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Abstract. In this paper we present a hybrid immunological inspired
algorithm (Hybrid-IA) for solving the Minimum Weighted Feedback
Vertex Set (M W F V S) problem. MWFV S is one of the most inter-
esting and challenging combinatorial optimization problem, which finds
application in many fields and in many real life tasks. The proposed algo-
rithm is inspired by the clonal selection principle, and therefore it takes
advantage of the main strength characteristics of the operators of (i)
cloning; (ii) hypermutation; and (iii) aging. Along with these operators,
the algorithm uses a local search procedure, based on a deterministic
approach, whose purpose is to refine the solutions found so far. In order
to evaluate the efficiency and robustness of Hybrid-IA several experi-
ments were performed on different instances, and for each instance it was
compared to three different algorithms: (1) a memetic algorithm based
on a genetic algorithm (MA); (2) a tabu search metaheuristic (XTS);
and (3) an iterative tabu search (ITS). The obtained results prove the
efficiency and reliability of hybrid-IA on all instances in term of the best
solutions found and also similar performances with all compared algo-
rithms, which represent nowadays the state-of-the-art on for MWFV S
problem.

Keywords: Immunological algorithms · Immune-inspired
computation · Metaheuristics · Combinatorial optimization · Feedback
vertex set · Weighted feedback vertex set

1 Introduction

Immunological inspired computation represents an established and rich family of
algorithms inspired by the dynamics and the information processing mechanisms
that the Immune System uses to detect, recognise, learn and remember foreign
entities to the living organism [11]. Thanks to these interesting features, immuno-
logical inspired algorithms represent successful computational methodologies in
search and optimization tasks [4,20]. Although there exist several immune theo-
ries at the basis of immunological inspired computation that could characterize
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their natural application to anomaly detection and classification tasks, one that
has been proven to be quite effective and robust is based on the clonal selection
principle. Algorithms based on the clonal selection principle work on a popula-
tion of immunological cells, better known as antibodies, that proliferate, i.e. clone
themselves – the number of copies depends on the quality of their foreign entities
detection – and undergo a mutation process usually at a high rate. This process,
biologically called Affinity Maturation, makes these algorithms very suitable in
functions and combinatorial optimization problems. This statement is supported
by several experimental applications [6–8,18], as well as by theoretical analyses
that prove their efficiency with respect to several Randomized Search Heuristics
[14,15,23,25].

In light of the above, we have designed and developed an immune inspired
hypermutation algorithm - based precisely on the clonal selection principle -
in order to solve a classical combinatorial optimization problem, namely the
Weighted Feedback Vertex Set (WFV S).

In addition, we take into account what clearly emerges from the evolution-
ary computation literature: in order to obtain good performances and solve
hard a combinatorial optimization problem, it is necessary to combine together
metaheuristics and other classical optimization techniques, such as local search,
dynamic programming, exact methods, etc. For this reason, we have designed a
hybrid immunological algorithm, by including some deterministic criteria inside
in order to refine the found solutions and to help the convergence of the algorithm
towards the global optimal solution.

The hybrid immunological algorithm proposed in this paper, hereafter simply
called Hybrid-IA, takes advantage of the immunological operators of cloning,
hypermutation and aging, to carefully explore the search space and properly
exploit the information learned, but it also makes use of local search for improv-
ing the quality of the solutions, and deterministically trying to remove that
vertex that break off one or more cycles in the graph, and has the minor weight-
degree ratio. The many experiments performed have proved the fruitful impact
of such a greedy idea, since it was almost always able to improve the solutions,
leading the Hybrid-IA towards the global optimal solution. For evaluating the
reliability and efficiency of Hybrid-IA, many experiments on several different
instances have been performed, taken by [2] and following the same experimental
protocol proposed in it. Hybrid-IA was also compared with other three meta-
heuristics: Iterated Tabu Search (ITS) [3]; eXploring Tabu Search (XTS) [1,9];
and Memetic Algorithm (MA) [2]. From all comparisons performed and analysed,
Hybrid-IA proved to be always competitive and comparable with the best of
the three metaheuristics. Furthermore, it is worth emphasizing that Hybrid-IA

outperforms the three algorithms on some instances, since, unlike them, it is
able to find the global best solution.

