute its own predicted average
speed for the route to the border of the dead spot.

Finding the right average speed, however, is a general problem to be solved in
all dead spot mitigation strategies discussed in [2,16,18]. Thus, when applying
the data dissemination protocol as an add-on to some of these techniques, we
should be able to piggyback their average speed calculation methods as well.

By dividing the distance to the end of the dead spot through the average
speed, we get the time, the vehicle needs until regaining cellular network connec-
tivity. The data dissemination protocol can now be easily amended by changing
the last step shown in Fig. 3. When building up an ad-hoc network, the peers now
carry out the computations discussed above and report the predicted time when
they will leave the dead spot instead of the time it was entered. The vehicles
send their messages to the peer that signalled the earliest time point.

The two examples depicted in Figs. 4 and 5 illustrate that the new version
of the data dissemination protocol is more reliable than the old one. One reason
is that the new method considers the correct route of the vehicle. For instance,
in Fig. 4b, the red motorcycle sends its messages to the blue car that is much
closer to the dead spot boundary than the yellow one and will therefore reach
it earlier. The better average speed prediction attenuates the second problem as
well. As shown in Fig. 5b, the red motorcycle detects that, in spite of the longer
route to the dead spot border, it will leave it earlier than the truck since its
average speed is much higher. Therefore, it keeps the messages by itself.

The use of connectivity maps is also useful to decide when ad-hoc networks
should be formed. They are only sensible when a vehicle is either in a dead spot
or close-by. In the latter case, it can relay messages of cars that are not connected
themselves. Thus, in the new version of the protocol, ad-hoc networks are only



86 J. A. E. Meyer et al.

established when a vehicle is within a certain distance to a dead spot. This is
more precise than the original solution, i.e., triggering the creation of ad-hoc
networks after falling below a certain signal strength [14].

In our approach, we assume that all vehicles participating in an ad-hoc net-
work have an excerpt of the connectivity map covering their current region in
place. Since we suppose that these maps do rarely change dramatically in a short
amount of time, their excerpts do not need to be highly up-to-date. From our
tests, we assume that downloading an excerpt every 15 or 30 min and, if the
connectivity is bad, also more infrequently, is sufficient.

6 Conclusion

An extension to our data dissemination protocol was introduced. The amend-
ment incorporates dead spot prediction making the decision which peer in an
ad-hoc network will leave a dead spot first, more precise. This vehicle shall
receive the messages to be forwarded since it will be able to submit them earlier
via the cellular network than its peers. Moreover, we reported about our pro-
totype of a dead spot prediction system and argued that such a system will be
scalable. According to our estimation, the costs to produce connectivity maps
for the road networks of whole countries like Norway seem to be justifiable. Nev-
ertheless, the effort to provide the vehicles with connectivity maps is substantial
such that creating them just to improve our data dissemination protocol would
be unreasonable. Therefore, the amendment presented here should be combined
with other dead spot mitigation strategies like those mentioned in Sect. 2.

Next, we test the prototype with various scenarios to learn more about how
the data dissemination protocol can be further improved. For instance, we con-
duct tests to get better predictions about the volatility of the dead spots. In [15],
we discuss different road trips to a remote area in the vicinity of Trondheim. We
found out that the sensed round trip time at one tour was much worse than at
the other ones. To establish if that was a rare event or is a regular and often
observable effect, we currently measure the cellular network connectivity at fixed
places. These tests shall help us to understand better how many data points have
to be created to keep the connectivity maps up-to-date. In this way, the predic-
tor can be fine-tuned to keep the data transfer, storage, and aggregation costs
discussed in Sect. 3 as low as possible.

References

1. Bræk, R., Haugen, Ø.: Engineering Real Time Systems. Prentice Hall, Upper Sad-
dle River (1993)

2. DeLuca, L.S., Lakshmanan, G.T., Price, D.L., Smith, S.D.: Mitigating Service
Disruptions using Mobile Prefetching based on Predicted Dead Spots, U.S. Patent
9 860 336, Jan 2018

3. Department for Transport: Free Flow Vehicle Speed Statistics: Great Britain 2012,
June 2013



Utilizing Connectivity Maps to Accelerate V2I Communication 87

4. Driesen, P.E.: Prediction of multipath delay profiles in mountainous terrain. IEEE
J. Sel. Areas Commun. 8(3), 336–346 (2000)

5. Eltahir, A.A., Saeed, R.A., Alawi, M.A.: An enhanced hybrid wireless mesh proto-
col (E-HWMP) protocol for multihop vehicular communications. In: International
Conference on Computing, Electrical and Electronic Engineering (ICCEEE), pp.
1–8. IEEE Computer, Khartoum (2013)

6. Google LLC: Google Maps Services, Web Services, Direction API (2019). https://
developers.google.com/maps/documentation/directions/intro. Accessed 17 July
2019

7. Jaimovich, E.: Roadways, Input Sourcing, and Patterns of Specialisation. School
of Economics Discussion Papers 0118, University of Surrey, UK (2018). https://
EconPapers.repec.org/RePEc:sur:surrec:0118

8. Jain, V., Raghunathan, B., Kone, V.: Dead Spot Prediction Method for Wireless
Vehicular Applications U.S. Patent 8 494 563, July 2013

9. Jakobsen, R.H.: Message Forwarding between Vehicles in Dead Spots. Master’s
thesis, Norwegian University of Science and Technology (NTNU), May 2018

10. Mecklenbräuker, C.F., et al.: Vehicular channel characterization and its implica-
tions for wireless system design and performance. Proc. IEEE 99(7), 1189–1212
(2011)

11. Meyer, J.A.E.: Dynamic Computation of Connectivity Data. Master’s thesis, Nor-
wegian University of Science and Technology (NTNU), February 2019

12. Mukherjee, S., Baid, A., Raychaudhuri, D.: Integrating advanced mobility services
into the future internet architecture. In: 7th International Conference on Commu-
nication Systems and Networks (COMSNETS), pp. 1–8 (2015)

13. Mumtaz, S., Huq, K.M.S., Rodriguez, J.: Direct mobile-to-mobile communication:
paradigm for 5G. IEEE Wireless Commun. 21(5), 14–23 (2014)

14. Puka, E., Herrmann, P.: A data dissemination protocol for vehicles with temporary
cellular network inaccessibility. In: 5th IEEE International Workshop on Communi-
cation, Computing, and Networking in Cyber Physical Systems (CCNCPS). IEEE
Computer, Washington, DC, June 2019. to appear

15. Puka, E., Herrmann, P., Levin, T., Skjetne, C.B.: A way to measure and analyze
cellular network connectivity on the norwegian road system. In: 10th International
Conference on Communication Systems & Networks (COMSNETS), pp. 595–600.
IEEE Computer, Bengaluru, January 2018

16. Raghunathan, B., Jain, V.: Dead Spot Prediction Method for Wireless Vehicular
Applications, U.S. Patent 8 762 482, June 2014

17. Siegel, J.E., Erb, D.C., Sarma, S.E.: A survey of the connected vehicle landscape
- architectures, enabling technologies, applications, and development areas. IEEE
Trans. Intell. Transp. Syst. 19(8), 2391–2406 (2017)

18. Smith, G.J., van Leeuwen, G.W.: Mobile Communication Optimization near Wire-
less Dead Zone Regions, U.S. Patent 6 721 572, Apr 2004

19. Statistisk Sentralbyr̊a: Road Traffic Volumes (2019). https://www.ssb.no/en/
transport-og-reiseliv/statistikker/klreg. Accessed 18 July 2019

20. Tseng, F.F., Filev, D.P., Makki, I.H.: Vehicular Connectivity Map, U.S. Patent 9
775 128 B2, Sept 2017

21. Tseng, F.F., Filev, D.P., Makki, I.H., Prakah-Asante, K.O., Yang, H.: Crowd
Enhenced Connectivity Map for Data Transfer Intermittency Mitigation, U.S.
Patent 2015/028 190, Oct 2015

22. Wi-Fi Alliance, P2P Technical Group: Wi-Fi Peer-to-Peer (P2P) Technical Speci-
fication v1.7 (2016)

https://developers.google.com/maps/documentation/directions/intro
https://developers.google.com/maps/documentation/directions/intro
https://EconPapers.repec.org/RePEc:sur:surrec:0118
https://EconPapers.repec.org/RePEc:sur:surrec:0118
https://www.ssb.no/en/transport-og-reiseliv/statistikker/klreg
https://www.ssb.no/en/transport-og-reiseliv/statistikker/klreg


Learning Route Planning
from Experienced Drivers Using

Generalized Value Iteration Network

Xiao Wang(B), Quan Yuan, Zhihan Liu, Yushun Dong, Xiaojuan Wei,
and Jinglin Li

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{wx cookie,yuanquan,zhihan,dongyushun,weixjmm,jlli}@bupt.edu.cn

Abstract. Traffic congestion has long been a serious problem in cities,
and route planning can improve traffic efficiency. The existing route
planning approach relies on current and future traffic status. However,
because traffic prediction and route planning interact with each other,
the actual driving results deviate from expectations, and the perfor-
mance is not satisfactory. In order to solve this problem, considering
the topology of road networks, this paper proposes a route planning
algorithm based on generalized value iteration network (GVIN), which
uses graph convolution to extract the features of traffic flow, and then
imitates human routing experience under various traffic status. Finally
we evaluate the performance of the proposed network on real map and
trajectory data in Beijing, China. The experimental results show that
GVIN can simulate the human’s routing decisions with high success rate
and less commuting time.

Keywords: Route planning · Real time · Generalized value iteration
network

1 Introduction

The number of vehicles has been growing rapidly, resulting severe traffic con-
gestion problems to be solved. Choosing an appropriate route not only helps
individuals reach their destinations faster, but also improves the urban traffic
efficiency globally. As a consequence, many studies have been working on the
route planning problem, which can be categorized into static and dynamic plan-
ning [1]. For static planning, a snapshot of traffic status is used to plan routes.
For dynamic planning [2–4], both current and near future traffic flows are con-
sidered for the route planning, which can generate more efficient results.

This work was supported in part by the Natural Science Foundation of China under
Grant 61876023 and Grant 61902035, and in part by the Natural Science Foundation
of Beijing under Grant 4181002.

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 88–100, 2020.
https://doi.org/10.1007/978-3-030-38651-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_9


Learning Route Planning from Experienced Drivers Using GVIN 89

In recent years, the improvement of vehicle sensing, communication and com-
puting capability enable vehicles to execute dynamic route planning with real-
time and comprehensive traffic information [5–7]. However, the route planning
of the vehicle and the evolution of the traffic status are coupled with each other,
making the optimization problem difficult to solve. To overcome this problem,
our previous work has leveraged value iteration network (VIN) to perform imita-
tion learning, which learns experienced drivers’ routing decisions under various
traffic status [8]. However, VIN-based imitation learning can only conduct the
coarse-grained grid-level routing, which is not applicable to the real road net-
works. As a result, the route planning does not reflect the driving law of the
vehicle in the real road networks. To tackle this problem, this paper proposes a
route planning algorithm based on generalized value iteration network (GVIN),
which considers the topology of road networks, and then imitates human routing
experience under various traffic status. The GVIN will serve as a “brain” of the
vehicle, and it efficiently navigates the vehicle through the urban road networks
with experience. Our contributions can be summarized as follows:

Traffic Status Characterization Based on Road Topology. A graph struc-
ture is constructed according to the topology of road networks, and the routing
data of vehicles are mapped into multi-channel graph signals to present the spa-
tial correlations of traffic status. In this way, the propagation or evolution of
traffic status can be well characterized.

Structure Design of Neural Network. Considering the complexity of the
decision model, GVIN as the neural network is used to learn routing from expe-
rienced drivers. By graph convolution and value iteration, GVIN can learn the
mapping from traffic status to routing decisions on the graph.

Network Training and Performance Evaluation. In order to evaluate the
planning ability of GVIN, this paper conducts comprehensive experiments based
on the real road networks and taxi trajectories in Beijing. The results show that
GVIN plan routes with high success rate and shorter traveling time.

The remainder of this paper is organized as follows: Sect. 2 introduces the
related work of route planning algorithms, and we describe the problem formu-
lation in Sect. 3. Next, the network structure and training algorithm of GVIN
are introduced in Sect. 4. We design and perform a serial of experiments and the
results are analyzed in Sect. 5. Finally, our work is summarized and discussed in
Sect. 6.

2 Related Work

Route recommendation, which aims to improve traffic efficiency, is mainly
divided into traditional and deep learning-based methods. Traditional meth-
ods are mainly based on Dijkstra and A* algorithm which neglect the evolution



90 X. Wang et al.

of traffic status. To overcome this limitation, some studies have been taking
advantage of deep learning methods for route planning. Nazari et al. [9] and
Zolfpour-Arokhlo et al. [10] used deep reinforcement learning to quickly provide
an approximate optimal routing solution. Brahmbhatt et al. [11] proposed a
convolutional neural network based algorithm for navigating in large cities using
locally visible street view images. Nazari et al. [9] solved the problem of optimal
routing by deep reinforcement learning, which can realize the routing of vehi-
cles on maps with different size. Yang et al. [8] used VIN to learn the driver’s
routing experience and made full use of its generalization ability to yield better
performance when transferred to the new environment. Li et al. [12] took further
steps to consider the influence of traffic status evolution on routing behavior, and
proposed a double rewarding VIN method based on traffic flow prediction.

It is demonstrated that VIN can solve the maze problem with excellent per-
formance by dividing the state model into grids [13]. However, many routing
problems cannot be simply abstracted into two-dimensional grid images, because
grids cannot model the topology of road networks. The study of graph structure
gave birth to GVIN [14]. Using graph convolution to simulate the value iteration
algorithm, GVIN can perform better in both regular and irregular graph. GVIN
solves the drawback that VIN can only find routes in the gridding scene, for the
reason that the input of GVIN is no longer a grid image, but a graph structure.

3 System Model and Problem Formulation

Experienced drivers usually have deep understanding of urban traffic status, and
thus their routing decisions can easily adapt to dynamic traffic status. This paper
conducts route planning by learning driving decisions of experienced drivers.
Firstly, we model the road networks as a weighted directed graph, then use
multi-channel graph signals to characterize the traffic status based on the road
topology.

3.1 Topologized Traffic Status Model

Definition 1. Graph Map: A physical road networks can be represented by a
graph G = (V,X,E,A), V is a finite set of nodes, E is a set of edges, X is
a set of node coordinates, A is an adjacency matrix. Therefore, the actual road
networks can be transformed into a graph structure, as shown in Fig. 1. Consider
all road segments in the traffic network as a node set V of the graph, and the
edge weight eij represents the traveling time required from the road segment i to
the adjacent one j. The transformation between road segments and points can
reflect the road topology.

Definition 2. Traverse Time Graph: Based on the GPS trajectory data, the
average traverse time of the vehicle passing through the road segment is calcu-
lated, and the traverse times of all the road segments are combined to generate
a traverse time graph (TTG).



Learning Route Planning from Experienced Drivers Using GVIN 91

Fig. 1. The graph structure based on real road networks.

Considering that each road segment in the road networks is connected to N
segments, the direction set L is constructed. Then the edge set E should contain
N + 1 layers and |L| = N + 1, which means E =

{
El0 , . . . ,ElN

}
including the

original segment. Specifically, the traveling time from vi to vi+d(l) (vi, vi+d(l) ∈ V)
in the lth direction is represented as eli ∈ El, l ∈ {l0, . . . , lN}. By merging GPS-
based historical trajectories and calculating the average travel time of vehicles
passing through this segment in a certain time, a TTG can be obtained. The
traverse time map can reflect the speed of network traffic flow.

3.2 Building Markov Decison Process

Route planning is a process of sequential decision making and planning, so it
can be modeled as a Markov decision process (MDP) [15].

Definition 3. Driving Decision Sequence: Each experienced driver’s tra-
jectory is mapped into the road graph and discretize it into the driving decision
sequence set {a0, a1, . . . , ai, . . .}, where ai ∈ L = {l0∼N}, representing one choice
among N + 1 actions.

After aligning the TTG with the decision based on the timestamp, we build
an MDP that contains the essence of the routing decision. MDP consists of
state S = V, s = v ∈ V, the reward function of routing decision a is R(s, a) =
R(v, a) = eav ∈ Ea, as well as transfer matrix P (s′|s, a) = P (v′|v, a), s′ =
v′ ∈ V. The transfer matrix encodes the probability of entering each of the next
segment in the current segment. The optimal planning of the MDP will follow
the routing action sequence to the destination, which is similar to the routing of
an experienced driver.

Once the MDP of the routing is determined, the planning algorithm can then
be used to obtain the value function V ∗, which is the value of the decision for
the whole routing efficiency. The optimal policy π∗(s) under the state s can only
depend V ∗ for the reason that



92 X. Wang et al.

π∗(s) = argmaxa

[

R(s, a) + γ
∑

s′
P (s′|s, a) V ∗ (s′)

]

. (1)

γ is the discount coefficient, P (s′|s, a) > 0 is a small subset of S, and only the
adjacent points or itself can be reached from s.

4 Problem Solving

In order to learn navigation from taxi trajectory data, our framework consists
of three modules. Figure 2 is a description of framework of navigation learning.
TTG and decision sequence are obtained from trajectory data in data prepro-
cessing module. The training module learns the mapping relationship between
traffic status and action, and the route can be generated by inputting new traffic
status data based on the learned experience in decision module.

Fig. 2. A framework of navigation learning. It consists of three processes: data prepro-
cessing, training and decision.

4.1 Learning Structure Co-Design

Value iteration (VI) algorithm is usually used to calculate V ∗ and π∗:

Vi+1(s) = max
a

Qi(s, a) ∀s where Qi(s, a) = R(s, a) + γ
∑

s′
P (s′|s, a) Vi (s′) .

(2)
The value function Vi in the value iteration converges to V ∗ when i → ∞,

so the optimal policy π∗(s) = argmaxa Q∞(s, a) can be derived. Thus MDP and
VI are applied to learn optimal routing decisions in the traffic network.

The data structure and GVIN with differentiable planning module are
designed. Each iteration of VI can be regarded as previous value function Vi and



Learning Route Planning from Experienced Drivers Using GVIN 93

reward function R through a convolution layer and max-pooling layer. There-
fore by recurrently applying convolution and max-pooling k times, k iterations of
value iteration are performed. When i is large enough, an approximate optimal
routing decision can be obtained from the convergence value function Vi.

Based on this idea, a generalized value iteration module is proposed. We have
defined the road networks model G = (V,X,E,A) above. The parameters of the
value iteration module are defined as follows: V represents the road segments;
X represents the coordinates of the road segment; E represents the traveling
time between the road segments; A represents the adjacency matrix. We use
g ∈ {0, 1}|V| to encode the route destination. It should be noted that g is a one-
hot vector, which means only the row corresponding to destination is encoded
as 1 and the other rows are encoded as 0.

Let r be the reward value signal, indicating the current road networks traffic
status. The smaller the reward value is, the more congested the road segment
will be. q indicates the Q values of the possible next routing actions. v is the
state value, based on which a routing decision can be made.

As shown in Fig. 3, GVIN is a network structure that iteratively uses Eq. (2)
to compute the state value V ∗(s). The input of the GVIN value iteration module
is a multi-channel reward graph R of dimension |L| × |V|, where |L| represents
the number of channels, its value is N + 1, and |V| represents the total number
of road segments. The reward is sent to the convolution layer containing |L|
layers. Each convolution channel corresponds to a specific routing decision, so
convolutional channel can also be called action channel, and Q(s, a) is obtained
by convolution. The value for the next iteration can be generated by max-pooling
layer from |L| action channels. The obtained value signal is fused with the multi-
channel reward value, and then the convolution and max-pooling operations are
performed again. The whole process will be performed in k iterations.

The entire calculation process is as follows:

P(a) = fP (G;wP(a)) (3)

q(a)
n+1 = P(a) (r + γvn) (4)

vn+1 = max
a

q(a)
n+1 (5)

In Eq. (3), P(a) is a graph convolution kernel in the a-th channel (correspond-
ing to routing action a), and P is a set of graph convolution operators obtained
by training on the basis of the graph G. In Eqs. (4) and (5), the action value
q(a) in the a-th channel is obtained by convolution calculation, and updated by
iteration. The value map signal v is obtained by the max-pooling. wP(a) is a
training parameter of P(a). When the iteration is over, we can plan the path
according to the rising direction of the state value v.

The core step in GVIN is to find the q value through the convolution oper-
ation. GVIN is based on the graph structure, and the convolution operation



94 X. Wang et al.

requires a special graph convolution kernel to better identify the traffic charac-
teristics of the road networks.

Fig. 3. Generalized value iteration network module.

4.2 Graph-Based Kernel Functions

The two-dimensional space kernel function is shift invariant. Assuming that
the two-dimensional space kernel function is K(·, ·), K(x,y) = K(x + t,y +
t),x,y, t ∈ R2 is satisfied.

The shift invariance requires that the transition probability distribution is
constant regardless of the origin. Based on the displacement invariance of the
two-dimensional spatial kernel function and the graph adjacency matrix, the
graph convolution operator P = fP (G;wP) ∈ R|V|×|V| can be obtained for each
element Pi,j = Ai,j · Kwp (Xi,Xj). The kernel function Kwp(·, ·) is parameter-
ized by wP and Xi, Xj ∈ X. Xi and Xj are the coordinate of vi and vj . When
vi and vj are not connected, we define Ai,j = 0 and Pi,j = 0; when vi and vj
are connected, Ai,j = 1 and Kwp (vi, vj) is proportional to Pi,j . In Eq. (3), the
graph convolution is the matrix vector product between the graph convolution
operator and the graph signal r + γvn. The definition of the graph convolution
kernel determines the characteristics of the traffic status that the convolution
can capture. Kernel functions proposed in [14], that is, the diectional kernel, the
spatial kernel and the embedding-based kernel, are shift invariant. Multi-layer
neural network is used in the embedding-based kernel to directly obtain results
from the graph structure and edges. Therefore, the embedding-based kernel is
more flexible than the diectional and the spatial kernel, and more hidden factors
can be learned.

Node embedding can be directly fed into the embedding-based kernel and
allows GVIN to automatically learn the latent factors for overall planning. The
(i, j) element in the graph convolution operator is

Pi,j =
(Ii=j + Ai,j)√∑

k (1 + Ak,j)
∑

k (1 + Ai,k)
· Kemb (Xi,Xj) , (6)



Learning Route Planning from Experienced Drivers Using GVIN 95

where the indicator function Ii=j = 1 when i = j and 0, otherwise, and the
embedding-based kernel function is Kemb (Xi,Xj) = mnnet ([Xi − Xj ]), where
mnnet (·) is a multi-layer neural network. The training parameters wP in Eq. (3)
are the weights in the neural network. In our experiments, when the graph is
weighted, the adjacency matrix Ai,j of the graph is used as the input of the
neural network.

4.3 Training

The complete process for training GVIN is given in Algorithm 1. For the reason
that data of varying length cannot be used, our GVIN uses fixed length historical
data as input. The data of each timestamp tuplet = (TTGt, at) is stored in
the dataset D = {tuple1, . . . , tuplet, . . . , tuplem}. Data set D will be randomly
shuffled into many mini-batches. For the inner loop of the algorithm, the network
parameters are updated using mini-batches gradient descent.

Algorithm 1. Algorithm for training GVIN
Input: Data set D = {tuple1, tuple2, . . . , tuplem}, graph G and the destination g;
Output:

1: Initialize GVIN parameters w =
[
w

(a)
P

]
;

2: Initialize parameter gradients Δw;
3: for each epoch ∈ [1, K] do
4: Initialize mini-batch size;
5: num = m/batch size;
6: for each i ∈ [0, num] do
7: j = i + batch size;
8: fd data = tuplei:j
9: Perform a gradient descent step Δw on loss =

Cross Entropy{fd data.a, V (fd data.TTG, fd data.s;w)}
10: end for
11: end for

5 Experiments

5.1 Data Preprocessing

Graph Map: According to the road networks topological graph G =
(V,X,E,A) in the northwest area of Beijing’s Fourth Ring Road, road seg-
ments are transformed into nodes in G using the dual graph method, and the
connections between the road segments are transformed into edges. By counting
the traffic volume of each road segment, 106 main road segments carrying most
of the traffic flow are selected.



96 X. Wang et al.

Taxi Trajectories: The routes are extracted from the real taxi trajectory data,
which includes more than 1,000,000 taxi data from June to September 2016.
Firstly, the trajectory data located in the selected area are coarsely screened,
and then the trajectory data is filtered by the latitude and longitude of each
road segment, finally the time when the vehicle passes the segment is calculated.
Because this paper aims to learn route planning from experienced drivers, the
drivers in the non-carrying state may not have chosen the best route, so only the
taxi trajectory in the carrying state is analyzed. The traffic status in the morn-
ing and evening peak periods are more complicated and congested. Therefore,
according to the time of the morning and evening peaks in Beijing, the data
from 7:00 to 10:00 and 17:00 to 20:00 are selected.

Traverse Time Graph: According to the selected segments, one segment is
connected to up to 6 segments, so there are up to 6 driving decisions for each
segment. For each segment v, the routing decision direction l1∼6 and a fixed
period [t, t + ΔT ], ΔT = 10 min, we calculate the average traverse time of all
passing by taxis, and get a reward el,tv = −average time in TTG. If a segment
has a direction that is impassable, then the el,tv is blank, so it is set to a large
negative reward as the magic number, indicating that road segment v has no
connected segment in direction lth.

When the 6-layers TTG has been calculated, the timestamp can be removed
for the reason that the routing decision a depends only on the current global
traffic status regardless of time, in which way TTG of different time can be
trained together. To get better results in the mini-batch gradient reduction, the
TTG is mapped to [−1, 0] by Min-Max normalization method.

TTGnorm =
TTG − TTGmax

TTGmax − TTGmin
(7)

For the l0 layer, which means staying layer of TTG, we manually build a
reward map. Since the destination vd of each driving decision is determined,
we use el0vd

= 1 to denote a large reward for reaching the destination and the
remaining points are set to be −1. Then l1∼6 and l0 are stacked to be a 7-layers
TTG, indicating the current traffic status and destination information. The 7-
layers TTG is the input of the GVIN, then GVIN can get a value map by learning
automatically. By gradually moving from dark node with small value (far from
destination) to bright node with large value (destination), one can find routes
that GVIN has learned.

5.2 Visualized Results

Route can be planned through a value map, and the values in the value map
represent the reward that can be obtained by taking a decision. In order to
understand the navigation capabilities of GVIN, we visualize the resulting value
map and draw the planned routes. Set the road segment with high value to be
bright and the road segment with a low value to be darker. The route planning



Learning Route Planning from Experienced Drivers Using GVIN 97

procedure is a process that moves from the origin to the most bright segment.
GVIN iteratively generates routing decisions starting from the origin until it
reaches the destination. Figure 4 shows different cases yielded by GVIN based
on the real network topology. Figure 4(a)–(c) show some successful cases, which
demonstrate that the vehicle can successfully reach its destination and avoid
traffic congestion. Figure 4(d) shows that although the planned route reaches
the destination, but it takes longer time than real route. Figure 4(e)–(f) show
failure situation, which means the planned route cannot reach the destination.

Fig. 4. Routes of GVIN and real routes

5.3 Generalizing Results

We validate GVIN performance through four metrics and compare them with
Dijkstra.

Accuracy: The result of the experiment is measured by top-1 accuracy and top-
2 accuracy. top−k accuracy refers to the selection of k directions with the greatest
probability when predicting. If there is a correct direction in them, the prediction
is considered correct. Because the driver’s driving decision is uncertain, Top-
1 Accuracy is not high, indicating that even experienced drivers at the same
location may choose different routes to the same destination. The Bayes error
of the existing route planning makes it difficult to get higher top-1 accuracy.
Nevertheless, higher Top-2 Accuracy indicates that our GVIN has successfully
learned most of the driving decisions.



98 X. Wang et al.

Success Rate: Given a global status TTG, a full trail from initial state is
predicted by iteratively choosing the optimal next states. A trail is successful
if it reaches destination via the predicted trajectory. Success rate is the ratio
of the number of successful trails to that of all trails. Our high success rate
demonstrates that GVIN is able to navigate in fine-grained urban model.

Saved Time Rate: By randomly selecting real taxi driving trajectories from
the dataset, we create a data set T = {(O1,D1, time1) , . . . , (Oi,Di, timei) , . . .},
where Oi and Di represent the origin and destination, and time represents
the time taken from the origin to the destination. New trajectory set T

′ =
{(O1,D1, time′

1) , . . . , (Oi,Di, time′
i) , . . .} is generated by GVIN under the same

time slice. Note that we only consider success trajectories. At the same time, we
put forward “TTG invariant assumption”, which means changing one’s trajec-
tory does not affect the global TTG, so that the TTG can be used to estimate
the total time consumption of the new trajectory. More specifically, applying
GVIN to a trajectory Ti = (Oi,Di, timei) would produce a new trajectory
T ′
i = (Oi,Di, time′

i), which saves time Δtimei = timei − time′
i. Then saved

time rate (STR) can be calculated by

STR =

∑
Ti∈T

Δtimei∑
Ti∈T

timei
. (8)

We compare GVIN with time-based Dijkstra algorithm which is used to find
the minimum traverse time path with the edge weight of traverse time. The
accuracy, success rate and saved time rate are shown in Table 1.

Table 1. Performance of GVIN and Dijkstra.

Method Top-1 accuracy Top-2 accuracy Success rate Saved time rate

GVIN 58.91% 86.2% 96.5% 6.7%

Time-based Dijkstra N/A N/A 100% 2.1%

Increased Distance Rate: Experiments show that the GVIN driving dis-
tance is shorter than the time-based Dijkstra driving distance, and the distance-
based Dijkstra driving distance is the shortest. Same as STR, applying GVIN
to a trajectory Ti = (Oi,Di, distancei) would produce a new trajectory
T ′
i = (Oi,Di, distance′

i), and based on distance-based Dijkstra, we get shortest-
distance trajectory T′

i = (Oi,Di,distance′
i), which saves distance Δdistancei =

distance′
i−distance′

i, we can calculate GVIN and time-based Dijkstra increased
distance rate (IDR) by Eq. (9).

IDR =

∑
Ti∈T

Δdistancei∑
Ti∈T

distance′
i

(9)

The distance between the origin and the destination is divided into three
levels, and the IDR of GVIN and Dijkstra is compared at each level. The results



Learning Route Planning from Experienced Drivers Using GVIN 99

are shown in Table 2. Our result shows that the traveling distance of GVIN
and time-based Dijkstra is longer than distance-based Dijkstra, but GVIN plans
routes with shorter traveling distance than time-based Dijkstra in each level.

Table 2. Increased distance rate of GVIN and Dijkstra.

Distance GVIN Time-based Dijkstra

≤5 km 5.2% 5.5%

>5 km, ≤10 km 6.2% 6.7%

>10 km 7.7% 8.1%

6 Conclusion

This paper has discussed an end-to-end neural network for optimal route plan-
ning in urban road navigation based on global traffic status. By learning route
planning from experienced drivers, GVIN can yield driving decisions imitat-
ing experienced drivers with shorter traveling distance and higher time saving
rate compared to Dijkstra algorithm. Besides, GVIN conforms to the real-world
vehicle driving route based on the road topology better than grid based VIN,
being able to find route in a dynamically changing network. In the future, the
coordination of multi-vehicle GVIN route planning will be considered on traffic
balance

References

1. Montiel, O., Orozco-Rosas, U., Sepúlveda, R.: Path planning for mobile robots
using Bacterial Potential Field for avoiding static and dynamic obstacles. Expert
Syst. Appl. 42(12), 5177–5191 (2015)

2. Demers, A., et al.: Experimenting with real-time ATIS: stepping forward from
ADVANCE (2006)

3. Boyce, D.: A memoir of the advance project. J. Intell. Transp. Syst. 7(2), 105–130
(2002)

4. Hu, W.-B., Nie, C., Qiu, Z.Y., Du, B., Yuan, Q.: A route guidance method based
on quantum searching for real-time dynamic multi-intersections in urban traffic
networks. Acta Electron. Sin. 46(1), 104–109 (2018)

5. Wan, J., Zhang, D., Zhao, S., Yang, L.T., Lloret, J.: Context-aware vehicular cyber-
physical systems with cloud support: architecture, challenges, and solutions. Com-
mun. Mag. IEEE 52(8), 106–113 (2014)

6. Quan, Y., Zhou, H., Li, J., Liu, Z., Shen, X.S.: Toward efficient content delivery
for automated driving services: an edge computing solution. IEEE Netw. 32(1),
80–86 (2018)

7. Luo, G., et al.: Cooperative vehicular content distribution in edge computing
assisted 5G-VANET. China Commun. 15(7), 1–17 (2018)



100 X. Wang et al.

8. Yang, S., Li, J., Wang, J., Liu, Z., Yang, F.: Learning urban navigation via value
iteration network. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 800–805
(2018)

9. Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solv-
ing the vehicle routing problem. In: Advances in Neural Information Processing
Systems, vol. 31, pp. 9839–9849 (2018)

10. Yu, S., Zhou, J., Li, B., Mabu, S., Hirasawa, K.: Q value-based dynamic program-
ming with SARSA learning for real time route guidance in large scale road net-
works. In: The 2012 International Joint Conference on Neural Networks (IJCNN),
pp. 1–7 (2012)

11. Brahmbhatt, S., Hays, J.: DeepNav: learning to navigate large cities. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3087–3096
(2017)

12. Li, J., et al.: A traffic prediction enabled double rewarded value iteration network
for route planning. IEEE Trans. Veh. Technol. 68(5), 4170–4181 (2019)

13. Tamar, A., Wu, Y., Thomas, G., Levine, S., Abbeel, P.: Value iteration networks.
In: Advances in Neural Information Processing Systems, vol. 29, pp. 2154–2162
(2016)

14. Niu, S., Chen, S., Guo, H., Targonski, C., Smith, M.C., Kovacevic, J.: Generalized
value iteration networks: life beyond lattices. CoRR abs/1706.02416 (2017). http://
arxiv.org/abs/1706.02416

15. Sutton, R., Barto, A.: Reinforcement learning: an introduction (adaptive compu-
tation and machine learning). IEEE Trans. Neural Netw. 9(5), 1054 (1998)

http://arxiv.org/abs/1706.02416
http://arxiv.org/abs/1706.02416


Development of Low-Cost Sensors Based
Multi-sensors Integration Positioning
Algorithm for Land Vehicle Tracking

and Monitoring Device

Chi-ho Park(&) and Joong-hee Han

DGIST, 333 Techno jungang-daero, Daegu 42988, South Korea
chpark@dgist.ac.kr

Abstract. The GNSS positioning technique are widely applied for land vehicle
applications. However, the GNSS positioning technique is unable to ensure the
continuity and the reliability in all land vehicle-driving environment. Therefore,
to improve the accuracy of GNSS positioning technique, it is necessary to
integrate additional sensors. In this study, we developed low-cost MEMS based
IMU, magnetometers, and a single-frequency GNSS-RTK based positioning
algorithm for the commercialization of land vehicle tracking and monitoring
device. In addition, the performance of the proposed algorithm was evaluated
using the data from real test-driving.

Keywords: GNSS � IMU � Magnetometer � Positioning � Land vehicle

1 Introduction

Nowadays, the positioning and navigation techniques are widely applied for land
vehicle applications such automotive navigation, emergency assistance, fleet manage-
ment, advanced driver assistance system (ADAS), intelligent transportation system
(ITS). The representative positioning and navigation technique is the global navigation
satellite system (GNSS) that can provide the position and velocity with an accuracy that
is appropriate for land vehicle applications. However, the accuracy of GNSS is poor or it
even fails to determine the position and velocity when the GNSS signal is blocked due to
skyscrapers, tunnels, and so forth. In recent years, as multi-GNSS-based technique, the
usage the global constellation of GLONASS, satellites of Galileo, and Chinese BeiDou
Navigation Satellite System (BDS), was developed, the stable and accuracy of GNSS is
improved. In spite of this, the standalone GNSS technique cannot guarantee an accurate
and continuous position and velocity in all land vehicle-driving environment. Therefore,
to overcome this problem, the GNSS should be aided by additional sensors, inertial
measurement unit (IMU), vehicle motion sensors, camera, or radar [1].

Due to the complementary natures of inertial navigation system (INS) and GNSS,
the GNSS/INS integrated systems were developed to improve the accuracy and reli-
ability of navigation solutions for positioning system. The major problems of con-
ventional INSs that used the GNSS/INS integrated systems are their considerable size

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 101–108, 2020.
https://doi.org/10.1007/978-3-030-38651-1_10

http://orcid.org/0000-0001-6903-205X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_10&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_10


and price that restrict land vehicle applications [2]. Recently, as a small-sized and low-
cost inertial measurement unit (IMU) based on microelectromechanical system
(MEMS) technology are produced, many studies have been conducted on the devel-
opment of positioning technique using GNSS/MEMS based IMU [2–4]. The results of
these studies indicated that the fusion of GNSS and MEMS based IMU provides the
navigation solutions that partly fulfill the requirement accuracy for land vehicle
applications. Therefore, this paper aim to develop and evaluate low-cost MEMS based
IMU, magnetometers, and a single-frequency GNSS-RTK based positioning algorithm
for the commercialization of land vehicle tracking and monitoring device. A descrip-
tion of the GNSS/IMU/magnetometer integration algorithm is presented in Sect. 2.
A performance evaluation of the GNSS/IMU/magnetometer integration algorithm is
provided in Sect. 3. The conclusions are presented in Sect. 4.

2 GNSS/IMU/Magnetometer Integration Algorithm

Figure 1 is a block diagram of the GNSS/IMU/magnetometer integration algorithm.
The GNSS/IMU/magnetometer integration algorithm is implemented loosely coupled
integration through EKF. When the IMU measures both angular rates and specific
forces, the navigation solutions including position, velocity, and attitude are computed
using the INS mechanization. For more details on INS mechanization, refer to [5]. If
the magnetometer measurements are provided simultaneous with the IMU measure-
ments, the attitude and heading reference system (AHRS) algorithm calculates the
attitude information (roll, pitch, yaw), and then the AHRS update is carried out. In this
paper, the AHRS algorithm is implemented through EKF. For more detailed descrip-
tion of the AHRS, refer to [2, 6]. In addition, if the GNSS module provides the position
and velocity information, the GNSS update is conducted.

In EKF-based GNSS/IMU/magnetometer integration algorithm, the state vector of
the navigation error is composed of latitude error (du), longitude error (dk), ellipsoidal
height error (dh), north velocity error (dvn), east velocity error (dve), down velocity
error (dvd), roll error (d/), pitch error (dh), and yaw error (dw). The state vector of the
sensor error is composed of accelerometers bias (dbx; dby; dbz) and gyro bias

Fig. 1. Block diagram of the GNSS/IMU/magnetometer integration algorithm

102 C. Park and J. Han



(ddx; ddy; ddz), modelled as first-order Gauss-Markov processes. The dynamic model is
written as follows:

d _x ¼ FdxþGu ð1Þ

where F is the dynamic matrix, dx is the error state vector, G is the shaping matrix, u is
the white noise vector. Details about the dynamic matrix, the shaping matrix, and the
white noise vector can be found in [5].

The error state vector (dx) is shown in the following Eq. (2):

dx ¼ du dk dh dvn dve dvd d/ dh dw dbx dby dbz ddx ddy ddz½ �T

ð2Þ

The measurement model is generally expressed as follows:

z ¼ Hdxþ v ð3Þ

where z is the measurement vector, H is the design matrix, dx is the error state vector, v
is the measurement noise vector.

In this study, the GNSS measurement vector consist of difference between the
positions and the velocities estimated from INS mechanization and GNSS receiver, as
shown below.

zGNSS ¼

u
k
h
vn
ve
vd

2
6666664

3
7777775
INS

�

uGNSS
kGNSS
hGNSS

Cn
b

VGNSS

0
0

2
4

3
5

2
666664

3
777775
GNSS

ð4Þ

where zGNSS is the GNSS measurement vector, the subscripts INS and GNSS denote
the values computed by INS mechanization and the values calculated from the GNSS
module, respectively, Cn

b is the direction cosine matrix from the body frame to the
navigation frame, VGNSS is the speed over ground provided from the GNSS module.

The design matrix for GNSS measurement model is as follows:

HGNSS ¼ I3�3 03�3 03�3 03�6

03�3 � vnGNSS�
� �

03�3 03�6

� �
ð5Þ

where HGNSS is the design matrix of GNSS, I3�3 is 3 � 3 identity matrix, On�m is n x
m zero matrix, vnGNSS is the GNSS derived velocities expressed in the navigation frame.

In addition to AHRS measurement update, the attitude computed by the AHRS
algorithm is used as measurement update. The measurement vector and the design
matrix for AHRS measurement model are shown in (6) and (7), respectively.

Development of Low-Cost Sensors Based Multi-sensors 103



zAHRS ¼
/
h
w

2
4

3
5
INS

�
/
h
w

2
4

3
5
AHRS

ð6Þ

HAHRS ¼ 03�3 03�3 I3�3 03�6½ � ð7Þ

where zAHRS is the AHRS measurement vector, the subscripts AHRS denote the atti-
tude computed by AHRS algorithm.

3 Performance Evaluation of GNSS/IMU/Magnetometer
Integration Algorithm

The test vehicle to test the proposed algorithm is shown in Fig. 2. The test device
which evaluates for performing the propose algorithm, consists of motion sensor, and
GNSS module. The motion sensor is InvenSense’s MPU-9250 devices that combines a
3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. The total RMS
(Root Mean Square) noise for gyroscopes and accelerometers are 0.1 deg/s, 8 mg,
respectively. For more details on the specification of the MPU-9250, refer to [7].
The GNSS module used Ublox’s NEO-M8P. The NEO-M8P supports single baseline
GNSS RTK mode based on concurrent reception of GPS L1 C/A and GLONASS
L1OF, or BeiDou B1 signal. The position accuracy of RTK mode is 0.025 m + 1 ppm.
For more details on the specification of the NEO-M8P, refer to [8]. The GNSS antenna
for GNSS module used a single-frequency GNSS antenna created by AKTGEO. In
order to evaluate the performance of the proposed algorithm, Applanix’s POS LV 520
was mounted on the test vehicle. The precision of horizontal position and yaw based on
post-mission using the inertial, the GNSS, and DMI data obtained from POS LV 520
are 0.02 m and 0.015 deg, respectively [9].

Fig. 2. Test vehicle

104 C. Park and J. Han



The data were collected on a trajectory inside DGIST (Daegu Gyeongbuk Institute
of Science & Technology). The trajectory was a road, which covered speed bumps,
street trees, buildings and a sloping road. The output rate of the proposed algorithm was
set to 92 Hz that was equal to the output rate of the motion sensor data. The AHRS
measurement update rate was set to 92 Hz. The GNSS positioning mode set to single
baseline GNSS RTK based on concurrent reception of GPS and BeiDou. The GNSS
measurement update was rate set to 2 Hz.

Figure 3 shows vehicle locations based on the output of the proposed algorithm
(red line) with the output of POSLV 520 (blue line) for the trajectory. In addition, the
position error of the proposed algorithm in the navigation frame with respect to the
output of POS LV 520 is shown in in Fig. 4. The RMS of error in the north, east, and
down position were 0.359 m, 0.607 m, and 0.122 m.

The velocity and the attitude error compared with POS LV 520 as reference are
shown in Figs. 5 and 6, respectively. Since the position is obtained from velocity
integration, the change of velocity error is similar to the position error. The RMS of
error in the north, east, and down velocity were 0.245 m/s, 0.329 m/s, and 0.131 m/s,
respectively. Finally, the RMS of error in attitude (roll, pitch, and yaw) are 4.0 deg,
2.5 deg, and 24.79 deg.

Fig. 3. Horizontal position (red line: proposed algorithm, blue line: POS LV 520) (Color figure
online)

Development of Low-Cost Sensors Based Multi-sensors 105



Fig. 4. The position error of the proposed algorithm with respect to POS LV 520

Fig. 5. The velocity error of the proposed algorithm with respect to POS LV 520

106 C. Park and J. Han



4 Conclusions

In this paper, a low cost GNSS and IMU, magnetometers integrated vehicle position
algorithm was developed for the commercialization of land vehicle tracking and moni-
toring device. IMU data were applied for INS mechanization to compute the navigation
solutions. The measurement update in the proposed algorithm consists the AHRS update
and the GNSS update. In the AHRS update, the attitude computed by the AHRS algo-
rithm is used asmeasurement update at every epoch. In theGNSS update, the position and
speed calculated from the GNSS module is used as measurement update at an interval of
0.5 s. The proposed algorithm is implemented loosely coupled integration through EKF.

Performance was evaluated through test carried out in real road, which covered
speed bumps, street trees, buildings and a sloping road. The result indicates that the
proposed algorithm might provide positions within 1 meter-level accuracy. However,
the error in some sections were higher than 1 m. In order to improve the proposed
algorithm, we will conduct the additional performance analysis, filter tuning, and
addition sensors integration.

Acknowledgements. This work was supported by the Technology development Program
(S2684640) funded by the Ministry of SMEs and Startups (MSS, Korea).

References

1. Jo, K., Chu, K., Sunwoo, M.: Interacting multiple model filter-based sensor fusion of GPS
with in-vehicle sensors for real-time vehicle positioning. IEEE Trans. Intell. Transp. Syst. 13,
329–343 (2012)

2. Sasani, S., Asgari, J., Amiri-Simkooei, A.R.: Improving MEMS-IMU/GPS integrated system
for land vehicle navigation application. GPS Solut. 20, 89–100 (2016)

Fig. 6. The attitude error of the proposed algorithm with respect to POS LV 520

Development of Low-Cost Sensors Based Multi-sensors 107



3. Quinchia, A.G., Falco, G., Falletti, E., Dovis, F., Ferrer, C.: A comparison between different
error modeling of MEMS applied to GPS/INS integrated systems. Sensors 13, 9549–9588
(2013)

4. Godha, S., Cannon, M.E.: GPS/MEMS INS integrated system for navigation in urban areas.
GPS Solut. 11, 193–203 (2007)

5. Shin, E.: Accuracy improvement of low cost INS/GPS for land application. University of
Calgary (2001)

6. Wang, Y., Li, N., Chen, X., Liu, M.: Design and implementation of an AHRS based on
MEMS sensors and complementary filtering. Adv. Mech. Eng. 214726, 1–11 (2014)

7. Invensense. https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-
v1.1.pdf. Accessed 26 Aug 2019

8. Ublox. https://www.u-blox.com/sites/default/files/NEO-M8P_ProductSummary_%28UBX-
15015836%29.pdf. Accessed 26 Aug 2019

9. Applanix. https://www.applanix.com/downloads/products/specs/POS_LV_Datasheet.pdf. Acces-
sed 26 Aug 2019

108 C. Park and J. Han

https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://www.u-blox.com/sites/default/files/NEO-M8P_ProductSummary_%2528UBX-15015836%2529.pdf
https://www.u-blox.com/sites/default/files/NEO-M8P_ProductSummary_%2528UBX-15015836%2529.pdf
https://www.applanix.com/downloads/products/specs/POS_LV_Datasheet.pdf


Multi-class Vehicle Detection Using Multi-scale
Hard Negative Mining

Minsung Kang and Young-Chul Lim(&)

Research Division of Future Automotive Technology,
Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea

{mskang,ninolyc}@dgist.com

Abstract. The performance capabilities of object detection processes have been
greatly improved due to the development of deep learning methods. As the
performance of object detection methods improves, studies of problems that
remained unsolved are now becoming more common. In CCTV technology,
such as tracking technology, it has become easier to resolve the matching issue
as the performance of object detection methods has improved. A network such
as YOLOv3, a single stage multi scale based object detection method, robustly
detects objects of various sizes while maintaining real-time performance. Object
detection methods for multi scale structures are associated with the problem of
an imbalance between a positive box and a negative box on each feature scale.
In the CCTV environment, the object detection performance can be degraded
due to this ‘unbalance’ problem because the number of objects corresponding to
the positive box is relatively small. The learning time is also important because
re-training is required for new environments that are constantly being added. In
order to solve this problem, we propose a method that solves the unbalance
problem through multi scale hard negative mining and that improves the object
detection performance while also reducing the learning time.

Keywords: Object detection � Deep learning � Hard negative mining

1 Introduction

In the conventional computer vision process, the autonomous vehicle field uses optical
flow [1] methods using the characteristics of the surrounding environment, and the
CCTV field uses background subtraction [2] methods because the surrounding envi-
ronment is fixed. Due to the development of deep learning, the boundaries between the
core technologies used in each application area are disappearing. Recently, it has
become possible to apply these advances to various fields, such as CCTV, autonomous
vehicles, and robotics, using a single deep learning based object detection method [3].
As the boundaries between core technologies disappear, the performance capabilities of
object detection methods have been greatly improved and technologies capable of
detecting robust objects in various environments have been studied. There are deep
learning based object detection approaches such as Region based Fully Convolutional
Networks (R-FCN) [4], You Only Look Once (YOLOv2) [5] and the Single Shot
Multibox Detector [6]. These two stage [3, 4] or single stage [5, 6, 8] deep learning

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 109–116, 2020.
https://doi.org/10.1007/978-3-030-38651-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_11&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_11


schemes show good detection performance capabilities given a considerable amount of
training data for each application.

Recently, tracking, re-identification and object counting methods have been
actively studied due to the improvements in object detection methods in the CCTV
field [7]. A tracking method connects the same objects in successive frames using data
association methods based on the object detection results. Therefore, the performance
of the tracking method improves when the performance of the object detection method
is improved. Hence, this tracking method can be used in various applications related to
CCTV security. Detection performance is also important in the CCTV field, but short
object detection times are required because a large amount of data is continuously
acquired. It is also important for learning to be completed quickly because new learning
environments must be re-trained.

Methods such as YOLOv3 [8], which is based on single stage multi scale features
that improve the object detection performance while maintaining real-time perfor-
mance, are being studied. Because this approach involves a simple structure with a
single stage, it has a rapid inference speed and uses a multi scale feature map to detect
objects of various sizes robustly. However, the learning speed is slow because there are
many boxes to be calculated in the detection layer for each scale. In this paper, we
propose a method to improve the object detection performance and improve the
learning speed and efficiency through multi scale hard negative mining. The compo-
sition of this paper is as follows. In Sect. 2, we introduce several studies related to
single stage multi scale features. In Sect. 3, we introduce a method for efficient learning
through hard negative mining in the proposed multi scale structure. In Sect. 4, we
evaluate the proposed method using the DETRAC dataset. Section 5 presents the
conclusion.

Fig. 1. The network structure of the proposed method. (a) YOLOv3 SPP, (b) detection layer and
hard negative mining.

110 M. Kang and Y.-C. Lim



2 Related Works

Deep learning based object detection methods are available in various forms, such as
the two stage [3, 4], single stage [5, 6, 8], and multi scale types [6, 8], and each method
involves a tradeoff between the detection performance and the inference speed. Tra-
ditional two stage R-FCN methods focus on detection performance. They create a
detection box in the first stage and perform box regression and classification in the
second stage. Although the detection performance is high, the learning method for each
stage is relatively difficult, and the learning time and the test time are slow. There are
single stage methods such as YOLOv2 and SSD that utilize a simple network with fast
learning and testing times. In the YOLO method, box regression and classification are
performed on the last feature map after the backbone network. Although the detection
performance is relatively low due to the simple network, these methods are widely used
in applications requiring real-time performance. However, given that the YOLO
method uses a single stage single feature map, it is difficult to detect all objects of
various sizes.

Among single stage methods, one SSD method improves the detection performance
for various object sizes due to its use of a multi scale structure. Detection is performed
on feature maps of various scales, from low-level feature maps to high-level feature
maps, and the final result is combined with a NMS method. However, the SSD method
has a disadvantage in that there are false positives in the detection layer because the
low-level feature map passes through only a few convolutional layers. To solve this

Fig. 2. Data argumentation. (a) original image, (b) random distortion, (c) random scale,
(d) random scale + jitter, (e) flip, (f) transformed image.

Multi-class Vehicle Detection Using Multi-scale Hard Negative Mining 111



problem, methods such as feature pyramid networks (FPN) [9] have been proposed.
These methods concatenate a low-level feature map and a high-level feature map to
extract a rich feature map for use in the detection layer. In this paper, we propose a
multi scale hard negative mining technique to improve the detection performance on
the existing YOLOv3 SPP network.

3 Object Detection

In this paper, we propose an object detection method based on multi scale hard neg-
ative mining. The proposed method adds a SPP to the YOLOv3 network, as shown in
Fig. 1. In the existing YOLOv3 method, feature maps corresponding to three scales are
extracted from the network of the FPN structure and then box regression, logistic
activation of the object-ness and softmax for each class are performed on each scale [8].
The existing method calculates errors and performs backpropagation on all negatives of
each scale when learning. This leads to the ‘unbalance’ problem between the positive
and negative boxes, and due to the different positives on each scale, it is learned as an
error duplication of the negative type. In this paper, we propose an efficient learning
method for each scale which works through a hard negative mining method.

3.1 Data Argumentation

In a fixed CCTV environment, there are not many changes of the background, implying
that a data argumentation method that changes the image in order to obtain various
negatives is needed. As shown in Fig. 2(c), the image size is changed by applying a
random scale that resizes the image between 0.5 and 2 times. The aspect ratio of the

Fig. 3. Hard negative mining and ignore regions. White boxes: ignore regions, green boxes: GT,
blue boxes: positive, red boxes: negative, purple boxes: negative box not updated, (a) GT image,
(b) positive and negative boxes update in 30 � 17 scale, (c) 60 � 34 scale, (d) 120 � 68 scale.
(Color figure online)

112 M. Kang and Y.-C. Lim



object is changed by applying jitter to the image, as shown in Fig. 2(d). As shown in
Fig. 2(b), random distortion was applied to change the color, brightness, and other
attributes. Finally, we performed a flip with a 50% probability, as shown in Fig. 2(e).

3.2 Hard Negative Mining

In order to learn positive and negative boxes effectively on the feature map of each
scale, the positive-to-negative ratio was set to 1:N. As shown in Fig. 3, small boxes are
detected on a scale with a large feature map, and large boxes are detected on a small
scale. On each scale, the anchor box with the best match with the GT (ground truth)
box was set as a positive box (blue boxes in Fig. 3(b)). After positive determination,
the negatives were sorted in order of their scores, and the hard negatives with high
scores were extracted N times as positive (red boxes in Fig. 3(c)).

3.3 Training Method for Ignore Regions

In the CCTV environment, “ignore regions” such as those denoted by the white square
boxes in the DETRAC [10] dataset, are needed, as shown in Fig. 3(a). In a fixed
camera environment, there are unnecessary areas, such as a parking lot and a guide,
during attempts to detect moving objects in close proximity. In general, a deep learning
based object detection method is learned as a negative, except for the box provided by
the GT in the image. In general, as the GT image is needed in hundreds of thousands of
images during the learning process, the unnecessary area can be designated as ignore
regions to improve the efficiency of the labeling operation. In this paper, the hard
negatives are not learned when overlapping ignore regions with more than a certain
area (purple boxes in Fig. 3(c, d). Because there are real objects among the purple
boxes in Fig. 3, but there is no GT, updating it to negative causes the object detection
performance to deteriorate. Therefore, as a condition for determining the negative, a

Fig. 4. Multi-class vehicle detection result in DETRAC validation dataset.

Multi-class Vehicle Detection Using Multi-scale Hard Negative Mining 113



hard negative which does not overlap with the ignore regions among the high-score
negatives was determined and learning was performed N times as positive.

4 Experimental Results

In this paper, the DETRAC dataset is used to evaluate the proposed method. The
dataset consists of ten hours of video captured with a Canon EOS 550D camera at 24
different locations at Beijing and Tianjin in China [10]. The images were 960 � 540 in
size and consisted in total of 83,791 labeled images. Of these, 51,721 were used for
training and 32,070 were used for the evaluation. There are seven classes of GT that
provide in this case Sedan, SUV, VAN, Taxi, Bus, Truck and ignore regions. We
assigned positive to six objects and ignore regions to exclude negatives that overlap the
region.

The proposed network generates a pre-trained model using the COCO dataset [11],
learns it with the DETRAC train images, and then evaluates it with validation images.
Data argumentation used the random scale, jitter, random distortion and flip processes.
Based on the Darknet framework [5], we set the batch number to 64 and the subdi-
vision number to 32 and learned with four NVIDIA TITAN XP graphics cards. The
learning rate was set to 10�3, gradually decreased in steps, and learning proceeded for
100 epochs. The number of default anchor boxes was set to 9, and the aspect ratio of
the box was determined through clustering.

Table 1 shows the results of learning each method with DETRAC train dataset and
evaluating it in validation. Method 1 is the result of not applying ignore regions
(IR) and multi-scale hard negative mining (MSHN) methods in existing YOLOv3 SPP
networks. As shown in Fig. 5, the performance decreases because the positive objects
corresponding to the IR region are updated to negative. Method 2 did not update the IR
as positive or negative as shown in Fig. 6. However, because the number of negatives
is much higher than the number of positives, the precision is 0 in the recall 0.9–1.0
range as shown in Fig. 7. The proposed method 3 is the result of applying both IR and
MSHN. As shown in Fig. 6, the detection performance is improved because exception
handling for IR area and imbalance problem of positive and negative are solved. The
proposed method detects multiclasses of various sizes and improves learning time by
20% as shown in Fig. 4.

Table 1. Comparison of different results in DETRAC validataion dataset. IR: ignore regions,
MSHN: multi-scale hard negative mining.

Method IR MSHN mAP

Method 1 X X 50.58%
Method 2 O X 80.04%
Method 3 (Proposed) O O 93.63%

114 M. Kang and Y.-C. Lim



Fig. 5. Method 1 YOLOv3 SPP without IR and MSHN.

Fig. 6. Method 2, YOLOv3 SPP width IR.

Fig. 7. Method 3, YOLOv3 SPP with IR and MSHN.

Multi-class Vehicle Detection Using Multi-scale Hard Negative Mining 115



5 Conclusions

In this paper, we propose a multi-class vehicle detection using multi-scale hard neg-
ative mining. The FPN structure of the YOLOv3 SPP method is used to extract various
types of features by fusing a low-level feature map and a high-level feature map. The
unbalance problem of positive boxes and negative boxes was solved through hard
negative mining on each scale of the feature map. GT labeling can be done effectively
using ignore regions as with the DETRAC dataset. The proposed method can be trained
on datasets with ignore regions without decreasing detection performance.

Acknowledgment. This work was supported by the DGIST R&D Program of the Ministry of
Science, ICT. It was also funded by Daegu Metropolitan City and Daegu TechnoPark (Project
name: Research institute cooperation convergence R & D project. 2019).

References

1. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–203), 185–203
(1981)

2. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction.
In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45053-X_48

3. He, K., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on
Computer Vision (2017)

4. Dai, J., et al.: R-FCN: Object detection via region-based fully convolutional networks. In:
Advances in Neural Information Processing Systems (2016)

5. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2017)

6. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46448-0_2

7. Ristani, E., Tomasi, C.: Features for multi-target multi-camera tracking and re-identification.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2018)

8. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.
02767 (2018)

9. Lin, TY., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2017)

10. Wen, L., et al.: UA-DETRAC: a new benchmark and protocol for multi-object detection and
tracking. arXiv preprint arXiv:1511.04136 (2015)

11. Lin, T.Y. et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T.,
Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. ECCV 2014. LNCS, vol
8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

116 M. Kang and Y.-C. Lim

http://dx.doi.org/10.1007/3-540-45053-X_48
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1511.04136
http://dx.doi.org/10.1007/978-3-319-10602-1_48


Predicting Steering for Autonomous
Vehicles Based on Crowd Sensing

and Deep Learning

Taiyu Liu, Jinglin Li(B), and Quan Yuan

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{lty2008,jlli,yuanquan}@bupt.edu.cn

Abstract. The challenge in ensuring the reliability of autonomous vehi-
cles is full awareness of the surrounding environment and high-precision
steering control. The latest solutions to this challenge include deep learn-
ing technologies that provide end-to-end solutions to predict steering
angles directly from environmental cognition information with high accu-
racy. Under the background of 5G technology, edge device has certain
computing power, which can reduce the load of on-board computing
equipment. In this paper, we present a new distributed perception-
decision network model. This model allows the network’s computing
tasks to be offloaded to the edge computing devices to reduce the con-
sumption of vehicle-mounted computing devices. The feasibility of the
model is verified by experiments. Compared with the existing methods,
the model also has a higher accuracy of steering prediction.

Keywords: Autonomous vehicles · Deep neural network ·
End-to-end · Crowd sensing

1 Introduction

Environmental cognition and steering control are two key issues in autonomous
vehicles [1,2]. There are many solutions to the self-driving problem.End-to-
end autonomous driving using artificial neural network was studied as early
as 1989 [3]. With the rise of deep learning, computer vision-based approaches
have been developed, and the end-to-end technology from sensor data to vehi-
cle control has came true [4,5]. NVIDIA has trained a deep neural network to
control the steering angle directly from images captured by cameras [6]. The
advantages of such schemes are high accuracy and low equipment cost. At the
same time, End-to-end solutions which has been proved to be effective in pre-
vious work can avoid the problem that complex road scenarios cannot be fully

This work was supported in part by the Natural Science Foundation of China under
Grant 61876023 and Grant 61902035, and in part by the Natural Science Foundation
of Beijing under Grant 4181002.

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 117–124, 2020.
https://doi.org/10.1007/978-3-030-38651-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_12


118 T. Liu et al.

covered by rules [7]. The scheme is essentially an imitation of the driving data of
natural drivers. The richer the training data are, the stronger the robustness of
the model will be. In recent years, the development of Vehicle-to-Vehicle (V2V)
technology has realized the sharing of perceptual data between vehicles, which
has enhanced the vehicle’s ability to perceive the global road environment [8],
but also increased the computational load of onboard equipments. Mobile edge
computing can realize the unloading and processing of computing tasks such
as traffic situation cognition and on-board applications to edge servers, provid-
ing computing resources needed for autonomous driving service applications [9].
Therefore, we believe that a new network model is needed to offload some net-
work computing tasks to the edge, so as to reduce the computing load of on-board
equipment.

Fig. 1. The overview of our proposed model. Vehicle1 uploaded environmental infor-
mation to the edge device through Vehicle-to-Everything (V2X), and the edge device
extracted environmental features. Vehicle2 combines the environmental features broad-
casted by edge with its own information to control steering. The prediction was made
through our network (see Fig. 2 for details)

In this paper, we propose an end-to-end steering prediction model based on
edge computing and deep learning (see Fig. 1). This model obtains road envi-
ronment information by on-board camera, extracts road environment features
by edge computing and deep neural network, and broadcasts global road envi-
ronment features to autonomous vehicles in the current region. The autonomous
vehicle processes the received road environment features to obtain vehicle steer-
ing control [10]. The disadvantage of the end-to-end network model is that the
model is often black box, poor interpretation [11]. The network structure pro-
posed in most researches is tightly coupled internally. We enhances the inter-
pretability of the model structure by modularizing the model internally. The



Predicting Steering for Autonomous Vehicles 119

proposed model is verified on the data set of Udacity and compared with exist-
ing experiments. Our experimental results show that the distributed network
model based on deep learning is feasible and has good accuracy. Our main con-
tributions are: (1) We propose an end-to-end vehicle steering control system
which adapts to edge computing scenarios; (2) We propose a loosely coupled
network model that enables the computation of network models to be physically
separated; (3) We verify the feasibility of the model on Udacity dataset [12].

The rest of the paper will be organized as follows: In Sect. 2, we explain the
proposed approach, and provides details about the performed experiments in
Sect. 3. Finally, we conclude the paper and discuss possible directions for future
work in Sect. 4.

2 Proposed Approach

In essence, the goal of the problem is to construct a mapping relationship from
multi-source image information to vehicle steering Angle. This problem consists
of two sub-problems: one is feature extraction and fusion of multi-source image
information. The second is the mapping of fusion feature to vehicle steering
Angle. Formalization can be described as the following formula 1. Where Er

represents the set of current road information, R represents the vehicles in the
current area, and F represents the mapping of road information features to
vehicle control. Where S represents the set of steering angles.

F :

{∑
R

Er

}
→ {S} (1)

For feature extraction of multi-source image information, we consider using
single image sequence collected by vehicle camera. The image sequence contains
the road environment information of the current driving direction of the vehi-
cle. We used Convolutional Neural Network (CNN) to extract the road feature
information in the image [13]. At the edge, we collect image data of vehicles to
train CNN and store the location, time and current road characteristics of each
vehicle. The vehicle directly uses the CNN model trained by the edge to extract
the local road features and obtain the road feature information from the edge.
Figure 1 shows this process. The mapping of eigenvalue to vehicle steering angles
is essentially a regression problem. Theoretically, a neural network can fit any
mapping. So we fit this mapping by training Fully-Connected Networks (FCN).

In this paper, we assume that the road conditions ahead have been seen by
vehicles ahead. We use edge equipment to request environmental information
obtained by vehicles ahead and assist steering control. Figure 1 also illustrates
our method. The proposed model is logically composed of two modules: environ-
mental awareness module and fusion decision module. The environmental aware-
ness module mainly uses images collected by vehicle sensors, such as monocular
camera, and images collected by road edge equipment through the Internet of
vehicles, such as images uploaded by other vehicles within the current network



120 T. Liu et al.

Fig. 2. CNN + FCN distributed model. Our model uses 5 convolutional layers, followed
by 5 FC layers. See Table 1 for further details of our proposed architecture.

Table 1. Details of proposed architecture. The activation function that we use is
Rectified Linear Unit (ReLU) and Linear function.

Layer Type Size Stride Activation

0 Input 66*200*3*2 - -

1 Conv2D 5*5, 24Filters (2*2) ReLU

2 Conv2D 5*5, 36Filters (2*2) ReLU

3 Conv2D 5*5, 48Filters (2*2) ReLU

4 Conv2D 3*3, 64Filters (1*1) ReLU

5 Conv2D 3*3, 64Filters (1*1) ReLU

6 Conc 1152*2 - -

7 FC 100 - ReLU

8 FC 50 - ReLU

9 FC 10 - ReLU

10 FC 1 - Linear

coverage, to perceive the current road environment. The fusion decision mod-
ule integrates the local environmental perception information with the global
perception information. The model uses convolutional neural network to extract
image features and Fully-Connected Network to realize steering control.

The proposed network structure is presented as Fig. 2 shows. The network
takes the images of the two cars as input, and the last layer predicts the steering
angle as the network output. The details of our network are shown in the Table 1.
The two images are respectively input into two CNNs (parameter sharing), and
then we will process the extracted deep features, and then output the steering
angle through full-connected network. Since we define the problem of steering
Angle output as the problem of value regression, we use the Mean Squared Error
(MSE) loss function in our network during the training.



Predicting Steering for Autonomous Vehicles 121

3 Performance Evaluation

3.1 Experiment Setup

In this part, we mainly describe the data set, data preprocessing and evaluation
indicators, and then introduce the experimental variable. At last, we introduce
the experimental environment.

Fig. 3. The angle distribution within the training data (angle in radians), just angles
between −1 and 1 radians are shown.

Dataset. We used an autonomous data set from Udacity. The data set includes
images taken on both sunny and cloudy days, steering wheel angles, acceleration,
braking, GPS and other datas. Furthermore, it contains image data of five differ-
ent journeys, and the total collection time is 1694 s. The data are collected at a
speed of nearly 20 HZ, the 480 * 640 * 3 pixels size of image. The total dataset is
3.63 GB. The distribution of steering wheel Angle on the whole dataset is shown
in the Fig. 3. As shown in the figure, the dataset distribution contains a large
range of steering angles, and the overall distribution is similar to the normal
distribution. Since there is no data collected from the front and rear vehicles at
the same time, we simulated the environment by creating a virtual vehicle ahead
of another autonomous vehicle, and shared image data with the dataset.

Data Preprocessing. As there is a large overlap between continuous frames
of the image data, we use image enhancement to increase the variance of the
dataset in order to avoid network training overfitting. Our image enhancement
technology randomly increases brightness and contrast to simulate different light
intensity, and randomly adds gaussian noise to simulate signal instability and
device jitter at the same time. We also tested image cropping to eliminate redun-
dant information of sky in the image. We then trained and validated our model
with 80% images and 20% images as the test set.



122 T. Liu et al.

Evaluation Metrics. The output value of the model is the steering angle,
which is a continuous variable. Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are two commonly used indicators, which are often used
in literature to measure the effectiveness of control system. These two values
reflect the mean error of predicted value, and as it turned out that the lower the
value, the better the effect.

Experimental Variable. 5G networks can ensure highly reliable and low-
latency data sharing between vehicles. This communication network can ensure
the communication between the vehicle and the edge to ensure the safety and
reliability of vehicle control. So we assume that the distance between the two
cars is δt seconds. We take the Xt frame from the autonomous vehicle at time
step T and the XT+δt frame from another vehicle at time step (T + δt). A single
input across the network contains two frames of images. In the experiment, we
set different δt values to represent the influence of different distances on the
decision-making of vehicles.

Implementation. We implemented it using Keras with TensorFlow back-
end [14]. Finally, two GPUs (Type: NVIDIA TITAN-XP 12 GB) are used to
train the model.During the experiment, we used Adam optimizer [15]. Different
learning rates were tested, and the influence of setting minibatch size on the
network was studied too.

Fig. 4. Training and Validation steps with 200 epochs

3.2 Experiment Results

The training process is shown in Fig. 4. The network has a total of 200 rounds
of training, and the loss function decreases rapidly at the beginning and tends



Predicting Steering for Autonomous Vehicles 123

Table 2. Comparison to different δt(s) in terms of MAE

δt(s) 1 1.3 1.4 1.5 1.8 2 3

MAE(∗10−2) 4.039 3.731 3.442 3.881 4.188 5.038 5.071

to be stable after 50 rounds of iteration. This shows that our model is feasible
and can converge quickly.

The model we trained after changing the value of δt(s) is shown in the Table 2,
and we can find that there is an optimal value in the model. One possible expla-
nation is that when vehicles are too close to each other, the fusion information
has redundancy, which leads to poor prediction effect; when vehicles are too
far away from each other, the correlation between the fusion information is too
small to assist the vehicle optimization decision. Meanwhile, we tested NVIDIA’s
model and got the MAE value of 4.124∗10−2. Our model performed better. Our
model showed good performance.We also tested the network on the test set, and
the predicted results are shown in the Fig. 5. We found that the predicted value
can basically correspond to the change of the actual value. However, the pre-
dicted value of the network in sharp corners is poor, because most of the training
data are of small angle, and few of the data of large steering angle.

(a) Target and prediction result of
steering command.

(b) The deviation between the pre-
dicted value and the actual value.

Fig. 5. The predictive performance of the model on the test dataset

4 Conclusion

In order to reduce the computational load of self-driving cars, a distributed
steering angle control method based on edge computing is proposed in this paper.
We proposed an End-to-End network model, which is a loosely coupled depth
model using the CNN and FC layers. Experimental results show the feasibility
of the network model. What’s more, the experiment in this paper just relies on
simulated data, and only verifies the feasibility of the model. Taking everything
into consideration, more real experimental environment and data are needed in
the future.



124 T. Liu et al.

References

1. Li, J., Liu, Z., Yang, F.: Internet of vehicles: the framework and key technology. J.
Beijing Univ. Posts Telecommun. 37(6), 95–100 (2014)

2. Zhao, J., Liang, B., Chen, Q.: The key technology toward the self-driving car. Int.
J. Intell. Unmanned Syst. 6(1), 2–20 (2018)

3. Pomerleau, D.A.: ALVINN: an autonomous land vehicle in a neural network. In:
Advances in Neural Information Processing Systems, pp. 305–313 (1989)

4. Thrun, S., et al.: Stanley: the robot that won the DARPA grand challenge. J. Field
Robot. 23(9), 661–692 (2006)

5. Rausch, V., Hansen, A., Solowjow, E., Liu, C., Kreuzer, E., Hedrick, J.K.: Learning
a deep neural net policy for end-to-end control of autonomous vehicles. In: 2017
American Control Conference (ACC), pp. 4914–4919. IEEE (2017)

6. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016)

7. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from
large-scale video datasets. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2174–2182 (2017)

8. Wang, L., Iida, R.F., Wyglinski, A.M.: Coordinated lane changing using V2V com-
munications. In: 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp.
1–5. IEEE (2018)

9. Cheng, X., Chen, C., Zhang, W., Yang, Y.: 5G-enabled cooperative intelligent
vehicular (5GenCIV) framework: when Benz meets Marconi. IEEE Intell. Syst.
32(3), 53–59 (2017)

10. Sobh, I., et al.: End-to-end multi-modal sensors fusion system for urban automated
driving. In: NIPS Workshop on Machine Learning for Intelligent Transportation
Systems (2018)

11. Chen, S., Zhang, S., Shang, J., Chen, B., Zheng, N.: Brain-inspired cognitive model
with attention for self-driving cars. IEEE Trans. Cogn. Dev. Syst. 11(1), 13–25
(2017)

12. Udacity. Udacity dataset (2016). https://github.com/udacity/self-driving-car/
tree/master/datasets

13. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541–551 (1989)

14. Chollet, F.: Keras (2015). http://github.com/keras-team/keras
15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)

http://arxiv.org/abs/1604.07316
https://github.com/udacity/self-driving-car/tree/master/datasets
https://github.com/udacity/self-driving-car/tree/master/datasets
http://github.com/keras-team/keras
http://arxiv.org/abs/1412.6980


uNVMe-TCP: A User Space Approach
to Optimizing NVMe over Fabrics TCP

Transport

Ziye Yang1(B), Qun Wan1, Gang Cao1, and Karol Latecki2

1 Intel, Shanghai, China
{ziye.yang,qun.wan,gang.cao}@intel.com

2 Intel, Gdansk, Poland
karol.latecki@intel.com

Abstract. Recently, NVM Express R© has released the new TCP trans-
port specification for NVMe over fabrics (NVMe-oF). And there are two
kinds of implementations, i.e., one in kernel space and the other in user
space. The implementation in the kernel (e.g., Linux kernel) is feasi-
ble, but there are several drawbacks such as performance, flexibility, and
stability. In this paper, we would like to introduce uNVMe-TCP, which
follows the specification and provides the NVMe/TCP transport in user
space with improved performance and usage experience. We choose the
optimization in user space since it is very difficult to optimize the whole
NVMe I/O stack in kernel space through different kernel modules, and
the optimization may affect other applications in user space. The idea of
uNVMe-TCP is to optimize the whole NVMe I/O stack on TCP trans-
port, i.e., leveraging the lock-free user space NVMe I/O stack and config-
urable network I/O stack (both kernel and user space TCP stack can be
supported). Currently uNVMe-TCP provides the solution on both tar-
get and initiator side, and it can be tested against Linux kernel solution
with good interoperability. Besides, some experiments are conducted to
demonstrate the performance of uNVMe-TCP. Compared with the ker-
nel solution, uNVMe-TCP shows 15% to 30% latency improvement on
average with FIO benchmark. And the per CPU core performance of
uNVMe-TCP is promising, i.e., it is 2.2 times of the kernel on average
with the increasing number of connections. Furthermore, uNVMe-TCP
is also scalable in CPU aspect.

Keywords: User space NVMe over Fabrics TCP transport solution ·
User space NVMe I/O stack · Performance improvement

1 Introduction

Nowadays, NVMe [1] protocol is widely adopted, e.g., more and more PCIe SSDs
driven by NVMe protocol are deployed in data centers. And there is a strong
demand not only to support accessing NVMe SSDs inside the local host but

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 125–142, 2020.
https://doi.org/10.1007/978-3-030-38651-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_13


126 Z. Yang

also the remote accessing. The existing iSCSI [2] protocol cannot meet the high
performance requirements while exporting the NVMe SSDs to the remote due
to the protocol overhead. To mitigate this issue, NVMe over fabrics [3] protocol
(aka. NVMe-oF) is invented to replace iSCSI protocol in order to explore the
performance benefit brought from local PCIe SSDs to remote applications.

Currently, many different transports are defined in NVMe-oF specification in
order to make NVMe protocol leverage different fabrics. And the first supported
is RDMA (Remote Directly Memory Access) transport, which is available both in
Linux kernel and SPDK [4,5]. The RDMA transport leverages RNIC (NIC with
RDMA capablity) or InfiniBand card which can make the remote clients have
similar performance experience as accessing the local NVMe SSDs in different
aspects, e.g., latency, IOPS, throughput. However there are several drawbacks to
promote RDMA transport, i.e., (1) The RNICs for Ethernet are very expensive,
and the existing non-RDMA capable NICs cannot be reused; (2) The RDMA
transport solution is limited by the physical distance, which is extremely suit-
able for the data exchange inside centers but not very useful to provide cloud
storage service across data centers; (3) The overall network infrastructure needs
to change for adapting RDMA and the existing ones could not be compatible.

