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Abstract. We consider one problem of partitioning a finite set of points
in Euclidean space into clusters so as to minimize the sum over all clus-
ters of the intracluster sums of the squared distances between clusters
elements and their centers. The centers of some clusters are given as
an input, while the other centers are unknown and defined as centroids
(geometrical centers). It is known that the general case of the problem is
strongly NP-hard. We show that there exists an exact polynomial algo-
rithm for the one-dimensional case of the problem.
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1 Introduction

The subject of this study is one strongly NP-hard problem of partitioning a finite
set of points in Euclidean space into clusters. Our goal is to analyze the com-
putational complexity of the problem in the one-dimensional case. The research
is motivated by the openness of the specified mathematical question, as well as
by the importance of the problem for some applications, in particular, for Data
analysis, Data mining, Pattern recognition, and Data processing.

The paper has the following structure. In Sect. 2, the problem formulation
is given. In the same section, a connection is established with a well-known
problem that is the closest to we consider one. The next section presents auxiliary
statements that reveal the structure of the optimal solution to the problem.
These statements allow us to prove the main result. In Sect. 4, our main result
of the polynomial solvability of the problem in the 1D case is presented.

2 Problem Formulation, Its Sources and Related
Problems

In the well-known clustering K-Means problem, an N -element set Y of points in
d-dimension Euclidean space and a positive integer K are given. It is required to
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find a partition of the input set Y into non-empty clusters C1, . . . , CK minimizing
the sum

K∑

k=1

∑

y∈Ck

‖y − y(Ck)‖2,

where y(Ck) = 1
|Ck|

∑
y∈Ck

y is the centroid of the k-th cluster.
Another common name of K-Means problem is MSSC (Minimum Sum-of-

Squares Clustering). In statistics, this problem is known from the last century
and is associated with Fisher (see, for example, [1,2]). In practice (in a wide
variety of applications), this problem arises when there is the following hypoth-
esis on a structure of some given numerical data. Namely, one has assumption
that the set Y of sample (input) data contains K homogeneous clusters (sub-
sets) C1, . . . , CK , and in all clusters, the points are scattered around the corre-
sponding unknown mean values y(C1), . . . , y(CK). However, the correspondence
between points and clusters is unknown. Obviously, in this situation, for the cor-
rect application of classical statistical methods (hypothesis testing or parameter
estimating) to the processing of sample data, at first it is necessary to divide the
data into homogeneous groups (clusters). This situation is typical, in particular,
for the above-mentioned (see Sect. 1) applications.

The K-Means strong NP-hardness was proved relatively recently [3]. The
polynomial solvability of this problem on a line was proved in [4] in the last
century. The cited paper presents an algorithm with O(KN2) running time that
implements a dynamic programming scheme. This well-known algorithm relies
on an exact polynomial algorithm for solving the well-known Nearest neighbor
search problem [5]. Note that the polynomial solvability in O(KN log N)-time
of the 1D case of the K-Means problem follows directly from earlier (than [4])
results obtained in [6–9]. In the cited papers, the authors have proved the faster
polynomial-time algorithms for some special cases of the Nearest neighbor search
problem. Nevertheless, in recent years, for the one-dimensional case of the K-
Means problem, some new exact algorithms with O(KN log N) running time
have been constructed. An overview of these algorithms and their properties can
be found in [10,11].

The object of our research is the following problem that is close in its formu-
lation to K-Means and is poorly studied.

Problem 1 (K-Means and Given J-Centers). Given an N -element set Y of
points in d-dimension Euclidean space, a positive integer K, and a tuple
{c1, . . . , cJ} of points. Find a partition of Y into non-empty clusters C1, . . . , CK ,
D1, . . . ,DJ such that

F =
K∑

k=1

∑

y∈Ck

‖y − y(Ck)‖2 +
J∑

j=1

∑

y∈Dj

‖y − cj‖2 → min,

where y(Ck) is the centroid of the k-st cluster.
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On the one hand, Problem1 may be considered as some modification of K-
Means. On the other hand, the introduced notation allows us to call Problem1
as K-Means and Given J-Centers.