2 The Weighted Feedback Vertex Set Problem

Given a directed or undirected graph G = (V,E), a feedback vertex set of G is a
subset S ⊂ V of vertices whose removal makes G acyclic. More formally, if S ⊂ V
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we can define the subgraph G[S] = (V \S,EV \S) where EV \S = {(u, v) ∈ E :
u, v ∈ V \S}. If G[S] is acyclic, then S is a feedback set. The Minimum Feedback
Vertex Set Problem (MFV S) is the problem of finding a feedback vertex set
of minimal cardinality. If S is a feedback set, we say that a vertex v ∈ S is
redundant if the induced subgraph G[S\{v}] = ((V \S) ∪ {v}, E(V \S)∪{v}, w) is
still an acyclic graph. It follows that S is a minimal FV S if it doesn’t contain any
redundant vertices. It is well known that the decisional version of the MFV S is
a NP-complete problem for general graphs [12,17] and even for bipartite graphs
[24].

If we associate a positive weight w(v) to each vertex v ∈ V , let S be any subset
of V, then its weight is the sum of the weights of its vertices, i.e.

∑
v∈S w(v). The

Minimum Weighted Feedback Vertex Set Problem (MWFV S) is the problem of
finding a feedback vertex set of minimal weight.

The MWFV S problem is an interesting and challenging task as it finds
application in many fields and in many real-life tasks, such as in the context of
(i) operating systems for preventing or removing deadlocks [22]; (ii) combina-
torial circuit design [16]; (iii) information security [13]; and (iv) the study of
monopolies in synchronous distributed systems [19]. Many heuristics and meta-
heuristics have been developed for the simple MFV S problem, whilst very few,
instead, have been developed for the weighted variant of the problem.

3 Hybrid-IA: A Hybrid Immunological Algorithm

Hybrid-IA is an immunological algorithm inspired by the clonal selection prin-
ciple, which represents an excellent example of bottom up intelligent strategy
where adaptation operates at local level, whilst a complex and useful behaviour
emerges at global level. The basic idea of this metaphor is how the cells adapt
for binding and eliminate foreign entities, better known as Antigene (Ag). The
key features of Hybrid-IA are the cloning, hypermutation and aging operators,
which, respectively, generate new populations centered on higher affinity values;
explore the neighborhood of each solution into the search space; and eliminate
the old cells and the less promising ones, in order to keep the algorithm from
getting trapped into a local optimal. To these immunological operators, a local
search strategy is also added, which, by restoring one or more cycles with the
addition of a previously removed vertex, it tries again to break off the cycle,
or the cycles, by conveniently removing a new vertex that improves the fitness
of the solution. Usually the best choice is to select the node with the minimal
weight-degree ratio. The existence of a cycle, or more cycles, is computed via the
well-know procedure Depth First Search (DFS) [5]. The aim of the local search
is then to repair the random choices done by the stochastic operators via more
locally appropriate choices.

Hybrid-IA is based on two main entities, such as the antigen that repre-
sents the problem to tackle, and the B cell receptor that instead represents a
point (configuration) of the search space. Each B cell, in particular, represents
a permutation of vertices that determines the order of the nodes to be removed:
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starting from the first position of the permutation, the relative node is selected
and removed from the graph, and this is iteratively repeated, following the order
in the permutation, until an acyclic graph is obtained, or, in general, there are
no more vertices to be removed. Once an acyclic graph is obtained, all possible
redundant vertices are restored in V . Now, all removed vertices represent the
S set, i.e. a solution to the problem. Such process is outlined in simple way in
Algorithm 1. Some clarification about Algorithm 1:

– Input to the Algorithm is an undirected graph G = (V,E);
– given any X ⊆ V by dX(v) we denote the degree of vertex v in the graph

induced by X, i.e. the graph G(X) obtained from G by removing all the
vertices not in X.

– if, given any X ⊆ V a vertex v has degree dX(v) ≤ 1, such a vertex cannot
be involved in any cycle. So, when searching for a feedback vertex set, any
such a vertex can simply be ignored, or removed from the graph.

– the algorithm associates deterministically a subset S of the graph vertices to
any given permutation of the vertices in V. The sum of the weights of the
vertices in S will be the fitness value associated to the permutation.