To promote NVMe-oF in different usage scenarios especially for TCP based
applications, NVMe standard organization (NVMe Express R©) defined the TCP
based transport and released the TP (technical proposal) 8000 [6] specification in
Nov 2018. Before the birth of TCP transport, if users test NVMe-oF on Ethernet
via non-RDMA capable NICs, they need to simulate the NIC into a virtual device
with RDMA function through SoftRoCE protocol. The current implementation
in Linux kernel simulates the RDMA protocol through the corresponding kernel
module on top of UDP protocol. However this solution is mostly designed for test
purpose only, it cannot be scaled to support real applications of high reliability
requirements which can only be achieved by TCP.

Compared with the RDMA transport, the performance of TCP transport is
worse since leveraging the TCP protocol brings the higher network delay. So
there are lots of concerns from the very beginning of this protocol emergency.
However, based on our understanding, the following reasons support the birth
of NVMe/TCP transport, i.e.,

– Backward compatibility for NICs. If the NVMe-oF is designed to replace
iSCSI protocol, it is not sufficient with only RDMA transport. We know that
the iSCSI protocol can run on Ethernet with non RDMA capable NICs. Of
course, if RDMA feature by the NICs can be supported, iSER protocol [7] can
be used to offload data transformation. Without the NVMe/TCP transport,
many existing network devices are not available to use when users transit from
iSCSI to NVMe-oF protocol. Obviously, the hardware requirements of the
NVMe-oF protocol on NICs have obstacles for the protocol transformation
from iSCSI to NVMe-oF. For example, the data center upgrade cannot be
smoothly performed if the providers do not want to add more funding for
the network infrastructure. So we need the NVMe/TCP transport for the
backward compatibility.

– The emergence of NVMe virtualization. On the premise of NVMe virtu-
alization [8,9] implementation, the NVMe-oF target does not need to attach



uNVMe-TCP: A User Space Approach 127

a real NVMe device. Conversely, it can provide the initiator with a virtual
NVMe controller. In such a scenario, high performance is not the key point
and it is very suitable to use the relatively low speed TCP transport.

– The possible TCP offloading. Although the NVMe-oF protocol on TCP
transport greatly decreases performance, offloading methodology can still be
applied by Smart NIC, FPGA etc. Then the potential performance loss can
be mitigated. We are looking forward to the offloading standard defined by
NVMe/TCP transport in the future, then the acceptance of NVMe/TCP
transport will be improved.

With the great efforts from Linux kernel community, the NVMe/TCP trans-
port support is merged in Linux kernel main branch in January 2019. However,
the performance of kernel solution is not good as expected. There are several
performance degradations in the following aspects despite using TCP proto-
col, i.e., (1) Long NVMe I/O stack in Linux kernel; (2) I/O resource contention
among different kernel threads during the NVMe command execution. And those
resource contention can not be fixed due to the legacy shared resource design
among CPUs in the whole I/O stack, e.g., locks in the kernel TCP/IP stack,
locks in the generic block layer.

To address these issues, we provide uNVMe-TCP, which is a user space based
NVMe/TCP transport target and initiator solution relied on the user space
NVMe driver which can directly control the NVMe SSDs and even leverage user
space TCP stack to accelerate the full data I/O stack (i.e., from network I/O
stack on NICs to the NVMe I/O stack on PCIe SSDs). In summary, the following
contributions are made in this paper:

– We propose a user based solution to accelerate the NVMe/TCP transport,
which can be in either target or initiator side to optimize the related software.
And we are the first one to provide such accelerated solution.

– We present the detailed mechanism of uNVMe-TCP and state why uNVMe-
TCP can improve the performance on NVMe/TCP transport. Moreover, our
uNVMe-TCP target can use restricted CPU resource to still provide expected
NVMe-oF service. For example, we can leverage the CPU resource restriction
API (e.g., CPU affinity setting related API in Linux to bind dedicated CPU
cores) while still satisfy the I/O performance requirements. Thus, the CPU
resource can be saved, which has great benefit in hyper converged infrastruc-
ture, e.g., the saved CPU resources for I/O can be used to sell more Virtual
machines.

– We conduct detailed experiments and compare the performance of uNVMe-
TCP with the Linux kernel based solution by various workloads and demon-
strate that uNVMe-TCP is better in both IOPS and latency,e.g., 15% to 30%
performance improvement on average in latency aspects, and 2.2 times of
the kernel on average for per CPU core IOPS with the increasing number of
connections.

The remainder of this paper is organized as follows. Section 2 presents
the design of uNVMe-TCP. Section 3 describes the detailed implementation



128 Z. Yang

of uNVMe-TCP. Section 4 provides the performance evaluation on uNVMe-
TCP and existing Linux kernel solution. Section 5 discusses some related works.
Finally, we conclude this paper in Sect. 6.

2 System Design

We present the detailed design of uNVMe-TCP in this section to address the
following questions: (1) Why we need the user space NVMe/TCP transport
solution; (2) The architecture to design the high performance TCP transport.

2.1 Why User Space NVMe/TCP Solution

Linux kernel implements NVMe TCP transport for both target and host sides
in Jan 2019. The solution provided by kernel can absolutely satisfy users’ basic
requirements but there are still issues such as stability, reliability, performance
and etc. In this paper, we would like address the performance issue.

Generally, the data working flow for read and write in NVMe-oF target based
on TCP transport can be described as, i.e., (1) NVMe read command: Data
is read from the NVMe SSD through the firmware and corresponding kernel
NVMe driver, then the data is loaded into the kernel buffer, after that the
data is encapsulated according to NVMe/TCP PDU format and written out
by network driver through NICs; (2) NVMe write command: Data comes from
network and is handled by network driver and put in the kernel buffer through
NVMe/TCP protocol, then it is written to the NVMe SSD through kernel NVMe
driver and firmware. From the description, the whole I/O stack of NVMe/TCP
request handling can be divided into network (handled by network driver) and
storage I/O stack (handled by NVMe driver with general block layer). With
the emergence of more and more fast NICs (e.g., from 10 to 100, 200 and even
400 Gbs) and NVMe SSDs (e.g., with continuous improved IOPS, latency and
throughput), neither the network nor the NVMe storage I/O stack in kernel can
fully explore the hardware capabilities. And the main reasons for the performance
downgrade are:

– Resource contention among threads (CPU cores). There are many
different locks existing in the data I/O path, which are used to handle the
resource contention (e.g., memory) among different CPU cores or threads.
And the locks in the data path greatly influences the performance

– Inefficiency of Interrupt. Currently, the interrupt policy in kernel is not
efficient for frequent small I/Os (e.g., 4 KB read/write on the NVMe SSDs).
And the polled mode can be much better [10], which is proved to be really
useful in DPDK [11] and SPDK [4,5].

– I/O stack optimization challenge. The I/O stack in kernel is designed for
general purpose in order to adapt all kinds of workloads. If it is optimized for
specific pattern workloads, other pattern workloads can be influenced.



uNVMe-TCP: A User Space Approach 129

2.2 Architecture of uNVMe-TCP

We design uNVMe-TCP to accelerate the NVMe/TCP transport service in user
space, and the design is aimed to achieve the following purposes: (1) To avoid
resource contention in handling each TCP connection based I/O qpair (queue
pair), a polling group is created in each thread to handle all the connections
belonging to its group. Thus there are no contentions among different threads
to handle the qpair; (2) We provide encapsulated socket API, which is used to
reserve the possibility to leverage user space TCP/IP stack instead of only using
POSIX socket API; (3) We use polled mode instead of interrupt mode to drive
the NVMe SSDs. In order to achieve this, we leverage user space NVMe driver
in SPDK [4,5] to directly access the hardware through MMIO (memory mapped
IO) exported by VFIO/UIO driver in the kernel.

We select the target side to illustrate the design of uNVMe-TCP since it is
typical and can cover most of the design on the initiator side. As shown in Fig. 1,
the target side in uNVMe-TCP has several key components, i.e., TCP transport
module, thread management and user space NVMe I/O stack.

Fig. 1. Architecture of uNVMe-TCP target

TCP Transport Module. The TCP transport is mainly designed to manage
the portals and data buffer pool.

– Portal. A portal is defined as the pair <IP address, port>. Each NVMe
subsystem can listen on some several different portals and each portal can



130 Z. Yang

be shared by different subsystems. All portals are uniformly managed by
the TCP transport through some data structures, e.g., linked list. Also, each
portal has a reference count which counts how many subsystems share this
portal. For example, if portal <127.0.0.1, 4420> is used by 3 subsystems, the
reference count is 3. Only all the 3 subsystems are destroyed will this portal
be removed from the transport.

– Data Buffer Pool. This pool is used to manage the data buffer used by
NVMe/TCP commands on the target side. For each NVMe read/write com-
mand contained in the NVMe/TCP PDU (packet data unit) which comes
from the remote, data buffer(s) will be bound to the command from the
shared pool after the command is successfully parsed. The reason that we
use the shared buffer pool is to control the memory footprint. Otherwise, if
we manage the shared buffer pool according to the queue depth (aka. QD)
of each connection, then the memory size will linearly grow as the number of
connection grows. In our design, the data buffer pool is shared by the TCP
polling group on each CPU core. Absolutely, the data buffer pool sharing
among polling group causes the resource contention. To mitigate this issue,
we adopt the following strategies, i.e., each polling group reserves several data
buffers from the pool as buffer cache according to a pre-configured value when
the polling group is created, and this can greatly avoid the contention among
polling groups. Thus we can still use the data shared buffer methodology
to control the total memory footprint and sustain the performance design
purpose.

– Encapsulated Socket API. In uNVMe-TCP , we provide a socket API
encapsulation, which can leverage both kernel TCP/IP stack API (i.e., posix)
and other user space API (e.g., VPP [12] provided by fd.io project). For
example, we have a prefix named “spdk sock”. For example, if we use “listen”,
it should be “spdk sock listen”.

Thread Management. The uNVMe-TCP design target is forced to start up
with fixed number of CPU cores configured by users. On each CPU core, there
is one thread running with the affinity feature, thus we can make sure that
this thread is running on the dedicated CPU core. And we leverage the thread
management API in SPDK [4,5] library.

In each thread, we run a fixed function (called reactor) which is mainly
composed of an endless loop, and the pseudo code is shown in Fig. 2. This
function always runs until the application is stopped. In this loop, the reactor
executes the function pointers maintained by poller and event mechanism.
Each poller or event contains its own <function, args>, and the reactor execute
it as E->function(E.args) or P->function(P.args) in Fig. 2.

Poller mechanism is the internal events to be executed in the thread. There
are two types of Pollers provided, i.e., a timer-based Poller and a non-timer
Poller, which can be maintained in two independent lists. Event mechanism is
used as the communication channel among different threads. The essence of this
mechanism is that each thread maintains a ring of events, which is the Multi



uNVMe-TCP: A User Space Approach 131

Producer and Single Consumer (MPSC) Model. If a thread A wants thread B
to execute a event, i.e, E<function, args>, then thread A puts the event E in
B’s event ring. Then the reactor on each thread (such as thread B) can receive
Event messages from any other Reactor thread (including the thread itself) for
processing. For more details of reactor, poller and event, you can refer in section
2.1 of Yang’s work [4].

Fig. 2. Pseudo Code of reactor

As shown in Fig. 1, a TCP transport acceptor is registered as a non-
timer poller in thread on core 0, it can only be registered on one thread, but
can be configured on the other thread instead of the first core (e.g., core 0)
shown in the diagram. The purpose of this poller is to listen on each portal (e.g.,
through spdk sock accept function) managed by the transport. When there is
an incoming socket connection event, a new TCP connection with the socket
info (i.e., spdk sock in uNVMe-TCP ) can be created, and such connection can
be managed by the dedicated non-timer poller (i.e., TCP transport polling
group) on each reactor thread. Currently, we use round robin algorithm to select
a CPU core, and send an asynchronous message through Event call to let the
dedicated thread to add the TCP connection to its polling group.

TCP Socket Group Polling. When a TCP connection is added to a TCP
polling group, the socket owned by this connection is added to the socket polling
group. For example, we can use the epoll related operation (e.g., epoll ctl) in
Linux to add the socket info into the socket polling group; then the socket
group polling mechanism can be used. For example, we can leverage epoll wait
to check the EPOLLIN event (there is data from remote) for each connection. If
such event is detected for any socket, we will begin to handle the NVMe/TCP
PDU (Packet Data Unit) protocol parsing work in order to conduct the further
NVMe command operation according to the NVMe-oF protocol; When the TCP
disconnection event is detected by the state of the owned socket, this connection



132 Z. Yang

is removed from the socket polling group and will no longer be polled by the
group anymore.

User Space NVMe I/O Stack. When an NVMe command is extracted by the
NVMe-TCP PDU according to the NVMe-oF protocol, a user space NVMe I/O
stack is used to conduct the NVMe command, which is much better than kernel’s
NVMe I/O stack, i.e., has lower latency and higher IOPS. And the details can
be referred in section 3.2 of Yang’s work [4], the performance benefit is achieved
by the asynchronous polled I/O policy, lockless design, reduced I/O stack, and
eliminated system call and data copy overhead. Additionally in uNVMe-TCP,
zero copy mechanism is also designed in user space I/O stack.

For any NVMe write command from the initiator side, when the data for this
command is read from the socket and put into the buffer allocated from the data
buffer pool, there is no additional memory copy for writing the data into the
NVMe SSD in the user space I/O stack through related NVMe subsystem, user
space bdev, NVMe driver and firmware. For any read NVMe command from the
initiator side, a buffer is allocated from the data buffer pool for this command.
Thus data for this command is loaded from the NVMe SSD in the user space I/O
stack through firmware, NVMe driver, user space bdev and NVMe subsystem.
Before consumed by the socket, there is no data copy. Our default TCP/IP stack
is kernel TCP/IP stack, so there could be memory copy for the data between
user space and kernel space. However, if we leverage user space TCP/IP stack,
all the data copy can be eliminated in either User space NVMe I/O stack or
TCP/IP stack.

3 System Implementation

We present the implementation details of uNVMe-TCP in this section, and it
supports user space NVMe/TCP transport library on both the target and host
sides. Currently, our code is available in [5]. The host side code is mainly located
in the file (i.e., lib/nvme/nvme tcp.c), and the target side code is mainly located
in the file (i.e., lib/nvmf/tcp.c).

3.1 Implementation Details in Target

On target side, the life cycle of the NVMe/TCP request in each TCP connection
(each NVMe qpair is mapped into a TCP connection) is tracked (shown in Fig. 3)
in order to make the implementation correct and reserve the further performance
optimization space. Several states for NVMe/TCP request are defined the fol-
lowing, which are not defined in TP 8000 spec and it is a unique implementation
in uNVMe-TCP.

– (1) FREE. The request is set in free state.
– (2) NEW. The request is allocated according to the PDU parsing.
– (3) NEED BUFFER. The Request waits for a data buffer.



uNVMe-TCP: A User Space Approach 133

– (4) DATA PENDING FOR R2T. The request needs to wait for the r2t
slot.

– (5) DATA TRANSFER FROM HOST. The request is handling the data
from the host.

– (6) EXECUTION IN NVMe IO STACK. The request is sent to the user
space NVMe I/O stack for execution.

– (7) READY TO COMPLETE. The request is completed from the NVMe
I/O stack.

– (8) DATA TRANSFER FROM HOST. The PDU data related with the
request is sending to host.

– (9) COMPLETED. The Request is completed, will be set to free.

According to the queue depth (QD) negotiated with the host, each con-
nection(a.k.a. qpair) is allocated with a fixed number of NVMe/TCP requests.
If a host sends more requests while exceeding the QD of belonging qpair, it
violates the NVMe-oF protocol and the NVMe command encapsulated in the
CapsuleCmd (Command Capsule PDU) [6] will be rejected by the target with
the NVMe response contained in CapsuleResp (Response Capsule PDU). During
the life cycle of the NVMe/TCP request of each qpair, zero copy technique is
used through the user space NVMe I/O stack when the data buffer is bound
to the request from state (3). And this buffer is also reused by the PDUs being
sent out, so there is no data copy only when we call encapsulated socket API
to conduct the network write function by interacting with the kernel. Moreover,
there is no lock in uNVMe-TCP user space, so the performance will be greatly
improved. And the following shows the detailed information to manage the life
cycle of the NVMe/TCP requests.

– Request in State (1): Upon receiving a NVMe/TCP PDU from the host, we
can identify whether the PDU is a CapsuleCmd. If it is, a new NVMe/TCP
request is allocated from the NVMe/TCP requests pool belonging to the
qpair, and the state of request is changed from (1) to (2).

– Request in state (2): If the contained NVMe command (CMD) is valid, it
goes to state (7); If the CMD is either a read or write CMD, the request
state can be changed to state (3); else the request state can be changed to
state (6).

– Request in state (3): If the data buffer cannot be allocated from the pool, the
request remains in this state. Otherwise (a) If it is the read CMD, and the
data buffer can be allocated, the request is changed to state (6); (b) If it is
the write CMD which contained in-capsule data, then the request is changed
to state (5); (c) If it is write CMD related PDU does not contain in-capsule
data, it means that the target needs to send R2T (Ready to transfer) PDU
to the host, so the request is changed to state (4).

– Request in state (4): If no more R2T PDUs can be sent, the request remains
in this state. Otherwise a R2T PDU is sent out, and the target waits for the
corresponding H2CData (Host to Controller Data Transfer) PDUs. And the
request is changed to state (5).



134 Z. Yang

– Request in state (5): The target is to receive the data for the write CMD,
and if the received data obeys the protocol (e.g., expected length, correct
data with hash check), the request will be changed into state (6).

– Request in state (6): The CMD contained in the request is sent to the NVMe
I/O stack for execution. After it is finished, the request is changed to state
(7).

– Request in state (7): The CMD is either executed from the user space NVMe
I/O stack, or the CMD is marked as the invalid CMD. So the state of the
request will be changed to state (8).

– Request in state (8): There are two kinds of cases: (a) The completed CMD is
not read command or the CMD fails executing in the NVMe I/O stack, then
only the CapsuleResp (Response Capsule PDU) which contains the NVMe
response (aka. RSP) info is generated and sent out to the host; (b) The CMD
is read command and it is successfully executed in the NVMe I/O stack, then
several C2HData (Controller to host data transfer) PDUs are generated which
contains the data read from NVMe I/O stack. Furthermore, the CapsuleResp
may also be generated and sent out which is according to the flag (Last PDU)
marked in the C2HDATA. And if all the PDUs is send out, the request is
changed to state (9).

– Request in state (9): The life cycle of the request is ended, and the memory
resource owned by the request (e.g., data buffer, PDU) will be freed, and the
request is changed to state (1) and put into the request pool owned by the
corresponding qpair.

Fig. 3. NVMe/TCP request life cycle

3.2 Implementation Details in Initiator

The implementation for uNVMe-TCP on host side seems simple, since we already
have the code support for PCIe and RDMA transport. Then we only need imple-
ment the relevant function APIs for the NVMe/TCP transport, and the following
shows the most significant functions we need to implement:



uNVMe-TCP: A User Space Approach 135

– nvme tcp ctrlr construct/destruct. The two functions are used to construct
or destruct the NVMe controller for the TCP transport on the host side. For
the construct function, the main idea can be divided into the following steps,
i.e., (1) Allocate and initialize an NVMe controller structure (empty without
the real controller information from the remote); (2) Create the admin qpair
by NVMe-oF protocol via TCP connection. (3) Leveraging the admin qpair
to submit the NVMe command and get the corresponding response via the
TCP connection in order to fill the contents in the NVMe controller created
in (1). For destruct function, it is the opposite operation, i.e., destroy all I/O
qpairs and then destroy admin qpairs through TCP connection, and finally
free all the resource related with the NVMe controller.

– nvme tcp ctrlr create/delete/reinit io qpair. As described, the three func-
tions are used to manage the life cycle of the I/O qpair. For the I/O qpair
creation, we need to allocate the NVMe/TCP requests for the qpair accord-
ing to the QD, then the connection connects to the target according to the
TP8000 spec, which is similar to admin qpair creation.

– nvme tcp qpair submit request. This function is used to convert the local
NVMe command request to the remote. The key is to construct the Cap-
suleCmd (Command Capsule PDU) defined in the TP 8000 spec, and then put
the PDU into a list which maintains the PDU to send out. Since uNVMe-TCP
provides the asynchronous polled mode mechanism, so it does not mean that
the NVMe command is successfully sent to the target side, or the response is
returned.

– nvme tcp qpair process completions. This function has two functionalities,
i.e., (1) Call the TCP socket API (e.g., write or writev) to send out the PDU
on the designated TCP connection based qpair (including both admin and
I/O qpairs); (2) Receive the PDU (e.g., Response Capsule PDU), and parse
the PDU to map it to the corresponding NVMe request, and execute the call
back function provided by the user. Then an NVMe command can be thought
as completed.

Compared with the target side, there are similar benefits on the initiator
side, i.e., (1) The zero copy policy is used to reuse the data buffer provided
by the up users; (2) There is no lock in the data path for doing the NVMe
command operation on the TCP connection based I/O qpair. (3) There is no
system call relevant with NVMe I/O stack to submit any NVMe command by
nvme tcp qpair submit request. If using kernel, there is context switch overhead
related with system call.

4 Experiment

In this section, we evaluate the performance of uNVMe-TCP and also compare
the performance difference between the kernel solution and uNVMe-TCP in
Linux environment.

The set up consists of three individual machines (One used as the target
and the other two used as initiators with the same configuration). The target is



136 Z. Yang

equipped with Intel R© Xeon R© Platinum 8180 (2.50 GHz) CPU, 376 GB memory,
16 Intel R© P4600TM P4600-2.0 TB NVMe SSDs and two 100GbE Mellanox
ConnectX-5 NICs. Each initiator is equipped with Intel R© Xeon R© CPU E5-
2699 v4 (2.20 GHz) CPU, 64 GB memory, one 100GbE Mellanox ConnectX-4
NIC. All the three machines are installed on Fedora 28 with kernel version 5.05.
The target is connected to both initiators point-to-point directly without any
switches. And each NVMe SSD equipped by the target is encapsulated as block
device and exported in the individual NVMe-oF subsystem.

Five different experiments are conducted to verify the performance of
uNVMe-TCP. FIO [13] is used as the performance benchmark tool, and two
storage engines can be used as the FIO plugin on the host side, i.e., Linux kernel
libaio engine and uNVMe-TCP FIO bdev engine. All the collected performance
numbers are described for aggregated I/O per second, average latency in differ-
ent usage cases. According to the following experiments, we demonstrate that
uNVMe-TCP is more competitive in the I/O performance (e.g., IOPS, latency)
scope and is much better in per CPU core performance aspect compared with
the Linux kernel solution.

4.1 uNVMe-TCP Target I/O Scaling

The target in uNVMe-TCP was configured with 16 subsystems, and each was
composed of one bdev on one Intel P4600 SSD [14]. Each of the 2 initiators was
connected to 8 individual NVMe-oF subsystems which were exposed by uNVMe-
TCP over 1x 100GbE NIC. And each initiator used FIO (with uNVMe-TCP bdev
FIO plugin) to test the 8 individual bdevs served by uNVMe-TCP . And the core
affinity of uNVMe-TCP was configured to use 1, 2, 3 and 4 cores while running
following 4 KB workloads on each initiator, i.e., Random 70% read & 30% write
(Randrw70%–30%) with QD from ranged in (1, 8 16, 32). For random read or
random write, which has the similar trend, so we only select Randrw70%–30%
as the typical workload.

The experiment results are shown in Fig. 4. For the IOPS, it is nearly scale
linearly from core 1 to 2 and 2 to 3 for QD ranged from (8, 16, 32), but there
is slightly drop in IOPS scaling when increasing the number of CPUs from 3
to 4. For QD = 1, the IOPS increasing does not increase when using multiple
cores since all the optimization for asynchronous operation is useless since there
is one active request. It was observed that the performance can hit about 0.8M
IOPS in Fig. 5(d), and the RDMA transport can achieve 2.6M IOPS in the
same environment [15]. Compared with the RDMA transport, the most drop is
caused by the low efficiency of TCP protocol. For the latency, it also continues
decreasing with the increasing of CPU cores. It is not fully linear for the IOPS
and latency because the polling groups still share the data buffer, and we also
use the kernel TCP stack which has some contentions on the network resource.



uNVMe-TCP: A User Space Approach 137

(a) QD = 1 (b) QD = 8

(c) QD = 16 (d) QD = 32

Fig. 4. uNVMe-TCP target on CPU core scaling with 4KB Randrw70%–30% work-
loads

4.2 uNVMe-TCP Initiator I/O Scaling

This experiment was performed in order to understand the performance of
uNVMe-TCP Initiator with I/O core scaling. In this test, uNVMe-TCP tar-
get was configured similar to test case 1, but runs with 4 cores. uNVMe-TCP
bdev FIO plugin was still used to target 8 individual NVMe-oF bdevs on each
of the 2 initiators. FIO cpumask was configured from 1, 2, 3 and 4 cores to run
following 4KB workloads from both the two initiators, and the QD is ranged
from (32, 64, 128, 256). We select random read in this experiment this time
since it has the similar trend for random write or random read/write.

The experiment results are shown in Fig. 5. From the diagram, we can see
that IOPS scales linearly from core 1 to 2 and 2 to 3 for different QDs, and there
is slight performance drop from core 3 to 4. The latency also decreases with the
increasing of core numbers, and it is the expected behavior. With more CPU
cores, the burden of each CPU is reduced, so the IOPS increases and the latency
decreases.

4.3 uNVMe-TCP VS Linux Kernel on Latency

This experiment was designed to understand latency capabilities of uNVMe-TCP
and Linux kernel in both target and initiator aspect for TCP transport. uNVMe-
TCP target was configured to run on a single core with one single NVMe-oF



138 Z. Yang

(a) QD = 32 (b) QD = 64

(c) QD = 128 (d) QD = 256

Fig. 5. uNVMe-TCP initiator on CPU core scaling with 4 KB Randread workloads

subsystem which contains a single memory based bdev (null block bdev). And
for the linux target, it configures with the equivalent behavior.

The baseline of this experiment is the kernel solution, i.e., we used kernel ini-
tiator and target on both sides. In Fig. 6(a), we compare the latency between ker-
nel target and uNVMe-TCP target through the kernel initiator. From the result,
the average round trip I/O latency of uNVMe-TCP target is up to (15.7%, 20.1%,
20.9%) improvement compared with the Linux kernel target for the three kinds
of workloads (randread, randwrite, randrw) with QD = 1 independently. Then
we just used uNVMe-TCP target on the target side, and conducted the initiator
side latency comparison shown in Fig. 6(b). The average latency of uNVMe-TCP
initiator is up to (29.4%, 24.2%, 22.4%) improvement compared with the Linux
kernel initiator for the three kinds of workloads (randread, randwrite, randrw)
independently. Finally the end to end latency comparison between kernel and
uNVMe-TCP is shown in Fig. 6(c), which directly compares the latency between
kernel and uNVMe-TCP. We can see that the average latency improvement of
uNVMe-TCP solution is up to (40.5%, 39.4%, 38.6%) for the three kinds of
workloads (randread, randwrite, randrw) independently.

From the results, it indicates that the user space solution has benefit in
latency on both target and initiator sides. Since we still leverage the kernel TCP
stack, the benefit is mostly gained from the following areas, i.e., TCP group
based socket polling strategy; lock-free mechanism on data I/O path.



uNVMe-TCP: A User Space Approach 139

(a) Latency comparison on
target side using kernel ini-
tiator

(b) Latency comparison on
initiator side using uNVMe-
TCP target

(c) End to end latency com-
parison between uNVMe-
TCP and kernel

Fig. 6. Performance comparison between uNVMe-TCP and kernel solution

(a) 4KB random read (b) 4KB random write (c) 4KB random 70% read
30% write

Fig. 7. Per CPU core performance comparison between uNVMe-TCP and kernel on
connection scaling case

4.4 uNVMe-TCP Performance with Increasing Number of
Connections

This test case was performed in order to understand throughput/latency capa-
bilities of uNVMe-TCP and Linux kernel target under increasing number of
connections per subsystem. Number of connections (or I/O queue pairs) per
NVMe-oF subsystem were varied and corresponding aggregated IOPS per CPU
core were reported. Both the targets were configured with 16 NVMe-oF sub-
systems (1 per Intel P4600) and 2 initiators were used both running I/Os to 8
separate subsystems using Kernel NVMe-oF initiator. In this experiment, SPDK
use fixed 4 CPU cores, the kernel target uses 9 to 12 CPU cores.

The test result is shown in Fig. 7, uNVMe-TCP target performs up to 2.2
times of the Linux kernel NVMe-oF target in per CPU core IOPS aspect while
running three kinds of 4 KB workloads with increasing number of connections
ranged from (1, 4, 16, 32) per NVMe-oF subsystem. We can conclude that
uNVMe-TCP is much better than kernel solution for per CPU core performance,
and it indicates that the CPU utilization is very competitive. According to our
analysis, the main gain is from our lock-free user space NVMe I/O stack in data
path, which avoids the CPU resource contention. Since in uNVMe-TCP , each
connection is managed and handled by the TCP polling group on each CPU
core, so there is no resource contentions among connections for doing the NVMe
I/O.



140 Z. Yang

4.5 uNVMe-TCP TCP Transport VS RDMA Transport

This experiment is used to compare the performance (e.g., IOPS and latency)
between RDMA and TCP transport for NVMe-oF. The NVMe-oF target was
configured with 1 subsystem which was composed of one bdev on one Intel
P4600 SSD [14]. We run Fio by one job with (I/O size = 4KB, QD = 128) on
the initiator side. For TCP transport, we can use kernel TCP stack(i.e., TCP
(kernel) in Fig. 8) and VMA [16] (Mellanox Messaging accelerator) library (i.e.,
TCP (VMA) in Fig. 8). The VMA library is used to provide the compatible
posix TCP programing API but leverages the hardware offloading features of
the Mellanox NIC, which can both improve the latency and IOPS for the TCP
workloads.

The test result is shown in Fig. 8. Without using the VMA library, the
IOPS of TCP (kernel) is only about 13.7%–33.8% of the RDMA transport
when testing the 3 kinds of workloads. While using VMA, the IOPS is greatly
increased, i.e., the TCP (VMA) is 47.9%–91.9% of the RDMA transport. For
the Latency, the TCP (kernel) is about 2.28X–7.03X of the RDMA transport by
different workloads. However, when using VMA, the latency of TCP (VMA) only
increased 1%–8% the RDMA transport. From this experiment, we conclude that
the default kernel based TCP transport is worse than RDMA transport. How-
ever, if equipped with hardware offloading technique (e.g., via VMA in our test),
the performance degradation can be reduced and close to the RDMA transport
performance especially for the latency.

Fig. 8. Performance comparison between RDMA and TCP transport

5 Related Work

iSCSI VS NVMe-oF. Previously, iSCSI [2] is well adopted by the indus-
try to provision block storage service by exporting the local devices (including
NVMe [1] SSDs) to remote. Unfortunately, there is additional overhead while
using iSCSI protocol on NVMe SSDs, i.e., NVMe → SCSI → iSCSI conversion



uNVMe-TCP: A User Space Approach 141

on sender side; iSCSI → SCSI → NVMe protocol conversion on receiver side.
However, if NVMe/TCP [3,6] is used, the protocol conversion can be eliminated.
By the way, iSCSI has extended protocol iSER [7] to offload packet data han-
dling on RDMA NICs, however there is no offload specification to device devices
defined by NVMe/TCP transport today, hoping that there is new specification
to address this issue in the future.

User Space I/O Stack Optimization for NVMe/TCP. The optimization
for NVMe/TCP can be divided into two parts, i.e., TCP network packet I/O
stack and NVMe I/O stack. There are lots of significant work [17–19] related to
zero copy in network I/O path. Compared with those research work, we focus
on how to construct a feasible zero copy I/O stack for the NVMe/TCP protocol
implementation by levering those techniques. There are many works [4,10] to
optimize storage I/O for NVMe SSDs in user space. For example, Yang et al.
[10] proves the efficiency of applying polled mode driver into NVMe SSDs. And
the main challenge is to provide a whole user I/O stack equivalent to the kernel
(such as block layer, file system layer). Currently, SPDK [4] builds user space
block device and simple file system (i.e., blobfs) relied on the user space polled
mode NVMe driver to provide asynchronous and lock-free mechanism on data
I/O path.

6 Conclusion

The design goal of NVMe over Fabrics protocol (NVMe-oF [3]) is to replace
the iSCSI protocol in order to maximally explore the high performance and
low latency capabilities of PCIe SSD while serving the remote hosts. Despite
the nearly native performance benefit provided by NVMe-oF RDMA and FC
transport, TCP transport [6] is invented to be backward compatible with the
Ethernet cards without RDMA capability. Undoubtedly, the TCP performance
is worse than RDMA transport. To address the performance and usability issue,
we propose uNVMe-TCP, which provides a user space solution to accelerate the
TCP transport relying on the whole user space NVMe I/O stack with several
novel features, e.g., lock-free mechanism on data path, zero copy, polled mode
and etc.

To evaluate the performance of uNVMe-TCP, several experiments were con-
ducted in Linux environment on standard server platforms equipped with PCIe
SSDs. Compared with the Linux kernel solution, uNVMe-TCP has average 15%
to 30% performance improvement in latency according to the workloads gen-
erated by FIO. Besides, uNVMe-TCP has advantage in per CPU core aspect
especially deployed in the target side, i.e., it is 2.2 times of the kernel for per
CPU core IOPS on average. Furthermore, we also provide some suggestions on
further optimizing the TCP transport through user space TCP/IP stack or other
hardware acceleration technique.



142 Z. Yang

References

1. NVM Express Spec 1.3. https://nvmexpress.org/wp-content/uploads/NVM-
Express-1 3d-2019.03.20-Ratified.pdf

2. IETF. Internet Small Computer Systems Interface (iSCSI). https://tools.ietf.org/
html/rfc3720

3. NVM Express over Fabrics 1.0. http://nvmexpress.org/wp-content/uploads/
NVMe over Fabrics 1 0 Gold 20160605-1.pdf

4. Yang, Z., et al.: SPDK: a development kit to build high performance storage appli-
cations. In: 2017 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), pp. 154–161, December 2017

5. SPDK github. https://github.com/spdk/spdk
6. NVMe-oF - TP 8000 TCP Transport. https://nvmexpress.org/wp-content/

uploads/NVM-Express-over-Fabrics-1.0-Ratified-TPs.zip
7. RDMA Consortium. iSCSI Extensions for RDMA (iSER) and Datamover Archi-

tecture for iSCSI (DA) Specifications
8. VMware Virtual NVMe support. https://kb.vmware.com/s/article/2147714
9. Yang, Z., Liu, C., Zhou, Y., Liu, X., Cao, G.: SPDK vhost-NVMe: accelerating

I/Os in virtual machines on NVMe SSDs via user space vhost target. In: 2018
IEEE 8th International Symposium on Cloud and Service Computing (SC2), pp.
67–76, November 2018

10. Yang, J., Minturn, D.B., Hady, F.: When poll is better than interrupt. In: Pro-
ceedings of the 10th USENIX Conference on File and Storage Technologies (2012)

11. Data Plane Development Kit. http://dpdk.org/
12. Vector Packet Processing. https://fd.io/technology/
13. Flexible I/O Tester. https://github.com/axboe/fio
14. Intel DC series P4600 2TB SSD. https://www.intel.com/content/dam/www/

public/us/en/documents/product-briefs/ssd-dc-p4600-brief.pdf
15. SPDK NVMe-oF (Target & Initiator) Performance Report Release 19.01.1.

https://dqtibwqq6s6ux.cloudfront.net/download/performance-reports/SPDK
nvmeof perf report 19.01.1.pdf

16. Mellanox Messaging Accelerator. http://www.mellanox.com/related-docs/prod
acceleration software/VMA EN.pdf

17. Shivam, P., Wyckoff, P., Panda, D.: EMP: Zero-copy OS-bypass NIC-driven giga-
bit ethernet message passing. In: SC 2001: Proceedings of the 2001 ACM/IEEE
Conference on Supercomputing, p. 49, November 2001

18. Goldenberg, D., Kagan, M., Ravid, R., Tsirkin, M.S.: Zero copy sockets direct
protocol over infiniband – preliminary implementation and performance analysis.
In: Proceedings of the 13th Symposium on High Performance Interconnects, HOTI
2005, pp. 128–137. IEEE Computer Society, Washington, DC (2005)

19. Li, Y.-C., Chiang, M.-L.: LyraNET: a zero-copy TCP/IP protocol stack for embed-
ded operating systems. In: 11th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA 2005), pp. 123–128,
August 2005

https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3d-2019.03.20-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3d-2019.03.20-Ratified.pdf
https://tools.ietf.org/html/rfc3720
https://tools.ietf.org/html/rfc3720
http://nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605-1.pdf
http://nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605-1.pdf
https://github.com/spdk/spdk
https://nvmexpress.org/wp-content/uploads/NVM-Express-over-Fabrics-1.0-Ratified-TPs.zip
https://nvmexpress.org/wp-content/uploads/NVM-Express-over-Fabrics-1.0-Ratified-TPs.zip
https://kb.vmware.com/s/article/2147714
http://dpdk.org/
https://fd.io/technology/
https://github.com/axboe/fio
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ssd-dc-p4600-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ssd-dc-p4600-brief.pdf
https://dqtibwqq6s6ux.cloudfront.net/download/performance-reports/SPDK_nvmeof_perf_report_19.01.1.pdf
https://dqtibwqq6s6ux.cloudfront.net/download/performance-reports/SPDK_nvmeof_perf_report_19.01.1.pdf
http://www.mellanox.com/related-docs/prod_acceleration_software/VMA_EN.pdf
http://www.mellanox.com/related-docs/prod_acceleration_software/VMA_EN.pdf


An Ethereum-Based Data
Synchronization Platform for Distributed

Networks

Jianru Lin1,2, Keshan Zhang1, Sicong Zhou1, Kangying Lin1, Yang Yang1,
Huawei Huang1(B) , and Kun Wang3

1 School of Data and Computer Science, Sun Yat-Sen University,
Guangzhou 510006, People’s Republic of China

huanghw28@mail.sysu.edu.cn
2 Beijing Qizhi Ruisi Information Consulting Co., Ltd/CuriosityChina,

Beijing, China
3 Department of ECE, University of California, Los Angeles, USA

Abstract. In distributed networks, the consistent network views (e.g.,
network events, network topology, and device information, etc) are crit-
ical to the network operators and service providers who aim to perform
the global network/service optimizations depending on the overall net-
work views. However, to achieve the consensus over distributed networks
is a challenge, because the consistent global network view requires to
exchange the local network view within the distributed domain con-
trollers. More critically, the network view in each controller is prone
to be falsified by malicious attackers who intend to destroy the net-
work consensus. To this end, we propose an Ethereum based consensus
protection system that can ensure the tamper-proof network-view syn-
chronization. In this paper, we present our design and implementation
of the data-synchronization system. A prototype is developed based on
the Ethereum platform. Evaluation results have demonstrated the effec-
tiveness of our prototype.

1 Introduction

In the Internet of Things (IoT) networks shown in Fig. 1, billions of devices,
such as mobile smartphones, unmanned aerial vehicles, auto-driving cars, smart
factory machines, and other devices, are generating enormous amount of data.
When the scale of distributed networks increases too large, to manage the overall
network views will incur a super heavy burden to a centralized management
entity [1]. Thus, the overall networks are usually separated into multiple domains.
For example, each access network under a cell base station can be configured as
an individual network domain. Under such distributed computing environment,
a fundamental issue is to protect the consistent network-view over all distributed
domains [2].

The network view includes (1) device information [3] such as modular param-
eters, connection quality, availability of storage and computation resource, (2)
c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 143–157, 2020.
https://doi.org/10.1007/978-3-030-38651-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_14&domain=pdf
http://orcid.org/0000-0002-7035-6446
https://doi.org/10.1007/978-3-030-38651-1_14


144 J. Lin et al.

user’s privacy [4] such as location data and usage of apps, and (3) other network
parameters [5] such as traffic congestion and link states. In a word, the network
view is critical to network operators and service providers while performing net-
work/service optimization, such as cost-efficient workload offloading decisions,
or service profit-maximization in distributed networks.

Fig. 1. The falsification attacks destroy consensus over the multi-domain distributed
networks.

As implied in Fig. 1, we need a synchronization protocol dedicated for consis-
tent network-view exchange over all distributed domains. Usually in a distributed
system, to achieve a consensus would require each peer to exchange their domain
views with their neighbors. The mutual data-exchange unavoidably consumes a
large amount of bandwidth and computing resource in distributed networks. No
matter how the consensus mechanism is implemented, to protect the consistent
network-view is not easy.

To make the situation worse, the network operators face another threat that
malicious attackers may falsify the network-view in the corrupted domain con-
trollers, aiming to destroy the overall consensus of network view. Through a
review, we find that the protection mechanism that prevents the network con-
sensus from being falsified is missing from the existing research community.
Therefore, we intend to implement a consensus protection system that enables
tamper-proof mechanism for distributed networks.

In summary, our study leads to the following major contributions.

– We study the blockchain based data-synchronization problem to address the
malicious falsification attack.

– We then implement a tamper-proof network-view protection prototype
towards consensus for distributed networks, based on Ethereum platform.



An Ethereum-Based Data Synchronization Platform 145

The reminder of the paper is organized as follows. Section 2 reviews the
related work. Section 3 introduces the design of our proposed network-view pro-
tection system, and the methodology of our implementation. Evaluation results
of our prototype is shown in Sect. 4. Finally, Sect. 5 concludes this work and
reveals future work.

2 Related Work

2.1 Management for Distributed IoT Networks

Recently, the trust-enhanced data management towards distributed IoT net-
works received a lot of attention [6–8]. For example, Qiu et al. [9] proposed
a distributed flat control plane architecture, called ParaCon, which can dis-
tribute path computation load to multiple controller instances. The consistency
and synchronization overhead are also considered in this design. Sharma et al.
[10] proposed a distributed software-defined networking (SDN) architecture for
IoT Networks, based on blockchains techniques. The proposed blockchains tech-
nique based scheme is for secure flow rule table update for IoT forwarding
devices. Xiong et al. [11] studied a mobile blockchain network for edge com-
puting, enabling IoT devices and mobile users to access resources and services
from service providers. Phemius et al. [12] presented DISCO, a distributed SDN
control plane that enables each domain controller to exchange the local-domain
view for end-to-end network services. To handle the inter-domain traffic, Lin
et al. [13] proposed a WE-Bridge mechanism, which can help SDN network
operators cooperate across multiple administrative domains. Based on fog com-
puting, SDN, and blockchain, Sharma et al. [14] proposed a distributed cloud
architecture architecture to meet the design principles required to manage the
raw data streams originated from IoT devices.

2.2 Consensus Protection

In the background of software-defined industrial Internet of Things, Qiu et al. [3]
proposed a blockchain-based consensus protocol to cope with the collection and
synchronization of network views between SDN controllers. Using this protocol,
authors studied a joint optimization taking the view exchange, access control,
and resource allocation into account. Zou et al. [4] proposed a consensus protocol
called “Proof-of-Trust” (PoT) consensus for the crowdsourcing services. In order
to address the loss of control over data, protect privacy and data sovereignty for
IoT systems, Yin et al. [5] proposed HyperNet, which is a decentralized trusted
networking and computing paradigm based on blockchain technique.

2.3 Unique Features of Our Work

Through the literature review, we find that the existing studies mainly include
the following topics: (1) design synchronization protocol, (2) design secure data



146 J. Lin et al.

update approaches for IoT devices; and (3) propose blockchain based architecture
for distributed computing.

Compared with the existing work, our major contribution is that we imple-
ment a systematic prototype for the network-view management system for dis-
tributed networks based on the Ethereum platform.

3 System Design and Implementation

In this section, we elaborate the proposed system design and implementation
based on blockchain theory.

3.1 Preliminary

As a promising technique to achieve decentralized consensus, blockchain has
been successfully applied into digital currency, e.g., bitcoin, for serving as a pub-
lic ledger for transactions. Its secure design for supporting a distributed com-
puting system with high fault tolerance is attracting wide attention all over the
world. Blockchain will play an important role for secure decentralization in such
emerging fields as Internet of Things, cyber physical systems, edge computing,
social networking, crowdsourcing and next generation wireless communications,
and even many other fields. In this paper, we view Blockchain as a promis-
ing technique for our tamper-proof and distributed network-view management
system. By exploiting the Blockchain based technique, we intend to guarantee
the strong consistency for distributed networks, and prevent from the malicious
network-view falsification attacks.

We then implement our prototype using the Ethereum, which is an open
source blockchain based platform.

3.2 Raw-Data Storage

As shown in Fig. 1, suppose that the raw data generated from the network devices
is stored in the local database. The reason behind this data storage design is that
the large-amount of raw data is generated in each local network at real time.
Therefore, it is impossible and inefficient to storage the massive amount of data
in each domain controller. The natural way is to store these data in a dedicated
local database. The domain controller can access the database using the index
of each item of raw data. That is, only the data-indices are needed to manage
in the domain controllers.

3.3 Attack Model

In this paper, we propose a blockchain based network-view management sys-
tem towards a particular attack model, in which the malicious attackers aim to
destroy the network-wide consensus over all domain networks. We consider that
the raw data located in each domain controller could be possibly falsified by the
attackers before data-synchronization. Thus, the other peers (other domain con-
trollers) will receive the falsified data from the domain controller under attack.



An Ethereum-Based Data Synchronization Platform 147

3.4 Implementation Methodology

In this part, we explain our implementation methodology. Our system mainly
consists of smart contracts and a data-synchronization platform based on
Ethereum.

Manager

GlobalData

Create

Manager

GlobalData Bucket A

Invoke
addController()

Manager

GlobalData
Bucket A

Data Index A1

Data Index A2

Data Index A3Invoke 
addController()

again

Bucket B

...

...

Data-index bucket for the
newly added controller

GlobalData is a trusted data-proxy
for all domain controllers

Store
data-index

Smart Contract

Fig. 2. The initial operations and data structure of the smart contract.

Algorithm 1. Primary smart contract GlobalData
1: while system is running do
2: constructor():
3: Initialize an empty listControllers
4: Initialize an empty Bucket of each controller
5: addController(controller c):
6: A bucket of controller c ← new Bucket()
7: removeController(controller c):
8: Delete c from listControllers
9: writeIndex(key, hash):

10: bkt ← Bucket(operator’s address)
11: Invoke bkt.write(key, hash)
12: readIndex(controller c, key):
13: Output: hash of the key
14: bkt ← Bucket(operator’s address)
15: hash ← bkt.read(key)
16: end while

Design of Smart Contract. We first create a smart contract named Glob-
alData, which is a trusted data-proxy for all domain controllers. Because it is
designed to enable the authentication of write- and read- operations towards
domain network view. From the raw-data storage strategy described in Sect. 3.2,
we know that only the data-indices are necessary to be managed by each domain
controller.



148 J. Lin et al.

Foundation of Data Interaction. As shown in Fig. 2, a network Manager
can create the aforementioned smart contract GlobalData at the very begin-
ning. Then, Algorithm1 presents the pseudo code of smart contract GlobalData.
We can see that the manager can create an individual account in Ethereum
for each controller invoking the addController() function. Algorithm2,
i.e., Bucket, is an auxiliary smart contract to the primary contract GlobalData.
Bucket is in fact a data-structure used to store the data-indices for the newly
created controller account. It is automatically generated and attached to a
controller account. In our design, a Bucket directly connects to a list of data
indices. Thus, the smart contract GlobalData can read and write the data indices
through the Bucket instance it holds. In consequence, once the manager creates
a new account for a new domain controller, the smart contract GlobalData will
create a dedicated Bucket contract instance for the new controller account.

Algorithm 2. Auxiliary smart contract Bucket
1: constructor():
2: Initialize an empty listKeyIndex
3: write(key, hash):
4: An index item it ← 〈key, hash〉
5: listKeyIndex ← it
6: read(key):
7: Output: hash of the key
8: hash ← listKeyIndex[key].hash

GlobalData

WriteController A Bucket A

WriteController A Write Bucket A

Bucket is not accessed by
a controller directly

Fig. 3. The data-access proxy of each domain controller.

Data-Access Proxy. In particular, according to our design, a Bucket instance
is not able to be accessed by controller1 account directly. Because we would
like GlobalData to work as a trusted third-party data access proxy for each
domain controller. The details are illustrated by Fig. 3, Algorithms 1 and 2, where
we see that a controller account indirectly manages the data-access through
the medium GlobalData. For example, any controller can write the keys of their
local raw data items to the smart contract GlobalData by invoking the func-
tion writeIndex(key, hash). On the other hand, a controller can request
to download the hash of a data index that points to an item of raw data stored
in another regional controller, through the function readIndex(controller
c, key). However, the 〈key, hash〉 pairs are not directly managed by Global-
Data. The auxiliary smart contract Bucket handles this job through its functions
write(key, hash) and read(key).



An Ethereum-Based Data Synchronization Platform 149

Controller A

Step (1): Report
domain data (Raw)

Devices in
domain A

GlobalData Bucket for A
Data Index A1
(Key & Hash)

Data Index A2
(Key & Hash)

Step (2): Save raw data
& Generate Key & Hash

Step (3) 
Write key & hash

Data Journey:
from generation to safely being protected

...

Smart Contract

Step (4) 
Store key & hash

Fig. 4. The journey of the protected data from generation to being stored in a Bucket.

Controller A Controller B
(e) Raw data

(d) Index of a raw data

(a) Key & Hash (b) Key of a 
desired data

(c) Index & Hash of
the desired data

Smart Contract

GlobalData

Raw data
with key

(f) Verify the raw data
 with key

Fig. 5. controller2 (i.e., Controller B) requires a raw data item from controller1
(i.e., Controller A).

This design concern can not only realize the blockchain based paradigm, the
management complexity in the domain controller side can be also much reduced.
Thus, the domain controllers only need to protect the raw data, and send the
data indices as well as their hash values to the GlobalData.

Data-Journey Under the Proposed System. From generation to being
safely protected by a Bucket, the journey of the data under protection is pre-
sented as Fig. 4. The holistic procedure includes at the first step, the devices in
each domain periodically report their raw data to the domain controller. In step
(2), controller will save the raw data and generate the 〈key, hash〉 pair, which is
then written to the smart contract GlobalData in Step (3). Finally, in Step (4),
the data indices of each pair will be stored in a Bucket instance dedicated for
each controller.

Data Synchronization. Under the proposed system, the data synchronization
procedure is presented in Fig. 5. As preparation, the raw data and their keys are
stored in the local database, which connects to its domain controller directly.
Then, the data-synchronization can be explained by the following 5 steps.



150 J. Lin et al.

– In step (a), the domain controller generates the Key & Hash pairs and write
them to the smart contract GlobalData, by paying a certain Ethereum coins.

– In step (b) When another controller2 intends to download the raw data in
domain A via controller1, it needs to send the public key of the desired data
to the smart contract GlobalData with paying a certain Ethereum coins.

– The smart contract will return the Hash of the desired data, in step (c). The
returned Hash can be exploited to verify the raw data from domain A.

– In step (d), with the Key, controller2 can now ask for the desired data from
controller1.

– Finally in step (e), controller1 find the target data from its local database,
and allow the raw data to be downloaded by controller2.

Fig. 6. Launch 4 remote hosts in Google’s cloud located at Hong Kong.

Fig. 7. The Genesis block of our system.



An Ethereum-Based Data Synchronization Platform 151

Till here, the blockchain based network-view synchronization protocol has
been depicted through the elaboration of Design of Smart contract, Founda-
tion of Data Interaction, Data-Access Proxy, Data-Journey under the proposed
System and Data Synchronization. Next, we show the security of the proposed
approach by theoretical analysis.

(a) Create an account for manager

(b) Create an account for controller1

Fig. 8. Create accounts for manager and a controller.

3.5 Security Analysis of Our System

We have the following remark that shows the security of the proposed approach.

Remark: The proposed system is able to successfully address the attack model
described in Sect. 3.3.

As described in the specification of Data Synchronization, controller2
can acquire the hash of the desired data from the smart contract GlobalData.
This hash cannot be falsified in any way, because it is stored in Ethereum.
When controller1 receives a search key of an item of data, it will return
the raw data from its local database to the destination, i.e., controller2.
Suppose that this item of raw data has been falsified by an attacker before
the synchronization by any other domain controllers. The verification in other
controllers cannot be successful, using the acquired hash from smart contract
GlobalData. Thus, this attack will be acknowledged. The synchronized data will
be discarded accordingly. Therefore, the claim in this remark holds.

4 Performance Evaluation

4.1 Evaluation Methodology Based on a Remote Cluster

Experiment Settings. As shown in Fig. 6, we rent 4 remote google-cloud
virtual machines to build a private Ethereum platform. The four machines
located at Hong Kong are named manager, controller1, controller2,
and controller3. Only the manager can create other mining nodes and
deploy a smart contract. Each server executes the Ethereum client named Geth
(https://www.ethereum.org/developers/). After finishing creating accounts for

https://www.ethereum.org/developers/


152 J. Lin et al.

the three controllers shown in Fig. 8 and generating the first block of the system
Genesis block shown in Fig. 7, all four nodes (for example, Fig. 9 shows the
node information of the manager) begin to mine blocks. Figure 10 illustrates the
money mined by all nodes. For example, manager has 4.69375e + 20 wei when
mining only in one hour. With the money mined, all nodes can pay the charge of
transactions, including deploying a smart contract or adding a controller by the
manager, writing data into the data-synchronization system by and a controller
and reading data from the system by other controllers.

Fig. 9. The node information of manager. Note that, the other controller nodes look
similar to this one, only the IP addresses, enode, enr, id, ip are unique to each node.

Smart Contract. After deploying smart contracts in Ethereum platform, we
first show how to create accounts for the manager and each controller. Then,
we present how to achieve the data synchronization under the protection of
blockchain technique.

There are some terminologies showing in the output panel of Ethereum soft-
ware. To help understand those terminologies, we explain the important ones of
them as follows, before the demonstration of prototype.

– Status: the execution result of a transaction.
– Transaction hash: the hash of the current transaction.
– From: the party who launches this transaction.



An Ethereum-Based Data Synchronization Platform 153

– To: the target of this transaction.
– Gas: maximum expense that allows to invoke the smart contract.
– Transaction cost: expense of this transaction, measured by gas.
– Execution cost: expense of this execution, measured by gas.
– Hash: same with Transaction hash.
– Decoded input: input parameters transmitted from the initiator to the

target of a transaction.
– Decoded output: output of a transaction.

To identify each peer in the evaluation results, we give the mapping infor-
mation between each peer and its Ethereum account in Table 1.

Fig. 10. The token mined by all nodes (controllers and manager).

Fig. 11. controller2 reads the hash of a data-index from GlobalData.

Figure 7 shows the genesis block of our system. In this figure, the attribute
“difficulty” is critical since it decides the difficulty of mining from genesis block.
In order to accelerate the mining speed in our system, we are now using a slightly
small difficulty.

Table 1. Mapping between each peer and its Ethereum account

Role Account

manager 0x498f91d338432b60bc31e39b5ec3af5792a09f93

controller1 0xf2c682e0b66028c335b12478288399fe2a37dcf7

controller2 0x73d34be674b7d32f8a19b65949dae18d585b46c7



154 J. Lin et al.

(a) Block-generation speed vs timestamp (b) Difficult vs timestamp

(c) CDF of block generation intervals.

Fig. 12. Performance of the prototype deployed on the remote google cloud.

(a) A picture file for sharing. (b) File-falsification is detected.

Fig. 13. Results of file-tamper detection.



An Ethereum-Based Data Synchronization Platform 155

4.2 A Case-Study of the Proposed Prototype

In the following, we will demonstrate the a case study under a prototype of
the proposed system based on the aforementioned methodology. A case study is
illustrated by the interactions of manager, controllers 1 and 2.

Manager with an address 0x498f91d· · ·92a09f93 creates the smart con-
tract GlobalData with a transaction address 0x3845e56· · ·c40441a. This suc-
cessful transaction costs 1670258 gas and with a size 6808.

Next, manager adds controller1, which owns an address 0xf2c682e0· · ·
a37dcf7, by invoking the addController() in smart contract GlobalData.
This operation incurs smaller transaction cost and execution cost than the pre-
vious operation does.

With the first three steps, the data can be synchronized between con-
trollers 1 and 2. The controller1 then writes an index of its local
data as "test-key-1" to the smart contract GlobalData by invoking the
writeIndex(key, hash) function. This index-writing operation spends
1000000 gas as the transaction cost. In particular, when the "test-key-1"
is stored in GolbalData, a unit256 hash is created to form a 〈key, hash〉 pair
in the data structure of controller1, i.e., Bucket A.

Finally, in Fig. 11, we show the results of reading the data synchronized by
controller1 from controller2. First, we implement the data-read func-
tion based on a script read-index.js, to enable controller2 read the data
from the smart contract GlobalData. The results return 1, which indicates that
controller2 successfully has obtained the data string "test-key-1" from
the GlobalData by invoking the readIndex(key) function.

From the data interaction among controllers 1, 2 and smart contract Glob-
alData, we can observe the tamper-proof mechanism of the proposed system.
Any other more complicated application scenarios can be developed following
the demonstrated sample case study.

4.3 Performance Analysis of the Proposed Prototype

Through Fig. 12, we evaluate the performance of the private-chain Ethereum-
based data synchronizing system. For example, Fig. 12(a) shows the generation
speed of blocks in this system. We can see that there are random perturbations
when generating new blocks, if we zoom in a fine-grained time span from times-
tamp 406500 to 407100. Figure 12(b) illustrates the relationship between mining
difficulty vs timestamp: the difficulties are dynamically tuned at each time slot.
This is to make the block generation speed relatively stable within a tolera-
ble range. Figure 12(c) displays the CDF (cumulative distribution function) of
block-generation intervals of this system. It shows that 80% and 95% blocks are
generated within 20 and 40 s, respectively.

We then test the file-falsification detection function of our prototype. The
results are shown in Fig. 13. Note that, Fig. 13(a) is the file shared by a member,
i.e., a domain controller, while Fig. 13(b) illustrates the results warned by our



156 J. Lin et al.

prototype, which detects that the original file was tampered. Thus, we can see
that the proposed prototype realizes the file tamper-proof function.

5 Conclusion and Future Work

In this paper, we present the design and implementation of the proposed network-
view consensus protection system. Based on the Ethereum platform, we imple-
ment a prototype. System evaluation is finally demonstrated to show the effec-
tiveness of our prototype. More sophisticated implementation and analysis will
be conducted based on our prototype.

Acknowledgement. The work described in this paper was supported by the National
Natural Science Foundation of China (61902445, 61872195, 61572262), partially by the
Natural Science Foundation of Guangdong (2018B030312002), partially by the Funda-
mental Research Funds for the Central Universities of China under Grant 19lgpy222,
and partially by Natural Science Foundation of Guangdong Province of China under
Grant 2019A1515011798.

References

1. Xu, C., Wang, K., Guo, M.: Intelligent resource management in blockchain-based
cloud datacenters. IEEE Cloud Comput. 4(6), 50–59 (2017)

2. Xu, C., Wang, K., Li, P., Guo, S., Luo, J., Ye, B., Guo, M.: Making big data open in
edges: a resource-efficient blockchain-based approach. IEEE Trans. Parallel Distrib.
Syst. 30(4), 870–882 (2018)

3. Qiu, C., Yu, F.R., Yao, H., Jiang, C., Xu, F., Zhao, C.: Blockchain-based software-
defined industrial internet of things: a dueling deep q-learning approach. IEEE IoT
J. 6(3), 4627–4639 (2019)

4. Zou, J., Ye, B., Qu, L., Wang, Y., Orgun, M.A., Li, L.: A proof-of-trust consensus
protocol for enhancing accountability in crowdsourcing services. IEEE Trans. Serv.
Comput. 12(3), 429–445 (2019)

5. Yin, H., Guo, D., Wang, K., Jiang, Z., Lyu, Y., Xing, J.: Hyperconnected network:
a decentralized trusted computing and networking paradigm. IEEE Netw. 32(1),
112–117 (2018)

6. Liu, Y., Wang, K., Lin, Y., Xu, W.: Lightchain: a lightweight blockchain system
for industrial internet of things. IEEE Trans. Ind. Inf. 15, 3571–3581 (2019)

7. Li, H., Wang, K., Miyazaki, T., Xu, C., Guo, S., Sun, Y.: Trust-enhanced content
delivery in blockchain-based information-centric networking. IEEE Netw. 3, 183–
189 (2019)

8. Wu, M., Wang, K., Cai, X., Guo, S., Guo, M., Rong, C.: A comprehensive survey of
blockchain: from theory to IoT applications and beyond. IEEE IoT J. 6, 8114–8151
(2019)

9. Qiu, K., Huang, S., Xu, Q., Zhao, J., Wang, X., Secci, S.: Paracon: a parallel control
plane for scaling up path computation in sdn. IEEE Trans. Netw. Serv. Manag.
14(4), 978–990 (2017)

10. Sharma, P.K., Singh, S., Jeong, Y.-S., Park, J.H.: DistBlockNet: a distributed
blockchains-based secure sdn architecture for iot networks. IEEE Commun. Mag.
55(9), 78–85 (2017)



An Ethereum-Based Data Synchronization Platform 157

11. Xiong, Z., Zhang, Y., Niyato, D., Wang, P., Han, Z.: When mobile blockchain
meets edge computing. IEEE Commun. Mag. 56(8), 33–39 (2018)

12. Phemius, K., Bouet, M., Leguay, J.: Disco: distributed multi-domain SDN con-
trollers. In: IEEE Network Operations and Management Symposium (NOMS), pp.
1–8 (2014)

13. Lin, P., et al.: A west-east bridge based SDN inter-domain testbed. IEEE Commun.
Mag. 53(2), 190–197 (2015)

14. Sharma, P.K., Chen, M.-Y., Park, J.H.: A software defined fog node based dis-
tributed blockchain cloud architecture for iot. IEEE Access 6, 115–124 (2018)



Distributed Logging Service with
Distributed Hash Table for Cloud

Takayuki Kushida(B)

School of Computer Science, Tokyo University of Technology,
Katakura, Hachouji, Tokyo 192-0914, Japan

kushida@acm.org

Abstract. The logging service on cloud is a critical component for
administrators who maintain applications and solutions for end users.
The service is usually a central server deployment to accept log mes-
sages from leaf computing nodes. Since several leaf computing nodes and
their usages are dynamically changed for applications and solutions, the
amount of generated log messages is also changed. This paper proposes
the architecture and design for Distributed Logging Service (DLS) which
can distribute processing powers and storage resources to leaf comput-
ing nodes with Distributed Hash Table (DHT). Those nodes generate log
messages and also have DLS components locally. The evaluation results
with the emulated environment show the feasibility of DLS with the
scalability.

Keywords: Distributed logging · Logging service · Cloud
management · Distributed Hash Table

1 Introduction

Cloud has been widely adopted in IT industry since cloud services could solve
several issues of IT automation in production systems. One of cloud advantages
is to acquire computing resources with user’s requests as on-demand basis [18].
As the number of user’s requests for cloud is changed as on-demand, the con-
sumed computing resources are increased and decreased with those requests. In
addition, the serverless computing which also dynamically manages computing
resources has been emerged on cloud native environments [14].

On the other hand, the logging service on systems management is critical for
production systems in enterprises, and applications in enterprises are migrated to
microservice [3]. The logging service on cloud usually requires the dedicated CPU
and storage resources to store log messages and search log messages. Therefore,
the logging service has following challenges and issues which will be fixed for
production systems in enterprises.

1. Critical backend service: Logging service is one of critical management ser-
vices for production systems in enterprises. The service is always used for

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 158–173, 2020.
https://doi.org/10.1007/978-3-030-38651-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_15


Distributed Logging Service with Distributed Hash Table for Cloud 159

the operation and management [10]. The latest status is collected into the
management system since the production system has to be always up and
running without any service disruption.

2. Central Logging Service (CLS): The logging service consists of several central
servers on the deployment since it is based on the central model. All log
messages are forwarded to the central servers, and they are processed on
them. As the single point failure for CLS can be avoided, it is high availability
and has a good scalability for both incoming log messages and user’s access.

3. Dynamically changing environments: In early days of IT infrastructure,
resource requirements for the logging service were static since the configura-
tions of traditional data centers were fixed. As cloud is the dynamic changed
computing environment, the estimation of computing and storage resources is
one of major challenges for the architecture design. In addition, the resource
requirement for the logging service is also changing and it’s hard to estimate
the resource allocation for the logging service.

4. Dedicated CPU and storage resources: Dedicated CPU resources is required
although it is the backend management service [17]. Enough CPU resources
can process those log messages for CLS. In addition, dedicated disk storages
to store a large amount of log messages are also required in the central servers.

A new architecture is required to fix those issues and challenges for the
logging service. This paper proposes Distributed Logging Service (DLS) with the
distributed model in Fig. 1. Figure 2 shows the architecture of DLS for solutions
and applications on cloud. It adopts the distributed deployment model instead
of the traditional central model for the logging service.

The paper consists following sections. The section of “Related Work”
describes the related studies for management services which the logging service
is included in. The section of “Architecture” describes the architecture and the
model of the logging service on cloud. The section of “Design of Distributed Log-
ging Service” describes the required functions and the DLS design. The section
of “Evaluation” describes the evaluation and its results for DLS. The section of
“Discussions” describes the issues and challenges for this study. The section of
“Conclusion” describes the summary and concluding remarks.

2 Related Work

Related studies are described in this section There are two categories such as
Central management systems and Distributed Hash Table.

2.1 Central Management Systems

Apache Hadoop and Spark are software stacks which can process the large
amount of data [23,29], but they are also the central management systems. The
well-known software product for the log management is ElasticSearch which is
based on the central key-value database [10]. The architecture design is a cen-
tral server which has the central database to search log messages. The central



160 T. Kushida

Fig. 1. Central model and distributed model

architecture model for ElasticSearch could be usually applied to usual produc-
tion systems on both cloud and on-premise data center. ElasticSearch, Logstash
and Kibana (ELK) are a typical log management software suite for the central
architecture model [1,2]. It collects all log messages from leaf computing nodes
since log agents on leaf computing nodes are forwarding to the central servers for
ElasticSearch. All search and analysis processes are done in the central servers.

LogDNA is a cloud service provider for the logging service. Once the LogDNA
agents are installed on leaf computing nodes, log messages on leaf computing
nodes are forwarded to LogDNA service, and those log messages are stored in the
central storage. Users subscribe the logging services and install LogDNA agent.
The operational dashboard from LogDNA is provided to search, analyze and
report those log messages [7]. It is also suitable for Kubernetes/Docker containers
to see log messages for the operation and management on the environments. It is
a central architecture model for logging service, but all related issues for logging
service are managed by LogDNA, log management as a service.

The design of the monitoring system (PCMONS) for private cloud monitoring
was proposed with the implementation. Use case scenario with the architecture
and the application was described in the paper [5]. It is a centralized model for
the monitoring system which receives all monitoring data on the central server.

The integrated management system for log messages from distributed sensors
was proposed as well as servers and network devices [12]. It also proposes a
cross-processing system for several kinds of log messages. It aims to provide a
flexible method to get access to distributed log messages using log attributes
and values. Although it proposes the distributed management for log messages,
the prototype of the distributed processing system is implemented with the local
and the central fluentd manages the log messages. Therefore, the architecture is
still the central server model.

Log messages are managed on Kubernetes containers and are forwarded
through stdout/stderr to outside of the container environment. The installed
logging-agent-pod in Kubernetes can forward log messages to the logging ser-
vices [6]. Therefore, all log messages can be processed on CLS. Since dockers
on Kubernetes environment are rather small than ordinal VMs, many docker



Distributed Logging Service with Distributed Hash Table for Cloud 161

containers can be created and are generating many log messages in overall even
if those containers are rather small system.

The robust and scalable technology for distributed monitoring, management
and data mining have been proposed as Astrolabe [28]. It collects a large-scale
system state, permitting rapid updates and providing on-the-fly attribute aggre-
gation.

The distributed management architecture was proposed and its system per-
formance was evaluated [13]. The basic idea is to introduce multiple cell heads
in front of the management server. The management workload can be managed
on those cell heads. Although the distributed management is proposed, it is still
a limited distributed management.

2.2 Distributed Hash Table (DHT)

DHT has been used to support distributed contents management [19]. One of
DHT implementations, Chord provides to support just one operation: given a
key, it maps the key onto a node. Data location can be easily implemented on
top of Chord by associating the key with each data item, and storing the key/-
data pair at the node to which the key maps [25]. It provides load balance,
decentralized, scalability and availability. In addition, Chord has several char-
acters for distributed operation: 1. Node Joins and Stabilizations, 2. Impact of
Node Joins on Lookups, 3. Failure and Replication, 4. Voluntary Node Depar-
tures. The consistency caching to map index to data contents is used for fault
tolerance [15].

The Cassandra project is one of DHS implementations [16]. It is a one hop
of DHT and eventually consistent with tunable trade-offs between consistency
and latency. In addition, it is more than a simple DHT because the values are
not opaque, but they are structured into columns and columnFamilies, which
are indexed in Cassandra.

The performance evaluation was reported on the implementation of
DHash++ [8]. In this study, measurements with 425 server instances running
hosts show that the latency optimizations for DHT++ can reduce the processing
time by a factor of two. The time is required to locate and fetch data. In addition,
the throughput optimizations result in a sustainable bulk read throughput which
is related to the number of DHT hosts times the capacity of the slowest access
link. Since the results of performance evaluation for DHT++ implementation
can be referred to the performance aspect of DHT.

UsenetDHT is a service aiming to reduce the total storage dedicated to
Usenet by storing all articles in a shared DHT [24]. The study describes the
design and implementation of UsenetDHT. It allows a set of cooperating sites to
keep a shared, distributed copied articles. It uses DHT that provides shared stor-
age of those Usenet articles across the sites. This study utilizes shared storage
for those articles with DHT.

Amazon Dynamo is highly available key-store database [9]. It is provided as
Platform as a Service (PaaS) from Amazon Web Service. As it is characterized
as a zero-hop DHT, each node maintains enough routing information locally to



162 T. Kushida

Fig. 2. Architecture of DLS

route a request to the appropriate node directly. Bigtable is a distributed storage
system to manage structured data that is designed to scale to a very large size
[4]. It is a central service for end users and a good evidence for the scalable
DHT implementation on the local server. Although they are not focused on the
distributed logging service on cloud, their studies and implementations are quite
valuable for the proposed architecture and design.

3 Architecture

This section describes the architecture of the logging service for the central and
distributed model.

3.1 Requirements

The architecture decision for the central and distributed model is done with the
investigations.

Two major functions are required for the logging service in general. They are
“Store” and “Retrieve” functions for those log messages. The “Store” function
is simply to store them in the repository without a longer delay. The “Retrieve”
function is to get them with the specified condition of the search. It retrieves
log messages which can be used for different kinds of activities which are in
development, test and operation phases.

The applications and solutions need to follow the dynamically changing com-
puting environment. It means that the flow of log messages from leaf computing
nodes has often a large amount of data for the logging service. It is accepted and
processed on the logging service.

The consumption of CPU and storage resources is minimized in general.
Logging service needs a lot of dedicated CPU resource to create the index and
search the specific log message in the repository. In addition, an amount of



Distributed Logging Service with Distributed Hash Table for Cloud 163

storage to store log messages is required. The efficient resource management for
both CPU and storage resource can be considered.

Although the logging service is the backend management service, it is critical
for the production system. Because the service provides any past event with log
messages. The systems management can find the failure event and the unusual
message among them and understand what was happened in the past.

3.2 Central and Distributed Model

Figure 1 shows “Central Server Model” (CSM) and “Distributed Server Model”
(DSM) for the logging services on the central server. The CSM accepts and
processes all log messages The left side of Fig. 1 is the CSM. In the left side of
Fig. 1, “Leaf Computing Nodes” send log messages to “Central Node” which is
the logging service. Once Log messages are received on the logging service, they
are processed to put the index and stored in the storage. User can search and
retrieve the log messages through the dashboard on the logging service in the
left side of Fig. 1.

The operation and management functions including the logging service usu-
ally require the central servers which collect log messages from leaf computing
nodes. When a large amount of logging messages is generated and forwarded to
the central servers, the large amount of CPU and storage resources are required
to process and store them on time. In addition, as the peak flow of log message
is supported, the idle or unused resources is reserved for the logging service on
cloud. The systems management function is in general a kind of overhead func-
tion for the services even when it is mandatory required for the development,
test and operation phases.

On the other hand, the DSM can be processed on those distributed nodes.
The workload can be assigned to distributed nodes instead of a large central
server. If there is additional overhead for DSM on the logging service, the feasi-
bility for the logging service is investigated to support the logging service with
DSM.

DSM for logging services can be considered since several drawbacks for CSM
can be fixed [27]. The right side in Fig. 1 shows the DSM for the logging service.
Those log messages are forwarded and stored on distributed nodes in this model
instead of collecting the central server. DLS provides the processing service for
log messages on those distributed nodes. It means that there is no central server
to store those log messages and search the specific log message.

The management server for the logging service and the access point which
supports API can be on distributed servers. They act as a part of the logging
service instead of assigning to the dedicated central server which processes the
transactions for the logging service.

3.3 DHT

DHT is a solid technology which can share a large amount of data with
the robustness and availability on distributed nodes. Chord is one of DHT



164 T. Kushida

implementations [25]. It manages the hash table on the distributed nodes. Their
data entries are stored into the distributed nodes with the hash table. There are
several advantages for DHT: 1. There is a resilience to join and leave networks.
DHT can also support the network changes. 2. Hashed data can be automatically
distributed to DHT nodes. Since stored data are replicated across nodes, data
loss can be avoided with the lost node. The removal of any single node doesn’t
have an impact at all.

On the other hand, DHT has several considered items: 1. There is no native
support for events or triggers. 2. It doesn’t provide absolute guarantees on data
consistency and integrity. 3. It isn’t efficient for group queries, range queries or
other kinds of data lookups. 4. There is no authority in the setup. Therefore,
any node must cooperate among them in case certain decisions need to be made.
5. The time range of lookup for data is O(log(n)). It may take several seconds,
depending on real location, the number of nodes and those latencies among
nodes. As those considered items can be managed, DHT can be applied to the
logging service.

3.4 Architecture of DLS

Figure 2 shows the architecture of DLS. Each server has the process for “Applica-
tion Software” and “Logging Component”. Application software on each server
provides the solution services to end users. They also generate a lot of log mes-
sages which are stored in local files. The logging component on each server is
deployed on the same server where the application software is running. It finds
and retrieves those log messages for the request with API. In Fig. 2, those logging
components are interconnected among leaf computing nodes.

In general, after the logging service is deployed on the cloud environments,
service owner or user require to set up the log agent which collects and forwards
log messages for their applications to the central log server.

Therefore, the central server for the logging service require enough computing
resources such as CPU, memory and disk since the central server processes a
lot of log messages which are forwarded by leaf computing nodes. Although the
logging service on cloud is critical for the operation and management, the service
is only backend operation function.

3.5 Use Case Scenarios for Retrieval and Alert Notification

Figure 4 shows the example of log messages which are generated by Web server
on the operation phase. They are forbidden and error messages with date, time
and IP address. Log messages with the same and similar format are stored in
the logging service.

Once log messages are stored, they are searched and retrieved from the repos-
itory. If the specified server on the production system has error as the example of
log messages in Fig. 4, the administrator starts investigating to know two aspects
briefly: 1. One is to know the current status of the specific server. The current



Distributed Logging Service with Distributed Hash Table for Cloud 165

Fig. 3. Local DHT process

Fig. 4. Example of log messages

status can be investigated with the monitoring and logging service. 2. Another
is to know the time when the specified server had error or was down.

In addition, if the failure is happened in the operation, log messages include
the failure event. Those events are linked to generate the alert notification. Alert
notifications is usually linked to failure for system/service, unusual status of the
system or security incident. When the alert notification is generated with log
messages, operators and administrators review the specific log message for the
alert notification and execute the recovery process to solve the incident.

If the unusual failure event on the server is detected in those log messages, the
alert notification is generated to notify to the administrator. The administrator
fixes the issue and recover the system immediately. In addition, he/she must
check those log messages and solve the root cause for the issue.