Unlike K-Means, Problem 1 models an applied clustering problem in which
for a part of clusters (i.e., for D1, . . . ,DJ ) the quadratic scatter data centers
(i.e., c1, . . . , cJ ) are known in advance, i.e., they are given as input instance.
This applied problem is also typical for Data analysis, Data mining, Pattern
recognition, and Data processing. In particular, the two-cluster Problem1, i.e.,
1-Mean and Given 1-Center, is related to the solution of the applied signal pro-
cessing problem. Namely, this two-clusters problem is related with the problem
of joint detecting a quasi-periodically repeated pulse of unknown shape in a pulse
train and evaluating this shape under Gaussian noise with given zero value (see
[12–14]). In this two-cluster Problem1, the zero mean corresponds to the clus-
ter with the center specified at the origin. Apparently, the first mention has
been made in [12] on this two-cluster Problem 1. It should be noted that simpler
optimization problems induced by the applied problems of noise-proof detec-
tion and discrimination of impulses of specified shapes are typical, in particular,
for radar, electronic reconnaissance, hydroacoustics, geophysics, technical and
medical diagnostics, and space monitoring (see, for example, [15–17]).

Problem 1 strong NP-hardness was proved in [18–20]. Note that the K-Means
problem is not equivalent to Problem1 and is not a special case of it. Therefore,
the solvability of Problem1 in the 1D case requires independent study. This
question until now remained open.

The main result of this paper is the proof of Problem1 polynomial solvability
in the one-dimensional case.

3 Some Auxiliary Statements: Properties of the
Problem1 Optimal Solution in the 1D Case

In what follows, we assume that d = 1. Below we will call by Problem 1D the
one-dimensional case of Problem1.

Our proof is based on the few given below auxiliary statements, which reveal
the structure of Problem 1D optimal solution. For briefness, we present these
statements without proofs, limiting ourselves to the presentation of their ideas.

Denote by C∗
1 , . . . , C∗

K , D∗
1 , . . . ,D∗

J the optimal clusters in Problem 1D.

Lemma 1. If in Problem 1D cm < c�, where 1 ≤ m ≤ J , 1 ≤ � ≤ J , then for
each x ∈ D∗

m and z ∈ D∗
� the inequality x ≤ z holds.

Lemma 2. If in Problem 1D y(C∗
m) < y(C∗

� ), where 1 ≤ m ≤ K, 1 ≤ � ≤ K,
then for each x ∈ C∗

m and z ∈ C∗
� the inequality x ≤ z holds.

Lemma 3. For an optimal solution of Problem 1D, the following statements are
true:

(1) If y(C∗
m) < c�, where 1 ≤ m ≤ K, 1 ≤ � ≤ J , then for each x ∈ C∗

m and
z ∈ D∗

� the inequality x ≤ z holds.
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(2) If y(C∗
m) > c�, where 1 ≤ m ≤ K, 1 ≤ � ≤ J , then for each x ∈ C∗

m and
z ∈ D∗

� the inequality x ≥ z holds.

The proof of Lemmas 1–3 is carried out by the contrary method using the fol-
lowing equality

(x − cm)2 + (z − c�)2 = 2(x − z)(c� − cm) + (z − cm)2 + (x − c�)2.

The validity of this equality follows from the well-known formula for the sum of
squares of the trapezoid diagonals.

Lemma 4. In Problem 1D, for each k ∈ {1, . . . , K} and j ∈ {1, . . . , J} it is
true that y(C∗

k) �= cj.

Lemma 5. In Problem 1D, for each k, j ∈ {1, . . . , K}, k �= j, it is true that
y(C∗

k) �= y(C∗
j ).

The proof of Lemmas 4 and 5 is carried out by the contrary method.
Lemmas 1–5 establish the relative position of the optimal clusters D∗

1 , . . . ,D∗
J

and C∗
1 , . . . , C∗

K on a line. These lemmas are the base of the following statement.

Theorem 1. Let in Problem 1D points y1, . . . , yN of Y, and points c1, . . . , cJ

be ordered so that

y1 < . . . < yN ,

c1 < . . . < cJ .