Algorithm 1. Create Solution
X ← V
P ← permutation(V )
S ← ∅
for u ∈ P do
if u ∈ X and G(X) not acyclic then

X ← X \ {u}
S ← S ∪ {u}
while ∃v ∈ X : dX(v) < 2 do

X ← X \ {u}
end while

end if
end for
Removing all redundant vertices from S
return S

At each time step t, we maintain a population of B cells of size d that we label
P (t). Each permutation, i.e. B cell, is randomly generated during the initializa-
tion phase (t = 0) using a uniform distribution. A summary of the proposed
algorithm is shown below. Hybrid-IA terminates its execution when the fixed
termination criterion is satisfied. For our experiments and for all outcomes pre-
sented in this paper, a maximum number of generations has been considered.
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Algorithm 2. Hybrid-IA (d, dup, ρ, τB)
t ← 0;
P (t) ← Initialize Population(d);
Compute Fitness(P (t));
repeat

P (clo) ← Cloning (P (t), dup);
P (hyp) ← Hypermutation(P (clo), ρ);
Compute Fitness(P (hyp));
(P (t)

a , P
(hyp)
a ) ← Aging(P (t), P (hyp), τB);

P (select) ← (μ + λ)-Selection(P (t)
a , P

(hyp)
a );

P (t+1) ← Local Search(P (select));
Compute Fitness(P (t+1));
t ← t + 1;

until (termination criterion is satisfied)

Cloning Operator: It is the first immunological operator to be applied, and
it has the aim to reproduce the proliferation mechanism of the immune system.
Indeed it simply copies dup times each B cell producing an intermediate popula-
tion P (clo) of size d× dup. Once a B cell copy is created, i.e. the B cell is cloned,
to this is assigned an age that determines its lifespan, during that it can mature,
evolves and improves: from the assigned age it will evolve into the population
for producing robust offspring until a maximum age reachable (a user-defined
parameter), i.e. a prefixed maximum number of generations. It is important to
highlight that the assignment of the age together to the aging operator play a key
role on the performances of Hybrid-IA [10,21], since their combination has the
purpose to reduce premature convergences, and keep an appropriate diversity
between the B cells.

The cloning operator, coupled with the hypermutation operator, performs
a local search around the cloned solutions; indeed the introduction of a high
number of blind mutations produces individuals with higher fitness function
values, which will be after selected to form ever better progenies.

Inversely Hypermutation Operator: This operator has the aim to explore
the neighborhood of each clone taking into account, however, the quality of the
fitness function of the clone it is working on. It acts on each element of the
population P (clo), performing M mutations on each clone, whose number M is
determined by an inversely proportional law to the clone fitness value: the higher
is the fitness function value, the lower is the number of mutations performed on
the B cell. Unlike of any evolutionary algorithm, no mutation probability has
been considered in Hybrid-IA.

Given a clone x, the number of mutations M that it will be undergo is
determined by the following potential mutation:

α = e−ρf̂(x), (1)
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where α represents the mutation rate, and f̂(x) the fitness function value nor-
malized in [0, 1]. The number of mutations M is then given by

M = 
(α × �) + 1�, (2)

where � is the length of the B cell. From Eq. 2, is possible to note that at least
one mutation occurs on each cloned B cell, and this happens to the solutions
very close to the optimal one. Since any B cell is represented as a vertices per-
mutation that determines their removing order, the position occupied by each
vertex in the permutation becomes crucial for the achievement of the global best
solution. Consequently, the hypermutation operator adopted is the well-known
Swap Mutations, through which the right permutation, i.e. the right removing
order, is searched: for any x B cell, choices two positions i and j, the vertices xi

and xj are exchanged of position, becoming x′
i = xj and x′

j = xi, respectively.

Aging Operator: This operator has the main goal to help the algorithm for
jumping out from local optimal. Simply it eliminates the old B cells from the
populations P (t) and P (hyp): once the age of a B cell exceeds the maximum
age allowed (τB), it will be removed from the population of belonging indepen-
dently from its fitness value. As written above, the parameter τB represents the
maximum number of generations allowed so that every B cell can be considered
to remain into the population. In this way, this operator is able to maintain a
proper turnover between the B cells in the population, producing high diversity
inside it, and this surely help the algorithm to avoid premature convergences
and, consequently, to get trapped into local optima.