4 Design of Distributed Logging Service

This section describes the design of DLS for production usages.

4.1 Adoption of DHT and Local Process

As DHT can process log messages on distributed nodes, each node can store
and retrieve them without the central server. Every node generates log messages



166 T. Kushida

Fig. 5. DHT - Chord

which are stored into local log files at first. Those log messages are accumulated
in local log files. The local agent forwards those log messages to DHT. Therefore,
log messages are stored into the table in DHT.

The hash table is provided to get keys and values. Both keyes and values are
defined for DHT. Keys are timestamps and type of log messages, values are the
message itself. The definition can reduce the size of DHT and has the separation
between the index for search and actual message contents for the retrieval.

Figure 5 shows that DHT manages logging messages for DLS. Once the query
for DHT are sent to find log messages in DHT [11], it can be retrieved for the
search results in DHT since DHT keeps those log messages.

Figure 3 shows the process on the local host which is one of DHT nodes.
Software component in local host stores log messages to the storage. Each local
host has DHT component which can accept log messages which are locally gen-
erated. They are submitted to the local part of DHT. DHT starts sharing those
log messages with other DHT nodes.

DLS can also check them whether the alert notification is generated. If it’s
not required, the log messages are submitted to DHT. Once they are stored in
DHT, search and retrieval process will get the specific log message from DHT.
The administrator can search and retrieve it for the further analysis of the infras-
tructure issues with the operation dashboard. On the other hand, CSM for the
logging service adopts to install the log agent which forwards log messages to
the central server.



Distributed Logging Service with Distributed Hash Table for Cloud 167

4.2 Lifetime for Log Messages

Log messages from leaf computing nodes are locally stored in DHT. Since they
are created with various kinds of activities in those leaf computing nodes and
forwarded to DHT in DLS, the storage sizes for DHT gets are growing so fast.
Therefore, the expiration time for those log messages is configured so that the
total size of local storage can be managed.

Old entries for log messages are simply moved to inexpensive storage from
DHT once the expiration time is reached. After old ones are moved to the inex-
pensive repository and it takes sometime later, the oldest ones in the repository
are permanently removed from DHT.

4.3 Access Control

Log messages are kept under the access control. DHT contains the hash table to
store and retrieve values with keys. It is deployed to those multiple nodes. Since
different users and processes get to access to DLS, local authentication for them
is required to valid access to DLS.

The first item (storing) for access control is to store log messages which
come from leaf computing nodes. The access control is also required to store log
messages. Since local log messages are stored in the system, the process is done
by the local log agent only. The second item (retrieving) for access control is to
retrieve log messages for analysis on systems management. The method is based
on API, and it provides access control when log messages are retrieved.

Authentication module of DLS is shown in Fig. 3. In Fig. 3, user authentica-
tion can be applied for access control. Authentication is to protect log messages
from invalid access.

In other study, there is an authentication method called Hash-based Dis-
tributed Authentication Method (HDAM). It realizes a decentralized efficient
mutual authentication mechanism for each pair of nodes [26]. As the authenti-
cation service on cloud can be relied on, the paper has adopted as usual authen-
tication service.

5 Evaluation

This section describes the evaluation for the proposed architecture and design.
The performance test on the emulated environment has been done to evalu-
ate the deployment for DLS. The scalability with a reasonable performance is
achieved with the proposed deployment for DLS. As the number of DHT nodes
is increased, the capability to process log messages is evaluated. For example,
it is examined how much the performance to retrieve log messages on DHT is
changed.



168 T. Kushida

Fig. 6. Typical DLS setup on evaluations

5.1 Emulation Toolkit

The emulated environment is constructed with the DHT software emulator called
OverlayWeaver [21,22]. It facilitates the implementation of routing algorithms,
and runs with multiple well-known algorithms for DHT just in hundreds of lines
of codes with the toolkit [20].

This toolkit also provides a common API to support higher level compo-
nents which are DHT and multicast functions. It can support multiple DHT
algorithms which are Chord, Kademlia, Koorde, Pastry and Tapestry. Those
DHT algorithms and routing methods have been discussed and evaluated on the
previous study [25].

The proposed architecture has been evaluated with Chord, DHT algorithm. It
is well-know DHT algorithm and the emulated environment could be constructed
with the toolkit. As it is used for DHT algorithm in the evaluation, the iterative
routing is applied to DHT. It is a basic algorithm and routing method, and the
evaluation has been focused on the feasibility of DLS with DHT.

5.2 Evaluation Scenarios

Figure 6 shows a typical configuration and the processing of log messages for
DLS. The evaluation has adopted use-case scenarios with the typical configura-
tion on the toolkit. In Fig. 6, those leaf computing nodes generated log messages
and forward them to DHT which is a cluster of nodes. The cluster consists
of several nodes on DHT. DHT cluster processes incoming log messages from
leaf computing nodes. As those nodes are located at distributed locations, the
processing for incoming log messages can be distributed to those nodes.

Basic functions for the logging service are “Store” and “Retrieve” for log
messages. The “Store” function is to store those incoming log messages into the
backend storage which is DHT in the proposed method. This process can be
sequential and the submissions of log messages are different time. It can be the
batch process and not related to use experience.

Thus, the “Retrieve” function is evaluated for the performance of the pro-
posed method. It takes some time to retrieve the log message which is specified
by user since many log messages are stored in DLS with DHT. The performance
evaluation is to retrieve log messages from the number of stored messages.



Distributed Logging Service with Distributed Hash Table for Cloud 169

0

5

10

15

20

25

30

35

40

100 1000 10000 100000

P
ro
ce
ss
in
g
T
im

e(
se
c)

Retrieved counts

Stored 10K records
Stored 20K records
Stored 30K records
Stored 40K records
Stored 50K records
Stored 60K records
Stored 70K records
Stored 80K records
Stored 90K records

Stored 100K records

Fig. 7. Processing time for retrieved counts

The emulated environment runs on the single computer which Linux is
installed. The connections among DHT nodes are the loopback network inter-
faces which can avoid the network overhead for the interactions among multiple
computers. In this environment, the performance of DHT can be also measured
with the different retrieval data set and the different number of stored messages.

5.3 Evaluation Results

Figure 7 shows the processing times for the count of retrieval records (log mes-
sages) which are stored in DLS when the number of DHT nodes is fixed at 10.
The number of stored log messages in DLS is changed from 10K–100K records.
The retrieved counts are changed at 100, 1000, 10000, 50000 and 100000 in Fig. 7.
The processing times to retrieve log messages from those stored messages are
measured with the given conditions.

Although the number of stored records which contain log messages are from
10K to 100K with increased 10K, the processing time at 100K is only a slightly
different from one at 10K records. Therefore, the processing time isn’t directly
related to the number of stored recorded. As the number of retrieval counts is
increased from 100 to 100000, the processing time is approximately 32 s at stored
record 10000 in Fig. 7. The processing times are increased with the number of
retrieved counts but not the linear relationship.

In Chord for DHT, each node gets routing entries for few other nodes [25].
It maintains the routing information as those nodes join and leave the system.



170 T. Kushida

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30

T
ot
al

P
ro
ce
ss
in
g
T
im

e(
se
c)

Number of Nodes

Iteration=100
Iteration=1000

Iteration=10000
Iteration=50000

Iteration=100000

Fig. 8. Processing time for multiple nodes

As the routing table is updated, each node can resolve the hash function with
information of few other nodes. As each node maintains information only about
O(log N) for N, each search process can be completed in no more than O(log2
N) messages.

The overhead for the processing on DHT nodes has been evaluated.
Figure 8 shows the graph of processing time with the number of nodes which

DLS consists of. The x-axis is the number of nodes from 1 to 30, and the y-axis is
the processing time for the retrieval of records in DHT. When the specific record
is searched, the retrievals of records (log message) are randomly selected. The
number of iterations is the count to retrieve the specified log messages. Those
iterations are 100, 1000, 10000, 50000 and 100000 in Fig. 8. Those processing
times to retrieve log messages is directly linked to the waiting time for applica-
tions and users. In Fig. 8, although the number of DLS nodes is increased from
1 to 30, the total processing time to retrieve the specified log message is rather
similar or slightly increased for the number of DLS nodes. It means that the
overhead of the DLS processing time is minimum. Those iterations are the num-
ber of retrieval trials. As they are changed from 100 to 100000, the processing
times to retrieve the specified log message changed as the same as those itera-
tions. The number of iterations to retrieve the specific log messages from DLS
is directly related to the processing time.

The evaluation results on the emulated environment show a scalability of
DLS without any accumulated overhead.



Distributed Logging Service with Distributed Hash Table for Cloud 171

6 Discussions

The section discusses the considerations and challenges for the proposed method.
The evaluation results exhibit to provide DLS for less overhead of DHT.

The balance for the resource allocation for the logging service is considered.
Less number of nodes with a large number of log messages causes some issue to
process log messages in each node. When the number of leaf computing nodes
which generate log messages is increased, DLS requires to increase CPU and
storage resources to process them.

In addition, the search processing power is increased when the large number of
log messages is stored. There is a balance between several nodes and the number
of incoming log messages, and it is the search processing for the retrieved log
messages. The dynamic load balance and increased computing resources can be
applied to resolve it.

The CPU and storage resources for those leaf computing nodes are different
in general. Some node has a large computing resource but some doesn’t. The
balance of resource consumption for CPU and storage is considered. For example,
the node with large computing resource receives a lot of log messages but the
node with less computing resource processes less log messages. DLS with hybrid
approach, which consists of dedicated nodes for the log service and shared nodes
with applications, can be considered in this case. In the consideration of those
approaches, the DHT algorithm is updated with the resource usages instead of
equally hashed allocation to store and retrieve those log messages.

7 Conclusion

The paper proposes the distributed logging service with DHT since it meets the
requirements for the logging service. It could solve several issues that are faced
for the current logging service with CLS. In the proposed method, the work-
loads to store, process and retrieve those log messages can be distributed among
distributed leaf computing nodes which applications and solutions are currently
deployed on. The DLS can reduce the dedicated CPU and storage resource for
the systems management services and the logging service keeps the same level
of service as CLS. Use cases, lifetime management and access control have been
designed for DLS. The evaluation results for the retrieval counts and node over-
heads shows the feasibility with a scalability and a sustainable performance.

References

1. Bagnasco, S., Berzano, D., Guarise, A., Lusso, S., Masera, M., Vallero, S.: Monitor-
ing of IaaS and scientific applications on the cloud using the elasticsearch ecosys-
tem. J. Phys: Conf. Ser. 608, 012016 (2015)

2. Bagnasco, S., Berzano, D., Guarise, A., Lusso, S., Masera, M., Vallero, S.: Towards
monitoring-as-a-service for scientific computing cloud applications using the elas-
ticsearch ecosystem. J. Phys: Conf. Ser. 664, 022040 (2015)



172 T. Kushida

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016).
https://doi.org/10.1109/MS.2016.64

4. Chang, F., et al.: Bigtable: a distributed storage system for structured data. ACM
Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)

5. Chaves, S.A.D., Uriarte, R.B., Westphall, C.B.: Toward an architecture for moni-
toring private clouds. IEEE Commun. Mag. 49(12), 130–137 (2011). https://doi.
org/10.1109/MCOM.2011.6094017

6. Kubernetes Community: Logging architecture in kubernetes (2018). https://
kubernetes.io/docs/concepts/cluster-administration/logging/

7. LogDNA Company: Logdna web site (2019). http://logdna.com
8. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M.F., Morris, R.: Designing a

DHT for low latency and high throughput. In: NSDI, vol. 4, pp. 85–98 (2004)
9. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: Pro-

ceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Prin-
ciples, SOSP 2007, pp. 205–220. ACM, New York (2007). https://doi.org/10.1145/
1294261.1294281

10. Gormley, C., Tong, Z.: Elasticsearch: The Definitive Guide: A Distributed Real-
Time Search and Analytics Engine. O’Reilly Media Inc., Newton (2015)

11. Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica, I.: Com-
plex queries in DHT-based peer-to-peer networks. In: Druschel, P., Kaashoek, F.,
Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 242–250. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-45748-8 23

12. Ikebe, M., Yoshida, K.: An integrated distributed log management system with
metadata for network operation. In: 2013 Seventh International Conference on
Complex, Intelligent, and Software Intensive Systems, pp. 747–750, July 2013.
https://doi.org/10.1109/CISIS.2013.134

13. Jiang, C.B., Liu, I.H., Liu, C.G., Chen, Y.C., Li, J.S.: Distributed log system in
cloud digital forensics. In: 2016 International Computer Symposium (ICS), pp.
258–263, December 2016. https://doi.org/10.1109/ICS.2016.0059

14. Jonas, E., et al.: Cloud programming simplified: a Berkeley view on serverless
computing. Technical report UCB/EECS-2019-3, EECS Department, University
of California, Berkeley, February 2019

15. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: distributed caching protocols for relieving hot
spots on the world wide web. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, STOC 1997, pp. 654–663. ACM, New York
(1997). https://doi.org/10.1145/258533.258660

16. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

17. Lin, X., Wang, P., Wu, B.: Log analysis in cloud computing environment with
hadoop and spark. In: 2013 5th IEEE International Conference on Broadband
Network Multimedia Technology, pp. 273–276, November 2013. https://doi.org/
10.1109/ICBNMT.2013.6823956

18. Mell, P., Grance, T.: The NIST definition of cloud computing. NIST special pub-
lication 800(145), 7 (2011). http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf

19. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J., et al.: Handling churn in a DHT.
In: Proceedings of the USENIX Annual Technical Conference, Boston, MA, USA,
vol. 6, pp. 127–140 (2004)

https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MCOM.2011.6094017
https://doi.org/10.1109/MCOM.2011.6094017
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/cluster-administration/logging/
http://logdna.com
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1007/3-540-45748-8_23
https://doi.org/10.1109/CISIS.2013.134
https://doi.org/10.1109/ICS.2016.0059
https://doi.org/10.1145/258533.258660
https://doi.org/10.1109/ICBNMT.2013.6823956
https://doi.org/10.1109/ICBNMT.2013.6823956
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf


Distributed Logging Service with Distributed Hash Table for Cloud 173

20. Shudo, K.: Overlay weaver (2006). http://overlayweaver.sourceforge.net
21. Shudo, K., Tanaka, Y., Sekiguchi, S.: Overlay weaver: an overlay construction

toolkit. In: Proceedings of Symposium on Advanced Computing Systems and
Infrastructures, pp. 183–191 (2006)

22. Shudo, K., Tanaka, Y., Sekiguchi, S.: Overlay weaver: an overlay construction
toolkit. Comput. Commun. 31(2), 402–412 (2008)

23. Shvachko, K., Kuang, H., Radia, S., Chansler, R., et al.: The hadoop distributed
file system. In: MSST, vol. 10, pp. 1–10 (2010)

24. Sit, E., Morris, R., Kaashoek, M.F.: UsenetDHT: a low-overhead design for Usenet.
In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2008, pp. 133–146. USENIX Association, Berkeley (2008).
http://dl.acm.org/citation.cfm?id=1387589.1387599

25. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003). https://doi.org/10.1109/
TNET.2002.808407

26. Takeda, A., Hashimoto, K., Kitagata, G., Zabir, S.M.S., Kinoshita, T., Shiratori,
N.: A new authentication method with distributed hash table for P2P network. In:
22nd International Conference on Advanced Information Networking and Appli-
cations - Workshops (AINA Workshops 2008), pp. 483–488, March 2008. https://
doi.org/10.1109/WAINA.2008.203

27. Tanenbaum, A.S., Van Steen, M.: Distributed Systems: Principles and Paradigms.
Prentice-Hall, Upper Saddle River (2007)

28. Van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: a robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21(2), 164–206 (2003). https://doi.org/10.1145/762483.
762485

29. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. HotCloud 10(10–10), 95 (2010)

http://overlayweaver.sourceforge.net
http://dl.acm.org/citation.cfm?id=1387589.1387599
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/WAINA.2008.203
https://doi.org/10.1109/WAINA.2008.203
https://doi.org/10.1145/762483.762485
https://doi.org/10.1145/762483.762485


FLEDGE: Kubernetes Compatible
Container Orchestration on Low-Resource

Edge Devices

Tom Goethals(B) , Filip De Turck , and Bruno Volckaert

imec, IDLab, Department of Information Technology, Ghent University,
Technologiepark-Zwijnaarde 15, 9052 Gent, Belgium

togoetha.goethals@UGent.be

Abstract. In recent years, containers have quickly gained popularity in
the cloud, mostly thanks to their scalable, ethereal and isolated nature.
Simultaneously, edge devices have become powerful enough to run con-
tainerized microservices, while remaining small and low-powered. These
evolutions have triggered a wave of research into container placement
strategies on clusters including edge devices, leading to concepts such as
fog computing. These container placement strategies can optimize work-
load placement across cloud and edge clusters, but current container
orchestrators are very resource intensive and are not designed to run on
edge devices.

This paper presents FLEDGE as a Kubernetes compatible edge con-
tainer orchestrator. A number of aspects of how to achieve low-resource
container orchestration are examined, for example the choice of con-
tainer runtime and how to implement container networking. Finally, a
number of evaluations are performed, comparing FLEDGE to K3S and
Kubernetes, to show that it is a viable alternative to existing container
orchestrators.

Keywords: Edge networks · Edge computing · Container
orchestration · Containers · VPN

1 Introduction

In recent years, containers have quickly gained popularity for cloud applications,
thanks to their limited resource requirements and fast spin-up times compared to
virtual machines [1]. The complexity of managing large amounts of containers
has led to container orchestrators such as Kubernetes [2], which handles the
deployment and scaling of containerized services.

Recently, edge devices have become powerful enough to be able to run con-
tainerized microservices, while remaining flexible enough in terms of size and
power consumption to be deployed almost anywhere. This has lead to research
aimed at deploying containers on edge devices, and shifting containerized work-
loads between the cloud and the edge. Most container orchestrators are designed
c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 174–189, 2020.
https://doi.org/10.1007/978-3-030-38651-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_16&domain=pdf
http://orcid.org/0000-0002-1332-2290
http://orcid.org/0000-0003-4824-1199
http://orcid.org/0000-0003-0575-5894
https://doi.org/10.1007/978-3-030-38651-1_16


FLEDGE: Kubernetes Compatible Container Orchestration 175

to run in the cloud, and are very flexible and modular but not very mindful of
resource consumption. Edge devices on the other hand, are typically low-resource
devices and non-extensible, especially in terms of memory.

Additionally, container deployments in the cloud are often generic, scalable
microservices, whereas those on the edge will be more suited to local computing,
with less focus on scaling. This means that an edge container orchestrator should
be primarily built to use minimal resources, and less for constantly moving and
migrating containers.

Edge devices are often located in networks with potentially less focus on
security and organization. In many cases, the device is hidden behind a router
with a firewall or NAT, and IP addresses and port mappings are unpredictable.

Being designed for the cloud, most container orchestrators expect a well-
organized and homogeneous infrastructure, where all network resources are pre-
dictable and controlled. Additionally, unlike intra-cloud communication, commu-
nication outside the cloud could be intercepted very easily, so all communication
between the cloud and containers deployed on the edge should be secured by
default. Any solution to deploy containers on edge devices should therefore not
only create a heterogeneous and predictable networking environment for con-
tainers to operate in, but also secure communication with the cloud by default.

Continued development of container management tools such as Kubernetes
and Docker [3] has led to the development of a number of standards, for exam-
ple the Container Network Interface (CNI [4]) for container networking, and
container format standards from the Open Container Initiative (OCI [5]).

Any solution for edge container deployment should be compatible with exist-
ing container standards, so it is important that they are implemented to the
extent possible on edge devices. If any standards are ignored or not fully imple-
mented, it should not affect the rest of the cluster.

The requirements for a good container orchestrator for edge devices can there-
fore be summarized as:

– Compatibility with modern container (orchestration) standards, or providing
an adequate alternative.

– Securing communications between the edge and the cloud by default, with
minimal impact on local networks.

– Low resource requirements, primarily in terms of memory but also in terms
of processing power and storage.

This paper presents FLEDGE as a low-resource container orchestrator which
is capable of directly connecting to Kubernetes clusters using modified Virtual
Kubelets [6] and a VPN.

Section 2 presents existing research related to the topics in this introduc-
tion. Section 3 shows how FLEDGE meets the requirements put forward in this
introduction, while Sect. 4 discusses alternative edge container orchestrators. In
Sect. 5, an evaluation setup and methodology are presented to compare FLEDGE
to alternative orchestrators. The results of the evaluations are presented and dis-
cussed in Sect. 6, with suggestions for future work in Sect. 7. Finally, Sect. 8 gives



176 T. Goethals et al.

a short overview of the goals stated in this introduction, and how the results and
conclusions meet them.

2 Related Work

Shifting workloads between the cloud and edge hardware has been extensively
researched, with studies on edge offloading [7], cloud offloading [8], and osmotic
computing [9]. Many studies exist on different container placement strategies,
from simple but effective resource requests and grants [10], to using deep learning
for allocation and real-time adjustments [11].

Kubernetes is capable of forming federations of Kubernetes clusters [12], but
this paper aims to use a single cluster for both the cloud and the edge. There are
several federation research projects that have resulted in useful frameworks, such
as Fed4Fire [13], Beacon [14], FedUp! [15] and FUSE [16]. Fed4Fire requires the
implementation of an API to integrate devices into a federation and works on
a higher, more abstract level than container orchestration. BEACON is focused
on cloud federation and security as a function of cloud federation. FedUp! is a
cloud federation framework focused on improving the setup time for heteroge-
neous cloud federations. FUSE is designed to federate private networks in crisis
situations, but it is very general and primarily aimed at quickly collectivizing
resources, not for deploying specific workloads across edge clusters.

Studies exist that focus on security between the edge and the cloud, for
example [17] which identifies possible threats, and [18] which proposes a Software
Defined Membrane as a novel security paradigm for all aspects of microservices.

VPNs are an old and widely used technology. Recent state of the art studies
appear to be non-existent, but older ones are still informative [19]. Some studies
deal with the security aspects of a VPN [20], while many others focus on the
throughput performance of VPNs [21,22].

A study by Pahl et al. [23] gives a general overview of how to create edge cloud
clusters using containers. While FUSE [16] is capable of deploying Kubernetes
worker nodes on edge devices, the resulting framework is too resource-intensive
for most edge hardware. Cloud4IoT [24] is capable of moving containers between
edge networks and the cloud, but it uses edge gateways which indirectly deploy
containers on minimalistic edge nodes. K3S [25], which has not yet been the sub-
ject of academic studies, is based on the source code of Kubernetes. It achieves
lower resource consumption by removing uncommon and legacy features, but it
requires its own master nodes to run and cannot directly connect to Kubernetes
clusters. KubeEdge [26] is a recent development, aiming to extend Kubernetes to
edge clusters. Despite being based on Kubernetes, it is not directly compatible
with Kubernetes master nodes and needs an extra cloud component to function
properly.



FLEDGE: Kubernetes Compatible Container Orchestration 177

3 FLEDGE

This section gives an overview of what a Virtual Kubelet is and how FLEDGE,
written in Golang, builds on it to meet the requirements stated in the introduc-
tion.

A Virtual Kubelet is a small service which acts as a proxy for Kubernetes
to any platform that can run containers, for example Amazon AWS, Microsoft
Azure or edge devices. It registers itself as a node in Kubernetes and passes API
calls from Kubernetes to brokers which translate those calls to the container
platform they implement. These API calls include pod management, pod status,
node status, logging and metrics.

The concepts of FLEDGE are shown in Fig. 1, with the Virtual Kubelet
acting as a proxy to the FLEDGE broker. The FLEDGE broker is responsible
for sending API calls to the edge, where they are decomposed into container
networking, cgroup and namespace management, and container deployments.
This collection of components will be referred to as a FLEDGE agent.

Fig. 1. Conceptual overview of FLEDGE and its use of a Virtual Kubelet.

3.1 Compatibility

One of the stated requirements for FLEDGE is compatibility with existing con-
tainer standards and runtimes.

Both Docker and Containerd are popular container runtimes and both sup-
port OCI standards, and by extension Docker containers. Furthermore, since
version 1.11, Docker uses Containerd as an underlying container runtime. In
terms of compatibility, both runtimes are good choices, so the decision will be
up to resource requirements, as discussed in Sect. 3.3.



178 T. Goethals et al.

Another aspect of compatibility is container networking. In Kubernetes, the
master node makes high-level decisions on container networking, such as which
IP range to assign to individual nodes. These decisions are relayed to CNI com-
patible plugins (eg. Flannel, Weave) on worker nodes, which translate the high-
level decisions into low-level network configuration.

FLEDGE does this differently by fulfilling the role of both Kubelet and con-
tainer networking plugin. The number of pods deployed on an edge node is likely
to be low due to resource constraints, so the container networking handler (Fig. 1
Container networking) can be simple and naive, assigning pods the first free IP
address in its range. The same handler also makes sure network namespaces are
configured correctly.

By default, Kubernetes will not attempt to deploy Flannel on a FLEDGE
agent. However, because the FLEDGE agent uses the IP range assigned to it by
Kubernetes, the rest of the cluster will still be able to reach pods deployed on
it. This means that this approach is sufficient, despite not implementing CNI.

3.2 Security and Stability

Edge devices, especially consumer grade, often operate in networks with little
to no security and organization. Not only may the devices find themselves in
unexpected topologies with random IP address assignments and unknown port
mappings, they may also be stuck behind a router with NAT or a firewall.
Additionally, while traffic between Kubernetes and its Kubelets is secured by
default, this is not always true for services deployed on worker nodes.

In FLEDGE, these issues are solved by connecting edge nodes to the cloud
using OpenVPN and building a container network on top of it, as shown in
Fig. 2. Using a VPN ensures that all ports are available and open and IP address
assignments are logical and reachable by the cloud. Furthermore, the physical
network of the device no longer matters, the virtual network can be organized
according to any parameters. Finally, traffic between the edge and the cloud is
encrypted by default, providing a basic layer of security.

However, there are some downsides to this approach. Using OpenVPN, espe-
cially with encryption, is a drain on system and network resources, likely reducing
the scalability of the cluster. Moreover, VPN overhead may have a significant
impact on edge devices, which have limited computational power. Anyone with
physical access to the device can still gain access to the system, and possibly
even cloud resources through the VPN. This problem is exacerbated because like
Kubernetes and K3S, the FLEDGE agent requires root access to run properly, so
hardware security and OS-level security are required to prevent these problems.

Figure 3 gives an overview of the different networks involved in a setup with
FLEDGE nodes. Green arrows indicate traffic flows allowed by FLEDGE, while
red ones indicate traffic flows forbidden by default. This shows that all devices in
the VPN or the Kubernetes pod network can reach each other, but other devices
can only be reached by being in the same physical network.

Container images may contain software or data that needs to be protected
from unauthorized access. Both the FLEDGE agent and container runtimes



FLEDGE: Kubernetes Compatible Container Orchestration 179

Fig. 2. High-level overview of network traffic flow of FLEDGE, using OpenVPN to
connect edge nodes to the cloud.

could potentially be abused to access container images, but some steps can be
taken to mitigate this.

Containers and pods are assigned different file system namespaces by con-
tainer runtimes. While the root user can still access these namespaces, root login
can be disabled and the file systems can be protected from other users. To mini-
mize chances of container images being copied, and to avoid clutter, they can be
removed when no longer running. However, this will increase the time required
for redeployment of containers, thereby affecting performance. Finally, FLEDGE
cleans up all containers, images and network infrastructure on shutdown.

3.3 Low Resource Use

An important choice for low resource use is the container runtime. As Sect. 3.1
showed, both Docker and Containerd are good choices in terms of compatibility.
However, as Docker actually relies on Containerd since version 1.11, Containerd
is likely the more resource-friendly option. This choice will be further evaluated
in Sect. 6.

The choice for a custom container networking solution in FLEDGE is optimal
in terms of resource requirements. While normal CNI plugins for Kubernetes
are run as containers, a flexible and durable approach, they also require more
resources than simply embedding container networking into the orchestrator
process.

Both namespace and cgroup handling have been implemented in FLEDGE.
While FLEDGE relies on the container runtime to set up the namespaces and
cgroups setup for the first container of a pod, it reuses those namespaces for all
other containers in the same pod. This approach is compatible with both Docker
and Containerd, and has the added benefits of being very simple.



180 T. Goethals et al.

Fig. 3. Overview of network traffic flows in a cluster using FLEDGE nodes. Green
arrows indicate possible traffic flows. (Color figure online)

4 Alternatives

This section discusses some alternative container orchestrators, giving a short
history and possible advantages and disadvantages for each, which will then be
compared to FLEDGE in terms of resource requirements.

4.1 Kubernetes

Kubernetes [2] is a widely used container orchestrator originally inspired by
Google Borg [27]. Due to its popularity and extensive development, it has con-
tributed to several container standards. Because it is made to run in the cloud, it
is very flexible. However, as Sect. 6 shows it also uses a lot of resources, making
it hard to use on edge devices.

An important difference between FLEDGE and Kubernetes is that the latter
requires all swapping to be disabled in order to run, which can cause serious
problems on devices with limited memory. FLEDGE has no such requirement,
allowing all memory subsystems to perform as intended.

4.2 K3S

K3S [25] is a novel container orchestrator based on Kubernetes, modified specif-
ically for edge devices. Version 0.1.0 was released in February 2019, while the
version used for the evaluation is v0.3.0 from March 2019. K3S has its own
master nodes, unlike FLEDGE which connects to Kubernetes master nodes.

Unlike FLEDGE, which starts from scratch and builds around Kubernetes
compatibility, K3S starts with the full Kubernetes source code and eliminates



FLEDGE: Kubernetes Compatible Container Orchestration 181

deprecated or little-used functionality. Like FLEDGE, it prefers to hard wire cer-
tain types of functionality. For example, it uses Flannel for container networking
and forces the use of Containerd.

While being built from the full Kubernetes source means K3S has excellent
support for standards, this may also be a disadvantage in terms of resource
requirements. It also has its own join mechanism and is, for the moment, incom-
patible with Kubernetes master nodes, so it cannot directly connect to existing
Kubernetes clusters.

4.3 KubeEdge

KubeEdge [28] is an early stage Edge Computing Framework built on Kubernetes
and Docker. Its first release was in December 2018, with version 0.3.0 being
released as of May 2019. It consists of a cloud part and an edge part [29], with
the cloud part interfacing with the cloud Kubernetes API and taking care of
node management. The edge part is deployed on each individual device and
takes care of pod and low-level facility management.

While its functions include deploying Kubernetes pods on edge networks,
it aims to be an entire ecosystem for edge computing, including storage and
event-based communication based on MQTT [30]. Because it is hard to isolate
the container orchestration part, KubeEdge will not be evaluated in this paper.
However, since it uses Docker, it is unlikely to be resource efficient, a point which
will be proven in Sect. 6.

5 Evaluation Setup

With the most important concepts of FLEDGE explained and alternative orches-
trators discussed, an evaluation environment can be set up and a number of
evaluations can be performed. These are intended to validate the choice of con-
tainer runtime and compare FLEDGE to K3S v0.3.0 and Kubernetes v1.14 in
terms of resource requirements. The source code of FLEDGE is made available
on Github1.

5.1 Methodology

Figure 4 shows the hardware setup used for the evaluations, which is run on the
imec Virtual Wall [31].

The VWall master node fulfills the role of K3S/Kubernetes master node.
Because FLEDGE is aimed at worker nodes, the specifications and performance
of this node are not important.

The VWall server (x64) is used to determine the resource requirements of
each orchestrator on an x64 worker node. This device runs Ubuntu 18.04 and
has an AMD Opteron 2212 processor at 2 GHz and 4 GiB RAM.

1 https://github.com/togoetha/fledge.

https://github.com/togoetha/fledge


182 T. Goethals et al.

Fig. 4. Overview of the hardware setup used for the evaluation. Note that the Open-
VPN containers are only used by FLEDGE, other orchestrators connect directly to the
master node via LAN.

The Raspberry Pi 3 is used to evaluate each orchestrator on an ARM device,
specifically armhf. This device runs Raspbian with kernel version 4.14.98-v7+
on the default hardware configuration, specifically 1 GiB RAM and a quad-core
1.2 GHz CPU. All devices are in the same geographical location and are con-
nected by Gigabit LAN (100 Mbps max for Raspberry Pi 3). The OpenVPN
server and clients are only used when FLEDGE is deployed on the worker nodes.
Kubernetes and K3S connect to the master node directly via LAN. All evalua-
tions will be run on both armhf and x64.

For Kubernetes, Docker is used, while Containerd is required by K3S. The
container runtime used by FLEDGE is specified in each evaluation.

Storage requirements are measured using the df command [32], both before
and after orchestrator setup. This approach takes not only the orchestrator into
account, but all dependencies and libraries as well. To ensure proper measure-
ments, the devices are wiped after each run.

Determining memory use is more complex than measuring storage require-
ments. Unlike the myriad files involved in a container orchestrator, the process
running it are more easily identified, allowing for precise and detailed measure-
ments. During orchestrator setup some processes will require memory, used to
launch containers or initialize facilities, which is later released. This means that
memory use must be monitored for a significant amount of time.

Processes can have private and shared memory. Measuring both memory sets
is easy, but a fair method is needed to calculate the exact amount of memory
used by each process.

Taking the above into account, each evaluation measures the memory use of
a set of processes every 30 s, over a period of 15 min. The pmap [33] command



FLEDGE: Kubernetes Compatible Container Orchestration 183

is used to determine the Proportional Set Size (PSS) [34] of each process, which
is calculated according to:

Mtotal = P +
i∑

Si/Ni

where P is private memory, Si are various sets of shared memory, and Ni is the
number of processes using any piece of shared memory.

5.2 Container Runtime

This evaluation aims to show that the choice of container runtime can have a
large impact on the resource requirements of a container orchestrator. To verify
this and determine the best choice, FLEDGE is set up using both Docker and
Containerd.

To avoid interference from other containers, no pods or containers are
deployed other than the FLEDGE agent and a VPN container. To determine
the overhead of containerizing FLEDGE, a third case is evaluated in which the
FLEDGE agent runs as a host service instead of being deployed as a container.

The processes monitored for this evaluation are the container runtime, the
FLEDGE agent, the VPN client container and container shims [35].

5.3 Orchestrator Comparison

In order to verify that FLEDGE is a low-resource solution for edge container
orchestration, this evaluation compares it against Kubernetes and K3S. In the
Kubernetes comparison, Flannel is used as a CNI plugin and the master node
is allowed to deploy kube-proxy [36] on the edge node. Since FLEDGE has its
own container networking, Flannel will not be deployed on the FLEDGE edge
node. In the K3S comparison, no kube-proxy will be deployed on FLEDGE.

In this evaluation, FLEDGE is run as a host service and uses Containerd
as a container runtime. The monitored processes are the container orchestrator,
container runtime, shims and any deployed containers.

6 Results

This section presents the results of the evaluations described in Sect. 5. While the
results for storage requirements are simple bar charts representing the median
case, the results for memory consumption are more dynamic, including whiskers
for the median absolute deviation.



184 T. Goethals et al.

Docker ContainerdHost+ctd
0

200

400

600
St
or
ag

e
(M

iB
)

x64 ARM

Docker Containerd
0

50

100

150

200

250

M
em

or
y
(M

iB
)

x64 ARM

Fig. 5. Storage and memory requirements of FLEDGE using different container run-
times. The Host+ctd category shows the results for FLEDGE running as a host service.

6.1 Container Runtime

Figure 5 shows the storage requirements for FLEDGE deployments with Docker
and Containerd.

An important observation is that in all cases, FLEDGE requires significantly
less storage on ARM than it does on x64, though the exact amount varies. The
combination of FLEDGE and Docker, for example, requires 3 times as much
storage on x64 as it does on ARM. While the results suggest that Containerd is
much less efficient on ARM than Docker, these numbers conflict with the fact
that Docker uses Containerd to run containers. The reason for this is rooted in
how Containerd and Docker handle container filesystems and mounts. In order
for a containerized FLEDGE agent to be able to deploy containers on Containerd
itself, many directories and files need to be mounted into the FLEDGE agent
container. It turns out that Containerd mounts have a lot of overhead, resulting
in the large container filesystem shown in Fig. 5. To validate this theory, another
evaluation was done by deploying a FLEDGE agent as a host service, shown as
“Host+ctd”. The Containerd installation for this evaluation was also optimized,
resulting in a 73 MiB size reduction on x64, and a 14 MiB reduction on ARM.
The result is very resource efficient, at the cost of not having the FLEDGE agent
isolated in a container. Note that this same approach does not affect Docker
much, indicating that while it may use Containerd as a runtime, it has a more
efficient method of handling file system layers.

Figure 5 also shows the memory consumption of FLEDGE deployments with
Docker and Containerd. The ARM versions are again much more efficient, using
up to 50% less memory than x64 in the case of Docker and 65% in the case
of Containerd. The results show that Containerd is by far the best container
runtime to use with FLEDGE. When running FLEDGE as a host service, the



FLEDGE: Kubernetes Compatible Container Orchestration 185

K8S FL+ K3S FL-
0

200

400

600

800

1,000
St
or
ag

e
(M

iB
)

x64 ARM

K8S FL+ K3S FL-
0

100

200

300

M
em

or
y
(M

iB
)

x64 ARM

Fig. 6. Storage and memory requirements of evaluated container orchestrators. FL+
and FL- indicate FLEDGE running with and without kube-proxy, respectively.

total resource requirements are only 80 MiB storage and 50 MiB memory on
ARM, including a VPN client container.

6.2 Orchestrator Comparison

Figure 6 shows the storage requirements for all container orchestrators. Note
that FLEDGE is included twice in this chart; with a kube-proxy (“FL+”) and
without a kube-proxy (“FL-”). Considering functionality, it is best to compare
Kubernetes to FLEDGE with a kube-proxy, and K3S to FLEDGE without a
kube-proxy.

Compared to Kubernetes, FLEDGE (“FL+”) only needs around 25% as
much storage on x64 and 40% on ARM. This large difference can be attributed to
many factors, including the choice of Containerd over Docker and the integration
of several plugins instead of running them as containers.

When comparing FLEDGE (“FL-”) to K3S, the difference is smaller than
with Kubernetes, but still significant. FLEDGE requires about 10% less storage
on x64, and around 30% less on ARM.

The results for memory consumption are shown in Fig. 6, using the same
notation for FLEDGE with and without kube-proxy. These results are less spread
out than those of the storage requirements.

For starters, FLEDGE only requires about half as much memory as Kuber-
netes on both x64 and ARM. Note that simply eliminating Flannel and imple-
menting a custom container networking solution already saves 36 MiB of memory
on x64 and 24 MiB on ARM, or around 10% of Kubernetes’ memory consump-
tion.

Compared to K3S, FLEDGE has similar memory consumption on x64, but
around 25% less on ARM. Considering that most IoT/edge devices are ARM
based, this is a significant improvement.



186 T. Goethals et al.

K8S K3S FLEDGE
0

50

100

150

M
em

or
y
(M

iB
)

x64 ARM

Fig. 7. Memory consumption of the main process of each container orchestrator. For
Kubernetes, Flannel was included in the measurement because other orchestrators
provide a container network by default.

Finally, Fig. 7 compares the memory consumption of the container orches-
trator processes alone, without any other processes. In the case of Kubernetes,
Flannel has been included because K3S and FLEDGE provide container net-
working by default. These results show that in its current state, FLEDGE uses
only about 25% as much memory as Kubernetes, and 50% to 60% as much as
K3S.

These results show that compared to both Kubernetes and K3S, FLEDGE
uses significantly less resources, especially when comparing orchestrator pro-
cesses directly.

7 Future Work

This paper presents a fully operational container orchestrator for edge devices,
but there are still some aspects of FLEDGE that can be improved.

For starters, placing the Virtual Kubelets in the cloud may not be ideal.
When running in the cloud, they can buffer commands in case a FLEDGE agent
becomes unavailable, but they also require a small amount of storage and mem-
ory. Additionally, since all Virtual Kubelets are run in their own pod, the amount
of master nodes in the cloud will have to scale with the maximum number of
pods per node, instead of using one master node to manage all edge nodes. For
these reasons it may be more efficient to integrate the Virtual Kubelet into the
FLEDGE agent.

Many other container runtimes than the ones used in FLEDGE exist, includ-
ing rkt [37] and CRI-O [38]. Docker and Containerd were chosen because of their



FLEDGE: Kubernetes Compatible Container Orchestration 187

popularity and support for container standards, but it is possible that other con-
tainer runtimes use less resources.

Because K3S is based on Kubernetes, it may be possible to modify FLEDGE
so that it can also connect to K3S clusters. Considering the original use of Virtual
Kubelets, it could also pass Kubernetes deployments to K3S.

FLEDGE uses OpenVPN to build a network environment, but many other
VPN solutions exist, which may prove to be faster or more reliable for use with
FLEDGE.

8 Conclusion

The introduction puts forward three requirements for an effective container
orchestrator on edge devices.

FLEDGE is presented as a solution that meets these requirements. A VPN
is used to homogenize edge networks and to provide a basic layer of security for
communication between the edge and the cloud. Compatibility with container
standards is achieved by using OCI API’s to communicate with container run-
times. CNI can be safely ignored using a custom implementation without affect-
ing the rest of the cluster. Low resource requirements are achieved by choosing
the optimal container runtime and through the custom implementation of select
functionality, such as container networking.

To validate the low resource requirements of FLEDGE, a number of evalua-
tions are performed. The resource requirements for FLEDGE using both Docker
and Containerd are examined, showing that Containerd only needs about half
the resources Docker does, and confirming that it is the optimal container run-
time for FLEDGE.

K3S and Kubernetes are discussed as alternatives to FLEDGE, and evalu-
ated to determine their resource requirements. The results shows that FLEDGE
only requires 50–60% less resources than a Kubernetes worker node, and around
25–30% less resources than K3S on ARM devices. On x64, FLEDGE resource
requirements are similar to those of K3S.

In conclusion, FLEDGE can deploy Kubernetes pods on edge devices while
using significantly less resources than either Kubernetes or K3S. Despite this, it
is highly experimental and many topics for future work on improving FLEDGE
are discussed.

Acknowledgment. The research in this paper has been funded by Vlaio by means
of the FLEXNET research project.

References

1. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and Linux containers. In: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS) (2015).
https://doi.org/10.1109/ISPASS.2015.7095802

https://doi.org/10.1109/ISPASS.2015.7095802


188 T. Goethals et al.

2. What is Kubernetes? https://kubernetes.io/docs/concepts/overview/what-is-
kubernetes/

3. Why Docker? https://www.docker.com/why-docker
4. CNM vs CNI. https://www.nuagenetworks.net/blog/container-networking-

standards/
5. About OCI. https://www.opencontainers.org/about
6. Virtual kubelet. https://github.com/virtual-kubelet/virtual-kubelet
7. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and compu-

tation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017). https://
doi.org/10.1109/COMST.2017.2682318

8. Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: can offloading computa-
tion save energy? Computer 43, 51–56 (2010). https://doi.org/10.1109/MC.2010.
98

9. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing:
a new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6) (2016).
https://doi.org/10.1109/MCC.2016.124

10. Santoro, D., Zozin, D., Pizzolli, D., De Pellegrini, F., Cretti, S.: Foggy: a platform
for workload orchestration in a Fog Computing environment. In: 2017 IEEE Inter-
national Conference on Cloud Computing Technology and Science (CloudCom)
(2017). https://doi.org/10.1109/CloudCom.2017.62

11. Morshed, A., et al.: Deep osmosis: holistic distributed deep learning in osmotic
computing. IEEE Cloud Comput. 4(6) (2017). https://doi.org/10.1109/MCC.2018.
1081070

12. Kubernetes federation. https://kubernetes.io/docs/concepts/cluster-administrat
ion/federation/

13. Wauters, T., et al.: Federation of internet experimentation facilities: architecture
and implementation. In: Proceedings of the European Conference on Networks and
Communications, pp. 1–5 (2014)

14. Moreno-Vozmediano, R., et al.: BEACON: a cloud network federation framework.
In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015. CCIS, vol. 567, pp.
325–337. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33313-7 25

15. Bottoni, P., Gabrielli, E., Gualandi, G., Mancini, L.V., Stolfi, F.: FedUp! Cloud
federation as a service. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski,
I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 168–182. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44482-6 11

16. Goethals, T., Kerkhove, D., Van Hoye, L., Sebrechts, M., De Turck, F., Volckaert,
B.: FUSE: a microservice approach to cross-domain federation using docker con-
tainers. In: CLOSER 2019, the 9th International Conference on Cloud Computing
and Services Science, pp. 90–99 (2019)

17. Puthal, D., Nepal, S., Ranjan, R., Chen, J.: Threats to networking cloud and edge
datacenters in the internet of things. IEEE Cloud Comput. 3(3) (2016). https://
doi.org/10.1109/MCC.2016.63

18. Villari, M., Fazio, M., Dustdar, S., Rana, O., Chen, L., Ranjan, R.: Software defined
membrane: policy-driven edge and internet of things security. IEEE Cloud Comput.
4(4) (2017). https://doi.org/10.1109/MCC.2017.3791014

19. Chowdhury, N.M.M.K., Boutaba, R.: Network virtualization: state of the art and
research challenges. IEEE Commun. Mag. 47(7) (2009). https://doi.org/10.1109/
MCOM.2009.5183468

20. Hamed, H., Al-Shaer, E., Marrero, W.: Modeling and verification of IPSec and VPN
security policies. In: 13th IEEE International Conference on Network Protocols
(ICNP 2005) (2005). https://doi.org/10.1109/ICNP.2005.25

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.docker.com/why-docker
https://www.nuagenetworks.net/blog/container-networking-standards/
https://www.nuagenetworks.net/blog/container-networking-standards/
https://www.opencontainers.org/about
https://github.com/virtual-kubelet/virtual-kubelet
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/MC.2010.98
https://doi.org/10.1109/MC.2010.98
https://doi.org/10.1109/MCC.2016.124
https://doi.org/10.1109/CloudCom.2017.62
https://doi.org/10.1109/MCC.2018.1081070
https://doi.org/10.1109/MCC.2018.1081070
https://kubernetes.io/docs/concepts/cluster-administration/federation/
https://kubernetes.io/docs/concepts/cluster-administration/federation/
https://doi.org/10.1007/978-3-319-33313-7_25
https://doi.org/10.1007/978-3-319-44482-6_11
https://doi.org/10.1109/MCC.2016.63
https://doi.org/10.1109/MCC.2016.63
https://doi.org/10.1109/MCC.2017.3791014
https://doi.org/10.1109/MCOM.2009.5183468
https://doi.org/10.1109/MCOM.2009.5183468
https://doi.org/10.1109/ICNP.2005.25


FLEDGE: Kubernetes Compatible Container Orchestration 189

21. Pohl, F., Schotten, H.D.: Secure and scalable remote access tunnels for the IIoT:
an assessment of openVPN and IPsec performance. In: De Paoli, F., Schulte, S.,
Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol. 10465, pp. 83–90. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67262-5 7

22. Kotuliak, I., Rybár, P., Trúchly, P.: Performance comparison of IPsec and TLS
based VPN technologies. In: 2011 9th International Conference on Emerging
eLearning Technologies and Applications (ICETA) (2011). https://doi.org/10.
1109/ICETA.2011.6112567

23. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology
review. In: 2015 3rd International Conference on Future Internet of Things and
Cloud (2015). https://doi.org/10.1109/FiCloud.2015.35

24. Dupont, C., Giaffreda, R., Capra, L.: Edge computing in IoT context: horizontal
and vertical Linux container migration. In: 2017 Global Internet of Things Summit
(GIoTS) (2017). https://doi.org/10.1109/GIOTS.2017.8016218

25. Rancher Labs - K3S Lightweight Kubernetes. https://k3s.io/
26. Xiong, Y., Sun, Y., Xing, L., Huang, Y.: Extend cloud to edge with KubeEdge.

In: 2018 IEEE/ACM Symposium on Edge Computing (SEC) (2018). https://doi.
org/10.1109/SEC.2018.00048

27. Verma, A., Pedrosa, L., Korupolu, M., Oppenheime, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: EuroSys 2015 Proceed-
ings of the Tenth European Conference on Computer Systems, Article No. 18
(2015)

28. KubeEdge: A Kubernetes Native Edge Computing Framework. https://kubeedge.
io/en/

29. What is KubeEdge: Architecture. https://docs.kubeedge.io/en/latest/modules/
kubeedge.html#architecture

30. Light, R.A.: Mosquitto: server and client implementation of the MQTT protocol.
J. Open Source Softw. https://doi.org/10.21105/joss.00265

31. imec Virtual Wall. https://www.ugent.be/ea/idlab/en/research/research-
infrastructure/virtual-wall.htm

32. The DF command. https://www.linuxjournal.com/article/2747
33. pmap - report memory map of a process. https://linux.die.net/man/1/pmap
34. Propertional Set Size (PSS). http://lkml.iu.edu/hypermail/linux/kernel/0708.1/

3930.html
35. Docker components explained. http://alexander.holbreich.org/docker-compon

ents-explained/
36. kube-proxy. https://kubernetes.io/docs/reference/command-line-tools-reference/

kube-proxy/
37. Getting started with rkt. https://coreos.com/rkt/docs/latest/getting-started-

guide.html
38. CRI-O, lightweight container runtime for Kubernetes. https://cri-o.io/

https://doi.org/10.1007/978-3-319-67262-5_7
https://doi.org/10.1109/ICETA.2011.6112567
https://doi.org/10.1109/ICETA.2011.6112567
https://doi.org/10.1109/FiCloud.2015.35
https://doi.org/10.1109/GIOTS.2017.8016218
https://k3s.io/
https://doi.org/10.1109/SEC.2018.00048
https://doi.org/10.1109/SEC.2018.00048
https://kubeedge.io/en/
https://kubeedge.io/en/
https://docs.kubeedge.io/en/latest/modules/kubeedge.html#architecture
https://docs.kubeedge.io/en/latest/modules/kubeedge.html#architecture
https://doi.org/10.21105/joss.00265
https://www.ugent.be/ea/idlab/en/research/research-infrastructure/virtual-wall.htm
https://www.ugent.be/ea/idlab/en/research/research-infrastructure/virtual-wall.htm
https://www.linuxjournal.com/article/2747
https://linux.die.net/man/1/pmap
http://lkml.iu.edu/hypermail/linux/kernel/0708.1/3930.html
http://lkml.iu.edu/hypermail/linux/kernel/0708.1/3930.html
http://alexander.holbreich.org/docker-components-explained/
http://alexander.holbreich.org/docker-components-explained/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://coreos.com/rkt/docs/latest/getting-started-guide.html
https://coreos.com/rkt/docs/latest/getting-started-guide.html
https://cri-o.io/


Accelerated Promethee Algorithm Based
on Dimensionality Reduction

Tarek Menouer1(B), Christophe Cérin2, and Patrice Darmon1

1 UMANIS, 7 Rue Paul Vaillant Couturier, 92300 Levallois-Perret, France
{tmenouer,pdarmon}@umanis.com

2 University of Paris 13, LIPN/CNRS UMR 7030, 93430 Villetaneuse, France
christophe.cerin@lipn.univ-paris13.fr

Abstract. This paper presents an accelerated Promethee (Preference
Ranking Organization METHod for Enrichment Evaluations) multi-
criteria algorithm based on dimensionality reduction in large scale envi-
ronments. In our context, the Promethee algorithm is used to select from
a large set of objects, one or a small set of objects with a good com-
promise between several qualitative and quantitative criteria. The exact
solution can be used by applying the exact multi-criteria Promethee algo-
rithm. However, the drawback, with this type of exact algorithm, is the
long execution time due to the combinatorial aspect of the problem.
The exact Promethee computing time is linked both to the dimension
of the problem (number of qualitative and quantitative criteria) and the
size of the problem (number of objects). To address the previous draw-
back, we propose to accelerate the Promethee algorithm in combining
the exact Promethee algorithm with an algorithm inherited from the
Machine Learning (ML) field. The experiments demonstrate the poten-
tial of our approach under different scenarios to accelerate the respond
time.

Keywords: Performance optimization · Machine learning algorithms
(K-Means) · Multi-criteria algorithm

1 Introduction

In the literature, several multi-criteria algorithms have been proposed in the
past [8,9,14]. These algorithms have been used with success to solve many prob-
lems [2], as scheduling problems [11] or profiles recommendation [10].

Among the different multi-criteria algorithms, we would like to mention the
Promethee (Preference Ranking Organization METHod for Enrichment Evalu-
ations) algorithm which is a multi-criteria decision aid system [14]. The benefit
of the Promethee algorithm is that it allows to select, from a large set of objects,
one object or a small set of objects with a ‘good’ compromise between several
qualitative and/or quantitative criteria. However, the main drawback of the Pro-
methee is the long execution time to solve a problem with a big size (number

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 190–203, 2020.
https://doi.org/10.1007/978-3-030-38651-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_17


Accelerated Promethee Algorithm Based on Dimensionality Reduction 191

of objects) and a large dimension (number of qualitative and quantitative crite-
ria). The exact Promethee computing time is linked to the problem dimension,
problem size and the uses of a sorting step in the overall process.

To improve the computing time for the solution, we propose, in this paper, a
new accelerated Promethee algorithm, based on Machine Learning method. The
solution of the initial problem is now an approximation compared to the exact
algorithm. One challenge is to estimate the quality of the solution, we mean the
gap between the exact and the approximated solution.

The accelerated Promethee algorithm is based on dimensionality reduction.
For instance, the principle consists to reduce the number of candidate objects by
applying algorithm inherited from the Machine Learning field. For instance, in
our approach the K-means algorithm is used to reduce the size of the problem.
Then, in the second step, we apply the exact Promethee algorithm on a reduced
number of objects to get a solution in a reasonable computing time and with a
certain quality.

The organization of the paper is as follows. Section 2 presents some related
works. Section 3 is divided into Subsect. 3.1 which describes the exact Promethee
multi-criteria algorithm, and Subsect. 3.2 which describes the k-means clustering
algorithm. Section 4 describes our accelerated Promethee algorithm based on a
combination between the exact Promethee and K-means algorithms. Section 5
introduces exhaustive experiments that allow the validation of our accelerated
Promethee algorithm. Finally, a conclusion and some future works are given in
Sect. 6.

2 Related Work

In this section, we start by presenting, briefly, some multi-criteria algorithms.
Then, we present a short overview of multi-criteria related problems and an
example of a large scale multi-criteria study. Finally, we conclude this section by
a positioning.

2.1 Short Overview of Multi-criteria Algorithms

In the following subsection we present two multi-criteria algorithms (i) TOP-
SIS [9]; and (ii) Kung [8].

TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution)
is a multi-criteria algorithm which allows to choose from a big set of objects
the solution with the shortest distance from the best solution and the furthest
distance from the worst solution [12]. However, the use of the TOPSIS algorithm
requires, for each criterion, a weight and information related to the minimization
or maximization of the criterion. To find a solution, the TOPSIS algorithm goes
through the following 7 steps:

– Fill a Decision Matrix (DM) of n lines (number of objects) and c columns
(number of criteria). Each value fij in DM represents the value of the object
oi in criterionj .



192 T. Menouer et al.

– Calculate the Normalized Decision Matrix (NDM). The normalized value

rij = fij/
√∑n

i=1 f
2
ij , for i = 1, ..., n and j = 1, · · · , c.

– Calculate the Weighted Normalized Decision Matrix (WNDM). The
weighted normalized value vij = rij × wj , for i = 1, ..., n and j = 1, · · · , c.
With wj is the weight of the jth criterion, and the

∑c
j=1 wj = 1.

– Determine the best (A+) and the worst (A−) solutions.

A+ = {v+1 , ..., v+c } A− = {v−
1 , ..., v

−
c }

= {(max(vij |i = 1, ..., n)|j ∈ I ′), = {(min(vij |i = 1, ..., n)|j ∈ I ′),
(min(vij |i = 1, ..., n)|j ∈ I ′′)} (max(vij |i = 1, ..., n)|j ∈ I ′′)}

I’ is associated to the criteria having the positive impact, and I” is associated
to the criteria having a negative impact.

– Calculate the Separation Measures (SM), using the n-dimensional Euclidean
distance. The separation of each object from the best solution is given by the
following SM+

i formula:

SM+
i =

√∑c
j=1(vij − v+j )2, for i = 1, · · · , n.

The separation of each object from the worst solution is given by the following
SM−

i formula:

SM−
i =

√∑c
j=1(vij − v−

ij)2, for i = 1, · · · , n
– Calculate the Relative Closeness (RC) to the best solution. For each object
oi, the RCi is defined by the following RCi formula:
RCi = SM−

i /(SM+
i + SM−

i ), i = 1, · · · , n.
– Score objects according to their RC value.

Kung algorithm [8] is also an other algorithm used in the multi-criteria deci-
sion context [5]. As presented in [5], Kung algorithm firstly sorts objects in
descending order according to the first criterion. Thereafter, the set of objects
are recursively halved as Top half (T) and Bottom half (B) sub set of objects. As
T is better than B in the first criterion, so we check the B for domination with
T. The solutions of B which are not dominated by solutions of T are merged
with members of T to form merged set of objects M. This means, in the case of
a minimization function, that a solution x1 is better than other solution x2, if
the value of x1 is smaller than the value of x2. The algorithm, called Front(P),
can be summarized in two steps:

– Sort objects according to the order of importance in the first criterion and
rename the population of objects as P of size N.

– Front(P): if |P | = 1, return P as the output of Front(P). Otherwise, T =
Front(P 1 − P |P/2|) and B = Front(P |P/2|+1 − PP ). IF ith non-dominated
solution B is not dominated by any non-dominated solution of T, create a
merged set M = {T U i}. Finally, return M as output of Front(P).

2.2 Short Overview of Multi-criteria Related Studies

In this subsection, we present some multi-criteria related studies [10,11].



Accelerated Promethee Algorithm Based on Dimensionality Reduction 193

In [11], a new scheduling strategy based on multi-criteria decision algorithm
is proposed. The principle of this strategy consists to choose, from a set of nodes,
able to execute a new submitted container, the node which has a good compro-
mise between several criteria. According to the results presented in [11], the new
scheduling strategy based on the multi-criteria algorithm allows to improve the
performance comparing to others scheduling strategies.

In [10], also a multi-criteria algorithm is used to recommend profiles. The
goal of the work presented in [10] consist to score a set of profiles configured
according to multi-criteria and saved in a database according to their similarity
compared to a new profile. In this study, the multi-criteria algorithm is used to
compute the distance score between each profile saved in a database and the
new profile.

2.3 Large Scale Multi-criteria Algorithm

In [4], two practical Large Scale Multi-Objectives Scheduling (LSMOS) strategies
are proposed. The goal of the work proposed in [4], consists to show how we can
improve the computing time obtained by using a Kung multi-criteria algorithm.

2.4 Positioning

The novelty of this paper is to propose a new accelerated Promethee multi-
criteria algorithm adapted for large scale environments with thousand of objects.
The benefit of our approach is that it allows to get a solution faster than with
an exact Promethee method. The difference between this study and the study
presented in [4], is that our study is based on Promethee multi-criteria algorithm.
However, the study proposed in [4] is based on Kung multi-criteria algorithm.

3 Key Algorithms Used by the Accelerated Promethee
Algorithm

In this section, we present the exact Promethee and K-means algorithms which
will be used as key building blocks of our approach depicted in Sect. 4.

3.1 Exact Promethee Algorithm

The exact Promethee (Preference Ranking Organization METHod for Enrich-
ment Evaluations) algorithm presents a multi-criteria decision aid system [14].
It gives a good compromise between several qualitative and quantitative crite-
ria. The Promethee algorithm allows to compare objects between them pair by
pair, along different criteria for each object. All criteria of objects are evalu-
ated according to two functions: (i) Minimization; and (ii) Maximization. That
means, each criterion can be minimized or maximized. However, the use of the
Promethee algorithm requires two informations for each criterion: a weight and



194 T. Menouer et al.

a preference function. In our context, we suppose that the weight of all crite-
ria are the same and equal to 1. However, the preference function characterizes
the difference for a criterion between the evaluations obtained by two possible
objects into a preference degree ranging from 0 to 1. In [7], six basic preference
functions have been proposed. In this work we use the usual preference functions
describe in following. To summarize, the Promethee algorithm is composed of
four steps [15]:

1. It computes for each pair of possible objects (Objecta and Objectb) and
for each criterion, the value of the preference degree. Let gj(Objecta)
be the value of a criterion j for Objecta. We note dj(Objecta, Objectb)
(dj(Objecta, Objectb) = gj(Objecta) − gj(Objectb)), the difference of value
of a criterion j for Objecta and Objectb. Pj(Objecta, Objectb) is the value of
the preference degree of a criterion j for Objecta and Objectb. The preference
function used to compute these preference degrees is defined such as:

Pj(dj) =
{

0 dj ≤ 0
1 dj > 0

2. It computes for each pair of possible objects, a global preference index. Let C
be the set of considered criteria (qualitative and/or quantitative) and wj the
weight associated to the criterion j. The global preference index for a pair of
possible Objecta and Objectb is calculated as follows:

π(Objecta, Objectb) =
∑
j∈C

Wj × Pj(Objecta, Objectb)

3. It computes for each possible object the positive outranking flow φ+(Objecta)
and the negative outranking flow φ−(Objecta). Let A be the set of objects
with size of n. The positive and negative outranking flow of objects are cal-
culated by the following formula:

φ+(Objecta) =
1

n − 1

∑
x∈A

π(Objecta, x)

and
φ−(Objecta) =

1
n − 1

∑
x∈A

π(x,Objecta)

4. It uses the outranking flows to establish a complete ranking between the
objects. The ranking is based on the net outranking flows φ(Objecta) which
is calculated as follows: φ(Objecta) = φ+(Objecta) − φ−(Objecta). In our
work, the first objects returned by Promethee algorithm are objects with the
highest net outranking values.

Example of How the Exact Promethee Algorithm Works. Assume that
at time t0, three objects exist (Objecta, Objectb, Objectc) with different criteria



Accelerated Promethee Algorithm Based on Dimensionality Reduction 195

as it is presented in Table 1. In our context, the Promethee algorithm will be used
to select form the set of objects, the object which has a good compromise between
several criteria. As explained before, the exact Promethee algorithm starts by
computing for each pair of possible objects a difference value in each criterion
(dx(Objecti, Objectj)) and the preference degree (Px(Objecti, Objectj)). Then,
the system calculates the global preference index φ(Objecti). In Table 2 with the
first pair objects (Objecta, Objectb), the difference value for the criterion 1 is
d(Objecta, Objectb) = 3 − 1 = 2. However, as this difference value is positive,
using an usual preference function, the preference degree equals to 1 (as presented
in Table 3).

As in our work we suppose that the weight of all criteria equal to 1, the global
preference index of the first pair of objects (Objecta, Objectb) = 2× 1+1× 1 = 3
(as it is presented in Table 3). Finally, to get the rank of objects and select the
object which has a maximum rank, the system calculates the positive and nega-
tive outranking flow and the net outranking flow parameters. Table 4, shows how
the system calculates these different parameters. For example, for Objecta, the
positive outranking flow (φ+) is 1

2 (3 + 2) = 2.5. The negative outranking flow
(φ−) is 1

2 (0 + 0) = 0. The net outranking flow (φ = φ+ − φ−) is 2.5 (2.5 − 0).

Table 1. Objects with different criteria configurations

Objects Criterion 1 Criterion 2

Objecta 3 2

Objectb 1 1

Objectc 2 1

Table 2. Computing of the difference value of criteria

Pair of objects Difference value of criteria

Criterion 1 Criterion 2

d(Objecta, Objectb) 2 1

d(Objecta, Objectc) 1 1

d(Objectb, Objecta) −2 −1

d(Objectb, Objectc) −1 0

d(Objectc, Objecta) −1 −1

d(Objectc, Objectb) 1 0

Using Promethee algorithm, the Objecta is the first selected object because
it has the maximum net outranking flow. This result confirms our expectation.
As it is presented in Table 1, the Objecta is the object with the high value in
each criterion.



196 T. Menouer et al.

Table 3. Computing of the preference degree and the global preference index

Pair of objects Preference degree Global preference index

Criterion 1 Criterion 2

d(Objecta, Objectb) 1 1 3

d(Objecta, Objectc) 1 1 2

d(Objectb, Objecta) 0 0 0

d(Objectb, Objectc) 0 0 0

d(Objectc, Objecta) 0 0 0

d(Objectc, Objectb) 1 0 1

Table 4. Computing of the net outranking flow and a rank of each object

Objects φ+ φ− φ Rank

Objecta 2.5 0 2.5 1

Objectb 0 2 −2 3

Objectc 0.5 1 −0.5 2

3.2 K-means Clustering Algorithm

K-means clustering algorithm is a type of unsupervised learning algorithm [13].
The goal of this algorithm is to build clusters of data, with the number of clusters
is represented by the variable K [13]. The algorithm works iteratively to assign
each data point to one of K clusters. Data points are clustered based on feature
similarity. The principle of the K-means algorithm is described as follows:

1. Randomly choose k objects as center objects;
2. Calculate the distance between each object and each center object. Then,

assign each object to the cluster which has the nearest center object;
3. Recalculate the new center object of each cluster;
4. Repeat step 2 and 3 until you achieve a cluster stability.

Fig. 1. Partitioning based on K-means [13]



Accelerated Promethee Algorithm Based on Dimensionality Reduction 197

Example of How the K-means Algorithm Works. Let us consider a set
of objects as depicted in Fig. 1 presented in [13]. Let us also suppose that the
number of clusters we want to have equal to 3 (k = 3). According to Fig. 1, we
arbitrarily choose three objects, each object represent an initial cluster center.
In Fig. 1(a), each initial center is marked by symbol (+). Then, each object
from the set of objects is assigned to a cluster based on the cluster center to
which it is the nearest. Next, the cluster centers are updated. That means, each
cluster recalculates its center based on the current objects in the cluster. Using
the new cluster centers, objects are redistributed to the clusters based on which
cluster center is the nearest (Fig. 1(b)). The process of iteratively reassigning
objects to clusters to improve the partitioning is referred to as iterative relocation
(Fig. 1(c)). Eventually, no reassignment of the objects in any cluster occurs and
so the process terminates. The resulting clusters are returned by the clustering
process.

4 Accelerated Promethee Algorithm Based on K-means

The novelty of this paper is in the introduction of a new accelerated Promethee
algorithm to reduce the exact Promethee computing time. The goal is to combine
the exact Promethee with the K-means algorithm to find, quickly from a large
set of objects, one object or a small set of objects which has a good compromise
between multi-criteria.

Fig. 2. Accelerated Promethee algorithm based on K-means

As shown in Fig. 2 and Algorithm 1, the principle of the proposed accelerated
Promethee algorithm consists to start by applying the K-means algorithm on all



198 T. Menouer et al.

Algorithm 1. Accelerated Promethee algorithm based on K-means and exact
Promethee algorithms

Input: I, set of all objects with size equal to n.
Input: K, empiric value used by the K-means algorithm (for instance, choose

K = 2 × log2(n)).
Output: R, set of objects with size equal to n′ (n′ < n).

V = center objects of all clusters returned by K-mean algorithm apply on input I.
for i ⇐ 1 to K do

E[i] = Add randomly α objects around V[i].
end for
R = set of objects returned by the exact Promethee algorithm on objects saved in
E.

set of objects to form K clusters with the same characteristics. K can be chosen
to be equal to 2 × log2(n), with n being the size of the problem, i.e. the number
of objects. This step reduces the state space of the problem. Then we choose a
set of objects in each cluster, for instance randomly, but it is possible to choose
objects at a certain distance of the centroid or by applying the best known K-
Nearest Neighbors (KNN) algorithm [3]. The set of resulting objects is called E.
The objective is to have more information to improve the accuracy of the result.
Finally, apply the exact Promethee algorithm on set E in order to obtain a result
set of objects R. The objects returned by our accelerate Promethee algorithm
are ranked according to their net outranking score.

5 Experimental Evaluation

In this section, we present some experimental evaluation to demonstrate the
potential of our work. The following experimentations are done on Intel Xeon
machine. The used machine is booked from Grid5000 platform [6], an experi-
mental large-scale testbed for distributed computing in France. Our approach is
implemented in Go programming language. Go is an open source programming
language that makes it easy to build simple, reliable, and efficient software.

In this experimental evaluation, we propose to validate our approach accord-
ing to 6, 8, 10 and 12 criteria. Each criterion has a random value varying between
0 and 100. The goal of our experiments is not to focus only on the computation
time of our algorithm but rather to exemplify the quality of the approximated
solution of our approach.

The focus of our paper is in providing with a methodology aiming to combine
an exact method for the decision, a clustering method and a dimensionality
reduction method. The problem of finding a realistic workload in a context of
many criteria and many objects is an issue. In following, the k-means algorithm
is used with k = 2 × log2(n) (n number of the input objects). The number of
objects returned by k-means is equal to n

2 .



Accelerated Promethee Algorithm Based on Dimensionality Reduction 199

5.1 Comparison Between the Exact and the Accelerated Promethee
Algorithms

Figure 3 (respectively Figs. 4, 5 and 6) shows a comparison between the com-
puting time obtained using the exact and the accelerated Promethee algorithms
using 6 (respectively 8, 10 and 12) criteria. As a result, we note, from Figs. 3,
4, 5 and 6, that the computing time obtained with the accelerated Promethee is
very small compared to the computing time obtained with the exact Promethee
algorithm. Table 5 shows the speedup obtained using the accelerated Prome-
thee algorithm compared to the exact Promethee algorithm. We notice that the
speedup increases with the problem size. When the problem size becomes larger,
the speedup is more important. This is a nice property of our implementation.

Fig. 3. Comparison between the exact and the accelerated Promethee algorithms con-
figured with 6 criteria

Fig. 4. Comparison between the exact and the accelerated Promethee algorithms con-
figured with 8 criteria



200 T. Menouer et al.

Fig. 5. Comparison between the exact and the accelerated Promethee algorithms con-
figured with 10 criteria

Fig. 6. Comparison between the exact and the accelerated Promethee algorithms con-
figured with 12 criteria

Table 5. Speedup between the exact and the accelerated Promethee algorithms con-
figured with 6, 8, 10 and 12 criteria

Problem size Speedup

6 criteria 8 criteria 10 criteria 12 criteria

4096 2.85 2.39 1.93 1.64

6144 2.91 2.79 2.03 2.07

8192 2.97 2.9 2.55 2.3

10240 3.32 3.57 2.74 2.37

12288 3.46 3.82 2.96 2.47

14336 3.48 4.37 3.08 2.76

16384 3.73 4.86 3.18 2.89



Accelerated Promethee Algorithm Based on Dimensionality Reduction 201

5.2 Metrics of Performance

We now propose to compare the exact value returned by the Promethee algo-
rithm and the approximated value returned by our accelerated Promethee algo-
rithm. To do this comparison, we propose to use the Sorensen-Dice index [1].
Note that the comparison is done between the first 50 and 100 objects returned
by the accelerated and the exact Promethee algorithms. Note also that each time
the Promethee algorithm is used it returns objects ranked according to their net
outranking flow. Sorensen-Dice index [1] is a statistic index used for comparing
the similarity of sample sets. It is defined as

DSC(A,B) =
2 × |A ∩ B|
|A| + |B| .

With A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) are two vectors composed
from a set of objects.

Table 6. Sorensen-Dice index for the first 50 objects returned by the accelerated and
the exact Promethee algorithms

Problem size Sorensen-Dice index

6 criteria 8 criteria 10 criteria 12 criteria

4096 0.55 0.56 0.47 0.5

6144 0.5 0.48 0.47 0.55

8192 0.47 0.5 0.58 0.46

10240 0.54 0.55 0.57 0.53

12288 0.54 0.5 0.56 0.52

14336 0.56 0.52 0.56 0.53

16384 0.61 0.58 0.48 0.63

Table 6 (resp. Table 7) represents the Sorensen-Dice indexes obtained by com-
paring the exact and the accelerated Promethee algorithm based on 6, 8, 10 and
12 criteria between the first 50 objects (resp. 100 objects) returned by the accel-
erated and the exact Promethee algorithms. We notice that the Sorensen-Dice
index values in Tables 6 and 7 are varying between 0.46 and 0.61. These results
confirm the potential of our approach method to predict the exact Promethee
result.

5.3 General Discussion

In our approach, each criterion may have a weight depending on the user need.
In this series of experiments, we do not investigate the impact of the weights on
criteria regarding the performance and quality of the result. The originality of
Promethee is in mixing qualitative and quantitative criteria. In this paper, we



202 T. Menouer et al.

Table 7. Sorensen-Dice index for the first 100 objects returned by the accelerated and
the exact Promethee algorithms

Problem size Sorensen-Dice index

6 criteria 8 criteria 10 criteria 12 criteria

4096 0.55 0.51 0.49 0.51

6144 0.5 0.49 0.51 0.57

8192 0.5 0.52 0.55 0.46

10240 0.52 0.52 0.54 0.52

14336 0.5 0.54 0.56 0.53

16384 0.55 0.57 0.49 0.56

do prefer to focus on the originality of our work which is in a coupling between
methods inherited both from the field of combinatorial optimization and from
the field of machine learning. The context is to find a solution, with a good
respond time, when we have a problem with a big size (number of objects) and
a large dimension (number of criteria).

6 Conclusion

We presented in this paper an accelerated Promethee algorithm adapted for large
scale environment to reduce the exact Promethee computing time. The proposed
accelerated Promethee algorithm is based on the dimensionality reduction to
choose an object or a small set of objects with a good compromise in a multi-
criteria context. The principle consists to use the K-means algorithm to reduce
the number of candidate objects, then to apply the exact Promethee on a reduced
number of objects. We discussed in this paper the conditions to get a quick
answer versus a precise answer. A balance between the normal law to use (i.e. the
shape of the data) and the expected precision should be identified. In practical
cases, to satisfy the final user, we have shown the impact of such considerations
on the obtained results. As a perspective, we plan to investigate more in deep the
quality metrics, to be able to observe the solution according to different point
of view regarding the data.

Acknowledgments. We thank the Grid5000 team for their help to use the testbed.
Grid’5000 is supported by a scientific interest group (GIS) hosted by Inria and including
CNRS, RENATER and several universities as well as other organizations.

References

1. Jackson, D.A., Somers, K., Harvey, H.H.: Similarity coefficients: measures of co-
occurrence and association or simply measures of occurrence? Am. Nat. 133(03),
436–453 (1989)



Accelerated Promethee Algorithm Based on Dimensionality Reduction 203

2. Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: Promethee: a compre-
hensive literature review on methodologies and applications. Eur. J. Oper. Res.
200(1), 198–215 (2010)

3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-
ory 13(1), 21–27 (1967)

4. Cérin, C., Menouer, T., Lebbah, M.: Accelerating the computation of multi-
objectives scheduling solutions for cloud computing. In: 2018 IEEE 8th Interna-
tional Symposium on Cloud and Service Computing (SC2), pp. 49–56, November
2018

5. Ding, L., Zeng, S., Kang, L.: A fast algorithm on finding the non-dominated set in
multi-objective optimization. In: The 2003 Congress on Evolutionary Computation
2003, CEC 2003, vol. 4, pp. 2565–2571, December 2003

6. Grid5000: https://www.grid5000.fr/
7. Brans, J.P., Mareschal, B.: Promethee Methods. In: Figueira, J., Greco, S., Ehro-

gott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. Inter-
national Series in Operations Research & Management Science, vol. 78, pp. 163–
186. Springer, New York (2005). https://doi.org/10.1007/0-387-23081-5 5

8. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975)

9. Lai, Y.-J., Liu, T.-Y., Hwang, C.-L.: Topsis for MODM. Eur. J. Oper. Res. 76(3),
486–500 (1994). Facility Location Models for Distribution Planning

10. Menouer, T., Darmon, P.: New profile recommendation approach based on multi-
criteria algorithm. In: 2018 IEEE International Conference on Big Data (Big Data),
pp. 4961–4966, December 2018

11. Menouer, T., Darmon, P.: New scheduling strategy based on multi-criteria deci-
sion algorithm. In: 2019 27th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), pp. 101–107, February 2019

12. Opricovic, S., Tzeng, G.-H.: Compromise solution by MCDM methods: a compar-
ative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)

13. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques, 3rd edn.
Elsevier, Amsterdam (2011)

14. Deshmukh, S.C.: Preference ranking organization method of enrichment evaluation
(promethee). Int. J. Eng. Sci. Invent. 2, 28–34 (2013)

15. Taillandier, P., Stinckwich, S.: Using the Promethee multi-criteria decision making
method to define new exploration strategies for rescue robots. In: International
Symposium on Safety, Security, and Rescue Robotics (2011)

https://www.grid5000.fr/
https://doi.org/10.1007/0-387-23081-5_5


Implementing a Business/Technology
Architecture Alignment-Oriented Process
Applied to the Social-Sanitary Sector

Fernanda Lugmaña-Hidalgo1(&) and José Luis Garrido2

1 Research Center on Information and Communication Technologies (CITIC),
University of Granada, c/Pdta. Gómez Montero, 2, 18014 Granada, Spain

flugmana@ugr.es
2 Software Engineering Department, University of Granada E.T.S.I. Informática

y Telecomunicación, c/Pdta. Saucedo Aranda s/n, 18014 Granada, Spain
jgarrido@ugr.es

Abstract. Nowadays, enterprises are increasingly looking for business and
technological strategies which offer huge market opportunities and numerous
competitive advantages. Such strategies cause that the enterprises undergo
continuous changes, especially regarding their Business Processes (BPs) and
integration between them and Information and Communication Technologies
(ICT). The integration between new business models and technological changes
require to address the complexity of aligning the Enterprise Architecture (EA).
The reason being that if any EA component is not prepared to reach such
changes, or it is missing, then EA anomalies arise and consequently, leading to
misalignment. In this sense, this paper introduces a new EA alignment-oriented
process, in which the EA anomalies are identified through symptoms, causes
and location; a solution to fix and prevent them is formulated through diagnosis
and therapy; and the Business Process (BP) is (re-) modeled and the EA is (re-)
designed as a consequence to easier find the EA components where the therapy
should be applied, independently of the EA level where the anomalies are found,
thus contributing to the EA alignment. The proposal is illustrated by using a case
study of a dependents admission BP in an organization belonging to the social-
sanitary sector. We assume that the support to that BP could be the result of the
coexistence of different technologies such as Legacy Systems and
Microservices.

