
How to Use Boltzmann Machines
and Neural Networks for Covering

Array Generation

Ludwig Kampel1, Michael Wagner1, Ilias S. Kotsireas2,
and Dimitris E. Simos1(B)

1 SBA Research, 1040 Vienna, Austria
{lkampel,mwagner,dsimos}@sba-research.org

2 Wilfrid Laurier University, Waterloo, ON, Canada
ikotsire@wlu.ca

Abstract. In the past, combinatorial structures have been used only to
tune parameters of neural networks. In this paper, we employ for the first
time, neural networks and Boltzmann machines for the construction of
covering arrays (CAs). In past works, Boltzmann machines were success-
fully used to solve set cover instances. For the construction of CAs, we
consider the equivalent set cover instances and use Boltzmann machines
to solve these instances. We adapt an existing algorithm for solving gen-
eral set cover instances, which is based on Boltzmann machines and
apply it for CA construction. Furthermore, we consider newly designed
versions of this algorithm, where we consider structural changes of the
underlying Boltzmann machine, as well as a version with an additional
feedback loop, modifying the Boltzmann machine. Last, one variant of
this algorithm employs learning techniques based on neural networks to
adjust the various connections encountered in the graph representation
of the considered set cover instances. Supported by an experimental eval-
uation our findings can act as a beacon for future applications of neural
networks in the field of covering array generation and related discrete
structures.

Keywords: Neural networks · Boltzmann machines · Covering arrays

1 Introduction

Various approaches have been applied for the construction and optimization
of CAs, for a survey see for example [11]. Artificial Neural Networks (ANN)
have been applied successfully in various fields of computer science, especially
in optimization [10], and recently significant effort has been spent to replicate
the decisions of human experts using artificial intelligence [9]. The covering array
generation problem is known to be tightly coupled with hard combinatorial opti-
mization problems, see [5] and references therein.

In this paper, to the best of our knowledge, we employ for the very first time
neural network models based on Boltzmann machines (BM) to optimization of
c© Springer Nature Switzerland AG 2020
N. F. Matsatsinis et al. (Eds.): LION 13 2019, LNCS 11968, pp. 53–68, 2020.
https://doi.org/10.1007/978-3-030-38629-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38629-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-38629-0_5

54 L. Kampel et al.

CA generation, i.e. the construction of CAs with a small number of rows. We
would like to note that constructing a BM architecture corresponding to a par-
ticular optimization problem is a difficult task, since one has to construct the
topology of the architecture to reflect the particular nature of a given problem.
This difficulty has been first noted in [1], where the authors tried to combine
neural computation with combinatorial optimization for a different class of prob-
lems.

This paper is structured as follows. In Sect. 2 we give the preliminaries needed
for this paper. Next, in Sect. 3 we describe how Boltzmann machines can be used
for the construction of covering arrays. In Sect. 4 this approach is extended by
means of allowing for different learning strategies. Finally, in Sect. 5 the results
of our experiments are documented while Sect. 6 concludes our work.

2 Preliminaries

In this section we give the definitions needed in this paper. Related notions for
covering arrays and set covers can be also found in [4] while the needed definitions
regarding graphs can be also found in [12].

Definition 1. A covering array CA(N ; t, k, v) is an N×k array (c1, . . . , ck) with
the properties that for all j ∈ {1, . . . , k} the values in the j-th column cj belong
to the set {0, . . . , v − 1}, and for each selection {cj1 , . . . , cjt} ⊆ {c1, . . . , ck} of
t different columns, the subarray that is comprised by the columns cj1 , . . . , cjt ,
has the property that every t-tuple in {0, . . . , v − 1}t appears at least once as
a row. The smallest integer N for which a CA(N ; t, k, v) exists is called the
covering array number for t, k, v and is denoted as CAN(t, k, v). Covering Arrays
achieving this bound are called optimal.

In this work we only consider binary CAs, i.e. CAs over the alphabet {0, 1},
which we denote as CA(N ; t, k). For given t and k we also say we are given a CA
instance, when we want to construct a CA(N ; t, k). An example of a CA(4; 2, 3, 2)
is given by the array A in relation (1).

Definition 2. For positive integers t, k and v, a t-way interaction is a set
{(p1, x1), . . . , (pt, xt)} with the property that xi ∈ {0, . . . , v − 1}, ∀i ∈ {1, . . . , t}
and 1 ≤ p1 < . . . < pt ≤ k.

We represent t-way interactions as vectors of length k with t positions speci-
fied and the others unspecified (see Example 1). With this notion CAs can be
characterized as arrays which rows cover all t-way interactions for given t and k.

Definition 3. A set cover (SC) of a finite set U is a set S of non-empty subsets
of U whose union is U . In this context, U is called the universe and the elements
of S the blocks.

A typical optimization problem for set covers is the minimal set cover problem.
That is, for given (U,S), to find a subset C ⊆ S of minimal cardinality, such that⋃ C = U . We call (U,S) also an SC instance.