An exception about the removal may be done for the best current solution
that is kept into the population even if its age is older than τB . This variant of
the aging operator is called elitist aging operator.

(μ+λ)-Selection Operator: Once the aging operator ended its work, the best
d survivors from both populations P

(t)
a and P

(hyp)
a are selected for generating

a temporary population P (select that, afterwards, will be undergo to the local
search. For this process the classical (μ + λ)-Selection operator has been consid-
ered, where, in our case, μ = d and λ = (d × dup). In a nutshell, this operator
reduces the offspring B cell population (P (hyp)

a ) of size λ ≥ μ to a new popula-
tion (P (select) of size μ = d. Since this selection mechanism identifies the d best
elements between the offspring set and the old parent B cells, then it guarantees
monotonicity in the evolution dynamics. Nevertheless, may happens that all sur-
vived B cells are less than the required population size (d), i.e. da < d. This can
easily happens depending on the chosen age assignment, and fixed value of τB .
In this case, the selection mechanism randomly generates d − da new B cells.

Local Search: The main idea at the base of this local search is to repair in
a proper and deterministic way the solutions produced by the stochastic muta-
tion operator. Whilst the hypermutation operator determines the vertices to be
removed in a blind and random way, i.e. choosing them independently of its
weight, then the local search try to change one, or more of them with another
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node of lesser weight, improving thus the fitness function of that B cell. Given
a solution x, all vertices in x are sorted in decreasing order with respect their
weights. Then, starting from vertex u with largest weight, the local search pro-
cedure iteratively works as follows: the vertex u is inserted again in V \ S, gen-
erating then one or more cycles; via the classical DFS procedure, are computed
the number of the cycles produced, and, thus one of these (if there are more) is
taken into account, together with all vertices involved in it. These last vertices
are now sorted in increasing way with respect their weight-degree ratio; thus,
the vertex v with smaller ratio is selected to break off the cycle. Of course, may
also happens that v break off also more cycles. Anyway, if from the removal of
v the subgraph becomes acyclic, and this removal improves the fitness function
then v is considered for the solution and it replaces u; otherwise the process is
repeated again taking into account a new cycle. At the end of the iterations, if
the sum of the new removed vertices (i.e. the fitness) is less to the previous one,
then such vertices are inserted in the new solution in place of vertex u.

4 Results

In this section all analysis, experiments, and comparisons of Hybrid-IA are pre-
sented in order to measure the goodness of the proposed approach. The main goal
of these experiments is obviously to prove the reliability and competitiveness of
the Hybrid-IA with respect the state-of-the-art, but also to test the efficiency
and the computational impact provided by the designed local search. Thus, for
properly evaluating the performances of the proposed algorithm, a set of bench-
mark instances proposed in [3] have been considered, whose set includes grid,
toroidal, hypercube, and random graphs. Each instance considered, besides to
the topology, differs in the number of vertices; number of edges; and range of val-
ues for the vertices weights. In this way, as suggested in [2], is possible to inspect
the computational performances of Hybrid-IA with respect to the density of
the graph and weight ranges. Further, Hybrid-IA has been also compared with
three different algorithms, which represent nowadays the state-of-the-art for the
WFVS problem: Iterated Tabu Search (ITS) [3]; eXploring Tabu Search (XTS)
[1,9]; and Memetic Algorithm (MA) [2]. All three algorithms, and their results,
have been taken in [2].

Each experiment was performed by Hybrid-IA with population size d = 100,
duplication parameter dup = 2, maximum age reachable τB = 20, mutation
rate parameter ρ = 0.5, and maximum number of generations maxgen = 300.
Further, each experiment reported in the tables below is the average over five
instances with the same characteristics but different assignment of the vertices
weights. The experimental protocol used, and not included above, has been taken
by [2]. It is important to highlight that in [2] a fixed maximum number of genera-
tors is not given, but the authors use a stop criterion based on a formula (MaxIt)
that depends on the density of the graph: the algorithm will end its evolution
process when it will reach MaxIt consecutive iterations without improvements.
Note that this threshold is reset every time an improvement occurs. From a sim-
ple calculus, it is possible to check how 300 generations used in this work are
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almost always lowest or equal to the minimum ones performed by the algorithms
presented in [2], considering primarily the simplicity of fitness improvements in
the first steps of the generations.