Keywords: Architecture alignment � Business Processes � Microservices

1 Introduction

Nowadays, with the aim of remaining competitive, enterprises are increasingly looking
for business and technological strategies which offer huge market opportunities and
numerous competitive advantages. Such strategies cause that the enterprises undergo
continuous changes, especially regarding their Business Processes (BPs) [1] and
integration between them and Information and Communication Technologies (ICT).
The integration between new business models and technological changes require to

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 204–219, 2020.
https://doi.org/10.1007/978-3-030-38651-1_18

http://orcid.org/0000-0003-4209-0035
http://orcid.org/0000-0001-7004-1957
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_18&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_18&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_18&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_18


address the complexity of aligning the Enterprise Architecture (EA). EA is defined as
“a coherent whole of principles, methods, and models that are used in the design and
realization of an enterprise’s organizational structure, BPs, software architecture,
information systems, and infrastructure” [2].

The main reason to address EA alignment, defined as “the problem of designing
architectures at the infrastructure, application, and business levels such that each fits
optimally with the other architectures” [3] is because if any EA component is not
prepared to reach to that strategic changes, or it is missing, then EA anomalies arise, i.e.
evidence of something is working wrong (e.g. lack of integration between BPs and
ICT, system warnings or errors, etc.) and consequently, leading to misalignment. For
instance, the EA in social-sanitary organizations usually defines and implements pro-
tocols (e.g. action, adaptation, hygiene) that are the core of its operation [4]. Those
protocols can be represented as a Business Process Model (BPM) [1] (e.g. by using the
Business Process Model Notation (BPMN) [5]) in the EA. At the same time, these
processes are performed by stakeholders and supported by certain technological EA
components such as software applications and services, legacy systems, communica-
tion networks, etc. These components should be correctly aligned with each other. In
this way, the EA components, independently of the EA level where they are placed,
should contribute to the achievement of the same business goals [6], e.g., stakeholders’
expectations, economic benefits, best response times, etc.

This paper introduces an EA alignment-oriented process in which firstly, the EA
anomalies are identified through the symptom detection, the causes that origin these
symptoms, and the BPs where they are found. Secondly, a solution to fix and prevent
such anomalies is formulated through a diagnosis and a therapy. Thirdly, the Business
Process (BP) is (re-) modeled and the EA is (re-) designed as a consequence to easier
find the EA components (organized as a layered Service-Oriented Architecture
(SOA) where the therapy should be applied, independently of the EA level where the
anomalies are found. The focus is on managing the anomalies that can be found from
the business/ICT perspective (i.e. at the BP, application and technology EA levels).

The proposal is illustrated by using a case study of a dependents admission BP in a
social-sanitary organization. The case study comes from a specific real BP in that
sector, where interviews were conducted with social-sanitary professionals (they
mentioned some anomalies detected in that BP). For the purposes of this case study, we
assume that the support to that BP could be the result of the coexistence of Legacy
Systems and Microservices. On the one hand, the existence of legacy systems (i.e.
systems implemented with technologies now outdated) because they are still fulfilling
their purpose and therefore are kept in this type of organizations [7]. On the other hand,
the existence of Microservices, defined as “an evolution of services-oriented archi-
tecture style where a service is divided into other smallest services” [8] because one of
the features that they provide is the polyglotism, thus contributing to the integration
between systems.

This paper describes related work in Sect. 2. Section 3 briefly describes the SOA
design model used for the EA. Section 4 introduces the EA alignment-oriented process.
Section 5 describes the case study in the social-sanitary sector. Section 6 summarizes
conclusions and future work.

Implementing a Business/Technology Architecture Alignment-Oriented Process 205



2 Related Work

This section describes related work on the topic of EA alignment. In [9] some results of
a deep analysis of literature review about IT alignment are provided by addressing
questions such as: What have we learned? What is disputed? Who are contributors to
the debate? The answers to these questions also help for a better understanding of IT
alignment, and their relevant concepts. In [10] a Business and Information Systems
Misalignment model (BISMAM) is described, in which EA misalignment is handled as
human body disease because in both cases the system is not working correctly. BIS-
MAM aims to understand, classify and manage these misalignments by establishing a
misalignment classification scheme. It links EA views, misalignment symptoms and
causes, and defines techniques to detect, correct and prevent misalignments. The
nomenclature and conceptualization of BISMAM (symptoms, causes, diagnosis and
therapy) is very useful specially to detect and fix anomalies through various dimensions
(etiology, symptom classification, etc.). However, it does not address BP (re-) modeling
and EA (re-) designing as part of a solution to these anomalies.

Another research work proposed in [11] provides a suitable support to manage the
alignment between BP and software systems by suggesting evolution actions when
misalignment is detected. It proposes an approach including modeling (in UML) and
providing a set of metrics for evaluating the alignment level. However, it does not serve
as a means to easier find the EA components where the therapy should be applied to the
BPM and EA design.

In [12] is proposed a problem-aware framework for establishing requirements
traceability, in the context of goal-oriented requirements engineering. This framework
helps to ensure that requirements specifications are aligned to stakeholders’ needs. It is
done by considering why these needs arise, which problems are detected by stake-
holders, and which systems can be used to fix these problems. It uses ontological
concepts, a NFR framework (goal-oriented model to represent functional and not
functional requirements), and Problem Interdependency Graphs (PIG) (to represent
problems) organized by layers. This work also aims to align EA, but only at a higher
EA level, where aspects such as enterprise goals and mission, organizational structure,
and human resources are considered.

3 A SOA Design Model for EA

The EA design can result in a complex task since it implies to having a deep
acknowledgement and full vision of all the enterprise components. For this reason, an
EA layered model is adopted (see Fig. 1). This model is based on the standard language
ArchiMate [13] which serves to design EA as service-oriented model [2]. In this model,
the service concept transcends through the following EA layers: (1) the Business
Layer offers services to external customers, the services are realized in the organization
by BP; (2) the Application Layer supports the business layer with application services
which are realized by software applications and services; and (3) the Technology
Layer offers infrastructure services. This design is flexible and well-structured, by
somewhat facilitating the adoption of strategic changes [2].

206 F. Lugmaña-Hidalgo and J. L. Garrido



As shown in Fig. 1, each EA layer is in turn composed by two sublayers [2]. The
first one represents the service interfaces sublayer (although the components could not
be really services), and the second one represents the realization layer, which includes:
internal behavior, object, and resources. Actually, the realization layer embraces any
type of component (e.g. database access components, store procedures, web services,
batch process, among others) at the business, application and technology layers, but
externally, they are all exposed as services thanks to the service sublayer.

4 An Enterprise Architecture Alignment-Oriented Process

This section introduces an EA alignment-oriented process, which is motivated by the
enterprise need of integrate their business models and technological changes and thus
remaining competitive. This process focuses especially on the detection and solution of
anomalies that usually occurs in EA. To this end, the approach should successfully
align EA components at different levels, from the BPs to technological solutions that
provide support to them, i.e., the focus is on the business, application and technology
layers. Other more abstract levels include aspects such as enterprise goals and mission,
organizational structure, and human resources. These are key aspects with high impact
on the BP definition and ICT design decisions, where this research work is focused on.

BUSINESS

APPLICATION

TECHNOLOGY

Fig. 1. EA layered view. (adapted from source: [2], p. 209)

Implementing a Business/Technology Architecture Alignment-Oriented Process 207



4.1 Conceptual Model

One of the main objectives of the EA alignment-oriented process is that the enterprise
architect (who is also responsible for managing this knowledge to ensure IT and
business alignment) can manage the detection and solution of anomalies. We define a
conceptual model (Fig. 2) in order to represent the concepts (and the relationships
between them) that are relevant to identify anomalies and formulate a solution.

According to this conceptual model, an anomaly is something that deviates from
what is standard, normal, or expected in an enterprise. In order to fix it, this anomaly
undergoes therapy that is a set of actions whose purpose is to fix an anomaly. This
therapy is conforming to a diagnosis that describes an analysis in precise terms of the
anomaly, taking into account causes and symptoms. Causes are the underlying factors
that cause the anomaly [10] and originate symptoms. Symptoms are defined as sub-
jective evidence of an anomaly [10] which bring out its existence. An anomaly is
located at one or more BPs, and more specifically, in certain tasks of the BPs.
A Business Process is defined as “a unit of internal behavior or collection of causally-
related units of internal behavior intended to produce a defined set of products and
services” [1].

4.2 Process Phases

The EA alignment-oriented process is applied by the enterprise architect or other actors
with similar responsibilities in the enterprise. This process comprises four phases that
are carried out iteratively (Fig. 3), in each phase is possible to go back to previous ones
as many times as required for achievement the EA alignment. The Phases 1 and 2 are
part of the detection and solution of anomalies. Each detected anomaly produces an
instance of the conceptual model (Fig. 2). The phases are described in detail as follows.

Identify EA Anomalies. The first phase identifies EA anomalies in three steps shown
in Fig. 4: Detect symptoms, find out causes, and locate BPs/Tasks.

Detect Symptoms. The symptoms detection is usually an interaction between the
stakeholders and the enterprise architect, with the help of the enterprise document
collection where they alert about an anomaly. For example, the enterprise document

Anomaly

Symptom Cause

Diagnosis

Therapy

1..* 1..*

1

1

Business 
Process/Task

1

1..*

1..*

Bring out
Locate in

1

1..*

1

Conform to

1

1..*

1

Take into account

Undergo

Originate

Take into account 1

Fig. 2. UML class diagram for conceptual model for the detection and solution of anomalies.

208 F. Lugmaña-Hidalgo and J. L. Garrido



Fig. 3. Process phases.

Fig. 4. Flow diagram of the identification of anomalies.

Implementing a Business/Technology Architecture Alignment-Oriented Process 209



collection can include periodic anomaly reports that are generated when the number
from stakeholders’ complaints exceed a maximum limit established in the enterprise
rules.

This step detects symptoms. They can be classified depending on the EA level from
where they were detected:

• Business Level. Signals that worry to stakeholders or their needs. This type of
anomalies could be detected through: (1) short meetings where each department
head exposes deficiencies in several enterprise aspects (procedures, arrangements,
processes, mechanisms, among others); and (2) system for complaints where the
customers or suppliers can expose the problems that they evidence.

• Application Level.Warnings or errors that systems show. This type of anomalies is
easily detectable through the system logs, screen messages and alerts, or system
crashes.

• Technological Level. System and hardware faults, where the technicians report the
anomalies (e.g. disconnections, server unavailability, etc.).

Find Out Causes. This step is tackled from two perspectives. On the one hand, as
interaction between the stakeholders and the enterprise architect in order to find out
why the anomalies happen (i.e. the causes which originate the symptoms). This
interaction is important, because the enterprise architect requires to have the knowledge
from other specialists (e.g. software architects/engineers, infrastructure
architects/engineers, developers, among others) in the area regarding to the anomaly.
On the other hand, this step takes inputs from enterprise document collection and
enterprises rules (e.g. when submitting a report). They could be accessed by using
several mechanisms (dashboards, KPIs, forecast, etc.) that facilitate the enterprise
government. All of them provide useful information about finding out the real cause of
the anomaly.

Locate BPs/Tasks. The BP location is also seen as an interaction between the stake-
holders and the enterprise architect. Usually, the experience and walkthroughs of the
stakeholders can provide enough valuable information to identify what are the BPs
where the anomaly is. However, thanks to documents such as periodic anomaly reports
even the specific tasks of that BPs can be located.

Formulate Diagnosis and Therapy. Once anomalies have been identified, the
enterprise architect should formulate a diagnosis by taking into account the symptoms
detected by stakeholders and the analyzed causes. This diagnosis must be the as
accurate and clear as possible in order to formulate the appropriate therapy. After, the
therapy should be conforming to the diagnosis, thus fixing the detected anomalies
without imposing an additional cost, excessive time, incurring in higher security risks
or the creation of other anomalies.

(Re-) Model Identified BP. As a result of the Phase 1, there will be BPs (and even of
the specific tasks in them) where the anomaly was found. In this phase, if needed, the
identified BP must be (re-) modeled, i.e. when the therapy actions must be carried out
in those terms. For example, if the therapy regards a new implementation that

210 F. Lugmaña-Hidalgo and J. L. Garrido



automates a manual task, then, the BP will be (re-) modeled by using another type of
task different to the manual one.

(Re-) Design EA. This phase consists of (re-) designing the service-oriented EA by
applying techniques such as traceability. Traceability is defined as: “A technique for
tracking, analyzing, and managing the impact an architectural artifact has on a
solution architecture design” [14]. By using traceability, we ensure that all involved
component in the anomaly are found and taken into account to apply the therapy. For
instance, if a component must be changed at certain level, by traceability we could
follow which are the other components that will be affected at other levels. In this
sense, the knowledge about all the components involved in an anomaly, independently
of the EA level, contributes to the suitably ICT and BP integration.

5 Case Study

The proposal for EA alignment is applied to a case study in the social-sanitary sector.
This case study is built as a result from interviews conducted with social-sanitary
professionals who explain how this type of organization works and is organized.
Additionally, these professionals mentioned several significant problems which are
faced by them. Whereupon, the studied BP is the dependents admission one. The
support of this BP is based on the coexistence of Legacy Systems and Microservices.

5.1 General Description

In a BP for dependents admission, there is a protocol to be carried out at the reception
of dependents [4]. In this context, the idea about the protocol formalization, with an
appropriate representation language, with clear and well-defined semantics, would
enable the systematic verification of guidelines and protocols [15]. According to [15],
the term protocol is in general used for a specialized version of a guideline, and in [16]
a guideline is identified as a process. Hence, we can model this protocol as a BP.

The protocol in this case study is depicted in the Fig. 5 and descripted in detail as
follows. The administrative staff records new dependents’ histories in two different
systems: (1) the own system where they store all the necessary data for the day-to-day
work; and (2) the system whose internal structure is unknown for the organization, but
stores the data in the National Health System for autonomy and care for dependents.
From now on, this system will be considered as a Legacy System, because no matter
how, it still serves in order to insert data into the National System database. Once, the
dependent histories are recorded in both systems, the social-sanitary staff is notified
about the new admission. The social-sanitary staff welcomes new dependents on the
admission day and shows the assigned room to them through verbal and non-verbal
communication by considering physical or cognitive limitations of dependents. Finally,
the social-sanitary staff inventories clothing and personal items of dependents.

Implementing a Business/Technology Architecture Alignment-Oriented Process 211



5.2 Application of the EA Alignment-Oriented Process

According to periodic anomaly report, the administrative staff detects several anoma-
lies, for example, increase of dependents’ complaints related to loss of dependents’
personal property, accomplishment of repetitive tasks, and communication prob-
lems between the social-sanitary staff and some new dependents with physical or
cognitive limitations. We will apply the process to these two last anomalies (in bold)
in the action protocol at the reception of dependents.

Fig. 5. BPM action protocol at the reception of dependents (AS-IS).

Accomplishment of 
repetitive tasks

Wasting time
Dependents' 
histories are 

recorded twice

Two systems store same 
data

Include intermediate 
service 

Record dependents’ 
histories in its own 
system  / Legacy 

System

Bring out

Locate in

Conform to

Take into account

Undergo

Take into account

Repetitive task

Originate

A

A

S

S

C

D

T

B

 Anomaly B Business Process/Task S Symptom C Cause D Diagnosis T TherapyLegend:

Fig. 6. Instance of conceptual model for detection and solution of anomalies – anomaly 1.

212 F. Lugmaña-Hidalgo and J. L. Garrido



Identify EA Anomalies. It is done for each one of the two selected anomalies as
follows.

• First anomaly: Accomplishment of repetitive tasks (which is represented in the
instantiation of the conceptual model in Fig. 6).

Detect Symptoms. At business level, through system for complaints, the administrative
staff complains about the complexity and loss of time when they record new depen-
dents’ histories (Symptom: Wasting time), as the dependents’ histories must be
recorded in two different systems (Symptom: Repetitive task).

Find Out Causes. The social-sanitary organization stores the dependents’ histories in
two different systems (own and the legacy system). Both systems require information
about this organization. On the one hand, the stakeholders use the own system to
manage and plan business resources. On the other hand, official external entities impose
the storage of this information in their systems, more specifically the National Health
System requires the dependent histories. Therefore, none could be omitted (Cause:
Dependents’ histories are recorded twice).

Locate BP/Tasks. According to the anomalies report, the location of them is in the
protocol at the reception of dependents (BPs/Tasks: Record dependents’ his-
tories in its own system and Record dependents’ histories in
Legacy System).

• Second anomaly: Communication problems between the social-sanitary staff and
new dependents with physical or cognitive limitations (which is represented in the
instantiation of the conceptual model in Fig. 7).

Detect Symptoms. At business level, through the system for complaints, the new
dependents with physical or cognitive limitations expose the communication problems
between them and the social-sanitary staff at the first encounter (Symptoms: Com-
munication problems at the first encounter and Dependents’
complaints).

Communication 
problems between 

staff and dependents Communication 
problems at the first 

encounter
Lack of information  
about dependents

Availability of dependent 
information 

Provide an Application/
Service   

Welcome new 
dependents

Bring out

Locate in Conform to

Take into account

Undergo

Take into account

Dependents' 
complaints

Originate

A

B

S

S

C

D

T

A  Anomaly B Business Process/Task S Symptom C Cause D Diagnosis T TherapyLegend:

Fig. 7. Instance of conceptual model for detection and solution of anomalies – Anomaly 2.

Implementing a Business/Technology Architecture Alignment-Oriented Process 213



Find Out Causes. At the time of welcoming or in the accompaniment, there are many
communication problems between the social-sanitary staff and some new dependents
with physical or cognitive limitations. It is due to that the social-sanitary staff do not
know about the physical or cognitive limitations of the new dependents at the first
encounter (Cause: Lack of information about dependents).

Locate BP/Tasks. According the anomalies report, the location of them is in the
protocol at the reception of dependents (BP/Task: Welcome new dependents).

Formulate Diagnosis and Therapy. In this phase, a diagnosis and therapy is for-
mulated for each anomaly on basis of the previous phase:

• In the first anomaly, the users lose a lot of time inserting the same data in two
different systems (i.e., by each new dependent, its information must be recorded in
the two systems) (Diagnosis: Two systems store same data). Therefore, it
should be implemented an intermediate service (Therapy: Include interme-
diate service) which consumes the services of the own system in order to
insert data in the Legacy System.

• In the second anomaly, there is the possibility of slowing down the normal flow of a
process due to the lack of information in the correct moment (Diagnosis:
Availability of dependent information). The technology can con-
tribute to avoid these anomalies. Therefore, a possible solution could be based on
the implementation of a new application (e.g. it could be a mobile application) for
accomplishing with the following requirement: provision of the dependent’s
information to the social-sanitary staff immediately after its record, as well as an
interactive guide of how they should communicate with the new dependents
(Therapy: Provide an Application/Service).

(Re-) Model Identified BP. Once one therapy for each anomaly is formulated, this
phase must be accomplished and the action protocol at the reception of dependents
must be (re-) modeled according to such therapy.

Figure 8 shows the new BPM (TO-BE model) which includes the changes made
according to the proposed therapy with new implementation by taking into account the
services-oriented approach of this process. There are some changes in comparison to
the previous BPM (AS-IS model). Firstly, the solution of the first anomaly is modeled
(in orange color). Now, the Record dependents’ histories in its own
system user task is enough to record also the dependent histories in legacy system.
Consequently, the business resources are optimized since the user must record the
dependents’ histories only once now. As indicated by the therapy, it should be
implemented an intermediate service which consumes the services of the own system in
order to insert the same data in the Legacy System. Consequently, the Record
dependents’ histories in Legacy System service task is created and con-
nected to the Record dependents’ histories in its own system service
task (responsible of storing data in Own Database). Also, the intermediate service is
now the one that connects to the Legacy System. The solution of the second anomaly is
modeled in red color. The Assign interactive guide of communication
and Send notifications service tasks, and the Receive notification with

214 F. Lugmaña-Hidalgo and J. L. Garrido



interactive guide user task are created in order to automate the Welcome the
new dependents manual task.

(Re-) Design EA. This phase consists of (re-) designing the service-oriented EA. For
better identification of the modifications to be made in the EA design, the Fig. 9 shows
the existing EA design (AS-IS) before applying the therapy.

As mentioned previously, we assumed that part of the technology that support the
BPs is implemented as Microservices. Then, to design this type of architecture, we
follow the Microservices-oriented architecture “Spring Cloud Netflix” according to
[17], where there are three common elements (represented as application components):
(1) Edge Service, which centralizes requests from the application services; (2) Load
Balancer, which performs load balancing; and (3) Registry, where the Microservices
are deployed.

On the other hand, the EA depicted in the Fig. 9 helps us to illustrate the EA
layered model adopted in this work (see Sect. 3). The services transcends through the
three EA layers: (1) at Business Layer the Dependent record service is offered to

Fig. 8. BPM Action protocol at the reception of dependents (TO-BE).

Implementing a Business/Technology Architecture Alignment-Oriented Process 215



the dependents and is realized in the organization by Action protocol at the
reception of dependents BP; (2) at Application Layer the Record depen-
dents’ histories in its own system service supports the business layer which
is realized by the Microservices components (Edge Service, Load Balancer
and Registry); and (3) at Technology Layer the Record dependent infras-
tructure service support the higher layer.

Figure 10 depicts the new EA design (TO-BE) that includes the changes made (at
the design level) according to the proposed therapy. For instance, in relation to the first
anomaly, the therapy recommends the creation of an intermediate service. In design
there is a solution that can be used for the creation of this service. By applying the
pattern in [18], the intermediate service consumes the services of the own system in
order to insert the same data in the Legacy System. This new service (called usually as
Intermediate Service) is included in the EA design, which will be responsible
of inserting the data in the Legacy System. That service consumes the Record
dependents’ histories in its own system application service, and, in turn,
consumes the Microservices placed at the technology layer in order to access to own
database.

Fig. 9. EA design of case study in the social-sanitary sector (AS-IS).

216 F. Lugmaña-Hidalgo and J. L. Garrido



6 Conclusions and Future Work

This work proposes an EA alignment-oriented process that consists of: (1) the EA
anomalies identification; (2) the formulation of a solution for fixing them; and (3) a BPs
(re-) model and EA (re-) design based on the solution of the anomalies. In order to
accomplish the one and two previous points, this process is based on the definition of a
model that helps to understand and conceptualize the problem of detection and solution
of anomalies. In order to accomplish the previous third point, it proposes a phase to
represent and model semi-formally the BPs and their respective tasks by using BPMN,
as well as to design EA. The last two phases will help us for decision-making at
business, application and technological EA levels, by showing all EA components
involved when an anomaly exists, thus contributing to the business and technology
alignment and their integration. Currently, the enterprise architect is who applies this
process and leads meetings with the suitable stakeholders in order to receive anomaly
reports, find out the causes of them and locate BPs/Tasks where is the anomaly.
However, in the case of this role does not explicitly exist in the enterprise, it can be
adopted in different way and performed by somebody else.

We illustrate this process by using a case study from the social-sanitary sector.
However, the scope of the proposed process is broad because it can be applied to
current and common components present in the EA of any the organization (bank,
health, education, government, among others). After applying this process to the case
study, we can conclude that it helps us to identify anomalies through the instantiation
of a conceptual model, and visualize the EA components involved in an anomaly
solution through the BP and EA design models.

Later, we are planning that this process forms the basis of a formal EA alignment-
oriented method, then we are taking into account the follow points: (1) we have not

Fig. 10. EA design of case study in the social-sanitary sector (TO-BE).

Implementing a Business/Technology Architecture Alignment-Oriented Process 217



found a formal guide, model, or tool to formulate the therapy and diagnosis. In future
work, we will define in a more systematic way how to formulate the diagnosis and
therapy, thereby formalizing this phase; (2) in the case study, a pattern for the inter-
mediate service design was applied. In future work, we will exploit the use of patterns
as a relevant support to design EA and model BPs; and (3) finally, we are also planning
on incorporating several metrics to evaluate the performance through the use of dif-
ferent cases of study where we will compare the time results, with and without using
the method, and consequently verifying its effectiveness.

Acknowledgment. This research work is funded by the Spanish Ministry of Economy and
Competitiveness -Agencia Estatal Investigación- with European Regional Development Funds
(AEI/FEDER, UE) through the project ref. TIN2016-79484-R.

We wish to extend our sincere thanks to Ms María Dolores González, social-sanitary tech-
nician from “Oasis” Cáritas Diocesana Institution, who helped and collaborated with their
valuable information, feedback and suggestions.

References

1. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A: Fundamentals of Business Process
Management. vol. 1, p. 2. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-
56509-4

2. Lankhorst, M.: Enterprise Architecture at Work: Modelling, Communication and Analysis.
Springer (2009). https://doi.org/10.1007/978-3-642-29651-2

3. Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., Van der Merwe, A., Woitsch,
R.: A new paradigm for the continuous alignment of business and IT: combining enterprise
architecture modelling and enterprise ontology. Comput. Indu. 79, 77–86 (2016)

4. Madrid.org, Protocolos Asistenciales en residencias de Mayores, Consejería de Familia y
Asuntos Sociales, Servicio Regional de Bienestar Social. http://www.madrid.org/cs/
Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-
Disposition&blobheadervalue1=filename%3DBVCM007151.pdf&blobkey=id&blobtable=
MungoBlobs&blobwhere=1352857974016&ssbinary=true. Accessed 08 June 2018. (In
Spanish)

5. Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use of
the business process modeling notation. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B.,
Rolland, C., Sølvberg, A. (eds.) Seminal Contributions to Information Systems Engineering,
pp. 429–443. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36926-1_35

6. Escofet, E., Rodríguez-Fórtiz, M.J., Garrido, J.L., Chung, L.: Strategic e-business/IT
alignment for SME competitiveness. In: Computer Engineering: Concepts, Methodologies,
Tools and Applications, pp. 1427–1445. IGI Global (2012)

7. Bennett, K.: Legacy systems: coping with success. IEEE Softw. 12(1), 19–23 (1995)
8. Fowler, M., Lewis, J.: Microservices (2014). http://martinfowler.com/articles/microservices.

html. Accessed 26 Nov 2018
9. Chan, Y.E., Reich, B.H.: IT alignment: what have we learned? J. Inf. Technol. 22(4), 297–

315 (2007)
10. Carvalho, R., Sousa, P.: Business and Information Systems MisAlignment Model

(BISMAM): an holistic model leveraged on misalignment and medical sciences approaches.
Proc. BUSITAL 8, 105 (2008)

218 F. Lugmaña-Hidalgo and J. L. Garrido

http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1007/978-3-642-29651-2
http://www.madrid.org/cs/Satellite%3fblobcol%3durldata%26blobheader%3dapplication%252Fpdf%26blobheadername1%3dContent-Disposition%26blobheadervalue1%3dfilename%253DBVCM007151.pdf%26blobkey%3did%26blobtable%3dMungoBlobs%26blobwhere%3d1352857974016%26ssbinary%3dtrue
http://www.madrid.org/cs/Satellite%3fblobcol%3durldata%26blobheader%3dapplication%252Fpdf%26blobheadername1%3dContent-Disposition%26blobheadervalue1%3dfilename%253DBVCM007151.pdf%26blobkey%3did%26blobtable%3dMungoBlobs%26blobwhere%3d1352857974016%26ssbinary%3dtrue
http://www.madrid.org/cs/Satellite%3fblobcol%3durldata%26blobheader%3dapplication%252Fpdf%26blobheadername1%3dContent-Disposition%26blobheadervalue1%3dfilename%253DBVCM007151.pdf%26blobkey%3did%26blobtable%3dMungoBlobs%26blobwhere%3d1352857974016%26ssbinary%3dtrue
http://www.madrid.org/cs/Satellite%3fblobcol%3durldata%26blobheader%3dapplication%252Fpdf%26blobheadername1%3dContent-Disposition%26blobheadervalue1%3dfilename%253DBVCM007151.pdf%26blobkey%3did%26blobtable%3dMungoBlobs%26blobwhere%3d1352857974016%26ssbinary%3dtrue
http://dx.doi.org/10.1007/978-3-642-36926-1_35
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html


11. Aversano, L., Grasso, C., Tortorella, M.: Managing the alignment between business
processes and software systems. Inf. Softw. Technol. 72, 171–188 (2016)

12. Park, G., Chung, L., Hong, J.E., Garrido, J.L., Noguera, M.: Problem-aware traceability in
goal-oriented requirements engineering. In: SEKE, pp. 569–574 (2016)

13. The Open Group: The ArchiMate® Modeling Language, an Open Group Standard. http://
www.opengroup.org/archimate/. Accessed 14 Feb 2019

14. Zhang, L.J., Chee, Y.M., Abdel-Hamid, T., Zhou, N.: U.S. Patent No. 9,342,279.
Washington, DC: U.S. Patent and Trademark Office (2016)

15. Ten Teije, A., et al.: Improving medical protocols by formal methods. Artif. Intell. Med. 36
(3), 193–209 (2006)

16. Lenz, R., Reichert, M.: IT support for healthcare processes–premises, challenges,
perspectives. Data Knowl. Eng. 61(1), 39–58 (2007)

17. Cloud.spring.io: Spring Cloud Netflix. https://cloud.spring.io/spring-cloud-netflix/single/
spring-cloud-netflix.html. Accessed 24 Feb 2019

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series (1995)

Implementing a Business/Technology Architecture Alignment-Oriented Process 219

http://www.opengroup.org/archimate/
http://www.opengroup.org/archimate/
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html


A Lightweight Time Series Main-Memory
Database for IoT Real-Time Services

Lina Lan(&), Ruisheng Shi, Bai Wang, Lei Zhang, and Jinqiao Shi

Beijing University of Posts and Telecommunications, Beijing 100876, China
{lanlina,shiruisheng,wangbai,zlei,

shijinqiao}@bupt.edu.cn

Abstract. With the rapid development of Internet of things (IoT), a large
number of IoT sensing devices produces amounts of sensing data in every
second. These data should be processed in real-time to support IoT real-time
services. The growth of IoT real-time services has been hampered due to the
barriers of data storage efficiency and data processing performance with the
traditional database system architecture. This paper proposes a lightweight time
series main-memory database (TSMMDB) system for IoT real-time services.
Firstly, we propose a tree structure of IoT sensing data model based on the IoT
real-time monitoring business. The leaves of the tree are three-dimension tables.
The data can be retrieved according to time, resource and measure. Based on the
data model, we propose a customized virtual heap and virtual heap memory
allocator. The applications can access the whole data in the database in their own
processes based on shared memory without transferring data, and can achieve
data persistence automatically based on memory mapping. The flexible data
locality memory allocation makes the adjacent time series data storing in the
continuous memory space which improves the data clustered analysis perfor-
mance. The data access algorithm of TSMMDB has ideal time complexity, and
experimental results show that TSMMDB has better performance significantly
than the traditional main-memory database and disk-based relational database.

Keywords: Main-memory database � Internet of things � Real-time service �
Time series data � Virtual heap memory allocator

1 Introduction

With the rapid development of Internet of things (IoT), the network applications have
become extremely rich, and the data generated by all kinds of services has exploded.
The era of big data has come. In particular, a large number of sensors, RFID tags,
cameras and other devices widely deployed in IoT generate a large amount of sensing
data all the time. These original sensing data have the characteristics of time series.

This work is supported by Key Research and Development Program for Guangdong Province under
grant No. 2019B010137003, the Fundamental Research Funds for the Central Universities (Grant
no. 24820192019RC56).

The original version of this chapter was revised: The Grant no. should be “24820192019RC56”, not
“2018RC56”. This has now been corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-38651-1_33

© Springer Nature Switzerland AG 2020, corrected publication 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 220–236, 2020.
https://doi.org/10.1007/978-3-030-38651-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_19&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_33
https://doi.org/10.1007/978-3-030-38651-1_19


They are generated periodically, and only appended but not updated after being written
into database. These characteristics are different from the data characteristics of tra-
ditional information systems. Therefore, new and higher requirements are put forward
for the storage, access and processing of original time series sensing data. Traditional
database system architecture are difficult to meet these requirements.

As the speed of memory is 5 orders of magnitude faster than disk, with the rapid
growth of memory capacity and the continuous decline of price, memory has become
an important resource of data processing system [1–4]. Storing the entire dataset in
memory and conduct in-memory computing and data analytics can greatly improve the
speed of data access and data processing. The in-memory database is becoming more
and more important in in-memory computing. An in-memory database is essentially
storing the “working version” of the database in memory.

In the process of data analysis, a large amount of data need to be exchanged
between the application program and the database system. If the data transfer speed
between processes is not fast enough, it is difficult to exert the performance of in-
memory computing [2]. The inter-process communication mode provided by modern
operating systems including pipe, socket and shared memory, cannot meet the
requirements of in-memory computing performance well. The pipe and socket modes
need to transfer data and the speed is not far enough. Shared memory mode does not
need to transfer data, but the application is responsible for the synchronization
mechanism of shared memory, which is difficult to develop and maintain. There are
limitations of efficiency data sharing between traditional in-memory databases and
applications. It is difficult to provide the efficiency performance of parallelism and
concurrency control capacity in main-memory database system [5–7].

In recent years, the development trend of main-memory database is to design high
performance memory database system for different application requirements. Stone-
braker et al. [8] proposes VoltDB, which is suitable for high frequency concurrent
access requests with a large number of small single transactions. Xie et al. [9] proposes
Hekaton adopts the lock-free concurrency model to improve concurrency processing
performance to support high-concurrency OLTP application scenarios. SAP HANA
proposes methods to optimize in-memory data access, and optimize data writing [11,
12, 14, 16]. Pelkonen et al. [17] proposes Gorilla, a time series in-memory database, to
provide efficient data storage and access for monitoring the Internet distributed service
for Facebook. Meng et al. [18] proposes memory instant snapshot sharing mechanism
to improve the speed of data sharing between database and applications.

These works have achieved outstanding results and greatly promoted the devel-
opment of main-memory database technology. However, there are still some defi-
ciencies in the efficient data storage and access of time series data in IoT. The massive
time series sensing data in IoT brings new challenges to the main-memory database:
(1) How to store time series data for applications conducting efficient analysis. (2) How
to support applications to read and write data much faster. The previous studies cannot
solve the problems well.

Focus on the challenges, we propose a lightweight main-memory database system
TSMMDB (Time Series Main-Memory DataBase). Firstly, the data model and data
storage strategy of IoT time series data are proposed. Based on the data model, a
customized virtual heap and virtual heap memory allocator is proposed, and the
physical memory pages are shared between processes, so that application can access

A Lightweight Time Series Main-Memory Database for IoT Real-Time Services 221



the data in the whole database in the application’s own process space. It is no longer
limited by the traditional inter-process communication mode, which greatly improves
the efficiency of data access for applications.

The main contributions of this paper are as follows:

• It proposes the data model and data storage strategy of time series data. The data
model adopts tree structure, and the leaf node is three-dimension table based on
time, resource and measure.

• It proposes a customized virtual heap and virtual heap memory allocator. The data
objects in virtual heap created by applications can be persisted automatically based
on memory mapping. A flexible data locality in memory allocation is obtained.

• The performance evaluation is carried out. Experimental results show that the
performance of TSMMDB is obviously better than both traditional in-memory
database and disk-based relational database.

The remainder of this paper is organized as follows: In Sect. 2, we present the
related work. In Sect. 3, we present the data model of IoT time series sensing data. In
Sect. 4, we present the data storage strategy of TSMMDB. In Sect. 5, we describe the
overall structure and detail design of TSMMDB. In Sect. 6, we introduce the perfor-
mance evaluation of TSMMDB. Finally, we conclude the paper in Sect. 7.

2 Related Work

At present, there are some in-memory database systems integrated with data analysis
and data mining tools to achieve high efficiency of data analysis and processing. For
example, SAP HANA combines the database server with the application server to
reduce the cost of data movement [10, 13, 15]. However, excessive coupling between
DBMS and data analysis programs will bring new problems and increase the cost of
software development and maintenance.

Both Hyper [20] and SAP HANA [10, 13] use fork to create child processes to
realize data sharing between DBMS and data analysis programs. When DBMS receives
an analysis request, the main process calls fork to produce a child process to handle the
request. Since the child process and the main process can share all the physical
memory, the child process can immediately get a memory snapshot of the main pro-
cess, which can be used to read and write data. The isolation between the main process
and child process is ensured by the write-replication provided by the operating system.

The parent and child processes can avoid the data movement by the fork sharing
memory mode, but this method has some deficiencies as follows: (1) The data analysis
program should be embedded into DBMS using dynamic link library, thus increasing
the coupling of data analysis program and DBMS, which makes the development of
data analysis program becoming too complicated. (2) Since a child process cannot have
more than one parent process, the child process in fork mode cannot get memory
snapshot from multiple processes at the same time. That is to say, this mode does not
support data analysis program to take memory snapshot in multiple processes as data
source, which seriously restricts the application scope of data analysis program.

222 L. Lan et al.



Therefore, to achieve efficient data sharing and reduce the coupling between the
application and the database remain the unsolved technical issues which are main-
memory database system currently addressing.

3 IoT Sensing Data Model

3.1 Data Model

The sensing data generated by IoT sensing devices such as sensors, cameras, RFID
tags, etc., are collected periodically. The collection period can be different.

The IoT sensing data management business involves several entities: Network,
LogicNE (logical device), NEInstance (physical device), Group (counter group) and
Counter. Each device can set different collection intervals. Each network contains
multiple logical devices. Each logical device consists of multiple physical devices.
Each physical device consists of multiple groups. Each group consists of multiple
counters. The counters collect the sensing data exactly.

According to the analysis of the business, the IoT sensing data model can be
organized in a tree structure shown in Fig. 1.

In Fig. 1, the root of the tree is the physical file that stores all the data. Physical File
contains multiple Networks. Network refers to IoT services. The different Networks
refer to different IoT services, such as temperature monitoring service, humidity
monitoring service, video monitoring service, etc. The sensing data in each IoT service
is composed of data of multiple collection periods (Sampling Intervals). Each Sample
Interval contains data from multiple logical devices (LogicNEs). LogicNEs refer to
virtual IoT devices, which are resource objects accessible by IoT services and consist of

Network1

Sampling 
interval 1

Sampling 
interval 2

Sampling 
interval n

LogicNE1 LogicNE 2 Logic NE n

NEInstance1 NEInstance2 NEInstance n

Network2 Network n

Root: Physical file

Group1 Group2 Group n

Counter 1 Counter 2 Counter n

...

...

...

...

...

...

Fig. 1. The data model of IoT sensing data.

A Lightweight Time Series Main-Memory Database for IoT Real-Time Services 223



multiple physical devices (NEInstances). For example, the temperature monitoring
equipment of a room in a certain building is a logical equipment, which actually
consists of multiple physical equipment of temperature sensors deployed in the room.
Physical devices under logical devices are actually deployed sensing devices, such as
temperature sensors, humidity sensors, light sensors, cameras, RFID tags, etc.
A physical device (NEInstance) can contain 1 or more than one Group. Each Group
contains 1 or more than one Counter, which actually collects sensing data periodically.
The data types in each Group are consistent, such as numeric, graphical, etc.

The data collected each time is represented by a three-dimension table, where the
row represents each specific device (Resource Instance), and the column represents
multiple data collected by the device (Counter) at one time. The third dimension is the
timestamp. The three dimensions determine the position in the table. All kinds of data
collected are stored in the table, such as temperature value, humidity value, image taken
by the camera, video image taken by the camera during a period of time, etc. The three-
dimension table of IoT sensing data is shown in Fig. 2.

In Fig. 2, Table[r][c][t] represents the c data of the r sensing device at time t. T1,
T2 … Tn represents the collection time. r, c and t, respectively, which can locate the
access position of the value of a data of a certain device at a certain time. Figure 2(a)
represents the three-dimension table storage of sensor sensing data, and the data type is
numeric. Figure 2(b) shows the three-dimension table storage of camera sensing data,
and the data type is image type.

3.2 Structure of Persistent Objects

According to the data model of IoT sensing data in Figs. 1 and 2, the design of
persistent objects is carried out, as shown in Fig. 3.

The retrieval chain of sensing data access is persNetwork!persPeriod!
persLNE!persNEInstance!persGroup!Table[r][c][t].

Without loss of generality, this model can be applied to general time series data
model.

Data 1 Data 2 Data n

Sensor 1

Sensor 2

Sensor n

T1

T2

T n

(a) Sensor Data StorageResource

Counter Data 1 Data 2 Data n

Camera 1

Camera 2

Camera n

T1

T2

T n

(b) Camera Data StorageResource

Counter

Fig. 2. Three-dimension table of IoT sensing data.

224 L. Lan et al.



4 Data Storage Strategy

The TSMMDB database is made up of a set of data files. Considering the time series
characteristics of data flow, physical files are divided according to time granularity Tf.
Tf represents how many days of data are stored in a physical file, for example, Tf = 1
represents one day of data stored in a file. The application can set Tf value based on
business requirements. When Tf = 1, if data is collected every 15 min, the number of
RC (Resource-Counter) tables in each Group in one day will be 4*24 = 96. All of these
tables will be stored in one file. In TSMMDB System, the default configuration is
Tf = 1.

Multiple physical files form a database in time series. For the old obsolete data, it
can be backed up to historical data devices and then moved out of the database by data
storage strategy. The number of the most recent files saved in the in-memory database
is Nf. Nf = 30 indicates that the most recent 30 files are saved in the in-memory
database. If each file holds one day’s data, that’s the most recent 30 days data. The data
storage strategy is shown in Fig. 4. In Fig. 4, Tf = 1 and Nf = 30 are set in the storage
strategy.

For IoT service scenario, the historical data usage probability is much lower than
the latest data. Application services can formulate data management policies and
configure parameters Tf and Nf according to specific requirements. There is a parameter

class persDataRoot
aggregate member:

map<pString, persNetwork>

class persNetwork
aggregate member:

map<unsigned int, persPeriod>

class persPeriod
aggregate member:

map<pString, persLNE>

class persLNE
aggregate member:

map<pString, persNEInstance>

class persNEInstance
aggregate member:

map<pString, persGroup>

typedef persGroup
aggregate member:

vector<Table*> timeSamples

Fig. 3. The structure of persistent objects of IoT sensing data.

Day3 Day2 Day1……Day30……

Time

TSMMDBHistory Data Files

Today
Past

Fig. 4. The data storage strategy of TSMMDB.

A Lightweight Time Series Main-Memory Database for IoT Real-Time Services 225



MaxNf referring to the upper limit of the number of files in TSMMDB. So Nf �
MaxNf should be meet.

The database physical file contains data and the corresponding index information.

5 TSMMDB System

5.1 System Overview

TSMMDB is a lightweight embedded memory database. The TSMMDB program is
embedded in the application and runs as a module of the application, working with
other modules of the application to complete the application functions. Since
TSMMDB is part of the application, the application process can access to data
throughout TSMMDB in the application’s own process space. The data in TSMMDB
can be accessed simultaneously by different applications.

The overall structure of TSMMDB system is shown in Fig. 5. TSMMDB system
includes TSMMDB database, Reader module, Writer module and Manager module.
Among them, Reader and Writer are the interface modules that provide application
access, and Manager is the configuration function module.

TSMMDB stores sensing data. TSMMDB provides the write function in Writer
module, the read function in Reader module. Applications implements their write and
read function to TSMMDB through Writer and Reader module.

In the application of IoT sensing data management, Data Collector, such as IoT
Access Platform, implements real-time writing of sensing data collected to TSMMDB
through Writer interface. Various data analysis applications, such as CEP (Complex
Event Processing), GUI, etc., read sensing data from TSMMDB in real-time through
Reader interface for data analysis or display.

The Manager module implements the configuration of TSMMDB, such as database
size, memory address space planning, etc. Tf, Nf, MaxNf and other parameters can be
configured according to the data storage policy of the application.

TSMMDB

Writer

Manager

Reader

CEP

Reader

GUI

Reader

APP

Sensing Data

Configure

Sensing Data Sensing Data Sensing Data

TSMMDB System

Data Collecter
(IoT Access Platform)

Fig. 5. System architecture of TSMMDB.

226 L. Lan et al.



TSMMDB supports multiple readers and writers working simultaneously. Multiple
applications of TSMMDB share the data in TSMMDB. In Fig. 5, IoT Access Platform,
CEP and other applications (Apps) share data in TSMMDB. The application can access
the data in the whole database in its own process through shared memory, which
changes the communication mode between the traditional application and the database
process. It greatly improves the efficiency of data access, and improves the data real-
time processing performance. TSMMDB provides the reader and writer API for
application, which reduce the coupling and complex of application development and
maintenance.

In order to achieve efficient memory allocation and memory read and write oper-
ations, TSMMDB Reader and Writer are implemented in C++. The applications can be
implemented in other languages, such as C++, Java, etc.

5.2 System Overview

The structure of the process’s memory address space is shown in Fig. 6. In Fig. 6, stack
space grows down, heap space grows up, and they’re so far apart that they don’t
usually meet.

The memory where an application allocate is in the heap generally, as shown in
Fig. 6. Virtual heap refers to the space created outside the heap for the application to
allocate memory, and the location of virtual heap is shown in Fig. 6. Applications can
create multiple unrelated virtual heaps and use them simultaneously. Unused virtual
heaps can be recycled by the operating system.

Each virtual heap corresponds to a database physical file on disk, which corre-
sponds to a memory map. The memory mapping to physical file is shown in Fig. 7.
Objects created in the virtual heap are called Persistent Objects, and Persistent Objects
in the virtual heap are saved to database files by memory mapping automatically as
shown in Fig. 7.

data

text

heap

stack
max address

memory

virtual heap

virtual heap

0x00000000

Fig. 6. Virtual heap in the memory address space of a process.

A Lightweight Time Series Main-Memory Database for IoT Real-Time Services 227



The virtual heap is managed by a customized memory allocator defined as class
MmapAllocator, which is similar to the malloc allocator. The MmapAllocator calls
mmap() of operation system to simulate the malloc’s sbrk function to obtain memory
space from the virtual heap. Thus implement the persistence of objects in virtual heap.

Algorithm 1: virtual heap memory allocator, is defined as follows:

Algorithm 1: definition of virtual heap memory allocator.
1: class  MmapAllocator{

//Dedicate memory of virtual heap.
2: void_t* MmapAllocator::mm_sbrk_emulator(ptrdiff_t increment); //Use mmap() to 

get memory and return the memory pointer to the virtual heap. Resize the virtual 
heap size by increasing the virtual heap’s sbrk pointer by “increment” value. If the 
call is successful, the old value of the sbrk pointer is returned, otherwise -1 is 
returned. 

//Malloc the virtual heap memory for a resource instance.
3:   void* MmapAllocator::malloc(size_t size); //Returns long word aligned block 

memory of at least “size” bytes in the mmap()ed region owned by this instance.
//Free the memory of a  resource instance.

4:   void MmapAllocator::free(void* ptr); //Puts the block of memory referenced by 
“ptr” on a free list. 

5: }

The design and implementation of Algorithm 1 refer to the algorithm and source
code of Professor Douglas Lea of State University of New York [19]. This algorithm
achieves a good balance among many factors, such as speed, space utilization,
portability, and adjustability.

The relationship between MmapAllocator and the virtual heap is shown in Fig. 7.

5.3 Persistence of Database Objects

Persistence Based on Memory Mapping. Memory database uses memory mapping
principle to achieve the persistence of objects. An in-memory database is essentially
storing a “working version” of the database in memory. Virtual heap memory allocator

data

text

heap

stack
max address

memory

virtual heap

virtual heap

0x00000000

Persistent 
Object

MmapAllocator::mm_sbrk_emulator();
MmapAllocator::malloc();

MmapAllocator::free();

memory-mapped 
portion of file file

off len

start addr

len

MmapAllocator

Fig. 7. Virtual heap object persistence based on memory mapping.

228 L. Lan et al.



uses mmap() system call to map database physical files from disk to the memory
address space of the process. Through mmap() mapping, the application can access to
ordinary files efficiently. Processes can operate on ordinary files like reading and
writing memory, without having to call file operations like read(),write(), etc. It greatly
improves the speed of data reading and writing. With mmap() system call, the appli-
cations reading/writing data cost far less time than normal way.

The working principle of virtual heap object persistence based on memory mapping
is shown in Fig. 7. A chunk of data of “len” length in the disk file is mapped to a virtual
heap of memory of “len” length starting from the “start addr” address. The objects
created in the virtual heap are persistent objects, which can be persisted to file auto-
matically based on memory mapping mechanism. By using memory mapping, data
persistence is actually done by the operating system itself.

By updating the memory data in the mapping segment, writing to the mapping file
can be completed. When data is written to memory, the file is not immediately updated.
The file is updated when the file system refresh daemon finds that the memory page has
been modified and pushes the page to the file system using putpage routine of the file
system [15].

Once the data is written to memory, it can be immediately visible to the query process.
Since the data is used in memory, disk I/O does not affect data access performance.

Definition of Persistent Objects. Applications directly link to shared function
libraries of TSMMDB to create and use the persistent objects. Objects allocated in the
virtual heap are persistent objects. The application needs to plan out a contiguous range
address space for the virtual heap to use to avoid address space conflicts.

Algorithm 2 describes the definition of persistent string objects, persistent vector
containers and persistent map containers.

Algorithm 2: definition of persistent objects.
//Define persistent string object as pString.

1: typedef basic_string<char, char_traits<char>, MmapAllocator<char>> pString;
//Define the persistent pString object by the following 2 steps.
//1) Define the memory allocator of pString object. 

2: typedef MmapAllocator<pString> pStringAllocator; 
//2) Define a persistent vector container for storing pString objects. 

3: typedef vector<pString, pStringAllocator> pStringVector;
//Define the persistent persObject object by the following 2 steps.
//1) Define the memory allocator of persObject object. 

4: typedef MmapAllocator<persObject> persObjectAlloc;
//2) Define persistent vector container for storing persObject object. 

5: Typedef vector<persObject, persObjectAlloc> persObjectVector;
//Define the persistent pKey2pObject object by the following 2 steps.
//1) Define the memory allocator of pKey2pObject object. 

6: typedef MmapAllocator<pair<persKey, persObject>> pKey2pObjectAlloc;
//2) Define persistent map container for storing pKey2pObject object. 

7: typedef map<persKey, persObject, less<pString>, pKey2pObjectAlloc> 
pKey2pMappedMap;

A Lightweight Time Series Main-Memory Database for IoT Real-Time Services 229



There are two points should to note about the definition of the persistent objects:

(1) If objects need to be created in the heap, use the default memory allocator. Objects
that are not in the virtual heap are not persistent objects, and are not automatically
stored in database files.

(2) If objects need to be created in the virtual heap, MmapAllocator based memory
mapping is required. First, define the memory allocator for the persistent object,
and then define the persistent container for such persistent objects. Objects in the
virtual heap are persistent objects, and their data is saved into the database file
automatically.

Creation and Use of Persistent Objects. Algorithm 3: creation and use of persistent
objects.

Algorithm 3: creation and use of persistent objects(eg. class counter).
// Construct objects at memory addresses in the virtual heap.

1: counter* pc = new(MmapAllocator::allocate(sizeof(counter))) counter ();
//Object persistence in the vector container, using the memory-mapped allocator 

class MmapAllocator to replace the default standard library's Allocator.
2: vector< counter, MmapAllocator< counter > >;

The database persistent objects created by MmapAllocator are used in the same
way as regular objects. It is very easy for applications to use persistent objects.

5.4 Memory Allocation for Data Locality

The accessed data can be stored in a continuous address space, which can significantly
improve the reading efficiency. Therefore, considering the characteristics of business
applications, the data locality mechanism is designed.

For the application scenarios of time series data flow, the processing of original
data is mostly based on the data of several adjacent sample periods. For example, the
maximum temperature, the minimum temperature and the average temperature in one
hour; the cumulative traffic on a port in one hour. Similarly, there are statistics of the
last day, statistics of the last week, statistics of the last month, etc. If the data accessed
by each calculation is concentrated in a few memory pages, rather than scattered over a
large number of memory pages, the performance of the system will undoubtedly be
significantly improved. This is the advantage of data locality.

Based on this idea, the database system should allocate a batch of time-adjacent
persistent objects to the adjacent memory according to the request of the application.
Algorithm 4 defines the ClusteredFactory template class to provide a memory pool for
implementing data locality.

230 L. Lan et al.



Algorithm 4: definition of memory pool.
1: template <class typeToCluster> class ClusteredFactory {
2:    private:
3:      union ClusteredInstance {

//Member to manage free instance in a singly linked list.
4: ClusteredInstance* freeLink;

//The storage to use for the actual clustered instances.
5:          char payLoad[sizeof(typeToCluster)];
6:      }

//Track the current size to use in our allocation algorithm.
7:      unsigned int currentSize; 

//Actual clustered instance storage and free list.
//Implemented as a vector<> of pointers to arrays of instances so the memory does 

not move around as the number of chunks grows.
8:      typedef vector<ClusteredInstance*,MmapAllocator<ClusteredInstance*>> 

pClusterPtrVec;
9:      pClusterPtrVec chunkStorage;
10:    ClusteredInstance* freeList;
11: }

The ClusteredFactory object gets the memory space of the object to be created from
the memory pool. By using memory pool, the Table objects are clustered by assigning
all Table objects memory of a Resource in a virtual heap at one time as shown in Fig. 9
(b).

The memory pool allocation strategy is as follows: When the last memory pool
space is used up, a whole block of continuous memory is allocated as the memory pool
according to the memory size required for half of the current number of instances. So
the next batch of instances that need to allocate memory will allocate adjacent memory
and will be clustered together.

For each Group, there is a set of RC (Resource-Counter) tables (pRCtable class)
named timeSamples. To allocate the set of tables to adjacent Memory Chunks,
timeSamples should be defined as:

typedef vector<ClusteredFactory<pRCtable>, MmapAllocator<ClusteredFac-
tory<pRCtable>>> timeSamples;

But not be defined as:
typedef vector<pRCtable, MmapAllocator<pRCtable>>> timeSamples;
Thus, when allocating memory, pRCtable instance defined in ClusteredFactory

class will allocate adjacent memory from the memory pool, as shown in Fig. 9(b).
Figure 9(a) shows the memory allocation and data writing without data locality
mechanism. Table is not allocated in consecutive memory pages, and data of adjacent
time cannot be written in consecutive memory pages, such as 10:00 write data, 10:15
write data, and 10:30 write data are not in contiguous memory space. With the data
locality mechanism used for Fig. 9(b), Table is defined as a pointer type to the address
where actual instance is stored. Instances are allocated in contiguous memory and they
are clustered together as shown in Clustered Tables. The data of adjacent time is written
in consecutive memory pages, such as 10:00 write data, 10:15 write data and 10:30

A Lightweight Time Series Main-Memory Database for IoT Real-Time Services 231



write data. Pointers in Group point to these consecutive memory addresses where the
actual data is stored.

The data locality mechanism enables the data accessed per computation to be
concentrated in a few consecutive memory pages rather than scattered in a large
number of memory pages, which can significantly improve the performance of the
system.

5.5 Time Complexity of Data Access Algorithm

The in-memory database data model is constructed using map. Each map is indexed by
a RB (Red Black) tree. The database data model is a multi-level tree structure, as shown
in Fig. 1. The index of the database is a multi-level RB tree. The RB tree is a balanced
binary search tree, which guarantees that, in the worst case, the time complexity of the
basic dynamic set operation is O(lgM) where M is the element number of the set.

Assuming data is average distributed, the map size of each layer is the same, and
the size of each Table is the same. N is the total number of counters in a collection
period. There are n layers in the tree. Ni is the size of the map of the i-th layer, i = 1,
2 … , n.

N ¼ N1 � N2 � N3 � . . . � Nn; where:
N1: size of map in layer 1;
N2: size of map in layer 2;
…
Nn�1: size of map in layer n� 1;
Nn: the size of a Tuple, which is actually the size of an array of integers that stores
the value of the Counter.

Group object Clustered 
Resource

Counter values

10:00 write data
10:15 write data
10:30 write data

Initial reports Subsequent reports
Data member

vector<Table> timeSamples;

Virtual Heap
Page Boundaries

Growth

Group object Clustered 
Resource

Counter values

10:00 write data
10:15 write data
10:30 write data

Initial reports Subsequent reports
Data member

vector<Table*> timeSamples;

Virtual Heap
Page Boundaries

Growth

Pointer to 10:00 instance
Pointer to 10:15 instance
Pointer to 10:30 instance

Clustered Tables

(b) Write with Locality

(a) Write without Locality

Fig. 8. Data locality in memory.

232 L. Lan et al.



The query condition in the data model is the keyword of RB tree of each layer. As
the worst case query complexity of RB tree of layer i is O(lg(Ni), the query complexity
of this multi-layer RB tree is:

T Nð Þ ¼ O lgN1 þ lgN2 þ . . .þ lgNn�1 þ lgNnð Þ ¼ O lg N1 � N2 � N3 � . . . � Nnð Þð Þ
¼ O lgNð Þ

In the worst case, the time complexity of the database access is O(lgN), which
achieves the ideal time complexity.

6 Experimental Evaluation

6.1 Performance Comparison Between TSMMDB and Traditional
DBMSs

Experiment 1: performance comparison of different DBMSs.
The performance of TSMMDB is compared with the traditional main-memory

database Redis and the relational database MySQL.
The experiment process is: when the application receives the collected sensing data

packet, it is stored in the database, and the application records the processing time. The
three DBMSs are used separately, and the processing time are recorded in each DBMS
running.

Experimental environment: Intel Xeon(R) Gold 5115 CPU 2.40 GHz*40, 62.4 GB
RAM, 609.3 GB Hard Disk, OS: CentOS Linux 7 with 64-bit. DBMS software: Redis
4.0.2 64 bit. MySQL 5.5.59 Community Server.

The number of packets that can be processed per second by the three DBMSs are
shown in Fig. 9(a). The processing time of each packet are shown in Fig. 9(b).

In Fig. 9(a), the average number of packets handled by TSMMDB is 2.25 � 104

packets/second, Redis handles 1.17 � 104 packets/second and MySQL handles
0.82 � 104 packets/second. The throughput of TSMMDB is about 92% more than
Redis, and about 174% more than MySQL. The throughput of Redis is about 43%
more than MySQL.

In Fig. 9(b), the average processing time of each packet is 0.046 ms for TSMMDB,
0.09 ms for Redis and 0.124 ms for MySQL. The access speed of TSMMDB is about
48% faster than Redis, and about 63% faster than MySQL. The access speed of Redis is
about 27% faster than MySQL.

It can be seen that the access efficiency of TSMMDB is higher than that of Redis
and MySQL, while Redis is higher than MySQL.

The experimental results show that: (1) Both the two memory databases, TSMMDB
and Redis, are faster than disk database MySQL. (2) Between the two memory data-
bases, TSMMDB is faster than Redis. TSMMDB provides the application accessing
the database through shared memory, while Redis need transfer data from Redis server
process to the application process by inter-process communication. Thus TSMMDB
achieve efficient data sharing between in-memory database and the application which
has significant advantages over traditional inter-process communication.

A Lightweight Time Series Main-Memory Database for IoT Real-Time Services 233



6.2 System Resource Usage of TSMMDB

Experiment 2: system resource usage of TSMMDB.
Experiment data: data of 4 networks were collected every 15 min, 2M sensor

counters were collected at each interval of each network, and 4 bytes of data were
stored in each counter. The data stores for 30 days. The data collected and stored in
main-memory of one day is 96 � 4 � 2M � 4 = 3.072 GB. The TSMMDB data of
30 days reaches 3.072 � 30 = 92.16 GB which stores in the 30 files.

The CPU usage is shown in Fig. 10(a). The Memory usage is shown in Fig. 10(b).
The horizontal coordinate is the number of collected networks, ranging from 1 to 4, and
the vertical coordinate is respectively the CPU usage in Fig. 10(a) and Memory usage
in Fig. 10(b). When the number of networks is 1, consisting of 2M number of sensors,
the CPU usage is 43.6%, and Memory usage is 15.1 GB. When the number of net-
works is 4, consisting of 8M number of sensors, the CPU usage is 51%, and Memory
usage is 18.2 GB.

In Fig. 10, the curve basically rises in a straight line, that is, with the increase of
network load, the CPU usage and memory usage both increase linearly. Linear growth
is an ideal curve, much better than exponential growth.

The experiment shows that the CPU and memory consumption of TSMMDB meet
the requirements of IoT sensing data management. With the expansion of the network
scale, the growth of CPU usage and memory usage show an ideal linear growth. The
performance of TSMMDB can meet the requirements of IoT sensing data management
operation index.

0 10 20 30 40 50 60 70 80 90 100
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

Elapsed Time (s)

P
ac

ke
ts

 p
er

 s
en

co
nd TSMMDB

Redis
MySQL

0 10 20 30 40 50 60 70 80 90 100
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Elapsed Time (s)

P
ro

ce
ss

in
g 

Ti
m

e 
pe

r P
ac

ke
t (

m
s)

TSMMDB
Redis
MySQL

(a) (b)

Fig. 9. Performance comparison between different DBMSs. (a) Number of packets per second.
(b) Processing time per packet.

234 L. Lan et al.



7 Conclusions

This paper proposes a lightweight embedded main-memory database system
TSMMDB to meet the IoT real-time data processing requirements of large amount of
data storing, high performance processing and low overhead. The data model is the tree
structure and the leaf node adopts the three-dimension table based on time, resource
and measure. The data in TSMMDB is in the customized virtual heap memory allo-
cated by virtual heap memory allocator. The application can access the whole database
in its own process without transferring data. The data object persistence is automati-
cally based on memory mapping. An optimization of memory allocation based on data
locality is adopted to store time-adjacent data in continuous memory space to improve
clustered data analysis efficiency. The performance comparison experiment shows that
the performance of TSMMDB is obviously better than traditional in-memory database
and disk-based relational database.

In the future, we will apply TSMMDB to more IoT application scenarios, such as
real-time monitoring, real-time data analysis, etc. At the same time, we will further
evaluate the performance of concurrent processing of TSMMDB.

References

1. Kunkle, D., Cooperman, G.: Solving Rubik’s cube: disk is the new RAM. Commun. ACM
51(4), 31–33 (2008)

2. Zhang, H., et al.: In-memory big data management and processing: a survey. IEEE Trans.
Knowl. Data Eng. 27(7), 1920–1948 (2015)

3. Larson, P.Å., Levandoski, J.: Modern main-memory database systems. Proc. VLDB Endow.
9(13), 1609–1610 (2016)

4. Ailamaki, A.: The next 700 transaction processing engines. In: Proceedings of the 2017
ACM International Conference on Management of Data, pp. 1–2. ACM (2017)

5. Lahiri, T., et al.: Oracle database in-memory: a dual format in-memory database. In: 2015
IEEE 31st International Conference on Data Engineering (ICDE), pp. 1253–1258. IEEE
(2015)

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4
42

43

44

45

46

47

48

49

50

51

52

Network Number

C
P

U
 U

sa
ge

 (%
)

0 0.5 1 1.5 2 2.5 3 3.5 4
14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

Network Number

M
em

or
y 

U
sa

ge
 (G

B
)

Fig. 10. TSMMDB system resource usage. (a) CPU usage. (b) Memory usage.

A Lightweight Time Series Main-Memory Database for IoT Real-Time Services 235



6. Kim, J., Salem, K., Daudjee, K.: Write amplification: an analysis of in-memory database
durability techniques. In: Proceedings of the 3rd VLDB Workshop on In-Memory Data
Management and Analytics. ACM (2015). Article No. 1

7. Plattner, H.: A common database approach for OLTP and OLAP using an in-memory
column database. In: Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data, pp. 1–2. ACM (2009)

8. Stonebraker, M., Weisberg, A.: The VoltDB main memory DBMS. IEEE Data Eng. Bull.
36(2), 21–27 (2013)

9. Xie, X., Chai, E., Zhang, X.: Hekaton: efficient and practical large-scale MIMO. In:
Proceedings of the 21st Annual International Conference on Mobile Computing and
Networking, pp. 304–316. ACM (2015)

10. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
database: data management for modern business applications. ACM SIGMOD Rec. 40(4),
45–51 (2011)

11. Färber, F., et al.: The SAP HANA database-an architecture overview. IEEE Data Eng. Bull.
35(1), 28–33 (2012)

12. Sikka, V., et al.: Efficient transaction processing in SAP HANA database: the end of a
column store myth. In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pp. 731–742. ACM (2012)

13. Sikka, V., Färber, F., Goel, A., Lehner, W.: SAP HANA: the evolution from a modern main-
memory data platform to an enterprise application platform. Proc. VLDB Endow. 6(11),
1184–1185 (2013)

14. Nica, A., Sherkat, R., Andrei, M., et al.: Statisticum: data statistics management in
SAP HANA. Proc. VLDB Endow. 10(12), 1658–1669 (2017)

15. Lee, J., Moon, S.H., Kim, K.H., et al.: Parallel replication across formats in SAP HANA for
scaling out mixed OLTP/OLAP workloads. Proc. VLDB Endow. 10(12), 1598–1609 (2017)

16. Andrei, M., Lemke, C., Radestock, G., et al.: SAP HANA adoption of non-volatile memory.
Proc. VLDB Endow. 10(12), 1754–1765 (2017)

17. Pelkonen, T., et al.: Gorilla: a fast, scalable, in-memory time series database. Proc. VLDB
Endow. 8(12), 1816–1827 (2015)

18. Meng, Q., Zhou, X., Wang, S.: Memory instant snapshot sharing mechanism and its
application in database. Chin. J. Comput. 41(28), 1912–1927 (2018)

19. Lea, D.: http://g.oswego.edu/dl/html/malloc.html. Source code: ftp://g.oswego.edu/pub/
misc/malloc.c

20. Kemper, A., Neumann, T.: HyPer: a hybrid OLTP&OLAP main memory database system
based on virtual memory snapshots. In: Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering, Hannover, Germany, pp. 195–206 (2011)

236 L. Lan et al.

http://g.oswego.edu/dl/html/malloc.html
ftp://g.oswego.edu/pub/misc/malloc.c
ftp://g.oswego.edu/pub/misc/malloc.c


A Review on Blockchain-Based Systems
and Applications

Jingyu Zhang1,3, Siqi Zhong1,3, Jin Wang1,2,3(&), Lei Wang2,3,
Yaqiong Yang1,3, Boyang Wei1,3, and Guoyao Zhou1,3

1 School of Computer and Communication Engineering,
Changsha University of Science and Technology, Changsha 410004, China

{zhangzhang,jinwang}@csust.edu.cn,

zhongsiqi@stu.csust.edu.cn, yangyaqiong729@163.com,

455258872@qq.com, moska9417@163.com
2 School of Information Science and Engineering,

Fujian University of Technology, Fujian 350118, China
3 School of Civil Engineering, Changsha University of Science and Technology,

Changsha 410004, China
leiwang@csust.edu.cn

Abstract. Blockchain technology is a combination of distributed data storage,
peer-to-peer network, consensus mechanism, timestamp technology, encryption
algorithm and other computer technologies. It provides a new solution for the
secure distributed cloud data storage system. Blockchain can provide a decen-
tralized secure storage architecture that does not require the accumulation of
trust, and it can provides new solutions for cloud storage security and can be
applied in time-sensitive areas. This paper summarizes the existing blockchain-
based systems and applications, and we mainly review the applications of
blockchain traceability technology in various fields, the blockchain decentral-
ized applications, and other blockchain applications in data security protection,
respectively. This work may bring new opportunities and challenges for the
development of various industries in the future.

Keywords: Blockchain technology � Distributed storage � Cloud storage
security

1 Introduction

The blockchain is essentially a distributed database over peer-to-peer networks [1]. It
stores all transactions on a peer-to-peer network in a secure, verifiable, and transparent
manner [2]. A complete blockchain system includes many technologies (e.g., the
consensus algorithms, proof-of-work mechanisms, digital signature, timestamp tech-
nology [3]). The blockchain system has the following characteristics: (1) Decentral-
ization; (2) Reliable database; (3) Collective maintenance; (4) Security and credibility;
(5) Anonymity; (6) Open source programmable. It provides a new solution for the
secure distributed cloud data storage system.

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 237–249, 2020.
https://doi.org/10.1007/978-3-030-38651-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_20&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_20&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_20&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_20


Generally, the development process of blockchain is divided into three stages,
which are called blockchain 1.0, blockchain 2.0 and blockchain 3.0 respectively.
Table 1 compares three different stages of blockchain. In the blockchain 1.0 stage, the
main focus is on peer-to-peer transactions, and Bitcoin is the most famous application.
In the blockchain 2.0 stage, The traceability of blockchain technology and the tamper-
resistance of data provide a decentralized and trusted environment for intelligent
contracts. In December 2013, Vitalik Buterin [4] developed a public blockchain plat-
form with intelligent contract function – Ethereum application platform, Blockchain 2.0
stage is also known as the Ethereum blockchain stage. The blockchain 3.0 focuses on
the integration of blockchain technologies and other fields (e.g., financial industry,
Internet of Things (IoT)). Enterprise-level blockchain platform becomes the focus of
research.

In the remaining of this paper, Sect. 2 introduces the combination of blockchain,
and traceability technology, and the applications in the field of property rights and asset
delivery. In Sect. 3, the decentralized applications in blockchain systems are intro-
duced. Section 4 introduces the blockchain applications in data security and data pri-
vacy protection. Section 5 summarizes the work of this paper.

Table 1. Comparison of each blockchain development stage.

Bitcoin blockchain Ethereum blockchain Hyperledger fabric

Issues to
improve

The financial crisis,
traditional
centralized
financial
institutions

The limited application
scenarios of Bitcoin

Slow transaction speed
of public blockchain,
unguaranteed
transactions

Consensus
mechanism

Proof of Work
(PoW)

PoW, Proof of Stake
(PoS)

Practical Byzantine
Fault Tolerance
(PBFT)

Network layer
protocol

TCP-based p2p TCP-based p2p HTTP/2-based p2p

Programming
language

Bitcoin script, Ivy Solidity, Serpent,
Mutan, LLL

Go, Java, JavaScript

Data model Transaction-based
UTXO model

The account-based
model (includes contract
accounts and external
accounts)

The account-based
model

Application
scenarios

Bitcoin trading,
asset delivery

Decentralized
applications, ether
trading, smart contracts

Supply chain
management, property
registration, asset
management, etc.

238 J. Zhang et al.



2 The Applications of Blockchain Traceability Technology

Traditional traceability technology adopts centralized data storage to manage product
information. This centralized management lacks the trust of consumers to conduct
reliable data tracking. Blockchain technology has the characteristics of decentralization
and distribution, which can solve the problem of lacking trust in centralized systems.
Meanwhile, the introduction of timestamp technology in blockchain can add a time
dimension to blockchain-based internet. That makes data easier to trace back, and the
timestamp can be used as an important basis for proof of existence.

2.1 Blockchain Applications for Supply Chain Traceability Systems

The traditional supply chain management system is insufficient to meet the require-
ments of consumers for product quality. And many companies and governments are
looking for a safer and more efficient way to track products. Through blockchain, a
shared distributed ledger, we can make product information transparent. The infor-
mation stored in the blockchain will not be tampered with, and the commodity’s
locations in the supply chain can be tracked in real time, providing extraordinary
transparency and security. Therefore, the combination of blockchain traceability
technology and supply chain management has attracted the attention of researchers.
The traceability application model of the product blockchain platform developed with
the e-commerce is shown in Fig. 1.

Access  
Request 

Date
raw material

Transporta on

IoT Blockchain

Product  block

Electricity Node

Enterprise Node 

Consumer Node

Acess 
Request

Sales pla orm

Acess Acess  

Comsummer

Feedback product 
informa on

Send the product 
informa on query request 

Manufacturer Carrier

Market Regulatory mechanismsLaw enforcement  department

Legal supervision Maintain

Buy goods Provide product a er-sales service

Fig. 1. Traceability application model of the product blockchain platform.

A Review on Blockchain-Based Systems and Applications 239



In the supply chain management process, it is urgent to introduce new technologies
to improve the security, transparency and integrity of supply chain data. Therefore, it is
very important to study the specific operational mechanism and application value of
applying the blockchain to the supply chain traceability management. Fu et al. [5]
proposed a blockchain technology solution, which uses blockchain technology to track
inter-organizational business processes in an enterprise. In order to implement block-
chain technology correctly in the supply chain, Perboli et al. [6] analyzed the needs and
goals of different participants and combined with blockchain technology to create a
business model that can highlight and simultaneously solve problems in economy and
customer satisfaction. In terms of solving the fraud problems of enterprise entities and
market supervision problems, Lin et al. [7] proposed a blockchain-based food safety
traceable system service, and a new blockchain data management architecture. In order
to avoid fraud, Figorilli et al. [8] adopted a synergistic method of RFID technology and
blockchain to realize a wood chain electronic tracking online information system based
on RFID sensor and open source technology within a blockchain architecture.

2.2 Blockchain Applications of Intellectual Property Protection

The existing research proves that the applications of blockchain technology to copyright
management can effectively improve the problem of intellectual property rights. It
mainly utilizes the openness, traceability, tamper-resistance, decentralization, anonymity
and autonomy of the blockchain to solve issues (e.g., the rights attribution certificate, the
copyright circulation traceability, the intelligent tracking situation, intellectual property
protection and deposit certificates).

The intellectual property protection in the multimedia field is very weak, and the
characteristics of blockchain technology (e.g., credibility, transparency, decentraliza-
tion) make it compatible with the basic principles of copyright to deal with the above
problem [9]. [10] proposed a decentralized data management framework, which uses a
new blockchain data protocol to control user data. A new secure data protection method
based on data hiding and blockchain technology provides basic security services for
digital video network transmission [11]. In this paper, the improvement of digital
copyright protection system based on digital watermark mainly focuses on the algo-
rithm which ignores the generation and storage of watermark information. Meng et al.
[12] proposed a blockchain copyright management system design scheme based on
digital watermark information. In order to effectively improve anti-counterfeiting issues
in the supply chain, Toyoda et al. [13] proposed a product ownership management
system based on radio frequency identification technology for product anti-
counterfeiting. This work further realized a proof-of-concept experimental system
based on a blockchain decentralization application platform.

2.3 Blockchain Applications for Asset Delivery

Currently, asset delivery usually relies on third-party trust institutions to supervise and
prove the transaction process. Such centralized trust institutions have trust problems

240 J. Zhang et al.



such as missing transaction information and information being tampered with. The
blockchain solution provides proof for the asset delivery transactions traded between
the two individual parties. The interactive relationship of each role in the asset delivery
management system based on blockchain is shown in Fig. 2.