Boltzmann Machines and Neural Networks for Covering Array Generation 55

Definition 4. For a graph G = (V,E) (in this work we only consider undirected
graphs) with vertex set V and edges E ⊆ V ×V , a vertex cover is a subset C of V ,
such that each edge in E is incident to at least one vertex of C. An independent
set of G is a set of vertices I ⊆ V , such that no two vertices in I are adjacent,
i.e. I × I ∩ E = ∅.

Finally, we also consider the concept of Boltzmann machines, see also [1].

Definition 5. A Boltzmann machine (BM) is a (stochastic) neural network,
with an underlying undirected graph G = (V,E). The neurons correspond to
the vertex set V and can be in two states, either on or off. The edges of the
graph correspond to the connections (synapses) between the neurons, i.e. the edge
{ui, uj} ∈ E represents the symmetric connection between neuron ui and uj. A
Boltzmann machine M is now defined as a pair (G,Ω), where Ω ⊆ R

E ×{0, 1}V

is a set of allowable states. For ω = (we1 , we2 , . . . , we|E| , uv1 , . . . , uv|V |) the vector
w = (we1 , we2 , . . . , we|E|) describes the weight we of each edge e ∈ E, and κ =
(uv1 , . . . , uv|V |) describes for all neurons vi ∈ V if it is on (uvi

= 1), or off
(uvi

= 0). The consensus function of the Boltzmann machine M is the function
F : Ω → R, defined by F (κ) =

∑
{i,j}∈E w{i,j}uiuj.

3 A Boltzmann Machine for Covering Arrays

In this section we set up a Boltzmann machine that reflects a given CA instance.
To this extent, we first explain how the problem of generating a CA can be
interpreted as a set cover problem, following [4]. In a second step we recapitulate
the work of [3], where Boltzmann machines where successfully used to compute
solutions to set cover problems. Our aim in this work is to combine these works
so that we can use Boltzmann machines to compute covering arrays.

3.1 Encoding CA Problems as Set Cover Problems

Next, we explain how to interpret the problem of computing a CA as an SC
problem. This connection has been explained in an extensive way, for example,
in [4], where the interested reader is referred to for the details. Here we content
ourself with repeating the key ideas, guided by means of an example. When we
want to construct a CA for given strength t and number of columns k, this can
be interpreted as an SC instance (U,S), where the universe U consists of all
t-way interactions. Each block in S corresponds to a row that can appear in a
CA and is defined as the set of t-way interactions this row covers. To make this
connection more explicit, we review Example 3.3 of [4]:

Example 1. Assume we want to construct a CA(N ; 2, 3, 2) with minimal N . We
translate this problem into a minimal set cover problem. Each 2-way interaction
needs to be covered, thus U = {(0, 0,−), (0, 1,−), (1, 0,−), (1, 1,−), (0,−, 0),
(0,−, 1), (1,−, 0), (1,−, 1), (−, 0, 0), (−, 0, 1), (−, 1, 0), (−, 1, 1)}. Each vector of
{0, 1}3 which can appear as a row in a CA(N ; 2, 3, 2) is identified with the set
of 2-way interactions it covers, e.g. the row (0, 0, 1) is mapped to the block

56 L. Kampel et al.

{(0, 0,−), (0,−, 1), (−, 0, 1,)}. Thus we get the SC instance (U,S) correspond-
ing to the CA instance with parameters t = 2 and k = 3, where

S = {{(0, 0,−), (0,−, 0), (−, 0, 0,)},{(0, 0,−), (0,−, 1), (−, 0, 1,)},
{(0, 1,−), (0,−, 0), (−, 1, 0,)},{(0, 1,−), (0,−, 1), (−, 1, 1,)},
{(1, 0,−), (1,−, 0), (−, 0, 0,)},{(1, 0,−), (1,−, 1), (−, 0, 1,)},
{(1, 1,−), (1,−, 0), (−, 1, 0,)},{(1, 1,−), (1,−, 1), (−, 1, 1,)}}.

Provided this correspondence, it is therefore possible to map the minimal
set cover C = {{(0, 0,−), (0,−, 0), (−, 0, 0,)},{(0, 1,−), (0,−, 1), (−, 1, 1,)},{(1,
0,−), (1,−, 1), (−, 0, 1,)},{(1, 1,−), (1,−, 0), (−, 1, 0,)}} of (U,S) to the opti-
mal CA(4; 2, 3, 2)

A =

⎛
⎜⎜⎝
0 0 0
0 1 1
1 0 1
1 1 0

⎞
⎟⎟⎠ . (1)

3.2 Boltzmann Machines for Set Cover Problems

Fig. 1. An overview.

We now give an overview of how SC instances can
be solved with Boltzmann machines, following the
work presented in [3], which serves us as a point
of reference. A high level view of the procedure we
follow can be found in Fig. 1.

In the following paragraphs we make explicit the connections between set cov-
ers, vertex covers and independent sets. Consider a given SC instance (U,S), we
can construct an edge labelled graph GS = (V,E, �) representing this instance,
as follows. The node set V is defined to be the set of blocks S, such that each
block is represented by a node of the graph. For the set of (undirected) edges
E, we define E := {{Si, Sj}|Si ∩ Sj 	= ∅} and the labelling function of the edges
� : E → P(U) : {Si, Sj}
→ Si ∩ Sj , i.e. we label each edge with the set of
elements of U its adjacent vertices cover in common. We call these labels also
label sets. At this point we would like to remark, that we can assume without
loss of generality, that each element of the universe U appears in at least two
blocks and hence in at least one label set.