4.1 Dynamic Behaviour

Before to presents the experiments, and comparisons performed, the dynamic
behavior and the learning ability of Hybrid-IA are presented. An analysis on
the computational impact, and convergence advantages provided by the use of
the local search developed has been conducted as well.

In Fig. 1, left plot, is shown the dynamic behavior of Hybrid-IA, where are
displayed the curves of the (i) best fitness, (ii) average fitness of the popula-
tion, and (iii) average fitness of the cloned hypermutated population over the
generations. For this analysis the squared grid instance S SG9 has been consid-
ered, whose features, and weights range are shown in Table 1. From this plot is
possible to see how Hybrid-IA go down quickly in a very short generations to
acceptable solutions for then oscillating between values close to each other. This
oscillatory behavior, with main reference to the cloned hypermutated population
curve, proves how the algorithm Hybrid-IA has good solutions diversity, which
is surely helpful for the search space exploration. These fluctuations are instead
less pronounced in the curve of the average fitness of the population, and this
is due to the use of the local search that provides greater convergence stability.
Last curve, the one of the best fitness, indicates how the algorithm takes the best
advantage of the generations, managing to still improve in the last generations.
Since this is one of few instances where Hybrid-IA didn’t reach the optimal
solution, inspecting this curve we think that likely increasing the number of
generations (even just a little), Hybrid-IA will be able to find the global best.
Right plot of Fig. 1 shows the comparison between the average fitness values of
the survivors’ population (P (select)), and the one produced by the local search.
Although they show a very similar parallel behavior, this plot proves the useful-
ness and benefits produced by the local search, which is always able to improve
the solutions generated by the stochastic immune operators. Indeed the curve of
the average fitness produced by the local search is always below to the survivors
one.

Besides the convergence analysis, it becomes important also to understand
the learning ability of the algorithm, i.e. how many information it is able to gain
during all evolutionary process, which affects the performances of any evolution-
ary algorithm in general. For analyzing the learning process we have then used
the well-known entropy function, Information Gain, which measures the quan-
tity of information the system discovers during the learning phase [6,7,18]. Let
Bt

m be the number of the B cells that at the timestep t have the fitness function
value m; we define the candidate solutions distribution function f

(t)
m as the ratio

between the number Bt
m and the total number of candidate solutions:

f (t)
m =

Bt
m

∑h
m=0 Bt

m

=
Bt

m

d
. (3)
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Fig. 1. Convergence behavior of the average fitness function values of P (t), P (hyp),
and the best B cell versus generations on the grid S SG9 instance (left plot). Average
fitness function of P (select) vs. average fitness function P (t) on the random S R23
instance (right plot).

It follows that the information gain K(t, t0) and entropy E(t) can be defined as:

K(t, t0) =
∑

m

f (t)
m log(f (t)

m /f (t0)
m ), (4)

E(t) =
∑

m

f (t)
m log f (t)

m . (5)

The gain is the amount of information the system learned compared to the
randomly generated initial population P (t=0). Once the learning process begins,
the information gain increases until to reach a peak point.
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Fig. 2. Learning during the evolutionary process. Information gain curves of Hybrid-
IA with local search strategy (left plot) and without it (right plot). The inset plots, in
both figures, display the relative standard deviations.

Figure 2 shows the information gain obtained with the use of the local search
mechanism (left plot), and without it (right plot) when Hybrid-IA is applied
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to the random S R23 instance. In both plots we report also the standard devi-
ation, showed as inset plot. Inspecting both plots is possible to note that with
the using of the local search, the algorithm quickly gains high information until
to reach the higher peak within the first generations, which exactly corresponds
to the achievement of the optimal solution. It is important to highlight that the
higher peak of the information gain corresponds to the lower point of the stan-
dard deviation, and then this confirm that Hybrid-IA reaches its maximum
learning at the same time as it show less uncertainty. Due to the determinis-
tic approach of the local search, once reached the highest peak, and found the
global optimal solution, the algorithm begins to lost information and starts to
show an oscillatory behavior. The same happens for the standard deviation.
From the right plot, instead, without the use of the local search, Hybrid-IA

gains information more slowly. Also for this version, the higher peak of informa-
tion learned corresponds to the lowest uncertainty degree, and in this temporal
window Hybrid-IA reaches the best solution. Unlike the curve produced with
the use of the local search, once found the optimal solution and reached the
highest information peak, the algorithm starts to lost information as well but its
behavior seems to be more steady-state.
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Fig. 3. Information Gain and standard deviation.