At present, some researchers have used blockchain technology to improve the asset
delivery certification system. Hasan H.R et al. [14] proposed a decentralized proof of
delivery (PoD) solution for PoD of digital assets. [15] presented a blockchain based
POD solution of shipped physical items that uses smart contracts of Ethereum
blockchain network, and the solution incentivizes each participating entity including
the seller, transporter, and buyer to act honestly, and it totally eliminates the need for a
third party as escrow. [16] presented a solution and a new general framework using the
popular permissionless Ethereum blockchain to create a trusted, decentralized proof of
delivery system that ensures accountability, auditability, and integrity. The proposed
solution uses Ethereum smart contracts to prove the delivery of a shipped item between
a seller and a buyer irrespective of the number which intermediate transporters needed.
Utz et al. [17] addressed the energy production, consumption structure changes, and the
coordination of assets, equipment, and stakeholders in the energy market by intro-
ducing a blockchain-based smart contract ecosystem. Based on existing research, the
work in [18] introduces a built-in mechanism to reduce the transaction risks caused by
the irreversibility of transactions in blockchain systems. This mechanism can replace a
trust-based, centralized, bureaucratic registration with a tamper-proof and autonomous
transactional database system that includes secure registration and transaction process.
Furthermore, the authors proposed a novel approach to mitigate adverse selection
effects in lemon markets by providing a reliable, transparent, and complete record of
each marketable asset history information.

Asset transferor Transporta on service Asset buyer

provide the project and authen ca on 
key 

Delivery using a single or mul ple tool 
transport 

pay and perform the key 
verifica on 

Blockchain-based trading system over Ethereum

Provides intelligent contract and 
tracking oversight

Upload interac ve
records

Delivery cer ficate

Upload
digital
assets

Cer ficate of 
ownership

Upload transac on 
records

Fig. 2. Delivery management system based on blockchain

A Review on Blockchain-Based Systems and Applications 241



3 Decentralized Applications Based on Blockchain

Blockchain has the characteristics of distributed data storage, so it is suitable for the
field of decentralized applications such as decentralized voting. Applying the block-
chain to the electoral field can mainly eliminate the possibility of potential intended
manipulation, and ensure the safety and fairness in addition. It will also improve the
convenience of the electoral process. Because voters do not have to pay more time and
energy, the participation rate will inevitably increase. Therefore, voting with the
blockchain technology can also reflect the main public opinion as much as possible.
The decentralized voting application model is shown in Fig. 3. Utilizing the decen-
tralized distributed nature of the blockchain, users can vote for specific candidates in an
untrusted distributed environment, and each vote is recorded on the blockchain.

There are many methods for electronic voting, but most of them lack transparency
and auditability. Currently, many papers have proposed solutions for this problem by
using blockchain technology. Pawlak et al. [19] introduced an auditable blockchain
voting system (ABVS), which described the electronic voting process and components
of a supervised network voting system with audit and verification functions. On this
basis, [20] studies the applications of multi-agent systems and intelligent agent in
ABVS. In order to solve the problems of voting fraud and hacking in election and
administrative management, [21] proposed a new voting model to solve these prob-
lems, which provides a fast, safe and high-throughput voting system. To prevent
tampering, Shukla et al. [22] designed a private blockchain by creating a peer-to-peer
network, which maintain a shared distributed ledger with voting transactions. This
method also designed an application that hides the complexity of the underlying
architecture from users to improve security. To facilitate decision-making in a
decentralized and secure manner, Zhang et al. [23] proposed a local blockchain voting
protocol, which allows peers to vote on the existing blockchain network. [24] intro-
duced a new electronic voting system based on blockchain, which improves the
security and reduces the cost of holding national elections. Fusco et al. [25] proposed a
new electronic voting system based on blockchain technology. The system is called
password voting system, aiming to improve the traceability of voting operations and
audit methods. [26] applied blockchain technology’s resistance to double spending to
prevent double voting on electronic voting systems, and this work proposed a new
electronic voting system to ensure credible sources to realize end-to-end verifiable
electronic voting scheme. [27] took an in-depth evaluation of the end-to-end verifiable
electronic voting scheme, and proved the effectiveness of the proposed method in
realizing the end-to-end verifiable electronic voting scheme.

242 J. Zhang et al.



4 Decentralized Applications in the Field of Data Security

The rise of cloud storage has led to the explosive growth of data scale in all walks of
life. However, trust has become the biggest problem of big data, which will hinder the
safe data transmission. Blockchain technology provides a new solution to the problem
of data security and privacy protection, which combines the features of tamper-
resistance and traceability with smart contracts that automatically execute default
instructions [28] to ensure the safe storage and transmissions of data resources. This
section reviews the research in finance, Internet of Things and healthcare, and sum-
marizes relevant technologies and development prospects.

4.1 Data Protection in the Financial Industry

Due to various advantages of blockchain, its applications in the financial industry has
been widely used. Compared with traditional payment, blockchain payment can
directly realize end-to-end payment for both sides of the transaction without involving
intermediary institutions, and it can greatly improve the speed.

ETHEREUM

candidates

Node A 

Voter

Vote

Vote

Node E 

Record vo ng results

Smart contracts
Guarantee fair vo ng

Tamper-resistant vo ng results

Query verifica on 
between nodes

Node B

Node D

Node C

Fig. 3. Decentralized voting system model based on blockchain

A Review on Blockchain-Based Systems and Applications 243



In the study of how to apply blockchain technology to auctions to maximize social
welfare, researchers made the following work. [29] proposed an optimal auction
method of marginal resource allocation based on deep learning in the blockchain
network. Based on the typical auction security requirements, Blass et al. [30] proposed
a new auction protocol running on top of blockchains and guaranteeing bid confi-
dentiality against malicious parties. The inherent transparency and the resulting lack of
privacy pose a huge challenge to many financial applications. To solve the above
problems, [31] proposed a sealed bidding auction smart contract that can be verified on
Ethereum blockchain. To solve the traditional payment problems, a lot of work has
been done based on the combination with blockchain. The paper [32] proposed a
blockchain-based digital payment scheme that can deliver reliable services on top of
unreliable networks in remote regions. Real-time gross settlement system is the
cornerstone of inter-bank payment business, and Wang et al. [33] introduced an end-to-
end inter-bank payment system prototype based on Hyperledger Fabric enterprise
blockchain platform. The prototype supports gross settlement, gridlock resolution, and
reconciliation for inter-bank payment business. In the existing online payment systems,
information such as reputation could be manipulated by the malicious. For this prob-
lem, [34] proposed Reptor, a model for calculation of trust and reputation with the
values stored on a blockchain-based payment system’s ledger. Zhao et al. [35] studied
data security and privacy problem for reliable cyber physical system, and proposed a
new secure pub-sub system that uses fairness payment with reputation based on
blockchain.

4.2 Internet of Things Data Access Management

IoT equipment installation and deployment in the family in each industrial fields,
including transportation, oil, natural gas, energy and manufacturing [36]. The
deployment of the IoT equipment range is very wide, and people already know that
they are vulnerable to various attacks. As the growth of the importance of privacy,
people begin to pay close attention to reliable Internet equipment safety management
and access control problem [37]. Blockchain technology has been leading to the birth
of many new solutions since 2018. Numerous reports and articles have pointed out that
blockchain may be the next key development, and by 2019, nearly 20% of all IoT
deployments may have basic blockchain services.

IoT devices can be registered using blockchain to efficiently and reliably organize,
store and share data streams. In terms of data security management, Chao et al. [38]
proposed a design of blockchain connection gateway, which can adaptively and safely
maintain the user privacy preference of IoT devices in the blockchain network. To
solve the security and reliability of IoT cloud storage, [39] studied the typical security
and privacy issues in the IoT, and developed a new framework to integrate the
blockchain with the Internet of Things. The proposed method can provide great
guarantee for the data and various functions in the Internet of Things with the ideal
scalability, which support authentication, decentralized payment, etc. [40] proposed an

244 J. Zhang et al.



out-of-band two-factor authentication scheme for IoT devices based on Blockchain
infrastructure. they implemented the IoT and Blockchain integrated system with Eris
Blockchain and equivalent computing devices to emulate IoT devices. Alblooshi et al.
[41] presents a general framework and solution to manage and trace back the true origin
of ownership for an medical IoT devices (MIoT). Alblooshi et al. [42] proposed a new
threshold Internet of things service system based on blockchain: Beekeeper. It is still
challenging to apply blockchain to IoTs due to resource constraint characteristics of
embedded devices and significant delays in processing and validating transactions.

4.3 Healthcare Data in Blockchain Systems

At present, there are mainly two ways to protect the privacy of medical data [45]. One
way is to store medical data in a local database and set up a database access control
strategy, other way is to encrypt medical data with the patient’s key and share the key
when needed. However, both of the above ways have defects. Blockchain is a highly
secure distributed data storage platform, which is changing the way how healthcare
information is stored and shared [43]. It makes the work more convenient and reduces
the maintenance cost while paying attention to the security and accuracy of data. In the
healthcare field, blockchain technology has obvious advantages over other existing
technologies, and will play a greater role for the applications of blockchain technology
in the healthcare field in the future.

In order to ensure the integrity and traceability of medical data, the paper [46]
proposed a secure electronic health record system based on cloud computing by using
blockchain technology. Another work [47] proposed a blockchain-based secure and
privacy-preserving personal health information sharing scheme for diagnosis
improvements in e-Health systems. As IoT devices and other remote patient monitoring
systems increase in popularity, security concerns about the transfer and logging of data
transactions arise. In order to handle the protected health information generated by
these devices, [48] utilized blockchain-based smart contracts to facilitate secure anal-
ysis and management of medical sensors. There is also a challenge to guarantee the
security and the privacy of locations recorded in a blockchain system. Healthcare
systems based on blockchain have advantages in terms of decentralization and open-
ness to deal with the above issue. The paper [49] introduced a blockchain-based multi-
level privacy-preserving location sharing scheme for telecare medical information
systems. Li et al. [50] proposed a blockchain-based medical data preservation system,
and they leveraged the blockchain framework to provide a reliable storage solution and
ensure the primitiveness, verifiability of stored data while preserving privacy for users.

Table 2 summarizes the situation of the combination with blockchain in the fields
of finance, IoT and healthcare. In general, the application of blockchain technology in
various fields in the future has a broad prospect, and it is also full of challenges.

A Review on Blockchain-Based Systems and Applications 245



5 Conclusion

As an untampered, time-sequentially verifiable chain-like storage architecture, block-
chain can provide a new solution for the secure distributed cloud data storage system,
and it is becoming one of the current hottest research fields. This paper summarizes the
relevant applications and research of existing blockchain technology. We mainly
review the applications of blockchain traceability technology in various fields, the
blockchain decentralized applications, and other blockchain applications in data
security protection, respectively. As investigated by the above studies, blockchain will
contribute to improving the solutions in multiple fields such as the Internet of Things,
smart city and supply chain. It will also bring new opportunities and challenges for the
development of various industries in the future.

References

1. Zou, J., et al.: Blockchain Technology Guide. China Machine Press, Beijing (2018)
2. Al-Jaroodi, J., Mohamed, N.: Blockchain in industries: a survey. IEEE Access 7, 36500–

36515 (2019)
3. Chen, W., Zheng, Z., Cheuk-Han Ngai, E., Zheng, P., Zhou, Y.: Exploiting blockchain data

to detect smart ponzi schemes on ethereum. IEEE Access 7, 37575–37586 (2019)

Table 2. The combination summary for blockchain and various applied fields

Blockchain and
finance

Blockchain and IoT Blockchain and
Healthcare

Traditional
disadvantages

Lack of trust, slow
cross-border payment
speed, low data
security

Lack of privacy,
vulnerability to
attacks

Data tampering,
separated data storage,
incomplete patient
information

Advantages
of
combination

Decentralized,
improved transaction
speed, improved data
security

Privacy protection,
data storage security,
access control
protection

High data security,
complete patient
information

Current
development
situation

Early development,
deployed in most
blockchain projects

Begins from 2015, for
the management and
security of IoT
devices

Late start, less
applications

Application
scenarios

Bitcoin trading,
hyperledger, justice
and charity, etc.

Smart city, Internet of
Vehicles, etc.

Electronic health
record, DNA wallet,
protein folding, etc.

Blockchain
stage

Blockchain1.0, 2.0,
3.0

Blockchain3.0 Blockchain3.0

Reference
index

[29–35] [36–42] [43–50]

246 J. Zhang et al.



4. Lin, F., Qiang, M.: The challenges of existence, status, and value for improving blockchain.
IEEE Access 7, 7747–7758 (2019)

5. Yonggui, F., Zhu, J.: Big production enterprise supply chain endogenous risk management
based on blockchain. IEEE Access 7, 15310–15319 (2019)

6. Perboli, G., Musso, S., Rosano, M.: Blockchain in logistics and supply chain: a lean
approach for designing real-world use cases. IEEE Access 6, 62018–66202 (2018)

7. Lin, Q., Wang, H., Pei, X., Wang, J.: Food safety traceability system based on blockchain
and EPCIS. IEEE Access 7, 20698–20707 (2019)

8. Figorilli, S., et al.: A blockchain implementation prototype for the electronic open source
traceability of wood along the whole supply chain. Sensors 18, 3133–3146 (2018)

9. Bodó, B., Gervais, D., Quintais, J.P.: Blockchain and smart contracts: the missing link in
copyright licensing? I J Law and Inf. Technol. 26(4), 311–336 (2018)

10. Vishwa, A., Hussain, F.K.: A Blockchain based approach for multimedia privacy protection
and provenance. In: 2018 IEEE Symposium Series on Computational Intelligence, pp. 1941–
1945. IEEE, Bangalore (2018)

11. Zeng, J., Zuo, C., Zhang, F., Li, C., Zheng, L.: A solution to digital image copyright
registration based on consortium blockchain. In: Wang, Y., Jiang, Z., Peng, Y. (eds.) IGTA
2018. CCIS, vol. 875, pp. 228–237. Springer, Singapore (2018). https://doi.org/10.1007/
978-981-13-1702-6_23

12. Meng, Z., Morizumi, T., Miyata, S., Kinoshita, H.: Design scheme of copyright management
system based on digital watermarking and blockchain. In: 2018 IEEE 42nd Annual
Computer Software and Applications Conference, pp. 359–364. IEEE, Tokyo (2018)

13. Toyoda, K., Mathiopoulos, P.T., Sasase, I., Ohtsuki, T.: A novel blockchain-based product
ownership management system (POMS) for anti-counterfeits in the post supply chain. IEEE
Access 5, 17465–17477 (2017)

14. Hasan, H.R., Salah, K.: Proof of delivery of digital assets using blockchain and smart
contracts. IEEE Access 6, 65439–65448 (2018)

15. Hasan, H.R., Salah, K.: Blockchain-based solution for proof of delivery of physical assets.
In: Chen, S., Wang, H., Zhang, L.-J. (eds.) ICBC 2018. LNCS, vol. 10974, pp. 139–152.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94478-4_10

16. Hasan, H.R., Salah, K.: Blockchain-based proof of delivery of physical assets with single
and multiple transporters. IEEE Access 6, 46781–46793 (2018)

17. Utz, M., Albrecht, S., Zoerner, T., Strüker, J.: Blockchain-based management of shared
energy assets using a smart contract ecosystem. In: Abramowicz, W., Paschke, A. (eds.) BIS
2018. LNBIP, vol. 339, pp. 217–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-04849-5_19

18. Notheisen, B., Cholewa, J.B., Shanmugam, A.P.: Trading real-world assets on blockchain,
an application of trust-free transaction systems in the market for lemons. Bus. Inf. Syst. Eng.
59, 425–440 (2017)

19. Pawlak, M., Guziur, J., Poniszewska-Marańda, A.: Voting process with blockchain
technology: auditable blockchain voting system. In: Xhafa, F., Barolli, L., Greguš, M.
(eds.) INCoS 2018. LNDECT, vol. 23, pp. 233–244. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-98557-2_21

20. Pawlak, M., Poniszewska-Marańda, A., Guziur, J.: Intelligent agents in a blockchain-based
electronic voting system. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros,
Antonio J. (eds.) IDEAL 2018. LNCS, vol. 11314, pp. 586–593. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03493-1_61

21. Srivastava, G., Dwivedi, A.D., Singh, R.: Crypto-democracy: a decentralized voting scheme
using blockchain technology. In: Proceedings of the 15th International Joint Conference on
e-Business and Telecommunications, pp. 674–679. SciTePress, Porto (2018)

A Review on Blockchain-Based Systems and Applications 247

http://dx.doi.org/10.1007/978-981-13-1702-6_23
http://dx.doi.org/10.1007/978-981-13-1702-6_23
http://dx.doi.org/10.1007/978-3-319-94478-4_10
http://dx.doi.org/10.1007/978-3-030-04849-5_19
http://dx.doi.org/10.1007/978-3-030-04849-5_19
http://dx.doi.org/10.1007/978-3-319-98557-2_21
http://dx.doi.org/10.1007/978-3-319-98557-2_21
http://dx.doi.org/10.1007/978-3-030-03493-1_61


22. Shukla, S., Thasmiya, A.N., Shashank, D.O., Mamatha, H.R.: Online voting application
using ethereum blockchain. In: ICACCI 2018, pp. 873–880. IEEE, Bangalore (2018)

23. Zhang, W., et al.: A privacy-preserving voting protocol on blockchain. In: IEEE CLOUD
2018, pp. 401–408. IEEE, San Francisco (2018)

24. Hjalmarsson, F.P., Hreioarsson, G.K., Hamdaqa, M., Hjalmtysson, G.: Blokchain-based e-
voting system. In: IEEE CLOUD 2018, San Francisco, USA, pp. 983–986 (2018)

25. Fusco, F., Lunesu, M.I., Pani, A.P.: Crypto-voting, a blockchain based e-voting system. In:
KMIS, pp. 221–225 (2018)

26. Kshetri, N., Voas, J.M.: Blockchain-enabled E-voting. IEEE Softw. 35, 95–99 (2018)
27. Khan, K.M., Arshad, J., Khan, M.M.: Secure digital voting system based on blockchain

technology. IJEGR 14(1), 53–62 (2018)
28. Li, Y., Huang, J., Qin, S., Wang, R.: Big data model of security sharing based on blockchain.

In: BigCom 2017, pp. 117–121. IEEE, Chengdu (2017)
29. Luong, N.C., Xiong, Z., Wang, P., Niyato, D.: Optimal Auction for Edge Computing

Resource Management in Mobile Blockchain Networks, A Deep Learning Approach. In:
2018 IEEE International Conference on Communications, pp. 1–6. IEEE, Kansas City, USA
(2018)

30. Blass, E.-O., Kerschbaum, F.: Strain: a secure auction for blockchains. In: Lopez, J., Zhou,
J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 87–110. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99073-6_5

31. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum blockchain. FC
2018, pp. 265–278. IEEE, Nieuwpoort (2018)

32. Yining, H., et al.: A delay-tolerant payment scheme based on the ethereum blockchain. IEEE
Access 7, 33159–33172 (2019)

33. Wang, X., Xu, X., Feagan, L., Huang, S., Jiao, L., Zhao, W.: Inter-bank payment system on
enterprise blockchain platform. In: IEEE CLOUD 2018, pp. 614–621. IEEE, San Francisco
(2018)

34. Ahn, J., Park, M., Paek, J.: Reporter: a model for deriving trust and reputation on
blockchain-based electronic payment system. In: 2018 International Conference on
Information and Communication Technology Convergence, pp. 1431–1436. IEEE, Jeju
(2018)

35. Zhao, Y., Li, Y., Qilin, M., Yang, B., Yong, Yu., Pub-Sub, S.: Blockchain-based fair
payment with reputation for reliable cyber physical systems. IEEE Access 6, 12295–12303
(2018)

36. Dorri, A., Kanhere, S.S., Jurdak, R.: MOF-BC: a memory optimized and flexible blockchain
for large scale networks. Futur. Gener. Comput. Syst. 92, 357–373 (2019)

37. Yekini, T.A., Jaafar, F., Zavarsky, P.: Study of trust at device level of the internet of things
architecture. In: 2019 IEEE 19th International Symposium on High Assurance Systems
Engineering, pp. 150–155. IEEE, Hangzhou (2019)

38. Chao, S.-C., Chen, J.-F., Chunhua, S., Yeh, K.-H.: A Blockchain connected gateway for
BLE-based devices in the internet of things. IEEE Access 6, 24639–24649 (2018)

39. Novo, O.: Blockchain meets IoT: an architecture for scalable access management in IoT.
IEEE Internet Things J. 5, 1184–1195 (2018)

40. Wu, L., Du, X., Wang, W., Lin, B.: An out-of-band authentication scheme for internet of
things using blockchain technology. In: ICNC 2018, pp. 769–773. IEEE, Maui (2018)

41. Alblooshi, M., Salah, K., Alhammadi, Y.: Blockchain-based ownership management for
medical IoT (MIoT) devices. In: 2018 International Conference on Innovations in
Information Technology (IIT). pp. 151–156. IEEE, Al Ain (2018)

42. Zhou, L., Wang, L., Sun, Y., Lv, P.: BeeKeeper: a blockchain-based IoT system with secure
storage and homomorphic computation. IEEE Access 6, 43472–43488 (2018)

248 J. Zhang et al.

http://dx.doi.org/10.1007/978-3-319-99073-6_5


43. Kaur, H., Alam, M.A., Jameel, R., Mourya, A.K., Chang, V.: A proposed solution and future
direction for blockchain-based heterogeneous medicare data in cloud environment. J. Med.
Syst. 42(8), 156:1–156:11 (2018)

44. Chen, Y., Ding, S., Xu, Z., Zheng, H., Yang, S.: Blockchain-based medical records secure
storage and medical service framework. J. Med. Syst. 43(1), 5:1–5:9 (2019)

45. Tian, H., He, J., Ding, Y.: Medical data management on blockchain with privacy. J. Med.
Syst. 43(2), 26:1–26:6 (2019)

46. Wang, H., Song, Y.: Secure cloud-based EHR system using attribute-based cryptosystem
and blockchain. J. Med. Syst. 42(8), 152:1–152:9 (2018)

47. Zhang, A., Lin, X.: Towards secure and privacy-preserving data sharing in e-health systems
via consortium blockchain. J. Med. Syst. 42(8), 140:1–140:18 (2018)

48. Griggs, K.N., Ossipova, O., Kohlios, C.P., Baccarini, A.N., Howson, E.A., Hayajneh, T.:
Healthcare blockchain system using smart contracts for secure automated remote patient
monitoring. J. Med. Syst. 42(7), 130:1–130:7 (2018)

49. Ji, Y., Zhang, J., Ma, J., Yang, C., Yao, X.: BMPLS: blockchain-based multi-level privacy-
preserving location sharing scheme for telecare medical information systems. J. Med. Syst.
42(8), 147:1–147:13 (2018)

50. Li, H., Zhu, L., Shen, M., Gao, F., Tao, X., Liu, S.: Blockchain-based data preservation
system for medical data. J. Med. Syst. 42(8), 141:1–141:13 (2018)

A Review on Blockchain-Based Systems and Applications 249



Tuning Runtimes in Open Source FaaS

David Balla1(B), Markosz Maliosz1, Csaba Simon1, and Daniel Gehberger2

1 Department of Telecommunication and Media Informatics, High Speed Networks
Laboratory, Budapest University of Technology and Economics, Budapest, Hungary

{balla,maliosz,simon}@tmit.bme.hu
2 Ericsson, Montreal, Canada

daniel.gehberger@ericsson.com

Abstract. A dynamically expanding area of cloud computing is Func-
tion as a Service (FaaS). FaaS allows customers to develop, run, and man-
age application functionalities on cloud infrastructure without the bur-
den of building and managing a virtual infrastructure. The vast majority
of FaaS services used in production are provided by public cloud oper-
ators, but a growing number of open source FaaS frameworks offer an
alternative deploying on-premises FaaS services. FaaS frameworks sup-
port different programming language runtimes. The performance of such
systems is dependent on these language runtimes. Our goal is to show
and analyze this dependency, and provide insights to the important
aspect when performance is essential. This paper provides a measure-
ment based evaluation of the capabilities of different language runtimes
in FaaS frameworks. We evaluate three different workloads (echo, com-
pute intensive, and data intensive) on the selected runtimes.

Keywords: Function as a Service · Language runtimes · Latency
measurements

1 Introduction

According to the latest trends, virtualization technologies are getting more and
more granular. Hefty virtual machines (VM) had been replaced by lightweight
container based technologies such as Docker or LXC or micro VMs, e.g. Fire-
cracker, that enable to run micro-services over cloud environments more easily.
In the last years, Function as a Service (FaaS) has started to emerge. In case
of FaaS, instead of providing the complete runtime environment, the user only
registers functions and declares when these functions should be triggered. The
pricing of FaaS in public clouds is more granular, as users are only billed for
the compute resources used during the execution time of their functions [26].
Functions running in an FaaS system can be lightweight building blocks of a
higher level service, they benefit from using container based virtualization or
micro VMs. Function instances are created dynamically upon function invoca-
tion, and they are available for some period of time, defined by the cloud service
provider. After that time, they are getting evicted and the associated resources
c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 250–266, 2020.
https://doi.org/10.1007/978-3-030-38651-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_21


Tuning Runtimes in Open Source FaaS 251

freed till the next invocation. FaaS is an emerging technology; several cloud ser-
vice providers e.g. Amazon Web Services, Google Cloud, and Microsoft Azure,
have FaaS solutions. On the other hand, FaaS had been embraced by the open-
source community; numerous FaaS environments are available in GitHub, such
as OpenFaaS, Kubeless, Nuclio or Fission [11–14]. According to the GitHub
statistics, the most frequently maintained open-source FaaS initiative is Open-
FaaS [10]. In this paper, we investigate the behaviour of selected function run-
time environments. We selected and examined runtimes, that are common in
open source and also in public FaaS providers, such as Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud. Thus, in our work, we investigated
Python(v2.7), Node.js, and Go based runtimes [27–29].

We focus our investigations on the runtimes because these are the executions
environments in each of the FaaS platforms, as when a function is called, at the
end of the chain it is the runtime that executes the function code. Therefore, the
runtime performance is crucial to the overall FaaS performance.

The scope of this paper is to show the limitations, and the mechanisms
that influence the performance and scalability of each runtime, and not the
comparison of the performance of the different runtimes. We implemented three
kinds of functions for each of the selected runtimes. The three functionalities
are: a function that implements an echo service, a compute intensive, and a data
intensive function. The first two do not use external services, while in the data
intensive function, the function code interacts with an external database. These
kinds of functions are found in modern web applications generally running in
cloud environments [24,25].

Our work almost exclusively relies on the codebase of the OpenFaaS function
runtimes, with only subtle modifications. OpenFaaS is a framework developed
in Go for building serverless functions with Docker and Kubernetes. We based
our work on OpenFaaS because it is a very popular platform according to the
GitHub stars [10]. The architecture of OpenFaaS is relatively simple, and in
many aspects, it is similar to the other open source FaaS platforms, e.g., it had
been written in Go, and as most of the solutions, it uses Docker containers on
top of Kubernetes.

This work is well-aligned with the principles of Knative [22]. Knative is an
open source platform originally developed by Google and currently supported
by various other companies. It is envisioned as a general solution for serverless
workloads, with tight Kubernetes integration, scaling to zero and Istio based
networking. Knative only specifies that user functions must be provided as con-
tainers and they must be able to serve HTTP requests. Some FaaS projects, such
as OpenWhisk have already announced that they possibly move over to Knative
execution [23]. While we do not use Knative in our experiments, our findings
regarding FaaS runtimes are directly applicable.



252 D. Balla et al.

2 FaaS Architecture

FaaS environments are implemented on top of a distributed architecture. Services
running in these architectures are mostly using lightweight virtualized environ-
ments such as containers or micro VMs.

Open-source FaaS systems are almost exclusively implemented on top of
Kubernetes. Kubernetes implements an orchestration layer to be able to manage
Docker containers in a unified way. Function instances are running in Kubernetes
pods, encapsulated into Docker containers. For reliable operations Kubernetes
can be set us as High Availability cluster.

Accessing the functions requires a common interface, which in case of open
source FaaS solutions is mostly implemented by an HTTP server, which converts
the requests to be processable by the functions and maintains health-checking
tasks. In case of open-source systems, the user-functions are inserted into a wrap-
per function supported by the FaaS system. Accessing the functions is imple-
mented over HTTP, thus the function-wrappers implement a lightweight web-
server, that forwards the queries to the user-function. Therefore the webserver
plays a very important role in the function execution chain. Thus we focus our
evaluation on the webserver implementations of different language runtimes in
the followings.

Besides the function instances, the other fundamental building block of an
FaaS infrastructure is the Gateway, which ensures an access point to the sys-
tem and proxies user queries to the function instances. The gateway is usually
implemented as a front proxy, which routes the requests to the appropriate func-
tions. The communication between the gateway and the functions is implemented
through a Kubernetes service instance which hides the function pods behind a
common IP address and load balances the request between the function instance
replicas, as it is depicted in Fig. 1.

Fig. 1. General FaaS architecture

2.1 Function Runtime Implementation in OpenFaaS

By default, function runtimes in OpenFaaS are implemented with a tiny Go
based webserver, the function watchdog. The watchdog parses and forwards the
inbound requests to the function via standard IO as it can be seen in Fig. 2.



Tuning Runtimes in Open Source FaaS 253

On the other hand, OpenFaaS has a new HTTP based function implementation,
that only proxies the requests to the function via HTTP. In the latter case,
the function is encapsulated into a Flask based HTTP server. According to
our measurements, using the new watchdog implementation results in better
response times (see Fig. 3). However, the solution using the new watchdog is
currently not part of the main OpenFaaS code-base, and only available from the
Incubator repository of OpenFaaS.

Fig. 2. OpenFaaS function runtime

Fig. 3. Latency comparison of OpenFaaS watchdog implementations in case of Python
runtime, with echo functionality

3 Language Runtimes Overview

3.1 Python

In case of Python, one of the most frequently used webserver implementations
is Flask. Flask is built upon the Werkzeug webserver [32], which is implemented
on top of BaseHTTPServer and SocketServer [33]. Originally Flask implements
a single threaded webserver, however, the SocketServer layer enables it to be
instantiated by using the Threading or the Multiprocessing library of Python.
The listed implementations provide different performance characteristics, as we
will show it later.

The single threaded implementation of Flask shows a simple queuing
behaviour in case of concurrently arriving requests. When Flask is used with the
Threading library, threads are using the same Python interpreter, which can lead
to serious race conditions. The Global Interpreter Lock (GIL) is shared between
all the threads and ensures that only one thread uses the interpreter at the same
time. Python threads are real system threads, managed by the scheduler of the



254 D. Balla et al.

host operating system. In the case of IO bound tasks, cooperative multitasking
is implemented. On the other hand, when it is about CPU bound tasks, preemp-
tive multitasking is applied, which is implemented by periodic checks. Periodic
checks are triggered after 100 interpreter ticks. However, according to [7] inter-
preter ticks show varying behaviour. Flask, using the Threading library, starts a
new thread for each of the inbound requests. Therefore serious race-conditions
can occur in case of a bursty traffic pattern. The Multiprocessing based imple-
mentation avoids the race condition of threads caused by waiting on the GIL.
In this case, instead of sharing the interpreter, the main thread initializes an
interpreter for each of the threads. When using the Multiprocessing library with
Flask, the number of serving threads should be assigned in advance. Thus, it
results in multiple single threaded webservers working together on serving the
incoming load.

3.2 Node.js

Originally Node.js supports the implementation of single threaded webservers.
Single threaded Node.js webserver implementations show similar queuing
behaviour to the single threaded Python Flask. On the other hand, the plat-
form supports running worker threads since version v10.5.0, enabling that each
incoming request to be served by a dedicated worker [8]. However, in case of
using the new worker thread based implementation, we could observe similar
behaviour to the threading based implementation of Python Flask. The ini-
tialization of each worker thread requires to open a file in which the task is
implemented, furthermore a new event-loop, a JavaScript engine and a Node.js
instance is started for the new thread [31]. The platform also supports creating
child processes by using the cluster library [37]. In this case, each of the children
has an individual interpreter, thus no race condition can occur.

3.3 Similarities Between Python and Node.js

There are similarities between Python and Node.js. Both of these two languages
are interpreted, therefore we can see similar behaviour patterns. The threading
library in Python can be corresponded to the new worker threads in Node.js; on
the other hand, the multiprocessing implementation of Flask is similar to the
cluster based solution in Node.js.

3.4 Golang

The Go language is designed to support massively parallel applications. Each
of the application level threads is implemented by Goroutines. Goroutines are
the concurrency units of Go and are scheduled by the Go framework. Each
Goroutine is a coroutine, therefore Goroutines are scheduled in a cooperative
way. The Go runtime implements a two-level scheduling mechanism [35]. The
Go runtime manages several threads preemptively scheduled by the operating



Tuning Runtimes in Open Source FaaS 255

system. Goroutines are assigned to threads initiated by the runtime [30]. The
number of runtime threads can be configured by the user. In the case of compute
intensive functions, the parallel operation can be achieved by increasing the
number of runtime threads. According to our measurements, in case of using
the Go application with a single runtime thread, a bursty load can cause heavy
queuing behaviour. In the case of IO bound operations, the effects of cooperative
scheduling can be observed. As Goroutines drop the computing resources after
the initiation of an IO operation, other Goroutines can be transitioned to running
state.

4 Test Environment

4.1 Underlay Infrastructure

For our measurements, we used an environment supported by CloudLab. Our
physical environment consisted of four xl170 computers, equipped with Ten-core
Intel E5-2640v4 CPUs with Hyper-Threading capabilities, 64 GBs of RAM and
Mellanox ConnectX-4 25 GB NICs [9]. We ran the Kubernetes cluster with one
master and four worker nodes. For cluster networking, we used the Weave Net
implemented by Weaveworks [34].

4.2 Function Runtime Implementation

Focusing on the function runtimes, we had separated the function environments
from the FaaS environment and ran them on top of Kubernetes, without hav-
ing managed them by an upper FaaS layer. Therefore we removed the gateway
and monitoring facilities of the FaaS system and stressed the functions via the
Kubernetes service instance. We relied on the codebase of OpenFaaS function
runtimes, which uses the new watchdog based solution. However, we removed
the watchdog component from the function runtime pods. We believe that in
this case, the function watchdog is a redundant component of the architecture
since all of its tasks can be handled by the webserver in which the user function
is encapsulated. By eliminating the FaaS related components from the func-
tion runtime pods, we could examine the raw performance of a function run-
ning on top of Kubernetes and could eliminate the overhead given by the FaaS
environment.

4.3 Test Functions

Our test functions were running in Kubernetes pods, without any resource limi-
tations and scaling rules being configured. We redesigned the function runtimes
of OpenFaaS and implemented the function runtime environments to be able
to work in both sequential and parallel way. Therefore, we could test the per-
formance of the examined function runtimes under highly concurrent loads as
well.



256 D. Balla et al.

As we did not use the FaaS framework, we removed the parts of the function
wrappers that are responsible for monitoring and health-checking tasks.

In case of Python, we extended the Flask implementation to be able to oper-
ate in a single threaded way, but also be able to use the threading and the
multiprocessing based implementations to be able to process queries in a paral-
lel way since the original implementation is only able to use the threading based
implementation of Flask.

In case of Node.js the original OpenFaaS implementation uses the Express.js.
However, we did not measure performance differences between Express.js and
Node.js, therefore to keep our code simple, we used Node.js. OpenFaaS Node.js
solution only supports sequential processing of requests. Therefore we extended
this solution to be able to use the new Worker-Thread based implementations
including threadpools as well, and it can also make use of the cluster library
which leverages the gains of starting a predefined number of Node.js servers and
load balancing requests between them.

In case of Go, we used the OpenFaaS Golang HTTP implementation [1] which
uses the default HTTP solution implemented by the HTTP library of Go. As
Go supports writing highly parallel applications, and parallelism is implemented
in the framework of Go, we did not make any extensions that support parallel
processing.

In each of the cases, we examined the configuration when several individual
function instances reside in the system in a distributed way. In case of Python
and Node.js, we compared the parallel processing solutions with the case when
several single threaded function instances served the requests in a distributed
way. See Fig. 4(a). In case of database communication, implemented in Go, we
tried to find the best number of runtime threads. After that, we examined the
effects of running Go function instances in a distributed way, that are using
the previously calculated number of runtime threads. In case of the echo and
compute intensive functions, we compared the performance of single threaded
Go functions running in a distributed way to the case when multiple runtime
threads had been assigned to the functions.

Fig. 4. Single threaded functions, that are only capable of sequential processing of
requests (a) vs single function instance that can process requests in a parallel way(b)

As the majority of functions in a web based environment do some computing,
load in or retrieve data from a database or return some data, we implemented
these kinds of functions. The first is an echo function; the second is a function
that implements a compute intensive task by calculating the value of π in 50.000



Tuning Runtimes in Open Source FaaS 257

steps. The third type of workload deals with database operations. Functions in
an FaaS system are expected to be stateless, and therefore, external state storage
solutions are used. The performance of these, typically NoSQL database accesses,
is crucial for the overall system. Therefore we implemented three functions that
perform read modify write operations with different database implementations,
to show that both the database implementation and the FaaS runtime variants
affect the performance.

For the functions implementing database communication, we selected three
modern databases to cover real-life scenarios used in the industry: Redis, Mon-
goDB, and Cassandra. Redis is an in-memory key-value store, mostly used to
fulfill caching tasks or to implement message broker functionalities. Redis is
implemented in C [2], and as it stores data in memory, we expected fast response
times. MongoDB is a document store, which is used to store unstructured data,
stored in collections, organized into JSON structures [3–5]. MongoDB is imple-
mented in C++, however, document stores having more complex mechanisms
than key-value stores we expected response times from MongoDB higher than
the ones produced by Redis. In our setup, MongoDB was configured to use
the WiredTiger as an underlying key-value store. Cassandra also implements
a NoSQL database, however, it is implemented in Java. In contrast with Mon-
goDB, Cassandra stores structured data and operates on tables [6]. As Cassandra
is implemented in Java in contrast with the previous two solutions, we expected
the poorest performance for this case.

The data sent to and read from the databases consisted of a unique UUID
generated by the function at the invocation phase, and a string with the value
of “Hello”.

4.4 Load Generator

For the measurements, we used the Hey tool, which is an HTTP load generator
written in Go [36]. Hey sends a given number of requests in a given concurrency
level and prints the statistics of the responses. It is able to simulate highly concur-
rent user requests by starting several worker threads defined by the concurrency
level. The operation of each worker thread is sequential, i.e., it only sends the
next request after the response for the previous request has been received.

For each of the measurements, we applied a load which had a concurrency
level of 100, and we recorded 10.000 measurement points. In all of the cases, Hey
had been used to send HTTP GET requests.

5 Evaluation

In this section we show and evaluate the results of our measurements. We used
cumulative distribution functions to visualize the latency series resulted by the
measurements. As the latency values resulted by the measurements cover a wide
range, we used logarithmic scale in case of the horizontal axis.



258 D. Balla et al.

5.1 Python

As we have discussed, we used Flask to implement our Python function run-
times. We investigated the behaviour of the runtime in case of using the under-
lying Flask webserver implementation in a way that the processing of requests
was done either in a sequential or in a parallel way. We will show, that in case
of Python, using the threading library can be beneficial in case of IO bound
functions. However, it can result in serious performance decreases for compute
intensive CPU bound operations. We will show two alternatives that can be
used instead of the threading implementation. We show that using the multipro-
cessing library outperforms the threading based implementations. On the other
hand, starting several function instances that are capable of serving requests
sequentially can be an alternative to the multiprocessing based implementation
in a Kubernetes environment.

Echo. In case of the echo operation, the function immediately returns a short
static HTML response. In this case, the operation is so short in time that starting
an interpreter for the function can dominate the whole completion time of the
operation as it can be seen in Fig. 5. However, running the function instances
in a distributed way, it performs at least an order of magnitude better than the
other solutions.

Fig. 5. Python echo

Compute Intensive. In case of Flask using the threading library, CPU bound
functions keep the GIL and compute resources busy, and other threads have to
compete for them. In this case, the Python scheduler preempts the currently
running thread and takes the GIL from it, therefore giving a chance to the
other threads to run. However, in this case, race conditions can occur, since
as we mentioned, Python threads are managed by the scheduler of the OS,
while the Python scheduler is not in cooperation with the OS scheduler. In
Fig. 6 we show that single threaded implementation of a function can perform
an order of magnitude better than the threading based implementation. We also
showed that by using the multiprocessing library, we can reach further increase
in performance. Nevertheless, when using separate single threaded function pod
instances instead of the multiprocessing implementation, we could reach one
order of magnitude performance gain in case of the median latency values.



Tuning Runtimes in Open Source FaaS 259

Fig. 6. Python compute

Data Intensive. In the case of data intensive IO bound functions, using the
threaded implementation of Flask, better performance can be reached on aver-
age. Since, in this case, threads are giving up the CPU after an IO operation, in
contrast to CPU bound functions, therefore, let other threads to run. In oppo-
site to the single threaded operation, there is no need to wait for each function
call to finish. However, using the multiprocess based implementation of Flask
can result in further performance gains. As it has been introduced, the multi-
processing library assigns an individual interpreter to each thread, preventing
race conditions. Starting individual interpreters nevertheless adds extra over-
head to the runtime of serving a function call, however, this additional overhead
is negligible to the whole function runtime latency. Furthermore, when using the
multiprocessing based Flask implementation, the maximum number of processes
should be set; thus, no more function invocations can be served than the number
assigned to it. In our measurements, we set the maximum number of processes
equal to the number of available CPU cores in one of the computers. We con-
structed a new configuration to eliminate the extra overhead of starting an inter-
preter each time a function is invoked, by creating as many single thread based
function containers as many processes we had in the multiprocessing case, and
ran them in a distributed way on top of our Kubernetes architecture. According
to Fig. 7, the threading based implementation shows better performance than the
single threaded one; however, multiprocessing based implementation can further
improve the latency. It also can be seen that the distributed solution could still
reduce the median latency of serving the function calls, although it resulted in
higher tail latency values.

Fig. 7. Python database

We showed that IO bound functions using separate single threaded pods in
a distributed way can reach significantly better average performance than all
the other solutions, however, in this case, the tail of the latency values showed



260 D. Balla et al.

spectacularly large outliers. To mitigate these latency values, we combined the
performance gain of the threaded implementation with the multiple function pod
based solution. As a result, we could reduce the tail latency values as it can be
seen in Fig. 8.

Fig. 8. Mitigation of longtail latency values by using python threads

5.2 Node.js

According to our measurements, Node.js showed the poorest performance with
the new worker threads. It can be seen that using a pool of workers starting
a limited number of worker threads can improve the tail latency, but on the
other hand it gives an extra overhead to the median latency values. The sin-
gle threaded implementation gives at least an order of magnitude performance
increase. However, in case of Node.js, there is no significant difference between
the latency results of the cluster based solution where several child processes are
initialized and the one where multiple single threaded function pods are running
in a distributed way over Kubernetes.

Echo. In case of the echo operation, the single threaded implementation per-
forms better than the worker thread based implementation by two orders of
magnitude. However, both the cluster based and the distributed solutions out-
perform the single threaded solution, on the other hand, the performance of
these latter two is nearly identical (Fig. 9).

Fig. 9. Node echo



Tuning Runtimes in Open Source FaaS 261

Compute Intensive. Compute intensive Node.js functions showed similar per-
formance characteristics to the ones resulted from the echo functionality. As it is
shown in Fig. 10, the single threaded and the new worker thread based implemen-
tations have a very low standard deviation. The single threaded implementation
also outperforms the new worker thread based solution. On the other hand, the
Cluster based and distributed solution outperforms all the other cases, though
in this case, we can see the queuing behaviour of requests that is caused by the
limited number of processing instances.

Fig. 10. Node compute

Data Intensive. Data intensive Node.js functions showed the same latency
characteristics than the preceding two cases. However, in the results, it is shown
that several single threaded function instances show better performance both
in case of the median and the tail latency values compared to the cluster based
implementation. In this case, according to the significant latency gap between the
single threaded and worker-thread based implementations, we have not combined
the proposed distributed solution with the worker-thread based implementations
(Fig. 11).

Fig. 11. Node database

5.3 Golang

Our Go function runtime implementation uses the default HTTP server built on
Go’s HTTP library, which initiates a Goroutine for each of the function calls.
Goroutines are running on top of threads started by the Go runtime, and these
threads are scheduled and managed by the OS. However, the number of these
threads can be defined before starting the Go program.



262 D. Balla et al.

Echo. The echo functionality implemented in Go performs almost identically
when running the single threaded solution in a distributed way or when several
runtime threads were assigned to the function instances (Fig. 12).

Fig. 12. Go echo

Compute Intensive. Goroutines that implement a compute intensive job are
not preempted by the Go scheduler, as the Go runtime implements coopera-
tive multitasking of the Goroutines, thus in the case of highly parallel loads,
requests may get queued. According to this behaviour, in case of CPU bound
operation, there is no significant difference in the latency results if the applica-
tion is using multiple runtime threads or separated into several single threaded
Go applications in a distributed way over Kubernetes. This is shown in Fig. 13.
According to our measurements, the latter setup shows slightly better results,
which can be explained by the fact that in case of a webserver based application,
using multiple runtime threads makes the completed requests wait for transmit
operations until the thread, responsible for sending out the results, is scheduled
again. While with multiple single threaded applications, the requests are bal-
anced between the servers, therefore, fewer requests are queued at the transmit
phase.

Fig. 13. Go compute

Data Intensive. As we discussed, Goroutines implement cooperative multi-
tasking, thus, in case of IO bound operations, they yield compute resources and
let another Goroutine run. According to our measurements, when IO bound
functions are in use, the median latency values are converging to a threshold
regardless of the number of threads started by the Go runtime. Table 1 shows
this converging tendency according to the number of runtime threads, in case of



Tuning Runtimes in Open Source FaaS 263

a function which communicates with the databases. We assigned three runtime
threads for the Go function runtime in case of Redis and MongoDB communi-
cation, as according to Table 1 we got the best performance values. In case of
operations on the Cassandra database, according to Table 1, we configured our
Go function runtime to use 7 runtime threads, and we deployed these applica-
tions into Kubernetes pods. We observed that increasing the number of function
instances can reduce the latency until the number of 6 instances. After 6 function
instances, the results indicate performance degradation. This behaviour can be
seen in Fig. 14.

Table 1. Median latency values produced by data intensive Go functions according to
the no. of runtime threads

Threads Redis Mongo Cassandra

1 0.261 0.646 0.944

2 0.021 0.083 0.173

3 0.008 0.043 0.096

4 0.008 0.052 0.069

5 0.007 0.06 0.055

7 0.008 0.045 0.044

10 0.008 0.044 0.042

20 0.008 0.057 0.042

Fig. 14. Go Database

The performance decrease over 6 function instances can be explained by the
number of available CPU cores in our Kubernetes cluster. This can be derived
back to a packing problem, as each of the function pods uses 7 Go runtime
threads, since a compute node had 20 physical cores. Therefore only 6 function
instances could be instantiated in our cluster without having any race conditions
between the threads and the CPUs assigned to them.

Compute and echo functions showed similar characteristics as both of them
can be taken as a CPU bound operation, though the latter one only uses a
single operation which has a very short execution time and it is unlikely to get
scheduled out by the OS scheduler.



264 D. Balla et al.

6 Related Work

Baldini et al. posed several open questions related to FaaS in [15]; they showed
challenges from multiple points of view. FaaS poses system level challenges, e.g.,
scaling, cold starts, resource limitations, and also security issues can come up,
while it is also challenging from the operations’ side.

Lee et al. [18] provided a comparison on the performance of the main public
FaaS services, also arguing that concurrent invocation is important; they also
considered timer based runtime overhead measurements.

Open-source FaaS platforms are also emerging, in [10] Mohanty et al. com-
pares open-source FaaS platforms from several aspects.

One of the hottest topics in FaaS is autoscaling. A PID controller based
solution to control containers, where performance reports (observed response
time) from the application within the container are proposed by Abranches et al.
[19,20]. An alternative approach used an ARIMA based user activity prediction
to govern the Kubernetes scaling process [21].

The other most challenging topics of FaaS is related to cold starts. Therefore
a lot of research papers had been published in this topic. Manner et al. in [16]
posed several hypotheses that can influence cold starts, Manco et al. in [17]
showed that unikernels can provide lower startup times than containers.

The findings in the related work show that many factors correspond to the
latency of the functions. In our investigations we showed, that in addition, the
configuration of parallel processing capabilities of the language runtimes and the
database implementation plays also a significant role in the latency, in some cases
not in the obvious way, as we highlighted in our measurements and analysis.

7 Conclusion

In this paper, we provided a brief insight into open-source serverless architec-
tures. The function runtimes are located at the end of the call-chain and are
responsible for running the user-defined functions. As these call-chains in open-
source FaaS systems are implemented over HTTP, the runtimes implement an
HTTP server. We investigated the performance characteristics of these runtimes
in case of an echo, compute intensive and data intensive functionality, using
Python, Node.js, and Go HTTP server options.

In open source FaaS platforms the runtime parameters, e.g. concurrency lev-
els, thread handling, etc. can be tuned for performance, therefore we investigated
these opportunities. Our results show that Go functions outperformed all the
variants in case of the median latency values. Python showed the poorest per-
formance in case of compute intensive and echo functions. Albeit Go functions
showed the best median latency values, though the longtail latency values of Go
based data intensive functions showed spectacularly high outliers. On the other
hand, according to the measurements performed with Node.js data intensive
functions showed fewer outliers than the ones related Go or Python. According
to the measurements, the Python runtime can be further optimized, however,
even the optimized Python runtime cannot outperform the other two runtimes.



Tuning Runtimes in Open Source FaaS 265

Acknowledgment. The research has been supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-2017-00013, Thematic
Fundamental Research Collaborations Grounding Innovation in Informatics and
Infocommunications.

References

1. OpenFaaS: of-watchdog. https://github.com/openfaas-incubator/golang-http-tem
plate

2. Redis: Introduction to Redis. https://redis.io/topics/introduction
3. Agrawal, S., et al.: Survey on Mongodb: an open-source document database. Int.

J. Adv. Res. Eng. Technol. (IJARET) 1, 4 (2015)
4. Mongodb: Document Databases. https://www.mongodb.com/document-datab

ases
5. Sullivan, D., Sullivan, J.: NoSQL key-value database simplicity vs. document

database flexibility. InformIT blog, 16 Sepetmber 2015. http://www.informit.com/
articles/article.aspx?p=2429466

6. DataStax: What is Apache CassandraTM?. https://academy.datastax.com/planet-
cassandra/what-is-apache-cassandra

7. Beazley, D.: Understanding the Python GIL. PyCON 2010, 20 February 2010.
http://www.dabeaz.com/GIL/

8. Node.js: Node.js v10.16.0 Documentation. https://nodejs.org/dist/latest-v10.x/
docs/api/worker threads.html

9. Cloudlab: The Cloudlab Manual (2019). https://docs.cloudlab.us/hardware.html
10. Mohanty, S.K., et al.: An evaluation of open source serverless computing frame-

works. CloudCom (2018)
11. Fission. https://github.com/fission/fission
12. Kubeless. https://kubeless.io/
13. OpenFaaS. https://kubeless.io/
14. Nuclio. https://nuclio.io/
15. Baldini, I., et al.: Serverless computing: current trends and open problems. In: 2017

IEEE 37th International Conference on Distributed Computing Systems Work-
shops (ICDCSW) (2017)

16. Manner, J., et al.: Cold start influencing factors in function as a service. In: Fourth
International Workshop on Serverless Computing (WoSC) 2018 (2018)

17. Manco, F., et al.: My VM is lighter (and safer) than your container. In: 26th
Symposium on Operating Systems Principles, October 2017

18. Lee, H., et al.: Evaluation of production serverless computing environments. In:
2018 IEEE 11th International Conference on Cloud Computing (CLOUD) (2018)

19. de Abranches, M.C. Solis, P.: An algorithm based on response time and traffic
demands to scale containers on a Cloud Computing system. In: IEEE 15th Interna-
tional Symposium on Network Computing and Applications (NCA), pp. 343–350,
October 2016

20. de Abranches, M.C., Solis, P., Alchieri, E.: PAS-CA: a cloud computing auto-
scalability method for high-demand web systems. In: IEEE 16th International
Symposium on Network Computing and Applications (NCA), pp. 1–4 (2017)

21. Jin-Gang, Y., Ya-Rong, Z., Bo, Y., Shu, L.: Research and application of auto-
scaling unified communication server based on docker. In: 10th International Con-
ference on Intelligent Computation Technology and Automation (ICICTA), pp.
152–156 (2017)

https://github.com/openfaas-incubator/golang-http-template
https://github.com/openfaas-incubator/golang-http-template
https://redis.io/topics/introduction
https://www.mongodb.com/document-databases
https://www.mongodb.com/document-databases
http://www.informit.com/articles/article.aspx?p=2429466
http://www.informit.com/articles/article.aspx?p=2429466
https://academy.datastax.com/planet-cassandra/what-is-apache-cassandra
https://academy.datastax.com/planet-cassandra/what-is-apache-cassandra
http://www.dabeaz.com/GIL/
https://nodejs.org/dist/latest-v10.x/docs/api/worker_threads.html
https://nodejs.org/dist/latest-v10.x/docs/api/worker_threads.html
https://docs.cloudlab.us/hardware.html
https://github.com/fission/fission
https://kubeless.io/
https://kubeless.io/
https://nuclio.io/


266 D. Balla et al.

22. Knative. https://cloud.google.com/knative/
23. McGee, J.: IBM Cloud teams with Google and open community to help build

Knative and expand the power of serverless, IBM Blog. https://www.ibm.com/
blogs/cloud-computing/2018/07/24/ibm-cloud-google-knative-serverless/

24. Wasson, M., Buck, A., Roberts, J., Wilson, M.: N-tier architecture style.
Microsoft Azure (2018). https://docs.microsoft.com/en-us/azure/architecture/
guide/architecture-styles/n-tier

25. Microsoft: Enterprise solution patterns using Microsoft.NET. Microsoft (2014).
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff647095(v=pandp.
10)

26. Hellerstein, J.M., et al.: Serverless computing: one step forward, two steps back,
December 2018

27. AWS: AWS lambda developer guide (2019). https://docs.aws.amazon.com/
lambda/latest/dg/welcome.html

28. Google Cloud: Cloud functions documentation (2019). https://cloud.google.com/
functions/docs/

29. Microsoft Azure: Azure functions documentation. https://docs.microsoft.com/en-
us/azure/azure-functions/

30. Kennedy, W.: Scheduling In Go. Adranlabs blog (2018). https://www.ardanlabs.
com/blog/2018/08/scheduling-in-go-part2.html

31. Henningsen, A.: Node.js: the road to workers. In: Node.js Italian Conference (2018).
https://addaleax.net/workers-nodefest/

32. Flask. https://github.com/pallets/flask
33. Werkzeug. https://github.com/pallets/werkzeug
34. Weaveworks: Introducing weave net. https://www.weave.works/docs/net/latest/

overview/
35. Tu, L., et al.: Understanding real-world concurrency bugs in go. In: ASPLOS 19,

April 2019
36. Hey. https://github.com/rakyll/hey
37. Node.js: Node.js v8.16.0 documentation. https://nodejs.org/docs/latest-v8.x/api/

https://cloud.google.com/knative/
https://www.ibm.com/blogs/cloud-computing/2018/07/24/ibm-cloud-google-knative-serverless/
https://www.ibm.com/blogs/cloud-computing/2018/07/24/ibm-cloud-google-knative-serverless/
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/n-tier
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/n-tier
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff647095(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff647095(v=pandp.10)
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://cloud.google.com/functions/docs/
https://cloud.google.com/functions/docs/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html
https://addaleax.net/workers-nodefest/
https://github.com/pallets/flask
https://github.com/pallets/werkzeug
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://github.com/rakyll/hey
https://nodejs.org/docs/latest-v8.x/api/


Achieving Dynamic Resource Allocation
in the Hadoop Cloud System

Tsozen Yeh(B) and Shengchieh Yu

Department of Computer Science and Information Engineering,
Fu Jen Catholic University, New Taipei City, Taiwan
yeh@csie.fju.edu.tw, yushengchieh@gmail.com

Abstract. Cloud computing has been extensively adopted to handle the
enormous amount of data from Internet of Things, Big Date, and many
other cutting-edge research areas in recent years. As cloud systems serve
more and more jobs, it will be getting more difficult for time-critical
or urgent jobs with high priority in a busy cloud environment to com-
plete their execution as soon as users would like to have. To facilitate
the prompt execution of those jobs, it is imperative for cloud systems to
provide schemes expediting their execution. The Apache Hadoop is one
of the most popular cloud platforms in cloud computing. Unfortunately,
it is not equipped with flexible mechanisms to hasten the course of pri-
oritized jobs. There had been various approaches proposed to accelerate
the execution of prioritized jobs from different aspects. However, those
approaches not only target at just certain existing Hadoop job sched-
ulers but also require modifications made to those job schedulers. Thus,
they cannot be directly applied to other job schedulers without major
porting efforts, much less to new job schedulers developed in the future.
We designed and implemented a new scheme enabling dynamic resource
allocation to jobs selected by job schedulers. As a result, without mak-
ing changes to job schedulers, our scheme could help some current and
future Hadoop job schedulers speed up the execution of jobs with high
priority. Experimental results demonstrate that jobs executed with high
priority can reduce their execution time by up to 68.28%.

Keywords: Cloud computing · Hadoop · HDFS · Scheduling

1 Introduction

The cloud computing has shown its promising future in many areas. As the
cloud infrastructure keeps expanding, large cloud systems could easily host a
vast number of programs running at the same time. Consequently, in a busy
cloud system, the executing progress of urgent or time-critical jobs could be
significantly delayed, which potentially could lead to unfavorable results or even
job failures. It will be desirable if the cloud system can let users decide which jobs
can be run with high priority so the course of their execution can be accomplished
more promptly.
c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 267–283, 2020.
https://doi.org/10.1007/978-3-030-38651-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_22


268 T. Yeh and S. Yu

Among the cloud computing platforms, the Apache Hadoop is considered
one of the most widely used across different cloud computing communities
[1,11,12,24,27,28]. Nevertheless, the design of Hadoop architecture makes it
difficult to provide prioritized execution for time-critical jobs. In Hadoop, the
job scheduling is done by job schedulers. Currently, Hadoop supports three job
schedulers including Capacity Scheduler (CS), Fair Scheduler (FS), and First In
First Out (FIFO) scheduler. CS maintains predefined portions of resources to
different job queues. Jobs in each job queue will be executed in a first-come-
first-serve order, which means there is at most one running job in each queue.
FS also keeps multiple queues like CS does except for the concurrent execution
of all jobs in each queue. Unlike FS and CS, FIFO scheduler retains only one
job queue and all jobs in the queue get executed according to their submission
order. Both CS and FS are commonly used across various environments because
of their flexibility in resource arrangement while the nature of FIFO largely
limits its usage in practice. To support prioritized execution, it is necessary for
prioritized jobs to obtain more system resources during their execution. The
default setting of CS does not support prioritized execution. With extra efforts,
the system administrator could change the setting to run prioritized jobs prior
to the execution of regular jobs. Nonetheless, in CS, each queue still can have
only one job in execution even if there are other pending prioritized jobs in the
queue. This means that a pending prioritized job in a queue still needs to wait
for the completion of the currently running job before it can launch its execution.
For FS, there is no way to conduct prioritized execution. Similarly, FIFO does
not support prioritized execution due to its essence.

As job schedulers are the ones deciding which job could start its execution
and when it gets scheduled to receive system resources, it is reasonable to make
changes to job schedulers to speed up the execution of prioritized jobs. Not sur-
prisingly, previous studies had taken this approach to fulfill prioritized execution
in Hadoop [23,29]. The main issue with this type of approaches is their portabil-
ity. It could take great efforts to carry their design and implementation to other
existing job schedulers, much less to new job schedulers created in the future.
Ideally, it will be great if a given mechanism of prioritized execution could be eas-
ily ported to current and future job schedulers with little or even no cost to them.
As stated, CS already has supported prioritized execution to some degree and
it is unlikely to be ameliorated without modifying CS. Therefore, we designed
and implemented a new scheme to realize prioritized execution by dynamically
allocating resources in FS without altering FS itself. As our approach works on
resource allocation instead of FS, it is easy to carry our scheme to the next
generation of FS as well as to future job schedulers under the current Hadoop
architecture. With our dynamic resource allocation, users can flexibly adjust the
percentage of resources that regular jobs should give away to prioritized jobs. By
gaining extra resources, prioritized jobs could complete their execution sooner.
We evaluated our design and implementation by executing the same set of pro-
grams with and without high priority under various configurations. Experimental
results show that jobs can shorten their execution time by up to 68.28% if they



Achieving Dynamic Resource Allocation in the Hadoop Cloud System 269

are executed with high priority. The remainder of this paper is organized as
follows. Section 2 reviews previous works related to Hadoop scheduling and the
Hadoop Distributed File System. Section 3 describes the design and implemen-
tation of our model. Section 4 presents experimental results. Section 5 concludes
this paper, and the future work is discussed in Sect. 6.

2 Related Work

Scheduling algorithms can largely affect the course of job execution. To make
prioritized jobs run faster, most studies focused on launching their execution
promptly [23,29]. Some works applied the idea of bidding to allow users to utilize
their allotted budgets in exchange for job priority for their prioritized jobs [23].
Like all other software, Hadoop must reply on the underlying operating system to
function appropriately. Because jobs in Hadoop often require a large amount of
disk operations, previous efforts also aimed to quickly deliver disk I/O generated
from jobs with high priority to shorten their execution time [7,30]. The slow disk
speed has been viewed as a bottleneck affecting the overall system performance.
To lessen the negative impact of slow disk operation, some models used memory-
based computing to lower the cost of using disk in Hadoop [6,17]. Researchers
had proposed ways to better Hadoop scheduling algorithms from various aspects.
Some focused on meeting job deadlines [15,26] and some strived for reducing
mean completion time of jobs in dynamic heterogeneous Hadoop environments
[20]. In a large cluster, mixing centralized and distributed scheduling could also
help improve the overall system performance [14]. In addition, the awareness of
network bandwidth or resources consumed could also be a consideration when
designing scheduling algorithms in Hadoop [16,19,25].

The Yet Another Resource Negotiator (YARN) is the infrastructure man-
aging resources in Hadoop. The computing resource in the Hadoop cluster is
measured and distributed in a unit of “container”, which is a logical resource
bundle consisting of memory and CPU. Not surprisingly, there have been stud-
ies on containers to improve the system performance [10,21,22]. The default
file system in Hadoop is called Hadoop Distributed File System (HDFS). It is
a distributed file system consisting of a NameNode and multiple DataNodes.
The NameNode maintains and manages the entire HDFS namespace. DataN-
odes provide computing resources and store cloud data [12,24]. The failure of
the NameNode will bring down the entire HDFS [2,8,13]. HDFS employs redun-
dant NameNodes to supersede the active NameNode in the case of NameNode
failure. The failover time of initiating a redundant NameNode to be the new
active NameNode could cause problems, which is addressed by the AvatarNode
in Facebook, the Standby NameNode in Cloudera, and other research works
[3,4,8,18]. The reliability of Hadoop data is also an important topic. Both file
duplication and system recovery help assist data reliability [5,9].



270 T. Yeh and S. Yu

3 Dynamic Resource Allocation in YARN

The time required to complete a job involves two parts. The first relates to
the timing that a job gets selected by the job scheduler. The second concerns
the amount of resources a job receives each time it is chosen. To quicken the
progress of prioritized jobs, both parts could help achieve the goal. Unfortunately,
under the current Hadoop architecture, the first part is totally done by the job
scheduler. It means any attempt made in the first part to expedite the execution
of prioritized jobs will inevitably cause modifications to the job scheduler, which
results in the aforementioned portability issue. Hence, we focus on the second
part through allocating more resources to prioritized jobs to speed up their
execution.

3.1 Job Submission and Resource Adjustment

During a job submission, users only need to decide if that job can give away its
allocated resources when prioritized jobs are running. Take the well known pro-
gram “wordcount” for example. In the original YARN, a typical launch is like
“hadoop jar wordcount.jar wordcount wordcount-input-file wordcount-output-
file”. In our version of YARN, users just need to type “hadoop jar wordcount.jar
wordcount wordcount-input-file wordcount-output-file -D yield=1” to indicate
this job could relinquish its resources. Otherwise, users will set “-D yield=0”
to point out that the job will not give away its sources. In a way jobs with
the setting of “-D yield=1” are considered as regular jobs while jobs with the
setting of “-D yield=0” are viewed as prioritized jobs as they could have extra
resources deducted from regular jobs. Consequently, during the submission of a
job, users can set the value of the “yield” flag to zero to direct our system to
execute that job with high priority. For convenience, we set the default value
of “yield” to one if users do not use it in job submission as practically most
jobs are regular jobs. Once a job starts its execution, its resource allocation is
totally controlled by the YARN. Currently, there are many YARN commands
that users can utilize to manage running jobs in Hadoop. For example, “yarn
-list” can show all application and their corresponding information such as their
application IDs. To make our scheme more flexible, we add a new command,
“yarn applicationID -D yield=1 (or -D yield=0)”, to let users reset the priority
of the job with the specified application ID during its execution. They also can
decide the maximum percentage, namely deduction ratio, of resources can be
deducted from regular jobs when there are prioritized jobs in execution. The
deduction ratio is a system-wide parameter. Those deducted resources will be
allocated to prioritized jobs to accelerate their execution. To decrease the execu-
tion time of prioritized jobs as much as possible, by default we manage to have
all regular jobs temporarily stop getting new resources when prioritized jobs are
in execution, which means the default deduction ratio is 100%. Users can use
the command, “yarn -D ratio=x%”, to dynamically adjust the deduction ratio
at any time and our system will act accordingly. To make it easier for users, they
can directly reset the deduction ratio at x% during any job submission by setting



Achieving Dynamic Resource Allocation in the Hadoop Cloud System 271

“-D ratio=x%”. For instance, “hadoop jar wordcount.jar wordcount wordcount-
input-file wordcount-output-file -D ratio=20%” means all regular jobs now will
be assigned at most 80% (1–20%) of their originally allocated resources during
the execution of prioritized jobs.

3.2 Scheduling Process

YARN is the infrastructure managing system resource and job scheduling in
Hadoop. It mainly consists of Resource Manager (RM), Node Manager (NM),
and Application Master (AM). Figure 1 illustrates their relation with regard to
job execution. The clients represent users submitting jobs. The RM oversees
the entire system resources (CPU time and/or memory) and makes appropriate
resource allocation. Each computing node in Hadoop has an instance of NM run-
ning on it, which constantly monitors useable resources on that computing node
and reports on the real-time information to the RM. The relationship between
the RM and the NM is like that of the master and the slave. Each job has a
corresponding AM to direct the execution of the job during its entire life cycle.
Under the Hadoop MapReduce model, each job is divided into multiple smaller
tasks. Each task can be separately executed in a unit of resources called “con-
tainer”. The AM of each job constantly reports to RM the number of containers
that job still needs to complete its execution. Meanwhile, for a running job, its
AM also keeps track of allocated containers and tasks executed therein to man-
age the executing progress of the job. Job scheduling is completely governed by
the job scheduler, which is a component in RM. When there are free resources
available, the job scheduler will select a job to accept system resources. As dis-
cussed, Hadoop offers FS, CS, and FIFO job schedulers. Both FS and CS allow
the system administrator to configure multiple job queues with various shares of
system resources. The FIFO, as its name shows, has only one job queue, which
has very limited usage. The process of selecting a job to utilize resources contains
two stages. The first stage selects a job queue and the second stage picks a job
from that selected job queue. Once a job is selected by the job scheduler, RM
will try to assign the chosen job certain number of containers, which could exist
on any computing node. Often a job is composed of many tasks and each task
needs a container to complete its work. As a result, individual jobs usually will
go through many cycles of the job selection before their completion.

3.3 Priority Design on the Resource Manager

Our goal is to make certain that prioritized jobs will employ extra resources to
reduce their execution time under the condition of not modifying job schedulers.
There are two points that RM must address to achieve the goal. The first is to
discriminate prioritized jobs from regular jobs. The second is to ensure prioritized
jobs could obtain more resources during the resource allocation. The first point
is about how to pass the priority of a job and the deduction ratio (if set) to
RM. Under the current YARN, the values of “yield” and “ratio” together with
the user’s submission will be submitted to RM. We then can get the job priority



272 T. Yeh and S. Yu

Fig. 1. Scheduling components in YARN

and deduction ratio on the RM site. When a job is submitted, there will be
an object namely RMApp created in RM to represent that job. For a given
job, we insert the priority of that job into its corresponding RMApp in YARN
to register its job priority. As to the deduction ratio, our approach maintains
a global deduction ratio for all regular jobs in the entire system so we keep
its latest value in RM. The second point is not as straight as the first one.
As explained, the system resources are managed and distributed in a unit of
“container”. This indicates that prioritized jobs need to gain more containers
each time they get selected. However, the overall system resources is fixed for a
given Hadoop cluster, which implies that we need to make regular jobs “yield”
some of their allocated containers when they are scheduled to collect containers.
By doing so, those “yielded” containers could be given to prioritized jobs to
fasten their execution.

How to reserve containers from regular jobs is an important work. In the
YARN architecture, each job has a corresponding RMApp object as well as
an AM managing its executing progress as seen in Fig. 1. Each AM constantly
monitors its containers in use and notifies RM how many more containers it
needs to complete the entire job. In other words, RM knows the number of
containers still needed for every running job in the system. For a given AM,
when RM learns the number of containers that AM requires, the number will be
passed into the job scheduler to decide how many containers will be allocated
to the corresponding job next time it is scheduled to have containers. In our
original design, the number of containers requested from an AM of a regular job
will be temporarily reduced to zero to save containers for prioritized jobs if they
exist in the same job queue where that regular job resides in. As a consequence,
no containers will be given to that regular job under the circumstances. In the
case of a deduction ratio is set, the number passed into the job scheduler will
be decreased in accordance with the deduction ratio. When all prioritized jobs
complete, the allocation of containers will back to the normal way like original
YARN does, which means no containers will be deducted from regular jobs any
more. To appropriately adjust the number of containers (requested by an AM)



Achieving Dynamic Resource Allocation in the Hadoop Cloud System 273

passed into the job scheduler, we need to know the priority of the job that AM
represents. The AM itself does not keep the priority of its corresponding job.
Every job in the system has a unique job ID to designate its identity. For any
job, both its corresponding RMApp object and its AM object record its job ID.
We use the job ID of an AM object to locate the corresponding RMApp object
in RM. Once the corresponding RMApp is found, we can learn the priority of
the job recorded in that RMApp.

As explained, the process of scheduling a job to use resources includes two
stages under the current YARN architecture. For CS, this two-stage process
could potentially cause a problem if we just directly reserve containers from
regular jobs when prioritized jobs exist in the same queue where those regular
jobs stay in. For FS, the two-stage process will not cause any problems in our
original model. We will use Fig. 2 as an example to illustrate this potential
impact on CS and explain how we revise our model to address it. Figure 2 shows
a simple scenario with three queues, namely queue A, queue B, and queue C.
There are five jobs submitted, in the order of a1 to a5, in queue A and three jobs
submitted in queue B with the submission order of b1 to b3. The queue C has
four jobs with the first submission of c1 and the last submission of c4. The jobs
with shadow (a1, a3, b2) represent prioritized jobs and others mean regular jobs.
The first stage, selecting a job queue, does not have problems. It is the second
stage, picking a job from the selected queue, could cause the risk. In FS, during
the second stage, every job in the same queue will be picked in turn to receive
resources. Take the queue A for example, FS picks a1 to a5 in rotational order in
the second stage. In other words, a1 to a5 execute concurrently. Jobs in queue B
and queue C get picked in the same way. In our original model, whenever a2, a4,
or a5 is chosen, by default our system withholds all its allocated containers. In
CS, in the selected queue, always the one with the earliest submission time will
be picked, which means only one job can be executed at any moment in a queue.
In this example, a2 cannot start its execution until a1 completes. Similarly, b2
will start its execution after b1 totally finishes its work, and c2 will behave in the
same way. With our original model, b1 will obtain either no (by default) or fewer
(if the deduction ratio is set) containers than it should have each time. In the
default case, b1 cannot acquire new containers to finish its work, which means
b2 will not start its execution under such circumstances. Jobs in queue C will
not face the same problem because there is no prioritized jobs in it. Even our
main goal is FS, we need to make sure that our model does not impact CS in an
unexpected way. Fortunately, this problem can be solved with a slight change in
our original design. We revised our model in the following way. For a regular job,
instead of always taking its containers away when there exist prioritized jobs in
its job queue, we now do that only when any one of those prioritized jobs has
already started its execution. Otherwise, our model will not deduct containers
from regular jobs. As a result, in the above scenario, b1 will acquire containers
as usual in that b2 is not running during the execution of b1. Thus, our model
will not alter the container allocation in any way when CS is the scheduler used
in Hadoop environments.



274 T. Yeh and S. Yu

Fig. 2. A potential impact on CS

Fig. 3. Contents of a queue in FS, CS, and future job schedulers

3.4 Portability for Future Job Schedulers

Portability is a very important issue in real-world environments. Ideally, we hope
our model can be directly applied to future job schedulers developed under the
current YARN architecture. The current two-stage job scheduling in the YARN
architecture is actually a very flexible design. The system administrator can
set a configuration of multiple queues with different shares of system resources
to meet various requirements. The future job schedulers may schedule jobs to
accept containers in a way different from FS and CS. Nevertheless, for a given
queue, any job in that queue must either have started or have not yet started its
execution. For those have started their execution, they are known as active jobs
in YARN. Those have not started are referred to as pending jobs. Suppose there
are totally n jobs in a given queue with x active jobs and y pending jobs. We
will have n = x + y at any time even values of n, x, and y for each queue may
be different. Figure 3 demonstrates the situation for what a given queue would
like in FS, CS, and future job schedulers. The leftmost represents a queue in FS
and the rightmost depicts a queue in CS. The middle one illustrates the contents
of a queue in future job schedulers. For the case of FS, it will launch all jobs



Achieving Dynamic Resource Allocation in the Hadoop Cloud System 275

in any given queue as soon as possible. This means, under the vast majority of
time, its x is equal to n and its y is equal to zero in every queue. For the case of
CS, its x is equal to one and its y is equal to n− 1 in all queues. For future job
schedulers, its x should be within the range of one and n. In our model, for an
active regular job, we will deduct containers from it if there are active prioritized
jobs in its job queue. If we further examine FS and CS, we can realize that both
set their numbers of active jobs at two extremes. FS sets the value of x to n and
CS keeps the value of x to one. For a given queue in future job schedulers, as
long as it has more than one active job, its active prioritized jobs could employ
extra containers deducted from its active regular jobs. Consequently, our model
can help future job schedulers fasten their active prioritized jobs.

4 Performance Evaluation

We built a Hadoop cluster to evaluate the performance of our design and imple-
mentation. The Hadoop version installed was 3.1.0. The Hadoop cluster had one
NameNode and three DataNodes connected in a LAN environment through a
1Gbps switch. All four computers were equipped with identical hardware and
software including an Intel i5-4590 3.3 GHz CPU, 8 GB of DDR3 memory, and a
1TB Seagate 7200rpm disk. The host operation system was Ubuntu 16.04 LTS.
We conducted experiments of the same jobs under various conditions in the
Hadoop environment with original YARN and our YARN supporting prioritized
execution. The job scheduler used is FS as it is our main target to realize prior-
itized execution. For brevity, we will refer to the original Hadoop environment
with original YARN as “regular YARN” while our environment as “prioritized
YARN” respectively.