Assume now we are given a vertex cover V = {S1, . . . , Sr} of GS , then V rep-
resents already a set cover of U . This holds, since the vertices (i.e. sets) S1, . . . , Sr

cover all edges of GS , the labels of which are subsets of the Si and already cover
the whole universe U . Further in [3] reduced graphs G′

S are considered, where
for each element u ∈ U exactly one edge of E(GS) is allowed to keep u in its
label set. Hence, a vertex cover of the reduced graph still constitutes a set cover
of (U,S), see Proposition 1 of [3]. Generalizing this approach, in our work we
consider reduced graphs G′

S = (V,E(G′
S)), where for each u ∈ U at least one

edge of E(G′
S) has u in its label set. We thus maintain the property that a vertex

cover of a reduced graph G′
S constitutes a set cover of U . We give an example

Boltzmann Machines and Neural Networks for Covering Array Generation 57

of these two different types of reduced graphs in Example 3 and Fig. 3. Consid-
ering that a vertex cover C of a graph G = (V,E) is exactly the complement
of an independent set V \ C of G (see also Remark 1 of [3]), the analogue of
Proposition 1 of [3] also holds for reduced graphs as considered in this work:

Proposition 1. The complement of a maximal independent set of a reduced
graph G′

S (where each element of U appears in the label of at least one edge) is
a set cover for (U,S).

Sketch of Proof. The complement of an independent set is a vertex cover. A
vertex cover contains vertices such that each edge is incident to at least one
vertex. The label set of an edge is a subset of the sets corresponding to its
adjacent vertices. Since each element of U appears in at least one label of an
edge of the reduced graph G′

S , the sets corresponding to the nodes of the vertex
cover are a set cover of U . ��

Before we describe how Boltzmann machines can be used to find independent
sets of graphs which yield set covers, respectively CAs for our purpose, we fix
some notations and consider some examples. We use the notation Gt,k for the
graph that corresponds to the set cover instance (U,S), which corresponds again
to a CA instance for given t and k, and call it the underlying graph of the CA
instance.

Fig. 2. G2,3 underlying the CA
instance t = 2, k = 3.

Example 2. Continuing Example 1 the graph
G2,3 corresponding to the set cover (U,S) is
depicted in Fig. 2. Although self-contained,
graph G2,3 is not very representative for the
general CA instances we have to deal with,
since there are exactly two rows that share a
2-way interaction, there is a one-to-one corre-
spondence between edges and 2-way interac-
tions. This is also the reason why we omitted
the set notation for the labels, as label sets
are singletons in this case.

Example 3. To give a better impression on
the instances we have to deal with, we also give an example of a partial graph in
Fig. 3, where a subgraph of the graph G2,5 is given. Labels occur right next to
the edges they belong to. The green coloured 2-way interactions are selected to
reside in the label set of the edges. In the middle of Fig. 3 we depict the reduced
graph G′

2,5 as it is described in [3]. Rightmost we show the reduced graph G′
2,5

as we consider them in this work.

3.3 Computing CAs with Boltzmann Machines

Following [3], the neural network is constructed isomorphic to the graph G′
S ,

where neurons correspond to vertices and synapses correspond to edges. Each

58 L. Kampel et al.

neuron Si is in state ui, which can be either on or off, represented by ui ∈
{0, 1}. Synapses, i.e. edges of G′

S , are assigned weights according to Eq. (2). At
any time the configuration of the network is defined by the vector of all states
(ui)i∈V of the neurons. For any configuration κ = (ui)i∈V the consensus F (κ) is
defined as the following quadratic function of the states of the neurons, and the
weights of the synapses: F (κ) =

∑
i,j ω(ei,j)uiuj . The defined weights (loops ei,i

have positive, other edges have negative weights) and the consensus function F
reflect the target of finding a maximal set of vertices, that are not adjacent.1

Respectively, we want to activate as many non-connected neurons as possible.
In fact local maxima of F correspond to maximal (not necessary maximum)
independent sets of the graph G′

S , which in turn yield set covers, considering the
complement on GS . We refer the interested reader to [3] for more details.

Fig. 3. From left to right: subgraph of the underlying graph of the CA instance t = 2,
k = 5; a subgraph of a reduced graph as it can occur due to the method described in
[3]; a subgraph of the reduced graph as consider in our work.

Remark 1. To better illustrate the connections between the different structures,
we give an overview of the introduced concepts and notions as follows:

– Rows of CAs correspond to blocks of SCs, which are further mapped to ver-
tices of BMs. These serve as neurons for the devised neural network.

– Analogue t-way interactions correspond to elements of the universe in terms
of set covers. These serve as labels of edges that define the weight of the
synapses of the devised neural network.