The two curves of the information gain have been compared and showed
in Fig. 3 (left plot) over all generations. The relative inset plot is a zoom of
the information gain behavior over the first 25 generations. From this plot is
clear how the local search approach developed helps the algorithm to learn more
information already from the first generations, and in a quickly way; the inset
plot, in particular, highlight the important existing distance between the two
curves. From an overall view over all 300 generations, it is possible to see how
the local search gives more steady-state even after reaching the global optimal.
In the right plot of the Fig. 3 is instead shown the comparison between the two
standard deviations produced by Hybrid-IA with and without the use of the
local search. Of course, as we expected, the curve of the standard deviation using
the local search is taller as the algorithm gains higher amount of information
than the version without local search.
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Finally, from the analysis of all these figures – from convergence speed to
learning ability – clearly emerges how the local search designed and developed
helps Hybrid-IA in having an appropriate and correct convergence towards the
global optimum, and a greater amount of information gained.

4.2 Experiments and Comparisons

In this subsection all experimental results and comparisons done with the state-
of-the-art are presented in order to evaluate the efficiency, reliability and robust-
ness of the Hybrid-IA performances. Many experiments have been performed,
and the benchmark instances proposed in [2] have been considered for our tests
and comparisons. In particular, Hybrid-IA has been compared with three dif-
ferent metaheuristics: ITS [3], XTS [1,9], and MA [2]. As written in Sect. 4, the
same experimental protocol proposed in [2] has been used. Tables 1 and 2 show
the results obtained by Hybrid-IA on different sets of instance: squared grid
graph, no squared grid graph, and toroidal graph in Table 1; hypercube graph and
random graphs in Table 2. In both tables are reported: the name of the instance
in 1st column; number of vertices in 2nd; number of edges in 3rd; lower and
upper bounds of the vertex weights in 4th and 5th; and optimal solution K∗

in 6th. In the next columns are reported the results of Hybrid-IA (7th) and
of the other three algorithms compared. It is important to clarify that for the
grid graphs (squared and not squared) n and m indicate the number of the rows
and columns of the grid. The last column of both tables shows the difference
between the result obtained by Hybrid-IA and the best result among the three
compared algorithms. Further, in each line of the tables the best results among
all are reported in boldface.

On the squared grid graph instances (top of Table 1) is possible to see how
Hybrid-IA is able to reach the optimal solution in 8 instances over 9, unlike of
MA that instead reaches it in all instances. However, in this instance (S SG7)
the performances showed by Hybrid-IA are very close to the optimal solution
(+0.2), and anyway better than the other two compared algorithms. On the not
square grid graphs (middle of Table 1) instead Hybrid-IA reaches the optimal
solution on all instances (9 over 9), outperforming all three algorithms on the
instance S NG7, where none of the three compared algorithms is able to find the
optimal solution. Also on the toroidal graphs (bottom of Table 1) Hybrid-IA is
able to reaches the global optimal solution in 9 over 9 instances. In the overall,
inspecting all results in Table 1, is possible to see how Hybrid-IA shows com-
petitive and comparable performances to MA algorithm, except in the instance
S SG7 where it shows slight worst results, whilst instead it is able to outper-
form MA in the instance S NG7 where it reaches the optimal solution unlike of
MA. Analysing the results with respect the other two algorithms, is clear how
Hybrid-IA outperform ITS and XTS on all instances.

In Table 2 are presented the comparisons on the hypercube, and random
graphs, which present larger problem dimensions with respect the previous ones.
Analysing the results obtained on the hypercube graph instances, it is very clear
how Hybrid-IA outperform all three algorithms in all instances (9 over 9),
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Table 1. Hybrid-IA versus MA, ITS and XTS on the set of the instances: squared
grid; not squared grid and toroidal graphs.