4.1 Experimental Design

We conducted four groups of experiments to evaluate the performance of job
execution with and without high priority under different cases. The system is
configured with three job queues equally sharing the system resources. Practi-
cally, it is very common to equally allocate resources to job queues. The default
behavior of FS can reallocate resources of a queue with no job in it to other
job queues hosting jobs. The first group of experiments focuses on the situation
where the deduction ratio is 100%, which means our system will temporarily
prevent regular jobs from using new resources. This is the case where users want
to accomplish prioritized jobs as fast as possible. The second group explores
the situation with the deduction ratio 50%. This represents the circumstances
where users would like to hasten the execution of prioritized jobs with a mod-
erate effect on regular jobs. The third and the four groups resemble the first
two groups respectively. The difference is that there are more jobs competing for
resources in the latter two groups than in the former two groups. We want to
investigate if our system could help prioritized jobs further when more jobs com-
pete for system resources. All test cases were repeated for three times to get their



276 T. Yeh and S. Yu

average values in our experiments. To avoid the caching effect, the Linux cache
was cleared out between test cases. Each test case included sixteen jobs execut-
ing concurrently. Eight of them were MapReduce programs, which means they
require system resources allocated by YARN during their execution. The rest of
eight jobs were non-MapReduce programs including four doing file reading and
four doing file writing. Even their execution directly communicated with HDFS
and did not involve services from YARN, they still consumed and contended for
system resources. Each of the sixteen jobs processed a different file with the size
of 10 GB. The reason to mingle MapReduce jobs with non-MapReduce jobs is
to correspond with regular Hadoop environments hosting both types of jobs at
the same time. The MapReduce jobs contained WordCount, Grep, WordMean,
WordMedian, TeraSort, and RandomWriter. Both WordCount and Grep had
two instances. The rest of four had one instance each. Totally, there were eight
MapReduce jobs in experiments. The WordCount is a widely known program
calculating the counts of individual words in files. The Grep, as its name sug-
gests, searches for a given string in files. The WordMean computes the average
length of words in files and the WordMedian finds the median length of words
in files. The TeraSort simply does sorting on files and the RandomWriter inserts
random data into the HDFS.

4.2 One Prioritized Job: Equal Resource Allocation and 100%
Deduction Ratio

Figure 4 shows the assignment of the eight MapReduce jobs into three queues
in the first group of experiments. The queue one hosted three jobs including
the first instance of WordCount (denoted as WordCount-1), RandomWrite, and
WordMedian. Both instances of Grep (denoted as Grep-1 and Grep-2) were
in the second queue, and the third queue had the rest of three MapReduce
jobs. For original YARN, all eight MapReduce jobs were executed as usual.
For prioritized YARN, WordCount-1 was executed with high priority and other
jobs were run as regular jobs. Table 1 lists the results for this group. The rows
marked with “job” show the names of the sixteen jobs in a set of four. The rows
begin with “orig. YARN” list the time (in seconds) required to complete the
corresponding jobs under original YARN as described above. The “prio. YARN”
rows report the corresponding time (in seconds) under our prioritized YARN.
The improvement percentages manifest the improvement of prioritized YARN
over original YARN. The WordCount-1 took 2720.72 s to finish its execution
in original YARN while the time was decreased to 863.00 s in our prioritized
YARN, generating an improvement of 68.28% ((2720.72−863.00)/2720.72). This
clearly demonstrates that the job executed with high priority could speed up
its execution in prioritized YARN when the deduction ratio was set at 100%.
It is expectable that other regular MapReduce jobs could be affected due to
the deduction of containers from their resource allocation during the execution
of WordCount-1. As a reminder, once WordCount-1 completed its execution,
the container allocation to regular jobs immediately backed to their normal
way. Interestingly, some regular jobs, such as Grep-1 and WordCount-2, also



Achieving Dynamic Resource Allocation in the Hadoop Cloud System 277

performed better in prioritized YARN. We do not know the cause for certain.
We infer that as the WordCount-1 completed less than one-third of its original
time ((863.00/2720.72) = 31.72%), the resource contention among regular jobs
could promptly be less competitive, which may reduce the execution time of
some jobs. Altogether, some regular jobs in prioritized YARN performed better
than their counterparts in original YARN and some did worse.

Fig. 4. The assignment of MapReduce jobs in three queues

4.3 One Prioritized Job: Equal Resource Allocation and 50%
Deduction Ratio

The second group of experiments was conducted to examine the performance
improvement of a prioritized job when the deduction ratio is set at 50%. We
carried out experiments the same way as we did in the first group except for
the setting of the deduction ratio. Table 2 details the results. The WordCount-1
took 1621.88 s to complete its execution in prioritized YARN. Its performance
improvement was 40.39%, which is smaller than its improvement, 68.28%, in the
first group. This is reasonable as regular jobs only gave up at most 50%, instead
of 100% of their allocated containers during the execution of WordCount-1.

4.4 Two Prioritized Jobs: Equal Resource Allocation and 100%
Deduction Ratio

In the third group, we explored the situation where resource contention is more
competitive than the case in the first group. The MapReduce jobs in Fig. 4 was
rearranged as shown in Fig. 5. Both WordCount-1 and Grep-1 were executed
with high priority. The other four jobs in queue one as well as jobs in queue
two and three were run as regular jobs. The deduction ratio was set at 100%.
As more jobs stayed in the queue one, it became more competitive to gain
resources. We were interested in finding how our model functions under such
circumstances. Table 3 details the outcome of the third group. Both prioritized



278 T. Yeh and S. Yu

Table 1. One prioritized job: three queues with equal resource allocation and 100%
deduction ratio

job WordCount-1 Grep-1 WordMean WordMedian

orig. YARN 2720.72 1599.30 1709.36 1828.11

prio. YARN 863.00 1457.96 1784.65 2298.25

improvement 68.28% 8.84% −4.40% −25.72%

job WordCount-2 Grep-2 TeraSort RandomWriter

orig. YARN 1836.57 1604.85 3141.83 1283.41

prio. YARN 1705.29 1411.39 3001.39 1562.25

improvement 7.15% 12.05% 4.47% −21.73%

job Write-1 Write-2 Write-3 Write-4

orig. YARN 5891.88 6566.33 5802.02 6745.02

prio. YARN 6000.90 6889.53 6098.10 6370.46

improvement −1.85% −4.92% −5.10% 5.55%

job Read-1 Read-2 Read-3 Read-4

orig. YARN 5696.83 4612.95 5842.80 5433.72

prio. YARN 5001.27 5070.87 5156.18 5693.25

improvement 12.21% −9.93% 11.75% −4.78%

jobs executed faster in prioritized YARN. The WordCount-1 and Grep-1 gained
an improvement of 56.66% and 53.10% respectively. For the WordCount-1, its
improvement was smaller than its counterpart, 68.28%, in the first group. In fact,
it ran faster than what we expected under the condition that the execution time
of Grep-1 was reduced by 53.10%. In all, compared with the case of group one, it
is good that both prioritized jobs could noticeably shorten their execution time
with the cost of moderately less performance improvement of one prioritized
job. The rest of four jobs in queue one spent more time to complete their jobs in
prioritized YARN since they stopped receiving containers during the execution
of WordCount-1 and Grep-1.

4.5 Two Prioritized Jobs: Equal Resource Allocation and 50%
Deduction Ratio

The experiments in the fourth group were conducted in the way as those in
the third group except that the deduction ratio was set at 50% instead of 100%.
Table 4 presents the numbers. The performance improvements in this group were
lower than those in the third group as the deduction ratio was set at 50%. The
WordCount-1 had an improvement rate of 29.00% and the Grep-1 did 23.31%
better in prioritized YARN. Both numbers were smaller than their counterparts
in the third group. If we examine the values of the deduction ratio and the
performance improvement in both groups, there roughly exists a positive corre-
lation in between. The 50% deduction ratio in the fourth group is one-half of



Achieving Dynamic Resource Allocation in the Hadoop Cloud System 279

the 100% in the third group. Interestingly, the 29.00% for WordCount-1 in the
fourth group is close to one-half of the 56.66% for WordCount-1 in the third
group (29/56.66 = 51.18%). The Grep-1 also has a similar situation. For the rest
of four MapReduce jobs, they performed better in the fourth group than in the
third group for the reason that they only yielded at most 50% of their allocated
containers during the execution of WordCount-1 and Grep-1.

Table 2. One prioritized job: three queues with equal resource allocation and 50%
deduction ratio

job WordCount-1 Grep-1 WordMean WordMedian

orig. YARN 2720.72 1599.30 1709.36 1828.11

prio. YARN 1621.88 1731.58 1837.57 2111.23

improvement 40.39% −8.27% −7.50% −15.49%

job WordCount-2 Grep-2 TeraSort RandomWriter

orig. YARN 1836.57 1604.85 3141.83 1283.41

prio. YARN 2035.90 1715.06 3124.89 1526.53

improvement −10.85% −6.87% 0.54% −18.94%

job Write-1 Write-2 Write-3 Write-4

orig. YARN 5891.88 6566.33 5802.02 6745.02

prio. YARN 6497.31 6075.01 6109.72 6473.58

improvement −10.28% 7.48% −5.30% 4.02%

job Read-1 Read-2 Read-3 Read-4

orig. YARN 5696.83 4612.95 5842.80 5433.72

prio. YARN 5452.39 4149.91 6012.66 5293.93

improvement 4.29% 10.04% −2.91% 2.57%

Fig. 5. The assignment of MapReduce jobs in three queues - a more competitive
situation



280 T. Yeh and S. Yu

Table 3. Two prioritized jobs: three queues with equal resource allocation and 100%
deduction ratio

job WordCount-1 Grep-1 WordMean WordMedian

orig. YARN 2340.84 1606.38 1720.52 1808.71

prio. YARN 1014.45 753.32 2156.10 2420.65

improvement 56.66% 53.10% −25.32% −33.83%

job WordCount-2 Grep-2 TeraSort RandomWriter

orig. YARN 2118.76 1602.35 3117.11 1281.94

prio. YARN 2055.56 1603.52 4038.63 1610.09

improvement 2.98% −0.07% −29.56% −25.60%

job Write-1 Write-2 Write-3 Write-4

orig. YARN 7553.57 6903.24 7598.16 7386.96

prio. YARN 7536.11 7374.49 7348.72 7499.80

improvement 0.23% −6.83% 3.28% −1.53%

job Read-1 Read-2 Read-3 Read-4

orig. YARN 5411.63 5884.46 6196.49 5116.98

prio. YARN 4802.30 5421.20 5648.42 6004.88

improvement 11.26% 7.87% 8.84% −17.35%

Table 4. Two prioritized jobs: three queues with equal resource allocation and 50%
deduction ratio

job WordCount-1 Grep-1 WordMean WordMedian

orig. YARN 2340.84 1606.38 1720.52 1808.71

prio. YARN 1662.01 1231.96 1928.46 2083.20

improvement 29.00% 23.31% −12.09% −15.18%

job WordCount-2 Grep-2 TeraSort RandomWriter

orig. YARN 2118.76 1602.35 3117.11 1281.94

prio. YARN 2238.51 1557.71 3706.96 1502.07

improvement −5.65% 2.79% −18.92% −17.17%

job Write-1 Write-2 Write-3 Write-4

orig. YARN 7553.57 6903.24 7598.16 7386.96

prio. YARN 7517.94 7391.63 7354.78 7510.52

improvement 0.47% −7.07% 3.20% −1.67%

job Read-1 Read-2 Read-3 Read-4

orig. YARN 5411.63 5884.46 6196.49 5116.98

prio. YARN 6241.21 5406.35 5613.42 4978.12

improvement −15.33% 8.12% 9.41% 2.71%



Achieving Dynamic Resource Allocation in the Hadoop Cloud System 281

5 Conclusions

As users rely more and more on cloud computing to accomplish their works, it
will be better if they can make decisions on the priority of individual jobs and
cloud system could expedite the execution of jobs with high priority as expected.
Hadoop is one of the most widely used cloud platforms in the community of cloud
computing. Unfortunately, it only supports prioritized execution in a very lim-
ited way. Researchers had proposed various methods to modify job schedulers
to conduct prioritized execution. Nevertheless, any modification to job sched-
ulers will unavoidably lead to the issue of portability, which makes it difficult for
future distribution. We proposed and implemented a new approach to dynam-
ically allocate more containers to prioritized jobs to accelerate their execution.
Our design also allows users to choose the percentage of resources regular jobs
should yield to prioritized jobs. Our approach does not make any changes to job
schedulers. As a result, the distribution of our approach to future job schedulers
developed under the current YARN architecture is very easy. Theoretically, our
design could help nearly all future job schedulers to support prioritized execu-
tion to some degree. The experimental results under various situations validate
our design and implementation. Jobs executed with high priority could lessen
their execution time by up to 68.28%.

6 Future Work

Currently, our implementation provides one level of priority, which means jobs
could only be executed with regular or high priority. The one-level priority could
further be extended to multi-level priority to make our design more flexible. In
the meanwhile, we do not put a limit on the number prioritized jobs allowed
in the system at this time. If all jobs are executed with high priority, they will
have the same priority in reality. We may limit the number or percentage of
prioritized jobs to promise the acceleration of their execution.

References

1. http://en.wikipedia.org/wiki/apache hadoop
2. http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/

federation.html
3. https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-

distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
4. http://www.cloudera.com/content/cloudera-content/cloudera-docs/cdh4/4.2.0/

cdh4-high-availability-guide/cdh4hag topic 2 1.html
5. Agarwal, S., Borthakur, D., Stoica, I.: Snapshots in Hadoop distributed file system.

Technical report, EECS Department, University of California, Berkeley, November
2010 (2011)

6. Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data,
pp. 1383–1394. ACM (2015)

http://en.wikipedia.org/wiki/apache_hadoop
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/federation.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/federation.html
https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
http://www.cloudera.com/content/cloudera-content/cloudera-docs/cdh4/4.2.0/cdh4-high-availability-guide/cdh4hag_topic_2_1.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/cdh4/4.2.0/cdh4-high-availability-guide/cdh4hag_topic_2_1.html


282 T. Yeh and S. Yu

7. Blagojevic, F., Guyot, C., Wang, Q., Tsai, T., Mateescu, R., Bandic, Z.: Priority
IO scheduling in the cloud. In: Proceedings of USENIX Conference on Hot Topics
Cloud Computing, pp. 1–6 (2013)

8. Borthakur, D., et al.: Apache Hadoop goes realtime at Facebook. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, pp. 1071–1080. ACM, New York (2011). https://doi.org/10.1145/
1989323.1989438

9. Bui, D.M., Hussain, S., Huh, E.N., Lee, S.: Adaptive replication management in
hdfs based on supervised learning. IEEE Trans. Knowl. Data Eng. 28(6), 1369–
1382 (2016)

10. Burns, B., Oppenheimer, D.: Design patterns for container-based distributed sys-
tems. In: 8th {USENIX} Workshop on Hot Topics in Cloud Computing, HotCloud
2016 (2016)

11. Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing: Principles and
Paradigms, vol. 87. Wiley, Hoboken (2010)

12. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: ACM SIGOPS
Operating Systems Review, vol. 37, pp. 29–43. ACM (2003)

13. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: ZooKeeper: wait-free coordination
for internet-scale systems. In: Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, vol. 8, pp. 11–11 (2010)

14. Karanasos, K., et al.: Mercury: hybrid centralized and distributed scheduling
in large shared clusters. In: 2015 {USENIX} Annual Technical Conference,
{USENIX}{ATC} 2015, pp. 485–497 (2015)

15. Kc, K., Anyanwu, K.: Scheduling Hadoop jobs to meet deadlines. In: 2010 IEEE
Second International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 388–392. IEEE (2010)

16. Kondikoppa, P., Chiu, C.H., Cui, C., Xue, L., Park, S.J.: Network-aware scheduling
of MapReduce framework on distributed clusters over high speed networks. In:
Proceedings of the 2012 Workshop on Cloud Services, Federation, and the 8th
Open Cirrus Summit, pp. 39–44. ACM (2012)

17. Li, H., Ghodsi, A., Zaharia, M., Shenker, S., Stoica, I.: Tachyon: reliable, mem-
ory speed storage for cluster computing frameworks. In: Proceedings of the ACM
Symposium on Cloud Computing, pp. 1–15. ACM (2014)

18. Oriani, A., Garcia, I.C.: From backup to hot standby: high availability for HDFS.
In: 2012 IEEE 31st Symposium on Reliable Distributed Systems (SRDS), pp. 131–
140. IEEE (2012)

19. Qin, P., Dai, B., Huang, B., Xu, G.: Bandwidth-aware scheduling with SDN in
Hadoop: a new trend for big data. IEEE Syst. J. 11, 2337–2344 (2015)

20. Rasooli, A., Down, D.G.: An adaptive scheduling algorithm for dynamic heteroge-
neous Hadoop systems. In: Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research, pp. 30–44. IBM Corporation (2011)

21. Renner, T., Thamsen, L., Kao, O.: CoLoc: distributed data and container colo-
cation for data-intensive applications. In: 2016 IEEE International Conference on
Big Data (Big Data), pp. 3008–3015. IEEE (2016)

22. Rista, C., Griebler, D., Maron, C.A., Fernandes, L.G.: Improving the network
performance of a container-based cloud environment for Hadoop systems. In: 2017
International Conference on High Performance Computing & Simulation (HPCS),
pp. 619–626. IEEE (2017)

https://doi.org/10.1145/1989323.1989438
https://doi.org/10.1145/1989323.1989438


Achieving Dynamic Resource Allocation in the Hadoop Cloud System 283

23. Sandholm, T., Lai, K.: Dynamic proportional share scheduling in Hadoop. In:
Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp.
110–131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16505-
4 7

24. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

25. Tan, J., Meng, X., Zhang, L.: Coupling task progress for MapReduce resource-
aware scheduling. In: 2013 Proceedings IEEE INFOCOM, pp. 1618–1626. IEEE
(2013)

26. Varga, M., Petrescu-Nita, A., Pop, F.: Deadline scheduling algorithm for sustain-
able computing in Hadoop environment. Comput. Secur. 76, 354–366 (2018)

27. Vavilapalli, V.K., et al.: Apache Hadoop yarn: yet another resource negotiator.
In: Proceedings of the 4th Annual Symposium on Cloud Computing, p. 5. ACM
(2013)

28. White, T.: Hadoop: The Definitive Guide, 3rd edn. O’Reilly, Newton (2012)
29. Yeh, T., Huang, H.: Realizing prioritized scheduling service in the Hadoop system.

In: 2018 IEEE 6th International Conference on Future Internet of Things and
Cloud (FiCloud), pp. 47–54. IEEE (2018)

30. Yeh, T., Sun, Y.: Enabling prioritized cloud I/O service in Hadoop distributed
file system. In: The 16th IEEE International Conference on High Performance
Computing and Communications, pp. 256–259. IEEE (2014)

https://doi.org/10.1007/978-3-642-16505-4_7
https://doi.org/10.1007/978-3-642-16505-4_7


qCUDA-ARM: Virtualization
for Embedded GPU Architectures

Bo-Yu Huang and Che-Rung Lee(B)

Department of Computer Science,
National Tsing Hua University,

HsinChu, Taiwan
cherung@cs.nthu.edu.tw

Abstract. The emergence of Internet of Things (IOT) is changing the
ways of computing resources acquisition, from centralized cloud data cen-
ters to distributed pervasive edge nodes. To cope the small amount of
diversity problem for IOT devices and applications, two research trends
are investigated for the system design of edge nodes: heterogeneity and
virtualization. In this paper, we consider the integration of those two
important trends and present a virtualization system for embedded GPU
architectures, called qCUDA-ARM. The design of qCUDA-ARM is based
on the framework of qCUDA, a virtualization system for x86 servers.
Because of the architectural differences between x86 servers and ARM
based embedded systems, many subsystems of qCUDA-ARM, such as
memory management, need to be redesigned. We evaluated the perfor-
mance of qCUDA-ARM with three CUDA benchmarks and two real
world applications. For computational intensive jobs, qCUDA-ARM can
reach similar performance of the native system; and for memory bound
programs, qCUDA-ARM can also have up to 90% performance of that
of the native one.

Keywords: GPU · CUDA · Virtualization · Embedded system · ARM

1 Introduction

The deluge of Internet-of-Thing (IoT) [10] has changed the landscape of how
services are provisioned and managed. Traditional cloud computing platforms
that centralize all resources in data centers, although enhance the utilization
and availability, cannot provide a satisfactory response time for real-time appli-
cations and the desired network bandwidth for massive number of interconnected
IOT devices. New computing paradigm, called fog computing or edge comput-
ing [5], was proposed to solve those issues brought by IOT. It decentralizes the
computing resources by widely deploying edge servers, which need not be as pow-
erful as those used in data centers, to support the IOT demands of computation,
networks, and storage.

However, the design of edge server architectures remains an open problem [11,
16,24] owing to the diversity of IOT applications and the deployment methods
c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 284–302, 2020.
https://doi.org/10.1007/978-3-030-38651-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_23


qCUDA-ARM: Virtualization for Embedded GPU Architectures 285

of edge nodes. On the one hand, those edge nodes should be low power and
inexpensive so that they can be widely distributed in various environments. On
the other hand, they should be powerful enough for different types of programs
to extend its usability. Although many IOT applications request only a modest
computing resource, some of them have higher demands for computation power,
network capacity, or storage space. One of the examples is Artificial Intelligent
(AI) IOT, or named AIOT, applications whose model sizes are usually large and
the computation complexity is high, even just for inference. Moreover, many AI
applications are time sensitive, such as self-driving car or disaster forecasting
systems. For them, a high performance edge server is required.

To take on the challenge, two major trends of system design are currently
investigated: heterogeneity and virtualization. A heterogeneous system contains
more than one types of processors so that different applications can find the
proper resources to use. One example is ARM’s big.LITTLE architecture [21],
which combines slow but battery-saving LITTLE cores with fast but more
energy-intensive big cores. Another example is the embedded GPU (Graphics
Processing Unit) architecture, such as Nvidia’s Jetson [4] or MediaTek’s Helio
[2], which couples CPU for sequential control with GPU for parallel computation.
The second trend is virtualization, which adds another dimension of flexibility to
ease the architectural design of edge nodes. It can customize a specific hardware
resource and create an isolated environment for each application.

One of the most popular virtualization techniques used in edge nodes is
containerization [6], which supports application level isolation and shares OS
and hardware level resources. Although it has many merits, such as fast and
light-weighted, containerization has many intrinsic problems. First, applications
must be built for the same or similar OS environments which limits its flexibility
of usage. Some legacy programs that designed for specific OS or libraries cannot
be run on containers. Second, the isolation provided by containers is not strong
enough to defense many malicious attack. The security remains a big concern for
container based virtualization. As the result, the server virtualization techniques
are still important for IOT applications. Although it has higher performance
degradation than containerization, many researches have studied how to reduce
its overhead and make it more efficient [13,17].

In this paper, we investigate the integration of those two important trends:
heterogeneity and virtualization. We consider the server virtualization techniques
for embedded GPU architectures. Although the GPGPU virtualization tech-
niques has been studied for a decade, none of them are designed for embedded
GPU architecture, to the best of our knowledge. One of the reason is that an
embedded GPU architecture is usually built upon system on chip (SoC), which
integrates CPU, GPU and numerous sensors on one single board. With the
power constrains and limit computation capability, its virtualization is difficult
implement.

The system we designed is called qCUDA-ARM, because it is based on the
qCUDA GPGPU virtualization framework and designed for ARM based embed-
ded GPU architecture. The basic virtualization method used in qCUDA is the



286 B.-Y. Huang and C.-R. Lee

API remoting method, which submits Nvidia CUDA APIs from a VM to the host
machine, executes the API on the host GPU, and retrieves the results from GPU
back to VM’s CUDA programs. Because the memory design and used APIs of
embedded GPU architecture are different from those in ordinary servers, a simple
system porting does not work. We redesigned the memory mapping mechanism,
which optimizes the performance of memory access, and implemented the new
front-end and back-end functions for memory related APIs for qCUDA-ARM.

We evaluated the performance of qCUDA-ARM on an Nvidia TX2 develop-
ment board using three different benchmarks and two applications, and com-
pared the results with native CUDA. The results show that for computation
intensive applications, qCUDA-ARM can have a similar performance as the
native one; and for memory bound benchmarks, the performance can also reach
up to 90% of the native CUDA.

The rest of this paper is organized as follows. Section 2 introduces back-
grounds of server virtualization and related works for GPGPU virtualization.
Section 3 presents the design and system architecture of qCUDA-ARM. Section 4
shows experimental results, and the conclusion and future work are given in the
last section.

2 Background

2.1 Virtualization

Virtualization is one of the key technologies to enable the modern cloud com-
puting architectures. It does not only increase the hardware utilization of servers
by consolidation, but also adds a great flexibility for provisioning, load balance,
auto scaling, and fault tolerance with the live migration ability.

The basic software unit in virtualization is a “virtual machine” (VM), which
is an standalone and isolated system with an operating system and applications
inside. Behind multiple VMs, a thin layer of software, called a hypervisor or a
virtual machine monitor (VMM), manages the execution of VMs on a physical
machine, and dynamically allocates computing resources to them. Those VMs
on a hypervisor are called guest machines, and the physical machine is called
the host machine.

For different computing resources, the virtualization of IO devices is more
complex than CPU virtualization and memory virtualization owing to the diver-
sity of devices. In a full-virtualization environment, where guest OS cannot
be modified, an IO device can only be virtualized by emulation and hardware
assisted virtualization. However, they have different drawbacks. The emulation
of each type of devices is inefficient in terms of performance and implementation,
and the hardware assisted virtualization is usually expensive and only available
for high-end devices.

Alternatively, the para-virtualization techniques, which need to modify the
guest OS or targeted applications, are more often used for IO virtualization.
A common para-virtualization framework for IO devices is virtio [19], which
provides a standardized interface for VMs to access simplified virtual devices.



qCUDA-ARM: Virtualization for Embedded GPU Architectures 287

An IO device virtualized by virtio consists of two parts: the front-end and the
back-end. The front-end subsystem acts as a device driver inside the guest OS,
and the back-end subsystem emulates the operations of devices in the hypervisor.
Their communication is defined by the virtio framework.

2.2 GPGPU Virtualization

Graphics Processing Unit (GPU) is a specialized processor originally designed for
faster computer graphics calculation. The major differences between CPU and
GPU are their architectures and operation methods. A CPU usually consists
of few cores which are optimized for sequential processing. A GPU may con-
tain thousands of smaller cores to execute multiple simple tasks simultaneously.
Because of their superior performance, GPUs are also used to accelerate many
applications other than computer graphics, such as scientific computing, video
coding, and machine learning. Such usage of GPUs is also called General-purpose
computing on graphics processing units (GPGPU).

One of the most successful GPGPU architectures is CUDA (Compute Uni-
fied Device Architecture) [3], which is a parallel computing platform with related
application programming interfaces (APIs). The CUDA platform provides new
syntax of high level languages for software developers to access to the com-
putation elements of GPU. CUDA contains two kinds of APIs: run-time API
and driver API, which manages CUDA kernel functions and CUDA context
respectively.

As more and more GPGPU applications deployed in the cloud platforms,
GPU virtualization gains increasing attentions. Four commonly used Virtualiza-
tion techniques for GPGPU are direct-passthrough, mediated passthrough, API
remoting and full virtualization, which are introduced below.

Direct-Passthrough. Direct-passthrough is a hardware assisted virtualization
technique designed specifically for PCI or PCIe devices. It allows direct access
from the guest OS to the physical PCI or PCIe hardware devices. Each VM
is assigned one or more GPUs as PCI devices. Since the guest OS bypasses the
virtualization layer to access the GPUs, the overhead of passthrough mode is low
so its performance can be maintained as that in the bare-metal mode. Moreover,
since each VM uses its own GPU APIs, no reengineering and modification of
GPU APIs is required. However, GPUs cannot be shared among VMs, or even
the host when it is used.

Mediated Passthrough. Mediated passthrough is also a hardware assisted vir-
tualization, by which a virtual GPU (vGPU) with full GPU features is presented
to each VM. VMs can directly access performance-critical resources, without
intervention from the hypervisor in most cases, while privileged operations from
guest are trap-and-emulated to provide secure isolation among VMs. The vGPU
context is switched per quantum, to share the physical GPU among multiple
VMs without user notice.



288 B.-Y. Huang and C.-R. Lee

gVirt [15] is one of example for mediated passthrough. It allows each VM
to access the two buffers directly (pass-through) without intervention from the
hypervisor. For this purpose, the graphics memory resource is partitioned by the
gVirt Mediator so each VM can have its own frame and command buffers in the
partitioned memory. At the same time, privileged GPU instructions are trapped
and emulated by the gVirt Mediator in the driver domain of Xen. This enables
secure isolation among multiple VMs without significant performance loss.

Full Virtualization. Full-virtualization allows native driver be run on the
guest without modification of libraries and drivers. The major difficulties are
that GPUs have very complex architecture and most GPU vendors do not open
source their drivers. GPUvm [22,23] is one of full-virtualization implementation,
which is for Nvidia GPU on Xen hypervisor. It utilizes an open-source GPU
driver Nouveau, the works of reversed engineering by envytools, and Gdev [14], a
CUDA driver runtime library for Nouveau, to emulate virtual GPU device model
and uses an aggregator for isolating and scheduling among virtual machines.

G-KVM [12] is another full GPGPU virtualization solution based on KVM.
It leverages on the memory mapping between guest address space and hypervisor
address space to improve MMIO related performance.

API Remoting. API remoting is a virtualization method that enables GPU
sharing among multiple VMs through a programming API interface. User-space
applications running on guest operating systems can leverage the GPU through
its programming API (e.g., OpenCL, OpenGL and CUDA) with no changes to
the source code, and without the need for the hypervisor to provide a virtual
GPU abstraction.

Each API call passes through the three layers of the API Remoting frame-
work: front-end, transport and back-end. The front-end, installed in the guest
OS, implements the API stubs that forward the calls using the transport layer.
The back-end running on the host handles the call requests received over the
transport and executes them on the GPU hardware using the actual API
library. The transport layer is designed to minimize the communication over-
head between back-end and front-end, and relies on a zero-copy memory sharing
mechanism. Alternative implementations can exploit network sockets to enable
GPU sharing among different physical server nodes.

In API-remoting, the GPU related libraries and drivers in the guest need to
be modified to intercept the API calls from user programs and to take care the
responses from the host. Recently, many API remoting methods for GPGPU
virtualization have been proposed, such as gVirtuS, LoGV, vCUDA, rCUDA,
mrCUDA and virtio-CL [7–9,18,20].

3 Design and Implementation

This section presents the system architecture of qCUDA-ARM. Since it is based
on the framework of qCUDA, we will first introduce the components of qCUDA.



qCUDA-ARM: Virtualization for Embedded GPU Architectures 289

Fig. 1. qCUDA system architecture

Then their major difference, the memory management system, will be com-
pared and contrasted. Last, other implementation details of qCUDA-ARM are
illustrated.

3.1 QCUDA System Architecture

qCUDA utilizes the API remoting method on QEMU-KVM hypervisor to virtu-
alize the CUDA architecture. The communication between VM and host machine
replies on the virtio framework [19]. The system architecture of qCUDA is shown
in Fig. 1. It consists of three components: qcu-library, qcu-driver and qcu-device.

The functions of each component are illustrated as follows.

– The qcu-library provides the native CUDA interface to guest CUDA program,
and handles the passing parameters. Users can use Nvidia CUDA Compiler
NVCC to compile their programs, and link qcu-library with users’ program.
The job of qcu-library is to transfer a CUDA run-time APIs to driver APIs,
so that they can be run in host. NVCC adds those CUDA functions in the
compiled GPU binary, and wraps them into ARM ELF format.

– The qcu-driver is the communication channel between the VM and the host,
which copy parameters of CUDA runtime APIs from the guest user-space
to the guest kernel-space. A value parameter will be copied directly; but a
pointer parameter requires additional conversion. Since the original pointer
is in the guest virtual address (GVA), its value must be converted to a guest
physical address (GPA).

– The main job of qcu-device is to receive CUDA commands from qcu-driver
and execute related operations in the host. It also needs to store variables for



290 B.-Y. Huang and C.-R. Lee

CUDA events and CUDA streams. When a program uses CUDA event in a
virtual machine, a CUDA event in qCUDA virtio device is created and its
index is sent back to the user program.

Because the memory pages allocated in guest VM have different addresses
in the host machine, direct data transferring from VM to GPU without address
translation is impossible. Different GPGPU virtualization methods utilize var-
ious approaches to solve this problem. For example, in rCUDA, the data are
transferred by the network socket or RPC channel, but it requires extra data
copy between the guest and host [7,8,20], which increases the latency of data
movement.

3.2 Memory Allocation in qCUDA-ARM

The architecture of qCUDA-ARM is basically the same as qCUDA, as shown in
Fig. 1. The major difference is the memory management. More specifically, the
allocation of page-lock memory, or called pinned memory, are entirely different.

Normally, the memory allocated by malloc() is pageable, Which means the
allocated memory region can be paged in/paged out by the OS. To improve the
memory access performance, a programmer can allocate data with pinned mem-
ory using cudaHostAlloc() or cudaHostRegister() provided by CUDA run-
time APIs. The difference between them is that cudaHostAlloc() first allocates
a memory region and then page-lock this region, while cudaHostRegister()
takes an already allocated memory region as input and page-lock it.

The function cudaHostAlloc() function cannot be directly used by qCUDA
since the pinned memory should be seen in the host. Hence, qCUDA implements
the function cudaHostRegister() by modifying malloc(). If a memory region
will be registered as a pinned memory, qCUDA calls cudaHostAlloc() inside
malloc(). After all, cudaHostAlloc() is conceptually equal to malloc() plus
cudaHostRegister().

Figure 2 shows the flow of allocating the pinned memory in qCUDA using
cudaHostAlloc(). It has four steps.

1. When a CDUA program allocates pinned memory with cudaHostAlloc() in
VM, the qcu-library executes the hooked malloc() to allocate a continuous
memory region in Guest Virtual Address(GVA).

2. Since the hooked malloc() is a wrapper of mmap() system call, it will syn-
chronously trigger the mmap() file operation in qcu-driver and allocate sev-
eral memory chunks. Each of these memory chunk is physically contiguous
in Guest Physical Address (GPA) and they are encapsulated as a group, as
described in Sect. 3.1.

3. The qcu-device creates a device file under/dev directory and maps each mem-
ory chunk onto this file iteratively, so any operation toward this file on the
host is equal to access the memory allocated in the guest. At this moment,
the guest allocated memory can be accessed from the host but still can be
page-out by the OS.

4. Each memory chunk are page-locked on host by calling cudaHostRegister().



qCUDA-ARM: Virtualization for Embedded GPU Architectures 291

Fig. 2. The pinned memory allocation by cudaHostAlloc() in qCUDA

However, cudaHostRegister() is supported only on I/O coherent devices
[1] which do not include ARM architecture because the caching attribute of an
existing allocation cannot be changed on the fly. As the result, qCUDA-ARM
needs to implement cudaHostAlloc() in a different way. The idea is allocating
another pinned memory region and maps this region back to the memory region
allocated by guest CUDA program.

Figure 3 shows the flow of memory allocation for pinned memory in qCUDA-
ARM. It has five steps. Step 1 to step 3 are identical to the flow in qCUDA,
which allocate guest memory regions, but the allocated memory regions are not
pinned. We call these memory region as guest memory region on host (GMR).
The guest pinned memory that can be accessed from the host via the device
node under/dev directory, is called GMR fd.

The step 4 and step 5 are described as follows

4. qcu-device calls the cudaHostAlloc() function to allocate another page-lock
memory region on the host, called host pinned memory (HPM), which has
the same size as GMR.

5. qcu-device calls mmap() system call with MAP SHARED flag to map GMR fd
into HPM.

Since MAP SHARED flag is specified, any updates on GMR fd are visible to
HPM and vise versa. This operation make the data content identical on both
region and can be transparently transferred from guest to host GPU or vise
versa.



292 B.-Y. Huang and C.-R. Lee

Fig. 3. The pinned memory allocation by cudaHostAlloc() in qCUDA-ARM.

Although the memory mapping method of qCUDA-ARM needs additional
memory region, which is inefficient, it can be used to accelerate the perfor-
mance of cudaMemcpy() and cudaMemcpyAsync(). The function cudaMemcpy
and cudaMemcpyAsync() are used to copy data between host memory and GPU
memory. Their difference is that cudaMemcpyAsync() is an asynchronous opera-
tion with respect to the host, so the call may return before the copy is complete.
For convenience, we use only cudaMemcpy() to illustrate the idea.

The memory region allocated by cudaHostAlloc() of qCUDA is a set of
memory chunks. Since these memory chunks are separately distributed in the
host virtual address space, when the guest CUDA program needs to copy this
memory region to/from the GPU memory, qcu-device requires multiple function
calls of cudaMemcpy(), which delegates the bandwidth performance.

In qCUDA-ARM, the HPM region is contiguous and it’s content is identical
to GMR, so we can leverage on this region to reduce the number of memory
copy into one in qcu-device. Figure 4 shows the memory copy process of qCUDA-
ARM. When the guest CUDA program calls cudaMemcpy(), it provides src, the
starting address of memory region to be transferred. This address needs to be
converted from the memory space of GMR (Guest Memory Region on Host) to
HPM (Host Pinned Memory). Let the starting address of GMR and HPM are
GMR ptr and HPM ptr respectively. The offset between src and GMR ptr can be
calculated by src-GMR ptr. So the starting address of the region to be transferred
in HPM, named src’, is

HPM ptr + (src− GMR ptr). (1)



qCUDA-ARM: Virtualization for Embedded GPU Architectures 293

By replace src to src’ in qcu-device, the data can be transferred with only one
cudaMemcpy() invocation.

Fig. 4. CUDA memory copy of qCUDA-ARM

4 Experiments

We have three sets of experiments. The first set of experiments evaluate the
performance of qCUDA-ARM using three benchmark programs: BandwidthT-
est, MatrixMultiply, and VectorAdd. The second set of experiments evaluate the
scalability of qCUDA-ARM, in which more than one VMs are executed simul-
taneously to show the performance changes. The last set of experiments run
two real world applications, Edge Detection and Cryptocurrency Miner, to show
more realistic performance data. Each result is the average from 20 experiments.

All the experiments are compared qCUDA-ARM’s performance with native
GPU system. These experiments are conducted on Nvidia TX2 development
board, which has four ARM-A57 cores, two Denver 64-bit CPUs, 8 GB L128 bit
DDR4 Memory, 2 GB eMMC 5.1 Flash for storage and Nvidia Pascal GPU. The



294 B.-Y. Huang and C.-R. Lee

GPU is of compute capability 6.2 and equipped with two streaming multipro-
cessors (SM), each of which provides 128 1.3-GHz cores that share a 512-KB L2
cache.

The TX2 runs Ubuntu 16.04 LTS with our modified Linux Tegra-Ubuntu
4.4.38 kernel and with CUDA toolkit version 8.0 installed, which includes NVCC
compiler, runtime libraries, device driver and CUDA sample codes. Each virtual
machine has 4 cores, 4 GB of RAM, 16 GB QCOW2 format disk image and
running Ubuntu 14.04.5 LTS with Tegra-Ubuntu 4.2.0-19-generic kernel and with
CUDA toolkit version 8.0 installed.

4.1 Benchmarks

Memory Bandwidth. This experiment measures the bandwidth between host
memory and device memory by Nvidia’s bandwidthTest benchmark to estimate
the data transferring rates from host to device (H2D) and from device to host
(D2H). The data size is from 1 KB to 1 GB, doubled the data size at each step.

We compared the performance of bandwidthTest for two kinds of memory
allocation methods: pinned and pageable. For most memory intensive applica-
tions, pinned memory will be used. We can see their performance differences in
the experiments.

Fig. 5. qCUDA-ARM bandwidth efficiency (pinned memory)



qCUDA-ARM: Virtualization for Embedded GPU Architectures 295

Fig. 6. qCUDA-ARM bandwidth efficiency (pageable memory)

Figure 5 shows the bandwidth efficiency of pinned memory for qCUDA-ARM
comparing to the native CUDA. The X-axis is data size in byte and Y-axis is
the bandwidth efficiency, which is defined as

bandwidth of qCUDA-ARM
bandwidth of native

× 100% (2)

As can be seen, for both H2D and D2H, qCUDA-ARM can achieve up to 90% of
the native CUDA, and the averages are around 80%. The curves show the trend
of performance. The larger data to transfer, the better bandwidth efficiency is.
It is because no matter how large the data size is, the overhead of virtualization,
mainly for address conversion, is almost fixed. So the efficiency can approach
the native. However, there are still fluctuations, which should be caused by the
allocation process to find large enough free space.

The second experiment evaluates the bandwidth efficiency of pageable mem-
ory by using the modified bandwidthTest benchmark. Figure 6 shows the result,
in which the definition of bandwidth efficiency is the same as (2). Although for
D2H or H2D, qCUDA-ARM can achieve more than 80% of the native CUDA
performance in some cases, the average is around 60%, much lower than that of
the pinned memory.

Moreover, as the data size grows, the efficiency decreases. The reason is
that qCUDA-ARM uses the same mechanism as qCUDA for allocating pageable
memory, which is chunk by chunk. So the larger data, the more virtualization
overhead. However, it can be also seen that the curves are much smoother than
those in the first experiments. The reason should be the allocation of small



296 B.-Y. Huang and C.-R. Lee

continuous memory chunks are much easier than allocating a large continuous
memory space.

Matrix Multiplication. Matrix matrix multiplication C = AB + C is a
compute-bound benchmark with time complexity of O(n3) for an n× n matrix
A and B.

Figure 7 shows the total elapsed time of this benchmark on both qCUDA-
ARM and native CUDA. The X-axis is the matrix dimension, which is ranged
from 32 to 4096, and the Y-axis shows two types of data. The first is the execution
time, in milliseconds, on physical machine (PM) and on virtual machine (VM).
The second type is the performance ratio, compared to the native CUDA, whose
definition is

Execution time on VM
Execution time on PM

× 100% (3)

As can be seen, the performance gap of qCUDA-ARM and native CUDA is
shrunken as the dimension n grows. This is because the most time in matrix
matrix multiplication is spent on computation, which does not influenced by the
API remoting method.

Vector Addition. The benchmark vectorAdd computes C = A+B, where A,
B and C are all vectors of dimension n. It is an I/O-bound problem (H2D/D2H),
as can be seen in the program profile later.

Figure 8 shows the total execution time of this benchmark at both qCUDA-
ARM and native machine. The X-axis is vector length, from 106 to 256 × 106,
and Y-axis shows to types of data. The first of execution time (in millisec-
onds) of physical machine (PM) and of virtual machine (VM). The second is
the performance ratio, as defined in (3). As can be seen, for smaller vector size,
the performance of qCUDA-ARM is similar to that to native. However, as the
vector size grows, the performance degradation of qCUDA-ARM increases. For
n = 128M, qCUDA-ARM can achieve only 65% performance of native CUDA.

4.2 Scalability

We evaluated the scalability of qCUDA-ARM on TX2 using multiple qCUDA-
ARM, which can share single GPU to multiple VMs at the same time.

Memory Bandwidth. For memory bandwidth, we run the benchmark on one,
two, three, and four virtual machines simultaneously. For native CUDA, we also
run one to four benchmarks at the same time. The data size if fixed to 256 MB.

Figure 9 show the bandwidth efficiency of pinned memory for qCUDA-ARM
and native CUDA. The X-axis is the number of VM, and the y-axis shows the
averaged bandwidth efficiency, defined in (2), from multiple VMs. The results for
H2D and D2H are similar. Although bandwidth ratio decreases at the number of



qCUDA-ARM: Virtualization for Embedded GPU Architectures 297

Fig. 7. Matrix multiplication performance.

VM increases, the performance degradation is slow. The pageable memory has
similar result, except its degradation is larger.

The performance ratio, as defined in (3), of matrix-matrix multiplication is
almost a constant for one VM, two VMs, three VMs and four VMs, which are
nearly 100%, when the matrix size is larger than 512 × 512.

4.3 Real Applications

In this section we used two real world applications to evaluate the performance of
qCUDA-ARM. One is edge detection, which is usually used in the pre-processing
of object detection, image segmentation, and many other computer vision appli-
cations. Another one is the cryptocurrency miner, which is a popular application
hungry for any computing resources.

Sobel Edge Detection. This benchmark is a GPGPU implementation of Sobel
Operator, which aims to identify the edges of the objects in an image. The Sobel
operator uses a pair of 3 × 3 convolution masks: one estimating the gradient in
the x-direction and the other estimating the gradient in the y–direction.

Figure 10 shows the performance results on both native and qCUDA-ARM.
The X-axis is the resolution, which are 1920 × 1080(6 MB), 4928 × 3624(47
MB) and 12000 × 6000(130 MB), and the Y-axis shows two types of data. The
first one is the Frame Per Second (FPS) on physical machine (PM) and on
virtual machine (VM). The second type of data is the performance degradation,
calculated by

FPS of VM
FPS of PM

× 100%. (4)



298 B.-Y. Huang and C.-R. Lee

Fig. 8. Execution time of vectorAdd of qCUDA-ARM and CUDA native and their
performance ratio.

Fig. 9. Bandwidth efficiency of multiple VMs and native CUDA. (pinned memory)

The results in Fig. 10 tell that the larger images, the less performance degra-
dation. Figure 11 displays the stacked percentage of execution time in each parts
of edge detection for both native CUDA and qCUDA-ARM. It can be clearly



qCUDA-ARM: Virtualization for Embedded GPU Architectures 299

Fig. 10. The Frame per Second of Sobel edge detection on native CUDA and qCUDA-
ARM.

Fig. 11. Profile of the Sobel edge detection execution time for VM and PM.

seen that the Sobel edge detection is an IO bound problem. The bandwidthTest
benchmark shows for larger data, the better performance.



300 B.-Y. Huang and C.-R. Lee

Cryptocurrency Miner. The cryptocurrency miner is an application to search
the special patterns that can be only discovered by brute-force method. The one
we used takes a string of size 20 as the block header and generates Message-
Digest Algorithm (MD5) hash code of this string. It utilizes GPU to calculate
all possible MD5 in parallel to find an hash that is lower or equal to the target
hash. It also takes another variable ACCEPTED ZEROS to indicate the required
number of leading zeros for the calculated hash. The parameter ACCEPTED ZEROS
controls the difficulty of block mining: the larger ACCEPTED ZEROS is, the more
computation is required.

We compared the performance of qCUDA-ARM and native CUDA, and plot-
ted the results in Fig. 12. The X-axis is ACCEPTED ZEROS, ranged from 25 to 35,
and the Y-axis shows the execution time in millisecond and the performance
ratio, as defined in (3). The result shows that for such application, qCUDA-
ARM can still maintain around 80% performance of the native CUDA.

Fig. 12. The execution time of cryptocurrency miner for qCUDA-ARM and native
VM, and their performance ratio.

5 Conclusion

In this paper, we presented a GPGPU virtualization solution for ARM archi-
tecture, called qCUDA-ARM, which is based on the qCUDA framework. We
modified the qCUDA’s memory management so that it can be run on ARM
architecture. Although we used double sized space for pinned memory, the per-
formance can be improved significantly. We evaluated qCUDA’s performance



qCUDA-ARM: Virtualization for Embedded GPU Architectures 301

using three benchmarks and two real world applications. For bandwidth test,
qCUDA-ARM can achieve up to 90% of the native CUDA on TX2 for pinned
memory. For computation bound applications, such as matrix-matrix multipli-
cation, it can also have near native performance.

Since this is the first work to virtualize the GPU on ARM architecture, there
are still many future directions to explore. First, for pinned memory, our solution,
although having good performance, is not memory efficient. Better solutions
should be researched and developed. Second, for IOT applications on edge nodes,
light weight virtualization method should be investigated. For heterogeneous
systems, this remains an open problem. Last, more tests on real IOT applications
and their concurrent execution on single edge node should be conducted to reveal
the properties of edge computing, from which new generation of architecture can
be built.

References

1. CUDA toolkit document 5.9 memory management. https://docs.nvidia.com/cuda/
cuda-runtime-api

2. Mediatek Helio. https://en.wikichip.org/wiki/mediatek/helio
3. Programming guide: CUDA toolkit documentation. https://docs.nvidia.com/

cuda/cuda-c-programming-guide/index.html/
4. Amert, T., Otterness, N., Yang, M., Anderson, J.H., Smith, F.D.: GPU scheduling

on the NVIDIA TX2: hidden details revealed. In: 2017 IEEE Real-Time Systems
Symposium (RTSS), pp. 104–115. IEEE (2017)

5. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: 2012 First Edition of the MCC Workshop on Mobile Cloud
Computing, pp. 13–16 (2012)

6. Celesti, A., Mulfari, D., Fazio, M., Villari, M., Puliafito, A.: Exploring container
virtualization in IoT clouds. In: 2016 IEEE International Conference on Smart
Computing, pp. 1–6 (2016)

7. Duato, J., Peña, A.J., Silla, F., Mayo, R., Quintana-Ort́ı, E.S.: rCUDA: reducing
the number of GPU-based accelerators in high performance clusters, pp. 224–231
(2010)

8. Giunta, G., Montella, R., Agrillo, G., Coviello, G.: A GPGPU transparent vir-
tualization component for high performance computing clouds. In: D’Ambra, P.,
Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 379–391.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15277-1 37

9. Gottschlag, M., Hillenbrand, M., Kehne, J., Stoess, J., Bellosa, F.: LoGV: low-
overhead GPGPU virtualization. In: 2013 IEEE 10th International Conference on
High Performance Computing and Communications and 2013 IEEE International
Conference on Embedded and Ubiquitous Computing, pp. 1721–1726 (2013)

10. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29, 1645–1660 (2013)

11. Guo, C., et al.: BCube: a high performance, server-centric network architecture for
modular data centers. In: Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication (2009)

https://docs.nvidia.com/cuda/cuda-runtime-api
https://docs.nvidia.com/cuda/cuda-runtime-api
https://en.wikichip.org/wiki/mediatek/helio
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html/
https://doi.org/10.1007/978-3-642-15277-1_37


302 B.-Y. Huang and C.-R. Lee

12. Hsu, H.C., Lee, C.R.: G-KVM: a full GPU virtualization on KVM. In: 2016 IEEE
International Conference on Computer and Information Technology, pp. 545–552
(2016)

13. Jones, R.W.: Optimizing QEMU boot time. http://oirase.annexia.org/tmp/paper.
pdf

14. Kato, S., McThrow, M., Maltzahn, C., Brandt, S.: Gdev: first-class GPU resource
management in the operating system. In: Proceedings of the 2012 USENIX Confer-
ence on Annual Technical Conference, USENIX ATC 2012, p. 37. USENIX Asso-
ciation, Berkeley (2012)

15. Tian, K., Dong, Y., Cowperthwaite, D.: A full GPU virtualization solution with
mediated pass-through. In: USENIX ATC 2014 Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference, pp. 121–132 (2014)

16. Tong, L., Li, Y., Gao, W.: A hierarchical edge cloud architecture for mobile com-
puting. In: The 35th Annual IEEE International Conference on Computer Com-
munications, pp. 1–9 (2016)

17. Morabito, R., Kjällman, J., Komu, M.: Hypervisors vs. lightweight virtualization: a
performance comparison. In: 2015 IEEE International Conference on Cloud Engi-
neering, pp. 386–393, March 2015. https://doi.org/10.1109/IC2E.2015.74

18. Markthub, P., Nomura, A., Matsuoka, S.: mrCUDA: low-overhead middleware for
transparently migrating CUDA execution from remote to local GPUs. In: Presented
at the SC15 Conference (2015)

19. Russell, R.: Virtio: towards a de-facto standard for virtual I/O devices. In: ACM
SIGOPS Operating Systems Review - Research and Developments in the Linux
Kernel, pp. 95–103 (2008)

20. Shi, L., Chen, H., Sun, J., Li, K.: vCUDA: GPU-accelerated high-performance
computing in virtual machines. IEEE Trans. Comput. 61(6), 804–816 (2012)

21. Stevens, A.: Introduction to amba R© 4 aceTM and big. littleTM processing technol-
ogy. ARM White Paper, CoreLink Intelligent System IP by ARM (2011)

22. Suzuki, Y., Kato, S., Yamada, H., Kono, K.: GPUvm: GPU virtualization at the
hypervisor. IEEE Trans. Comput. 65, 2752–2766 (2015)

23. Suzuki, Y., Kato, S., Yamada, H., Kono, K.: GPUvm: why not virtualizing GPUs
at the hypervisor? In: 2014 USENIX Annual Technical Conference, USENIX ATC
2014, pp. 109–120 (2014)

24. Zhu, J., Chan, D.S., Prabhu, M.S., Natarajan, P., Hu, H., Bonomi, F.: Improving
web sites performance using edge servers in fog computing architecture. In: 2013
IEEE Seventh International Symposium on Service-Oriented System Engineering,
pp. 320–323 (2013)

http://oirase.annexia.org/tmp/paper.pdf
http://oirase.annexia.org/tmp/paper.pdf
https://doi.org/10.1109/IC2E.2015.74


A Workflow Interoperability Approach
Based on Blockchain

Yuchen Fang, Xuanzhao Tang, Maolin Pan(B), and Yang Yu

School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
{panml,yuy}@mail.sysu.edu.cn,

{fangych5,tangxzh3}@mail2.sysu.edu.cn

Abstract. Workflow interoperability generally refers to the ability for
workflow enactment services to coordinate work. However, the lack of
trust is often a roadblock, especially when workflow enactment services
interoperate across organizational boundaries. Blockchain technology is
a technology for data sharing across a network of untrusted participants.
In this paper, we propose a blockchain-based workflow interoperability
approach. Workflow enactment services communicate and interoperate
with each other via blockchain instead of trusting a central authority, but
trust is maintained. Furthermore, blockchain documents interoperation
of workflow enactment services, such an audit trail can be used to depict
a complete inter-organizational collaboration. Our approach comprises
the combination of an interoperability interface and a general interop-
erability service. Interoperability service runs on a blockchain environ-
ment, and workflow enactment services can call interoperability service
through their interoperability interface to communicate with each other.
We implement the prototype of our approach and demonstrate its fea-
sibility by applying it to an inter-organizational collaboration case. We
evaluate our approach mainly via conducting a performance evaluation.

Keywords: Workflow interoperability · Workflow enactment service ·
Blockchain · Inter-organizational collaboration

1 Introduction

A process represents a coordinated set of process activities to achieve a common
goal, and a process instance is one individual enactment of a process. Workflow
enactment service (WES), as an essential component of Workflow Management
Systems, provides the runtime environment to create, manage, and execute pro-
cess instances [1]. Many organizations use WES to manage their business pro-
cess. Considering the suitability, organizations usually select WESs from different
workflow vendors. An inter-organizational collaboration always involves multiple
business processes, which requires their WESs to communicate and interoper-
ate to coordinate work. In general, WESs of different vendors are diverse, and
heterogeneous WESs interoperability remains an important topic.

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 303–317, 2020.
https://doi.org/10.1007/978-3-030-38651-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_24


304 Y. Fang et al.

Previous researches about workflow interoperability focus more on interoper-
ability method and communication message exchange format. WESs can request,
respond, or notify through a formatted message to complete different interop-
eration. One weakness of prior research is lack of trust. They do not focus on
documenting interoperation of WESs via a trusted approach, nor can they guar-
antee the indisputable records. However, in a collaboration, tamper-proof and
traceable interoperability records facilitate payment under correct interopera-
tion, or penalizing a participant under incorrect interoperation, etc. Another
weakness is that WESs directly interoperate in a peer-to-peer way, but it can
not depict a decentralized inter-organizational collaboration easily. It is not easy
for multiple WESs to establish a centralized control hub, especially when WESs
interoperate across organizational boundaries. Furthermore, The quality of ser-
vice of each WES is uncertain. Blockchain is a technology for decentralized data
sharing across a network of untrusted nodes. Through distributed systems, a
tamper-proof cryptographic ledger, and distributed consensus mechanisms, the
interoperation across WESs can achieve trust. In recent years, Business Process
Management explores the suitability of blockchain to integrate into process inte-
gration and choreography. However, they mainly propose solutions for high-level
modeling while ignoring interoperability details.

This paper proposes a workflow interoperability approach based on
blockchain to solve the weaknesses. WESs interoperate and communicate with
each other indirectly via blockchain, instead of trusting a central control hub.
This interoperability mechanism is more flexible since prior mutual trust is
not required for participants on blockchain to interoperate with each other.
Blockchain helps to monitor and manage interoperations in case something goes
wrong. In this setting, blockchain serves as an immutable shared database, to
store and forward interoperation message with access permission. It creates an
immutable audit trail for the interoperation of WESs. The audit trail can be
used to depict the realization of a decentralized inter-organizational collabo-
ration, since the interoperation of each process instance is tamper-proof and
traceable.

Our contribution is that we propose a blockchain-based workflow interoper-
ability approach. We implement its prototype by which WESs can coordinate
with each other, using the Hyperledger Fabric blockchain. We apply it to two
inter-organizational collaboration to demonstrate its feasibility. We evaluate the
approach mainly in performance analysis.

The remainder of the paper is organized as follows: Sect. 2 discusses the
background, especially the related work, to show the limitations of existing
approaches. In Sect. 3, we introduce the blockchain-based workflow interoper-
ability approach. Afterwards, we evaluate the approach in Sect. 4. Finally, we
conclude the paper with Sect. 5.

2 Background

This section discusses related work, the challenges of workflow interoperability,
and the blockchain technology.



A Workflow Interoperability Approach Based on Blockchain 305

2.1 Related Work

In the early research, Workflow Management Coalition (WfMC) put forward var-
ious standards to allow workflow systems produced by different workflow vendors
to interoperate. [1] described a workflow reference model (WRM), which stan-
dardizes components and interfaces of Workflow Management Systems. Basing
on the WRM, WESs may interoperate with each other via a crucial interoperabil-
ity interface, so-called WfMC’s Interface 4. Then [2] defined the functionality to
support the WfMC’s Interface 4, as described in [1]. After that, [3] was put up to
model the data transfer requirements set forth in [2]. [3] was based on eXtensible
Markup Language (XML) and some specifications [2,4–6]. Workflow information
could be described in XML, enabling Workflow Management Systems of different
enterprises to share workflow information, by parsing XML to facilitate interop-
erability of these systems. Those interoperability specifications standardized the
peer-to-peer communication of different WESs, including exchanging data and
control information via WfMC’s Interfaces 4. They employed an interface-based
architecture to interoperability, which made modeling inconvenient. The Work-
flow Management System might utilize Message-oriented middleware to improve
the convenience of modeling dramatically. However, to solve the transparency
problem of WESs, different organizations need to use the same Message-oriented
middleware for communication, which was unrealistic [7].

Later, with the development of web technology, some more abstract inter-
operability standards such as Wf-XML2.0 [8], BPEL4WS [9] and its successor
WS-BPEL [10] were put forward. In those specifications, a process could be
invoked as a web-service, which made interoperability more flexible. However,
the sequence of information passed during the interoperation of two WESs should
be ordered and complete, while Wf-XML 2.0 lacked a way to maintain a chain of
data. Although BPEL uses the Service-Oriented Architecture for process integra-
tion, it requires different organizations to identify the central control node, which
is often unrealistic. Confronted with cross-organizational border collaboration,
those standards based on web service were still deficiencies.

Nowadays, A high-level modeling language BPMN 2.0 [11] uses choreography
to formalize business process integration and masks the interoperability details of
WESs by using high-level modeling of graphical symbols. However, choreography
lacks the central control hub of an inter-organization process, which often leads
to trust issues [12] that hamper inter-organizational collaboration [13]. Since
Nakamoto et al. [14] proposed a peer-to-peer electronic currency trading system,
Blockchain technology has received extensive attention and discussion in the field
of workflow and BPM [15]. Blockchain technology has been tried to solve the
trust problem in process integration. [16] proposed a method for monitoring and
coordinating business processes based on blockchain technology. This approach
ensures the credibility of collaboration but remains low flexibility. Each time the
collaboration process changes, it needs to be remodeled. [17] made improvements
in terms of throughput, and latency, etc. based on the research [16]. In runtime
verification for choreography, [18] proposed to use the blockchain to monitor and
verify the runtime process instance.



306 Y. Fang et al.

2.2 Challenges of Workflow Interoperability

As shown in Fig. 1, Multiple WESs interoperate constitutes an open distributed
system, which is inherently dynamic, highly autonomous, and open. Such a
system lacks centralized control mechanisms, interactive security, and guar-
anteed service quality. Without modeling and management of interoperability
message sequences, that interoperability messages are tamper-proof can not be
guaranteed. So lack-of-trust problem with interoperability possibly exists, espe-
cially when confronted with inter-organization collaboration. Anyway, in multi-
organizational collaboration, a tamper-proof message sequence is helpful to mon-
itor and manage problems that may arise in collaboration.

Fig. 1. Multiple WESs interoperate in a peer-to-peer way

Meanwhile, most of the existing process integration research mainly discussed
and modelled from the theoretical level, and rarely focus on the interoperability
implementation level. Furthermore, the combination of blockchain and process
collaboration has not been studied from the interoperability implementation
level.

2.3 Blockchain Technology

The blockchain concept stems from Bitcoin [14], an electronic cryptocurrency
system of anonymous peer-to-peer transaction. Blockchain essentially is a contin-
uously growing public distributed ledger that is maintained by multiple parties.



A Workflow Interoperability Approach Based on Blockchain 307

Blockchain technology refers to a solution of diverse technologies, including dis-
tributed consensus mechanisms, cryptographic algorithms, etc. Numerous nodes
on the blockchain network maintain data through a consensus mechanism, and
all these nodes can obtain a data backup. This distributed storage mechanism
provides the integrity and consistency of the data. The blockchain uses a time-
stamped and chained block structure to store data, ensuring the traceability and
verifiability of the data. And cryptography and consensus mechanisms ensure
that the data is tamper-proof and confidential.

Some blockchain platforms such as the Ethereum and the Hyperledger Fabric
provide a Turing-complete scripting language to create smart contracts [19] and
provide a trusted execution environment for smart contracts. A smart contract
running on a blockchain is an event-driven program and automatically processes
assets, data, or value based on preset conditions [20]. Furthermore, Hyperledger
Fabric provides some characteristics, such as membership services, restricted
public access to data, high-performance scalability, encryption of transaction
data. We decided to utilize Hyperledger Fabric because it is more suitable for
our interoperability approach.

3 Blockchain-Based Workflow Interoperability Approach

3.1 Conceptual Solution

As shown in Fig. 2, WES interoperate with each other via the Hyperledger Fab-
ric Blockchain. The characteristics of the Fabric Blockchain help to share data
between multiple organizations in a decentralized mode. The use of the Fab-
ric Blockchain to model and manage interoperability messages will enable the
interoperability records of WESs are traceable and trusted.

Collaboration between organizations requires interoperation between WESs.
Each WES only needs to focus on the other WES that directly interoperates
with itself, and does not need to know the existence of the third-party WES.
WESs only need to expose the necessary business process nodes to each other
to a minimum extent and interoperate through these process nodes. When a
process instance of a WES executes to a specific node, it can trigger an event
and post a notification to the collaborator.

Since the data transmitted via the interoperability interface is closely related
to the execution of the internal process instance of the collaborator, it is neces-
sary to record the data. The record of the data must be tamper-proof, which can
help to track the process when the process collaboration is wrong. We use the
blockchain technology to store data transmitted via interoperability interfaces.
Nodes on a blockchain may not belong to the same organization and do not need
to trust each other. All nodes jointly maintain data on the blockchain, and each
node maintains a complete record copy.

The WES sends messages over a blockchain on a particular process node.
When WESs interoperate, they view and update the process instance interoper-
ability status on the blockchain. Changes of the interoperability status of process
instances on the blockchain can notify the collaborators promptly. Furthermore,



308 Y. Fang et al.

Fig. 2. Multiple WESs interoperate via blockchain

the data transmitted via the interoperability interface will be stored distributedly
through the consensus algorithm of the blockchain technology, which ensures the
integrity and consistency of the data. The tamper-proof nature of the blockchain
guarantees traceability and security of the data.

Process interacts through events, and the communication message between
processes allows WES to execute pre-defined internal logic. WES manages the
interoperation records of each process instance, maintaining credibility Interop-
erability history. This interoperability method requires some concepts to support,
as shown below:

– Interoperability Message (IM): IM is the message exchanged between
WESs when they interoperate with each other. IM should include data that
is required for the interoperation of WESs, such as workflow relevant data,
application data, and workflow control data [1]. The IM can be used to request
another WES to create a process instance or to request a process instance to
perform a specific task and the like.

– Interoperability Event (IE): IE is the pre-announced node of a process.
The internal processes in WES interoperate with external processes through
such process nodes. Usually, a process has more than one IE. IE can influence
the execution of the process. If a WES sends an IM at the IE, it affects the
enactment of process instances of other WESs. If a WES receives the IM at
the IE, it will affect the enactment of the process instance of its own WES.



A Workflow Interoperability Approach Based on Blockchain 309

– Process Instance Interoperability Status (PIIS): PIIS represents the
status of a process instance after it completes the interaction with other
process instances. A PIIS of a process instance can explain interoperation
involves which pair of process instances, and the communication utilizes which
couple of IEs to exchange IM.

– Process Instance Interoperability Status Sequence: This sequence is
capable to express the transition of PIIS of a process instance’s in its lifecycle.

Here we explain those concepts by Fig. 3. This Figure depicts a supply chain
process adapted from [16], with five organizations participating in a collabora-
tive process. We assume that each organization in the supply chain has a WES
to manage its internal processes. The internal processes of each organization
are similar to a black box for other organizations. To facilitate communication
between WESs, the organization exposes some process events to the direct col-
laboration parties for interaction before collaboration.

Fig. 3. Supply chain scenario adapted from [16]

Here we focus on how the Supplier’s WES interoperates with other WESs and
hides some of the details of the collaboration that are invisible to the Supplier,
as shown in Fig. 4. In general, a process instance of Supplier will interact with
Middleman’s process instance and Special Carrier’s process instance four times
during its life cycle. In the first interaction, the Middleman throws a message
through its “forward order” event in its process. Then the Supplier captures the
message through its “receive order” event, and executes its internal logic. Such
events are IE, and such messages are IM.



310 Y. Fang et al.

Fig. 4. Supplier’s WES interoperate with Middleman’s and Special Carrier’s

After the Supplier’s WES interoperates with other WES through the
blockchain, it stores its PIIS in the blockchain. Similarly, other WES can main-
tain their PIIS sequence. Suppose that in Fig. 4, the Supplier, Middleman, and
Special Carrier each runs a process instance, we can get the PIIS sequence dia-
gram shown in Fig. 5. A collection of a certain number of PIIS sequences can
express a complete multi-party collaboration process.

Fig. 5. Section of the supply chain (among Supplier, Middleman and Special Carrier)

3.2 Interoperability Approach Framwork

As shown in Fig. 6, our interoperability method uses the “use of a shared data
store” interoperability strategy [6]. This strategy is a form of store-and-forward
mechanism that enables WESs to transfer work items through a shared database.
In our approach, the blockchain plays such a shared database role, and the
WES can communicate and interoperate indirectly through the blockchain. We
focus on the management of PIIS. The WES can publish IM or PIIS to the
blockchain and add access rights for other WESs to listen. All WESs do not
need to interoperate with each other peer-to-peer, while only need to join the
blockchain, driven by changes of IM or PIIS on the blockchain.



A Workflow Interoperability Approach Based on Blockchain 311

Our approach is primarily supported by the following two components:

– Interoperability Service runs on a blockchain network. Smart contracts are
the core of interoperable services. They are an essential component of most
types of blockchains and can be automatically executed according to preset
conditions. Interoperability services enable direct manipulation of data on
the ledger by using smart contracts. At the same time, the interoperability
service can also interact with the external world of the blockchain. In this
paper, the interoperability service interacts with the WES.

– Interoperability Interface connects the WES to the blockchain network.
It can call the API to request the interoperability service to update the IM
and PIIS on the blockchain, and can also receive timely information from the
interoperability service to know the status of the change of the ledger.

3.3 Interoperability Interface

Before WESs interoperate, they need to communicate with each other in advance
to agree on necessary IEs and attributes of IM. The specific process of interop-
eration is that the WES invokes the interoperability service through the inter-
operability interface, and then the interoperability service operates the data on
the blockchain. The change in the status of blockchain can also notify the WESs
via Interoperability Service. To support the blockchain-based interoperability
method, we need to improve the interoperability interface to a certain extent, so
that it can call the interoperability service to exchange messages.

The interoperability interface is supposed to provide six kinds of functions
for WESs, namely, send IM, send PIIS, receive IM, receive PIIS, query IM, and
query PIIS:

– Send IM: The WES throws an IM at the IE, and WES stores the IM on the
blockchain via the Interoperability Service. By using data access permission,
the IM can be set to be read by the specified WES. Then the IM can be used
to require another process to create process instances or perform its specific
activities.

– Receive IM: The WES uses the Interoperability Service to monitor the
status changing of blockchain, and WES receives the specific IM on the
blockchain via the Interoperability Service. The IM can be used by the recipi-
ent to create a process instance or perform a particular activity in the process
instance.

– Send PIIS: The WES stores PIIS on the blockchain through the Interoper-
ability Service. The PIIS can be set to be read by some specified WESs.

– Receive PIIS: The WES uses the Interoperability Service to monitor the sta-
tus changing of blockchain, and to read PIIS on the blockchain. The receiver
can use such a PIIS to know the completion of interoperation with the other
processes.

– Query IM: The WES queries the IM record through the Interoperability
Service. It can be used to trace and verify in inter-organizational collabora-
tion.



312 Y. Fang et al.

– Query PIIS: The WES queries the PIIS record via the Interoperability Ser-
vice. It can be used to trace and verify in inter-organizational collaboration.

Fig. 6. Overview of our approach

3.4 Interoperability Service

Each WES can join the blockchain and become a blockchain node. The WES can-
not directly interact with the blockchain. The interoperability service is equiv-
alent to a connector in the middle of the WES and the blockchain. We need to
use smart contracts to set the corresponding business logic for different func-
tions of the interoperability interface so that interoperability services operate
on PIIS and IM on the blockchain. As shown in Fig. 7, there are five kinds of
functionalities provided by Interoperability Service:



A Workflow Interoperability Approach Based on Blockchain 313

– Publish Data: The WES stores data on the blockchain. It will change the
status of blockchain.

– Access Control: When WES publishes IM, it can set the data to be read
or subscribed by the specified collaborator.

– Subscribe: WES subscribes to events on the blockchain. When the status of
blockchain changes, the WES can receive its target data.

– Unsubscribe: WES no more need to pay attention to the events occurring
on the blockchain, no more care about the changing status of the ledger, and
stop receiving its target data.

– GetHistory: WES can read historical self-related interoperability records,
which consists of IM Sequence and PIIS Sequence.

Fig. 7. WESs call Interoperability Service via Interoperability Interface

4 Evaluation

4.1 Experimental Setup

To evaluate the feasibility of the interoperability approach presented in this
paper, we implemented an interoperability service prototype. The prototype was
implemented by using Hyperledger Composer and Hyperledger Fabric. Figure 8
described the implementation framwork of Interoperability Service. We mainly
utilized the Hyperledger Composer tool to build a business network model, using
the concepts of Interoperability Services. Then the business network model was



314 Y. Fang et al.

Fig. 8. Implementation Framwork of Interoperability Service

deployed on the Hyperledger Fabric. WESs can interoperate with each other via
Hyperledger Fabric.

Then we took the supply chain as the use case process, and we used the Zeebe
workflow engine to manage the process. An overview of latency measurements is
shown in Fig. 9. In Hyperledger Fabric Blockchain setting, we achieved a median
latency of 53 s. Without blockchain, the median latency reached 17 s. Workflow
Management is highly tolerant of real-time performance in seconds level. The
experimental results show that utilizing the blockchain to interoperate shares
one order of magnitude with not-utilizing blockchain to interoperate. So it’s
acceptable to apply blockchain into workflow interoperability.

4.2 Discussion

Trust. Blockchain technology is used for data sharing across a network of
untrusted participants. The traceable and trustworthy PIIS record is helpful
to inter-organizational collaboration, especially when something goes wrong in
the collaboration, and every organization may come into conflict and hard to
reach a consensus with each other.

Flexibility. In fact, the business environment may change dynamically. It’s
necessary to model a collaborative process in more flexible way. Our solution



A Workflow Interoperability Approach Based on Blockchain 315

Fig. 9. Latency in seconds, with/without blockchain (box plot)

is flexible enough to meet this requirement. It focuses on interoperation via
blockchain. When an enterprise joins or quits a collaboration, all the partici-
pants in the collaboration does not need to negotiate specifications and termi-
nology again. Without modeling a whole cross-organizational process again, it
only causes partial adjustment of the process collaboration, which cost less.

Privacy. An internal process of an organization is a black box for another organi-
zation. They mask most parts of their internal processes, and only expose some
IEs to facilitate collaboration across organizational boundaries. At the same
time, IM and PIIS are supposed to be read under authorization. With data access
permission management, the privacy of the information on the blockchain can be
guaranteed. Furthermore, each company does not have the right to monitoring
a collaboration, nor can they control the entire cross-organizational process by
themselves.

5 Conclusion

By using this method, WESs can interoperate in a trusted manner. Our app-
roach ensures IM sequence and PIIS sequence not only permanently stored in
the shared database, but also traceable and tamper-proof. So the lack-of-trust
problems of interoperability can be solved. A WES can manage multiple process
instances. Each process instance has a PIIS sequence, and a WES can main-
tain multiple PIIS sequences. In our approach, the blockchain is a tamper-proof
data storage that distributes PIIS and IM among WESs. Meanwhile, blockchain
also maintains PIIS sequences and IM sequences, generated by all WESs. Each
WES can read several PIISs through access permissions. A certain number of



316 Y. Fang et al.

PIIS sequences on a blockchain can show all transitions of the interoperability
status of process instances. So the blockchain-based approach could model an
inter-organizational collaboration more flexibly.

Acknowledgements. This work is Supported by the National Key Research and
Development Program of China under Grant No. 2017YFB0202200; the National Nat-
ural Science Foundation of China under Grant Nos. 61972427,61572539; the Research
Foundation of Science and Technology Plan Project in Guangzhou City under Grant
No. 201704020092.

References

1. Hollingsworth, D., Hampshire, U.: Workflow management coalition: the workflow
reference model. Document Number TC00-1003, vol. 19, p. 16 (1995)

2. WfMC, I.: 4–interoperability–abstract specification, WFMC-TC-1012. Technical
report (1996)

3. WfMC: Workflow standard-interoperability wf-xml binding (wfmc-tc-1023, version
1.1) (2001)

4. Joint Submitters: Workflow management facility, Revised Submission, OMG Doc-
ument Number: bom/98-06-07 (1998)

5. W. W. S. Interoperability, Internet e-mail mime binding, document number wfmc-
tc-1018

6. Swenson, K.: Simple workflow access protocol. US Patent 6,574,675, 3 June 2003
7. Aldred, L.J.: Fundamentals of process integration, Ph.D. dissertation, Queensland

University of Technology (2011)
8. Swenson, K.D., Pradhan, S., Gilger, M.D., Zukowski, M., Cappelaere, P.: Wf-

xml 2.0 xml based protocol for run-time integration of process engines, Workflow
Management Coalition (2004)

9. Andrews, T., et al.: Business process execution language for web services (2003)
10. Jordan, D., et al.: Web services business process execution language version 2.0,

vol. 11, no. 120, p. 5, OASIS standard (2007)
11. BPMN, O.: Business process model and notation (bpmn) (2009)
12. Fdhila, W., Rinderle-Ma, S., Knuplesch, D., Reichert, M.: Change and compliance

in collaborative processes. In: 2015 IEEE International Conference on Services
Computing, pp. 162–169. IEEE (2015)

13. Panayides, P.M., Lun, Y.V.: The impact of trust on innovativeness and supply
chain performance. Int. J. Prod. Econ. 122(1), 35–46 (2009)

14. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
15. Mendling, J., et al.: Blockchains for business process management-challenges and

opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 4 (2018)
16. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:

Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_19

17. García-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution
of business processes on blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.)
BPM 2017. LNCS, vol. 10445, pp. 130–146. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65000-5_8

https://doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1007/978-3-319-65000-5_8
https://doi.org/10.1007/978-3-319-65000-5_8


A Workflow Interoperability Approach Based on Blockchain 317

18. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business
processes utilizing the bitcoin blockchain. Future Gener. Comput. Syst. (2017)

19. Szabo, N.: The idea of smart contracts, Nick Szabo’s Papers and Concise Tutorials,
vol. 6 (1997)

20. Omohundro, S.: Cryptocurrencies, smart contracts, and artificial intelligence. AI
Matters 1(2), 19–21 (2014)



Air Pollution Forecasting Using
LSTM-Multivariate Regression Model

Satheesh Abimannan(&), Yue-Shan Chang, and Chi-Yeh Lin

Galgotias University, Greater Noida, Uttar Pradesh, India
satheesha23@gmail.com, ysc@gm.ntpu.edu.tw,

s710783104@webmail.ntpu.edu.tw

Abstract. There are two kinds of air pollutants, such as primary and secondary.
Primary pollutants are emitted straight by vehicles such as CO, CO2, SO2, NO,
NH3, NO2, PM10 and PM2.5. Secondary pollutants happen when communi-
cating with each other in the environment. Atmospheric particles or particles,
including carbon, sulfur, nitrogen and metal compounds, may be small com-
ponents or liquid in the environment and consist of hundreds of separate
chemicals. Researchers use different machine learning algorithms and struggle
to get PM10 and PM2.5 more precise. In this paper, we suggest a regression
model for LSTM/Multivariate Variate to predict the more precise PM2.5 value
during summer and cold sessions. Finally, the LSTM/MVR model is compared
to the LSTM and the outcome demonstrates that the suggested technique effi-
ciently predicts a next one-hour PM2.5 mistake relative to the LSTM error.