In Algorithm 2 we give a high level description of the algorithm developed
in [3], modified in this work in order to be applied to CA instances. The initial
weights of the edges (line 3) are set according to Eq. (2). Thereafter a simulated
annealing (SA) algorithm is run on the Boltzmann Machine to find a local maxi-
mum of the consensus F , where initially all synapses are in state off (i.e. the state
vector κ equals the all zero vector). A pseudo code of such a simulated annealing
algorithm is given in Algorithm 1, taking as input a graph G with weights for the
edges, denoted by ω(G). Further, a starting temperature T0, a final temperature
Tf and a factor α for the cooling schedule is required. In each step a random
neuron is selected to change its state. In case the change in the consensus func-
tion ΔF (κ) = (1 − 2ui)(ω(eii) +

∑
j ω(eij)uj) is positive the change in state ui

is accepted, otherwise it is refuted with probability (1 − 1/(1 + exp(−ΔF/T)).
1 Note that we do not consider vertices as being adjacent to themselves by their loops.
In this work we rather use loops to represent the weight of vertices.

Boltzmann Machines and Neural Networks for Covering Array Generation 59

The cooling schedule of the SA algorithm is based on the schedule developed
by Lundy and Mees [6]. In this cooling schedule it is required that only one
iteration is executed at each temperature. In particular, we implemented the
cooling schedule (line 11) according to the recursive function Tn+1 = Tn/(1 +
αTn) where n is the iteration number and α, a small positive value close to zero
depending on the instance, that allows for fast convergence.

We describe our algorithmic design using a variety of building blocks. In
this way, a compact presentation of the devised algorithms is ensured and also
flexibility in terms of their evaluation which is presented in Sect. 5.

The first building block introduced is that of InitialGraph, which is a
procedure that transforms the underlying graph Gt,k to a subgraph G′

t,k, to
which the Boltzmann machine is reduced and on which the simulated annealing
algorithm runs. In all presented versions we instantiate this building block with
a randomized procedure, which selects for each t-way interaction a random edge
of E(Gt,k), such that the t-way resides in the label set of the edge. Edges selected
this way reside in G′

t,k and keep all their labels, where Edges that get not selected
are deleted. See also Example 3.

The second building block used to devise our algorithms is that of Initial-
Weight, which is a procedure that assigns a weight to each edge of G′

S . One
way considered to instantiate this building block is via BMweight, assigning
the weights as described in [3]

ω(eij) =

{
−(max{1/|Si|, 1/|Sj |} + ε), i 	= j

1/|Si|, i = j
(2)

Note, that this weighting comes down to a uniform weighting, as |Si| = |Sj | for
all i, j when considering CA instances.

Using these algorithmic building blocks, we can describe the algorithm of
[3] applied to CA instances as an instance of Algorithm 2, Instantiating Ini-
tialGraph with RandomGraph and InitialWeights according to (2). The
simulated annealing algorithm is run once, to find a maximal independent set I
on G′

t,k, the complement of which is returned and constitutes a CA.
Combining the reductions of CAs to SCs and SCs to independent sets on

reduced graphs G′
S (Fig. 1), it is possible to state the following corollary of the

works presented in [4] and [3] (Theorem 1), which proves the correctness of the
previously described algorithm.

Corollary 1. Maxima of F induce configurations of the BM-network corre-
sponding to Covering Arrays.

Algorithm 2 serves as a base line for the development of our own learning
algorithms, which we describe in the next section.

4 Finding Covering Arrays with Neural Networks

In this section, we describe the algorithms we have devised to find CAs with
neural networks. We start with the algorithm described in [3], which serves as

60 L. Kampel et al.

a starting point for the development of the algorithms presented in this work,
where we incrementally built upon this baseline algorithm and extend it with
various features. In detail, as a first extension we consider a weight update for
the underlying BM and a second extension introduces a notion of graph update
for the underlying graph (which is part of the BM).

Algorithm 1. SA
1: INPUT: G, ω(G)
Require: T0, Tf , α
2: T ← T0, κ ← 0 � κ is the vector of states
3: while T > Tf do
4: randomly choose neuron Si

5: change state: ui ← ui + 1(mod 2)
6: if ΔF (κ) > 0 then
7: keep κ
8: else
9: with probability 1/(1 + exp(−ΔF/T)) keep κ
10: end if
11: T ← T/(1 + αT)
12: end while
13: return κ

Algorithm 2. BMforCA
1: INPUT: t, k
Require: ε
2: G′

t,k ← InitialGraph(Gt,k)

3: ω(G′
t,k) ← InitialWeight(G′

t,k, ε) � Assign weights

4: I ← SA(G′
t,k, ω(G′

t,k))

5: return CA(|V | − |I|; t, k, 2) = V \ I

Before we describe the algorithmic extensions we made to Algorithm 2, we
would like to mention that our initial experiments with Algorithm2 were not sat-
isfactory. Due to the good experimental results in [3], reporting to find smaller
SCs than other heuristics, we expected that Algorithm2 would produce CAs
with a small number of rows. Yet, our objective is still not achieved, i.e. having
a learning algorithm capable of further reducing the number of rows in a CA.
We believe that this is the case, since the approach of finding small set covers as
the complements of large independent sets of vertices on corresponding graphs
is badly suited for graphs that have a relative high density, i.e. on average, ver-
tices are highly connected. It seems that the condition of finding an independent
set of nodes on the reduced graph G′

S , is too strong of a sufficient condition to
actually find small SCs for such instances. To illustrate this we give the following
example of a general SC instance, which is highly connected and the algorithm
described in [3] is badly suited.