Instance

n m Low Up K∗
Hybrid-IA ITS XTS MA ±

Squared grid graphs

S SG1 5 5 10 25 114.0 114.0 114.0 114.0 114.0 =

S SG2 5 5 10 50 199.8 199.8 199.8 199.8 199.8 =

S SG3 5 5 10 75 312.4 312.4 312.6 312.4 312.4 =

S SG4 7 7 10 25 252.0 252.0 252.4 252.0 252.0 =

S SG5 7 7 10 50 437.6 437.6 439.8 437.6 437.6 =

S SG6 7 7 10 75 713.6 713.6 718.4 717.4 713.6 =

S SG7 9 9 10 25 442.2 442.4 444.2 442.8 442.2 +0.2

S SG8 9 9 10 50 752.2 752.2 754.6 753.0 752.2 =

S SG9 9 9 10 75 1134.4 1134.4 1138.0 1134.4 1134.4 =

Not squared grid graphs

S NG1 8 3 10 25 96.8 96.8 96.8 96.8 96.8 =

S NG2 8 3 10 50 157.4 157.4 157.4 157.4 157.4 =

S NG3 8 3 10 75 220.0 220.0 220.0 220.0 220.0 =

S NG4 9 6 10 25 295.6 295.6 295.8 295.8 295.6 =

S NG5 9 6 10 50 488.6 488.6 489.4 488.6 488.6 =

S NG6 9 6 10 75 755.0 755.0 755.0 755.2 755.0 =

S NG7 12 6 10 25 398.2 398.2 399.8 398.8 398.4 −0.2

S NG8 12 6 10 50 671.8 671.8 673.4 671.8 671.8 =

S NG9 12 6 10 75 1015.2 1015.2 1017.4 1015.4 1015.2 =

Toroidal graphs

S T1 5 5 10 25 101.4 101.4 101.4 101.4 101.4 =

S T2 5 5 10 50 124.4 124.4 124.4 124.4 124.4 =

S T3 5 5 10 75 157.8 157.8 157.8 158.8 157.8 =

S T4 7 7 10 25 195.4 195.4 197.4 195.4 195.4 =

S T5 7 7 10 50 234.2 234.2 234.2 234.2 234.2 =

S T6 7 7 10 75 269.6 269.6 269.6 269.6 269.6 =

S T7 9 9 10 25 309.6 309.8 310.4 309.8 309.8 =

S T8 9 9 10 50 369.6 369.6 370.0 369.6 369.6 =

S T9 9 9 10 75 431.8 431.8 432.2 432.2 431.8 =

reaching even the optimal solution on the S H7 instance where instead the three
algorithms fail. On the random graphs Hybrid-IA still shows comparable results
to MA on all instances, even reaching the optimum on the instances S R20
and S R23 where instead MA, and the other two algorithms fail. In the overall,
analyzing all results of this table is easy to assert that Hybrid-IA is comparable,
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Table 2. Hybrid-IA versus MA, ITS and XTS on the set of the instances: hypercube
and random graphs.