Then optimal partition of Y into clusters C∗
1 , . . . , C∗

K ,D∗
1 , . . . ,D∗

J corresponds to
a partition of the positive integer sequence 1, . . . , N into disjoint segments.

4 Polynomial Solvability of the Problem in the 1D Case

The following theorem is the main result of the paper.

Theorem 2. There exists an algorithm that finds an optimal solution of Prob-
lem 1D in polynomial time.

Our proof of Theorem1 is constructive. Namely, we justify an algorithm that
implements a dynamic programming scheme and allows one to find an exact
solution of Problem 1D in O(KJN2) time.

The idea of the proof is as follows. Without loss of generality, we assume
that the points y1, . . . , yN of Y, as well as the points c1, . . . , cJ are ordered as in
Theorem 1.

Let Ys,t = {ys, . . . , yt}, where 1 ≤ s ≤ t ≤ N , be a subset of t − s + 1 points
of Y with numbers from s to t.

Let

f j
s,t =

t∑

i=s

(yi − cj)2, j = 1, . . . , J,
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fs,t =
t∑

i=s

(yi − y(Ys,t))2,

where y(Ys,t) is the centroid of the subset Ys,t.
We prove that the optimal value of the Problem1 objective function is found

by the following formula
F ∗ = FK,J(N),

and the values

Fk,j(n), k = −1, 0, 1, . . . ,K; j = −1, 0, 1, . . . , J ; n = 0, . . . , N,

are calculated by the recurrent formulas. The formula

Fk,j(n) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if n = k = j = 0;
+∞, if n = 0; k = 0, . . . ,K; j = 0, . . . , J ; k + j �= 0;
+∞, if k = −1; j = −1, . . . , J ; n = 0, . . . , N ;
+∞, if j = −1; k = −1, . . . , K; n = 0, . . . , N ;

(1)

sets the initial and boundary conditions for subsequent calculations. Formula (1)
follows from the properties of the optimal solution. The basic formula

Fk,j(n) = min
{ n

min
i=1

{
Fk−1,j(i − 1) + fi,n

}
,

n
min
i=1

{
Fk,j−1(i − 1) + f j

i,n

}}
,

k = 0, . . . , K; j = 0, . . . , J ; n = 1, . . . , N, (2)

defines recursion. In general, the formulas (1), (2) implement the forward
algorithm.

Further, we have proved that the optimal clusters C∗
1 , . . . , C∗

K ,D∗
1 , . . . ,D∗

J

may be found using the following recurrent rule, that implements the backward
algorithm.

The step-by-step rule looks as follows:

Step 0. k := K, j := J , n := N .
Step 1. If

n
min
i=1

(
Fk−1,j(i − 1) + fi,n

)
≤

n
min
i=1

(
Fk,j−1(i − 1) + f j

i,n

)
,

then
C∗

k = {yi∗ , yi∗+1, . . . , yn},

where
i∗ = arg

n
min
i=1

(
Fk−1,j(i − 1) + fi,n

)
;

k := k − 1; n := i∗ − 1.
If, however,

n
min
i=1

(
Fk−1,j(i − 1) + fi,n

)
>

n
min
i=1

(
Fk,j−1(i − 1) + f j

i,n

)
,
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then
D∗

j = {yi∗ , yi∗+1, . . . , yn},

where
i∗ = arg

n
min
i=1

(
Fk,j−1(i − 1) + f j

i,n

)
;

j := j − 1; n := i∗ − 1.
Step 2. If k > 0 or j > 0, then go to Step 1; otherwise — the end of
calculations.

The validity of this rule we have proved by induction.
Finally, we have proved that the running time of the algorithm is O(KJN2),

that is, the algorithm is polynomial. The algorithms running time is defined
by the complexity of implementation of formula (2). This formula is calculated
O(KJN) times and every calculation of Fk,j(n) requires O(N) operations.

5 Conclusion

In the present paper, we have proved the polynomial solvability of the one-
dimensional case of one strongly NP-hard problem of partitioning a finite set of
points in Euclidean space. The construction of approximate efficient algorithms
with guaranteed accuracy bounds for the general case of Problem 1 and faster
polynomial-time exact algorithms for the 1D case of this problem seems to be
the directions of future studies.
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