Boltzmann Machines and Neural Networks for Covering Array Generation 61

Example 4. Consider the following set cover
instance (U,S), U = {a, b, c, . . . , k, l,m} and S =
{S1, . . . , S13} where a ∈ Si for all i = 1, . . . ,
13 and S1 = {a,m}, S2 = {a,m, b, c}, S3 = {a, b,
c, d}, S4 = {a, c, d, e}, S5 = {a, d, e, f}, S6 = {a, e,
f, g}, S7 = {a, f, g, h}, S8 = {a, g, h, i}, S9 = {a, h,
i, j}, S10 = {a, i, j, k}, S11 = {a, j, k, l}, S12 = {a, k, l,m}, S13 = {a, l,m, b}. The
graph representing the set cover instance (U,S) is the complete graph with 13
vertices. In the figure above we give an example of a reduced graph of this set
cover instance, in the sense of [3], i.e. each element of the universe appears as
a label of exactly one edge. A maximal (even maximum) independent set of
nodes can be identified as I = {S1, S3, S5, S7, S9, S11, S13}. Then the comple-
ment C = {S2, S4, S6, S8, S10, S12} constitutes a minimal vertex cover of this
graph, and hence C is a cover of the universe U . Though, C is not a minimal set
cover, since C′ = {S2, S5, S8, S11} also constitutes a cover of U of smaller size.
In fact it is not hard to see that C′ is a minimal set cover of (U,S).

We take this example as a further motivation to modify the approach of
[3], towards relaxing the target of finding an independent set on the reduced
graph G′

S . Finding independent sets is encoded in the consensus function F (as
introduced in Subsect. 3.3), that characterizes independent sets through local
maxima, as long as weights of vertices are positive, and the weights of the edges
are smaller than the negative vertex weights. Using the same consensus function,
our approach is to increase the edge weights, such that local maxima of F can
originate also from vertex sets containing adjacent vertices. From this we gain,
that when maximizing consensus F more neurons are in state on, hence the
complement, the neurons in state off will be less than in the original approach
of [3]. On the downside, we might lose the property that these neurons in state off
translate to a set cover, respectively a CA in our case. We address this issue by
evaluating the returned solution, and updating the weights of the edges. Then
we maximize the consensus F for the updated instance. The key idea behind
this approach is, that the neural network decreases the weights of those edges
that carry elements as labels that where not covered in the previous iteration.
This modifies the network, such that in the next iteration it is less likely that
all neurons connected by such edges are turned on and hence some will remain
turned off, which means they will be part of the suggested solution of the set
cover. We detail our edge updates and additional learning features in the next
section. The experimental results provided in Sect. 5 fully justify this approach.

4.1 Weight Updates: A First Step Towards Learning

New Initial Weights. The first change we made to the algorithm as it is presented
in [3] is that we changed the computation of the edge weights. This is done by
assigning the weights as a function of |Si ∩ Sj | instead of max(|Si|, |Sj |). The
number of t-way interactions two rows Si and Sj cover in common depends on
the number of positions in which these rows are equal, we hence can compute

62 L. Kampel et al.

|Si ∩Sj | =
(
k−dij

t

)
, where dij denotes the hamming distance2 of the two rows Si

and Sj . We thus considered two additional instantiations of the building block
InitialWeights:

– HDweight1: ω(eij) = −(
k−dij

t

) · 1/
(
k
t

)

– HDweight1: ω(eij) = − (k
dij

)−1

(k
�k/s�)

for i 	= j in both cases and ω(eii) = 1 for the loops. In Sect. 5 we will also compare
the results when the initial edge weighting HDweight1 and HDweight2 are
used in Algorithm 2.

Weight Updates: Learning in Epochs. Another improvement to the algorithm
presented in [3] was achieved by extending it by means of epochs in which the
weights of the edges connecting neurons get updated. This algorithmic extension
was implemented for two reasons: First and foremost we wanted the neural net-
work to be able to adapt to given problem instances. Second, since we gave the
neural network more freedom by weakening the consensus function F by assigning
larger weights to edges using our newly introduced versions of InitialWeights,
we are not guaranteed anymore that the output of the SA algorithm constitutes
an independent set and hence its complement must not constitute a CA.

In short, we lose the guarantee of a feasible solution as it was guaranteed
by Corollary 1. Therefore we enabled the neural network with the capability to
increase or decrease the weight of edges, depending on whether the elements in
their label sets were covered in the solution returned in the previous epoch or
not. This new algorithmic building block WeightUpdate can be described as
procedure that modifies the weight of the edges of the underlying graph Gt,k, in
the following way. Whenever a t-way interaction is covered more than twice in
the solution of the previous epoch, all edges that have this interaction in its label
set get an increment of 1/cov in weight (recall that edge weights are initialized
negative), where cov is the total number of covered t-way interactions. Opposite,
every edge carrying an interaction that was not covered by the solution returned
in the previous epoch gets a proportional decrement in weight. The weights of
some edges get smaller and in the next epoch it is less likely that both vertices
adjacent to such an edge will be in the independent set to be constructed. This
in turn means, that at least one of the vertices will be in the complement, i.e.
the return of the next epoch.