Instance

n m Low Up K∗
Hybrid-IA ITS XTS MA ±

Hypercube graphs

S H1 16 32 10 25 72.2 72.2 72.2 72.2 72.2 =

S H2 16 32 10 50 93.8 93.8 93.8 93.8 93.8 =

S H3 16 32 10 75 97.4 97.4 97.4 97.4 97.4 =

S H4 32 80 10 25 170.0 170.0 170.0 170.0 170.0 =

S H5 32 80 10 50 240.6 240.6 241.0 240.6 240.6 =

S H6 32 80 10 75 277.6 277.6 277.6 277.6 277.6 =

S H7 64 192 10 25 353.4 353.4 354.6 353.8 353.8 −0.4

S H8 64 192 10 50 475.6 475.6 476.0 475.6 475.6 =

S H9 64 192 10 75 503.8 503.8 503.8 504.8 503.8 =

Random graphs

S R1 25 33 10 25 63.8 63.8 63.8 63.8 63.8 =

S R2 25 33 10 50 99.8 99.8 99.8 99.8 99.8 =

S R3 25 33 10 75 125.2 125.2 125.2 125.2 125.2 =

S R4 25 69 10 25 157.6 157.6 157.6 157.6 157.6 =

S R5 25 69 10 50 272.2 272.2 272.2 272.2 272.2 =

S R6 25 69 10 75 409.4 409.4 409.4 409.4 409.4 =

S R7 25 204 10 25 273.4 273.4 273.4 273.4 273.4 =

S R8 25 204 10 50 507.0 507.0 507.0 507.0 507.0 =

S R9 25 204 10 75 785.8 785.8 785.8 785.8 785.8 =

S R10 50 85 10 25 174.6 174.6 175.4 176.0 174.6 =

S R11 50 85 10 50 280.8 280.8 280.8 281.6 280.8 =

S R12 50 85 10 75 348.0 348.0 348.0 349.2 348.0 =

S R13 50 232 10 25 386.2 386.2 389.4 386.8 386.2 =

S R14 50 232 10 50 708.6 708.6 708.6 708.6 708.6 =

S R15 50 232 10 75 951.6 951.6 951.6 951.6 951.6 =

S R16 50 784 10 25 602.0 602.0 602.2 602.0 602.0 =

S R17 50 784 10 50 1171.8 1171.8 1172.2 1172.0 1171.8 =

S R18 50 784 10 75 1648.8 1648.8 1649.4 1648.8 1648.8 =

S R19 75 157 10 25 318.2 318.2 321.0 320.0 318.2 =

S R20 75 157 10 50 521.6 522.2 526.2 525.0 522.6 −0.4

S R21 75 157 10 75 751.0 751.0 757.2 754.2 751.0 =

S R22 75 490 10 25 635.8 635.8 638.6 635.8 635.8 =

S R23 75 490 10 50 1226.6 1226.6 1230.6 1228.6 1227.6 −1.0

S R24 75 490 10 75 1789.4 1789.4 1793.6 1789.4 1789.4 =

S R25 75 1739 10 25 889.8 889.8 891.0 889.8 889.8 =

S R26 75 1739 10 50 1664.2 1664.2 1664.8 1664.2 1664.2 =

S R27 75 1739 10 75 2452.2 2452.2 2452.8 2452.2 2452.2 =
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and sometime the best, with respect to MA also on this set of instances, winning
even on three instances the comparison with it. Extending the analysis to the
comparison with ITS and XTS algorithms, it is quite clear that Hybrid-IA

outperforms them in all instances, finding always better solutions than these
two compared algorithms.

Finally, from the analysis of the convergence behavior, learning ability, and
comparisons performed it is possible to clearly assert how Hybrid-IA is com-
parable with the state-of-the-art for the MWFV S problem, showing reliable
and robustness performances, and good ability in information learning. These
efficient performances are due to the combination of the immunological opera-
tors, which introduce enough diversity in the search phase, and the local search
designed, which instead refine the solution via more appropriate and determin-
istic choices.

5 Conclusion

In this paper we introduce a hybrid immunological algorithm, simply called
Hybrid-IA, which takes advantage by the immunological operators (cloning,
hypermutation and aging) for carefully exploring the search space, introducing
diversity, and avoiding to get trapped into a local optima, and by a Local Search
whose aim is to refine the solutions found through appropriate choices and based
on a deterministic approach.

The algorithm was designed and developed for solving one of the most chal-
lenging combinatorial optimization problems, such as the Weighted Feedback
Vertex Set, which simply consists, given an undirected graph, in finding the sub-
set of vertices of minimum weight such that their removal produce an acyclic
graph. In order to evaluate the goodness and reliability of Hybrid-IA, many
experiments have been performed and the results obtained have been com-
pared with three different metaheuristics (ITS, XTS, and MA), which represent
nowadays the state-of-the-art. For these experiments a set of graph benchmark
instances has been considered, based on different topologies: grid (squared and
no squared), toroidal, hypercube, and random graphs.

An analysis on the convergence speed and learning ability of Hybrid-IA

has been performed in order to evaluate, of course, its efficiency but also the
computational impact and reliability provided by the developed local search.
From this analysis, clearly emerges how the developed local search helps the
algorithm in having a correct convergence towards the global optima, as well as
a high amount of information gained during the learning process.

Finally, from the results obtained, and the comparisons done, it is possible to
assert how Hybrid-IA is competitive and comparable with the WFV S state-of-
the-art, showing efficient and robust performances. In all instances tested it was
able to reach the optimal solutions, except in only one (S SG7). It is important
to point out how Hybrid-IA has been instead the only one to reach the global
optimal solutions on 4 instances, unlike the three compared algorithms.
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