Keywords: Air pollution forecasting � LSTM � LSTM-MVR � PM2.5

1 Introduction

Particulate matter (PM) is a term used to define the atmospheric combination of strong
particles and fluid droplets. These subtypes are classified by size by scientists. Clas-
sified as PM10 are coarse particles with a diameter less than 10 (lm). PM2.5 is
categorized as fine particles with a diameter of 2.5 lm or less. The particulate matter
measuring unit is microgram per cubic meter. These fine particles are less than 1–28th

of a human hair’s diameter [1].
Taiwan’s air quality has had a severe impact in recent years with fine particulate

matter (PM2.5). Fine particulate matter, as illustrated in many studies, presents a
significant danger to human health as it causes lung-related diseases [2]. Thus, Tai-
wan’s Environmental Protection Administration (EPA) has created a standard with an
average annual PM2.5 concentrations of 15 lg/m3 and an average 24-hour concen-
tration of 35/lg m3 [3, 4].

There are two particular sources of PM2.5 pollutions:

i. Primary source is issued by vehicle, truck and other cars directly. Furthermore,
retrained from materials discovered on the road (typically referred to as fugitive
dust)

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 318–326, 2020.
https://doi.org/10.1007/978-3-030-38651-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_25&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_25&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_25&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_25


ii. Secondary Source is the formation that happens owing to atmospheric chemical
reaction, usually downwind from a certain distance from the initial source of
emission. Precursor emissions like sulfur dioxide (SO2), nitrogen oxides (NOx),
unstable organic compounds (VOCs) and ammonia (NH3) are present in secondary
formation [5].

PM2.5’s chemical structure is Sulfate (24%), Nitrates (13%), Ammonium (13%),
Black Carbon (10%), Organic Carbon (27%), Soil (7%), Others (6%) [5].

The research paper [5] demonstrates that the proportion of PM2.5 produced from
the primary source is between 10% and 70% and that the secondary source is between
11% and 41%. This finding has been recognized from the United States. However,
these main source and secondary source percentage values differed across distinct
areas.

Four variables depend on the creation of PM2.5 from organic compounds:

i. Atmospheric abundance
ii. Chemical activity
iii. The availability of oxidants,
iv. Volatility of the products.

All of these variables lead to response times, but volatility plays a major part as
extremely volatile chemicals like alkanes and alkenes with less than six carbon atoms
are unlikely to form PM2.5.

Measured levels of nitrogen dioxide (NO2) and carbon monoxide (CO) from
Zhangjiakou City play the most significant role in predicting levels of PM2.5. The most
immediately relevant influencing variables for the forecast of suspended particulates in
local pollutant components are PM2.5 and PM10 levels of the past day [6].

In various seasons, the chemical composition of PM2.5 in a region diverse. For
instance, inorganic ions, heavy metals, and organic compounds in PM2.5 have usually
been smaller in summer, and sulfates, Al, As, Cr, Cu, and Zn are richer in summer than
winter [7–11] XRF assessment revealed levels of 25 components because components
such as Sc, Co, Ga, Se, Y, Nb, Mo, Pd, Ag, Cd, In, Sb, Cs, La, Ce, Sm, Eu, Tb, Hf, Ta,
Wo, Ir, Au, Hg, Tl, and U were rarely identified at levels greater than three times their
corresponding minimum detectable limits [8].

Figure 1 Correlation matrix shows that the positive correlation is PM10, SO2, O3,
NO2, NOx, CO, season and hour, and the negative correlation of PM2.5 is rain, wind
speed, temperature, month and week. Therefore, as inputs for the suggested scheme, we
use in this paper is PM10, SO2, O3, NO2, NOx, and CO.

The remainder of the sections will be organized as follows. Section 2 provides the
background and work associated with it. The suggested LSTM-MVR technique is
described in Sect. 3 and Sect. 4 provides the conclusions of the work.

Air Pollution Forecasting Using LSTM-Multivariate Regression Model 319



2 Methodology

2.1 Data Source

This research work gathers information from an open database maintained by the
Taiwan Government; this data is collected from over 70 air quality-monitoring sites in
various Taiwanese regions via the EPA, and publishes sensitive air data every hour
through an open web database. Also, the Central Weather Bureau (CWB) has built an
automatic weather station in terms of weather data and the information is available
every hour. In this work, we combine the three sub-trainings, namely local data, near
station data, Chimney and abroad data using 17 dimensions of data and 67 stations. The
17 dimensions of each location are used as training data between 2013 and 2016 and as
test data in 2018. The following sub-sections discuss the three categories of the dataset
which we used in this research work.

2.2 Data Sample

The local data are collected from EPA and CWB. Table 1 shows the data fields used in
the data set of the local station. The data is 17 dimensions of which 13 dimensions such
as PM2.5, PM10, SO2, O3, NO, NO2, NOx, CO, Rainfall, Data time, Month, Weekday,
and Hour are from EPA station data, three dimensions are from time data, and the
remaining is from CWB station data such as Temperature, Humidity, Wind Speed and
Wind Direct.

The concentration value of PM2.5 over the year is shown in Fig. 2. It indicates the
PM2.5 concentration information from the twelve months of Hualien. Hualien is
Taiwan’s eastern part, while the amount of sectors is very small compared to other
locations. Figure 2 therefore indicates that the highest PM2.5 value is 30 lg/m3. On
November, December, January and February, the levels of PM2.5 are very high.

Fig. 1. Correlation matrix of PM2.5

320 S. Abimannan et al.



2.3 LSTM-MVR Model

Long Short-Term Memory (LSTM) can almost seamlessly model problems with dif-
ferent input factors. LSTM has an enormous benefit in time series forecasting, where
traditional linear methods are difficult to adapt to multivariate or multiple input fore-
casting problems. In this paper, we adopted LSTM model for multivariate time series
forecasting in the Keras deep learning library to forecast the PM2.5 value.

Table 1. Local dataset

Variables Unit

Real-time concentration
PM2.5, PM10 lg=m3

SO2, O3, NO, NO2, NOx ppb
CO ppm
Sea level pressure atmosphere Pa
Temperature �C
Humidity %
Hour mean concentration
Wind speed m/sec
Wind direct degrees
Hour accumulated concentration
Rainfall mm
Date time
Month 1 to 12
Weekday 0 to 6
Hour 0 to 23

0

5

10

15

20

25

30

35

µg
\m

3

Time

PM2.5- Hualien  

Fig. 2. Eastern part of Taiwan

Air Pollution Forecasting Using LSTM-Multivariate Regression Model 321



2.3.1 Multivariate Regression Model
Multiple linear regression is the most common form of linear regression analysis. As a
predictive analysis, the multiple linear regression is used to explain the relationship
between one continuous dependent variable and two or more independent variables.

Let x be the set of independent variable and r be a set of dependent variables
denoted by:

x ¼ x1; x2; . . . xnf g ð1Þ

r ¼ y1f g ð2Þ

The general regression equation is,

y1 ¼ a0 þ a1x1 þ a2x2 þ . . .þ anxn ð3Þ

Where a1; a2; a3; . . . an are the coefficients.
Table 1 demonstrates the LSTM/MVR model’s R2 value. Eastern Taiwan’s R2

value is 65%. Which is less of the other portion of Taiwan compared to the other
portion of Taiwan, the R2 value of which is above 75%, the analysis part is not
included in this paper.

2.4 Error Measurements

Mean absolute error (MAE), root mean square error (RMSE) are used to evaluate the
performance of the proposed hybrid model. The MAE value reveals the average
deviation between the actual data and forecasting data. The RMSE is sensitive to the
relatively close to the ground and carrying a lot of weight error and reflects refined
average departure from the norm of forecasting data. MAE and RMSE defined as in (4)
and (5),

MAE ¼ 1
N

XN

n¼1
fn � Rnj j ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
fn � Rnð Þ2

r
ð5Þ

Where, N is the number of data, fn is the forecast value of the model and Rn is real
value.

3 Case Study

The input information from 67 surveillance stations in Taiwan since 2013 are gathered
in this research work. It is considered to be a collection of training information in 2013
to 2018. We have categorized the information set into two categories (i) season wise
(Summer and Cold) (ii) region wise. In the existing work, many machine learning
algorithms are using by the scientists to predict the PM2.5 value. One of the finest

322 S. Abimannan et al.



algorithms in existence is LSTM. We are therefore benchmarking the suggested
LSTM-MVR algorithm with LSTM in this research paper.

A. Forecasting Result and Analysis on Cold Season (Jan’18–Feb’18)
The proposed LSTM-MVR algorithm is benchmarking with LSTM on cold season.
The Fig. 3 shows that the LSTM and LSTM-MVR are compare with the real value
on eastern part of Taiwan. The PM2.5 value is minimum on eastern part of Taiwan
(shows in Fig. 3, the number of factories are lower in eastern part compared to
other parts. In this paper, forecasting the PM2.5 value using LSTM and LSTM-
MVR for one hour to next 24 h. The result shows that the PM2.5 increases con-
tinuously every hours ups and downs moderately. The forecasting of the LSTM
algorithm is not closely matched to the actual value, but the predicted value of the
LSTM-MVR algorithms is closer to the actual value. The real value and the LSTM-
MVR value are discovered to be more precise in the 9th and 15th hours.
The LSTM forecast value after 11th hour is somewhat near (Fig. 3).

B. Forecasting Result and Analysis on Summer Season (July 2018–August 2018)
Figure 4 demonstrates the comparison of PM2.5’s real value with LSTM and
LSTM-MVR forecasting. Figure 4 indicates the summer season PM2.5 value for
eastern Taiwan. PM2.5’s minimum and maximum value is 0 lg/m3 and 10 lg/m3.
The minimum value of PM2.5 in the cold season is 10 lg/m3 and the highest value
is 25 lg/m3. In this paper, only the July 2018-month information is considered.
The outcome of the forecast may vary considering the entire summer and cold
season.

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23

µg
\m

3

Time (hr)

Hualien

Actual Value LSTM-MVR LSTM

Fig. 3. PM2.5 actual value compared to LSTM and LSTM-MVR on cold season in Hualien

Air Pollution Forecasting Using LSTM-Multivariate Regression Model 323



C. Error Measures
Figures 5 and 6 shows the summer and cold season MAE of the eastern part of
Taiwan. The measurement of efficiency is likened between one and eight hours.
LSTM’s output is very poor in the first hour compared to LSTM-MVR. LSTM-
MVR delivers well over 50% effectiveness compared to LSTM. The output of
LSTM and LSTM-MVR is more comparable in the 5th to 7th hour. The LSTM-
MVR works better than LSTM in the ongoing period from 1st to 8th hour.

0

5

10

15

1 3 5 7 9 11 13 15 17 19 21 23 25

µg
\m

3

Time (hr)

Hualien

Actual Value LSTM-MVR LSTM

Fig. 4. PM2.5 actual value compared to LSTM and LSTM-MVR on summer season in Hualien

0
2
4
6
8

10

1 2 3 4 5 6 7 8

M
A

E

Time (Hr)

Hualian-Summer-MAE

LSTM

LSTM-MVR

Fig. 5. Hualian MAE summer season

324 S. Abimannan et al.



4 Conclusion

We have suggested the LSTM-MVR model in this research paper to enhance air
pollution forecast, especially PM2.5 and to compare it with LSTM. The suggested
model of LSTM-MVR can efficiently decrease error rate on MAE and RMSE as
compared to LSTM. LSTM-MVR model has dramatically enhanced the forecast of air
pollution, although there is still space for enhancement. However, air pollutant con-
centration continues hard to estimate due to the multiplicity of sources and complexity
of physical and chemical processes that affect the formation and transportation of air
pollutants. In our future work, we need to concentrate on new techniques of antici-
pating PM2.5 and PM10 levels to overcome the experience of difficulty in this study.

Acknowledgment. This work was partially supported by Ministry of Science and Technology
of Taiwan, Republic of China under Grant No. MOST 106-3114-M-305-001-A and MOST 108-
2119-M-305-001-A and by National Taipei University under Grant No. 106-NTPU_A-H&E-
143-001, 107-NTPU_A-H&E-143-001 and 108-NTPU_A-H&E-143-001. And we are grateful to
the Taiwan Environmental Protection Administration and Taiwan Weather Bureau for providing
the monitoring data used in this study.

References

1. https://pm25.lass-net.org/
2. Betha, R., Balasubramanian, R.: Corrigendum to “PM2.5 emissions from hand-held

sparklers: chemical characterization and health risk assessment” Aerosol Air Qual. Res.
14:1477–1486]. Aerosol Air Qual. Res. 18(2), 560–563 (2018)

3. Lee, K.L., Lee, W.J., Mwangi, J.K., Wang, L.C., Gao, X., Chang-Chien, G.P.: Atmospheric
PM2.5 and depositions of polychlorinated dibenzo-p-dioxins and dibenzofurans Kaohsiung
area, Southern Taiwan. Aerosol Air Qual. Res. 16(7), 1775–1791 (2016)

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8

M
A

E

Time (hr)

Hualian-Cold Season-MAE

LSTM

LSTM-MVR

Fig. 6. Hualian MAE cold season

Air Pollution Forecasting Using LSTM-Multivariate Regression Model 325

https://pm25.lass-net.org/


4. Lu, H.-Y., Wu, Y.-L., Mutuku, J.K., Chang, K.-H.: Various sources PM2.5 of and their
impact on the air quality in Tainan City, Taiwan. Aerosol Air Qual. Res. 19(3), 601–619
(2019)

5. Hodan, W.M., Barnard, W.R.: Evaluating the contribution of PM2.5 precursor gases and re-
entrained road emissions to mobile source PM2.5 particulate matter emissions (2004)

6. Mahajan, S., Liu, H.-M., Tsai, T.-C., Chen, L.-J.: Improving the accuracy and efficiency of
PM2.5 forecast service using cluster-based hybrid neural network model. IEEE Access 6,
19193–19204 (2018)

7. Zhang, H.-H., et al.: Physical and chemical characteristics of PM2.5 and its toxicity to
human bronchial cells BEAS-2B in the winter and summer. J. Zhejiang Univ.-SCI.
B (Biomed. Biotechnol.) 19(4), 317–326 (2018)

8. Cheng, Y., et al.: PM2.5 and PM10-2.5 chemical composition and source apportionment
near a Hong Kong roadway. Particuology 18, 96–104 (2015)

9. Lang, J., et al.: Trends of PM2.5 and chemical composition in Beijing, 2000–2015. Aerosol
Air Qual. Res. 17, 412–425 (2017)

10. Jiang, N., Guo, Y., Wang, Q., Kang, P., Zhang, R., Tang, X.: Chemical composition
characteristics of PM2.5 in three cities in Henan, Central China. Aerosol Air Qual. Res. 17,
2367–2380 (2017)

11. Ge, X., et al.: Characteristics and formation mechanisms of fine particulate nitrate in typical
urban areas in China. Atmosphere 8(3), 62 (2017). pp. 1–12

326 S. Abimannan et al.



Human-Centered Design Tools
for Smart Toys

Anna Priscilla de Albuquerque1(B) , Judith Kelner1 ,
and Patrick C. K. Hung2

1 Federal University of Pernambuco, Recife, PE 50740-560, Brazil
{apa,jk}@cin.ufpe.br

2 Ontario Tech University, Oshawa, ON L1G 0C5, Canada
patrick.hung@uoit.ca

Abstract. The smart toy industry faces challenges to achieve Hard-
ware and Software (H&S) integration since numerous products are not
generating enduring value propositions to the consumers. It is possi-
ble to achieve better H&S integration by following suitable design prac-
tices. Here, we propose four Human-Centered Design (HCD) tools for the
development of smart toys solutions. The four HCD tools intervene on
idea generation, data collection planning, and both low and high-fidelity
prototyping of the solutions. The aim is to assist designers, developers,
and engineers in producing better H&S integrated solutions by offering
tools that meet HCD principles. The primary usage of the HCD tools
with 27 graduate students assisted these multidisciplinary teams in cre-
ating five prototypes that were positively evaluated by end-users. Techni-
cal evaluation checks for the integrity of the prototypes after testing and
results show comparative data on battery consumption and list poten-
tial privacy and security vulnerabilities. Improvements include adapting
ideation tool to incorporate marketing-oriented strategies, authentica-
tion and data encryption for the toolkit, and assessing the tools with
professional teams of the industry.

Keywords: Smart toys · Rapid prototyping · Human-centered design

1 Introduction

Toys are products designed for leisure and social play activities. Today, toys
increasingly incorporate Hardware and Software (H&S) computation. Often, toys
connect with online services and other computing devices like smartphones and
game consoles, thus referred to as “smart toys”. Smart toys solutions may appear
in various shapes, such as a plush toy, a doll, a ball, a companion robot or a wear-
able gadget, and can use different computing technologies to obtain real-time
data from their users (e.g., geolocation, relative positioning, bio-information,
among the tracking of other physical activities) [1]. Computing technologies
for smart toys vary since Augmented Reality (AR) applications to advances in

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 327–343, 2020.
https://doi.org/10.1007/978-3-030-38651-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_26&domain=pdf
http://orcid.org/0000-0002-6991-5191
http://orcid.org/0000-0002-2673-5887
http://orcid.org/0000-0002-9903-4862
https://doi.org/10.1007/978-3-030-38651-1_26


328 A. P. de Albuquerque et al.

robotics, wireless connectivity, Artificial Intelligence (AI), speech recognition,
and location-based applications. Smart toys are a recent design trend, and toy
companies still struggle on how to understand the integration of their H&S com-
ponents. As a result, many solutions are not generating significant new benefits
for the consumers (i.e., children and parents) [8]. Toy companies are holding
onto the novelty factor of these smart toys, while these products need to create
enduring Unique Selling Propositions (USP) for the consumers. USP must offer
a better user experience than the user can get by using each of the H&S compo-
nents individually. Meanwhile, toy companies continue looking for best design
practices to deliver better H&S integrated solutions [24].

Technical teams usually apply design practices of other general-purpose toys
to design smart toys. In general, those teams have none or little expertise in
Information Technology (IT), such as information security [21]. Thus, they may
not fully understand potential security risks and other IT aspects to address
them throughout the product’s life cycle. As a consequence, several toy com-
panies are relying on third-party licensing technologies to develop their H&S
integrated solutions. For instance, the French company Volumique supports tech-
nology licenses for several smart toys in the industry. In May 2019, the startup
PullString, which was acquired by Apple Inc., has announced the discontinuity
of their speech processing license services for Mattel smart toys. It will lead to
the deletion of the smart toys’ connected application, including all collected and
stored user data on their servers. Sensitive cases like this one may suggest that
neither the toy companies have enough specialized technical teams or knowledge
to design their H&S integrated solutions. Companies can benefit from investing
in in-office multidisciplinary technical teams to produce better H&S integrated
solutions. Researchers must supply these technical teams with appropriate tools,
specifically intended for the design of smart toys. It is likely that such tools to
consider the H&S integration aspects since the product’s early stages.

Aiming to meet those needs, we propose four tools for the design of smart
toys, which relies on Human-Centered Design (HCD) approach [10]. These HCD
tools suit for planning and implementing of new H&S integrated solutions by
intervening on ideation, data collection, and both low and high-fidelity proto-
typing of the smart toys. A group composed of 27 graduate students experienced
the four HCD tools in a 16-week class assessment. Students had a multidisci-
plinary background in Computer Science, Design, and Engineering. As a result,
they successfully generated, selected, planned, and implemented five smart toy
solutions that were positively evaluated by end-users in playtesting sessions. We
conducted a technical assessment to check for battery consumption and the phys-
ical integrity of the toolkit components after play-testing. Besides, we carried a
vulnerability analysis for data security and privacy [21] by simulating attacks
on the Bluetooth Low Energy (BLE) and Near-Field Communication (NFC)
modules. Security strategies from the literature may solve the identified vulner-
abilities [6]. Future evaluation of the tools will incorporate a list of improvements
to assist professionals from the smart toy industry.



Human-Centered Design Tools for Smart Toys 329

2 Related Work

Standard design practices for smart toys are mostly marketing-oriented, such
as gender-oriented practices and the licensing of transmedia contents from fran-
chises like Star Wars and Marvel. A common practice is to price the H&S com-
ponents separately since most of the smart toys offer digital contents for pur-
chase in their connected applications [8]. UK-based marketing group, Juniper
Research, issued a report which estimates that the purchase of in-app contents
will reach 25% of the total revenue of this sector (17.7 billion USD) by 2023 [18].
Usually, these marketing-oriented practices guide the technical teams through
the entire design process, which may suggest that H&S components are often
planned to support independent play experiences. For instance, the smart toy
Hasbro’s Furby Connect and its mobile application allow parallel playtime using
only one of the H&S components. There is little information about the use of
specific design tools by toy companies that support H&S integration [24]. While,
in related literature, researchers are addressing specific design tools for H&S inte-
grated solutions and the Internet of Things (IoT) related applications. Design
tools cover everything since ideation tools to interaction models, including low
and high-fidelity prototyping tools.

Ideation tools facilitate group discussion, supports the fast development of
new ideas, and facilitates collaboration in the brainstorming sessions. Note that
card set is a recurrent approach used by related literature. Hornecker proposes
card sets to stimulate group discussion during brainstorming sessions [11]. Each
card set represents one aspect of her Tangible User Interface (TUI) framework,
namely: tangible manipulation, spatial interaction, embodied facilitation, and
expressive representation. She experimented the card sets with professionals and
students during ten workshops. Inspired by her work, the Internet of Tangible
Things (IoTT) card set consists of 16 cards; 8 cards represent TUI properties
and another 8, the IoT properties [3]. The card set was used by 21 participants
to help them in the planning of interactivity properties of both low and high
fidelity prototypes, the last using the prototyping board Kniwwelino. Another
study, which was based on related work [16], used card sets and gamification to
assist engineers in assembling IoT properties [22]. The authors also conducted
workshops with master’s students in Electrical and Computer Engineering and
other related areas to evaluate their ideation tool.

Schneider advocates that prototypes support the extraction of valuable infor-
mation for the product’s implementing cycles [20]. Either low or high fidelity pro-
totypes can present explorative, experimental, or evolutionary purposes, and all
of them enable to elicit general and specific requirements for the desired solution.
Rapid prototyping tools can make high-fidelity prototyping of smart toys faster
and easier for creators than using custom hardware solutions for each design.
They offer more freedom on the editing and testing of play and interface features
during both planning and implementing design cycles. We can classify existing
rapid prototyping tools for smart toys into smart devices, AR-based platforms,
mobile-based platforms, and hardware toolkits. Each prototyping tool approach
has its advantages and disadvantages. First, smart devices can be considered



330 A. P. de Albuquerque et al.

smart toys themselves [14,15,23]. They are ready to use and play, and usu-
ally promotes inter-device connection and embodied interplays. However, they
present fixed interface features, which limit creators to only editing the play fea-
tures. For instance, Sifteo Cubes are modular cubic displays. They can transfer
data from one to another and allow touchscreen and natural gesture interactions
(e.g., shaking and flipping the cubes) that enable prototyping of closed rules
solutions [15].

Second, AR-based platforms use cameras to detect objects (e.g., tokens,
cards, and toys) by using either marker-based and markerless recognition tech-
niques (i.e., recognition of shape, color, lighting, saturation, texture, and other
image descriptors) [9,13]. In addition to cameras, AR-based approach often
requires complex setup to support detection and displaying virtual contents, such
as mobile devices, Head-Mounted Displays (HMD), and Infrared (IR) tabletops.
Note that AR-based platforms may expose the user’s privacy due to the collec-
tion of personal data such as facial pictures or videos of the players manipulating
the toys. Mobile-based platforms explore multi-touch, conductive materials, or
contactless technology to detect objects using smartphones or tablets [4,19].
This approach reduces setup complexity and privacy issues when compared with
the AR-based one. However, these platforms are also limited to promote token-
tabletop interaction (e.g., placing tokens on the touchscreen). Finally, hardware
toolkits, usually modular pieces, consist of a collection of sensors, actuators,
communicators, and other electronic circuits that are reprogrammable [12]. They
offer more freedom to the editing of both play and interface features since they
permit creators to select components that best fit their projects. Still, the level
of programmability, size, and distribution of hardware components can limit its
adaptability features. Thus, adequate H&S integration is essential when imple-
menting a hardware toolkit. Achieve better H&S integration, we propose three
planning tools to guide the technical teams from the initial concepts until the
high-fidelity smart toy solutions. In the next section, we detail how the four tools
meet HCD principles and the context of use for H&S integration.

3 Human-Centered Design Tools

HCD practices for interactive systems are defined by the international stan-
dard ISO 9241-210:2019 [10]. ISO provides recommendations to employ HCD
principles throughout the life cycle of computer-based interactive systems. It is
concerned with ways integrated H&S components can enhance human-system
interaction. This article proposes to employ HCD practices as a strategy to
develop better H&S integrated smart toys. Note that once employing HCD prac-
tices does not dismiss the usage of traditional marketing-oriented practices (e.g.,
gender-oriented and transmedia contents). The goal here is to provide a set of
practical tools that can assist the technical teams in developing better H&S
integrated solutions. Is expected that the HCD approach can lead to a posi-
tive impact on the product’s USP. According to ISO, H&S integrated systems
designed by HCD practices offer a set of qualities. It increases productivity



Human-Centered Design Tools for Smart Toys 331

and operational efficiency, are easier to understand and use, reduce training
and support costs, enhance usability to a broader audience and can promote
accessibility, improve user experience, reduce discomfort and distress, provide
competitive advantages, and contribute towards sustainability objectives. The
HCD approach should meet the following principles. First, the design must rely
on a clear understanding of the context of use, which covers the user’s needs, the
interaction environment, and all involved stakeholders. Users must take part in
the design and development steps, which must be iterative and driven by user-
centered evaluations. The design process must account the whole user experience,
and a multidisciplinary team with complementary skills and perspectives must
convey it.

In the present article, we propose four design tools that aim to improve
H&S integration of smart toys. To adequately relate the HCD principles with
the context of use of smart toys, we performed a content analysis of 297 smart
toys from the systematic mapping of literature and industry [1]. The content
analysis consisted of observing the following aspects: (a) what are the H&S
components and how do they interact and connect? (b) what types of data are
gathered and exchanged among these H&S components? (c) how do the play
rules and dynamics regulate the data sharing, storage, and individual behaviors
of each H&S component? (d) how does the user experience occurs with these
H&S components during play, and which approaches are adequate to evaluate
such experience? Hence, the content analysis supported us to summarize the
context of use for smart toys into the following principles.

1. Smart toy solutions must combine physical and social play experiences.
2. User interface setup must be ready to play and reduce complexity.
3. Data collection must prioritize the user’s privacy.
4. Play activities must be suitable for both indoors and outdoors.
5. User experience must integrate a multi-target audience.

The five principles above, helped us to propose the four HCD tools. Moreover,
content analysis also permitted us to establish Data Collection Patterns (DCP)
and a list of Prototyping Requirements (PR) that support the data planning
tool and both low and high-fidelity prototyping tools. First, DCP items classify
how data are gathered and exchanged among the H&S components and how
play rules regulate data sharing, behavior, and storage [2]. Second, the PR items
define what type of data should be collected by the smart toys and how occurs
the data processing in the interface components. The DCP and PR items are
listed below.

• DCP1. Data sharing modalities should regulate all play behaviors: Sharing
patterns are namely, “replicate,” “extend,” and “replace” (e.g., the smart
toy extends its motion tracking data to a virtual prefab in the connected
application).

• DCP2. Individual data behaviors should respect the play rules: Behaviors
patterns classifies into “create,” “destroy,” and “transform” (e.g., the smart
toy transforms the color of the virtual prefab from green to red when shaken
in the Z-axis).



332 A. P. de Albuquerque et al.

• DCP3. Data storage should support selected data behaviors: Storage patterns
comprise “update,” “activate,” and “augment” (e.g., the smart toy updates
its state from green to red when shaken in the Z-axis).

• PR1. Prototyping should support adaptability: H&S components should be
selected according to the needs of each design, and these components should
be fitting for toys of different physical shape, materials, and size.

• PR2. Prototyping should support distributed data collection and processing:
Smart toys should support connectivity and interoperability of communica-
tion protocols for transferring data between the H&S integrated components.

• PR3. Prototyping should support multimodal user feedback: Adequate mul-
timodal user feedback can mix visual, auditory, and tactile modalities.

• PR4. Prototyping should support different play features: Smart toys can fully
or partially regulate the play rules. Open-ended rules permit the players to
add or edit new dynamics through play while closed rules are pre-set and can
follow progressive challenges through structured level design.

• PR5. Prototyping should limit personal data collection: Smart toys should
only collect non-personal data [2] from the users while personal information
must be retrieved and processed by the secure connected devices.

Furthermore, to fully meet the HCD principles, the four tools must sup-
port an iterative and user-centered evaluation design process. According to con-
tent analysis and related works, adequate user-evaluation tools for smart toys
must meet a set of practices. First, it must combine qualitative and quantitative
approaches, and the evaluation instruments must meet the target-audience needs
(i.e., children and adults). Evaluation protocols must pass through a pilot assess-
ment, which includes specialists, and it must assess the usability and enjoyment
of user experiences. Finally, the HCD tools aim at multidisciplinary. The teams
must have complementary backgrounds of at least two of these subjects: Design
or Arts, Computer or Electronic Engineering, and Computer Science (i.e., com-
puter programmers). Also, specialists’ backgrounds may include relevant fields
in Education, Health, Science, and Sports. The following sub-sections describe
the proposed HCD tools.

3.1 Brainstorming Toy

Inspiration to create new concepts for H&S integrated smart toys can derive from
observing children playing with traditional toys and digital games [13]. Here, we
propose the Brainstorming Toy as the first HCD tool. It uses various traditional
toys along with a set of play rules cards to help creators in generating concepts
for smart toys. The goal is to stimulate them to create ideas by assembling
the interface features (of the toys) with digital or traditional play features (of
the games). Traditional toys set includes everything since balls, Frisbee, hula
hoop, toy cars, dexterity toys, sword, figurines of animals (e.g., sea animals,
mammals, and insects), dominos, chessboard, and so on. Play rules cards include
short descriptions for closed rules (e.g., runner and tower defense) and open-
ended rules (e.g., hide and seek, tag, and hotchpotch). Besides, this HCD tool



Human-Centered Design Tools for Smart Toys 333

aims to mediate the communication between the multidisciplinary teams, which
still is challenging. It supports group discussion by involving all participants
since the early concepts – by not separating designers and programmers and by
providing means so that they can express themselves better. Its structure is based
on Discussion 66 technique [7]. The original technique consists of distributing
participants into small groups so that they can discuss ideas following a sequence
of statements or questions. It proposes shifting the participants in the groups to
stimulate an exchange of views and to avoid creators to fixate on a single idea.

The Brainstorming Toy is performed in groups of 3–5 participants and by
exchanging both creators and toy resources within the groups. Short sessions
include a 15 min opening session, three or more exchanging sessions (5 min),
and a 10 min closing session (that reunites the initial group). After the timing,
one or two participants, along with one or two toy resources, are exchanged.
Exchanges in the groups must follow simple rules (e.g., professional background,
age, or gender). In the short sessions, the entire group discusses one toy at each
time, by following a structured paper sheet. The paper sheet contains sections to
detail both play and physical aspects of the toy (e.g., “how does one play with
this toy?” “what are the toy’s materials?”). After describing the toy sample, the
group should sort one or more play rules cards to generate ideas. One creator,
assigned as the “reporter,” has to write down all requested contents in a legible
form on the backside of the sheet.

After the closing session, all paper sheets must be collected and grouped by
assembling sheets of the same toys. At that moment, the groups receive these
sheets to the recycling ideas session. The goal of this session is to improve the
quality of ideas by applying creative constraints to them. Creative constraints
consist of ten items based on the context of use defined in the previous section.
Items include “the idea uses two different physical interactions,” “it promotes
tangential learning,” “it includes two age groups of end-users,” “it collects only
two types of data,” “it has two toy components in the interface,” “promotes ther-
apy or rehabilitation,” “it supports at least two social interaction modalities,”
“offers accessibility,” “it has a toy component with attachable parts,” and “it is
gender-neutral.” Recycling occurs by adding to the ideas at least one or two con-
straints. In a marketing-oriented context, the list of creative constraints can add
or replace specific items related to transmedia characters, themes, educational
topics, among other marketing indicators.

Rhythm games
sense of rhythm, dance, 
music, player’s perfomance 

Hula Hoop toy

Hula Hoop Hero

Fig. 1. Hula Hoop Hero concept generated by the students in brainstorming.



334 A. P. de Albuquerque et al.

All original and recycled ideas serve for the final selection. Each creator
selects one up to three preferred ideas to detail them using a slide presentation
template. The detailing consists of defining the expected H&S components for
the interface and setting the core play rules. Note that if creators pick an original
idea, they have to apply the constraints to improve it before detailing. The
final idea selection takes part in the Data Collection Planning tool. Figure 1
illustrates an example of the Brainstorming Toy results. The Hula Hoop Hero
concept, produced by the students, combines a traditional hula hoop toy with
the “rhythm games” card. This H&S integrated solution uses the smart toy to
measure the physical movements, and the BLE connected the application to keep
the score of the player’s performance, display the next movements, and play the
songs.

<<user>>

<<primaryToyUI>>

<<secondaryToyUI>>

1 1

1 1

1 1

Cube Music

SmartphonePlayer

turn on

select GameMode: 2_PlaySequence

BLE_Request=autenticate()

Activate Game 
Mode

Record: GameMode

Record: Score

Replicate Share: CubeSequenceChange: CubeFace

Output: MusicSequence

Output: MusicSequence

Transform

Augment

Augment

Update

Update

turn off Close: CubeMusicApp

Cube Music

Fig. 2. Cube Music’s data collection plan diagram

3.2 Data Collection Planning

UNICEF issued the Memorandum on Artificial Intelligence and Child Rights in
2019. It includes the topic named Children’s Rights at Play, which aims to guar-
antee the right of privacy by international frameworks for children through the
development and marketing of smart toys solutions [25]. The Data Collection
Planning tool aims to minimize selecting ideas that can potentially introduce
threats to children’s privacy in the implementing phase. It comprises of two
parts. The first part consists of each creator to choose one or two ideas from
the Brainstorming Toy to pick what type of data they expect that the idea
will collect. A paper sheet organizes these types of data into three groups. (A)
Non-personal data collection includes non-personal identification, unidentifiable
positioning systems, and motion tracking information [2]. (B) Personal-data col-
lection covers data like voice, facial pictures, and other user profile information



Human-Centered Design Tools for Smart Toys 335

(e.g., full name, e-mail address, and billing information). (C) Sensitive data col-
lection includes multimedia files related to objects (e.g., pictures or videos of
markerless or marked objects with fiducial markers or QR codes).

Often, smart toys, especially those with connected applications, tend to
gather unnecessary personal information that may not be relevant for playing
time [6,21]. If any personal or sensitive data type is selected; the creator has
to pick an alternative for non-personal data to use it instead. In that way, they
can reflect if collecting personal information is essential or not to their concepts.
Only similar concepts pass for the second part of the planning (i.e., same idea or
different ideas related to the same toy component). Participants can exchange
ideas if they wish to do so. They can pick-up other concepts to work, only if
the idea not expects to collect any personal data. The second part of the Data
Collection Planning tool consists of the diagram sheet—the diagram uses UML-
like notations inspired by the class, sequence, and activity UML diagrams [2]. In
the diagram, the creators can plan the data collection exchanges and processing
among the H&S components. The diagram relates three entities based on the
Toy User Interface (ToyUI) interaction model [1]; these are the user, the primary
ToyUI (i.e., the smart toy), and the secondary ToyUI (i.e., the connected com-
ponents). It uses the data collection patterns described in the previous section
(i.e., replicate, create, update) along with other UML-like notations. The goal
of this diagram is to plan, according to the defined play rules, how will occur
the data sharing among each component, including the individual behaviors and
appropriate data storage.

After completing the diagram, all planned ideas are assembled and listed
for 3-choice voting. After choosing the best-rated ideas, the multidisciplinary
teams are set based on the profile of the creators and their preferences. Teams
use the planning diagrams as a guide to building both the low and high-fidelity
prototypes. Figure 2 shows another of student’s projects. The Cube Music uses
the BLE module to connect to a music application. The data collection diagram
uses the “replicate” data sharing pattern to governs all behaviors. The app plays
a sequence of music notes which are associated with geometric shapes and colors.
Then, the player memorizes the sequence and replay it by flipping the cube. It
uses the “transform” pattern to describe the cube’s behaviors. The upper face
is selected by the application to validate the sequence at each time. All storage
patterns are necessary due to the defined play rules (i.e., activate, update, and
augment).

3.3 I/O Stickers

The low-fidelity prototyping practice combines traditional toys with office and
crafting materials like papers, colored pens, scissors, tapes, and cardboard. To
facilitate the practice, the I/O Stickers represent different sensors, communica-
tion protocols, types of inputs and outputs, displays, and data storage behaviors.
The goal of this HCD tool is to simplify technological and interactive aspects to
help the teams in first prototyping the interface setup. In that way, by attaching
one sticker to a toy component, it may help them to plan and test the concepts.



336 A. P. de Albuquerque et al.

For example, the motion tracking sensor sticker attached to a toy can mean that
the toy component can collect 3D positioning and orientation. Figure 3 shows
the Zombie Tag low and high-fidelity prototypes. Students defined three inter-
face components for setup: the smart toy is a zombie glove, and two secondary
components are the bracelets and game cards. The selected stickers for the smart
glove are short-range communication, audio output, single input, and user pro-
file and data. The I/O stickers chosen for the bracelets are the single input and
user profile and data; the game cards use the multimedia output sticker to repre-
sent the play contents. Note that the teams successfully represented all planned
behaviors using the I/O stickers, and they used it as a reference to develop the
Zombie-tag’s high-fidelity prototype.

Motion tracking 
sensor

Multimedia 
sensor

Audio recording 
sensor

Short-range 
communication

Wide-range 
communication

User profile 
& data

Single 
input

Complex 
input

Binary 
input

Audio 
output

Multimedia 
output

Haptic 
output

I/O display

High-resolution 
display

Low-resolution
display

Upload
data

Download 
data

Save data

Fig. 3. I/O stickers and the Zombie Tag’s low and high-fidelity prototypes.

3.4 IoT4Fun Toolkit

The fourth HCD tool is IoT4Fun Toolkit ; it allows wireless connectivity via BLE
and NFC to support distributed data collection and processing. It collects only
non-personal data of both objects and users using a motion-tracking sensor and
supports the design of visual, auditory, and tactile feedback. The toolkit uses
the Arduino IDE to supports the programming of either open-ended or closed
play rules and behaviors. Finally, it was manufactured using a modular Printed
Circuit Board (PCB) approach to improve adaptability. Modularity makes the
toolkit fitting for the design of smart toys of different shapes and sizes. The
toolkit consists of eight modular PCBs attached to individual hardware com-
ponents. All modules are attachable to a hub module using plug-and-play flat
flex ribbon cables. The hub module contains a central unit, which is an Arduino
Mini-pro with 16 MHz crystal oscillator, and a 10 DOF IMU motion tracking
sensor. The BLE module is a 2.4-GHz BLE, and the NFC module operates at
13.56 MHZ. The visual output module consists of 3 RGB LEDs, the auditory
module is a 2 1 W 8OHMS speaker, and the tactile module is a vibrator motor.
A polymer li-ion battery module powers the hub module and all connected mod-
ules. The toolkit includes a USB recording module that permits ease updating
of programmed behaviors of all connected modules. In Fig. 4, we show how the



Human-Centered Design Tools for Smart Toys 337

modular toolkit offers adaptability for different “toy-shells.” First, the students
distributed the components through the Cobi’s body. They placed the NFC mod-
ule in the bottom of a cardboard ramp to read the cookie disks. Then, the visual
feedback module locates at the top of the body to simulate the eyes, and milk
acrylic amplifies the LEDs intensity. Diversely, the Magic Potato team assem-
bled most of the toolkit components inside a plastic ball. Except for the visual
feedback module, which passes through a leash of the plush toy to simulate the
bomb’s wick.

Cobi Magic Potato

Fig. 4. IoT4Fun Toolkit adapted by the Cobi and Magic Potato teams.

4 HCD Tools Results

The four HCD tools assessment occurred during coursework of the graduate pro-
gram in Computer Science in the Federal University of Pernambuco (UFPE),
in Brazil. The coursework lasted for 16 weeks between August to December
2018. A group of 27 creators participated in this assessment, among 15 mas-
ter students and 12 doctorate students with multidisciplinary backgrounds on
Computer Science, Engineering, Design, and related areas. The smart toy solu-
tions were named: Hula-hoop Hero, Cube Music, Zombie-tag, Cobi, and Magic
Potato. First, both Hula Hoop Hero and Cube Music explore the classic H&S
integration setup. The two smart toys use the BLE module to connect with
their respective mobile applications. Diversely, both Cobi and Zombie-tag use
the NFC module to connect with secondary toy components (i.e., cookie disks
and bracelets, respectively). Only the Magic Potato prototype did not explore
connectivity – it uses the motion tracking sensor to collect positioning informa-
tion to adapt its behavior through play. Thus, the last three projects do not fully
meet the expected setup for H&S integration since they do not present mobile
apps. Additional features could justify the need for this classic H&S integra-
tion. For example, apps are suitable to keep track of the player’s performance
and scores, and they allow the editing features, such as selecting play modes or
customizing the rules. However, in all three projects, they were not essential.

Different group of users evaluated all prototypes during playtesting sessions.
The teams used usability questionnaire adapted from the System Usability Scale
(SUS) [5], 5-points Likert scale likeability questionnaire based on the work of [26],
and additional qualitative instruments (i.e., semi-structured interviews, group



338 A. P. de Albuquerque et al.

discussion, observation, and video analysis). First, technical specialists tested
all prototypes, which helped the teams to overcome technical and design issues
and to make general improvements. Second, teams went on the field to test
their prototypes with end-users, preferably with those from the intended target
audience. Not all groups managed to assess the prototypes with children. For
instance, the Cobi team tested their prototype with two children; the girl aged
2 and the boy 4. Magic Potato team tested the prototype with two girls (6 and
10 years old). Cube Music tested the toy with one boy aged 6 and Zombie-tag
team tested with three children from 11 to 13 years old (two boys and one girl).
All collected user data received written parental consent before testing.

Finally, during a playtesting event on UFPE campus, 40 students of the
Physical Education and Sports Department were invited to play. They presented
a high level of interest in physical activities and sports, which were an ade-
quate fit for the intended target audience. User profile summary consisted of
23 males, and 17 females and age ranged from 18 to 23 years old, while one
participant was aged 50. Teams collected data from 8 to 15 participants each,
and they analyzed results separately – 26 participants played with at least two
prototypes. All smart toys worked adequately and presented as robust enough
to allow 90-120 min of playtesting sessions. The public positively evaluated them
all, according to the user evaluation instruments used by the teams (i.e., SUS
scores ≥71.7 ≤ 87, likeability average values ≥3.5 ≤ 4.5, purchase intent average
values ≥3.5 ≤ 4.3, and positive qualitative information). All smart toy solutions
presented adequate H&S integration and promoted enjoyable experiences to their
users. As an outcome of this event, they applied a shortlist of improvements for
their final solutions.

4.1 Technical Assessment

There were reports from the teams about malfunctions of the IoT4Fun Toolkit
modules during the playtesting sessions. The technical assessment consisted of
three types of testing: functional integrity, battery consumption, and data secu-
rity and privacy vulnerabilities. First, functional integrity tests used the Arduino
IDE to check core functionalities of each module, and when necessary, a mul-
timeter checked for punctual malfunctions of the PCBs. All original hardware
components are fully working after the playtesting sessions. However, some parts
of the PCB modules attached to these components suffered damage after test-
ing. It may happen due to collisions during playtime, or by the way that teams
handled the modules during development. Damages in the PCBs appears in two
visual feedback modules, one auditory module, and one BLE module. It may sug-
gest that the PCB manufacture should be better performed to conquer adequate
robustness. In that sense, the future versions of the toolkit cab benefit from pro-
fessional manufacturing by a third party. Moreover, protective cases can help to
secure the modules and other components. Cases can use hard-plastic, acrylic,
or flexible materials to reduce external impact during collisions.

Second, the battery consumption tests look to estimate the battery
autonomy of each solution to support further improvements in the toolkit.



Human-Centered Design Tools for Smart Toys 339

The instantaneous current analysis was performed using the current shunt
method [17]. It consists of measuring the current of consumption, second by
second, and according to the working time of each solution. The sensor ACS
712 5 A was attached in series to the toolkit to measure its current circuit. Once
knowing the average consumption, it is possible to estimate the battery auton-
omy of each solution in Table 1. Battery autonomy calculation consists of the
relation between 80% of the total battery capacity and the average battery con-
sumption. The 80% rate simulates the behavior of a lithium polymer battery
since generally in this type of battery, the circuit stops running before the volt-
age is entirely over. The total capacity of the battery module is 350 mAh. It uses
the battery LP702035 3.7 V. Results suggests that battery consumption relates
to how the teams implemented the solutions. Cobi and Magic Potato use the
visual and auditory modules; however, the second solution requires more battery
consumption than the first one. To circumvent this issue, note that the Magic
Potato uses an adapted battery module with six batteries working in parallel;
thus, its estimated capacity is 2100 mAh. Hence, better programming practices
must be employed to improve battery autonomy in future assessment.

Table 1. Battery autonomy results.

Smart toy Battery consumption Battery autonomy

Hula Hoop Hero 33.5 mA 501’

Cube Music 55mA 305’27”

Zombie-tag 98mA 171’25”

Cobi 80mA 210’

Magic Potato 168mA 600’

Finally, vulnerability analysis points out the main risks for data security and
privacy of each solution. A vulnerability taxonomy for smart toys connected
to mobile applications classifies threats into physical, nearby, and remote access
types [21]. According to it, the toolkit is sensitive to Unauthorized-config-physical
threats since it offers a USB recorder to update the hub module. It is intended
to make the programming and updating of contents faster and easier, but it can
be used for malicious configuration since it does not require authentication. The
other types of threats are dependent on the toolkit implementation. For exam-
ple, the toolkit can be sensitive to the Unauthorized-config-nearby threat, but
both implemented mobile applications do not support configuring their smart
toys through them. However, none of the solutions employ security standards to
support local data protection, and the two connected applications permit both
tampering of information and denial of service threats. Vulnerability items do
not cover scenarios that use NFC communication, in which the exchange of
data among two toy components (e.g., Cobi and the cookie’s disks) occurs.
Thus, the present article adds a new item named Insecure-NFC-practice to the



340 A. P. de Albuquerque et al.

taxonomy, which is alike to the Insecure-Bluetooth-practice. The Unencrypted-
comm-channels item was also adapted to cover NFC communication. Hence, to
make the vulnerability analysis comprehensive, it includes testing the security of
both BLE and NFC modules. First, the Android app, named BLE Console, was
used to examine the security of the BLE connection. Parameters for a secure BLE
connection consider if it requires user authentication and if the MAC address
dynamically changes. As a result, both Cube Music and Hula-hoop Hero pairs
without authentication and present fixed MAC addresses. The BLE Console app
allows accessing of smart toy information. Information includes all data sent by
the serial port, among manufacturer’s information such as model, serial number,
and firmware revision. Likewise, the NFC Tools app supports to examine the
security of the NFC connection. Although NFC is a safer technology than other
protocols for authentication, it still opens the potential for breaches for data
disclosure. Neither Cobi nor Zombie-tag projects encrypted the NFC communi-
cations. It allows the attacker to get information from the tags or the reader.
Using the NFC Tools app, one can access all recorded data on the NFC tags,
including rewriting the tag information to limit further readings.

To improve reliability and circumvent the identified vulnerabilities, we select
the following data Security Requirements (SR) for smart toys, which were pro-
posed by [6]. First, communication between physical toy and mobile device must
use a protocol that allows authentication and authorization mechanisms (SR5).
Configuration file integrity must be maintained and verified in every mobile app
play session (SR7). Every communication in toy computing environment must
use cryptography mechanisms (SR8). The mobile app must monitor and limit
database growth (SR15). The DNS must provide security mechanisms against
external modification of stored data (SR10). Finally, the smart toy should avoid
exposing unnecessary information once implemented (SR21). Note that once
again, those requirements apply for smart toys connected to mobile applica-
tions. Thus, we adapted the SR5 item to cover NFC communication. It may
suggest that a taxonomy of vulnerabilities and its security requirements must be
expanded to cover a broader range of smart toy solutions. In future assessment
of the toolkit is essential to ensure security standards for data encryption and
build access control mechanisms, including parental control and management of
privacy policies.

5 Conclusion

Toy companies are struggling with H&S integration to deliver products that
offer better USP for the consumers. Here, we proposed four HCD tools to assist
the companies’ multidisciplinary technical teams in creating adequate H&S inte-
grated solutions. All combined, the HCD tools assisted 27 graduate students in
ideation, planning, and prototyping of five smart toy solutions. All HCD tools
adequately meet the context of use for H&S integration, which was defined based
on the content analysis of smart toy solutions from literature and industry. First,
the Brainstorming Toy tool assisted the teams in creating solutions that combine



Human-Centered Design Tools for Smart Toys 341

physical activities with social play modalities, which include direct or parallel
competition. Second, the I/O Stickers helped them to define interface setups
that are simple to use and ready to play. As a direct result of the Data Col-
lection tool and the IoT4Fun Toolkit, all developed solutions prioritized the
user’s privacy by limiting the data collection to non-personal information (i.e.,
motion tracking information). Besides, all solutions are suitable for play in both
indoors and outdoors, and playtesting results suggest that they are enjoyable for
multi-target audience groups.

More user feedback is needed to improve the HCD tools. Preferably, the next
assessment of the HCD tools will occur in a cross-cultural scenario since per-
sonal experience may influence the results. Ideation may depend on the personal
knowledge of the creators about the toys and how people can play with them.
Is expected that by assessing these tools with creators from different cultures
can turn results more suitable for a worldwide audience. Ideation can benefit
from incorporating marketing-oriented strategies to increase its acceptance by
the toy companies. Furthermore, the technical assessment results suggest the
need for improvements in the IoT4Fun Toolkit on robustness, access control,
data encryption, and other reliability aspects. Therefore, it is essential to build
a reliable development framework to assist the creators in delivering the IoT4Fun
Toolkit best potential. Until now, we cannot state conclusive findings for how
the perceived H&S integration can impact the USP of the solutions. Research
evidence resumes to the positive user evaluation results and cannot infer accep-
tance of the created solutions by this market niche. Although the HCD tools
presented satisfactory results, the benefits of employing these HCD tools with
the toy companies are unclear since the assessment happened with 27 graduate
students. Future opportunities include reaching out for toy companies and pro-
fessionals who are active in the industry for more comprehensive assessment of
the tools.

References

1. de Albuquerque, A.P., Kelner, J.: Toy user interfaces: systematic and industrial
mapping. J. Syst. Architect. 97, 99–106 (2018)

2. de Albuquerque, A.P., Kelner, J.: Non-personal data collection for toy user inter-
faces. In: Proceedings of the 52nd Hawaii International Conference on System
Sciences (2019)

3. Angelini, L., Mugellini, E., Couture, N., Abou Khaled, O.: Designing the interac-
tion with the Internet of Tangible Things: a card set. In: Proceedings of the Twelfth
International Conference on Tangible, Embedded, and Embodied Interaction, pp.
299–306. ACM (2018)

4. Appert, C., Pietriga, E., Bartenlian, E., González, R.M.: Custom-made tangible
interfaces with touchtokens. In: Proceedings of the 2018 International Conference
on Advanced Visual Interfaces, p. 15. ACM (2018)

5. Brooke, J., et al.: SUS-A quick and dirty usability scale. Usability Eval. Indu.
189(194), 4–7 (1996)

6. de Carvalho, L.G., Eler, M.M.: Security requirements for smart toys. In: ICEIS,
vol. 2, pp. 144–154 (2017)



342 A. P. de Albuquerque et al.

7. Denton, D.K., Denton, R.A.: The Toolbox for the Mind: Finding and Implementing
Creative Solutions in the Workplace. McGraw-Hill (1999)

8. Dhar, T., Wu, T.: Mobile computing toys: marketing challenges and implications.
In: Hung, P.C.K. (ed.) Mobile Services for Toy Computing. ISCEMT, pp. 39–49.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21323-1 3

9. Gohlke, K., Hlatky, M., de Jong, B.: Physical construction toys for rapid sketching
of tangible user interfaces. In: Proceedings of the Ninth International Conference
on Tangible, Embedded, and Embodied Interaction, pp. 643–648. ACM (2015)

10. Group, B.: Ergonomics of human-system interaction: human-centred design for
interactive systems: Iso 9241–210. BSI Standards Publication (2019)

11. Hornecker, E.: Creative idea exploration within the structure of a guiding frame-
work: the card brainstorming game (2010)

12. Kazemitabaar, M., McPeak, J., Jiao, A., He, L., Outing, T., Froehlich, J.E.: Mak-
erWear: a tangible approach to interactive wearable creation for children. In: Pro-
ceedings of the 2017 Chi Conference on Human Factors in Computing Systems,
pp. 133–145. ACM (2017)

13. Marco, J., Cerezo, E., Baldassarri, S.: Tangible interaction and tabletops: new
horizons for children’s games. Int. J. Arts Technol. 5(2–4), 151–176 (2012)

14. Márquez Segura, E., Waern, A., Moen, J., Johansson, C.: The design space of body
games: technological, physical, and social design. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 3365–3374. ACM (2013)

15. Merrill, D., Sun, E., Kalanithi, J.: Sifteo cubes. In: CHI 2012 Extended Abstracts
on Human Factors in Computing Systems, pp. 1015–1018. ACM (2012)

16. Mora, S., Gianni, F., Divitini, M.: Tiles: a card-based ideation toolkit for the
Internet of Things. In: Proceedings of the 2017 Conference on Designing Interactive
Systems, pp. 587–598. ACM (2017)

17. Nakutis, Z.: Embedded systems power consumption measurement methods
overview. MATAVIMAI 2(44), 29–35 (2009)

18. Juniper Research: Why evolution is key to consumer robotics’ survival. Technical
report, August 2019

19. Schmitz, M., Steimle, J., Huber, J., Dezfuli, N., Mühlhäuser, M.: Flexibles:
deformation-aware 3D-printed tangibles for capacitive touchscreens. In: Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing Systems, pp.
1001–1014. ACM (2017)

20. Schneider, K.: Prototypes as assets, not toys: why and how to extract knowledge
from prototypes. In: Proceedings of the 18th International Conference on Software
Engineering, pp. 522–531. IEEE Computer Society (1996)

21. Shasha, S., Mahmoud, M., Mannan, M., Youssef, A.: Playing with danger: a tax-
onomy and evaluation of threats to smart toys. IEEE Internet Things J. 6(2),
2986–3002 (2018)

22. Sintoris, C., Mavrommati, I., Avouris, N., Chatzigiannakis, I.: Out of the box:
using gamification cards to teach ideation to engineering students. In: Kameas,
A., Stathis, K. (eds.) AmI 2018. LNCS, vol. 11249, pp. 221–226. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03062-9 17

23. Soute, I., Vacaretu, T., Wit, J.D., Markopoulos, P.: Design and evaluation of
rapido, a platform for rapid prototyping of interactive outdoor games. ACM Trans.
Comput.-Hum. Interact. (TOCHI) 24(4), 28 (2017)

24. Tyni, H., Kultima, A.: The emergence of industry of playful hybrids: developer’s
perspective. In: Proceedings of the 20th International Academic Mindtrek Confer-
ence, pp. 413–421. ACM (2016)

https://doi.org/10.1007/978-3-319-21323-1_3
https://doi.org/10.1007/978-3-030-03062-9_17


Human-Centered Design Tools for Smart Toys 343

25. UNICEF Innovation, Human Rights Center, U.B.: Memorandum on artificial intel-
ligence and child rights. Technical report, May 2019

26. Zaman, B., Abeele, V.V.: Laddering with young children in user experience eval-
uations: theoretical groundings and a practical case. In: Proceedings of the 9th
International Conference on Interaction Design and Children, pp. 156–165. ACM
(2010)



Edge Service Migration for Vehicular
Networks Based on Multi-agent Deep

Reinforcement Learning

Haohan Zhang(&), Jinglin Li, and Quan Yuan

The State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{hhzhang,jlli,yuanquan}@bupt.edu.cn

Abstract. To meet the increasing resource demand of intelligent driving,
roadside infrastructure is used to provide communication and computing
capabilities to vehicles. Existing studies have leveraged deep reinforcement
learning to perform small-scale resource scheduling for vehicles. It is critical to
implement large-scale resource scheduling to deal with the high mobility of
vehicles. However, this large-scale optimization is confronted with huge state
and action space. To overcome this challenge, we propose an edge resource
allocation method based on multi-agent deep reinforcement learning to reduce
system cost while guarantee the quality of intelligent driving. The proposed
method considers both immediate and long-term resource status, which helps to
select appropriate base stations and edge servers. Trace driven simulations are
performed to validate the efficiency of the proposed method.

Keywords: Internet of Vehicles � Multi-agent reinforcement learning � Edge
computing � Resource allocation

1 Introduction

Intelligent transportation system is purposed to reduce traffic accidents and congestion.
Being a significant infrastructure of our modern intelligent transportation system, as
shown in Fig. 1, Internet of Vehicles (IoV) mainly provides two kinds of services. One
is to increase driving safety and reduce congestion; the other is to provide recreation for
passengers. A larger quantity of hardware, which is equipped in cars, is needed to meet
the increasing resource demand of vehicle applications. Vehicles, acting as nodes,
connect with the others and the whole network. At the same time, onboard computing
resources enable the vehicles to understand and react to the environment correctly.
However, inevitable disadvantages are found in this way. Deploying a lot of hardware
increases the cost and a large amount of resources are idle while our cars are not in use.
Moreover, due to the limited space and energy provided in the vehicle, equipment is
difficult to meet our ever-changing demand for on-board applications. Although IOV
based on cloud computing is able to unload hardware from vehicles, cellular network
connecting the data center to the mobile vehicles causes long delay, which is not
conducive to grasp real-time status of connected cars and control their current behavior

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 344–352, 2020.
https://doi.org/10.1007/978-3-030-38651-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_27&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_27


on cloud. Deploying computational resources in roadside units to provide resources
directly is able to reduce vehicle communication overhead and optimize vehicle net-
work resources effectively.

More and more researchers are also concerned about using roadside units to
improve IOV performance. However, previous studies are more likely to focus on
single resource optimization, without the consideration of the characteristics of IOV
services. Meanwhile, the scalability of roadside units serving vehicles has been
neglected for a long time. The number of vehicles in an area and their demand for
resources may change dramatically over time. Previous methods usually require the full
amount of information on the road. Due to the requirement of computing power and
time delay, these methods work roughly in IOV’s large-scale scenario.

In this paper, we propose a multi-agent deep reinforcement learning based edge
resource allocation method to select right roadside unit for the vehicle to improves the
performance of vehicle network, and the main contributions are as follows:

• Various costs on accessing resources from roadside units considering real driving
situations are investigated.

• We explored the impact of vehicle dynamic changes, vehicle travel trajectory, and
timeliness of decision-making on the allocation strategy so as to select appropriate
roadside units for each vehicle.

• We propose a multi-agent reinforcement learning based resource optimization
scheme to select appropriate roadside unit for each vehicle to optimize the system
cost of vehicular network.

2 Related Works

Researches based on roadside unit have been developed for many years. Zhang et al.
[1] studied the planning of heterogeneous IOV, which is composed of traditional macro
base stations and roadside units with the function of buffering and renewable energy
collection to minimize the cost of network deployment by jointly optimizing roadside
cell density, buffer size and energy collection rate. Wang et al. [2] proposed a com-
putational unloading strategy in mobile edge computing, which can make unloading
decisions based on the local computing cost estimated by all user devices and the
unloading cost estimated by mobile edge computing server. Zhang et al. [3] studied the
use of base station cache to store content with high hit rate to reduce file transmission
delay and network load. He proposed a greedy content placement algorithm to achieve
near optimal delay performance with low computational complexity. Wu et al. [4]
studied the deployment of roadside units in similar highway scenarios. Considering the
characteristics of roadside unit access, wireless interference, vehicle distribution and
vehicle speed, a new method is proposed, which requires only a small amount of
roadside units to realize an efficient deployment strategy with larger network through-
put. He et al. [5] proposed an integrated framework that achieves a dynamic schedule on
network, cache and computing resource to improve the performance of the next-
generation IOV. Using this framework, a resource allocation strategy based on single

Edge Service Migration for Vehicular Networks 345



agent deep reinforcement learning is proposed to maximize joint revenue, but the sce-
nario of large-scale vehicles has not been discussed.

To some extent, the above schemes improves the quality of roadside units on pro-
viding resources and services for vehicles, and reduces costs on accessing related
resources. However, these algorithms have some limitations. They often focus on the
single resource of the vehicle network, or on the joint optimization of multiple resources
in a small scale. Yet, the problem becomes quite complex, talking about allocating
appropriate roadside unit resources for larger quantities of vehicles and a wider-area IOV.

Therefore, we proposed an algorithm based on multi-agent deep reinforcement
learning, which can make decision quickly and has an excellent performance in dealing
with complex problems. It significantly reduce network communication delay, improves
the quality of IOV services, and optimizes IOV resources.

3 Resource Optimization Scheme for IOV

3.1 System Model

Based on the characteristics of existing traffic roads and communication methods, we
construct a road traffic model on the basis of vehicle network. The scene is mainly
composed of base stations and vehicles. The base station has computing power which
can provide computing services to the vehicle by communicating with them. The
resource pool of each base station is limited, and the resource pool as well as com-
munication cost of each base station varies. Multiple vehicles may travel simultane-
ously on the road. The vehicle needs to select a suitable base station to use its
resources. During the entire driving process, the vehicle will always communicate with
the base station to obtain relevant resources, as shown in Fig. 1. The base station can
undertake the limited resource requirements of vehicles. We introduce a concept called
virtual vehicle, which represents the data stored by the vehicle in the base station and
the unit occupying the base station resources. When the agent selects the base station,
the corresponding virtual vehicle is generated on the base station subsequently. As the
vehicle switches to a new base station that provides the resource service, the virtual
vehicle migrates to the corresponding base station as well.

s1
s2

v3

v2v1

s3
... Macro BS

Small BS

C-V2X

Edge Cloud

Virtual Vehicle

Service Migaration

Sensing

Fig. 1. An example to demonstrate the edge computing assisted intelligent driving.

346 H. Zhang et al.



3.2 Resource Cost Model

Communication Cost Model: Vehicles acquire resources by communicating with
base stations. When the distance between the vehicle and the base station is far,
communication delay will be caused, and the quality of service of the low-latency
application cannot be guaranteed. Ideally, the vehicle will pick the nearest base station
to obtain resource. Nevertheless, if a large number of vehicles gather in the same area
to select the nearest base station, it may lead to a situation that the base station will be
overload. In our proposed communication cost model, the cost of vehicle-to-base
communication is as follows.

Ec ¼ xp � xv
� �2 þ yp � yv

� �2� �
� wc; ð1Þ

where Ec represents the communication cost between the vehicle and the virtual
vehicle. xp; yp

� �
represents the location of the vehicle, xv; yvð Þ represents the location of

the virtual vehicle, wc represents the weight that reflects the impact of communication
costs on acquiring resources.

Resource Competition Cost Model: The base station has limited hardware resources.
When a base station undertakes too many resource requests and exceeds the resources
of the base station, the resources allocated for each vehicle may not be sufficient to
support the normal use of the vehicle application. Meanwhile, the base station needs to
communicate frequently with a large number of vehicles, which may result in a decline
in vehicle network service performance. The resource request undertaken by each base
station should match its own capability. If the current resource request does not exceed
the capacity of the base station, the resource requirements of each vehicle can be fully
satisfied. We propose a resource competition cost model to characterize the ability of a
base station resource to meet vehicle demand as follows.

Er ¼
0; if

P
v2b rv � cb

cb�
P

v2b rv
cb

� �2

�wr; otherwise

8<
: ð2Þ

where Er represents the cost of competing resources for the vehicle to obtain resources,
cb represents the capability of the computing resources of the base station b, v 2 b
represents the virtual vehicle deployed on the base station, rv represents the resources
occupied by the virtual vehicle v, wr represents the weight that reflects the impact of
resource competition costs on acquiring resources.

Migration Cost Model: The position of the vehicle in motion will change constantly.
When a vehicle moves from the coverage of one road-side unit to the coverage of
another Road-Side Unit, the vehicle should consider whether to change the road-side
unit. However, when the road-side unit is switched, the data of the vehicle is still stored

Edge Service Migration for Vehicular Networks 347



in the original road-side unit and the data needs to be migrated to the next road-side
unit. We propose a migration cost model to characterize the cost of vehicle data
migration.

Et ¼ 0; if virtual vehicle is not migrated
wt; otherwise

�
ð3Þ

Where Et represents the cost of virtual vehicle migration.

System Cost Model: The system cost of the vehicle which obtains the resources per
unit time is the sum of communication cost, resource competition cost, and migration
cost. The goal of our proposed edge resource allocation method is to minimize the
system cost of all vehicles by allocating appropriate roadside units to vehicles.

E ¼ Ec þEr þEt; ð4Þ

3.3 Analysis of Factors Affecting Allocation Strategy

The optimization of IOV resources is mainly to optimize the resource competition cost,
migration cost and communication cost by assigning appropriate road-side unit to the
vehicles. We need to consider the impact of multiple factors on the allocation strategy.

Vehicle Dynamic Changes: In an area, some vehicles may be starting to drive or
entering the area at any time, others may be stopping driving or exiting the area.
Therefore, the requirements of resources for road-side unit in an area are constantly
changing. The algorithm for assigning a road-side unit to a vehicle would consider the
spatial position of each vehicle and the distribution of the road-side units in the entire
area. Furthermore, the algorithm should have good extensibility and can deal with
resource allocation problems of a large number of vehicles.

Vehicle Travel Trajectory: When allocating the road-side units to the vehicle, the
vehicle travel trajectory should be fully considered. If the road-side unit corresponding
to the vehicle is located in front of it, the vehicle can use the services from road-side
unit for a long time. Conversely, if the assigned road-side unit is located behind the
vehicle, the distance between the vehicle and the road-side unit may become very far in
a short time, which force the vehicle to switch the road-side unit.

Timeliness of Decision-Making: The constant change of the vehicle’s spatial position
causes the vehicle’s state to change frequently. If it takes a lot of time to run the
algorithm, the state of the actual vehicle may be completely different from the state
acquired by the algorithm, and the decision of the algorithm will not be right and
causes a significant drop in the performance of IoV. Therefore, the allocation algorithm
would make quick decisions based on the changing state of vehicles.

When designing the allocation algorithm, it is indispensable to fully consider the
influence of all above factors, which guarantees the performance of the optimization
algorithm in the actual scene.

348 H. Zhang et al.



3.4 Roadside Unit Resource Allocation Algorithm Based on Multi-agent
Deep Reinforcement Learning

The number of vehicles in an area and the states of all vehicles are changing at any
time, which requires the proposed algorithm to respond quickly and have excellent
scalability. Traditional reinforcement learning is limited to small action and state space,
and is used in a discrete context. However, the more complex tasks that are closer to the
actual situation often have large action and state space. Traditional reinforcement
learning is difficult to deal with those problems. Deep reinforcement learning combines
high-dimensional input of deep learning with reinforcement learning. Good perfor-
mance in dealing with complex issues. In Multi-Agent Reinforcement learning, each
vehicle acts as an agent. The agent chooses the appropriate base station to request
resources according to his own observation. Multi-agent reinforcement learning has
obvious advantages. First of all, the amount of data calculated by each agent in multi-
agent reinforcement learning is only related to the scope of its own observation. The
agent does not care about the state and cost of other agents. The computational cost of a
single agent is small, and the running time of the algorithm is short, which meet the low
latency requirements of the vehicle network. Secondly, the participation and exit of
each agent in the system is not directly related to the decision of other agent. The agents
in the system can be added or cancelled at any time. The algorithm proposed by us has
excellent scalability.

Considering the characteristics of traffic roads and vehicle network, an independent
DQN model is used to realize the roadside unit resource allocation algorithm. The
reinforcement learning model is defined as follows:

Agent: Each vehicle is regarded as an independent agent. The agent would select
the appropriate base station to obtain relevant resources.

State: The state of the agent includes the distance between the selected base station
and the vehicle, the load status of the base stations near the vehicle, the distribution of
the surrounding vehicles of the base stations near the virtual vehicle, the vector
between the current vehicle position and the destination position, etc. The state we
define takes into account the factors affecting the performance of allocation strategy.

Action: For an agent, its action space is to select the base station around the virtual
vehicle as the target of the migration.

Reward: The cost of acquiring the base station resource for each vehicle is closely
related to the capacity of the base station in the entire area and the distribution of the
vehicle. A fixed reward cannot accurately indicate the correctness of the algorithm’s
decision-making. The reward should be related to the overall cost of vehicles. Based on
this point of view, we propose a reward model.

Reward ¼ 0; if absðEave � EÞ=Eave � 0:2
Eave � E; otherwise

�
ð5Þ

where Eave is the average cost of acquiring resources for vehicles in the current area.

Edge Service Migration for Vehicular Networks 349



The process of the algorithm is as follows:

Algorithm 1: Road Unit Resource Allocation Algorithm Based on Multi-Agent 
Deep Reinforcement Learning
Input: Driving route of vehicles, location of road base station resources, Episodes: num-

ber of algorithm iterations.
Output: Optimal action of each vehicle in its current state
01: Initialize multiple DQN network parameters and replay memory according to dif-

ferent attributes of the vehicles. The same kind of vehicles use the same DQN net-
work

02: for each episode in Episodes:
03: Initialize the base station status
04: for each step of an episode do
05: for each vehicle do
06: The vehicle selects an action from its own corresponding DQN according 

to the current state s.
07: The virtual vehicle is migrated according to the action a, the next state s'

is obtained, and the cost of acquiring the resource in the state s' is calculated, and the 
reward generated by the current decision is calculated according to formula (4).        

08: This experience s, s', a, reward is stored in the replay memory of the ve-
hicle corresponding DQN.

09: end for
10: for each DQN:
11: Models are trained using data from replay memory
12: end for
13: if a vehicle arrives at the end, then:
14: break;
15: end if
16: end for
17: end for

4 Evaluation

We experimented in a square area in which 10*10 base stations were arranged evenly.
We have placed 4 types of cars, each with 100 vehicles, and each type of vehicle can
adopt different strategies for base station selection. During training, the overall cost of
the vehicles in our approach is declining and we compare our approach with random
approach, as shown in Fig. 2.

According to the experimental data, we can find that the moving vehicle can select
the appropriate base station, mainly in the following two aspects. First, as the vehicle
moves, the virtual vehicle corresponding to the vehicle will follow the vehicle for
migration, thus ensuring that the vehicle takes low communication cost to obtain
resources. However, simply considering the communication cost will cause vehicles in
one region to get resources from the same base station. Our algorithm takes the

350 H. Zhang et al.



competition cost into consideration, which makes the vehicle select the base station
with lower load and closer when the vehicle finds that the nearest base station has no
remaining resource.

5 Conclusion and Future Works

In order to meet the increasing resource demand of vehicle usage, roadside units are
used to provide services. However, due to the mobility, the changing number of
vehicles, and the limit of roadside unit resources, it is quite a complicated problem to
select suitable roadside units for the vehicle. We proposed a road unit resource allo-
cation algorithm based on multi-agent deep reinforcement learning. This algorithm
takes a variety of factors into account, which help us select appropriate base stations.
Our algorithm can significantly reduce the network communication delay and improve
the service quality of vehicle network applications, and optimize vehicle network
resources. Furthermore, our future work mainly includes optimizing the network
structure to improve the performance of the algorithm.

Acknowledgment. This work was supported in part by the Natural Science Foundation of
China under Grant 61876023 and Grant 61902035, and in part by the Natural Science Foun-
dation of Beijing under Grant 4181002.

References

1. Zhang, S., Zhang, N., Fang, X., Yang, P., Shen, X.S.: Cost-effective vehicular network
planning with cache-enabled green roadside units. In: 2017 IEEE International Conference on
Communications (ICC), pp. 1–6. IEEE (2017)

2. Wang, C., Yu, F.R., Liang, C., Chen, Q., Tang, L.: Joint computation offloading and
interference management in wireless cellular networks with mobile edge computing. IEEE
Trans. Veh. Technol. 66(8), 7432–7445 (2017)

Fig. 2. Performance evaluation on system cost.

Edge Service Migration for Vehicular Networks 351



3. Zhang, S., He, P., Suto, K., Yang, P., Zhao, L., Shen, X.: Traffic steering assisted mobile edge
caching: exploiting spatial content diversity gain. In: 2017 IEEE Global Communications
Conference, GLOBECOM 2017, pp. 1–6. IEEE (2017)

4. Wu, T.J., Liao, W., Chang, C.J.: A cost-effective strategy for road-side unit placement in
vehicular networks. IEEE Trans. Commun. 60(8), 2295–2303 (2012)

5. He, Y., Zhao, N., Yin, H.: Integrated networking, caching, and computing for connected
vehicles: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 67(1), 44–55
(2018)

352 H. Zhang et al.



A Road Traffic Guidance Service Based
on Deep Reinforcement Learning

Kaihui Chen(B), Zhihan Liu(B), Jinglin Li(B), and Quan Yuan(B)

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,
Haidian District 100876, People’s Republic of China

{kayc,zhihan,jlli,yuanquan}@bupt.edu.cn

Abstract. The development of Internet of vehicle (IOV) and autopi-
lot technology indicates the coming of smart traffic and automatic
unmanned era. The promotion of networking and intelligence not only
provides a rich source for urban traffic data, but also provides an efficient
and direct way to solve urban traffic problems. With the help of deep
learning and reinforcement learning technology, we propose a model to
mine the urban traffic rule from the travel history of urban travelers, and
utilize it achieving better allocation of traffic resources by providing a
traffic guidance service, finally realize the system optimal traffic travel.

Keywords: Cloud service · Deep learning · Reinforcement learning ·
Traffic guidance

1 Introduction

The route selection of urban travelers have personal habits and preferences, and
the travelers also have a certain preference in selecting. In the meanwhile, due
to the deviation between the travelers’ perception and the actual travel time
cost, it result in user optimization (UO) in the utilization process of traffic road
resources, but not achieve the system optimization (SO). It makes the excessive
competition of road resources in certain areas, resulting in the imbalance of traffic
flow and jam, but the other areas are empty, which is a waste. If the travelers
are reasonably guided, the problem of route selection imbalance can be solved.
It can be solved by the traffic assignment algorithm, however, the scalability of
the traditional traffic assignment algorithm is limited.

With the development of edge computing, vehicle networking, and autopi-
lot technology, the problem can be solved in a highly connected and intelligent
environment. Specifically, utilize deep learning, it fits and learns an urban traffic
rule from the traffic flow from a global point of view, and utilizes deep rein-
forcement learning to give the best guidance to the travelers under the current

This work was supported in part by the Natural Science Foundation of China under
Grant 61876023 and Grant 61902035, and in part by the Natural Science Foundation
of Beijing under Grant 4181002.

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 353–360, 2020.
https://doi.org/10.1007/978-3-030-38651-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_28


354 K. Chen et al.

Fig. 1. System architecture.

traffic condition. For travelers’ view, as shown in Fig. 1, a center-based traffic
guidance service is provided, travelers upload vehicle information through the
urban roadside unit (RSU) and send travel route requests, center smart agent
on cloud generate traffic guidance decisions based on global information, finally,
the travel route is then returned to the roadside unit to guide the vehicles.

The structure of this paper is as follows: the second section introduces the
related work, the third section introduces the structure of the proposed model,
the fourth section gives the experimental results, and the last section summarizes
the work.

2 Related Work

This problem is the traffic assignment problem essentially. The traffic flow assign-
ment model can be traced back to Beckmann et al. [1] In 1956, a nonlinear
programming model of traffic flow assignment satisfying the first principle of
Wardrop was proposed. LeBlanc et al. [2] successfully solved the model with the
Frank-Wolfe algorithm. Smith and Dafermos et al. [3–5] proposed more general-
ized nonlinear congruence model and variational inequality model.