We present Algorithm 3 in terms of a pseudocode. First a reduced graph G′
t,k

is constructed and initial weights are assigned. Further a global best solution
is recorded in Imax, which is initially set empty. Then a number e of epochs
is run, where in each epoch x runs of SA are executed, where we keep the
solution I maximizing the consensus F over these x runs. The weight update
CoverWeight is based on this solution I. If I is larger than Imax we store
it accordingly, before entering the next epoch. Finally if V \ I covers all t-way
interactions, a CA is found and returned.
2 The hamming distance of two vectors is defined as the number of positions in which
these two disagree.

Boltzmann Machines and Neural Networks for Covering Array Generation 63

4.2 Graph Updates: An Additional Layer for Learning

In our experiments we recognized that the quality of the solution produced by
Algorithm 3 highly depends on the random graph that is chosen in the initial-
ization step.

Algorithm 3. BMforCAlearning
1: INPUT: t, k
Require: e, x
2: G′

t,k ← InitialGraph(Gt,k), ω(G′
t,k) ← InitialWeights(G′

t,k) � Initialization

3: Imax ← ∅
4: while epoch count ≤ e do
5: run SA on G′

t,k x times, store I maximizing consensus

6: ω(G′
t,k) ← WeightUpdate(G′

t,k, I)

7: if |Imax| < |I| then
8: Imax ← I
9: end if
10: end while
11: if V \ I covers all t-way interactions then return CA(|V | − |Imax|; t, k, 2) = V \ Imax

12: else return V \ Imax with additional coverage information
13: end if

Thus we strived to enhance the learning rate of the neural network with a
functionality capable to update the reduced graph that the Boltzmann machine
runs on. We describe this additional layer of learning next. A pseudo code
description can be seen in Algorithm 4. The graph updates essentially happen
in an additional layer of learning phases, built upon Algorithm3. Therefore, the
initialization as well as lines 6–12 of Algorithm 4 are the same as the initialization
and the lines 4–10 of Algorithm3 where variable Imax gets renamed to Ilearn).
Around these epochs n learning phases are run, where at the beginning of each
learning phase the Ilearn parameter is reset to the empty set. At the end of each
learning phase a graph update based on Imax occurs and a bias update based to
the best solution Ilearn found during this learning phase. Both procedures act
on the underlying graph Gt,k and are explained more detailed as follows.

For the key procedure GraphUpdate we introduce the following instances:

– RandomGraph: This procedure selects a new random graph, just as in the
random initialization.

– BestEdges: In each learning phase a subset L of the nodes (respectively
rows) of V \ Imax is randomly selected. For each row in L we flip a random
position to create a second row, to which we draw an edge in the graph. By
only flipping one position we generate a row that shares the maximal number
of t-way interactions with the original row. The edge thus constructed has a
large label set. Thereafter for each t-way interaction that is not covered by
any of the rows in L, we generate a random edge having this interaction as
a label, just as in InitialGraph. With this strategy the neural network can
reduce the number of edges in the new reduced graph.

64 L. Kampel et al.

To guide the neural network and enable it to learn from solutions previously
found, we added the additional functionality of BiasUpdate. The bias update
acts on the neurons, rather than on the synapses of the neural network. In our
encoding it can be realized as a weight update, acting exclusively on the loops, by
adding a certain, relatively small, δ to the weight of the loops. The bias update
is a way to reward vertices that were part of previous solutions, so that the
Boltzmann network has a larger tendency to include them in future solutions.
This is due to the structure of the consensus function F (see Subsect. 3.3) which
value increases whenever a vertex with an increased weight ω(eii)+δ is activated,
instead of a vertex with edge weight ω(eii). Vertices being part of Ilearn in several
learning phases are incrementally rewarded through this bias update.

Remark 2. Note that due to bias updates, and also updates of edge weights the
cumulative weight in the whole network is not constant over several learning
phases. Adopting our weight updates such that the total weight of the network
is constant over time is considered as part of future work.

Algorithm 4. BMforCAlearningGraph
1: INPUT: t, k
Require: e, x, n, δ
2: G′

t,k ← InitialGraph(Gt,k), ω(G′
t,k) ← InitialWeights(G′

t,k) � Initialization

3: Imax ← ∅
4: while learning phases ≤ n do
5: Ilearn ← ∅
6: while epoch count ≤ e do
7: run SA on G′

t,k x times, store I maximizing consensus

8: ω(G′
t,k) ← WeightUpdate(G′

t,k, I)

9: if |Ilearn| < |I| then
10: Ilearn ← I
11: end if
12: end while
13: if |Imax| < |Ilearn| then
14: Imax ← Ilearn

15: end if
16: G′

t,k ← GraphUpdate(Gt,k, Imax)

17: Gt,k ← BiasUpdate(Ilearn, δ)
18: end while
19: return V \ Imax with coverage information

5 Experimental Evaluation

In this section we report experimental results for different configurations of our
algorithms which serves as a proof of concept for their validity and efficiency.
Tuning the parameters of neural networks for search problems has been subject
to a number of related works (e.g. with genetic algorithms [2] or combinatorial
approaches [7,8]) but an evaluation in that direction is beyond the scope of this
paper, and is left for future work. Once, again here we want to demonstrate
the premise of our approach especially when compared to past works related
with BMs and SCs. We implemented the algorithms in C# and performed the

Boltzmann Machines and Neural Networks for Covering Array Generation 65

experiments in a workstation equipped with 8 GB of RAM and an i5-Core. In
the experiments conducted we used the following settings regarding the simu-
lated annealing algorithm. Temperatures and the factor α were set as T0 = 1,
Tf = 0.001, α = 0.005. The number of inner SA cycles x for configurations of
Algorithm 3 was set to 5. One SA cycle takes around 20 ms of execution time.
Finally we would like to remark that although the numbers seem very small,
bear in mind that for a CA instance (t, k), the underlying graphs grow exponen-
tially in k, e.g. for the CA instance (2, 10) the underlying graph G2,10 has 1024
vertices, each having 1012 edges to other vertices.

5.1 Tested Configurations of Algorithm2

With our first experiments we compare different Configurations of Algo-
rithm2, using different instantiations of InitialWeights. Configuration 2.1
uses BMweight, Configuration 2.2 uses HDweight1 and Configuration 2.3
uses HDweight2. Table 1 documents the results of our experiments. In the first
column we specify the CA instance, the second column headed by CAN lists
the number of rows of the respective optimal CAs. In the remaining columns,
headed by min, avg, max we document the smallest, average and maximal size of
the generated covering arrays for each configuration. Additionally in the column
headed by avg % cov we document the average percentage of t-way interactions
covered over all generated arrays. Since we deal with randomized algorithms
(recall that the procedure InitialGraph is randomized), we executed 100 indi-
vidual runs of each configuration. Note that Configuration 2.1 always returns a
CA, due to Corollary 1. As discussed in Sect. 4 we abandoned the conceptions of
[3] with our weight initialization, which is the reason why the other two config-
urations also return arrays with less than 100% coverage of t-way interactions.
Nevertheless considering the sizes of the generated CAs, we can see that the algo-
rithms with the initial weights computed with HDweight1 and HDweight2

generate much smaller covering arrays. Especially Configuration 2.2, producing
the smallest covering arrays of these three versions, seems to prioritize smaller
size over coverage of t-way interactions, having also the smallest percentage in
t-way interactions covered over all returned CAs. In our evaluation of Configura-
tion 2.1 we could not produce amazing results as documented in [3] achieved for
general set cover instances. We believe this is mostly due to the graphs underly-
ing the CA instances, being very dense compared to underlying graphs of general
SC instances.

Summarizing these experiments we can see that the initial weighting of edges
in the graph, respectively of synapses in the neural network, is crucial for the
quality of the output of the tested algorithms.

66 L. Kampel et al.

Table 1. Results of the experiments with configurations of Algorithm 2.

(t, k) CAN Configuration 2.1 Configuration 2.2 Configuration 2.3

min avg max avg %

cov

min avg max avg %

cov

min avg max avg %

cov

(2,3) 4 4 4 4 100 4 4 4 51.5 4 4 4 100

(2.4) 4 7 8.3 10 100 5 6.14 7 85.04 5 6.15 7 93.71

(2.5) 5 13 15.16 18 100 6 8.22 10 94.75 8 10.25 12 98.83

(2.6) 6 23 26.9 31 100 9 11.90 15 98.42 12 15.22 19 99.63

(2.7) 6 41 45.62 51 100 11 13.63 17 98.33 18 23.39 29 99.95

(2.8) 6 65 72.37 81 100 11 14.60 19 97.26 23 28.69 34 99.98

(2.9) 6 97 106.04 116 100 12 13.77 15 94.74 24 31.75 39 99.99

(2.10) 6 138 146.36 158 100 12 12.67 14 86.23 25 33.22 42 99.99

5.2 Tested Configurations of Algorithm3

In this subsection we document the results of our experiments with different
configurations of Algorithm3, to evaluate the efficiency of the introduced weight
update, in combination with the different weight initializations. Thus we com-
pared Configuration 3.1 using BMweight, Configuration 3.2 using HDweight1

and Configuration 3.3 using HDweight2, each using the WeightUpdate. The
results can be found in Table 2, which have been generated over 10 individual
runs for each configuration. Summarizing, first and foremost it is remarkable,
that the deployed learning in form of weight updates nullified the severe dif-
ference in the number of rows of the generated CAs, as it is witnessed in the
versions of Algorithm 2. Further it is notable that due to the weight update the
number of rows of the smallest CAs generated decreases, even when comparing
to Configuration 2.2 which scaled the best in the previous subsection. Addition-
ally all Configurations always returned CAs (attained 100% coverage of t-way
interactions). Hence, we omit the column with the average coverage information.

Table 2. Results of experiments with configurations of Algorithm 3.