Merchant et al. [4] put forward the concept of dynamic traffic flow assignment
for the first time. The macroscopic model then takes the whole vehicle flow as
the research object and analyzes the traffic flow characteristics macroscopically,
such as METACOR model of Diakaki et al. [6].

The traffic flow assignment models of now can be divided into 3 types. for tra-
ditional part, Zhou et al. [7] proposed the congestion-based C-logit SUE model,
they provide two equivalent variational inequality formulations and solved it.
For the game-based part, Messmer et al. [8] propose a method based on feed-
back dynamic traffic assignment (DTA) strategy. For the artificial intelligence
part, Varia et al. [9] used the technique of genetic algorithms (GAs) to minimize
the global travel cost in the network, and Hongwei et al. [10] used a random
multidimensional mutation particle swarm optimization algorithm (RMMPSO)
to solving the problem.



A Road Traffic Guidance Service Based on Deep Reinforcement Learning 355

Table 1. Symbol definition.

Symbol Definition

N Set of nodes

A A set of directed arcs (segments)

R A set of origin nodes of demand, R ⊆ N

F A set of destination nodes of the demand, F ⊆ N

r A origin node, r ∈ R

s A destination node s ∈ F

qrs Travel demand between starting and ending points of OD

xa Traffic flow at segment a

ta Traffic impedance of segment a, where a ∈ A

Kr·s OD pair for the set of all paths between r - s, where k ∈ Kr·s

fr·s
k OD to the traffic flow of path k in r - s

δΓ ·S
a,k The correlation between the road section and the path in r - s of OD pairs,

where δr·sa,k = 1, then the section a is on the path δr·sa,k = 0, indicating t the
section a is not on the path k

Da Reduction rate of section a

3 Proposed Method

3.1 Problem Definition

Target Function. Similar to Beckmann et al. [1] constructed a mathematical
programming model of wardrop. Our Target function is as follow:

min Z(x) =
∑

a

xata (xa) (1)

it means minimize the time costs of all cars. Around this goal, we decide to
change the probability of path travelers selection, to minimize global costs. The
probability of travelers selection is expressed as follows, where P rs

k is the prob-
ability choosing path k of OD pair r-s:

P prs

k · qrs = frs
k (2)

∑

k∈Krs

frs
k = qrs (3)

The traffic flow of a single road segment a is calculated as follows:

xa =
∑

rs

∑

k

frs
k δrs

a,k (4)



356 K. Chen et al.

The initial user routing ratio is:

P rs
k = Pr (Crs

k ≤ Crs
l ) (5)

where, Cn
k , Crs

l is travel time estimation of the route k, l of traveler.
We also divide urban areas into the grids for reducing the complex of the

problem, when a traveler passing through the target grid will be guided. In this
paper, grid size is set contains 3–5 roads. When conducting the calculation of
route probability, the reduction rate Dk is given according to the traffic load
between the nearby regions, as shown in the following formula:

Da = γ · AV G (xl)
AV G (xk)

(6)

where k is the roads in the target grid, l is all the roads in the nearby grids. The
way of the decay rate take effect is selecting the maximum decay rate of a road
in the path, as the decay of this path, then the selected probability of this path
will decay by this rate, such as:

frs
i =

Di · frs
i∑

k∈Krs Dk · frs
k

(7)

The guidance decision based on the cloud agent is to decide when and which
grid to calculating the decay. The agent finally learns the transform function:

T (St)
a→ St+1 (8)

where St represents the global condition, t represents the time, and a represents
the guide action on the target region.

3.2 Model Structure

To obtain the decision under the current traffic condition, the input of the model
is the current traffic condition, and the output is a action of guidance. It is
divided into three parts: convolution neural network, Monte Carlo search, and
simulator.

Convolution Neural Network Part. CNN part is used to evaluate the situ-
ation from a global perspective. The structure of the network is divided into 3
layers and 2 heads, 3 layers are 5 × 3 × 3 × 32 filter, 32 × 3 × 3 × 64 filter, and
64 × 3 × 3 × 128 filter, 2 heads are 2 fully connected layers down sample to 10
and 1 dimension, for policy and value head respectively. The input of CNN is a
traffic condition representation, which is a tensor of W*H*5, it stores the speed
value in a period t of all road. W and H represent the number of the grid, and 4
represents the nearest four timeslots. From it can mine the rule of urban traffic.
At the last dimension, represent the current guided state, formatted as W*H*1
[11].

Then the training data is organized as (st, πt, zt) for all the time t during
simulating, and the new neural network fθi

(s) is trained and used for the next



A Road Traffic Guidance Service Based on Deep Reinforcement Learning 357

Fig. 2. Model architecture.

simulation round. The network parameters are trained by gradient drop, and
the objective function is as follows (Fig. 2):

l = (z − v)2 − πT log p + c‖θ‖2 (9)

It is the sum of the root mean square and cross-entropy. where c is a parameter
controlling the level of L2 weight regularization used to prevent overfitting [12,
13].

The Monte Carlo Part. The output of CNN part be used to help to search
traffic state in the Monte Carlo part. In Specifically, each edge (s, a) in the search
tree stores a prior probability P(s, a), a visit count N(s, a), and an action value
Q(s, a). [12,13]. Each rollout starting from the root node, three steps are then
carried out: the guidance selection, the situation expanding and updating the
Monte Carlo tree are performed.

The guidance selection depends on the edge value Q(s, a) + U(s, a) with the
maximum criteria.

U(s, a) = cpuct · P (s, a)

√∑
b N(s, b)

1 + N(s, a)
(10)

Each time a node is traversed, the count of the node is added, and the
action value Q (s, a) of the node is updated with the action value Q(s, a) =
1/N(s, a)

∑
s′s,a→s′ V (s′). When the terminal node is reached (simulation 1.5 h

in this paper), the action value is updated by back propagation, W (st, at) =
W (st, at) + v,Q (st, at) = W (st, at). After the simulation is over, the final guide
action selection is made, that is,

π (a|s0) = N (s0, a)1/τ
/
∑

b

N (s0, b)
1/τ (11)



358 K. Chen et al.

4 Experiment

4.1 Simulator Setting

The simulator is designed for simulating the dynamic traffic flow, user road
selection, and road congestion. Details include building road topology, defining
lane capacity, setting steering wait, setting exceed waiting of road capacity. The
traffic flow model used is the BPR function:

tnd = tn0

[
1 + α

(
qn

Cn

)β
]

(12)

To perform the horizontal comparison, we selected a relatively small urban
area to experiment, the size of the area is 6 km * 4.8 km to reflect the effect of the
algorithm on congestion avoidance and balanced utilization of traffic resources,
the simulation time lasts 1.5 h. In the road network structure, origin as the
starting point is shown as the white circle in Fig. 3, intersection of the road
as a black circle, link as a black line segment, green triangle as the main travel
endpoint placed on the edge, where origin acts as the vehicle emission point. 80%
of the travel endpoint is at the green triangle, the remaining 20% are randomly
distributed on the black circle Intersection point.

Fig. 3. Traffic network. (Color figure online)

The total duration of the simulation is 90 min, each origin output 20 cars per
minute, the total number of cars is 18,000 (Fig. 4).

4.2 Result Analysis

There are four different models in our experiment, the average selection model,
distance weighted selection model, game-based model Bang-bang [8], and deep
reinforcement learning model DRLTraffic (ours), the result of model are shown
in Table 1. In terms of the execution efficiency of the model, we can see that
in a certain scale of the urban area, the DRLTraffic model benefits from the
advantages of GPU and shows the real-time performance, while the shortest
path and random routing model do not need additional computation, so it is



A Road Traffic Guidance Service Based on Deep Reinforcement Learning 359

Fig. 4. Model result campare.

also very fast. On the other hand, the Bang-bang model needs to solve the Nash
equilibrium every time, and the speed is relatively slow. In terms of guidance
effect, we can see that there is no guidance in the shortest path selection and
random selection model, resulting in local congestion and imbalance of resource
utilization, so the average traffic time and throughput are worse than the other
two methods. The Bang-bang model aiming at user optimization without using
global information, but still gets good results. The DRLTraffic model aiming
at global load balance, finally achieve the highest throughput and the shortest
average traffic time (Table 2).

Table 2. Model performance & result.

Model name Execution time(/ms) Average travel
time(/secs)

Random selection (uniform distribution) 46.66 800.92

Shortest selection (weighted distribution) 33.33 521.94

Bang-bang 16.601 440.40

DRLTraffic (ours) 32.16 415.66

5 Conclusion

This paper introduces a region-based deep reinforcement learning and Monte
Carlo tree search method to provide center-based user travel guidance cloud ser-
vices. With the help of the Monte Carlo tree search, the global optimal travel
route can be solved, and achieved the global road load balance state. The exper-
iment results shows, due to the generalization ability of the deep learning model,
the deep learning model has more robustness and optimization performance in
large-scale computing tasks, it gains the good result.



360 K. Chen et al.

Acknowledgement. This work was supported in part by the Natural Science Foun-
dation of China under Grant 61876023 and Grant 61902035, and in part by the Natural
Science Foundation of Beijing under Grant 4181002.

References

1. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of trans-
portation, Technical report (1956)

2. LeBlanc, L.J., Morlok, E.K., Pierskalla, W.P.: An efficient approach to solving the
road network equilibrium traffic assignment problem. Transp. Res. 9(5), 309–318
(1975)

3. Smith, M.J.: The existence, uniqueness and stability of traffic equilibria. Transp.
Res. Part B: Methodol. 13(4), 295–304 (1979)

4. Dafermos, S.: Traffic equilibrium and variational inequalities. Transp. Sci. 14(1),
42–54 (1980)

5. Dafermos, S.: An iterative scheme for variational inequalities. Math. Program.
26(1), 40–47 (1983)

6. Diakaki, C., Papageorgiou, M., McLean, T.: Simulation studies of integrated cor-
ridor control in Glasgow. Transp. Res. Part C: Emerg. Technol. 5(3–4), 211–224
(1997)

7. Zhou, Z., Chen, A., Bekhor, S.: C-logit stochastic user equilibrium model: formu-
lations and solution algorithm. Transportmetrica 8(1), 17–41 (2012)

8. Messmer, A., Papageorgiou, M.: METANET: a macroscopic simulation program
for motorway networks. Traffic Eng. Control 31(9) (1990)

9. Varia, H.R., Dhingra, S.L.: Dynamic optimal traffic assignment and signal time
optimization using genetic algorithms. Comput.-Aided Civil Infrastruct. Eng.
19(4), 260–273 (2004)

10. Hongwei, G., Qiaoxia, Z., Fan, W.: Solving traffic assignment problem by an
improved particle swarm optimization and a segmented impedance function. In:
Park, J., Kim, J., Zou, D., Lee, Y. (eds.) Information Technology Convergence,
Secure and Trust Computing, and Data Management. LNEE, vol. 180, pp. 76–86.
Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-5083-8 12

11. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide
crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence
(2017)

12. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–489 (2016)

13. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550,
354–359 (2017)

https://doi.org/10.1007/978-94-007-5083-8_12


expanAI: A Smart End-to-End Platform
for the Development of AI Applications

Yongmei Wei(&) and Jia Xin Low

Nanyang Polytechnic, 180 Ang Mo Kio Avenue, Singapore, Singapore
Sophia_wei@nyp.edu.sg

Abstract. Building Modern Artificial Intelligence (AI) applications is a com-
plicated process involving data preparation, model selection, and intensive
training over large-scale data. It usually requires expertise in various domains,
namely resource management, distribute storage, parallel computing, machine
learning and deep learning. Acquiring all these skills for many small and
medium companies to build an efficient AI application can be extremely hard.
ExpanAI is proposed as a smart end-to-end platform for building efficient AI
applications. ExpanAI provides a set of microservices to abstract away low-level
implementation, like infrastructure and resource management, from the end
users. Frequently used middleware, such as Spark, Kafka, Cassandra, etc., are
first-class residences in the ExpanAI and are always available to users. Fur-
thermore, ExpanAI introduces a smart interpreter to provide easy-to-use inter-
face to execute data-intensive jobs. This interpreter automatically optimizes the
execution plans according to the profile of the data and available resources.
Lastly, a workflow optimization recommender is also proposed to conduct self-
analysis over all jobs and automatically generates reports to suggest ways to
improve performance or to avoid failures.

Keywords: Artificial intelligence � End-to-end � Optimization � Workflow

1 Introduction

The creation and consumption of data continues to grow by leaps and bounds. To
harvest the value brought by the Big Data, however, there are many challenges.

Firstly, Building AI applications is a complicated process. A typical AI workflow
starts from building proper infrastructure, followed by managing various resources.
Data preparation including cleansing then can be conducted by using various
tools/systems. After data preparation, AI applications are developed through applying
different algorithms to model the data. Each stage in the AI workflow requires different
tools and skillsets.

Secondly, it is challenging to build AI applications with high efficiency. A data
scientist may not be able to efficiently utilize the dataset prepared by data engineers, if
he/she is not aware the impact of the underlying data format on the chosen model.
While, when data engineers work on their data pipelines, they may not know what data
format that data scientists actually need. Although the world has witnessed a large
proliferation of tools/system [2–8] for different steps in developing AI applications, the
industry still lacks a platform to merge the gap between multiple data teams.

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 361–365, 2020.
https://doi.org/10.1007/978-3-030-38651-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_29&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_29


In this paper, we present expanAI, a platform to ease the AI application develop-
ment. ExpanAI divides the platform into three layers: Resource management layer,
service layer, and optimization layer. By applying automation and machine learning
techniques, expanAI let users to focus more on the Please note that the first paragraph
of a section or subsection is not indented end results rather than the cluster management
and job optimization. The detailed design of ExpanAI is presented in Sect. 3.

2 Related Work

In both academia and industrial worlds, tremendous effort has been put to address the
challenges raised by Big Data processing A number of cloud-based services or platform
[2, 3] has been developed. For example, Amazon Web Service (AWS) launched Elastic
MapReduce (EMR) to provide managed Hadoop framework [4] to make Hadoop
platform instantly available to its users. Big Data companies such as Cloudera and
Hortonworks expanded rapidly in the past several years and standardized the big-data
systems across multiple industries. IBM launched Data Science Experience (DSX) in
2016. DSX integrates with tools from different domains such as RStudio, Spark,
Jupyter notebook.

The existing platforms do not provide any tools to automatically improve the
efficiencies of the AI applications built. The existing solutions heavily rely on the
experience of the users. If the users lack experience handling large scale data sets, the
performance of the AI application developed would be largely affected. The focus of
ExpanAI is on the “efficiency” side. ExpanAI takes the following approaches elabo-
rated in Sect. 3 to simplify the development process and improve the efficiency of the
end products.

3 Approach

Figure 1 shows the system architecture of the proposed platform. ExpanAI contains
three layers, namely resource management layer, service management layer and opti-
mization layers. Each layer contains a few microservices.

3.1 Resource Management

Resource management layer manages raw resource. Raw resources refers to physical
servers or virtual instances from Cloud providers, and special computing devices like
GPUs. The mission of the resource management is to simply the work of IT and Data
engineers.

Kubernetes [3] is used here to dynamically group available raw resources into
manageable resources. Microservices based on Ansible [7] are deployed in this layer,
which is responsible to scale up and down the cluster and manage system configura-
tions. Kubernetes standardized most of the traditional IT tasks, like monitoring,

362 Y. Wei and J. X. Low



logging, and alerting, as well as modern service management [3]. These standard tools
and systems considerably lowered the effort to build an autonomous and self-healing
platform.

3.2 Service Management

Service management layer has three types of operators.

• Workspace operators: Provide workspace environment to users. Users interact with
other ExpanAI service via web-based UIs (Jupyter Notebook and Zeppelin). For the
user workspace, the docker image is pre-populated with popular machine learning
and deep learning library/software packages, such as Pandas, Scikit-learn, and
TensorFlow.

• Data analytics and Processing operators: Provisioning data processing systems like
Spark and Hadoop.

• Storage operators: Exposing shared storage system like HDFS and Kafka to users.
With the help of these operators, ExpanAI can almost instantly provide a working
environment with pre-configured connectors to various sub-systems to users.

3.3 Optimization Layer

Optimization layer is composed of two microservices, one is Smart Interpreter which
does job-level optimization, and the other is Workflow Optimization Recommender
that focus on analyzing the entire workflow and giving tuning advices.

Smart Interpreter
Figure 2 shows the components of Smart Interpreter. ExpanAI uses SQL as the main
interface for user to describe their data processing and modeling logics. ExpanAI takes
one step further to extend standard SQL with machine learning functions. Such
extension allow user to use one standard approach to handle both ETL and modeling
jobs, without shifting among various tools.

Fig. 1. Architecture of ExpanAI platform

expanAI: A Smart End-to-End Platform for the Development of AI 363



Figure 2 shows the components of Smart Interpreter. expanAI uses SQL as the main
interface for user to describe their data processing and modeling logics. ExpanAI takes
one step further to extend standard SQL with machine learning functions. Such
extension allow user to use one standard approach to handle both ETL and modeling
jobs, without shifting among various tools.

With the extended SQL functions, a new parser is developed to translate the
extended SQL function to platform specific implementation. In ExpanAI, Spark is
integrated in the first phase and the extended SQL function is planned to execute as
Spark jobs. expanAI identified a few optimization scenarios: Model Parallelizing,
Batch-to-Stream Converter and Rule-based optimization.

Model Parallelizing is required when massive models are required to be trained. In
nature, the big data processing platform such as Spark enables the parallelism on
massive data, Unfortunately, the parallelism does not happen naturally if massive
number of models are required to be trained parallelly. The proposed Model Parallelize
utilizes the vectorized User Defined Functions (UDFs) [8] to allow training massive
number of models efficiently.

Batch-to-Stream Converter is applied to applications dealing with time series
data. This is because there are many cases, time series are often stored in block files
where records are sorted by timestamp. If users are not aware of this case and use batch
query to process the data, they would not be able to utilize the sorted data efficiently.

Rule-based optimization is to incorporate best practices. The best practices
included in the initial phase is the data shuffling management. One key factor in big data
processing is shuffling efficiency. The statistics of the data and the types of operations on
the data both influence the final performance. ExpanAI applies pre-proven rules to take
care of data shuffling. In the future, another key factor to select proper machine learning
algorithmic implementation will also be incorporated as it has been shown in [1] that
different implementation of machine learning algorithms to realize the same purpose can
exhibit significant performance difference for various data set.

Workflow Optimization Recommender
Figure 3 shows the architecture of Workflow Optimization Recommender. There are
two major components – self discovery and self analysis. The self-discovery compo-
nent is responsible for discovering different aspects of the involved data and required

Fig. 2. The architecture of Smart Interpreter

364 Y. Wei and J. X. Low



resources, generating profiles. With this information, together with job status, the self-
analysis component automatically analyzes the reasons of failures and/or cause of poor
performance.

4 Conclusion

ExpanAI is proposed to provide an easy-to-use end-to-end AI workflow management
platform. The low level details on the infrastructure and resources management have
been abstracted way. Optimization is also provided to ensure the efficiency of the AI
applications developed.

References

1. Evan, R.S., Shivaram, V., Tomer, K., Michael, J.F., Benjamin, R.: KeystoneML: optimizing
pipelines for large-scale advanced analytics. In: IEEE International Conference on Data
Engineering (2017)

2. Apache Spark. http://spark.apache.org/
3. Kubernetes. https://kubernetes.io/
4. TensorFlow. https://www.tensorflow.org/
5. Helm. https://helm.sh/
6. Practical advice for analysis of large, complex data sets. http://www.unofficialgoogle

datascience.com/2016/10/practical-advice-for-analysis-of-large.html. Accessed 31 Oct 2016
7. Venezia, P.: Review: puppet vs. chef vs. ansible vs. salt
8. http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-

ansible-vs-salt.html
9. Lijin: Introducing pandas UDF for pySpark. https://databricks.com/blog/2017/10/30/

introducing-vectorized-udfs-for-pyspark.html

Fig. 3. The architecture of workflow optimization recommender

expanAI: A Smart End-to-End Platform for the Development of AI 365

http://spark.apache.org/
https://kubernetes.io/
https://www.tensorflow.org/
https://helm.sh/
http://www.unofficialgoogledatascience.com/2016/10/practical-advice-for-analysis-of-large.html
http://www.unofficialgoogledatascience.com/2016/10/practical-advice-for-analysis-of-large.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html


Smoke and Stress Tests for Travel Service
Applications via LoadRunner

Chau-Yi Chou(&), Yu-Bin Fang, Shuen-Tai Wang, and Fang-An Kuo

National Center for High-Performance Computing, Hsinchu, Taiwan
cychou@nchc.narl.org.tw

Abstract. The web applications have now become one of the most important
parts of people’s life. It entered the time-to-market age, that is, the faster
released the products, the more the chances that it will increase the company
potentialities. System stability test plays an important role of improving the
service quality and developing these web applications. There were three well-
known strategies to solve this problem: developing application program inter-
face to measure the response time, through open source softwares (e.g. Jmeter),
and via the commercial packages (e.g. LoadRunner). LoadRunner is an
industry-standard package that has the advantages of graph-based analysis,
statistical analysis of the measured data, service-level agreement, and the
loading analysis for the client end compared with other strategies. This paper
demonstrated that it monitored the service quality of web applications using the
smoke and stress tests for travel service applications via LoadRunner. And we
proposed a strategy for on-line web server testing. We hope that the practical
experience and the information are useful for researchers.

Keywords: Smoke test � Stress test � System stability test � LoadRunner �Web
application

1 Introduction

We enjoy the benefits of convenience via web applications, for example, on-line
shopping web service, social network (Facebook, Line, Twitter, etc.), virtual group on-
line games, data process (upload/download/editor) via cloud, mail service, and so on. It
entered the time-to-market age, that is, faster released the products more potentially.
System stability test [1] plays an important role of improving service quality and
developing these web applications. Programmers easily understood the user-friendly of
the web applications from the viewpoint of end-users, clear measured the transaction
time (Application Program Interface Response time), and employed the stress tests.
That is, do our developing web applications inherit the user-friendly characteristics,
completeness, usefulness, and stability? There are well-known strategies to discover
this problem. Developing programmers implemented the application program interface
(API) to measure the elapsed time between the client HTTP request and the server
response, for example, NCHC TWCC-CLI [2]. The open-source software may be often
adopted, for example, Jmeter [3]. Moreover, we should employ the commercial
packages, such as LoadRunner [4].

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 366–373, 2020.
https://doi.org/10.1007/978-3-030-38651-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_30&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_30&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_30&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_30


The researchers [5–12] show that the commercial package (LoadRunner) is an
industry-standard software. This package has the advantages of graph-based analysis,
statistical analysis of the measured data, service level agreement (SLA), and the loading
analysis for the client end compared with other strategies. LoadRunner contains three
main modules to simulate different user behavior, for example, via different brewers,
different think time, and various request options. VuGen module created the working
scripts (programs) each virtual user (Vuser). Controller module created the executing
scenarios which decide the number of the virtual users, performed period, the Vuser
behavior, and so on. Finally, analysis module presented graph-based analyzing tools.

Furthermore, the recorded scripts could be modified by VuGen GUI or C or
JavaScript programming for various heavier; for instance different request option,
different think time, adjustable parameters, and programmable for dynamic web
response. Controller module defined the number of virtual users, Vuser behavior (the
models of the virtual users entered/left computation and the interval between two
virtual users), the number of execution or the period of execution, the service level
agreement, and so on.

The replay environment parameters let us simulate the user behavior, for example,
random think time, the number of iterations, the type of network, the executing pro-
gram modules, standard or more detail output for debugging the bugs, etc. The working
script with the replay environment parameters became the cornerstone of the controller
module. This module presented interactive monitor tools at running status, such as the
status (initial/running/stop/fail) of virtual users, error messages and the related docu-
ments, hits per second, throughput, the overloading of the client ends, and so on. The
analysis module generated these graph-based and statistical reports for service level
agreements, the transaction response time, hits per second, throughput, etc.

Niranjanamurthy and co-researchers [9] compared the functionality of Loadrunner
with JMeter. Aggarwal and Solanki [8] employed the parameterization and cus-
tomization features of VuGen GUI to conveniently manage various scripts. Khan and
Amjad [6] presented the performance evaluations of Loadrunner and CA Wily for the
number of hits per second and throughput on different the number of the virtual users.
This paper demonstrated that it monitored the service quality of web applications using
the smoke and stress tests for travel service applications via LoadRunner. And we
proposed a strategy for on-line web server testing. We hope that the practical experi-
ence and the information are useful for re-searchers.

2 Testbed

We adopted the testbed which consisted of the Intel Core i5-6500 CPU (Central
Processing Unit) running at 3.2 GHz, 4 cores shared 8 GB memory and 1 TB hard
disk, and Windows 10 Pro operator system. Web Tours 1.0 with strawberry-perl-
5.10.1.0 [13] is our web tours sample application system. We employed the
LoadRunner 12.60 trial version, that is, the controller module was limited in 50 Vusers
simulation.

Figure 1 depicted the LoadRunner flowchart. First of all we installed these pack-
ages and planned the anchors and service agreement levels, then we recorded the script

Smoke and Stress Tests for Travel Service Applications via LoadRunner 367



and set anchors via VuGen (Virtual User Generator). If it failed, it finished this job.
That is, LoadRunner did not measure this web site; for instance AWS portal systems.
We repeated the replay function (with different environment parameters, programming,
and parameterization via GUI) of VuGen until met our plans. This scripts and their
replay environment setting were cornerstones for entering the controller module. We
defined the scenarios including the number of the virtual users, performed period, the
Vuser behavior, the service level agreements (SLAs), etc. On executing phase we
monitored the interactive status via GUI. It included the initial/running/stop/fail status
of virtual users, error message and the related documents, hits per second, throughput,
the overloading of the client ends, and so on. Finally, analysis module presented graph-
based reports for service level agreements, the transaction response time, hits per
second, throughput, etc.

3 Smoke Test

We defined 6 anchors (check points) for web application performance evaluations,
transaction response time and service level agreements. C program was written as

lr_start_transaction… 
HTTP request and response… 

lr_end_transaction… 

Fig. 1. Flowchart of our study.

368 C.-Y. Chou et al.



Figure 2 depicted the login anchor for simulating the system stability when mul-
tiusers entered the system simultaneously. The logout anchor was order to measure the
transaction response time on multiusers exited the system at the same time. The Lunch,
booking, and itinerary anchors presented the web service preparation time, response
time for user booking, and itinerary response time, respectively.

We defined the “search flights button” anchor as the web service response time of
the left-hand-side sub-figure of Fig. 3 after pushed the “continue” button. The right-
hand-side sub-figure of Fig. 3 demonstrated a search for the ticket from Los Angeles to
Paris on 10 July 2019 with a person, Coach, none seat preference, and a single trip.

Table 1 showed the results on 1 virtual user (Vuser). The Lunch anchor spent the
longest time than other anchors. The Lunch response time was around 2 times of login
(the second place). The logout and itinerary presented near response time.

4 Stress Test

We simultaneously employed 50 virtual users to use the travel service applications
during 1 h for stress tests. It was random allowed to simulate the different browsers, for
example, IE, Chrome, Firefox, and so on, seat preference (Window, Aisle, None),
departure/return date, types of seat (first, business, coach), single trip or roundtrip, etc.
We also defined the service level agreements (SLAs) as any the transaction response
time of anchors less than 10 s.

Fig. 2. Login anchor.

Fig. 3. Search flights button anchor.

Smoke and Stress Tests for Travel Service Applications via LoadRunner 369



Figure 4 demonstrated the results on 50 virtual users (Vusers) simultaneously. We
assumed that the maximal transaction response time occurred in the stress tests. Two
anchors (Lunch, login) failed at service level agreement, that is, the transaction
response time of the two anchors were more than 10 s. It mainly because that 50 virtual
users simultaneously employed the travel service applications caused the web service
to spend more time for the web service preparation time and login the web site. Form
these statistical analysis (the average, standard deviation, and 90%) we found that only
few failed the service level agreements. The transaction response time of the two
anchors (logout and booking) were big more than 1 Vuser. Figure 5 depicted the
loading of the web site near at 750 KB/s of throughout.

5 A Strategy for on-Line Web Service via LoadRunner

Smoke tests are to define the anchors while stress tests are for the web service
benchmarks via heavy loading. The stress test was suitably applied to off-line servers. It
is mainly because that the servers significantly decrease service quality and even crash.
Therefore, the stress test was not suitable for an on-line server. We proposed a strategy
for on-line servers via LoadRunner. As shown in Fig. 6, we suppose that the simulation
required around 300 s each iteration, the interval time = 10 s and the maximal trans-
action response time occurred in the stress tests. It spent 600 s for two iterations;
therefore, every anchor was performed at least once during heavy loading. On the other
hand, the on-line servers will be significantly a decrease in loading.

Table 1. Results on 1 virtual user.

Anchor (check point) Transaction response time (sec.)

Lunch 0.361
login 0.182
Search flights button 0.122
Booking 0.113
Itinerary 0.146
Logout 0.159

Fig. 4. Results (SLA Status) on 50 virtual users.

370 C.-Y. Chou et al.



LoadRunner defined the parameter (Think Time) to simulate the thinking time
while the end-users used web applications. We recommended the random value
between a half and 2 times of recorded one. Figure 7 illustrated the results of an on-line
web service application for our proposed strategy. The abnormal phenomenon occurred
at 10 virtual users.

What is different the numbers of iterations on replay environment settings of the
VuGen module from the interval at controller execution settings? Assume a job spent
5 min each iteration. Case1: VuGen defined 2 iterations with exit after complete jobs
via controller modules. Case2: VuGen defined 1 iteration with a scenario of 10 min of
the execution interval. If they were successfully performed, the both cases showed the
same simulations. But they failed, Case1 performed 2 iterations and finished; Case2
was repeatedly executed 10 min and caused the on-line web service a big loading.

Fig. 5. Throughout on 50 virtual users.

Fig. 6. A strategy for on-line web service via LoadRunner.

Smoke and Stress Tests for Travel Service Applications via LoadRunner 371



6 Conclusion

We defined 6 anchors (Lunch, login, booking, itinerary, Search Flights Button, logout)
at smoke test. The Lunch anchor spent the longest time than other anchors. The second
place occurred at the login anchor. We employed 50 of virtual users at 1 h execution
interval for stress tests and defined the service level agreement as the transaction
response time of anchors less than 10 s. It simulated the different browsers, for
example, IE, Chrome, Firefox, and so on, seat preference (Window, Aisle, None),
departure/return date, types of seat (first, business, coach), single trip or roundtrip, etc.
Two anchors (Lunch, login) failed at service level agreement. It mainly because that
50 virtual users simultaneously employed the travel service applications caused the
web service to spend more time for the web service preparation time and login the web
site. Form these statistical analysis (the average, standard deviation, and 90%) we
found that only few failed the service level agreements. The transaction response time
of the two anchors (logout and booking) were big more than 1 Vuser. We also pro-
posed a strategy for on-line web server testing. We hope that the practical experience
and the information are useful for re-searchers.

References

1. Prasad, K.V.K.K.: Software Testing Tools: Covering WinRunner, SilkTest, LoadRunner,
JMeter, TestDirector and QTP with Case Studies. Dreamtech Press (2007)

2. NCHC TWCC-CLI. https://github.com/TW-NCHC/TWCC-CLI
3. Kaur, N., Bahl, K.: Performance testing of institute website using Jmeter. Int. J. Innov. Sci.

Eng. Technol. 3(4), 534–537 (2016)
4. Zhang, H., Zhang, S., Li, X., Zhang, P., Liu, S.: Research of load testing and result

application based on LoadRunner. In: ITCS 2012 (2012)
5. Fang, Y.-B., Chou, C.-Y., Kuo, F.-A., Wang, S.-T.: Loading analysis of cloud computing

platforms. In: TANET 2019 (2019, in press)
6. Khan, R., Amjad, M.: Web application’s performance testing using HP LoadRunner and CA

Wily introscope tools. In: ICCCA 2016, pp. 802–806 (2016)

Fig. 7. Results of an on-line web service application.

372 C.-Y. Chou et al.

https://github.com/TW-NCHC/TWCC-CLI


7. Khan, R., Amjad, M.: Performance testing (load) of web applications based on test case
management. Perspect. Sci. 8, 355–357 (2016)

8. Aggarwal, J., Solanki, A.: Performance testing on web application through HP loadrunner
with parameterization and customization. J. Web Eng. Technol. 3, 1–14 (2016)

9. Niranjanamurthy, M., Kiran, M.S., Anupama, S., Dharmendra, C.: Comparative study on
performance testing with JMeter. IJARCCE 5, 70–76 (2016)

10. Erinle, B.: Performance Testing With JMeter 2.9. Packt Publishing (2013)
11. Meier, J.D., Farre, C., Bansode, P., Barber, S., Rea, D.: Performance Testing Guidance for

Web Applications. Microsoft Corporation (2007)
12. Fahrurazi, F., Ibrahim, S., Suffian, D.: The design and execution of performance testing

cloud-based system. IJSET 1, 19–25 (2014)
13. Web Tours Sample Application. https://marketplace.microfocus.com/appdelivery/content/

web-tours-sample-application

Smoke and Stress Tests for Travel Service Applications via LoadRunner 373

https://marketplace.microfocus.com/appdelivery/content/web-tours-sample-application
https://marketplace.microfocus.com/appdelivery/content/web-tours-sample-application


Privacy-Preserving Content-Based
Publish/Subscribe Service Based on Order

Preserving Encryption

Mingdong Li1, Qifeng Luo2, Lu Wang1, Ruisheng Shi2(&),
and Jinqiao Shi2

1 Aisino Corporation, Beijing, China
{limingdong,wanglu1}@aisino.com

2 Beijing University of Posts and Telecommunications, Beijing, China
{luoqifeng,shiruisheng,shijinqiao}@bupt.edu.cn

Abstract. The publish/subscribe model offers a loose-couple communication
paradigm for large-scale distribute applications. Content-based publish/subscribe
system allows publishers send events with attributes to admin sever, which are
called broker, and subscribers can send subscriptionswith attributes’ constraints to
broker. The brokers can match the events with subscriptions and then forward the
events to the matched subscriptions’ sender depends on the results of matching.
However, subscriptions reveal subscriber’s privacy information and subscribe
strategy, the events also include valuable information. And to reduce the cost, the
broker might be deployed on third party’s servers where server owners or mali-
cious entities may access the subscriptions and events, and then may lead to the
leakage of privacy information. In this paper, we propose an event matching
approach based on order-preserving encryption. The experiments show that our
approach privacy-preserving event matching performance significantly.

Keywords: Publish/subscribe system � Order-preserving encryption � Privacy-
preserving

1 Introduction

The publish/subscribe system is a loose-couple communication paradigm. The senders
i.e. publishers and the receivers i.e. subscribers exchange the message through the
overlay network. Publishers do not send the messages called events directly to the
subscribers, but send the events to the interconnected brokers and let them forward the
events to the subscribers depends on the result of matching the events with subscriber’s
interests. Subscribers also send their interests, which are called subscriptions to the
broker instead of the publishers directly. So, in the publish/subscribe system, publishers

This work is supported by Key Research and Development Program for Guangdong Province under
grant No. 2019B010137003, the Fundamental Research Funds for the Central Universities (Grant
no. 24820192019RC56).

The original version of this chapter was revised: The Grant no. should be “24820192019RC56”, not
“2018RC56”. This has now been corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-38651-1_33

© Springer Nature Switzerland AG 2020, corrected publication 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 374–381, 2020.
https://doi.org/10.1007/978-3-030-38651-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_31&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_31&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_31&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_33
https://doi.org/10.1007/978-3-030-38651-1_31


don’t know which subscribers will get the events and subscriber don’t know which
publisher will send events to them and only broker know where the subscriptions or
events will be sent.

However, to save the cost, the broker might be deployed on the third party’s server,
the server owners and malicious entities may access the subscriptions and events in the
brokers and then causing the leakage of information. The subscriptions may include the
sender’s subscribe strategy and the events might also include valuable information as
well. For example, in a stock system, the subscriptions may include the investors’
investment strategy, when malicious entities access the brokers, they can get the
subscriptions from investor, know which stock has a good Appreciation space, and then
cause economic loss to the investors.

So, it’s important to protect the confidentiality of events and subscriptions. It’s a
challenge to let broker operate encrypted message. When values are encrypted, the
order and arrange of values is removed as well and it’s hard for broker to match the
events with subscriptions’ filter without accessing the original value.

Many researches have already given some solutions to the privacy protection in
publish/subscribe system. Choi et al. [1] present an encrypt algorithm called Asym-
metric Scalar-product Preserving Encryption (ASPE). Although ASPE can do strict
order-preserving range queries, it spends too much time on matching operation because
ASPE changed the attribute’s value, for example an integer value into a 2*2 matrix and
then increase the program complexity. For broker need to handle millions of matching
processes, the time cost of event matching process increases significantly. Barazzutti
et al. [2] use bloom-filter as the pre-filter to decrease the invoke frequency of ASPE.
However, the pre-filter can only process the “equality” constraints.

In this paper, we propose a privacy-preserving event matching approach based on
OPE for content-based publish/subscribe systems. Order-Preserving Symmetric
Encryption (OPE) [3] is an encryption algorithm that not only encrypt the data but also
allows indexing and query processing to be done exactly and as efficiently as for
unencrypted data. Our approach can protect the confidentiality of subscription and
publication messages and keep the efficiency of matching operation as well.

2 Design and Implementation

The main Idea of Order-Preserving Symmetric Encryption (OPE) is that if x < y, then
Ekey(x) < Ekey(y), where E is the OPE algorithm, key is a symmetric encryption key
[3]. About the system, we use PADRES [4] as the test pub/sub system. Because there’s
no difference between publisher and subscribers in PADRES, we set a default sym-
metric encryption key in the clients. When the filter’s attribute’s value’s type is integer,
it’s easy to use OPE to encrypt the data and broker can match the events with sub-
scriptions as matching unencrypted data.

Algorithms 1 and 2 gives the process of encrypting the subscriptions and events.
The predicateMap is a key-value data structure, the key is attribute’s name and the
value is a data structure which include attribute’s value and attribute’s operator
(equality, greater, lower, etc.); the pairMap is a key-value data structure in events,
where the key is attribute’s name and the value is attribute’s value.

Privacy-Preserving Content-Based Publish/Subscribe Service 375



Algorithm 3 gives the process of decrypt the events. We didn’t give the decrypt
algorithm of subscriptions because in the whole overlay network, neither broker nor
client needs to know the original message of subscriptions except the subscription’s
creator. What brokers need to do is matching the events with subscriptions in the cipher
environment.

When the type is String, we change the string data into a key-value data structure.
The key is a long type value and it’s equal to the combination of the string’s letters’
ASCII code. The value is an array form constructed by ASCII code. For example, when
the string is “test”, the string’s value is [116,101,115,116] where each integer is the
ASCII code corresponding to each letter, and the string’s key is “116101115116” and
then the subscriber encrypts both string’s key and string’s value by OPE. Even when
the filter’s attribute’s constraint is “prefix equal”, “suffix equal”. It’s also easy for
brokers to match the events with the subscriptions.

376 M. Li et al.



Thematching processworks as shown inAlgorithm 4. Predict is a data structure in the
subscriptionswhich include attribute’s value: the key-value data structure of the string and
attribute’s operator (equality, prefix, suffix, etc.) and StringMap is the key-value data
structure of the original string in the event. When the attribute’s constraint is “equality”,
broker just to compare if the string’s key in subscription is equal to the string’s key in event
and this process’s algorithmic complexity is much lower than original process of string
matching. If the attribute’s constraint is “prefix” or “suffix”, then we can check if the
string’s value in subscription is prefix array or suffix array of the event’s string’s value
array. What we should notice is that all the data has already encrypted by OPE.

For OPE do not change the attribute’s form like ASPE and the encryption process
can be done in publishers and subscribers, it is easy to see that the efficiency of matching
operation when use OPE is almost the same as not using any encryption algorithm.

Privacy-Preserving Content-Based Publish/Subscribe Service 377



3 Experiment Results

3.1 Workload

We used PADRES in JAVA as the Content-based publish/subscribe system (CBPSS).
For we just compare the difference of time consumption of forwarding encrypted
message and unencrypted message, there’s only 1 broker, 1 subscriber and 1 publisher.
We use uniform distribute subscription dataset with 4, 6, 8 attributes respectively. We
built events dataset with 4, 6, 8 attributes. All the attributes’ type is long. To test
matching time cost, the events dataset was tested with the subscription dataset which
has the same number of attributes with the events dataset.

The test device is OMEN by HP laptop, with Intel Core i7-7700HQ, 16 GB RAM,
Windows 10 1083. The JAVA version is JAVA 1.8.0_141.

3.2 Time Cost of Sending Subscriptions

We test the subscriber sent 10000, 20000, 30000, 40000, 50000 subscriptions to broker
with different number of attributes in each subscription.

The Fig. 1 shows how long the time cost in sending subscriptions with different
number of subscriptions and different number of attributes. With the increasing of the
number of attributes, the time cost of sending plaintext does not change too much,
however when sending 50000 subscriptions and encrypted by OPE with 6 attributes
and 8 attributes, the time increase 23.23% and 49.63% respectively compare with
sending subscriptions with 4 attributes, when sending 50000 subscriptions and
encrypted by ASPE with 6 attributes and 8 attributes, the time increase 17.04% and
31.45% respectively.

What we should note is that in real situation, one subscriber will not send too many
subscriptions at one time, and for the average time cost of sending subscription with 8
attributes, the time cost is 0.519 ms in OPE per subscription, 0.348 ms in ASPE per
subscription and 0.243 ms in plaintext per subscription and we think the time cost
compromise is acceptable.

Fig. 1. Time cost of sending subscriptions

378 M. Li et al.



3.3 Time Cost of Insert and Delete Subscriptions

The Fig. 2 shows the time cost of inserting subscriptions in broker and we can see that
because OPE does not change the type of attributes and allow the system to insert the
subscription in original way, the time cost of inserting subscription with OPE is close to
the time cost of inserting subscription in plaintext.

However, when inserting subscription with ASPE, the system spends more time
than OPE and plaintext. Different from subscriber sends subscriptions to broker, broker
always need to handle amount of subscriptions, so it’s important for CBPSS to insert
the subscription without too much time. and CBPSS with OPE meet the requirement.

Figure 3 shows the time cost of deleting subscription. For the algorithm the
PADRES use in deleting subscriptions depend on total number of subscriptions rather
than the attributes type and attribute’s value. So, there is not too much change in
plaintext, OPE and ASPE.

Fig. 2. Time cost of inserting subscriptions

Fig. 3. Time cost of deleting subscriptions

Privacy-Preserving Content-Based Publish/Subscribe Service 379



3.4 Time Cost of Event Matching

The time cost of event matching is shown in Fig. 4. We can see that when the number
of subscriptions increased, the time cost of plaintext and OPE are less than the time cost
of ASPE, and time cost of plaintext and OPE is almost same.

When the number of attributes is increased, the time cost of matching with ASPE is
decreased, that is because the events have higher probability to meet the un-match
subscriptions and can break the match process more quickly.

4 Limitation of PUB/SUB System with OPE

Although OPE allow efficient range queries, it’s not secure when the attribute’s domain
is small, especially when the server owner or malicious entities know the plaintext’s
domain. Reference [5] introduce an algorithm called modular order-preserving
encryption to improve the security of OPE, but it’s no longer strictly order-
preserving and so not suitable for pub/sub system unless the system user accepts false
positive or false negative.

From now on we are finding a way to improve the security of OPE also keep the
strict order-preserving. The second limitation of pub/sub system with OPE is that
current program can only handle the integer type’s data, we will find a way to do range
queries when the attribute’s type is float or double and other types in the future.

5 Conclusion

In this work, we use OPE as the pub/sub system’s encryption algorithm, and show the
feasibility of publish/subscribe system with OPE by experiments and the results show
that OPE can not only encrypt the message but also keep good efficiency when broker
does match operations than ASPE. We give an implementation of how to match the
message when the attribute’s type is string. In further work, we will find a way to not
only keep the efficiency of range queries, but also improve the security of OPE when
the attribute’s value domain is small.

Fig. 4. Time cost of matching subscriptions

380 M. Li et al.



References

1. Choi, S., Ghinita, G., Bertino, E.: A privacy-enhancing content-based publish/subscribe
system using scalar product preserving transformations. In: Bringas, P.G., Hameurlain, A.,
Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol. 6261, pp. 368–384. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15364-8_32

2. Barazzutti, R., Felber, P., Mercier, H., Onica, E., Rivière, E.: Thrifty privacy: efficient support
for privacy-preserving publish/subscribe. In: Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems, New York, pp. 225–236. ACM (2012)

3. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9_13

4. Jacobsen, H.A., et al.: The PADRES publish/subscribe system. In: Principles and
Applications of Distributed Event-Based Systems, pp. 164–205. IGI Global (2010)

5. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: improved
security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 578–595. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9_33

Privacy-Preserving Content-Based Publish/Subscribe Service 381

https://doi.org/10.1007/978-3-642-15364-8_32
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-642-22792-9_33


Improve the House Price Prediction
Accuracy with a Stacked Generalization

Ensemble Model

Shilong Xiong(B) , Qibo Sun, and Ao Zhou

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

279642779@qq.com

Abstract. House price prediction plays an important role in estate mar-
ketplace. Prediction future house price accurately can provide decision
making support for home buyers. With the development of machine
learning and AI technology, different machine learning models are pro-
posed for house price prediction. However, the prediction accuracy is still
not very high. Model ensembling is a very powerful technique to increase
the accuracy of a variety of machine learning models. To address this
issue, we propose a stacked generation model which consists of various
regression models to predict house price. The experiment results show
that the stacked model performs better than traditional machine learning
models.

Keywords: House price prediction · Machine learning · Ensemble
learning

1 Introduction

It is traditionally a challenge for home buyers to make decision on real estates
investment [2,6]. House price prediction can provide decision making support
for home buyers, Machine learning and AI technology have made great progress
recently [1]. Many researchers try to exploit machine learning models to predict
the future house prices [2,4].

However, the performances of these methods are still limited, and numerous
factors make house price prediction a challenging problem [3,5]. The house price
differs with time, location and many other factors. Therefore, a large amount
of features are constructed for price prediction. Traditional machine learning
algorithm is easy to overfit when a large amount of features are adopted. In
addition, it is hard to optimize the proposed model with popular methods such
as grid search or random search.

This research is supported in part by the National Natural Science Foundation of China
under Grant No. 61571066, No. 61602054, (NSFC, 61571066, 61602054).

c© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, pp. 382–389, 2020.
https://doi.org/10.1007/978-3-030-38651-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_32&domain=pdf
http://orcid.org/0000-0001-7910-2146
https://doi.org/10.1007/978-3-030-38651-1_32


Improve the House Price Prediction Accuracy with a Stacked Generalization 383

To address the above issues, the paper proposes a stacked generalization
model, which can improve the accuracy of house price prediction. Meanwhile,
tuning parameters is tedious and trivial when training a large amount of house
data. Therefore, Beyesian optimization is introduced to configure our models
automatically. We conduct experiments on real world dataset. The experiment
results show that the stacked model performs better than other models.

This paper is organized as follows. Section 2 shows the technical details of
our stacked generalization method. Experiment results are illustrated in Sects. 3
and 4 concludes this paper.

2 The Method Proposed for House Price Prediction

This section consists of two parts: tuning hyperparameters based on Bayesian
optimization, and house price prediction based on model stacking. We combine
multiple base learners into a two-layer integrated model based on the model
stacking strategy, in which each learner uses the Bayesian optimization to auto-
matically configure corresponding model.

2.1 Prediction Based on Model Stacking

Model stacking is a mechanism that tries to leverage the benefits of a group of
base models while disregarding their disadvantages. Details of stacked general-
ization are described in Algorithm 1. Our stacked generalization model consists
two layers. In the first layer, each model makes predictions separately. Then,
their output becomes the input of the second layer. Based on the predictions of
the base learners, the second layer calculates the final result with higher accuracy
and smaller error.

Algorithm 1. Stacked Generalization Algorithm
Input: Train set Dtrain = {Xtrain, Ytrain}, test set Xtest, baseline models

Φ1, Φ2, ..., Φk, meta model Φ
Output: prediction results on test set Ypred

1: Split Dtrain into disjoint sets: D′
train,D′

holdout

2: Split D′
train into D1, D2, ..., Dk

3: for i = 1 → k do
4: Ci = Dtrain − Di

5: Train Φi with Ci

6: Use Φi to make predictions for X ′
holdout and obtain Yi

7: end for
8: Use the predictions {Y1, Y2, Y3, ...Yk} as the inputs, and Y ′

holdout as the outputs to
train Φ

9: Use Φ to predict Xtest and obtain Ypred

10: Return Ypred



384 S. Xiong et al.

2.2 Tuning Parameters Based on Bayesian Optimization

Bayesian optimization is a well-established method for the global optimization
of expensive black-box functions. More specially, we assume the problem is to
maximum an costly function f : χ → R

xopt = arg max
x∈χ

f(x) (1)

within a domain χ ⊂ Rd, which is a bounding box.
In our work, we build a Bayesian optimization model with the commonly

used GP-based approach, which uses a GP surrogate and a acquisition function
to optimize the parameter tuning process. For the hyperparamters Θ of the
surrogate model,we adopt σ 2 (x;Θ) = Σ(x, x;Θ) as the marginal predictive
variance of the probabilistic model, and adopt μ(x; X, θ) as the predictive mean.
The acquisition function is defined as follows:

γ(x) =
f( xoptimal ) − μ(x; X, θ)

σ2 (x; X, θ)
(2)

where f(xoptimal) is the lowest observation. The expected improvement criterion
is defined as

αE I(x; X, θ) = α(x; X, θ)[γ(x)φ(γ(x)) + ψ(γ(x); 0, 1)] (3)

It is worth noting that Bayesian optimization strategy can be effective even if
the underlying function being optimized is stochastic, non-convex,or even non-
continuous.

3 Experiment

In this section, we comprehensively evaluate the performance of our stacked
generalization ensemble model with six baseline models.

3.1 Experiment Setup

Dataset Description. We experiment on two datasets: the Melbourne
Regional Information Dataset and the Victorian Regional Information Dataset.
The Melbourne Regional Information Dataset contains house purchase transac-
tions from 2015 to 2019. The Victorian Regional Information Dataset contains
the related house purchase information of 8245 suburbs in Vic, Australia. The
features in each transaction are shown in Table 1.

Data Preprocessing. Because part of the values in the dataset are missed,
we fill the missing value by the mean value for numerical variables. Moreover,
the mean value of categorical variables cannot be calculated directly, so we con-
vert them to numerical variables with One-Hot Encoding. Figure 1 show that



Improve the House Price Prediction Accuracy with a Stacked Generalization 385

Table 1. Description of features

Feature name Description Type

House Type Type of the sale house Categorical

Sale Date Date of the sale house Numerical

Distance Distance to CBD Numerical

Bedroom The number of bedrooms Numerical

Bathroom The number of bathrooms Numerical

Car Space The number of parking spaces Numerical

Build Year The year of house built Numerical

Land Size The overall size of land Categorical

Floor Size The overall size of floor Categorical

Suburb Area The suburb the house located in Categorical

Median Price The median price of the suburb Numerical

Property Count The count of houses in the suburb Numerical

the distribution of sale price is right skewed. As linear models prefer normally
distributed data, we use the function y = log 1 + x to make the values more
approximate to normally distributed. After transformation, the frequency dis-
tribution law of the prices is shown as Fig. 2.

Due to the large scale of the datasets, the cost of model training becomes
very high. To reduce the training cost, we adopt the Bayesian optimization to
auto-adjust hyperparameters, which is more efficient than random search and
grid search.

3.2 Evaluation Metrics

The two metrics that are the commonly used in evaluation are root mean square
error (RMSE) and absolute mean error (MAE). RMSE and MAE are calculated
as follows:

RMSE =

√
√
√
√ 1

N

N∑

i=1

(
yi − ŷi) 2 (4)

MAE =
1
N

N∑

i=1

|y i − ŷ i| (5)

yi, ŷi are the actual house price and the predicted house price, respectively. N
denotes the number of house purchase records. However,these two indicators will
bring a problem that errors in predicting expensive houses have higher influence
than the cheap ones.



386 S. Xiong et al.

Fig. 1. The frequency distribution of price before transformation.

Fig. 2. The frequency distribution of price after transformation.

In order to avoid this condition, we propose two new indicators that are
calculated as follows:

RMSE =

√
√
√
√ 1

N

N∑

i=1

(

log yi − log ŷi) 2 (6)



Improve the House Price Prediction Accuracy with a Stacked Generalization 387

MRE =
1
N

N∑

i=1

|y i − ŷ i|
yi

(7)

3.3 Experiment Results Under Different Parameters Tuning
Strategies

We use scikit-learn library to implement the following six baseline models: Lasso
Regression, Elastic Net Regression, Random Forest, Gradient Boosting, Extra
Tree and XGBoost. Then, we investigate the performance of those models when
different parameter tuning strategies are adopted.

Table 2. Number of hyperparameters.

Model Number of parameters

Lasso 1

Elastic Net 2

Extra Tree 7

Random Forest 7

GDBT 11

XGBoost 10

Fig. 3. RMSE on test set of each iteration.

There are various parameters and options in each model. The comparison
between manual configuration and automatic configuration for all models is
shown in Table 2. ∗ denotes that the hypeparameters of those models are tuned
by Bayesian optimization.



388 S. Xiong et al.

Fig. 4. MRE on test set of each iteration.

From Table 3, we can observe that models configured by Bayesian optimiza-
tion obviously have a better performance. Figures 3 and 4 display the test error
in each iteration. We can find that Bayesian optimization can find a good com-
bination of hyperparamters in less iterations, which is of significance in training
the dataset with large size.

Table 3. RMSE and MRE for baseline models.

Model name RMSE MAE

Lasso 0.3829 0.2219

Elastic Net 0.3797 0.2279

Random Forests 0.1960 0.1657

ExtraTree 0.1883 0.1513

Xgboost 0.1864 0.1540

GDBT 0.1866 0.1548

Random Forests* 0.1735 0.1404

Extra Tree* 0.1736 0.1413

Xgboost* 0.1702 0.1390

GDBT* 0.1675 0.1343

3.4 Experiment Results Under Different Base Models

This section explores the performance of various stacking models by combin-
ing different base learners. Table 4 shows the values of RMSE and MRE for all
stacked generation models. From the experimental results, we can observe that:



Improve the House Price Prediction Accuracy with a Stacked Generalization 389

(1) Stacking strategy has a positive effect in improving the accuracy of predic-
tion. (2) When more base models and more powerful algorithms are employed,
the final stacking model will have better performance on house price prediction.

Table 4. RMSE and MRE for models ensembled by stacking strategy.

Model name First stage models Meta

model

RMSE MAE

STACK 2MODEL 1 Lasso,Elastic Net XGBoost* 0.2222 0.1874

STACK 2MODEL 2 Lasso,XGBoost* Elastic

Net

0.1691 0.1391

STACK 2MODEL 3 Elastic Net,XGBoost* Lasso 0.1685 0.1386

STACK 3MODEL 1 ExtraTree*,GDBT*,XGBoost* Lasso 0.1631 0.1334

STACK 3MODEL 2 ExtraTree*,GDBT*,XGBoost* Elastic

Net

0.1632 0.1334

STACK 3MODEL 3 ExtraTree*,GDBT*,XGBoost* Random

Forest*

0.1702 0.1395

STACK 4MODEL 1 ExtraTree*,GDBT*,XGBoost*,RandomForest* Lasso 0.1626 0.1327

STACK 4MODEL 2 ExtraTree*,GDBT*,XGBoost*,RandomForest* Elastic

Net

0.1629 0.1327

STACK 5MODEL 1 ExtraTree*,GDBT*,XGBoost*,RandomForest*Lasso Elastic

Net

0.1626 0.1327

STACK 5MODEL 2 ExtraTree*,GDBT*,XGBoost*,RandomForest*Elastic Net Lasso 0.1624 0.1325

4 Conclusion

In this paper, we introduce a stacked generalization strategy to established a
integrated model for house price prediction. To reduce the cost of model con-
figuration, we employ the Bayesian optimization to automatically tune hyper-
parameter of baseline models. Experimental results on real world datasets show
that our model outperforms other model in prediction accuracy.

References

1. Anifowose, F., Labadin, J., Abdulraheem, A.: Improving the prediction of petroleum
reservoir characterization with a stacked generalization ensemble model of support
vector machines. Appl. Soft Comput. 26, 483–496 (2015)

2. Antipov, E.A., Pokryshevskaya, E.B.: Mass appraisal of residential apartments: an
application of random forest for valuation and a cart-based approach for model
diagnostics. Expert Syst. Appl. 39(2), 1772–1778 (2012)

3. Doumpos, M., Zopounidis, C.: Model combination for credit risk assessment: a
stacked generalization approach. Ann. Oper. Res. 151(1), 289–306 (2007)

4. Gao, G., et al.: Location-centered house price prediction: a multi-task learning app-
roach. arXiv preprint arXiv:1901.01774 (2019)

5. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)
6. Worzala, E., Lenk, M., Silva, A.: An exploration of neural networks and its appli-

cation to real estate valuation. J. Real Estate Res. 10(2), 185–201 (1995)

http://arxiv.org/abs/1901.01774


Correction to: Internet of Vehicles

Ching-Hsien Hsu, Sondès Kallel, Kun-Chan Lan, and Zibin Zheng

Correction to:
C.-H. Hsu et al. (Eds.): Internet of Vehicles,
LNCS 11894, https://doi.org/10.1007/978-3-030-38651-1

In the version of these papers that was originally published, the Grant no. should be
“24820192019RC56”, not “2018RC56”. This has now been corrected.

The updated version of these chapters can be found at
https://doi.org/10.1007/978-3-030-38651-1_19
https://doi.org/10.1007/978-3-030-38651-1_31

© Springer Nature Switzerland AG 2020
C.-H. Hsu et al. (Eds.): IOV 2019, LNCS 11894, p. C1, 2020.
https://doi.org/10.1007/978-3-030-38651-1_33

https://orcid.org/0000-0002-7878-4330
https://doi.org/10.1007/978-3-030-38651-1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_33&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_33&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38651-1_33&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38651-1_19
https://doi.org/10.1007/978-3-030-38651-1_31
https://doi.org/10.1007/978-3-030-38651-1_33


Author Index

Abimannan, Satheesh 318

Balla, David 250

Cao, Gang 125
Cérin, Christophe 190
Chang, Yue-Shan 318
Chen, Kaihui 353
Chou, Chau-Yi 366

Darmon, Patrice 190
de Albuquerque, Anna Priscilla 327
De Turck, Filip 174
Dong, Yushun 88
Du, Mengdi 28

Elhadef, Mourad 37

Fang, Yu-Bin 366
Fang, Yuchen 303

Garrido, José Luis 204
Gehberger, Daniel 250
Goethals, Tom 174

Han, Joong-hee 101
Hasan, Sarah 37
Herrmann, Peter 76
Huang, Bo-Yu 284
Huang, Huawei 143
Hung, Patrick C. K. 327
Hwang, Ren-Hung 15

Kang, Minsung 109
Ke, Renkang 56
Kelner, Judith 327
Kuo, Fang-An 366
Kushida, Takayuki 158

Lan, Lina 220
Latecki, Karol 125
Lee, Che-Rung 284
Li, Jinglin 47, 56, 88, 117, 344, 353

Li, Mingdong 374
Lim, Young-Chul 109
Lin, Chi-Yeh 318
Lin, Jianru 143
Lin, Kangying 143
Lin, Shuisheng 28
Liu, Jun 64
Liu, Taiyu 117
Liu, Zhihan 88, 353
Low, Jia Xin 361
Lugmaña-Hidalgo, Fernanda 204
Luo, Chunbo 28
Luo, Qifeng 374

Maliosz, Markosz 250
Menouer, Tarek 190
Meyer, Jon Arild Ekberg 76

Pan, Maolin 303
Park, Chi-ho 101
Peng, Min-Chun 15
Prateek, Manish 1
Puka, Ergys 76

Sastry, Hanumat G. 1
Shi, Jinqiao 220, 374
Shi, Ruisheng 220, 374
Simon, Csaba 250
Sun, Qibo 47, 56, 382

Tang, Xuanzhao 303
Tao, Liancheng 47
Tomar, Ravi 1
Tu, Bo-Hao 15

Volckaert, Bruno 174

Wan, Qun 125
Wang, Bai 220
Wang, Jin 237
Wang, Kun 143
Wang, Lei 237
Wang, Lu 374
Wang, Shangguang 47, 56



Wang, Shuen-Tai 366
Wang, Xiao 88
Wei, Boyang 237
Wei, Xiaojuan 88
Wei, Yongmei 361
Wu, Jiawei 64

Xiao, Yang 64
Xiong, Shilong 382

Yang, Haifen 28
Yang, Yang 143
Yang, Yaqiong 237
Yang, Ziye 125

Yeh, Tsozen 267
Yu, Shengchieh 267
Yu, Yang 303
Yuan, Quan 88, 117, 344, 353

Zhang, Haohan 344
Zhang, Jingyu 237
Zhang, Keshan 143
Zhang, Lei 220
Zhong, Siqi 237
Zhou, Ao 47, 56, 382
Zhou, Guoyao 237
Zhou, Liang 28
Zhou, Sicong 143

392 Author Index


	Preface
	Organization
	Contents
	A Novel Protocol for Information Dissemination in Vehicular Networks
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Protocol
	3.1 Message Prioritization
	3.2 Density of Nodes
	3.3 Rebroadcasting Probability (Prb)
	3.4 Delay Between Rebroadcast (Drb)
	3.5 Number of Rebroadcast (Nrb)
	3.6 MaxDistance to Broadcast (Mdb)

	4 Working of the Protocol
	4.1 Generate Packet
	4.2 Receive Packet
	4.3 Rebroadcast

	5 Simulation
	5.1 System Model
	5.2 Simulation Setup and Parameters Used

	6 Result and Discussion
	6.1 Evaluating the Propagation Time
	6.2 Reachability

	7 Conclusion and Future Work
	References

	Uplink Access Control in Narrowband IoT
	Abstract
	1 Introduction
	2 Related Works
	3 Dynamic RACH Resource Allocation (DRRA) Scheme
	3.1 System Overview
	3.2 RACH Resource Allocation Scheme
	3.3 Access Class Barring (ACB) Scheme

	4 Performance Evaluation
	4.1 Simulation Parameters and Performance Metrics
	4.2 Simulation Case 1: Single CE Level
	4.3 Simulation Case 2: Three CE Levels

	5 Conclusion and Future Works
	References

	Dynamic Path Planning Method Based on Cluster Queuing Communication in VANET
	1 Introduction
	2 Transportation Network System Model
	2.1 Network System Model
	2.2 Real-Time Congestion Model

	3 Cluster Queuing Communication Mechanism
	4 Real-Time Path Planning
	5 Simulation
	6 Conclusion
	References

	Performance Evaluation of Citywide Intersections Traffic Control Algorithm inVANETs-Based
	Abstract
	1 Introduction
	2 Preliminary
	3 inVANETs-Based Intersection Traffic Control Algorithm in Citywide
	4 Simulation Results
	5 Conclusion
	References

	Task Planning with Manual Intervention Using Improved JSHOP2 Planner
	Abstract
	1 Introduction
	2 Related Works
	3 Improved JSHOP2 Planner with Manual Intervention
	3.1 Global Optimal Solution
	3.2 Uncertain Factors

	4 Principle and Improvement
	5 Experiments and Results
	5.1 Planning Without Manual Intervention
	5.2 Planning for Optimizing Result
	5.3 Planning with Uncertainties
	5.4 Results

	6 Conclusion
	Acknowledgment
	References

	Multi-task Planning with the Consideration of Task Priority
	Abstract
	1 Introduction
	2 Related Work
	3 HTN and JSHOP2
	4 Multi_task with Priority Based on JSHOP2
	5 Validation
	6 Conclusion
	Acknowledgement
	References

	From AI to CI: A Definition of Cooperative Intelligence in Autonomous Driving
	1 Introduction
	2 Problem Definition of Cooperative Intelligence
	2.1 Cooperative Perception
	2.2 Cooperative Decision
	2.3 Cooperative Learning

	3 System Architecture of Cooperative Intelligence for Autonomous Driving
	3.1 Overall Architecture
	3.2 Components of Cooperative Intelligence System for Autonomous Driving

	4 Conclusion
	References

	Utilizing Connectivity Maps to Accelerate V2I Communication in Cellular Network Dead Spots
	1 Introduction
	2 Related Work
	3 Building Connectivity Maps
	4 Data Dissemination Protocol
	5 Updating the Data Dissemination Protocol
	6 Conclusion
	References

	Learning Route Planning from Experienced Drivers Using Generalized Value Iteration Network
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 Topologized Traffic Status Model
	3.2 Building Markov Decison Process

	4 Problem Solving
	4.1 Learning Structure Co-Design
	4.2 Graph-Based Kernel Functions
	4.3 Training

	5 Experiments
	5.1 Data Preprocessing
	5.2 Visualized Results
	5.3 Generalizing Results

	6 Conclusion
	References

	Development of Low-Cost Sensors Based Multi-sensors Integration Positioning Algorithm for Land Vehicle Tracking and Monitoring Device
	Abstract
	1 Introduction
	2 GNSS/IMU/Magnetometer Integration Algorithm
	3 Performance Evaluation of GNSS/IMU/Magnetometer Integration Algorithm
	4 Conclusions
	Acknowledgements
	References

	Multi-class Vehicle Detection Using Multi-scale Hard Negative Mining
	Abstract
	1 Introduction
	2 Related Works
	3 Object Detection
	3.1 Data Argumentation
	3.2 Hard Negative Mining
	3.3 Training Method for Ignore Regions

	4 Experimental Results
	5 Conclusions
	Acknowledgment
	References

	Predicting Steering for Autonomous Vehicles Based on Crowd Sensing and Deep Learning
	1 Introduction
	2 Proposed Approach
	3 Performance Evaluation
	3.1 Experiment Setup
	3.2 Experiment Results

	4 Conclusion
	References

	uNVMe-TCP: A User Space Approach to Optimizing NVMe over Fabrics TCP Transport
	1 Introduction
	2 System Design
	2.1 Why User Space NVMe/TCP Solution
	2.2 Architecture of uNVMe-TCP

	3 System Implementation
	3.1 Implementation Details in Target
	3.2 Implementation Details in Initiator

	4 Experiment
	4.1 uNVMe-TCP Target I/O Scaling
	4.2 uNVMe-TCP Initiator I/O Scaling
	4.3 uNVMe-TCP VS Linux Kernel on Latency
	4.4 uNVMe-TCP Performance with Increasing Number of Connections
	4.5 uNVMe-TCP TCP Transport VS RDMA Transport

	5 Related Work
	6 Conclusion
	References

	An Ethereum-Based Data Synchronization Platform for Distributed Networks
	1 Introduction
	2 Related Work
	2.1 Management for Distributed IoT Networks
	2.2 Consensus Protection
	2.3 Unique Features of Our Work

	3 System Design and Implementation
	3.1 Preliminary
	3.2 Raw-Data Storage
	3.3 Attack Model
	3.4 Implementation Methodology
	3.5 Security Analysis of Our System

	4 Performance Evaluation
	4.1 Evaluation Methodology Based on a Remote Cluster
	4.2 A Case-Study of the Proposed Prototype
	4.3 Performance Analysis of the Proposed Prototype

	5 Conclusion and Future Work
	References

	Distributed Logging Service with Distributed Hash Table for Cloud
	1 Introduction
	2 Related Work
	2.1 Central Management Systems
	2.2 Distributed Hash Table (DHT)

	3 Architecture
	3.1 Requirements
	3.2 Central and Distributed Model
	3.3 DHT
	3.4 Architecture of DLS
	3.5 Use Case Scenarios for Retrieval and Alert Notification

	4 Design of Distributed Logging Service
	4.1 Adoption of DHT and Local Process
	4.2 Lifetime for Log Messages
	4.3 Access Control

	5 Evaluation
	5.1 Emulation Toolkit
	5.2 Evaluation Scenarios
	5.3 Evaluation Results

	6 Discussions
	7 Conclusion
	References

	FLEDGE: Kubernetes Compatible Container Orchestration on Low-Resource Edge Devices
	1 Introduction
	2 Related Work
	3 FLEDGE
	3.1 Compatibility
	3.2 Security and Stability
	3.3 Low Resource Use

	4 Alternatives
	4.1 Kubernetes
	4.2 K3S
	4.3 KubeEdge

	5 Evaluation Setup
	5.1 Methodology
	5.2 Container Runtime
	5.3 Orchestrator Comparison

	6 Results
	6.1 Container Runtime
	6.2 Orchestrator Comparison

	7 Future Work
	8 Conclusion
	References

	Accelerated Promethee Algorithm Based on Dimensionality Reduction
	1 Introduction
	2 Related Work
	2.1 Short Overview of Multi-criteria Algorithms
	2.2 Short Overview of Multi-criteria Related Studies
	2.3 Large Scale Multi-criteria Algorithm
	2.4 Positioning

	3 Key Algorithms Used by the Accelerated Promethee Algorithm
	3.1 Exact Promethee Algorithm
	3.2 K-means Clustering Algorithm

	4 Accelerated Promethee Algorithm Based on K-means
	5 Experimental Evaluation
	5.1 Comparison Between the Exact and the Accelerated Promethee Algorithms
	5.2 Metrics of Performance
	5.3 General Discussion

	6 Conclusion
	References

	Implementing a Business/Technology Architecture Alignment-Oriented Process Applied to the Social-Sanitary Sector
	Abstract
	1 Introduction
	2 Related Work
	3 A SOA Design Model for EA
	4 An Enterprise Architecture Alignment-Oriented Process
	4.1 Conceptual Model
	4.2 Process Phases

	5 Case Study
	5.1 General Description
	5.2 Application of the EA Alignment-Oriented Process

	6 Conclusions and Future Work
	Acknowledgment
	References

	A Lightweight Time Series Main-Memory Database for IoT Real-Time Services
	Abstract
	1 Introduction
	2 Related Work
	3 IoT Sensing Data Model
	3.1 Data Model
	3.2 Structure of Persistent Objects

	4 Data Storage Strategy
	5 TSMMDB System
	5.1 System Overview
	5.2 System Overview
	5.3 Persistence of Database Objects
	5.4 Memory Allocation for Data Locality
	5.5 Time Complexity of Data Access Algorithm

	6 Experimental Evaluation
	6.1 Performance Comparison Between TSMMDB and Traditional DBMSs
	6.2 System Resource Usage of TSMMDB

	7 Conclusions
	References

	A Review on Blockchain-Based Systems and Applications
	Abstract
	1 Introduction
	2 The Applications of Blockchain Traceability Technology
	2.1 Blockchain Applications for Supply Chain Traceability Systems
	2.2 Blockchain Applications of Intellectual Property Protection
	2.3 Blockchain Applications for Asset Delivery

	3 Decentralized Applications Based on Blockchain
	4 Decentralized Applications in the Field of Data Security
	4.1 Data Protection in the Financial Industry
	4.2 Internet of Things Data Access Management
	4.3 Healthcare Data in Blockchain Systems

	5 Conclusion
	References

	Tuning Runtimes in Open Source FaaS
	1 Introduction
	2 FaaS Architecture
	2.1 Function Runtime Implementation in OpenFaaS

	3 Language Runtimes Overview
	3.1 Python
	3.2 Node.js
	3.3 Similarities Between Python and Node.js
	3.4 Golang

	4 Test Environment
	4.1 Underlay Infrastructure
	4.2 Function Runtime Implementation
	4.3 Test Functions
	4.4 Load Generator

	5 Evaluation
	5.1 Python
	5.2 Node.js
	5.3 Golang

	6 Related Work
	7 Conclusion
	References

	Achieving Dynamic Resource Allocation in the Hadoop Cloud System
	1 Introduction
	2 Related Work
	3 Dynamic Resource Allocation in YARN
	3.1 Job Submission and Resource Adjustment
	3.2 Scheduling Process
	3.3 Priority Design on the Resource Manager
	3.4 Portability for Future Job Schedulers

	4 Performance Evaluation
	4.1 Experimental Design
	4.2 One Prioritized Job: Equal Resource Allocation and 100% Deduction Ratio
	4.3 One Prioritized Job: Equal Resource Allocation and 50% Deduction Ratio
	4.4 Two Prioritized Jobs: Equal Resource Allocation and 100% Deduction Ratio
	4.5 Two Prioritized Jobs: Equal Resource Allocation and 50% Deduction Ratio

	5 Conclusions
	6 Future Work
	References

	qCUDA-ARM: Virtualization for Embedded GPU Architectures
	1 Introduction
	2 Background
	2.1 Virtualization
	2.2 GPGPU Virtualization

	3 Design and Implementation
	3.1 QCUDA System Architecture
	3.2 Memory Allocation in qCUDA-ARM

	4 Experiments
	4.1 Benchmarks
	4.2 Scalability
	4.3 Real Applications

	5 Conclusion
	References

	A Workflow Interoperability Approach Based on Blockchain
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Challenges of Workflow Interoperability
	2.3 Blockchain Technology

	3 Blockchain-Based Workflow Interoperability Approach
	3.1 Conceptual Solution
	3.2 Interoperability Approach Framwork
	3.3 Interoperability Interface
	3.4 Interoperability Service

	4 Evaluation
	4.1 Experimental Setup
	4.2 Discussion

	5 Conclusion
	References

	Air Pollution Forecasting Using LSTM-Multivariate Regression Model
	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Source
	2.2 Data Sample
	2.3 LSTM-MVR Model
	2.3.1 Multivariate Regression Model

	2.4 Error Measurements

	3 Case Study
	4 Conclusion
	Acknowledgment

	Human-Centered Design Tools for Smart Toys
	1 Introduction
	2 Related Work
	3 Human-Centered Design Tools
	3.1 Brainstorming Toy
	3.2 Data Collection Planning
	3.3 I/O Stickers
	3.4 IoT4Fun Toolkit

	4 HCD Tools Results
	4.1 Technical Assessment

	5 Conclusion
	References

	Edge Service Migration for Vehicular Networks Based on Multi-agent Deep Reinforcement Learning
	Abstract
	1 Introduction
	2 Related Works
	3 Resource Optimization Scheme for IOV
	3.1 System Model
	3.2 Resource Cost Model
	3.3 Analysis of Factors Affecting Allocation Strategy
	3.4 Roadside Unit Resource Allocation Algorithm Based on Multi-agent Deep Reinforcement Learning

	4 Evaluation
	5 Conclusion and Future Works
	Acknowledgment
	References

	A Road Traffic Guidance Service Based on Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Problem Definition
	3.2 Model Structure

	4 Experiment
	4.1 Simulator Setting
	4.2 Result Analysis

	5 Conclusion
	References

	expanAI: A Smart End-to-End Platform for the Development of AI Applications
	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Resource Management
	3.2 Service Management
	3.3 Optimization Layer

	4 Conclusion

	Smoke and Stress Tests for Travel Service Applications via LoadRunner
	Abstract
	1 Introduction
	2 Testbed
	3 Smoke Test
	4 Stress Test
	5 A Strategy for on-Line Web Service via LoadRunner
	6 Conclusion
	References

	Privacy-Preserving Content-Based Publish/Subscribe Service Based on Order Preserving Encryption
	Abstract
	1 Introduction
	2 Design and Implementation
	3 Experiment Results
	3.1 Workload
	3.2 Time Cost of Sending Subscriptions
	3.3 Time Cost of Insert and Delete Subscriptions
	3.4 Time Cost of Event Matching

	4 Limitation of PUB/SUB System with OPE
	5 Conclusion
	References

	Improve the House Price Prediction Accuracy with a Stacked Generalization Ensemble Model
	1 Introduction
	2 The Method Proposed for House Price Prediction
	2.1 Prediction Based on Model Stacking
	2.2 Tuning Parameters Based on Bayesian Optimization

	3 Experiment
	3.1 Experiment Setup
	3.2 Evaluation Metrics
	3.3 Experiment Results Under Different Parameters Tuning Strategies
	3.4 Experiment Results Under Different Base Models

	4 Conclusion
	References

	Correction to: Internet of Vehicles
	Correction to: C.-H. Hsu et al. (Eds.): Internet of Vehicles, LNCS 11894, https://doi.org/10.1007/978-3-030-38651-1

	Author Index