(t, k) CAN Configuration 3.1 Configuration 3.2 Configuration 3.3

min avg max min avg max min avg max

(2,3) 4 4 4 4 4 4 4 4 4 4

(2.4) 4 5 6.2 7 5 5.9 6 5 6 7

(2.5) 5 6 6.8 8 6 6.2 7 6 6.5 8

(2.6) 6 6 7.9 9 6 7.8 9 6 7.6 9

(2.7) 6 8 9.6 11 6 9.2 12 7 9.9 12

(2.8) 6 10 11.2 13 10 11.1 12 9 10.8 12

(2.9) 6 9 11.6 13 11 13 15 11 12.6 14

(2.10) 6 11 13.1 15 11 12.9 14 11 13.1 14

Boltzmann Machines and Neural Networks for Covering Array Generation 67

5.3 Tested Configurations of Algorithm4

We evaluated the two configurations of Algorithm4 as given by Table 3, Config-
uration 4.1 uses the graph update BestEdges and Configuration 4.2 uses the
graph update RandomGraph. We ran them for the CA instances (t = 2, k = 6)
and (t = 3, k = 5), where we limited them to 60 and 70 learning phases respec-
tively. Each learning phase contains 20 epochs, and a bias update at the end,
where a the weight of the vertices (i.e. rows) in Ilearn is increased by 0.01. For
the BestEdges graph update 50% of the rows in V \ Imax were used to con-
struct the new graph. The graphs in Figs. 4a and b depict the evaluation of the
best found solution after each learning phase which is normalized to the ideal
solution. These experiments show that the Configuration using BestEdge as
graph update converges faster towards the ideal solution.

Table 3. Benchmark configurations for Algorithm4.

Building block Configuration

Config. 4.1 Config. 4.2

InitialWeight HDweight1 HDweight1

WeightUpdate On On

GraphUpdate BestEdges RandomGraph

BiasUpdate On On

Fig. 4. Configuration 4.1 (green) and 4.2 (red) for the CA instances (t = 2, k = 6)
(left) and (t = 3, k = 5) (right). (Color figure online)

6 Conclusion

The cornerstone of this paper is the use of artificial neural networks for CA
problems, where we presented for the first time neural models for the construc-
tion of covering arrays. Combining the works of [4] and [3], we were able to
devise Boltzmann machines for the construction of covering arrays and enhance
them with learning capabilities in form of weight updates, graph updates and

68 L. Kampel et al.

bias updates. The first experiment results confirm that the application of neural
networks to the CA generation problem can lead to optimal solutions and pave
the way for future applications.

Acknowledgements. This research was carried out as part of the Austrian COMET
K1 program (FFG).

References

1. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley, Hobo-
ken (1988)

2. Bashiri, M., Geranmayeh, A.F.: Tuning the parameters of an artificial neural net-
work using central composite design and genetic algorithm. Scientia Iranica 18(6),
1600–1608 (2011)

3. Hifi, M., Paschos, V.T., Zissimopoulos, V.: A neural network for the minimum set
covering problem. Chaos, Solitons Fractals 11(13), 2079–2089 (2000)

4. Kampel, L., Garn, B., Simos, D.E.: Covering arrays via set covers. Electron. Notes
Discrete Math. 65, 11–16 (2018)

5. Kampel, L., Simos, D.E.: A survey on the state of the art of complexity problems
for covering arrays. Theoret. Comput. Sci. 800, 107–124 (2019)

6. Lundy, M., Mees, A.: Convergence of an annealing algorithm. Math. Program.
34(1), 111–124 (1986)

7. Ma, L., et al.: Combinatorial testing for deep learning systems. arXiv preprint
arXiv:1806.07723 (2018)

8. Pérez-Espinosa, H., Avila-George, H., Rodriguez-Jacobo, J., Cruz-Mendoza, H.A.,
Mart́ınez-Miranda, J., Espinosa-Curiel, I.: Tuning the parameters of a convolu-
tional artificial neural network by using covering arrays. Res. Comput. Sci. 121,
69–81 (2016)

9. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550(7676), 354 (2017)

10. Smith, K.A.: Neural networks for combinatorial optimization: a review of more
than a decade of research. INFORMS J. Comput. 11(1), 15–34 (1999)

11. Torres-Jimenez, J., Izquierdo-Marquez, I.: Survey of covering arrays. In: 2013 15th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, pp. 20–27, September 2013

12. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-662-04565-7

http://arxiv.org/abs/1806.07723
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

	How to Use Boltzmann Machines and Neural Networks for Covering Array Generation
	1 Introduction
	2 Preliminaries
	3 A Boltzmann Machine for Covering Arrays
	3.1 Encoding CA Problems as Set Cover Problems
	3.2 Boltzmann Machines for Set Cover Problems
	3.3 Computing CAs with Boltzmann Machines

	4 Finding Covering Arrays with Neural Networks
	4.1 Weight Updates: A First Step Towards Learning
	4.2 Graph Updates: An Additional Layer for Learning

	5 Experimental Evaluation
	5.1 Tested Configurations of Algorithm2
	5.2 Tested Configurations of Algorithm3
	5.3 Tested Configurations of Algorithm4

	6 Conclusion
	References

